Principles for API Security

Principles for API Security

APIs allow fast and easy access to corporate assets. If you are focused on security
this may be a scary thought! But the value obtained using business APIs — easing
consumption of corporate assets enabling speed to market, allowing the business

to reach more potential customers, and helping drive faster innovation — is significant.
It is the foundation of the “API Economy” and a core component in enabling digital
transformation and building digital ecosystems. Because the value provided by APIs
is so high, APIs are a target for exploitation by those wishing to inappropriately access
your business assets or cause damage to your enterprise. Therefore, API security is

of paramount importance in gaining the promised benefits without exposure to
negative consequences.

Focus on security is an ongoing effort as hackers continue to try new techniques

to break into systems. It is not possible to declare security tasks completed nor
should you assume your APIs are ever 100% secure. But there are principles,
technologies, and techniques that can minimize the risk and provide the highest
probability of success in stopping both intentional and inadvertent misuse of business
assets. The goal of this paper is to focus on a set of security principles to drive the
highest possible level of API protection.

IBM Cloud

Security discussions are often very technical, delving into how to deliver a desired
security capability. Rather than focus on how, this paper focuses on why - highlighting
the objectives that need to be achieved to have a more secure posture, and why not
meeting the principle is a potential security issue. Technology is ever evolving with
new technologies emerging all the time. Security principles are longer lasting. While
the technical implementation of a principle may change, the principle should remain
valid. Rest assured IBM has significant security skills and technologies to help in the
implementation, i.e. the “how”, of any and all the defined principles.

The intended audience for this paper is IT leaders, architects, and security teams
who are considering API solutions and need help defining criteria and planning for
API security concerns.

This paper also assumes an IT environment that is modernizing. While many businesses
have historically had all their assets in one location (i.e. on-premise - inside your
company), the new IT world is evolving, extending beyond that model. Enterprises

are moving (at varying paces) to a hybrid-cloud and multi-cloud world in addition to
maintaining on-premise environments. Companies are also using capabilities provided
by others — e.g. SaaS applications or Artificial Intelligence (AI). Businesses may be
forming digital ecosystems that cross multiple enterprises such as implementing
Blockchain solutions across business domains. Furthermore, new and existing
applications are being developed or modified to be more agile using microservice
architectures. This is the modernizing IT world, and is the scope considered in this paper.

Principles are grouped in the following topic areas:
= Strategic API Economy Security Principles

» Basic API Security Principles

= API Exposure, Scope, and Positioning Principles
» API Gateway Security Principles

« Recommendations

Note: The scope of this paper is specifically about API security. The principles
are related only to the API itself, not the backend implementation of business
capability that is invoked by the API. In fact, mixing what should to be done at
the interface, and what should be done behind the interface is an example of a
security exposure discussed later. Since the paper’s focus is only regarding API
security, it does not attempt to cover other aspects of security such as identity
management, firewalls, encryption, etc. These are all critical security elements.
To the extent that these interact with API security the topics are covered, but
only within the context of that relationship.

IBM Cloud

Strategic API Economy Security Principles

First let’s establish the goals that drive our API security intentions. This initial
group of principles establishes our overall strategy and direction for API Security.

Principle 1: Protect access to data and transactions

The overriding principle which drives all the others is the protection of the access
to data and transactions. The system needs to ensure that appropriate audience(s)
having been authenticated, and they are the only allowable users of our APIs.
Also, it is paramount that they are using only the data and transactions that they
are authorized to be using. This access needs to be allowed to occur.

Conversely, API security also dictates that the inappropriate users are denied access.
Security efforts must also ensure that authenticated users cannot intentionally or
inadvertently access data and transactions that are beyond their authorization.

If they somehow do obtain access any activity they attempt to perform is thwarted,
recognized quickly, and stopped as soon as possible.

For all access situations there is a need to log, monitor, and audit. This strengthens
the ability to analyze event patterns and further to ensure any security exposure is
captured as soon as possible.

Principle 2: Use business APIs as a point of control

One school of thought might be that if Business APIs are attractive as an attack point
why not avoid using them? Aside from losing the business benefits, this opens a larger
security issue by exposing multiple points of entry rather than using the API as a
controlled point of access.

