
Part VI: Administering

IBM

© Copyright IBM Corp. 2021.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Tables of Contents
Part VI: Administering

System administration
List of utilities
Administrator's Guide

The database server
Overview of database server configuration and administration

Database server concepts
Environment configuration
Database server configuration

Storage space creation and management
Automatic performance tuning
Feature configuration
Connectivity configuration
Limit session resources
Automate startup and shutdown on UNIX
Automate startup on Windows

Database server maintenance tasks
Client/server communication

Client/server architecture
Network protocol
Network programming interface
Windows network domain
Database server connections
Supporting multiplexed connections

Connections that the database server supports
Local connections

Shared-memory connections (UNIX)
Stream-pipe connections (UNIX and Linux)
Named-pipe connections (Windows)
Local-loopback connections

Communication support services
Connectivity files

Network-configuration files
TCP/IP connectivity files

Client and server actions when a TCP/IP connection is opened
Multiple TCP/IP ports

Network security files
Trusted-host information
Trusted-user information
The netrc information

User impersonation
The sqlhosts file and the SQLHOSTS registry key

Creating the sqlhosts file with a text editor
Setting up the SQLHOSTS registry key with Setnet32 (Windows)

The sqlhosts information
IANA standard service names and port numbers in the sqlhosts.std file
sqlhosts connectivity information

sqlhosts file and SQLHOSTS registry key options
Group information

Creating a group in the sqlhosts file
Alternatives for TCP/IP connections

Informix support for IPv6 addresses
Configuration parameters related to connectivity

Connection information set in the DBSERVERNAME configuration parameter
Connection information set in the DBSERVERALIASES configuration parameter
Connection information set in the LIMITNUMSESSIONS configuration parameter
Connection information set in the NETTYPE configuration parameter
Name service maximum retention time set in the NS_CACHE configuration parameter
Connection information set in the NUMFDSERVERS configuration parameter
Connection information set in the HA_ALIAS configuration parameter

Environment variables for network connections
Automatically terminating idle connections
Distributed Relational Database Architecture (DRDA) communications

Overview of DRDA
Configuring connectivity between Informix and IBM Data Server clients
Allocating poll threads for an interface/protocol combination with the NETTYPE configuration parameter
Specify the size of the DRDA communication buffer with the DRDA_COMMBUFFSIZE configuration parameter
The DRDAEXEC thread and queries from clients
SQL and supported and unsupported data types

1
1
2
3
4
4
4
5
5
6
7
7
8
8
9
9
9

10
11
11
11
11
12
12
13
14
14
15
15
15
16
16
16
16
17
18
18
18
19
20
21
21
21
22
22
23
23
25
30
31
31
33
33
34
34
35
35
35
36
36
36
37
37
37
38
39
40
40
40

Display DRDA connection information
Display DRDA session information

Examples of client/server configurations
A network connection
Multiple connection types
Accessing multiple database servers

IBM Informix MaxConnect
Database server initialization

Initialization process
Database server operating modes

Users permitted to change modes
Changing database server operating modes

Specifying administration mode users
Disk, memory, and process management

Virtual processors and threads
Virtual processors

Threads
Advantages of virtual processors

Shared processing
Save memory and resources
Parallel processing
Add and drop virtual processors in online mode
Bind virtual processors to CPUs

How virtual processors service threads
Control structures
Context switching
Stacks
Queues

Ready queues
Sleep queues
Wait queues

Mutexes
Virtual processor classes

CPU virtual processors
Determine the number of CPU virtual processors needed
Run on a multiprocessor computer
Run on a single-processor computer
Add and drop CPU virtual processors in online mode
Prevent priority aging
Processor affinity

Set processor affinity with the VPCLASS configuration parameter
User-defined classes of virtual processors

Determine the number of user-defined virtual processors needed
User-defined virtual processors
Specify user-defined virtual processors
Assign a UDR to a user-defined virtual-processor class
Add and drop user-defined virtual processors in online mode

Tenant virtual processor class
Java virtual processors
Disk I/O virtual processors

I/O priorities
Logical-log I/O
Physical-log I/O
Asynchronous I/O

Kernel-asynchronous I/O
AIO virtual processors

Network virtual processors
Specifying Network Connections
Run poll threads on CPU or network virtual processors
Specify the number of networking virtual processors
Specify listen and poll threads for the client/server connection
Fast polling
Multiple listen threads

Add listen threads
Add a network-interface card
Dynamically starting, stopping, or restarting a listen thread

Communications support module virtual processor
Encrypt virtual processors
Audit virtual processor
Miscellaneous virtual processor
Basic text search virtual processors
MQ messaging virtual processor

41
41
41
42
42
43
43
43
44
46
47
48
49
49
50
50
50
51
51
51
52
52
52
53
53
53
54
54
54
55
55
55
56
57
58
58
58
59
59
59
60
60
60
60
61
61
61
61
62
62
62
63
63
63
63
64
65
65
65
65
66
67
67
67
68
68
69
69
69
69
69
70

Web feature service virtual processor
XML virtual processor

Manage virtual processors
Set virtual-processor configuration parameters
Start and stop virtual processors

Add virtual processors in online mode
Add virtual processors in online mode with onmode
Add network virtual processors

Drop CPU and user-defined virtual processors
Monitor virtual processors

Monitor virtual processors with command-line utilities
The onstat -g ath command
The onstat -g glo command
The onstat -g ioq command
The onstat -g rea command

Monitor virtual processors with SMI tables
Shared memory

Shared memory
Shared-memory use

Shared-memory allocation
Shared-memory size
Action to take if SHMTOTAL is exceeded

Processes that attach to shared memory
How a client attaches to the communications portion (UNIX)
How utilities attach to shared memory
How virtual processors attach to shared memory

Obtain key values for shared-memory segments
Specify where to attach the first shared-memory segment
Attach additional shared-memory segments
Define the shared-memory lower-boundary address

Resident portion of shared memory
Shared-memory header
Logical-log buffer
Physical-log buffer
High-Availability Data-Replication buffer
Lock table

Buffer pool portion of shared memory
Virtual portion of shared memory

Management of the virtual portion of shared memory
Size of the virtual portion of shared memory

Components of the virtual portion of shared memory
Shared-memory internal tables

Buffer table
Chunk table
Dbspace table
Page-cleaner table
Tblspace table
Transaction table
User table

Big buffers
Session data
Thread data

Stacks
Heaps

Data-distribution cache
Dictionary cache
SQL statement cache
Sort memory
SPL routine and the UDR cache
Global pool

Communications portion of shared memory (UNIX)
Virtual-extension portion of shared memory
Concurrency control

Shared-memory mutexes
Shared-memory buffer locks

Types of buffer locks
Share lock
Exclusive lock

Database server thread access to shared buffers
FIFO/LRU queues

Components of LRU queue
Pages in least-recently used order

70
70
71
71
71
72
72
72
72
73
73
73
73
73
74
74
74
74
75
75
76
76
77
77
77
77
78
78
78
79
79
80
80
80
81
81
81
82
82
83
83
83
84
84
84
85
85
85
85
85
86
86
86
86
86
87
87
87
87
88
88
88
88
88
89
89
89
89
89
89
90
90

LRU queues and buffer-pool management
Number of LRU queues to configure
Number of cleaners to allocate
Number of pages added to the MLRU queues
End of MLRU cleaning

Read-ahead operations
Database server thread access to buffer pages

Flush data to disk
Flush buffer-pool buffers
Flush before-images first
Flush the physical-log buffer
Synchronize buffer flushing
Types of writes during flushing

Foreground write
LRU write
Chunk write

Flush the logical-log buffer
After a transaction is prepared or terminated in a database with unbuffered logging
When a session that uses nonlogging databases or unbuffered logging terminates
When a checkpoint occurs
When a page is modified that does not require a before-image in the physical-log file

Buffer large-object data
Write simple large objects

Blobpages and shared memory
Creation of simple large objects
Creation of blobpage buffers

Access smart large objects
Memory use on 64-bit platforms

Manage shared memory
Set operating-system shared-memory configuration parameters

Maximum shared-memory segment size
Using more than two gigabytes of memory (Windows)
Maximum number of shared-memory identifiers (UNIX)

Semaphores (UNIX)
Set database server shared-memory configuration parameters
Set SQL statement cache parameters
Set up shared memory
Turn residency on or off for resident shared memory

Turn residency on or off in online mode
Turn residency on or off when restarting the database server

Add a segment to the virtual portion of shared memory
Reserve memory for critical activities
Configure the server response when memory is critically low

Scenario for maintaining a targeted amount of memory
Monitor shared memory

Monitor shared-memory segments
Monitor the shared-memory profile and latches

Command-line utilities to monitor shared memory and latches
SMI tables

Monitor buffers
Deleting shared memory segments after a server failure

Data storage
Chunks

Disk allocation for chunks
Disk access on Windows
Unbuffered or buffered disk access on UNIX

Extendable chunks
Partitions and offsets

Pages
Blobpages
Sbpages
Extents
Dbspaces

Control of where simple large object data is stored
Root dbspace
Temporary dbspaces

Blobspaces
Sbspaces

Advantages of using sbspaces
Sbspaces and Enterprise Replication
Metadata, user data, and reserved area
Control of where smart large object data is stored

90
91
91
91
92
92
92
93
93
93
93
94
94
94
94
95
95
95
95
96
96
96
96
96
97
97
97
98
98
98
99
99
99

100
100
101
101
101
102
102
102
102
103
103
103
104
104
104
104
104
106
106
107
108
108
108
109
109
109
110
110
111
111
112
112
113
113
113
114
114
114
115

Storage characteristics of sbspaces
Extent sizes for sbspaces
Average smart-large-object size
Buffering mode
Last-access time
Lock mode
Logging

Levels of inheritance for sbspace characteristics
More information about sbspaces
Temporary sbspaces

Comparison of temporary and standard sbspaces
Temporary smart large objects

Plogspace
Extspaces
Databases
Tables

Damaged tables
Table types for Informix

Standard permanent tables
RAW tables
Temp tables
Properties of table types

Loading of data into a table
Fast recovery of table types
Backup and restore of RAW tables

Temporary tables
Temporary tables that you create

Where user-created temporary tables are stored
Temporary tables that the database server creates

Where database server-created temporary tables are stored
Tblspaces

Maximum number of tblspaces in a table
Table and index tblspaces
Extent interleaving

Table fragmentation and data storage
Amount of disk space needed to store data

Size of the root dbspace
Amount of space that databases require

The storage pool
Disk-layout guidelines

Dbspace and chunk guidelines
Table-location guidelines

Sample disk layouts
Logical-volume manager

Manage disk space
Allocate disk space

Specify an offset
Specify an offset for the initial chunk of root dbspace
Specify an offset for additional chunks
Use offsets to create multiple chunks

Allocating cooked file spaces on UNIX
Allocating raw disk space on UNIX
Create symbolic links to raw devices (UNIX)
Allocating NTFS file space on Windows
Allocating raw disk space on Windows

Specify names for storage spaces and chunks
Specify the maximum size of chunks
Specify the maximum number of chunks and storage spaces
Back up after you change the physical schema

Monitor storage spaces
Manage dbspaces

Creating a dbspace that uses the default page size
Specifying the first and next extent sizes for the tblspace tblspace

Creating a dbspace with a non-default page size
Improving the performance of cooked-file dbspaces by using direct I/O
Storing multiple named fragments in a single dbspace
Creating a temporary dbspace
What to do if you run out of disk space
Adding a chunk to a dbspace or blobspace
Rename dbspaces

Additional actions that may be required after you rename a dbspace
Managing automatic location and fragmentation

116
116
116
116
116
117
117
117
118
118
119
119
119
120
120
120
121
121
122
122
123
123
123
123
123
124
124
124
125
125
126
126
126
126
127
128
128
129
129
130
130
130
131
132
133
134
134
134
135
135
135
135
135
136
136
136
137
137
137
138
138
138
139
140
140
140
141
142
142
142
143
143

Manage blobspaces
Creating a blobspace
Prepare blobspaces to store TEXT and BYTE data
Determine blobpage size

Determine database server page size
Obtain blobspace storage statistics

Manage sbspaces
Creating an sbspace
Size sbspace metadata
Adding a chunk to an sbspace
Alter storage characteristics of smart large objects
Creating a temporary sbspace

Manage the plogspace
Automatic space management

Creating and managing storage pool entries
Marking a chunk as extendable or not extendable
Modifying the sizes of an extendable storage space
Changing the threshold and wait time for the automatic addition of more space
Configuring the frequency of the monitor low storage task
Manually expanding a space or extending an extendable chunk
Example of minimally configuring for and testing the automatic addition of more space
Example of configuring for the automatic addition of more space

Drop a chunk
Verify whether a chunk is empty
Drop a chunk from a dbspace with onspaces
Drop a chunk from a blobspace
Drop a chunk from an sbspace with onspaces

The -f (force) option
Delete smart large objects without any pointers

Drop a storage space
Preparation for dropping a storage space
Drop a mirrored storage space
Drop a storage space with onspaces
Back up after dropping a storage space

Creating a space or chunk from the storage pool
Returning empty space to the storage pool
Manage extspaces

Create an extspace
Drop an extspace

Skip inaccessible fragments
The DATASKIP configuration parameter
The dataskip feature of onspaces
Use onstat to check dataskip status
The SQL statement SET DATASKIP
Effect of the dataskip feature on transactions
Determine when to use dataskip

Determine when to skip selected fragments
Determine when to skip all fragments

Monitor fragmentation use
Display databases

SMI tables
Monitor disk usage

Monitor chunks
The onstat -d utility
The onstat -d update option
The onstat -D option
Monitor chunk I/O activity with the onstat -g iof command
The oncheck -pr command
The oncheck -pe command
SMI tables

Monitor tblspaces and extents
SMI tables

Monitor simple large objects in a blobspace
Determine blobpage fullness with oncheck -pB
Monitor blobspace usage with oncheck -pe
Monitor simple large objects in a dbspace with oncheck -pT

Monitor sbspaces
The onstat -d option
The oncheck -ce and oncheck -pe options
The oncheck -cs option
The oncheck -ps option
Monitoring the metadata and user-data areas

144
144
144
145
145
145
145
146
146
146
147
147
148
148
149
150
150
151
151
151
152
152
153
153
154
154
154
154
154
155
155
155
155
155
156
156
157
157
157
157
158
158
158
158
158
159
159
159
159
159
160
160
160
160
161
161
161
161
162
162
163
163
163
163
163
164
164
165
165
166
166
167

Multitenancy
Creating a tenant database
Managing tenant databases
Restoring a tenant database to a point in time

Storage optimization
Storage optimization methods
Scheduling data optimization
Example: Optimizing data storage on demand
Partition defragmentation
Compression

Data that you can compress
Data that you cannot compress
B-tree index compression
Compression ratio estimates
Compression dictionaries
Tools for moving compressed data
BLOBspace Blob Compression
Methods for viewing compression information

Load data into a table
Moving data with external tables

External tables
Defining external tables
Map columns to other columns
Load data from and unload to a named pipe

Loading data with named pipes
FIFO virtual processors
Unloading data with named pipes
Copying data from one instance to another using the PIPE option

Monitor the load or unload operations
Monitor frequent load and unload operations
Monitor FIFO virtual processors

External tables in high-availability cluster environments
System catalog entries for external tables
Performance considerations when using external tables
Manage errors from external table load and unload operations

Reject files
External table error messages
Recoverability of table types for external tables

Storage space encryption
Creating encrypted or unencrypted storage spaces
Changing storage space encryption during a restore
Monitoring the encryption of storage spaces

Logging and log administration
Logging

Database server processes that require logging
Transaction logging
Logging of SQL statements and database server activity

Activity that is always logged
Activity logged for databases with transaction logging
Activity that is not logged

Database-logging status
Unbuffered transaction logging
Buffered transaction logging
ANSI-compliant transaction logging
No database logging
Databases with different log-buffering status
Database logging in an X/Open DTP environment

Settings or changes for logging status or mode
Manage the database-logging mode

Change the database-logging mode
Modify the database-logging mode with ondblog

Change the buffering mode with ondblog
Cancel a logging mode change with ondblog
End logging with ondblog
Make a database ANSI compliant with ondblog
Changing the logging mode of an ANSI-compliant database

Modify the database logging mode with ontape
Turn on transaction logging with ontape
End logging with ontape
Change buffering mode with ontape
Make a database ANSI compliant with ontape

Modify the table-logging mode

167
168
169
170
171
172
172
173
174
175
175
176
176
177
177
178
178
178
179
179
179
180
181
181
181
181
182
182
183
183
184
184
185
185
185
185
186
186
186
188
188
189
189
189
190
190
191
191
192
193
193
194
194
194
194
195
195
195
195
196
196
196
196
196
197
197
197
197
197
198
198
198

Alter a table to turn off logging
Alter a table to turn on logging
Disable logging on temporary tables

Monitor transactions
Monitor the logging mode of a database

Monitor the logging mode with SMI tables
Logical log

What is the logical log?
Location of logical-log files
Identification of logical-log files
Status flags of logical-log files
Size of the logical-log file

Number of logical-log files
Performance considerations

Dynamic log allocation
Freeing of logical-log files

Action if the next logical-log file is not free
Action if the next log file contains the last checkpoint

Log blobspaces and simple large objects
Switch log files to activate blobspaces
Back up log files to free blobpages
Back up blobspaces after inserting or deleting TEXT and BYTE data

Log sbspaces and smart large objects
Sbspace logging

Logging for smart large objects
Logging for updated smart large objects
Turn logging on or off for an sbspace

Smart-large-object log records
Prevent long transactions when logging smart-large-object data

Logging process
Dbspace logging
Blobspace logging

Manage logical-log files
Estimate the size and number of log files

Estimate the log size when logging smart large objects
Estimate the number of logical-log files

Back up logical-log files
Backing up blobspaces
Back up sbspaces

Switch to the next logical-log file
Free a logical-log file

Delete a log file with status D
Free a log file with status U
Freeing a log file with status U-B or F
Freeing a log file with status U-C or U-C-L
Free a log file with status U-B-L

Monitor logging activity
Monitor the logical log for fullness

The onstat -l command
The oncheck -pr command

Monitor temporary logical logs
SMI tables
Monitor log-backup status

Allocate logical log files
Dynamically add a logical-log file to prevent transaction blocking

Size and number of dynamically added log files
Location of dynamically added logical log files
Monitor events for dynamically added logs

Dynamically add logical logs for performance
Adding logical-log files manually

Dropping logical-log files
Change the size of logical-log files
Move logical-log files
Display logical-log records
Controlling long transactions

Physical logging, checkpoints, and fast recovery
Critical sections
Physical logging

Fast recovery use of physically-logged pages
Backup use of physically-logged pages
Database server activity that is physically logged

Physical recovery messages

198
198
198
199
199
199
199
200
200
200
201
201
201
201
202
202
202
203
203
203
203
204
204
204
204
204
205
205
205
205
205
206
206
206
207
207
208
208
208
208
209
209
209
209
210
210
210
210
210
210
211
211
211
211
212
212
213
213
214
214
215
215
215
216
216
217
218
218
218
218
218
218

Physical logging and simple large objects
Physical logging and smart large objects

Size and location of the physical log
Strategy for estimating the size of the physical log
Physical-log overflow when transaction logging is turned off

Checkpoints
LRU values for flushing a buffer pool between checkpoints
Checkpoints during backup

Fast recovery
Need for fast recovery
Situations when fast recovery is initiated

Fast recovery and buffered logging
Possible physical log overflow during fast recovery
Fast recovery and no logging

Fast recovery after a checkpoint
The server returns to the last-checkpoint state
The server locates the checkpoint record in the logical log
The server rolls forward logical-log records
The server rolls back uncommitted transactions

Manage the physical log
Change the physical-log location and size
Monitor physical and logical-logging activity
Monitor checkpoint information

Turn checkpoint tuning on or off
Force a checkpoint
Server-provided checkpoint statistics
SMI tables

Turn automatic LRU tuning on or off
Fault tolerance

Mirroring
Mirroring

Benefits of mirroring
Costs of mirroring
Consequences of not mirroring
Data to mirror
Alternatives to mirroring

Logical volume managers
Hardware mirroring
External backup and restore

Mirroring process
Creation of a mirror chunk
Mirror status flags
Recovery
Actions during processing

Disk writes to mirror chunks
Disk reads from mirror chunks
Detection of media failures
Chunk recovery

Result of stopping mirroring
Structure of a mirror chunk

Using mirroring
Preparing to mirror data
Enable the MIRROR configuration parameter
Allocate disk space for mirrored data

Link chunks (UNIX)
Relink a chunk to a device after a disk failure

Using mirroring
Mirroring the root dbspace during initialization
Change the mirror status

Manage mirroring
Start mirroring for unmirrored storage spaces

Start mirroring for unmirrored dbspaces using onspaces
Start mirroring for new storage spaces

Start mirroring for new spaces using onspaces
Add mirror chunks

Add mirror chunks using onspaces
Swap mirror chunk
Take down a mirror chunk

Take down mirror chunks using onspaces
Recover a mirror chunk

Recover a mirror chunk using onspaces
End mirroring

219
219
219
219
220
220
221
221
221
221
221
222
222
222
222
222
223
223
223
223
224
224
225
225
226
226
226
226
227
227
227
227
227
228
228
228
228
228
229
229
229
229
229
230
230
230
230
230
231
231
231
231
231
232
232
232
232
233
233
233
233
233
234
234
234
234
234
234
235
235
235
235

End mirroring using onspaces
Consistency checking

Perform periodic consistency checking
Verify consistency

Validate system catalog tables
Validate data pages
Validate extents
Validate indexes
Validate logical logs
Validate reserved pages
Validate metadata

Monitor for data inconsistency
Read assertion failures in the message log and dump files
Validate table and tblspace data

Retain consistent level-0 backups
Deal with corruption

Find symptoms of corruption
Fix index corruption
Fix I/O errors on a chunk

Collect diagnostic information
Disable I/O errors
Monitor the database server for disabling I/O errors

The message log to monitor disabling I/O errors
Event alarms to monitor disabling I/O errors
No bad-sector mapping

High availability and scalability
Strategies for high availability and scalability

Components supporting high availability and scalability
Advantages of data replication

Clustering versus mirroring
Clustering versus two-phase commit
Type of data replicated in clusters
Primary and secondary database servers

Transparent scaling and workload balancing strategies
High availability strategies

High-availability cluster configuration
Plan for a high-availability cluster
Configuring clusters

Hardware and operating-system requirements for clusters
Database and data requirements for clusters
Database server configuration requirements for clusters

Database server version
Storage space and chunk configuration
Non-default page sizes in an HDR environment
Mirroring
Physical-log configuration
Dbspace and logical-log tape backup devices
Logical-log configuration
High-availability cluster configuration parameters
Cluster transaction coordination

Configuring secure connections for high-availability clusters
Starting HDR for the First Time

Decrease setup time using the ontape STDIO feature
Remote standalone secondary servers

Comparison of RS secondary servers and HDR secondary servers
Index page logging

How index page logging works
Enable or disable index page logging
View index page logging statistics

Starting an RS secondary server for the first time
Decrease setup time through an alternative backup method

Converting an offline primary server to an RS secondary server
Delayed application of log records

Specifying the log staging directory
Delay application of log records on an RS secondary server
Stop the application of log records

Flow control for remote standalone secondary servers
Shared disk secondary servers

SD secondary server
Disk requirements for SD secondary servers
Setting up a shared disk secondary server
Obtain SD secondary server statistics

235
235
236
236
236
237
237
237
237
237
237
238
238
238
238
239
239
239
239
239
240
240
240
241
241
241
242
242
243
243
244
244
244
245
246
247
247
247
247
248
248
248
249
249
249
249
249
250
250
250
251
251
253
254
254
254
254
255
255
255
256
256
257
257
258
258
259
259
259
259
260
260

Promote an SD secondary server to a primary server
Convert a primary server to a standard server
SD secondary server security
Flow control for shared-disk secondary servers

Cluster administration
How data replication works

How data initially replicates
Replication of primary-server data to secondary servers

Fully synchronous mode for HDR replication
Nearly synchronous mode for HDR replication
Asynchronous mode for HDR replication
Lost-and-found transactions

Data replication configuration examples
Remote standalone secondary configuration examples
Shared disk secondary configuration examples
Enterprise Replication as part of the recoverable group
High-availability clusters with Enterprise Replication configuration example
Example of a complex failover recovery strategy

Troubleshooting high-availability cluster environments
Design data replication group clients

Use of temporary dbspaces for sorting and temporary tables
Performing basic administration tasks

Changing the configuration parameters for an HDR replication pair
Back up storage spaces and logical-log files
Changing the logging mode of databases
Add and drop chunks and storage spaces
Renaming chunks
Saving chunk status on the secondary database server
Use and change mirroring of chunks
Manage the physical log
Manage the logical log
Manage virtual processors
Manage shared memory
Configure SMX connections
Replicate an index to an HDR secondary database server
Encrypting data traffic between HDR database servers
Adjust LRU flushing and automatic tuning in HDR server pairs
Cloning a primary server

Creating a clone of a primary server
Database updates on secondary servers

Isolation levels on secondary servers
Set lock mode

Transient types on high-availability cluster secondary servers
Row versioning

Backup and restore with high-availability clusters
Change the database server mode
Changing the database server type
Prevent blocking checkpoints on HDR servers

View statistics for nonblocking checkpoints on HDR servers
Monitor HDR status

Command-line utilities
The onstat -g dri option
The oncheck -pr option

SMI tables
Obtain RS secondary server statistics
Remove an RS secondary server
RS secondary server security

Create or change a password on an RS secondary server
Transaction completion during cluster failover

Configuring the server so that transactions complete after failover
Connection management through the Connection Manager

Configuring connection management
Creating Connection Manager configuration files

Parameters and format of the Connection Manager configuration file
CMALARMPROGRAM Connection Manager configuration parameter
CM_TIMEOUT Connection Manager configuration parameter
CLUSTER Connection Manager configuration parameter
DEBUG Connection Manager configuration parameter
EVENT_TIMEOUT Connection Manager configuration parameter
FOC Connection Manager configuration parameter
GRID Connection Manager configuration parameter
INFORMIXSERVER Connection Manager configuration parameter

261
261
261
261
261
261
262
262
264
264
265
265
266
266
266
268
268
269
271
272
272
273
273
273
274
274
274
274
275
275
275
275
275
275
276
277
277
278
278
279
281
281
281
281
282
282
283
283
284
284
284
284
284
285
285
285
285
286
286
286
287
287
288
290
292
293
293
294
294
295
297
298

LOCAL_IP Connection Manager configuration parameter
LOG Connection Manager configuration parameter
LOGFILE Connection Manager configuration parameter
MACRO Connection Manager configuration parameter
NAME Connection Manager configuration parameter
REPLSET Connection Manager configuration parameter
SECONDARY_EVENT_TIMEOUT Connection Manager configuration parameter
SERVERSET Connection Manager configuration parameter
SLA Connection Manager configuration parameter
SQLHOSTS Connection Manager configuration parameter
SSL_LABEL Connection Manager configuration parameter

Modifying Connection Manager configuration files
Converting older formats of the Connection Manager configuration file to the current format

Configuring environments and setting configuration parameters for connection management
Defining sqlhosts information for connection management

Defining sqlhosts information for connection management of high-availability clusters
sqlhosts for HA clusters that use secure ports
sqlhosts for HA clusters that use DRDA
sqlhosts for HA clusters that use DRDA and secure ports
sqlhosts for grids and replicate sets
sqlhosts for grids and replicate sets that use secure ports
sqlhosts for HA replication systems
sqlhosts for HA replication systems that use secure ports
sqlhosts for server sets

Creating a password file for connecting to database servers on untrusted networks
Modifying encrypted password information

Starting Connection Managers on UNIX and Linux
Starting Connection Managers on Windows
Stopping connection management

Monitoring and troubleshooting connection management
Strategies for increasing availability with Connection Managers
Configuration examples for connection management

Example of configuring connection management for a high-availability cluster
Example of configuring connection management for a grid or replicate set
Example of configuring connection management for a high-availability replication system
Example: Configuring connection management for untrusted networks
Example: Configuring for prioritizing connections and network monitoring
Example: Configuring for an SSL connection

Example: Using the OpenSSL encryption library
Example: Using the GSKit encryption library
Configuring a CM to connect to Oninit using SSL
Configuring a client to connect to a CM using SSL

Cluster failover, redirection, and restoration
Failover configuration for high-availability clusters

Failover with ISV cluster management software
I/O fencing for shared file systems
Cluster failures

Automatic switchover
Automatic switchover without a reliable network
Manual switchover
Connecting offline servers to the new primary server

Redirection and connectivity for data-replication clients
Redirecting clients automatically with the DBPATH environment variable

How the DBPATH redirection method works
Redirecting clients with the connectivity information

Changing client connectivity information
Connecting to the database server
Automatic redirection with server groups

Redirecting clients with the INFORMIXSERVER environment variable
Redirecting clients with application code
Comparison of redirection methods

Recover HDR and RS clusters after failure
Recovering a cluster after critical data is damaged
Restarting HDR or RS clusters after a network failure
Restarting HDR or RS clusters if the secondary server fails
Recovering an HDR cluster after the secondary server became the primary server
Restart if the primary server fails

Recovering a shared-disk cluster after data is damaged
Recovering an SD cluster after the secondary server became the primary server

Distributed data
Multiphase commit protocols

Transaction managers

299
299
300
300
301
301
302
302
303
310
311
311
311
312
313
314
315
316
318
320
321
322
324
326
327
328
329
329
330
330
330
331
331
333
335
337
339
340
341
341
341
341
342
342
342
343
343
344
344
344
345
345
346
346
346
347
348
348
348
348
349
350
350
351
351
352
352
353
354
354
354
355

TP/XA Library with a transaction manager
Microsoft Transaction Server (MTS/XA)
Informix transaction support for XA-compliant, external data sources
XA in high-availability clusters
Loosely-coupled and tightly-coupled modes

Two-phase commit protocol
When the two-phase commit protocol is used
Two-phase commit concepts
Phases of the two-phase commit protocol

Precommit phase
Postdecision phase

How the two-phase commit protocol handles failures
Types of failures that automatic recovery handles
Administrator's role in automatic recovery
Automatic-recovery mechanisms for coordinator failure
Automatic-recovery mechanisms for participant failure

Presumed-end optimization
Independent actions

Situations that initiate independent action
Possible results of independent action

Independent actions that allow transactions to complete successfully
Independent actions that result in an error condition
Independent actions that result in heuristic decisions

The heuristic rollback scenario
Conditions that result in a heuristic rollback

Condition 1: Logical log fills to a high-watermark
Condition 2: System administrator executes onmode -z

Results of a heuristic rollback
Situation 1: Coordinator issues a commit and all participants report heuristic rollbacks
Situation 2: Coordinator issued a commit; one participant commits and one reports a heuristic rollback

The heuristic end-transaction scenario
When to perform a heuristic end transaction
How to use onmode -Z
Action when the transaction is ended heuristically

Monitor a global transaction
Two-phase commit protocol errors
Two-phase commit and logical-log records

Logical-log records when the transaction commits
Logical-log records written during a heuristic rollback
Logical-log records written after a heuristic end transaction

Configuration parameters used in two-phase commits
Function of the DEADLOCK_TIMEOUT parameter
Function of the TXTIMEOUT parameter

Heterogeneous commit protocol
Gateways that can participate in a heterogeneous commit transaction
Enable and disable of heterogeneous commit
How heterogeneous commit works

Precommit phase
Gateway commit phase
Heterogeneous commit optimization

Implications of a failed heterogeneous commit
Database server coordinator failure
Participant failure
Interpretation of heterogeneous commit error messages

Application attempts to update multiple gateway participants
Failed attempt to commit distributed transaction using heterogeneous commit

Manually recovering from failed two-phase commit
Determine if manual recovery is required

Determine if a transaction was implemented inconsistently
Global transaction ended prematurely
Heuristic end transaction
Heuristic rollback

Determine if the distributed database contains inconsistent data
Obtaining information from the logical log
Obtain the global transaction identifier

Decide if action is needed to correct the situation
Example of manual recovery

Overview of automatic monitoring and corrective actions
The Scheduler

Scheduler tables
Built-in tasks and sensors
Creating a task

355
355
355
356
357
357
358
358
358
358
359
359
359
359
359
360
360
360
360
360
361
361
361
361
362
362
362
362
363
363
363
363
364
364
364
366
366
366
367
367
368
368
368
369
369
369
370
370
370
370
370
371
371
371
372
372
372
372
372
372
373
373
373
373
374
374
375
376
376
377
378
381

Creating a sensor
Actions for task and sensors
Creating a group
Creating a threshold
Creating an alert
Monitor the scheduler
Modifying the scheduler

Remote administration with the SQL administration API
SQL administration API admin() and task() functions
Viewing SQL administration API history

Controlling the size of the command_history table
Query drill-down

Specifying startup SQL tracing information by using the SQLTRACE configuration parameter
Disable SQL tracing globally or for a session
Enable SQL tracing
Enable global SQL tracing for a session

Administrator's Reference
Configuring and monitoring Informix

Database configuration parameters
onconfig file

Modifying the onconfig file
Displaying the settings in the onconfig file

onconfig Portal: Configuration parameters by functional category
ADMIN_MODE_USERS configuration parameter
ADMIN_USER_MODE_WITH_DBSA configuration parameter
ALARMPROGRAM configuration parameter
ALLOW_NEWLINE configuration parameter
ALRM_ALL_EVENTS configuration parameter
AUTO_AIOVPS configuration parameter
AUTO_CKPTS configuration parameter
AUTO_LLOG configuration parameter
AUTO_TUNE_SERVER_SIZE configuration parameter
AUTO_LRU_TUNING configuration parameter
AUTO_READAHEAD configuration parameter
AUTO_REPREPARE configuration parameter
AUTO_STAT_MODE configuration parameter
AUTO_TUNE configuration parameter
AUTOLOCATE configuration parameter
BATCHEDREAD_INDEX configuration parameter
BATCHEDREAD_TABLE configuration parameter
BLOCKTIMEOUT configuration parameter
BTSCANNER Configuration Parameter
BUFFERPOOL configuration parameter
CHECKALLDOMAINSFORUSER configuration parameter
CKPTINTVL configuration parameter
CLEANERS configuration parameter
CLUSTER_TXN_SCOPE configuration parameter
CONSOLE configuration parameter
CONVERSION_GUARD configuration parameter
DATASKIP Configuration Parameter
DBCREATE_PERMISSION configuration parameter
DB_LIBRARY_PATH configuration parameter
DBSERVERALIASES configuration parameter
DBSERVERNAME configuration parameter
DBSPACETEMP configuration parameter

Use Hash Join Overflow and DBSPACETEMP
DD_HASHMAX configuration parameter
DD_HASHSIZE configuration parameter
DEADLOCK_TIMEOUT configuration parameter
DEF_TABLE_LOCKMODE configuration parameter
DEFAULTESCCHAR configuration parameter
DELAY_APPLY Configuration Parameter
DIRECT_IO configuration parameter (UNIX)
DIRECTIVES configuration parameter
DISABLE_B162428_XA_FIX configuration parameter
DISK_ENCRYPTION configuration parameter
DRDA_COMMBUFFSIZE configuration parameter
DRAUTO configuration parameter
DRIDXAUTO configuration parameter
DRINTERVAL configuration parameter
DRLOSTFOUND configuration parameter
DRTIMEOUT configuration parameter

382
383
384
385
385
386
387
388
388
389
389
389
391
391
392
392
393
393
393
400
401
401
402
415
415
415
416
417
417
417
418
419
419
420
421
421
422
423
423
424
424
425
426
429
429
430
430
431
431
432
433
433
433
434
435
436
436
437
437
437
438
438
439
439
440
440
441
442
442
443
443
444

DS_HASHSIZE configuration parameter
DS_MAX_QUERIES configuration parameter
DS_MAX_SCANS configuration parameter
DS_NONPDQ_QUERY_MEM configuration parameter
DS_POOLSIZE configuration parameter
DS_TOTAL_MEMORY configuration parameter

Algorithm for DS_TOTAL_MEMORY
DUMPCNT configuration parameter (UNIX)
DUMPCORE configuration parameter (UNIX)
DUMPDIR configuration parameter
DUMPGCORE configuration parameter (UNIX)
DUMPSHMEM configuration parameter (UNIX)
DYNAMIC_LOGS configuration parameter
EILSEQ_COMPAT_MODE configuration parameter
ENABLE_SNAPSHOT_COPY configuration parameter
ENCRYPT_CIPHERS configuration parameter
ENCRYPT_HDR configuration parameter
ENCRYPT_MAC configuration parameter
ENCRYPT_MACFILE configuration parameter
ENCRYPT_SMX configuration parameter
ENCRYPT_SWITCH configuration parameter
EXPLAIN_STAT configuration parameter
EXT_DIRECTIVES configuration parameter
EXTSHMADD configuration parameter
FAILOVER_CALLBACK configuration parameter
FAILOVER_TX_TIMEOUT configuration parameter
FASTPOLL configuration parameter
FILLFACTOR configuration parameter
FULL_DISK_INIT configuration parameter
GSKIT_VERSION configuration parameter
HA_ALIAS configuration parameter
HA_FOC_ORDER configuration parameter
HDR_TXN_SCOPE configuration parameter
HETERO_COMMIT configuration parameter
IFX_EXTEND_ROLE configuration parameter
IFX_FOLDVIEW configuration parameter
IFX_XA_UNIQUEXID_IN_DATABASE configuration parameter
INFORMIXCONRETRY configuration parameter
INFORMIXCONTIME configuration parameter
LIMITNUMSESSIONS configuration parameter
LISTEN_TIMEOUT configuration parameter
LOCKS configuration parameter
LOGBUFF configuration parameter
LOGBUF_INTVL configuration parameter
LOGFILES configuration parameter
LOG_INDEX_BUILDS configuration parameter
LOG_STAGING_DIR configuration parameter
LOGSIZE configuration parameter
LOW_MEMORY_MGR configuration parameter
LOW_MEMORY_RESERVE configuration parameter
LTXEHWM configuration parameter
LTXHWM configuration parameter
MAX_FILL_DATA_PAGES configuration parameter
MAX_INCOMPLETE_CONNECTIONS configuration parameter
MAX_PDQPRIORITY configuration parameter
MIRROR configuration parameter
MIRROROFFSET configuration parameter
MIRRORPATH configuration parameter
MSG_DATE configuration parameter
MSGPATH configuration parameter
MULTIPROCESSOR configuration parameter
NET_IO_TIMEOUT_ALARM configuration parameter
NETTYPE configuration parameter
NS_CACHE configuration parameter
NUMFDSERVERS configuration parameter
OFF_RECVRY_THREADS configuration parameter
ON_RECVRY_THREADS configuration parameter
ONDBSPACEDOWN configuration parameter

Database Server Behavior When ONDBSPACEDOWN Does Not Apply
ONLIDX_MAXMEM configuration parameter
OPTCOMPIND configuration parameter
OPT_GOAL configuration parameter

444
445
445
446
446
447
448
448
449
449
449
450
450
451
451
452
453
453
454
454
454
455
455
456
456
456
457
457
458
458
458
459
460
461
461
462
462
463
463
463
464
464
465
465
466
466
467
467
468
468
469
469
470
470
471
471
472
472
472
473
473
474
474
475
476
477
477
478
478
478
479
479

PC_HASHSIZE configuration parameter
PC_POOLSIZE configuration parameter
PFSC_BOOST configuration parameter
PHYSBUFF configuration parameter
PHYSFILE configuration parameter
PLOG_OVERFLOW_PATH configuration parameter
PLCY_HASHSIZE configuration parameter
PLCY_POOLSIZE configuration parameter
PN_STAGEBLOB_THRESHOLD configuration parameter
PRELOAD_DLL_FILE configuration parameter
QSTATS configuration parameter
REMOTE_SERVER_CFG configuration parameter
REMOTE_USERS_CFG configuration parameter
RESIDENT configuration parameter
RESTARTABLE_RESTORE configuration parameter
RESTORE_POINT_DIR configuration parameter
ROOTNAME configuration parameter
ROOTOFFSET configuration parameter
ROOTPATH configuration parameter
ROOTSIZE configuration parameter
RSS_FLOW_CONTROL configuration parameter
RSS_NONBLOCKING_CKPT configuration parameter
RTO_SERVER_RESTART configuration parameter
S6_USE_REMOTE_SERVER_CFG configuration parameter
SB_CHECK_FOR_TEMP configuration parameter
SBSPACENAME configuration parameter
SBSPACETEMP configuration parameter
SDS_ALTERNATE configuration parameter
SDS_ENABLE configuration parameter
SDS_FLOW_CONTROL configuration parameter
SDS_LOGCHECK configuration parameter
SDS_PAGING configuration parameter
SDS_TEMPDBS configuration parameter
SDS_TIMEOUT configuration parameter
SEC_APPLY_POLLTIME configuration parameter
SEC_DR_BUFS configuration parameter
SEC_LOGREC_MAXBUFS configuration parameter
SEC_NONBLOCKING_CKPT configuration parameter
SECURITY_LOCALCONNECTION configuration parameter
SEQ_CACHE_SIZE configuration parameter
SERVERNUM configuration parameter
SESSION_LIMIT_LOCKS configuration parameter
SESSION_LIMIT_LOGSPACE configuration parameter
SESSION_LIMIT_MEMORY configuration parameter
SESSION_LIMIT_TEMPSPACE configuration parameter
SESSION_LIMIT_TXN_TIME configuration parameter
SHMADD configuration parameter
SHMBASE configuration parameter
SHMNOACCESS configuration parameter
SHMTOTAL configuration parameter
SHMVIRT_ALLOCSEG configuration parameter
SHMVIRTSIZE configuration parameter
SINGLE_CPU_VP configuration parameter

VPCLASS Values and the SINGLE_CPU_VP Configuration Parameter
SMX_COMPRESS configuration parameter
SMX_NUMPIPES configuration parameter
SMX_PING_INTERVAL configuration parameter
SMX_PING_RETRY configuration parameter
SP_AUTOEXPAND configuration parameter
SP_THRESHOLD configuration parameter
SP_WAITTIME configuration parameter
SQL_LOGICAL_CHAR configuration parameter
SQLTRACE configuration parameter
SSL_KEYSTORE_LABEL configuration parameter
STACKSIZE configuration parameter
STATCHANGE configuration parameter
STMT_CACHE configuration parameter
STMT_CACHE_HITS configuration parameter
STMT_CACHE_NOLIMIT configuration parameter
STMT_CACHE_NUMPOOL configuration parameter
STMT_CACHE_QUERY_PLAN configuration parameter
STMT_CACHE_SIZE configuration parameter

480
480
480
480
481
481
482
482
482
483
483
484
484
485
485
486
486
486
487
487
488
488
489
489
489
490
491
491
492
492
493
493
494
494
495
495
496
496
497
497
497
497
498
498
499
499
500
500
501
501
502
502
503
504
504
504
505
505
506
506
507
507
508
509
509
510
510
511
511
512
512
512

STOP_APPLY configuration parameter
STORAGE_FULL_ALARM configuration parameter
SYSALARMPROGRAM configuration parameter
SYSSBSPACENAME configuration parameter
TBLSPACE_STATS configuration parameter
TBLTBLFIRST configuration parameter
TBLTBLNEXT configuration parameter
TEMPTAB_NOLOG configuration parameter
TENANT_LIMIT_CONNECTIONS configuration parameter
TENANT_LIMIT_MEMORY configuration parameter
TENANT_LIMIT_SPACE configuration parameter
TLS_VERSION configuration parameter
TXTIMEOUT configuration parameter
UNSECURE_ONSTAT configuration parameter
UPDATABLE_SECONDARY configuration parameter
USELASTCOMMITTED configuration parameter
USEOSTIME configuration parameter
USERMAPPING configuration parameter (UNIX, Linux)
USRC_HASHSIZE configuration parameter
USRC_POOLSIZE configuration parameter
USTLOW_SAMPLE configuration parameter
VP_MEMORY_CACHE_KB configuration parameter
VPCLASS configuration parameter
VP_KAIO_PERCENT configuration parameter
WSTATS configuration parameter

The sysmaster database
The sysmaster Database

The buildsmi Script
The bldutil.sh Script

The System-Monitoring Interface
Understanding the SMI Tables
Accessing SMI tables

SELECT statements
Triggers and Event Alarms
SPL and SMI Tables
Locking and SMI Tables

The System-Monitoring Interface Tables
The sysutils Tables
sysadtinfo
sysaudit
syschkio
syscheckpoint
syschunks
sysckptinfo
syscluster
syscmsm
syscmsmsla
syscmsmtab
syscmsmunit
syscompdicts_full
sysconfig
sysdatabases
sysdbslocale
sysdbspaces
sysdri
sysdual
sysenv
sysenvses
sysextents
sysextspaces
sysfeatures
sysha_lagtime Table
sysha_type
sysha_workload
sysipl
syslocks
syslogs
syslogfil table
sysmgminfo
sysnetclienttype
sysnetglobal
sysnetworkio table

512
513
514
514
515
515
516
516
517
517
517
518
518
519
519
519
520
521
521
521
522
522
523
525
525
526
526
526
526
527
527
527
527
528
528
528
528
531
531
531
532
532
532
533
534
535
535
535
535
536
536
537
537
537
538
539
539
539
539
539
540
540
541
541
542
542
542
543
543
544
544
545

sysonlinelog
sysprofile
sysproxyagents
sysproxydistributors
sysproxysessions table
sysproxytxnops table
sysproxytxns table
sysptnhdr
sysptprof table
sysrepevtreg table
sysrepstats table

User interface for sysrepstats and sysrepevtreg tables
sysrsslog
sysscblst
syssscelem
syssesappinfo
syssesprof
syssessions
syssessiontempspaceusage
syssmx
syssmxses
syssqexplain table
syssqltrace
syssqltrace_hvar
syssqltrace_info
syssqltrace_iter
syssrcrss
syssrcsds
systabnames
systhreads
systrgrss
systrgsds
sysvpprof
The SMI Tables Map
Information from onstat in the SMI Tables

The sysadmin Database
The Scheduler tables

The ph_task Table
The ph_run Table
The ph_group Table
The ph_alert Table
The ph_threshold Table

The results tables
The command_history table
The storagepool table
The tenant table

Disk Structures and Storage
Dbspace Structure and Storage

Structure of the Root Dbspace
Reserved Pages
Structure of a Regular Dbspace

Structure of an Additional Dbspace Chunk
Structure of a Mirror Chunk

Structure of the Chunk Free-List Page
Structure of the Tblspace Tblspace

Tblspace tblspace entries
Tblspace Numbers

Structure of the Database Tblspace
Database Tblspace Entries

Structure and Allocation of an Extent
Extent Structure

Extent size
Page Types Within a Table Extent
Page Types Within an Index Extent

Next-Extent Allocation
Next-Extent Size
Extent size doubling
Lack of Contiguous Space
Merge of Extents for the Same Table

Structure and Storage of a Dbspace Page
Rows in Nonfragmented Tables

Definition of Rowid

545
545
546
547
547
547
548
548
549
550
550
550
552
552
552
553
553
553
554
555
555
555
556
557
557
558
558
558
559
559
560
560
560
561
562
562
562
563
564
565
565
566
567
567
568
568
569
569
569
570
570
570
571
571
571
572
572
573
573
573
574
574
574
575
576
576
576
577
577
577
577
578

Use of Rowids
Rows in Fragmented Tables

Access to Data in Fragmented Tables with Rowid
Recommendations on Use of Rowid
Data-Row Format and Storage

Storage of Row
Location of Rows
Page Compression

Structure of Fragmented Tables
Structure of B-Tree Index Pages

Definition of B-tree terms
Logical Storage of Indexes

Creation of Root and Leaf Nodes
Creation of branch nodes
Duplicate Key Values
Key-Value Locking
Adjacent Key Locking
Freed Index Pages
Filling Indexes
Calculating the Length of Index Items

Functional Indexes
Structure of R-Tree Index Pages

Storage of Simple Large Objects
Structure of a Blobspace
Structure of a Dbspace Blobpage
Simple-Large-Object Storage and the Descriptor

Creation of Simple Large Objects
Deletion or Insertion of Simple Large Objects
Size Limits for Simple Large Objects

Blobspace Page Types
Structure of a Blobspace Blobpage

Sbspace Structure
Structure of the metadata area
Sbpage Structure

Time Stamps
Database and Table Creation: What Happens on Disk

Database Creation
Disk-Space Allocation for System Catalog Tables
Tracking of System Catalog Tables

Table Creation
Disk-Space Allocation
Entry in the Tblspace Tblspace
Entries in the System Catalog Tables
Creation of a Temporary Table

Interpreting Logical-Log Records
About Logical-Log Records

Transactions That Drop a Table or Index
Transactions That Are Rolled Back
Checkpoints with Active Transactions
Distributed Transactions

Logical-Log Record Structure
Logical-Log Record Header
Logical-log record types and additional columns
Log Record Types for Smart Large Objects

Administrative Utilities
Overview of Utilities

Obtaining utility version information
Setting local environment variables for utilities (UNIX)

The finderr utility
The genoncfg Utility
The oncheck Utility

oncheck Check-and-Repair
What Does Each Option Do?
Using the -y Option to Perform Repairs
Repairing Indexes in Sbspaces and External Spaces
Locking and oncheck

oncheck utility syntax
oncheck -cc and-pc: Check system catalog tables
oncheck -cd and oncheck -cD commands: Check pages
oncheck -ce, -pe: Check the chunk-free list
oncheck -ci and -cI: Check index node links
oncheck -cr and -cR: Check reserved pages

578
578
578
579
579
579
579
579
580
580
580
581
581
582
582
583
583
583
583
583
583
584
584
584
584
584
585
585
585
585
585
586
586
587
587
587
587
588
588
588
588
588
589
589
589
589
589
590
590
590
590
590
591
599
600
601
601
601
602
603
604
605
605
606
606
606
606
609
609
610
611
612

oncheck -cs, -cS, -ps, -pS: Check and display sbspaces
oncheck -pB: Display blobspace statistics
oncheck -pd and pD: Display rows in hexadecimal format
oncheck -pk, -pK, -pl, -pL: Display index information
oncheck -pp and -pP: Display the contents of a logical page
oncheck -pr and pR: Display reserved-page information
oncheck -pt and -pT: Display tblspaces for a Table or Fragment
Turn On Locking with -x
Send Special Arguments to the Access Method with -u
Return Codes on Exit

The onclean utility
The onshutdown script

The oncmsm utility
The onconfig_diff utility
The ondblog utility
The oninit utility

