

New IBM MQ v9.3

In 2016 MQ introduced a dual Long Term Support and a Continuous Delivery model.

Continuous Delivery

New CD versions of MQ are released approximately every four months, incrementally introducing new product capabilities.

Intended for those that can continually integrate.

Long Term Support

Approximately every two years a new LTS version is released, rolling up many of the CD capabilities into a release with 5+3 support attached.

Required by those looking for fixed function.

Mix and Match

Both are available under the same license.

Both can interoperate, just like any previous version of MQ.

All the function delivered in the 9.2.x CD releases is available in the long term support release **V9.3 LTS**

IBM MQ 9.3 LTS, enhancements since 9.2 LTS

Simplified Linux install	Dspmqinst for IBM i	Stream MQ Appliance error logs	MQ Console application quick start	Key repository passwords	Idempotent MQSC DELETE commands	Hardware accelerated compression for AIX	Non-OS user authorisations	TLS 1.3 across all protocols	TLS 1.3 support for MQIPT
Encrypted MQTT channel passphrases	TLS-only communication switch	Streaming queues	Multiple queue manager certificates for MQIPT	TLS enabled .NET XA monitor	Cryptographic hardware support for client passwords	PKCS#12 key repository support	SNI hostname support for channel routing	Uniform Cluster support for request/reply flows	Transaction boundary aware Uniform Cluster
Uniform Cluster aware MDBs	IBM MQ scaler for KEDA	Apache Qpid JMS support over AMQP	Point-to-point support for AMQP	Java 17 support for applications	MQ Console remote queue manager support	Jakarta Messaging 3.0 support	64-bit RBA default for z/OS	MQ Appliance synchronous DR replication	Disk encryption for the MQ Appliance
OpenShift Operator managed rolling upgrade	OpenShift support for zLinux and Power	OpenShift Prometheus integration with ServiceMonitor	Helm chart sample for Kubernetes deployments	Client attached dead-letter handler	MQ Appliance failed resource action control	IBM MQ on Cloud LogDNA integration	Raft based Native HA for OpenShift	Transfer logging for Managed File Transfer	AT-TLS support for z/OS
Separate statistics and accounting intervals for z/OS	Browse support for AMQP applications	Start/stop of MFT resource monitors	Redistributable MFT Logger	MFT managed call control over REST	IBM MQ AsyncAPI binding	AsyncAPI code generator for IBM MQ JMS applications	Queue depth SMF data for z/OS	.NET 6 application support	Extended REST API message properties

Brand new for IBM MQ 9.3 (since 9.2.5 CD)

Simplified Linux install	Dspmqinst for IBM i	Stream MQ Appliance error logs	MQ Console application quick start	Key repository passwords	Idempotent MQSC DELETE commands	Hardware accelerated compression for AIX	Non-OS user authorisations	TLS 1.3 across all protocols	TLS 1.3 support for MQIPT
Encrypted MQTT channel passphrases	TLS-only communication switch	Streaming queues (for z/OS)	Multiple queue manager certificates for MQIPT	TLS enabled .NET XA monitor	Cryptographic hardware support for client passwords	PKCS#12 key repository support	SNI hostname support for channel routing	Uniform Cluster support for request/reply flows	Transaction boundary aware Uniform Cluster
Uniform Cluster aware MDBs	IBM MQ scaler for KEDA	Apache Qpid JMS support over AMQP	Point-to-point support for AMQP	Java 17 support for applications	MQ Console remote queue manager support	Jakarta Messaging 3.0 support	64-bit RBA default for z/OS	MQ Appliance synchronous DR replication	Disk encryption for the MQ Appliance
OpenShift Operator managed rolling upgrade	OpenShift support for zLinux and Power	OpenShift Prometheus integration with ServiceMonitor	Helm chart sample for Kubernetes deployments	Client attached dead-letter handler	MQ Appliance failed resource action control	IBM MQ on Cloud LogDNA integration	Raft based Native HA for OpenShift	Transfer logging for Managed File Transfer	AT-TLS support for z/OS
Separate statistics and accounting intervals for z/OS	Browse support for AMQP applications	Start/stop of MFT resource monitors	Redistributable MFT Logger	MFT managed call control over REST	IBM MQ AsyncAPI binding	AsyncAPI code generator for IBM MQ JMS applications	Queue depth SMF data for z/OS	.NET 6 application support	Extended REST API message properties

