
1 | P a g e 0 7 J u l y 2 0 2 0
V e r s i o n : 1 . 0

Easily Apply a Version Status to all Component Versions of a Snapshot
This document fully describes the mechanism for easily applying a version status to all the right component versions
identified by a snapshot. This capability is key to being able to reliably apply a version status to all the right
component versions so that when you promote a snapshot to a new environment you can be assured that it will pass
the environment gates used to control entry of a new application version into an environment.

The UrbanCode deploy GUI currently requires you to visit each component version in turn to apply a version status.
This is both time consuming and error prone, especially for more complex applications with many components.

Other solutions can automatically apply the version status, perhaps during deployment but most often there is some
period between deployment and promotion of a snapshot into a new environment. This period is usually when
testing / validation of some sort occurs before the decision is made to ether promote or abandon a snapshot. It is
only when the decision is made that the status should be applied, otherwise the gate to the next environment is
opened prematurely giving rise to the possibility of accidental deployment of untested / unapproved code.

Solution Outline
The solution consists of 3 components:

a. An Application process that can be called from the environment GUI like any other application process to
kick off the application (or removal) of a given version status.

b. A generic process which is the vehicle for the actual status application or removal
c. A plugin which does all the hard work.

Solution Assets
The solution is provided as a zip file which contains some scripts, a JSON file and another zip. This second zip is the
UrbanCode plugin. You don’t need to unzip this.

The outer zip also contains this document as a PDF.

Application Process
This is provided as an importable JSON file. It contains the necessary process to call the generic process and creates
some Application Process properties to elicit information from the user. It can also establish a role to limit who is
permitted to run the process.

The Application process is really all about collecting information on what we want to operate on. Much of the
information required can be determined automatically from the context of the application process execution. This is
the advantage of having an application process rather than running the generic process step directly.

The application process also needs some application process properties to help us request other information we
need. The only step calls a generic process which in turn invokes the plugin step.

These are the properties that the process will have:

2 | P a g e 0 7 J u l y 2 0 2 0
V e r s i o n : 1 . 0

The VersionStatus property is an interesting one in that it uses an HTTP Select type field to enumerate the versions
statuses available on the server. So, this field needs to know the server URL and also an AUTH Token to be able to
make the API call. You may wish to restrict the scope of the token so that what you can do with it is limited.

Auth Token
You will need an Auth Token that can be created from the UrbanCode Settings > Tokens menu. Its very straight
forward. Just click Create Token, Pick the user the token will represent. Set and expiry date & time for way in the
future – you don’t want to have to keep renewing this. Give it a description of its purpose. So, something like
Component VersionStatus Retrieval in this case. If you are more security conscious then you could look at
restricting IP’s and /or adding a token restriction. See next section for Token Restrictions.

Once your token is created, you can’t change any of this, you will need to create a new one. Also remember to copy
the token before you close the final window, or you will have to create a new one anyway. You can’t see the actual
tokens generated after this point ever again.

Auth Token Restriction
As an optional step, you can also setup a restriction on the auth token you generate so that it can only be used to
reach the Version Statuses endpoint. To create a token restriction, click the Settings tab then in the middle Security
column, pick Token Restrictions. Now Click on Create Auth Token Restriction and complete the form like this:

This will create a token restriction that will only allow a token associated with it to be used to access only the
endpoints list in the URI column. In this case I’ve set the URI for getStatuses and I’ve also limited the method to GET.

So now when I create my Auth Token, I can link it to this restriction. So even in the unlikely event that somebody
gets this token, they can only do this one thing with it.

3 | P a g e 0 7 J u l y 2 0 2 0
V e r s i o n : 1 . 0

Generic Process
The generic process required by the solution is automatically imported with the installation of the plugin and
requires only a small modification. While it could be run directly, more information would need to be provided each
time you want to apply version statuses.

UrbanCode Plugin
The plugin contains a step which allows the generic process to request that the given status is applied to (or
removed from) the component versions referenced in the named snapshot (or if no snapshot is named, the most
recent snapshot for that environment).

The plugin also contains the generic process and is loaded automatically with the plugin.

Installing the Solution
The installation is easily installed by firstly loading the associated plugin and then importing the application process
into each application where you want to use the solution from. Simply unzip the combined archive which will give
you some scripts (for both shell and PowerShell), a JSON file and the plugin zip file.

NOTE: The screen grabs that follow are from UCD 7.1 so they may not match your version of UCD as there have been
some significant changes to screen layouts and workflow.

Loading the Plugin
Nothing special here, just go to the Settings > Automation Plugins and click on the Load Plugin Button. Browse to
the plugin zip file and select it. The plugin will be imported into your server. You should now see

Clicking on Useful Extensions you will see the list of steps available.

Additionally, if you go to the Processes top level tab you should see the generic process has been created.

4 | P a g e 0 7 J u l y 2 0 2 0
V e r s i o n : 1 . 0

In the process designer you will find the step in the Useful Utilities/Statuses Drawer.

Setting the Generic Process Resource
The generic process needs to know what resource it will use to run on. So, you will need to select an agent that will
be responsible for running these tasks. Since the process will be invoked relatively infrequently, it should not
present a significant load on the agent chosen.

To set the resource, go to the processes tab and find the UpdateVersionStatus Generic process. Click on it and its
Dashboard will open. Now Select the Configuration tab and select Basic Settings. Click the Add Resources Button
and choose an agent – one that can be guaranteed to be online would be best.