The -FILE option
Return codes for the oninit utility

The onkstash Utility
The onkstore Utility

Create a Keystore with onkstore
Creating an AWS type keystore
Creating an Azure type keystore
Creating a KMIP type keystore
Verifying a Keystore File
Changing the Password for a Keystore File
Converting a Keystore File
List the contents of a Keystore File

The onlog utility
The onmode utility

onmode command syntax
onmode -a: Add a shared-memory segment
onmode -BC: Allow large chunk mode
onmode -c: Force a checkpoint
onmode -C: Control the B-tree scanner
onmode -cache surrogates: Cache the allowed.surrogates file
onmode -d: Set data-replication types
onmode -d: Set High Availability server characteristics
onmode -d command: Replicate an index with data-replication
onmode -D, -M, -Q, -S: Change decision-support parameters
onmode -e: Change usage of the SQL statement cache
onmode -F: Free unused memory segments
onmode -h: Update sqlhosts caches
onmode -I: Control diagnostics collection
onmode -k, -m, -s, -u, -j: Change database server mode

Taking the Database Server to Offline Mode with the -k Option
Bringing the Database Server Online with the -m Option
Shutting Down the Database Server Gracefully with the -s Option
Shutting Down the Database Server Immediately with the -u Option
Changing the Database Server to Administration Mode with the -j Option

onmode -l: Switch the logical-log file
onmode -n, -r: Change shared-memory residency
onmode -O: Override ONDBSPACEDOWN WAIT mode
onmode -p: Add or drop virtual processors

Rules for adding and dropping virtual processors
Monitoring poll threads with onstat

onmode -P: Start, stop, or restart a listen thread dynamically
onmode -R: Regenerate .infos.dbservername File
onmode -W: Change settings for the SQL statement cache

SQL statement cache examples
onmode -we: Export a file that contains current configuration parameters
onmode -wf, -wm: Dynamically change certain configuration parameters

onmode -wm: Change LRU tuning status
onmode -wi: Import a configuration parameter file
onmode -Y: Dynamically change SET EXPLAIN
onmode -z: Kill a database server session
onmode -Z: Kill a distributed transaction

The onparams Utility
onparams syntax
onparams -a -d dbspace: Add a logical-log file
onparams -d -l lognum: Drop a logical-log file
onparams -p: Change physical-log parameters

612
612
612
613
614
615
616
618
618
618
618
619
620
622
623
624
627
627
630
630
631
632
633
633
634
634
634
634
635
637
638
638
639
639
640
640
641
641
643
643
644
644
645
645
646
646
646
647
647
647
647
648
648
648
650
650
650
651
651
652
652
652
653
653
654
654
655
655
656
656
657
657

Backing Up After You Change the Physical-Log Size or Location
Changing the Size of the Physical Log and Using Non-Default Page Sizes

onparams -b: Add a buffer pool
Examples of onparams Commands

The onpassword utility
The ifxclone utility
The onspaces utility

onspaces syntax
onspaces -a: Add a chunk to a dbspace or blobspace
onspaces -a: Add a chunk to an sbspace
onspaces -c -b: Create a blobspace
onspaces -c -d: Create a dbspace
onspaces -c -P: Create a plogspace
onspaces -c -S: Create an sbspace

Creating a Temporary Sbspace with the -t Option
Creating an Sbspace with the -Df option
Changing the -Df Settings
Using the onspaces -g option

onspaces -c -x: Create an extspace
onspaces -ch: Change sbspace default specifications
onspaces -cl: Clean up stray smart large objects in sbspaces
onspaces -d: Drop a chunk in a dbspace, blobspace, or sbspace
onspaces -d: Drop a space
onspaces -f: Specify DATASKIP parameter
onspaces -m: Start mirroring

Using a File to Specify Chunk-Location Information with the -f Option
onspaces -r: Stop mirroring
onspaces -ren: Rename a dbspace, blobspace, sbspace, or extspace

Renaming a dbspace, blobspace, sbspace, or extspace when Enterprise Replication is active
Performing an Archive after Renaming a Space

onspaces -s: Change status of a mirrored chunk
Avoid overwriting a chunk

The onstat utility
onstat Utility Commands Sorted by Functional Category
Monitor the database server status
onstat command syntax
onstat command: Equivalent to the onstat -pu command
onstat - command: Print output header
onstat -- command: Print onstat options and functions
Running onstat Commands on a Shared Memory Dump File
onstat -a command: Print overall status of the database server
onstat -b command: Print buffer information for buffers in use
onstat -B command: Prints information about used buffers
onstat -c command: Print ONCONFIG file contents
onstat -C command: Print B-tree scanner information
onstat -d command: Print chunk information
onstat -D command: Print page-read and page-write information
onstat -f command: Print dbspace information affected by dataskip
onstat -F command: Print counts
onstat -g monitoring options

onstat -g act command: Print active threads
onstat -g afr command: Print allocated memory fragments
onstat -g all command: Print diagnostic information
onstat -g aqt command: Print data mart and accelerated query table information
onstat -g arc command: Print archive status
onstat -g ath command: Print information about all threads
onstat -g bth and -g BTH: Print blocked and waiting threads
onstat -g buf command: Print buffer pool profile information
onstat -g cac command: Print information about caches
onstat -g ckp command: Print checkpoint history and configuration recommendations
onstat -g cfg command: Print the current values of configuration parameters
onstat -g cluster command: Print high-availability cluster information
onstat -g cmsm command: Print Connection Manager information
onstat -g con command: Print condition and thread information
onstat -g cpu: Print runtime statistics
onstat -g dbc command: Print dbScheduler and dbWorker thread statistics
onstat -g defragment command: Print defragment partition extents
onstat -g dic command: Print table information
onstat -g dis command: Print database server information
onstat -g dll command: Print dynamic link library file list
onstat -g dmp command: Print raw memory
onstat -g dri command: Print high-availability data replication information

658
658
658
658
658
659
664
665
665
666
667
668
670
671
672
672
674
674
674
675
675
676
677
677
678
679
679
679
680
680
680
681
681
683
692
693
695
695
696
696
696
697
697
698
699
702
706
706
707
707
710
711
711
711
713
714
715
716
718
720
722
724
726
728
728
729
730
731
732
732
733
734

onstat -g dsc command: Print distribution cache information
onstat -g dsk command: Print the progress of the currently running compression operation
onstat -g env command: Print environment variable values
onstat -g ffr command: Print free fragments
onstat -g glo command: Print global multithreading information
onstat -g his command: Print SQL trace information
onstat -g ioa command: Print combined onstat -g information
onstat -g iob command: Print big buffer use summary
onstat -g iof command: Print asynchronous I/O statistics
onstat -g iog command: Print AIO global information
onstat -g ioq command: Print I/O queue information
onstat -g ipl command: Print index page logging status information
onstat -g iov command: Print AIO VP statistics
onstat -g lap command: Print light appends status information
onstat -g laq command: Print log apply queues
onstat -g lmm command: Print low memory management information
onstat -g lmx command: Print all locked mutexes
onstat -g lsc command: Print active light scan status (deprecated)
onstat -g mem command: Print pool memory statistics
onstat -g mgm command: Print MGM resource information
onstat -g nbm command: Print a block bit map
onstat -g nsc command: Print current shared memory connection information
onstat -g nsd command: Print poll threads shared-memory data
onstat -g nss command: Print shared memory network connections status
onstat -g ntd command: Print network statistics
onstat -g ntm command: Print network mail statistics
onstat -g ntt command: Print network user times
onstat -g ntu command: Print network user statistics
onstat -g opn command: Print open partitions
onstat -g osi: Print operating system information
onstat -g pd command: Print push data session-related information
onstat -g pd event command: Print push data event-related information
onstat -g pfsc command: Print partition free space cache information
onstat -g pos command: Print file values
onstat -g ppd command: Print partition compression dictionary information
onstat -g ppf command: Print partition profiles
onstat -g pqs command: Print operators for all SQL queries
onstat -g prc command: Print sessions using UDR or SPL routines
onstat -g proxy command: Print proxy distributor information
onstat -g qst command: Print wait options for mutex and condition queues
onstat -g rah command: Print read-ahead request statistics
onstat -g rbm command: Print a block map of shared memory
onstat -g rea command: Print ready threads
onstat -g rss command: Print RS secondary server information
onstat -g rwm command: Print read and write mutexes
onstat -g sch command: Print VP information
onstat -g scn command: Print scan information
onstat -g sds command: Print SD secondary server information
onstat -g seg command: Print shared memory segment statistics
onstat -g ses command: Print session-related information
onstat -g shard command: Print information about the shard definition
onstat -g sle command: Print all sleeping threads
onstat -g smb command: Print sbspaces information
onstat -g smx command: Print multiplexer group information
onstat -g spi command: Print spin locks with long spins
onstat -g sql command: Print SQL-related session information
onstat -g spf: Print prepared statement profiles
onstat -g src command: Patterns in shared memory
onstat -g ssc command: Print SQL statement occurrences
onstat -g stk command: Print thread stack
onstat -g stm command: Print SQL statement memory usage
onstat -g stq command: Print queue information
onstat -g sts command: Print stack usage for each thread
onstat -g sym command: Print symbol table information for the oninit utility
onstat -g top command: Print top consumers of resources
onstat -g tpf command: Print thread profiles
onstat -g ufr command: Print memory pool fragments
onstat -g vpcache command: Print CPU VP and tenant VP private memory cache statistics
onstat -g wai command: Print wait queue thread list
onstat -g wmx command: Print all mutexes with waiters
onstat -g wst command: Print wait statistics for threads

onstat -G command: Print TP/XA transaction information

736
736
737
738
739
740
742
744
744
745
745
746
746
747
748
749
750
751
751
752
754
754
756
757
757
758
758
758
759
759
759
760
761
761
762
762
763
764
765
768
769
769
770
770
773
773
774
775
778
778
783
785
785
786
788
788
790
790
791
792
792
793
793
794
794
795
796
797
798
799
799
800

onstat -h command: Print buffer header hash chain information
onstat -i command: Initiate interactive mode
onstat -j command: Provide onpload status information
onstat -k command: Print active lock information
onstat -l command: Print physical and logical log information
onstat -L command: Print the number of free locks
onstat -m command: Print recent system message log information
onstat -o command: Output shared memory contents to a file
onstat -p command: Print profile counts
onstat -P command: Print partition information
onstat -r command: Repeatedly print selected statistics
onstat -R command: Print LRU, FLRU, and MLRU queue information
onstat -s command: Print latch information
onstat -t and onstat -T commands: Print tblspace information
onstat -u command: Print user activity profile
onstat -x command: Print database server transaction information

Determine the position of a logical-log record
Determine the mode of a global transaction

onstat -X command: Print thread information
onstat -z command: Clear statistics
Return codes on exiting the onstat utility

SQL Administration API
SQL Administration API Functions

SQL Administration API Overview
admin() and task() Function Syntax Behavior
admin() and task() Argument Size Specifications
admin() and task() Function Return Codes

SQL administration API portal: Arguments by privilege groups
add bufferpool argument: Add a buffer pool (SQL administration API)
add chunk argument: Add a new chunk (SQL administration API)
add log argument: Add a new logical log (SQL administration API)
add memory argument: Increase shared memory (SQL administration API)
add mirror argument: Add a mirror chunk (SQL administration API)
alter chunk argument: Change chunk status to online or offline (SQL administration API)
alter logmode argument: Change the database logging mode (SQL administration API)
alter plog argument: Change the physical log (SQL administration API)
archive fake argument: Perform an unrecorded backup (SQL administration API)
autolocate database add argument: Add a dbspace to the dbspace list (SQL administration API)
autolocate database anywhere argument: Add all dbspaces to the dbspace list (SQL administration API)
autolocate database argument: Specify dbspaces for automatic location and fragmentation (SQL administration API)
autolocate database off argument: Disable automatic fragmentation for a database (SQL administration API)
autolocate database remove argument: Remove a dbspace from the dbspace list (SQL administration API)
cdr argument: Administer Enterprise Replication (SQL administration API)
cdr add trustedhost argument: Add trusted hosts (SQL administration API)
cdr autoconfig serv argument: Autoconfigure connectivity and replication (SQL administration API)
cdr list trustedhost argument: List trusted hosts (SQL administration API)
cdr remove trustedhost argument: Remove trusted hosts (SQL administration API)
check data argument: Check data consistency (SQL administration API)
check extents argument: Check extent consistency (SQL administration API)
check partition argument: Check partition consistency (SQL administration API)
checkpoint argument: Force a checkpoint (SQL administration API)
clean sbspace argument: Release unreferenced smart large objects (SQL administration API)
create blobspace argument: Create a blobspace (SQL administration API)
create blobspace from storagepool argument: Create a blobspace from the storage pool (SQL administration API)
create chunk argument: Create a chunk (SQL administration API)
create chunk from storagepool argument: Create a chunk from the storage pool (SQL administration API)
create database argument: Create a database (SQL administration API)
create dbaccessdemo argument: Create the demonstration database (SQL administration API)
create dbspace argument: Create a dbspace (SQL administration API)
create dbspace from storagepool argument: Create a dbspace from the storage pool (SQL administration API)
create plogspace: Create a plogspace (SQL administration API)
create sbspace argument: Create an sbspace (SQL administration API)
create sbspace from storagepool argument: Create an sbspace from the storage pool (SQL administration API)
create sbspace with accesstime argument: Create an sbspace that tracks access time (SQL administration API)
create sbspace with log argument: Create an sbspace with transaction logging (SQL administration API)
create tempdbspace argument: Create a temporary dbspace (SQL administration API)
create tempdbspace from storagepool argument: Create a temporary dbspace from the storage pool (SQL administration API)
create tempsbspace argument: Create a temporary sbspace (SQL administration API)
create tempsbspace from storagepool argument: Create a temporary sbspace from the storage pool (SQL administration API)
defragment argument: Dynamically defragment partition extents (SQL administration API)
drop blobspace argument: Drop a blobspace (SQL administration API)
drop blobspace to storagepool argument: Return space from an empty blobspace to the storage pool (SQL administration API)

801
802
803
804
805
807
807
808
808
810
811
812
814
815
816
818
819
819
820
821
821
822
822
827
827
828
828
829
836
836
837
838
838
839
839
840
841
841
842
842
843
843
844
845
846
847
848
849
849
850
850
851
851
852
853
854
854
855
856
857
857
859
859
860
861
862
862
863
864
864
865
866

drop chunk argument: Drop a chunk (SQL administration API)
drop chunk to storagepool argument: Return space from an empty chunk to the storage pool (SQL administration API)
drop database argument: Drop a database (SQL administration API)
drop dbspace argument: Drop a dbspace (SQL administration API)
drop dbspace to storagepool argument: Return space from an empty dbspace to the storage pool (SQL administration API)
drop log argument: Drop a logical log (SQL administration API)
drop plogspace: Drop the plogspace (SQL administration API)
drop sbspace argument: Drop an sbspace (SQL administration API)
drop sbspace to storagepool argument: Return space from an empty sbspace to the storage pool (SQL administration API)
drop tempdbspace argument: Drop a temporary dbspace (SQL administration API)
drop tempdbspace to storagepool argument: Return space from an empty temporary dbspace to the storage pool (SQL administration API)
drop tempsbspace to storagepool argument: Return space from an empty temporary sbspace to the storage pool (SQL administration API)
export config argument: Export configuration parameter values (SQL administration API)
file status argument: Display the status of a message log file (SQL administration API)
grant admin argument: Grant privileges to run SQL administration API commands
ha make primary argument: Change the mode of a secondary server (SQL administration API)
ha rss argument: Create an RS secondary server (SQL administration API)
ha rss add argument: Add an RS secondary server to a primary server (SQL administration API)
ha rss change argument: Change the password of an RS secondary server (SQL administration API)
ha rss delete argument: Delete an RS secondary server (SQL administration API)
ha sds clear argument: Stop shared-disk replication (SQL administration API)
ha sds primary argument: Convert an SD secondary server to a primary server (SQL administration API)
ha sds set argument: Create a shared-disk primary server (SQL administration API)
ha set idxauto argument: Replicate indexes to secondary servers (SQL administration API)
ha set ipl argument: Log index builds on the primary server (SQL administration API)
ha set primary argument: Define an HDR primary server (SQL administration API)
ha set secondary argument: Define an HDR secondary server (SQL administration API)
ha set standard argument: Convert an HDR server into a standard server (SQL administration API)
ha set timeout argument: Change SD secondary server timeout (SQL administration API)
import config argument: Import configuration parameter values (SQL administration API)
index compress repack shrink arguments: Optimize the storage of B-tree indexes (SQL administration API)
index estimate_compression argument: Estimate index compression (SQL administration API)
master_key reset argument: Change the keystore password (SQL administration API)
message log delete argument: Delete a message log file (SQL administration API)
message log rotate argument: Rotate the message log file (SQL administration API)
message log truncate argument: Delete the contents of a message log file (SQL administration API)
modify chunk extend argument: Extend the size of a chunk (SQL administration API)
modify chunk extendable argument: Mark a chunk as extendable (SQL administration API)
modify chunk extendable off argument: Mark a chunk as not extendable (SQL administration API)
modify chunk swap_mirror argument: Switch primary and mirror chunk files without any downtime(SQL administration API)
modify space swap_mirror argument: Switch all primary and mirror chunk files for a space without any downtime (SQL administration API)
modify config arguments: Modify configuration parameters (SQL administration API)
modify space expand argument: Expand the size of a space (SQL administration API)
modify space sp_sizes argument: Modify sizes of an extendable storage space (SQL administration API)
onbar argument: Backup the storage spaces (SQL administration API)
onmode and a arguments: Add a shared-memory segment (SQL administration API)
onmode and c arguments: Force a checkpoint (SQL administration API)
onmode and C arguments: Control the B-tree scanner (SQL administration API)
onmode and d arguments: Set data-replication types (SQL administration API)
onmode and D arguments: Set PDQ priority (SQL administration API)
onmode and e arguments: Change usage of the SQL statement cache (SQL administration API)
onmode and F arguments: Free unused memory segments (SQL administration API)
onmode and h arguments: Update sqlhosts caches (SQL administration API)
onmode and j arguments: Switch the database server to administration mode (SQL administration API)
onmode and l arguments: Switch to the next logical log (SQL administration API)
onmode and m arguments: Switch to multi-user mode (SQL administration API)
onmode and M arguments: Temporarily change decision-support memory (SQL administration API)
onmode and n arguments: Unlock resident memory (SQL administration API)
onmode and O arguments: Mark a disabled dbspace as down (SQL administration API)
onmode and p arguments: Add or remove virtual processors (SQL administration API)
onmode and Q arguments: Set maximum number for decision-support queries (SQL administration API)
onmode and r arguments: Force residency of shared memory (SQL administration API)
onmode and S arguments: Set maximum number of decision-support scans (SQL administration API)
onmode and W arguments: Reset statement cache attributes (SQL administration API)
onmode and wf arguments: Permanently update a configuration parameter (SQL administration API)
onmode and wm arguments: Temporarily update a configuration parameter (SQL administration API)
onmode, wm, and AUTO_LRU_TUNING arguments: Change LRU tuning status (SQL administration API)
onmode and Y arguments: Change query plan measurements for a session (SQL administration API)
onmode and z arguments: Terminate a user session (SQL administration API)
onmode and Z arguments: Terminate a distributed transaction (SQL administration API)
onsmsync argument: Synchronize with the storage manager catalog (SQL administration API)
onstat argument: Monitor the database server (SQL administration API)

866
867
867
867
868
868
869
869
870
870
871
871
871
872
873
873
874
874
875
875
876
876
877
877
878
878
879
879
880
880
881
882
883
883
884
884
885
886
886
887
887
888
888
889
890
891
891
892
893
894
894
895
895
896
896
896
897
897
898
898
899
900
900
901
901
902
903
903
904
904
905
906

ontape archive argument: Backup the data on your database (SQL administration API)
print error argument: Print an error message (SQL administration API)
print file info argument: Display directory or file information (SQL administration API)
print partition argument: Print partition information (SQL administration API)
rename space argument: Rename a storage space (SQL administration API)
reset config argument: Revert configuration parameter value (SQL administration API)
reset config all argument: Revert all dynamically updatable configuration parameter values (SQL administration API)
reset sysadmin argument: Move the sysadmin database (SQL administration API)
restart listen argument: Stop and start a listen thread dynamically (SQL administration API)
revoke admin argument: Revoke privileges to run SQL administration API commands
scheduler argument: Stop or start the scheduler (SQL administration API)
scheduler lmm enable argument: Specify automatic low memory management settings (SQL administration API)
scheduler lmm disable argument: Stop automatic low memory management (SQL administration API)
set chunk argument: Change the status of a chunk (SQL administration API)
set dataskip argument: Start or stop skipping a dbspace (SQL administration API)
set index compression argument: Change index page compression (SQL administration API)
set onconfig memory argument: Temporarily change a configuration parameter (SQL administration API)
set onconfig permanent argument: Permanently change a configuration parameter (SQL administration API)
set sbspace accesstime argument: Control access time tracking (SQL administration API)
set sbspace avg_lo_size argument: Set the average size of smart large objects (SQL administration API)
set sbspace logging argument: Change the logging of an sbspace (SQL administration API)
set sql tracing argument: Set global SQL tracing (SQL administration API)
set sql tracing database argument: Change database tracing (SQL administration API)
set sql tracing session argument: Control tracing for a session (SQL administration API)
set sql tracing user argument: Control tracing for users (SQL administration API)
set sql user tracing argument: Set global SQL tracing for a user session (SQL administration API)
start json listener argument: Start the MongoDB API wire listener (deprecated)
start listen argument: Start a listen thread dynamically (SQL administration API)
start mirroring argument: Starts storage space mirroring (SQL administration API)
statement cache enable argument: Enable the SQL statement cache (SQL administration API)
statement cache flush argument: Flush the SQL statement cache (SQL administration API)
statement cache hits argument: Specify the number of hits in the SQL statement cache (SQL administration API)
statement cache nolimit argument: Control whether to insert qualified statements into the SQL statement cache (SQL administration API)
statement cache off argument: Disable the SQL statement cache (SQL administration API)
statement cache save argument: Save the SQL statement cache (SQL administration API)
statement cache restore argument: Restore the SQL statement cache (SQL administration API)
stop json listener: Stop the wire listener (deprecated)
stop listen argument: Stop a listen thread dynamically (SQL administration API)
stop mirroring argument: Stops storage space mirroring (SQL administration API)
storagepool add argument: Add a storage pool entry (SQL administration API)
storagepool delete argument: Delete one storage pool entry (SQL administration API)
storagepool modify argument: Modify a storage pool entry (SQL administration API)
storagepool purge argument: Delete storage pool entries (SQL administration API)
Table and fragment pfsc_boost argument: Enable or disable a boosted partition free space cache (PFSC)
Table and fragment compress and uncompress operations (SQL administration API)

table or fragment arguments: Compress data and optimize storage (SQL administration API)
Output of the estimate compression operation (SQL administration API)
purge compression dictionary arguments: Remove compression dictionaries (SQL administration API)

tenant create argument: Create a tenant database (SQL Administration API)
tenant drop argument: Drop a tenant database (SQL Administration API)
tenant update argument: Modify tenant database properties (SQL Administration API)

Appendixes
Database server files
Troubleshooting errors

Collecting Diagnostics using onmode -I
Creating Tracepoints
Collecting data with the ifxcollect tool

Event Alarms
Using ALARMPROGRAM to Capture Events

Setting ALRM_ALL_EVENTS
Writing Your Own Alarm Script
Customizing the ALARMPROGRAM Scripts
Precautions for Foreground Operations in Alarm Scripts
Interpreting event alarm messages

Events in the ph_alert Table
Event Alarm Parameters
Event alarm IDs

Severity 5 event alarms
Connection Manager event alarm IDs

Messages in the database server log
How the Messages Are Ordered in This Chapter

How to view these messages

906
907
907
908
909
909
910
910
911
911
912
912
914
914
915
915
916
916
917
918
918
919
920
920
921
921
922
922
923
923
924
924
924
924
925
925
925
926
927
927
929
929
930
931
931
932
935
936
936
940
941
944
944
946
946
946
947
948
949
949
949
949
949
950
950
951
952
980
982
984
984
985

Message Categories
Messages: A-B

Aborting Long Transaction: tx 0xn.
Affinitied VP mm to phys proc nn.
Affinity not enabled for this server.
Assert Failed: Error from SBSpace cleanup thread.
Assert Failed: Short description of what failed Who: Description of user/session/thread running at the time Result: State of the affected database server
entity Action: What action the database administrator should take See Also: DUMPDIR/af.uniqid containing more diagnostics.
Begin re-creating indexes deferred during recovery.
Building 'sysmaster' database requires ~mm pages of logical log. Currently there are nn pages available. Prepare to back up your logs soon.
Building 'sysmaster' database...

Messages: C
Cannot Allocate Physical-log File, mm wanted, nn available.
Cannot alter a table which has associated violations table.
Cannot change to mode.
Cannot Commit Partially Complete Transactions.
Cannot create a user-defined VP class with 'SINGLE_CPU_VP' non-zero.
Cannot create violations/diagnostics table.
Cannot insert from the violations table to the target table.
Cannot modify/drop a violations/diagnostics table.
Cannot Open Dbspace nnn.
Cannot Open Logical Log.
Cannot Open Mirror Chunk pathname, errorno = nn.
Cannot Open Primary Chunk pathname, errorno = nnn.
Cannot Open Primary Chunk chunkname.
Cannot open sysams in database name, iserrno number.
Cannot open sysdistrib in database name, iserrno number.
Cannot open system_table in database name, iserrno number.
Cannot open systrigbody in database name, iserrno number.
Cannot open systriggers in database name, iserrno number.
Cannot open sysxtdtypes in database name, iserrno number.
Cannot Perform Checkpoint, shut system down.
Cannot Restore to Checkpoint.
Cannot Rollback Incomplete Transactions.
Cannot update pagezero.
Cannot update syscasts in database name. Iserrno number.
Can’t affinity VP mm to phys proc nn.
Changing the sbspace minimum extent value: old value value1, new value value2.
Checkpoint blocked by down space, waiting for override or shutdown.
Checkpoint Completed: duration was n seconds.
Checkpoint Page Write Error.
Checkpoint Record Not Found in Logical Log.
Chunk chunkname added to space spacename.
Chunk chunkname dropped from space spacename.
Chunk number nn pathname -- Offline.
Chunk number nn pathname -- Online.
The chunk pathname must have READ/WRITE permissions for owner and group.
The chunk pathname must have owner-ID and group-ID set to informix.
The chunk pathname will not fit in the space specified.
Cleaning stray LOs in sbspace sbspacename.
Completed re-creating indexes.
Configuration has been grown to handle up to integer chunks.
Configuration has been grown to handle up to integer dbslices.
Configuration has been grown to handle up to integer dbspaces.
Continuing Long Transaction (for COMMIT): tx 0xn.
Could not disable priority aging: errno = number.
Could not fork a virtual processor: errno = number.
Create_vp: cannot allocate memory.

Messages: D-E-F
Dataskip is OFF for all dbspaces.
Dataskip is ON for all dbspaces.
Dataskip is ON for dbspaces: dbspacelist.
Dataskip will be turned {ON|OFF} for dbspacename.
DBSERVERALIASES exceeded the maximum limit of 32
DBSPACETEMP internal list not initialized, using default.
The DBspace/BLOBspace spacename is now mirrored.
The DBspace/BLOBspace spacename is no longer mirrored.
devname: write failed, file system is full.
Dropping temporary tblspace 0xn, recovering nn pages.
Dynamically allocated new shared memory segment (size nnnn).
ERROR: NO "wait for" locks in Critical Section.
Error building sysmaster database. See outfile.

985
985
985
986
986
986

986
987
987
987
987
988
988
988
989
989
989
989
990
990
990
990
990
991
991
991
991
991
992
992
992
992
992
993
993
993
993
994
994
994
994
994
995
995
995
995
995
996
996
996
996
996
997
997
997
997
997
998
998
998
998
999
999
999
999
999

1000
1000
1000
1000
1000

Error in dropping system defined type.
Error in renaming systdist.
Error removing sysdistrib row for tabid = tabid, colid = colid in database name. iserrno = number
Error writing pathname errno = number.
Error writing shmem to file filename (error). Unable to create output file filename errno=mm.Error writing filename errno=nn.
Fail to extend physical log space.
Fatal error initializing CWD string. Check permissions on current working directory. Group groupname must have at least execute permission on '.'.
Fragments dbspacename1 dbspacename2 of table tablename set to non-resident.
Forced-resident shared memory not available.
Freed mm shared-memory segment(s) number bytes.

Messages: G-H-I
gcore pid; mv core.pid dir/core.pid.ABORT.
I/O function chunk mm, pagenum nn, pagecnt aa --> errno = bb.
I/O error, primary/mirror Chunk pathname -- Offline (sanity).
Informix database_server Initialized - Complete Disk Initialized.
Informix database_server Initialized - Shared Memory Initialized.
Informix database_server Stopped.
In-Place Alter Table. Perform EXECUTE FUNCTION sysadmin:task('table update_ipa', 'table_name','database');
ERROR: Insufficient available disk in the root dbspace to increase the entire Configuration save area.
Insufficient available disk in the root dbspace for the CM save area. Increase the size of the root dbspace in the ONCONFIG file and reinitialize the server.
Internal overflow of shmid's, increase system max shared memory segment size.

Messages: J-K-L-M
Listener-thread err = error_number: error_message.
Lock table overflow - user id mm session id nn.
Logical-log File not found.
Logical Log nn Complete.
Logical logging vberror for type:subtype in (failed_system).
Log Record: log = ll, pos = 0xn, type = type:subtype(snum), trans = xx
Log record (type:subtype) at log nn, 0xn was not undone.
Log record (type:subtype) failed, partnum pnum row rid iserrno num.
Log record (type:subtype) in log nn, offset 0xn was not rolled back.
Logical Recovery allocating nn worker threads thread_type.
Logical Recovery Started.
Maximum server connections number.
Memory allocation error.
Mirror Chunk chunkname added to space spacename. Perform manual recovery.
Mixed transaction result. (pid=nn user=userid).
mt_shm_free_pool: pool 0xn has blocks still used (id nn).
mt_shm_init: can’t create resident/virtual segment.
mt_shm_remove: WARNING: may not have removed all/correct segments.

Messages: N-O-P
Newly specified value of value for the pagesize in the configuration file does not match older value of value. Using the older value.
Not enough main memory.
Not enough logical-log files, Increase LOGFILES.
The number of configured inline poll threads exceeds the number of CPU virtual processors.
onconfig parameter parameter modified from old_value to new_value.
oninit: Cannot have SINGLE_CPU_VP non-zero and number of CPU VPs greater than 1.
oninit: Cannot have SINGLE_CPU_VP non-zero and user-defined VP classes.
oninit: Fatal error in initializing ASF with 'ASF_INIT_DATA' flags asfcode = '25507'.
Cannot alter a table which has associated violations table.
oninit: Too many VPCLASS parameters specified.
oninit: VPCLASS classname bad affinity specification.
oninit: VPCLASS classname duplicate class name.
oninit: VPCLASS classname illegal option.
oninit: VPCLASS classname maximum number of VPs is out of the range 0-10000.
oninit: VPCLASS classname name is too long. Maximum length is maxlength.
oninit: VPCLASS classname number of VPs is greater than the maximum specified.
oninit: VPCLASS classname number of VPs is out of the range 0-10000.
onmode: VPCLASS classname name is too long. Maximum length is maxlength.
Online Mode.
onspaces: unable to reset dataskip.
Open transaction detected when changing log versions.
Out of message shared memory.
Out of resident shared memory.
Out of virtual shared memory.
PANIC: Attempting to bring system down.
Participant site database_server heuristically rolled back.
Physical recovery complete: number pages examined, number pages restored.
Physical recovery started at page (chunk:offset).
Portions of partition partnum of table tablename in database dbname were not logged. This partition cannot be rolled forward.
Possible mixed transaction result.
Prepared participant site server_name did not respond.

1001
1001
1001
1001
1002
1002
1002
1002
1002
1003
1003
1003
1003
1003
1004
1004
1004
1004
1005
1005
1005
1005
1006
1006
1006
1006
1006
1007
1007
1007
1008
1008
1008
1009
1009
1009
1009
1009
1010
1010
1010
1011
1011
1011
1011
1012
1012
1012
1012

988
1013
1013
1013
1013
1013
1014
1014
1014
1014
1014
1015
1015
1015
1015
1016
1016
1016
1016
1016
1017
1017
1017

Prepared participant site server_name not responding.
Messages: Q-R-S

Quiescent Mode.
Read failed. Table name, Database name, iserrno = number
Recovery Mode.
Recreating index: 'dbsname:"owner".tabname-idxname'.
Rollforward of log record failed, iserrno = nn.
Root chunk is full and no additional pages could be allocated to chunk descriptor page.
scan_logundo: subsys ss, type tt, iserrno ee.
Session completed abnormally. Committing tx id 0xm, flags 0xn.
Session completed abnormally. Rolling back tx id 0xm, flags 0xn.
semctl: errno = nn.
semget: errno = nn.
shmat: some_string os_errno: os_err_text.
shmctl: errno = nn.
shmdt: errno = nn.
shmem sent to filename.
shmget: some_str os_errno: key shmkey: some_string.
Shutdown (onmode -k) or override (onmode -O).
Shutdown Mode.
Space spacename added.
Space spacename dropped.
Space spacename -- Recovery Begins(addr).
Space spacename -- Recovery Complete(addr).
Space spacename -- Recovery Failed(addr).
sysmaster database built successfully.
Successfully extend physical log space

Messages: T-U-V
This ddl operation is not allowed due to deferred constraints pending on this table and dependent tables.
This type of space does not accept log files.
TIMER VP: Could not redirect I/O in initialization, errno = nn.
Too Many Active Transactions.
Too many violations.
Transaction Not Found.
Transaction heuristically rolled back.
Transaction table overflow - user id nn, process id nn.
Unable to create output file filename errno = nn.
Unable to extend nn reserved pages for purpose in root chunk.
Unable to start SQL engine.
Unable to open tblspace nn, iserrno = nn.
The value of pagesize pagesize specified in the config file is not a valid pagesize. Use 2048, 4096 or 8192 as the value for PAGESIZE in the onconfig file and
restart the server.
Violations table is not started for the target table.
Violations table reversion test completed successfully.
Violations table reversion test failed.
Violations table reversion test start.
Violations tables still exist.
Virtual processor limit exceeded.
VPCLASS classname name is too long. Maximum length is maxlength.
VPCLASS classname duplicate class name.
VPCLASS classname Not enough physical procs for affinity.

Messages: W-X-Y-Z
WARNING: aio_wait: errno = nn.
WARNING: Buffer pool size may cause database server to get into a locked state. Recommended minimum buffer pool size is num times maximum
concurrent user threads.
warning: Chunk time stamps are invalid.
Warning: name_old is a deprecated onconfig parameter. Use name_new instead. See the release notes and the Informix Administrator's Reference for more
information.
Warning: name_old is a deprecated onconfig parameter. Use name_new instead.
Warning: Unable to allocate requested big buffer of size nn.
You are turning off smart large object logging.

Messages: Symbols
HH:MM:SS Informix database server Version R.VV.PPPPP Software Serial Number RDS#XYYYYYY.
argument: invalid argument.
function_name: cannot allocate memory.

Conversion and reversion error messages
Cannot revert new fragment expression for index index, tabid id.
Cannot revert new table fragment expression for table with id id.
The conversion of the database name has failed.
Database name is not revertible...
Database name: Must drop trigger (id = id_number) before attempting reversion.

1017
1017
1018
1018
1018
1019
1019
1019
1019
1020
1020
1020
1020
1020
1021
1021
1021
1021
1021
1022
1022
1022
1022
1023
1023
1023
1023
1023
1024
1024
1024
1025
1025
1025
1025
1025
1026
1026
1026
1026

1026
1027
1027
1027
1027
1028
1028
1028
1028
1028
1029
1029

1029
1029

1029
1030
1030
1030
1030
1031
1031
1031
1031
1031
1032
1032
1032
1032

The dummy updates failed while converting database name. This may imply data corruption in the database. If so, restore the original database with the tape
backup. For more information, see output_file.
Error in slow altering a system table.
Internal server error.
Must drop long identifiers in table name in database name
Must drop new database (name) before attempting reversion. Iserrno error_number
Must drop new user defined statistics in database name, iserrno number
The pload database contains load/unload jobs referring to long table names, column names, or database names. These jobs will not work as expected until
they are redefined.
Reversion canceled.
There is a semi-detached index in this table, which cannot be reverted.
WARNING: Target server version must have a certified Storage Manager installed after conversion/reversion and before bringing up server.

Conversion and Reversion Messages for Enterprise Replication
CDR reversion test failed; for details look in $INFORMIXDIR/etc/revtestcdr.out.
Enterprise Replication is not ready for conversion. The Control and TRG send queues should be empty for conversion/reversion to proceed.
Enterprise Replication should be in a stopped state for conversion/reversion to proceed.
...‘syscdr’ reversion failed; for details look in $INFORMIXDIR/etc/revcdr.out.
'syscdr' conversion failed. For details, look in $INFORMIXDIR/etc/concdr.out.
Syscdr should NOT contain new replicate sets for reversion to succeed.
Syscdr should not contain replicates defined with the --floatieee option for reversion to succeed.

Dynamic Log Messages
Dynamically added log file logid to DBspace dbspace_number.
Log file logid added to DBspace dbspace_number.
Log file number logid has been dropped from DBspace dbspace_number.
Log file logid has been pre-dropped.
Pre-dropped log file number logid has been deleted from DBspace dbspace_number.
ALERT: Because the oldest logical log (logid) contains records from an open transaction (transaction_address), the server is attempting to dynamically add a
log file. But there is no space available. Please add a DBspace or chunk. Then complete the transaction as soon as possible.
ALERT: The oldest logical log (logid) contains records from an open transaction (transaction_address). Logical logging will remain blocked until a log file is
added. Add the log file with the onparams -a command, using the -i (insert) option, as in: onparams -a -d dbspace -s size -i. Then complete the transaction as
soon as possible.
Log file logid has been pre-dropped. It will be deleted from the log list and its space can be reused once you take level-0 archives of all BLOBspaces, Smart
BLOBspaces and non-temporary DBspaces.

Sbspace Metadata Messages
Allocated number pages to Metadata from chunk number.
Allocated number pages to Userdata from chunk number.
Freeing reserved space from chunk number to Metadata.
Freeing reserved space from chunk number to Userdata.

Truncate Table Messages
The table cannot be truncated if it has an open cursor or dirty readers.
The table cannot be truncated. It has at least one non-empty child table with referential constraints.

Limits in Informix
DB-Access User's Guide

Getting started with DB-Access
Requirements for the Informix server DB-Access utility

Environment variables for DB-Access
Requirements for the Informix Client Software Development Kit DB-Access utility
Demonstration databases

Creating a demonstration database
dbaccessdemo command: Create demonstration databases

Start DB-Access
dbaccess command: Start DB-Access

CONNECTION menu options
DATABASE menu options
QUERY-LANGUAGE menu options
TABLE menu options
Example: Start DB-Access for a database
Example: Run a command file
Example: View the Information Schema
Example: Check for ANSI compliance
Example: Show nonprintable characters in hexadecimal

Run DB-Access in interactive mode without menus
Connect to a database environment in interactive mode

The full-screen menu interface
The Query-language option

SQL editor
A system editor
Statements that the Run option supports
Redirect query results
Choose an existing SQL statement
Save the current SQL statement
Support for SPL Routines

1033
1033
1033
1033
1033
1034

1034
1034
1034
1035
1035
1035
1035
1035
1036
1036
1036
1036
1037
1037
1037
1037
1037
1038

1038

1038

1038
1039
1039
1039
1039
1039
1040
1040
1040
1040
1042
1042
1043
1043
1044
1044
1044
1045
1045
1046
1047
1047
1048
1048
1049
1049
1049
1050
1050
1050
1051
1052
1052
1053
1053
1054
1055
1056
1056
1056

What happens when errors occur
The Database option

List of available databases
Retrieve nondefault locale information
Close a database

The Table option
Display table information

The Connection and Session options
Implicit closures

Appendixes
How to read online help for SQL statements
Demonstration SQL

SQL files for the relational database model
The alt_cat.sql command file
The c_calls.sql command file
The c_cat.sql command file
The c_custom.sql command file
The c_index.sql command file
The c_items.sql command file
The c_manuf.sql command file
The c_orders.sql file
The c_proc.sql command file
The c_state command file
The c_stock.sql command file
The c_stores.sql command file
The c_table.sql command file
The c_trig.sql command file
The c_type.sql command file
The c_view1.sql command file
The c_view2.sql command file
The d_proc.sql command file
The d_trig.sql command file
The d_view.sql command file
The del_stock.sql command file
The ins_table.sql command file
The sel_agg.sql command file
The sel_all.sql command file
The sel_group.sql command file
The sel_join.sql command file
The sel_ojoin1.sql command file
The sel_ojoin2.sql command file
The sel_ojoin3.sql command file
The sel_ojoin4.sql command file
The sel_order.sql command file
The sel_sub.sql command file
The sel_union.sql command file
The upd_table.sql command file

SQL files for the Dimensional Database Model
The createdw.sql file
The loaddw.sql file

User-defined routines for the object-relational database model
High-Performance Loader User's Guide

High-Performance Loader overview
Overview of HPL features
The HPL data-load process
The HPL data-unload process
HPL loading modes
HPL components

The onpload utility
The ipload utility
The onpladm utility
The onpload database
Relationships among the parts of the HPL

Environment variables needed for the HPL
Preparing multiple onpload databases
The PLCONFIG environment variable
The PLOAD_SHMBASE environment variable

Avoid shared-memory collision
Set the PLOAD_SHMBASE environment variable

The PLOAD_LO_PATH environment variable
The PLOAD_SHMAT environment variable

Architecture of the onpload utility

1057
1057
1058
1058
1059
1059
1060
1060
1061
1061
1061
1062
1062
1063
1063
1063
1063
1064
1064
1064
1064
1064
1065
1065
1065
1065
1065
1066
1066
1066
1066
1066
1066
1066
1067
1067
1067
1067
1067
1068
1068
1068
1068
1068
1068
1069
1069
1069
1069
1070
1071
1071
1072
1073
1073
1074
1074
1074
1074
1075
1075
1075
1075
1076
1076
1077
1077
1077
1077
1077
1078
1078

The onpload utility deluxe-mode process
Threads that the onpload utility uses
Threads that the database server uses

The onpload utility express-mode load process
The onpload utility unload process

Examples of loading and unloading jobs using the ipload utility
Prepare to use the ipload utility
Create a file of data
Create a database
The ipload utility

Start the ipload utility
Choose a project
Check the ipload utility default values

Look at the Defaults window
Look at the Machines window

Load Job windows
Load Job Select window
Load Job window

Device-Array windows
Device Array Selection window
Device-Array Definition window

Format windows
Format Views window
Record Formats window
Format-Definition window

Filter, Discard Records, and Logfile text boxes
Map Views window

Creating a map by using Map Views window
Completing the Load Record Maps window
Map-Definition window

Associating each input item with a column of the database table
Load Options window
Running the ipload job
Active Job window
The ipload utility Generate options

Use the information you created with the ipload example
Preparing the Unload Job window
Performing the unload job

The ipload utility windows
The ipload utility GUI or the onpladm command-line interface

Start the ipload utility
The ipload utility GUI

The HPL main window
Initial options on the HPL main window
Options of the HPL main window

Component-Selection windows
Component-Definition windows
Load Job and Unload Job windows
Views windows

Access views windows
Available options in a Views window

Search for a component in a Views window
Expand the view in a Views window

Selection-List windows
Message windows

The HPL ipload utility buttons
The HPL ipload utility toolbar buttons

The Browse button
The Copy button

Copying an existing format into a new format
The Delete button

Deleting an existing format
The Notes button

Creating a note
The Print button

The HPL ipload utility icon buttons
Buttons at the bottom of the HPL ipload utility display

The HPL online help
The UNIX keyboard commands to move the cursor

Define HPL projects
HPL projects
Project organization

1078
1078
1079
1079
1080
1080
1081
1081
1081
1082
1082
1082
1082
1083
1083
1083
1083
1084
1084
1084
1085
1085
1086
1086
1087
1087
1088
1088
1089
1089
1090
1091
1091
1092
1092
1092
1093
1094
1095
1095
1095
1095
1096
1096
1096
1097
1098
1098
1099
1099
1099
1100
1100
1100
1101
1101
1101
1102
1102
1102
1103
1103
1103
1103
1104
1104
1105
1106
1106
1106
1106
1106

Select or create a project with the Projects window
Defining a new project
Selecting a project

Selecting a project for a load or unload job
Selecting a project to edit

Configure the High-Performance Loader
Configure the ipload utility
Select a database server

Selecting a database server
Create the onpload database

Modify the onpload default values
The Defaults window
Specifying the onpload defaults

Selecting a driver
The Drivers window
Adding a custom-driver name

Modify the machine description
The Machines window
Editing the description of a computer
Adding a computer type to the Machines list

Define device arrays
Device arrays
Multiple devices in a device array
The Device-Array Selection window

Creating a device array
Opening an existing device array

The Device-Array Definition window
Adding, editing, and removing devices

Adding devices to the device array
Editing a device in the device array
Deleting a device from the device array

Define formats
Formats
Formats of supported datafile records
Fixed-length records

Creating a fixed format
Data types allowed in a fixed format

Editing a format
Adding a new field description to the format
Inserting a new field into the format
Editing the description of a field
Deleting a field description from the format

Create a fixed format that uses carriage returns
Create a fixed format that includes BYTE or TEXT data

Inline data
Data in a separate file

Create a fixed format that includes Ext type or Simple LO data
Fixed-length data
Inline data
Simple LO data in a separate file

Delimited records
Create a delimited format

Data types allowed in a delimited format
Create a delimited format that includes BYTE or TEXT data
Create a delimited format with extended data types

COBOL records
Create a COBOL format
Picture and usage descriptions

Other formats
Format options

Modifying fixed and COBOL formats
Modifying delimited-format options

Testing the import of a CSV file
Format Views window

Define queries
HPL queries
Creating a query

Using the Column Selection window
Editing the WHERE clause

Editing a query
Exporting and importing queries

Importing a query

1107
1108
1108
1108
1108
1109
1109
1109
1109
1110
1110
1110
1111
1111
1111
1112
1112
1113
1113
1113
1113
1114
1114
1114
1114
1115
1115
1116
1116
1116
1116
1117
1117
1117
1117
1118
1119
1120
1120
1120
1120
1121
1121
1121
1121
1122
1122
1123
1123
1123
1124
1124
1124
1124
1125
1125
1126
1126
1127
1127
1127
1128
1129
1129
1129
1130
1130
1131
1133
1133
1133
1134

Exporting a query
The Database Views window

Define maps
Load and unload maps

The Map-Definition window
The Table and Format panes
Unassigned or multiple-assigned fields and columns
Identical field names and column names

Creating a load map
Unload maps

Creating an unload map
Unload data by using functions

Mapping options
Defining the mapping options
Set the mapping options

Editing options
Using the Delete button
Using the Find button
Using the Specs button

Map Views window
Seeing the load maps of a database
Seeing selected load maps

Define filters
Filters
Example of using filter
Creating a filter

Preparing the filter definition
Modifying a filter

Editing an existing filter
Adding an item to the filter
Inserting an item into the filter sequence
Deleting a filter

Filter views
Filters with code-set conversion (GLS)

Unload data from a database
Unload jobs
Components of the unload job

Choose the database server
Run multiple jobs

The Unload Job windows
Creating an unload job
Run the unload job

Problems during an unload job
Specify to write to the end of the tape
The command-line information
Changing the unload options
Editing an unload job

Generate options for an unload job
Load data to a database table

Load jobs
Components of the load job

Choose the database server
Run multiple jobs
Prepare user privileges and the violations table

Set user constraints
Manage the violations and diagnostics tables

The Load Job windows
Creating a load job
Run the load job

Make a level-0 backup
Problems during a load job

Specify to read to the end of the tape
The command-line information
Changing the load options
Editing a load job

Generate options for a load job
The Generate options of the ipload utility

Overview of the ipload Generate options
Tasks that generate load or unload components
Generate from the Load Job window

Generating a job from the Load Job window
Generate from the Unload Job window

1134
1135
1135
1135
1136
1136
1137
1137
1137
1138
1138
1139
1139
1140
1140
1141
1141
1141
1142
1142
1143
1143
1144
1144
1144
1145
1146
1146
1146
1146
1147
1147
1147
1147
1148
1148
1148
1148
1148
1149
1149
1150
1151
1151
1151
1151
1152
1152
1152
1152
1153
1153
1153
1153
1154
1154
1154
1155
1156
1156
1156
1156
1156
1157
1158
1158
1158
1158
1158
1159
1159
1159

Generating a job that uses a query
Generating a job that unloads an entire table

Generate from the Components menu
The Generate window

Generate group
Format type group

Generating load and unload components
Using the No Conversion Job option

The HPL browsing options
Browsing options

Preview data-file records
Using the Record Browser window

Reviewing data-file records in a selected format
Searching and editing a format
Editing a format

Reviewing records that the conversion rejected
Viewing the violations table
View the status of a load job or unload job

Viewing the log file
Sample log file

Manage the High-Performance Loader
Manage modes, errors, and performance
HPL modes

The HPL deluxe mode
The HPL express mode
How the express and deluxe modes work

Foreign-key constraints
Comparison between an express-mode and a deluxe-mode load operation

HPL load and unload errors
Rejected records from the input file
Constraint violations
View error records

HPL performance
The onpload configuration parameters
Express-mode limitations
The onstat options for onpload
Devices for the device array
HPL usage tasks

Reorganize computer configuration
Alter the schema of a table
Assess information for loading or unloading external data

Settings for a no-conversion load or unload job
Run no-conversion load jobs with tables with hidden columns

An express-mode load with delimited ASCII
HPL performance hints

Choose an efficient format
Ensure enough converter threads and VPs
Ensure enough memory
Ensure enough buffers of adequate size
Increase the commit interval

Limitation when using the Excalibur Text DataBlade Module indexes
The onpload utility

Overview of the onpload utility
The onpload file name size limitations on UNIX
Start the onpload utility
Using the onpload utility
The onpload utility syntax
Set the onpload run mode with the -f option

