
1

May 7, 2007 4:20 p.m. – 5:20 p.m.

Platform: Informix

Performance Tuning
Shared Memory SQL
Related Caches

Mark Jamison
IBM – Information Management

Session: M04

Performance is a key database requirement, and one of the primary places to
improve performance is in monitoring and tuning the various SQL related caches
that are available to tune in IDS 10.00. This presentation will discuss the 4 primary
caches that can be tuned, best practices for tuning them and the best way to monitor
them. Additional methods to monitor these caches in Cheetah will also be discussed.

2

2

Objectives
• How to configure SQL Related Caches
• How to monitor SQL Related Caches
• Best practices for sizing SQL Related Caches
• What new features exist for SQL Related Caches

in Cheetah
• What minor caches are impacted by the Major

SQL Related Caches

1. Introduction to IDS SQL Related Caches.
2. The Data Dictionary Cache

•Configuring the Data Dictionary Cache.
•Monitoring the Data Dictionary Cache.
•Cleaning the Data Dictionary Cache.
•Best practices for sizing the Data Dictionary Cache.

3. The Data Distribution Cache
•Configuring the Data Distribution Cache.
•Monitoring the Data Distribution Cache
•Cleaning the Data Distribution Cache
•Best practices for Sizing the Data Distribution Cache
•What other caches are affected by the distribution cache.

4. The UDR Cache
•Configuring the UDR Cache
•Monitoring the UDR Cache
•Cleaning the UDR Cache
•Best practices for Tuning the UDR Cache

5. The SQL Statement Cache
•Configuring the SQL Statement Cache
•Monitoring the SQL Statement Cache.
•Cleaning the SQL Statement Cache.
•Best practices for Tuning the SQL Statement Cache.

6. Changes in Cheetah that affect caching parameters.

3

3

Introduction
• What are SQL Caches?
• What are the Primary Caches?

SQL caches are areas of shared memory used by the Optimizer in order to speed up
query and UDR execution, and to speed up the time it takes for the Optimizer to
choose a good path. There are 4 Primary caches the Optimizer uses. These 4 are:

•The Data Dictionary Cache
•The Data Distribution Cache
•The UDR Cache
•The SQL Statement Cache

4

4

The Data Dictionary Cache
• What does the Data Dictionary Cache do?

The dictionary cache retrieves and caches information about the tables accessed by
IDS. This includes information such as column names, data types, indexes, and
extents. Although IDS also places the actual pages for the system catalog tables,
also known as partition pages, in the buffer pool, the dictionary cache is always
used and generally presents a huge performance advantage for repeated access to
the table information.

5

5

Configuring the Data Dictionary Cache

• DD_HASHSIZE
• DD_HASHMAX

There are two onconfig parameters that affect the tuning of the Data Dictionary Cache. These two
variables are:
DD_HASHSIZE
DD_HASHMAX
DD_HASHSIZE specifies the number of hash buckets or lists in the data dictionary cache, and must
be a prime number, while DD_HASHMAX specifies the number of table entries per hash bucket,
and is expected to be a non-prime number generally between 4 and 20. The default values for each
are as follows:

DD_HASHSIZE 31
DD_HASHMAX 10

This means that there are 31 Buckets and each bucket can contain 10 tables, which in turn means that
the instance can cache only 310 tables before it runs out of memory, and begins to grow dynamically.
If IDS runs out of memory in the dictionary cache to add additional entries, you will have two
potential problems:

•Performance: If your Data Dictionary cache is too small for your instance the instance will be
constantly attempting to clean the cache to get space back, or constantly growing if all of the tables
are still being used. In effect wasting I/O and potentially causing a performance bottleneck.
•Corruption: The potential for shared memory corruption while performing the work listed above.

6

6

Monitoring the Data Dictionary Cache

• onstat –g dic

The data dictionary cache can be monitored via the following onstat command:
onstat –g dic
Example:
(informix) /home/informix > onstat -g dic
IBM Informix Dynamic Server Version 11.10.FC1 -- On-Line -- Up 4 days 22:08:26 -- 42460 Kbytes
Dictionary Cache: Number of lists: 31, Maximum list size: 10
list# size refcnt dirty? heapptr table name
--

0 2 0 no c000000003226838 stores_demo@ids10_shm:informix.sysxasourcetypes
0 no c00000000312b838 stores_demo@ids10_shm:informix.sysindexes

1 1 0 no c0000000031f9038 stores_demo@ids10_shm:informix.sysdefault
…
…
…
30 1 0 no c000000003221838 stores_demo@ids10_shm:informix.systracemsgs

Total number of dictionary entries: 62

The onstat –g dic output has the following fields:
Field Description
Number of lists Number of buckets that DD_HASHSIZE specifies
Maximum list size Number of tables that allowed in each bucket
List # Bucket number
Size Number of tables in the bucket
Refcnt Number of user sessions currently attached to the entry.
Dirty Flag indicating Data Dictionary entry is no longer valid.
Heapptr Heap Pointer
Table Name Name of the table that data dictionary entry describes.

