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a b s t r a c t 

The Nurse Rostering Problem (NRP) is defined as assigning a number of nurses to different shifts during 

a specified planning period, considering some regulations and preferences. This is often very difficult to 

solve in practice particularly by applying a sole approach. In this paper, we propose a novel hybrid al- 

gorithm combining the strengths of Integer Programming (IP) and Variable Neighbourhood Search (VNS) 

algorithms to design a hybrid method for solving the NRP. After generating the initial solution using a 

greedy heuristic, the solution is further improved by employing a Variable Neighbourhood Descent algo- 

rithm. Then IP, deeply embedded in the VNS algorithm, is employed within a ruin-and-recreate frame- 

work to assist the search process. Finally, IP is called again to further refine the solution during the re- 

maining time. We utilise the strength of IP not only to diversify the search process, but also to intensify 

the search effort s. To identify the quality of the current solution, we use a new generic scoring scheme to 

mark the low-penalty parts of the solution. Based on the computational tests with 24 instances recently 

introduced in the literature, we obtain better results with our proposed algorithm, where the hybrid algo- 

rithm outperforms two state-of-the-art algorithms and Gurobi in most of the instances. Furthermore, we 

introduce 11 randomly generated instances to further evaluate the efficiency of the hybrid algorithm, and 

we make these computationally challenging instances publicly available to other researchers for bench- 

marking purposes. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Nurse Rostering (also referred to as Nurse Scheduling ) is the pro-

ess of creating a schedule by assigning some nurses to differ-

nt shift types, e.g. day, and night, during a predetermined plan-

ing horizon, where many limitations such as hospital regula-

ions and employee contracts as well as management and indi-

idual preferences are taken into account. The output of this pro-

ess is a roster of working shifts for all the involved nurses, which

s expected to result in an increase of job satisfaction and staff

tilisation while reducing stress and outsourcing cost ( Burke, De

ausmaecker, Berghe, & Van Landeghem, 2004; Ernst, Jiang, Krish-

amoorthy, Owens, & Sier, 2004a; Ernst, Jiang, Krishnamoorthy, &

ier, 2004b ). Real-world Nurse Rostering Problems are very difficult

o solve and comprise many challenges for the people involved in

he preparation process, e.g. personnel managers, and head nurses

 Ernst et al., 2004b ). 
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Many studies have been accomplished for the Nurse Rostering

roblem (NRP) over the last few decades, with a variety of meth-

ds and algorithms applied to solve this problem in real-world

ettings. The proposed approaches are mainly based on meta-

euristic algorithms ( Blum & Roli, 2003; Glover & Kochenberger,

0 03; Talbi, 20 09 ), which are straightforward and effective for

any practical problems. These range from Variable Neighbour-

ood Search ( Della Croce & Salassa, 2014; Stølevik, Nordlander,

iise, & Froyseth, 2011 ) and Tabu Search ( Burke, Causmaecker,

 Berghe, 1999 ) to Genetic Algorithms ( Aickelin & Dowsland,

004 ) and tailor-made heuristics ( Lu & Hao, 2012; Valouxis, Go-

os, Goulas, Alefragis, & Housos, 2012 ). However, meta-heuristic

lgorithms are not as efficient for problem instances where the

tructure of the problem is very complex, making it challenging

o find a good-quality (or even a feasible) solution in a reasonable

untime. On the other hand, there is also some research employing

xact approaches such as Integer Programming (IP) ( Beaumont,

997; Dowsland & Thompson, 20 0 0 ) and Constraint Programming

CP) ( Bourdais, Galinier, & Pesant, 2003; Cipriano, Gaspero, &

ovier, 2006 ), which are very powerful at dealing with complex

tructures. Nevertheless, they are not efficient enough for solving

http://dx.doi.org/10.1016/j.ejor.2016.09.030
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
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many medium- to large-scale problem instances in practice, even

though there are some very powerful and mature commercial

solvers applying these methods such as Gurobi ( Gurobi Optimiza-

tion, 2015 ) and IBM CP Optimiser ( IBM, 2015 ). Having said that, in

recent years, some researchers have focused on combining these

two approaches to utilise their complementary strengths in order

to solve highly-constrained real-world NRPs efficiently ( Burke, Li,

& Qu, 2010; Qu & He, 2009; Rahimian, Akartunali, & Levine, 2015;

Stølevik et al., 2011 ). 

In this paper, we propose a novel hybrid Integer Programming

and Variable Neighbourhood Search (VNS) algorithm to solve the

Nurse Rostering Problem in modern hospital environments. We

employ IP not only to diversify the search process, but also to

improve the quality of the obtained solutions from the VNS algo-

rithm in a creative way. First, a greedy heuristic is used to gener-

ate an initial solution, and then the generated solution is further

improved using a VNS algorithm until a stopping criterion is met.

To further enhance the efficiency of the VNS algorithm, IP is em-

ployed iteratively during the running of the algorithm as a neigh-

bourhood structure to improve the quality of the incumbent solu-

tion using a ruin-and-recreate framework ( Stølevik et al., 2011 ). In

this framework, the high-penalty components of the solution are

destroyed according to a generic scoring scheme, and then they

are created again by an IP solver. Finally, IP is applied once more

to the best-found solution to improve it globally as much as possi-

ble until the overall time limit is reached. The proposed algorithm

is designed to perform efficiently when only short computational

times are available, so that many practical problems can be tack-

led. 

The novelty of our approach is to embed IP as a neighbourhood

structure through a ruin-and-recreate framework in the VNS algo-

rithm to improve the quality of the obtained solution and diver-

sify the search process at the same time. Our method of hybridi-

sation is entirely different from the similar algorithms reported in

the literature ( Burke et al., 2010; Qu & He, 2009; Stølevik et al.,

2011 ). In fact, there are various hybridisation schemes in order to

combine different approaches together ( Raidl, Puchinger, & Blum,

2010 ). For example, Qu and He (2009) applied CP to generate

an initial solution by decomposing the problem to various sub-

problems, and then applying VNS to improve the generated solu-

tion. Stølevik et al. (2011) applied an Iterated Local Search frame-

work for generating an initial solution and employed VNS and CP

in order to improve the solution and diversify the search process,

respectively. Burke et al. (2010) employed IP to generate a solu-

tion satisfying all hard constraints, and then improve it using VNS

to satisfy the remaining soft constraints. In most of the mentioned

approaches, IP or CP is used to generate a solution satisfying some

constraints of the problem (or parts of the problem), and then a

meta-heuristic algorithm is applied to further improve the gener-

ated solution. However, in our approach, we employ VNS as the

main local search framework and then embed IP as a neighbour-

hood structure to intensify and diversify the search process in an

iterative manner considering all the constraints. Indeed, we use IP

through a ruin-and-recreate strategy to escape from local optima

and at the same time, improve the quality of the obtained solu-

tion. Having said that, incorporating IP in our hybrid algorithm, we

also allow the search process to traverse the infeasible space by

allowing all the constraints to be violated in order to find out the

latent feasible solutions. Moreover, we hybridise IP through VNS in

a lower level compared with the approaches reported in the lit-

erature ( Talbi, 2009 ) and therefore we exploit the complementary

strengths of both methods in a more sophisticated and effective

way. In addition, we have applied a scoring scheme to evaluate the

quality of the obtained solution according to the associated under-

lying elements such as nurses or days, which empower the hybrid

algorithm to focus on parts of the solution having the most like-
ihood of gaining a better solution. The proposed algorithm also

orks with a pre-determined time limit in which the algorithm

ries to generate the best solution. 

The rest of this paper is organised as follows. We first de-

cribe the studied Nurse Rostering Problem and present the rel-

vant IP formulation in Section 2 . Next, we elaborate on the so-

ution method and different components of the proposed hybrid

lgorithm in Section 3 . Finally, in Sections 4 and 5 , we present our

omputational results, and draw some conclusions and potential

uture research directions, respectively. 

. Problem description and IP formulation 

In this section, we provide a brief description of the studied

roblem and the relevant constraints, and present a mathemati-

al formulation. For further information regarding the problem, we

efer interested readers to Curtois and Qu (2014) , where the de-

ailed description of the problem as well as some instances are

resented. 

The NRP is defined as assigning a number of nurses to different

hifts (e.g. early, late) during a specified planning period, where

ome regulations (e.g. employee contracts) and preferences (e.g.

ndividual requested days off) are taken into account. Most NRPs

ncluding the studied problem are N P -hard ( Chuin Lau, 1996; Os-

gami & Imai, 20 0 0 ) and computationally challenging, and have a

ery complex structure even when the problem size is relatively

mall. Tackling this problem in real-world settings, the constraints

f the problem are often classified as hard and soft constraints.

ard constraints are necessary to be satisfied under any circum-

tances, and therefore, make a problem feasible when they are

et. Soft constraints, on the other hand, are those we would pre-

er to be met (but are not crucial), and define the quality of a gen-

rated roster according to the degree to which they are satisfied.

herefore, the objective is to reduce the number of violations as-

ociated with the soft constraints as much as possible, i.e. increase

he quality of the roster. In the following, the hard and soft con-

traints of the problem (denoted by prefixes HC and SC , respec-

ively) are explained: 

• HC1 : nurses cannot be assigned more than one shift on a day. 
• HC2 [Shift rotations] : the shift assignment of nurses on two con-

secutive days must comply with the pre-defined set of shift

patterns (rotations). The shift patterns prevent forbidden shift

sequences. 
• HC3 [Maximum number of shifts] : the maximum number of shift

types that can be assigned to each nurse within the planning

period. 
• HC4 [Maximum total minutes] : the maximum amount of total

time in minutes that can be assigned to each nurse within the

planning period. 
• HC5 [Minimum total minutes] : the minimum amount of total

time in minutes that can be allocated to each nurse within the

planning period. 
• HC6 [Maximum consecutive shifts] : the maximum number of

consecutive shifts, which are allowed to be worked within the

planning period. 
• HC7 [Minimum consecutive shifts] : the minimum number of con-

secutive shifts, which are allowed to be worked within the

planning period. 
• HC8 [Minimum consecutive days off] : the minimum number of

consecutive days off, which are allowed to be assigned within

the planning period. 
• HC9 [Maximum number of weekends] : the maximum number of

worked weekends (a weekend is defined as being worked if

there is a shift on Saturday or Sunday) within the planning pe-

riod. 
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• HC10 [Requested days off] : shifts must not be assigned to a spec-

ified nurse on some specified days. 
• SC1 [Shift on/off requests] : a shift assignment to a specific

nurse should comply with a pre-defined set of preferences. The

penalty associated with this constraint is equal to the total

number of all violated assignments multiplied by the specified

relevant weight defined in the problem data. 
• SC2 [Coverage] : the required number of nurses assigned to a

specified day for a specified shift should be within a particular

range. The penalty associated with this constraint is equal to

the total amount of violated coverage multiplied by the spec-

ified relevant under- or over-weight defined in the problem

data. 