Applications

Simplified Linux install	Dspmqinst for IBM i	Stream MQ Appliance error logs	MQ Console application quick start	Key repository passwords	Idempotent MQSC DELETE commands	Hardware accelerated compression for AIX	Non-OS user authorisations	TLS 1.3 across all protocols	TLS 1.3 support for MQIPT
Encrypted MQTT channel passphrases	TLS-only communication switch	Streaming queues	Multiple queue manager certificates for MQIPT	TLS enabled .NET XA monitor	Cryptographic hardware support for client passwords	PKCS#12 key repository support	SNI hostname support for channel routing	Uniform Cluster support for request/reply flows	Transaction boundary aware Uniform Cluster
Uniform Cluster aware MDBs	IBM MQ scaler for KEDA	Apache Qpid JMS support over AMQP	Point-to-point support for AMQP	Java 17 support for applications	MQ Console remote queue manager support	Jakarta Messaging 3.0 support	64-bit RBA default for z/OS	MQ Appliance synchronous DR replication	Disk encryption for the MQ Appliance
OpenShift Operator managed rolling upgrade	OpenShift support for zLinux and Power	OpenShift Prometheus integration with ServiceMonitor	Helm chart sample for Kubernetes deployments	Client attached dead-letter handler	MQ Appliance failed resource action control	IBM MQ on Cloud LogDNA integration	Raft based Native HA for OpenShift	Transfer logging for Managed File Transfer	AT-TLS support for z/OS
Separate statistics and accounting intervals for z/OS	Browse support for AMQP applications	Start/stop of MFT resource monitors	Redistributable MFT Logger	MFT managed call control over REST	IBM MQ AsyncAPI binding	AsyncAPI code generator for IBM MQ JMS applications	Queue depth SMF data for z/OS	.NET 6 application support	Extended REST API message properties

Security

Simplified Linux install	Dspmqinst for IBM i	Stream MQ Appliance error logs	MQ Console application quick start	Key repository passwords	Idempotent MQSC DELETE commands	Hardware accelerated compression for AIX	Non-OS user authorisations	TLS 1.3 across all protocols	TLS 1.3 support for MQIPT
Encrypted MQTT channel passphrases	TLS-only communication switch	Streaming queues	Multiple queue manager certificates for MQIPT	TLS enabled .NET XA monitor	Cryptographic hardware support for client passwords	PKCS#12 key repository support	SNI hostname support for channel routing	Uniform Cluster support for request/reply flows	Transaction boundary aware Uniform Cluster
Uniform Cluster aware MDBs	IBM MQ scaler for KEDA	Apache Qpid JMS support over AMQP	Point-to-point support for AMQP	Java 17 support for applications	MQ Console remote queue manager support	Jakarta Messaging 3.0 support	64-bit RBA default for z/OS	MQ Appliance synchronous DR replication	Disk encryption for the MQ Appliance
OpenShift Operator managed rolling upgrade	OpenShift support for zLinux and Power	OpenShift Prometheus integration with ServiceMonitor	Helm chart sample for Kubernetes deployments	Client attached dead-letter handler	MQ Appliance failed resource action control	IBM MQ on Cloud LogDNA integration	Raft based Native HA for OpenShift	Transfer logging for Managed File Transfer	AT-TLS support for z/OS
Separate statistics and accounting intervals for z/OS	Browse support for AMQP applications	Start/stop of MFT resource monitors	Redistributable MFT Logger	MFT managed call control over REST	IBM MQ AsyncAPI binding	AsyncAPI code generator for IBM MQ JMS applications	Queue depth SMF data for z/OS	.NET 6 application support	Extended REST API message properties

