
IBM Software
ILOG Optimization and Analytical Decision Support Solutions

White Paper

Efficient modeling with the
IBM ILOG CPLEX
Optimization Studio

2 Efficient modeling with the IBM ILOG CPLEX Optimization Studio

Contents

2 Introduction

3 Relation between memory and running times

4 Sparse model data

8 Efficient data initialization

11 Efficient model construction

14 Conclusion

Executive summary
Introduction
IBM® ILOG® CPLEX® Optimization Studio integrates
powerful modeling tools and high-performance solvers, for
rapid development, debugging and testing of optimization
models. At the heart of CPLEX Optimization Studio, is
IBM ILOG CPLEX Optimizer, and to streamline modeling,
CPLEX Optimization Studio features high-level data types
and an algebraic language, the Optimization Programming
Language (OPL), specifically designed for building optimiza-
tion models. This results in compact, straightforward code
that is easier to maintain than general-purpose languages such
as Java™ and C++. OPL models can be linked to Microsoft®
Excel® spreadsheets or popular databases and OPL’s syntax
cleanly separates models from input data, so that no changes
are needed to move a model from a test data file to a real pro-
duction database. CPLEX Optimization Studio directly sup-
ports IBM ILOG CPLEX Optimizers for mathematical
programming and IBM ILOG CPLEX CP Optimizer for
constraint programming, enabling models written in OPL to
be solved either as hybrid or individual mathematical and con-
straint programming problems. Furthermore, OPL models
can be integrated into standalone applications, through
application programming interfaces (APIs) for Java,

C++ and Microsoft .NET. These features make CPLEX
Optimization Studio the fastest system for building and
deploying CPLEX Optimizer-based applications.

A common concern with any rapid development system is that
the savings in development time may come at the cost of
excessive computing overhead. In other words, memory
consumption or runtimes could be excessive when compared
with calling CPLEX Optimizer directly. Ideally, a modeling
system like CPLEX Optimization Studio should have only a
small impact on memory and running time—the performance
cost of the modeling system should be low when compared
with the effort to solve the model. In 2005, ILOG achieved
this goal when it released ILOG OPL Development Studio
4.0, using ILOG Concert Technology and numerous changes
to the integrated development environment (IDE). By cutting
computation time and memory requirements, CPLEX
Optimization Studio solves very large optimization models
with the simplicity of a modeling system. In fact, developers
have been more successful in building applications with OPL
than with code written to directly call CPLEX Optimizer.
One reason is that errors and inefficiencies can be readily
spotted in OPL code, but they tend to be hidden in a general
purpose code like Java or C++. While many of the techniques
described in this paper can be applied to models built with
general-purpose programming languages, they are far easier to
implement with OPL.

Even so, as with any programming language, proper design is
important to produce an efficient OPL model that will scale to
solve large optimization problems. This paper describes tech-
niques to compress CPLEX Optimizer models and data so
that the runtime performance and memory consumption of
OPL-based CPLEX applications are virtually the same as pure
CPLEX Optimizer applications.

IBM Software 3

Relation between memory and running
times
Performance tuning focuses on two areas: speed and memory.
Greater speed reduces the time to solve a model and helps
more what-if scenarios in a fixed amount of time, while
reduced memory consumption helps larger models to be run
on a particular computer.

When solving an OPL model, the role of CPLEX
Optimization Studio is to process model data and convert
the algebraic model into the sparse matrix coefficient repre-
sentation used internally by CPLEX Optimizer. To evaluate
performance in terms of runtime, it is important to distinguish
between the time CPLEX Optimization Studio requires to
initialize a mathematical programming instance and the time
CPLEX Optimizer takes to solve this instance. To evaluate
performance in terms of memory, one should compare the
memory overhead required by CPLEX Optimization Studio
against the memory required when the same model is imple-
mented with a traditional programming language. Once
the coefficient matrix is passed to CPLEX Optimizer, the
time and speed CPLEX Optimizer takes to solve the model
should be equivalent regardless of whether OPL or a tradi-
tional programming language is used. In this discussion,
the primary concern is the memory and speed required
for CPLEX Optimization Studio to fully initialize the
optimization instance.

