
1

Java UDR's:
Pushing Their Limits In
IDS 10

Hal Maner
M Systems International, Inc.

L02

8 May 2006 • 01:00 p.m. – 02:10 p.m.

Platform: Informix

2

2

Presentation Overview

Java in the Informix engine - introduction
Why do this? What are the advantages?
Java setup and configuration in IDS 10
Demo application
Application troubleshooting
Application best practices
Real world example
Summary and conclusion

This presentation is about how to create and deploy Java applications running inside the
database server. After a brief coverage of the Java environment setup in IDS 10, we will
review a full Java server side application that goes far beyond a simple static function
typically found in most literature. What I mean by that is we will see how to put together a
UDR that is made up of multiple Java classes.
We will talk about the advantages of this approach, troubleshooting techniques, application
best practices, and we will also briefly talk about an enterprise application component built
this way.

3

3

Java in IDS Introduction

Original capability came from Illustra, acquired by Informix
Corporation in 1996
Extensibility features of Illustra added to IDS 7 gave us IDS 9 (called
Informix Universal Server back then)
Now comes with IDS 9 and 10 – it is called J/Foundation
Larry Ellison, Chairman Of Oracle, about the idea of database
engine extensibility and Informix-Illustra merger in 1996: "it's like
trying to integrate a boat and a plane; there is no way in hell this can
be done…" (Source: "The Real Story Of Informix Software And Phil White" by Steve W. Martin)

Informix Dynamic Server (IDS), like in many other areas, has been the innovator and
technology leader in embedding a Java Virtual Machine (JVM) technology in a database
server. This powerful feature, called J/Foundation, has been part of IDS since version 9
(called Informix-Universal Server back then) was released following the 1996 acquisition of
Illustra. Informix-Universal server was the industry’s first “fully extensible” database.
Larry Ellison, the chairman of Oracle, at the time said this is like putting together a boat and
a plane – it can never be done.

4

4

Other example of boat and plane integration…

5

5

Advantages of UDR’s

Reduced load on network bandwidth
Better application performance compared with same functionality
in a thick client
Ease of deployment
Rich, fully object oriented, mainstream programming language
Application layer flexibility
Ease of function centralization when multiple applications access
the same database

First, let's define it: A User Defined Routine (UDR) is a routine that you create and register in the system catalog tables and
then invoke within an SQL statement. A UDR can be either a function (can accept arguments and can return values) or a
procedure (can accept arguments but does not return values).
Some of the advantages of UDR’s are:
Application speed/reduced bandwidth load: The primary reason to deploy application functionality in the form of a UDR
should be to keep this functionality where it belongs, i.e. in the server. The increasing use of the client/server and
especially web applications bring with them the need to minimize the network traffic between the client and the server.
This is true no matter how fast the connection in between may be – the less traffic there is, the faster the application will
run (and will also positively impact the performance of other applications that depend on the same “pipe” because of the
reduced load on the bandwidth). Server disk I/O intensive applications are the perfect candidate. Those of you who
developed or supported a thick client application that makes heavy use of cursors over a Wide Area Network (WAN)
connection know how important it is to have a high speed network bandwidth and how much network traffic such an
application creates. A UDR allows almost all of that to take place inside the database server, without slowing down due to
network bandwidth capacity. I should mention here that I am not advocating Java UDR’s as the best way of writing
applications – they have a specific purpose, they are a good tool and technology to use in certain application situations
(mainly, where your application development need is somewhere on the fence between writing a stored procedure and
writing a client based or server based function/executable.

Ease of deployment: Server side deployment is fast and much easier when compared to client side installation. Within a
few minutes and from a central location, new application functionality can be added in the form of a Java archive (jar) file.
Rich, standard full programming language: Instead of being limited to SQL or a proprietary stored procedure language, we
can take advantage of a modern object-oriented standard programming language for server side routines. The code is
nearly 100% portable because it is written in an industry standard programming language, Java, that work with most
industry leading databases and all industry leading operating system platforms.
Application layer flexibility refers to the fact that, again, thanks to the use of an industry standard programming language,
if, for whatever reason, you decide to run your code outside the server, you can do so with minimal work. This is not
possible to do with a proprietary stored procedure language.

Another advantage is what I will call “function centralization”. In environments where multiple applications, perhaps each
written in a different language, frequently have to perform a certain task in a common way – for example roll-up
(calculate) the total cost of a certain assembly. By implementing this common function as a UDR, you can enable all of
these applications to use the same routine with an SQL call.