If you need to check the individual Data Dictionary entry, or entries, for a table, you can accomplish this by doing the
following:
onstat –g dic <table name>

7

7

Cleaning the Data Dictionary Cache.

• How is the data Dictionary Cache Cleaned?

The data dictionary cache is cleaned by using a Least Recently Used algorithm. The
cache is most commonly cleaned only under the following conditions:

•An entry is freed resulting in a refcnt of 0, and DD_HASHMAX having been
exceeded for that list.
•An entry is freed resulting in a refcnt of 0, and the entry is marked as Dirty.

8

8

Best Practices for sizing the Data
Dictionary Cache
• DD_HASHSIZE set to closest prime number

greater than the number of user created database
objects (e.g. tables and indices)

• DD_HASHMAX leave at the default of 10
• Additional tuning may be required.

When configuring the value for DD_HASHSIZE, a good rule of thumb is to set
DD_HASHSIZE to the prime number closest to the number of user tables for the
entire instance. The prime number recommendation is because it is the most
efficient number, from a performance standpoint, for the hashing algorithm used to
cache Data Dictionary caches. The reason to suggests a prime close to the number
of user tables in the instance is because of the desire to limit the number of entries
per bucket, making retrieval of a cache entry extremely fast, however any value
much higher than the number of user tables starts to make the cost greater than the
benefit. Since the DD_HASHSIZE is set to a large value, it then follows that
DD_HASHMAX be set to a small value, in fact there is little reason to change the
value at all, rather leaving it at the default value of 10. The primary reason not to
lower the value is because any time you have a hashing algorithm, you can
occasionally have different entries hash to the same location. So if we have a
database instance with 2000 user created tables, a good starting point from
configuration would be the following values:

DD_HASHSIZE 2003
DD_HASHMAX 10

9

9

The Data Distribution Cache
• What does the Data Distribution Cache do?

The data distribution cache retrieves and caches distribution information generated
by UPDATE STATISTICS in the MEDIUM or HIGH mode. The first time the
optimizer accesses these distributions to make cost estimates for a column, IDS
retrieves the statistics recorded from the sysdistrib system catalog table on disk and
places the subsequent information in the cache.

Although IDS places the actual pages for the sysdistrib table, in the buffer pool, the
distribution cache is always used and presents the following benefits for the
distributions info:

•It is organized in a more efficient format
•It is organized for fast retrieval
•It bypasses the overhead of the buffer pool management
•It frees the buffer pool for more important usage, like actual user data and
index pages.
•It reduces I/O operations to the system catalog table, reducing the
likelihood of contention.

10

10

Configuring the Data Distribution
Cache
• DS_HASHSIZE
• DS_POOLSIZE

There are two ONCONFIG variables used for configuring the Data Distribution cache. These two
variables are:

DS_HASHSIZE
DS_POOLSIZE

DS_HASHSIZE specifies the number of hash buckets or lists in the data distribution cache, and
must be a prime number, while DS_POOLSIZE specifies the total number of entries for all hash
buckets, and is expected to be a non-prime multiple of DS_HASHSIZE. The default values for each
are as follows:
DS_HASHSIZE 31
DS_POOLSIZE 127
This means that there are 31 Buckets and each bucket can contains approximately 4 columns with
update statistics high run. If Informix runs out of memory in the distribution cache to add additional
entries, you will have two potential problems:

•Performance: If your data distribution cache is too small for your instance the instance will
be constantly attempting to clean the cache to get space back. In effect wasting I/O and
potentially causing a performance bottleneck.
•Corruption: As with any process in which you do excessive cleaning, there always exists
the chance for introduction of shared memory corruption.

