AWS CodeBuild & UrbanCode Deploy
AWS DevOps

November 2019

An initiative to establish a connection from AWS CodePipeline to enterprise tools, most
notably UrbanCode Deploy (UCD).

Table of Contents
Version 1.0: jonathan_scharf@fanniemae.com ; christopher_rai@fanniemae.com

1. Overview
1. Problem
2. Solution
2. High-Level Design
3. Sample Execution
4. Notes

Overview

Fannie Mae (FNMA), like many other companies, is beginning its cloud journey utilizing Amazon Web
Services (AWS). One challenge along this journey is the integration of AWS with the DevOps tool-
chain. FNMA is currently using UCD to deploy applications while ensuring the proper guardrails and
gating are met along the path to production. The existing tool-chain allows Jenkins to push the build to
UCD's CodeStation via an IBM plugin, here we replicate this process with AWS CodeBuild push to
UCD.

At first glance, a REST call should be sufficient to accomplish this goal, however, UCD's REST API
lacks the necessary commands. Additionally, enterprise standards and guidelines suggest steps which may
be unnecessary if you are developing locally.

This documentation focuses on how to import artifacts into CodeStation through the AWS CodeBuild
tool. This strategy is explained in the context of UCD, the overall process can be applied to integrate
various tools with the AWS suite. This approach doesn't require restructuring of predefined deployment
process. We aim to ensure the separation of the build and the deploy, meaning, we do not want the build
to fail if the deployment fails. If you already have an application and deployment processes setup, then
most of the work is already done! This will guide you to setup an extensible integration that allows you
call UCD and other DevOps tools via AWS.

Problem
Integrate CI/CD tools, notably UCD with AWS CodeBuild.
Solution

Utilize UCD's API's to create the component version and upload the build artifact into that component
version.

High-Level Design

Unit Tests

.

Enterprise
Testing Tools

Scans

2

Enterprise
Scans via
Scan tool API

v

UCD Push via
CLI

Store scan
results within
scan tools

v

Stores artifact
within
CodeStation

Steps

1.

Access UCD API: We utilize the udclient provided by IBM to access the UCD CLI. We have a
separate pom file containing udclient to minimize impact on the application build process. Even
though this file containing the udclient will be versioned, it will not be built with the application.
The application's pom file will reference the udclient a dependency. This allows us to call the
udclient within the post-build step just as you would on your own machine.

Create UCD component version: Here we utilize the create version command provided by IBM
to create a version in UCD.

Upload build to the created component version: Here we utilize the add version files command
provided by IBM to the newly created component version within UCD.

Schedule deployment: Here we utilize the request application process command to schedule a
deployment just after the component is created with the build artifacts. We choose to pass a
versioned json file as directed by IBM. This allows us to keep the separation between the build
and the deployment. Once the deployment is scheduled the build will complete, regardless of the
deployment's outcome. Within our application's deployment process we do use the acquire and
release lock processes provided within UCD. We aim to avoid race conditions involving
developers triggering build jobs simultaneously, resulting in multiple simultaneous scheduled
deployments. This lock is based off the application process running on a specific environment.

Sample Execution
buildspec.yml:

version: 0.2
phases:
install:
commands :
- cp ./settings.xml /root/.m2/settings.xml
- set
pre_build:
commands :
- TIMESTAMP VERSION=$ (TZ=":US/Eastern" date +%Y%m%d%$H%M%S)
echo $TIMESTAMP VERSION
- GIT HASH=$(echo $CODEBUILD RESOLVED SOURCE VERSION | cut -cl-8)
- echo $GIT_HASH
build:
commands :
- mvn -B package
post build:
commands :
- mvn -B dependency:resolve -f UCDpom.xml
- echo "Creating component version $TIMESTAMP VERSION-$GIT HASH"
- sed -i "s,\!VERSION LABEL\!, $TIMESTAMP VERSION-$GIT HASH,g"
deploy.json
- java -jar <PATH_TO>/udclient/7.0.3.1.1/udclient-7.0.3.1.1.jar -weburl
"<UCD_URL>" -authtoken "<TOKEN>" createVersion -component AWS-EB -name
$TIMESTAMP VERSION-$GIT HASH > /dev/null
- java -jar <PATH_TO>/udclient/7.0.3.1.1/udclient-7.0.3.1.1.jar -weburl
"<UCD URL>" -authtoken "<TOKEN>" createVersion -component AWS-EB -name
$TIMESTAMP_ VERSION-$GIT_HASH > /dev/null
- echo "Uploading artifact to component version $TIMESTAMP VERSION-
$GIT HASH"
- java -jar <PATH_TO>/udclient/7.0.3.1.1/udclient-7.0.3.1.1.jar -weburl
"<UCD URL>" -authtoken "<TOKEN>" addVersionFiles -component AWS-EB -version
STIMESTAMP VERSION-$SGIT HASH -base ./target -include acheck api-package.zip
- java -jar <PATH_TO>/udclient/7.0.3.1.1/udclient-7.0.3.1.1.jar -weburl
"<UCD URL>" -authtoken "<TOKEN>" addVersionFiles -component FZM Provisioning
-version STIMESTAMP VERSION-$GIT_HASH -base . -include awsManifest.json
- java -jar <PATH TO>/udclient/7.0.3.1.1/udclient-7.0.3.1.1.jar -weburl
"<UCD_URL>" -authtoken "<TOKEN>" requestApplicationProcess deploy.json
- java -jar <PATH_TO>/udclient/7.0.3.1.1/udclient-7.0.3.1.1.jar -weburl
"<UCD URL>" -authtoken "<TOKEN>" requestApplicationProcess provision.json

udclient pom:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupIld>com. fanniemae.UCD</groupId>
<artifactId>UCD</artifactId>
<version>0.0.1</version>

