# Deploy the stored model as an online web service deployment
model_id = model_details["metadata"]["guid"]
#model_id
deployment_details = client.deployments.create( artifact_uid=model_id, name="Keras deployment" )
#######################################################################################
Synchronous deployment creation for uid: 'bbbc3b12-3a88-4f6e-aa9d-f01afc8971d3' started
#######################################################################################
INITIALIZING
DEPLOY_IN_PROGRESS.
2019-08-26 17:52:59,989 - watson_machine_learning_client.wml_client_error - WARNING - Deployment creation failed. Errors: [{'code': 'load_model_failure', 'message': '0', 'target': {'type': 'none', 'name': 'none'}, 'more_info': 'none'}]
any suggestion?
------------------------------
MUKESH GUPTA
------------------------------
#keras#machinelearning#MachineLearning#WatsonStudio#watson-machine-learning