

1

Maximo JSON API Comparison
V1 - Updated: 04/26/2016

Contents

Introduction .. 2

Overview ... 2

Maximo JSON API and Maximo REST API.. 3

Maximo JSON API and OSLC REST API .. 4

2

Introduction

In Maximo 7.6.0.2, a new JSON (Javascript Object Notation) API has evolved
from the OSLC REST API (released 7.5.0.3), providing similar capabilities along
with some Usability improvements. This API can operate on existing
INTEGRATION (and OSLC) object structures and does not require the
configuration of an OSLC Resource. The API does not support the use of OSLC
namespaces and common properties, thus providing clean JSON data format.
The API does support some of the OSLC standards around querying, such as
the query parameters oslc.select and oslc.where.

Overview

The history of the MIF's support for a RESTful API began in release 7.1.x with
the REST api and then the OSLC API was added in 7.5.x. Now in 7.6.x the MIF's
support for REST has evolved to the JSON API.

At this time, you should expect that any REST API improvements/enhancements
that are provided in future versions of Maximo will be in the JSON API, not in the
REST or OSLC APIs.

With this progression, this document will hi-light the differences between the
JSON API and the two other APIs.

3

Maximo JSON API and Maximo REST API

The Maximo REST API was the first version of a RESTful API provided in 7.1.x.
The API supported both XML and JSON in the response content and supported
Form data or query parameters in order to create or update resources. The API
did not provide support for JSON data in the request to create or update
resources. The API has undergone limited enhancements since its initial release
and it lacks many of the features that were provided in the OSLC and JSON
APIs.

Below is a list that hi-lights the primary differences between the JSON and REST
APIs:

1. The REST api does support both Object Structures and MBOs as Resources

while the JSON API supports Object Structures

2. The JSON API supports the concept of using a Saved Query to retrieve
resource data, the REST API does not

3. The JSON API supports JSON data in a request to create or update a
resource, the REST API does not

4. The JSON API supports JSON data in the response while the REST api
supports either JSON or XML data

5. The JSON API provides metadata for the apis and supports a JSON schema
for each resource, the REST API has no support for either.

6. The JSON API provides support for 'bulk' processing that handles multiple
resources (which could have different actions) in a single transaction, the
REST does not support this.

4

Maximo JSON API and OSLC REST API

The OSLC API was provided in 7.5.x and was part of the work to support Maximo
OSLC enablement for both the Provider and Consumer roles. As an OSLC
Provider, Maximo enabled the OSLC REST API to 'provide' Maximo resource
data to any OSLC Consumer application. One part of that API enablement was
the support of common namespaces and properties that are used within OSLC.
To provide this support required the introduction of the OSLC Resources
application where an implementer could select an object structure and assign
OSLC-specific content.

One drawback of this API was the need to do additional configuration in Maximo
of an OSLC Object Structure and the OSLC Resource definition. Additionally,
some users who did not want to leverage the OSLC namespaces and properties
were forced to use them. These and other reasons led Maximo to provide a new
RESTful JSON API that was based on the OSLC API, however it removed the
need to use namespaces and properties and provided a clean JSON data format.
As well, it is enabled to work with 'out of box' INTEGRATION object structures,
such as MXASSET and MXWO, eliminating the need to configure additional
integration components.

Below is a list that hi-lights the primary differences between the two APIs:

1. The JSON API is based on INTEGRATION Object structures and does not

require OSLC resource definition. Although it will work with an OSLC
Resource, that configuration is unnecessary and does not add any value.

2. The JSON API does not promote the use of the OSLC namespace and

common property names.

3. The OSLC API provided a 'map' to reference linked attributes, this is replaced

in the JSON API by 'dot notation attributes' and related objects. An example is
shown below

i. /oslc/os/mxasset?oslc.select=assetnum,location.description,rel.o
penwo{wonum,description}

ii. You can link other MBOs (like location and workorders) from the

asset resource - dynamically in the URL - without predefining a
map of this data

4. The OSLC API supported the concept of search terms which allowed users to

configure "searchable" attributes at design time and then provide search

5

tokens at request time. This process has been replaced in favor of providing
the "searchable" attributes at request time along with the search tokens -
sample below

iii. /oslc/os/mxasset?oslc.searchTerms="hello","hi"&searchAttributes=

description,assetnum

5. In the JSON API, Attachments (doclinks) are support at any level in the object

structure, not just the root object as it is for the OSLC API.

6. The JSON API maintained support of query parameters of the OSLC
standard such as oslc.where, oslc.select and oslc.orderBy

7. The JSON API provides support for 'bulk' processing that handles multiple
resources (which could have different actions) in a single transaction, the
OSLC API does not support this.

6

Please send any corrections or suggestions to Tom Sarasin at tsarasin@us.ibm.com

