Originally posted by: TonyPearson
Continuing my ongoing discussion on Solid State Disk (SSD), fellow blogger BarryB (EMC) points out in his [
latest post]:
Oh – and for the record TonyP, I don't think I ever said EMC was using a newer or different EFDs than IBM. I just asserted that EMC knows more than IBM about these EFDs and how they actually work a storage array under real-world workloads.
(Here "EFD" is refers to "Enterprise Flash Drive", EMC's marketing term for Single Layer Cell (SLC) NAND Flash non-volatile solid-state storage devices. Both IBM and EMC have been selling solid-state storage for quite some time now, but EMC felt that a new term was required to distinguish the SLC NAND Flash devices sold in their disk systems from solid-state devices sold in laptops or blade servers. The rest of the industry, including IBM, continues to use the term SSD to refer to these same SLC NAND Flash devices that EMC is referring to.)
The disagreement resulted from his earlier statement from his post[IBM's amazing...part deux]:
Although STEC asserts that IBM is using the latest ZeusIOPS drives, IBM is only offering the 73GB and 146GB STEC drives (EMC is shipping the latest ZeusIOPS drives in 200GB and 400GB capacities for DMX4 and V-Max, affording customers a lower $/GB, higher density and lower power/footprint per usable GB.)
Here is where I enjoy the subtleties between marketing and engineering. Does the above seem like he is saying EMC is using newer or different drives? What are typical readers expected to infer from the statement above?
- That there are four different drives from STEC, in four different capacities. In the HDD world, drives of different capacities are often different, and larger capacities are often newer than those of smaller capacities.
- That the 200GB and 400GB are the latest drives, and that 73GB and 146GB drives are not the latest.
- That STEC press release is making false or misleading claims.
Uncontested, some readers might infer the above and come to the wrong conclusions. I made an effort to set the record straight. I'll summarize with a simple table:
Raw capacity | 128 GB | 256 GB | 512 GB |
Usable (conservative format) | 73 GB | 146 GB | 300 GB |
Usable (aggressive format) | 100 GB | 200 GB | 400 GB |
So, we all agree now that the 256GB drives that are formatted as 146GB or 200GB are in fact the same drives, that IBM and EMC both sell the latest drives offered by STEC, and that the STEC press release was in fact correct in its claims.
I also wanted to emphasize that IBM chose the more conservative format on purpose. BarryB [did the math himself] and proved my key points:
- Under some write-intensive workloads, an aggressive format may not last the full five years. (But don't worry, BarryB assures us that EMC monitors these drives and replaces them when they fail within the five years under their warranty program.)
- Conservative formats with double the spare capacity happen to have roughly double the life expectancy.
I agree with BarryB that an aggressive format can offer a lower $/GB than the conservative format. Cost-conscious consumers often look for less-expensive alternatives, and are often willing to accept less-reliable or shorter life expectancy as a trade-off. However, "cost-conscious" is not the typical EMC targeted customer, who often pay a premiumfor the EMC label. To compensate, EMC offers RAID-6 and RAID-10 configurations to provide added protection. With a conservative format, RAID-5 provides sufficient protection.
(Just so BarryB won't accuse me of not doing my own math, a 7+P RAID-5 using conservative format 146GB drives would provide 1022GB of capacity, versus 4+4 RAID-10 configuration using aggressive format 200GB drives only 800GB total.)
In an ideal world, you the consumer would know exactly how many IOPS your application will generate over the next five years, exactly how much capacity you will require, be offered all three drives in either format to choose from, and make a smart business decision. Nothing, however, is ever this simple in IT.
technorati tags: IBM, SSD, EMC, EFD, SLC, NAND, Flash, disk, storage systems, life expectancy, reliability, capacity, Barry Burke, STEC, IOPS