

1

Maximo JSON API-CRUD
V1 - Updated: 11/30/2015
V2 - Updated: 12/08/2015
V3 - Updated: 12/17/2015

Contents
Introduction .. 2

Creating Resources (HTTP POST) .. 2

Object Structures .. 2

Creating an Asset .. 3

HEADER:properties ... 4

Child Object data ... 4

Updating Resources .. 4

HTTP POST with x-method-override ... 4

HTTP POST with patchtype ... 5

Managing Child Object data .. 6

Deleting Resources ... 6

Rowstamp ... 7

Attachments .. 8

Bulk Processing ... 10

Multiple Operations with BULK .. 12

Duplicate Transaction Processing ... 13

Invoking Actions using the API .. 14

2

Introduction

This document covers creating, updating and deleting Maximo data using the
JSON API. You should review the Maximo JSON API Overview document prior
to using this document.

In the APIMETA for MXASSET, the creationFactory provided a URL to support
the creating/updating/deleting resources.

"creationFactory": [
 {
 "name": "default",
 "href": "http://host:port/maximo/oslc/os/mxasset"
 }
],

We will start by using this URL to create assets

Creating Resources (HTTP POST)

There are different ways to use/test the API when creating/updating/deleting

data. With just a browser, you can add a REST Client plug-in that allows you to

POST messages with HTTP Headers and a Body.

Object Structures

For those familiar with using the MIF for other integration scenarios, the object

structure is the core component that interacts with the Maximo Business Objects

(MBOs). Out of the box object structures, like MXASSET, include a processing

class that enables successful creation and updating of assets. If you configure

new object structures, you may need to provide a processing class or automation

script in order to successfully create or update the MBOs configured in the object

structure.

3

Creating an Asset

Using the URL provided in the creationFactory for MXASSET, you can create an

asset, with minimal data, by providing this JSON data

 http://host:port/maximo/oslc/os/mxasset?lean=1

{

"assetnum": "TEST200",

"status": "NOT READY",

"description":"Test Asset 200",

"siteid": "BEDFORD"

}

With the above JSON, you need to provide:

• the lean parameter if this is your initial request for a session, the api

expects an OSLC namespace and you will likely get an error related to

missing data for a field that is part of the primary key (siteid would be

common).

• the HTTP header Content-Type with a value of application/json - this is

required for all POST requests

The response will contain the following headers:

• Status Code: 201 Created

• Content-Language: en-US

• Content-Length: 0

• Date: Wed, 25 Nov 2015 15:39:24 GMT

• Etag: 1655563450

• Location: http://host:port/maximo/oslc/os/mxasset/_VEVTVDIwMC9CRURGT1JE

• X-Frame-Options: SAMEORIGIN

• x-powered-by: Servlet/3.0

The Location header will contain the link to the resource created which can be

used to query or update the resource after creation. If you query the created

asset you will see many more fields with values as the business object (MBOs)

provides default values for many fields.

4

HEADER:properties

If you want the response to include asset data in the body, you can provide the

header named 'properties' with a value of *. This will return all the data for newly

created asset (as if you queried for it). You can also choose to return selected

fields in the response body by setting the properties header to a comma

separated list of fields, such as assetnum, changedate, description. Using the

properties header gives you access to all the data that was defaulted (by the

MBOs) during the creation of the asset.

Child Object data

The example below shows the creation of an Asset and an Assetmeter which is a

child object in the MXASSET object structure:

 http://host:port/maximo/oslc/os/mxasset?lean=1

{

"assetnum": "TEST200",

"assetmeter":[
{
 "metername":"TEMP-F",

 "linearassetmeterid":""
}
],

"status": "NOT READY",

"description":"Test Asset 200",

"siteid": "BEDFORD"

}

Updating Resources

Updating a resource requires that you have the link to the resource which you

can obtain with a query for the collection or from the location header when you

created the resource.

HTTP POST with x-method-override

To perform a resource update using a POST, you must provide the x-method-

override header with a value of PATCH. Without this header, the processing will

5

attempt to create the resource and will get an error due to the record already

existing.

