Global AI and Data Science

Global AI & Data Science

Train, tune and distribute models with generative AI and machine learning capabilities

 View Only

Hilbert Space in Quantum Mechanics

By Moloy De posted Fri April 17, 2020 02:08 AM

  

The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It extends the methods of vector algebra and calculus from the two-dimensional Euclidean plane and three-dimensional space to spaces with any finite or infinite number of dimensions. A Hilbert space is an abstract vector space possessing the structure of an inner product that allows length and angle to be measured. Furthermore, Hilbert spaces are complete: there are enough limits in the space to allow the techniques of calculus to be used.

Hilbert spaces arise naturally and frequently in mathematics and physics, typically as infinite-dimensional function spaces. The earliest Hilbert spaces were studied from this point of view in the first decade of the 20th century by David Hilbert, Erhard Schmidt, and Frigyes Riesz. They are indispensable tools in the theories of partial differential equations, quantum mechanics, Fourier analysis (which includes applications to signal processing and heat transfer), and ergodic theory (which forms the mathematical underpinning of thermodynamics). John von Neumann coined the term Hilbert space for the abstract concept that underlies many of these diverse applications. The success of Hilbert space methods ushered in a very fruitful era for functional analysis. Apart from the classical Euclidean spaces, examples of Hilbert spaces include spaces of square-integrable functions, spaces of sequences, Sobolev spaces consisting of generalized functions, and Hardy spaces of holomorphic functions.

Geometric intuition plays an important role in many aspects of Hilbert space theory. Exact analogs of the Pythagorean theorem and parallelogram law hold in a Hilbert space. At a deeper level, perpendicular projection onto a subspace (the analog of "dropping the altitude" of a triangle) plays a significant role in optimization problems and other aspects of the theory. An element of a Hilbert space can be uniquely specified by its coordinates with respect to a set of coordinate axes (an orthonormal basis), in analogy with Cartesian coordinates in the plane. When that set of axes is countably infinite, the Hilbert space can also be usefully thought of in terms of the space of infinite sequences that are square-summable. The latter space is often in the older literature referred to as the Hilbert space. Linear operators on a Hilbert space are likewise fairly concrete objects: in good cases, they are simply transformations that stretch the space by different factors in mutually perpendicular directions in a sense that is made precise by the study of their spectrum.

In the mathematically rigorous formulation of quantum mechanics, developed by John von Neumann, the possible states (more precisely, the pure states) of a quantum mechanical system are represented by unit vectors (called state vectors) residing in a complex separable Hilbert space, known as the state space, well defined up to a complex number of norm 1 (the phase factor). In other words, the possible states are points in the projectivization of a Hilbert space, usually called the complex projective space. The exact nature of this Hilbert space is dependent on the system; for example, the position and momentum states for a single non-relativistic spin zero particle is the space of all square-integrable functions, while the states for the spin of a single proton are unit elements of the two-dimensional complex Hilbert space of spinors. Each observable is represented by a self-adjoint linear operator acting on the state space. Each eigenstate of an observable corresponds to an eigenvector of the operator, and the associated eigenvalue corresponds to the value of the observable in that eigenstate.

The inner product between two state vectors is a complex number known as a probability amplitude. During an ideal measurement of a quantum mechanical system, the probability that a system collapses from a given initial state to a particular eigenstate is given by the square of the absolute value of the probability amplitudes between the initial and final states. The possible results of a measurement are the eigenvalues of the operator—which explains the choice of self-adjoint operators, for all the eigenvalues must be real. The probability distribution of an observable in a given state can be found by computing the spectral decomposition of the corresponding operator.

For a general system, states are typically not pure, but instead are represented as statistical mixtures of pure states, or mixed states, given by density matrices: self-adjoint operators of trace one on a Hilbert space. Moreover, for general quantum mechanical systems, the effects of a single measurement can influence other parts of a system in a manner that is described instead by a positive operator valued measure. Thus the structure both of the states and observables in the general theory is considerably more complicated than the idealization for pure states.

Question I: How are the Quantum Computers different from Classical Computers?

Question II:
Quantum Computing  is probabilistic. Does that mean Quantum Sum 1 + 1 may take value 2 with probability say 90% and 1 with probability say 5% and 3 with probability say remaining 5%?


#GlobalAIandDataScience
#GlobalDataScience
3 comments
13 views

Permalink

Comments

Sun April 02, 2023 07:26 PM

Thank you very much for your reply.
The answer that a quantum computer gives is always a probabilistic result, even if it is 99.9999%. I think this is an inconvenient truth in terms of popularizing quantum computers, but I think that the essence of quantum computers cannot be discussed without mentioning this.

Fri March 31, 2023 04:49 AM

Thanks for your comments. I myself is very confused about the answer of my Question II. What most I can say that I understand your idea about dealing with Quantum Computing results and I think it makes sense. I would suggest reading another of my blogs where I tried to make sense of this concept of 1 + 1 = 3 here please. 

Fri March 31, 2023 03:41 AM

I'm still learning quantum computers, but I think the answer to Question2 is yes.
Therefore, I understand that the solutions derived by quantum computers should be verified separately using classical algorithms. In other words, I think the correct way  is to derive candidate solutions with a quantum computer, and then to verify those candidates with a classical algorithm.
Am I wrong?