With optimization models, there is a relationship between
memory use and runtime. Eliminating redundant data through
sparse data structures can both reduce memory requirements
and improve the time to initialize and solve the optimization
model. The worst case occurs when optimization requires
more physical memory (RAM) than available, forcing the
computer to use virtual memory. The computer uses hard-disk

space to supplement RAM, repeatedly swapping data between
the physical memory and the disk. The relatively slow speed
of disk access dramatically increases running time. Virtual
memory is generally OK in small amounts, but for top per-
formance, the optimization model should be fully loaded into
the physical memory with enough space remaining for calcula-
tions. Otherwise, CPLEX Optimization Studio and CPLEX
Optimizer must access the hard disk throughout the solving
process for the optimization model. But even when no virtual
memory is required, the model should be built to efficiently
use memory to optimize performance.

The Profiler in the Integrated Development Environment
(IDE) of CPLEX Optimization Studio helps developers track
the memory usage of model elements. It offers more detailed
performance analysis than the general-purpose tools provided
by operating systems.

Figure 1: Profiler in the IDE of IBM ILOG CPLEX Optimization Studio

4 Efficient modeling with the IBM ILOG CPLEX Optimization Studio

In particular, the Profiler shows how much memory and time
is used to initialize OPL data. The Profiler reports informa-
tion in a tree structure and provides totals for groups and indi-
vidual values. With a large, complex model, the Profiler can
direct the developer to the data elements that consume the
most memory and, therefore, are the best candidates for tun-
ing. Detailed instructions for operating the Profiler can be
found in the OPL IDE Tutorials > Profiling the execution
of a model.

Sparse model data
Developers select CPLEX Optimizer because it is the best
system for solving large, complex optimization problems. The
combination of various decision alternatives produces large
problems. For instance, a manufacturer must make a vast
number of decisions about products, machines, factories and
warehouses, while a trucking company must do so for trucks,
drivers and routes. Regardless of the application area, most
optimization models also involve choices in terms of time.

Not all combinations are valid. In a manufacturing model,
some products may not be produced at all the factories.
Similarly, some airports are not equipped to handle certain
airplanes and some workers are not qualified to perform cer-
tain tasks. The key to obtaining an efficient model is to use
only the valid combinations, rather than defining data and
decision variables for every single combination. For instance,
there are 1 million individual combinations for assigning
1,000 workers to 1,000 tasks. However, if each worker is
capable of doing only one of five tasks, then there are only
5,000 valid combinations of workers and tasks. Now, suppose

there is a time element – the workers have to be scheduled to
tasks for each day. There could be tasks that cannot be done
on certain days and days when some workers are unavailable.
By working with just the valid combinations of workers, tasks
and days, the size of the data model can be significantly
reduced.

The reason this is so important for optimization modeling is
that a typical optimization model is filled with data and deci-
sion variables that are indexed as combinations. Removing the
invalid combinations eliminates the need to create, store and
iterate unnecessary values, so less time and memory are
required to build and solve an optimization model. This helps
larger models to be solved and a reduction in time to solve
existing models.

OPL provides two key features for working efficiently with
sparse data: tuple sets to specify the subsets of valid combina-
tions and slicing to help OPL iterate efficiently over the
subsets. The only hard thing is to remember to use sparse
data when starting to build the optimization model! A tuple
contains a combination of data elements, generally integer and
string data. Tuple sets are defined in the OPL Language
Reference Manual under OPL, the Modeling Language >
Data Types > Data Structures. The following example
illustrates a tuple set using a problem for assigning workers
to tasks.

Remember: Use sparse data when starting
to build the optimization model!

5IBM Software

The first step is to declare the tuple. This tuple declaration
connects workers to tasks:

tuple workTask {

string workerID;

string taskID;

};

This creates a new type, called workTask, which will be used
to hold pairs of workers and tasks. Now, a tuple set of valid
pairs of workers and tasks is created:

setof (workTask) WorkerTasks = ...;

The sparse set WorkerTasks will be initialized by an OPL data
file (a file with a “.dat” extension), which can take values from
an external source such as a database. Here are some sample
values:

WorkerTasks = {

<"GWashington" "Plumbing">

<"GWashington" "Carpentry">

<"NBonaparte" "Carpentry">

<"NBonaparte" "Painting">

<"WChurchill" "Plumbing">

<"WChurchill" "Painting">

};

Again, the WorkerTasks set only contains an element if
it is possible to assign a worker to a task. There is no
<“GWashington”, “Painting”> pair because the worker
GWashington is not helped to do the painting task. The array
of decision variables x is indexed over the sparse set
WorkerTasks:

dvar boolean x[WorkerTasks];

Now, the WorkerTasks set is used in constraints that assign
tasks to workers and workers to tasks:

Workers)

assignWorkers: sum (<w,t> in WorkerTasks)

x[<w,t>] == 1;

The first constraint (assignTasks) ensures that every task is
covered: for each task, it sums over the workers who are
capable of performing the task. The second constraint
(assignWorkers) ensures that workers are assigned to exactly
one task: for each worker, it sums over the tasks that worker is
capable of performing.