This URL identifies the specific asset resource:

http://host:port/maximo/oslc/os/mxasset/_VEVTVDYwMC9CRURGT1JE?lean=1

This JSON data for the body of the request will change the description of the

asset:

{

"description":"New Description",

}

PLEASE READ:

The above update processes as a 'replacement' of the resource. One impact of

this is for resources, like MXASSET, that have a parent object (Asset) and child

objects (assetmeter,assetspect etc), you need to provide data for all of the child

objects. Any objects that you do not provide their key value will be DELETED.

In the example above the asset that was updated with a new description would

have had all of its related meters deleted since those were not provided in the

request. This is the default behavior for updating. An alternative is to use an

additional header called patchtype

HTTP POST with patchtype

If you want to update a resource but do not want/not able to provide data for all

the child objects, you can do an HTTP POST and provide the x-method-override

header and the patchtype header to indicate that you want to patch, not replace.

Using the same URL and JSON data in the example above, if you perform a
POST and provide the x-method-override property with a value of PATCH and
the header patchtype with a value of MERGE, then the asset description will be
updated but none of the child objects (assetmeter, assetspec etc) would be
deleted. For those who have worked with the traditional MIF integration
components, this is comparable to processing an inbound message with an
Action of AddChange.

6

Managing Child Object data

When you want to create/update child objects for a resource, in addition to

providing x-method-override and patchtype headers, you can also provide

actions for the individual child objects as part of the payload data. Using actions

will allow you to update an asset and let you create an assetmeter, update an

existing assetmeter and delete an existing assetmeter when the _action is

provided for each assetmeter (in a single transaction).

Using a URL for a specific asset

http://localhost:port/maximo/oslc/os/mxasset/_MTAwMS9CRURGT1JE?lean=1

The JSON body below would update the description of the asset, update an
existing assetmeter object with metername PRESSURE, delete metername
TEMP-F and add a new assetmeter, TEMP-C.
{
"description":"new description",
"assetmeter": [
 {
 "metername": "PRESSURE",
 "linearassetmeterid": 0,
 "newreading":"106",
 "_action":"Change"
 },
 {
 "metername": "TEMP-F",
 "linearassetmeterid": 0,
 "_action":"Delete"
 },
 {
 "metername": "TEMP-C",
 "linearassetmeterid": 0,
 "newreading":"29",
 "_action":"Add"
 }

]
}

Deleting Resources

To delete a resource, use HTTP POST with the x-method-override header with a

value of DELETE.

This URL identifies the specific asset resource to delete:

7

http://host:port/maximo/oslc/os/mxasset/_VEVTVDYwMC9CRURGT1JE

Within the MBOs, the delete processes through the business logic and there may

be reasons why a delete is prevented. When this occurs an error will be returned

noting that the resource cannot be deleted - example below:

{

 "Error": {

 "message": "BMXAA0106E - Cannot delete Asset TEST500 because it is referenced in
the WORKORDER table.",

 "statusCode": "400",

 "reasonCode": "BMXAA0106E",

 "extendedError": {

 "moreInfo": {

 "href": "http://localhost:port/maximo/oslc/error/messages/BMXAA0106E"

 }

 }

 }

}

Rowstamp

Maximo applications support the use of the rowstamp on a row of data to validate

that the record being updated/deleted is 'current', meaning it has not been

changed since it was retrieved. When it has been changed a user in an

application see an 'updated by another user' message and be forced to retrieve

the record again prior to updating it.

The API supports this same feature by providing an attribute called _rowstamp

(with the rowstamp value) as part of the resource data when queried:

"_rowstamp": "26982",

 When an update is requested and the _rowstamp (with its value) is provided, the

same check will be done as described above. If the rowstamp of the Maximo

record has changed then the API will return an error. If no _rowstamp is

8

provided, then the update (or delete) would execute on the current record in the

database with no check.

A _rowstamp is supported for each record (all levels) in the resource data (i.e. for

asset, assetmeter, assetspec etc)

Attachments

The API supports the creation and deleting of attachments that are associated to
resources. For example, you created an asset and now you want to attach a
PDF file that describes the maintenance procedures for that asset. There is no
support for updating an attachment, you would need to delete the current version
and create a new version.