6

6

Java Setup and Configuration in IDS 10

IDS 10 supports JDK version 1.4 and JDBC version 3.0.
JDK/JRE can be downloaded from java.sun.com
Install the appropriate JDK or JRE on the server, as needed. IDS
10 comes with JRE version 1.4.2 (in the directory
$INFORMIXDIR/extend/krakatoa/jre)

Now we will cover the configuration of Java in IDS 10.

IDS 10 supports JDK/JRE version 1.4 and JDBC 3.0. IDS 9.40 supports JDK/JRE version
1.3.
When you install IDS 10, a 1.4.2 version JRE is automatically installed for you in the
extend/krakatoa/jre directory under $INFORMIXDIR. This extend/krakatoa directory is
where most of the J/Foundation files are – we will need to become quite familiar with this
directory and its subdirectories.
It should be noted that you can download the right JDK/JRE for you from java.sun.com if
you do not want to use the JRE included with IDS. We will see how to configure this a
little later in the presentation.

7

7

Java Setup and Configuration in IDS 10

$INFORMIXDIR/extend

$INFORMIXDIR/extend directory.
The directory to point out here is krakatoa.
krakatoa was the code name of the product now called J/Foundation when it was first being
developed in the late nineties – this name is still used in the directories, as you see.
I should mention that I normally work with this under a Sun Solaris environment – I built
this demo application and its environment under Windows specifically for this presentation
and I typically left things at default values, so this is why you see a long INFORMIXDIR
value and my onconfig file is pretty much out of the box with the exception of J/Foundation
related parameters.

8

8

Java Setup and Configuration in IDS 10

$INFORMIXDIR/extend/krakatoa

The jar files you see in this directory make up the heart of the J/Foundation product:
jdbc.jar and krakatoa.jar. These contain the classes that allow us to run java routines in the
database server. The _g versions are the debug versions of these files. The examples
directory has some useful examples to help you get started. Also worth pointing out are a
few text files here that we will talk about more later: .jvpprops and the …jvp.log file.
Jre is the java runtime edition that comes with the database server. When you check the
java –version in the jre/bin directory here, you see that the JRE version is 1.4.2:
C:\Program Files\IBM\Informix\extend\krakatoa\jre\bin>java -version
java version "1.4.2"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.2)
Classic VM (build 1.4.2, J2RE 1.4.2 IBM Windows 32 build cn142sr1a-20050209 (JIT
enabled: jitc))

9

9

Java Setup and Configuration in IDS 10

Onconfig parameter:

SBSPACENAME sbspace1

The name of the default system sbspace.
Database server stores your java UDR jar files here.
Database server also stores your smart BLOB’s here if a

specific dbspace was not provided for them.

In our production server setups where we use UDR jar files to store here (no smart BLOBS),
50,000 pages has been an adequate size for this dbspace.

10

10

Java Setup and Configuration in IDS 10

Onconfig parameter:

VPCLASS jvp,num=1

The number of java virtual processors that the database
server should start.

This is a CPU VP…

11

11

Java Setup and Configuration in IDS 10

Onconfig parameter:

JVPJAVAHOME
C:\PROGRA~1\IBM\Informix\extend\krakatoa\jre

Directory where the jre for the database server is installed.
The default is $INFORMIXDIR/extend/krakatoa/jre.

You can set this to a value for your jre. It does not have to be under
$INFORMIXDIR/extend/krakatoa.

12

12

Java Setup and Configuration in IDS 10

Onconfig parameter:

JVPHOME C:\PROGRA~1\IBM\Informix\extend\krakatoa

Directory where the J/Foundation classes, including JDBC
classes are installed.

Default is $INFORMIXDIR/extend/krakatoa.

This is where the jdbc.jar and krakatoa.jar are installed.

13

13

Java Setup and Configuration in IDS 10

Onconfig parameter:

JVPLOGFILE
C:\PROGRA~1\IBM\Informix\extend\krakatoa\jvp.log

Java trace output and stack dumps are written to this file by
the database server.

You can choose the name of this file and you can also decide where it will reside. During
development, depending on the tracing level you chose, this file can get quite large.

14

14

Java Setup and Configuration in IDS 10

Onconfig parameter:

JVPPROPFILE
C:\PROGRA~1\IBM\Informix\extend\krakatoa\.jvpprops

This is an optional parameter. When set, it points to the
path of the java virtual processor properties file.

Trace level settings, trace verbosity settings, monitor port,
and a few other properties are set in this file.

JVP.monitor.port provides some additional debugging capabilities. You can query the state
of the individual java vp’s using a built-in function called jvpcontrol. This allows you to,
for example, find out how much memory is being used by the jvp. It is recommended
that you create this file – the properties you do not need can stay
commented out.