Type the onpload -f flags
Interpret the onpload -d and -f options together

Modify the size of onpload database parameters
The onpload -i option

Override the onpload database values
Load data into collection data type columns

The onpladm utility
Overview of the onpladm utility

The onpladm utility features
Specification-file conventions
Error handling

Define onpladm utility jobs
Create onpladm jobs

Create conversion jobs

1160
1160
1161
1161
1161
1161
1162
1162
1163
1163
1164
1164
1164
1165
1165
1165
1165
1166
1166
1167
1167
1167
1168
1168
1168
1169
1169
1170
1170
1170
1170
1171
1171
1171
1172
1172
1172
1172
1172
1173
1173
1173
1173
1174
1174
1174
1174
1175
1175
1175
1176
1176
1176
1176
1177
1177
1177
1178
1178
1179
1179
1180
1180
1180
1181
1181
1181
1182
1183
1183
1183
1183

Create conversion jobs by using a quick command
Create conversion jobs by using detailed specification files

Create a conversion-load job
Create a conversion unload job

Create no-conversion jobs
Create no-conversion jobs by using a quick command
Create no-conversion jobs by using detailed specification files

Create a no-conversion load job
Create a no-conversion unload job

Modify a job by using a detailed specification file
Describe a job
List all jobs in a project
Run a job

The onpladm utility when referential constraints are on tables
Delete a job

Define device arrays
Create a device array
Modify a device array
Describe a device array
List project device arrays
Deleting a device array

Define maps
Create maps

Create a map by using a quick command
Create a map with a detailed specification file

Delete a map
Describe a map
Modify a map by using a detailed specification file
List all maps in a project

Define formats
Create a format
Modify a format by using a specification file
Describe a format
List all formats in a project
Delete a format

Define queries
Creating a query
Modify a query
Describing a query
List all queries in a project
Delete a query

Define filters
Create a filter
Modify a filter
Describe a filter
List all filters in a project
Delete a filter

Define projects
Create a project
Run all jobs in a project
List all projects
Delete a project

Define machine types
Create a machine type
Modify a machine type
Describe a machine
List all existing machine types
Delete a machine type

Define database operations
Create a database project
Configure target-server attributes

Set target-server attribute values
List target-server defaults

Appendixes
The onpload database

The defaults table in the onpload database
The delimiters table in the onpload database
The device table in the onpload database
The driver table in the onpload database
The filteritem table in the onpload database
The filters table in the onpload database
The formatitem table in the onpload database

1184
1185
1185
1186
1187
1187
1187
1188
1188
1188
1189
1189
1189
1190
1190
1191
1191
1191
1191
1192
1192
1192
1192
1193
1193
1195
1196
1196
1196
1197
1197
1198
1198
1199
1199
1199
1200
1200
1200
1200
1201
1201
1201
1202
1202
1202
1203
1203
1203
1203
1204
1204
1204
1204
1205
1205
1205
1206
1206
1206
1207
1207
1208
1208
1208
1209
1210
1210
1210
1210
1211
1211

The formats table in the onpload database
The language table in the onpload database
The machines table in the onpload database
The mapitem table in the onpload database
The mapoption table in the onpload database
The maps table in the onpload database
The note table in the onpload database
The project table in the onpload database
The query table in the onpload database
The session table in the onpload database

High-Performance Loader configuration file
HPL configuration parameter descriptions
HPL configuration parameter file conventions
The AIOBUFFERS configuration parameter
The AIOBUFSIZE configuration parameter
The CONVERTTHREADS configuration parameter
The CONVERTVPS configuration parameter
The HPLAPIVERSION configuration parameter
The HPL_DYNAMIC_LIB_PATH configuration parameter
The STRMBUFFERS configuration parameter
The STRMBUFFSIZE configuration parameter

Picture strings
Alphanumeric pictures
Numeric pictures
Date pictures

Match condition operators and characters
Operator descriptions and examples

Custom-conversion functions
Custom conversion example
The onpload conversion process

Integrating custom conversion functions
API functions

The DBXget_source_value(fldname,buffer,buflen) routine
The DBXget_dest_value(fldname,buffer,buflen) routine
The DBXput_dest_value(fldname,buffer) routine
The DBXget_dest_length(fldname) routine

The onstat -j option
Using the onstat -j option

The HPL log-file and pop-up messages
How HPL logfile messages are ordered
HPL logfile message categories
The HPL log-file messages

Blob conversion error occurred on record record_num
Cannot access database table table_name: SQL error error_num
Cannot allocate shared memory
Cannot allocate TLI memory for operating_system structure
Cannot bind socket connection: errno= operating-system_error_num
Cannot bind TLI connection: t_errno= t_error_num
Cannot configure driver driver_name
Cannot connect to message server: Socket error = UNIX_error_num
Cannot connect to message server: TLI erro r= t_error_num, TLI event = t_event_num, errno = error_num
Cannot connect to server_name: SQL error error_num, ISAM error error_num
Cannot connect worker to server data stream
Cannot disable table_name object constraints: SQL error error_num, ISAM error error_num
Cannot disable primary-key constraint. Child-table references exist
Cannot express load to logged table on HDR server server_name
Cannot filter indexes for table table_name: SQL error error_num, ISAM error error_num
Cannot find the shared library path in the plconfig file. Using the shared library from the default location library_location
Cannot find the user-defined function user_func_name in the shared library: error error_num
Cannot get systable info for table table_name: SQL error error_num, ISAM error error_num
Cannot initialize shared library handling
Cannot load code-set conversion file from file_name to file_name
Cannot load mapping definitions
Cannot load the shared library library_location
Cannot locate delimiter in data file
Cannot open
Cannot open simple large object file: file_name, simple large object not loaded
Cannot open database database_name: SQL error error_num, ISAM error error_num
Cannot open file file_name: error number operating-system_error_num
Cannot open TCP connection for server_name: errno operating-system_error_num
Cannot perform express mode load on table with pseudo rowid
Cannot perform express-mode load with rowsize = row_length > page_size

1212
1213
1213
1213
1213
1214
1214
1214
1215
1215
1216
1217
1217
1217
1218
1218
1218
1218
1219
1219
1219
1220
1220
1220
1221
1221
1221
1222
1222
1222
1223
1224
1224
1224
1225
1225
1225
1225
1226
1226
1227
1227
1229
1229
1229
1229
1229
1229
1230
1230
1230
1230
1230
1230
1231
1231
1231
1231
1231
1231
1232
1232
1232
1232
1232
1232
1233
1233
1233
1233
1233
1233

Cannot read file file_name: AIO error code operating-system_error_num
Cannot re-enable all objects: num_violations violations detected
Cannot reorder query statement to align simple large objects or Ext Types
Cannot reorder query statement to align blobs
Cannot set mode of table_name objects from current_mode to final_mode mode: SQL error error_num, ISAM error error_num
Cannot start violations table for table_name: SQL error error_num, ISAM error error_num
Cannot stop violations table for table_name: SQL error error_num, ISAM error error_num
Cannot unload to multiple devices when the given query cannot be executed in parallel
Cannot write file file_name: AIO error code operating-system_error_num
Code-set conversion overflow
Conversion of onpload database failed due to error error_num
Conversion of onpload database failed due to error error_num, run as user informix
Custom conversion function function_name not found in shared library
Discarded num_bytes null bytes from end of tape device device_name
Environment variable variable_name expansion would overflow string
Error accepting socket connection: errno = operating-system_error_num
Error accessing file_name
Error accessing format: SQL error error_num, ISAM error error_num
Error accessing map map_name: SQL error error_num, ISAMerror error_num
Error accessing sysmaster: SQL error error_num, ISAMerror error_num
Error accessing table table_name: SQL error error_num, ISAM error error_num
Error: AIO buffer size buffer_size is less than required minimum size size
Error error_num closing current database
Error operating-system_error_num closing file file_name
Error error_num converting record field field_name to column column_name
Error declaring cursor: could not get table info
Error declaring cursor: SQL error error_num, ISAM error error_num
Error describing unload query query_name: SQL error error_num, ISAM error error_num
Error error_num initializing backend connection
Error inserting into table table_name: SQL error error_num, ISAM error error_num
Error listening for socket connection: t_errno = t_error_num errno = operating-system_error_num
Error listening for TLI connection: t_errno = t_error_num errno = UNIX_error_num
Error error_num on record record_num converting column column_name to record field field_name
Error occurred on record %d reading pipe %s
Error on close of server load session: SQL error error_num, ISAM error error_num
Error opening cursor: SQL Error error_num
Error preparing query: SQL error error_num
Error preparing statement statement_name: SQL error error_num, ISAM error error_num
Error preparing unload query query_name: SQL error error_num, ISAM error error_num
Error error_num reading message queue
Error operating-system_error_num reading TLI/socket connection
Error error_num setting isolation level
Error error_num writing message on message queue
Error operating-system_error_num writing TLI/socket connection
Error: Stream buffer size buffer_size is less than required minimum size size
Exhausted all attempts to allocate shared-memory key.
Fatal error: cannot execute pipe_name
Fatal error: cannot load X resource
Fatal error creating server load session: error error_num
Fatal error getting stream buffer from server
Fatal error in server row processing: SQL error error_num, ISAM error error_num
File type device file file_name is not a regular (disk) file
Got Interrupt: Shutting down
Internal error: Cannot initialize AIO library
Internal error: Cannot send message
Internal error: error_num. Contact Tech Support
Internal error: invalid message type error_num
Internal error error_num reading queue
Invalid count detected, might be due to abnormal BE shutdown
Invalid code-set character: Cannot convert
Invalid HEXASCII simple large object or extended type representation on record record_num
Invalid HEXASCII simple large object representation in fieldname, record record_num
Invalid project name project_name entered
Invalid reject count detected, might be due to abnormal BE shutdown. Using last known reject count and proceeding
Invalid session ID id_number
Invalid tape header expecting -> tape_name
Map map_name type is not a load map
Method not supported by current driver
MT cannot bind to vpid
MT internal failure
MT failure putting CPU online
No insert permission on table table_name

1234
1234
1234
1234
1234
1234
1235
1235
1235
1235
1235
1235
1236
1236
1236
1236
1236
1236
1236
1237
1237
1237
1237
1237
1237
1238
1238
1238
1238
1238
1238
1239
1239
1239
1239
1239
1239
1240
1240
1240
1240
1240
1240
1241
1241
1241
1241
1241
1241
1241
1242
1242
1242
1242
1242
1242
1242
1243
1243
1243
1243
1243
1243
1244
1244
1244
1244
1244
1244
1245
1245
1245

No mapping to simple large object field field_name
onpload must run on the host host_name that contains the target database
onpload terminated by signal
Pipe type device file file_name is not a regular file
Pload cannot reorder queries having expressions/aggregates and blobs/udts in the same select list
Query contains unmapped simple large object column column_name: Cannot proceed
Query for unload is not a select query.
Record is too long to process: recnum record_num, length record_length, bufsize buffer_size
Server interface error; expected num_input but got num_received instead
SQL error error_num executing statement statement_name
Simple large object or extended type conversion error occurred on record record_num
Start record record_num is greater than number of records total_num read from input file_name
Successfully loaded the shared library library_location
Table table_name will be read-only until level-0 archive
Tables with BLOBS cannot be loaded in High Performance Mode
Tables with BLOBS or extended types cannot be loaded in Express mode
Tables with simple large objects or extended types cannot be processed with no conversion (-fn)
Tape header is larger than I/O buffer: tape header_length, I/O buffer_size
Tape type device file file_name is not a character-special or block-special file
There is no mapping to column column_name, which cannot accept null values
Unable to load locale categories for locale locale_name: error error_num
Unload query select item for the query_item expression needs to be assigned a name
Write/read to/from tape until end of device
Write to device (tape or pipe) device_name failed; no space left on device. AIO error error_num

HPL logfile pop-up messages
Cannot attach to server shared memory
Cannot create shared-memory message queue: error error_num
Cannot create shared-memory pool: errno UNIX_error_num
Cannot initialize multithreaded library
Cannot initialize shared memory: errno operating-system_error_num
Cannot load X resource
Cannot open. Enter (r)etry, (c)ontinue, (q)uit job when ready
Cannot open log file log_file_name.
Cannot start I/O. Enter (r)etry, (c)ontinue, (q)uit job when ready
Fatal error: shared memory will conflict with server
Incorrect database version. Make sure that it is upgraded properly
Press ‘r’ when ready, ‘c’ to shutdown device or ‘q’ to quit
Set the shared library path as an absolute path in the plconfig file
Tables with blobs cannot be loaded in High-Performance Mode
Write error. Enter (r)etry, (c)ontinue, (q)uit job when ready

Custom drivers
Add a custom driver to the onpload utility

Adding the driver name to the onpload database
Preparing the custom-driver code

Preparing the file that provides the driver functionality
Preparing the plcstdrv.c file

Rebuilding the shared-library file
Connect your code to onpload at run time

Driver initialization
Register driver functions

An example of a custom driver
The plcstdrv.c file
Custom-driver code for MYDRIVER

Available driver methods
The PL_MTH_OPEN function
The PL_MTH_CLOSE function

Available API support functions
The pl_inherit_methods(driver, methodtable) function
The pl_set_method_function(methodtable, method, function) function
The pl_driver_inherit(method) function
The pl_get_recordlength() function
The pl_set_informix_conversion(flag) function
The pl_lock_globals() function
The pl_reset_inherit_chain(method) function

Run load and unload jobs on a Windows computer
The onpladm utility on Windows

Run the Run Job or Run Project commands
Running onpladm on UNIX with the database server running on Windows

Preparing jobs with the ipload utility on Windows computers
Conversion and reversion scripts for HPL database migration

Upgrade the High-Performance Loader onpload database
Revert from the current onpload database

1245
1245
1245
1246
1246
1246
1246
1246
1246
1247
1247
1247
1247
1247
1247
1248
1248
1248
1248
1248
1248
1249
1249
1249
1249
1249
1250
1250
1250
1250
1250
1250
1251
1251
1251
1251
1251
1251
1252
1252
1252
1252
1252
1253
1253
1253
1254
1254
1255
1255
1255
1256
1256
1258
1258
1259
1259
1259
1259
1259
1260
1260
1260
1260
1261
1261
1261
1261
1262
1263
1263
1263

Performance Guide
Performance basics

Developing a basic approach to performance measurement and tuning
Quick start for acceptable performance on a small database
Performance goals
Measurements of performance

Throughput
Ways to measure throughput
Standard throughput benchmarks

Response time
Response time and throughput
Response-time measurement

Operating-system timing commands
Operating-system tools for monitoring performance
Timing functions within your application

Cost per transaction
Resource utilization and performance

Resource utilization
CPU utilization
Memory utilization
Disk utilization

Factors that affect resource utilization
Maintenance of good performance

Performance monitoring and the tools you use
Evaluate the current configuration
Create a performance history

The importance of a performance history
Tools that create a performance history

Operating-system tools
Database server tools

Performance information that the onstat utility displays
Monitor database server resources

Monitor resources that impact CPU utilization
Monitor memory utilization
Monitor disk I/O utilization

Using onstat -g to monitor I/O utilization
Using the oncheck utility to monitor I/O utilization

Monitor transactions
Using the onlog utility to monitor transactions
Using the onstat utility to monitor transactions

Monitor sessions and queries
Monitoring memory usage for each session
Using the SET EXPLAIN statement

Effect of configuration on CPU utilization
UNIX configuration parameters that affect CPU utilization

UNIX semaphore parameters
UNIX file-descriptor parameters
UNIX memory configuration parameters

Windows configuration parameters that affect CPU utilization
Configuration parameters and environment variables that affect CPU utilization

Specifying virtual processor class information
Setting the number of CPU VPs
Disabling process priority aging for CPU VPs
Specifying processor affinity

Distributing computation impact
Isolating AIO VPs from CPU VPs
Avoiding a certain CPU

Setting the number of AIO VPs
Setting the MULTIPROCESSOR configuration parameter when using multiple CPU VPs
Setting the SINGLE_CPU_VP configuration parameter when using one CPU VP
Optimizing access methods

Setting the value of OPTCOMPIND within a session
Limiting PDQ resources in queries
Limiting the performance impact of CPU-intensive queries
Limiting the number of PDQ scan threads that can run concurrently
Configuring poll threads

Specifying the connection protocol
Specifying virtual-processor classes for poll threads
Specifying the number of connections and poll threads
Improve connection performance and scalability

Enabling fast polling
Network buffer pools

1263
1264
1265
1265
1266
1266
1266
1267
1267
1267
1268
1268
1268
1269
1269
1269
1269
1270
1270
1271
1272
1272
1273
1274
1274
1275
1275
1275
1275
1276
1276
1277
1277
1278
1279
1279
1279
1280
1280
1281
1281
1281
1281
1282
1282
1282
1283
1283
1283
1284
1285
1285
1286
1286
1286
1287
1287
1287
1288
1288
1288
1289
1289
1289
1290
1290
1290
1291
1291
1291
1292
1292

Network buffers
Support for private network buffers
Network buffer size

Virtual processors and CPU utilization
Adding virtual processors
Monitoring virtual processors

Using some onstat-g commands to monitor virtual processors
Monitor virtual processors with the onstat-g glo command
Monitor virtual processors with the onstat-g rea command
Monitor virtual processors with the onstat-g ioq command

Using SMI tables to monitor virtual processors
Private memory caches

Connections and CPU utilization
Multiplexed connections and CPU utilization
MaxConnect for multiple connections UNIX

Effect of configuration on memory utilization
Shared memory

Resident portion of shared memory
Virtual portion of shared memory
Message portion of shared memory
Buffer pool portion of shared memory
Estimating the size of the resident portion of shared memory
Estimating the size of the virtual portion of shared memory
Estimating the size of the message portion of shared memory
Configuring UNIX shared memory
Freeing shared memory with onmode -F

Configuration parameters that affect memory utilization
Setting the size of the buffer pool, logical-log buffer, and physical-log buffer

The BUFFERPOOL configuration parameter and memory utilization
The DS_TOTAL_MEMORY configuration parameter and memory utilization

Algorithm for determining DS_TOTAL_MEMORY
Deriving a minimum for decision-support memory
Deriving a working value for decision-support memory

When the DS_TOTAL_MEMORY configuration parameter is set
When the DS_TOTAL_MEMORY configuration parameter is not set

Checking the derived value for decision-support memory
The LOGBUFF configuration parameter and memory utilization
The LOW_MEMORY_RESERVE configuration parameter and memory utilization
The PHYSBUFF configuration parameter and memory utilization

The LOCKS configuration parameter and memory utilization
The RESIDENT configuration parameter and memory utilization
The SHMADD and EXTSHMADD configuration parameters and memory utilization
The SHMTOTAL configuration parameter and memory utilization
The SHMVIRTSIZE configuration parameter and memory utilization
The SHMVIRT_ALLOCSEG configuration parameter and memory utilization
The STACKSIZE configuration parameter and memory utilization

Configure and monitor memory caches
Data-dictionary cache

Data-dictionary configuration
Data-distribution cache

Data-distribution configuration
Monitor and tune the SQL statement cache

Prepared statements and the statement cache
SQL statement cache configuration
Number of SQL statement executions

Monitoring the number of hits on the SQL statement cache
Determining the number of nonshared entries in the SQL statement cache

Monitoring and tuning the size of the SQL statement cache
Changing the size of the SQL statement cache
Too many single-use queries in the SQL statement cache

Memory limit and size
Multiple SQL statement cache pools

Number of SQL statement cache pools
Size of SQL statement cache pools and the current cache

SQL statement cache information in onstat -g ssc output
Session memory
Data-replication buffers and memory utilization
Memory latches

Monitoring latches with command-line utilities
Monitoring latches with onstat -p
Monitoring latches with onstat -s

Monitoring latches with SMI tables

1293
1293
1294
1294
1294
1295
1295
1295
1295
1296
1296
1297
1297
1297
1298
1298
1299
1299
1300
1300
1300
1301
1301
1302
1302
1303
1303
1304
1305
1306
1306
1307
1307
1307
1307
1308
1308
1308
1308
1308
1309
1309
1310
1310
1310
1311
1311
1313
1313
1313
1314
1314
1315
1315
1316
1317
1317
1318
1318
1319
1319
1320
1320
1320
1321
1322
1323
1323
1323
1323
1323
1324

Encrypted values
Effect of configuration on I/O activity

Chunk and dbspace configuration
Associate disk partitions with chunks
Associate dbspaces with chunks
Placing system catalog tables with database tables

I/O for cooked files for dbspace chunks
Direct I/O (UNIX)
Direct I/O (Windows)
Concurrent I/O (AIX only)
Enabling the direct I/O or concurrent I/O option (UNIX)
Confirming the use of the direct or concurrent I/O option (UNIX)

Placement of critical data
Consider separate disks for critical data components
Consider mirroring for critical data components

Consider mirroring the root dbspace
Consider mirroring smart-large-object chunks
Mirroring and its effect on the logical log
Mirroring and its effect on the physical log

Configuration parameters that affect critical data
Configure dbspaces for temporary tables and sort files

Creating temporary dbspaces
Specify temporary tables in the DBSPACETEMP configuration parameter
Override the DBSPACETEMP configuration parameter for a session
Estimating temporary space for dbspaces and hash joins
PSORT_NPROCS environment variable

Configure sbspaces for temporary smart large objects
Creating temporary sbspaces
Specify which sbspaces to use for temporary storage

Placement of simple large objects
Advantage of blobspaces over dbspaces
Blobpage size considerations

Optimize blobspace blobpage size
Obtain blobspace storage statistics
Determine blobpage fullness with oncheck -pB output

Interpreting blobpage average fullness
Analyzing efficiency criteria with oncheck -pB output

Factors that affect I/O for smart large objects
Disk layout for sbspaces
Configuration parameters that affect sbspace I/O
onspaces options that affect sbspace I/O

Sbspace extents
Lightweight I/O for smart large objects

Advantages of lightweight I/O for smart large objects
Specifying lightweight I/O for smart large objects

Logging
Table I/O

Sequential scans
Light scans
Unavailable data

Configuration parameters that affect table I/O
How DATASKIP affects table I/O

Background I/O activities
Configuration parameters that affect checkpoints

RTO_SERVER_RESTART and its effect on checkpoints
Automatic checkpoints, LRU tuning, and AIO virtual processor tuning

CKPTINTVL and its effect on checkpoints
LOGSIZE and LOGFILES and their effect on checkpoints
Checkpoints and the physical log
ONDBSPACEDOWN and its effect on checkpoints

Configuration parameters that affect logging
LOGBUFF and PHYSBUFF and their effect on logging
LOGFILES and its effect on logging

Calculating the space allocated to logical log files
LOGSIZE and its effect on logging

Estimating logical-log size when logging dbspaces
Estimating the logical-log size when logging simple large objects
Estimating the logical-log size when logging smart large objects

DYNAMIC_LOGS and its effect on logging
AUTO_LLOG and its effect on logging
LTXHWM and LTXEHWM and their effect on logging
TEMPTAB_NOLOG and its effect on logging

1324
1324
1325
1325
1325
1326
1326
1326
1327
1327
1327
1327
1327
1328
1328
1328
1329
1329
1329
1330
1330
1331
1331
1332
1332
1333
1333
1333
1334
1334
1334
1334
1335
1335
1336
1336
1337
1337
1337
1337
1338
1338
1339
1339
1339
1340
1340
1340
1340
1341
1341
1341
1342
1342
1343
1343
1343
1344
1344
1345
1345
1345
1346
1346
1346
1347
1347
1347
1347
1348
1349
1349

SESSION_LIMIT_LOGSPACE and its effect on logging
SESSION_LIMIT_TXN_TIME and its effect on logging

Configuration parameters that affect page cleaning
CLEANERS and its effect on page cleaning
BUFFERPOOL and its effect on page cleaning
RTO_SERVER_RESTART and its effect on page cleaning

Configuration parameters that affect backup and restore
ON-Bar configuration parameters
ontape configuration parameters (UNIX)

Configuration parameters that affect rollback and recovery
OFF_RECVRY_THREADS and ON_RECVRY_THREADS and their effect on fast recovery
PLOG_OVERFLOW_PATH and its effect on fast recovery
RTO_SERVER_RESTART and its effect on fast recovery
The LOW_MEMORY_RESERVE configuration parameter and memory utilization

Configuration parameters that affect data replication and auditing
Configuration parameters that affect data replication
Configuration parameters that affect auditing

LRU tuning
Table performance considerations

Placing tables on disk
Isolating high-use tables
Placing high-use tables on middle partitions of disks
Using multiple disks

Using multiple disks for a dbspace
Using multiple disks for logical logs
Spreading temporary tables and sort files across multiple disks

Backup and restore considerations when placing tables on disks
Factors affecting the performance of nonfragmented tables and table fragments

Estimating table size
Estimating data pages

Estimating tables with fixed-length rows
Estimating tables with variable-length rows
Selecting an intermediate value for the size of the table

Estimating pages that simple large objects occupy
Storing simple large objects in the tblspace or a separate blobspace
Estimating tblspace pages for simple large objects

Managing the size of first and next extents for the tblspace tblspace
Managing sbspaces

Estimating pages that smart large objects occupy
Estimating the size of the sbspace and metadata area
Sizing the metadata area manually for a new chunk

Example of calculating the metadata area for a new chunk
Improving metadata I/O for smart large objects
Monitoring sbspaces

Monitoring sbspaces with oncheck -cS
Monitoring sbspaces with oncheck -pe
Monitoring sbspaces with oncheck -pS
Monitoring sbspaces with onstat -g smb

Changing storage characteristics of smart large objects
Altering smart-large-object columns

Managing extents
Choosing table extent sizes

Extent sizes for tables in a dbspace
Extent sizes for table fragments
Extent sizes for smart large objects in sbspaces

Monitoring active tblspaces
Monitoring the upper limit on extents and extent interleaving

Considering the upper limit on extents
Checking for extent interleaving
Eliminating interleaved extents

Reorganizing dbspaces and tables to eliminate extent interleaving
Creating or altering an index to cluster
Using ALTER TABLE to eliminate extent interleaving

Reclaiming unused space within an extent
Reclaiming space in an empty extent with ALTER INDEX
Reclaiming space in an empty extent by unloading and re-creating or reloading a table
Releasing space in an empty extent with ALTER FRAGMENT

Managing extent deallocation with the TRUNCATE keyword
Defragment partitions to merge extents

Storing multiple table fragments in a single dbspace
Displaying a list of table and index partitions
Changing tables to improve performance

1349
1349
1349
1350
1350
1350
1351
1351
1351
1352
1352
1352
1352
1308
1353
1353
1353
1354
1354
1355
1356
1356
1356
1356
1357
1357
1357
1357
1357
1358
1358
1359
1359
1359
1360
1360
1361
1361
1361
1361
1362
1362
1363
1363
1364
1364
1364
1365
1366
1367
1367
1368
1368
1369
1369
1369
1370
1370
1370
1371
1371
1371
1372
1372
1372
1372
1373
1373
1373
1373
1374
1374

Loading and unloading tables
Advantages of logging tables
Advantages of nonlogging tables

Quickly loading a large standard table
Quickly loading a new nonlogging table

Dropping indexes for table-update efficiency
Creating and enabling referential constraints efficiently
Attaching or detaching fragments
Altering a table definition

Slow alter
In-place alter

Conditions for in-place alter operations
Performance considerations for DML statements
Performance of in-place alters for DDL operations
Altering a column that is part of an index

Fast alter
Denormalize the data model to improve performance

Shortening rows
Expelling long strings

Convert CHAR columns into VARCHAR columns to shorten rows (GLS)
Convert a long string to a TEXT data type column
Move strings to a companion table
Build a symbol table

Splitting wide tables
Redundant data

Adding redundant data
Reduce disk space in tables with variable length rows
Reduce disk space by compressing tables and fragments

Boosted Partition Free Space Caches (PFSC)
Indexes and index performance considerations

Types of indexes
B-tree indexes

Structure of conventional index pages
Forest of trees indexes
R-tree indexes
Indexes that DataBlade modules provide

Estimating index pages
Index extent sizes

Formula for estimating the extent size of an attached index
Formula for estimating the extent size of a detached index

Estimating conventional index pages
Managing indexes

Space costs of indexes
Time costs of indexes
Unclaimed index space
Indexes on columns

Filtered columns in large tables
Order-by and group-by columns
Avoiding columns with duplicate keys
Clustering

Configuration parameters that affect the degree of clustering
Nonunique indexes

Improve query performance with a forest of trees index
Detecting root node contention
Creating a forest of trees index
Disabling and enabling a forest of trees index
Performing a range scan on a forest of trees index
Determining if you are using a forest of trees index
Finding the number of hashed columns and subtrees in a forest of trees index

Creating and dropping an index in an online environment
When you cannot create or drop indexes online
Creating attached indexes in an online environment
Limiting memory allocation while creating indexes online

Improving performance for index builds
Estimating memory needed for sorting
Estimating temporary space for index builds

Storing multiple index fragments in a single dbspace
Improving performance for index checks
Indexes on user-defined data types

Defining indexes for user-defined data types
B-tree secondary-access method

Uses for a B-tree index

1374
1375
1375
1375
1376
1376
1376
1377
1377
1378
1378
1379
1381
1381
1382
1382
1382
1383
1383
1383
1383
1383
1384
1384
1384
1385
1385
1385
1386
1386
1387
1387
1387
1388
1389
1389
1389
1389
1390
1390
1390
1392
1392
1392
1393
1393
1393
1394
1394
1394
1395
1395
1395
1396
1397
1397
1398
1398
1398
1399
1399
1400
1400
1400
1401
1401
1401
1402
1402
1403
1403
1404

Extending a generic B-tree index
Identifying the available access methods
User-defined secondary-access methods

R-tree indexes
Using a functional index

What is a functional index?
When is a functional index used?
Creating a functional index

Using an index that a DataBlade module provides
Choosing operator classes for indexes

Operator classes
Strategy and support functions of a secondary access method
Default operator classes

Built-in B-tree operator class
B-tree strategy functions
B-tree support function

Identifying the available operator classes
User-defined operator classes

Locking
Locks

Locking granularity
Row and key locks

Key-value locks
Page locks
Table locks
Database locks

Configuring the lock mode
Setting the lock mode to wait
Locks with the SELECT statement

Isolation level
Dirty Read isolation
Committed Read isolation

Ways to reduce the risk of Committed Read isolation level conflicts
Cursor Stability isolation
Repeatable Read isolation

Locking nonlogging tables
Update cursors

Locks placed with INSERT, UPDATE, and DELETE statements
The internal lock table
Monitoring locks

Configuring and managing lock usage
Monitoring lock waits and lock errors
Monitoring the number of free locks
Monitoring deadlocks
Monitoring isolation levels that sessions use

Locks for smart large objects
Byte-range locking

How the database server manages byte-range locks
Using byte-range locks
Monitoring byte-range locks
Setting number of locks for byte-range locking

Lock promotion
Dirty Read isolation level and smart large objects

Fragmentation guidelines
Planning a fragmentation strategy

Fragmentation goals
Improved query performance through fragmentation strategy
Reduced contention between queries and transactions
Increased data availability
Increased granularity for backup and restore

Examining your data and queries
Considering physical fragmentation factors

Distribution schemes
Choosing a distribution scheme
Designing an expression-based distribution scheme
Suggestions for improving fragmentation

Strategy for fragmenting indexes
Attached indexes
Detached indexes
Restrictions on indexes for fragmented tables

Strategy for fragmenting temporary tables
Distribution schemes that eliminate fragments

1404
1404
1404
1405
1405
1405
1406
1406
1406
1407
1407
1407
1407
1408
1408
1408
1409
1409
1410
1410
1411
1411
1411
1411
1412
1412
1412
1413
1413
1414
1414
1414
1414
1415
1415
1416
1416
1416
1417
1417
1418
1419
1420
1420
1420
1421
1421
1422
1422
1422
1423
1423
1423
1424
1424
1425
1425
1425
1426
1426
1426
1427
1427
1428
1429
1429
1429
1430
1431
1432
1432
1432

Fragmentation expressions for fragment elimination
Query expressions for fragment elimination

Range expressions in query
Equality expressions in query

Effectiveness of fragment elimination
Nonoverlapping fragments on a single column
Overlapping fragments on a single column
Nonoverlapping fragments, multiple columns

Improve the performance of operations that attach and detach fragments
Improving ALTER FRAGMENT ATTACH performance

Distribution schemes for reusing indexes
Fragmenting the index in the same way as the table
Fragmenting the index with the same distribution scheme as the table
Attaching unfragmented tables together

Ensuring no data movement when you attach a fragment
Indexes on attached tables

Example for situation when corresponding index does not exist
Example for situation when index on table is not usable

Improving ALTER FRAGMENT DETACH performance
Fragmenting the index in the same way as the table
Fragmenting the index using same distribution scheme as the table

Forcing out transactions when altering table fragments
Monitoring Fragment Use

Monitoring fragmentation with the onstat -g ppf command
Monitoring fragmentation with SET EXPLAIN output

Queries and the query optimizer
The query plan

The access plan
The join plan

Nested-loop join
Hash join
Join order

Example of query-plan execution
Example of a join with column filters
Example of a join with indexes

Query plans that include an index self-join path
Query plan evaluation
Report that shows the query plan chosen by the optimizer

The explain output file
Query statistics section provides performance debugging information

Sample query plan reports
Single-table query
Multitable query
Key-first scan
Query plans for subqueries
Query plans for collection-derived tables

Example showing how the database server completes the query
Derived tables folded into parent queries

XML query plans in IBM Data Studio
Factors that affect the query plan

Statistics held for the table and index
Filters in the query
Indexes for evaluating a filter
Effect of PDQ on the query plan
Effect of OPTCOMPIND on the query plan

Single-table query
Multitable query

Effect of available memory on the query plan
Time costs of a query

Memory-activity costs
Sort-time costs
Row-reading costs
Sequential access costs
Nonsequential access costs
Index lookup costs

Reading duplicate values from an index
Searching for NCHAR or NVARCHAR columns in an index

In-place ALTER TABLE costs
View costs
Small-table costs
Data-mismatch costs
Encrypted-value costs

1433
1433
1433
1434
1434
1435
1435
1435
1436
1436
1437
1437
1438
1438
1439
1439
1440
1440
1440
1441
1441
1442
1442
1443
1443
1443
1444
1444
1445
1445
1445
1446
1446
1447
1447
1448
1449
1449
1449
1450
1451
1451
1452
1452
1452
1453
1453
1454
1455
1455
1456
1456
1457
1457
1457
1457
1458
1458
1458
1459
1459
1460
1460
1460
1460
1461
1461
1461
1461
1462
1462
1462

GLS functionality costs
Network-access costs

Optimization when SQL is within an SPL routine
SQL optimization

Displaying the execution plan
Automatic reoptimization
Reoptimizing SPL routines
Optimization levels for SQL in SPL routines

Execution of an SPL routine
SPL routine executable format stored in UDR cache

Adjust the UDR cache
Trigger execution

Performance implications for triggers
SELECT triggers on tables in a table hierarchy
SELECT triggers and row buffering

Optimizer directives
What optimizer directives are

Optimizer directives that are embedded in queries
External optimizer directives

Reasons to use optimizer directives
Preparation for using directives
Guidelines for using directives
Types of optimizer directives that are supported in SQL statements

Access-method directives
Join-order directives

Effect of join order on join plan
Join order when you use views

Join-method directives
Optimization-goal directives
Star-join directives
EXPLAIN directives
Example of directives that can alter a query plan

Configuration parameters and environment variables for optimizer directives
Optimizer directives and SPL routines
Forcing reoptimization to avoid an index and previously prepared statement problem
External optimizer directives

Creating and saving external directives
Enabling external directives
Deleting external directives

Parallel database query (PDQ)
What PDQ is
Structure of a PDQ query
Database server operations that use PDQ

Parallel update and delete operations
Parallel insert operations

Explicit inserts with SELECT...INTO TEMP statements
Implicit inserts with INSERT INTO...SELECT statements

Parallel index builds
Parallel user-defined routines
Hold cursors that use PDQ
SQL operations that do not use PDQ
Update statistics operations affected by PDQ
SPL routines and triggers and PDQ
Correlated and uncorrelated subqueries
OUTER index joins and PDQ
Remote tables used with PDQ

The Memory Grant Manager
The allocation of resources for parallel database queries

Limiting the priority of decision-support queries
Limiting the value of the PDQ priority
Maximizing OLTP throughput for queries
Conserving resources when using PDQ
Allowing maximum use of parallel processing
Determining the level of parallel processing
Limits on parallel operations associated with PDQ priority
Using SPL routines with PDQ queries

Adjusting the amount of memory for DSS and PDQ queries
Limiting the number of concurrent scans
Limiting the maximum number of PDQ queries

Managing PDQ queries
Analyzing query plans with SET EXPLAIN output
Influencing the choice of a query plan

1462
1463
1463
1463
1464
1464
1464
1465
1465
1465
1465
1466
1466
1467
1467
1467
1467
1468
1468
1468
1469
1469
1470
1470
1471
1471
1471
1472
1472
1473
1473
1474
1476
1476
1476
1477
1478
1478
1479
1479
1479
1480
1480
1480
1481
1481
1481
1482
1482
1482
1482
1483
1483
1483
1483
1483
1483
1484
1485
1485
1486
1486
1486
1486
1487
1487
1487
1488
1488
1488
1489
1489

Setting the PDQ priority dynamically
Enabling the database server to allocate PDQ memory
User control of PDQ resources
DBA control of resources for PDQ and DSS queries

Controlling resources allocated to PDQ
DBA control of resources allocated to decision-support queries

Monitoring resources used for PDQ and DSS queries
Using the onstat Utility

Monitoring PDQ threads with onstat utility commands
Monitoring resources allocated for a session running a DSS query

Identifying parallel scans in SET EXPLAIN output
Improving individual query performance

Test queries using a dedicated test system
Display the query plan
Improve filter selectivity

Filters with user-defined routines
Avoid some filters

Avoid difficult regular expressions
Avoid noninitial substrings

Use join filters and post-join filters
Automatic statistics updating

How AUS works
AUS expiration policies

Changing AUS expiration policies
Viewing AUS statements
Prioritizing databases in AUS
Rescheduling AUS
Disabling AUS

Update statistics when they are not generated automatically
Update the statistics for the number of rows
Drop data distributions if necessary when upgrading

Drop distributions in LOW mode without gathering statistics
Creating data distributions
Updating statistics for join columns
Updating statistics for columns with user-defined data types
Update statistics in parallel on very large databases
Adjust the amount of memory and disk space for UPDATE STATISTICS
Data sampling during update statistics operations
Display data distributions

Improve performance by adding or removing indexes
Replace autoindexes with permanent indexes
Use composite indexes
Indexes for data warehouse applications
Configure B-tree scanner information to improve transaction processing

Alice scan mode values
Leaf and range scan mode settings
B-tree scanner index compression levels and transaction processing performance
Setting the level for B-tree scanner compression of indexes

Determine the amount of free space in an index page
Optimizer estimates of distributed queries

Buffer data transfers for a distributed query
The query plan of a distributed query

Improve sequential scans
Enable view folding to improve query performance
Reduce the join and sort operations

Avoid or simplify sort operations
Use parallel sorts
Use temporary tables to reduce sorting scope
Configuring memory for queries with hash joins, aggregates, and other memory-intensive elements

Optimize user-response time for queries
Optimization level
Optimization goals

Specifying the query performance goal
Preferred query plans for user-response-time optimization

Nested-loop joins versus hash joins
Table scans versus index scans
Ordering with fragmented indexes

Optimize queries for user-defined data types
Parallel UDRs
Selectivity and cost functions
User-defined statistics for UDTs
Negator functions

1489
1489
1490
1490
1491
1491
1491
1491
1492
1492
1493
1493
1494
1494
1495
1495
1495
1495
1496
1496
1498
1498
1499
1500
1500
1500
1500
1501
1501
1502
1502
1502
1503
1504
1504
1505
1505
1505
1506
1506
1507
1507
1508
1508
1509
1510
1511
1511
1512
1512
1512
1512
1513
1513
1514
1514
1514
1514
1515
1515
1516
1516
1516
1517
1517
1518
1518
1518
1518
1519
1519
1520

Optimize queries with the SQL statement cache
When to use the SQL statement cache
Using the SQL statement cache

Enabling the SQL statement cache
Placing statements in the cache

Monitoring memory usage for each session
Display all user threads and session memory usage
Display detailed session information and memory usage
Display information about session SQL statements
Display information about the memory that SQL statements use in a session

Monitoring usage of the SQL statement cache
Monitor sessions and threads

Monitor sessions and threads with onstat commands
Monitor blocking threads with the onstat -g bth and onstat -g BTH commands
Monitor threads with onstat –u output
Monitor threads with onstat -g ath output
Monitor threads with onstat -g act output
Monitor threads with onstat -g cpu output
Monitor session resources with onstat -g ses output
Monitor session memory with onstat -g mem and onstat -g stm output

Monitor sessions and threads with SMI tables
Monitor transactions

Display information about transactions
Display information about transaction locks
Display statistics on user sessions
Display Statistics on Sessions Executing SQL Statements

The onperf utility on UNIX
Overview of the onperf utility

Basic onperf utility functions
Display metric values
Save metric values to a file
Review metric measurements

onperf utility tools
Requirements for running the onperf utility
Starting the onperf utility and exiting from it
The onperf user interface

Graph tool
Graph-tool title bar
Graph-tool graph menu
Graph-tool metrics menu
Graph-tool view menu
The graph-tool Configure menu and the Configuration dialog box
Graph-tool Tools menu
Changing the scale of metrics
Displaying recent-history values

Query-tree tool
Status tool
Activity tools

Why you might want to use onperf
Routine monitoring with onperf
Diagnosing sudden performance loss
Diagnosing performance degradation

onperf utility metrics
Database server metrics
Disk-chunk metrics
Disk-spindle metrics
Physical-processor metrics
Virtual-processor metrics
Session metrics
Tblspace metrics
Fragment metrics

Appendix
Case studies and examples

Case study of a situation in which disks are overloaded
SNMP Subagent Guide

SNMP concepts
What is SNMP?
Purpose of the SNMP
The SNMP architecture

SNMP network managers
Master agents
Subagents

1520
1520
1521
1521
1522
1522
1522
1523
1523
1523
1524
1525
1526
1526
1527
1527
1528
1528
1529
1529
1530
1530
1530
1531
1532
1532
1532
1533
1533
1533
1534
1534
1534
1535
1535
1536
1536
1536
1537
1537
1538
1538
1539
1539
1539
1540
1540
1541
1541
1541
1541
1541
1542
1542
1543
1543
1543
1544
1544
1545
1545
1546
1546
1546
1547
1548
1548
1548
1548
1549
1550
1550

Managed components
Management Information Bases

Informix implementation of SNMP
Components of the Informix implementation
Purpose of Informix SNMP

Event notification
Data requests
Traps
Information that OnSNMP provides

SNMP standard
SNMP architecture
Informix implementation of SNMP on UNIX or Linux

The runsnmp.ksh script
UNIX master agents

Assuring compatibility
Installing and configuring a master agent manually
Starting and stopping a master agent

Starting a master agent manually
Stopping a master agent manually
Making sure that a master agent is running correctly

UNIX subagent
UNIX server discovery process

Preparing onsrvapd manually
Issue the onsrvapd command

Starting onsrvapd manually
Making sure that onsrvapd is running correctly

Choose an installation directory
Informix implementation of SNMP on Windows

Windows master agent
Windows subagent

Start and stop OnSNMP
Configure OnSNMP
Windows registry key for the OnSNMP logging level

Windows server discovery process
Start and stop onsrvapd
Installing the Informix SNMP agent

GLS and SNMP
MIB types and objects
Table indexing

Numeric index values
Alphabetical index values

Refresh control value
Files installed for SNMP

Files installed on UNIX or Linux
Files installed on Windows

Management Information Base reference
Application MIB

applTable
RDBMS MIB

rdbmsDbInfoTable
rdbmsDbTable
rdbmsRelTable
rdbmsSrvInfoTable
rdbmsSrvLimitedResourceTable
rdbmsSrvParamTable
rdbmsSrvTable
rdbmsTraps

frdbmsStateChange trap
Online MIB in the Informix Private MIB

onActiveBarTable
onActiveTableTable
onBarTable
onChunkTable
onDatabaseTable
onDbspaceTable
onErQueueTable
onErSiteTable
onFragmentTable
onLockTable
onLogicalLogTable
onPhysicalLogTable
onServerTable

1550
1551
1551
1552
1552
1552
1552
1552
1553
1553
1553
1554
1555
1555
1556
1556
1556
1556
1557
1557
1557
1557
1558
1558
1558
1558
1558
1559
1559
1559
1559
1560
1560
1560
1560
1561
1561
1561
1562
1563
1563
1563
1564
1564
1564
1564
1565
1565
1566
1566
1567
1567
1568
1568
1569
1569
1570
1570
1570
1570
1571
1572
1572
1573
1574
1575
1575
1576
1576
1577
1578
1578

onSessionTable
onSqlHostTable
onTableTable

InformixHQ Guide
What's new in InformixHQ
Architecture
System Compatibility
Getting Started

Starting the InformixHQ Server
Starting the InformixHQ Agent
Logging in InformixHQ

InformixHQ Concepts
InformixHQ Server

InformixHQ Server Configuration
InformixHQ UI

Adding Servers and Groups
Exploring Groups
Exploring Informix Database Servers
Configuring Monitoring
Configuring Alerting
Custom Dashboards
Schema Manager

Viewing Database Information
Viewing Table Information
Creating a Database
Creating a Demo Database
Dropping a Database
Creating a Table
Dropping a Table
Creating an Index
Deleting an Index

Connection Manager
InformixHQ Server Settings

Configuring Alerting Notification
Creating Custom Sensors

User Settings
Configuring User Alerting Notification

Users and Permissions
InformixHQ Agent

InformixHQ Agent Setup
InformixHQ Agent Configuration Parameters

Frequently asked questions (FAQs) about InformixHQ
High level architecture and functionality
Getting Started
Monitoring and the Repository Database
Security
Users and Permissions

Backup and restore
Backup and Restore Guide

Overview of backup and restore
Backup and restore concepts

Recovery system
Backup systems
Backup levels
Logical-log backup

Manual and continuous logical-log backups
Log salvage
Save logical-log backups

Restore systems
Physical and logical restores
Warm, cold, and mixed restores
Continuous log restore

Comparison of the ON-Bar and ontape utilities
Plan for backup and restore

Plan a recovery strategy
Types of data loss
Determine failure severity
Data use determines your backup schedule
Schedule backups
Security requirements for label-based access control

Plan a backup system for a production database server
Evaluate hardware and memory resources

1579
1581
1581
1582
1582
1584
1585
1586
1587
1587
1588
1589
1590
1590
1593
1593
1594
1594
1595
1595
1595
1596
1596
1597
1597
1597
1597
1597
1604
1605
1605
1605
1606
1606
1607
1607
1607
1608
1608
1608
1611
1613
1613
1614
1614
1615
1616
1617
1617
1618
1618
1618
1618
1618
1619
1619
1620
1620
1620
1621
1621
1622
1623
1624
1624
1624
1625
1625
1625
1625
1626
1626

Evaluate backup and restore time
Evaluate logging and transaction activity
Compress row data
Transform data with external programs

ON-Bar backup and restore system
Overview of the ON-Bar backup and restore system

ON-Bar components
Backup Services API (XBSA)
ON-Bar catalog tables
ixbar file: ON-Bar emergency boot file
bar_act.log file: ON-Bar activity log
ON-Bar script

Configure the storage manager and ON-Bar
Configure a storage manager

Storage-manager definitions in the sm_versions file
Configuring Spectrum Protect

Editing the Spectrum Protect client options files
Editing the Spectrum Protect client user options file
Editing the Spectrum Protect client system options file

Assigning a Spectrum Protect management class for a backup
Setting the IBM Informix Interface for Spectrum Protect environment variables
Registering with the Spectrum Protect server
Initializing the IBM Informix Interface for Spectrum Protect password
Updating the storage-manager definition in the sm_versions file for Spectrum Protect
Configuring ON-Bar for optional Spectrum Protect features

Configuring a third-party storage manager
Validating your storage manager
Configuring ON-Bar

ON-Bar security
Verifying the configuration of ON-Bar and your storage manager
Files that ON-Bar and storage managers use

Back up with ON-Bar
Preparing to back up data

Administrative files to back up
onbar -b syntax: Backing up

List of storage spaces in a file
Backing up blobspaces

onbar -m syntax: Monitoring recent ON-Bar activity
Viewing a list of registered backups
onbar -P syntax: Printing backed-up logical logs
onbar -v syntax: Verifying backups

Temporary space for backup verification
Verification failures

Diagnosing why a backup failed verification
Verifying an expired backup
Restoring when a backup is missing data

Restore data with ON-Bar
Pre-restore checklist

Storage space status and required actions
Storage device availability
onbar -r syntax: Restoring data

Avoid salvaging logical logs
Performing a cold restore
Configuring a continuous log restore by using ON-Bar
Restoring data by using a mixed restore

Strategies for using a mixed restore
Recreating chunk files during a restore

Restoring when using cooked chunks
Restoring when using raw chunks

Reinitializing the database server and restoring data
Replacing disks during a restore

Renaming a chunk to a nonexistent device
Restoring to a different computer
onbar -RESTART syntax: Restarting a failed restore
Resolve a failed restore

External backup and restore
External backup and restore overview

Block before backing up
Rules for an external backup
Prepare for an external backup

Block and unblock database server
Track an external backup

1626
1627
1627
1627
1628
1628
1628
1629
1629
1629
1630
1630
1630
1631
1631
1631
1632
1632
1633
1633
1633
1634
1634
1634
1634
1635
1635
1635
1636
1636
1636
1637
1637
1638
1638
1641
1641
1642
1642
1643
1644
1646
1646
1647
1647
1647
1647
1648
1648
1649
1649
1653
1653
1653
1654
1654
1655
1655
1655
1656
1656
1657
1657
1658
1659
1660
1660
1661
1661
1661
1662
1662

Performing an external backup when chunks are not mirrored
RS secondary server external backup

Performing an external backup of an RS secondary server
Data restored in an external restore

Rename chunks
External restore commands
Rules for an external restore

Performing an external restore
Performing a cold external restore
Performing a warm external restore
Examples of external restore commands

Initializing HDR with an external backup and restore
Customize and maintain ON-Bar

Customizing ON-Bar and storage-manager commands
Updating the ON-Bar script during reinstallation
Print the backup boot files
Migrate backed-up logical logs to tape

Expire and synchronize the backup catalogs
Choose an expiration policy
The onsmsync utility

Regenerate the emergency boot file
Regenerate the sysutils database
Delete a bad backup
Expire backups based on the retention date
Expire a generation of backups
Expire backups based on the retention interval
Expire backups with multiple point-in-time restores
Expire all backups

