This detailed blog will walk you through setting up an end-to-end SVT automation framework using modern DevOps and testing tools — Jenkins, JMeter, Selenium Grid, WebSphere Liberty, InfluxDB, Grafana, and Slack. We’ll not only illustrate the architecture and workflow, but also guide you through high-level setup steps so you can replicate this environment for your own continuous test automation projects.
Introduction
System Verification Testing (SVT) ensures stability, performance, and functionality under real-world conditions before software reaches production. This approach integrates continuous integration tools (like Jenkins) with performance testing (JMeter), browser automation (Selenium Grid), and monitoring (Grafana + InfluxDB). The final layer — Slack — brings instant communication to development teams.
The diagram below gives an overview of how various components interact.
Architecture Overview
Core Components:
| Layer |
Technology |
Purpose |
| CI/CD |
Jenkins |
Pipeline orchestration, job scheduling, and reporting |
| App Hosting |
WebSphere Liberty |
Host web application for test execution |
| Test Execution |
Apache JMeter |
Drives regression & load testing |
| Browser Simulation |
Selenium Grid |
Spawns concurrent browser-based test sessions |
| Metrics Storage |
InfluxDB |
Collects real-time test metrics |
| Visualization |
Grafana |
Displays live dashboards synced with tests |
| Notification |
Slack |
Reports test summary and build status |
Environment Preparation
Before starting, ensure that you have:
-
A Jenkins master server and one or more Jenkins agents
-
Access to WebSphere Liberty or any preferred lightweight app server
-
Docker or Podman installed for containerized services (InfluxDB, Grafana)
-
Python 3 installed (for custom automation scripts)
References:
Jenkins Setup and Job Design
Step 1: Create a Jenkins Freestyle or Pipeline Job for Build Deployment
-
Configure repository credentials to download the build artifact.
-
Add pipeline steps or shell scripts to:
-
Copy artifacts to Liberty deployment directory.
-
Start Liberty via command line or server start <servername>.
stage('Deploy Build') {
steps {
sh 'curl -O $REPO_URL/latest-build.zip'
sh 'unzip latest-build.zip -d /opt/liberty/usr/servers/myApp'
sh '/opt/liberty/bin/server start myApp'
}
}
Step 2: Create Jenkins Job for SVT (Regression) Execution
-
Configure a Jenkins agent that has JMeter and Java installed.
-
Include a shell or pipeline step to trigger JMeter tests:
stage('Run Regression') {
steps {
sh 'jmeter -n -t /tests/viewer_regression.jmx -l results.jtl'
}
}
-
Archive test results using Jenkins post-build actions.
-
Add triggers: schedule builds when a successful commit is made or on a daily basis.
Step 3: Slack Notification Integration
-
Install Slack Notification Plugin in Jenkins.
-
Generate an API token from your Slack app setup.
-
Add a post-build step:
slackSend(channel: '#svt-alerts', color: 'good', message: 'Viewer SVT completed: ${currentBuild.currentResult}
JMeter Configuration for SVT
-
Use HTTP(S) Test Script Recorder in JMeter to capture actions like document download, conversion ,print, and redaction from the Viewer UI.
-
Build Thread Groups to simulate concurrent sessions (e.g., 100 users).
-
Use Backend Listener (InfluxDB) to send real-time metrics.
Backend Listener Configuration:
-
Backend Listener Implementation: org.apache.jmeter.visualizers.backend.influxdb.InfluxdbBackendListenerClient
-
Parameters:
-
influxdbMetricsSender = org.apache.jmeter.visualizers.backend.influxdb.HttpMetricsSender
-
influxdbUrl = http://<influx_host>:8086/write?db=jmeter
-
application = ViewerSVT
Reference: JMeter InfluxDB Backend Listener Guide
Selenium Grid for Browser Load Simulation
-
Deploy Selenium Hub:
docker run -d -p 4442-4444:4442-4444 --name selenium-hub selenium/hub
-
Deploy Browser Nodes (e.g., Chrome):
docker run -d --link selenium-hub:hub selenium/node-chrome
-
Verify: Open http://<hub-ip>:4444/ui to check node status.
Reference: Selenium Grid Official Docs
InfluxDB and Grafana Setup for Live Reporting
-
Run InfluxDB and Grafana in containers:
docker run -d -p 8086:8086 --name influxdb influxdb:2.7
docker run -d -p 3000:3000 --name grafana grafana/grafana
-
Create an InfluxDB database:
influx -execute 'CREATE DATABASE jmeter'
-
Connect Grafana to InfluxDB via Data Source → InfluxDB (HTTP URL: http://influxdb:8086).
-
Import JMeter-Grafana dashboards from open-source templates (for example: ID 5496 from Grafana.com).
Reference: Grafana + JMeter Integration Guide
Python Script for Threshold Evaluation
A custom Python script can automatically evaluate test success/failure:
from influxdb import InfluxDBClient
import requests
client = InfluxDBClient(host='influxdb', port=8086, database='jmeter')
query = "SELECT MEAN(failure) FROM jmeter WHERE time > now() - 1h"
result = list(client.query(query).get_points())[0]['mean']
if result > 0.05:
requests.post('http://jenkins/job/SVT/build', data={'result':'FAIL'})
else:
requests.post('http://jenkins/job/SVT/build', data={'result':'PASS'})
This enforces an objective quality gate based on defined performance thresholds.
Putting It All Together
When integrated:
-
Jenkins downloads the daily build.
-
Liberty deploys and starts the Viewer app.
-
Jenkins triggers JMeter regression tests (optionally combined with Selenium Grid load).
-
Metrics are streamed to InfluxDB → visualized in Grafana.
-
Python automation validates outcomes.
-
Jenkins posts a pass/fail summary to Slack with the dashboard link.
Key Benefits
-
Fully automated hands-free validation pipeline.
-
Live feedback in Grafana during load execution.
-
Data-driven Jenkins job status decision.
-
Continuous visibility via Slack alerts and grafana dashboard
-
Scalable infrastructure, easily extendible to cloud deployments.
Useful References
Conclusion
This setup represents a comprehensive SVT automation architecture combining CI/CD pipelines with real-time performance telemetry and intelligent result validation. It enhances both regression coverage and release confidence, forming a reference design for quality assurance in modern enterprise DevOps environments.