
Modernizing business critical 
applications with open 
languages on z/OS
—

Day 2

Deep-dive and demos of the open-source 
languages on z/OS – Go, Node.js, 
and Python



Presenters

Austin Wells

Python Compiler 
Developer

Yves Tolod

IBM Z Client 
Technical 

Professional

Wayne Zhang

Software 
Developer, z/OS 

Node.js

Mahdi Hosseini

Go Compiler 
Developer

Bill O’Farrell

Team lead for 
Go Language

Waleed Q Khan

Python Compiler 
Developer

Node.js Python Go



Panelists

Wayne Zhang 
Software Developer, z/OS Node.js

Chad McIntyre 
IBM Open Enterprise Python for z/OS 
Dev Lead

Larry Lindsay
Senior Development Manager and 
Security Architect

Bill O’Farrell
Team lead for Go Language

Rosanne Jolin
Manager and Delivery Manager, Python 
and Node.js for z/OS

James Tang
Offering Manager – Go and Java on z/OS

Jennifer Rowan
Offering Manager - Python and Node.js on z/OS

Yves Tolod
IBM Z Client Technical Professional

Waleed Q Khan
Python Compiler Developer

Austin Wells
Python Compiler Developer



Instructions

• If you do not hear audio, check/change your audio connection by clicking either the Phone icon in the 
Webex controls (if available) or the (...) icon then Switch Audio

• Our technical team is standing by and ready to answer your questions through the Q&A panel.
Please use the Q&A panel to post your questions.

• The slides for this presentation and some other resources are available for download in the chat window

Mute your 
microphone 
when you’re 
not speaking
(speakers & 
panelists 
only)

Use the 
Webex chat 
if you’d like 
to ask any 
questions

This session 
will be 
recorded and 
replays will 
be available 
here - Link

https://community.ibm.com/community/user/ibmz-and-linuxone/groups/topic-home/library?communitykey=dd64b79b-2641-4911-a0bf-e687936a2a45&tab=library


IBM Open Enterprise SDK for Node.js



What is Node.js? 

• Server side JavaScript runtime
Designed to build scalable network applications

• Lightweight and efficient

• Uses an event-driven, single-threaded, non-
blocking I/O model

• Best suited for data-intensive (i.e. I/O bound) 
applications

• Provides a module-driven, highly scalable 
approach to application design and development 
that encourages agile practices

‘Hello World’ Web Application



Largest repository of modules

• NPM (Node 
Package Manager)

• Repository of community 
contributed modules

• 1.5M modules and growing

• 3x growth rate vs 
other runtimes

Data source: Link

https://www.npmjs.com/


The Event Loop

Allows Node.js to perform non-blocking 
and asynchronous operations

Node.js is a Single- threaded Application
Supports concurrency via events and callbacks
Loop that listens for events, and then triggers a 
callback function when one of those events
is detected

How Node.js Works?



Why use Node.js on z/OS

Co-locate applications and data on IBM Z to deliver better throughput and response time

Linux z/OSNode.js

IMS Db2
mariaDBmongoDB PostgreSQL

Node.js

z/OS Connect

CICS
COBOL



Put your Backend for Frontend (BFF) closer to your data

Why use Node.js on z/OS?



Connect to your z/OS assets

z/OS Connect Enterprise Edition (EE)
• Access z/OS assets that are exposed through IBM z/OS 

Connect EE
• zosconnect-node: link
• Loopback connector for z/OS Connect EE: link
CICS
• Can deploy Node.js application in CICS the same way as 

COBOL: link
Db2
• Provide direct access to Db2 on z/OS via npm

module: link
VSAM
• Interact with z/OS VSAM datasets and records via npm 

module: here

10

https://www.npmjs.com/package/zosconnect-node
https://www.npmjs.com/package/loopback-connector-zosconnectee
https://www.npmjs.com/package/ibm-cics-api
https://www.npmjs.com/package/ibm-cics-api
https://www.npmjs.com/package/vsam.js


Connect to your z/OS assets 

z/OS Node Accessor
• Module to interact with z/OS MVS dataset and z/OS UNIX 

files and simple JCL operations: link
zREXX
• It calls z/OS REXX scripts residing in PDS from 

Node.js: link
RACF
• This Node.js module enables your application to validate 

against RACF: link
BPXWDYN Dynamic Allocation
• Node.js interface to the BPXWDYN program, used for 

dynamic allocation: link
zCRYPTO - Interface to RACF Keyrings
• Provides APIs to RACF key rings link

https://www.npmjs.com/package/zos-node-accessor
https://www.npmjs.com/package/zrexx
https://www.npmjs.com/package/racf
https://www.npmjs.com/package/nodejs-bpxwdyn
https://www.npmjs.com/package/zcrypto


