In my presentations in Australia and New Zealand, I mentioned that people were re-discovering the benefits of removable media. While floppy diskettes were convenient way of passing information from one person to another, they unfortunately did not have enough capacity. In today's world, you may need Gigabytes or Terabytes of re-writeable storage with a file system interface that can easily be passed from one person to another. In this post, I explore three options.
- Cirago CDD2000 Docking Station
-
The good folks over at [Cirago International Ltd.] sent me a cute little [CDD2000 docking station] for evalution.
(FCC Disclaimer: I work for IBM, and IBM has no business relationship with Cirago at the time of this writing. Cirago has not paid me to mention their product, but instead provided me a free loaner that I promised to return to them after my evaluation is completed. This post should not be considered an endorsement for Cirago's products. List prices for Cirago and IBM products were determined from publicly available sources for the United States, and may vary in different countries. The views expressed herein may not necessarily reflect the views and opinions of either IBM or Cirago.)
|
I took a few photos so you can see what exactly this device looks like. Basically, it is a plastic box that holds a single naked disk drive. It has four little rubber feet so that it does not slip on your desk surface.
|
The inside is quite simple. The power and SATA connections match those of either a standard 3.5 inch drive, or the smaller form factor (SFF) 2.5 inch drive. However, to my dismay, it does not handle EIDE drives which I have a ton of. After taking apart six different computer systems, I found only one had SATA drives for me to try this unit out with.
|
|
|
The unit comes with a USB cable and AC/DC power adapter. In my case, I found the USB 3.0 cable too short for my liking. My tower systems are under my desk, but I like keeping docking stations like this on the top of the desk, within easy reach, but that wasn't going to happen because the USB cable was not long enough.
|
Instead, I ended up putting it half-way in between, behind my desk, sitting on another spare system. Not ideal, but in theory there are USB-extension cables that probably could fix this.
Here it is with the drive inside. I had a 3.5 inch Western Digital [1600AAJS drive] 160 GB, SATA 3 Gbps, 8 MB Cache, 7200 RPM.
|
|
To compare the performance, I used a dual-core AMD [Athlon X2] system that I had built for my 2008 [One Laptop Per Child] project. To compare the performance, I ran with the drive externally in the Cirago docking station, then ran the same tests with the same drive internally on the native SATA controller. Although the Cirago documentation indicated that Windows was required, I used Ubuntu Linux 10.04 LTS just fine, using the flexible I/O [fio] benchmarking tool against an ext3 file system.
- Sequential Write - a common use for external disk drive is backup.
- Random read - randomly read files ranging from 5KB to 10MB in size.
- Random mixed - randomly read/write files (50/50 mix) ranging from 5KB to 10MB in size.
Workload | Metric | Internal | External |
Sequential Write | Throughput IOPS | 1119 | 1044 |
| Latency (msec) | 0.866 ms | 0.948 ms |
| Bandwidth (KB/s) | 16900 | 14400 |
Random Read | Throughput (IOPS) | 164 | 119 |
| Latency (msec) | 6.06 ms | 8.36 ms |
| Bandwidth (KB/s) | 658 | 477 |
Random Mixed (50/50) | Throughput (IOPS) | 112 | 81 |
| Latency (msec) read | 8.78 ms | 12.1 ms |
| Latency (msec) write | 0.0983 ms | 0.120 ms |
| Bandwidth (KB/s) read | 557 | 328 |
| Bandwidth (KB/s) write | 556 | 337 |
For sequential write, the Cirago performed well, only about 15 percent slower than native SATA. For random workloads, however, it was 30-40 percent slower. If you are wondering why I did not get USB 3.0 speeds, there are several factors involved here. First, with overheads, 5 Gbps USB 3.0 is expected to get only about 400 MB/sec. My SATA 2.0 controller maxes out at 375 MB/sec, and my USB 2.0 ports on my system are rated for 57 MB/sec, but with overheads will only get 20-25 MB/sec. Most spinning drives only get 75 to 110 MB/sec. Even solid-state drives top out at 250 MB/sec for sustained activity. Despite all that, my internal SATA drive only got 16 MB/sec, and externally with the Cirago 14 MB/sec in sustained write activity.
|
Here is the mess that is inside my system. The slot for drive 2 was blocked by cables, memory chips and the heat sink for my processor. It is possible to damage a system just trying to squeeze between these obstacles.
|
However, the point of this post is "removable media". Having to open up the case and insert the second drive and wire it up to the correct SATA port was a pain, and certainly a more difficult challenge than the average PC user wishes to tackle.
Price-wise, the Cirago lists for $49 USD, and the 160GB drive I used lists for $69, so the combination $118 is about what you would pay for a fully integrated external USB drive. However, if you had lots of loose drives, then this could be more convenient and start to save you some money.
- IBM RDX disk backup system
-
Another problem with the Cirago approach is that the disk drives are naked, with printed circuit board (PCB) exposed. When not in the docking station, where do you put your drive? Did you keep the [anti-static ESD bag] that it came in when you bought it? And once inside the bag, now what? Do you want to just stack it up in a pile with your other pieces of equipment?
|
To solve this, IBM offers the RDX backup system. These are fully compatible with other RDX sytems from Dell, HP, Imation, NEC, Quantum, and Tandberg Data. The concept is to have a docking station that takes removable, rugged plastic-coated disk-enclosed cartridges. The docking station can be part of the PC itself, similar to how CD/DVD drives are installed, or as a stand-alone USB 2.0 system, capable of processing data up to 25 MB/sec.
|
The idea is not new, about 10 years ago we had [Iomega "zip" drives] that offered disk-enclosed cartridges with capacities of 100, 250 and 750MB in size. Iomega had its fair share of problems with the zip drive, which were ranked in 2006 as the 15th worst technology product of all time, and were eventually were bought out by EMC two years later (as if EMC has not had enough failures on its own!)
The problem with zip drives was that they did not hold as much as CD or DVD media, and were more expensive. By comparison, IBM RDX cartridges come in 160GB to 750GB in size, at list prices starting at $127 USD.
- IBM LTO tape with Long-Term File System
-
Removable media is not just for backup. Disk cartridges, like the IBM RDX above, had the advantage of being random access, but most tape are accessed sequentially. IBM has solved this also, with the new IBM Long Term File System [LTFS], available for LTO-5 tape cartridges.
With LFTS, the LTO-5 tape cartridge now can act as a super-large USB memory stick for passing information from one person to the next. The LTO-5 cartridge can handle up to 3TB of compressed data at up to SAS speeds of 140 MB/sec. An LTO-5 tape cartridge lists for only $87 USD.
The LTO-5 drives, such as the IBM [TS2250 drive] can read LTO-3, LTO-4 and LTO-5cartridges, and can write LTO-4 and LTO-5 cartridges, in a manner that is fully compatible with LTO drives from HP or Quantum. LTO-3, LTO-4 and LTO-5 cartridges are available in WORM or rewriteable formats. LTO-4 and LTO-5 cartridges can be encrypted with 256-bit AES built-in encryption. With three drive manufacturers, and seven cartridge manufacturers, there is no threat of vendor lock-in with this approach.
These three options offer various trade-offs in price, performance, security and convenience. Not surprisingly, tape continues to be the cheapest option.