I suspect you will have to use the pre-calculated effect size approach. Here is an example using the 7 studies shown on this Stata page:
https://www.stata.com/new-in-stata/meta-analysis-prevalence-proportions/
I chose to use the logit transformation. I could not find logit() and invlogit() functions, so I had to roll my own. Here's the code.
NEW FILE.
DATASET CLOSE ALL.
DATA LIST LIST / Study N events (3F8.0).
BEGIN DATA
1 14200 1178
2 51000 4641
3 86400 3974
4 68000 2856
5 43400 1519
6 15500 604
7 54500 5341
END DATA.
DATASET NAME raw.
COMPUTE nonevents = N - events.
COMPUTE p = events/N.
COMPUTE q = 1-p.
COMPUTE y = ln(p/q).
COMPUTE sey = SQRT(1/events + 1/nonevents).
VARIABLE LABELS
y "Y = logit(p)"
sey "SE(Y)"
.
LIST y sey.
* OMS.
DATASET DECLARE PooledEst.
OMS
/SELECT TABLES
/IF COMMANDS=['Meta ES Continuous'] SUBTYPES=['Effect Size Estimates']
/DESTINATION FORMAT=SAV NUMBERED=TableNumber_
OUTFILE='PooledEst' VIEWER=YES.
* OMS.
DATASET DECLARE IndStud.
OMS
/SELECT TABLES
/IF COMMANDS=['Meta ES Continuous'] SUBTYPES=['Effect Size Estimates for Individual Studies']
/DESTINATION FORMAT=SAV NUMBERED=TableNumber_
OUTFILE='IndStud' VIEWER=YES.
META ES CONTINUOUS
/DATA ES=y SE=sey ID=Study
/CRITERIA CILEVEL=95 SCOPE=AVAILABLE
CLASSMISSING=EXCLUDE MAXITER=100 MAXSTEP=5
CONVERGENCE=0.000001
/INFERENCE MODEL=RANDOM ESTIMATE=REML ADJUSTSE=NONE
/PRINT INDIVIDUAL
/FORESTPLOT ADDCOLS=N events POSITION=RIGHT
ANNOTATIONS=HOMOGENEITY HETEROGENEITY TEST.
OMSEND.
DATASET ACTIVATE IndStud WINDOW = FRONT.
* Apply inverse-logit transformation: exp(x)/(1+exp(x)).
COMPUTE p = EXP(EffectSize)/(1+EXP(EffectSize)).
COMPUTE lb = EXP(Lower)/(1+EXP(Lower)).
COMPUTE ub = EXP(Upper)/(1+EXP(Upper)).
FORMATS p lb ub (F8.3).
LIST p lb ub.
DATASET ACTIVATE PooledEst.
* Apply inverse-logit transformation: exp(x)/(1+exp(x)).
COMPUTE p = EXP(EffectSize)/(1+EXP(EffectSize)).
COMPUTE lb = EXP(Lower)/(1+EXP(Lower)).
COMPUTE ub = EXP(Upper)/(1+EXP(Upper)).
FORMATS p lb ub (F8.3).
LIST p lb ub.
* This pooled estimate matches the result
* I get using Stata.
Here are the results from that last LIST:
p lb ub
.057 .041 .079
For comparison, here are the results from Stata. You'll have to display in a fixed font to make it more readable.
. meta summarize, transform(invlogit)
Effect-size label: Logit proportion
Effect size: _meta_es
Std. err.: _meta_se
Meta-analysis summary Number of studies = 7
Random-effects model Heterogeneity:
Method: REML tau2 = 0.2220
I2 (%) = 99.82
H2 = 560.84
--------------------------------------------------------------------
Study | Proportion [95% conf. interval] % weight
------------------+-------------------------------------------------
Study 1 | 0.083 0.079 0.088 14.27
Study 2 | 0.091 0.089 0.094 14.31
Study 3 | 0.046 0.045 0.047 14.31
Study 4 | 0.042 0.041 0.044 14.30
Study 5 | 0.035 0.033 0.037 14.28
Study 6 | 0.039 0.036 0.042 14.22
Study 7 | 0.098 0.096 0.101 14.31
------------------+-------------------------------------------------
invlogit(theta) | 0.057 0.041 0.079
--------------------------------------------------------------------
Test of theta = 0: z = -15.70 Prob > |z| = 0.0000
Test of homogeneity: Q = chi2(6) = 3474.75 Prob > Q = 0.0000
I hope this helps.
------------------------------
Bruce Weaver
------------------------------
Original Message:
Sent: Tue May 07, 2024 03:39 AM
From: Pallavi Chatarajupalli
Subject: Single group proportional meta -analysis*
Hello,
I am trying to do single group proportional meta analysis (on SPSS 29 version) but I see there is only option for two group analysis. This is for meta-analysis in systematic review; my data is sample size and prevalence. Based on this raw data, I want to get a forest plot and funnel lot. Can someone guide me please?
thank you
Pallavi MPH
wiss.Mitarbeiterin
Hochschule Emden/Leer
Raum G267
Constantiaplatz 4
26723 Emden
Tel: +491764367867
» www.hs-emden-leer.de