For constraints HC2 and HC6 , it is assumed that the last day of

he previous planning period and the first day of the next planning

orizon are days off. Furthermore, for constraint HC7 , it is assumed

hat there are an infinite number of consecutive shifts assigned at

he end of the previous planning period and at the start of the next

lanning period. For constraint HC8 , a similar arrangement applies

ith days off. 

Based on the problem definition, we will present the associated

P formulation, in a similar fashion to the formulation given in

urtois and Qu (2014) , which will be crucial for the IP components

f our proposed hybrid algorithm. This IP model helps us to

acilitate the search process with an IP solver in order to have

etter exploration and exploitation. Next, we present our notations

efore presenting the formulation. 

ets and parameters: 

D set of days in the planning horizon 

W set of weekends in the planning horizon 

I set of nurses 

T set of shift types 

R t set of shift types that cannot be assigned immediately

after shift type t ∈ T 

N i set of days that nurse i ∈ I cannot be assigned a shift

on 

l t length of shift type t ∈ T in minutes 

m 

max 
it 

maximum number of shifts of type t ∈ T that can be

assigned to nurse i ∈ I 

b min 
i 

, b max 
i 

minimum and maximum number of minutes that

nurse i ∈ I must be assigned 

c min 
i 

, c max 
i 

minimum and maximum number of consecutive

shifts that nurse i ∈ I must work. c is the index of

possible number of consecutive shifts 

o min 
i 

minimum number of consecutive days off that nurse i

∈ I can be assigned. b is the index of possible number

of consecutive days off

a max 
i 

maximum number of weekends that nurse i ∈ I can

work 

q idt the incurred penalty if shift type t ∈ T is not assigned

to nurse i ∈ I on day d ∈ D 

p idt the incurred penalty if shift type t ∈ T is assigned to

nurse i ∈ I on day d ∈ D 

u dt preferred total number of nurses to whom is assigned

shift type t ∈ T on day d ∈ D 

w 

min 
dt 

, w 

max 
dt 

under-weight and over-weight relevant to the total

coverage of shift type t ∈ T on day d ∈ D 

ecision variables: 

x idt = 1 if nurse i ∈ I is assigned to shift type t ∈ T on day d

∈ D , = 0 otherwise 

k iw 

= 1 if nurse i ∈ I works on weekend w ∈ W, = 0 other-

wise 

y dt total number of nurses below the preferred coverage for

shift type t ∈ T on day d ∈ D 
z dt total number of nurses above the preferred coverage for

shift type t ∈ T on day d ∈ D 

v idt total incurred penalty relevant to shift on/off requests of

nurse i ∈ I for shift type t ∈ T on day d ∈ D 

onstraints: 
 

t∈ T 
x idt ≤ 1 , ∀ i ∈ I, d ∈ D (HC1)

 idt + x i (d+1) u ≤ 1 , ∀ i ∈ I, d ∈ { 1 . . . | D | − 1 } , t ∈ T , u ∈ R t (HC2)

 

d∈ D 
x idt ≤ m 

max 
it , ∀ i ∈ I, t ∈ T (HC3)

 

min 
i ≤

∑ 

d∈ D 

∑ 

t∈ T 
l t x idt ≤ b max 

i , ∀ i ∈ I (HC4, HC5)

+ c max 
i ∑ 

j= d 

∑ 

t∈ T 
x i jt ≤ c max 

i , ∀ i ∈ I, d ∈ { 1 . . . | D | − c max 
i } (HC6)

 

t∈ T 
x i jt + c − 1 −

d+ c ∑ 

j = d +1 

∑ 

t∈ T 
x i jt + 

∑ 

t∈ T 
x i (d+ c+1) t ≥ 0 , (HC7) 

∀ i ∈ I, c ∈ { 1 . . . c min 
i − 1 } , d ∈ { 1 . . . | D | − (c + 1) } 

 −
∑ 

t∈ T 
x i jt + 

d+ b ∑ 

j = d +1 

∑ 

t∈ T 
x i jt + 

∑ 

t∈ T 
x i (d+ b+1) t ≥ 0 , (HC8) 

∀ i ∈ I, b ∈ { 1 . . . o min 
i − 1 } , d ∈ { 1 . . . | D | − (b + 1) } 

 iw 

≤
∑ 

t∈ T 
x i (7 w −1) t + 

∑ 

t∈ T 
x i (7 w ) t ≤ 2 k iw 

, ∀ i ∈ I, w ∈ W, (HC9) 

∑ 

w ∈ W 

k iw 

≤ a max 
i , ∀ i ∈ I 

 int = 0 , ∀ i ∈ I, n ∈ N i , t ∈ T (HC10)

 idt (1 − x idt ) + p idt x idt = v idt , ∀ i ∈ I, d ∈ D, t ∈ T (SC1)

 

i ∈ I 
x idt − z dt + y dt = u dt , ∀ d ∈ D, t ∈ T (SC2)

 idt , k iw 

∈ { 0 , 1 } , y dt , z dt , v idt ∈ Z , ∀ i ∈ I, d ∈ D, t ∈ T , w ∈ W 

bjective function: 

in 

∑ 

i ∈ I 

∑ 

d∈ D 

∑ 

t∈ T 
v idt + 

∑ 

d∈ D 

∑ 

t∈ T 
w 

min 
dt y dt + 

∑ 

d∈ D 

∑ 

t∈ T 
w 

max 
dt z dt 

It is also assumed that all weeks start on Monday and the plan-

ing horizon consists of a whole number of weeks. We will discuss

ome statistics relevant to the studied instances based on the pre-

ented IP model in Section 4 . 

. Hybrid approach 

In this section, we describe a hybrid method combining Vari-

ble Neighbourhood Search and Integer Programming techniques

aka. a pseudo-exact or matheuristic Raidl & Puchinger, 2008 ) to

olve modern Nurse Rostering Problems. The schematic overview

f the proposed hybrid algorithm is demonstrated in Algorithm 1 .

After generating an initial solution using a greedy heuristic

 GreedyHeuristic() ), a Variable Neighbourhood Descent (VND) algo-

ithm ( VNDSearch() ) using a set of distinct neighbourhoods tries to

mprove the generated initial solution until no more improvements

an be obtained by cycling through all the neighbourhoods. Then

error

error
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Algorithm 1: The overall pseudo code of the hybrid algorithm. 

x ∗ ← x ← GreadyHeuristic() ; 

repeat 

x ← V NDSearch (x ) ; 

x ← IP RuinAndRecreate (x ) ; 

if x < x ∗ then 

x ∗ ← x ; 

end 

until some stopping criteria are met; 

x ∗ ← I P I mprov e (x ∗) ; 
return [ x ∗] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2: The pseudo code of the greedy heuristic algo- 

rithm to generate an initial solution. 

Pre-process problem data; 

Create an empty solution x = { x i , i ∈ I} ; 
foreach i ∈ I do 

while x i is not feasible do 

x i ← SetDaysO f f (x i ) ; 

x i ← AssignW orkDays (x i ) ; 

x i ← AssignShi f ts (x i ) ; 

p 1 = Ev al uateW orkl oad(x i ) ; 

p 2 = Ev aluateW eekend(x i ) ; 

if p 1 + p 2 > 0 then 

x i ← Destroy (x i ) ; 

end 

end 

end 

return [ x ] 
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s  
the best solution obtained from the VND algorithm is employed

by an IP solver by fixing low-penalty parts of the solution, where

it tries to generate a better-quality (exploitation) and a different-

structured (exploration) solution. In fact, in this step, the best solu-

tion obtained so far is partially destroyed and again recreated aim-

ing to have a higher-quality, and at the same time, a different so-

lution in terms of the underpinning structure (a ruin-and-recreate

strategy). In other words, the IP solver is applied as a shaking

neighbourhood within the VNS, aiming to change the structure and

at the same time to improve the quality of the obtained solution.

All this process is accomplished in the IPRuinAndRecreate() block.

To ensure a sufficient diversification through the search process,

and therefore, not being stuck in local optima, some low-penalty

parts of the solution might also be destroyed and recreated ran-

domly (e.g. within the random configuration, which will be ex-

plained later). The final obtained solution is again imported to the

VND search algorithm and this process continues until some stop-

ping criteria are met. Ultimately, the attained solution is further

improved by applying IP to the whole problem instance to ensure

a global search until the overall time limit is reached ( IPImprove()).

Next, we elaborate on each of the main components of the hy-

brid algorithm, i.e. initial solution construction in GreedyHeuristic()

block, VND search algorithm in VNDSearch() block, and IP ruin-and-

recreate framework in IPRuinAndRecreate() block. 

3.1. Initial solution construction 

In this block, a greedy heuristic search is employed to gener-

ate an initial solution for the VND algorithm. Empirically, we have

observed that having a high-quality initial solution reduces the ef-

ficiency of the VNS algorithm subsequently. For the same reason, a

random initialisation often results in poor performance due to the

very low-quality of the generated solution. Therefore, we decide to

apply a simple greedy heuristic algorithm. The pseudo-code of this

algorithm is depicted in Algorithm 2 . After pre-processing of the

problem data and creating required data structures, an empty so-

lution (roster) is created. Starting from a randomly selected nurse,

at the first step, we set all the pre-defined days off for the cur-

rent nurse in SetDaysOff() block. In the next step, we randomly

mark all the working days to which a specific shift needs to be

assigned later ( AssignWorkDays() ), and then we assign a randomly

selected shift to those days accordingly ( AssignShifts() ). Assigning

shifts to the nurses within two different levels, i.e. first assign-

ing working and non-working days, and then assigning shifts to

the working days, helps us to only check the constraints related

to each level independently, and hence, reducing the complexity

of the constraint conflict resolution process. Having said that, in

the first level, only the maximum number of working days, and

the minimum and maximum number of consecutive shift types in-

cluding day off shifts are checked. Therefore, in the next level, we

only need to check the maximum number of shift types and avoid

assigning shifts where a forbidden pattern is matched. 
Finally, to ensure satisfying the remaining constraints, i.e. the

aximum number of worked weekends, and the minimum and

aximum total times of assigned shifts, we calculate the associ-

ted incurred penalties (indicated as p 1 and p 2 , computed within

he EvaluateWeekend() and EvaluateWorkload() blocks, respectively).

f there is any associated penalty, we destroy the current schedule

or the current nurse by unassigning all the allocated shifts using

he Destroy() block, and repeat the process until a feasible solu-

ion is obtained. This process is iterated for all the nurses until all

he required shifts are assigned to all the days within a schedule,

hile satisfying all the hard constraints. According to our experi-

ents, the greedy heuristic is able to produce a feasible solution

or all the problem instances in up to 100 cycles per nurse. Finally,

he generated feasible solution is returned to the VND algorithm

or further improvement. 

