
OPTM-0000001-01 Page 1 of 6

Performance Tuning – Delete Processing
Performance considerations for Optim delete processing

Introduction
There are a number of factors that affect the overall runtime of a delete process. To understand

the effects of these factors, you should first have an understanding of how Optim performs delete

processing.

First we’ll take a look at Optim delete theory, and build a basic understanding of the processing

involved. Next we’ll discuss some tuning tips to help you get the best performance from your

delete run.

Basic delete processing theory
Optim delete processes are driven by archive files. When you run a delete process, you always

associate it with an archive file. Only the data contained within the archive file will be deleted

from the database, and only for the tables that were marked DAA (delete after archive) when the

archive process was run and the archive file created. Delete processing does not support

“selective” processing. All rows within an archive file, for tables marked DAA, will be deleted

from the database.

At the start of a delete process, Optim evaluates the relationship paths between the tables

residing in the archive file as they currently exist in the database. It does this to determine the

proper order to process the list of tables involved. Conditions where tables have multiple

children and/or multiple parents are taken into account when evaluating the process model path.

Tables must be processed child-to-parent to successfully delete data across the complete process

model.

When Optim chooses a table to process, it deletes rows in the database based on the primary key

values contained in the row images within the archive file. Each row is deleted individually by

its primary key value. When the process begins for a given table, a sorted memory list is built

that contains all of the primary key values found in the archive file for the table and the RBA

(relative byte address) pointers to the corresponding row images in the archive file. Once the list

is complete, Optim runs through the list and processes each key value.

For each key value in the list, the database table is queried to retrieve the current row. The RBA

recorded in the list for the key value is used to directly access the row image in the archive file.

OPTM-0000001-01 Page 2 of 6

The current row is compared to the archive file row image to ensure that the row has not changed

since it was archived. If the current row matches its image in the archive file, the delete is issued

for its primary key value. Each delete execution is counted. When the delete counter exceeds

the commit frequency specified for the process, a commit is executed.

The delete status of each row is recorded in the control file. Success and failure counts are

included in the process report. If the process report shows delete failures, the control file can be

browsed to determine the nature of the failure of any given row.

Tuning tips
Now that we’ve discussed basic Optim delete processing, let’s take a look at some conditions

that cause variations in the process.

Primary Keys

Of all the conditions that can affect a delete process, the status of the table’s primary key may be

the most important. For the purpose of this discussion, there are 2 types of primary keys:

• Unique primary key -- A unique primary key is defined to the database, or it is a PST

primary key with a supporting unique index.

• Non-unique primary key -- A non-unique primary key is a PST primary key that does

not have a supporting unique index. It may be defined over part of a unique index, over a

non-unique index, or it may not have an index at all.

When the table you’re processing has a unique primary key, many parts of the delete process

become more efficient and other performance related options become available. Since Optim

deletes rows by primary key, the type of primary key on the table greatly affects how efficiently

the database can find and remove rows. The database will process a delete request against a

unique index faster than a non-unique index, and it will process a non-unique index faster than

no index at all.

Optim also changes its processing based on the existence and type of index under the table’s

primary key. When a unique primary key exists, Optim doesn’t need to build the memory list of

primary keys and RBA pointers. In this case, it can read blocks of data from the archive file,

identify the primary key values in each row image, and issue the delete requests. Bypassing the

building of the key list saves time and memory.

When a non-unique key exists, Optim must perform a significant amount of processing to ensure

that the correct rows are deleted from the database because any given primary key value could

affect multiple rows in the table. Optim passes through the row images in the archive file before

beginning the actual delete process and builds the key list in memory. The list will contain only

one copy of each key value, but any given key value could have a list of RBAs that point to the

various row images in the archive. Once the list is built, each key is used to query the table to

retrieve all rows that match the key. The list of row images is then retrieved from the archive file

and is used to search through the cursor of table rows to find exact row matches before deleting.

Optim uses the WHERE CURRENT OF CURSOR option of the delete statement when a match

OPTM-0000001-01 Page 3 of 6

is found to delete the specific row that represents the image from the archive. This process

continues as Optim passes through the key list until all primary key values are processed for the

table.

