Originally posted by: user1234567
Hello, i'm using a mathematical model (milp model) to solve Flexible Jobshop Problem. I get results out of the upper and the lower bounds. For example, in the following data (donnees.DAT) i should get a value between 133, and 157. (LB, UB) = (133, 157). I get the value 198 !!
Please can you help me to know the reason why i get unreasonable objective functions ? Can anyone check my model if it is working correctly ? Thank you in advance.
My model:
decision variables:
X i,j,k = {1 if machine k is selceted for operation Oij, 0 otherwise}
Y i,j,i',j',k = {1 if operation Oij precedes operation Oi'j' on machine k, 0 otherwise}.
The mathematical model:
Minimize (x i,j,k , y i,j,i',j',k): Cmax
sum (k∈Mj) X i,j,k = 1, i∈J, j∈Oi (1)
sum (i=1,..n, j=1..rj) X i,j,k <= e i,j,k; k∈Mj (2)
where, for given {x i,j,k}, {y i,j,i',j',k} solves:
Minimize (y i,j,i',j',k) Cmax
sum (i in 1,..,n, j=1,..,rj) y i,j,i',j',k <= 1; i'∈J, j'∈Oi', k∈Mj∩Mj', (3)
sum (i in 1,..,n, j=1,..,rj) y i,j,0,1,k <= 1; k∈Mj∩Mj', (4)
sum (i in 1,..,n, j=1,..,rj) y i,j,i',j',k <= sum (i in 0,..,n, j=1,..,rj) y i',j',i,j,k; i'∈J, j'∈Oi', k∈Mj∩Mj', (5)
C i,j,k >= C i',j' + y i,j,i',j',k * (p i,j,k + s i,i',k) - L * (1-sum(k=1,..,m) y i,j,i',j',k); i,i' ∈ J, j,j' ∈ Oi', k∈Mj∩Mj', (6)
C i,j,k >= sum (k∈Mj) C i,j-1,k + sum(i=1,..,n, j=1,..,rj, k=1,..,m) y i,j,i',j',k * (p i,j,k + s i',j',k); i ∈ J, j ∈ Oi, (7)
Ci >= sum (k∈Mj) C i,j,k; i ∈ J, j' ∈ Oi', k∈Mj∩Mj', (8)
Cmax >= Ci; i ∈ J, (9)
C i,j,k >= 0; i ∈ J, j ∈ Oi, k∈Mj. (10)
#DecisionOptimization#MathematicalProgramming-General