These constraints are written using slicing in OPL, which
streamlines iteration over sparse sets. Instead of iterating
over all the pairs of workers and tasks, this code sample only
iterates over the valid pairs specified in the sparse set
WorkerTasks. Through slicing, the assignTasks constraint
finds the matching <w,t> pair for each t in Tasks and the

6 Efficient modeling with the IBM ILOG CPLEX Optimization Studio

assignWorkers constraint finds the matching <w,t> pair for
each w in Workers. The decision variable declaration saves
memory by only creating decision variables x for valid pairs
of workers and tasks, while the constraint declarations save
time and memory by only iterating over valid pairs of workers
and tasks.

Now, suppose it is necessary to model the assignment of
workers to tasks on specific days. Each task requires one
worker for one day and each task has a set of days when it can
be performed. Each worker can do at most one task per day
and each worker has a set of days when he or she is available
to work. This requires two more tuple sets for the worker-day
and task-day pairs:

tuple workDay {

string workerID;

int dayID;

}

tuple taskDay {

string taskID;

int dayID;

}

setof(workDay)

WorkerDays = ...;

setof(taskDay) TaskDays = ...;

The set WorkerDays has elements with two fields. The first
field corresponds to a worker, while the second field corre-
sponds to a day. An element of the set indicates that the

worker is available to work on that day. Similarly, the set
TaskDays represents the eligible task/day combinations.
Sample values of WorkerDays and TaskDays look like the
following:

WorkerDays = {

<"GWashington" 2> <"GWashington" 3>

<"GWashington" 5>

<"NBonaparte" 1>

<"NBonaparte" 2> <"NBonaparte" 3>

<"NBonaparte" 4> <"WChurchill" 2>

<"WChurchill" 4>

<"WChurchill" 5>

<"WChurchill" 6>

};

TaskDays = {

<"Carpentry" 1> <"Carpentry" 2>

<"Carpentry" 3> <"Plumbing" 3>

<"Plumbing" 4> <"Plumbing" 5>

<"Painting" 5>

};

It is also necessary to define a tuple to link the tasks, workers
and days:

tuple workTaskDay {

string workerID;

string taskID;

int dayID;

}

setof(workTaskDay) WorkerTaskDays = {<w,t,d> |

<w,t> in WorkerTasks, <w,d> in WorkerDays,

<t,d> in TaskDays };

7IBM Software

Using the earlier sample data for WorkerTasks, WorkerDays
and TaskDays, the values of the WorkerTaskDays set will be:

WorkerTaskDays = {

<"GWashington" "Plumbing" 3>

<"GWashington" "Plumbing" 5>

<"GWashington" "Carpentry" 2>

<"GWashington" "Carpentry" 3>

<"NBonaparte" "Carpentry" 1>

<"NBonaparte" "Carpentry" 2>

<"NBonaparte" "Carpentry" 3>

<"WChurchill" "Plumbing" 4>

<"WChurchill" "Plumbing" 5>

<"WChurchill" "Painting" 5>

};

By initializing WorkerTaskDays in terms of the three
sparse sets WorkerTasks, WorkerDays and TaskDays,
WorkerTaskDays represents only the valid combinations of
workers, tasks and days. In other words, there is an element
<<w,t,d> in WorkerTaskDays if worker w is qualified to
perform task t, if task t is required on day d and if worker
w is available to work on day d. Note that slicing is used to
efficiently match the valid pairs when initializing the set
WorkerTaskDays. The array of decision variables x are
indexed over the sparse set WorkerTaskDays and declared as:

dvar boolean x [WorkerTaskDays];

The two assignment constraints are written as:

forall (<t,d> in TaskDays)

assignTasks:

sum (<w,t,d> in WorkerTaskDays) x [<w,t,d>] = 1;

forall (<w,d> in WorkerDays)

assignWorkers:

sum (<w,t,d> in WorkerTaskDays) x [<w,t,d>] <= 1;

The first constraint (assignTasks) ensures that every task is
covered: for each day d that a task t is required, it sums over
the workers w who are capable of performing that task. The
second constraint (assignWorkers) ensures that workers are
assigned to at most one task per day: for each day d that a
worker w is available, it sums over the tasks t that worker w is
capable of performing.