When the non-unique primary key has no index at all, the table queries to retrieve the row sets

for the key values may cost a lot of time. This is because the database has no choice but to scan

the entire table on each query. Depending on the number of keys in the list (and thus the number

of queries that will hit the table) and the number of rows in the table, Optim may decide to

simply retrieve the entire table and manually search for the matching rows.

Optim delete options

Optim provides several options that modify the delete process and can be used to help trim down

the overall runtime. Although these options may speed up the execution of the process, they

come with their own costs.

The “compare row contents” option provides a level of safety by ensuring that each and every

row being deleted exactly matches the current corresponding row in the database before

removing it. A significant amount of overhead comes along with this option, and deselecting it

usually reduces the overall runtime of the delete process. When this option is deselected, Optim

doesn’t need to retrieve rows from the database and compare them to the images on the archive.

When Optim compares row contents, it locks the database row when it retrieves it from the live

table to prevent another process from modifying it before the comparison and delete can take

place. When deselecting “compare row contents”, Optim doesn’t query the table with locking.

The only locks that occur are those that the database naturally applies when deletes are issued.

Pros:

• Ensures that rows have not changed since they were archived. Using this feature ensures

that you have a correct copy of your data before deleting.

Cons:

• Uses a significant amount of resources (CPU, I/O, memory, database services, time).

Requirements:

• There are no requirements for selecting this option.

• The table must have a unique primary key to deselect this option.

Notes:

• This is a process level option. Although you can only set this option at the process level,

if you choose to deselect it, Optim will always activate compare for any tables that don’t

have unique primary keys.

“Multiple key” delete processing is a feature of Optim where multiple primary key values are

stacked on a single delete call to the database. UDB and Oracle databases have built-in

mechanisms for this type of processing, and Optim will make use of those database features

when using multiple key delete. For all other supported databases, Optim accomplishes multiple

key delete processing by constructing a multiple key WHERE clause on the delete statement.

When conditions lend themselves to using multiple key delete, Optim will automatically use the

built-in database features of UDB and Oracle when processing those DB platforms. For the

remaining DB platforms where the database doesn’t have a built-in “bulk” delete feature, you

must instruct Optim to employ its multiple key delete feature by increasing the “key lookup

OPTM-0000001-01 Page 4 of 6

limit” setting on the desired table. This setting is found on the “table strategy” dialog within the

delete request editor.

Pros:

• Database processes multiple primary keys (and thus deletes multiple rows) for each

delete statement issued. This is generally a more efficient method of deleting multiple

rows.

Cons:

• Optim can’t report on individual row statuses when using multiple key delete. The

response from the database on a multiple key delete is either success or failure. Success

simply indicates that the delete statement was processed. Failure simply means that the

statement couldn’t be processed. The database provides no detailed status information on

the delete of the individual keys, and therefore Optim cannot accurately report row level

failures.

Requirements:

• The table must have a unique primary key.

• You must deselect “compare row contents” on the process.

• You cannot have any row level delete actions on the table

 (“Before Delete of Row” or “After Delete of Row”)

Notes:

• This is a table level option. You can control the use of multiple key delete processing at

the table level when designing the delete request. Be aware that Optim will override your

choice to use multiple key delete processing on a table at runtime if the conditions

required no longer exist (for example: The primary key of the table changed, or

“compare row contents” was selected at runtime to override the setting in the delete

request).

“Multiple database connections” may provide some improvement in overall runtime by

processing multiple tables concurrently. Be careful when experimenting with this setting. It

may be tempting to set this option to “max”, expecting to get the maximum benefit. Depending

on your system environment, using the “max” setting may actually degrade the process. If

you’re unfamiliar with this option, you can safely experiment with it by specifying a low number

in the range of 2 to 8. You should refer to additional documentation from Princeton Softech on

using multiple database connections for details on how and when Optim uses this feature.

Pros:

• Allows processing of multiple tables concurrently.