15

15

Java Setup and Configuration in IDS 10

Onconfig parameter:

JDKVERSION 1.4

This is the major JDK version supported by the database
server. For IDS 10, the valid values are 1.4, 1.3, and
1.2. Unless you have a specific reason to use an older
version, use 1.4.

IDS 10.00.TC3 version for Windows comes with JRE
version 1.4.2.

16

16

Java Setup and Configuration in IDS 10

Onconfig parameter:

JVPJAVALIB \bin\

This is the path to the JVM libraries relative to
JVPJAVAHOME.

This is almost always \bin\ - leave it at default.

17

17

Java Setup and Configuration in IDS 10

Onconfig parameter:

JVPJAVAVM jsig;dbgmalloc;hpi;jvm;java;net;zip;jpeg

List of the JVM libraries that the database server will load.
Unless you have very specific requirements, leave the

default in the onconfig.

18

18

Java Setup and Configuration in IDS 10

Onconfig parameter:

JVPCLASSPATH
C:\PROGRA~1\IBM\Informix\extend\krakatoa\krakatoa.jar;
C:\PROGRA~1\IBM\Informix\extend\krakatoa\jdbc.jar

This sets the CLASSPATH for the J/Foundation jar files
(krakatoa.jar and jdbc.jar) for the database server to use
during startup.

You can use the _g versions if you will be debugging, however the tracing
facilities still work with the regular versions – so far we have not needed to use
the _g versions. The directory path above, again, corresponds to
$INFORMIXDIR/extend/krakatoa.

19

19

Java Setup and Configuration in IDS 10

Onconfig parameter:

JVPARGS -Xms128m;-Xmx128m

VERY IMPORTANT!!!

This parameter is not set for you and it may not even be in
the onconfig.std file, yet it is a very important parameter.

This is where you set the options for the jvm, including the
amount of memory it can use.

This parameter allows you to set options for the JVM. An important option you can set here
is the amount of memory to allocate to the JVM. This needs to be sufficiently large – the
default is 16 MB and this is not enough for “pushing the limits”. Informix tech support
recommends (at least, they did at one point) a value not higher than 256 MB. You should
know that the UDR will primarily consume the virtual segment of the memory.

20

20

Java Setup and Configuration in IDS 10

Onconfig parameter:

JVPARGS -Xms128m;-Xmx128m

VERY IMPORTANT!!!

The onconfig line shown above allocates 128 MB to the
jvm.

If you do not set this parameter you only get 16 MB by
default.

This parameter allows you to set options for the JVM. An important option you can set here
is the amount of memory to allocate to the JVM. This needs to be sufficiently large – the
default is 16 MB and this is not enough for “pushing the limits”. Informix tech support
recommends (at least, they did at one point) a value not higher than 256 MB. You should
know that the UDR will primarily consume the virtual segment of the memory.
Let's take a moment to take a peek at my onconfig file and see some of the parameters I
have been talking about.

21

21

Java Setup and Configuration in IDS 10

Environment variable JAR_TEMP_PATH

Set it if you want temporary jar files to be stored somewhere other
than C:\tmp (Windows) or /tmp (Unix).

If this environment variable is not set and the directories mentioned
above do not exist, you will get an error when you try to install
your jar file.

Under Unix you will probably not have to worry about this, but I am including it here
because under Windows it sometimes causes a problem:
If this environment variable is not set, J/Foundation will look for C:\tmp folder under
windows and /tmp under Unix. /tmp normally exists under Unix but C:\tmp does not
always get created under Windows. You either need to create C:\tmp or set this
environment variable.

22

22

Application - Description

Demo application using the superstores_demo database.
Following some database driven sales tracking rules, it checks the
orders (orders and items tables) for a given date range and
calculates sales metrics, writing these to a table called
salescategorytotals.

A demo application will be introduced and run live here.
The business requirement is to check the sales orders for a given date range and calculate
sales money totals, plus calculate a certain "sales point" totals for various categories of
items. These categories and their respective points are defined in what I call a "rule table",
salescategoryrules. The output is written to a different table, called salescategorytotals.
The assumption here is that another application will make use of the salescategorytotals
table.

23

23

Application – Relevant Tables

salescategoryrules

salescategorytotals

stock

items

orders

The tables that are relevant to our demo are shown here.
The stock table is where the stocked items are defined. It is a part master table.
The orders and items tables are the order header and order detail tables, respectively. One
orders row may have one or more items rows.
Salescategory rules table stores the… sales category rules… For example, SWIMMING is
a sales category and there are entries in the salescategoryrules table for each stock number
that is classified as a SWIMMING related part and a corresponding number of points.

