
Copyright IBM Corporation 2023 1

IBM
Logging and Log Forwarding to Splunk in

OpenShift Environment

IBM Hybrid Cloud Integration Test team
Philip Chan (chanphil@us.ibm.com)

March 31, 2023

Introduction

IBM Hybrid Cloud Integration Test (HCIT) is an effort within IBM Systems to build and maintain
a customer like software environment running multiple application stacks on the LinuxONE
server platform. The objective is to find defects across IBM and open-source software as well as
LinuxONE and IBM Storage firmware, which can only be found when running a complex
software configuration for a long stretch of time. This now includes software stacks running on
top of RedHat OpenShift Container Platform (OCP) and some potential Independent Software
Vendor products (ISVs). 

Purpose

Red Hat OpenShift Container Platform (OCP) provides a centralized logging solution that offers
high availability, scalability and security. The default logging subsystem for OCP consists of
three main components – Vector, Elasticsearch and Kibana. The logging subsystem aggregates
these logs throughout the cluster logs and stores them in the default log store. The logs are
separated into the following types – application, infrastructure(infra) and audit logs.

Vector is a log collector that resides on each OCP node collecting logs from various sources,
such as containers, nodes, and applications. The logs are sent to Elasticsearch which stores and
indexes the logs. Kibana is a Web UI, accessed by the browser to view the Elasticsearch data.

More details on the OCP default logging subsystem and terms can be found here:
https://docs.openshift.com/container-platform/4.11/logging/cluster-logging.html#openshift-
logging-common-terms_cluster-logging

Copyright IBM Corporation 2023 2

In addition to the default centralized logging subsystem, where logs are stored to the internal
log store (Elasticsearch), logs can also be sent to external third-party log aggregators by use of
the OpenShift Container Platform Cluster Log Forwarder API. For our test, we forwarded the
logs to the Splunk Enterprise server using HTTP and HTTPS. This is achieved through the Cluster
Log Forwarder API, which enables to send container, infrastructure and audit logs to the Splunk
instance endpoint that resides outside the immediate OCP cluster.

More details on the OCP Log Forwarder can be found here:
https://access.redhat.com/documentation/en-
us/openshift_container_platform/4.11/html/logging/cluster-logging-external

To configure OpenShift Container Platform Logging and Log Forwarding, we created and
customized instances in the ClusterLogging and ClusterLogForwarder custom resources.
We performed our testing using OCP version 4.11. We installed and configured Logging 5.6.3.
As of Logging 5.6, Fluentd is deprecated and is planned to be removed in a future release. We
used Vector as our logging collector for both centralized logging subsystem and log forwarding
tests. Note, Vector is not enabled by default.

The purpose of this document is to outline and provide information about the following:

• Install and Configure default logging subsystem

• Install and Configure Splunk Enterprise Server

• Configure Log Forwarding to Splunk Enterprise Server

o HEC Collector using HTTP
o HEC Collector using HTTPS

Disconnected OpenShift Cluster Testing Environment Overview

Requirements:

● OCP Cluster running on System z
○ OpenShift Elasticsearch Operator
○ Red Hat OpenShift Logging Operator

● OCP Cluster running on x86
○ Splunk Operator

Test Environment:

Copyright IBM Corporation 2023 3

● OCP version 4.11 on System z
● OCP version 4.10 on x86
● zVM Hypervisor
● RedHat Enterprise Linux 8
● OCP CLI
● Splunk Enterprise Server (standalone instance)

Test Experience

To install the logging subsystem for OCP, you will need to deploy both the OpenShift
Elasticsearch and Red Hat OpenShift Logging Operators. The install and configuration details
can be found here:
https://docs.openshift.com/container-platform/4.11/logging/cluster-logging-deploying.html

We installed version 5.6.3 of both Operators using the OCP web console:

Create the OpenShift Logging Instance under the ClusterLogging Custom Resource. This is the
YAML that we provided:

apiVersion: "logging.openshift.io/v1"
kind: "ClusterLogging"
metadata:
 name: "instance"
 namespace: "openshift-logging"
spec:
 managementState: "Managed"
 logStore:
 type: "elasticsearch"
 retentionPolicy:
 application:
 maxAge: 1d
 infra:
 maxAge: 7d
 audit:
 maxAge: 7d
 elasticsearch:
 nodeCount: 3
 storage:
 storageClassName: "xiv-block-storageclass"
 size: 200G
 resources:
 limits:

Copyright IBM Corporation 2023 4

 memory: "16Gi"
 requests:
 memory: "16Gi"
 proxy:
 resources:
 limits:
 memory: 256Mi
 requests:
 memory: 256Mi
 redundancyPolicy: "SingleRedundancy"
 visualization:
 type: "kibana"
 kibana:
 replicas: 1
 collection:
 logs:
 type: application
 type: vector

Note: the storage class “xiv-block-storageclass” already existed

Verify the openshift-logging is configured correctly by checking on the status of several pods
which include OpenShift Logging, Elasticsearch, Kibana and Vector:

$ oc -n openshift-logging get pods -w
NAME READY STATUS RESTARTS AGE
cluster-logging-operator-67456bd999-45nqx 1/1 Running 0 10d
collector-2slng 2/2 Running 0 10d
collector-4zwgm 2/2 Running 0 10d
collector-5fhf2 2/2 Running 0 10d
collector-6ptwv 2/2 Running 0 10d
collector-985bw 2/2 Running 0 10d
collector-c2dmb 2/2 Running 0 10d
collector-ds827 2/2 Running 0 10d
collector-j278d 2/2 Running 0 10d
collector-ztmw2 2/2 Running 0 10d
elasticsearch-cdm-nivp2rof-1-7c875556dc-8rgml 2/2 Running 0 10d
elasticsearch-cdm-nivp2rof-2-764dc9888b-8vf68 2/2 Running 0 10d
elasticsearch-cdm-nivp2rof-3-644f5fdfb5-8mbg6 2/2 Running 0 10d
elasticsearch-im-app-27986595-lkp4d 0/1 Completed 0 12m
elasticsearch-im-audit-27986595-jmlp4 0/1 Completed 0 12m
elasticsearch-im-infra-27986595-ksqkl 0/1 Completed 0 12m
kibana-67d4b46ff8-mqfvg 2/2 Running 0 10d

The Kibana web console can now be used for visualizing the collected log data. By using Kibana,
you can search, filter and analyze the logs. To access the Kibana web console, while logged into
the OCP console, select the Applications Launcher and select Logging. Before we can view any
log data, an index pattern which defines the Elasticsearch indices must be created first.

To create an index pattern, go to Management -> Index Patterns -> Create index pattern.

For Step 1, entered the example “infra-000001” that was provided.

Copyright IBM Corporation 2023 5

For Step 2, selected @timestramp for the Time Filter field name:

Select Create index pattern which is successfully created with these fields:

Copyright IBM Corporation 2023 6

Still from the Kibana console, go to Discover to view the “infra-000001” index created above:

For more details on Kibana:
https://docs.openshift.com/container-platform/4.11/logging/cluster-logging-visualizer.html

Before testing the Log Forwarding, we need to install and setup a Splunk Operator and create a
Splunk Enterprise Standalone Server instance. The Splunk Operator is available on OCP 4.10
running on x86. From the OCP web console, selected and installed Splunk Operator v2.2.0:

Copyright IBM Corporation 2023 7

To create a Splunk Enterprise instance, go to the Custom Resource “Standalone” -> Instances ->
Create Standalone. This is the YAML file I supplied:

apiVersion: enterprise.splunk.com/v4
kind: Standalone
metadata:
 name: example
 finalizers:
 - enterprise.splunk.com/delete-pvc
spec:
 etcVolumeStorageConfig:
 ephemeralStorage: true
 varVolumeStorageConfig:
 ephemeralStorage: true

The instance takes approximately a few minutes to start:

$ oc get pods -o wide --all-namespaces|grep splunk
default splunk-example-standalone-0
1/1 Running 0 98s 172.16.6.11
worker3.xocp1.fpet.pokprv.stglabs.ibm.com <none> <none>

You can now access the Splunk Enterprise Web UI by using the URL of the service created by
the instance creation.

http://splunk-example-standalone-service-default.apps.xocp1.fpet.pokprv.stglabs.ibm.com

Let’s review some key ports and routing information with regards to the Splunk Service that
was used in our testing:

Copyright IBM Corporation 2023 8

The Splunk Web UI or http-splunkweb access is mapped to port 8000.
The HTTP Event Collector or http-hec is mapped to port 8088.
The default Splunk management service uses port 8089.