Jeff Bezos famously issued an API mandate for all Amazon’s employees around 2002.
Here is the text of the Bezos (Amazon) Mandate:

1.
2.
3.

6.

All teams will henceforth expose their data and functionality through service interfaces.
Teams must communicate with each other through these interfaces.

There will be no other form of interprocess communication allowed: no direct linking,
no direct reads of another team’s data store, no shared-memory model, no back-doors
whatsoever. The only communication allowed is via service interface calls over the
network.

It doesn’t matter what technology they use. HTTP, Corba, Pubsub, custom protocols
— doesn’t matter.

All service interfaces, without exception, must be designed from the ground up to
be externalizable. That is to say, the team must plan and design to be able to expose
the interface to developers in the outside world. No exceptions.

Anyone who doesn’t do this will be fired.

While Jeff Bezos was not primarily concerned about security when issuing this mandate,
it does illuminate areas of security concern. First look at the alternatives listed for other
forms of inter-process communication (point 3). There are many listed, and this is only
a subset of the possibilities. Beyond this, also consider external connectivity (point 5).
Trying to securely lock down so many possibilities of entry is a far greater challenge
than focusing on a consistent point of control for interaction.

IBM Cloud

Note that the API approach is for both internal and external integration. If it is
possible to ensure all data and functionality is exposed through a consistent paradigm
(i.e. APIs) then our security efforts can concentrate on these APIs as a point of control
for security, as well as logging, auditing, and monitoring. Also note that there may be
multiple technologies involved (point 4), so this is not to say that there is only one
integration pattern or only one possible technical implementation.

In short, there should be no ‘unofficial’ interfaces when communication happens
between separately owned software domains. Inter-connectivity between domains
should be ‘deliberate’ and ‘governed’ and APIs are currently the main mechanism
for providing the light touch governance required.

Principle 3: Minimize potential exposure

It is important to mitigate risk. While our first efforts are to block inappropriate
access, there are cases where the first line of defense is penetrated — e.g. someone
inappropriately obtains a password, or a hacker breaks into the DMZ. The question
is how to limit the damage that can be done if a bad actor gets past the first barrier?
There are several techniques (covered in further detail later) that can be used to
shield our data and transactions:

. Limit the API audience to only those who need access.

- Limit the data/transaction accessed by the API to only what is needed or authorized
for the user to execute the desired task.

. Limit the access to data and business thru the exposed API, this allows the exposed
API to be the central control point.

. Do not expose internal data structures or interfaces directly. Hide and do not allow
access to additional parameters on backend systems or additional columns of data
from an API that is not intended to use these mechanisms.

« Do not allow the capability to run any form of executable not performing API tasks
while in the API gateway layer of the architecture.

Plan for the worst situation and determine the potential exposure. Consider what the
potential accessibility is from an API. Does the API need to provide all this capability,
or can it be limited to provide only a subset of data or functionality?

Principle 4: Recognize Abnormal Situations

Bad actors attempting to penetrate systems often need to make multiple attempts.
Guessing passwords, trying various queries, or changing query parameters to obtain
additional data may signal a bad actor trying to obtain/penetrate your systems.
Recognize and prevent such activity:

. Place roadblocks in front of such attempts.

. Recognize these abnormal situations and stop them as they occur.
« Alert appropriate personnel of such attacks.

« Logall activity to determine what might have been affected.

e Scan audit logs to look for patterns that may indicate penetration or
penetration attempts.

. Design the API to conform to the best practice, as those outlined by standard
bodies, like OWASP.

IBM Cloud

Principle 5: Use multiple techniques for security

No single security technique can stop everything. But just because a security technique
is not 100% effective does not mean it should not be used. Putting up a fence/barrier
to entry does not keep all bad actors out. Despite it not being 100% effective, having

a fence is still a good idea. Similarly, security through obscurity — hiding information
about your API or the data or transactions is also not 100% effective. But, making this
information more difficult to obtain is part of the security toolkit that can be used to
thwart inappropriate activity.

Just because you have good locks on your car, does not mean you should leave your
wallet on the seat. It is the combination of security measures that add up to ensuring
you are not a soft target, not the individual measures.

In addition to multiple techniques, layering is another well-established technique.
Multi-factor authentication is a well-known example.

