
WebSphere Liberty and Java performance

Vijay Sundaresan
STSM, WebSphere and Java Performance Architect, IBM Toronto Lab

Virtual WebSphere User Group Roadshow, Spring 2022

Agenda

Application server performance comparisons

Java optimizations for the cloud

Liberty performance across platforms

2

Please note

IBM’s statements regarding its plans, directions, and intent are subject
to change or withdrawal without notice and at IBM’s sole discretion.

Information regarding potential future products is intended to outline
our general product direction and it should not be relied on in making a
purchasing decision.

The information mentioned regarding potential future products is not a
commitment, promise, or legal obligation to deliver any material, code
or functionality. Information about potential future products may not be
incorporated into any contract.

The development, release, and timing of any future features or
functionality described for our products remains at our sole discretion.

Performance is based on measurements and projections using standard
IBM benchmarks in a controlled environment. The actual throughput or
performance that any user will experience will vary depending upon many
factors, including considerations such as the amount of
multiprogramming in the user’s job stream, the I/O configuration, the
storage configuration, and the workload processed. Therefore, no
assurance can be given that an individual user will achieve results similar
to those stated here.

3

Application server performance comparisons

4

100%

61%
68%

19%

0%

20%

40%

60%

80%

100%

120%

Open Liberty 22.0.0.2 WildFly Full 25.0.0.Final JBoss EAP 7.3.0.GA Payara 5.2021.10

P
e

rc
e

n
t

o
f

O
p

e
n

 L
ib

e
rt

y
2

2
.0

.0
.2

(h
ig

h
e

r
is

 b
e

tt
e

r)

Daytrader 8 - Throughput (higher is better)

EE8 Performance
(Daytrader8)

5

System Configuration:

SUT: LinTel – SLES 12.4, Intel(R) Xeon(R) Platinum
8180 CPU @ 2.50GHz, 4 cpus, 4GB RAM.
JDK version distributed with the docker images used
for each server instance.

100%

197% 184%

456%

0%

50%

100%

150%

200%

250%

300%

350%

400%

450%

500%

Open Liberty 22.0.0.2 WildFly Full 25.0.0.Final JBoss EAP 7.3.0.GA Payara 5.2021.10

P
e

rc
e

n
t

o
f

O
p

e
n

 L
ib

e
rt

y
2

2
.0

.0
.2

(l
o

w
e

r
is

 b
e

tt
e

r)

Daytrader 8 – First Response
(lower is better)

100%

226%

300%

421%

0%

100%

200%

300%

400%

500%

Open Liberty 22.0.0.2 WildFly Full 25.0.0.Final JBoss EAP 7.3.0.GA Payara 5.2021.10

P
e

rc
e

n
t

o
f

O
p

e
n

 L
ib

e
rt

y
2

2
.0

.0
.2

(l
o

w
e

r
is

 b
e

tt
e

r)

Daytrader 8 – Memory footprint (First Response)
(lower is better)

• Liberty outperforms
others on all metrics for
EE8 performance
(startup time and
memory footprint is
almost half, throughput is
32% better)

• Comparisons used each
application server’s
Docker image

100% 99%
89% 93%

82%

30%

0%

20%

40%

60%

80%

100%

120%

Open Liberty 22.0.0.2 WAS 9.0.5.10 Tomcat 10.0.16 WldFly Full 25.0.0.Final JBoss EAP 7.3.0.GA Payara 5.2021.10

P
e

rc
e

n
t

o
f

O
p

e
n

 L
ib

e
rt

y
2

2
.0

.0
.2

(h
ig

h
e

r
is

 b
e

tt
e

r)

Trade 7 - Throughput (higher is better)

EE7 Performance
(Trade7)

6

System Configuration:

SUT: LinTel – SLES 12.4, Intel(R) Xeon(R) Platinum
8180 CPU @ 2.50GHz, 4 cpus, 4GB RAM.
JDK version distributed with the docker images used
for each server instance.