Logon to the Splunk Web UI using a default username of ‘admin’. The password can be
retrieved using the following command:

$ oc get secret splunk-example-standalone-secret-v1 -o
jsonpath='{.data.password}' | base64 --decode

Preparing Splunk Server to receive the forwarded logs from OCP over HTTP

The following is the setup we performed to use an insecure connection between the Vector log
collectors in the OpenShift cluster and Splunk Enterprise Server.

Create a new index called ‘openshift’ from the Splunk Web UI. Go to Settings -> Indexes ->
select New Index. Provide the index name ‘openshift’ and use the default values.

Copyright IBM Corporation 2023 9

View the HTTP Event Collector token. Go to Settings -> Data Inputs and select HTTP Event
Collector. Record the ‘Token Value’ for later use when configuring the Log Forwarding on OCP,
it is the HEC token that allows the LogFowarding to communicate with Splunk.

Copyright IBM Corporation 2023 10

Modify the hec_token. Select the ‘splunk_hec_token’. In Edit, select ‘openshift’ under
Available indexes so that it is moved to Selected indexes:

While in the HTTP Event Collector setting, select “Global Settings” in the upper right corner.
Deselect “Enable SSL”, so that verification of SSL certificates is disabled. We will test HEC with
HTTP enabled first.

Copyright IBM Corporation 2023 11

The Global Settings change require the Splunk Server to be restarted. Go to Settings -> Server
controls and select Restart Splunk. Restarting the server takes a few minutes.

As noted earlier above, the service routing for the Splunk service shows that the Cluster IP is
only accessible within the cluster only. We added an external private IP address for the service:

$ oc patch svc splunk-example-standalone-service -p'{"spec":{"externalIPs":["10.xxx.xxx.xxx"]}}'
service/splunk-example-standalone-service patched

We can now run curl commands to verify the HTTP Event Collector using port 8088.

$ curl "http://splunk-example-standalone-service-
default.apps.xocp1.fpet.pokprv.stglabs.ibm.com:8088/services/collector" -H
"Authorization: Splunk 1697061D-9419-0C2A-0477-A1CB11E2721C" -d '{"event": "Hello,
world!", "sourcetype": "manual"}'

The output should return this:
{"text":"Success","code":0}

We can now view the event added to the index. Go back to the Splunk Web UI, select Search
and Reporting -> under Search, enter “index=openshift”:

Copyright IBM Corporation 2023 12

The Splunk Server is now prepared for Log Forwarding.

Prepare OpenShift for Log Forwarding

From the OCP Console, create a Secret object named “openshift-logforwarding-splunk” under
Workloads -> Secrets -> Select Create – Key/value secret with the following values – supplying
the recorded HEC token value from above:

Copyright IBM Corporation 2023 13

To create a Log Forwarding instance, go to the Custom Resource “ClusterLogForwarder” ->
Instances -> Create ClusterLogForwarder. This is the YAML file I supplied:

apiVersion: logging.openshift.io/v1
kind: ClusterLogForwarder
metadata:
 name: instance
 namespace: openshift-logging
spec:
 outputs:
 - name: remotesplunk
 secret:
 name: openshift-logforwarding-splunk
 splunk: {}
 type: splunk
 url: 'http://my-nginx-proxy-logforwarding-splunk:8088'
 pipelines:
 - inputRefs:
 - application
 - infrastructure
 name: application-infra-logs
 outputRefs:
 - remotesplunk

Copyright IBM Corporation 2023 14

In the example above, there is a single output defined forwarding to the external Splunk
Standalone instance. A pipeline is defined for the application and infrastructure log types
which use this newly defined output called remotesplunk.

A very important note about the URL we supplied. Our two OCP clusters do not reside on the
same network. The Splunk Server is deployed on a OCP cluster that is on our private 10.dot
network. The LogForwarding is deployed on a OCP cluster that is on our public 9.dot network.
If we were to use the URL http://splunk-example-standalone-service-
default.apps.xocp1.fpet.pokprv.stglabs.ibm.com, the 10.dot targeted packets would not be
reached from our public OCP cluster. We configured a NGINX server my-nginx-proxy-
logforwarding-splunk that forwards the 10.dot traffic at port 8088 to the private OCP cluster.

The collector pods will restart once the Log Forwarding Instance is successfully created. From
the Splunk Web UI, search “index=openshift” and you will see events populate the index for
example:

The above completes our testing of OCP log forwarding to Splunk using an insecure connection.