2 1 :

Basic API Security Principles

Ask any sports team and they will tell you to start with the fundamentals and build from
there. This section looks at several “getting started” security principles to provide the
fundamentals for API security. Most of these may seem obvious but as with most aspects
of security it is best not to assume these are already in place.

Principle 6: Know your APIs

All active APIs need to exist in a catalog. There can be no hidden APIs that are available
or intended to be called without a definition in a governed catalog. The catalog provides
the foundation for API governance which manages the lifecycle of the API. It also defines
the API ownership and needs to be able to provide information about the target consumer
audiences and data about who is consuming the API. You cannot secure what you do not
know exists.

The APIs need to have a well-defined schema for what to expect as input and output.
This prevents any leakage and unintended information to pass thru.

IBM Cloud

Principle 7: Ensure APIs are only visible and subscribe-able
to intended audiences

API consumers, typically using an API Developer Portal, should only be shown APIs
which are available for their subscription. Showing unsubscribe-able APIs to an audience
lets them know that the APIs exist and may inadvertently provide hints as to how to
access, break into, and use the APL.

Principle 8: Know which applications are using an API

It is extremely important to know which applications are using an API. This allows

the management platform to control the API usage by that application. Typically, API
consumers identify the application that they are building and registers the application
as a user of the API. Each application is uniquely identified by being provided an API
key and possibly a secret which is used on every API invocation. With the API key an
API management solution can track the application usage, ensure there is no abnormal
activity, and indeed block or limit the application’s usage if necessary, without affecting
other consumers of the API.

Principle 9: Provide a mechanism for application user
authentication

For some scenarios it is important to know who the user of the application is, not just
identify the application that is consuming the API. For example, finding a bank ATM
location may not need to know who the user of the application is, but accessing a specific
individual’s bank account information does require knowledge of the application user.

There are several techniques for user authentication including basic authentication
which prompts for a User ID and password or OAuth and Open ID which allow the user
identity to be passed through the application without providing the personal identifying
secret information to be seen by the application itself. Most businesses are focusing

on the latter options due to the higher level of security for the application user in that
their credentials are not visible to the application. OAuth provides an added benefit

of tying the user’s consent to the application. This is helpful with the auditing aspect

of their usage.

Principle 10: API Security must integrate with existing
security mechanisms

While API Authentication may introduce some new techniques for end user
authentication, these must integrate with the current authentication and authorization
mechanisms inside the company. Creating a full second set of identity and access
management is not an option. So, API authentication must integrate with the current
authentication capabilities (e.g. LDAP or User Registry, or with Json Web Token or
JWT for user’s identity assertion) and the identity must be able to be passed along

for traditional authorization mechanisms to ensure appropriate access is allowed

and inappropriate access denied.

IBM Cloud

Principle 11: Control the level of API usage

Aside from security there are many reasons to control the level of API usage including
protecting backend systems from too much load or for direct monetization models that
are based on usage. Security is also a key reason to control usage levels. Rate limits are
defined as a number of API calls per unit of time. All API consumers should be given

a defined rate limit for their usage. This can be a soft limit which issues an alert

if exceeded, or a hard limit which stops additional use for a period. Users invoking

an API in larger quantities than the rate limit may signify a security issue.

It is possible that use has grown over time and perhaps a new limit is required.
But it is also possible that the user is attempting to overload the API (denial of
service attack) or penetrate the API’s intended use.

Burst limits can also be used to ensure that there is no concentrated attack over a short
period of time even if the rate limits are over a longer period. For example, if a consumer
has a rate limit of 100 API calls per day, they may also have a burst limit that says they
can have no more than 10 API calls per minute.

Principle 12: Message integrity and confidentiality
must be ensured

API calls must not be able to be modified between the calling application and the API

end point. Typically, this is done through digital signatures and transport level protection.

Digital signatures prove that the data is unchanged and that it is from the person you
think it is from. These signatures used in combination with encryption of the keys
known only to certain parties provide the required message integrity. In addition,

it should be possible to encrypt data at rest to ensure personal or private information
is always protected.