11

11

Monitoring the Data Distribution
Cache
• Onstat –g dsc

The data distribution cache can be monitored via the following onstat command:
onstat –g dsc
Example:
(informix) /home/informix > onstat -g dsc
IBM Informix Dynamic Server Version 11.10.FC1 -- On-Line -- Up 04:05:34 -- 42460 Kbytes
Distribution Cache:

Number of lists : 3
DS_POOLSIZE : 9

Distribution Cache Entries:
list# id ref_cnt dropped? heap_ptr distribution name
--
0 0 0 0 c0000000031ca438 stores_demo:informix.syscolauth.grantee
1 0 0 0 c0000000031bd838 stores_demo:informix.sysdistrib.colno
1 0 0 0 c000000003155038 stores_demo:informix.sysdistrib.tabid
2 0 0 0 c0000000031c9838 stores_demo:informix.syscolauth.colno
2 0 0 0 c0000000031c9438 stores_demo:informix.syscolauth.tabid
Total number of distribution entries: 5.

Number of entries in use : 0

The onstat –g dsc output has the following fields:
Field Description
==
Number of lists Number of buckets that DS_HASHSIZE specifies
DS_POOLSIZE Number of entries allowed
List # Bucket number
Id Not used
Refcnt Number of user sessions currently attached to the entry.
Diropped Flag indicating Data Distribution entry is no longer valid.
Heapptr Heap Pointer
Table Name Name of the table and column that the data distribution entry describes.

12

12

Cleaning the Data Distribution Cache

• How is the Data Distribution Cache cleaned?

The cache is cleaned when the Data Distribution cache has consumed more than
75% of the total number of entries cleaning begins. Cleaning continues until such
time as there is 50% or less of the Data Distribution cache. The UPDATE
STATISTICS command will also kick off a cleaning process, removing entries
with a refcnt of zero.

13

13

Best practices for sizing the Data
Distribution Cache
• Identify the number of columns that have distributions set

for the existing Instance of IDS.
• Take this value and multiply it by 1.1 to account for any

additional overhead, plus to give a little buffer to reduce
overflow possibilities.

• Divide this number by the depth you want each bucket to
be, typically between 4 and 10.

• Find the closest prime number to this generated value that
is greater than the generated value. This prime number is
what should be set as the DS_HASHSIZE value.

• Multiply your new DS_HASHSIZE by the same value you
originally divided by in order to obtain your DS_POOLSIZE.

• Additional tuning may be required

I would recommends a prime number value for DS_HASHSIZE because the
insertion of Data Distribution entries is done via a hashing algorithm and a prime
number is the most efficient type of number, from a performance standpoint, for a
hashing algorithm. The reason to suggests a prime relative to the number of user
columns that have distributions generated is because of the desire to limit the
number of entries per bucket, making retrieval of a cache entry extremely fast, and
eliminating overflow problems. Since the DS_HASHSIZE is set to a large value, it
then follows that DS_POOLSIZE be set to a relatively small multiple of
DS_HASHSIZE, typically in the neighborhood of 4 to 10 times the value of
DS_HASHSIZE. DS_POOLSIZE should not be limited to a prime number,
because there is no performance gain to be had. The primary reason not to use a
multiple lower than 4, is because any time you have a hashing algorithm, you can
occasionally have different entries hash to the same location, and you need to allow
for some overflow per bucket to account for that possibility. So if we have an
instance with 2000 columns which have distribution information a good baseline to
start with would be the following:

DS_HASHSIZE 557
DS_POOLSIZE 2228

14

14

Other Caches impacted by the data
Distribution Cache
• Resolved Routine Cache
• Extended Type Name Cache
• Extended Type ID Cache
• Cast Cache
• User-defined Aggregate Cache

All of the above are configured by using the values from DS_HASHSIZE and
DS_POOLSIZE.

15

15

The UDR Cache
• What does the UDR Cache do?

The UDR cache is used to store frequently executed Stored Procedures and
Functions (both internal and external). When a session executes an SPL, or function,
for the first time, the engine grabs the p-code as found in the system catalog tables.
It then converts this p-code into a binary executable, if not already an external
executable, and then places the entry into the UDR cache. Subsequent calls of a
UDR result in the UDR cache being checked first so that, if possible, the conversion
of p-code process can be avoided.