Preparing Splunk Server to receive the forwarded logs from OCP over HTTPS

The following is the setup we performed to secure the connection between our OpenShift
cluster and Splunk Enterprise Server by configuring certificates in our Splunk deployment.

Splunk certificate management can be very confusing, and even though they provide detailed
documentation, there is always some dependency or ‘gotcha’ that you encounter when trying to
communicate with a secure Splunk Server. I’ll provide some guidance on some of the issues we
encountered in our test.

Copyright IBM Corporation 2023 15

Splunk comes bundled with an internal root certificate authority (CA), which is located at $
SPLUNK_HOME/etc/auth/ca.pem.default. Even though this can be used to secure Splunk, you
probably should not use this in your production environment to secure communications. It
would be best to enable TLS on all your Splunk communications with a private or third party
signed CA. There are four main certificates to be aware of when enabling TLS on Splunk:

1. A web certificate is used on port 8000 when you access the Splunk Web UI over port
8000.

2. A Splunkd server certificate is used for all Splunk to Splunk communication on port
8089.

3. An index certificate is used for incoming data on port 9997.
4. The HTTP endpoint collector (HEC) certificate is used here for incoming data on port

8088.

Our focus will be enabling the HEC port 8088 to use HTTPS. Currently, from the previous
section, we had disabled SSL in the Global Settings under Data Inputs. Go back to the Global
Settings under Settings -> Data Inputs -> Select Global Settings – Check “Enable SSL” and select
“openshift” index as the Default Index and Save:

This requires the Splunk Server to restart. Go to Settings -> Server controls and select Restart
Splunk. Restarting the server takes a few minutes.

Splunk Certificate Setup

Copyright IBM Corporation 2023 16

These steps need to be performed directly on the Splunk Server instance that we have running
on the x86 OCP cluster. Connect to the pod using the following command:
$ oc rsh splunk-example-standalone-0

Note: The environment variable $SPLUNK_HOME is /opt/splunk when inside the container.

Details regarding the creation of the root certificate authority and server certificate:
https://docs.splunk.com/Documentation/Splunk/9.0.3/Security/Howtoself-signcertificates

We use openssl to create the certificates inside the Splunk container. As we described above in
our network traffic workflow from our OCP log forwarding cluster to Splunk server, this goes
through a number of different machines with various hostnames. Due to that fact that each
machine has a different hostname, we need to create Subject Alternative Name (SAN)
certificates in order to have multiple DNS names that the certificate can protect. If you do not
use SAN certificates, you will encounter an SSL error where the certificate subject name does
not match the target host name. This issue would still occur even if you were to define a
Common Name (CN) for a wildcard certificate. The host names of these intermediate machines
must also be included (e.g. nginx proxy server, load balancer).

Using a wildcard SSL certificate where CN=*.ibm.com was not sufficient. This would protect
a.ibm.com, b.ibm.com, c.ibm.com and so on. But our hostnames have second, third and other
sublevel domains where a wildcard will not work. This is why we created sublevel domains
that are added in the SAN. We created our own custom SSL configuration file with the required
parameters - /opt/splunk/openssl/openssl-san.cnf

[req]
default_bits = 2048
distinguished_name = req_distinguished_name
req_extensions = req_ext

[req_distinguished_name]
countryName = Country Name (2 letter code)
stateOrProvinceName = State or Province Name (full name)
localityName = Locality Name (eg, city)
organizationName = Organization Name (eg, company)
commonName = Common Name (e.g. server FQDN or YOUR name)

Optionally, specify some defaults.
countryName_default = [Country]
stateOrProvinceName_default = [State]
localityName_default = [City]
0.organizationName_default = [Organization]
organizationalUnitName_default = [Organization unit]
emailAddress_default = [Email]

[req_ext]
subjectAltName = @alt_names

[alt_names]
IP.1 = <ip address of nginx proxy server>

Copyright IBM Corporation 2023 17

IP.2 = <ip address of our load balancer>
DNS.1 = <FQDN of our nginx proxy server>
DNS.2 = <FQDN of our load balancer>

Create the root CA certificate:

1. Prepare new directory for the certificates
mkdir $SPLUNK_HOME/etc/auth/mycerts

2. Create a private key for the root CA certificate
$SPLUNK_HOME/bin/splunk cmd openssl genrsa -aes256 -out
myCertAuthPrivateKey.key 2048