The resource selected will now be displayed and will be the one used whenever this generic process is invoked.

You could choose an Agent-Pool as the resource if you wish to provide greater resilience in case the agent you might
otherwise have chosen goes offline or is busy.

Click Save to save the Change. Remember to click the other Save button on the right-hand side of the screen so that
the change is saved to the generic process settings.

Optionally, you could Add one or more Teams on this process to limit its usage.

NOTE: If the plugin is updated or re-imported, these changes will be lost and must be reapplied.

5 | P a g e 0 7 J u l y 2 0 2 0
V e r s i o n : 1 . 0

Application Process Import
The Application process contains several elements that must be edited prior to importing the application process.
To make this easier, included is a shell script to edit the raw script and then import it into your UCD application. The
only pre-requisites are that:

a. The location of the udclient1 is included in your PATH variable.
b. The updateStatusAppProcess.json and the importAppProcess.sh (importAppProcess.ps1) script are in your

current directory
c. The JAVA_HOME variable is set to point at your local JRE. This should be a JRE compatible with the UCD

toolset version you are using.
d. You have created an AUTH Token for the user you wish to be used to determine the available version

statuses.

The script takes the following parameters:

a. The name of your UCD application; remember this is case sensitive
b. The name of the role you want to restrict this process to. This is case sensitive. Remember to enclose in

quotes if there are spaces in the name e.g. “Automation Engineer”. Use "" for no role restriction.
c. The UCD AUTH Token that the imported process will use to determine the available versions statuses
d. The server port combination of your UCD server e.g. myucdHost:8443
e. The user ID of a UCD user that will be used to import the process e.g. admin
f. The password for the UCD user

Here is an example invocation of the script:

[root@localhost applyStatus]# ./importAppProcess.sh myUCDApp "Test Manager" ucd-token-string localhost:8443 admin admin
{
 "id": "17301435-c1f0-50c1-a722-ba7d911dc461",
 "name": "Update Component Version Status",
 "description": "Process to Apply\/Remove a Component Version status to\/from all component versions mentioned in a
napshot",
 "active": true,
 "inventoryManagementType": "AUTOMATIC",
 "offlineAgentHandling": "PRE_EXECUTION_CHECK",
 "versionCount": 1,
 "version": 1,
 "commit": 0,
 "path": "applications\/169d894b-d9e8-f02a-be61-64072bd98de2\/processes\/17301435-c1f0-50c1-a722-ba7d911dc461",
 "deleted": false,
 "metadataType": "applicationProcess"
}

The above will allow you to import the application process to each named application one at a time. This is good for
initial testing to make sure that you’re happy with the solution. If you have many 10’s or more applications adding it
to each one of them in turn will take a while.

To assist with this, there is another script called importToAllApps.sh (importToAllApp.ps1) that will import the
process into all your existing applications. It will skip over ones that already have an application process of the same
name and continue with the remaining applications.

NOTE: To run the PowerShell scripts you should invoke it like this:
powershell.exe -ExecutionPolicy Bypass -File importAppProcess.ps1

NOTE: The applications that can be updated will be determined by the teams that the user you supply belongs to. If
you use an administrator ID it should be able to see all applications.

The importToAllApps.sh script takes the same parameters as importAppProcess.sh except for the omission of the
UCD application name parameter.

1 The udclient can be downloaded from the UrbanCode Deploy server from the tools sub menu of the Help menu at the top right

of your screen. The Icon has changed in various releases but is in UCD 7.1.

6 | P a g e 0 7 J u l y 2 0 2 0
V e r s i o n : 1 . 0

NOTE: There is no documented API to remove an application process so removal would be a manual activity.

Running the Application Process
To run the process and apply a status to all the component versions referenced by a snapshot all you need are:

a. At least one version status defined
b. An application environment containing a snapshot with deployed component versions referenced in it.

Open your application and navigate to an environment with an available snapshot.

In this example we’ll start at an applications environment screen.

Note that this DEV environment has a snapshot associated with it, so I’ll default the snapshot to that one in the next
step. Click the Request Process button indicated.

When we request the process (in UCD 7.1) we now see this:

The Application and Environment are automatically defaulted to the context you request the application process in.
Pick the Update Component Version Status process.

In the Version Status field, I will pick the Dev Approved status from the dropdown list.

If you tick Remove Status, then the named status will be removed from all component versions instead of being
applied.

The new UCD 7.1 deploy wizard has several steps, we can select the snapshot to use on the next step in the wizard,
so click Next

7 | P a g e 0 7 J u l y 2 0 2 0
V e r s i o n : 1 . 0

If want you can supply a snapshot name, the component versions in that snapshot will be updated with the status
you want. If you don’t provide a snapshot name, then the process will use the most recent snapshot applied to or
created in the environment you run the process in. If you aren’t going to provide a snapshot name, you can just click
Next on the step in the wizard.

In the remaining two tabs of the wizard there is nothing we need to do on those so just click Next 2 more times and
then Submit Deployment

The process will now run and if we look at the step log, we will see something like this:

The log will show the status applied even if the status was already present. The same is true for removal, it will be
listed even if it wasn’t present.

And if we look at the versions of one of our components, we will see the applied status:

NOTE: The user who invokes the process will possible need to be a member of a specific role if you set that up when
you imported the application process and will of course also have to belong to at least one role that given them
permission to apply a version status.

Enjoy !!

Alan Murphy
IBM Cloud Integration : Expert Labs
alan.murphy@uk.ibm.com
July 2020

