Global AI and Data Science

 View Only

LinkedIn Share on LinkedIn

Markovian

By Moloy De posted Thu March 26, 2020 09:29 PM

  

A Markov chain is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. In continuous-time, it is known as a Markov process. It is named after the Russian mathematician Andrey Markov.

Markov chains have many applications as statistical models of real-world processes, such as studying cruise control systems in motor vehicles, queues or lines of customers arriving at an airport, currency exchange rates and animal population dynamics.

Markov processes are the basis for general stochastic simulation methods known as Markov chain Monte Carlo, which are used for simulating sampling from complex probability distributions, and have found application in Bayesian statistics and artificial intelligence. The adjective Markovian is used to describe something that is related to a Markov process.

Markov studied Markov processes in the early 20th century, publishing his first paper on the topic in 1906. Markov processes in continuous time were discovered long before Andrey Markov's work in the early 20th century in the form of the Poisson process. Markov was interested in studying an extension of independent random sequences, motivated by a disagreement with Pavel Nekrasov who claimed independence was necessary for the weak law of large numbers to hold. In his first paper on Markov chains, published in 1906, Markov showed that under certain conditions the average outcomes of the Markov chain would converge to a fixed vector of values, so proving a weak law of large numbers without the independence assumption, which had been commonly regarded as a requirement for such mathematical laws to hold. Markov later used Markov chains to study the distribution of vowels in Eugene Onegin, written by Alexander Pushkin, and proved a central limit theorem for such chains.

In 1912 Henri Poincaré studied Markov chains on finite groups with an aim to study card shuffling. Other early uses of Markov chains include a diffusion model, introduced by Paul and Tatyana Ehrenfest in 1907, and a branching process, introduced by Francis Galton and Henry William Watson in 1873, preceding the work of Markov. After the work of Galton and Watson, it was later revealed that their branching process had been independently discovered and studied around three decades earlier by Irénée-Jules Bienaymé. Starting in 1928, Maurice Fréchet became interested in Markov chains, eventually resulting in him publishing in 1938 a detailed study on Markov chains.

Andrei Kolmogorov developed in a 1931 paper a large part of the early theory of continuous-time Markov processes. Kolmogorov was partly inspired by Louis Bachelier's 1900 work on fluctuations in the stock market as well as Norbert Wiener's work on Einstein's model of Brownian movement. He introduced and studied a particular set of Markov processes known as diffusion processes, where he derived a set of differential equations describing the processes. Independent of Kolmogorov's work, Sydney Chapman derived in a 1928 paper an equation, now called the Chapman–Kolmogorov equation, in a less mathematically rigorous way than Kolmogorov, while studying Brownian movement. The differential equations are now called the Kolmogorov equations or the Kolmogorov–Chapman equations. Other mathematicians who contributed significantly to the foundations of Markov processes include William Feller, starting in 1930s, and then later Eugene Dynkin, starting in the 1950s.

Random walks based on integers and the gambler's ruin problem are examples of Markov processes. Some variations of these processes were studied hundreds of years earlier in the context of independent variables. Two important examples of Markov processes are the Wiener process, also known as the Brownian motion process, and the Poisson process, which are considered the most important and central stochastic processes in the theory of stochastic processes. These two processes are Markov processes in continuous time, while random walks on the integers and the gambler's ruin problem are examples of Markov processes in discrete time.

An example of non-Markovian Process would be a coin purse containing five quarters (each worth 25¢), five dimes (each worth 10¢), and five nickels (each worth 5¢), and one by one, coins are randomly drawn from the purse and are set on a table. If X_n represents the total value of the coins set on the table after n draws, with X_0 = 0, then the sequence {X_n} is not a Markov process.

 

Question I: Every 10 minutes you get a bus at the bus stop. Does the average waiting time dependent on the time you arrive at the bus stop and start waiting for the bus?

Question II: What is probability of eventual return in a Random Walk in dimension n?


#GlobalAIandDataScience
#GlobalDataScience
0 comments
2 views

Permalink