3. Generate a Certificate Sign Request for SAN certificate using the custom conf file

$SPLUNK_HOME/bin/splunk cmd openssl req -new -key
myCertAuthPrivateKey.key -out myCertAuthCertificate.csr -config
/opt/splunk/openssl/openssl-san.cnf -extensions 'req_ext'

4. Verify the SAN value in CSR under the “Requested Extensions”

$SPLUNK_HOME/bin/splunk cmd openssl req -noout -text -in
myCertAuthCertificate.csr | grep -A 1 "Subject Alternative Name"

5. Sign the CSR with private key created above using the custom conf file

$SPLUNK_HOME/bin/splunk cmd openssl x509 -req -in
myCertAuthCertificate.csr -sha512 -signkey myCertAuthPrivateKey.key -
CAcreateserial -out myCertAuthCertificate.pem -days 1095 -extensions
req_ext -extfile /opt/splunk/openssl/openssl-san.cnf

6. Verify the SAN value in signed CA certificate

$SPLUNK_HOME/bin/splunk cmd openssl x509 -text -noout -in
myCertAuthCertificate.pem | grep -A 1 "Subject Alternative Name"

Create the server certificate and sign them with the root CA certificate

1. Create a private key for the server certificate
$SPLUNK_HOME/bin/splunk cmd openssl genrsa -aes256 -out
myServerPrivateKey.key 2048

2. Generate a Certificate Sign Request for SAN certificate using the custom conf file

$SPLUNK_HOME/bin/splunk cmd openssl req -new -key
myServerPrivateKey.key -out myServerCertificate.csr -config
/opt/splunk/openssl/openssl-san.cnf -extensions 'req_ext'

3. Verify the SAN value in CSR under the “Requested Extensions”

$SPLUNK_HOME/bin/splunk cmd openssl req -noout -text -in
myServerCertificate.csr | grep -A 1 "Subject Alternative Name"

4. Sign the CSR with the private CA key and CA cert created in previous CA steps

$SPLUNK_HOME/bin/splunk cmd openssl x509 -req -in
myServerCertificate.csr -SHA256 -CA myCertAuthCertificate.pem -CAkey

Copyright IBM Corporation 2023 18

myCertAuthPrivateKey.key -CAcreateserial -out myServerCertificate.pem -
days 1095 -extensions req_ext -extfile /opt/splunk/openssl/openssl-
san.cnf

5. Verify the San value in signed server certificate

$SPLUNK_HOME/bin/splunk cmd openssl x509 -text -noout -in
myServerCertificate.pem | grep -A 1 "Subject Alternative Name"

The certificate authority certificate and server certificate are now created. We now need to
prepare the certificates for Splunk. Splunk expects the certificates to be in a certain order and
format. As stated in their documentation, a certificate or key alone does not work even if it is
configured correctly. All certs and keys must be concatenated or chained so that the Splunk
platform can use them.

We need to create two chained certificates:

1. A new certificate that we call ‘ca_chain_cert.pem’ that consists of the following
certificates:

• The	server	certificate	file	
• The	server	private	key	file	
• The	certificate	authority	certificate	file	

For	Example:	

$ cat myServerCertificate.pem myServerPrivateKey.key
myCertAuthCertificate.pem > ca_chain_cert.pem

2. A new certificate that we call ‘server_chain_with_key.pem’ that consists of the following
certificates:

• The	server	certificate	file	
• The	server	private	key	file	

For	Example:	

$ cat myServerCertificate.pem myServerPrivateKey.key >
server_chain_with_key.pem	

Now that we’ve prepared the certificates for Splunk, we need to define them under the Splunk
configuration files. Splunk has a unique approach with their config files, where many copies of
the same configuration file are typically layered in directories. I had a difficult time determining
which config file affected either the user, app, or system. There is also a hierarchy with
configuration file precedence. Use this link to learn about what priority is given for a
configuration file depending on its location:

Copyright IBM Corporation 2023 19

https://docs.splunk.com/Documentation/Splunk/8.2.6/Admin/Wheretofindtheconfigurationfile
s?_ga=2.194185198.290357988.1679316408-
1675238498.1679316408&_gl=1*1onlbgh*_ga*MTY3NTIzODQ5OC4xNjc5MzE2NDA4*_ga_5EP
M2P39FV*MTY3OTM0OTgxOS43LjAuMTY3OTM0OTgyNC41NS4wLjA.