Principle 13: Provide visibility into security management

It must be possible for security or operations personnel to monitor API traffic and view
any areas of potential concern. Monitoring dashboards should be available. Also, all API
traffic must be able to be logged. In case of an exposure found later logs can provide the
details as to what data and transactions were accessed by which API calls.

Principle 14: Enable processes for reporting
potential exposure

Our first option is always to stop a security attack before it penetrates the systems.

The second option is to catch it while occurring and stop the bad actor immediately.

But if the bad actor does get through our security defenses, it is important to enable

all channels to inform the API team that an issue has occurred. Provide a mechanism
where API consumers, backend system owners, and others can report either real issues
they are seeing or potential security issues they may have uncovered. The system also
needs to provide a mechanism to lock out the bad actor for any future invocation.

IBM Cloud

API Exposure, Scope, and Positioning Principles

Now that the basics are covered, let’s look at more advanced topics. This next set

of principles are related to unnecessary exposure of the API or API parameters, the
expansion of the role of an API beyond its intended purpose, and incorrect positioning
of the API in the architecture.

Several of these principles are related to one another, but for simpler understanding
the issues are split across multiple principles to address each principle independently.

Principle 15: Complete API Security Validation Before
Invoking Business Logic

An API is an interface providing easy consumption of a business capability for an
application developer. When these APIs are managed, they also provide security

and analytics for the API provider. The runtime security aspect or enforcement layer

in the architecture is commonly referred to as the API gateway. Behind the API that is
running on the gateway (i.e. called by the API) is the programming logic that provides
the desired business capability. The implementation of this backend is abstracted and
invisible to the consumer and is only invoked after the API security layer is complete.
The previous section covered many of the basic security principles that are handled by
APIs. The API gateway is the architectural point that provides the runtime enforcement
security principles that were described.

Security issues arise when the API definition expands beyond the interface management
and includes business logic in the API. While APIs almost always invoke business logic
in some form — backend applications, databases, SaaS applications, microservice
applications, etc. —that logic must be executed in a different architecture layer.

If business logic can be mixed with the API and executed in the same architectural
component (i.e. gateway), then the gateway would need the ability to execute a
general-purpose program to allow this to occur. This may allow a bad actor to take
advantage of this ability and execute an inappropriate program in the gateway before
security checking has completed.

IBM Cloud

In an external API call scenario, another (poor) option might be to do partial security
checking in the DMZ and then pass traffic into the trusted zone to complete the security
validation. This is also a bad idea. Unsecured traffic is now able to pass into the trusted
zone in the architecture where it may introduce an inappropriate program or otherwise
perform attacks before security checking completes. Security needs to complete
before it is passed into a trusted area or into an area where general-purpose runtimes
are accessible.

Including business logic in the API means that either the business logic is executing in
the API layer where security is also being verified or that the security layer has not fully
processed the API and passed it forward into a runtime that can execute business logic.
Both scenarios are not desirable. It is best to keep the API separate and executed prior
to the business logic.

Principle 16: Differentiate between integration logic and
business logic

The nature of an API is that it receives a request, validates that it is secure, and then
invokes business logic that is in the application layer of the IT infrastructure. But to take
in a request and pass it forward there is a need to perform some integration capability
in the API layer of the architecture. It is important to distinguish integration logic from
general business logic. As previously stated, business logic should not be executed in
the gateway. But the gateway can and should be able to perform basic integration and
mapping functions in addition to its security purpose.

However, complicated integration needs that require significantly complex integration
logic should also not be implemented in the API for the same reasons that business logic
should not be in the API. The overall aim should be to minimize “composition” in the
gateway (i.e. aim for 1:1 pass through, rather than 1: many invocations). The API can

call a separate application integration capability to perform this type of task following
the API layer security and any simple integration processing (e.g. a proxy).

The blurring or confusion between integration logic and business logic can cause poor
design and open a security hole in the architecture. Beyond security, it may also cause
issues with performance and maintainability.

Principle 17: Execute security for external APIs in the DMZ

First a definition - External APIs are APIs that are invoked by applications running outside
the enterprise which need to invoke business capability located inside the enterprise.
Note that external API calls can occur from APIs that are consumed by external
programmers such as partner or public scenarios but also from internal programmers
—employees of your company.

