Originally posted by: TonyPearson
My post last week [
Solid State Disk on DS8000 Disk Systems] kicked up some dust in the comment section.Fellow blogger BarryB (a member of the elite [
Anti-Social Media gang from EMC]) tried to imply that 200GB solid state disk (SSD) drives were different or better than the 146GB drives used in IBM System Storage DS8000 disk systems. I pointed out that they are the actual same physical drive, just formatted differently.
To explain the difference, I will first have to go back to regular spinning Hard Disk Drives (HDD). There are variances in manufacturing, so how do you make sure that a spinning disk has AT LEAST the amount of space you are selling it as? The solution is to include extra. This is the same way that rice, flour, and a variety of other commodities are sold. Legally, if it says you are buying a pound or kilo of flour, then it must be AT LEAST that much to be legal labeling. Including some extra is a safe way to comply with the law. In the case of disk capacity, having some spare capacity and the means to use it follows the same general concept.
(Disk capacity is measured in multiples of 1000, in this case a Gigabyte (GB) = 1,000,000,000 bytes, not to be confused with [Gibibyte (GiB)] = 1,073,741,824 bytes, based on multiples of 1024.)
Let's say a manufacturer plans to sell 146GB HDD. We know that in some cases there might be bad sectors on the disk that won't accept written data on day 1, and there are other marginally-bad sectors that might fail to accept written data a few years later, after wear and tear. A manufacturer might design a 156GB drive with 10GB of spare capacity and format this with a defective-sector table that redirects reads/writes of known bad sectors to good ones. When a bad sector is discovered, it is added to the table, and a new sector is assigned out of the spare capacity.Over time, the amount of space that a drive can store diminishes year after year, and once it drops below its rated capacity, it fails to meet its legal requirements. Based on averages of manufacturing runs and material variances, these could then be sold as 146GB drives, with a life expectancy of 3-5 years.
With Solid State Disk, the technology requires a lot of tricks and techniques to stay above the rated capacity. For example, you can format a 256GB drive as a conservative 146GB usable, with an additional 110GB (75 percent) spare capacity to handle all of the wear-leveling. You could lose up to 22GB of cells per year, and still have the rated capacity for the full five-year life expectancy.
Alternatively, you could take a more aggressive format, say 200GB usable, with only 56GB (28 percent) of spare capacity. If you lost 22GB of cells per year, then sometime during the third year, hopefully under warranty, your vendor could replace the drive with a fresh new one, and it should last the rest of the five year time frame. The failed drive, having 190GB or so usable capacity, could then be re-issued legally as a refurbished 146GB drive to someone else.
The wear and tear on SSD happens mostly during erase-write cycles, so for read-intensive workloads, such as boot disks for operating system images, the aggressive 200GB format might be fine, and might last the full five years.For traditional business applications (70 percent read, 30 percent write) or more write-intensive workloads, IBM feels the more conservative 146GB format is a safer bet.
This should be of no surprise to anyone. When it comes to the safety, security and integrity of our client's data, IBM has always emphasized the conservative approach.