import numpy as np
from scipy.optimize import minimize
from qiskit import QuantumCircuit, transpile, Aer, execute
from qiskit.visualization import plot_histogram
# Define the number of qubits
num_qubits = 4
# Define the cost operator (objective function) - Modify as needed
pauli_strings = ["Z" + "I"*(num_qubits-1)]
cost_operator = pauli_strings
# Create a parameterized circuit for the ansatz
param_names = ['theta_'+str(i) for i in range(2*num_qubits)]
param_circuit = QuantumCircuit(num_qubits)
# Create entanglement (HXXH)
for qubit in range(num_qubits):
param_circuit.h(qubit)
param_circuit.x(qubit)
for qubit in range(num_qubits - 1):
param_circuit.cx(qubit, qubit + 1)
for qubit in range(num_qubits):
param_circuit.x(qubit)
param_circuit.h(qubit)
# Define the QAOA function
def qaoa(params):
circuit = param_circuit.copy()
for p in range(0, len(params), 2):
beta, gamma = params[p], params[p+1]
for qubit in range(num_qubits):
circuit.ry(2 * beta, qubit)
circuit.rz(2 * gamma, qubit)
backend = Aer.get_backend('statevector_simulator')
job = execute(circuit, backend)
result = job.result()
statevector = result.get_statevector(circuit)
objective_value = statevector[0].real # Modify this based on your problem
return objective_value
# Define the optimization problem
def objective(params):
return -qaoa(params)
# Optimize the parameters
init_params = np.random.rand(2*num_qubits) # Initial parameters
result = minimize(objective, init_params, method='COBYLA')
# Extract optimal parameters and objective value
optimal_params = result.x
optimal_objective = -result.fun
print("Optimal parameters:", optimal_params)
print("Optimal objective value:", optimal_objective)