Monitor the performance of ON-Bar and the storage managers
Set ON-Bar performance statistics levels
View ON-Bar backup and restore performance statistics

ON-Bar catalog tables
The bar_action table
The bar_instance table
The bar_ixbar table
The bar_object table
The bar_server table
The bar_syncdeltab table
ON-Bar catalog map

ON-Bar messages and return codes
Message format in the ON-Bar message log
Message numbers
ON-Bar return codes

ontape backup and restore system
Configure ontape

Set configuration parameters for the ontape utility
Data transformation filter parameters for ontape
Tape and tape device parameters for ontape
Set the tape-device parameters

Specify separate devices for storage-space and logical-log backups
Specify tape devices as symbolic links
Specify a file system directory
Specify a remote device
Specify /dev/null for a tape device
Set TAPEDEV to stdio
Rewind tape devices before opening and on closing

Specify the tape-block-size
Specify the tape size

Tape size for remote devices
Changing your ontape configuration

Back up with ontape
Summary of ontape tasks

Start ontape
Exit codes for ontape

Change database logging status
Create a backup

Backup levels that ontape supports
Back up after changing the physical schema
Prepare for a backup

Avoid temp tables during heavy activity
Make sure enough logical-log space exists
Keep a copy of your configuration file

1662
1662
1663
1663
1663
1664
1664
1665
1665
1665
1665
1665
1666
1666
1666
1666
1667
1668
1668
1668
1670
1671
1671
1671
1671
1671
1671
1672
1672
1672
1672
1673
1673
1674
1674
1675
1676
1676
1676
1677
1677
1677
1678
1681
1681
1681
1681
1682
1682
1683
1683
1683
1683
1684
1684
1684
1684
1684
1684
1685
1685
1685
1685
1686
1686
1686
1686
1687
1687
1687
1687
1688

Verify consistency before a level-0 backup
Online and quiescent backups
Back up to tape

Label tapes created with ontape
Back up to standard output
Back up to a directory

Set the file directory path
Rename existing files
Override the default name of the archive files

ontape utility syntax: Perform a backup
Backup examples
Back up raw tables

Back up to Amazon Simple Storage Service
The ifxbkpcloud.jar utility
Cloud storage file naming conventions

When the logical-log files fill during a backup
When a backup terminates prematurely
Monitor backup history by using oncheck

Back up logical-log files with ontape
Before you back up the logical-log files

Use blobspace TEXT and BYTE data types and logical-log files
Use /dev/null when you do not need to recover

When to back up logical-log files
Start an automatic logical-log backup
Starting a continuous logical-log file backup
End a continuous logical-log backup
Devices that logical-log backups must use

Restore with ontape
Types of physical restore

Full-system restore
Restores of dbspaces, blobspaces, and sbspaces

Cold, warm, or mixed restores
Cold restores
Warm restores
Mixed restores

ontape utility syntax: Perform a restore
Restore the whole system

Gather backup and logical-log tapes before restoring
Decide on a complete cold or a mixed restore
Verify your database server configuration

Set shared-memory parameters to maximum assigned value
Set mirroring configuration to level-0 backup state
Verify that the raw devices or files are available

Perform a cold restore
Salvage logical-log files
Mount tapes during the restore
Restore logical log files
Bring the database server online when the restore is over

Restore selected storage spaces
Gather the appropriate tapes
Ensure that needed device are available
Back up logical-log files
Perform a warm restore

Restore raw tables
Configuring continuous log restore with ontape
Rename chunks during a restore

Validation sequence for renaming chunks
New chunk requirements
Rename chunks with command-line options
Rename chunks with a file
Rename chunks while specifying other options
Rename a chunk to a nonexistent device

Renaming a chunk to a nonexistent device
Restore from standard input
Restore data to a remote server
Simultaneous backup and restore by using standard I/O

Perform an external backup and restore
Recover data by using an external backup and restore
Data that is backed up in an external backup

Rules for an external backup
Performing an external backup

Prepare for an external backup

1688
1688
1688
1688
1688
1689
1689
1689
1689
1690
1691
1691
1691
1692
1693
1693
1693
1693
1694
1694
1694
1694
1694
1695
1695
1695
1695
1696
1696
1696
1696
1696
1697
1697
1697
1697
1698
1699
1699
1699
1700
1700
1700
1700
1700
1701
1701
1701
1701
1701
1701
1702
1702
1702
1702
1702
1703
1703
1703
1703
1704
1704
1704
1704
1705
1705
1705
1706
1706
1706
1706
1707

Block and unblock the database server
Track an external backup

Data that is restored in an external restore
Use external restore commands
Rules for an external restore
Rename chunks
Performing a cold external restore

Examples of external restore commands
Initializing HDR with an external backup and restore

Backup and restore a Remote Secondary Server(RSS)
Integrated Backup Encryption

Using a Remote Key Server
Using a Local Encryption Key

Informix Primary Storage Manager
IBM Informix Primary Storage Manager

Examples: Manage storage devices with Informix Primary Storage Manager
Setting up Informix Primary Storage Manager

Collecting information about file directories and devices
Configuring Informix Primary Storage Manager

Managing storage devices
The onpsm utility for storage management

onpsm -C detail output
onpsm -D list output
onpsm -O list output

Device pools
Device-configuration file for the Informix Primary Storage Manager
Informix Primary Storage Manager file-naming conventions
Message logs for Informix Primary Storage Manager

archecker table level restore utility
archecker table level restore utility

Overview of the archecker utility
The archecker configuration file
Schema command file
Table-level restore and locales

Data restore with archecker
Physical restore
Logical restore

The stager
The applier

Syntax for archecker utility commands
Manually control a logical restore
Performing a restore with multiple storage managers
Perform a parallel restore
Restore tables with large objects
When to delete restore files

The archecker schema reference
The CREATE TABLE statement
The CREATE EXTERNAL TABLE statement
The DATABASE statement
The INSERT statement
The RESTORE statement
The SET statement
Schema command file examples

Simple schema command file
Restore a table from a previous backup
Restore to a different table
Extract a subset of columns
Use data filtering
Restore to an external table
Restore multiple tables
Perform a distributed restore

Backup and restore configuration parameter reference
Backup and restore configuration parameters

ON-Bar and ontape configuration parameters and environment variable
BACKUP_FILTER configuration parameter
BAR_ACT_LOG configuration parameter
BAR_BSALIB_PATH configuration parameter
BAR_CKPTSEC_TIMEOUT configuration parameter
BAR_DEBUG configuration parameter
BAR_ENCRYPTION configuration parameter
BAR_DECRYPTION configuration parameter
BAR_DEBUG_LOG configuration parameter

1707
1707
1707
1708
1708
1708
1708
1708
1709
1709
1710
1711
1711
1711
1712
1713
1716
1716
1717
1717
1717
1721
1721
1722
1722
1722
1723
1723
1723
1724
1724
1724
1725
1725
1725
1725
1726
1726
1726
1726
1727
1728
1728
1728
1728
1728
1729
1729
1730
1730
1731
1732
1732
1732
1732
1733
1733
1733
1733
1734
1734
1734
1734
1735
1736
1736
1737
1737
1738
1738
1739
1740

BAR_HISTORY configuration parameter
BAR_IXBAR_PATH configuration parameter
BAR_MAX_BACKUP configuration parameter
BAR_MAX_RESTORE configuration parameter
BAR_NB_XPORT_COUNT configuration parameter
BAR_PERFORMANCE configuration parameter
BAR_PROGRESS_FREQ configuration parameter
BAR_RETRY configuration parameter
BAR_SEC_ALLOW_BACKUP configuration parameter
BAR_SIZE_FACTOR configuration parameter
BAR_XFER_BUF_SIZE configuration parameter
IFX_BAR_NO_BSA_PROVIDER environment variable
IFX_BAR_NO_LONG_BUFFERS environment variable
IFX_BAR_USE_DEDUP environment variable
IFX_TSM_OBJINFO_OFF environment variable
LTAPEBLK configuration parameter
LTAPEDEV configuration parameter
LTAPESIZE configuration parameter
RESTARTABLE_RESTORE configuration parameter
RESTORE_FILTER configuration parameter
TAPEBLK configuration parameter
TAPEDEV configuration parameter
TAPESIZE configuration parameter

The archecker utility configuration parameters and environment variable
AC_CONFIG file environment variable
AC_DEBUG configuration parameter
AC_IXBAR configuration parameter
AC_LTAPEBLOCK configuration parameter
AC_LTAPEDEV parameter
AC_MSGPATH configuration parameter
AC_SCHEMA configuration parameter
AC_STORAGE configuration parameter
AC_TAPEBLOCK configuration parameter
AC_TAPEDEV configuration parameter
AC_TIMEOUT configuration parameter
AC_VERBOSE configuration parameter

Informix Primary Storage Manager configuration parameters
PSM_ACT_LOG configuration parameter
PSM_CATALOG_PATH configuration parameter
PSM_DBS_POOL configuration parameter
PSM_DEBUG configuration parameter
PSM_DEBUG_LOG configuration parameter
PSM_LOG_POOL configuration parameter

Event alarm configuration parameters
Cloud Backup

Back up to Amazon Simple Storage Service using ON-Bar and the PSM
Back up to Softlayer using ON-Bar and the PSM

Appendixes
Troubleshooting some backup and restore errors

Corrupt page during an archive
Log backup already running
No server connection during a restore
Drop a database before a restore
No dbspaces or blobspaces during a backup or restore

Restore blobspace BLOBs
Changing the system time on the backup system

Migrate data, servers, and tools
Backing up before a database server or storage-manager upgrade
Upgrading a third-party storage manager
Changing storage-manager vendors
Switching from ontape to ON-Bar

GLS support
Use GLS with the ON-Bar utility

Identifiers that support non-ASCII characters
Identifiers that require 7-bit ASCII characters
Locale of ON-Bar messages

Use the GL_DATETIME environment variable with ON-Bar
Use GLS with the ontape utility

Replication
Enterprise Replication

About Enterprise Replication
IBM Informix Enterprise Replication technical overview

1740
1740
1741
1741
1742
1742
1743
1743
1744
1744
1744
1745
1745
1746
1746
1746
1747
1747
1748
1748
1749
1749
1750
1751
1752
1752
1752
1752
1753
1753
1753
1753
1754
1754
1754
1754
1755
1755
1755
1756
1756
1757
1757
1758
1758
1758
1759
1760
1760
1761
1761
1761
1761
1762
1762
1762
1762
1762
1763
1763
1763
1763
1764
1764
1764
1764
1764
1764
1765
1765
1765
1765

Enterprise Replication Terminology
Asynchronous Data Replication
Log-Based Data Capture
High Performance
High Availability
Consistent Information Delivery
Repair and Initial Data Synchronization
Flexible Architecture
Centralized Administration
Ease of Implementation
Network Encryption

How Enterprise Replication Replicates Data
Data Capture

Row Images
Evaluate rows for updates
Send queues and receive queues
Data Evaluation Examples

Data Transport
Applying replicated data

Planning and designing for Enterprise Replication
Plan for Enterprise Replication

Enterprise Replication Server administrator
Asynchronous propagation conflicts
Back up and restore of replication servers
Compression of replicated data
Transaction processing impact
SQL statements and replication
Global language support for replication
Replication between multiple server versions

Schema design for Enterprise Replication
Unbuffered Logging
Table Types
Label-based access control
Out-of-Row Data
Shadow columns
Unique key for replication
Cascading Deletes
Triggers
Constraint and replication
Sequence Objects
The NLSCASE database property
Replicating Table Hierarchies
Replication and data types

Replicating on Heterogeneous Hardware
Serial data types and replication keys
Replication of TimeSeries data types
Replication of large objects

Replicating Simple Large Objects from Tblspaces
Replication of large objects from blobspaces or sbspaces

Replication of opaque user-defined data types
Replication system design

Primary-Target Replication System
Primary-Target Data Dissemination
Data consolidation
Workload Partitioning
Workflow Replication
Primary-Target Considerations

Update-Anywhere Replication System
Conflict Resolution

Conflict resolution rule
Ignore Conflict-Resolution Rule
Time stamp conflict resolution rule
SPL Conflict Resolution Rule

SPL Conflict Resolution for Large Objects
Delete wins conflict resolution rule
Always-Apply Conflict-Resolution Rule

Conflict Resolution Scope
Choosing a Replication Network Topology

Fully Connected Topology
Hierarchical Routing Topology Terminology
Hierarchical Tree Topology
Forest of Trees

1766
1767
1767
1768
1768
1768
1768
1769
1769
1769
1770
1770
1771
1771
1772
1772
1773
1774
1774
1774
1775
1775
1775
1776
1776
1776
1776
1777
1778
1778
1778
1778
1779
1779
1779
1779
1780
1780
1780
1781
1781
1781
1781
1782
1782
1782
1783
1783
1784
1784
1785
1785
1785
1786
1786
1787
1787
1787
1788
1788
1789
1789
1790
1791
1792
1793
1793
1793
1794
1794
1795
1795

Setting up and managing Enterprise Replication
Preparing the Replication Environment

Preparing the Network Environment
Configuring hosts information for replication servers
Configuring port and service names for replication servers
Creating sqlhost group entries for replication servers
Configuring secure ports for connections between replication servers
Configuring network encryption for replication servers
Testing the replication network
Testing the password file

Preparing the Disk
Logical Log Configuration Disk Space
Logical Log Configuration Guidelines
Disk Space for Delete Tables
Shadow column disk space
Setting Up Send and Receive Queue Spool Areas

Row Data sbspaces
Creating sbspaces for Spooled Row Data
Logging Mode for sbspaces
Dropping a Spooled Row Data sbspace

Setting Up the Grouper Paging File
Creating ATS and RIS Directories

Preparing the Database Server Environment
Setting Database Server Environment Variables
Set configuration parameters for replication
Time Synchronization

Preparing Data for Replication
Preparing Consistent Data
Blocking Replication

Using DB-Access to Begin Work Without Replication
Using ESQL/C to Begin Work Without Replication

Preparing to Replicate User-Defined Types
Preparing to Replicate User-Defined Routines
Preparing Tables for Conflict Resolution
Preparing Tables for a Consistency Check Index
Preparing tables without primary keys
Preparing Logging Databases
Preparing for Role Separation (UNIX)

Load and unload data
High-Performance Loader
onunload and onload Utilities
dbexport and dbimport Utilities
UNLOAD and LOAD Statements

Data Preparation Example
Using the cdr start replicate Command
Using LOAD, UNLOAD, and BEGIN WORK WITHOUT REPLICATION

Using High-Availability Clusters with Enterprise Replication
High-availability replication systems

High-Availability Clusters in a Hierarchical Tree Topology
Using High-Availability Clusters in a Forest of Trees Topology
Setting Up Database Server Groups for High-Availability Cluster Servers

Managing Enterprise Replication with High-Availability Clusters
Failover for High-availability clusters in an Enterprise Replication environment
Replication latency for secondary servers

Defining Replication Servers, Replicates, Participants, and Replicate Sets
Starting Database Servers
Defining Replication Servers

Creating a new domain by cloning a server
Example of creating a new replication domain by cloning

Adding a server to the domain by cloning a server
Customizing the Replication Server Definition

Define a replicate
Participant definitions

Defining Replicates on Table Hierarchies
Replicate types

Master Replicate Verification
Creating Strict Master Replicates
Creating Empty Master Replicates

Defining Shadow Replicates
Specifying Conflict Resolution Rules and Scope
Specifying Replication Frequency
Setting Up Failed Transaction Logging

1796
1796
1797
1797
1798
1798
1799
1800
1800
1800
1801
1801
1801
1802
1802
1802
1803
1803
1804
1804
1804
1805
1805
1805
1806
1806
1807
1807
1807
1808
1808
1808
1808
1809
1809
1810
1810
1810
1811
1812
1812
1812
1813
1813
1813
1813
1814
1814
1815
1815
1816
1816
1817
1817
1818
1818
1818
1819
1819
1821
1821
1822
1822
1823
1823
1823
1824
1824
1824
1824
1825
1825

Replicate only changed columns
Using the IEEE Floating Point or Canonical Format
Enabling Triggers
Enabling code set conversion between replicates

Configuring code set conversion between replicates
Code set conversion errors
Controlling the replication of large objects

Replication to SPL routine
Define replicate sets

Exclusive Replicate Sets
Non-Exclusive Replicate Sets
Customizing the Replicate Set Definition

Initially Synchronizing Data Among Database Servers
Set up replication through templates

Defining Templates
Realizing Templates

Verifying Participants without Applying the Template
Synchronizing Data Among Database Servers

Improve Performance During Synchronization
Create tables automatically
Other synchronization options
Changing Templates
Template Example

Grid setup and management
Example of setting up a replication system with a grid
Example of rolling out schema changes in a grid
Creating a grid
Grid maintenance

Viewing grid information
Adding replication servers to a grid

Adding a replication server to a grid by running cdr change grid
Adding a replication server to a grid by cloning

Adding an externally created replicate into a grid replicate set
Adding an existing replicate to a grid replicate set by using cdr change replicateset
Adding an existing replicate to a grid replicate set by altering a table

Creating replicated tables through a grid
Enabling replication within a grid transaction
Propagating updates to data
Administering servers in the grid with the SQL administration API
Propagating database object changes
Propagating external files through a grid
Rerunning failed grid routines
Connection management for client connections to participants in a grid
Grid queries

Defining tables for grid queries
Configuring secure connections for grid queries
Examples of grid queries

Shard cluster setup
Creating a shard cluster

Shard cluster definitions
Sharded queries
Shard cluster management and monitoring
Shard edge server

Managing Replication Servers and Replicates
Managing Replication Servers

Modify server attributes
Dynamically Modifying Configuration Parameters for a Replication Server
Viewing Replication Server Attributes
Connect to another replication server
Temporarily stopping replication on a server
Restarting Replication on a Server
Suspending Replication for a Server
Resuming a Suspended Replication Server
Deleting a Replication Server

Managing Replicates
Modify replicates

Adding or Deleting Participants
Change replicate attributes
Changing the replication key of a replicate

Viewing Replicate Properties
Starting a Replicate
Stopping a Replicate

1825
1826
1826
1826
1827
1828
1829
1829
1832
1832
1832
1833
1833
1834
1834
1834
1834
1834
1835
1835
1835
1835
1835
1836
1837
1839
1839
1840
1840
1841
1841
1841
1842
1842
1843
1843
1844
1844
1845
1846
1846
1847
1848
1848
1849
1849
1850
1852
1853
1853
1854
1855
1856
1856
1857
1857
1858
1858
1859
1859
1859
1859
1860
1860
1860
1861
1861
1861
1862
1862
1862
1862

Suspending a Replicate
Resuming a Suspended Replicate
Deleting a Replicate

Managing Replicate Sets
Connection management for client connections to participants in a replicate set
Modifying Replicate Sets

Adding or Deleting Replicates From a Replicate Set
Changing Replication Frequency For the Replicate Set

Viewing Replicate Sets
Starting a Replicate Set
Stopping a Replicate Set
Suspending a Replicate Set
Resuming a Replicate Set
Deleting a Replicate Set

Managing Templates
Viewing Template Definitions
Deleting Templates

Managing Replication Server Network Connections
Viewing Network Connection Status
Dropping the Network Connection
Reestablishing the Network Connection

Resynchronizing Data among Replication Servers
Performing Direct Synchronization

Synchronizing Significantly Inconsistent Tables
Checking Consistency and Repairing Inconsistent Rows

Interpreting the Consistency Report
Increase the speed of consistency checking

Indexing the ifx_replcheck Column
Repair inconsistencies by time stamp
Repairing inconsistencies while enabling a replication server
Implementing a custom checksum function

Rules for custom checksum functions
Repairing Failed Transactions with ATS and RIS Files
Resynchronize data manually

Alter, rename, or truncate operations during replication
Altering multiple tables in a replicate set
Adding a Replicated Column
Removing replicated columns
Modifying the data type or size of a replicated column
Changing the Name of a Replicated Column, Table, or Database
Changing or re-creating primary key columns
Attaching a New Fragment to a Replicated Table
Remastering a Replicate

Remastering replicates without name verification
Recapture replicated transactions

Monitor and troubleshooting Enterprise Replication
Solve Replication Processing Problems
Failed Transaction (ATS and RIS) Files

Enabling ATS and RIS File Generation
ATS and RIS File Names
ATS and RIS File Formats

XML File Format
XML Tags

ATS and RIS Text File Contents
Disabling ATS and RIS File Generation
Suppressing Data Sync Errors and Warnings

Preventing Memory Queues from Overflowing
Handle potential log wrapping
Monitoring Disk Usage for Send and Receive Queue Spool
Increasing the Sizes or Numbers of Storage Spaces
Recovering when Storage Spaces Fill

Common configuration problems
Troubleshooting Tips for Alter Operations
Enterprise Replication Event Alarms

Enabling or Disabling Enterprise Replication Event Alarms
Push data feature

Push data session survival
Detach trigger

Loopback replication
Loopback Configuration
Replication definition between primary and pseudo groups

Appendixes

1863
1863
1863
1863
1864
1864
1864
1865
1865
1865
1865
1865
1866
1866
1866
1866
1866
1866
1867
1867
1867
1867
1868
1868
1869
1869
1870
1870
1871
1871
1871
1872
1872
1873
1873
1874
1875
1875
1875
1876
1876
1876
1876
1877
1877
1877
1878
1879
1880
1880
1881
1881
1883
1885
1886
1886
1886
1887
1888
1888
1889
1889
1889
1891
1901
1901
1903
1904
1904
1905
1905
1906

The cdr utility
Interpret the cdr utility syntax

Command Abbreviations
Option Abbreviations
Option Order
Long Command-Line Examples
Long Identifiers
Connect Option
Participant and participant modifier
Return Codes for the cdr Utility
Frequency Options

cdr add onconfig
cdr alter
cdr autoconfig serv
cdr change grid
cdr change gridtable
cdr change onconfig
cdr change replicate
cdr change replicateset
cdr change shardCollection
cdr check catalog
cdr check queue
cdr check replicate
cdr check replicateset
cdr check sec2er
cdr cleanstart
cdr connect server
cdr define grid
cdr define qod
cdr define region
cdr define replicate
cdr define replicateset
cdr define server
cdr define shardCollection
cdr define template
cdr delete grid
cdr delete region
cdr delete replicate
cdr delete replicateset
cdr delete server
cdr delete shardCollection
cdr delete template
cdr disable grid
cdr disable server
cdr disconnect server
cdr enable grid
cdr enable server
cdr error
cdr finderr
cdr list grid
cdr list replicate
cdr list replicateset
cdr list server
cdr list shardCollection
cdr list catalog
cdr list template
cdr migrate server
cdr modify grid
cdr modify replicate
cdr modify replicateset
cdr modify server
cdr realize template
cdr remaster
cdr remaster gridtable
cdr remaster replicateset
cdr remove onconfig
cdr repair
cdr reset qod
cdr resume replicate
cdr resume replicateset
cdr resume server
cdr start

1906
1908
1909
1909
1910
1910
1911
1911
1912
1914
1923
1925
1925
1926
1928
1929
1930
1931
1932
1934
1936
1937
1939
1945
1949
1951
1951
1952
1953
1954
1955
1961
1963
1965
1967
1970
1971
1972
1972
1973
1975
1976
1976
1977
1978
1979
1980
1981
1982
1982
1984
1987
1988
1990
1991
1993
1994
1995
1996
1998
1999
2000
2003
2005
2005
2006
2007
2008
2010
2011
2011
2012

cdr start qod
cdr start replicate
cdr start replicateset
cdr start sec2er
cdr stats rqm
cdr stats recv
cdr stats check
cdr stats sync
cdr stop
cdr stop qod
cdr stop replicate
cdr stop replicateset
cdr suspend replicate
cdr suspend replicateset
cdr suspend server
cdr swap shadow
cdr sync replicate
cdr sync replicateset
cdr -V
cdr view

Enterprise Replication configuration parameter and environment variable reference
CDR_APPLY Configuration Parameter
CDR_AUTO_DISCOVER configuration parameter
CDR_DBSPACE Configuration Parameter
CDR_DELAY_PURGE_DTC configuration parameter
CDR_DSLOCKWAIT Configuration Parameter
CDR_ENV Configuration Parameter
CDR_EVALTHREADS Configuration Parameter
CDR_LOG_LAG_ACTION configuration parameter
CDR_LOG_STAGING_MAXSIZE Configuration Parameter
CDR_MAX_DYNAMIC_LOGS Configuration Parameter
CDR_MAX_FLUSH_SIZE configuration parameter
CDR_MEM configuration parameter
CDR_NIFCOMPRESS Configuration Parameter
CDR_QDATA_SBSPACE Configuration Parameter
CDR_QUEUEMEM Configuration Parameter
CDR_SERIAL Configuration Parameter
CDR_SUPPRESS_ATSRISWARN Configuration Parameter
CDR_TSINSTANCEID configuration parameter
ENCRYPT_CDR Configuration Parameter
ENCRYPT_SMX Configuration Parameter
GRIDCOPY_DIR Configuration Parameter
SHARD_EDGE_NODE configuration parameter
SHARD_ID configuration parameter
SMX_COMPRESS Configuration Parameter
SMX_NUMPIPES Configuration Parameter
CDR_ALARMS Environment Variable
CDR_ATSRISNAME_DELIM Environment Variable
CDR_DISABLE_SPOOL Environment Variable
CDR_LOGDELTA Environment Variable
CDR_PERFLOG Environment Variable
CDR_RMSCALEFACT Environment Variable
CDR_ROUTER Environment Variable
CDRSITES_10X Environment Variable
CDRSITES_731 Environment Variable
CDRSITES_92X Environment Variable

Grid routines
ifx_get_erstate() function
ifx_grid_connect() procedure
ifx_grid_copy() procedure
ifx_grid_disconnect() procedure
ifx_grid_execute() procedure
ifx_grid_function() function
ifx_grid_procedure() procedure
ifx_grid_redo() procedure
ifx_grid_release() function
ifx_grid_remove() function
ifx_grid_purge() procedure
ifx_gridquery_skipped_nodes() function
ifx_gridquery_skipped_node_count() function
ifx_node_id() function
ifx_node_name() function

2013
2014
2015
2017
2018
2020
2021
2023
2026
2027
2027
2028
2029
2030
2031
2031
2032
2035
2037
2038
2044
2045
2045
2046
2046
2047
2047
2047
2048
2050
2050
2051
2051
2051
2052
2053
2053
2054
2054
2054

454
2055
2056
2056

504
504

2057
2057
2058
2058
2058
2058
2059
2059
2059
2060
2060
2061
2061
2063
2064
2065
2065
2066
2067
2067
2068
2069
2070
2070
2071
2072

Enterprise Replication routines
ifx_get_erstate() function
ifx_set_erstate() procedure

onstat -g commands for Enterprise Replication
Threads shown by the onstat -g ath command
onstat -g cat: Print ER global catalog information
onstat -g cdr: Print ER statistics
onstat -g cdr config
onstat -g ddr
onstat -g dss: Print statistics for data sync threads
onstat -g dtc: Print statistics about delete table cleaner
onstat -g grp
onstat -g nif: Print statistics about the network interface
onstat -g que: Print statistics for all ER queues
onstat -g rcv: Print statistics about the receive manager
onstat -g rep
onstat -g rqm
onstat -g sync

syscdr Tables
The replcheck_stat Table
The replcheck_stat_node Table

SMI Table Reference
The syscdr_ats Table
The syscdr_atsdir Table
The syscdr_ddr Table
The syscdr_nif Table
The syscdr_rcv Table
The syscdr_ris Table
The syscdr_risdir Table
The syscdr_rqm Table
The syscdr_rqmhandle Table
The syscdr_rqmstamp Table
The syscdr_state Table
The syscdrack_buf Table
The syscdrack_txn Table
The syscdrctrl_buf Table
The syscdrctrl_txn Table
The syscdrerror Table
The syscdrlatency Table
The syscdrpart Table
The syscdrprog Table
The syscdrq Table
The syscdrqueued Table
The syscdrrecv_buf Table
The syscdrrecv_stats Table
The syscdrrecv_txn Table
The syscdrrepl Table
The syscdrreplset Table
The syscdrs Table
The syscdrsend_buf Table
The syscdrsend_txn Table
The syscdrserver Table
The syscdrsync_buf Table
The syscdrsync_txn Table
The syscdrtsapply table
The syscdrtx Table
Enterprise Replication Queues

Columns of the Transaction Tables
Columns of the Buffer Tables

Replication Examples
Replication Example Environment
Primary-Target Example
Update-Anywhere Example
Hierarchy Example

Data sync warning and error messages

2072
2061
2073
2073
2074
2075
2076
2076
2078
2078
2079
2079
2082
2083
2084
2085
2085
2087
2088
2088
2089
2089
2090
2091
2091
2092
2093
2093
2094
2094
2095
2095
2095
2096
2096
2096
2097
2097
2097
2097
2098
2098
2098
2098
2099
2099
2099
2100
2101
2101
2101
2102
2102
2102
2102
2103
2103
2103
2104
2104
2105
2105
2107
2108
2109

Administering

In addition to administering the database server, you can tune performance, replicate data, and archive data.

Quick reference cards that are suitable for printing

Quick reference card: Configuration parameters in the onconfig.std file (PDF)
Quick reference card: SQL administration API arguments (PDF)
Quick reference card: onstat utility commands (PDF)
Quick reference card: Enterprise Replication (PDF)

Portals that list reference information by functional area and include links

onconfig portal
SQL administration API portal
onstat portal
Database server utilities
Environment variable portal
Limits in Informix®

Main resources

System administration
 These topics contain concepts, procedures, and reference information for database and database server administrators to use for managing and tuning IBM®

Informix database servers.
Backup and restore

 The backup and restore guides contain information about backing up and restoring data and managing storage devices and media.
Replication

 The topics in this group contain information about replicating data in IBM Informix databases by using Enterprise Replication.

System administration

These topics contain concepts, procedures, and reference information for database and database server administrators to use for managing and tuning IBM® Informix®
database servers.

External resources for administration
External resources for performance
Main resources

External resources for administration

Customizing Informix Dynamic Server for Your Environment (IBM Redbooks® publication)
 This IBM Redbooks publication provides an overview of some of the capabilities of version 11 of IBM Informix that enable it to be easily customized for your

particular environment. The focus of this book is on the areas of ease of administration and application development.
Recovery of a Down System (Best practice)

 This presentation provides best practices you should follow to bring a down system back into production as soon as possible. It discusses planning for and
recovering from a critical situation that impacts your Informix database.
Knowledge Collection: Informix Data Compression and Storage Optimization (Support document)

 This document helps you find the available resources that are related to the storage optimization feature.
Using data file abstraction with external tables in Informix Dynamic Server (IBM developerWorks®)

 This article describes how to use the external table feature to easily load and unload data.
Logical Logfile monitoring using SMI Tables (blog entry)

 This entry provides SQL statements that query system monitoring tables to monitor logging activity, log-backup status, and event alarms for logical logs.
SYSDBOPEN: A flexible way to change session behavior in Informix (IBM developerWorks)

 Database administrators can use the sysdbopen() and sysdbclose() procedures to set environments to activate user tracing, handle short-lasting locks on data
records, or change the reading behavior of sessions. This article shows how to create a sysdbopen() procedure that can be dynamically changed without re-creating
the procedure to avoid downtime if session environments must be adjusted.
Understand the Informix Server V11.70 defragmenter (IBM developerWorks)

 You can defragment a table, a fragment, or an index, including system catalogs. Defragmenting reduces the number of extents in the partition. In this article, you
can learn about the defragmenter through usage examples.

External resources for performance tips

IBM Informix on POWER7® (White paper)
 This technical white paper discusses best practices for using Informix on POWER7 systems to optimize performance for mission critical databases.

Optimizing Informix database access (IBM developerWorks)
 This article explains how to improve the performance of your Informix database application by interrupting an SQL or connection request that requires more time

than expected.
Tune your Informix database for top performance, Part 1: Tuning the data model and the application (IBM developerWorks)

 This article explains some basic principles of how to tune an IBM Informix database application to get the best possible performance. In Part 1 of the series, see
how the data model, the application, and updated statistics affect performance.
Pushing IBM Informix Innovator-C to its Limits (magazine)

 This article describes performing a TPC-C-based stress test with IBM Informix Innovator-C edition.

Main resources

Part VI: Administering 1

http://www.ibm.com/shop/publications/order?CTY=US&FNC=SRX&PBL=GI13-2099-01
http://www.ibm.com/shop/publications/order?CTY=US&FNC=SRX&PBL=GI13-3501-01
http://www.ibm.com/shop/publications/order?CTY=US&FNC=SRX&PBL=GI13-2100-01
http://www.ibm.com/shop/publications/order?CTY=US&FNC=SRX&PBL=GI13-3502-00
http://www.redbooks.ibm.com/abstracts/sg247522.html?Open
https://ibm.biz/BdRmkD
https://www.ibm.com/support/docview.wss?rs=630&uid=swg21377085&context=SSGU8G&cs=UTF-8&lang=en&loc=en_US
http://www.ibm.com/developerworks/data/library/techarticle/dm-1003externaltableids/index.html
https://www.ibm.com/developerworks/mydeveloperworks/blogs/informix_admins_blog/entry/logical_logfile_monitoring_using_smi_tables_part_i3?lang=en
http://www.ibm.com/developerworks/data/library/techarticle/dm-1109sysdbopen/index.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-1011informixdefragmenter/index.html
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W6461741bf7e8_47d7_89fc_a0a9233f3ca9/page/IBM%20Informix%20on%20POWER7
http://www.ibm.com/developerworks/data/library/techarticle/dm-1203optimizeinformix/index.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-1104tuneinformix1/index.html
http://ibmdatamag.com/2012/05/pushing-ibm-informix-innovator-c-to-its-limits/

administrative utilities and applications
IBM Informix includes utilities and applications that you can use to perform administrative tasks and capture information about configuration and performance.
Administrator's Guide
These topics provide the information required to administer IBM Informix.
Administrator's Reference
These topics include comprehensive descriptions of IBM Informix configuration parameters, the system-monitoring interface (SMI) tables in the sysmaster
database, the syntax of database server utilities such as onmode and onstat, logical-log records, disk structures, event alarms, and unnumbered error messages.
DB-Access User's Guide
This publication describes how to use the DB-Access utility to access, modify, and retrieve information from IBM Informix database servers.
High-Performance Loader User’s Guide
These topics describe how to use the IBM Informix High-Performance Loader (HPL) to load and unload large quantities of data efficiently to or from an database.
Performance Guide
These topics describe how to configure and operate your IBM Informix database server to improve overall system throughput and to improve the performance of
SQL queries.
SNMP Subagent Guide
These topics describe the Simple Network Management Protocol (SNMP) and the software that you need to use SNMP to monitor and manage IBM Informix
database servers and databases.
InformixHQ

administrative utilities and applications

IBM® Informix® includes utilities and applications that you can use to perform administrative tasks and capture information about configuration and performance.

Table 1. administrative utilities and applications
Utility name Description

archecker Verifies backups and performs table-level restores.

chkenv Checks the validity of shared or private environment-configuration files. The chkenv utility validates the names of the environment variables in the file,
but not their values.

cdr Controls Enterprise Replication operations.

ClassGenerator Generates a Java™ class for a named row type that is defined in the system catalog.

clusterIT_a.exe Deprecated - Configures on the primary node for use in a cluster environment.

clusterIT_b.exe Deprecated - Configures on the secondary node for use in a cluster environment.

dbaccess Provides a user interface for entering, running, and debugging Structured Query Language (SQL) statements and Stored Procedure Language (SPL)
routines.

dbexport Unloads a database into text files for later import into another database and create a schema file.

dbimport Creates and populates a database from text files. Use the schema file with the dbimport utility to re-create the database schema.

dbload Loads data into databases or tables.

dbschema Creates a file that contains the SQL statements that are needed to replicate a specified table, view, or database, or view the information schema.

finderr Looks up a specific error code and displays the corresponding error text.

GenMacKey Generates MAC key files for encrypting network communications.

genoncfg Expedites the process of customizing a database server instance's onconfig file to a host environment.

glfiles Generates a list of GLS-related files on the UNIX operating system.

ifxclone Creates a snapshot of a database server.

ifxdeploy Deploys a snapshot or removes a snapshot.

ifxdeployassist Creates and customizes a snapshot.

ifx_getversion On the UNIX operating system: outputs the complete version name of an Informix library.

ILOGIN On the Windows operating system: tests the connection to a database server. The ILOGIN utility is in the %INFORMIXDIR%\demo directory.

infoshp Reports information that is extracted from headers of the .shp, .shx, and .dbf files that make up ESRI shapefiles.

ipload Manages the onpload database and creates the components of High-Performance Loader load and unload jobs through a UNIX GUI.

ixpasswd.exe On the Windows operating system: Changes the logon password for all services that log on as user informix.

ixsu.exe On the Windows operating system: Opens a command-line window that runs as the specified user.

loadshp Loads spatial features and associated attributes from an ESRI shapefile into a table in an database.

ntchname.exe On the Windows operating system: Changes the registry entries for from the old host name to the new host name.

onaudit Manages audit masks and auditing configurations.

onbar Backs up and restores storage spaces and logical logs.

oncheck Checks specified disk structures for inconsistencies, repair inconsistent index structures, and display information about disk structures.

onclean Forces a shutdown of the database server when normal shutdown from the onmode utility fails or when you cannot restart the server.

oncmsm Starts, stops, installs, or uninstalls a Connection Manager; reloads a Connection Manager configuration file; or converts and earlier format Connection
Manager configuration file to a current format configuration file.

ondblog Changes the logging mode.

2 Part VI: Administering

Utility name Description

onconfig_diff Compares two different onconfig files.

oninit Starts the database server.

onkstore Creates and manages keystore files for use with storage space encryption.

onload Loads data that was created with the onunload utility into the database server.

onlog Displays the contents of logical-log files.

onmode Changes the operating mode of the database server, and performs various other operations on shared memory, sessions, transactions, parameters,
and segments.

onparams Modifies the configuration of logical logs or physical logs.

onpassword Encrypts and decrypts password files that are used by Connection Managers or the CDR utility.

onperf Monitors database server performance.

onpladm Writes scripts and create files that automate data load and unload jobs.

onpload Manages load and unload jobs directly from the command line.

onpsm Manages IBM Informix Primary Storage Manager, which controls backup and restore devices for the ON-Bar utility.

onrestorept Restores a server instance back to its original state just before the start of an upgrade.

onsecurity Checks the security of a file, directory, or path and troubleshoots any existing problems.

onshowaudit Extracts information from an audit trail.

onsmsync Synchronizes the sysutils database and emergency boot file with the storage-manager catalog.

onspaces Manages storage spaces.

onstat Monitors the operation of the database server.

ontape Logs, backs up, and restores data.

onunload Unloads data from the database server.

setnet32 On the Windows operating system: Sets or modifies environment variables and network parameters that products use at run time.

SqlhDelete Deletes the sqlhosts entries from the LDAP server.

SqlhUpload Loads the sqlhosts entries from a flat ASCII file to the LDAP server in the prescribed format.

syncsqlhosts Converts the connection information between the sqlhosts file format and the Windows registry format.

unloadshp Copies spatial features and associated attributes from a table in an IBM Informix database into an ESRI shapefile.

Administrator's Guide

These topics provide the information required to administer IBM® Informix®.

A companion volume, the IBM Informix Administrator's Reference, contains reference material for using IBM Informix database servers. If you must tune the performance
of your database server and SQL queries, see your IBM Informix Performance Guide.

This publication is written for the following users:

Database users
Database administrators
Database server administrators
Performance engineers
Programmers in the following categories

Application developers
DataBlade module developers
Authors of user-defined routines

This publication is written with the assumption that you have the following background:

A working knowledge of your computer, your operating system, and the utilities that your operating system provides
Some experience working with relational databases or exposure to database concepts
Some experience with computer programming
Some experience with database server administration, operating-system administration, or network administration

The database server
 Disk, memory, and process management

 Logging and log administration
 Fault tolerance

 High availability and scalability
 A successful production environment requires database systems that are always available, with minimal if any planned outages, and that can be scaled quickly and

easily as business requirements change.
Distributed data

 Overview of automatic monitoring and corrective actions
 You can use the SQL administration API, the Scheduler, and drill-down queries to manage automatic maintenance, monitoring, and administrative tasks.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 3

https://www.hcltech.com/

The database server

Overview of database server configuration and administration
 After you install IBM Informix, you configure the database server system and start administering the database server.

Client/server communication
 These topics explain the concepts and terms that you must understand in order to configure client/server communication.

Database server initialization
 The database server requires both disk-space initialization and shared-memory initialization.

Copyright© 2020 HCL Technologies Limited

Overview of database server configuration and administration

After you install IBM® Informix®, you configure the database server system and start administering the database server.

When you install IBM Informix, follow the installation instructions to ensure that all prerequisites are met (for example, the permissions of all key files and directories are
set appropriately). The installation instructions are in the IBM Informix Installation Guide.

You must have the correct permissions to administer the database server. For most administration tasks, you need the following permissions:

On UNIX, you must be logged in as user root, user informix, or the owner of the non-root installation. If role separation is enabled, you must be granted the DBSA
role.
On Windows, you must be a member of the Informix-Admin group.

You have various options to choose from when you configure the database server. Configuration includes customizing your environment and the database server. You can
control how the database server runs and what function is available.

You must configure connectivity to connect to client administration tools and applications.

You must do some initial administration tasks to finish setting up your database server system. After you configure the database server, your administration
responsibilities include a set of routine tasks.

Database server concepts
 To administer the database server, you must understand key concepts around storage, configuration, logging, CPU use, shared memory use, and automation.

Environment configuration
 You configure your environment by setting environment variables and creating or modifying files that relate to the environment variables. You can control whether

environment variables are set at the environment level, for a specific user, or for a database session. You must set environment variables for the database server
environment and for the client environments.
Database server configuration

 You must customize the database server properties and features by setting configuration parameters, create storage spaces, and configure connectivity. You can
automate startup.
Database server maintenance tasks

 In addition to monitoring the database server for potential problems, regularly perform routine maintenance tasks to keep the server running smoothly and with
optimum performance.

Copyright© 2020 HCL Technologies Limited

Database server concepts

To administer the database server, you must understand key concepts around storage, configuration, logging, CPU use, shared memory use, and automation.

Root dbspace
The root dbspace is the initial dbspace, or storage space, that the database server creates. The root dbspace contains reserved pages and internal tables that
describe and track all physical and logical units of storage. The root dbspace is the default location for logical logs, the physical log, databases, and temporary
tables. The database server cannot run without the root dbspace.

Configuration (onconfig) file
The database server requires a configuration file. Typically, the name of the configuration file is onconfig.server_name. The onconfig file contains configuration
parameters that control database server properties. The database server reads the onconfig file during startup, shutdown, and for some operations while the server
is running. Many configuration parameters can also be set dynamically while the database server is running.

Virtual processors
A virtual processor runs multiple threads to perform queries and other tasks. The operating system schedules virtual processors as CPU processes. Multiple virtual
processors run multiple threads in parallel. Virtual processors are divided into classes where each class is dedicated to processing a specific type of thread.

Logical logs
The database server contains several logical log files that record data manipulation operations for logged databases, data definition operations for all databases,
and administrative information such as checkpoint records and additions and deletions of chunks. A logical log is similar to a transaction log in other relational
database management systems.

Physical log
The physical log stores the before-images of pages. "Before images" are images of pages that are taken before the database server records the changed pages on
disk. The unmodified pages are available in case the database server fails or a backup procedure requires the pages to provide an accurate snapshot of the
database server data.

Buffer pool
The buffer pool contains buffers that cache pages from disk in shared memory. Operations on pages that are cached run faster than operations on pages that must
be retrieved from disk.

Caches

4 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

The database server uses caches to store information in shared memory instead of performing a disk read or another operation to obtain the information. Caching
information improves performance for multiple queries that access the same tables.

Scheduler
The Scheduler is a subsystem that runs a set of tasks at predefined times or as determined internally by the server. Tasks are SQL statements can either collect
information or run a specific operation. Some tasks are internal to the database server and run automatically. You can enable other tasks, if appropriate. You can
also create your own tasks and schedule when they are run.

System databases
The system databases contain information about the database server. The sysmaster database contains the system-monitoring interface (SMI) tables. The SMI
tables provide information about the state of the database server. The sysadmin database contains the tables that contain and organize the Scheduler tasks and
sensors, store data that is collected by sensors, and record the results of Scheduler jobs and SQL administration API functions.

Copyright© 2020 HCL Technologies Limited

Environment configuration

You configure your environment by setting environment variables and creating or modifying files that relate to the environment variables. You can control whether
environment variables are set at the environment level, for a specific user, or for a database session. You must set environment variables for the database server
environment and for the client environments.

If you choose to create a database server instance during installation, the installation program sets the mandatory environment variables. Otherwise, you must set
environment variables before you start the database server. The following environment variables are mandatory:

The INFORMIXDIR environment variable specifies the directory where you installed the database server.
The INFORMIXSERVER environment variable specifies the name of the database server.
The ONCONFIG environment variable specifies the name of the onconfig file in the INFORMIXDIR/etc directory.
The PATH environment variable must include the INFORMIXDIR/bin directory.

To configure the database server environment, you can set other environment variables:

If you plan to create an sqlhosts file with a non-default name or location, set the INFORMIXSQLHOSTS environment variable to the name and path of your sqlhosts
file.
If you plan to use the DB-Access utility to run SQL statements, specify terminal properties with the INFORMIXTERM or a similar environment variable.
If you need Global Language Support (GLS), set GLS environment variables.
If you want to enable other functionality, set the appropriate environment variables. Some environment variables control functionality that is also controlled by
configuration parameters. Environment variables override configuration parameter settings.

To configure client environments, you can set the environment variables that are supported by your client API. For more information, see your client API manual.

You can choose from multiple methods for setting environment variables. For example, you can run the SET ENVIRONMENT statement to set environment variables for the
current session. You can add environment variable settings to log in scripts, at the command prompt, or in a configuration file.

Related information:
 Environment variables

GLS-related environment variables
Environment variables for clients
Environment variable changes by version

Copyright© 2020 HCL Technologies Limited

Database server configuration

You must customize the database server properties and features by setting configuration parameters, create storage spaces, and configure connectivity. You can automate
startup.

You customize the database server properties by setting or modifying configuration parameters in the onconfig file. The current version of IBM® Informix® does not use
some configuration parameters that are used in earlier versions of the server.

If you choose to configure a database server during installation, many configuration parameter and environment variables are set and a set of storage spaces are created
automatically. Alternatively, you can manually configure the database server.

When you start the database server for the first time, disk space is initialized and the initial chunk of the root dbspace is created. Any existing data in that disk space is
overwritten. Shared memory that the database server requires is also initialized. When you subsequently start the database server, only shared memory is initialized.
Although the root dbspace is the default location of log files and databases, you can store log files and databases in other storage spaces to prevent the root dbspace from
running out of space.

Storage space creation and management
 You can create multiple storage spaces to store different types of objects, such as, data, indexes, logs, temporary objects, instead of storing everything in the root

dbspace. The way that you distribute the data on disks affects the performance of the database server. You can configure the database server to both automatically
minimize the storage space that data requires and automatically expand storage space as needed. You can segregate storage and processing resources among
multiple client organization by configuring multitenancy.
Automatic performance tuning

 You can set configuration parameters and Scheduler tasks to enable the database server to automatically adjust values that affect performance. By default, many
automatic tuning configuration parameters and Scheduler tasks are set to solve common performance issues.
Feature configuration

 You can configure the database server to support the types of optional functionality that you need.
Connectivity configuration

 The connectivity information allows a client application to connect to the database server on the network. You must prepare the connectivity information even if the

Part VI: Administering 5

https://www.hcltech.com/
https://www.hcltech.com/

client application and the database server are on the same computer or node.
Limit session resources
You can limit the resources available to individual sessions to more evenly distribute system usage, and prevent resource monopolization.
Automate startup and shutdown on UNIX
You can modify startup and shutdown scripts on UNIX to automatically start and shut down the database server.
Automate startup on Windows
You can automate startup of the database server on Windows.

Related concepts:
 Database server initialization

Related information:
 Configuration parameter changes by version

Modifying the onconfig file
Database server configuration during installation
Creating a database server after installation

Copyright© 2020 HCL Technologies Limited

Storage space creation and management

You can create multiple storage spaces to store different types of objects, such as, data, indexes, logs, temporary objects, instead of storing everything in the root
dbspace. The way that you distribute the data on disks affects the performance of the database server. You can configure the database server to both automatically
minimize the storage space that data requires and automatically expand storage space as needed. You can segregate storage and processing resources among multiple
client organization by configuring multitenancy.

A storage space is composed of one or more chunks. The maximum chunk size is 4 TB. You can have up to 32766 chunks in an instance.

After the database server is initialized, you can create storage spaces such as dbspaces and sbspaces. Use the onspaces utility to create storage spaces and chunks.

The following storage spaces are the most common:

dbspace
Stores databases, tables, logical-log files, and the physical log file.
Temporary dbspaces store temporary tables.

sbspace
Stores smart large objects. Smart large objects consist of CLOB (character large object) and BLOB (binary large object) data types. User-defined data types can also
use sbspaces. Some features of Informix® require sbspaces, such as Enterprise Replication, J/Foundation, spatial data types, and basic text search queries. In
some cases, sbspaces are created automatically when needed.
Temporary sbspaces store temporary smart large objects without logging metadata or user data.

plogspace
Stores the physical log. If you do not create a plogspace, the physical log is stored in a dbspace.

Other types of storage spaces store specialized types of data.

If you create a server during installation, some storage spaces are created automatically.

Automatically minimizing storage space
You can minimize the amount of space that data needs by configuring automatic data compression and consolidation. You can compress data, consolidate and return free
space, and merge extents. You can specify how frequently each of the operations occurs.

You can automatically rotate message logs to limit the amount of space for the logs.

Automatically extending storage space
After you create storage spaces, you can configure the server to automatically extend each storage space as needed. You create a storage pool of entries for available raw
devices, cooked files, and directories, and you make sure that the SP_AUTOEXPAND configuration parameter set to the default value of 1. All types of storage spaces
except external spaces (extspaces) are automatically expanded.

Automatically managing the location of data
You can automate the process of deciding where to locate databases, tables, and indexes. You can enable the database server to choose the most optimal location for
databases, table, and indexes, and to automatically fragment tables. Instead of creating a new database in the root dbspace by default, the database server chooses the
location by favoring non-critical spaces, spaces that have the most efficient page size, and other factors. The database server fragments new tables by round-robin and
adds more fragments when necessary as the table grows.