.2. Variable neighbourhood descent 

When there is an initial solution, either generated using the

reedy heuristic algorithm in the GreedyHeuristic() block or passed

rom the previous cycle of the hybrid algorithm to the current

ne (in Algorithm 1 ), the Variable Neighbourhood Descent (VND)

lgorithm is applied to refine the solution locally according to

 set of distinct neighbourhoods ( Hansen & Mladenovic, 2001 ).

n the VND search algorithm, a best-improvement descent lo-

al search algorithm is applied through cycling a set of neigh-

ourhoods until no improvement can be found in all the neigh-

ourhood structures, or when the total number of iterations is

eached a certain maximum value. The reason to choose VND is

hat it is capable of exploring a variety of different-structured so-

utions throughout the search space due to applying a set of dif-

erent neighbourhoods, which makes it a very suitable candidate

or solving highly-constrained problems such as NRPs. Apart from

he successful implementation of VND in the relevant literature

 Burke et al., 2010; Stølevik et al., 2011 ), it is very easy to incor-

orate sophisticated neighbourhood structures such as our ruin-

nd-recreate framework, which is needed to successfully imple-

ent the hybrid algorithm. 

VNS as a generalised VND approach is a relatively recent meta-

euristic approach based on the simple idea of systematically

hanging neighbourhoods both to escape from the areas which

ontain local optima and within a local search to identify better

ocal optima ( Hansen & Mladenovic, 1999; 2001 ). It has been ap-

lied to many N P -hard problems including NRPs ( Burke et al.,

010; Stølevik et al., 2011 ). In a simple VNS scheme, a local

earch is applied to the incumbent solution using a neighbourhood

Administrator
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Fig. 1. Examples of 3-Exchange (Nurses 1, 4, and 5 on Wednesday), Block-Exchange 

(Nurses 4 and 5 from Friday to Sunday), Multi-Exchange (Nurses 1 and 3 on Tues- 

day, Saturday, and Sunday), 2-Exchange (Nurses 1 and 3 on Tuesday), and Double- 

Exchange (Nurses 1 and 3 on Saturday and Sunday) neighbourhoods applied in the 

VND algorithm. 
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tructure until certain criteria such as the total number of itera-

ions are met. Then the local search is restarted using a different

eighbourhood structure, trying to improve the best solution ob-

ained from the previous iterations. This process continues until

here is no more improvement gained from any of the neighbour-

ood structures. The neighbourhood structures in a VNS are often

elected to drive the search process towards different desired ob-

ectives, or to investigate different structures of the obtained solu-

ion in order to diversify the search process, and therefore, to avoid

eing stuck in local optima. In Algorithm 3 , the pseudo code of the

Algorithm 3: The pseudo code of the VND algorithm. 

Define a set of neighbourhood structures N k , k = 1 , . . . , k max ; 

Create an initial solution x ; 

Set k ← 1 ; 

while k < k max do 

Explore the neighbourhood N k of x ; 

Find the best solution x ′ in N k ; 

if x ′ < x then 

Set x ← x ′ ; 
Set k ← 1 ; 

else 

Set k ← k + 1 ; 

end 

end 

return [the best solution found] 

pplied VND algorithm is presented. 

The following neighbourhoods are applied to the VND block of

he hybrid algorithm ( VNDSearch() ): 

1. 2-Exchange: this neighbourhood consists of all moves, where

two shifts are swapped between two different nurses on the

same day. 

2. 3-Exchange: it includes all moves, where three (or more) shifts

are exchanged between three (or more) different nurses on the

same day. 

3. Double-Exchange: it includes all moves that swap two shifts be-

tween two different nurses on two different days. In fact, this

neighbourhood is made from two different 2-Exchange neigh-

bourhoods applying on two consecutive days. 

4. Multi-Exchange: this neighbourhood is very similar to Double-

Exchange but three (or more) shifts are swapped between two

different nurses on three (or more) different days. Indeed,

this neighbourhood is made from three (or more) different 2-

Exchange neighbourhoods, which are not necessarily applied on

consecutive days. 

5. Block-Exchange: this neighbourhood includes all moves where a

specific number of consecutive shifts is swapped between two

different nurses within the planning period. 

Apart from Multi-Exchange neighbourhood, which is our new

eighbourhood structure, the rest of the defined neighbourhoods

re used in many local search algorithms in the literature ( Burke

t al., 2010; Stølevik et al., 2011 ). The Multi-Exchange neighbour-

ood is defined to overcome the complex structure of the problem,

nd therefore, to overcome the potential complicated local optima

y applying some simple 2-Exchange moves simultaneously. In fact,

n the one hand, this neighbourhood helps to break complicated

tructures for a number of constraints such as HC7 and HC8. On

he other hand, it is helpful to move good shift patterns from

ne nurse to another. Experimentally speaking, this neighbourhood

tructure gives better performance rather than a simple 2-Exchange

r Double-Exchange . The defined neighbourhoods are illustrated on

 weekly roster for five nurses in Fig. 1 , where E , L , and N indicate
arly, late, and night shifts, respectively, and all blank shifts are

ays off. In this figure, the swaps of shifts between nurses 1 and

 are examples of 2-Exchange (Tuesday), Multi-Exchange (Tuesday,

aturday, and Sunday), and Double-Exchange (Saturday and Sunday)

eighbourhoods. As an example of 3-Exchange neighbourhood, the

hree shifts between nurses 1, 4, and 5 on Wednesday can be se-

uentially swapped. Moreover, swapping the blocks of shifts from

riday to Sunday between nurses 4 and 5 can be an instance of a

lock-Exchange neighbourhood. 

.3. IP ruin-and-recreate framework 

If the VND search algorithm could not find any better solutions

y cycling through the set of neighbourhoods or reaches a max-

mum number of iterations, the incumbent solution is passed to

n Integer Programming solver as a perturbation neighbourhood

tructure within the VNS. The IP solver searches for a better alter-

ative solution based on the IP model of the problem introduced

n Section 2 , by fixing the low-penalty parts of the solution and

xploring all the remaining possibilities to find a higher-quality

olution in an iterative manner ( ruin-and-recreate framework).

hroughout this process, two possible outcomes may happen: (1)

he IP solver can find a better solution, which can be a different

olution in terms of the underlying structure in comparison with

he last one. In this case, the IP solver helps the VND algorithm

oth in terms of intensification and diversification. (2) the IP solver

annot produce a better-quality solution (and in some cases, even

roduce a worse-quality solution) due to the timeout criterion or

ue to the non-existence of a better alternative. In this case, the

P solver may produce a solution with a different structure, and

ence, helps the search process only in terms of diversification. In

ither case, the role of the embedded IP component in the hybrid

lgorithm is essential, where solving the problem only using a

ure heuristic approach often results in poor performance. It is
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noteworthy to mention that by destroying parts of the solution and

repairing it again, there is no guarantee of the quality and struc-

ture of the new solution. In terms of diversification, generating a

solution with a different structure is crucial. The structure of the

solution is different, if it cannot be obtained by searching through

the defined neighbourhoods of the current solution and some

nearby solutions. Indeed, a solution is different from the other so-

lutions in terms of the underlying structure, if we cannot generate

it by iteratively applying the defined neighbourhoods for a suffi-

cient number of iterations. In the literature, a ruin-and-recreate

strategy either by IP or CP is mostly employed in order to diversify

the search process and to perturb the obtained solution. For exam-

ple, Stølevik et al. (2011) have applied this strategy by destroying

parts of the solution and then using CP to rebuild it. Li, Aickelin,

and Burke (2009) have also used this strategy by the evolutionary

elimination of parts of the solution and subsequently repairing it

by using a greedy heuristic. A more advanced ruin-and-recreate

based algorithm is also reported in Li, Bai, Shen, and Qu (2015) ,

where the authors applied a stochastic modelling and Markov

chain analysis. Nonetheless, in the proposed hybrid algorithm, we

apply this strategy not only for the diversification purpose but also

for improving the quality of the obtained solution, i.e. intensifica-

tion. This is the main reason that we select IP for ruin-and-recreate

framework compared with CP and other heuristics, which is able

to improve the current solution, and at the same time, investigate

many areas within the search space. Moreover, we have empirically

observed that destroying parts of the solution is more effective

than using sophisticated neighbourhoods or similar techniques. 

Another novel aspect of our ruin-and-recreate framework is due

to applying a flexible generic scoring scheme to evaluate different

parts of the solution, which allows us to adaptively focus on those

areas of the solution, which has a higher probability to generate

a better solution, if they are changed. In order to fix some parts

of the solution, we apply a scoring scheme by assigning a value

to each cell within the roster, where each cell is an intersection of

one particular day and one particular nurse. In fact, using the scor-

ing scheme, the total penalty associated with the current solution

can be broken down to the fundamental elements of the problem.

It means a shift can be assigned to each cell and if so, there is

an associated penalty according to the objective function and the

constraints that are involved. In other words, each cell can be des-

ignated by a value, which is the proportion of (an assignment to)

that cell of the total number of violations respecting to the current

solution. We call this estimated value as cell penalty . Cell penalties

can be easily aggregated to different dimensions, therefore provid-

ing an insightful tool to analyse and discriminate different parts of

the solution. For example, in Random configuration which we ex-

plain later in this section, this value is used as a weight in a simple

linear weighted random function, where a random cell is selected

in order to be destroyed later. 

Next, we demonstrate how to calculate a cell penalty, which is

calculated based on the total incurred violations of the constraints

involved defined in Section 2 . It should be noted that although

this calculation is not accurate in general, it is sufficient for our

purpose. Here, we consider all the constraints either hard or soft,

which might be violated throughout the search process using the

hybrid algorithm, and hence, we also define the violations asso-

ciated with hard constraints. To determine the relevant weights of

hard constraints, a significant value (here, 10 0 0 for constraints HC4

and HC5 and 10,0 0 0 for the remaining hard constraints) is selected

to ensure that the final solution is feasible by directing the algo-

rithm to feasible regions. Table 1 shows for each constraint the

assigned weight ( w c ), the relevant violation of the constraint, cell

share, i.e. the relevant proportion of the constraint violation for all

the affected cells ( s c ), and the affected cells associated with the vi-

olation, respectively. In this table, | D |, | V |, | W | and | I | denote the
otal number of days within the planning period, the total number

f violations relevant to a constraint, the total number of week-

nds, and the total number of nurses, respectively. All the other

arameters are already defined in Section 2 . 