Availability

Simplified Linux install	Dspmqinst for IBM i	Stream MQ Appliance error logs	MQ Console application quick start	Key repository passwords	Idempotent MQSC DELETE commands	Hardware accelerated compression for AIX	Non-OS user authorisations	TLS 1.3 across all protocols	TLS 1.3 support for MQIPT
Encrypted MQTT channel passphrases	TLS-only communication switch	Streaming queues	Multiple queue manager certificates for MQIPT	TLS enabled .NET XA monitor	Cryptographic hardware support for client passwords	PKCS#12 key repository support	SNI hostname support for channel routing	Uniform Cluster support for request/reply flows	Transaction boundary aware Uniform Cluster
Uniform Cluster aware MDBs	IBM MQ scaler for KEDA	Apache Qpid JMS support over AMQP	Point-to-point support for AMQP	Java 17 support for applications	MQ Console remote queue manager support	Jakarta Messaging 3.0 support	64-bit RBA default for z/OS	MQ Appliance synchronous DR replication	Disk encryption for the MQ Appliance
OpenShift Operator managed rolling upgrade	OpenShift support for zLinux and Power	OpenShift Prometheus integration with ServiceMonitor	Helm chart sample for Kubernetes deployments	Client attached dead-letter handler	MQ Appliance failed resource action control	IBM MQ on Cloud LogDNA integration	Raft based Native HA for OpenShift	Transfer logging for Managed File Transfer	AT-TLS support for z/OS
Separate statistics and accounting intervals for z/OS	Browse support for AMQP applications	Start/stop of MFT resource monitors	Redistributable MFT Logger	MFT managed call control over REST	IBM MQ AsyncAPI binding	AsyncAPI code generator for IBM MQ JMS applications	Queue depth SMF data for z/OS	.NET 6 application support	Extended REST API message properties

Operations

Simplified Linux install	Dspmqinst for IBM i	Stream MQ Appliance error logs	MQ Console application quick start	Key repository passwords	Idempotent MQSC DELETE commands	Hardware accelerated compression for AIX	Non-OS user authorisations	TLS 1.3 across all protocols	TLS 1.3 support for MQIPT
Encrypted MQTT channel passphrases	TLS-only communication switch	Streaming queues	Multiple queue manager certificates for MQIPT	TLS enabled .NET XA monitor	Cryptographic hardware support for client passwords	PKCS#12 key repository support	SNI hostname support for channel routing	Uniform Cluster support for request/reply flows	Transaction boundary aware Uniform Cluster
Uniform Cluster aware MDBs	IBM MQ scaler for KEDA	Apache Qpid JMS support over AMQP	Point-to-point support for AMQP	Java 17 support for applications	MQ Console remote queue manager support	Jakarta Messaging 3.0 support	64-bit RBA default for z/OS	MQ Appliance synchronous DR replication	Disk encryption for the MQ Appliance
OpenShift Operator managed rolling upgrade	OpenShift support for zLinux and Power	OpenShift Prometheus integration with ServiceMonitor	Helm chart sample for Kubernetes deployments	Client attached dead-letter handler	MQ Appliance failed resource action control	IBM MQ on Cloud LogDNA integration	Raft based Native HA for OpenShift	Transfer logging for Managed File Transfer	AT-TLS support for z/OS
Separate statistics and accounting intervals for z/OS	Browse support for AMQP applications	Start/stop of MFT resource monitors	Redistributable MFT Logger	MFT managed call control over REST	IBM MQ AsyncAPI binding	AsyncAPI code generator for IBM MQ JMS applications	Queue depth SMF data for z/OS	.NET 6 application support	Extended REST API message properties

Applications Security Availability

Operations

Appliance z/OS Containers Software Cloud

Webinar: Ensure Data Availability and Integrity with the new IBM MQ Appliance M2003

Please join us Thursday, August 11th, 2022 at 12:00 PM EDT.

Register to join here

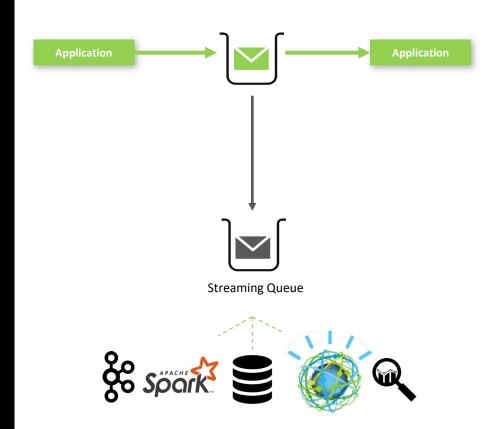
The IBM MQ Appliance M2003 brings together next-generation hardware and IBM MQ firmware, packed with the latest updates, to provide a complete messaging solution that delivers enhanced security options and higher performance than its predecessor, the M2002 MQ Appliance.