You can override the automatic behavior by specifying a location for a database or table.

Multitenancy
You can create multiple tenant databases in a single Informix instance to segregate data, storage space, and processing resources among multiple client organizations.
Related concepts:

 Managing automatic location and fragmentation
Data storage
Manage disk space
Automatic space management
Storage optimization

6 Part VI: Administering

https://www.hcltech.com/

Multitenancy
Related information:
Manage message logs in an embedded environment

Copyright© 2020 HCL Technologies Limited

Automatic performance tuning

You can set configuration parameters and Scheduler tasks to enable the database server to automatically adjust values that affect performance. By default, many
automatic tuning configuration parameters and Scheduler tasks are set to solve common performance issues.

You can configure the database server to adjust resources to improve performance:

Increase the number of CPU virtual processors (VPs), up to the number of CPU processors or the number that you specify. Set the VPCLASS configuration parameter
for the cpu class to autotune=1.
Increase the number of AIO VPs. Set the VPCLASS configuration parameter for the aio class to autotune=1.
Increase the size of the buffer pool. Set the BUFFERPOOL configuration parameter to enable the automatic extension of the buffer pool.
Increase or decrease the size of private memory caches for CPU VPs. Set the VP_MEMORY_CACHE_KB configuration parameter to the initial size of the private
memory caches.
Increase the number of logical log files to improve performance. Set the AUTO_LLOG configuration parameter to 1, plus the name of the dbspace in which to add log
files, and an optional maximum number of KB for all logical log files.
Increase the size of the physical log as needed to improve performance. Create the plogspace to store the physical log.

If you created a server during installation, the buffer pool, logical log, and physical log are configured for automatic extension.

The following automatic tuning options are enabled by default. You can control whether the options are enabled.

Increase the number of CPU virtual processors to half the number of CPU processors to ensure optimum performance. Control with the auto_tune_cpu_vps task in
the Scheduler.
Increase the number of AIO virtual processors and page cleaner threads increase I/O capability. Control with the AUTO_TUNE configuration parameter.
Process read-ahead requests to reduce the time to wait for disk I/O. Control with the AUTO_TUNE configuration parameter.
Trigger checkpoints as frequently as necessary and add logical log files as needed to avoid the blocking of transactions. Control with the AUTO_TUNE and the
DYNAMIC_LOGS configuration parameters.
Tune LRU flushing to improve transaction throughput. Control with the AUTO_TUNE configuration parameter.
Reoptimize SPL routines and reprepare prepared objects after the schema of a table is changed to prevent manual processes and errors. Control with the
AUTO_TUNE configuration parameter.
Updates statistics that are stale or missing at scheduled intervals to improve query performance. Control with Auto Update Statistics tasks in the Scheduler and the
AUTO_TUNE configuration parameter.
Run light scans on compressed tables, tables with rows that are larger than a page, and tables with VARCHAR, LVARCHAR, and NVARCHAR data. Control with the
BATCHEDREAD_TABLE configuration parameter.
Fetch a set of keys from an index buffer to reduce the number of times that a buffer is read. Control with the BATCHREAD_INDEX configuration parameter.
Increase shared memory caches to improve query performance. Control with the DS_POOLSIZE, PC_POOLSIZE, PLCY_POOLSIZE, and USRC_POOLSIZE
configuration parameters.

Related reference:
 Built-in tasks and sensors

Related information:
 Database configuration parameters

onspaces -c -P: Create a plogspace

Copyright© 2020 HCL Technologies Limited

Feature configuration

You can configure the database server to support the types of optional functionality that you need.

The following features are often enabled:

Parallel database queries
You can control the resources that the database server uses to perform decision-support queries in parallel. You must balance the requirements of decision-
support queries against the requirements of online transaction processing (OLTP) queries. The resources that you must consider include shared memory, threads,
temporary table space, and scan bandwidth.

Data replication
Data replication is the process of representing database objects at more than one distinct site.
High-availability cluster configurations consist of a primary server and one or more secondary servers that contain the same data as the primary server. High-
availability clusters can provide redundancy, failover, workload balancing, and scalability. You can direct connections from applications to cluster servers with
Connection Manager.
Enterprise Replication replicates all or a specified subset of the data between geographically distributed database servers. You can define set of replication servers
as a grid to administer and run queries across the servers. You can combine a high-availability cluster and Enterprise Replication on the same database server.

Auditing
If you enabled role separation when you installed the database server, you can audit selected activities. To use database server auditing, you must specify where
audit records are stored, how to handle error conditions, and other configuration options. You also might want to change how users are audited if you suspect that
they are abusing their access privileges.

Security
You can keep your data secure by preventing unauthorized viewing and altering of data or other database objects. Use network encryption to encrypt data that is
transmitted between servers and clients, and between servers. You can use column-level encryption to store sensitive data in an encrypted format. You create
secure connections to the database server with authentication and authorization processes. You can encrypt storage spaces. Discretionary access control verifies

Part VI: Administering 7

https://www.hcltech.com/
https://www.hcltech.com/

whether the user who is attempting to perform an operation is granted the required privileges to perform that operation. You can use label-based access control
(LBAC) to control who has read access and who has write access to individual rows and columns of data.

Distributed queries
You can use the database server to query and update multiple databases across multiple database servers or within the same database server instance. IBM®
Informix® uses a two phase commit protocol to ensure that distributed queries are uniformly committed or rolled back across multiple database servers.

Disk mirroring
When you use disk mirroring, the database server writes data to two locations. Mirroring eliminates data loss due to storage device failures. If mirrored data
becomes unavailable for any reason, the mirror of the data is available immediately and transparently to users.

Warehousing
You can create data warehouse applications and optimize your data warehouse queries. Informix Warehouse Accelerator is an in-memory database that boosts
performance for analytic queries on operational and historical data. Informix Warehouse Accelerator uses a columnar, in-memory approach to accelerate complex
warehouse and operational queries without application changes or tuning.

Related concepts:
 High availability and scalability

Mirroring
Related information:

 Parallel database query (PDQ)
Auditing data security
Securing data
Distributed queries
Overview of Informix Warehouse Accelerator
Storage space encryption
IBMInformix Enterprise Replication technical overview

Copyright© 2020 HCL Technologies Limited

Connectivity configuration

The connectivity information allows a client application to connect to the database server on the network. You must prepare the connectivity information even if the client
application and the database server are on the same computer or node.

Informix® client/server connectivity information, the sqlhosts information, includes the database server name, the type of connection that a client can use to connect to
the database server, the host name of the computer or node on which the database server runs, and the service name by which it is known. You do not need to specify all
possible network connections in the sqlhosts information before you start the database server. However, to make a new connection available you must shut down the
database server and then restart it.

The sqlhosts file contains connectivity information. You might also need to modify other connectivity and security files, depending on your needs.

When the database server is online, you can connect client applications and begin to create databases. Before you can access information in a database, the client
application must connect to the database server environment. To connect to and disconnect from a database server, you can issue SQL statements from the client
programs that are included in the , such as DB-Access, or API drivers.

Related reference:
 Connectivity files

Copyright© 2020 HCL Technologies Limited

Limit session resources

You can limit the resources available to individual sessions to more evenly distribute system usage, and prevent resource monopolization.

Set the following configuration parameters to impose limits on sessions:

SESSION_LIMIT_LOCKS limits the number of locks a tenant session can acquire.
SESSION_LIMIT_MEMORY limits the amount of memory that can be allocated for a session.
SESSION_LIMIT_TEMPSPACE limits the amount of temporary table space that can be allocated for a session.
SESSION_LIMIT_LOGSPACE limits the size of transactions within a session, based on the amount of log space that an individual transaction would fill.
SESSION_LIMIT_TXN_TIME limits the amount of time that a transaction is allowed to run within a session.

You can set the IFX_SESSION_LIMIT_LOCKS environment option in the session, to specify a lower lock limit than the SESSION_LIMIT_LOCKS configuration parameter
value.

Session limits do not apply to a user who holds administrative privileges, such as user informix or a DBSA user.

Transactions and sessions that exceed a set limit are terminated by the session_mgr thread. The session_mgr thread starts when the database server starts, and remains
inactive until a session limit is exceeded.

Related information:
 SESSION_LIMIT_LOCKS configuration parameter

SESSION_LIMIT_MEMORY configuration parameter
SESSION_LIMIT_TEMPSPACE configuration parameter
SESSION_LIMIT_LOGSPACE configuration parameter
SESSION_LIMIT_TXN_TIME configuration parameter
TENANT_LIMIT_SPACE configuration parameter
onstat -g ses command: Print session-related information

8 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Automate startup and shutdown on UNIX

You can modify startup and shutdown scripts on UNIX to automatically start and shut down the database server.

UNIX startup script
Modify the UNIX startup script to start the database server automatically when your computer enters multiuser mode.

1. Add UNIX and database server utility commands to the UNIX startup script so that the script performs the following actions:
Sets the INFORMIXDIR environment variable to the full path name of the directory in which the database server is installed.
Sets the PATH environment variable to include the $INFORMIXDIR/bin directory.
Sets the INFORMIXSERVER environment variable so that the sysmaster database can be updated (or created, if necessary).
Runs the oninit command, which starts the database server and leaves it in online mode.

2. If you plan to start multiple versions of the database server (multiple residency), you must add commands in the script to set the ONCONFIG and
INFORMIXSERVER environment variables and run the oninit command for each instance of the database server.

3. If different versions of the database server are installed in different directories, you must add commands to the script to set the INFORMIXDIR environment
variable and repeat the preceding steps for each version.

UNIX shutdown script
Modify your UNIX shutdown script to shut down the database server in a controlled manner whenever UNIX shuts down. The database server shutdown commands run
after all client applications complete transactions and exit.

1. Add UNIX and database server utility commands to the UNIX shutdown script so that the script performs the following tasks:
Sets the INFORMIXDIR environment variable to the full path name of the directory in which the database server is installed.
Sets the PATH environment variable to include the $INFORMIXDIR/bin directory.
Sets the ONCONFIG environment variable to the appropriate configuration file.
Runs the onmode -ky command, which initiates an immediate shutdown and takes the database server offline.

2. If you are running multiple versions of the database server (multiple residency), you must add commands in the script to set the ONCONFIG environment variable
and run the onmode -ky command for each instance.

3. If different versions of the database server are installed in different directories, you must add commands to the script to set the INFORMIXDIR environment
variable and repeat the preceding steps for each version.

Related information:
 Database configuration parameters

The oninit utility
Environment variables in Informix products

Copyright© 2020 HCL Technologies Limited

Automate startup on Windows

You can automate startup of the database server on Windows.

To start the database server automatically when Windows starts:

1. From the Service control application window, select the IBM® Informix® service and click Startup.
2. Select Automatic in the Status Type dialog box.
3. In the Log On As dialog box, select This Account and verify that informix is in the text box.

To stop automatic startup, clear the Automatic property.

Copyright© 2020 HCL Technologies Limited

Database server maintenance tasks

In addition to monitoring the database server for potential problems, regularly perform routine maintenance tasks to keep the server running smoothly and with optimum
performance.

You can use the Informix® command-line utilities to perform the following tasks. Not all of the following tasks are appropriate for every installation.

Backup data and logical log files
To ensure that you can recover your databases in the event of a failure, make frequent backups of your storage spaces and logical logs. You can create backups with
the ON-Bar utility or the ontape utility.

Check data for consistency
To ensure that data is consistent, perform occasional checks.

Manage logical logs
To ensure database server performance, perform logical-log administration tasks, such as, backing up logical-log files, adding, freeing, and resizing logical-log files,
and specifying high-watermarks. The database server dynamically allocates logical-log files while online to prevent long transactions from blocking user
transactions.

Manage the physical log

Part VI: Administering 9

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

To ensure database server performance, make sure that you allocate enough space for the physical log. You can change the size and location of the physical log.
When the database server starts, it checks whether the physical log is empty because that implies that the server shut down in a controlled fashion. If the physical
log is not empty, the database server automatically performs a fast recovery. Fast recovery automatically restores the databases to a state of physical and logical
consistency after a system failure that might have left one or more transactions uncommitted.

Manage shared memory
To ensure that the database server has the appropriate amount of shared memory to maintain performance goals, perform the following tasks:

Changing the size or number of buffers (by changing the size of the logical-log or physical-log buffer, or changing the number of buffers in the shared-memory
buffer pool)
Changing shared-memory parameter values
Changing forced residency (on or off, temporarily or for a session)
Tuning checkpoint intervals
Adding segments to the virtual portion of shared memory
Configuring the SQL statement cache to reduce memory usage and preparation time for queries

Manage virtual processors
To ensure database server performance, configure enough virtual processors (VPs). The configuration and management of VPs has a direct affect on the
performance of a database server. The optimal number and mix of VPs for your database server depends on your hardware and on the types of applications that
your database server supports.

Manage the database server message log
To ensure that message log space does not fill, monitor the size of the database server message log. The database server appends new entries to this file. You can
enable the automatic rotating of the database server message log to limit the total size of the log files.

Related concepts:
 Consistency checking

Logical log
Physical logging, checkpoints, and fast recovery
Shared memory
Virtual processors and threads
Related information:

 Overview of backup and restore
Tasks that automatically rotate message log files

Copyright© 2020 HCL Technologies Limited

Client/server communication

These topics explain the concepts and terms that you must understand in order to configure client/server communication.

Client/server architecture
 IBM® Informix® products conform to the client/server software-design model.

Connections that the database server supports
 The database server supports different types of connections with client application.

Local connections
 A local connection is a connection between a client and the database server on the same computer.

Communication support services
 Communication support services include connectivity-related services

Connectivity files
 The connectivity files contain the information that enables client/server communication and enable a database server to communicate with another database

server.
The sqlhosts information

 The sqlhosts information contains connectivity information for each database server and definitions for groups. The database server looks up the connectivity
information when you start the database server, when a client application connects to a database server, or when a database server connects to another database
server.
Informix support for IPv6 addresses

 On all platforms, IBM Informix recognizes Internet Protocol Version 6 (IPv6) addresses, which are 128 bits long, and Internet Protocol Version 4 (IPv4) addresses,
which are 32 bits long.
Configuration parameters related to connectivity

 Some of the configuration parameters in the onconfig file specify information related to connectivity.
Environment variables for network connections

 The INFORMIXCONTIME (connect time) and INFORMIXCONRETRY (connect retry) environment variables affect the behavior of the client when it is trying to
connect to a database server. Use these environment variables to minimize connection errors caused by busy network traffic.
Automatically terminating idle connections

 You can automatically terminate sessions with clients that have been idle for a specified time by enabling the idle_user_timeout Scheduler task.
Distributed Relational Database Architecture (DRDA) communications

 DRDA is a set of protocols that enables multiple database systems and application programs to work together.
Examples of client/server configurations

 The next several sections show the correct sqlhosts entries for several client/server connections.
IBM Informix MaxConnect

 IBM Informix MaxConnect is a networking product for IBM Informix database server environments on UNIX. Informix MaxConnect manages large numbers (from
several hundred to tens of thousands) of client/server connections.

Related tasks:
 Changing client connectivity information

Copyright© 2020 HCL Technologies Limited

10 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Client/server architecture

IBM® Informix® products conform to the client/server software-design model.

Application or clients can be on the computer housing the database server or on a different computer. Client applications issue requests for services and data from the
database server. The database server responds by providing the services and data that the client requested.

You use a network protocol together with a network programming interface to connect and transfer data between the client and the database server.

Network protocol
 A network protocol is a set of rules that govern how data is transferred between applications and, in this context, between a client and a database server. The rules

of a protocol are implemented in a network driver. A network driver contains the code that formats the data when it is sent from client to database server and from
database server to client.
Network programming interface

 A network programming interface is an application programming interface (API) that contains a set of communications routines or system calls. An application can
call these routines to communicate with another application that is on the same or on different computers.
Windows network domain

 Windows network technology enables you to create network domains. A domain is a group of connected Windows computers that share user account information
and a security policy.
Database server connections

 A client application establishes a connection to a database server with either the CONNECT or DATABASE SQL statement.
Supporting multiplexed connections

 A multiplexed connection uses a single network connection between the database server and a client to handle multiple database connections from the client.

Copyright© 2020 HCL Technologies Limited

Network protocol

A network protocol is a set of rules that govern how data is transferred between applications and, in this context, between a client and a database server. The rules of a
protocol are implemented in a network driver. A network driver contains the code that formats the data when it is sent from client to database server and from database
server to client.

Clients and database servers gain access to a network driver by way of a network programming interface. A network programming interface contains system calls or library
routines that provide access to network-communications facilities. An example of a network programming interface for UNIX is TLI (Transport Layer Interface). An
example of a network programming interface for Windows is WINSOCK (sockets programming interface).

The power of a network protocol lies in its ability to enable client/server communication even though the client and database server are on different computers with
different architectures and operating systems.

You can configure the database server to support more than one protocol, but consider this option only if some clients use TCP/IP.

Related concepts:
 The sqlhosts file and the SQLHOSTS registry key

Database server connections
Related tasks:

 Connections that the database server supports
Related reference:

 Network-configuration files

Copyright© 2020 HCL Technologies Limited

Network programming interface

A network programming interface is an application programming interface (API) that contains a set of communications routines or system calls. An application can call
these routines to communicate with another application that is on the same or on different computers.

In the context of this explanation, the client and the database server are the applications that call the routines in the TLI or sockets API. Clients and database servers both
use network programming interfaces to send and receive the data according to a communications protocol.

Both client and database server environments must be configured with the same protocol if client/server communication is to succeed. However, some network protocols
can be accessed through more than one network programming interface. For example, TCP/IP can be accessed through either TLI or sockets, depending on which
programming interface is available on the operating-system platform.

Related concepts:
 Communication support services

Network security files
Related reference:

 A network connection

Copyright© 2020 HCL Technologies Limited

Windows network domain

Part VI: Administering 11

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Windows network technology enables you to create network domains. A domain is a group of connected Windows computers that share user account information and a
security policy.

A domain controller manages the user account information for all domain members. The domain controller facilitates network administration. By managing one account
list for all domain members, the domain controller relieves the network administrator of the requirement to synchronize the account lists on each of the domain
computers. In other words, the network administrator who creates or changes a user account must update only the account list on the domain controller rather than the
account lists on each of the computers in the domain.

To log in to a Windows database server, a user on another Windows computer must belong to either the same domain or a trusted domain. A trusted domain is one that
establishes a trust relationship with another domain. In a trust relationship, user accounts are only in the trusted domain.

A user who attempts to log in to a Windows computer that is a member of a domain can do so either by using a local login and profile or a domain login and profile.
However, if the user is listed as a trusted user or the computer from which the user attempts to log in is listed as a trusted host, the user can be granted login access
without a profile.
Important: A client application can connect to the database server only if there is an account for the user ID in the Windows domain in which the database server runs.
This rule also applies to trusted domains.
If you specify a user identifier but no domain name for a connection to a workstation that expects both a domain name and a user name (domain\user), the database
server checks only the local workstation and the primary domain for the user account. If you explicitly specify a domain name, that domain is used to search for the user
account. The attempted connection fails with error -951 if no matching domain\user account is found on the local workstation.

Use the CHECKALLDOMAINSFORUSER configuration parameter to configure how the database server searches for user names in a networked Windows environment.

Table 1. Locations searches for user names specified either alone or with a domain name.
 Domain and user specified User name only specified

CHECKALLDOMAINSFORUSER is unset Searches in the specified domain only Searches on the local host only

CHECKALLDOMAINSFORUSER=0 Searches in the specified domain only Searches on the local host only

CHECKALLDOMAINSFORUSER=1 Searches in the specified domain only Searches in all domains

Important: The database server's trusted client mechanism is unrelated to the trust relationship that you can establish between Windows domains. Therefore, even if a
client connects from a trusted Windows domain, the user must have an account in the domain on which the database server is running.
Related information:

 CHECKALLDOMAINSFORUSER configuration parameter

Copyright© 2020 HCL Technologies Limited

Database server connections

A client application establishes a connection to a database server with either the CONNECT or DATABASE SQL statement.

An application might contain the following CONNECT statement to connect to the database server named my_server:

CONNECT TO '@my_server'

Tip: The database server's internal communications facility is called Association Services Facility (ASF). If you see an error message that includes a reference to ASF, you
have a problem with your connection.
Related reference:

 Network protocol
Related information:

 CONNECT statement
DATABASE statement

Copyright© 2020 HCL Technologies Limited

Supporting multiplexed connections

A multiplexed connection uses a single network connection between the database server and a client to handle multiple database connections from the client.

Client applications can establish multiple connections to a database server to access more than one database on behalf of a single user. If the connections are not
multiplexed, each database connection establishes a separate network connection to the database server. Each additional network connection uses additional computer
memory and processor time, even for connections that are not active. Multiplexed connections enable the database server to create multiple database connections
without using up the additional computer resources that are required for additional network connections.

To configure the database server to support multiplexed connections:

1. Define an alias using the DBSERVERALIASES configuration parameter. For example, specify:

DBSERVERALIASES ifx_mux

2. Add an sqlhosts file entry for the alias using onsqlmux as the nettype entry. The hostname and servicename, must have entries, but the entries are ignored.
Dashes (-) can be used as entries. For example:

#dbservername nettype hostname servicename options
ifx_mux onsqlmux - -

3. Enable multiplexing for the selected connection types by specifying m=1 in the sqlhosts entry that the client uses for the database server connection. For example:

#dbservername nettype hostname servicename options
menlo ontlitcp valley jfkl m=1

12 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

4. On Windows platforms, you must also set the IFX_SESSION_MUX environment variable.

The following example shows both onconfig file and sqlhosts file entries.

onconfig file:

DBSERVERNAME web_tli
DBSERVERALIASES web_mux

sqlhosts file:

#dbservername nettype hostname servicename options
web_tli ontlitcp node5 svc5 m=1
web_mux onsqlmux - -

You are not required to change the sqlhosts information that the database server uses. The client program does not require any special SQL calls to enable connections
multiplexing. Connection multiplexing is enabled automatically when the onconfig file and the sqlhosts entries are configured appropriately and the database server
starts.

Multiplexed connections do not support:

Multithreaded client connections
Shared-memory connections
Connections to subordinate database servers (for distributed queries or data replication, for example)

If any of these conditions exist when an application attempts to establish a connection, the database server establishes a standard connection. The database server does
not return an SQL error.
The Informix® ESQL/C sqlbreak() function is not supported during a multiplexed connection.

Related concepts:
 The sqlhosts file and the SQLHOSTS registry key

Related reference:
 sqlhosts file and SQLHOSTS registry key options

Related information:
 DBSERVERNAME configuration parameter

DBSERVERALIASES configuration parameter
Multiplexed connections and CPU utilization

Copyright© 2020 HCL Technologies Limited

Connections that the database server supports

The database server supports different types of connections with client application.

The following types of connections are supported by the database server.

Connection type Windows UNIX Local Network

Sockets X X X X

TLI (TCP/IP) X X X

Shared memory X X

Secure Sockets Layer (SSL) X X X

Stream pipe X X

Named pipe X X

Secure Sockets Layer (SSL) connections use encryption for data communication between two points over a network.

When configuring connectivity, consider setting the LISTEN_TIMEOUT and MAX_INCOMPLETE_CONNECTION configuration parameters. These parameters enable you to
reduce the risk of a hostile denial-of-service (DOS) attack by making it more difficult to overwhelm the Listener VP that handles connections.

UNIX only: On many UNIX platforms, the database server supports multiple network programming interfaces. The machine notes show the interface/protocol
combinations that the database server supports for your operating system.
To set up a client connection:

1. Specify connectivity and connection configuration parameters in your onconfig file.
2. Set up appropriate entries in the connectivity files on your platform.
3. Specify connectivity environment variables in your UNIX start-up scripts or the local and domain-wide Windows registries.
4. Add an sqlhosts entry to define a dbserver group for your database server.

Related concepts:
 The sqlhosts information

Related reference:
 Network protocol

Connectivity files
Configuration parameters related to connectivity
Environment variables for network connections
sqlhosts connectivity information
Related information:

 NETTYPE configuration parameter
Secure sockets layer protocol
LISTEN_TIMEOUT configuration parameter

Part VI: Administering 13

https://www.hcltech.com/

MAX_INCOMPLETE_CONNECTIONS configuration parameter
Limiting denial-of-service flood attacks

Copyright© 2020 HCL Technologies Limited

Local connections

A local connection is a connection between a client and the database server on the same computer.

The following topics describe different types of local connections.

Shared-memory connections (UNIX)
 A shared-memory connection uses an area of shared-memory as the channel through which the client and database server communicate with each other. A client

cannot have more than one shared-memory connection to a database server.
Stream-pipe connections (UNIX and Linux)

 A stream pipe is a UNIX interprocess communication (IPC) facility that allows processes on the same computer to communicate with each other.
Named-pipe connections (Windows)

 Named pipes are application programming interfaces (APIs) for bidirectional interprocess communication (IPC) on Windows.
Local-loopback connections

 A network connection between a client application and a database server on the same computer is called a local-loopback connection.

Copyright© 2020 HCL Technologies Limited

Shared-memory connections (UNIX)

A shared-memory connection uses an area of shared-memory as the channel through which the client and database server communicate with each other. A client cannot
have more than one shared-memory connection to a database server.

The following figure illustrates a shared-memory connection.
Figure 1. Client application and a database server communication through a shared-memory connection.

Shared memory provides fast access to a database server, but it poses some security risks. Errant or malicious applications might delete or view message buffers of their
own or of other local users. Shared-memory communication is also vulnerable to programming errors if the client application performs explicit memory addressing or
over-indexes data arrays. Such errors do not affect the database server if you use network communication or stream pipes.

Example of a shared-memory connection
The following figure shows a shared-memory connection on the computer named river.
Figure 2. A shared-memory connection between a client application and a database server named river_shm.

The onconfig file for this installation includes the following line:

DBSERVERNAME river_shm

The sqlhosts file for this installation includes the following lines:

#dbservername nettype hostname servicename options
 river_shm onipcshm river rivershm

The client application connects to this database server using the following statement:

CONNECT TO '@river_shm'

For a shared-memory connection, no entries in network configuration files are required. Use arbitrary values for the hostname and servicename fields of the sqlhosts
file.

Related concepts:
 Communications portion of shared memory (UNIX)

How a client attaches to the communications portion (UNIX)

14 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Related reference:
Examples of client/server configurations

Copyright© 2020 HCL Technologies Limited

Stream-pipe connections (UNIX and Linux)

A stream pipe is a UNIX interprocess communication (IPC) facility that allows processes on the same computer to communicate with each other.

Stream-pipe connections have the following advantages:

Unlike shared-memory connections, stream pipes do not pose the security risk of being overwritten or read by other programs that explicitly access the same
portion of shared memory.
Unlike shared-memory connections, stream-pipe connections allow distributed transactions between database servers that are on the same computer.

Stream-pipe connections have the following disadvantages:

Stream-pipe connections might be slower than shared-memory connections on some computers.
Stream pipes are not available on all platforms.
When you use shared memory or stream pipes for client/server communications, the hostname entry is ignored.

Related reference:
 sqlhosts connectivity information

Copyright© 2020 HCL Technologies Limited

Named-pipe connections (Windows)

Named pipes are application programming interfaces (APIs) for bidirectional interprocess communication (IPC) on Windows.

Named-pipe connections provide a high-level interface to network software by making transport-layer operations transparent. Named pipes store data in memory and
retrieve it when requested, in a way that is similar to reading from and writing to a file system.

Copyright© 2020 HCL Technologies Limited

Local-loopback connections

A network connection between a client application and a database server on the same computer is called a local-loopback connection.

The networking facilities used are the same as if the client application and the database server were on different computers. You can make a local-loopback connection
provided your computer is equipped to process network transactions. Local-loopback connections are not as fast as shared-memory connections, but they do not pose
the security risks of shared memory.

In a local-loopback connection, data seems to pass from the client application, out to the network, and then back in again to the database server. The internal connection
processes send the information directly between the client and the database server and do not put the information out on the network.

An example of a local-loopback connection
The following figure shows a local-loopback connection that uses sockets and TCP/IP.
Figure 1. A local-loopback connection between a client and a database server named river_soc on a computer named river.

The sqlhosts file for this installation includes the following lines:

#dbservername nettype hostname servicename options
 river_soc onsoctcp river riverol

If the network connection uses TLI instead of sockets, only the nettype entry in this example changes. In that case, the nettype entry is ontlitcp instead of onsoctcp.
The onconfig file for this installation includes the following lines:

DBSERVERNAME river_soc

This example assumes that an entry for river is in the hosts file and an entry for riverol is in the services file.

Related reference:
 Examples of client/server configurations

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 15

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Communication support services

Communication support services include connectivity-related services

Some connectivity-related services are:

Authentication, which is the process of verifying the identity of a user or an application. The most common form of authentication is to require the user to enter a
name and password to obtain access to a computer or an application.

Message integrity, which ensures that communication messages are intact and unaltered when they arrive at their destination.
Message confidentiality, which protects messages from unauthorized viewing, usually through encryption and decryption, during transmission.

Communication support services can also include other processing such as data compression or traffic-based accounting.

The database server provides extra security-related communication support services through plug-in software modules called Communication Support Modules (CSM).
The database server uses the default authentication policy when you do not specify a communications support module.

Related concepts:
 Network programming interface

Network security files
Related information:

 Communication support modules for data transmission encryption
Single sign-on authentication
Simple password encryption

Copyright© 2020 HCL Technologies Limited

Connectivity files

The connectivity files contain the information that enables client/server communication and enable a database server to communicate with another database server.

The connectivity configuration files can be divided into three groups:

Network-configuration files
Network security files
The sqlhosts file

Windows: On the database server, the connectivity information is stored in the sqlhosts file; however, on clients the connectivity information is stored in the SQLHOSTS
registry.

Network-configuration files
 These topics identify and explain the use of network-configuration files on TCP/IP networks.

Network security files
 IBM® Informix® products follow standard security procedures that are governed by information contained in the network security files.

The sqlhosts file and the SQLHOSTS registry key
 IBM Informix client/server connectivity information, the sqlhosts information, contains information that enables a client application to find and connect to any IBM

Informix database server on the network.

Related tasks:
 Connections that the database server supports

Related reference:
 Connectivity configuration

Copyright© 2020 HCL Technologies Limited

Network-configuration files

These topics identify and explain the use of network-configuration files on TCP/IP networks.

TCP/IP connectivity files
 When you configure the database server to use the TCP/IP network protocol, you use information from the hosts and services files to prepare the sqlhosts

information.
Multiple TCP/IP ports

 You can modify the services file to take advantage of having multiple Ethernet cards.

Related reference:
 Network protocol

Copyright© 2020 HCL Technologies Limited

TCP/IP connectivity files

When you configure the database server to use the TCP/IP network protocol, you use information from the hosts and services files to prepare the sqlhosts information.

16 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The hosts file requires a single entry for each network-controller card that connects a computer running IBM® Informix® client/server products on the network. Each entry
in the file contains the IP address (or ethernet card address) and host name. You can also include the host alias. Although the length of the host name is not limited in the
hosts file, the IBM Informix database server limits the host name to 256 bytes.

The following example has two entries.

#address hostname alias
98.555.43.21 odyssey
12.34.56.555 illiad sales

The services file contains an entry for each service available through TCP/IP. Each entry is a single line that contains the following information:

Service name
IBM Informix products use this name to determine the port number and protocol for making client/server connections. The service name is limited to 128 bytes.

Port number and connection protocol, separated by a forward slash (/) character
The port number is the computer port, and the protocol for TCP/IP is tcp.

The operating system imposes restrictions on the port number. User informix must use a port number equal to or greater than 1024. Only root users are allowed to
use a port number lower than 1024.

Host Aliases (optional)

The service name and port number are arbitrary. However, they must be unique within the context of the file and must be identical on all the computers running IBM
Informix client/server products. The following example has one entry:

#servicename port/protocol
server2 1526/tcp

This entry makes server2 known as the service name for TCP port 1526. A database server can then use this port to service connection requests.

Important: For database servers that communicate with other database servers, you must define either a TCP/IP connection or an IPCSTR (interprocess communications
stream pipe) connection for the DBSERVERNAME configuration parameter. You can also define at least one DBSERVERALIASES configuration parameter setting with the
appropriate connection protocol for connectivity between the coordinator and the subordinate servers. For cross-server transactions, each participating server must
support a TCP/IP or an IPCSTR connection with the coordinator, even if both database server instances are on the same workstation.
You typically include a separate NETTYPE parameter for each connection type that is associated with a dbserver name. You list dbserver name entries in the
DBSERVERNAME and DBSERVERALIASES configuration parameters. You associate connection types with dbserver names through entries in the sqlhosts file or registry.
The hosts and services files must be available to each computer that runs IBM Informix client/server products.

UNIX:

The hosts and services files are in the /etc directory.
On systems that use NIS, the hosts and services files are maintained on the NIS server. The hosts and services files that are on your local computer might not be
used and might not be up to date. To view the contents of the NIS files, enter the following commands on the command line:

ypcat hosts
ypcat services

Windows:

The hosts and services files are in %WINDIR%\system32\drivers\etc\.
You might want to configure TCP/IP to use the Domain Name Service (DNS) for host name resolutions.
The Dynamic Host Configuration Product (DHCP) dynamically assigns IP addresses from a pool of addresses instead of using IP addresses that are explicitly
assigned to each workstation. If your system uses DHCP, Windows Internet Name Service (WINS) is required. DHCP is transparent to the database server.

Client and server actions when a TCP/IP connection is opened
 When a TCP/IP connection is opened, information is read on both the client side and server side.

Related reference:
 sqlhosts connectivity information

Copyright© 2020 HCL Technologies Limited

Client and server actions when a TCP/IP connection is opened

When a TCP/IP connection is opened, information is read on both the client side and server side.

The following information is read on the client side:

The INFORMIXSERVER environment variable.
The hosts file information (INFORMIXSQLHOSTS environment variable, $INFORMIXDIR/etc/sqlhosts file and services file information
Other environment variables
Resource files

The following information is read on the server side:

The DBSERVERNAME configuration parameter
The DBSERVERALIASES configuration parameter
Server environment variables and configuration parameters, including any NETTYPE configuration parameter setting that manages TCP/IP connections.

Related information:
 NETTYPE configuration parameter

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 17

https://www.hcltech.com/
https://www.hcltech.com/

Multiple TCP/IP ports

You can modify the services file to take advantage of having multiple Ethernet cards.

To take advantage of multiple Ethernet cards:

Make an entry in the services file for each port the database server uses, as in the following example:

#servicename port/protocol alias
soc1 21/tcp
soc2 22/tcp

Each port of a single IP address must be unique. Separate ethernet cards can use unique or shared port numbers. You might want to use the same port number on
ethernet cards connecting to the same database server. (In this scenario, the service name is the same.)

Put one entry per ethernet card in the hosts file with a separate IP address, as in the following example:

#address hostname alias
192.147.104.19 svc8
192.147.104.20 svc81

In the onconfig file, set DBSERVERNAME configuration parameter for one of the ethernet cards and the DBSERVERALIASES configuration parameter for the other
ethernet card. The following lines show sample entries in the onconfig file:

DBSERVERNAME chicago1
DBSERVERALIASES chicago2

Add one sqlhosts entry for each ethernet card. That is, make an entry for the DBSERVERNAME and another entry for the DBSERVERALIASES.

#dbservername nettype hostname servicename options
chicago1 onsoctcp svc8 soc1
chicago2 onsoctcp svc81 soc2

After this configuration is in place, the application communicates through the ethernet card assigned to the dbserver name that the INFORMIXSERVER environment
variable provides.

Related information:
 INFORMIXSERVER environment variable

Copyright© 2020 HCL Technologies Limited

Network security files

IBM® Informix® products follow standard security procedures that are governed by information contained in the network security files.

For a client application to connect to a database server on a remote computer, the user of the client application must have a valid user ID on the remote computer.

Trusted-host information
 Users on trusted hosts are allowed to access the local system without supplying a password. You can include an optional user name to limit the authentication to a

specific user on a specific host.
Trusted-user information

 A user can list hosts from which they can connect as a trusted user in their .rhosts file.
The netrc information

 The netrc information is optional information that specifies identity data. A user who does not have authorization to access the database server or is not on a
computer that is trusted by the database server can use this file to supply a name and password that are trusted. A user who has a different user account and
password on a remote computer can also provide this information.

Related concepts:
 Network programming interface

Communication support services
Related information:

 REMOTE_SERVER_CFG configuration parameter
REMOTE_USERS_CFG configuration parameter
S6_USE_REMOTE_SERVER_CFG configuration parameter

Copyright© 2020 HCL Technologies Limited

Trusted-host information

Users on trusted hosts are allowed to access the local system without supplying a password. You can include an optional user name to limit the authentication to a specific
user on a specific host.

Use one of the following trusted-hosts files to specify remote hosts for rlogin, rsh, rcp, and rcmd remote-authentication:

hosts.equiv
The file that is specified by a database server's REMOTE_SERVER_CFG configuration parameter

Use trusted-hosts information only for client applications that do not supply a user account or password. If a client application supplies an invalid account name and
password, the database server rejects the connection even if the trusted-host information contains an entry for the client computer.

18 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

To use trusted-host information for authentication, specify the s=1 or s=3 options in sqlhosts file entries. If you do not specify an s option, s=3 is the default.

On Windows, the trusted-host file is in the \%WINDIR%\system32\drivers\etc directory.

On Linux and UNIX systems, the trusted-host file is in the $INFORMIXDIR/etc/ directory.

The hosts.equiv file has the following requirements:

It must be owned by user informix
It belong to group informix
Permissions on the file must be restricted so that only user informix can modify the file. Using octal permissions, one of the following values is appropriate:

644
640
444
440

If you are using the hosts.equiv file and you use the rlogind daemon, you can execute the following statement on the client computer to determine whether the client is
trusted:

rlogin hostname

If you log-in successfully without receiving a password prompt, the client is trusted. This method of determining if a client is trusted does not work when the file specified
by the REMOTE_SERVER_CFG configuration parameter is used

Trusted-host file entries
To avoid an extra DNS lookup, specify the host name both with and without the domain name. For example, if the trusted host is named host1 and it is in the domain
example.com, then add the following entries to the trusted-host file:

#trustedhost username
host1 informix
host1.example.com informix

On some networks, the host name that a remote host uses to connect to a particular computer might not be the same as the host name that the computer uses to refer to
itself. For example, the network host with the fully qualified domain name (FQDN) host2.example.com might refer to itself with the local host name viking. If this situation
occurs, specify both host-name formats:

#trustedhost
host2.example.com
viking

Using the file specified by the REMOTE_SERVER_CFG configuration parameter instead of the
hosts.equiv file

In the following situations, use the REMOTE_SERVER_CFG configuration parameter and the file that the parameter specifies:

You need different trusted hosts for the database server than those listed for the OS.
The security policies at your installation do not allow the use of hosts.equiv.
You are a user of a non-root server instance and need to control which hosts are trusted.

To add entries to the file specified by the REMOTE_SERVER_CFG configuration parameter, you can manually enter the information or you can run the admin() or task()
function with the cdr add trustedhost argument. If you run cdr add trustedhost argument with the admin() or task() function on a server in a high-availability cluster, the
trusted-host information is added to the trusted-host files of all database servers in the cluster. Do not run the admin() or task() function with the cdr list trustedhost
argument if you have manually entered trusted-host information on any of the database servers in a high-availability cluster or Enterprise Replication domain.

Related concepts:
 Redirecting clients with the connectivity information

Related tasks:
 Configuring secure connections for high-availability clusters

Related reference:
 sqlhosts file and SQLHOSTS registry key options

Related information:
 Creating sqlhost group entries for replication servers

INFORMIXSERVER environment variable
DBPATH environment variable
REMOTE_SERVER_CFG configuration parameter
S6_USE_REMOTE_SERVER_CFG configuration parameter

Copyright© 2020 HCL Technologies Limited

Trusted-user information

A user can list hosts from which they can connect as a trusted user in their .rhosts file.

The .rhosts file is located in the user's home directory on the computer housing the database server. To enable the trusted user authentication, specify s=2 or s=3 in the
options in the sqlhosts entry. If you do not specify an s option, s=3 is the default.

There may be reasons why a user’s .rhosts file cannot be used. For example, a non-root installation might not have read access to a specific user’s .rhosts file. You can
specify an alternate filename by setting the REMOTE_USERS_CFG configuration parameter. If you set this parameter, the database server only has a single trusted-user
file for all users.

Part VI: Administering 19

https://www.hcltech.com/

Each line of the .rhosts file is a host from which the user can connect. You must specify server names both with and without domain names to avoid performing an extra
DNS lookup. For example:

#trustedusers
xxx.example.com
xxx

yyy.example.com
yyy

The file specified by the REMOTE_USERS_CFG configuration parameter must be a combination of individual .rhosts files. Each single-line entry of the file has the following
format:

hostname username

For example, suppose the following two .rhosts files existed for users John and Fred:
~john/.rhosts

#trustedhosts
xxx.example.com
xxx

yyy.example.com
yyy

~fred/.rhosts

#trustedhosts
xxx.example.com
xxx

zzz.example.com
zzz

John does not trust zzz.example.com or zzz, and Fred does not trust yyy.example.com or yyy.
The .rhosts files could be combined into a single file with the following format:

#trustedhost username
xxx.example.com john
xxx john

yyy.example.com john
yyy john

xxx.example.com fred
xxx fred

zzz.example.com fred
zzz fred

Windows: A home directory is not automatically assigned when the Windows administrator creates a user identity. The administrator can add a home directory to a user's
profile with the User Manager application.

Related concepts:
 Redirecting clients with the connectivity information

Related reference:
 sqlhosts file and SQLHOSTS registry key options

Related information:
 Creating sqlhost group entries for replication servers

INFORMIXSERVER environment variable
DBPATH environment variable
REMOTE_USERS_CFG configuration parameter

Copyright© 2020 HCL Technologies Limited

The netrc information

The netrc information is optional information that specifies identity data. A user who does not have authorization to access the database server or is not on a computer
that is trusted by the database server can use this file to supply a name and password that are trusted. A user who has a different user account and password on a remote
computer can also provide this information.

UNIX: The netrc information is in the .netrc file in the user's home directory. Use any standard text editor to prepare the .netrc file. The format of a netrc entry is:

machine machine_name login user_name password user_password

Windows: Use the Host Information tab of setnet32 to edit the netrc information.

If you do not explicitly provide the user password in an application for a remote server (that is, through the USER clause of the CONNECT statement or the user name and
password prompts in DB-Access), the client application looks for the user name and password in the netrc information. If the user explicitly specified the password in the
application, or if the database server is not remote, the netrc information is not consulted.

The database server uses the netrc information regardless of whether it uses the default authentication policy or a communications support module.

For information about the specific content of this file, see your operating system documentation.

Windows only: On Windows, a home directory is not automatically assigned when the Windows administrator creates a user identity. The administrator can add a home
directory to a user's profile with the User Manager application

20 Part VI: Administering

https://www.hcltech.com/

User impersonation
The database server must impersonate the client to run a process or program on behalf of the client for certain client queries or operations.

Related reference:
 sqlhosts file and SQLHOSTS registry key options

Copyright© 2020 HCL Technologies Limited

User impersonation

The database server must impersonate the client to run a process or program on behalf of the client for certain client queries or operations.

In order to impersonate the client, the database server must receive a password for each client connection. Clients can provide a user ID and password through the
CONNECT statement or netrc information.

The following examples show how you can provide a password to impersonate a client.

netrc

machine trngpc3 login bruce password im4golf

CONNECT statement

CONNECT TO ol_trngpc3 USER bruce USING "im4golf"

Copyright© 2020 HCL Technologies Limited

The sqlhosts file and the SQLHOSTS registry key

IBM® Informix® client/server connectivity information, the sqlhosts information, contains information that enables a client application to find and connect to any IBM
Informix database server on the network.

The default location of the sqlhosts file is:

UNIX:
$INFORMIXDIR/etc/sqlhosts

Windows:
%INFORMIXDIR%\etc\sqlhosts.%INFORMIXSERVER%

If you store the information in another location, you must set the INFORMIXSQLHOSTS environment variable.

If you set up several database servers to use distributed queries, use one of the following ways to store the sqlhosts information for all the databases:

In one sqlhosts file, pointed to by the INFORMIXSQLHOSTS environment variable
In separate sqlhosts files in each database server directory

Creating the sqlhosts file with a text editor
 Each computer that hosts a database server or a client must have an sqlhosts file.

Setting up the SQLHOSTS registry key with Setnet32 (Windows)
 A client application connects to the Informix database server that is running on a computer that can be reached through the network. To establish the connection,

use Setnet32 to specify the location of the Informix database server on the network and the network communications protocol to use. You must obtain this
information from the administrator of the database server you want to use.

Related concepts:
 Redirecting clients with the connectivity information

Related tasks:
 Supporting multiplexed connections

Related reference:
 Network protocol

Copyright© 2020 HCL Technologies Limited

Creating the sqlhosts file with a text editor

Each computer that hosts a database server or a client must have an sqlhosts file.

The sqlhosts file is located, by default, in the $INFORMIXDIR/etc directory. As an alternative, you can set the INFORMIXSQLHOSTS environment variable to the full path
name and file name of a file that contains the sqlhosts information.

Open any standard text editor to create the sqlhosts file.

Note:

Use white space (spaces, tabs, or both) to separate the fields.
Do not include any spaces or tabs within a field.
To put comments in the sqlhosts file, start a line with the comment character (#). You can also leave lines blank for readability.

Part VI: Administering 21

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Sample sqlhosts file
The following code block shows a sample sqlhosts file.

#dbservername nettype hostname servicename options
 menlo onipcshm valley menlo
 newyork ontlitcp hill dynsrvr2 s=2,b=5120
 payroll onsoctcp dewar py1
 asia group - - e=asia.3
 asia.1 ontlitcp node6 svc8 g=asia
 asia.2 onsoctcp node0 svc1 g=asia
 portland drsocssl dewar portland_serv

Copyright© 2020 HCL Technologies Limited

Setting up the SQLHOSTS registry key with Setnet32 (Windows)

A client application connects to the Informix® database server that is running on a computer that can be reached through the network. To establish the connection, use
Setnet32 to specify the location of the Informix database server on the network and the network communications protocol to use. You must obtain this information from
the administrator of the database server you want to use.

If you specify a shared SQLHOSTS registry key, you must set the INFORMIXSQLHOSTS environment variable on your local computer to the name of the Windows computer
that stores the registry. The database server first looks for the SQLHOSTS registry key on the INFORMIXSQLHOSTS computer. If the database server does not find an
SQLHOSTS registry key on the INFORMIXSQLHOSTS computer, or if INFORMIXSQLHOSTS is not set, the database server looks for an SQLHOSTS registry key on the local
computer.

You must comply with Windows network-access conventions and file permissions to ensure that the local computer has access to the shared SQLHOSTS registry key. For
information about network-access conventions and file permissions, see your Windows documentation.

1. Double-click Setnet32 in the folder that contains the Client SDK products.
The Informix Setnet32 window opens.

2. Click the Server Information tab to display the Server Information page, which has the following elements:
Informix Server
Select an existing Informix database server or type the name of a new database server.

Host Name
Select the host computer with the database server that you want to use or type the name of a new host computer.

Protocol Name
Select a network protocol from a list of protocols that the installation procedure provides.

Service Name
Specify the service name that is associated with a specific database server. Type either the service name or the port number that is assigned to the database
server on the host computer. You must obtain this information from the database server administrator.

Requirement: If you enter a service name, it must be defined on the client computer in the services file in the Windows installation directory. This file is in
system32\drivers\etc\services. The service definition must match the definition on the database server host computer.
Options
Enter options specific to the database server. For more information, see the IBM Informix Administrator's Guide.

Make Default Server
Sets the INFORMIXSERVER environment variable to the name of the current database server to make it the default database server.

Delete Server
Deletes the definition of a database server from the Windows registry. It also deletes the host name, protocol name, and service name associated with that
database server.

3. Click OK to save the values.

Copyright© 2020 HCL Technologies Limited

The sqlhosts information

The sqlhosts information contains connectivity information for each database server and definitions for groups. The database server looks up the connectivity information
when you start the database server, when a client application connects to a database server, or when a database server connects to another database server.

Each computer that hosts a database server or a client must include connectivity information.

In the sqlhosts file, each row contains the connectivity information for one database server, or the definition for one group.

The connectivity information for each database server includes four fields of required information and one field for options.
The group definition contains information in only three of the fields.

In the registry, the database server name is assigned to a key in the SQLHOSTS registry key, and the other fields are values of that key.

The following table summarizes the fields that are used for the SQLHOSTS information.

22 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Field name in the sqlhosts file Field name in the SQLHOSTS registry
key

Description of connectivity information Description of group informationField name in the sqlhosts file Field name in the SQLHOSTS registry
key

Description of connectivity information Description of group information

dbservername Database server name key or database
server group key

Database server name Database server group name

nettype PROTOCOL Connection type The keyword group

hostname HOST Host computer for the database server No information. Use a dash as a
placeholder in this field.

servicename SERVICE Alias for the port number No information. Use a dash as a
placeholder in this field.

options OPTIONS Options that describe or limit the
connection

Group options

UNIX: If you install IBM® Informix® Enterprise Gateway with DRDA in the same directory as the database server, your sqlhosts file also contains entries for the Gateway
and non-Informix database servers. However, this section covers only the entries for the database server. For information about other entries in the sqlhosts file, see the
IBM Informix Enterprise Gateway with DRDA User Manual.

IANA standard service names and port numbers in the sqlhosts.std file
 The Internet Assigned Numbers Authority (IANA) assigns service names and port numbers for IBM Informix database servers.

sqlhosts connectivity information
 Fields in the sqlhosts file or SQLHOSTS registry key describe connectivity information.

Group information
 You define server groups in the sqlhosts file or SQLHOSTS registry key. When you create a server group, you can treat multiple related database server or

Connection Manager SLA entries as a single entity for client connections to simplify connection redirection to database servers or Connection Managers. You must
create group entries for database servers that participate in Enterprise Replication.
Alternatives for TCP/IP connections

 The following topic describes some ways to bypass port and IP address lookups for TCP/IP connections.