It is very common for internal programmers to work on applications such as a mobile

app or applications that deal with social networks or third-party applications that include
traffic flowing into the enterprise from outside (such as in a public cloud environment).
Do not confuse internal or external consumer with internal or external API, these are
separate concepts. This principle is discussing external APIs while the following principle
discusses internal APIs.

10

IBM Cloud

In most enterprise architectures, calls from outside the enterprise pass through a
demilitarized zone (DMZ) where security checking occurs before being allowed into
a trusted zone in the architecture where business logic is executed. As previously
described, it is important that all the security checking is performed in the DMZ prior
to allowing traffic to enter the trusted zone. Unsecured traffic that enters the trusted
zone may have access to runtimes where unsecured programs can be inserted to
perform actions that should not be allowed. Allowing traffic that is not fully secured
beyond the DMZ in order to complete security validation inside the trusted zone
should also not be allowed.

By knowing the different type of audiences for the API, you can apply different security
requirements based on the audience.

DMZ Trusted Zone
API Gateway

Back-end Application and Data

I 111 lllllll
lllllll lllllll g

Cloud Apps Data On-premise
and SaaS Stores Apps

Social Apps % Internet of
things @

Mobile and @ Business
web Apps partner Apps

Figure 1. Securing external APIs through the DMZ

Principle 18: Internal APIs need security too

Internal access attacks are far more difficult to identify and stop. Internal security issues
may occur via a rogue employee wishing to obtain/sell information, social engineering
access where an outsider obtains an employees’ credentials and can perform activities
as if they were the employee, or inadvertent errors that expose information accidentally.
The challenge is in stopping a situation where the employee is using access that they are
entitled to use. A big challenge!

APIs can play a part in managing the internal security threats as well as external.

Used as a control point for internal scenarios, APIs provide a mechanism to validate
internal access (which may be allowable) but also restrict the amount of data returned,
enforce rate limits for access, and provide an audit and logging point that can be used
to understand inappropriate access by internal requestors.

An additional thought - also beware of APIs initially intended for use by internal
consumers that are repurposed as external consumers later. There may be some broader
access allowed in the API that was defined for internal consumers that is not appropriate
for external consumers.

11

IBM Cloud

Principle 19: Understand when to manage an API
and when not to

Not every connection needs to be done through a managed API interface.

Historically applications were written in a monolithic style where internal modules
were not exposed outside the application. Modules simply call one another. Control
points are not needed within an application itself but could be of value between
applications. In newer applications written using a microservice architectural approach
the same concept still applies. Applications may be composed of many microservices
and this internal application communication does not need to be via managed API.
However, communication between different microservice applications may benefit

by being accessible via API for both consumption and security. This is shown in the
following figure.

API Gateway

uService
Microservice component

, . .
? Inter-application API } T A A T

uService uService

T Intra-application API

Application boundry - v v v

- API gateway API Gateway

pService uService ------ HService

pSerwce_ uService ViemiEs

Figure 2. Inter-application vs Intra-application communication

This is sometimes referred to as “East-West” traffic for intra-application communication
and “North-South” traffic for inter-application communication.

Using managed APIs between different applications (i.e. north-south) provides the
security and other benefits described by API enforced control points. However, this
level of security is not required for intra-application communication.

12

IBM Cloud

Principle 20: Know the expected request and response

An API receives a request and produces a result. The request payload needs to be
well-defined, and scanned for large data, depth of the recursive elements, and active
content. The request must conform to what the schema allows. The response to the

API should provide just enough data it needs to account for the situation where backend
services may inject additional data. It may or may not be appropriate for the new data be
exposed automatically to the caller.

Principle 21: Do not expose internal data structures or
program interfaces

Allowing visibility of your internal data structure or the actual set of backend parameters
to invoke a transaction, provides valuable information to a bad actor looking to access
these systems. Do not build your consumer interaction layer APIs based on the structure
of the backend systems. Rather, focus on the functionality the API is intended to provide
for the consumer. Limit the input fields to only the information the API needs to obtain
from the consumer to perform its intended task. In addition to being easier for consumers
to use (hiding the complexity of the backend), it also limits the ability of the consumer

to use additional parameters or access other parts of databases that should not be known
to valid users of the APL.