Finally, tuple keys can also help with efficient storage and
iteration over sparse data. Tuple keys were introduced in
ILOG OPL Development Studio 5.0 to indicate the fields
that uniquely identify each element in a tuple set. Tuple keys
are similar to primary keys in a relational database. Slicing is
more efficient with tuple keys and tuple keys can reduce the
need for array data. For instance, keys can be used with tuple
sets that represent the workers:

tuple worker {

key string workerID;

string officeID;

float salary;

}

setof(worker) Workers = ...;

8 Efficient modeling with the IBM ILOG CPLEX Optimization Studio

The values of the Workers set are initialized as normal:

Workers = {

<"GWashington" "Virginia" 1000>

<"NBonaparte" "Paris" 1100>

<"WChurchill" "London" 1300>

};

Here, the field workerID identifies each worker. By designat-
ing workerID as a key, OPL can efficiently search the set of
workers in order to retrieve the associated officeID and salary
values. OPL also verifies that there are no duplicate elements
for a particular key.

These simple examples illustrate the power of sparse data in
OPL. Tuple sets make it easy to define data in terms of valid
combinations only, saving considerable memory. Inside forall
and set operations, tuple sets are used to iterate over just the
matching combinations, saving considerable time and memory.

Efficient data initialization
In many cases, OPL input data is generated by arithmetic or
other calculations. For instance, in a staff planning model, the
number of workers available each week may be determined by
adding the available hours for each worker. In a manufacturing
planning model, the manufacturing costs may be calculated by
multiplying the hours to make each product by the average
hourly wage for a factory worker. In a transportation model,
the transportation costs may be calculated by finding the
shortest paths between pairs of cities.

These calculated inputs can be generated by an OPL model or
an external system. Outside the OPL model, virtually any
database or programming language can be used to compute

data values. With a database, both SQL queries and calls to
stored procedures can be embedded inside an OPL .dat file.
OPL tuple sets can then be initialized with the database
values. The mapping between databases and OPL data
structures is illustrated in the OPL IDE Tutorials >
Working with external data > The Oil Database Example.
Using a programming language, the computed data can be
formatted and saved as an OPL .dat file. This is very useful in
applications where the OPL interfaces are not used, such as a
command-line environment. When the model is embedded in
a C++, Java or .NET application, the OPL interfaces provide
three ways to push data directly to OPL without writing
intermediate files. First, the OPL interfaces contain methods
that read OPL-formatted data as a large string or from an
external file. Second, the Interfaces provide set() functions to
set or modify OPL data values, which is illustrated in the
“mulprod_main.prj” example in the “examples\opl”
subdirectory of CPLEX Studio. Third, the class
IloCustomOplDataSource can be extended to implement a
custom OPL data source, as illustrated in the OPL Interfaces
User’s Manual > Working with the OPL Interfaces >
Custom Data Sources.

Inside the OPL model, there are two ways to compute data:
inline initialization and ILOG Script. Inline initialization is
generally faster, but some types of data cannot be computed
by inline initialization. Inline initialization performs data ini-
tialization in the same line of code as data declaration. For
example, the following code declares the integer data n and
assigns it the value 10:

int n = 10;

9IBM Software

More important, set and array values can be set by inline ini-
tialization. For instance, the following code initializes a set
called Pos, then creates and initializes an array called c, which
is indexed by Pos:

setof (int) Pos = { i | i in Index : x[i] > 0.0

};

float c[i in Pos] = i*i;

Note that the set Pos contains the indices matching the condi-
tion x[i] >> 0. Although inline initialization is limited to a
single line of code, OPL provides a powerful set of functions
and aggregate operators that can compute most initial data
values. For instance, the maxl function takes the maximum
value of a fixed list, which can be used to set an array equal to
only positive values:

float cost[i in S] = maxl(0, val[i]);

When building a network flow model, the conditional opera-
tor “? :” can be used to determine flow conservation at the
nodes:

float flow[i in Nodes] =

(i == src) ? -total : ((i == dst) ? total : 0.0);

This assigns the value of -total at the source, total at the desti-
nation and zero elsewhere.