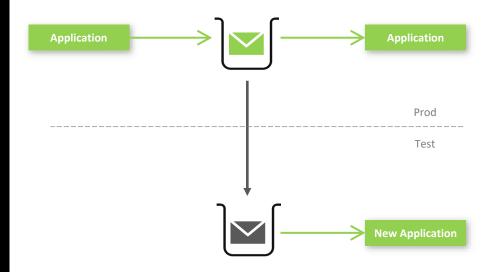
Join us to learn more about the latest features in the M2003 and how IBM MQ delivers a secure and reliable messaging solution for fast and cost-effective integration for many types of business including retail, manufacturing, and commercial payments.

Innovation

Insight to your data

Stream MQ data to new applications

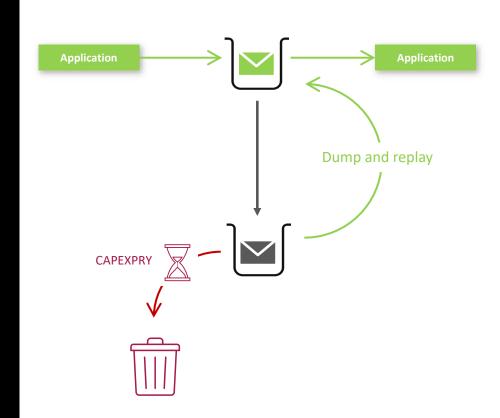

Tap into the value of existing data flowing over MQ by making message data available to Kafka, AI, and analytics applications with zero impact to the existing applications or their messages, and without a need for re-architecting your message flows.


Tap into the value of existing data flowing over MQ by making message data available to Kafka, AI, and analytics applications with **zero impact to the existing applications or their messages**, and without a need for re-architecting your message flows.

- **1. Streaming Processing** to accelerate time to insight from existing data.
- **2. Real world data** to accurately simulate production workloads to test the impact of changes on applications.
- 3. Auditing and Replay of data in the event of disasters. Auditing and replay use cases require exact duplicates of message content as well as message attributes including Message IDs, Correlation IDs etc.

Can Streaming Queues help with production rollouts?

Yes, generate a stream of production messages to test your new environment and application versions

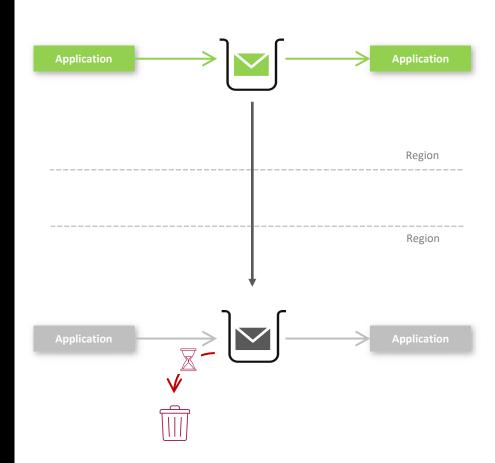

So, can I use MQ for **event streaming**?

Not exactly, but if you're asking...

Can I keep a **message history** for replay?

Yes!

https://community.ibm.com/community/user/integration/blogs/matthew-whitehead1/2022/04/30/stream-queues-with-capexpry


So, can I use Streaming Queues for DR?

Perhaps...

What is your DR objective?

Streaming queues can replicate the messages from certain queues to another queue manager, but not the consumption of those messages.

So if you're looking for a safe copy of the messages, it may fit a specific requirement.

Applications

Making it easy to benefit from MQ in your applications

Expanding application choice

MQ supports many protocols and APIs. MQ has been expanding these to meet new requirements and environments

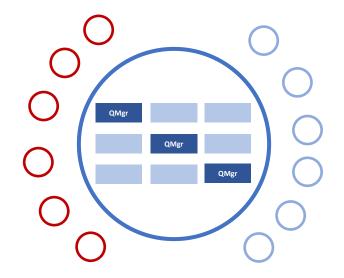
REST Messaging Provides a very simple way to get messages in and out of your MQ system (Latest: message property support with 9.2.5 CD)

Support for AMQP 1.0 clients to connect and interoperate with any other MQ application. Messaging behaviour follows Apache Qpid JMS, widening the choice of open source clients even further (enhanced in IBM MQ 9.2.1)

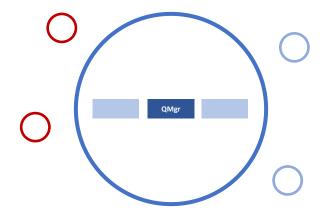
Define your MQ messaging endpoints and build applications with AsyncAPI

github.com/ibm-messaging/mq-asyncapi-bindings github.com/ibm-messaging/mq-asyncapi-java-template