Demo time!



z/OS Connect EE

IMS

Health Claim
Application
(COBOL)

Health Claim Service

Refactor elements of an existing z/OS application into discrete services
Rewriting a COBOL function as a Microservice in Node.js and invoked as a REST API

Send
SMS 

Message

Web REST API
https://textbelt.com/text

Refactor existing Health Claim function

Rewrite function to 
Node.js as REST API 

and extend to add 
function that sends 

an alert

Enable other applications 
to consume function that 

was previously 
embedded in z/OS 

program

User-facing Client 
Apps

Public Cloud 
Services



Demo Take-aways • Revitalize existing monolithic application 
with APIs

• Develop new functions using open languages 
and invoked as APIs to extend existing core 
applications on z/OS

• Refactor specific functions of existing z/OS 
application using open languages to
simplify maintenance



IBM Open Enterprise SDK for Python



What is Python?

Python is an interpreted, object-oriented high-
level language with simple and easy to 
learn syntax.

Python encourages code reuse through 
packages & modules, which are available 
through the Python Package Index (PyPI) 
repository, where users can share open-
source projects.



Extensive Package 
Ecosystem

The Python Package Index (PyPI) is 
a repository of community 
contributed packages for the Python 
programming language

There are over 200,000 packages 
covering all domains (web hosting, 
scientific computing, 
databases, etc.)



What’s included in IBM Open 
Enterprise SDK for Python

z/OS tailored PyPI packages

Full port of Python™ 3.9 to z/OS® 

UNIX Systems Services:

• The cpython interpreter

• The Python standard library

• Enhancements to support interaction with 
EBCDIC data

• Support for ctypes and calling native 
language libraries

• Distutils customization to enable packaging 
Python applications on z/OS

• numpy tuned for IBM Z® hardware

• cffi

• cryptography

• ebcdic

• zos_util (IBM Python module for file tagging 
utilities for z/OS)

• pycparser

• six

• pip

• setuptools



Why Python for z/OS?

IBM Z clients can develop applications with IBM Open 
Enterprise SDK for Python in the same way as they would on 
any other platform. 

Simple, easy to learn, vast group developers 
readily available

By Co-locating Python applications with critical assets (i.e.
applications and data) on z/OS you can increase throughput 
and maintain better security

• Perform advanced analytics from the same machine 
where the data is stored

Extend existing code
• CFFI/Ctypes
• Extensions
• Embedding
• JCL with Z Open Automation Utilities (ZOAU)
• Call from REXX, JCL and etc.



Ansible

Infrastructure management tool:
• Written in python

• Can be used to deploy apps, manage 
machines and more

• Runs entirely through python over ssh



Demo time!



Demo 1: Data Analysis with Python



Demo 2: Machine Learning with Python



Demo Take-aways • Safely and securely gain access to dataset 
contents on z machines with a few lines of 
python code

• Access data, analyze and generate reports on Z, 
similar to how you would on a distributed system

• Deploy your machine learning models on the 
same machine where your data resides



IBM Open Enterprise SDK for Go



Go compiler on z/OS

• New language, Go 1.0 released by Google in 2012, now 
at 1.16

• Design goals:

• Efficient code, native compiler

• No included files

• Interface to C

• Simple syntax, static typing

• Built-in framework for testing and benchmarking

• Built-in concurrency

• Built in networking

• Garbage collection

• Portable community contributions

Applicatio
nWhat Why

efficiency + productivity

Get out of “dependency hell”

Programmers can “keep it in their heads”

Because modern GC is fast and efficient and prevents obscure memory errors

When you need to call. C libraries

No excuses for not writing tests as you code

Full use of multi-core power with goroutines, channels and synchronization

All common networking and security protocols + built-in http server

Thousands of open-source, endian-independent packages available



Large Ecosystem

Extensive standard library and growing list of 
third-party packages

Standard and 3rd party libraries - cryptology, archiving, mail 
operations, encoding/decoding, networking, error 
manipulation, OS interfaces, and other popular functions. 
These packages encourage code reuse and expedite time 
to market.

Go community – additional freely available packages 
available just by specifying package in import section

Developers can implement business functions with fewer 
lines of code, which help shorten development times and 
reduce costs. The continued contribution of modules from 
the community ensures a steady stream of new libraries 
and tools



Exe

Runtime process

goff
object 

module

Go ModulesHow Go Works

INPUT

IBM z/OS

Binder 

Binder 
process

Go runtime Libraries

packages of Go code referenced 
via go.mod

compiler

assembler internal 
linker

CGO 
Processor

z/OS Language 
Environment

build 
cache

Go Source and Objects

Profiles & 
traces

User C 
source 

files

IBM z/OS

world wide web

Clang

1

2

3

4

5

1
2
3
4

Thousands of open-source modules 
available
Large built-in library for i/o, net, json, 
logging, etc.
Integrated cache powers fast 
incremental builds
Can call and link with C code via CGO

5 Integrates with z/OS Language 
Environment

world wide web

Go build tools



Demo time!