One special case of inline initialization is generic indexed array
initialization, in which index values and array values are speci-
fied jointly. It is primarily used to efficiently initialize array

values from a tuple set, particularly when converting database
records to OPL arrays. For example, the tuple set Workers
provides basic information about each worker:

tuple worker {

key string workerID;

string officeID;

float salary;

}

setof(worker) Workers = ...;

Generic indexed array initialization is the most efficient way
to convert the salary tuple values into an array of weekly pay:

float weekPay[Workers] = [w : w.salary/52 | w in

Workers];

The expression w:w.salary/52 states that the index is speci-
fied by w and the value is w.salary/52. The array is com-
puted efficiently: OPL considers each worker w in the set
Workers and uses those values to determine how to fill the
array. Unlike the salary field of the worker tuple, the values of
weekPay can be modified using ILOG Script:

execute updatePay {

for (var i in Workers)

weekPay[i] = 1.05 * weekPay[i];

}

For a complete explanation of generic indexed array initializa-
tion, see the section Initializing Arrays in the OPL Language
Reference Manual > OPL, the Modeling Language > Data
Sources > Data Initialization.

10 Efficient modeling with the IBM ILOG CPLEX Optimization Studio

The secret to success with inline data initialization is to utilize the rich set of OPL functions and operators. Here is a table of use-
ful functions and operators for inline data initialization:

Function or operator Meaning

cond ? trueExpr : falseExpr Conditional operator: returns trueExpr if the condition cond is satisfied
and falseExpr otherwise

abs() Absolute value

minl(value1, value2, ...) Minimum over a fixed list of values

maxl(value1, value2, ...) Maximum over a fixed list of values

min (conditions) expr Minimum of expr over a set of conditions

max (conditions) expr Maximum of expr over a set of conditions

sum (conditions) expr Sum of expr over a set of conditions

prod (conditions) expr Product of expr over a set of conditions

With these functions, most types of data computation can
be done by inline initialization. However, when something
more powerful is needed, the ILOG Script language is also
available for data processing. ILOG Script for OPL is a stan-
dard implementation of JavaScript that conforms to the
ECMA-262 specification. As a full-fledged scripting language,
ILOG Script supports loops, recursion and custom functions,
so it can compute virtually any kind of input data.

Often, the best practice is to define initial values through
inline initialization and then reset individual values through
ILOG Script. For example, the earlier example of flow conser-
vation data could be written as follows:

float flow[i in Nodes] = 0;

execute setFlowConservation {

flow[src] = -total;

flow[dst] = total;

}

11IBM Software

Here, inline initialization is used to set the flow to zero for all
nodes and then a script block is used to change the flow value
for the source and destination elements. As a simple example
of recursion, a set of Fibonacci numbers can be computed
with a script block:

range rng = 1..10;

int fib[i in rng] = 1;

execute initFib {

for (var i in rng)

if (i > 2)

fib[i] = fib[i-1]+fib[i-2];

}

Again, inline initialization is used to set the initial values of
fib and then ILOG Script is used to set the Fibonacci values
for i > 2. Although this is a simple example, the same princi-
ples apply when using iteration or recursion to calculate data
such as shortest paths or spanning trees.

In summary, there are multiple ways to calculate input data for
an OPL model, each with specific advantages. Anything is
possible with external data initialization, though it makes the
OPL model dependent on external code. Also, when passing
data to OPL, the amount of input data may impact the total
requirements for memory or disk space.

As for internal data initialization, ILOG Script is interpreted
and generally runs slower than inline initialization. It is better
to use inline initialization whenever possible. ILOG Script
should be used only to override a small number of values or
when the calculation requires complex programming logic
such as looping or recursion that cannot be implemented by
inline initialization.

Models often use multiple types of data initialization. Basic
data should be read from external data sources. Inline initial-
ization should be used for most data computation and ILOG
Script should be used for complex calculations that cannot be
done by inline initialization.

Finally, when solving an iterative sequence of models with
ILOG Script, care should be taken to release unused data.
ILOG Script does not have an automatic garbage collector, so
models and data are retained by default. However, models and
data can be freed with the end() method. An example of this
can be found in the “mulprod_main.mod” example located in
the “examples\opl” subdirectory of CPLEX Optimization
Studio.