24

24

Application – stock table

Here is a look at the stock table – a part master table. Stock_num is the column we are
interested in here.

25

25

Application – orders table

Orders table keeps order header information. The order_date is the field that will be
checked against the date range in our UDR.

26

26

Application – items table

Items table is tied to the orders table by the order_num column. Along with item_num
field, this makes it a unique identifier. Each items row has a stock_num column, its
quantity ordered, and an item_subtotal column that is the money total for the line item.

27

27

Application – salescategoryrules table

This is the simple definition of a "rule": for the given category and stock_num, a number of
points are assigned. The UDR finds every order line item this stock_num appears in that
falls within the specified date range and multiplies the line item quantity by the points value
to calculate the points for that line item.

28

28

Application – salescategorytotals table

The UDR writes its results into this table.

29

29

Application – Steps To Compile and Install

Design and create your UDR (.java) classes
Compile your classes (to .class files)
Build your jar file to be installed in the database
Install your jar file in the database
You are now ready to make use of your UDR

Here are the steps: design your java classes, compile them, build a jar file with them, install
the jar file in the database.

30

30

Application – UDR (.java) classes
CategoryTotalCalculator.java

public static int calculateCategoryTotals(String startDate, String endDate)
throws SQLException

{
…
try
{

SuperStoresConnection superStoresConnection = new
SuperStoresConnection();

udrConn = superStoresConnection.connectToDatabase();
CategoryTotalGeneric categoryTotalGeneric = new

CategoryTotalGeneric(udrConn);
traceMessage = "CategoryTotalCalculator.calculateCategoryTotals

connected" ;
categoryTotalGeneric.printTraceMessage(traceZone,3,traceMessage);
categoryTotalGeneric.truncateSalesCategoryTotals();
resultCode = categoryTotalGeneric.driveCategoryTotalCalculation();

}
…

31

31

Application – UDR (.java) classes
SuperStoresConnection.java

/**
* Performs the actual connection to the database
* @return Connection object
*/
public static Connection connectToDatabase() throws SQLException
{

try
{

url = "jdbc:informix-direct:";
databaseName = "superstores_demo";
connectionParams = "";
driverToUse = "com.informix.jdbc.IfxDriver";
Class.forName(driverToUse);
udrConn =

DriverManager.getConnection(url+databaseName+connectionParams);
udrConn.setAutoCommit(false);

}
…

32

32

Application – Compiling
comp_java.bat

erase *.class
javac -source 1.4 -target 1.4 CategoryTotalCalculator.java

33

33

Application – Building Your jar File
buildcatgcalcjar.bat

erase catgcalc.jar
jar cvf catgcalc.jar *.class

34

34

Application – Installing Your jar File
execinstjar.sql

BEGIN WORK;
EXECUTE PROCEDURE sqlj.install_jar
('file:\MyDocuments\JavaUDRPaper\UDR\catgcalc.jar',
'catgcalc_jar',0);
CREATE FUNCTION calculateCategoryTotals(

startDate CHAR(10),endDate CHAR(10)
)
RETURNS INTEGER
EXTERNAL NAME

'catgcalc_jar:CategoryTotalCalculator.calculateCategoryTot
als'

LANGUAGE JAVA;
COMMIT WORK;

35

35

Application – Running
runudr.sql

EXECUTE FUNCTION calculateCategoryTotals('01/01/2005','12/31/2005');

36

36

Application - Demo

Application demo:

37

37

Application Troubleshooting

Tracing
• UDR tracing can generate messages written to the JVP

log file specified by the JVPLOGFILE onconfig
parameter.

• com.informix.udr.UDRTraceable is the name of the java
interface for tracing.

• UDR Tracing uses “trace zones” - this is a “logical”
concept where you can name multiple zones in one
UDR or one zone for all your UDR’s.

• Within each zone, you can have six devels of detail, from
zero (off) to five (superfine i.e. most detailed).

38

38

Application Troubleshooting

Tracing …continued…

In order to implement tracing in your code:

Import the com.informix.udr package and set your trace zones:

import com.informix.udr.*;
…
private static String traceZone = "DemoZone";
…

The com.informix.udr package provides you with the necessary classes for tracing, among
other things. The trace zones can be named according to your application tracing needs.
You can setup different tracing zones as your application requires, or simply set one trace
zone.

