EPF REST Web Services
Last Updated: 7-16-2018
USPS server URLs

https://epfup.usps.gov/up/epfupld/epf/version

GET
https://epfup.usps.gov/up/epfupld/epf/login

POST
https://epfup.usps.gov/up/epfupld/epf/logout

POST
https://epfup.usps.gov/up/epfupld/download/status
POST
https://epfup.usps.gov/up/epfupld/download/acslist
POST
https://epfup.usps.gov/up/epfupld/download/dnldlist
POST
https://epfup.usps.gov/up/epfupld/download/list

POST

https://epfup.usps.gov/up/epfupld/download/listplus
POST
https://epfup.usps.gov/up/epfupld/download/epf

POST
(download ALL files)

USPS server URLs

https://epfws.usps.gov/ws/resources/epf/version

GET
https://epfws.usps.gov/ws/resources/epf/login

POST
https://epfws.usps.gov/ws/resources/epf/logout

POST
https://epfws.usps.gov/ws/resources/download/status
POST
https://epfws.usps.gov/ws/resources/download/acslist
POST
https://epfws.usps.gov/ws/resources/download/dnldlist
POST
https://epfws.usps.gov/ws/resources/download/list
POST

https://epfws.usps.gov/ws/resources/download/listplus
POST
https://epfws.usps.gov/ws/resources/download/epf
POST
(download ALL files)

Description:

The logon key and token key should be SAVED from each reply as they are refreshed on every request/response call made to the web server. These web services must be called one at a time in serial order, as the security token refresh process will fail if calls are threaded and you do not pass the most recently refreshed security token in the next function call. Only one active session per user login is supported; multiple users cannot use the same login and expect to succeed as only one user will have the most current security token. The security token is returned on each call within the JSON object and also in the response header. From a programming perspective, it may be better to program using the headers from the response object, as when the actual file is downloaded, no JSON object is returned. To make the request calls, a JSON object will need to be created and passed as a POST form parameter obj={jsonObject} for security reasons using content-type “application/x-www-form-urlencoded”.
The “version” function call allows users to test service availability through their firewalls using a browser or in code using a simple GET method with no parameters or JSON object. The version is returned as a JSON object. All items are considered case sensitive.

NOTE: the form parameter name must be “obj”, as in obj={json object to string}
The web services look for a parameter called obj and takes the string value and converts it back to a JSON object to retrieve the internal values.
Function Call Details:
Version:

The epf/version function call is a simple GET style call that can be used as a test call in a web browser. By entering the URL, a response object containing a JSON object should be returned immediately. This can also be used to test connectivity through firewalls and if this simple call does not work it usually indicates problems with connectivity to the Internet.
INPUT: Call the URL (GET) without any additional parameters and a response JSON object will be return or a server error if the services are not running.

OUTPUT: JSON object similar to example below.

{

 "response":"success",

 "messages":"Web service version and build date.",

 "version":"v1.05.3",

 "build":"2016-05-23"

}

Login:
The epf/login function call is used to log into EPF system and retrieve the required keys for all future web service calls. As with most systems, one should program for sessions timing out and passwords expiring.

INPUT: Call the URL via POST method with JSON object serialized and set parameter.

obj={

"login":"my_email_login@company.com",

"pword":"my_password"
}

OUTPUT: JSON object similar to example below.

{

 "response":"success",

 "messages":"Login validation succeeded.",

 "logonkey":"123456",

 "tokenkey":"ASDJH7Y7Y76767S8DASJKNASKLDJIUY"

}

Logout:

The epf/logout function call is used to log out of EPF system and remove all security tokens from being active. This is not a required function call but is considered good practice and will deactivate your security token.
INPUT: Call the URL via POST method with JSON object serialized and set parameter.
obj={
"logonkey":"123456",
"tokenkey":""ASDJH7Y7Y76767S8DASJKNASKLDJIUY"
}

OUTPUT: JSON object similar to example below.