{REST }



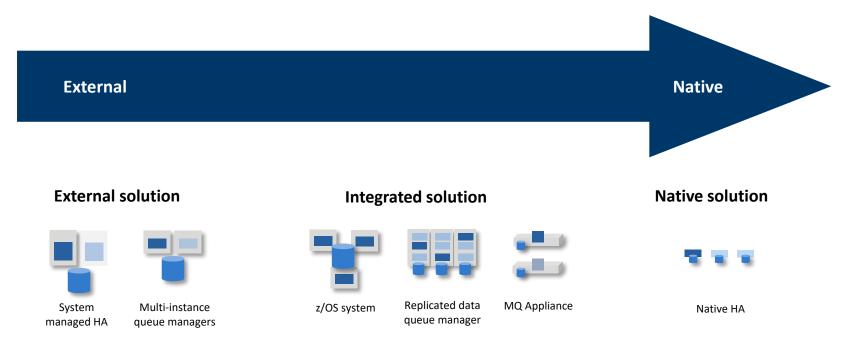
Availability and scalability


Horizontal scaling with data replication for consistent always-on cloud deployments

Active/active workload balancing

Horizontal scaling with data replication for consistent always-on cloud deployments

Active/active workload balancing



MQ message availability

Protecting your critical data

Preventing loss and duplication of messages in the event of a failure

Data resiliency: messages are protected from a system failure **Automatic recovery:** messages are quickly available following a failure

MQ Native HA

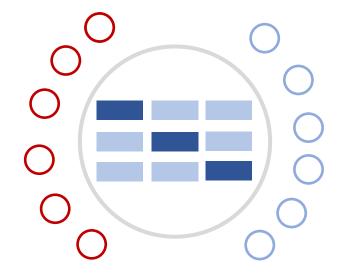
Messages persisted in three locations, e.g. across availability zones

Exact replicas, maintaining configuration, message order, transactional state

No external dependencies, simple storage requirements, e.g. block storage

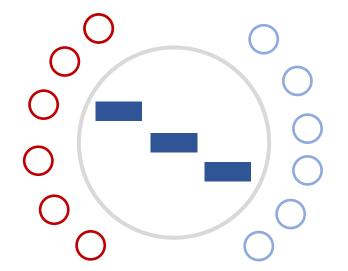
RAFT based Leader/follower quorum ensures consistency and rapid failure detection and recovery

Always-on

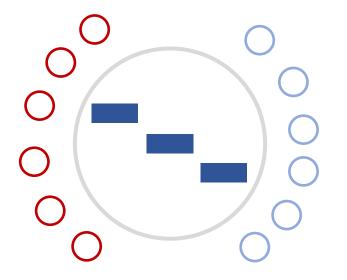

Building scalable, active-active, solutions

Active/active workload balancing

Dat con


Horizontal scaling with data replication for consistent always-on cloud deployments