To calculate the cell penalty ( p cell ) for a particular cell, we need

o multiply the amount of cell share ( s c ) with the relevant weight

 w c ) for each constraint ( c ∈ C ) for a particular day and nurse.

ence, the total penalty allocated to each cell can be calculated

sing the following equation: 

p cell = 

∑ 

c∈ C 
s c w c 

or example, for constraint HC2 , assuming that we have only one

iolated rotation for a specific nurse occurred on Tuesday and

ednesday in the first week of a roster, the calculated penalty for

ach of the two cells involved in the violated rotation is equal to

0 0 0. It should be noted that for constraint SC2 , because the min-

mum and maximum number of shifts per day are given, we need

o sum up the total number of violations for all shifts ( t ∈ T ) in or-

er to calculate the cell penalty. It is noteworthy to mention that

he penalty evaluation is quite fast since it is done using a delta

unction (i.e., we only calculate the difference of total penalties

etween two solutions according to the violated constraints) and

ighly optimised data structures. 

Calculating and estimating cell penalties in a schedule, we are

lso able to accumulate them over different dimensions such as

urses and days in the schedule. In fact, by accumulating the cell

enalties, we can elicit more information, which gives us more in-

ights into the destroying and recreating processes. Having said

hat, we use the following aggregation settings to configure the IP

olver in order to fix different parts of the solution during the

earch process. In Section 4 , we will test the hybrid algorithm by

ombining the following settings together within different config-

rations in order to identify the best efficient one. 

1. Nurses: by accumulating cell penalties within the planning hori-

zon for each nurse, we are able to identify the contribution of

each nurse in the total penalty respecting to the current so-

lution. Therefore, we can recognise nurses who have the most

contributed penalties among the others. 

2. Days: in this setting, cell penalties are accumulated for all the

nurses within each day. Therefore, similar to Nurses setting, we

can identify the days with the most contributed penalties. 

3. Weeks: analogous to the other settings, here cell penalties are

accumulated for all nurses and all days within each week. 

4. Random: in this setting, there is no accumulation indeed. In-

stead, cells are selected randomly according to their relevant

contributed penalty. For this purpose, a simple linear weighted

random function is used, where cells with a higher penalty

have more chance to be selected. 

For illustration purposes, Fig. 2 shows the first week of a ros-

er, in which the cell penalties are calculated for all the involved

onstraints. It can be seen that for some cells, there are not any

ssociated penalties (blank cells), which means they are not con-

ributed to the total incurred penalty of the current solution. For

he cell at the intersection of Monday and Nurse5 , the calculated

ell penalty is 150, which is the highest value among all the cells.

herefore, in the Random aggregation setting, this cell is very likely

o be selected and unassigned afterwards. If we aggregate the cell

enalties for all the nurses and days as calculated in the last col-

mn and row of the weekly roster, it is realised that Monday and

urse2 (shown as underlined style) have the greatest contributions

o the total penalty associated with the roster. Therefore, using the

urses and Days aggregation settings, Monday and Nurse2 are se-

ected for being destroyed. Consequently, it can be seen that much
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Table 1 

The required information to calculate cell penalties for all the constraints. 

Ct. Weight ( w c ) Violation Cell share ( s c ) Affected cells 

HC2 10,0 0 0 Number of forbidden shift rotations 1/2| V | All the involved cells 

HC3 10,0 0 0 Number of shifts more than the 

maximum value 

1/| D | All cells 

HC4 10 0 0 Number of minutes more than the 

maximum value 

1/| D | All cells 

HC5 10 0 0 Number of minutes less than the 

minimum value 

1/| D | All cells 

HC6 10,0 0 0 Number of shifts more than the 

maximum value in an isolated 

sequence of shifts 

| V | / c max 
i 

+ | V | All the involved cells 

HC7 10,0 0 0 Number of shifts less than the 

minimum value in an isolated 

sequence of shifts 

| V | / c min 
i 

+ | V | All the cells on two sides of the isolated sequence of shifts 

HC8 10,0 0 0 Number of days off less than the 

minimum value in an isolated 

sequence of shifts 

| V | / o min 
i 

+ | V | All the cells on two sides of the isolated sequence of days off

HC9 10,0 0 0 Number of weekends more than the 

maximum value 

| V |/2| W | All the involved cells 

HC10 10,0 0 0 One assigned shift 1 The involved cell 

SC1 1 One shift (un-)assignment 1 The involved cell 

SC2 w min 
dt 

,w max 
dt 

Number of deviations from the 

minimum and maximum values 

�t ∈ T | V |/| I | All the involved cells (for all nurses) 

Fig. 2. The associated cell penalties calculated for the first week of a roster. 
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seful information can be extracted from a solution after calculat-

ng the relevant cell penalties. 

When the candidate cells required to be fixed (or to be de-

troyed) are identified, the IP solver solves the problem using the

ncumbent solution, where the integer variables associated with

he fixed cells ( x idt ) are set before starting the search process. Next,

onsidering all constraints as soft except HC1 , the IP solver pro-

uces another solution which can be different from the current

olution in terms of quality and the underlying structure. In ei-

her case, the generated solution is passed to the next iteration of

he VND algorithm as an initial solution. It is noteworthy to men-

ion that because a significant number of variables in the IP model

s fixed, particularly those which are involved in more constraints,

he IP solver can easily solve the problem even when the scale of

he problem instance is relatively large. Therefore, according to our

xperiments, in most cases, the IP solver can produce a solution

ven in a very short timeout condition. 

Ultimately, after running the VND search algorithm and the IP

uin-and-recreate blocks in order to find a better solution, there

s still a chance of being stuck in a local optimum. In fact, due to

ot having any global picture throughout the search space, there

an be another solution close to the current local optimum, but

ot detectable due to the complex structure of the problem. To

esolve this issue, another IP solver improves the best-found so-

ution at the end of the hybrid algorithm to solve the problem
n the remaining time, and then the final solution is reported to

he user. This IP solver employs the same IP model introduced in

ection 2 including all the constraints, but it starts from the best-

ound solution thus far. To configure the IP solver to start from the

urrent best solution rather than a randomly generated roster, the

ppropriate parameter (e.g. MIPFocus parameter in Gurobi) is set

efore starting the search process. It should be noted that the final

P solver is also useful to provide some insights to the optimality of

he current solution, which makes the hybrid algorithm a pseudo-

xact method. 

. Computational results 

We tested the proposed hybrid algorithm on 24 instances that

ave been recently introduced by Curtois and Qu (2014) , and then

n 12 randomly public generated instances introduced in this pa-

er ( Rahimian, 2015 ), which will be explained later. Table 2 sum-

arises the characteristics of the first set of benchmark instances.

espite other extensively studied instances in the literature ( Burke,

urtois, Qu, & Berghe, 2008 ), which are based on models and as-

umptions that are different than ours, and are mostly easy to

olve, these instances are emphasised to be challenging for the

tate-of-the-art algorithms. Moreover, these instances are varied in

erms of complexity and size, which makes them an appropriate

enchmark for the proposed algorithm. 

The variety of the benchmark instances with different char-

cteristics and structures allows us to test the hybrid algorithm

horoughly. Generally speaking, moving from Instance01 to In-

tance24 , the computational difficulty of the problem instances

ncreases, which often requires spending more time and computer

emory. In particular, the last five instances are computationally

hallenging due to their huge sizes. Having said that, the number

f days off and shift on/off requests (columns 5 and 6 in Table 2 )

an be appropriate indicators for the difficulty of the problem

nstances. In general, according to our experiments, the more the

umber of requests, the more difficult to deal with a problem

nstance both in IP and heuristic algorithms. 

We conducted our tests on a PC (Intel Core-i5 3.4 gigahertz

ith 4 gigabytes RAM) running Windows 7. We implemented the

ybrid algorithm in Java 1.7 ( De Beukelaer, Davenport, De Meyer,

 Fack, 2015 ) and employed Gurobi ( Gurobi Optimization, 2015 )

.6 as the IP solver. We also made a concerted effort to optimise
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Table 2 

The characteristics of the first set of benchmark instances. 

Instance Days Nurses Shift types Day off requests Shift on/off requests 

Instance01 14 8 1 8 26 

Instance02 14 14 2 14 62 

Instance03 14 20 3 20 64 

Instance04 28 10 2 20 71 

Instance05 28 16 2 32 106 

Instance06 28 18 3 36 135 

Instance07 28 20 3 40 168 

Instance08 28 30 4 60 225 

Instance09 28 36 4 72 232 

Instance10 28 40 5 80 284 

Instance11 28 50 6 100 336 

Instance12 28 60 10 120 422 

Instance13 28 120 18 240 841 

Instance14 42 32 4 128 359 

Instance15 42 45 6 180 490 

Instance16 56 20 3 120 280 

Instance17 56 32 4 160 480 

Instance18 84 22 3 176 414 

Instance19 84 40 5 320 834 

Instance20 182 50 6 900 2318 

Instance21 182 100 8 1800 4702 

Instance22 364 50 10 1800 4638 

Instance23 364 100 16 3600 9410 

Instance24 364 150 32 5400 13,809 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Results of the hybrid algorithm by applying different configurations of aggregation 

settings. 