Related concepts:
 Strategies for increasing availability with Connection Managers

Related tasks:
 Defining sqlhosts information for connection management

Configuring connection management
Connections that the database server supports
Configuring connectivity between Informix database servers and IBM Data Server clients
Defining sqlhosts information for connection management of high-availability clusters
Defining sqlhosts information for connection management of high-availability clusters that use secure ports
Defining sqlhosts information for high-availability clusters that use Distributed Relational Database Architecture (DRDA)
Defining sqlhosts information for high-availability clusters that use Distributed Relational Database Architecture (DRDA) and secure ports
Defining sqlhosts information for connection management of grids and replicate sets
Defining sqlhosts information for connection management of grids and replicate sets that use secure ports
Defining sqlhosts information for connection management high-availability replication systems
Defining sqlhosts information for connection management of high-availability replication systems that use secure ports
Defining sqlhosts information for connection management of server sets
Related information:

 The syncsqlhosts utility

Copyright© 2020 HCL Technologies Limited

IANA standard service names and port numbers in the sqlhosts.std file

The Internet Assigned Numbers Authority (IANA) assigns service names and port numbers for IBM® Informix® database servers.

The services names and port numbers for database servers are:

Port/service IANA code Description

sqlexec 9088/tcp SQL Interface

sqlexec-ssl 9089/tcp SQL Interface - Encrypted

These service names are created in the sqlhosts.std file of . You are not required to change installed systems, because they continue to work with existing port numbers
and service names. (Also, there is no guarantee that some other system is not already using the service names or port numbers assigned to .)

Organizations that have policies for following standards can use these service names and port numbers if they want the database server to be in compliance with the IANA
standard. If another application that is installed on the same workstation already uses one of the service names or port numbers, you can ask the publisher of the non-
compliant application to register for an IANA port number assignment to avoid the conflict. When applications are noncompliant, you can run using non-standard ports.

For more information, see the IANA organization website.

Copyright© 2020 HCL Technologies Limited

sqlhosts connectivity information

Fields in the sqlhosts file or SQLHOSTS registry key describe connectivity information.

Part VI: Administering 23

https://www.hcltech.com/
https://www.hcltech.com/

Syntax

>>---dbservername--+-connection_type-+--hostname--servicename--+-----------------+---><
 '-group-----------' | (1) |
 '-| Options |-----'

Notes:

1. See sqlhosts file and SQLHOSTS registry key options

Element Purpose Restrictions

dbservername Names the database server for which the connectivity information
is being specified.

If specified with the group keyword instead of the connection type,
names a group to treat multiple, related database server entries as
one logical entry. You can use groups to establish or change
client/server connections, or to simplify the redirection of
connections to database servers.

The name must begin with a lowercase letter, and can contain
lowercase letters, numbers, and underscore (_) symbols. The field
length is limited to 128 bytes.

The database server must exist. Its name must be specified by the
DBSERVERNAME or DBSERVERALIASES configuration parameter in
the onconfig file.

A database server group cannot be nested inside another database
server group. Database servers can be members of one group.

connection_type Describes the type of connection that is made between the
database server and the client application or another database
server.

hostname Specifies the computer where the database server is located. The field length is limited to 256 bytes.

If the group keyword is specified, must be null (-).

servicename Specifies the alias for the port number. The interpretation of the
service name field depends on the type of connection in the
connection-type field.

The field length is limited to 128 bytes.

If the group keyword is specified, must be null (-).

dbservername field
Each database server across all of your associated networks must have a unique database server name.

If an sqlhosts file has multiple entries with the same dbservername, only the first one is used.

Connection-type field
The connection-type field is called nettype in the sqlhosts file and PROTOCOL in the SQLHOSTS registry key.

The following table summarizes the possible connection-type values for database server connections on different operating systems.
Table 1. Summary of connection-types

Values for UNIX Values for Windows Description Connection type

drsocssl drsocssl Secured Sockets Layer (SSL) protocol for DRDA.
You must configure a new server alias in the sqlhosts file or SQLHOSTS
registry that uses drsoctcp connection protocol.

Network

drsoctcp drsoctcp Distributed Relational Database Architecture™ (DRDA) - connection for
IBM Data Server Client.
You must configure a new server alias in the sqlhosts file or SQLHOSTS
registry that uses drsoctcp connection protocol.

Network

drtlitcp drtlitcp Distributed Relational Database Architecture (DRDA) - connection for
IBM Data Server Client.
You must configure a new server alias in the sqlhosts file or SQLHOSTS
registry that uses drtlitcp connection protocol.

Network

onipcshm Shared-memory communication. Requires the cfd option in the sqlhosts
file if used for a non-root installation where the server and client are in
different locations.

IPC

onipcstr Stream-pipe communication. Requires the cfd option in the sqlhosts file
if used for a non-root installation where the server and client are in
different locations.

IPC

 onipcnmp Named-pipe communication IPC

ontlitcp TLI with TCP/IP protocol Network

onsocssl onsocssl Secured Sockets Layer (SSL) protocol Network

onsoctcp onsoctcp Sockets with TCP/IP protocol Network

onsocimc Sockets with TCP/IP protocol for communication with Informix®
MaxConnect

Network

ontliimc TLI with TCP/IP protocol for communication with Informix MaxConnect Network

onsqlmux onsqlmux Multiplexed connection Network

24 Part VI: Administering

Note: The connection-type values that begin with "on" can use "ol" in the place of "on". For example, either onipcshm or olipcshm specify shared-memory connections if
used in the sqlhosts information.

Host name field
The host name is entered in the hostname field in the sqlhosts file, and in the HOST registry key.

If the connection type is onsqlmux, the hostname field must not be empty, but any specific value entered in it is ignored.

Following is an explanation of how client applications derive the values that are used in the host name field.

Network communication with TCP/IP
When you use the TCP/IP connection protocol, the host name field is a key to the hosts file, which provides the network address of the computer. The name that
you use in the hostname field must correspond to the name in the hosts file. In most cases, the host name in the hosts file is the same as the name of the
computer.
In some situations, you might want to use the actual Internet IP address in the host name field.

UNIX: Shared-memory and stream-pipe communication
When you use shared memory or stream pipes for client/server communications, the hostname field must contain the actual host name of the computer on which
the database server is located.

Multiplexed connections
When you use onsqlmux as the connection type, the hostname field must have an entry, but the entry is ignored. Dashes (-) can be used as entries.

Service name field
Network communication with TCP/IP

The service name field is called servicename on the UNIX operating system and SERVICE on the Windows operating system. When you use the TCP/IP connection
protocol, the service name entry must correspond with the name in the services file. The port number in the services file tells the network software how to find the
database server on the specified host.
The following figure shows the relationship between the sqlhosts information and the hosts file, and the relationship of sqlhosts information to the services file.
Figure 1. Relationship of sqlhosts information to hosts and services files

In some cases, you might use the actual TCP listen-port number in the service name field.
Windows: Named-pipe communication

For a named-pipe connection (onipcnmp), the SERVICE entry can be any short group of letters that is unique in the environment of the host computer where the
database server is located.

UNIX: Shared-memory and stream-pipe communication
For a shared-memory connection (onipcshm) or a stream-pipe connection (onipcstr), the database server uses the value in the servicename entry internally to
create a file that supports the connection. For both onipcshm and onipcstr connections, the servicename can be any short group of letters that is unique in the
environment of the host computer where the database server is located.
Tip: Use the dbservername as the servicename for stream-pipe connections.

Multiplexed connections
For multiplexed connections (onsqlmux), the hostname field must have an entry, but the entry is ignored. Dashes (-) can be used as entries.

sqlhosts file and SQLHOSTS registry key options
 You can include server options and group options in the sqlhosts file or SQLHOSTS registry key.

Related tasks:
 Configuring secure connections for high-availability clusters

Changing client connectivity information
Connections that the database server supports
Related reference:

 Configuration parameters related to connectivity
Group information
Stream-pipe connections (UNIX and Linux)
Specifying Network Connections
IBM Informix MaxConnect
TCP/IP connectivity files
Alternatives for TCP/IP connections
Related information:

 Connectivity protocols

Copyright© 2020 HCL Technologies Limited

sqlhosts file and SQLHOSTS registry key options

Part VI: Administering 25

https://www.hcltech.com/

You can include server options and group options in the sqlhosts file or SQLHOSTS registry key.

The following syntax fragments show the server options. The syntax fragment for group options is described in a section after the server options.

Important: Options must be separated by commas, but the first option that is listed in each sqlhosts entry must not have a comma before it.

Server options

|--+-------------+--+-------------------+----------------------->
 '-a--=--token-' '-+---+--b--=--size-'
 '-,-'

>--+-------------------------+--+--------------------+---------->
 '-+---+--cfd--=--filepath-' '-+---+--g--=--group-'
 '-,-' '-,-'

>--+--------------------+--+--------------------+--------------->
 | .-1-. | | .-0-. |
 '-+---+--k--=--+-0-+-' '-+---+--m--=--+-1-+-'
 '-,-' '-,-'

>--+--+--|
 +-+--------------------+--+-----------------+--+-----------------+-+
 | '-| Lookup options |-' '-| PAM options |-' '-| CSM options |-' |
 '-+---+--s=6---'
 '-,-'

Lookup options

|--+--------------------+--+--------------------+---------------|
 '-+---+--r--=--+-0-+-' | .-3-. |
 '-,-' '-1-' '-+---+--s--=--+-0-+-'
 '-,-' +-1-+
 '-2-'

PAM options

|--+---+--s=4,--pam_serv--=(--name--),--pamauth--=(--+-challenge-+--)--|
 '-,-' '-password--'

CSM options

|--+---+--csm--=(--+-GSSCSM----+----------------+--+----------------+---+--)--|
 '-,-' | | .-1-. | | .-1-. | |
 | '-,--c--=--+-0-+-' '-,--i--=--+-0-+-' |
 +-SPWDCSM--+-----------------+-----------------------+
 | | .-1-. | |
 | '-,--p--=(--+-0-+-' |
 '-ENCCSM---'

Table 1. Server options in the sqlhosts file and SQLHOSTS registry key.

Element Purpose Restrictions

a Stores the authentication token that is required for
connecting to the Informix® Warehouse Accelerator.
This entry is created by Informix during Informix
Warehouse Accelerator connection setup.

Important: Do not manually change this option.

b Specifies, in bytes, the size of the communications
buffer space for TCP/IP connections.

The maximum buffer size supported is 32 KB.

c Enables confidentiality service for the Generic Security
Services CSM, which supports single sign-on (SSO).
Data transmitted to and from the SSO-authenticated
user is encrypted and can be viewed only by the user
that is logged in with the authorized credentials.

c=1 enables the service (default)
c=0 disables the service

cfd Indicates the storage location for communication files
that are used in shared-memory and stream-pipe
connections.

The length of the cfd path is restricted to 70 bytes.
Relative-path byte lengths include $INFORMIXDIR.

csm Describes the communication support module (CSM)
for each database server that uses a CSM.

CSM entries must be specified in the concsm.cfg file.

ENCCSM The name of the encryption communication support
module.

The ENCCSM must be specified in the concsm.cfg file.
You cannot use an ENCCSM with

Enterprise Replication and high-availability
clusters
A multiplexed connection
A simple password CSM (SPWDCSM)

g Specifies the name of the group to which the database
server belongs.

The group must be defined.

GSSCSM The name of the generic security services
communications support module for single sign-on
(SSO) authentication.

The GSSCSM must be specified in the concsm.cfg file.
Cannot be used for Enterprise Replication and high-
availability clusters.

26 Part VI: Administering

Element Purpose Restrictions

i Enables the integrity service for the Generic Security
Services CSM, which supports single sign-on (SSO).

i=1 enables the service (default)
i=0 disables the service

k Enables the network service to check periodically
whether the connection between the client and server
is still active. If the connection is found to be broken
the network service frees resources.

Only available for TCP/IP connections.

m Enables the database server to create multiple
database connections without using up the additional
computer resources that are required for more
network connections.

Multithreaded client connections, shared-
memory connections, and connections to
subordinate database servers are not
supported.
The Informix ESQL/C sqlbreak() function is not
supported.
Cannot be used with a CSM.

p Enables and disables the simple password CSM, which
provides password encryption.

p=0 password is not required (default)
p=1 password is required

r Enables the control of operating-system security-file
lookups to control the way that a client (user) gains
access to a database server. The s option identifies
database server-side settings, and the r option
identifies client-side settings.

The database server ignores r settings.

s Enables the control of operating-system security-file
lookups to control the way that a client (user) gains
access to a database server. The s option identifies
database server-side settings, and the r option
identifies client-side settings.

A client ignores s settings.

pam_serv Gives the name of a PAM service that a database is
using.

Must be used with s=4 option.

pamauth Describes the authorization method that is used by the
PAM service.

Must be used with s=4 option.

SPWDCSM The name of the simple password communication
support module

The SPWDCSM must be specified in the concsm.cfg
file.
You cannot use an SPWDCSM with

Enterprise Replication and high-availability
clusters
A multiplexed connection
An encryption CSM (ENCCSM)

The following syntax fragment shows the group options in the sqlhosts file.

Group options

|--+-------------+--+---------------------+--------------------->
 | .-0-. | '-+---+--e--=--server-'
 '-c--=--+-1-+-' '-,-'

>--+-------------------------+----------------------------------|
 '-+---+--i--=--identifier-'
 '-,-'

Table 2. Group options in the sqlhosts file and SQLHOSTS registry key.

Element Purpose Restrictions

c Controls connection redirection. Indicates the order in
which client applications choose database servers, or
the aliases within a database server group.

e Specifies a database server name that marks the end
of a database server group.

i Assigns an identifying number to a database server
group.

The identifier must be a positive integer from 1 through
32767 and must be unique within your network
environment. The i option is required for Enterprise
Replication.

Usage
When you change option values in an sqlhosts entry, those changes affect the next connection that a client application makes. The server automatically recognizes any
changes that are made.

The database server evaluates the options entries as a series of columns. A comma or white space in an options entry represents an end of a column. Client and database
server applications check each column to determine whether the option is supported.

Part VI: Administering 27

You can combine multiple options in each entry, and you can include them in any order. The maximum length for an options entry is 256 bytes.

Attention: Unsupported or incorrect options do not trigger a notification.

Buffer option (b)
The b option applies only to connections that use the TCP/IP connection protocol. Other types of connections ignore the b option.

You can adjust the buffer size to use system and network resources more efficiently; however, if the buffer size is set too high, the user receives a connection-reject error
because no memory can be allocated. For example, if you set b=16000 on a system that has 1000 users, the system might require 16 megabytes of memory for the
communications buffers. This setting might exhaust the memory resources of the computer. The default buffer size for the database server for TCP/IP is 4096 bytes.

If your network includes several different types of computers, be careful when you change the size of the communications buffer.
Tip: Use the default size for the communications buffer. If you choose to set the buffer size to a different value, set the client-side communications buffer and the database
server-side communications buffer to the same size.

Group connection-redirection option (c)
The c option is valid only for servers that are assigned to a server group.

Use the c option to:

Balance the load across multiple database server instances.
Set High-Availability Data Replication (HDR) to transfer over to a backup database server in the event of a failure.

Table 3. Settings for the connection-redirection option.

Setting Result

c=0 This is the default setting.
Client applications connect to the first database server instance listed in the server group in the sqlhosts information. If the client cannot connect to
the first instance, it attempts to connect to the second instance, and so on.

c=1 Client applications choose a random starting point from which to connect to a database server instance in a server group.

Communication files directory option (cfd)
You can use the communication files directory option to store shared-memory or stream-pipe connection communication files in a new location. Specifying the
communication files directory option for non-root installations of Informix is necessary if the server and client are in different locations, and increases system
performance if the server and client are in the same location.

The cfd option can define an absolute path or a path relative to $INFORMIXDIR for storing communication files:

cfd=/location defines an absolute path
cfd=location defines a path relative to $INFORMIXDIR

The length of the cfd path is restricted to 70 bytes. Relative-path byte lengths include $INFORMIXDIR.

Non-root installations of Informix do not have permission to write to the /INFORMIXTMP directory, so shared-memory and stream-pipe connection communication files
are written to the $INFORMIXDIR/etc directory if no communication files directory is specified as an option in the sqlhosts information.

Important: This option must be defined for non-root installations of Informix, where the server and client are in different locations, or the connection fails.

Communication support module option (csm)
The format of the CSM option is csm=(name,options).

The value of name must match a name entry in the concsm.cfg file.

CSM options that are defined in the sqlhosts file override options that are specified in the concsm.cfg file. CSM encryption options cannot be specified in the sqlhosts
information.

If you do not specify the csm option, the database server uses the default authentication policy for that database server.

Note: The s=7 option is deprecated and not required for the Single Sign-On (SSO) CSM.

End of group option (e)
If no e option is specified for a group, but all sqlhosts entries specify either groups or group members, the network must scan the entire file. You can use the e option to
specify the end of a server group, and improve system performance. The network layer scans the sqlhosts file until the entry specified by the e option is read.

If no end-of-group option is specified for a group, the group members are assumed to be contiguous. The end of the group is determined when an entry is reached that
does not belong to the group, or at the end of file, whichever comes first.

In the following example, the e option specifies entry lx3, so entry lx4 is not scanned by the network layer.

#dbservername nettype hostname servicename options
g_x1 group - - i=10,e=lx3
lx1 onsoctcp apollo11 9810 g=g_x1
lx2 onsoctcp apollo12 9820 g=g_x1
lx3 onsoctcp apollo13 9830 g=g_x1

lx4 onsoctcp apollo14 9840

28 Part VI: Administering

Keep-alive option (k)
This option enables the network service to check periodically whether the connection between the client and server is still active. If the receiving end of the connection
does not respond within the time that is specified by the parameters of your operating system, the network service immediately detects the broken connection and frees
resources.

Table 4. Settings for the keep-alive
option

Setting Result

k=0 Disables this service

k=1 Enables this service (default)

Multiplex option (m)
This option enables the database server to create multiple database connections to client applications without using up the additional computer resources that are
required for more network connections. You must restart the server after you enable this service.
Table 5. Settings for the multiplex option

Setting Result

m=0 Disables this service (default)

m=1 Enables this service

PAM options (pam_serv, pam_auth, s=4)
The database server provides an interface to use pluggable authentication modules (PAM) for session authentication. To configure this interface, supply the PAM service
name and the authentication method. Authentication can be the connection password or a user challenge that requires the user to answer a question. Distributed
Relational Database Architecture (DRDA) connections for IBM Data Server clients can use password authentication, but not challenge authentication.

Informix PAM authentication calls the pam_authenticate() and pam_acct_mgmt() functions.
Table 6. Settings for PAM services

Option Description Settings

pam_serv The name of the PAM service that the database server is
using.

PAM services typically are in the /usr/lib/security directory and parameters are listed in
the /etc/pam.conf file.
In Linux, the /etc/pam.conf file can be replaced with a directory called /etc/pam.d,
where there is a file for each PAM service. If /etc/pam.d exists, /etc/pam.conf is ignored
by Linux.

pamauth The method of authentication that is used by the PAM
service.
An application must be designed to respond to the
challenge prompt correctly before connecting to the
database server.

pamauth=password uses the connection request password for authentication.
pamauth=challenge authentication requires a correct user reply to a question or prompt

s=4 Enables PAM authentication.

Trusted-host and trusted-user lookup options (s)
With these security options, you can specifically enable or disable the use of either or both files.

Table 7. Settings for trusted-host and trusted-user lookup.

Setting Result

s=0 Disables trusted-hosts lookup in hosts.equiv or the file specified by the REMOTE_SERVER_CFG configuration
parameter.
Disables trusted-user lookup in rhosts files or the file specified by the REMOTE_USERS_CFG configuration parameter.

Only incoming connections with passwords are accepted. Cannot be used for distributed database operations.

s=1 Enables trusted-hosts lookup in hosts.equiv or the file specified by the REMOTE_SERVER_CFG configuration parameter.
Disables trusted-user lookup in rhosts files or the file specified by the REMOTE_USERS_CFG configuration parameter.

s=2 Disables trusted-hosts lookup in hosts.equiv or the file specified by the REMOTE_SERVER_CFG configuration
parameter.
Enables trusted-user lookup in rhosts files or the file specified by the REMOTE_USERS_CFG configuration parameter.

Cannot be used for distributed database operations.

s=3 Enables trusted-hosts lookup in hosts.equiv or the file specified by the REMOTE_SERVER_CFG configuration parameter.
Enables trusted-user lookup in rhosts files or the file specified by the REMOTE_USERS_CFG configuration parameter.

(default)

Secure connections for clusters option (s=6)
The s=6 option in the sqlhosts information ensures that the connections between cluster servers are trusted. Secure ports that are listed in the sqlhosts information can
be used only for cluster communication. Client applications cannot connect to secure ports.

Part VI: Administering 29

Table 8. The secure connection option for clusters.

Setting Result

s=6 Configures Enterprise Replication and High Availability Connection Security. Cannot be used with any other s option.

netrc lookup options (r)
With r options, you can enable or disable netrc lookup.

Table 9. Settings for netrc lookup options.

Setting Result

r=0 netrc lookup is disabled.

r=1 netrc lookup is enabled (default)

Related concepts:
 Trusted-host information

Trusted-user information
Related tasks:

 Supporting multiplexed connections
Configuring secure connections for high-availability clusters
Related reference:

 Group information
The netrc information
Related information:

 Pluggable authentication modules (UNIX or Linux)
Communication support modules for data transmission encryption
Configuring the IBMInformix instance for SSO
Simple password encryption
Configuring secure ports for connections between replication servers

Copyright© 2020 HCL Technologies Limited

Group information

You define server groups in the sqlhosts file or SQLHOSTS registry key. When you create a server group, you can treat multiple related database server or Connection
Manager SLA entries as a single entity for client connections to simplify connection redirection to database servers or Connection Managers. You must create group entries
for database servers that participate in Enterprise Replication.

You can use the name of a group instead of the database server name in the following environment variables, or in the SQL CONNECT command:

The value of the INFORMIXSERVER environment variable for a client application can be the name of a group. However, you cannot use a group name as the value of
the INFORMIXSERVER environment variable for a database server or database server utility.
The value of the DBPATH environment variable can contain the names of groups.

Use a dash (-) character (ASCII 45) for hostname and server/port values when you specify a connection information for a group.

High-availability cluster groups
A high-availability cluster groups sqlhosts have the following format:

#dbservername nettype hostname servicename options
 group_name group - - c=1,e=member_name_n
 member_name_1 protocol host_name_1 service_or_port_1 g=group_name
 member_name_2 protocol host_name_2 service_or_port_2 g=group_name
 member_name_n protocol host_name_n service_or_port_n g=group_name

C=1 is optional, and specifies that a random starting point in the list of group members is used for connection attempts. e=member_name is optional, and specifies the
final entry for group members, so that the entire file is not scanned. The g=group_name option is required for group members, and specifies the group that the member
belongs to.

Enterprise Replication server groups
All database servers that participate in replication must be a member of a database server group. Each database server in the enterprise must have a unique identifier.
Enterprise Replication node groups have the following sqlhosts format:

#dbservername nettype hostname servicename options
 group_name_1 group - - i=identifier_1,e=member_name_1
 member_name_1 protocol host_name_1 service_or_port_1 g=group_name_1

 group_name_2 - - i=identifier_2,e=member_name_2
 member_name_2 protocol host_name_2 service_or_port_2 g=group_name_2

 group_name_n - - i=identifier_n,e=member_name_n
 member_name_n protocol host_name_n service_or_port_n g=group_name_n

The i=identifier is required for Enterprise Replication. e=member_name is optional, and specifies the final entry for group members, so that the entire file is not
scanned. The g=group_name option is required for group members, and specifies the group that the member belongs to.

30 Part VI: Administering

https://www.hcltech.com/

Connection Manager service-level agreement groups
Connection Manager SLA groups have the following sqlhosts format:

#dbservername nettype hostname servicename options
SLA_1_group_name group - - c=1,e=SLA_name_1_from_CM_n
SLA_name_1_from_CM_1 protocol CM_1_host CM_1_port_or_service_1 g=SLA_1_group_name
SLA_name_1_from_CM_2 protocol CM_2_host CM_2_port_or_service_1 g=SLA_1_group_name
SLA_name_1_from_CM_n protocol CM_n_host CM_n_port_or_service_1 g=SLA_1_group_name

SLA_2_group_name group - - c=1,e=SLA_name_2_from_CM_n
SLA_name_2_from_CM_1 protocol CM_1_host CM_1_port_or_service_2 g=SLA_2_group_name
SLA_name_2_from_CM_2 protocol CM_2_host CM_2_port_or_service_2 g=SLA_2_group_name
SLA_name_2_from_CM_n protocol CM_n_host CM_n_port_or_service_2 g=SLA_2_group_name

SLA_n_group_name group - - c=1,e=SLA_name_n_from_CM_n
SLA_name_n_from_CM_1 protocol CM_1_host CM_1_port_or_service_n g=SLA_n_group_name
SLA_name_n_from_CM_2 protocol CM_2_host CM_2_port_or_service_n g=SLA_n_group_name
SLA_name_n_from_CM_n protocol CM_n_host CM_n_port_or_service_n g=SLA_n_group_name

C=1 is optional, and specifies that a random starting point in the list of group members is used for connection attempts. e=member_name is optional, and specifies the
final entry for group members, so that the entire file is not scanned. The g=group_name option is required for group members, and specifies the group that the member
belongs to.

Creating a group in the sqlhosts file
 You can define a group and the members of the group by adding entries to the sqlhosts file.

Related reference:
 sqlhosts connectivity information

sqlhosts file and SQLHOSTS registry key options

Copyright© 2020 HCL Technologies Limited

Creating a group in the sqlhosts file

You can define a group and the members of the group by adding entries to the sqlhosts file.

To create a database server group in the sqlhosts file:

1. Add an entry to define the database server group:

dbservername
The name of the group. The name must begin with a lowercase letter, and can contain lowercase letters, numbers, and underscore (_) symbols.

nettype
The word group.

hostname
A dash (-) character (ASCII 45), to indicate that the field value is null.

servicename
A dash (-) character (ASCII 45), to indicate that the field value is null.

options
The c, e, or i options, as appropriate.

2. Add one or more entries for members of the group. Include the g=group option.

Example
The following example shows definition of a group named g_asia. The group contains four members.

#dbservername nettype hostname servicename options
g_asia group – – c=1,e=manilla
tokyo onsoctcp node_1 service_1 g=g_asia
beijing onsoctcp node_2 service_2 g=g_asia
seoul onsoctcp node_3 service_4 g=g_asia
manilla onsoctcp node_4 service_5 g=g_asia

Copyright© 2020 HCL Technologies Limited

Alternatives for TCP/IP connections

The following topic describes some ways to bypass port and IP address lookups for TCP/IP connections.

IP addresses for TCP/IP connections
For TCP/IP connections (both TLI and sockets), you can use the actual IP address in the hostname field instead of the host name or alias found in the hosts file. The
following example shows sample IP addresses and hosts from a hosts file.

#address hostname alias
555.12.12.12 smoke

Part VI: Administering 31

https://www.hcltech.com/
https://www.hcltech.com/

98.555.43.21 odyssey
12.34.56.555 knight sales

Using the IP address for knight from the table, the following two sqlhosts entries are equivalent:

#dbservername nettype hostname servicename options
sales ontlitcp 12.34.56.789 sales_ol

#dbservername nettype hostname servicename options
sales ontlitcp knight sales_ol

Using an IP address might speed up connection time in some circumstances. However, because computers are usually known by their host name, using IP addresses in
the host name field makes it less convenient to identify the computer with which an entry is associated.

UNIX: You can find the IP address in the net address field of the hosts file, or you can use the UNIX arp or ypmatch command.
Windows: You can configure Windows to use either of the following mechanisms to resolve a domain to an IP address:

Windows Internet Name Service
Domain Name Server

Wildcard addressing for TCP/IP connections
You can use wildcard addressing in the hostname field of the hosts file when both of the following conditions are met:

You are using TCP/IP connections.
The computer where the database server is located uses multiple network-interface cards (NICs).

If the preceding conditions are met, you can use an asterisk (*) as a wildcard in the hostname field that the database server uses. When you enter a wildcard in the
hostname field, the database server can accept connections at any valid IP address on its host computer.

Each IP address is associated with a unique host name. When a computer uses multiple NICs, as in the following table, the hosts file must have an entry for each interface
card. For example, the hosts file for the texas computer with two NICs might include these entries.

#address hostname alias
123.45.67.81 texas1
123.45.67.82 texas2

If the client application and database server share the sqlhosts information, you can specify both the wildcard and a host name or IP address in the hostname field (for
example, *texas1 or *123.45.67.81). The client application ignores the wildcard and uses the host name (or IP address) to make the connection, and the database
server uses the wildcard to accept a connection from any IP address.

The wildcard format allows the listen thread of the database server to wait for a client connection using the same service port number on each of the valid network-
interface cards. However, waiting for connections at multiple IP addresses might require more processor time than waiting for connections with a specific host name or IP
address.

The following figure shows a database server on a computer named texas that has two network-interface cards. The two client sites use different network cards to
communicate with the database server.
Figure 1. Using multiple network-interface cards

The following examples show potential sqlhosts connectivity information for the texas_srvr database server.

#dbservername nettype hostname servicename options
texas_srvr ontlitcp *texas1 pd1_on

#dbservername nettype hostname servicename options
texas_srvr ontlitcp *123.45.67.81 pd1_on

#dbservername nettype hostname servicename options
texas_srvr ontlitcp *texas2 pd1_on

#dbservername nettype hostname servicename options
texas_srvr ontlitcp *123.45.67.82 pd1_on

#dbservername nettype hostname servicename options
texas_srvr ontlitcp * pd1_on

32 Part VI: Administering

If the connectivity information corresponds to any of the preceding lines, the texas_srvr database server can accept client connections from either of the network cards.
The database server finds the wildcard in the hostname field and ignores the explicit host name.
Tip: For clarity and ease of maintenance, include a host name when you use the wildcard in the host name field (that is, use *host instead of *).
The connectivity information used by a client application must contain an explicit host name or IP address. The client applications on iowa can use any of the following
host names: texas1, *texas1, 123.45.67.81, or *123.45.67.81. If there is a wildcard (*) in the hostname field, the client application ignores it.

The client application on kansas can use any of the following host names: texas2, *texas2, 123.45.67.82, or *123.45.67.82.

Port numbers for TCP/IP connections
For the TCP/IP network protocol, you can use the actual TCP listen port number in the service name field.

For example, if the port number for the sales database server in the services file is 1543, you can write an entry in the sqlhosts file as follows:

#dbservername nettype hostname servicename options
sales ontlitcp knight 1543

Using the actual port number might save time when you make a connection in some circumstances. However, as with the IP address in the hostname field, using the
actual port number might make administration of the connectivity information less convenient.

Related reference:
 sqlhosts connectivity information

Copyright© 2020 HCL Technologies Limited

Informix support for IPv6 addresses

On all platforms, IBM® Informix® recognizes Internet Protocol Version 6 (IPv6) addresses, which are 128 bits long, and Internet Protocol Version 4 (IPv4) addresses,
which are 32 bits long.

Beginning with 10.00.xC4 and Client SDK 2.90.xC4, the database server checks, on startup, whether IPv6 is supported in the underlying operating system. If IPv6 is
supported it is used. If the underlying operating system does not support IPv6, the IPv4 address is used. and Client SDK retrieve the IP address from the name service.

You can treat that runs on a host with both IPv4 and IPv6 addresses the same way you treat a server running on a multi-homed host. You can configure on a host with both
IPv4 and IPv6 addresses in either of the following ways:

Create aliases (using the DBSERVERALIASES configuration parameter) and assign an IPv6 address to one of them and an IPv4 address to the other.
Instruct the to listen on all the IP addresses configured on the host by using a wild-carded hostname in the sqlhosts file.
For example:

#dbservername nettype hostname servicename options
olserver1 onsoctcp *myhost onservice1

Starting with Version 10.0, the host name entry in the SQLHOSTS file maps to an IPv6 address if the host has a configured IPv6 address. If the host does not have a
configured IPv6 address, the hostname entry maps to an IPv4 address.

Disabling IPv6 Support
also provides a way to disable IPv6 support when working in IPv4 environments.

To disable IPv6 support for all database instances and client applications:

Create an empty file $INFORMIXDIR/etc/IFX_DISABLE_IPV6.

The file must have read permission for user informix. The file is not read from or written to, and is not required to contain any data.
To disable IPv6 support for a single database instance or for a single client application:

On the database server instance, or on the workstation on which applications are run, create an environment variable named IFX_DISABLE_IPV6 and set its value
to yes, as in:

IFX_DISABLE_IPV6=yes

Copyright© 2020 HCL Technologies Limited

Configuration parameters related to connectivity

Some of the configuration parameters in the onconfig file specify information related to connectivity.

When you restart the database server, the restart procedure uses the values that you set in these configuration parameters.

The following configuration parameters are related to connectivity:

DBSERVERNAME
DBSERVERALIASES
LIMITNUMSESSIONS
NETTYPE
NS_CACHE
NUMFDSERVER

Part VI: Administering 33

https://www.hcltech.com/
https://www.hcltech.com/

HA_ALIAS

UNIX: When you configure connectivity, also consider setting the LISTEN_TIMEOUT and MAX_INCOMPLETE_CONNECTIONS configuration parameters. These parameters
can reduce the risk of a hostile denial-of-service (DOS) attack by making it more difficult to overwhelm the Listener VP that handles connections. For more information,
see the IBM Informix Security Guide.

Connection information set in the DBSERVERNAME configuration parameter
 When a client application connects to a database server, it must specify the name for the database server. The sqlhosts information that is associated with the

specified database server name describes the type of connection between the application and the database server.
Connection information set in the DBSERVERALIASES configuration parameter

 The DBSERVERALIASES configuration parameter lets you assign additional dbserver names to the same database server.
Connection information set in the LIMITNUMSESSIONS configuration parameter

 The LIMITNUMSESSIONS configuration parameter is an optional parameter that specifies the maximum number of sessions that you want connected to IBM®
Informix®. If you specify a maximum number, you can also specify whether you want to print messages to the online.log file when the number of sessions
approaches the maximum number.
Connection information set in the NETTYPE configuration parameter

 The NETTYPE configuration parameter lets you adjust the number and type of virtual processors the database server uses for communication. Each type of network
connection (for example, ipcshm or soctcp) can have a separate NETTYPE entry in the configuration file.
Name service maximum retention time set in the NS_CACHE configuration parameter

 The NS_CACHE configuration parameter defines the maximum retention time for an individual entry in the host name/IP address cache, the service cache, the user
cache, and the group cache. If you specify maximum retention times, the database server gets host, service, user, and group database server information from the
cache.
Connection information set in the NUMFDSERVERS configuration parameter

 For network connections on UNIX, use the NUMFDSERVERS configuration parameter to specify the maximum number of poll threads to handle network
connections migrating between Informix virtual processors (VPs).
Connection information set in the HA_ALIAS configuration parameter

 The HA_ALIAS configuration parameter defines a network alias that is used for server-to-server communication in a high-availability cluster. The specified network
alias is also used by Connection Managers, the ifxclone utility, and onmode -d commands.

Related tasks:
 Connections that the database server supports

Related reference:
 sqlhosts connectivity information

Copyright© 2020 HCL Technologies Limited

Connection information set in the DBSERVERNAME configuration parameter

When a client application connects to a database server, it must specify the name for the database server. The sqlhosts information that is associated with the specified
database server name describes the type of connection between the application and the database server.

For example, to assign the name nyc_research to a database server, set the DBSERVERNAME value in the onconfig file or Windows registry key:

DBSERVERNAME nyc_research

Client applications specify the name of the database server in one of the following places:

In the INFORMIXSERVER environment variable
In SQL statements such as CONNECT, DATABASE, CREATE TABLE, and ALTER TABLE, which specify a database environment
In the DBPATH environment variable

The DBSERVERNAME must specify either the database server name or one of the database server aliases. The name must begin with a lowercase letter and can contain
other lowercase letters, digits, and underscores. The name must not include uppercase characters, a field delimiter (space or tab), or a new line character. Other
characters from the basic ASCII code set are not necessarily reliable. For example, a hyphen or minus sign can create problems and a colon might not work reliably. The @
character is reserved to separate the database from the server (as in dbase@server).

For onimcsoc or onsoctcp protocols, you can update the DBSERVERNAME configuration parameter to include the number of multiple listen threads for the database
server aliases in your sqlhosts information, as follows:

DBSERVERNAME name-number_of_multiple_listen_threads

You can configure DBSERVERALIASES connections as SSL connections, and you can have a mix of SSL and non-SSL connections.

Related information:
 DBSERVERNAME configuration parameter

Copyright© 2020 HCL Technologies Limited

Connection information set in the DBSERVERALIASES configuration parameter

The DBSERVERALIASES configuration parameter lets you assign additional dbserver names to the same database server.

The maximum number of aliases is 32. The following example shows entries in an onconfig configuration file that assign three dbserver names to the same database
server instance.

DBSERVERNAME sockets_srvr
DBSERVERALIASES ipx_srvr,shm_srvr

Because each dbserver name has a corresponding sqlhosts entry, you can associate multiple connection types with one database server.

34 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

shm_srvr onipcshm my_host my_shm
sockets_srvr onsoctcp my_host port1
ipx_srvr ontlispx nw_file_server ipx_srvr

Using the sqlhosts file shown in the previous example, a client application uses the following statement to connect to the database server using shared-memory
communication:

CONNECT TO '@shm_srvr'

A client application can initiate a TCP/IP sockets connection to the same database server using the following statement:

CONNECT TO '@sockets_srvr'

DBSERVERALIASES must begin with a lowercase letter and can contain other lowercase letters, digits, and underscores. DBSERVERALIASES must not include uppercase
characters, a field delimiter (space or tab), or a new line character. Other characters from the basic ASCII code set are not necessarily reliable. For example, a hyphen or
minus sign can create problems and a colon might not work reliably. The @ character is reserved to separate the database from the server (as in dbase@server).

In the previous examples, the @shm_srvr statement connects to an unidentified database at that server; alternatively, you can connect to dbase1@shm_srvr.

For onimcsoc or onsoctcp protocols, you can update the DBSERVERALIASES configuration parameter to include the number of multiple listen threads for the database
server aliases in your sqlhosts information, as follows:

DBSERVERALIASESname-number,name-number

You can configure DBSERVERALIASES connections as SSL connections, and you can have a mix of SSL and non-SSL connections.

Related information:
 DBSERVERALIASES configuration parameter

Copyright© 2020 HCL Technologies Limited

Connection information set in the LIMITNUMSESSIONS configuration parameter

The LIMITNUMSESSIONS configuration parameter is an optional parameter that specifies the maximum number of sessions that you want connected to IBM® Informix®. If
you specify a maximum number, you can also specify whether you want to print messages to the online.log file when the number of sessions approaches the maximum
number.

Distributed queries against a server are counted against the limit.

You might be required to dynamically increase or temporarily turn off the LIMITNUMSESSIONS configuration parameter to allow administrative utilities to run if the
database server is reaching the limit. Use onmode -wf or onmode -wm to dynamically increase or turn off LIMITNUMSESSIONS.

If the LIMITNUMSESSIONS configuration parameter is enabled and sessions are restricted because of this limit, both regular user threads and DBSA user threads
connecting to any database count against the limit. However, a DBSA user is allowed to connect to the server even after the limit is reached.

The LIMITNUMSESSIONS configuration parameter is not intended to be used as a means to adhere to license agreements.

Example
The following example specifies that you want a maximum of 100 sessions to connect to the database server and you want to print a warning message when the number
of connected sessions approaches 100: LIMITNUMSESSIONS 100,1

Copyright© 2020 HCL Technologies Limited

Connection information set in the NETTYPE configuration parameter

The NETTYPE configuration parameter lets you adjust the number and type of virtual processors the database server uses for communication. Each type of network
connection (for example, ipcshm or soctcp) can have a separate NETTYPE entry in the configuration file.

Recommendation: Although the NETTYPE parameter is not a required parameter, you must set NETTYPE if you use two or more connection types. After the database
server is running for some time, you can use the NETTYPE configuration parameter to tune the database server for better performance.
For more information about NETTYPE, see Network virtual processors. For information about the NETTYPE configuration parameter, see the IBM® Informix®
Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Name service maximum retention time set in the NS_CACHE configuration parameter

The NS_CACHE configuration parameter defines the maximum retention time for an individual entry in the host name/IP address cache, the service cache, the user cache,
and the group cache. If you specify maximum retention times, the database server gets host, service, user, and group database server information from the cache.

Each cache entry expires either after the time configured for the specific cache or when the time is reconfigured.

Usually the network name service provider (for example, DNS) is on a remote computer. To avoid spending the time required to return information from the network name
service provider, you can use the NS_CACHE configuration parameter to specify the maximum retention times for obtaining information from one of the internal caches.
Then Informix® looks for information in the cache. If the information is not there, the database server queries the operating system for the information.

Part VI: Administering 35

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

You can avoid many of these operating system lookups by using the Informix name service caching mechanism, which can keep and reuse each retrieved piece of
information for a configurable amount of time.

The server can get information from the cache faster than it does when querying the operating system. However, if you disable one or more of these caches by setting the
retention time to 0, the database server queries the operating system for the host, service, user, or group information.

As a DBA, you might want to modify the NS_CACHE configuration parameter settings if the network name service provider runs on a remote computer or the MSC VP is
running with a large amount of processor usage.

For example, you can run the onstat -g glo command to check the msc VP usage in the Individual virtual processors portion of the output. In the following ouput
sample, the msc processor usage, shown in the usercpu and syscpu columns is high. If you suspect the usage is high because the DNS call takes too much time, you can
confirm the high usage with an operating system command and then modify the NS_CACHE configuration parameter settings.

Individual virtual processors:
vp pid class usercpu syscpu total Thread Eff
1 2036 cpu 76.95 7.14 84.09 99.08 84%
2 2149 adm 0.00 0.00 0.00 0.00 0%
3 2151 LIC 0.00 0.00 0.00 0.00 0%
4 2260 lio 0.00 0.00 0.00 0.03 0%
5 2442 pio 0.00 0.00 0.00 0.00 0%
6 2443 aio 0.00 0.01 0.01 0.11 8%
7 2444 msc 14.18 14.64 28.82 199.91 14%
8 2446 fifo 0.00 0.00 0.00 0.00 0%

You might also want to specify NS_CACHE information, if your operating system does not have a name service (NS) cache or if you disabled the operating system NS cache.

Example
To define the maximum retention time for your host and service connections as 600 seconds, and to disable the maximum retention limit for your user and group database
server connections, specify:

NS_CACHE host=600,service=600,user=0,group=0

Copyright© 2020 HCL Technologies Limited

Connection information set in the NUMFDSERVERS configuration parameter

For network connections on UNIX, use the NUMFDSERVERS configuration parameter to specify the maximum number of poll threads to handle network connections
migrating between Informix® virtual processors (VPs).

Specifying NUMFDSERVERS information is useful if Informix has a high rate of new connect and disconnect requests or if you find a high amount of contention between
network shared file (NSF) locks.

Related information:
 NUMFDSERVERS configuration parameter

Copyright© 2020 HCL Technologies Limited

Connection information set in the HA_ALIAS configuration parameter

The HA_ALIAS configuration parameter defines a network alias that is used for server-to-server communication in a high-availability cluster. The specified network alias is
also used by Connection Managers, the ifxclone utility, and onmode -d commands.

Set the HA_ALIAS configuration parameter for each server in a high-availability cluster. The HA_ALIAS configuration parameter is required for high-availability cluster
servers that use shared-memory connections.

The HA_ALIAS configuration parameter value must match a DBSERVERNAME or DBSERVERALIASES configuration parameter value that is associated with a TCP sqlhosts
file entry.

Related information:
 HA_ALIAS configuration parameter

onmode -d: Set data-replication types
DBSERVERALIASES configuration parameter
DBSERVERNAME configuration parameter

Copyright© 2020 HCL Technologies Limited

Environment variables for network connections

The INFORMIXCONTIME (connect time) and INFORMIXCONRETRY (connect retry) environment variables affect the behavior of the client when it is trying to connect to a
database server. Use these environment variables to minimize connection errors caused by busy network traffic.

If the client application explicitly attaches to shared-memory segments, you might be required to set INFORMIXSHMBASE (shared-memory base).

You can use the INFORMIXSERVER environment variable to specify a default dbserver name to which your clients connect.

36 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Related concepts:
How a client attaches to the communications portion (UNIX)
Related tasks:
Connections that the database server supports
Related information:
INFORMIXCONTIME environment variable
INFORMIXCONRETRY environment variable
INFORMIXSHMBASE environment variable (UNIX)
INFORMIXSERVER environment variable

Copyright© 2020 HCL Technologies Limited

Automatically terminating idle connections

You can automatically terminate sessions with clients that have been idle for a specified time by enabling the idle_user_timeout Scheduler task.

You must be connected to the sysadmin database as user informix or another authorized user.
To enable the idle_user_timeout task, run the following statement:

UPDATE ph_task
 SET tk_enable = 't'
 WHERE tk_name = 'idle_user_timeout';

By default, the idle_user_timeout task terminates user sessions that are idle for longer than 60 minutes. Sessions owned by user informix are not terminated. The
idle_user_timeout task starts checking for idle sessions after two hours, which is the default frequency for the task.

Tip: When the system time changes on the database server computer, the amount of time user sessions have been idle is no longer accurate. For example, if a user session
last did work at 3:14 PM and at 3:15 PM the system clock is moved forward by one hour, then to the database server, the user session has been idle for over an hour.
To change the idle timeout period, update the frequency of running the task and the value of the threshold. The shortest idle timeout period allowed is 5 minutes. For
example, to change the timeout period to 5 minutes, run the following statements:

UPDATE ph_task
 SET tk_frequency = INTERVAL (5) MINUTE TO MINUTE
 WHERE tk_name = 'idle_user_timeout';

UPDATE ph_threshold
 SET value = '5'
 WHERE task_name = 'idle_user_timeout';

Copyright© 2020 HCL Technologies Limited

Distributed Relational Database Architecture (DRDA) communications

DRDA is a set of protocols that enables multiple database systems and application programs to work together.

This section contains information about how to configure IBM® Informix® to use the Distributed Relational Database Architecture™ (DRDA).

Overview of DRDA
 Distributed Relational Database Architecture (DRDA) is a set of protocols that enable communication between applications and database systems on disparate

platforms, and enables relational data to be distributed among multiple platforms.
Configuring connectivity between Informix database servers and IBM Data Server clients

 To connect to with an IBM Data Server client, you must follow certain configuration steps.
Allocating poll threads for an interface/protocol combination with the NETTYPE configuration parameter

 The NETTYPE configuration parameter configures poll threads for each connection type that your instance of the database server supports. You can use this
configuration parameter to allocate more than one poll thread for an interface/protocol combination.
Specify the size of the DRDA communication buffer with the DRDA_COMMBUFFSIZE configuration parameter

 Use the DRDA_COMMBUFFSIZE configuration parameter to specify the size of the DRDA communications buffer. The minimum size is 4 KB, the maximum size is 2
megabytes, and the default value is 32 KB.
The DRDAEXEC thread and queries from clients

 For every DRDA client, IBM Informix creates a session and a DRDAEXEC thread, which is the equivalent of an SQLEXEC thread, to process and run the queries. This
thread also formats the results of the queries in the DRDA protocol format and sends the results back to the client computer.
SQL and supported and unsupported data types

 When using DRDA, IBM Informix syntax is supported over the common API. When using DRDA connections, rounds decimal and money values to 32-digit precision
for all data retrieval operations on decimal or money data types.
Display DRDA connection information

 Use onstat and onmode commands to display information that includes the DRDA thread name and an indicator that distinguishes SQLI and DRDA sessions
Display DRDA session information

 Use the syssesappinfo table in the sysmaster database to view DRDA client session information.

Copyright© 2020 HCL Technologies Limited

Overview of DRDA

Distributed Relational Database Architecture™ (DRDA) is a set of protocols that enable communication between applications and database systems on disparate
platforms, and enables relational data to be distributed among multiple platforms.

Part VI: Administering 37

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Any combination of relational database management products that use DRDA can be connected to form a distributed relational database management system. DRDA
coordinates communication between systems by defining what is exchanged and the exchange method.

You can configure the database server to use DRDA to respond to requests from a common API, such as the IBM Data Server JDBC Driver or the IBM Data Server .NET
Provider.

Connection Managers support DRDA, so you can use connection management to redirect client connection requests to appropriate database servers. Connection
Managers can also provide automatic failover for high-availability clusters using DRDA.

Enterprise Replication, data replication, and utilities, such as DB-Access, require standard connections. Enterprise Replication utilities do not operate over DRDA
connections. However, Enterprise Replication connections can coexist with DRDA connections.

When you use DRDA with ANSI-compliant databases, unbuffered logging and implicit transactions are enforced. If you migrate an application that is based on a non-ANSI-
compliant database to a DRDA environment, the connection must handle application logic for statements that need transactions. For example, a BEGIN WORK statement
is required before a concatenation operator in a stored procedure.

You can secure DRDA connections between a common client API and in the following ways:

Encrypted password security or an encrypted user ID and encrypted password security
Secure Sockets Layer (SSL) protocol to encrypt data in end-to-end
Password authentication through a pluggable authentication module

Related concepts:
 Connection management through the Connection Manager

Related information:
 Transactions

BEGIN WORK statement
Secure sockets layer protocol
Configuring a connection to use PAM

Copyright© 2020 HCL Technologies Limited

Configuring connectivity between Informix® database servers and IBM Data Server
clients

To connect to with an IBM Data Server client, you must follow certain configuration steps.

IBM Data Server Client and an applicable driver must be installed.