100%
146%

317% 326%

787%

0%

100%

200%

300%

400%

500%

600%

700%

800%

900%

Open Liberty 22.0.0.2 Tomcat 10.0.16 WildFly Full 25.0.0.Final JBoss EAP 7.3.0.GA Payara 5.2021.10

P
e

rc
e

n
t

o
f

O
p

e
n

 L
ib

e
rt

y
2

2
.0

.0
.2

(l
o

w
e

r
is

 b
e

tt
e

r)

Trade 7 – First Response
(lower is better)

100%
149%

415%
488%

673%

0%

100%

200%

300%

400%

500%

600%

700%

800%

Open Liberty 22.0.0.2 Tomcat 10.0.16 WildFly Full 25.0.0.Final JBoss EAP 7.3.0.GA Payara 5.2021.10P
e

rc
e

n
t

o
f

O
p

e
n

 L
ib

e
rt

y
2

2
.0

.0
.2

(l
o

w
e

r
is

 b
e

tt
e

r)

Trade 7 – Memory footprint (First Response)
(lower is better)

• Liberty outperforms others
on all metrics for EE7
performance (startup time
and memory footprint is
50% better, throughput is
better as well)

• Comparisons used each
application server’s Docker
image

100%
94% 95%

89%

68%

54%

0%

20%

40%

60%

80%

100%

120%

Open Liberty 22.0.0.2 WAS 9.0.5.10 TomEE 8.0.9 WildFly Full 25.0.0.Final JBoss EAP 7.3.0.GA Payara 5.2021.10

P
e

rc
e

n
t

o
f

O
p

e
n

 L
ib

e
rt

y
 2

2
.0

.0
.2

(h
ig

h
e

r
is

 b
e

tt
e

r)
Acmeair Monolithic - Throughput (higher is better)

System Configuration:

SUT: LinTel – SLES 12.4, Intel(R) Xeon(R) Platinum
8180 CPU @ 2.50GHz, 4 cpus, 4GB RAM.
JDK version distributed with the docker images used
for each server instance.

EE7 Performance
(Acmeair Monolithic)

7

• Liberty outperforms others on all
metrics for EE7 performance
(startup time, throughput and
memory footprint are much
better)

• In this case Liberty throughput is
better than WAS Traditional

• Comparisons used each
application server’s Docker
image

100%

258%

408% 389%

863%

0%

200%

400%

600%

800%

1000%

Open Liberty 22.0.0.2 TomEE 8.0.9 WildFly Full 25.0.0.Final JBoss EAP 7.3.0.GA Payara 5.2021.10P
e

rc
e

n
t

o
f

O
p

e
n

 L
ib

e
rt

y
2

2
.0

.0
.2

(l
o

w
e

r
is

 b
e

tt
e

r)

Acmeair Monolithic – Memory footprint (First Response)
(lower is better)

100%

174%

320% 306%

653%

0%

100%

200%

300%

400%

500%

600%

700%

Open Liberty 22.0.0.2 TomEE 8.0.9 WildFly Full 25.0.0.Final JBoss EAP 7.3.0.GA Payara 5.2021.10

P
e

rc
e

n
t

o
f

O
p

e
n

 L
ib

e
rt

y
2

2
.0

.0
.2

(l
o

w
e

r
is

 b
e

tt
e

r)

Acmeair Monolithic – First Response
(lower is better)

100%
88% 89% 86%

18%

0%

20%

40%

60%

80%

100%

120%

Open Liberty 22.0.0.2-mp5.0 TomEE-8.0.10 mp4.x WildFly Full 25.0.0.Final mp4.x JBoss EAP 7.4.3 + XP 3.0.0 -
mp4.x

Payara Micro 5.2022.1 mp4.xP
e

rc
e

n
t

o
f

O
p

e
n

 L
ib

e
rt

y
2

2
.0

.0
.2

(h
ig

h
e

r
is

 b
e

tt
e

r)

AcmeairMS
(1 instance for each service) - Throughput (higher is better)

System Configuration:

SUT: LinTel – Ubuntu 16.04.6 LTS Intel(R) Xeon(R)

CPU E5-2699 v3 @ 2.30GHz, 2 cpus and 1gb

memory set in docker container.

JDK version distributed with the docker images used

for each server instance.