Many businesses have used backend applications, the source of the desired information,
to define the APIs to make this data available. This is a bad practice which very often
leads to exposing more capability than is required for a consumer-oriented API.

GraphQL, a newer API technology, is used to expose data-oriented information to
consumers - allowing the consumer to specify the information they wish returned
from a database. Just as with other APIs, GraphQL should not expose all the columns
of data contained in a database(s) or the structure of the database tables. It is best
to understand the target consumer and limit their potential access. Exposing the data
structures to a bad actor can enable an attack to overload or obtain information that
is not appropriate for the intended audience.

Principle 22: Use APIs to meet additional security concerns

Businesses are faced with self-imposed or government-imposed regulations for consumer
privacy and/or compliance with legal or other requirements. Frequently these are related
to accessibility and protection of personal or confidential data elements. Using APIs as
the point of control provides a secure and auditable record of protection that can be a
tool used to meet the required regulations.

Principle 23: Automate security policies whenever possible

Make security as automatic as possible. Do not require API developers to remember

to take API security related steps for auditing, logging, authentication, etc. Use security
policies that are automatically deployed across all APIs without the API creator having
to take explicit action to have them included whenever possible.

13

IBM Cloud

Principle 24: Retire old versions of APIs

Frequently multiple versions of an API may be active. This is normal. As you have users
of an old API version and introduce a new version there is often a period allowed for
migration to the new release. Once users are moved to the new release, retire the old
version of the APIL. Leaving the old version active provides an unnecessary point of entry
that can be closed. Use API management solutions that help manage the API lifecycle
through API retirement.

Principle 25: Automate security testing and monitoring

Include security tests throughout the development cycle. Run automated test scripts
frequently to ensure no holes have been opened. Monitor the environment and ensure
responses remain as expected both from a data and performance perspective.

API Gateway Security Principles

The API Gateway is a critical component in API security which has already been
mentioned several times. This section focuses specifically on principles related to
the gateway itself to ensure the gateway is as secure as possible and describes how
the gateway can support the requirements for API security.

Principle 26: Gateways must not contain general-purpose
runtimes

Separation of concerns was discussed earlier regarding why security needs to be
completed before executing business logic. This gateway principle is for the same
reason but addressing the requirement from the perspective of gateway capabilities.

As the Gateway is the runtime enforcement point for security, it is important to harden
the gateway to prevent as many security exposures as possible. To accomplish this,
gateways should be purpose built to only execute gateway functions. This includes

not having general-purpose runtimes (e.g. Java) where programs not related to gateway
functionality can be executed. It also includes eliminating other full-function off-the
-shelf software components that are subjects of frequent attacks (e.g. http servers),
Linux or other off-the-shelf operating systems, etc. Certainly, gateways need capability
to handle http requests and need to handle I/O and other operating system functions.

IBM Cloud

But the full general-purpose nature of these components needs to be made unavailable.
The gateway should act like an appliance (e.g. a router) where it is a black box with no
knowledge as to what is inside, and with the ability to only execute gateway related
function. Many enterprises will choose a purpose-built physical hardware device for
this purpose, but that is not specifically required. Software “appliances” are also
reasonable options. Updates to the gateway should be executed as firmware upgrades
and not rely on individual patches to the operating system and other components by
system administrators as the mechanism for applying maintenance.

Principle 27: Take advantage of gateway proximity

It is a good practice to locate an API gateway near the backend data it is accessing.
This is obviously good for performance but is also a benefit for security. If a business
has some applications on-premise and other applications in the cloud (or multiple
clouds), trying to force all requests through a single API Gateway would require that
after the gateway finishes its security tasks some of the traffic would travel over the
network to another location. While this can be secured, if errors occur it may open an
opportunity for a bad actor to capture information.

A better option is to have gateways in multiple locations, on-premise and in multiple
clouds as required, protecting the edge of the enterprise in each place. The APIs that
access information from the on-premise backends can be deployed on the on-premise
gateway, and the APIs that access information from cloud deployed backends can be
deployed on the cloud. This minimizes the opportunity for bad actors to access the traffic.

Of course, some APIs may need to access information from multiple locations - both
on-premise and in a cloud environment. In these cases, this API may call local modules
directly but also access remote APIs that represent the backend applications located in
another location. The remote applications are made available through an exposed API
on the gateway co-located with the other backend system.