1. On each Connection Manager and database server host, add sqlhosts file entries for each server: For example:

#dbservername nettype hostname servicename options
 server_1 onsoctcp host_1 port_1
 server_2 onsoctcp host_2 port_2
 server_3 onsoctcp host_3 port_3

2. In each database server's onconfig file, set the DBSERVERALIASES parameter to specify an alias for the server.
The onconfig file entry for server_1:

DBSERVERALIASES drda_1

The onconfig file entry for server_2:

DBSERVERALIASES drda_2

The onconfig file entry for server_3:

DBSERVERALIASES drda_3

3. On each Connection Manager's host, add sqlhosts file entries for DRDA aliases. Specify a drtlitcp or drsoctcp protocol and specify a port for DRDA communication.
For example:

#dbservername nettype hostname servicename options
 server_1 onsoctcp host_1 port_1
 server_2 onsoctcp host_2 port_2
 server_3 onsoctcp host_3 port_3

 drda_1 drsoctcp host_1 drda_port_1
 drda_2 drsoctcp host_2 drda_port_2
 drda_3 drsoctcp host_3 drda_port_3

4. On the host of each Connection Manager, add a group entry for the group of database server and add a group entry for the group of DRDA aliases. Add group options
to the database server and DRDA alias entries. Use the c=1 group-entry option so that connection-attempt starting points in the list of group members is random.
Use the e=last_member group-entry option so that the entire sqlhosts is not scanned for group members. For example:

#dbservername nettype hostname servicename options
 my_servers group - - c=1,e=server_3
 server_1 onsoctcp host_1 port_1 g=my_servers
 server_2 onsoctcp host_2 port_2 g=my_servers
 server_3 onsoctcp host_3 port_3 g=my_servers

 drda_aliases group - - c=1,e=drda_3
 drda_1 drsoctcp host_1 port_4 g=drda_aliases
 drda_2 drsoctcp host_2 port_5 g=drda_aliases
 drda_3 drsoctcp host_3 port_6 g=drda_aliases

38 Part VI: Administering

https://www.hcltech.com/

5. Add the DRDA service-level agreements to your Connection Managers' configuration files. For example:
The first Connection Manager's configuration file has the following entries:

NAME connection_manager_1

CLUSTER my_cluster
{
 INFORMIXSERVER my_servers
 SLA sla_primary_1 DBSERVERS=PRI
 SLA sla_primary_drda_1 DBSERVERS=PRI
 SLA sla_secondaries_1 DBSERVERS=SDS,HDR
 SLA sla_secondaries_drda_1 DBSERVERS=SDS,HDR
 FOC ORDER=ENABLED \
 PRIORITY=1
}

The second Connection Manager's configuration file has the following entries:

NAME connection_manager_2

CLUSTER my_cluster
{
 INFORMIXSERVER my_servers
 SLA sla_primary_2 DBSERVERS=PRI
 SLA sla_primary_drda_2 DBSERVERS=PRI
 SLA sla_secondaries_2 DBSERVERS=SDS,HDR
 SLA sla_secondaries_drda_2 DBSERVERS=SDS,HDR
 FOC ORDER=ENABLED \
 PRIORITY=2
}

6. On the host of each IBM Data Server client, create sqlhosts file entries for each service-level agreement (SLA) in each Connection Manager configuration file. Create
group entries for each group of SLA entries, and add group options to the SLA entries.
For example:

#dbservername nettype hostname servicename options
 g_primary group - - c=1,e=sla_primary_2
 sla_primary_1 onsoctcp cm_host_1 cm_port_1 g=g_primary
 sla_primary_2 onsoctcp cm_host_2 cm_port_2 g=g_primary

 g_secondaries group - - c=1,e=sla_secondaries_2
 sla_secondaries_2 onsoctcp cm_host_1 cm_port_3 g=g_secondaries
 sla_secondaries_2 onsoctcp cm_host_2 cm_port_4 g=g_secondaries

 g_primary_drda group - - c=1,e=sla_primary_2_drda
 sla_primary_1_drda drsoctcp cm_host_1 cm_port_5 g=g_primary_drda
 sla_primary_2_drda drsoctcp cm_host_2 cm_port_6 g=g_primary_drda

 g_secondaries_drda group - - c=1,e=sla_secondaries_2_drda
 sla_secondaries_2_drda drsoctcp cm_host_1 cm_port_7 g=g_secondaries_drda
 sla_secondaries_2_drda drsoctcp cm_host_2 cm_port_8 g=g_secondaries_drda

In the previous example, IBM Data Server client connection requests to @g_primary_drda are sent by drsoctcp protocol to one of the Connection Managers. The
Connection Manager that receives the request uses an SLA to provide the client application with connection information for the primary server.

If you receive error -23104 when accessing the server through the DRDA protocol, the client application might be trying to bind a value that has an encoding different from
the code page or code set of the database locale. Set the GL_USEGLU environment variable to 1 before you start the instance. This setting enables the server to initialize
the appropriate Unicode converters that are required to handle the code set conversions.

Related concepts:
 The sqlhosts information

Related tasks:
 Defining sqlhosts information for high-availability clusters that use Distributed Relational Database Architecture (DRDA)

Defining sqlhosts information for high-availability clusters that use Distributed Relational Database Architecture (DRDA) and secure ports
Related information:

 GL_USEGLU environment variable

Copyright© 2020 HCL Technologies Limited

Allocating poll threads for an interface/protocol combination with the NETTYPE
configuration parameter

The NETTYPE configuration parameter configures poll threads for each connection type that your instance of the database server supports. You can use this configuration
parameter to allocate more than one poll thread for an interface/protocol combination.

Set the NETTYPE configuration parameter as follows:

1. Specify SQLI, drtlitcp, or drsoctcp as the connection protocol.
2. Add information about the number of poll threads, the number of connections, and the virtual processor class.

For example, specify:

NETTYPE drtlitcp,3,2,CPU

A NETTYPE entry can handle multiple database server aliases on the same protocol type. Thus, when DRDA is in use, the network listener thread (NETTYPE drtlitcp or
drsoctcp) typically has at least two sockets open and listening for connections. One socket is open for SQLI connections and another is open for DRDA connections.

Part VI: Administering 39

https://www.hcltech.com/

Additional sockets might be open if many separate server aliases are configured.

Related information:
 NETTYPE configuration parameter

Copyright© 2020 HCL Technologies Limited

Specify the size of the DRDA communication buffer with the DRDA_COMMBUFFSIZE
configuration parameter

Use the DRDA_COMMBUFFSIZE configuration parameter to specify the size of the DRDA communications buffer. The minimum size is 4 KB, the maximum size is 2
megabytes, and the default value is 32 KB.

You can specify a one megabyte buffer as 1M, 1m, 1024K, 1024k, or 1024. IBM® Informix® automatically resets values that are less than 4 KB as 32 KB.

When a DRDA session is established, the session allocates a communication buffer of the current buffer size.

You can use the isgetdrdacommbuffsize() function to return the current value of DRDA_COMMBUFFSIZE.

You cannot use the onmode -wm command to change the setting while the database server is running.

Copyright© 2020 HCL Technologies Limited

The DRDAEXEC thread and queries from clients

For every DRDA client, IBM® Informix® creates a session and a DRDAEXEC thread, which is the equivalent of an SQLEXEC thread, to process and run the queries. This
thread also formats the results of the queries in the DRDA protocol format and sends the results back to the client computer.

Queries issued from a DRDA client run in parallel if PDQPRIORITY is set and the query can run in parallel. Queries run from DRDAEXEC threads can also run in parallel.

Copyright© 2020 HCL Technologies Limited

SQL and supported and unsupported data types

When using DRDA, IBM® Informix® syntax is supported over the common API. When using DRDA connections, rounds decimal and money values to 32-digit precision for
all data retrieval operations on decimal or money data types.

The following data types are supported over the common API:

BIGINT
BIGSERIAL
BLOB
BOOLEAN
BSON
BYTE
CHAR(32k)
CLOB
DATE
DATETIME
DECIMAL
FLOAT
INT
INT8
INTERVAL
JSON
LVARCHAR(32k)
MONEY
NCHAR(32k)
NVARCHAR(255)
SERIAL
SERIAL8
SMALLFLOAT
SMALLINT
TEXT
VARCHAR(255)

DATETIME values are mapped to DATE, TIME, or TIMESTAMP values.

The following data types are supported for use with database server host variables:

CHAR
DATE
INT

40 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

SMALLINT
VCHAR

Copyright© 2020 HCL Technologies Limited

Display DRDA connection information

Use onstat and onmode commands to display information that includes the DRDA thread name and an indicator that distinguishes SQLI and DRDA sessions

The following commands display information about the thread name and session:

onstat -g ses
onstat -g sql
onstat -g ath
onstat -g stk
onstat -u
onstat -x
onstat -G
onstat -g ddr
onstat -g env
onstat -g stm
onstat -g ssc
onmode -D
onmode -Z

For example, the onstat output might show "drdaexec" as the threadname.

Copyright© 2020 HCL Technologies Limited

Display DRDA session information

Use the syssesappinfo table in the sysmaster database to view DRDA client session information.

The table shows the client session ID, session application name, and a session value in the sesapp_sid, sesapp_name, and sesapp_value columns.

For example, the table might show the following information:

sesapp_sid: 6
sesapp_name: Accting
sesapp_value: db2jcc_application

You can also display client session information using the onstat -g ses command.

Related information:
 The sysmaster Database

syssesappinfo
onstat -g ses command: Print session-related information

Copyright© 2020 HCL Technologies Limited

Examples of client/server configurations

The next several sections show the correct sqlhosts entries for several client/server connections.

You can assume that the network-configuration files hosts and services have been correctly prepared even if they are not explicitly mentioned. The following examples are
included:

Using a network connection
Using multiple connection types
Accessing multiple database servers

Examples of shared-memory and local-loopback connections can be found with the explanation of shared memory and local-loopback connections.

A network connection
 The following figure shows a network-connection configuration for two database servers.

Multiple connection types
 A single instance of the database server can provide more than one type of connection.

Accessing multiple database servers
 When more than one database server is active on a single computer, it is known as multiple residency.

Related reference:
 Shared-memory connections (UNIX)

Local-loopback connections

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 41

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

A network connection

The following figure shows a network-connection configuration for two database servers.

The client application is on host river and the database server is on host valley.
Figure 1. An example of a network client/server configuration

An sqlhosts entry for the valley_ds database server is defined on both computers.

Both computers are on the same TCP/IP network, but the host river uses sockets for its network programming interface, while the host valley uses TLI for its network
programming interface. The nettype field must reflect the type of network programming interface used by the computer on which sqlhosts is located. In this example, the
nettype field for the valley_ds database server on host river is onsoctcp, and the nettype field for the valley_ds database server on host valley is ontlitcp.

Related concepts:
 Network programming interface

Copyright© 2020 HCL Technologies Limited

Multiple connection types

A single instance of the database server can provide more than one type of connection.

The following figure illustrates a configuration with more than one type of connection. The database server is on host river. Client A connects to the database server with a
shared-memory connection because shared memory is fast. Client B must use a network connection because the client and server are on different computers.

When you want the database server to accept more than one type of connection, you must take the following actions:

Add DBSERVERNAME and DBSERVERALIASES entries in the onconfig file.
Add an sqlhosts entry for each database server/connection type pair.

For the configuration in the following figure, the database server has two dbserver names: river_net and river_shm. The onconfig file includes the following entries:

DBSERVERNAME river_net
DBSERVERALIASES river_shm

Figure 1. An example of a UNIX client/server configuration that uses multiple connection types

The dbserver name used by a client application determines the type of connection that is used. Client A uses the following statement to connect to the database server:

CONNECT TO '@river_shm'

In the sqlhosts file, the nettype associated with the name river_shm specifies a shared-memory connection, so this connection is a shared-memory connection.

Client B uses the following statement to connect to the database server:

CONNECT TO '@river_net'

In the sqlhosts file, the nettype value associated with river_net specifies a network (TCP/IP) connection, so Client B uses a network connection.

42 Part VI: Administering

https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Accessing multiple database servers

When more than one database server is active on a single computer, it is known as multiple residency.

The following figure shows a configuration with two database servers on host river.
Figure 1. Multiple database servers on UNIX

For the configuration in previous example, you must prepare an onconfig file for database server A and another one for database server B. The sqlhosts file includes the
connectivity information for both database servers.

The onconfig file for database server A includes the following line:

DBSERVERNAME riverA_shm

The onconfig file for database server B includes the following line:

DBSERVERNAME riverB_soc

Related information:
 Creating multiresident database servers (Windows)

Creating multiresident database servers (UNIX, Linux, Mac OS X)

Copyright© 2020 HCL Technologies Limited

IBM Informix MaxConnect

IBM® Informix® MaxConnect is a networking product for IBM Informix database server environments on UNIX. Informix MaxConnect manages large numbers (from
several hundred to tens of thousands) of client/server connections.

Informix MaxConnect multiplexes connections so that the ratio of client connections to database connections can be 200:1 or higher. Informix MaxConnect increases
system scalability to many thousands of connections and saves system resources, reducing response times and processor requirements. Informix MaxConnect is best for
OLTP data transfers and should not be used for large multimedia data transfers.

Install Informix MaxConnect separately from your IBM Informix database server and client applications. For maximum performance benefit, install Informix MaxConnect
either on a separate computer to which IBM Informix clients connect or on the client application server. You can install Informix MaxConnect in the following
configurations:

On a dedicated server to which IBM Informix clients connect
On the client application server
On the database server computer

Two protocols for multiplexing connections, ontliimc and onsocimc, are available for Informix MaxConnect users. You can use the ontliimc and onsocimc protocols in the
following two configurations:

To connect Informix MaxConnect to the database server.
In this configuration, the client connections are multiplexed and use packet aggregation.

To connect the client applications directly to the database server without going through Informix MaxConnect.
In this configuration, the client does not get the benefits of connection multiplexing or packet aggregation. Choose this configuration when the client application is
transferring simple- or smart-large-object data, because a direct connection to the database server is best.

For more information about how to configure Informix MaxConnect and monitor it with the onstat -g imc and imcadmin commands, see the IBM Informix MaxConnect
User's Guide.
Important: Informix MaxConnect and the IBM Informix MaxConnect User's Guide ship separately from the IBM Informix database server.
Related reference:

 sqlhosts connectivity information

Copyright© 2020 HCL Technologies Limited

Database server initialization

Part VI: Administering 43

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The database server requires both disk-space initialization and shared-memory initialization.

Shared-memory initialization
Shared-memory initialization, or starting the server, establishes the contents of database server shared memory as follows: internal tables, buffers, and the shared-
memory communication area. Shared memory is initialized every time the database server starts. You use the oninit utility from the command line to initialize
database server shared memory and bring the database server online.

Disk-space initialization
Disk-space initialization uses the values that are stored in the configuration file to create the initial chunk of the root dbspace on disk. You use the oninit -i
command from the command line to initialize disk space. When you initialize disk space, the database server automatically initializes shared memory as part of the
process. Disk space is initialized the first time the database server starts.
Warning: When you initialize disk space, you overwrite whatever is on that disk space. If you reinitialize disk space for an existing database server, all the data in the
earlier database server is deleted.
You can prevent accidental disk initialization by setting the FULL_DISK_INIT configuration parameter to 0. When this configuration parameter is set to 0, the oninit
-i command fails if the root dbspace exists.

The key difference between shared-memory initialization and disk-space initialization is that shared-memory initialization has no effect on disk-space allocation or layout.
No data is deleted.

Initialization process
 When you start the database server or initialize disk space, the database server performs a set of steps. You can see the results of each step in the message log.

Database server operating modes
 You can determine the current database server mode by running the onstat utility from the command line. The onstat header displays the mode.

Related concepts:
 Database server configuration

Related information:
 The oninit utility

onmode -k, -m, -s, -u, -j: Change database server mode
FULL_DISK_INIT configuration parameter

Copyright© 2020 HCL Technologies Limited

Initialization process

When you start the database server or initialize disk space, the database server performs a set of steps. You can see the results of each step in the message log.

Disk-space initialization always includes the initialization of shared memory. However, some activities that normally take place during shared-memory initialization, such
as recording configuration changes, are not required during disk initialization because those activities are not relevant with a newly initialized disk.

The following main tasks are completed during the two types of initialization:

Process the configuration file
Create shared-memory segments
Initialize shared-memory structures
Initialize disk space, if necessary
Start all required virtual processors
Make necessary conversions
Start fast recovery and checkpoint, if necessary
Document configuration changes
Update the oncfg_servername.servernum file
Change to quiescent mode
Drop temporary tblspaces (optional)
Set forced residency, if requested
Change to online mode and return control to user
Create or update SMI tables as necessary
Monitor maximum number of user connections at each checkpoint

Process the configuration file
The database server uses configuration parameters to allocate shared-memory segments during initialization and restart. If you modify a shared-memory configuration
parameter, you must shut down and restart the database server for the change to take effect.

The ONCONFIG environment variable, which specifies the onconfig file that contains your configuration parameters, must be set before you initialize or restart the
database server.

During initialization, the database server looks for configuration values in the following files:

If the ONCONFIG environment variable is set, the database server reads values from the onconfig file.
If the ONCONFIG environment variable is set, but the database server cannot access the specified onconfig file, the server returns an error message.

If the ONCONFIG environment variable is not set, the database server reads the values from the onconfig file.

If you omit any configuration parameters in your onconfig file, the database server uses the default values that are built in the server.

The restart process compares the values in the current configuration file with the previous values, if any, that are stored in the root dbspace reserved page, PAGE_CONFIG.
When differences exist, the database server uses the values from the current onconfig configuration file when the database server is restarted.

Create shared-memory segments

44 Part VI: Administering

https://www.hcltech.com/

The database server uses the configuration values to calculate the required size of the database server resident shared memory. In addition, the database server
computes additional configuration requirements from internal values. Space requirements are calculated and stored.

To create shared memory, the database server acquires the shared-memory space from the operating system for three different types of memory:

Resident portion, which is used for data buffers and internal tables
Virtual portion, used for most system and user-session memory requirements
IPC communication portion, which is used for IPC communication
The database server allocates this portion of shared memory only if you configure an IPC shared-memory connection.

Next, the database server attaches shared-memory segments to its virtual address space and initializes shared-memory structures. For more information about shared-
memory structures, see Virtual portion of shared memory.

After initialization is complete and the database server is running, it can create additional shared-memory segments as necessary. The database server creates segments
in increments of the page size.

Initialize shared-memory structures
After the database server attaches to shared memory, it clears the shared-memory space of uninitialized data. Next the database server lays out the shared-memory
header information and initializes data in the shared-memory structures. The database server lays out the space that is required for the logical-log buffer, initializes the
structures, and links together the three individual buffers that form the logical-log buffer.

After the database server remaps the shared-memory space, it registers the new starting addresses and sizes of each structure in the new shared-memory header.

During shared-memory initialization, disk structures and disk layout are not affected. The database server reads essential address information, such as the locations of
the logical and physical logs, from disk and uses this information to update pointers in shared memory.

Initialize disk space, if necessary
Disk space is initialized only when you start the server for the first time or when you run the oninit -i command. Disk space is not initialized when the database server is
restarted. After shared-memory structures are initialized, the database server begins initializing the disk. The database server initializes all the reserved pages that it
maintains in the root dbspace on disk and writes page zero control information to the disk.

If the DISK_ENCRYPTION configuration parameter is set, the root dbspace is encrypted.

The FULL_DISK_INIT configuration parameter specifies whether oninit -i can run on your instance when a page zero exists at the root path location (at the first page of
the first chunk location). Use this configuration parameter to prevent an accidental disk reinitialization of an existing server instance.

The default setting of the FULL_DISK_INIT configuration parameter is 0. When the configuration parameter is set to0, the oninit -i command runs only if there is not a
page zero at the root path location.

If a page zero exists at the root path location, initialization occurs only if the FULL_DISK_INIT configuration parameter is set to 1. The database server automatically
resets the FULL_DISK_INIT configuration parameter to0 after the initialization.

Start all required virtual processors
The database server starts all the virtual processors that it requires.

The parameters in the onconfig file influence what processors are started. For example, the NETTYPE parameter can influence the number and type of processors that are
started for making connections. For more information about virtual processors, see Virtual processors.

Make necessary conversions
The database server checks its internal files. If the files are from an earlier version, it updates these files to the current format.

Start fast recovery and checkpoint, if necessary
The database server checks if fast recovery is required and, if so, starts it. Fast recovery is not performed during disk-space initialization because there is not yet anything
to recover.

For more information about fast recovery, see Fast recovery.

After fast recovery completes, the database server runs a checkpoint to verify that all recovered transactions are flushed to disk so the transactions are not repeated.

As part of the checkpoint procedure, the database server writes a checkpoint-complete message in the message log. For more information about checkpoints, see
Checkpoints.

Document configuration changes
The database server compares the current values that are stored in the configuration file with the values previously stored in the root dbspace reserved page
PAGE_CONFIG. When differences exist, the database server notes both values (old and new) in a message to the message log.

Update the oncfg_servername.servernum file
The database server creates the oncfg_servername.servernum file and updates it every time that you add or delete a dbspace, blobspace, logical-log file, or chunk.

You are not required to manipulate this file in any way, but you can see it listed in your $INFORMIXDIR/etc directory on UNIX or in your %INFORMIXDIR%\etc directory on
Windows. The database server uses the oncfg_servername.servernum file during a full-system restore for salvaging the logical log.

Part VI: Administering 45

Change to quiescent mode
The database server now moves to quiescent mode or online mode, depending on how you started the initialization or database-server restart process.

Drop temporary tblspaces (optional)
Temporary tblspaces, if any, are tblspaces left by user processes that died prematurely and were unable to perform appropriate cleanup. The database server deletes any
temporary tblspaces and reclaims the disk space. For more information about temporary tblspaces, see Temporary tables.

This task is performed when the database server is restarted; it is not performed during disk-space initialization.

If you use the -p option of oninit to initialize the database server, the database server skips this step.

Set forced residency, if requested
If the value of the RESIDENT configuration parameter is -1 or a number greater than 0, the database server tries to enforce residency of shared memory.

If the host computer system does not support forced residency, the initialization procedure continues. Residency is not enforced, and the database server sends an error
message to the message log.

Change to online mode and return control to user
Control returns to the user when the database server writes the IBM® Informix® Dynamic Server initialized - complete disk initialized message in the
message log only if initialization, not database-server restart, occurred and dynamically allocates a virtual shared-memory segment.

The server returns control to the user. Any error messages that are generated by the initialization procedure are displayed in the following locations:

The command line
The database server message log file, which is specified by the MSGPATH configuration parameter

You can use the oninit -w utility to force the server to return to a command prompt within a configurable timeout. The oninit -w utility is useful for troubleshooting
initialization failures.

Create or update SMI tables as necessary
The database server creates the system-monitoring interface (SMI) tables and other system databases if they do not exist.

If the SMI tables are not current, the database server updates the tables. If the SMI tables are not present, as is the case when the disk is initialized, the database server
creates the tables. After the database server builds the SMI tables, it puts the message sysmaster database built successfully in the message log. The database
server also re-creates the sysmaster database during conversion and reversion. For more information about SMI tables, see the chapter on the sysmaster database in the
IBM Informix Administrator's Reference.

If you shut down the database server before it finishes building the SMI tables, the process of building the tables stops. This condition does not damage the database
server. The database server builds the SMI tables the next time that you bring the database server online. However, if you do not allow the SMI tables to finish building,
you cannot run any queries against those tables, and you cannot use ON-Bar for backups.

The database server drops and re-creates the sysutils database during disk initialization, conversion, or reversion. ON-Bar stores backup and restore information in the
sysutils database. Wait until the message sysutils database built successfully displays in the message log.

The database server creates the sysuser database during initialization. The sysuser database is used for Pluggable Authentication Module (PAM) authentication in IBM
Informix server to server communication.

The database server creates the sysadmin database during initialization. The sysadmin database provides remote administration and scheduler API features in IBM
Informix.

After the SMI tables and system databases are created, the database server is ready for use. The database server runs until you stop it or, possibly, until a malfunction.

Recommendation: Do not try to stop the database server by stopping a virtual processor or ending another database server process. For more information, see Start and
stop virtual processors.

Monitor maximum number of user connections at each checkpoint
The database server prints the maximum number of user connections in the message log at each checkpoint in the following format: maximum server connections
number. You can monitor the number of users who connected to the database server since the last restart or disk initialization.

The number that is displayed is reset when the customer reinitializes the database server.

Related information:
 DISK_ENCRYPTION configuration parameter

Copyright© 2020 HCL Technologies Limited

Database server operating modes

You can determine the current database server mode by running the onstat utility from the command line. The onstat header displays the mode.

The table shows the principal modes of operation of the database server.

46 Part VI: Administering

https://www.hcltech.com/

Table 1. Operating modes

Operating mode Description Users allowed access

Offline mode The database server is not running. Shared memory is not
allocated.

Only the administrator (user informix) can change from this
mode to another mode.

Quiescent mode Database-server processes are running and shared-memory
resources are allocated.
Administrators use this mode to perform maintenance
functions that do not require the execution of SQL and DDL
statements.

Only the administrator (user informix) can access the database
server.
Other users can view database-server status information, but
they cannot access the database server.

Administration mode This mode is an intermediary mode between Quiescent mode
and Online mode.
Administrators use this mode to perform any maintenance task,
including tasks requiring the execution of SQL and DDL
statements. Administrators can also perform all other functions
available in Online mode.

The following users can connect to the database server in
administration mode:

User informix
Users who have the DBSA role
Set the ADMIN_USER_MODE_WITH_DBSA configuration
parameter to 1 if you want users who are members of
the DBSA group (in addition to user informix) to connect
to the database server in administration mode.

One or more users who have administration mode
access
User informix or a DBSA can dynamically give one or
more specific users the ability to connect to the
database server in administration mode through the
onmode -j command, the oninit -U command, or the
ADMIN_MODE_USERS configuration parameter.

Other users can view database-server status information, but
they cannot access the database server.

Online mode This is the normal operating mode of the database server. Any authorized user can connect with the database server and
perform all database activities.
User informix or user root can use the command-line utilities
to change many database server ONCONFIG parameter values.

In addition, the database server can also be in one of the following modes:

Read-only mode is used by the secondary database server in a data replication environment. An application can query a secondary database server that is in read-
only mode, but the application cannot write to a read-only database.
Recovery mode is transitory. It occurs when the database server performs fast recovery or recovers from a system archive or system restore. Recovery occurs during
the change from offline to quiescent mode.
Shutdown mode is transitory. It occurs when the database server is moving from online to quiescent mode or from online (or quiescent) to offline mode. For the
current users access the system, but no new users are allowed access.
After shutdown mode is initiated, it cannot be canceled.

Users permitted to change modes
 Changing database server operating modes

 Use the oninit and onmode utilities to change from one database server operating mode to another. Use the ADMIN_MODE_USERS configuration parameter to
specify which users can connect to the server in administration mode.

Copyright© 2020 HCL Technologies Limited

Users permitted to change modes

UNIX only
Users who are logged in as root or informix and members of the DBSA group can change the operating mode of the database server.

If you want users with the DBSA group to connect to the database server in administration mode, set the ADMIN_USER_MODE_WITH_DBSA configuration parameter to 1.
If this parameter is set to zero, then access is restricted to user informix only. If the parameter is missing from $ONCONFIG, it is treated as 0.

User informix or a DBSA can dynamically give one or more specific users the ability to connect to the database server in administration mode, using the onmode utility,
the oninit utility, or the ADMIN_MODE_USERS configuration parameter.
Note: For a member of the DBSA group, the permissions on $INFORMIXDIR/bin/oninit must be changed to allow public execute permission - root:informix:6755 in a
standard IBM® Informix® installation.

Windows only
Table 1 shows which users can change the operating mode of the database server in Windows. Apache as user informix. The Apache server runs as a member of the
Informix-Admin group.

Table 1. Changing operating modes in windows
Changing operating mode Administrators group Informix-Admin group

command-line utilities such as starts X

services control panel X

Part VI: Administering 47

https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Changing database server operating modes

Use the oninit and onmode utilities to change from one database server operating mode to another. Use the ADMIN_MODE_USERS configuration parameter to specify
which users can connect to the server in administration mode.

Windows only: In Windows, the database server runs as a service. Windows provides a service control application (also called the Services tool) to start, stop, and pause a
service. The service control application is located in the Control Panel program group. The service name for the database server includes the database server name (the
value of DBSERVERNAME in the onconfig file). For example, the IBM® Informix® service for the newyork database server is:

IBM Informix Database Server - newyork

To change mode with the Services tool, start the tool and select the database server service. Then choose the appropriate option in the Services window. The tables
shown later in these topics explain which option you select for each mode.

To start and stop the database server, you can use other Windows tools, such as the NET command and the Server Manager tool. For more information about these
methods, consult your Windows operating-system documentation.

Tip: After you change the mode of your database server, run the onstat command to verify the current server status.
You can change database server modes in the following ways:

Change from offline to quiescent mode
When the database server changes from offline mode to quiescent mode, the database server initializes shared memory. Only administrators can access the
database server to perform maintenance functions that do not involve the execution of SQL and DDL statements.
UNIX: Run the oninit -s command.
Windows: On the command line, use the starts dbservername -s command.

Change from offline to online mode
When you move the database server from offline to online mode, the database server initializes shared memory and is available for all user sessions.
UNIX: Run the oninit command.
Windows: In the Services tool, select the database server service and click Start. Alternatively, on the command line, use the starts dbservername command.

Change from offline to administration mode
When you move the database server from offline to administration mode, you move the server into a mode that only administrators can use to perform database
server functions and maintenance functions, including those involving the execution of SQL and DDL statements.
Run the oninit -j command.

Change from quiescent to online mode
When you take the database server from quiescent mode to online mode, all sessions gain access. If you have already taken the database server from online mode
to quiescent mode and you are now returning the database server to online mode, any users who were interrupted in earlier processing must reselect their
database and redeclare their cursors.
Run the onmode -m command.
Windows: In the Services tool, choose the database server service and click Continue.

Change gracefully from online to quiescent mode
Take the database server gracefully from online mode to quiescent mode to restrict access to the database server without interrupting current processing. After you
perform this task, the database server sets a flag that prevents new sessions from gaining access to the database server. The current sessions are allowed to finish
processing. After you initiate the mode change, it cannot be canceled. During the mode change from online to quiescent, the database server is considered to be in
Shutdown mode.
Run the onmode -s or the onmode -sy command.
Windows: In the Services tool, choose the database server service and click Pause.

Change immediately from online to quiescent mode
Take the database server immediately from online mode to quiescent mode to restrict access to the database server as soon as possible. Work in progress can be
lost. A prompt asks for confirmation of the immediate shutdown. If you confirm, the database server sends a disconnect signal to all sessions that are attached to
shared memory. If a session does not receive the disconnect signal or is not able to comply automatically within 10 seconds, the database server terminates the
session. The database server users receive either error message -459 indicating that the database server was shut down or error message -457 indicating that their
session was unexpectedly terminated. The database server cleans up all sessions that the database server terminated. Active transactions are rolled back.
Run the onmode -u or the onmode -uy command.

Change from quiescent or online to administration mode
When you move the database server from quiescent or online to administration mode, you move the server into a mode that only administrators can use. If you
begin in online mode, the database server automatically disconnects any users who are connected with any user ID that is not user informix and the users receive
an error message. If a connection is terminated during a transaction, the database server rolls back the transaction. Change to administration mode when you want
to run SQL and DLL commands when no other users are connected. Also see Specifying administration mode users.
Run the onmode -j command.

Change from administration to online mode
When you move the database server from administration to online mode, all users can access the database server.
Run the onmode -m command.

Change from administration to quiescent mode
When you move the database server from administration to quiescent mode, you move the server into a mode that only administrators can use to perform
maintenance functions that do not involve the execution of SQL and DDL statements.
Run the onmode -s command.

Change from any mode immediately to offline mode
You can take the database server immediately from any mode to offline mode. A prompt asks for confirmation to go offline. If you confirm, the database server
initiates a checkpoint request and sends a disconnect signal to all sessions that are attached to shared memory. If a session does not receive the disconnect signal
or is not able to comply automatically within 10 seconds, the database server terminates this session. The database server users receive either error message -459
indicating that the database server was shut down or error message -457 indicating that their session was unexpectedly terminated. After you take the database
server to offline mode, restart the database server in quiescent, administration, or online mode. When you restart the database server, it performs a fast recovery to
ensure that the data is logically consistent. The database server cleans up all sessions that were terminated by the database server. Active transactions are rolled
back.
Run the onmode -k or the onmode -ky command.
Windows: In the Services tool, choose the database server service and click Stop.

48 Part VI: Administering

https://www.hcltech.com/

If the onmode command fails to shut down the database server, you can use the onclean utility to force an immediate shutdown.

Specifying administration mode users
You can specify which users can connect to the database server in administration mode.

Related information:
 The oninit utility

onmode -k, -m, -s, -u, -j: Change database server mode

Copyright© 2020 HCL Technologies Limited

Specifying administration mode users

You can specify which users can connect to the database server in administration mode.

Temporary administration mode users
User informix or a DBSA can use the onmode -j -U or the oninit -U command to grant individual users access to the database server in administration mode for a session.

For example, run the following command to enable three individual users to connect to the database server and have database server access until the database server
mode changes to offline, quiescent or online mode:

onmode -j -U mark,ajay,carol

After connecting, these individual users can run any SQL or DDL commands. When the server is changed to administration mode, all sessions for users not identified in the
onmode -j -U command lose their database server connection.

After initially running the onmode -j -U command, you can remove individuals by running onmode -j -U and removing individual user names from the new list of names in
the command, for example, by running:

onmode -j -U mark,carol

Run the oninit -U command with a blank space instead of a name to remove all users in the list, as shown in this example:

oninit -U " "

Permanent administration mode users
Unlike the oninit and onmode commands that enable you to specify administration mode users until the server changes to offline, quiescent, or online mode, the
ADMIN_MODE_USERS configuration parameter preserves a list of administration mode users indefinitely.

To create a list of administration mode users that is preserved in the onconfig file, specify a comma-separated list of users as ADMIN_MODE_USERS configuration
parameter values, for example, mark,ajay,carol.

To override ADMIN_MODE_USERS during a session, use the onmode -wf command, as shown in this example:

onmode -wf ADMIN_MODE_USERS=sharon,kalpana

The effect of the ADMIN_MODE_USERS configuration parameter is to add to the list of people permitted to access the server in administration mode. Those people listed
in the onmode command line override those listed in the onconfig file.
Related information:

 The oninit utility
onmode -k, -m, -s, -u, -j: Change database server mode
ADMIN_MODE_USERS configuration parameter

Copyright© 2020 HCL Technologies Limited

Disk, memory, and process management

Virtual processors and threads
 These topics describe virtual processors, explain how threads run within the virtual processors, and explain how the database server uses virtual processors and

threads to improve performance.
Manage virtual processors

 These topics describe how to set the configuration parameters that affect database server virtual processors, and how to start and stop virtual processors.
Shared memory

 These topics describe the content of database server shared memory, the factors that determine the sizes of shared-memory areas, and how data moves into and
out of shared memory.
Manage shared memory

 Data storage
 The database server uses physical units of storage to allocate disk space. It stores data in logical units. Unlike the logical units of storage whose size fluctuates,

each of the physical units has a fixed or assigned size that is determined by the disk architecture.
Manage disk space

 You can use several utilities and tools to manage disk spaces and the data that the database server controls.
Moving data with external tables

 You can use external tables to load and unload database data.
Storage space encryption

 You can encrypt storage spaces (dbspaces, blobspaces and smart blobspaces) with Informix Dynamic Server. The data in encrypted storage spaces is unintelligible

Part VI: Administering 49

https://www.hcltech.com/
https://www.hcltech.com/

without the encryption key. Encrypting storage spaces is an effective way to protect sensitive information that is stored on disk.

Copyright© 2020 HCL Technologies Limited

Virtual processors and threads

These topics describe virtual processors, explain how threads run within the virtual processors, and explain how the database server uses virtual processors and threads
to improve performance.

Virtual processors
 A virtual processor is a process that the operating system schedules for processing.

How virtual processors service threads
 A virtual processor services multiple threads concurrently by switching between them.

Virtual processor classes
 Each class of virtual processor is dedicated to processing certain types of threads.

Related reference:
 Database server maintenance tasks

Copyright© 2020 HCL Technologies Limited

Virtual processors

A virtual processor is a process that the operating system schedules for processing.

Database server processes are called virtual processors because the way they function is similar to the way that a CPU functions in a computer. Just as a CPU runs multiple
operating-system processes to service multiple users, a database server virtual processor runs multiple threads to service multiple SQL client applications.

The following figure illustrates the relationship of client applications to virtual proc
Figure 1. Virtual processors

essors. A small number of virtual processors serve a much larger number of client applications or queries.

Threads
 A thread is a task for a virtual processor in the same way that the virtual processor is a task for the CPU.

Advantages of virtual processors
 A virtual processor provides a number of advantages.

Copyright© 2020 HCL Technologies Limited

Threads

A thread is a task for a virtual processor in the same way that the virtual processor is a task for the CPU.

The virtual processor is a task that the operating system schedules for execution on the CPU; a database server thread is a task that the virtual processor schedules
internally for processing. Threads are sometimes called lightweight processes because they are like processes, but they make fewer demands on the operating system.

Database server virtual processors are multithreaded because they run multiple concurrent threads.

The nature of threads is as follows.

Operating
system Action

UNIX A thread is a task that the virtual processor schedules internally for processing.

50 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Operating
system Action

Windows A thread is a task that the virtual processor schedules internally for processing. Because the virtual processor is implemented as a Windows thread,
database server threads run within Windows threads.

Important: Throughout these topics, all references to thread refer to the threads created, scheduled, and deleted by the database server. All references to “Windows
threads” refer to the threads created, scheduled, and deleted by Windows.
A virtual processor runs threads on behalf of SQL client applications (session threads) and also to satisfy internal requirements (internal threads). In most cases, for each
connection by a client application, the database server runs one session thread. The database server runs internal threads to accomplish, among other things, database
I/O, logging I/O, page cleaning, and administrative tasks. For cases in which the database server runs multiple session threads for a single client, see Parallel processing.

A user thread is a database server thread that services requests from client applications. User threads include session threads, called sqlexec threads, which are the
primary threads that the database server runs to service client applications.

User threads also include a thread to service requests from the onmode utility, threads for recovery, B-tree scanner threads, and page-cleaner threads.

To display active user threads, use onstat -u. For more information about monitoring sessions and threads, see IBM® Informix® Performance Guide.

Copyright© 2020 HCL Technologies Limited

Advantages of virtual processors

A virtual processor provides a number of advantages.

Compared to a database server process that services a single client application, the dynamic, multithreaded nature of a database server virtual processor provides the
following advantages:

Virtual processors can share processing.
Virtual processors save memory and resources.
Virtual processors can perform parallel processing.
You can start additional virtual processors and terminate active CPU virtual processors while the database server is running.
You can bind virtual processors to CPUs.

The following topics describe these advantages.

Shared processing
 Virtual processors in the same class have identical code and share access to both data and processing queues in memory. Any virtual processor in a class can run

any thread that belongs to that class.
Save memory and resources

 The database server is able to service many clients with a small number of server processes compared to architectures that have one client process to one server
process by running a thread, rather than a process, for each client.
Parallel processing

 When a client initiates index building, sorting, or logical recovery, the database server creates multiple threads to work on the task in parallel, using as much of the
computer resources as possible. While one thread is waiting for I/O, another can be working.
Add and drop virtual processors in online mode

 You can add virtual processors to meet increasing demands for service while the database server is running.
Bind virtual processors to CPUs

 You can use some multiprocessor systems to bind a process to a particular CPU. This feature is called processor affinity.

Copyright© 2020 HCL Technologies Limited

Shared processing

Virtual processors in the same class have identical code and share access to both data and processing queues in memory. Any virtual processor in a class can run any
thread that belongs to that class.

Generally, the database server tries to keep a thread running on the same virtual processor because moving it to a different virtual processor can require some data from
the memory of the processor to be transferred on the bus. When a thread is waiting to run, however, the database server can migrate the thread to another virtual
processor because the benefit of balancing the processing load outweighs the amount of overhead incurred in transferring the data.

Shared processing within a class of virtual processors occurs automatically and is transparent to the database user.

Copyright© 2020 HCL Technologies Limited

Save memory and resources

The database server is able to service many clients with a small number of server processes compared to architectures that have one client process to one server process
by running a thread, rather than a process, for each client.

Multithreading permits more efficient use of the operating-system resources because threads share the resources allocated to the virtual processor. All threads that a
virtual processor runs have the same access to the virtual-processor memory, communication ports, and files. The virtual processor coordinates access to resources by
the threads. Individual processes, though, each have a distinct set of resources, and when multiple processes require access to the same resources, the operating system
must coordinate the access.

Part VI: Administering 51

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Generally, a virtual processor can switch from one thread to another faster than the operating system can switch from one process to another. When the operating system
switches between processes, it must stop one process from running on the processor, save its current processing state (or context), and start another process. Both
processes must enter and exit the operating-system kernel, and the contents of portions of physical memory might require replacement. Threads, though, share the same
virtual memory and file descriptors. When a virtual processor switches from one thread to another, the switch is from one path of execution to another. The virtual
processor, which is a process, continues to run on the CPU without interruption. For a description of how a virtual processor switches from one thread to another, see
Context switching.

Copyright© 2020 HCL Technologies Limited

Parallel processing

When a client initiates index building, sorting, or logical recovery, the database server creates multiple threads to work on the task in parallel, using as much of the
computer resources as possible. While one thread is waiting for I/O, another can be working.

In the following cases, virtual processors of the CPU class can run multiple session threads, working in parallel, for a single client:

Index building
Sorting
Recovery
Scanning
Joining
Aggregation
Grouping
User-defined-routine (UDR) execution

For more information about parallel UDR execution, see IBM® Informix® User-Defined Routines and Data Types Developer's Guide.

The following figure illustrates parallel processing.
Figure 1. Parallel processing

Copyright© 2020 HCL Technologies Limited

Add and drop virtual processors in online mode

You can add virtual processors to meet increasing demands for service while the database server is running.

If the virtual processors of a class become compute bound or I/O bound (meaning that CPU work or I/O requests are accumulating faster than the current number of
virtual processors can process them), you can start additional virtual processors for that class to distribute the processing load further.

For more information, see Add virtual processors in online mode.

Windows only: In Windows, you cannot drop a virtual processor of any class.
While the database server is running, you can drop virtual processors of the CPU or a user-defined class. For more information, see Set virtual-processor configuration
parameters.

Copyright© 2020 HCL Technologies Limited

Bind virtual processors to CPUs

You can use some multiprocessor systems to bind a process to a particular CPU. This feature is called processor affinity.

On multiprocessor computers for which the database server supports processor affinity, you can bind CPU virtual processors to specific CPUs in the computer. When you
bind a CPU virtual processor to a CPU, the virtual processor runs exclusively on that CPU. This operation improves the performance of the virtual processor because it
reduces the amount of switching between processes that the operating system must do. Binding CPU virtual processors to specific CPUs also enables you to isolate
database work on specific processors on the computer, leaving the remaining processors free for other work. Only CPU virtual processors can be bound to CPUs.

For information about how to assign CPU virtual processors to hardware processors, see Processor affinity.

Copyright© 2020 HCL Technologies Limited

52 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

How virtual processors service threads

A virtual processor services multiple threads concurrently by switching between them.

At a given time, a virtual processor can run only one thread. A virtual processor runs a thread until it yields. When a thread yields, the virtual processor switches to the next
thread that is ready to run. The virtual processor continues this process, eventually returning to the original thread when that thread is ready to continue. Some threads
complete their work, and the virtual processor starts new threads to process new work. Because a virtual processor continually switches between threads, it can keep the
CPU processing continually. The speed at which processing occurs produces the appearance that the virtual processor processes multiple tasks simultaneously and, in
effect, it does.

Running multiple concurrent threads requires scheduling and synchronization to prevent one thread from interfering with the work of another. Virtual processors use the
following structures and methods to coordinate concurrent processing by multiple threads:

Control structures
Context switching
Stacks
Queues
Mutexes

These topics describe how virtual processors use these structures and methods.

Control structures
 When a client connects to the database server, the database server creates a session structure, which is called a session control block, to hold information about the

connection and the user.
Context switching

 A virtual processor switches from running one thread to running another one by context switching.
Stacks

 The database server allocates an area in the virtual portion of shared memory to store nonshared data for the functions that a thread executes. This area is called
the stack.
Queues

 The database server uses three types of queues to schedule the processing of multiple, concurrently running threads.
Mutexes

 A mutex (mutually exclusive), also called a latch, is a latching mechanism that the database server uses to synchronize access by multiple threads to shared
resources.

Copyright© 2020 HCL Technologies Limited

Control structures

When a client connects to the database server, the database server creates a session structure, which is called a session control block, to hold information about the
connection and the user.

A session begins when a client connects to the database server, and it ends when the connection terminates.

Next, the database server creates a thread structure, which is called a thread-control block (TCB) for the session, and initiates a primary thread (sqlexec) to process the
client request. When a thread yields—that is, when it pauses and allows another thread to run—the virtual processor saves information about the state of the thread in the
thread-control block. This information includes the content of the process system registers, the program counter (address of the next instruction to execute), and the
stack pointer. This information constitutes the context of the thread.

In most cases, the database server runs one primary thread per session. In cases where it performs parallel processing, however, it creates multiple session threads for a
single client, and, likewise, multiple corresponding thread-control blocks.

Copyright© 2020 HCL Technologies Limited

Context switching

A virtual processor switches from running one thread to running another one by context switching.

The database server does not preempt a running thread, as the operating system does to a process, when a fixed amount of time (time-slice) expires. Instead, a thread
yields at one of the following points:

A predetermined point in the code
When the thread can no longer execute until some condition is met

When the amount of processing required to complete a task would cause other threads to wait for an undue length of time, a thread yields at a predetermined point. The
code for such long-running tasks includes calls to the yield function at strategic points in the processing. When a thread performs one of these tasks, it yields when it
encounters a yield function call. Other threads in the ready queue then get a chance to run. When the original thread next gets a turn, it resumes executing code at the
point immediately after the call to the yield function. Predetermined calls to the yield function allow the database server to interrupt threads at points that are most
advantageous for performance.

A thread also yields when it can no longer continue its task until some condition occurs. For example, a thread yields when it is waiting for disk I/O to complete, when it is
waiting for data from the client, or when it is waiting for a lock or other resource.

When a thread yields, the virtual processor saves its context in the thread-control block. Then the virtual processor selects a new thread to run from a queue of ready
threads, loads the context of the new thread from its thread-control block, and begins executing at the new address in the program counter. The following figure illustrates

Part VI: Administering 53

https://www.hcltech.com/
https://www.hcltech.com/

how a virtual processor accomplishes a context switch.
Figure 1. Context switch: how a virtual processor switches from one thread to another

Copyright© 2020 HCL Technologies Limited

Stacks

The database server allocates an area in the virtual portion of shared memory to store nonshared data for the functions that a thread executes. This area is called the
stack.

For information about how to set the size of the stack, see Stacks.

The stack enables a virtual processor to protect the nonshared data of a thread from being overwritten by other threads that concurrently execute the same code. For
example, if several client applications concurrently perform SELECT statements, the session threads for each client execute many of the same functions in the code. If a
thread did not have a private stack, one thread might overwrite local data that belongs to another thread within a function.

When a virtual processor switches to a new thread, it loads a stack pointer for that thread from a field in the thread-control block. The stack pointer stores the beginning
address of the stack. The virtual processor can then specify offsets to the beginning address to access data within the stack. The figure illustrates how a virtual processor
uses the stack to segregate nonshared data for session threads.
Figure 1. Virtual processors segregate nonshared data for each user

Copyright© 2020 HCL Technologies Limited

Queues

The database server uses three types of queues to schedule the processing of multiple, concurrently running threads.

Virtual processors of the same class share queues. This fact, in part, enables a thread to migrate from one virtual processor in a class to another when necessary.

Ready queues
 Ready queues hold threads that are ready to run when the current (running) thread yields.

Sleep queues
 Sleep queues hold the contexts of threads that have no work to do at a particular time. A thread is put to sleep either for a specified period of time or forever.

Wait queues
Wait queues hold threads that must wait for a particular event before they can continue to run.

Copyright© 2020 HCL Technologies Limited

Ready queues

Ready queues hold threads that are ready to run when the current (running) thread yields.

54 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

When a thread yields, the virtual processor picks the next thread with the appropriate priority from the ready queue. Within the queue, the virtual processor processes
threads that have the same priority on a first-in-first-out (FIFO) basis.

On a multiprocessor computer, if you notice that threads are accumulating in the ready queue for a class of virtual processors (indicating that work is accumulating faster
than the virtual processor can process it), you can start additional virtual processors of that class to distribute the processing load. For information about how to monitor
the ready queues, see Monitor virtual processors. For information about how to add virtual processors while the database server is in online mode, see Add virtual
processors in online mode.

Copyright© 2020 HCL Technologies Limited

Sleep queues

Sleep queues hold the contexts of threads that have no work to do at a particular time. A thread is put to sleep either for a specified period of time or forever.

The administration class (ADM) of virtual processors runs the system timer and special utility threads. Virtual processors in this class are created and run automatically. No
configuration parameters affect this class of virtual processors.

The ADM virtual processor wakes up threads that have slept for the specified time. A thread that runs in the ADM virtual processor checks on sleeping threads at one-
second intervals. If a sleeping thread has slept for its specified time, the ADM virtual processor moves it into the appropriate ready queue. A thread that is sleeping for a
specified time can also be explicitly awakened by another thread.

A thread that is sleeping forever is awakened when it has more work to do. For example, when a thread that is running on a CPU virtual processor must access a disk, it
issues an I/O request, places itself in a sleep queue for the CPU virtual processor, and yields. When the I/O thread notifies the CPU virtual processor that the I/O is
complete, the CPU virtual processor schedules the original thread to continue processing by moving it from the sleep queue to a ready queue. The following figure
illustrates how the database server threads are queued to perform database I/O.
Figure 1. How database server threads are queued to perform database I/O

Copyright© 2020 HCL Technologies Limited

Wait queues

Wait queues hold threads that must wait for a particular event before they can continue to run.

Wait queues coordinate access to shared data by threads. When a user thread tries to acquire the logical-log latch but finds that the latch is held by another user, the
thread that was denied access puts itself in the logical-log wait queue. When the thread that owns the lock is ready to release the latch, it checks for waiting threads, and,
if threads are waiting, it wakes up the next thread in the wait queue.

Copyright© 2020 HCL Technologies Limited

Mutexes

A mutex (mutually exclusive), also called a latch, is a latching mechanism that the database server uses to synchronize access by multiple threads to shared resources.

Mutexes are similar to semaphores, which some operating systems use to regulate access to shared data by multiple processes. However, mutexes permit a greater
degree of parallelism than semaphores.

A mutex is a variable that is associated with a shared resource such as a buffer. A thread must acquire the mutex for a resource before it can access the resource. Other
threads are excluded from accessing the resource until the owner releases it. A thread acquires a mutex, after a mutex becomes available, by setting it to an in-use state.
The synchronization that mutexes provide ensures that only one thread at a time writes to an area of shared memory.

For information about monitoring mutexes, see Monitor the shared-memory profile and latches.

Related concepts:
 Buffer pool portion of shared memory

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 55

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Virtual processor classes

Each class of virtual processor is dedicated to processing certain types of threads.

The following table shows the classes of virtual processors and the types of processing that they do.

The number of virtual processors of each class that you configure depends on the availability of physical processors (CPUs), hardware memory, and the database
applications in use.

Table 1. Virtual-processor classes

Virtual- processor
class

Category Purpose

ADM Administrative Performs administrative functions.

ADT Auditing Performs auditing functions.

AIO Disk I/O Performs nonlogging disk I/O. If KAIO is used, AIO virtual processors perform I/O to cooked disk spaces.

