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Your application doesn’t 
work on Production

I need stability!

DEVELOPMENT OPERATIONS

Why DevOps?

I used the libraries you 
gave. It works in Dev 
environment

I want change NOW! 



Key Objectives of a DevOps pipeline

• Continuous Integration  - Developers ‘safely’ integrate and test as they go

• Continuous Deployment – The artifacts they create progress rapidly into 

production ‘safely’. 

• Good automated test coverage + control over manual ‘what if’ tests.

• The system running in production is exactly the same as the system that is 

tested.

• Avoidance of all persistent environmental ‘state’.

• Everything is under version control, including the environment → gitops.

• Infrastructure as code.

• Declarative deployment: Declare the way the world shall be. Kubernetes makes it so. 
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Approaches to pipeline
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(As per previous slide)

Fried Approach

• Base Images contain product runtimes

• Images are extended, baking  integration artifacts in. 
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• Requires a more sophisticated pipeline.
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Config map

secret 

Custom Resource

Environment 

Specific config



Baked versus Fried for Integration runtimes

Baked Image Approach Fried Approach

• Extend CP4I base  images deploy with Helm

• ACE

• Bake BAR files into image

• MQ

• Bake MQSC & .ini into the image.

• Datapower

• Bake configuration into the image. 

• ACE

• Bar file can be served from URL.

• Object store/dashboard server.

• Configuration placed into config maps 

and secrets.  

• MQ

• MQSC and Ini files info config map.

• Datapower

• Place configuration into a config map.

In the future, Kubernetes Custom Resources combine the best of both approaches
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IBM ACE v11 Continuous Integration-
Maven-Jenkins - IBM Integration

IIB (v9 & v10) Continuous Integration-
Maven-Jenkins - IBM Integration

Create your integration 
application on OpenShift using 
Jenkins pipeline

Integration Development to Micro 
Services Principles on OpenShift –
Part 2

Integration Development to Micro 
Services Principles on OpenShift –
Part 1

Integration Development to 
Micro Services Principles on 
OpenShift – Part 3

An approach to build DevOps 
pipeline for ACE on Cloud Pak for 
Integration
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