Instance Config1 Config2 Config3 

Obj. Gap (%) Obj. Gap (%) Obj. Gap (%) 

Instance08 1958 33 .76 1695 23 .48 1364 4 .91 

Instance09 439 7 .52 439 7 .52 439 7 .52 

Instance10 4631 0 .00 4631 0 .00 4631 0 .00 

Instance11 3443 0 .00 3443 0 .00 3443 0 .00 

Instance12 4045 0 .12 4045 0 .12 4042 0 .05 

Instance13 3109 56 .71 3109 56 .71 3109 56 .71 

Instance14 1361 6 .17 1342 4 .84 1281 0 .31 

Instance15 4463 14 .72 4588 17 .04 4144 8 .16 

Instance16 3384 4 .73 3306 2 .48 3306 2 .48 

Instance17 5956 3 .86 6043 5 .25 5760 0 .59 

Instance18 5158 15 .65 5158 15 .65 5049 13 .82 

Instance19 4365 32 .53 4145 28 .95 3974 25 .89 

Instance20 5451 12 .99 5603 15 .35 5242 9 .52 

Instance21 27,281 23 .51 28,356 26 .41 24,977 16 .45 

Instance22 176,652 86 .38 173,371 86 .12 130,107 81 .50 

Instance23 57,210 95 .17 97,893 97 .18 40,543 93 .18 

Instance24 3,173,810 97 .74 3,160,760 97 .73 2,829,680 97 .46 

Average 28 .91 28 .51 24 .62 
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the implemented code using the latest software technologies

and code optimisation practices. For example, we used efficient

hash algorithms and appropriate data structures similar to the

ones available in Boost C++ libraries, and generic programming

to minimise performance overheads. In all the experiments, the

algorithm was run three times and the best-obtained solution is

reported. Moreover, we run all our experiments on one CPU core

to have a fairer and more accurate comparison. After extensive

testing of the algorithm using different settings, the following pa-

rameters were set. We dedicate 70% of the total allowed runtime

to the VNS algorithm (VND and IP ruin-and-recreate components),

and the rest, to the final IP block. For VND stopping criteria, we set

the maximum number of iteration to 50,0 0 0 and the maximum

number of non-improvement iterations to 5. We also employed

the neighbourhoods 2-Exchange, Double-Exchange, Multi-Exchange

with the length of 3, Block-Exchange with the length of 4, and

3-Exchange with the length of 3 in order. 

Three experiments were carried out to test the proposed algo-

rithm: first, we investigate different aggregation settings through

the ruin-and-recreate framework to understand how they affect

the performance of the algorithm, and then we analyse the per-

formance of different components of the hybrid algorithm. Sec-

ond, we compare the hybrid algorithm with two state-of-the-art

algorithms, which currently generate the best results for the stud-

ied instances and most existing instances in the literature, and

the Gurobi IP solver. Third, due to the unavailability of a bench-

mark dataset in the literature which would have allowed us to

compare the hybrid algorithm with another similar method ( Burke

et al., 2010 ), we create 11 randomly generated instances to further

benchmark the hybrid algorithm against. 

In the first experiment, in order to examine the best combina-

tion of aggregation settings defined in Section 3 for the IP ruin-

and-recreate component, we ran the algorithm with a variety of

combinations. For each combination, we define a selection range ,

i.e. the total percentage of available candidates in each aggregation

setting which is selected in decreasing order to be destroyed and

recreated. According to our non-exhaustive preliminary tests on a

variety of combinations using the benchmark instances in Table 2 ,

in the following, we present the best three identified configurations

and the relevant selection ranges: 
• [Config1] : Use only Nurses aggregation setting with the selec-

tion range of at least 20%. 
• [Config2] : Apply Nurses, Days, and Weeks aggregation settings

in order, with the selection ranges of at least 20%, 50%, and 60%,

respectively. 
• [Config3] : Apply Nurses, Days, Weeks, and Random aggregation

settings in order, within the selection ranges of [10%, 30%], [10%,

40%], [10%, 50%], and [30%, 50%], respectively. For each setting,

the minimum value in the relevant range is increased by 10%

(the increment rate) after each VNS iteration (e.g. [10%, 30%] is

changed to [20%, 30%]). 

Table 3 shows the results of the benchmarked configurations

or instances 8–24, where the algorithm is run for 10 minutes. We

o not report the results for the first seven instances, since they

re not very complicated for the proposed hybrid algorithm, and

ence, it returns the same results for all the mentioned configura-

ions. In this table, the objective function value and its difference

o the best-known lower bound in percentage (denoted as Gap (%))

ccording to Curtois and Qu (2014) are shown for each configura-

ion and instance. One can see that running the algorithm with

he third configuration generally results in better solutions in av-

rage. The reason for the superiority of the third configuration is

ue to the comprehensive investigation of the solution space by

sing different ruin-and-recreate strategies, and as a result, facili-

ating the hybrid algorithm to escape from a variety of local op-

ima. In fact, in this configuration, we re-evaluate the current so-

ution through four different dimensions after being stuck in each

ocal optimum. Moreover, changing the selection ranges incremen-

ally, equips the hybrid algorithm to behave adaptively during the

earch progress. It means, the more the hybrid algorithm advances

ithin the search process, the more parts of the solution are se-

ected to be changed, i.e. the diversification rate is being increased.

Using the third configuration (i.e. Config3), we run the algo-

ithm for all the benchmark instances for 10 minutes computa-

ional time. The detailed results of this test are shown in Table 4 ,

here the initial solution generated by the greedy heuristic al-

orithm, the improved solution by the VNS, and the final solu-

ion further improved by the IP solver are reported in average,

espectively. In this table, �i v % , and �v o % denote the percentage

f improvement achieved using the VNS component and the final

P block, respectively. Furthermore, the number of cycles and the

verage improvement obtained throughout each cycle (denoted as
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Table 4 

Detailed results of the hybrid algorithm by applying the third configuration for 10 minutes. 

Instance Initial �i v % VNS �v o % Obj. Cycle �
C 

% 

Instance01 11,525 94 .73 607 0 .00 607 18 5 .26 

Instance02 14,827 94 .42 828 0 .00 828 30 3 .15 

Instance03 22,480 95 .55 1001 0 .00 1001 16 5 .97 

Instance04 20,775 91 .74 1716 0 .00 1716 56 1 .64 

Instance05 31,947 96 .41 1147 0 .35 1143 48 2 .01 

Instance06 30,944 93 .40 2041 4 .46 1950 52 1 .80 

Instance07 42,625 97 .49 1070 1 .31 1056 52 1 .88 

Instance08 63,153 95 .98 2538 46 .26 1364 81 1 .21 

Instance09 55,320 99 .21 439 0 .00 439 42 2 .36 

Instance10 102,073 94 .97 5133 9 .78 4631 19 5 .02 

Instance11 120,287 97 .13 3450 0 .20 3443 25 3 .89 

Instance12 146,970 96 .05 5801 30 .32 4042 77 1 .26 

Instance13 289,121 98 .88 3231 3 .78 3109 49 2 .02 

Instance14 117,166 98 .19 2116 39 .46 1281 79 1 .25 

Instance15 144,631 96 .37 5245 20 .99 4144 60 1 .62 

Instance16 105,714 95 .40 4861 31 .99 3306 81 1 .20 

Instance17 174,308 95 .99 6986 17 .55 5760 67 1 .44 

Instance18 181,068 96 .79 5815 13 .17 5049 50 1 .94 

Instance19 322,730 98 .59 4564 12 .93 3974 47 2 .10 

Instance20 910,083 99 .42 5242 0 .00 5242 36 2 .76 

Instance21 197,130,0 0 0 99 .99 26,989 0 .04 26,977 44 2 .27 

Instance22 168,433,0 0 0 99 .92 130,107 0 .00 130,107 42 2 .38 

Instance23 15,542,0 0 0 99 .74 40,543 0 .00 40,543 45 2 .22 

Instance24 201,119,0 0 0 98 .55 2,925,411 3 .27 2,829,680 17 5 .80 

Average 96 .87 9 .83 2 .60 
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C % ) are reported in the last two columns of Table 4 . As it can be

een, the VNS algorithm is able to improve the generated initial

olution by the greedy heuristic by 97%, which then is further op-

imised by the final IP block by 10% in average. Moreover, it is ob-

erved that the final IP solver is not able to improve the generated

olution for a number of instances. For example, for Instance02 , the

P solver is only employed to prove the optimality of the obtained

olution by the VNS algorithm. However, for some instances such

s Instance23 , the IP solver does not manage to produce any better

olutions due to the limited computational time. Nevertheless, the

ole of the final IP solver as the last component of the hybrid algo-

ithm in order to improve the output of the VNS algorithm is cru-

ial, where the attained improvement can be even reached more

han 30% for some instances. 

In the second experiment, in order to benchmark the efficiency

f the proposed algorithm with the current state-of-the-art algo-

ithms, we compared it with the results published in Curtois and

u (2014) , where the authors report the results of two algorithms

rom Burke and Curtois (2014) , i.e. a branch-and-price and an ejec-

ion chain heuristic. All the published benchmark results were run

n Intel Core2 Duo 3.16 gigahertz with 8 gigabytes RAM. Unfortu-

ately, we could not find any other benchmark results, and to the

est of our knowledge, at this time the two benchmark algorithms

roduce the best results ( Burke & Curtois, 2014 ) for the studied

roblem instances and most existing instances in the relevant lit-

rature. To have a fair comparison, the algorithm is run only on

ne core of CPU and employs the same version of Gurobi solver.

ll our experiments are given a computational time of 10 min-

tes, since the hybrid algorithm is particularly designed to perform

ell in short computational times, and also it is common to use

hort times, as seen in the relevant literature and the nurse roster-

ng competition ( Haspeslagh, De Causmaecker, Schaerf, & Stølevik,

014 ). However, to have a comprehensive comparison with the

vailable results and the benchmark algorithms, we also run the

roposed algorithm for a longer time, i.e. 60 minutes. Table 5

resents the best results from the ejection chain method, Gurobi

P solver with default settings, and our hybrid algorithm using the

hird configuration (Config3 in Table 3 ) running for the limited

omputational time of 10 and 60 minutes, respectively. The results
or the branch-and-price (B&P) algorithm without any time limits

re also presented. In this table, “–” indicates that the algorithm

oes not generate any feasible solutions within the allocated time

imit. 

As we can see in Table 5 , within the 10 minutes computational

ime, from the total of 24 instances, the hybrid algorithm outper-

orms the ejection chain method for 23 instances, and produces

he same results for Instance01 . In comparison with the Gurobi IP

olver, the algorithm performs better in 14 instances and gener-

tes the same results for the remaining 10 instances, where 9 of

hem are optimal solutions (shown as underlined style). In over-

ll, the proposed algorithm outperforms the ejection chain method

nd Gurobi IP solver within 10 minutes computational time for 14

nstances (shown as bold style), and produces the same or bet-

er results for the rest of the instances. It should be noted that

he ejection chain method and Gurobi IP solver could not solve

he last 3 and 5 instances, respectively. Having said that, obtain-

ng the reported solutions for these instances, which are very hard

o solve and huge in size, make the hybrid algorithm an appro-

riate candidate to tackle such instances even in a very short

untime. 

