"Since my last post on Storage Performance Efficiency, Claus wrote on the use of HDP, Hitachi Dynamic Provisioning and HDT, Hitachi Dynamic Tiering for mainframes on Virtual Storage Platform (VSP). Naturally, this prompted me to think of the specific performance efficiency implications for mainframes.
HDP brings the performance benefits of automated wide striping and HDT automatically keeps the hot pages of data on the highest performance tier of storage for mainframes, just as it does for open systems. There are differences between open systems and mainframe implementation due to mainframe CKD and CCHHR formats for instance, the page size is optimized for mainframe storage formats and storage reclamation must be host initiate. For more information check out our website: http://www.hds.com/assets/pdf/how-to-apply-latest-advances-in-hitachi-mainframe-storage.pdf
There are also additional performance efficiencies specific for mainframes.
Mainframe HDP is the foundation for Extended Addressable Volumes, which increases the size of 3390 volumes from 65,520 cylinders to 262,668 cylinders. This, along with HyperPAV--which facilitates multiple accesses to a volume, addressing the problem of queuing on a very large volume with a single UCB--enhances throughput with many more concurrent I/O operations.
[graph]
The thin provisioning of HDP also increases the performance of mainframe functions that move, copy, or replicate these thin volumes like Concurrent Copy, FlashCopy V02, and HUR, since the actual volumes are smaller.
If you have mainframes, check out the capacity and performance efficiency of VSP with HDP and HDT.
For other posts on maximizing storage and capacity efficiencies, check these out:
http://blogs.hds.com/capacity-efficiency.php"