Application 1 Application 2 Application 3
Using API's Using API’s Using API’s
v v ; v vy

On-Premise Gateway Cloud Gateway

------] Requires

H information

from a cloud
application

Figure 3. APIs access information from multiple locations

15

IBM Cloud

Principle 28: Use both internal and external gateways

The need for an external gateway to protect against security threats from outside the
enterprise is very clear. Of course, internal API traffic needs security too. Like external
security, the runtime enforcement for internal traffic is implemented in an API gateway.
It is important to understand that it is a security exposure for internal traffic to enter
the DMZ and then return directly into the trusted zone. For that reason, using the same
external gateway is not appropriate for internal traffic use cases. A separate internal
gateway should be deployed for internal traffic scenarios.

Some businesses are turning to a micro-gateway for security inside the trusted zone.
Is this a good idea? If the micro-gateway is not able to provide the identified security
principles, then probably not. The desire for a micro-gateway is for a small footprint
and fast to deploy gateway, not for less functionality. Look for a fully capable API
security gateway that can be deployed as a microservice in a container to obtain the
deployment and management qualities of service required while still ensuring the
necessary security capability.

Principle 29: Use the API gateway to handle common
security threats

The API Gateway should be able to handle common security attack models including
but not limited to:

= Inputvalidation to ensure incoming calls are of the correct structure. Check for length,
range, format, and type in the input fields. Verify requests for data returned are within
the appropriate range.

« Injection where dangerous code is embedded into an unsecured software program
to stage an attack. Most common scenarios are SQL injection and cross-site scripting.
This exposure could be accomplished by transferring untrusted data into the API as
part of a query or command.

« Denial of Service (DOS or DDOS) attacks where the attacker pushes an enormous
amount of traffic against the API or the Gateway. The API Gateway should contribute
to protecting against such attacks.

. Man-in-the-Middle attacks where the bad actor intercepts traffic between the
consumer and API provider and inserts or changes information in the request.
This is most often handled via encryption.

Principle 30: Monitor and analyze API traffic

What is a normal pattern for API traffic? Understanding what a typical pattern is and
being able to raise an alert when the traffic pattern is not typical may signify a security
exposure. Non-typical traffic may be a sign of an in-process attack or a potential security
exposure. Using real-time gateway capability to recognize this situation can head off

a big problem. Using analytic data and logging from the API management system can
also play a part.

16

IBM Cloud

Recommendations

Business APIs are a primary channel to market for a growing set of companies in all
industries and geographies. The estimated revenue associated with the API Economy
and downstream initiatives developed on top of APIs such as digital transformation
and Blockchain is incredibly large. Obtaining value through investments in this arena
is extremely attractive. Therefore, it is also an attractive area for those wishing to
maliciously attack these businesses using this channel. Security is critical to the
success of the API Economy.

We finish with a set of recommendations to help in your security initiative:
e Alerts — Set up automated alerts when abnormal situations occur.

e AI - Artificial Intelligence can help spot abnormal or out of bounds situations
and drive alerts.

e Security champions — Set up a group of security champions for your APIs.
This group is tasked with becoming experts on current state of the art security
concerns and solutions and driving security principles into the initiative.

e Model Threats — Take the perspective of both an external and internal attacker
and model how they might attempt to penetrate your security.

e Governance and compliance — Work with the overall architecture team and API
team on their governance and compliance tasks and ensure appropriate security
principles are imbedded in their efforts.

e Getting to “YES!” — Shutting off access to everything provides the highest possible
security but is not a viable option. The answer needs to be “yes” we can make this
happen. The question needs to be how to make this happen securely.

To understand more about IBM’s thoughts on Digital Business and the API Economy
visit the IBM API Economy website. IBM API Connect is IBM’s complete foundation
to Create, Secure, Manage, Test, and Monitor APIs. You can find more information
about IBM API Connect at the API Connect website. And you can also experience

a trial version of API Connect.

About the author

Alan Glickenhouse Digital Transformation and API Business
Strategist, IBM.