Efficient model construction
Efficient data structures and initialization methods are not
enough to guarantee good performance for CPLEX
Optimization Studio and CPLEX Optimizer. How a model is
designed can also have a large impact on both time and mem-
ory. In linear programming, the complexity of a model

12 Efficient modeling with the IBM ILOG CPLEX Optimization Studio

depends in large part on the number of nonzero coefficients.
In fact, the number of nonzero coefficients also affects the
memory and setup time for CPLEX Optimization Studio.
This section explores ways to compress the model size by
eliminating repeated expressions.

The primary candidates for model compression are summa-
tions of similar terms. Many models use summations to
compute various subtotals, which may be used in the objective
function or require upper or lower limits. When a model con-
tains multiple kinds of subtotals, there may be an opportunity
to combine similar expressions and save memory and compu-
tation time. Returning to the example of assigning workers to
tasks over a multi-day period, suppose there is a constraint
limiting each worker to five days per week and 18 days per
four-week period. One way to write this in OPL would be:

forall (w in Workers, m in Mondays)

weekLimit:

sum (d in m..m+6, <w,t,d> in WorkerTaskDays)

x[<w,t,d>] <= 5;

forall (w in Workers, m in Mondays)

monthLimit:

sum (d in m..m+27, <w,t,d> in WorkerTaskDays)

x[<w,t,d>] <= 18;

The sum operators first iterate over the days and then over
the sparse set WorkerTaskDays. However, note that many of
the terms in the monthLimit sum are the same as in the
weekLimit sum. The weekLimit constraint is rewritten in
terms of a new decision variable called weekTotal:

dvar int weekTotal[Workers,Mondays] in 0..5;

// ...

forall (w in Workers, i in Mondays)

weekLimit:

sum (d in i..i+6, <w,t,d> in WorkerTaskDays)

x[<w,t,d>] == weekTotal[w,i];

forall (w in Workers, i in Mondays)

monthLimit:

sum (j in 0..3) weekTotal[w,i+7*j] <= 18;

Here, an array of decision variables weekTotal is defined to
represent the total work done in a week. An upper bound of
5 is set for each of the decision variables in the weekTotal
array to limit the total work in a single week. Finally, the
monthly limit is defined in terms of the weekTotal variables.

To compare the impact of the two formulations, suppose
there are T tasks, W workers and K weeks. In the weekLimit
constraint, the first formulation contains up to W*K*7*T
nonzeros, while the second formulation contains at most

13IBM Software

W*K*7*(T+1) nonzeros. In the monthLimit constraint, the
first formulation contains up to 28*W*K*T nonzeros, while the
second formulation contains at most 4*W*K nonzeros. Despite
the W*K new variables, the second formulation poses a huge
reduction in memory and computational complexity and the
savings increase as the problem size increases.

Models with time window constraints are another target for
reusing similar expressions. In the worker assignment model,
suppose the weekly time limit must be respected for every
seven-day period, not just weeks from Monday through
Sunday. An OPL model might declare the constraint as:

forall (w in Workers, i in Days)

weekLimit:

sum (d in i..i+6, <w,t,d> in WorkerTaskDays)

x[<w,t,d>] <= 5;

To compress this constraint, telescoping sums are used to express
the time windows recursively in the model:

dvar int weekTotal[Workers,Days] in 0..5;

// ...

forall (w in Workers)

firstWeek:

sum (d in 1..7, <w,t,d> in WorkerTaskDays)

x[<w,t,d>] == weekTotal[w,1];

forall (w in Workers, i in Days : i > 1)

weekLimit:

weekTotal[w,i] == weekTotal[w,i-1]

- sum (<w,t,i-1> in WorkerTaskDays) x[<w,t,i-1>]

+ sum (<w,t,i+6> in WorkerTaskDays) x[<w,t,i+6>];

Like earlier, a new variable weekTotal is defined to represent
the subtotal of the work performed in each seven-day window.
The firstWeek constraint defines the value weekTotal for days
1 through 7 and then the weekLimit constraint uses a recur-
sive expression to state the relationship between values of
weekTotal for adjacent days. The key idea is that the
weekLimit constraint subtracts the contribution from the
prior day and adds the contribution for the end of the week.
Each weekLimit constraint saves space and time by not having
to iterate over the days i+1 through i+5.

