Welcome to the IBM TechXchange Community, a place to collaborate, share knowledge, & support one another in everyday challenges. Connect with your fellow members through forums, blogs, files, & face-to-face networking.
Join / sign up
A new best practice paper has been published that details the recommended practices of storing data in column-organized tables, also known as BLU tables. The best practice paper titled " Db2 with BLU Acceleration: Best Practices for storing data in Column-Organized tables " was written by: ...
This document describes the recommended practice of storing data with Db2 BLU Acceleration, also known as column-organized tables. It starts by explaining how table data is stored, in general, then moves on to BLU table storage and the possible overhead that can come from BLU tables. Next it...
BLU_Storage_Best_Practices_2023.pdf
This document describes the recommended practices to achieve the best possible compression for BLU tables. It will start with flow charts that highlight the steps to look at the current compression ratio, determine the effectiveness of the column dictionaries, and build more effective...
CompressionBestPractices_Db2_iias_2021.pdf
A new best practices paper, " Best Practices to Compress Db2 Column-Organized Tables " has been published describing the recommended practices to achieve the best possible compression for BLU tables. This best practices paper is written by: Ron Liu Bob Lyle and Christina Lee ...
v1.3.1 April 20, 2020 Fixed bug where the WORD KEY and WORD DIFF function was giving different outputs as compared to Netezza. Changes DDL for functions to NO EXTERNAL ACTION. v1.3 November 5, 2019 Support for NVARCHAR/NCHAR functions added. README updated with...
Adative WLM 은 시스템이 안정적으로 작동하기 위한 장치입니다. 즉 한정된 메모리 자원과 BLU 의 In-Memory 특성이 상충을 관리하기 위한 메커니즘이지만, 이해 충돌의 가능성이 크기 때문에 Adaptive WLM 의 조정 노력은 다수의 동시 사용자로 하여금 불편함을 느끼게 할 가능성이 높습니다. 이 때 필요한 것이, 양보의 미덕입니다. 개별 사용자들이 적절히 Sort Memory 사용을 줄이는 노력을 한다면, Adaptive WLM 이 장애물이 아니라 안정장치가 될 수 있습니다. 이 글에서는 구축 사례를...
2019-IBMKorea-Data&AI-IIAS-webinar-AWLM.pdf