Global Data Science Forum

View Only

The Monty Hall Problem

By Moloy De posted 13 days ago

In Data Science we help client to decide between their options. Monty hall is a decision making problem using conditional probability. For popular study one may refer to the Monty Hall Problem in Wikipedia. It uses Conditional Probability for making the choice.

The Monty Hall problem is a brain teaser, in the form of a probability puzzle, loosely based on the American television game show Let's Make a Deal and named after its original host, Monty Hall. The problem was originally posed and solved in a letter by Steve Selvin to the American Statistician in 1975 . It became famous as a question from a reader's letter quoted in Marilyn vos Savant's "Ask Marilyn" column in Parade magazine in 1990.

Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice?

Vos Savant's response was that the contestant should switch to the other door.

Many readers of vos Savant's column refused to believe switching is beneficial despite her explanation. After the problem appeared in Parade, approximately 10,000 readers, including nearly 1,000 with PhDs, wrote to the magazine, most of them claiming vos Savant was wrong. Even when given explanations, simulations, and formal mathematical proofs, many people still do not accept that switching is the best strategy. Paul Erdős, one of the most prolific mathematicians in history, remained unconvinced until he was shown a computer simulation demonstrating vos Savant’s predicted result.

The problem is a paradox of the veridical type, because the correct choice that one should switch doors is so counterintuitive it can seem absurd, but is nevertheless demonstrably true. The Monty Hall problem is mathematically closely related to the earlier Three Prisoners problem and to the much older Bertrand's box paradox.

Question I: Could we generalize the game to n doors and 1 goat?

Question II: Could we generalize the game to n doors and k goats, k < n?

#Highlights-home