8

MicroProfile Performance
(Acmeair Microservices)

100%
130%

219%

301%

246%

0%

50%

100%

150%

200%

250%

300%

350%

Open Liberty 22.0.0.2-mp5.0 TomEE-8.0.10 mp4.x WildFly Full 25.0.0.Final mp4.x JBoss EAP 7.4.3 + XP 3.0.0 -
mp4.x

Payara Micro 5.2022.1 mp4.x
P

e
rc

e
n

t
o

f
O

p
e

n
 L

ib
e

rt
y

2
2

.0
.0

.2
(l

o
w

e
r

is
 b

e
tt

e
r)

AcmeairMS AuthService -
Memory footprint (First Response) - (lower is better)

100%

153%
180%

216%

299%

0%

50%

100%

150%

200%

250%

300%

350%

Open Liberty 22.0.0.2-mp5.0 TomEE-8.0.10 mp4.x WildFly Full 25.0.0.Final
mp4.x

JBoss EAP 7.4.3 + XP 3.0.0 -
mp4.x

Payara Micro 5.2022.1 mp4.x

P
e

rc
e

n
t

o
f

O
p

e
n

 L
ib

e
rt

y
2

2
.0

.0
.2

(l
o

w
e

r
is

 b
e

tt
e

r)

AcmeairMS AuthService - First Response
(lower is better)

• Liberty provides the most
balanced performance
across all MicroProfile
implementations (startup
time, throughput and
memory footprint are all
best-in-class)

• Comparisons used each
application server’s
MicroProfile (latest spec
version supported) Docker
image

100%

38%
52%

43%

10%

0%

20%

40%

60%

80%

100%

120%

Open Liberty
22.0.0.2 mp5.0

TomEE-8.0.10
mp4.x

WildFly Full
25.0.0.Final mp4.x

JBoss EAP 7.4.3 +
XP 3.0.0 -mp4.x

Payara Micro
5.2022.1 mp4.x

FaultToleranceSystem Configuration:

SUT: LinTel – Ubuntu 16.04.6 LTS Intel(R)

Xeon(R) CPU E5-2699 v3 @ 2.30GHz, 2 cpus

and 1gb memory set in docker container.

JDK version distributed with the docker images

used for each server instance.

• Comparisons used each
application server’s (latest spec

version) MicroProfile Docker

image

• Liberty provides the best

implementation of all the
MicroProfile features measured

using primitives focused on

different parts of the spec

MicroProfile Performance (Acmeair Microservices Primitives)

9

100%

62% 65%
57%

6%

0%

20%

40%

60%

80%

100%

120%

Open Liberty 22.0.0.2
mp5.0

TomEE-8.0.10 mp4.x WildFly Full
25.0.0.Final mp4.x

JBoss EAP 7.4.3 + XP
3.0.0 -mp4.x

Payara Micro 5.2022.1
mp4.x

JAX-RS

100%

0%

60% 56%

4%

0%

20%

40%

60%

80%

100%

120%

Open Liberty
22.0.0.2 mp5.0

TomEE-8.0.10
mp4.x

WildFly Full
25.0.0.Final mp4.x

JBoss EAP 7.4.3 +
XP 3.0.0 -mp4.x

Payara Micro
5.2022.1 mp4.x

Open Tracing

100%

82% 81%
68%

6%

0%

20%

40%

60%

80%

100%

120%

Open Liberty 22.0.0.2
mp5.0

TomEE-8.0.10 mp4.x WildFly Full
25.0.0.Final mp4.x

JBoss EAP 7.4.3 + XP
3.0.0 -mp4.x

Payara Micro 5.2022.1
mp4.x

Metrics

100%

56%

73%

56%

10%

0%

20%

40%

60%

80%

100%

120%

Open Liberty
22.0.0.2 mp5.0

TomEE-8.0.10
mp4.x

WildFly Full
25.0.0.Final mp4.x

JBoss EAP 7.4.3 +
XP 3.0.0 -mp4.x

Payara Micro
5.2022.1 mp4.x

RestClient

100%

60%
70%

62%

6%

0%

20%

40%

60%

80%

100%

120%

Open Liberty 22.0.0.2
mp5.0

TomEE-8.0.10 mp4.x WildFly Full
25.0.0.Final mp4.x

JBoss EAP 7.4.3 + XP
3.0.0 -mp4.x

Payara Micro 5.2022.1
mp4.x

Config

TechCon 2022

Liberty scales better than other frameworks (raw throughput)

System Configuration:

SUT: LinTel – SLES 12.4, Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz, 2 cpus, 2GB RAM.
JDK version distributed with the docker images used for each server instance.