REST Client (Postman)

JSON Request

JSON Response

{
"catnum": "5", 
"title": "Golang is the Future", 
"blurb": "Go is the best…,
"review": "Go Go Go to Golang" 

}

post

delete

get

Data Store

{
"catnum": "5", 
"title": "Golang is the Future", 
"blurb": "Go is the best …”
"review": "Go Go Go to Golang" 

}

Create a RESTful Server



Demo Take-aways • Built in Go libraries for many common functions, 
including json, i/o, logging, webserver

• Use of community-provided module – no porting 
needed (”mux”)

• Very little code needed to setup a working 
REST server

• Tight integration with json

• Module versioning is a first-class capability –
stability for completed code





Notices and disclaimers

© 2021 International Business Machines Corporation. No part of this document 
may be reproduced or transmitted in any form without written permission from 
IBM.

U.S. Government Users Restricted Rights — use, duplication or disclosure 
restricted by GSA ADP Schedule Contract with IBM.

Information in these presentations (including information relating to products that 
have not yet been announced by IBM) has been reviewed for accuracy as of the 
date of initial publication and could include unintentional technical or 
typographical errors. IBM shall have no responsibility to update this information. 
This document is distributed “as is” without any warranty, either express or 
implied. In no event, shall IBM be liable for any damage arising from the use 
of this information, including but not limited to, loss of data, business 
interruption, loss of profit or loss of opportunity. IBM products and services 
are warranted per the terms and conditions of the agreements under which they 
are provided.

IBM products are manufactured from new parts or new and used parts. 
In some cases, a product may not be new and may have been previously 
installed. Regardless, our warranty terms apply.”

Any statements regarding IBM's future direction, intent or product plans 
are subject to change or withdrawal without notice.

References in this document to IBM products, programs, or services does not 
imply that IBM intends to make such products, programs or services available in 
all countries in which IBM operates or does business.

Workshops, sessions and associated materials may have been prepared by 
independent session speakers, and do not necessarily reflect the views of 
IBM. All materials and discussions are provided for informational purposes only, 
and are neither intended to, nor shall constitute legal or other guidance or advice 
to any individual participant or their specific situation.

It is the customer’s responsibility to insure its own compliance with legal 
requirements and to obtain advice of competent legal counsel as to 
the identification and interpretation of any relevant laws and regulatory 
requirements that may affect the customer’s business and any actions the 
customer may need to take to comply with such laws. IBM does not provide legal 
advice or represent or warrant that its services or products will ensure that 
the customer follows any law.



Notices and disclaimers 
continued

Information concerning non-IBM products was obtained from the 
suppliers of those products, their published announcements or 
other publicly available sources. IBM has not tested 
those products about this publication and cannot confirm the 
accuracy of performance, compatibility or any other claims related 
to non-IBM products.

Questions on the capabilities of non-IBM products should be 
addressed to the suppliers of those products. IBM does not 
warrant the quality of any third-party products, or the ability of 
any such third-party products to interoperate with IBM’s products. 
IBM expressly disclaims all warranties, expressed or implied, 
including but not limited to, the implied warranties of 
merchantability and fitness for a purpose.

The provision of the information contained herein is not intended 
to, and does not, grant any right or license under any IBM patents, 
copyrights, trademarks or other intellectual property right.

IBM, the IBM logo, ibm.com are trademarks of International 
Business Machines Corporation, registered in many jurisdictions 
worldwide. Other product and service names might be trademarks 
of IBM or other companies. A current list of IBM trademarks is 
available on the Web at “Copyright and trademark information” at: 
www.ibm.com/legal/copytrade.shtml.



Please note

IBM’s statements regarding its plans, directions, and intent are subject to change or withdrawal without notice and at IBM’s sole discretion.

Information regarding potential future products is intended to outline our general product direction and it should not be relied on in making a 
purchasing decision.

The information mentioned regarding potential future products is not a commitment, promise, or legal obligation to deliver any material, code 
or functionality. Information about potential future products may not be incorporated into any contract.

The development, release, and timing of any future features or functionality described for our products remains at our sole discretion.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput 
or performance that any user will experience will vary depending upon many factors, including considerations such as the amount of 
multiprogramming in the user’s job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no 
assurance can be given that an individual user will achieve results similar to those 
stated here.

36