It is worth noting that these types of model substitutions are
valuable even if CPLEX presolve may expand the expressions
internally. The reason is that these substitutions avoid having
to create and iterate over objects inside OPL and ILOG
Concert Technology, while CPLEX presolve performs its
transformations on the sparse matrix data, which is extremely
compact.

Quadratic programming models present a special opportunity
for compressing quadratic terms. The canonical form for a
quadratic objective is cTx+1/ xT2 Qx , where Q is the symmetric
quadratic matrix. In many applications such as portfolio
optimization, Q is large but it has been derived by computing
the product of a smaller matrix and its transpose, i.e. Q=LTL.
In this case, the model can be reformulated in terms of the
original L matrix by introducing auxiliary variables y. The
constraints y=Lx are added and the objective is changed to
cTx+1/2yTy. Despite the additional variables and constraints, this
transformation simplifies the problem by creating a quadratic
matrix that is small and sparse. These same transformation
principles can be applied to quadratic constraints.

14 Efficient modeling with the IBM ILOG CPLEX Optimization Studio

Finally, linear programming decomposition can also help solve
particularly difficult optimization models. Instead of solving
one large problem, the problem is divided into one or more
subproblems plus a master problem that links the subprob-
lems. The decomposition process iterates between solving
the master problem and subproblems. The solution to the
master problem becomes an input to the subproblems and
the solutions to the subproblems become refinements to
the master problem. If the subproblems are easy to solve,
decomposition can significantly reduce the time and memory
required to solve the overall optimization problem. In some
cases, decomposition can also tighten the linear programming
(LP) relaxation of a mixed-integer programming model.
A full explanation of LP decomposition is beyond the scope
of this paper, but it is described widely in optimization
literature. With OPL, a decomposition method can be
implemented with ILOG Script. The script controls the
decomposition process: solving the master problem, updating
the subproblems with the solution from the master problem,
solving the subproblems, updating the master problem with
the solutions from the subproblems and repeating as neces-
sary. CPLEX Studio provides an example of column genera-
tion with the classical cutting stock model. It is covered in the
projects “cutstock_main.prj” and “cutstock_int_main.prj”
in the “examples\opl” subdirectory of CPLEX Studio.

Conclusion
These techniques reduce the overhead of CPLEX
Optimization Studio, enabling it to solve large-scale optimiza-
tion models. When tuning model performance, it is important
to pay attention to both running time and memory use since
they are related. The Profiler can be used to identify the
bottlenecks in model and data initialization.

The tuple set in OPL is a powerful data structure for repre-
senting sparse model data. With tuple sets, it is important
to create data only for valid combinations and use slicing to
iterate efficiently over these combinations. Tuple sets save
considerable memory and processing time and are the key to
solving large-scale models. Virtually every model can benefit
from tuple sets because nearly every application has some
form of valid and invalid combinations of alternatives.

The general techniques presented in this white paper can be
applied with any optimization modeling interface. However,
the beauty of CPLEX Optimization Studio is that these tech-
niques are easy to write in just a few lines of OPL code. Also,
the model logic is clear and simple in OPL, making it easy to
identify opportunities to tune the model formulation.

Notes

Please Recycle

For more information
To learn more about the IBM ILOG CPLEX Optimization
Studio, please contact your IBM marketing representative or
IBM Business Partner, or visit the following website:
ibm.com/optimization

© Copyright IBM Corporation 2010

IBM Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
August 2010
All Rights Reserved

IBM, the IBM logo, ibm.com, CPLEX, ILOG and WebSphere are
trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. If these and
other IBM trademarked terms are marked on their first occurrence in this
information with a trademark symbol (® or ™), these symbols indicate
U.S. registered or common law trademarks owned by IBM at the time
this information was published. Such trademarks may also be registered
or common law trademarks in other countries. A current list of
IBM trademarks is available on the Web at “Copyright and trademark
information” at ibm.com/legal/copytrade.shtml.

Microsoft is a trademark of Microsoft Corporation in the United States,
other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Other company, product or service names may be trademarks or service
marks of others.

WSW14059-USEN-02

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/optimization

	Untitled
	IBMSoftwareILOG Optimization and Analyti
	White Paper
	Efficient modeling with theIBMILOG CPLEX
	2Efficient modeling with the IBMILOG CPL
	Contents
	Executive summaryIntroduction
	IBMSoftware3
	Relation between memory and runningtimes
	Sparse model data
	Efficient data initialization
	Function or operator
	Efficient model construction
	Conclusion
	For more information