<dependencies>
<dependency>
<groupId>com. fanniemae.release-pipeline</groupId>
<artifactId>udclient</artifactId>
<version>7.0.3.1.1</version>
</dependency>
<dependency>
<groupId>com.fanniemae.release-pipeline</groupId>
<artifactId>nexus-ig-cli</artifactId>
<version>1.63.0-01</version>
</dependency>
</dependencies>

</project>

deploy.json:

"application": "AWS-FZIM",
"applicationProcess": "D10-App Deploy",
"description": "DEVL Deploy triggered from AWS",
"environment": "DEVL",
"onlyChanged": "false",
"properties": {
"awsVersionLabel": "!VERSION LABEL!"
|
"versions": [{
"component": "AWS-EB",

"version": "latest"

H]

Deployment Process:

For triggering a deployment, we use the "latest" tag along with locks within the UCD process. Our AWS
CodeBuild does not allow for parallel builds. With these two safeguards, we are confident that the
component version we expect will always be deployed. Please note that the property within the lock is:
${p:application.name}-${p:applicationProcess.name}-${p:environment.name}.

» Pre-Deploy Validation
Run Generic: "preDeployValidation-GenProc"

8 Acquire Lock
${p:application.name...

Stage: "F7A-aw_config"
@ Install: "F7A-aw_config"
Process: S3 Deploy

Deploy F7A-aw_ui
© Install: "F7A-aw_ui"
Process: API-EB

& Release Lock
${p:application.name...

» Post-Deploy Updates
Run Generic: "postDeployUpdates-GenProc”

Results

Within the example, please note the version name, we take advantage of the commit hash provided by git
as well as the timestamp. We are using a sed command, as illustrated to return this result. The idea is to
return a unique component version that will also provide tractability back to the baseline and source of the
code change.

UrbanCode Deploy

Welcome Dashboard Applications Caonfiguration Frocesses Resources Calendar ‘Work Hems Reports Settings

Fome / Components ¢ F7A-DBSRC
Component: F7TA-DBSRC stow detsi

UCD Teet 7.0.5.1

Dashboard Usage Configuration Calendar Versions Processes Changes
Is
Version Statuses Type Created By Date ~ Importing Description Actions
Filtar At Any ¥
Pty ey o CoceDepley R Compste Deiste Copy
2019082112571 Eul zx;ir:a:fngr}é‘;,}'bJrCrx:?D(vnlc,' 82112019, 1257 false Compere Delste Copy
2019082 1 Ful ;';;'_’gfg‘fz::‘t&'D“"‘3°°=°“F"°>' 3‘3“23‘9- 12:53 false Compere Delste Copy
B ey i CodeDeptay pia 2O e Compera Duslo Copy
20190820155059 =ul :'1:"7';‘1“-'11!;}1“;‘ banCoceDeploy g’;\;ﬁl-‘*i”“- 401 falae Compere Delste Copy
2016092015142 Ful o ntgnenpred, LibanCoceDeploy 812072019, 3:51 faise Compere Deiste Copy

oy I racards - Rafrash Print f1 nanes

Notes

In this version of the integration, we did have to adjust our virtual private cloud (VPC), depending on
your enterprise setup this may be necessary.

aws codebuild update-project —--name <CODEBUILD NAME> --vpc-config
file://vpc.json
{
"vpcId": "vpCc-xxxxXxXXXxX",
"subnets": [
"subnet-xxxxxxxx"

1s
"securityGroupIds": [
"Sg-XXXXXXXX"

]
}

This is just one approach to integrate AWS' CodeBuild with IBM's UrbanCode Deploy. While utilizing a
pom file may not be ideal, it allows for other tools to be integrated into AWS, such as Nexus IQ,
SonarQube, Fortify, and Twistlock scans.

While this strategy is not necessary to automate the push from AWS to UCD, we did investigate other
possible options:

o Dependent POM: In order to keep the number of committed files down, the udclient can be
referenced within the application pom file as a excluded dependency.

o Call via wget: To avoid any extraneous pom files, one can perform the UCD commands via wget
where applicable.

¢ Buildscript: To clean up the buildspec.yml, a buildscript can be used in its place.

e UCD api: Hopefully, the api will be extended to support the necessary cli commands to make the

udclient unnecessary.

Links

https://www.ibm.com/support/knowledgecenter/SS4GSP_7.0.3/com.ibm.udeploy.doc/ucd_version_welco
me.html

https://aws.amazon.com/codebuild/

10