10

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 5 10 20 30 40 50

R
e

q
/s

e
c

(h
ig

h
e

r
is

 b
e

tt
e

r)

Number of clients

Scaling Daytrader8 - Throughput

(higher is better)

Open Liberty 22.0.0.2

JBoss EAP 7.3.0.GA

Payara 5.2021.10

WildFly Full 25.0.0.Final

TechCon 2022

Liberty scales better than other frameworks
(throughput:memory ratio)

System Configuration:

SUT: LinTel – SLES 12.4, Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz, 2 cpus, 2GB RAM.
JDK version distributed with the docker images used for each server instance.

11

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1 5 10 20 30 40 50

M
e

m
o

ry
 r

a
ti

o

(h
ig

h
e

r
is

 b
e

tt
e

r)

Number of clients

Scaling Daytrader8 - Throughput/Memory

(higher is better)

Open Liberty 22.0.0.2

JBoss EAP 7.3.0.GA

Payara 5.2021.10

WildFly Full 25.0.0.Final

TechCon 2022

Liberty scales better than other frameworks (response time)

System Configuration:

SUT: LinTel – SLES 12.4, Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz, 2 cpus, 2GB RAM.
JDK version distributed with the docker images used for each server instance.

12

0

10

20

30

40

50

60

1 5 10 20 30 40 50

R
e

sp
o

n
se

 T
im

e
 (

m
s)

(l
o

w
e

r
is

 b
e

tt
e

r)

Number of clients

Scaling Daytrader8 - Response Time(ms)

(lower is better)

Open Liberty 22.0.0.2

JBoss EAP 7.3.0.GA

Payara 5.2021.10

WildFly Full 25.0.0.Final

Better performance with Spring Boot on Liberty
• Open Liberty 21.0.0.11 outperforms Tomcat on the Pet Clinic Spring Boot application across all metrics

• Open Liberty provides 2x throughput using less than half the memory footprint, and starts up 25% faster

13

120%
100%

125%

0%

20%

40%

60%

80%

100%

120%

140%

Open Liberty 21.0.0.11 Tomcat 10.0.10P
e

rc
e

n
t

o
f

O
p

e
n

 L
ib

e
rt

y
 2

1
.0

.0
.1

1

(l
o

w
e

r
is

 b
e

tt
e

r)

Petclinic– First Response time

(lower is better)

100%

256%

0%

50%

100%

150%

200%

250%

300%

Open Liberty 21.0.0.11 Tomcat 10.0.10

P
e

rc
e

n
t

o
f

O
p

e
n

 L
ib

e
rt

y
 2

1
.0

.0
.1

1

(l
o

w
e

r
is

 b
e

tt
e

r)

Petclinic– Memory footprint (First Response)

(lower is better)

100%

203%

0%

50%

100%

150%

200%

250%

Open Liberty 21.0.0.11 Tomcat 10.0.10

P
e

rc
e

n
t

o
f

O
p

e
n

 L
ib

e
rt

y
 2

1
.0

.0
.1

1

(l
o

w
e

r
is

 b
e

tt
e

r)

Petclinic– Memory footprint (during load)

(lower is better)

100%

50%

0%

20%

40%

60%

80%

100%

120%

Open Liberty 21.0.0.11 Tomcat 10.0.10

P
e

rc
e

n
t

o
f

O
p

e
n

 L
ib

e
rt

y
 2

1
.0

.0
.1

1

(h
ig

h
e

r
is

 b
e

tt
e

r)

Petclinic - Spring Boot throughput

(higher is better)

System Configuration:

SUT: LinTel – Ubuntu 20.04.4 LTS Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70GHz, 2 physical cores, 4GB RAM.
JDK version distributed with the docker images used for each server instance.

0

20

40

60

80

100

120

140

Java EE8 Jakarta EE9

Open Liberty : Rest CRUD application relative throughput
(higher is better)

0

20

40

60

80

100

120

140

Java EE8 Jakarta EE9

Open Liberty : PingPerf relative throughput
(higher is better)

0

20

40

60

80

100

120

Java EE8 Jakarta EE9

Open Liberty : Acmeair Monolithic relative throughput
(higher is better)

100%

14

Better throughput with Jakarta EE9 implementation

• Open Liberty Jakarta EE9 implementation has more performant REST implementation based on RestEasy

• Significant throughput benefits seen across different applications

121%

0

20

40

60

80

100

120

Java EE8 Jakarta EE9

Open Liberty : SPEC application relative throughput
(higher is better)

112%

107%
120%

100%

100%
100%

System Configuration:

SUT: LinTel – SLES 12 sp3 - Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70 GHz, 256GB RAM. 2 physical cores allocated except for SPEC which
used all 48 cores.