{

 "response":"success",

 "messages":" Logout process succeeded."

}

ACS Only List of Files:

The download/acslist function call is used to retrieve a list of all ACS files within scope for the supplied user logon key.
NOTE: reccount should be checked for records first before trying to loop through the fileList array.

INPUT: Call the URL via POST method with JSON object serialized and set parameter.

obj={

"logonkey":"123456",

"tokenkey":"SAD4645KJDKJDK878934N2MNKLMK"

}

OUTPUT: JSON object similar to example below.

{

"response":"success",

"messages":"Process succeeded.",

"logonkey":"123456",

"tokenkey":"SAD4645KJDKJDK878934N2MNKLMK",

"reccount":"1",

"fileList":[

{

 "productcode":"ACS",

 "productid":"PARENT",

 "fulfilled":"2016-04-11",

 "status":"N",

 "fileid":"12345",

 "filepath":"/epf/pepf/a01shared/epfdata/acs/20160411/",

 "filename":" P000000_000000411.zip",

 "filesize":"12345"

}

]

}

All Available Files:

The download/dnldlist function call is used to retrieve a list of all EPF files within scope for the supplied user logon key.
NOTE: reccount should be checked for records first before trying to loop through the dnldfileList array.

INPUT: Call the URL via POST method with JSON object serialized and set parameter.

obj={

"logonkey":"123456",

"tokenkey":"SAD4645KJDKJDK878934N2MNKLMK"

}

OUTPUT: JSON object similar to example below.

{

"response":"success",

"messages":"Process succeeded.",

"logonkey":"123456",

"tokenkey":"SAD4645KJDKJDK878934N2MNKLMK",

"reccount":"1",

"dnldfileList":[

{

 "productcode":"AIS",

 "productid":"CR215N",

 "fulfilled":"2014-08-15",

 "status":"N",

 "fileid":"12345",

 "filepath":"/epf/pepf/a01shared/epfdata/ais/20140815/",

 "filename":" crisnatl.zip",

 "filesize":"12345"

}

]

}

List:

The download/list function call is used to retrieve a list of actively available files for the supplied user login, product code and product id. Additional parameters can be optionally supplied to filter the list even more.

NOTE: Added the ability to filter by more than one status code … you can now pass a string of status codes. “SNX” would bring back all 3 statuses.

ALSO: reccount should be checked for records first before trying to loop through the fileList array.

INPUT: Call the URL via POST method with JSON object serialized and set parameter.

obj={

"logonkey":"123456",

"tokenkey":"SAD4645KJDKJDK878934N2MNKLMK",

"productcode":"NCAM",

"productid":"RDI",

"status":"N",

(optional)

"fulfilled":"20160411"

(optional)

}

OUTPUT: JSON object similar to example below.

{

"response":"success",

"messages":"Process succeeded.",

"logonkey":"123456",

"tokenkey":"SAD4645KJDKJDK878934N2MNKLMK",

"reccount":"2",

"fileList":[

{

 "fileid":"12345",

 "status":"N",

 "filepath":"/epfdata/ncam/20120815/rdi.tar",

 "fulfilled":"2012-08-15"

},

{

 "fileid":"23456",

 "status":"N",

 "filepath":"/epfdata/ncam/20120915/rdi.tar",

 "fulfilled":"2012-09-15"

}

]

}

List Plus:

The download/listplus function call is used to retrieve a list of actively available files for the supplied user login, product code and product id. Additional parameters can be optionally supplied to filter the list even more.

NOTE: Added the ability to filter by more than one status code … you can now pass a string of status codes. “SNX” would bring back all 3 statuses.

ALSO: reccount should be checked for records first before trying to loop through the fileList array.

