
Running MQ .NET Core SSL Applications
on Linux

Ram Subbarao
Published on 02/08/2019 / Updated on 12/08/2019

On Linux where should the certificates be installed for .NET applications?
It is always recommended to use a .NET application to install the certificates on Linux where
.NET can look up for the certificates.

X509Store class is used to install certificates.

Wrapping the following few lines of code in a .NET Core application and running on Linux
will install the certificates.

 using System;
 using System.Security.Cryptography.X509Certificates;
 namespace SimplePut
 {
 class SimplePut
 {
 [STAThread]
 static void Main(String[] args)
 {
 try
 {
 X509Store store = new X509Store(StoreName.My,
StoreLocation.CurrentUser);
 store.Open(OpenFlags.ReadWrite);
 X509Certificate2 certificate1 = new
X509Certificate2("client.p12", "12345");
 //Create a collection and add two of the
certificates.
 X509Certificate2Collection collection = new
X509Certificate2Collection();
 collection.Add(certificate1);
 //Add certificates to the store.
 store.Add(certificate1);
 store.AddRange(collection);
 X509Certificate2Collection collection2 = new
X509Certificate2Collection();
 collection2.Import("client.p12", "12345",
X509KeyStorageFlags.PersistKeySet);
 foreach (X509Certificate2 cert in collection2)
 {
 store.Add(cert);

 Console.WriteLine("Certificate installed
successfully");
 }
 }catch(Exception e)
 {
 throw e;
 }
 }
 }
 }

Once we have the certificates ready for both the client and server follow the below steps:
1. Copy the above code into a file by name Program.cs.
2. Create a file by name SSL.csproj in the same directory where

Program.cs file is placed and copy the below content into the
SSL.csproj

3. <Project Sdk="Microsoft.NET.Sdk">
4. <PropertyGroup>
5. <OutputType>Exe</OutputType>
6. <TargetFramework>netcoreapp2.1</TargetFramework>
7. </PropertyGroup>
8. </Project>
9. Build the SSL.csproj using the following command:

dotnet build SSL.csproj
10. Once the application is built successfully you should see

“SSL.dll” under the same directory.
11. Run the SSL.dll application to install the certificates. Use the

following command to run the application
dotnet run SSL.dll

12. By running the .NET Core application, the certificates get added into
the keystore. The certificates are installed in the following location
“.dotnet/corefx/cryptography/x509stores/my”
Note: Directly interacting with “dotnet/corefx/cryptography
/x509stores/” directory or its child directories and
files can put .NET in an invalid state and is not supported.

13. Run the MQ .NET Core SSL enabled application to test the setup. Run the MQ .NET
Core SimplePut sample located at “/opt/mqm/samp/dotnet/samples/cs/core/base/bin”

 [root@abjures1 bin]# dotnet SimplePut.dll -q Q1 -h 127.0.0.1
-p 5454 -l SYSTEM.DEF.SVRCONN -k *USER -s
 TLS_RSA_WITH_AES_128_CBC_SHA256
 Start of SimplePut Application
 MQ Parameters
 1) queueName = Q1
 2) keyRepository = *USER
 3) cipherSpec = TLS_RSA_WITH_AES_128_CBC_SHA256
 4) host = 127.0.0.1
 5) port = 5454

 6) channel = SYSTEM.DEF.SVRCONN
 7) numberOfMsgs = 1
 8) sslPeerName =
 9) keyResetCount = 0
 10) sslCertRevocationCheck = False
 Connecting to queue manager.. done
 Accessing queue Q1.. done
 Message 1 <test message>.. put
 Closing queue.. done
 Disconnecting queue manager.. done
 End of SimplePut Application