Running our benchmarks for the longer runtime of 60 minutes,

he hybrid algorithm outperforms the ejection chain method

or 22 instances and does not generate a better result only for

nstance24 . The reason of obtaining a poor-quality solution for

nstance24 might be the inherent nature of the hybrid algorithm as

 pseudo-exact method (matheuristic). Since this instance is huge

n size, it is a challenge for the algorithm to solve it in compar-

son with a meta-heuristic approach like ejection chain method.

oreover, it might have a particular structure which cannot be

xploited using the current setting of the proposed algorithm, but

asy to be identified by the ejection chain method. Similarly, in

omparison with Gurobi IP solver, the hybrid algorithm is able

o generate better results for 13 instances and obtains the same

esults for the remaining 10 instances. For Instance08 , the IP solver

utperforms the hybrid algorithm for only a slight difference. In

verall, the hybrid algorithm attains better solutions for half of

he instances (shown as bold style), which makes it a successful

andidate even for longer computational times. 
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Table 5 

The benchmark results for the hybrid algorithm in comparison with the best current algorithms including branch-and-price 

and ejection chain heuristic ( Burke & Curtois, 2014 ), and Gurobi IP solver ( Gurobi Optimization, 2015 ) running for 10 and 60 

minutes. 

Instance 10 minutes 60 minutes 

Hybrid algorithm Ejection chain Gurobi Hybrid algorithm Ejection chain Gurobi B&P 

Instance01 607 607 607 607 607 607 607 

Instance02 828 923 828 828 837 828 828 

Instance03 1001 1003 1001 1001 1003 1001 1001 

Instance04 1716 1719 1716 1716 1718 1716 1716 

Instance05 1143 1439 1143 1143 1358 1143 1160 

Instance06 1950 2344 1950 1950 2258 1950 1952 

Instance07 1056 1284 1056 1056 1269 1056 1058 

Instance08 1364 2529 8995 1344 2260 1323 1308 

Instance09 439 474 439 439 463 439 439 

Instance10 4631 4999 4631 4631 4797 4631 4631 

Instance11 3443 3967 3443 3443 3661 3443 3443 

Instance12 4042 5611 4045 4040 5211 4040 4046 

Instance13 3109 8707 500,410 1905 3037 3109 –

Instance14 1281 2542 1482 1279 1847 1280 –

Instance15 4144 6049 78,144 3928 5935 4964 –

Instance16 3306 4343 3521 3225 4048 3233 3323 

Instance17 5760 7835 6149 5750 7835 5851 –

Instance18 5049 6404 7950 4662 6404 4760 –

Instance19 3974 6522 29,968 3224 5531 5420 –

Instance20 5242 23,531 – 4913 9750 – –

Instance21 26,977 38,294 – 23,191 36,688 – –

Instance22 130,107 – – 32,126 516,686 – –

Instance23 40,543 – – 3794 54,384 – –

Instance24 2,829,680 – – 2,281,440 156,858 – –
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Comparing with branch-and-price (B&P) algorithm without any

time limit, the hybrid algorithm is outperformed only for In-

stance08 , where B&P takes more than 197 minutes to generate the

solution. Apart from the 11 instances, for which B&P cannot pro-

duce any results, the hybrid algorithm beats B&P for 5 instances

and achieves the same results for the rest of the instances. 

In the third experiment, we try to compare the hybrid algo-

rithm with a similar approach reported in Burke et al. (2010) , in

which IP and VNS are hybridised in a pipeline fashion, i.e. running

sequentially. The authors also developed a decomposition tech-

nique for handling constraints, and evaluated their hybrid VNS

using the studied decomposition. Unfortunately, after making in-

quiries from the relevant authors, it is found out that the bench-

marked dataset including 12 instances is lost except one of them,

i.e. the first instance for January. Being unsuccessful in obtaining

the benchmarked instances and willing to further evaluate the ef-

ficiency of the hybrid algorithm, we randomly generated 11 in-

stances (instead of the 11 extinct ones) attempting to make them

similar to the sole existing instance we already have. These in-

stances are made publicly available ( Rahimian, 2015 ) to facilitate

other researchers to benchmark their algorithms. The problem de-

scription regarding the remaining available instance called ORTEC01

is accessible in Burke et al. (2008) , and the associated IP formula-

tion is reported in Rahimian et al. (2015) . As we tried to generate

instances resembling the only available instance as closely as pos-

sible, we made the following assumptions: 

1. Since the lost instances belong to a yearly dataset extracted

from a real hospital over 12 months, we assumed that all the

staff contracts are not changed and fixed during the planning

year. 

2. Considering the yearly nature of the dataset, we assumed that

there is not any change in the hospital regulations, number of

shifts, and number of nurses (i.e. no hiring or firing occurs). 

3. Considering the yearly nature of the dataset, we assumed that

there should not be any major changes in the coverage and shift

on/off requests. 
4. We assumed that the coverage data for the weekend days fol-

low a similar pattern to the coverage data of the available in-

stance. 

Based on these assumptions, we only generate random in-

tances by changing the coverage and shift on/off requests con-

traints. For generating coverage data, for all the weekdays and

or all the shifts except night, we use a weighted uniform ran-

om function within the range of [2, 4], by considering the asso-

iated weights of 0.25, 0.5, 0.25 for the included numbers within

he range. For night shifts, we use a uniform random function to

enerate the coverage data within the range of [1, 2]. To have sim-

lar coverage data compared with the available data, we also try to

eep the difference between the total sum of all the coverages dur-

ng the planning horizon less than 40 for generated instances and

he available instance. Thus, we ensure that the generated cover-

ge data are similar to the available instance with only very slight

erturbation. 

For generating shift on/off requests, first, we use a uniform ran-

om function to generate some request data including the involved

mployees, the requested shifts consist of days off, the requested

ays, and the associated weights, while considering ranges of [0,

otal number of employees], [0, total number of shifts + 1], [0, to-

al number of days], and the set of {100, 1000, 10,000}, respec-

ively. Then we use a uniform random function again to generate

he required number of shift on/off requests within the range of [0,

] independently. Finally, knowing the total number of shift on/off

equests, first we pick the number of shift on requests and then

he number of shift off requests from the generated request data,

f any. 

We use an identical random seed for the whole generation of

he instances, and we repeat the process until we obtain a feasible

roblem instance. It is noteworthy to mention that although we try

o generate the instances very similar to the one in hand, due to

he complexity of the constraints and the importance of the cover-

ge and shift on/off requests in the structure of the problem, the

enerated instances are different in terms of computational com-

lexity and even more challenging than the available one as we see



E. Rahimian et al. / European Journal of Operational Research 258 (2017) 411–423 421 

Table 6 

The characteristics of the generated random instances (second set of benchmark 

instances) and results of standard Gurobi IP solver for 10 minutes. 

Instance IP statistics Gurobi 

Constraints Variables RR iterations Obj. LB Gap (%) 

ORTEC01 20,611 21,954 7280 1410 145 89 .72 

ORTEC02 20,581 21,924 7426 15,500 570 96 .32 

ORTEC03 20,580 21,923 10,732 31,741 200 99 .37 

ORTEC04 20,586 21,929 9354 15,510 122 99 .21 

ORTEC05 20,582 21,925 9904 25,495 1300 94 .90 

ORTEC06 20,582 21,925 10,598 14,855 211 98 .58 

ORTEC07 20,581 21,924 9804 2911 138 95 .26 

ORTEC08 20,583 21,926 8358 5660 141 97 .51 

ORTEC09 20,581 21,924 7526 385 201 47 .79 

ORTEC10 20,577 21,920 8715 14,940 1130 92 .44 

ORTEC11 20,583 21,926 10,105 22,863 310 98 .64 

ORTEC12 20,580 21,923 9265 37,698 110 99 .71 

Table 7 

Results of the hybrid algorithm by applying different configurations of aggregation 

settings for the second set of benchmark instances. 

Instance Config1 Config2 Config3 

Obj. �% Obj. �% Obj. �% 

ORTEC01 465 58 .06 380 71 .05 270 100 .00 

ORTEC02 7770 98 .97 8800 87 .39 7690 100 .00 

ORTEC03 9900 99 .00 9880 99 .20 9801 100 .00 

ORTEC04 6510 97 .39 7370 86 .02 6340 100 .00 

ORTEC05 4090 98 .29 4870 82 .55 4020 100 .00 

ORTEC06 9507 99 .40 9499 99 .48 9450 100 .00 

ORTEC07 2396 99 .33 2491 95 .54 2380 100 .00 

ORTEC08 4390 76 .99 4470 75 .62 3380 100 .00 

ORTEC09 282 90 .78 295 86 .78 256 100 .00 

ORTEC10 4660 76 .39 3670 97 .00 3560 100 .00 

ORTEC11 8850 99 .66 9030 97 .67 8820 100 .00 

ORTEC12 3481 99 .11 3451 99 .97 3450 100 .00 

Average 91 .12 89 .86 100 .00 
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Table 8 

Detailed results of the hybrid algorithm by applying the third configuration for 10 

minutes for the second set of benchmark instances. 

Instance Initial �i v % VNS �v o % Obj. Cycle �
C 

% 

ORTEC01 74,611 98 .27 1291 79 .09 270 55 1 .81 

ORTEC02 70,863 89 .12 7711 0 .27 7690 50 1 .78 

ORTEC03 76,169 87 .02 9886 0 .86 9801 50 1 .74 

ORTEC04 127,870 95 .01 6380 0 .63 6340 41 2 .32 

ORTEC05 87,018 95 .35 4050 0 .74 4020 53 1 .80 

ORTEC06 89,815 89 .35 9561 1 .16 9450 53 1 .69 

ORTEC07 67,417 96 .44 2401 0 .87 2380 54 1 .79 

ORTEC08 91,082 96 .23 3431 1 .49 3380 58 1 .66 

ORTEC09 70,700 98 .07 1368 81 .29 256 33 3 .02 

ORTEC10 82,975 95 .63 3625 1 .79 3560 63 1 .52 

ORTEC11 111,571 92 .08 8840 0 .23 8820 51 1 .81 

ORTEC12 88,373 96 .04 3501 1 .46 3450 57 1 .69 

Average 94 .05 14 .16 1 .89 

Table 9 

The benchmark results for the hybrid algorithm in comparison with Gurobi IP solver 

( Gurobi Optimization, 2015 ) and the hybrid VNS algorithm (IPVNS) reported in 

Burke et al. (2010) for the second set of benchmark instances. 