• Open Liberty is the most performant and versatile Java framework

• Wins across metrics : throughput, startup time, memory footprint, scaling

• Wins across programming models : EE8, EE7, MicroProfile, Spring Boot

• Wins across deployment scenarios : containers as well as bare metal

Summary: Open Liberty provides industry leading performance

15

Java optimizations for the cloud

16

17

Recognize resource

limits imposed

by environment

Use computing

resources

judiciously

Fast

start-up

Small

deployment

size

Goal : Keep each container small, scale out new container instances quickly

Computing resources ==

• Use JRE instead of JDK
• Use Jlink with JDK11 and

later releases to
minimize dependencies

• Choose smaller OS base
image, e.g. alpine

• Container awareness :
CPUs and memory limits

• Allow user to specify
heap size as a percent of
container memory size

• Use larger –Xmx default
value in containers

• Reduced memory use to
work well in shared
environment by default

• -Xtune:virtualized
enables further
reduction in CPU and
memory use

• More content in shared classes
cache (SCC) and better quality
AOT compiled code

• Embed SCC in containers
• Multi-layered SCC for different

container layers
• Portable AOT : easier container

build with embedded SCC

OpenJ9 JVM : optimized to run in containers

Native Image

Positives
1. Extremely fast startup time (less than 50 ms)
2. Small memory footprint (less than 30mb) on startup
3. Small on-disk footprint (no bytecodes, no interpreter, no

JIT etc.)
4. Very small container image size
5. Native OS executable image

Positives
1. Full Java capabilities available

• Dynamic class loading, Reflection,
Serialization

• Monitoring agents, JNI
• ….

2. Runs full suite of applications and tooling
3. Dynamically adapts to program behavior

•AOT, Interpreter, JIT compiler
Negatives
1. Only runs a subset of existing Java workloads and tooling

• Developer experience mismatch
2. Not designed for intensive / long running applications
3. Long time (tens of minutes sometimes) to build native image
4. Peak throughput is much lower than that of JVM mode
5. GC technology is not as good as in JVM mode
6. Requires work to keep up with new Java versions
7. Different technology = different bugs and behavior

Negatives
1. Runtime memory use typically higher
2. Slower startup
3. Larger on-disk footprint

Java landscape : from native image to full JVM

18

• Use Linux CRIU capability to snapshot/restore Liberty process

• Linux CRIU snapshots process state including memory pages,
file handles, network connections

• Liberty and OpenJ9 run pre-snapshot and post-restore hooks
to enable seamless user experience

What is Liberty Instant On ?

Liberty JVM starts
up

Liberty JVM reaches
snapshot point

Liberty JVM runs pre
snapshot hooks

Liberty JVM initiates
snapshot

Build time

Liberty JVM exits
after snapshot

Restore Liberty JVM
from snapshot

Liberty JVM runs
post restore hooks

Run time

Restore Liberty JVM
from snapshot

Liberty JVM runs
post restore hooks

Run time

Goal : “instant on” without limiting programming model/capabilities substantially

Liberty JVM
continues running

Liberty JVM
continues running

19

Linux CRIU capable of reducing startup time dramatically

• ~10X reduction in first response time by using Liberty Instant On prototype using CRIU

• Liberty Instant On is an effort to explore productization of CRIU use with Liberty

• Main design goals

• Usability : make it easy for an end user to consume the feature

• Functionality : make it possible for end user to run their application without changes

20

0

1000

2000

3000

4000

5000

6000

Liberty baseline Liberty Instant On prototype

PingPerf - First Response

Time(ms)

(lower is better)

0

1000

2000

3000

4000

5000

6000

Liberty baseline Liberty Instant On prototype

Rest CRUD - First Response

Time(ms)

(lower is better)

0

1000

2000

3000

4000

5000

6000

Liberty baseline Liberty Instant On prototype

Daytrader7 - First Response

Time(ms)

(lower is better)

1470

128

3082

213

5462

310

System Configuration:

SUT: LinTel – SLES 15 sp3 - Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz, 2 physical cores(4 cpu), 32GB RAM.