Note: see the related API Query document regarding the API's support for
querying attachments associated to a resource.

For a resource, such as MXASSET, to support attachments:

• the Maximo attachments feature has to enabled

• the mxasset object structure must be configured with the DOCLINKS MBO
as a child to the ASSET object.

When you query a single asset (using mxasset) you will get a doclinks URL that
you use to the associate an attachment to the asset. The URL would look like
this in the asset JSON data:

"doclinks":

{

 "href": "http://localhost:port/maximo/oslc/os/mxasset/_MTAwMi9CRURGT1JE/doclinks"

},

Note: in the current version of the API you can create an attachment for a
resource(asset) only after the resource exists in Maximo. You cannot create the
attachment at the time of creating the resource.

An attachment is made up of two components, the attachment file and the related
metadata of the attachment. You create an attachment using HTTP POST with
binary content or base64 binary content. There is no support for multi-part
messages.

When creating an attachment for a resource there is a limited set of metadata
that can be provided (along with the file) using HTTP Headers:

9

Header Value Description

slug File Name The name of the attachment file

encslug File Name If the attachment file name has non-ascii
characters it can be provided in the header
base64 encoded. It is suggested that you always
base64 encode your file name using this property
if you believe you might have a mix of non-ascii
characters

Content-Type "text/plain" Based on the type of attachment - text/plain
supports a .txt file

x-document-meta Attachments Tied to the DOCTYPES domain that defines the
supported attachment types

x-document-description Description The description of the document

x-document-encdescription Description If the description has non-ascii characters it can
be provided in the header base64 encoded. It is
suggested that you always base64 encode your
description using this property if you believe you
might have a mix of non-ascii characters

custom-encoding "base64" This header facilitates testing using a browser
client such as RESTClient (for FF). Allows you to
paste in a base64 encoded image into the Body
of the tool (otherwise you need to test with
programmatic tool). You can use public tools to
base64 encode your image file

You post to the URL (shown above) with the attachment, when successful the
response will have a header named Location and it will contain a URL to the
attachment file:

http://localhost:port/maximo/oslc/os/mxasset/_MTAwMS9CRURGT1JE/doclinks/80

Using that URL in the browser will return the file. Using that URL in the
RESTClient tool will return a header named Link which will have a URL to the
metadata for this attachment. URL looks like this:

http://localhost:port/maximo/oslc/os/mxasset/_MTAwMS9CRURGT1JE/doclinks/meta/80

These URLs are also available when querying the resource (see the related API
Query document which has a section on Attachments).

When a resource attachment is created through the API, you should be able to
go to the related application (Asset) and View Attachments to verify the
attachment was successfully associated to the asset.

10

Deleting an Attachment

Using HTTP POST with the URL of the attachment:

http://localhost:port/maximo/oslc/os/mxasset/_MTAwMS9CRURGT1JE/doclinks/80

and providing the x-method-override Header with a value of DELETE will
remove the attachment from the Asset resource.

Bulk Processing

The API supports the processing of multiple resources in a single transactions.
Using the x-method-override header with a value of BULK, directs the processing
to process multiple resources provided in the message body within a JSON
array []. The example below shows 3 assets being created using the mxasset
collection url (Bulk processing only supported using collection url)

http://localhost:port/maximo/oslc/os/mxasset

[

 {

 "_data":{

 "assetnum": "test-5",

 "siteid": "BEDFORD",

 "description": "TS test 5"}

 },

 {

 "_data":{

 "assetnum": "test-6",

 "siteid": "BEDFORD",

 "description": "TS test 6" }

 }

11

]

Each resource has an element called _data (reserved name) in which the data
for the resource is provided. Unless there is a syntax type of error in your JSON
data, you will always get a response code of 200. However, you need to process
the response to determine which resources were updated successfully or not. If
the second asset failed due to an invalid site the response body would look like
this:

[

 {

 "_responsemeta": {

 "ETag": "1992365271",

 "status": "201",

 "Location":
"http://localhost:port/maximo/oslc/os/mxasset/_VEVTVC0zNS9CRURGT1JE"