39

39

Application Troubleshooting

Tracing …continued…

In order to implement tracing in your code:

Add code in your UDR to set and send messages.

traceMessage = “This message should show in the trace log" ;
traceZoneNumber = 3; // will only print if level is 3 or higher
printTraceMessage(traceZoneName,traceZoneNumber,traceMessage);

40

40

Application Troubleshooting

Tracing …continued…

In order to implement tracing in your code:

Write a generic method to write the messages.

private UDRTraceable traceable;
…
public void printTraceMessage(String traceZone, int traceLevel,
String traceMessage)
{

traceable.tracePrint(traceZone,traceLevel,traceMessage);
}

This method can be called from anywhere in your application (as long as you have access to
the object, that is) and can send a trace message to the requested zone and level.

41

41

Application Best Practices

Most important: DO NOT FORGET TO CLOSE YOUR ResultSet
AND Statement OBJECTS!!!

… otherwise, you will run into problems and you may even cause
IDS to crash…

Closing the result set and statement objects are very important in Java in general, but
especially important with the UDR's. The increased risk with the UDR's is that you can
bring the whole database server to its knees. To do this, next slide…

42

42

Application Best Practices
Use the close() method for your ResultSet and Statement objects.

public void closeSalesCategoriesResultSet() throws SQLException
{

try
{

salesCategoriesResultSet.close();
salesCategoriesStatement.close();

}
catch (SQLException ex)
{

ex.printStackTrace();
throw ex;

}
}

ResultSet and Statement classes in java have a close() method. This
is what you need to use, as soon as you are done with that result set
or statement in your code, for example:

43

43

Application Best Practices

If you are calling your UDR from Informix-4GL, be sure to FREE the
statement, otherwise the virtual memory segment will not clear
properly – for example, use:

LET udr_statement_string = "EXECUTE FUNCTION calculateCost(?)"
PREPARE udr_statement FROM udr_statement_string
EXECUTE udr_statement USING order_number INTO udr_result_code
FREE udr_statement

As you see in this slide, not only should you be very careful about cleaning up after yourself
(i.e. closing result sets and statement objects) but also should you be careful about freeing
your statements if you are calling UDR routines with them. Now – you may have seen in
the related literature or in other presentations that Java is "safe" – in fact some of them may
sound like all memory issues of C have been cured in Java… The reality is that most of this
is true and Java is a great choice as a programming language but nothing should be taken for
granted. It is a known fact that database related objects, when left open instead of being
closed at the appropriate time, have the potential to cause memory problems. This is true
not only with Java UDR's but regular Java applications as well. The UDR's, as I mentioned
before, have the potential to do more damage though, since the whole engine is
vulnerable…

44

44

Real World Example of Java UDR’s

• Rules based configuration engines running as UDR’s.
• Global Fortune 500 company.
• Serving a geographically dispersed user base of approximately

100 in North America over a WAN connection.
• Servers currently running Solaris 10 and IDS 10 on Sun Fire V240

with two 1 Ghz processors and 2 GB of RAM.

All this sounds good but does it really work? Has it been proven, you may ask…
An industrial company in the Global Fortune 500 had a need for product (engineering)
configurators. The user base was in all regions of the United States, accessing one server in
the East Coast and one in Midwest. The connections are across a wide area network, so the
network bandwidth is an important parameter. Without completely re-architecting the
solution, adding extensilibity to the application and encapsulating the complicated, database
intensive business rules and logic on the server is made possible with the UDR technology.
Possibilities are endless – you can write a UDR that sends an e-mail, updates a website, or
do anything on the server with a single SQL command from the client.

45

45

Summary and Conclusion

Java UDR's are a good option to consider when you have to
create server based, database intensive applications.
Reduced network traffic, use of a portable, fully object oriented
language are some of the advantages of Java UDR's.
Setting up J/Foundation in IDS requires the availability of a Java
virtual machine and the configuration of several onconfig
parameters.

46

46

Summary and Conclusion

It is possible to create simple, single class UDR's as well as more
complicated ones, consisting of multiple classes and an object-
oriented application.
J/Foundation provides zone and level based tracing capabilities
useful for debugging during development and troubleshooting
during production.
You need to be careful and meticulous about closing and freeing
your statements and result sets in Java UDR's in order to avoid
memory problems.

47

47

Questions?

As mentioned before, slides will be provided on the Forum website.
Also, to those who are interested, I will be happy to e-mail you a zip file with all the scripts
and code that were covered in the presentation. Give me a business card with your e-mail
address on it, please.

48

48

Hal Maner
M Systems International, Inc.
hmaner@msystemsintl.com

Session L02
Java UDR's: Pushing Their Limits In IDS 10