Alan Glickenhouse is a business strategist on the IBM API
Connect offering management team. He joined IBM in 1981

and has held numerous positions in sales, technical sales,
marketing, development and technical support. On the API
Connect team, Alan assists clients in all industries, of all sizes,
and in all geographies with their business strategy for Digital
Transformation and APIs, understanding their business direction
and existing environment (both business and technical), and
helps businesses successfully adopt a strategy that fits their
environment. Contact him at glick@us.ibm.com or @ARGlick.

17

IBM Cloud

https://www.ibm.com/cloud/api-economy/?cm_mmc=OSocial_Blog-_-Cloud_Hybrid+Cloud+-+Integration-_-WW_WW-_-Alan+Blog+Post&cm_mmca1=000020LG&cm_mmca2=10005471&
https://www.ibm.com/cloud/api-connect/?cm_mmc=OSocial_Blog-_-Cloud_Hybrid+Cloud+-+Integration-_-WW_WW-_-Alan+Blog+Post&cm_mmca1=000020LG&
https://ibm.biz/BdruUs
mailto:glick%40us.ibm.com%20?subject=
mailto:glick%40us.ibm.com%20?subject=
https://twitter.com/ARGlick

\/‘/

For more information

Visit: https://www.ibm.com/cloud/api-economy
or cloud integration:
https://www.ibm.com/cloud/integration

Follow us
YW @IBMcloud

ﬁ Facebook

Connect with us
m® LinkedIn

@& YouTube

© 2020 International Business Machines Corporation. No part of this document may
be reproduced or transmitted in any form without written permission from IBM.

U.S. Government Users Restricted Rights — use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM.

Information in these presentations (including information relating to products that
have not yet been announced by IBM) has been reviewed for accuracy as of the date of
initial publication and could include unintentional technical or typographical errors.
IBM shall have no responsibility to update this information. This document is
distributed “as is” without any warranty, either express or implied. In no event, shall
IBM be liable for any damage arising from the use of this information, including but not
limited to, loss of data, business interruption, loss of profit or loss of opportunity. IBM
products and services are warranted per the terms and conditions of the agreements
under which they are provided.

IBM products are manufactured from new parts or new and used parts.

In some cases, a product may not be new and may have been previously installed.
Regardless, our warranty terms apply.”

Any statements regarding IBM’s future direction, intent or product plans are subject to
change or withdrawal without notice.

Performance data contained herein was generally obtained in a controlled, isolated
environments. Customer examples are presented as illustrations of how those
customers have used IBM products and the results they may have achieved. Actual
performance, cost, savings or other results in other operating environments may vary.

References in this document to IBM products, programs, or services does not imply
that IBM intends to make such products, programs or services available in all
countries in which IBM operates or does business.

Workshops, sessions and associated materials may have been prepared by
independent session speakers, and do not necessarily reflect the views of IBM. All
materials and discussions are provided for informational purposes only, and are
neither intended to, nor shall constitute legal or other guidance or advice to any
individual participant or their specific situation.

It is the customer’s responsibility to insure its own compliance with legal requirements
and to obtain advice of competent legal counsel as to the identification and
interpretation of any relevant laws and regulatory requirements that may affect the
customer’s business and any actions the customer may need to take to comply with
such laws. IBM does not provide legal advice or represent or warrant that its services
or products will ensure that the customer follows any law.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM has
not tested those products about this publication and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products. IBM does not warrant the quality of any third-party
products, or the ability of any such third-party products to interoperate with IBM’s
products. IBM expressly disclaims all warranties, expressed or implied, including but
not limited to, the implied warranties of merchantability and fitness for a purpose.

The provision of the information contained herein is not intended to, and does not,
grant any right or license under any IBM patents, copyrights, trademarks or other
intellectual property right.

IBM, the IBM logo, ibm.com and [names of other referenced IBM products and
services used in the presentation] are trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service
names might be trademarks of IBM or other companies. A current list of IBM
trademarks is available on the Web at “Copyright and trademark information” at:
www.ibm.com/legal/copytrade.shtml.

IBM Cloud

https://twitter.com/IBMcloud
https://www.facebook.com/IBMCloud/
https://www.linkedin.com/company/ibm-cloud/
https://www.youtube.com/user/IBMCloud
https://www.ibm.com/cloud/infrastructure
http://www.ibm.com/legal/copytrade.shtml