Instance Hybrid algorithm Gurobi IPVNS 

10 minutes 60 minutes 10 minutes 60 minutes 60 minutes 

ORTEC01 270 , 315 270 1410 405 460 

ORTEC02 7690 7620 15,500 11,162 –

ORTEC03 9801 9638 31,741 12,850 –

ORTEC04 6340 5230 15,510 8553 –

ORTEC05 4020 3700 25,495 13,385 –

ORTEC06 9450 9400 14,855 14,855 –

ORTEC07 2380 2320 2911 2521 –

ORTEC08 3380 3220 5660 5301 –

ORTEC09 256 230 385 241 –

ORTEC10 3560 3360 14,940 5880 –

ORTEC11 8820 8530 22,863 22,551 –

ORTEC12 3450 3290 37,698 5828 –
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ext. Table 6 summarises the characteristics of the generated ran-

om instances and the obtained results from the standard Gurobi

P solver for 10 minutes runtime. In the first part of this table,

ome statistics regarding the IP formulation of the generated in-

tances including the number of constraints, variables, and simplex

terations to solve the root relaxation of the problem instances are

resented, respectively. In the second part, the objective function

alue, lower bound, and the optimality gap resulting from running

he IP solver for 10 minutes timeout condition are shown, respec-

ively. The optimality gap is defined as the discrepancy between

he value of the current feasible solution (for the primal problem)

nd the value of the lower bound (feasible for the dual problem).

hen the optimality gap is zero, the current feasible solution is an

ptimal solution. It should be noted that in Table 6 , the instance

RTEC01 is the instance we had available (shown in italic style),

nd the rest indicates the instances we generated. 

As one can see in Table 6 , by observing the results obtained

rom the IP solver for 10 minutes runtime, all the generated in-

tances are solved to a gap greater than 90% except instance OR-

EC09 with the gap of 48%. Therefore, it can be seen that apart

rom the instance ORTEC09 , all the other instances are even more

ifficult to solve rather than ORTEC01 . As a result, we can argue

hat the randomly generated instances are difficult to solve and

hey can be a suitable benchmark dataset for evaluating the per-

ormance of the hybrid algorithm. 

We run the hybrid algorithm for 10 minutes using the three

onfigurations introduced in the first experiment. The results are

eported in Table 7 , where the absolute objective value and the

ssociated normalised percentage (denoted as �%) are shown,
espectively. Similar to the first experiment, we observe that

unning the algorithm with the third configuration results in a

etter solution for all the instances. In order to analyse the perfor-

ance of the main components of the hybrid algorithm, we run

t using the generated new benchmark instances for 10 minutes

omputational time. The detailed average results are reported in

able 8 , where the VNS algorithm improves the initial solution

y 94%, which is further enhanced by the final IP block by 14% in

verage. It should be noted that for generating the initial solution,

 similar IP solver is run for 20 seconds, since employing a greedy

euristic similar to the one explained in Section 3.1 often results in

nfeasible solutions. To compare the performance of the hybrid

lgorithm with Gurobi IP solver and the hybrid VNS algorithm

eported in Burke et al. (2010) , we run our hybrid algorithm using

he third configuration and report the results in Table 9 , where

he hybrid algorithm and IP solver are run for 10 and 60 minutes,

nd the hybrid VNS (shown as IPVNS) is run for 60 minutes

omputational time. 

To have a fairer and more accurate comparison, we simulate

he computational environment of IPVNS algorithm (Pentium 2.0

igahertz PC) by running the hybrid algorithm on a different PC

ith an Intel Core-i7 1.6 gigahertz CPU but only using one core

f the CPU. Having said that, the first reported value for instance

RTEC01 is the one similar to the other instances by running on

ur regular benchmark PC, and the second one is relevant to the

ess-powerful PC used only for comparing with IPVNS algorithm.

s we can see in Table 9 , compared with the results obtained by

he IP solver, the hybrid algorithm finds better solutions for all the

nstances. In particular, for instance ORTEC01 , when we compare

he results with IPVNS, the algorithm reaches the objective value
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of 315, which is 31% better than the one obtained by IPVNS, i.e.

460 on a similar computational environment. Running the algo-

rithm on our regular benchmark PC, the objective value is slightly

improved and reaches the value of 270 known as the optimal

solution, which might be due to using a more powerful PC. 

Considering instance ORTEC01 , we also benchmark the algo-

rithm against the winner of Personnel Scheduling track of CHeSC

hyper-heuristic competition ( Hsiao, Chiang & Fu, 2011 ; Hyde &

Ochoa, 2011 ), where the authors developed a VNS-based hyper-

heuristic (VNS-TW) consisting of two steps, i.e. shaking and local

search, which is able to dynamically adjust to various problems

using different techniques. Running the hybrid algorithm within

the standardised time limit using the benchmark tool provided by

the competition organisers, it obtains the objective value of 270 in

comparison with the result of 320 obtained by VNS-TW. 

Comparing our hybrid algorithm and Gurobi IP solver for a

longer runtime of 60 minutes, the hybrid algorithm obtains bet-

ter results, though it is not designed to be run for such a relatively

long computational time. It is worth noting that the results gener-

ated by the hybrid algorithm for 10 minutes even outperform the

solutions produced by the Gurobi IP solver for 60 minutes except

for instance ORTEC09 , where there is only a slight difference. 

5. Conclusion 

We have presented a hybrid algorithm employing a Vari-

able Neighbourhood Search algorithm and Integer Programming to

make the search process more efficient. At the first step, after gen-

erating an initial solution using a greedy heuristic, the solution

is improved using a Variable Neighbourhood Descent algorithm.

To increase the exploitation and exploration in the VNS, Integer

Programming within a ruin-and-recreate framework is employed,

where parts of the solution are kept fixed by applying a new scor-

ing scheme. In order to ensure the investigation of the search space

globally, IP again is applied to improve the obtained solution in the

remaining time. 

We evaluated the proposed algorithm using 24 instances in-

troduced in the recent literature, and 12 randomly generated in-

stances presented in this paper. The benchmark results showed

better performance for most of the instances in comparison

with two state-of-the-art algorithms in the literature and a stan-

dard Gurobi IP solver. The algorithmic concepts of the proposed

algorithm are general enough to be applied to other similar

Timetabling and Resource Allocation problems. Moreover, incorpo-

rating an IP approach into a meta-heuristic algorithm confirms the

applicability of exact methods for practical instances in a hybrid

setting. We also proposed a general scoring scheme to break down

the total penalty associated with a solution into the fundamental

elements of the problem, which is able to guide the search process

adaptively towards high-potential parts of the solution. 

Future research involves investigating the structure of the stud-

ied problem to accommodate other heuristic algorithms such

as population-based meta-heuristics and Constraint Programming

techniques to the current developed hybrid framework. We also

aim to apply other Integer Programming techniques such as col-

umn generation in order to enhance the efficiency of the IP compo-

nent. Another interesting research direction is to investigate more

sophisticated neighbourhood structures in order to improve the ef-

ficiency of the VNS algorithm. Moreover, it would be interesting to

employ a parameter tuning tool (e.g. Hutter, Hoos, Leyton-Brown,

& Stützle, 2009 ) to precisely select best configurations for the pro-

posed ruin-and-recreate framework. 

References 

Aickelin, U., & Dowsland, K. A. (2004). An indirect genetic algorithm for a nurse-
scheduling problem. Computers and Operations Research, 31 (5), 761–778. doi: 10.
1016/S0305-0548(03)0 0 034-0 . 

eaumont, N. (1997). Scheduling staff using mixed integer programming. Euro-
pean Journal of Operational Research, 98 (3), 473–484. doi: 10.1016/S0377-2217(97)

0 0 055-6 . 
lum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview

and conceptual comparison. ACM Computing Surveys, 35 (3), 268–308. doi: 10.
1145/937503.937505 . 

ourdais, S., Galinier, P., & Pesant, G. (2003). HIBISCUS: A constraint programming

application to staff scheduling in health care. In F. Rossi (Ed.), Principles and
practice of constraint programming (CP): Vol. 2833 (pp. 153–167). Springer Berlin

Heidelberg. doi: 10.1007/978- 3- 540- 45193- 8 _ 11 . 
urke, E., Causmaecker, P. D., & Berghe, G. V. (1999). A hybrid tabu search algo-

rithm for the nurse rostering problem. In B. McKay, X. Yao, C. Newton, J.-H. Kim,
& T. Furuhashi (Eds.), Simulated evolution and learning: Vol. 1585, chapter 25

(pp. 187–194). Springer Berlin Heidelberg. doi: 10.1007/3- 540- 48873- 1 _ 25 . 

urke, E. K., & Curtois, T. (2014). New approaches to nurse rostering benchmark
instances. European Journal of Operational Research, 237 (1), 71–81. doi: 10.1016/j.

ejor.2014.01.039 . 
urke, E. K., Curtois, T., Qu, R., & Berghe, G. V. (2008). Problem model for nurse

rostering benchmark instances. Technical report . Jubilee Campus, Nottingham,
UK: ASAP, School of Computer Science, University of Nottingham . http://www.

cs.nott.ac.uk/ ∼tec/NRP/papers/ANROM.pdf . 

urke, E. K., De Causmaecker, P., Berghe, G. V., & Van Landeghem, H. (2004). The
state of the art of nurse rostering. Journal of Scheduling, 7 (6), 4 41–4 49. doi: 10.

1023/B:JOSH.0 0 0 0 046076.75950.0b . 
urke, E. K., Li, J., & Qu, R. (2010). A hybrid model of integer programming and vari-

able neighbourhood search for highly-constrained nurse rostering problems. Eu-
ropean Journal of Operational Research, 203 (2), 4 84–4 93. doi: 10.1016/j.ejor.2009.

07.036 . 

huin Lau, H. (1996). On the complexity of manpower shift scheduling. Computers
& Operations Research, 23 (1), 93–102. doi: 10.1016/0305-0548(94)0 0 094-O . 

ipriano, R., Gaspero, L. D., & Dovier, A. (2006). Hybrid approaches for rostering:
A case study in the integration of constraint programming and local search. In

F. Almeida, M. Blesa Aguilera, C. Blum, J. Moreno Vega, M. Pérez Pérez, A. Roli,
& M. Sampels (Eds.), Hybrid metaheuristics: Vol. 4030, chapter 9 (pp. 110–123).