16

16

Configuring the UDR Cache
• PC_HASHSIZE
• PC_POOLSIZE

There are two ONCONFIG variables used for configuring the UDR cache. These
two variables are:

PC_HASHSIZE
PC_POOLSIZE

PC_HASHSIZE specifies the number of hash buckets or lists in the UDR cache,
and must be a prime number, while PC_POOLSIZE specifies the total number of
entries for all hash buckets, and is expected to be a non-prime multiple of
PC_HASHSIZE. The default values for each are as follows:
PC_HASHSIZE 31
PC_POOLSIZE 127
This means that there are 31 Buckets and each bucket can contains approximately 4
UDR’s. If Informix runs out of memory in the UDR cache to add additional entries,
you will have two potential problems:

•Performance: If your UDR cache is too small for your instance the instance
will be constantly attempting to clean the cache to get space back. In effect
wasting I/O and potentially causing a performance bottleneck.
•Corruption: As with any process in which you do excessive cleaning, there
always exists the chance for introduction of shared memory corruption.

17

17

Monitoring the UDR Cache
• onstat –g prc

The UDR cache can be monitored via the following onstat command:
onstat –g prc
Example:
(informix) /usr/informix > onstat -g prc
IBM Informix Dynamic Server Version 11.10.FC1 -- On-Line -- Up 1 days 00:27:48 -- 248928 Kbytes
UDR Cache:

Number of lists : 31
PC_POOLSIZE : 127

UDR Cache Entries:

list# id ref_cnt dropped? heap_ptr udr name
--
0 27 0 0 c00000001f06f438 sysadmin@cobra1110fc1_shm:.destroy
2 367 0 0 c00000001f083c38 sysadmin@cobra1110fc1_shm:.tabnames_save_diffs
3 133 0 0 c00000001ec0d438 sysadmin@cobra1110fc1_shm:.assign
3 33 0 0 c00000001f106838 sysadmin@cobra1110fc1_shm:.destroy
4 28 0 0 c00000001eba3838 sysadmin@cobra1110fc1_shm:.assign
…
Total number of udr entries: 21.

Number of entries in use : 2
The onstat –g prc output has the following fields:
Field Description
==
Number of lists Number of buckets that PC_HASHSIZE specifies
PC_POOLSIZE Number of entries allowed
List # Bucket number
Id Procedure ID
Refcnt Number of user sessions currently attached to the entry.
Dropped Flag indicating Data Distribution entry is no longer valid.
Heap_ptr Heap Pointer
Udr Name Name of the UDR.

18

18

Cleaning the UDR Cache
• How is the UDR cache Cleaned?

The cache is cleaned when the Data UDR cache has consumed more than 75% of
the total number of entries cleaning begins. Cleaning continues until such time as
there is 50% or less of the UDR cache. The UPDATE STATISTICS command will
also kick off a cleaning process, removing entries with a refcnt of zero.

19

19

Best Practices for sizing the UDR
Cache
• PC_HASHSIZE set to the prime number closest to

the number of User created UDR’s
• PC_POOLSIZE set to a low value (between 4 and

10) times the PC_HASHSIZE.
• Additional tuning may be required.

I recommend a prime number value for PC_HASHSIZE because the insertion of
UDR entries are done via a hashing algorithm and a prime number is the most
efficient type of number, from a performance standpoint, for a hashing algorithm.
The reason to suggest a prime relative to the number of user created UDRS is
because of the desire to limit the number of entries per bucket, making retrieval of a
cache entry extremely fast, and eliminating overflow problems. PC_POOLSIZE be
set to a relatively small multiple of PC_HASHSIZE, typically in the neighborhood
of 4 to 10 times the value of PC_HASHSIZE. PC_POOLSIZE should not be
limited to a prime number, because testing does not appear to show any benefit for
setting it to a prime number. The primary reason not to use a multiple lower than 4,
is because any time you have a hashing algorithm, you can occasionally have
different entries hash to the same location, and you need to allow for some overflow
per bucket to account for that possibility. So if we have an instance with 200 User
created UDR’s, then a good baseline would be the following values:

PC_HASHSIZE 211
PC_POOLSIZE 844

Please note that due to the large number of internal UDR’s it may be necessary to
tune significantly higher than the recommendations above, especially if there are a
very small number of user created UDR’s.

20

20

The SQL Statement Cache
• What does the SQL Statement Cache do?

The SQL Statement cache is used to store the parsed and optimized SQL that is run
frequently. This allows for certain memory structures to be shared by sessions. So in
addition to having access to pre-optimized queries, the session also saves memory
usage. When a sessions executes any SQL, it does the following

• IDS checks to see if the entry is fully realized in the Statement cache.
•If it is fully realized in the cache, it uses the parsed and optimized query
information, and increments the hit count.
•If it is in the cache but not fully realized, then the hit count is incremented,
if after the increment the hit count is sufficient to qualify for a fully realized
cache, then the parsed and Optimized SQL form this session is inserted into
the cache.
• If it is not in the cache at all , then it adds a key entry and sets the hit count
to 1.