Liberty will make it easy to specify the startup phase where to take a snapshot
• After we have started up all the features, or we have started up the application
• SPI allows Liberty features and user features to participate in the prepare/restore steps

Pre-requisites packaged into Liberty container image to avoid user having to do so
• Brings the right versions of Liberty, OpenJ9, CRIU, OS together via the Liberty docker file
• Specifies command line options needed to acquire the relevant privilege levels

Make it easy for user to build Liberty application container image with a snapshot
• Run application until Liberty initiates CRIU snapshot if the user requests it
• Bundles CRIU snapshot in new layer as part of Liberty application container build step

Sensible Liberty defaults to make end user experience as seamless as possible
• Tries to restore from CRIU snapshot automatically if snapshot files are detected
• Maximizes chances of successful restore, do not penalize JVM mode startup code paths
• If CRIU restore failed for some reason, start Liberty in JVM mode

Liberty Instant On : making it easy to use

21

Co-operative “hook” architecture across Liberty/OpenJ9 will perform fix-ups
• Checkpoint hooks run before snapshot is taken, Restore hooks run after restore
• Can specify ordering amongst the different hook methods to run
• Can specify if a hook is to be run either in single/multi threaded periods

Liberty/OpenJ9 hooks will handle differences in snapshot and restore environments
• CPU versions, number of CPUs, amount of RAM, different locale, timezone etc.
• Immutable variables or variables from restore (deployment) environment, e.g. for config

Liberty/OpenJ9 will remove any Java security “state” from the snapshot
• Only instantiate a barebones security provider and clear it before snapshot is taken
• Instantiate a full function security provider upon restore

Liberty/OpenJ9 will preserve “expected” application behaviors
• Different processes restored from one snapshot use different Random seeds
• Timer instances restored from snapshot must behave normally
• Snapshot taken before ports are opened, connections established after restore

Liberty Instant On : making it easy to try existing apps

22

JVM client identifies methods to compile, but asks server to do JIT compiles securely
• JIT server asks questions to the client JVM (about classes, environment, etc.)

• JIT server sends generated code back to be installed in JVM client’s code cache

• Decoupling of JIT from the JVM allows the client and the JIT to be scaled out independently

• JIT server is a supported feature in OpenJ9 on Linux X86 and Power platforms

What is JIT server ?

23

Benefits of remote compilation at JIT server

• Remove JIT induced CPU and memory spikes from JVM clients
• With JIT server, resource consumption driven by the Java application
• Customers can right size their containers without considering JIT
• Smaller application containers since JIT activity is remote
• Reduction in cost from smaller containers
• Better performance from increased container density

• Faster time to ramp up to peak throughput
• JIT server can have more CPU and memory than client
• More compilations can be done in parallel than at client
• AOT code caching at the server further improves ramp up
• Particularly important with a horizontal pod auto-scaler (HPA)

• Future : JIT server can do complex compiler analyses
• May not be feasible in a traditional (in-process JIT) mode

24

Liberty performance across platforms

25

Default JCE provider in IBM SDK for Java 8 SR7 was changed on all platforms except z/OS

• Old defaults : IBMJCE and IBMJCEFIPS

• New defaults : IBMJCEPlus and IBMJCEPlusFIPS

What is IBMJCEPlus ?

• Improves performance of several JCE algorithms used for authentication, encryption

• Based on existing IBM component called GSKit that is based on OpenSSL

• OpenSSL has a large set of crypto algorithms that are extremely well tuned across platforms

• IBMJCEPlus performs very well by offloading cryptography work to GSKit bundled with the JDK

• TLS 1.3 support : newer algorithms required by TLS 1.3 are supported and accelerated

• Some small number of capabilities implemented by IBMJCE are not implemented in IBMJCEPlus

• New providers are available on z/OS as well, but not default (though it may change in future)

IBMJCEPlus is now the default JCE provider on most platforms

26

Liberty TLS 1.2 throughput improvements in IBM JDK8 SR7

27

•TLSv1.2 with https.cipherSuites=TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (sessions reused)
•Significant improvement in TLS overhead with IBMJCEPlus provider made default in IBM JDK8 SR7

0

100

200

IBM JDK8 SR6 IBM JDK8 SR7

Liberty Daytrader7 throughput

comparison with TLS 1.2 on Linux X86

(higher is better)