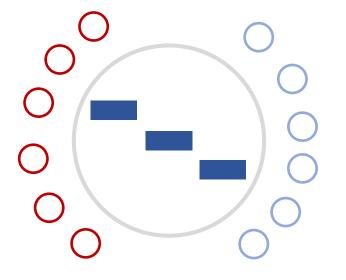
Active/active workload balancing



Horizontal scaling for always-on cloud deployments

Active/active workload balancing

Active/active workload balancing



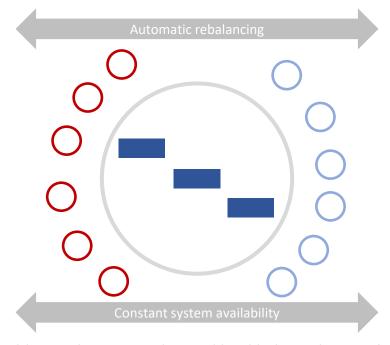
Multiple active queue managers

Messages workload balanced across application instances

Application connections distributed across the queue managers

Active/active workload balancing

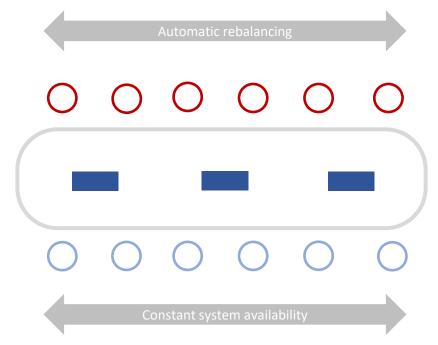
Multiple active queue managers


Messages workload balanced across application instances

Application connections distributed across the queue managers

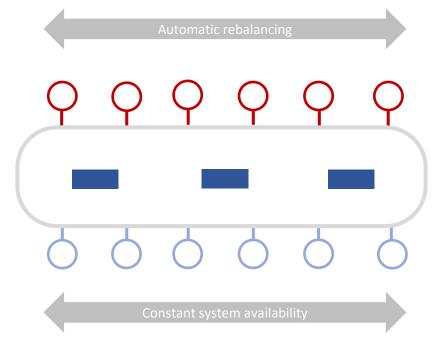
z/OS: Queue Sharing Group

Distributed: **Uniform Cluster**


Uniform Cluster

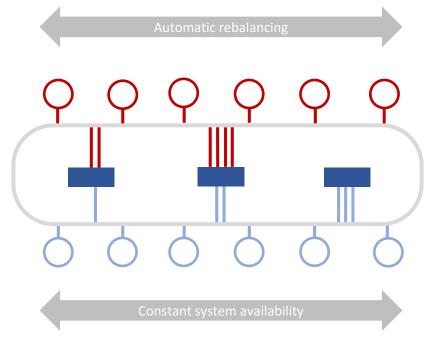
IBM MQ **Uniform Cluster** enables applications to be workload balanced across **loosely coupled** queue managers

Uniform Cluster detects application imbalance and **automatically moves connections** to instantly respond to change and maximise availability and scalability


Uniform Cluster

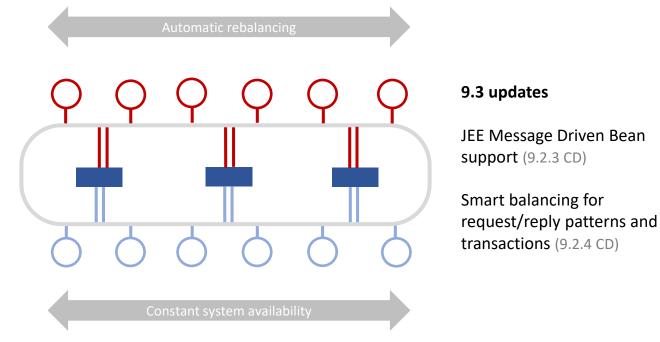
IBM MQ **Uniform Cluster** enables applications to be workload balanced across **loosely coupled** queue managers

Uniform Cluster detects application imbalance and **automatically moves connections** to instantly respond to change and maximise availability and scalability


Uniform Cluster

IBM MQ **Uniform Cluster** enables applications to be workload balanced across **loosely coupled** queue managers

Uniform Cluster detects application imbalance and **automatically moves connections** to instantly respond to change and maximise availability and scalability


Uniform Cluster

IBM MQ **Uniform Cluster** enables applications to be workload balanced across **loosely coupled** queue managers

Uniform Cluster detects application imbalance and **automatically moves connections** to instantly respond to change and maximise availability and scalability

Uniform Cluster

IBM MQ **Uniform Cluster** enables applications to be workload balanced across **loosely coupled** queue managers

Uniform Cluster detects application imbalance and **automatically moves connections** to instantly respond to change and maximise availability and scalability

IBM MQ, cloud native

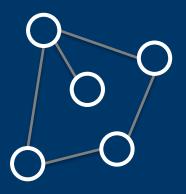
WHAT IS CLOUD NATIVE?

Cloud native technologies empower organizations to build and run scalable applications in modern, dynamic environments such as public, private, and hybrid clouds. Containers, service meshes, microservices, immutable infrastructure, and declarative APIs exemplify this approach.

These techniques enable loosely coupled systems that are resilient, manageable, and observable. Combined with robust automation, they allow engineers to make high-impact changes frequently and predictably with minimal toil.

IBM MQ, cloud native

WHAT IS CLOUD NATIVE?


Cloud native technologies empower organizations to build and run scalable applications in modern, dynamic environments such as public, private, and hybrid clouds. Containers, service meshes, microservices, immutable infrastructure, and declarative APIs exemplify this approach.

These techniques enable loosely coupled systems that are resilient, manageable, and observable. Combined with robust automation, they allow engineers to make high-impact changes frequently and predictably with minimal toil.

Containerised

Loosely coupled

Scalable

Replicated

Thank you.