21

21

Configuring the SQL Statement Cache

• STMT_CACHE_HITS
• STMT_CACHE
• STMT_CACHE_NUMPOOL
• STMT_CACHE_SIZE
• STMT_CACHE_NOLIMIT

There are 5 ONCONFIG variables used for configuring the SQL Statement Cache. These Variables are:

STMT_CACHE
STMT_CACHE_HITS
STMT_CACHE_NUMPOOL
STMT_CACHE_SIZE
STMT_CACHE_NOLIMIT

STMT_CACHE specifies whether the SQL Statement cache is enabled or not. Valid values are (0) off (1) Application enabled
and (2) on.
STMT_CACHE_NOLIMIT specifies whether the variable STMT_CACHE_SIZE is a hard limit (0) or a soft limit (1).
STMT_CACHE_HITS specifies the total number of times an SQL statement must be executed before it can be fully cached.
STMT_CACHE_NUMPOOL specifies the total number of SQL Statement Cache pools held by the engine.
STMT_CACHE_SIZE specifies the beginning size of the SQL Statement Cache if STMT_CACHE_NOLIMIT is set to 1,
otherwise it specifies the total size of the SQL Statement Cache. Values represent Kilobytes.

The defaults for these ONCONFIG variables are as follows:
STMT_CACHE 0
STMT_CACHE_NOLIMIT 1
STMT_CACHE_HITS 0
STMT_CACHE_NUMPOOL 1
STMT_CACHE_SIZE 512

22

22

Monitoring the SQL Statement Cache

• onstat –g ssc

The primary method to monitor the SQL Statement cache is by use of the onstat –g ssc command.
Example:
(informix) /usr/informix > onstat -g ssc

IBM Informix Dynamic Server Version 11.10.FC1 -- On-Line -- Up 00:14:32 -- 257120 Kbytes
Statement Cache Summary:
#lrus currsize maxsize Poolsize #hits nolimit
6 11552 524288 24576 0 1
Statement Cache Entries:
lru hash ref_cnt hits flag heap_ptr database user
--
0 213 0 0 -F c00000001edad038 sysmaster informix
select * from syssqlcacheprof

Total number of entries: 1.
The onstat –g ssc output has the following fields:
Field Description
==
lru lru used.
hash hash number for entry
Ref_cnt Number of user sessions currently attached to the entry.
flag Flag entry (F) is fully cached
Heap_ptr Heap Pointer
user user name who first executed SQL.

23

23

Cleaning the SQL Statement
Cache
• How is the SQL Statement Cache cleaned?

The SQL statement cache is cleaned under the following circumstances
•STMT_CACHE_NOLIMIT is disabled, and the cache is full.
•A process like Update Statistics is run.
•A DBA issues the command

onmode –e flush

24

24

Best Practices for the sizing the SQL
Statement Cache
• Estimate the number of queries that you expect to

get repeated use. Then Estimate the size of these
queries, and multiply by 4K (no greater than 64
MB to start), this is STMT_CACHE_SIZE

• STMT_CACHE_NUMPOOLS = (Number of
CPUVP’s for a start)

• STMT_CACHE_HITS = 1
• STMT_CACHE_NOLIMIT = 1

There is no easy Best practice recommendations for SQL Statement caches. The
above is primarily intended to give you a safe, but small, starting point by which to
continue monitoring and tuning.

Note another valid method is to set the above and set the STMT_CACHE to 2. Then
enable this on an application by application basis.

25

25

SQL Cache related features in
Cheetah
• New sysmaster table syssqlcacheprof

The biggest cache related feature is the addition of the syssqlcacheprof table in the
sysmaster database. This table gives you important information like cache memory
usage, the number of times the cache has been successfully hit, the number of times
the cache has not contained the necessary info, and the number of times the cache
has had entries removed. This table will allow for more intelligent tuning after
starting with the best practice guidelines for each cache.

26

26

Q&A
• Discuss questions from the presentation

27

27

Mark Jamison
IBM Information Management

mjamison@us.ibm.com

Session: M04
Performance Tuning Shared
Memory SQL Related Caches

