IBM FlashSystem

IBM FlashSystem

Find answers and share expertise on IBM FlashSystem

 View Only

IBM announces the SAN768B director

By Tony Pearson posted Wed February 13, 2008 11:35 AM

  

Originally posted by: TonyPearson


Yesterday, I promised I would cover other products from the Feb 12 announcement. Today I will focus on the IBM SAN768B director. Some people are confused on the differences between switchesand directors. I find there are three key differences:
  1. Directors are designed to be 24x7 operation, highly available with no single points of failure or repair. Generally, all components in directors are redundant and hot-swappable, including Control Processors. In switches, some components are redundant and hot-swappable, such as fans and power supplies), but not the “motherboard” or controller. Often you have to take down a switch to make firmware or major hardware changes or upgrades.

  2. Directors are designed to take in "blades" with different features, port counts, or protocol capabilities. You can add or remove blades while the system is up and running. Switches have a fixed number of ports. (A Small Form-factor Pluggable optical transceiver [SFP] is the component that turns electric pulses into light pulses (and visa versa). You plug the SFP into the switch, and then the fiber optic cable is plugged into the SFP).

    With switches, you often start with a base number of active ports, and then can enable the rest of the ports as you need them.

  3. Directors have hundreds of ports. Switches tend to have 64 ports or less.

Last year, Brocade acquired McDATA. Both were OEMs for IBM, and IBM distinguished that in the naming convention. The IBM SAN***B name was used to denote products manufactured for IBM by Brocade, and a SAN***M name was used to denote products manufactured by McDATA.

At that time, Brocade and McDATA equipment did not mix very well on the same fabric, so IBM retained the naming convention so that you as a customer knew what it worked with.

Brocade now has released with new levels of both operating systems--Brocade's FOS and McDATA's EOS--and their respective fabric managers--Brocade Fabric Manager (FM) and McDATA's Enterprise Fabric Connectivity Manager (EFCM)--so that they have full interoperability.

Brocade's goal is to enhance EFCM to be a common software management platform for all of their products going forward.

IBM used the maximum port count in the name to provide some clue as to the size of the switch or director. The SAN16B-2 or the SAN32B-3 are switches that have a maximum of 16 and 32 ports. The SAN256B supports a maximumeight blades of your choosing.Two different types were supported for FC ports, a 16-port blade and a 32-port blade.If all eight were 32-port blades then the maximum was 256 ports, hence the name. But then Brocade began offering 48-port blades. Should IBM change the name? No, it decided to leave itthe SAN256B even though it can now have a maximum of 384 ports.

Not to confuse anyone, the SAN768B also has a maximum of 384 ports, in the same 14U dimensions, but with a special twist. Normally to connect two directors together you use up ports from each, in what are called "inter-switch links" (ISL).These are ports you are taking away from availability from the servers and storage controllers. The SAN768Boffers a new alternative called "inter-chassis links". Each SAN768B has two processing blades, and each has two ICL ports, so with just four two-meter (2m) cables, you get the equivalent of 128 FC 8 Gbps ISL links without using 128 individual ports on each side. That is like giving you 256 ports back for use with servers and storage!

Since IBM directors require 240 volt power, IBM TotalStorage SAN Cabinet C36 include power distribution units (PDUs). PDUs are just glorified power strips, but a new intelligent PDU (iPDU) option introduces additional intelligence to monitor energy consumption for customers looking to measure, and perhaps charge back, energy consumption to the rest of the business. You can stack two SAN768B in one cabinet, one on top of the other, and connected via ICLs, it wouldlook like one huge 768-port backbone.

As a backbone for your data center, the SAN768B is positioned for two emerging technologies:

8 Gbps Fibre Channel (FC)

The SAN768B is powerful enough to have 32-port blades run full speed on all ports off-blade without oversubscription. Oversubscription is an emotional topic.

Normally, blades (like switches) can handle all traffic at full speed without delays provided the in-bound and out-bound ports involved are all on the same blade. In a director, however, if you need to communicate from a port on one blade to a port on a different blade, it is possible that off-blade traffic might be constrained or delayed in its transit across the backplane.

On the SAN768B, both the 16-port and 32-port blades can run at full 8 Gbps speed, and the 48-port is exposed to oversubscription only if you have more than 32-ports running at full 8 Gbps transferring data off-blade concurrently.

The new 8 Gbps SFPs support auto-negotiation at N-1 and N-2 generation link speeds. This means that they will automatically slow down when communicating with 4Gpbs and 2 Gbps devices, but they cannot communicate with 1 Gbps devices. If you are still using 1 Gbps devices in your data center, you will need to use 4 Gbps SFPs (which also support 2 Gbps and 1 Gbps link speeds) to communicate with those older devices.

Fibre Channel over Ethernet (FCoE)

Wikipedia has a good summary of [FCoE].

Basically, this new technology enables transport of Fibre Channel packets over 10 Gbps Ethernet links. This 10 Gbps Ethernet can also be used to carry traditional iSCSI and TCP/IP traffic. FCoE introduces new extensions to provide Fibre Channel characteristics, like being lossless, and offering consistent performance. The ANSI T11 team is driving FCoE as an open standard, and at the moment it is not fully baked. I suggest you don't buy any FCoE equipment prematurely, as pre-standard devices or host bus adapters could get you burned later when the standard is finalized.

The idea is that FCoE blades can be installed in a SAN768B along with traditional FC blades, allowing routing of traffic between traditional FC and new FCoE ports. Those who have invested in FCIP for long distance replication will be able to continue using either FC or FCoE inputs.

One of the big drivers of FCoE is IBM BladeCenter. Currently, most BladeCenter blades support both Ethernet and FC connectivity and are connected to both Ethernet and FC switches on the back of each BladeCenter chassis. With FCoE, we have the potential to run both FC and IP traffic across simpler all-Ethernet blades, connecting through all-Ethernet switches on the backs of each chassis.

For more information on the IBM SAN768B, see the [IBM Press Release]. For more detailson Brocade's strategy, here is an 8-page white paper on their[Data Center Fabric] vision.

technorati tags: , , , , , , , , , , , , , , , , , , , , , , , ,


#StorageAreaNetworks
#Storage
#PrimaryStorage
1 comment
5 views

Permalink

Comments

Thu February 14, 2008 04:05 PM

Minor corrections -- Thanks Pete!