
Deploying Integration in a real-world dev-ops environment
—
Rob Nicholson – Distinguished Engineer
Andy Garratt – Offering Manager

Technology

People & Process

Architecture

Agile Integration

Modernizing
integration to enable

business agility

Fine-grained
deployment

Improve build
independence and
production velocity
(deployment agility)

Decentralized
Ownership

Accelerate agility and
innovation

(development agility)

Cloud native
infrastructure

Dynamic scalability and
inherent resilience

(operational agility)

Your application doesn’t
work on Production

I need stability!

DEVELOPMENT OPERATIONS

Why DevOps?

I used the libraries you
gave. It works in Dev
environment

I want change NOW!

Key Objectives of a DevOps pipeline

• Continuous Integration - Developers ‘safely’ integrate and test as they go

• Continuous Deployment – The artifacts they create progress rapidly into

production ‘safely’.

• Good automated test coverage + control over manual ‘what if’ tests.

• The system running in production is exactly the same as the system that is

tested.

• Avoidance of all persistent environmental ‘state’.

• Everything is under version control, including the environment → gitops.

• Infrastructure as code.

• Declarative deployment: Declare the way the world shall be. Kubernetes makes it so.

HA2HA1 DR DR

Load Bal. Load Bal.

P1

P1

P2

P2 D2

D1

D1

D2

LB LB

HA Manager HA Mgr

Author,
build, deploy

c

Traditional vs Cloud native deployment

Artifacts are delivered into long-

lived product ‘runtimes’.
a b

c

re
p

lic
a

ti
o

na b

Product component Product artefact

a

Complete control of the environment.

Devops for the cloud native world.

Container
platform

Load bal.

Pipeline

Release
Image

repository
Authoring

Load bal. Load bal.

Monitoring

Log aggregator

Template Image
repository

a

a

a

a
a

a

b
b

c
c

c

a

a

T
ra

d
it

io
n

a
l

C
lo

u
d

-n
a

ti
v
e

gitops
master

Demo

gitops
preprod

Preprod

gitops
prod

Prod

branch

PR &
CV

master

QA Images
Preprod
images

Prod
images

GitOps GitOps GitOps

E1
: P

ro
m

o
ti

o
n

D
1

: P
ro

m
o

ti
o

n

Git repo

Environment/cluster

Image registry

gitops
qa

QA

GitOps

Automated process

Manual/manually
triggered process

Prom-
otion

Build

prom-
otion

e2e

Jenkins job

GitOps auto-update

Automatic image pull

Key

Example DevOps pipeline.
Declarative deployment

Base
images

GitOps auto-update

Automatic image pull

GitOps auto-update GitOps auto-update GitOps auto-update

Verification testsE2e tests

Approaches to pipeline

Base
images

Build

Git

Base image

Artifacts

Baked Image
Artifact source

Production cluster

Deploy

Baked Image Approach
(As per previous slide)

Fried Approach

• Base Images contain product runtimes

• Images are extended, baking integration artifacts in.

PROs

• Immutable images deployed across pipeline.

CONS

• Requires a more sophisticated pipeline.

Base
images

Deploy

Git

Artifact source

Production cluster

• Base Images contain product runtimes, deployed

unchanged.

• Integration artifacts deployed as configuration.

PROs

• Much simpler pipeline

CONS

• Not suitable for large/complex objects (libraries)

Config map

secret

Custom Resource

Environment

Specific config

Baked versus Fried for Integration runtimes

Baked Image Approach Fried Approach

• Extend CP4I base images deploy with Helm

• ACE

• Bake BAR files into image

• MQ

• Bake MQSC & .ini into the image.

• Datapower

• Bake configuration into the image.

• ACE

• Bar file can be served from URL.

• Object store/dashboard server.

• Configuration placed into config maps

and secrets.

• MQ

• MQSC and Ini files info config map.

• Datapower

• Place configuration into a config map.

In the future, Kubernetes Custom Resources combine the best of both approaches

DevOps Tools Landscape

9

ACE
Application

Image

Open Shift Image Registry

Repository

Image Registry

ACE
Base

Image

Demo - Cloud Native DevOps
Build and deploy your ACE applications with Open Shift embedded CI/CD Pipeline

OpenShift

Dockerfile

Jenkinsfile

ACE
Container

BAR

BAR

1. Build 2. Deploy

Build

ACE
Image

Deploy

Pipeline

Integration
artifacts

IBM ACE v11 Continuous Integration-
Maven-Jenkins - IBM Integration

IIB (v9 & v10) Continuous Integration-
Maven-Jenkins - IBM Integration

Create your integration
application on OpenShift using
Jenkins pipeline

Integration Development to Micro
Services Principles on OpenShift –
Part 2

Integration Development to Micro
Services Principles on OpenShift –
Part 1

Integration Development to
Micro Services Principles on
OpenShift – Part 3

An approach to build DevOps
pipeline for ACE on Cloud Pak for
Integration

References.

https://developer.ibm.com/integration/blog/2019/04/10/ibm-ace-v11-continuous-integration-maven-jenkins/
https://developer.ibm.com/integration/blog/2018/12/03/iib-v9-v10-continuous-integration-maven-jenkins/
https://developer.ibm.com/integration/blog/2020/03/13/create-your-integration-application-on-openshift-using-jenkins-pipeline/
https://developer.ibm.com/integration/blog/2020/04/01/integration-development-to-micro-services-principles-on-openshift-part-2/
https://developer.ibm.com/integration/blog/2020/03/24/integration-development-to-micro-services-principles-on-openshift-part-1/
https://developer.ibm.com/integration/blog/2020/04/01/integration-development-to-micro-services-principles-on-openshift-part-3/
https://developer.ibm.com/integration/blog/2020/03/20/an-approach-to-build-devops-pipeline-for-ace-on-cloud-pak-for-integration/

12Integration Technical Conference / © 2020 IBM Corporation

Thank You

Rob Nicholson rob_Nicholson@uk.ibm.com

Andy Garratt andy.garratt@uk.ibm.com