Cons:

• An excessive number of database connections can overload the database server.

Requirements:

• Table must have a unique primary key.

• You must deselect “compare row contents” on the process.

Notes:

• This is a table level option. When you specify multiple database connection on a process,

Optim will decide on a table by table basis whether to use them, and how many can be

used.

OPTM-0000001-01 Page 5 of 6

The “lock tables” option causes Optim to obtain an exclusive lock on the table currently being

processed. An exclusive lock prevents other processes from accessing the table while the lock is

in effect. Selecting this option could improve performance of the delete because it prevents

lower level row and page locking which can be expensive within the database server.

Pros:

• Prevents low level database locking and multiple commits while processing a table.

• Ensures that live data can’t be modified by other processes while Optim is deleting from

the table.

Cons:

• Prevents concurrent access to the table by other processes.

• Optim performs a commit after all deletes against the table are completed. For tables

which a large number of rows in the archive file (and/or rows that are very long), the

recovery logs in the database could become stressed.

Requirements:

• This option has no other requirements. It can be selected on any delete request.

Notes:

• This is a process level option. It affects all tables in the delete process.

Tuning checklist summary
Refer to the following checklist when tuning your Optim delete process.

I) Primary keys and indexes:

1. Whenever possible, define a unique primary key on each table to be processed. Define

either a DBMS primary key or define a PST primary key over a unique index.

2. Define your primary key as small as possible. If you must define a PST primary key and

the table has multiple unique indexes, choose the smallest one for your primary key. If

your process does build the primary key list in memory, using the smallest available key

size will reduce memory usage.

3. Any index is better than no index. When defining a PST primary key, if only a non-

unique index is available, use it! Any index under your primary key will help the DB

server search for keys faster than having no index at all.

II) Optim delete performance options:

1. Bypass “Compare Row Contents”. If you are confident that the data you have archived

has not changed in the database, consider deselecting the “Compare Row Contents”

option on the delete request or override it at process time (batch operations).

2. Bypass “Include LOB columns in row comparison”. If one of more of the tables being

processed contain LOB type columns, and you are confident that the data you have

archived has not changed in the database, consider deselecting the “Include LOB

columns in row comparison” option on the delete request. Depending on the size of your

LOB type columns, including them in the row comparison process can be resource

intensive.

OPTM-0000001-01 Page 6 of 6

3. On large tables (many rows in the archive file to delete), consider using “Force Key

Lookup” access method and setting the key lookup limit to a value greater than 1. You

can only adjust the key limit value if:

• The table has a unique primary key defined.

• You are not using the “compare row contents” option.

• The delete process has no row level delete actions defined.

Note that adjusting the key limit value is only available if the table resides in a Sybase,

Informix, or SQL Server database. Optim will always use multiple key style delete

operations for UDB and Oracle databases when the other required conditions are met.

4. Use multiple database connections. When your delete process model contains multiple

leaf tables, Optim can process them concurrently. If you’ve allowed parallel database

connections (Optim product options), then you can specify multiple connections for your

delete process. Select a value greater than 1 in the “Database Connections” drop-down

control on “General” tab of the delete request.

5. Use “Lock Tables” options. If you’re running your process at a time when concurrent

access to the tables involved isn’t an issue, you may choose to lock the tables during the

delete process. Check this option on the “General” tab of the delete request. Be aware

that, because the commit occurs at the end of processing each table, processing a large

amount of data (large row lengths and/or many rows per table) can cause issues with the

redo or rollback areas in your database server.

III) Operational and environmental:

1. Run your delete process when the database is quite. If at all possible run a delete process

when activity against the tables involved is low. Delete processing generates locks. The

delete process may be delayed if other processes are holding locks on needed rows,

pages, or tables. It can also cause other processes to wait when it acquires locks.

2. Give your delete process as much memory as you’re allowed. Don’t specifically limit the

memory available to an Optim delete process. The memory a delete process will

consume is unpredictable and dependent on the options you choose, the state and size of

all primary keys involved, and the size and number of rows being processed.