INPUT: Call the URL via POST method with JSON object serialized and set parameter.

obj={

"logonkey":"123456",

"tokenkey":"SAD4645KJDKJDK878934N2MNKLMK",

"productcode":"NCAM",

"productid":"RDI",

"status":"N",

(optional)

"fulfilled":"20160411"

(optional)

}

OUTPUT: JSON object similar to example below.

{

"response":"success",

"messages":"Process succeeded.",

"logonkey":"123456",

"tokenkey":"SAD4645KJDKJDK878934N2MNKLMK",

"reccount":"1",

"fileList":[

{

 "fileid":"12345",

 "status":"N",

 "fulfilled":"2014-08-15",

 "filepath":"":"/epfdata/ncam/20140815",

 "filename":"rdi.tar",

 "filesize":"1234"

}

]

}

Status:

The download/status function call is used to change the file status; either before being downloaded (set to “S” for started) and / or after a successful download (set to “C” for completed).
N = new; S = download started; X = download cancelled; C = download completed.

INPUT: Call the URL via POST method with JSON object serialized and set parameter.
obj={

"logonkey":"123456",

"tokenkey":"ASDJH7Y7Y76767S8DASJKNASKLDJIUY",

"newstatus":"C",

"fileid":"654321"

}

OUTPUT: JSON object similar to example below.

{

"response":"success",

"messages":"Update process succeeded.",

"logonkey":"123456",

"tokenkey":"ASDJH7Y7Y76767S8DASJKNASKLDJIUY"

}
File downloads:

The download/epf function call is used to download files from our servers.
Request headers are no longer required, only the file id is required and if your login has rights to that file it will be returned as the web RESPONSE.
INPUT: Call the URL via POST method with JSON object serialized and set parameter.

obj={

"logonkey":"123456",

"tokenkey":"ASDJH7Y7Y76767S8DASJKNASKLDJIUY",

"fileid":"654321"

}

OUTPUT: File is returned as the response object. The logon key and token key have to be extracted from the response headers as the file is returned instead of a JSON object.
Response Header User-Logonkey = 123456

Response Header User-Tokenkey = ASDJH7Y7Y76767S8DASJKNASKLDJIUY

[image: image1.png]& Live HTTP headers

Headers | Gonerator | Config | bt |

[_[CIx]

HTTP Headers

HITR1.1 200 0K
Date: Wed, 08 Aug 2012 20:33:59 GMT

Server: Apache-Coyote/ 1
Access-Contral-Allow-Origin: *
Access-Control-Allow-Methads: POST
ccess-Control-Allow-Credentias: true
ccess-Contral-Allow-Headers: X Requested-With
Access-Control-Max-Age: 86400

Content-Type: applcation/json
Via: 1.1 epfwebat usps.gov
Keep-alive: tineout=15, may:
Connestion: Keep-Alive.
Transfer-ncoding: chunked

EEAILOCE

HYPTMAKSHAR2]

116MK

o]
Save Al ey,

W Capture

JSON Object Field Descriptions (may be case sensitive):

· logonkey – user login key returned from the login call. This key will not change, but must be used in every call for security validation.

· tokenkey – security token returned from the login call. This key must be used in every function call with a newly refreshed security token being return to use in your next call. Threading should not be used, as the security token could get out of synch, only serial calls are supported.
· productcode – This is the product code assigned to products. You will need to know your product codes and only one product code can be requested per list call.
· productid – This is a sub-key of the product code. You will need to know your product ID and only one product code + product ID can be requested per list call. This basically acts as a filter to limit the size of the list being returned.
· status – (optional) the current download status of the listed file. This can be used as an additional filter with most requesters being interested in only newly released files. After the file is downloaded, status should be set to complete.
· fulfilled – (optional) the fulfillment date can be used as an additional filter. Date format is ‘CCYY-MM-DD’ and will be ignored if passed in an incorrect format.
File Statuses: (optional - leave out for ALL to be returned)

· “N” = new file available

· “S” = download started

· “X” = download canceled

· “C” = download completed successfully