Springer Berlin Heidelberg. doi: 10.1007/11890584 _ 9 . 

urtois, T. , & Qu, R. (2014). Computational results on new staff scheduling bench-
mark instances. Technical report 06-Oct-2014 . ASAP Research Group, School of

Computer Science, University of Nottingham . 
e Beukelaer, H. , Davenport, G. F. , De Meyer, G. , & Fack, V. (2015). JAMES: A mod-

ern object-oriented Java framework for discrete optimization using local search
metaheuristics. In 4th International symposium and 26th National conference on

Operational Research. Hellenic Operational Research Society (pp. 134–138) . 

ella Croce, F., & Salassa, F. (2014). A variable neighborhood search based
matheuristic for nurse rostering problems. Annals of Operations Research, 218 (1),

185–199. doi: 10.1007/s10479- 012- 1235- x . 
owsland, K. A., & Thompson, J. M. (20 0 0). Solving a nurse scheduling problem with

knapsacks, networks and tabu search. Journal of the Operational Research Society,
51 (7), 825–833. doi: 10.1057/palgrave.jors.2600970 . 

rnst, A. T., Jiang, H., Krishnamoorthy, M., Owens, B., & Sier, D. (2004a). An anno-
tated bibliography of personnel scheduling and rostering. Annals of Operations

Research, 127 (1–4), 21–144. doi: 10.1023/B:ANOR.0 0 0 0 019087.46656.e2 . 

rnst, A. T., Jiang, H., Krishnamoorthy, M., & Sier, D. (2004b). Staff scheduling and
rostering: A review of applications, methods and models. European Journal of

Operational Research, 153 (1), 3–27. doi: 10.1016/S0377-2217(03)0 0 095-X . 
lover, F., & Kochenberger, G. A. (2003). Handbook of metaheuristics . Kluwer Aca-

demic Publishers. doi: 10.1007/b101874 . 
urobi Optimization, I. (2015). Gurobi . http://www.gurobi.com . 

ansen, P. , & Mladenovic, N. (1999). An introduction to variable neighborhood search .

Springer . 
ansen, P., & Mladenovic, N. (2001). Variable neighborhood search: Principles and

applications. European Journal of Operational Research, 130 (3), 449–467. http://
dx.doi.org/10.1016/S0377-2217(0 0)0 010 0-4 . 

aspeslagh, S., De Causmaecker, P., Schaerf, A., & Stølevik, M. (2014). The first in-
ternational nurse rostering competition 2010. Annals of Operational Research,

218 (1), 221–236. doi: 10.1007/s10479- 012- 1062- 0 . 

siao, P.-C., Chiang, T.-C., & Fu, L.-C. (2011). CHeSC 2011: A variable neighborhood
search-based hyperheuristic for cross-domain optimization problems . Tech. rep.,

CHeSC 2011. URL http://www.asap.cs.nott.ac.uk/external/chesc2011/ 
utter, F., Hoos, H. H., Leyton-Brown, K., & Stützle, T. (2009). ParamILS: An au-

tomatic algorithm configuration framework. Journal of Artificial Intelligence Re-
search, 36 , 267–306. doi: 10.1613/jair.2808 . 

yde, M., & Ochoa, G. (2011). CHeSC 2011 – The First Cross-domain Heuristic Search

Challenge . http://www.asap.cs.nott.ac.uk/external/chesc2011/index.html . 
IBM (2015). IBM ILOG CPLEX CP Optimizer. http://www.ibm.com/software/

integration/optimization/cplex- cp- optimizer/ . 
i, J., Aickelin, U., & Burke, E. K. (2009). A component-based heuristic search method

with evolutionary eliminations for hospital personnel scheduling. INFORMS Jour-
nal on Computing, 21 (3), 468–479. doi: 10.1287/ijoc.1080.0298 . 

i, J., Bai, R., Shen, Y., & Qu, R. (2015). Search with evolutionary ruin and stochastic

rebuild: A theoretic framework and a case study on exam timetabling. European
Journal of Operational Research, 242 (3), 798–806. doi: 10.1016/j.ejor.2014.11.002 . 

u, Z., & Hao, J. K. (2012). Adaptive neighborhood search for nurse rostering. Euro-
pean Journal of Operational Research, 218 (3), 865–876. doi: 10.1016/j.ejor.2011.12.

016 . 

http://dx.doi.org/10.1016/S0305-0548(03)00034-0
http://dx.doi.org/10.1016/S0377-2217(97)00055-6
http://dx.doi.org/10.1145/937503.937505
http://dx.doi.org/10.1007/978-3-540-45193-8_11
http://dx.doi.org/10.1007/3-540-48873-1_25
http://dx.doi.org/10.1016/j.ejor.2014.01.039
http://www.cs.nott.ac.uk/~tec/NRP/papers/ANROM.pdf
http://dx.doi.org/10.1023/B:JOSH.0000046076.75950.0b
http://dx.doi.org/10.1016/j.ejor.2009.07.036
http://dx.doi.org/10.1016/0305-0548(94)00094-O
http://dx.doi.org/10.1007/11890584_9
http://refhub.elsevier.com/S0377-2217(16)30782-2/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30782-2/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30782-2/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30782-2/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30782-2/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30782-2/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30782-2/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30782-2/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30782-2/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30782-2/sbref0013
http://dx.doi.org/10.1007/s10479-012-1235-x
http://dx.doi.org/10.1057/palgrave.jors.2600970
http://dx.doi.org/10.1023/B:ANOR.0000019087.46656.e2
http://dx.doi.org/10.1016/S0377-2217(03)00095-X
http://dx.doi.org/10.1007/b101874
http://www.gurobi.com
http://refhub.elsevier.com/S0377-2217(16)30782-2/sbref0020
http://refhub.elsevier.com/S0377-2217(16)30782-2/sbref0020
http://refhub.elsevier.com/S0377-2217(16)30782-2/sbref0020
http://refhub.elsevier.com/S0377-2217(16)30782-2/sbref0020
http://dx.doi.org/10.1016/S0377-2217(00)00100-4
http://dx.doi.org/10.1007/s10479-012-1062-0
http://www.asap.cs.nott.ac.uk/external/chesc2011/
http://dx.doi.org/10.1613/jair.2808
http://www.asap.cs.nott.ac.uk/external/chesc2011/index.html
http://www.ibm.com/software/integration/optimization/cplex-cp-optimizer/
http://dx.doi.org/10.1287/ijoc.1080.0298
http://dx.doi.org/10.1016/j.ejor.2014.11.002
http://dx.doi.org/10.1016/j.ejor.2011.12.016


E. Rahimian et al. / European Journal of Operational Research 258 (2017) 411–423 423 

O  

 

Q  

 

 

 

 

R  

R  

 

 

R  

 

 

 

R  

S  

 

 

T

V  

 

sogami, T., & Imai, H. (20 0 0). Classification of various neighborhood operations for
the nurse scheduling problem. In Lecture notes in computer science : Vol. 1969

(pp. 72–83). Springer. doi: 10.1007/3- 540- 40996- 3 _ 7 . 
u, R., & He, F. (2009). A hybrid constraint programming approach for nurse ros-

tering problems. In T. Allen, R. Ellis, & M. Petridis (Eds.), Proceedings of the AI
2008, the twenty-eighth SGAI international conference on innovative techniques

and applications of artificial intelligence on Applications and innovations in in-
telligent systems XVI, chapter 16 (pp. 211–224). Springer London. doi: 10.1007/

978- 1- 84882- 215- 3- 16 . 

ahimian, E. (2015). Nurse Rostering Dataset . URL http://dx.doi.org/10.15129/
9664f00a- e2fd- 4dbb- afef- f3c076e2c4f7 . 

ahimian, E. , Akartunali, K. , & Levine, J. (2015). A hybrid constraint integer program-
ming approach to sSolve nurse scheduling problems. In Proceedings of the multi-

disciplinary international conference on scheduling: Theory and applications, MISTA
2015 (pp. 429–442) . 
aidl, G., & Puchinger, J. (2008). Combining (integer) linear programming tech-
niques and metaheuristics for combinatorial optimization. In C. Blum, M. Aguil-

era, A. Roli, & M. Sampels (Eds.), Studies in computational intelligence (SCI):
Vol. 62, chapter 2 (pp. 31–62). Springer Berlin Heidelberg. doi: 10.1007/

978- 3- 540- 78295- 7 _ 2 . 
aidl, G. R., Puchinger, J., & Blum, C. (2010). Metaheuristic hybrids. In M. Gendreau,

& J.-Y. Potvin (Eds.), Handbook of metaheuristics: Vol. 146, chapter 16 (pp. 469–
496). Springer US. doi: 10.1007/978- 1- 4419- 1665- 5 _ 16 . 

tølevik, M. , Nordlander, T. E. , Riise, A. , & Frøyseth, H. (2011). A hybrid approach

for solving real-world nurse rostering problems. In International Conference on
Principles and Practice of Constraint Programming (pp. 85–99). Springer Berlin

Heidelberg . 
albi, E. G. (2009). Metaheuristics: From design to implementation . Wiley . 

alouxis, C., Gogos, C., Goulas, G., Alefragis, P., & Housos, E. (2012). A systematic two
phase approach for the nurse rostering problem. European Journal of Operational

Research, 219 (2), 425–433. doi: 10.1016/j.ejor.2011.12.042 . 

http://dx.doi.org/10.1007/3-540-40996-3_7
http://dx.doi.org/10.1007/978-1-84882-215-3-16
http://dx.doi.org/10.15129/9664f00a-e2fd-4dbb-afef-f3c076e2c4f7
http://refhub.elsevier.com/S0377-2217(16)30782-2/sbref0032
http://refhub.elsevier.com/S0377-2217(16)30782-2/sbref0032
http://refhub.elsevier.com/S0377-2217(16)30782-2/sbref0032
http://refhub.elsevier.com/S0377-2217(16)30782-2/sbref0032
http://refhub.elsevier.com/S0377-2217(16)30782-2/sbref0032
http://dx.doi.org/10.1007/978-3-540-78295-7_2
http://dx.doi.org/10.1007/978-1-4419-1665-5_16
http://refhub.elsevier.com/S0377-2217(16)30782-2/sbref0035
http://refhub.elsevier.com/S0377-2217(16)30782-2/sbref0035
http://refhub.elsevier.com/S0377-2217(16)30782-2/sbref0035
http://refhub.elsevier.com/S0377-2217(16)30782-2/sbref0035
http://refhub.elsevier.com/S0377-2217(16)30782-2/sbref0035
http://refhub.elsevier.com/S0377-2217(16)30782-2/sbref0035
http://refhub.elsevier.com/S0377-2217(16)30782-2/sbref0036
http://refhub.elsevier.com/S0377-2217(16)30782-2/sbref0036
http://dx.doi.org/10.1016/j.ejor.2011.12.042

	A hybrid Integer Programming and Variable Neighbourhood Search algorithm to solve Nurse Rostering Problems
	1 Introduction
	2 Problem description and IP formulation
	 Constraints:
	 Objective function:


	3 Hybrid approach
	3.1 Initial solution construction
	3.2 Variable neighbourhood descent
	3.3 IP ruin-and-recreate framework

	4 Computational results
	5 Conclusion
	 References