0

100

200

300

IBM JDK8 SR6 IBM JDK8 SR7

Liberty Daytrader7 throughput comparison

with TLS 1.2 on Linux POWER LE (higher is

better)

0

100

200

IBM JDK8 SR6 IBM JDK8 SR7

Liberty Daytrader7 throughput comparison

with TLS 1.2 on Windows X86 (higher is

better)

0

50

100

150

200

IBM JDK8 SR6 IBM JDK8 SR7

Liberty Daytrader7 throughput comparison

with TLS 1.2 on AIX POWER (higher is better)

0

20

40

60

80

100

120

IBM JDK8 SR6 IBM JDK8 SR7

Liberty Daytrader7 throughput comparison

with TLS 1.2 on Linux Z (higher is better)

Note : IBMJCE was very performant on IBM Z and
so the switch to IBMJCEPlus in IBM JDK8 SR7 did
not improve performance on Linux on Z

Large throughput improvements on X86 and
POWER platforms were seen out-of-the-box for
most JCE algorithms

100%

202%

100%

279%
100% 101%

100%

171%
100%

179%

Liberty TLS 1.2 throughput improvements in IBM JDK8 SR7

28

•TLSv1.2 with https.cipherSuites=TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 (sessions reused)
•Significant improvement in TLS overhead with IBMJCEPlus provider made default in IBM JDK8 SR7

0

100

200

IBM JDK8 SR6 IBM JDK8 SR7

Liberty Daytrader7 throughput

comparison with TLS 1.2 on Linux X86

(higher is better)

0

100

200

300

IBM JDK8 SR6 IBM JDK8 SR7

Liberty Daytrader7 throughput comparison

with TLS 1.2 on Linux POWER LE (higher is

better)

0

100

200

IBM JDK8 SR6 IBM JDK8 SR7

Liberty Daytrader7 throughput comparison

with TLS 1.2 on Windows X86 (higher is

better)

0

50

100

150

200

IBM JDK8 SR6 IBM JDK8 SR7

Liberty Daytrader7 throughput comparison

with TLS 1.2 on AIX POWER (higher is better)

0

20

40

60

80

100

120

IBM JDK8 SR6 IBM JDK8 SR7

Liberty Daytrader7 throughput comparison

with TLS 1.2 on Linux Z (higher is better)

Note : IBMJCE was very performant on IBM Z and
so the switch to IBMJCEPlus in IBM JDK8 SR7 did
not improve performance on Linux on Z

Large throughput improvements on X86 and
POWER platforms were seen out-of-the-box for
most JCE algorithms

100%

209%

100%

263%

100% 100%

100%

172%
100%

183%

POWER10 improved Java and Liberty throughput significantly

29

Application Per-core POWER10/POWER9
throughput ratio

Per-socket POWER10/POWER9
throughput ratio

Java SE transactional
benchmark

1.35X 1.6X

Liberty Daytrader7
(Java EE7) benchmark

1.6X 2X

Above results were collected on Linux POWER LE but AIX results are similar
POWER10 socket has 15 cores, POWER9 socket has 12 cores leading to additional per-socket differences

•Liberty on OpenShift (OCP) comparison running on POWER10 vs Intel CascadeLake
•POWER10 achieved ~4x pod density while maintaining similar transaction latency

•POWER10 technology that helps Liberty and Java applications
•Larger L2 cache (2X), higher memory bandwidth, more sophisticated instruction pipelines

Java and Liberty performance on IBM Z

30

The new IBM Telum chip

will power the next generation of
IBM Z systems

Stay tuned for more on this front as
Java will be exploiting IBM Telum
features for performance!

• Historical trend is for a good uplift in WAS
and Liberty throughput performance from
every new hardware-software generation

• New cache structure, SIMD and crypto
enhancements will be exploited

• Open Liberty + OpenJ9 : an awesome combination to run Java

• Open Liberty : the most flexible framework for all deployments

• Exciting innovations coming for Liberty in containers and on IBM Systems

• Stay current : performance features being released through continuous delivery

Summary : Innovations galore in Java and Liberty performance

31

TechCon 2022

72 live virtual sessions in 6 tracks

• Application Integration

• AIOps & IT Automation

• Cloud Native Dev & App Mod

• Messaging & Connectivity

• API Management

• Observability & DevOps

Top 3 Reasons To
Attend:

• In depth, interactive
technical sessions

• Access to the top IBM
Architects and
Engineers

• Insights from a Tech
Industry legend,
Steve Wozniak, each
day

Audience:

• Architects
• Developers
• Practitioners
• LOB leaders

Targets:
• 2500 registrations
• 1200 attendees

open

here

https://bzb.tools.ibm.com/TechCon2022
https://w3.ibm.com/w3publisher/ibm-d-ai-automation-americas/events/automation-events/ibm-techcon-2022

Join the WAS CAB
WebSphere Customer Advisory Board

© 2022 IBM Corporation 33

Email:
claudiab@us.ibm.com

Webex:
https://ibm.webex.com/meet/claudiab

Community Resource:
http://ibm.biz/WASCABCommunityResources

Sign up:
http://ibm.biz/WebSphereAdvisoryBoard

Weekly meetings

Thursday and Friday
9:15 am ET

Join

Monthly meetings

Time zone friendly
sessions

Join

Other Programs

⎼ Feedback Programs
⎼ Previews, Demos
⎼ Labs, workshops
⎼ 1-on-1

Engage at your own pace:

⎻ Stay in the loop at meetings

⎻ Share solutions and pain points

⎻ Connect with other customers

⎻ Access to resources and experts

⎻ Customized meetings

⎻ Special offers

⎻ All Partners are welcome

We’re here to help

Join 350+ other members
Be part of customer round tables
and deep dive discussions

mailto:claudiab@us.ibm.com
https://ibm.webex.com/meet/claudiab
http://ibm.biz/WASCABCommunityResources
http://ibm.biz/WebSphereAdvisoryBoard
http://ibm.biz/WebSphereAdvisoryBoard
http://ibm.biz/WebSphereAdvisoryBoard
http://ibm.biz/WebSphereAdvisoryBoard
http://ibm.biz/WebSphereAdvisoryBoard
https://ibm.biz/join-a-WUG

Be heard and get
a chance at $100

The annual WebSphere &
Liberty Community survey is
underway, and two survey
participants will win a $100
gift card.

Help shape future offerings,
services, and events!

Go to the survey

https://www.surveygizmo.com/s3/6725727/Community-Survey-2022
https://www.surveygizmo.com/s3/6725727/Community-Survey-2022

Open Liberty

Useful Links

Why choose Liberty
for Microservices
https://ibm.biz/6ReasonsW
hyLiberty

Choosing the right
Java runtime
https://ibm.biz/ChooseJava
Runtime

How to approach
application modernization
https://ibm.biz/ModernizeJa
vaApps

Open Liberty Site
https://www.openliberty.io

Open Liberty Guides
https://www.openliberty.io/
guides https://openliberty.io

https://ibm.biz/6ReasonsWhyLiberty
https://ibm.biz/ChooseJavaRuntime
https://ibm.biz/ModernizeJavaApps
https://www.openliberty.io/
https://www.openliberty.io/guides
http://ibm.biz/Mono2Micro
http://ibm.biz/Mono2Micro
https://openliberty.io/

Explore Liberty & Runtimes

Read Watch

Join

Forrester’s:

Total Economic

Impact of Liberty

within WebSphere

Hybrid Edition

Liberty: reducing

costs and increasing

agility in hybrid-cloud

WAS & Liberty

Community

Read

CCS Insight Report:

Renewal and

Transition for Java

Technology

Watch

Java Revolution

through Renewal and

Transition

https://www.ibm.com/account/reg/us-en/signup?formid=urx-51239
https://ibm.webcasts.com/starthere.jsp?ei=1535048&tp_key=e024f1d24f
ibm.biz/IBMExpertTV-LetsCode
https://www.ibm.com/account/reg/us-en/signup?formid=urx-51239
https://ibm.webcasts.com/starthere.jsp?ei=1535048&tp_key=e024f1d24f
https://community.ibm.com/community/user/wasdevops/communities/community-home?CommunityKey=5c4ba155-561a-4794-9883-bb0c6164e14e
https://www.ibm.com/account/reg/us-en/signup?formid=urx-51239
https://www.ibm.com/account/reg/us-en/subscribe?formid=urx-40078
https://ibm.webcasts.com/starthere.jsp?ei=1535048&tp_key=e024f1d24f
https://ibm.webcasts.com/starthere.jsp?ei=1535853&tp_key=9c1b4dc4e4

Thank you.