 }

 },

 {

 "_responsedata": {

 "Error": {

 "message": "BMXAA4153E - [BEDFORDXXYY is not a valid site. Enter a valid Site
value as defined in the Organization Application.]",

 "statusCode": "400",

 "reasonCode": "BMXAA4153E",

 "extendedError": {

 "moreInfo": {

 "href": "http://localhost:port/maximo/oslc/error/messages/BMXAA4153E"

 }

 }

 }

 },

 "_responsemeta": {

 "status": "400"

12

 }

 },

 {

 "_responsemeta": {

 "ETag": "1992365297",

 "status": "201",

 "Location":
"http://localhost:port/maximo/oslc/os/mxasset/_VEVTVC0zNy9CRURGT1JE"

 }

 }

]

The first and third assets were successful and returned a 201 with the URI to the
asset resource. The second asset returned a 400 with an error message.

NOTE: The processing performs a Commit for each resource.

Multiple Operations with BULK

The above examples showed the creation of multiple assets using the BULK
processing. You can also use BULK to perform a mix of create, update and
delete of asset resources in a single transaction.

To support this, in addition to _data which is used to provide the json data for a
resource in a BULK transaction, you can also provide meta data using _meta
(another reserved name). The meta data that can be provided are:

• method

• uri

• patchtype

The is the equivalent of the x-method-override header discussed earlier in this
document. When POSTing to create a new resource, there is need to provide a
method. To perform an update you provide the value PATCH and for a delete
you provide the value DELETE.

The uri is the resource uri when processing an Update or Delete. This is
required when updating or deleting a resource.

The patchtype allows the support of MERGE when processing an update (as
described earlier in this document).

13

Below is an example JSON data that will

• Update an asset with a 'New Description'

• Create a new asset (test-100)

• Delete an asset

[
{
 "_data":{
 "description": "New Description"},
 "_meta":{
 "uri":"http://localhost:port/maximo/oslc/os/mxasset/_VEVTVC0yL0JFREZPUkQ-",
 "method": "PATCH",
 "patchtype":"MERGE"}
 },
 {
 "_data":{
 "assetnum": "test-100",
 "siteid": "BEDFORD",
 "description": "New Asset 100"}
 },
 {
 "_meta":{
 "uri":"http://localhost:port/maximo/oslc/os/mxasset/_VEVTVC00L0JFREZPUkQ-",
 "method": "DELETE" }
 }
]

The first asset 'meta' data includes the URI to identify the along with
headers identifying that it is a Patch (an update) with a type of Merge.

The second asset provides no 'meta' data since it is a Create and no meta
data is applicable.

The third assets provides only the 'meta' data to identify the asset to be
deleted.

As with the Creation example earlier in this section, the response code will
be a 200 but you must examine the response information in the response
JSON body to determine if processing of each asset was successful or
not.

Duplicate Transaction Processing

When a client invokes the API to create/update/delete a resource there is the
possibility that the resource is updated in Maximo but the client fails to get a
response back confirming the update, due to a technical issue such as dropped

14

connection. This could lead to the client resending the transaction and possibly
duplicating the transaction processing.

The client can avoid this situation by providing a header named 'transactionid'
and providing a unique ID value with each transaction. If the client hits an error
and resends a transaction, the API framework will check if the ID was previously
processed, and if so will return a 409 response without updating the resource.
The client must be coded to process accordingly when a 409 response is
returned.

The IDs are maintained in the database and an escalation named,
OSLCTXNCLEANUP, will delete entries using an Action of the same name. The
parameter in the Action identifies the number of days an ID will be maintained
before it is deleted. The default parameter value is 5 days. You should configure
this based on how your client processing is generating/managing ID values used
for API transactions.

Invoking Actions using the API

In Maximo version 7.6.0.3 additional capability was provided to support

invocation of actions on a resource. Maximo has a limited set of 'out of the box'

available to invoke using the API and there is now capability to define custom

actions using an automation script. See the related tech note for more

information:

http://www.ibm.com/support/docview.wss?uid=swg21972876

Please send any corrections or suggestions to Tom Sarasin at tsarasin@us.ibm.com