For the purposes of our test regarding the certificates that were generated, we are going to
modify the inputs.conf file. Edit the $SPLUNK_HOME/system/local/inputs.conf file and add
the following under the [http] stanza:

enableSSL = 1
sslPassword = <keyfile passphrase>
serverCert = /opt/splunk/etc/auth/mycerts/server_chain_with_key.pem
caCertFile = /opt/splunk/etc/auth/mycerts/ca_chain_cert.pem

These are all the changes we need to make on the Splunk Server side, we can now restart the
Splunk Server:

$SPLUNK_HOME/bin/splunk restart splunkd

Once Splunk Server is back up, you can verify if the https:// protocol on the HEC port 8088 is
working by running a curl command and supplying the ca_chain_cert.pem certificate file:

$ curl "https://ltickvmd.pok.stglabs.ibm.com:8088/services/collector" --
cacert /mydirectory/ca_chain_cert.pem -H "Authorization: Splunk 1697061D-
9419-0C2A-0477-A1CB11E2721C" -d '{"event": "Hello, world!", "sourcetype":
"manual"}'

The output should return this:
{"text":"Success","code":0}

You may also go to the Splunk Web UI, select Search and Reporting -> under Search, enter
“index=openshift” to view if a new event was added. As you can see it is posting this over the
https protocol.

OCP Log Forwarding Setup to use HTTPS

Now that SSL is enabled on our Splunk Server. We need to first create a new secret object that
contains all the required certificates to establish a secure communication with Splunk.

We require the following certificates created earlier – the private key for the server certificate,
the signed server certificate and the ‘ca_chain_cert’ chain cert that consists of both the server
private key, server certificate the ca certificate. They are copied to a local machine where we
can open a browser to OCP Console, so that the files can be uploaded:

For Example:
myServerPrivateKey.key
myServerCertificate.pem

Copyright IBM Corporation 2023 20

ca_chain_cert.pem

Create the new secret named “openshift-logforwarding-splunk-https” that will consist of the
HEC Token, certificate and key files. From the OCP Console, go to Workloads -> Secrets ->
Select Create – Key/value secret with the following values(use add key/value for additional
keys):

Secret name: openshift-logforwarding-splunk-https
Key: hecToken
Value: 1697061D-9419-0C2A-0477-A1CB11E2721C
Key: ca-bundle.crt
Value: ca_chain_cert.pem
Key: passphrase
Value: <keyfile passphrase>
Key: tls.key
Value: myServerPrivateKey.key
Key: tls.crt
Value: myServerCertificate.pem

Note: Key names for the certificates and key files must be called ca-bundle.crt, tls.key, and
tls.crt. Any variation will cause a “certificate verify failed error”.

For more details regarding creating a secret with certificates and files:
https://docs.openshift.com/container-platform/4.11/logging/cluster-logging-
external.html#creating-a-secret

The Log Forwarding instance can now be modified. Using the one created earlier, go to the
Custom Resource “ClusterLogForwarder” -> Instances -> select “instance”. Under the YAML
tab, supply the name of the new secret and change the url to use ‘https’.

For Example:

apiVersion: logging.openshift.io/v1
kind: ClusterLogForwarder
metadata:
 name: instance
 namespace: openshift-logging
spec:
 outputs:
 - name: remotesplunk
 secret:
 name: openshift-logforwarding-splunk-https
 splunk: {}
 type: splunk
 url: 'https://my-nginx-proxy-logforwarding-splunk:8088'
 pipelines:
 - inputRefs:
 - application
 - infrastructure
 name: application-infra-logs
 outputRefs:

Copyright IBM Corporation 2023 21

 - remotesplunk

The collector pods will restart once the Log Forwarding Instance is saved. From the Splunk Web
UI, search “index=openshift” and you will see new events populate the index again.

Suggestions

When first testing the LogForwarding instance, the collector pods would continually Terminate
and try again to restart. This had nothing to do with the YAML file we were supplying, but a
problem reaching the Splunk Server.

As of Logging 5.6, Vector Collector now replaces Fluentd as the default log collector. Splunk is
now an available output option for log forwarding.

Logging 5.6 release is only available on OperatorHub for OpenShift 4.11 and 4.12.

Splunk certificate management expects the certificate files to follow a specific format under the
configuration.

There are numerous Splunk configuration files and it is important to identify the ones you need
to modify correctly. Otherwise, if you make a mistake, the Splunk Server fails to restart, and in
our case when using the Splunk Operator, when it fails to restart, we cannot connect back into
the container to undo any mistake. We then need to create a new Splunk standalone instance.