BTS Basic text searching Runs basic text search index operations and queries.

CPU Central processing Runs all session threads and some system threads. Runs thread for kernel asynchronous I/O (KAIO) where
available. Can run a single poll thread, depending on configuration.

CSM Communications Support Module Performs communications support service operations.

dwavp Data warehousing Runs the administrative functions and procedures for Informix® Warehouse Accelerator on a database
server that is connected to Informix Warehouse Accelerator.

Encrypt Encryption Used by the database server when encryption or decryption functions are called.
On Windows systems, the number of encrypt virtual processors is always set to 1, regardless of the value
that is set in the onconfig file.

IDSXMLVP XML publishing Runs XML publishing functions.

JVP Java™ UDR Runs Java UDRs. Contains the Java Virtual Machine (JVM).

LIO Disk I/O Writes to the logical-log files (internal class) if they are in cooked disk space.

MQ MQ messaging Performs MQ messaging transactions.

MSC Miscellaneous Services requests for system calls that require a very large stack.

PIO Disk I/O Writes to the physical-log file (internal class) if it is in cooked disk space.

SHM Network Performs shared memory communication.

SOC Network Uses sockets to perform network communication.

tenant Multitenancy Runs session threads for tenant databases. Tenant virtual processors are a special case of user-defined
processors that are specific to tenant databases.

TLI Network Uses the Transport Layer Interface (TLI) to perform network communication.

WFSVP Web feature service Runs web feature service routines.

classname User defined Runs user-defined routines in a thread-safe manner so that if the routine fails, the database server is
unaffected.

The following figure illustrates the major components and the extensibility of the database server.
Figure 1. Database server

56 Part VI: Administering

CPU virtual processors
 The CPU virtual processor runs all session threads (the threads that process requests from SQL client applications) and some internal threads.

User-defined classes of virtual processors
 You can define special classes of virtual processors to run user-defined routines or to run a DataBlade module.

Tenant virtual processor class
 Tenant virtual processor classes are specific to tenant databases. If you configure multitenancy for your Informix instance, you can specify that session threads for

tenant databases are run in tenant virtual processors instead of CPU virtual processors.
Java virtual processors

 Java UDRs and Java applications run on specialized virtual processors, called Java virtual processors (JVPs).
Disk I/O virtual processors

 The following classes of virtual processors perform disk I/O: PIO (physical-log I/O), LIO (logical-log I/O), AIO (asynchronous I/O), and CPU (kernel-asynchronous
I/O).
Network virtual processors

 A client can connect to the database server in the through following ways: a network connection, a pipe, or shared memory.
Communications support module virtual processor

 The communications support module (CSM) class of virtual processors performs communications support service and communications support module functions.
Encrypt virtual processors

 Use the VPCLASS configuration parameter with the encrypt keyword to configure encryption VPs.
Audit virtual processor

 The database server starts one virtual processor in the audit class (ADT) when you turn on audit mode by setting the ADTMODE parameter in the onconfig file to 1.
Miscellaneous virtual processor

 The miscellaneous virtual processor services requests for system calls that might require a very large stack, such as fetching information about the current user or
the host-system name.
Basic text search virtual processors

 A basic text search virtual processor is required to run basic text search queries.
MQ messaging virtual processor

 An MQ virtual processor is required to use MQ messaging.
Web feature service virtual processor

 A web feature service virtual processor is required to use web feature service for geospatial data.
XML virtual processor
An XML virtual processor is required to perform XML publishing.

Related concepts:
 Start and stop virtual processors

Related information:
 VPCLASS configuration parameter

Copyright© 2020 HCL Technologies Limited

CPU virtual processors

The CPU virtual processor runs all session threads (the threads that process requests from SQL client applications) and some internal threads.

Internal threads perform services that are internal to the database server. For example, a thread that listens for connection requests from client applications is an internal
thread.

Part VI: Administering 57

https://www.hcltech.com/

Each CPU virtual processor can have a private memory cache associated with it. Each private memory cache block consists of 1 to 32 memory pages, where each memory
page is 4096 bytes. The database server uses the private memory cache to improve access time to memory blocks. Use the VP_MEMORY_CACHE_KB configuration
parameter to enable a private memory cache and specify information about the memory cache. For more information, see the IBM® Informix® Administrator's Reference
and the IBM Informix Performance Guide.

Determine the number of CPU virtual processors needed
 The right number of CPU virtual processors is the number at which they are all kept busy but not so busy that they cannot keep pace with incoming requests. You

must not allocate more CPU virtual processors than the number of hardware processors in the computer.
Run on a multiprocessor computer

 If you are running multiple CPU virtual processors on a multiprocessor computer, set the MULTIPROCESSOR parameter in the onconfig file to 1.
Run on a single-processor computer

 If you are running the database server on a single-processor computer, set the MULTIPROCESSOR configuration parameter to 0. To run the database server with
only one CPU virtual processor, set the SINGLE_CPU_VP parameter to 1.
Add and drop CPU virtual processors in online mode

 You can add or drop CPU class virtual processors while the database server is online.
Prevent priority aging

 Some operating systems lower the priority of long-running processes as they accumulate processing time, a feature of the operating system known as priority aging.
Processor affinity

 The database server supports automatic binding of CPU virtual processors to processors on multiprocessor computers that support processor affinity.

Copyright© 2020 HCL Technologies Limited

Determine the number of CPU virtual processors needed

The right number of CPU virtual processors is the number at which they are all kept busy but not so busy that they cannot keep pace with incoming requests. You must not
allocate more CPU virtual processors than the number of hardware processors in the computer.

When the database server starts, the number of CPU virtual processors is automatically increased to half the number of CPU processors on the database server computer,
unless the SINGLE_CPU_VP configuration parameter is enabled. However, you can adjust the number of CPU VPs based on your system.

You can configure the database server to automatically add CPU VPs when needed, up to the number of CPU processors.

To evaluate the performance of the CPU virtual processors while the database server is running, repeat the following command at regular intervals over a set period:

onstat -g glo

If the accumulated usercpu and syscpu times, taken together, approach 100 percent of the actual elapsed time for the period of the test, add another CPU virtual
processor if you have a CPU available to run it.

Use the VPCLASS configuration parameter to specify the following information about CPU virtual processors:

The number of virtual processors to start initially for a class
The maximum number of virtual processors to run for the class
Processor affinity for CPU class virtual processors
Disabling of priority aging, if applicable
Whether the database server automatically adds CPU virtual processors as needed

In addition to considering the number of CPUs in the computer and the number of users who connect to the database server, also consider that user-defined routines and
DataBlade modules, which are collections of user-defined routines, run on either CPU virtual processors or user-defined virtual processors.

Note: Use the VPCLASS configuration parameter instead of the following discontinued configuration parameters: AFF_SPROC, AFFNPROCS, NOAGE, NUMCPUVPS, and
NUMAIOVPS.
Related reference:

 Run poll threads on CPU or network virtual processors
Assign a UDR to a user-defined virtual-processor class
Related information:

 VPCLASS configuration parameter
onstat -g glo command: Print global multithreading information

Copyright© 2020 HCL Technologies Limited

Run on a multiprocessor computer

If you are running multiple CPU virtual processors on a multiprocessor computer, set the MULTIPROCESSOR parameter in the onconfig file to 1.

When you set MULTIPROCESSOR to 1, the database server performs locking in a manner that is appropriate for a multiprocessor computer. For information about setting
multiprocessor mode, see the chapter on configuration parameters in the IBM® Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Run on a single-processor computer

If you are running the database server on a single-processor computer, set the MULTIPROCESSOR configuration parameter to 0. To run the database server with only one
CPU virtual processor, set the SINGLE_CPU_VP parameter to 1.

58 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Setting MULTIPROCESSOR to 0 enables the database server to bypass the locking that is required for multiple processes on a multiprocessor computer. For information
about the MULTIPROCESSOR configuration parameter, see the IBM® Informix® Administrator's Reference.

Setting SINGLE_CPU_VP to 1 allows the database server to bypass some of the mutex calls that it normally makes when it runs multiple CPU virtual processors. For
information about setting the SINGLE_CPU_VP parameter, see the IBM Informix Administrator's Reference.
Important: Setting VPCLASS num to 1 and SINGLE_CPU_VP to 0 does not reduce the number of mutex calls, even though the database server starts only one CPU virtual
processor. You must set SINGLE_CPU_VP to 1 to reduce the amount of latching that is performed when you run a single CPU virtual processor.
Setting the SINGLE_CPU_VP parameter to 1 imposes two important restrictions on the database server, as follows:

Only one CPU virtual processor is allowed.
You cannot add CPU virtual processors while the database server is in online mode.

No user-defined classes are allowed. (However, users can still define routines that run directly on the CPU VP.)

For more information, see Add virtual processors in online mode.

Copyright© 2020 HCL Technologies Limited

Add and drop CPU virtual processors in online mode

You can add or drop CPU class virtual processors while the database server is online.

For instructions on how to add or drop CPU class virtual processors, see Add virtual processors in online mode and Drop CPU and user-defined virtual processors.

Copyright© 2020 HCL Technologies Limited

Prevent priority aging

Some operating systems lower the priority of long-running processes as they accumulate processing time, a feature of the operating system known as priority aging.

Priority aging can cause the performance of database server processes to decline over time. In some cases, however, you can use the operating system to disable this
feature and keep long-running processes running at a high priority.

To determine if priority aging is available on your computer, check the machine notes file that comes with your installation and is described in the Introduction to this
guide.

If you can disable priority aging through the operating system, you can disable it by specifying noage for the priority entry in the VPCLASS configuration parameter. For
more information, see the IBM® Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Processor affinity

The database server supports automatic binding of CPU virtual processors to processors on multiprocessor computers that support processor affinity.

Your database server distribution includes a machine notes file that contains information about whether your database server version supports this feature. When you
assign a CPU virtual processor to a specific CPU, the virtual processor runs only on that CPU, but other processes also can run on that CPU.

Use the VPCLASS configuration parameter with the aff option to implement processor affinity on multiprocessor computers that support it.

The following figure illustrates the concept of processor affinity.
Figure 1. Processor affinity

UNIX only: To see if processor affinity is supported on your UNIX platform, see the machine notes file.

Set processor affinity with the VPCLASS configuration parameter
 To set processor affinity with the VPCLASS configuration parameter, you can specify individual processors or ranges of processors that you want to assign the virtual

processors.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 59

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Set processor affinity with the VPCLASS configuration parameter

To set processor affinity with the VPCLASS configuration parameter, you can specify individual processors or ranges of processors that you want to assign the virtual
processors.

When specifying a range of processors, you can also specify an incremental value with the range that indicates which CPUs in the range are assigned to the virtual
processors. For example, you can specify that the virtual processors are assigned to every other CPU in the range 0-6, starting with CPU 0.

VPCLASS CPU,num=4,aff=(0-6/2)

The virtual processors are assigned to CPUs 0, 2, 4, 6.
If you specify VPCLASS CPU,num=4,aff=(1-10/3), the virtual processors are assigned to every third CPU in the range 1-10, starting with CPU 1. The virtual processors
are assigned to CPUs 1, 4, 7, 10.

When you specify more than one value or range, the values and ranges are not required to be incremental or in any particular order. For example you can specify aff=
(8,12,7-9,0-6/2).

The database server assigns CPU virtual processors to CPUs in a circular pattern, starting with the first processor number that you specify in the aff option. If you specify
a larger number of CPU virtual processors than physical CPUs, the database server continues to assign CPU virtual processors starting with the first CPU. For example,
suppose you specify the following VPCLASS settings:

VPCLASS cpu,num=8,aff=(4-7)

The database server makes the following assignments:

CPU virtual processor number 0 to CPU 4
CPU virtual processor number 1 to CPU 5
CPU virtual processor number 2 to CPU 6
CPU virtual processor number 3 to CPU 7
CPU virtual processor number 4 to CPU 4
CPU virtual processor number 5 to CPU 5
CPU virtual processor number 6 to CPU 6
CPU virtual processor number 7 to CPU 7

For more information, see the VPCLASS configuration parameter in the IBM® Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

User-defined classes of virtual processors

You can define special classes of virtual processors to run user-defined routines or to run a DataBlade module.

User-defined routines are typically written to support user-defined data types. If you do not want a user-defined routine to run in the CPU class, which is the default, you
can assign it to a user-defined class of virtual processors (VPs). User-defined classes of virtual processors are also called extension virtual processors.

These topics provide the following information about user-defined virtual processors:

When to run a C-language UDR in a user-defined VP instead of in the CPU VP
How to assign a C-language UDR to a particular user-defined VP class
How to add and drop user-defined VPs when the database server is in online mode

Determine the number of user-defined virtual processors needed
You can specify as many user-defined virtual processors as your operating system allows.
User-defined virtual processors

 User-defined classes of virtual processors protect the database server from ill-behaved user-defined routines.
Specify user-defined virtual processors

 The VPCLASS parameter with the vpclass option defines a user-defined VP class. You also can specify a nonyielding user-defined virtual processor.
Assign a UDR to a user-defined virtual-processor class

 The SQL CREATE FUNCTION statement registers a user-defined routine.
Add and drop user-defined virtual processors in online mode

 You can add or drop virtual processors in a user-defined class while the database server is online.

Copyright© 2020 HCL Technologies Limited

Determine the number of user-defined virtual processors needed

You can specify as many user-defined virtual processors as your operating system allows.

If you run many UDRs or parallel PDQ queries with UDRs, you must configure more user-defined virtual processors.

Copyright© 2020 HCL Technologies Limited

User-defined virtual processors

60 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

User-defined classes of virtual processors protect the database server from ill-behaved user-defined routines.

An ill-behaved user-defined routine has at least one of the following characteristics:

Does not yield control to other threads
Makes blocking operating-system calls
Modifies the global VP state

A well-behaved C-language UDR has none of these characteristics. Run only well-behaved C-language UDRs in a CPU VP.
Warning: Execution of an ill-behaved routine in a CPU VP can cause serious interference with the operation of the database server, possibly causing it to fail or behave
erratically. In addition, the routine itself might not produce correct results.
To ensure safe execution, assign any ill-behaved user-defined routines to a user-defined class of virtual processors. User-defined VPs remove the following programming
restrictions on the CPU VP class:

The requirement to yield the processor regularly
The requirement to eliminate blocking I/O calls

Functions that run in a user-defined virtual-processor class are not required to yield the processor, and they might issue direct file-system calls that block further
processing by the virtual processor until the I/O is complete.

The normal processing of user queries is not affected by ill-behaved traits of a C-language UDR because these UDRs do not execute in CPU virtual processors. For a more
detailed explanation of ill-behaved routines, see the IBM® Informix® DataBlade API Programmer's Guide.

Copyright© 2020 HCL Technologies Limited

Specify user-defined virtual processors

The VPCLASS parameter with the vpclass option defines a user-defined VP class. You also can specify a nonyielding user-defined virtual processor.

For more information, see Set virtual-processor configuration parameters and the topics about configuration parameters in the IBM® Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Assign a UDR to a user-defined virtual-processor class

The SQL CREATE FUNCTION statement registers a user-defined routine.

The following CREATE FUNCTION statement registers the user-defined routine, GreaterThanEqual(), and specifies that calls to this routine are executed by the user-
defined VP class named UDR:

CREATE FUNCTION GreaterThanEqual(ScottishName, ScottishName)
 RETURNS boolean
 WITH (CLASS = UDR)
 EXTERNAL NAME ‘/usr/lib/objects/udrs.so'
 LANGUAGE C

To execute this function, the onconfig file must include a VPCLASS parameter that defines the UDR class. If not, calls to the GreaterThanEqual function fail.
Tip: The CLASS routine modifier can specify any name for the VP class. This class name is not required to exist when you register the UDR. However, when you try to run a
UDR that specifies a user-defined VP class for its execution, this class must exist and have virtual processors assigned to it.
To configure the UDR class, include a line similar to the following one in the onconfig file. This line configures the UDR class with two virtual processors and with no priority
aging.

VPCLASS UDR ,num=2,noage

The preceding line defines the UDR VP class as a yielding VP class; that is, this VP class allows the C-language UDR to yield to other threads that must access to the UDR
VP class. For more information about how to use the VPCLASS configuration parameter, see the IBM® Informix® Administrator's Reference.

For more information about the CREATE FUNCTION statement, see the IBM Informix Guide to SQL: Syntax.

Related reference:
 Determine the number of CPU virtual processors needed

Copyright© 2020 HCL Technologies Limited

Add and drop user-defined virtual processors in online mode

You can add or drop virtual processors in a user-defined class while the database server is online.

For instructions on how to do this, see Add virtual processors in online mode and Drop CPU and user-defined virtual processors.

Copyright© 2020 HCL Technologies Limited

Tenant virtual processor class

Part VI: Administering 61

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Tenant virtual processor classes are specific to tenant databases. If you configure multitenancy for your Informix® instance, you can specify that session threads for tenant
databases are run in tenant virtual processors instead of CPU virtual processors.

You can create a tenant virtual processor class by defining the class and the number of virtual processors when you create a tenant database. You can assign a tenant
virtual processor class to multiple tenant databases. Set the VP_MEMORY_CACHE_KB configuration parameter to create a private memory cache for each CPU virtual
processor and tenant virtual processor.

A tenant virtual processor class is automatically dropped when all tenant databases that include the virtual processor class in their definitions are dropped.

Related concepts:
 Multitenancy

Related information:
 tenant create argument: Create a tenant database (SQL Administration API)

tenant update argument: Modify tenant database properties (SQL Administration API)
VP_MEMORY_CACHE_KB configuration parameter
onstat -g vpcache command: Print CPU virtual processor and tenant virtual processor private memory cache statistics

Copyright© 2020 HCL Technologies Limited

Java virtual processors

Java™ UDRs and Java applications run on specialized virtual processors, called Java virtual processors (JVPs).

A JVP embeds a Java virtual machine (JVM) in its code. A JVP has the same capabilities as a CPU VP in that it can process complete SQL queries.

You can specify as many JVPs as your operating system allows. If you run many Java UDRs or parallel PDQ queries with Java UDRs, you must configure more JVPs. For
more information about UDRs written in Java, see IBM® J/Foundation Developer's Guide.

Use the VPCLASS configuration parameter with the jvp keyword to configure JVPs. For more information, see the configuration parameters chapter in the IBM Informix®
Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Disk I/O virtual processors

The following classes of virtual processors perform disk I/O: PIO (physical-log I/O), LIO (logical-log I/O), AIO (asynchronous I/O), and CPU (kernel-asynchronous I/O).

The PIO class performs all I/O to the physical-log file, and the LIO class performs all I/O to the logical-log files, unless those files are in raw disk space and the database
server has implemented KAIO.

On operating systems that do not support KAIO, the database server uses the AIO class of virtual processors to perform database I/O that is not related to physical or
logical logging.

The database server uses the CPU class to perform KAIO when it is available on a platform. If the database server implements KAIO, a KAIO thread performs all I/O to raw
disk space, including I/O to the physical and logical logs.

UNIX only: To find out if your UNIX platform supports KAIO, see the machine notes file.
Windows only: Windows supports KAIO.
For more information about nonlogging I/O, see Asynchronous I/O.

I/O priorities
 The database server prioritizes disk I/O by assigning different types of I/O to different classes of virtual processors and by assigning priorities to the nonlogging I/O

queues.
Logical-log I/O

 The LIO class of virtual processors performs I/O to the logical-log files.
Physical-log I/O

 The PIO class of virtual processors performs I/O to the physical-log file.
Asynchronous I/O

 The database server performs database I/O asynchronously, meaning that I/O is queued and performed independently of the thread that requests the I/O.
Performing I/O asynchronously allows the thread that makes the request to continue working while the I/O is being performed.

Copyright© 2020 HCL Technologies Limited

I/O priorities

The database server prioritizes disk I/O by assigning different types of I/O to different classes of virtual processors and by assigning priorities to the nonlogging I/O
queues.

Prioritizing ensures that a high-priority log I/O, for example, is never queued behind a write to a temporary file, which has a low priority. The database server prioritizes the
different types of disk I/O that it performs, as the table shows.

Table 1. How database server prioritizes disk I/O

Priority Type of I/O VP class

1st Logical-log I/O CPU or LIO

62 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Priority Type of I/O VP class

2nd Physical-log I/O CPU or PIO

3rd Database I/O CPU or AIO

3rd Page-cleaning I/O CPU or AIO

3rd Read-ahead I/O CPU or AIO

Copyright© 2020 HCL Technologies Limited

Logical-log I/O

The LIO class of virtual processors performs I/O to the logical-log files.

I/O is performed to logical-log files in the following cases:

KAIO is not implemented.
The logical-log files are in cooked disk space.

Only when KAIO is implemented and the logical-log files are in raw disk space does the database server use a KAIO thread in the CPU virtual processor to perform I/O to
the logical log.

The logical-log files store the data that enables the database server to roll back transactions and recover from system failures. I/O to the logical-log files is the highest
priority disk I/O that the database server performs.

If the logical-log files are in a dbspace that is not mirrored, the database server runs only one LIO virtual processor. If the logical-log files are in a dbspace that is mirrored,
the database server runs two LIO virtual processors. This class of virtual processors has no parameters associated with it.

Copyright© 2020 HCL Technologies Limited

Physical-log I/O

The PIO class of virtual processors performs I/O to the physical-log file.

I/O is performed to the physical-log file in the following cases:

KAIO is not implemented.
The physical-log file is stored in buffered-file chunks.

Only when KAIO is implemented and the physical-log file is in raw disk space does the database server use a KAIO thread in the CPU virtual processor to perform I/O to
the physical log. The physical-log file stores before-images of dbspace pages that have changed since the last checkpoint. (For more information about checkpoints, see
Checkpoints.) At the start of recovery, before processing transactions from the logical log, the database server uses the physical-log file to restore before-images to
dbspace pages that have changed since the last checkpoint. I/O to the physical-log file is the second-highest priority I/O after I/O to the logical-log files.

If the physical-log file is in a dbspace that is not mirrored, the database server runs only one PIO virtual processor. If the physical-log file is in a dbspace that is mirrored,
the database server runs two PIO virtual processors. This class of virtual processors has no parameters associated with it.

Copyright© 2020 HCL Technologies Limited

Asynchronous I/O

The database server performs database I/O asynchronously, meaning that I/O is queued and performed independently of the thread that requests the I/O. Performing I/O
asynchronously allows the thread that makes the request to continue working while the I/O is being performed.

The database server performs all database I/O asynchronously, using one of the following facilities:

AIO virtual processors
KAIO on platforms that support it

Database I/O includes I/O for SQL statements, read-ahead, page cleaning, and checkpoints.

Kernel-asynchronous I/O
 The database server implements KAIO by running a KAIO thread on the CPU virtual processor. The KAIO thread performs I/O by making system calls to the

operating system, which performs the I/O independently of the virtual processor.
AIO virtual processors

 If the platform does not support KAIO or if the I/O is to buffered-file chunks, the database server performs database I/O through the AIO class of virtual processors.
All AIO virtual processors service all I/O requests equally within their class.

Copyright© 2020 HCL Technologies Limited

Kernel-asynchronous I/O

Part VI: Administering 63

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The database server implements KAIO by running a KAIO thread on the CPU virtual processor. The KAIO thread performs I/O by making system calls to the operating
system, which performs the I/O independently of the virtual processor.

The database server uses KAIO when the following conditions exist:

The computer and operating system support it.
A performance gain is realized.
The I/O is to raw disk space.

The KAIO thread can produce better performance for disk I/O than the AIO virtual processor can, because it does not require a switch between the CPU and AIO virtual
processors.

UNIX only: IBM® Informix® implements KAIO when ports to a platform that supports this feature. The database server administrator does not configure KAIO. To see if
KAIO is supported on your platform, see the machine notes file.
Linux only: Kernel asynchronous I/O (KAIO) is enabled by default. You can disable this by specifying that KAIOOFF=1 in the environment of the process that starts the
server.
On Linux, there is a system-wide limit of the maximum number of parallel KAIO requests. The /proc/sys/fs/aio-max-nr file contains this value. The Linux system
administrator can increase the value, for example, by using this command:

echo new_value > /proc/sys/fs/aio-max-nr

The current number of allocated requests of all operating system processes is visible in the /proc/sys/fs/aio-nr file.

By default, Dynamic Version allocates half of the maximum number of requests and assigns them equally to the number of configured CPU virtual processors. You can use
the environment variable KAIOON to control the number of requests allocated per CPU virtual processor. Do this by setting KAIOON to the required value before starting .

The minimum value for KAIOON is 100. If Linux is about to run out of KAIO resources, for example when dynamically adding many CPU virtual processors, warnings are
printed in the online.log file. If this happens, the Linux system administrator must add KAIO resources as described previously.

Copyright© 2020 HCL Technologies Limited

AIO virtual processors

If the platform does not support KAIO or if the I/O is to buffered-file chunks, the database server performs database I/O through the AIO class of virtual processors. All
AIO virtual processors service all I/O requests equally within their class.

The database server assigns each disk chunk a queue, sometimes known as a gfd queue, which is based on the file name of the chunk. The database server orders I/O
requests within a queue according to an algorithm that minimizes disk-head movement. The AIO virtual processors service queues that have pending work in round-robin
fashion. All other non-chunk I/O is queued in the AIO queue.

Use the VPCLASS parameter with the aio keyword to specify the number of AIO virtual processors that the database server starts initially. You can start additional AIO
virtual processors while the database server is in online mode. You cannot drop AIO virtual processors while the database server is in online mode.

You can enable the database server to add AIO virtual processors and flusher threads when the server detects that AIO VPs are not keeping up with the I/O workload.
Include the autotune=1 keyword in the VPCLASS configuration parameter setting.

Manually controlling the number of AIO VPs
The goal in allocating AIO virtual processors is to allocate enough of them so that the lengths of the I/O request queues are kept short; that is, the queues have as few I/O
requests in them as possible. When the gfd queues are consistently short, it indicates that I/O to the disk devices is being processed as fast as the requests occur.

The onstat-g ioq command shows the length and other statistics about I/O queues. You can use this command to monitor the length of the gfd queues for the AIO virtual
processors.

One AIO virtual processor might be sufficient:

If the database server implements kernel asynchronous I/O (KAIO) on your platform and all of your dbspaces are composed of raw disk space
If your file system supports direct I/O for the page size that is used for the dbspace chunk and you use direct I/O

Allocate two AIO virtual processors per active dbspace that is composed of buffered file chunks.

If the database server implements KAIO, but you are using some buffered files for chunks
IF KAIO is not supports by the system for chunks.

If KAIO is not implemented on your platform, allocate two AIO virtual processors for each disk that the database server accesses frequently.

If you use cooked files and if you enable direct I/O using the DIRECT_IO configuration parameter, you might be able to reduce the number of AIO virtual processors.

If the database server implements KAIO and you enabled direct I/O using the DIRECT_IO configuration parameter, IBM® Informix® attempts to use KAIO, so you probably
do not require more than one AIO virtual processor. However, even when direct I/O is enabled, if the file system does not support either direct I/O or KAIO, you still must
allocate two AIO virtual processors for every active dbspace that is composed of buffered file chunks or does not use KAIO.

Temporary dbspaces do not use direct I/O. If you have temporary dbspaces, you probably require more than one AIO virtual processors.

Allocate enough AIO virtual processors to accommodate the peak number of I/O requests. Generally, it is not detrimental to allocate too many AIO virtual processors.

Related information:
 VPCLASS configuration parameter

Copyright© 2020 HCL Technologies Limited

64 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Network virtual processors

A client can connect to the database server in the through following ways: a network connection, a pipe, or shared memory.

The network connection can be made by a client on a remote computer or by a client on the local computer mimicking a connection from a remote computer (called a
local-loopback connection).

Specifying Network Connections
 In general, the DBSERVERNAME and DBSERVERALIASES parameters define dbservernames that have corresponding entries in the sqlhosts file or registry. Each

dbservername parameter in sqlhosts has a nettype entry that specifies an interface/protocol combination. The database server runs one or more poll threads for
each unique nettype entry.
Run poll threads on CPU or network virtual processors

 Poll threads can run either on CPU virtual processors or on network virtual processors.
Specify the number of networking virtual processors

 Each poll thread requires a separate virtual processor, so you indirectly specify the number of networking virtual processors when you specify the number of poll
threads for an interface/protocol combination and specify that they are to be run by the NET class.
Specify listen and poll threads for the client/server connection

 When you start the database server, the oninit process starts an internal thread, called a listen thread, for each dbservername that you specify with the
DBSERVERNAME and DBSERVERALIASES parameters in the onconfig file.
Fast polling

 You can use the FASTPOLL configuration parameter to enable or disable fast polling of your network, if your operating-system platform supports fast polling.
Multiple listen threads

 You can improve service for connection requests by using multiple listen threads.

Copyright© 2020 HCL Technologies Limited

Specifying Network Connections

In general, the DBSERVERNAME and DBSERVERALIASES parameters define dbservernames that have corresponding entries in the sqlhosts file or registry. Each
dbservername parameter in sqlhosts has a nettype entry that specifies an interface/protocol combination. The database server runs one or more poll threads for each
unique nettype entry.

The NETTYPE configuration parameter provides optional configuration information for an interface/protocol combination. You can use it to allocate more than one poll
thread for an interface/protocol combination and also designate the virtual-processor class (CPU or NET) on which the poll threads run.

For a complete description of the NETTYPE configuration parameter, see the IBM® Informix® Administrator's Reference.

Related reference:
 sqlhosts connectivity information

Copyright© 2020 HCL Technologies Limited

Run poll threads on CPU or network virtual processors

Poll threads can run either on CPU virtual processors or on network virtual processors.

In general, and particularly on a single-processor computer, poll threads run more efficiently on CPU virtual processors. This might not be true, however, on a
multiprocessor computer with many remote clients.

The NETTYPE parameter has an optional entry, called vp class, which you can use to specify either CPU or NET, for CPU or network virtual-processor classes, respectively.

If you do not specify a virtual processor class for the interface/protocol combination (poll threads) associated with the DBSERVERNAME variable, the class defaults to
CPU. The database server assumes that the interface/protocol combination associated with DBSERVERNAME is the primary interface/protocol combination and that it is
the most efficient.

For other interface/protocol combinations, if no vp class is specified, the default is NET.

While the database server is in online mode, you cannot drop a CPU virtual processor that is running a poll or a listen thread.

Important: You must carefully distinguish between poll threads for network connections and poll threads for shared memory connections, which run one per CPU virtual
processor. TCP connections must only be in network virtual processors, and you must only have the minimum required to maintain responsiveness. Shared memory
connections must only be in CPU virtual processors and run in every CPU virtual processor.
Related reference:

 Determine the number of CPU virtual processors needed

Copyright© 2020 HCL Technologies Limited

Specify the number of networking virtual processors

Each poll thread requires a separate virtual processor, so you indirectly specify the number of networking virtual processors when you specify the number of poll threads
for an interface/protocol combination and specify that they are to be run by the NET class.

Part VI: Administering 65

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

If you specify CPU for the vp class, you must allocate a sufficient number of CPU virtual processors to run the poll threads. If the database server does not have a CPU
virtual processor to run a CPU poll thread, it starts a network virtual processor of the specified class to run it.

For most systems, one poll thread and consequently one virtual processor per network interface/protocol combination is sufficient. For systems with 200 or more network
users, running additional network virtual processors might improve throughput. In this case, you must experiment to determine the optimal number of virtual processors
for each interface/protocol combination.

Copyright© 2020 HCL Technologies Limited

Specify listen and poll threads for the client/server connection

When you start the database server, the oninit process starts an internal thread, called a listen thread, for each dbservername that you specify with the DBSERVERNAME
and DBSERVERALIASES parameters in the onconfig file.

To specify a listen port for each of these dbservername entries, assign it a unique combination of hostname and service name entries in sqlhosts. For example, the
sqlhosts file or registry entry shown in the following table causes the database server soc_ol1 to start a listen thread for port1 on the host, or network address, myhost.

Table 1. A listen thread for each listen port

dbservername nettype hostname service name

soc_ol1 onsoctcp myhost port1

The listen thread opens the port and requests one of the poll threads for the specified interface/protocol combination to monitor the port for client requests. The poll
thread runs either in the CPU virtual processor or in the network virtual processor for the connection that is being used. For information about the number of poll threads,
see Specify the number of networking virtual processors.

For information about how to specify whether the poll threads for an interface/protocol combination run in CPU or network virtual processors, see Run poll threads on CPU
or network virtual processors and to the NETTYPE configuration parameter in the IBM® Informix® Administrator's Reference.

When a poll thread receives a connection request from a client, it passes the request to the listen thread for the port. The listen thread authenticates the user, establishes
the connection to the database server, and starts an sqlexec thread, the session thread that performs the primary processing for the client. The following figure illustrates
the roles of the listen and poll threads in establishing a connection with a client application.
Figure 1. The roles of the poll and the listen threads in connecting to a client

A poll thread waits for requests from the client and places them in shared memory to be processed by the sqlexec thread. For network connections, the poll thread places
the message in a queue in the shared-memory global pool. The poll thread then wakes up the sqlexec thread of the client to process the request. Whenever possible, the
sqlexec thread writes directly back to the client without the help of the poll thread. In general, the poll thread reads data from the client, and the sqlexec thread sends
data to the client.

UNIX only: For a shared-memory connection, the poll thread places the message in the communications portion of shared memory.
The following figure illustrates the basic tasks that the poll thread and the sqlexec thread perform in communicating with a client application.
Figure 2. The roles of the poll and sqlexec threads in communicating with the client application

66 Part VI: Administering

https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Fast polling

You can use the FASTPOLL configuration parameter to enable or disable fast polling of your network, if your operating-system platform supports fast polling.

Fast polling is beneficial if you have many connections. For example, if you have more than 300 concurrent connections with the database server, you can enable the
FASTPOLL configuration parameter for better performance. You can enable fast polling by setting the FASTPOLL configuration parameter to 1.

If your operating system does not support fast polling, IBM® Informix® ignores the FASTPOLL configuration parameter.

Copyright© 2020 HCL Technologies Limited

Multiple listen threads

You can improve service for connection requests by using multiple listen threads.

If the database server cannot service connection requests satisfactorily for a given interface/protocol combination with a single port and corresponding listen thread, you
can improve service for connection requests in the following ways:

By adding listen threads for additional ports.
By adding listen threads to the same port if you have the onimcsoc or onsoctcp protocol
By adding another network-interface card.
By dynamically starting, stopping, or restarting listen threads for a SOCTCP or TLITCP network protocol, using SQL administration API or onmode -P commands.

If you have multiple listen threads for one port for the onsoctcp protocol, the database server can accept new connections if a CPU VP connection is busy.

Add listen threads
 When you start the database server, the oninit process starts a listen thread for servers with the server names and server alias names that you specify with the

DBSERVERNAME and DBSERVERALIASES configuration parameters. You can add listen threads for additional ports.
Add a network-interface card

 You can add a network-interface card to improve performance or connect the database server to multiple networks.
Dynamically starting, stopping, or restarting a listen thread

 You can dynamically start, stop, or stop and start a listen thread for a SOCTCP or TLITCP network protocol without interrupting existing connections. For example,
you might want to stop listen threads that are unresponsive and then start new ones in situations when other server functions are performing normally and you do
not want to shut down the server.

Copyright© 2020 HCL Technologies Limited

Add listen threads

When you start the database server, the oninit process starts a listen thread for servers with the server names and server alias names that you specify with the
DBSERVERNAME and DBSERVERALIASES configuration parameters. You can add listen threads for additional ports.

You can also set up multiple listen threads for one service (port) for the onimcsoc or onsoctcp protocol.

Part VI: Administering 67

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

To add listen threads for additional ports, you must first use the DBSERVERALIASES parameter to specify dbservernames for each of the ports. For example, the
DBSERVERALIASES parameter in the following figure defines two additional dbservernames, soc_ol2 and soc_ol3, for the database server instance identified as soc_ol1.

DBSERVERNAME soc_ol1
DBSERVERALIASES soc_ol2,soc_ol3

After you define additional dbservernames for the database server, you must specify an interface/protocol combination and port for each of them in the sqlhosts file or
registry. Each port is identified by a unique combination of hostname and servicename entries. For example, the sqlhosts entries shown in the following table cause the
database server to start three listen threads for the onsoctcp interface/protocol combination, one for each of the ports defined.

Table 1. The sqlhosts entries to listen to multiple ports for a single
interface/protocol combination

dbservername nettype hostname service name

soc_ol1 onsoctcp myhost port1

soc_ol2 onsoctcp myhost port2

soc_ol3 onsoctcp myhost port3

If you include a NETTYPE parameter for an interface/protocol combination, it applies to all the connections for that interface/protocol combination. In other words, if a
NETTYPE parameter exists for onsoctcp in the previous table, it applies to all of the connections shown. In this example, the database server runs one poll thread for the
onsoctcp interface/protocol combination unless the NETTYPE parameter specifies more. For more information about entries in the sqlhosts file or registry, see
Connectivity files.

Setting up multiple listen threads for one port for the onimcsoc or onsoctcp protocol
To set up multiple listen threads for one service (port) for the onimcsoc or onsoctcp protocol, specify DBSERVERNAME and DBSERVERALIASES information as follows:

DBSERVERNAME <name>-<n>
DBSERVERALIASES <name1>-<n>,<name2>

For example:

To bring up two listen threads for the server with the DBSERVERNAME of ifx, specify:

DBSERVERNAME ifx-2

To bring up two listen threads for DBSERVERALIASES ifx_a and ifx_b, specify:

DBSERVERALIASES ifx_a-2,ifx_b-2

Copyright© 2020 HCL Technologies Limited

Add a network-interface card

You can add a network-interface card to improve performance or connect the database server to multiple networks.

You might want to improve performance if the network-interface card for the host computer cannot service connection requests satisfactorily.

To support multiple network-interface cards, you must assign each card a unique hostname (network address) in sqlhosts.

For example, using the same dbservernames shown in Add listen threads, the sqlhosts file or registry entries shown in the following table cause the database server to
start three listen threads for the same interface/protocol combination (as did the entries in Add listen threads). In this case, however, two of the threads are listening to
ports on one interface card (myhost1), and the third thread is listening to a port on the second interface card (myhost2).
Table 1. Example of sqlhosts entries to support two network-interface

cards for the onsoctcp interface/protocol combination
dbservername nettype hostname service name

soc_ol1 onsoctcp myhost1 port1

soc_ol2 onsoctcp myhost1 port2

soc_ol3 onsoctcp myhost2 port1

Copyright© 2020 HCL Technologies Limited

Dynamically starting, stopping, or restarting a listen thread

You can dynamically start, stop, or stop and start a listen thread for a SOCTCP or TLITCP network protocol without interrupting existing connections. For example, you
might want to stop listen threads that are unresponsive and then start new ones in situations when other server functions are performing normally and you do not want to
shut down the server.

The listen thread must be defined in the sqlhosts file for the server. If necessary, before start, stop, or restart a listen thread, you can revise the sqlhosts entry.
To dynamically start, stop, or restart listen threads:

1. Run one of the following onmode -P commands:
onmode -P start server_name
onmode -P stop server_name
onmode -P restart server_name

68 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

2. Alternatively, if you are connected to the sysadmin database, either directly or remotely, you can run one of the following commands:
An admin() or task() command with the start listen argument, using the format

EXECUTE FUNCTION task("start listen", "server_name");

An admin() or task() command with the stop listen argument, using the format

EXECUTE FUNCTION task("stop listen" ,"server_name");

An admin() or task() command with the restart listen argument, using the format

EXECUTE FUNCTION task("restart listen", "server_name");

For example, either of the following commands starts a new listen thread for a server named ifx_serv2:

onmode -P start ifx_serv2

EXECUTE FUNCTION task("start listen", "ifx_serv2");

Copyright© 2020 HCL Technologies Limited

Communications support module virtual processor

The communications support module (CSM) class of virtual processors performs communications support service and communications support module functions.

The database server starts the same number of CSM virtual processors as the number of CPU virtual processors that it starts, unless the communications support module
is set to GSSCSM to support single sign-on. When the communications support module is GSSCSM, the database server starts only one CSM virtual processor.

For more information about the communications support service, see Client/server communication.

Copyright© 2020 HCL Technologies Limited

Encrypt virtual processors

Use the VPCLASS configuration parameter with the encrypt keyword to configure encryption VPs.

If the encrypt option of the VPCLASS parameter is not defined in the onconfig configuration file, the database server starts one ENCRYPT VP the first time that any
encryption or decryption functions defined for column-level encryption are called. You can define multiple ENCRYPT VPs if necessary to decrease the time required to
start the database server.

To add five ENCRYPT VPs, add information in the onconfig file as follows:

VPCLASS encrypt,num=5

You can modify the same information using the onmode utility, as follows:

onmode -p 5 encrypt

For more information, see the configuration parameters and the onmode utility topics in the IBM® Informix® Administrator's Reference. For more information about
column-level encryption, see the IBM Informix Security Guide.

Copyright© 2020 HCL Technologies Limited

Audit virtual processor

The database server starts one virtual processor in the audit class (ADT) when you turn on audit mode by setting the ADTMODE parameter in the onconfig file to 1.

For more information about database server auditing, see the IBM® Informix® Security Guide.

Copyright© 2020 HCL Technologies Limited

Miscellaneous virtual processor

The miscellaneous virtual processor services requests for system calls that might require a very large stack, such as fetching information about the current user or the
host-system name.

Only one thread runs on this virtual processor; it executes with a stack of 128 KB.

Copyright© 2020 HCL Technologies Limited

Basic text search virtual processors

Part VI: Administering 69

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

A basic text search virtual processor is required to run basic text search queries.

A basic text search virtual processor is added automatically when you create a basic text search index.

A basic text search virtual processor runs without yielding; it processes one index operation at a time. To run multiple basic text search index operations and queries
simultaneously, create additional basic text search virtual processors.

Use the VPCLASS configuration parameter with the BTS keyword to configure basic text search virtual processors. For example, to add five BTS virtual processors, add the
following line to the onconfig and restart the database server:

VPCLASS bts,num=5

You can dynamically add BTS virtual processors by using the onmode -p command, for example:

onmode -p 5 bts

Related information:
 VPCLASS configuration parameter

onmode -p: Add or drop virtual processors
Basic Text Search

Copyright© 2020 HCL Technologies Limited

MQ messaging virtual processor

An MQ virtual processor is required to use MQ messaging.

When you perform MQ messaging transactions, an MQ virtual processor is created automatically.

An MQ virtual processor runs without yielding; it processes one operation at a time. To perform multiple MQ messaging transactions simultaneously, create additional MQ
virtual processors.

Use the VPCLASS configuration parameter with the MQ keyword to configure MQ virtual processors. For example, to add five MQ virtual processors, add the following line
to the onconfig and restart the database server:

VPCLASS mq,noyield,num=5

For more information about the VPCLASS configuration parameter, see the IBM® Informix® Administrator's Reference. For more information about MQ messaging, see the
IBM Informix Database Extensions User's Guide.

Copyright© 2020 HCL Technologies Limited

Web feature service virtual processor

A web feature service virtual processor is required to use web feature service for geospatial data.

When you run a WFS routine, a WFS virtual processor is created automatically.

A WFS virtual processor runs without yielding; it processes one operation at a time. To run multiple WFS routines simultaneously, create additional WFS virtual processors.

Use the VPCLASS configuration parameter with the WFSVP keyword to configure WFS virtual processors. For example, to add five WFS virtual processors, add the
following line to the onconfig and restart the database server:

VPCLASS wfsvp,noyield,num=5

For more information about the VPCLASS configuration parameter, see the IBM® Informix® Administrator's Reference. For more information about WFS, see the IBM
Informix Database Extensions User's Guide.

Copyright© 2020 HCL Technologies Limited

XML virtual processor

An XML virtual processor is required to perform XML publishing.

When you run an XML function, an XML virtual processor is created automatically.

An XML virtual processor runs one XML function at a time. To run multiple XML functions simultaneously, create additional XML virtual processors.

Use the VPCLASS configuration parameter with the IDSXMLVP keyword to configure XML virtual processors. For example, to add five XML virtual processors, add the
following line to the onconfig and restart the database server:

VPCLASS idsxmlvp,num=5

You can dynamically add XML virtual processors by using the onmode -p command, for example:

onmode -p 5 idsxmlvp

70 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

For more information about the VPCLASS configuration parameter and the onmode utility, see the IBM® Informix® Administrator's Reference. For more information about
XML publishing, see the IBM Informix Database Extensions User's Guide.

Copyright© 2020 HCL Technologies Limited

Manage virtual processors

These topics describe how to set the configuration parameters that affect database server virtual processors, and how to start and stop virtual processors.

For descriptions of the virtual-processor classes and for advice on how many virtual processors you must specify for each class, see Virtual processors and threads.

Set virtual-processor configuration parameters
 Use the VPCLASS configuration parameter to designate a class of virtual processors (VPs), create a user-defined virtual processor, and specify options such as the

number of VPs that the server starts, the maximum number of VPs allowed for the class, and the assignment of VPs to CPUs if processor affinity is available.
Start and stop virtual processors

 When you start the database server, the oninit utility starts the number and types of virtual processors that you specify directly and indirectly.
Monitor virtual processors

 Monitor the virtual processors to determine if the number of virtual processors configured for the database server is optimal for the current level of activity.

Copyright© 2020 HCL Technologies Limited

Set virtual-processor configuration parameters

Use the VPCLASS configuration parameter to designate a class of virtual processors (VPs), create a user-defined virtual processor, and specify options such as the number
of VPs that the server starts, the maximum number of VPs allowed for the class, and the assignment of VPs to CPUs if processor affinity is available.

The table lists the configuration parameters that are used to configure virtual processors.

Table 1. Configuration parameters for configuring virtual processors

Parameter Description

MULTIPROCESSOR Set to 1 to support multiple CPU virtual processors, or to 0 for only a single CPU VP

NETTYPE Specifies parameters for network protocol threads and virtual processors

SINGLE_CPU_VP Set to 0 to enable user-defined CPU VPs, or to any other setting for only a single CPU VP

VPCLASS Each defines a VP class and its properties, such as how many VPs of this class start when the server
starts

VP_MEMORY_CACHE_KB Speeds access to memory blocks by creating a private memory cache for each CPU virtual processor

Related information:
 VPCLASS configuration parameter

MULTIPROCESSOR configuration parameter
SINGLE_CPU_VP configuration parameter
VP_MEMORY_CACHE_KB configuration parameter

Copyright© 2020 HCL Technologies Limited

Start and stop virtual processors

When you start the database server, the oninit utility starts the number and types of virtual processors that you specify directly and indirectly.

You configure virtual processors primarily through configuration parameters and, for network virtual processors, through parameters in the sqlhosts information.

You can use the database server to start a maximum of 1000 virtual processors.

After the database server is in online mode, you can start more virtual processors to improve performance, if necessary.

While the database server is in online mode, you can drop virtual processors of the CPU and user-defined classes.

To shut down the database server and stop all virtual processors, use the onmode -k command.

Add virtual processors in online mode
 While the database server is running, you can start additional virtual processors for some virtual processor classes with the -p option of the onmode utility.

Drop CPU and user-defined virtual processors
 While the database server is in online mode, you can use the -p option of the onmode utility to drop, or terminate, virtual processors of the CPU and user-defined

classes.

Related concepts:
 Virtual processor classes

Related information:
 onmode -k, -m, -s, -u, -j: Change database server mode

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 71

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Add virtual processors in online mode

While the database server is running, you can start additional virtual processors for some virtual processor classes with the -p option of the onmode utility.

You can start these additional virtual processors with the -p option of the onmode utility. You can add network virtual processors with the NETTYPE configuration
parameter.

You can also start additional virtual processors for user-defined classes to run user-defined routines. For more information about user-defined virtual processors, see
Assign a UDR to a user-defined virtual-processor class.

Add virtual processors in online mode with onmode
 Use the -p option of the onmode command to add virtual processors while the database server is in online mode.

Add network virtual processors
 When you add network virtual processors, you add poll threads, each of which requires its own virtual processor to run.

Related information:
 onmode -p: Add or drop virtual processors

NETTYPE configuration parameter

Copyright© 2020 HCL Technologies Limited

Add virtual processors in online mode with onmode

Use the -p option of the onmode command to add virtual processors while the database server is in online mode.

Specify the number of virtual processors that you want to add with a positive number. As an option, you can precede the number of virtual processors with a plus sign (+).
Following the number, specify the virtual processor class in lowercase letters. For example, either of the following commands starts four additional virtual processors in
the AIO class:

onmode -p 4 aio

onmode -p +4 aio

The onmode utility starts the additional virtual processors immediately.

You can add virtual processors to only one class at a time. To add virtual processors for another class, you must run onmode again.

Copyright© 2020 HCL Technologies Limited

Add network virtual processors

When you add network virtual processors, you add poll threads, each of which requires its own virtual processor to run.

In the following example, the poll threads handle a total of 240 connections:

NETTYPE ipcshm,4,60,CPU # Configure poll thread(s) for nettype

For ipcshm, the number of poll threads correspond to the number of memory segments. For example, if NETTYPE is set to 3,100 and you want one poll thread, set the
poll thread to 1,300.

Copyright© 2020 HCL Technologies Limited

Drop CPU and user-defined virtual processors

While the database server is in online mode, you can use the -p option of the onmode utility to drop, or terminate, virtual processors of the CPU and user-defined classes.

Drop CPU virtual processors
Following the onmode command, specify a negative number that is the number of virtual processors that you want to drop, and then specify the CPU class in lowercase
letters. For example, the following command drops two CPU virtual processors:

% onmode -p -2 cpu

If you attempt to drop a CPU virtual processor that is running a poll thread, you receive the following message:

onmode: failed when trying to change the number of cpu virtual processor by -number.

For more information, see Run poll threads on CPU or network virtual processors.

Drop user-defined virtual processors
Following the onmode command, specify a negative number that is the number of virtual processors that you want to drop, and then specify the user-defined class in
lowercase letters. For example, the following command drops two virtual processors of the class usr:

72 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

onmode -p -2 usr

Windows only: In Windows, you can have only one user-defined virtual processor class at a time. Omit the number parameter in the onmode -p vpclass command.
For information about how to create a user-defined class of virtual processors and assign user-defined routines to it, see User-defined classes of virtual processors.

Copyright© 2020 HCL Technologies Limited

Monitor virtual processors

Monitor the virtual processors to determine if the number of virtual processors configured for the database server is optimal for the current level of activity.

For more information about these onstat -g options, see the topics on the effect of configuration on CPU utilization in the IBM® Informix® Performance Guide.

For examples of output for the onstat -g commands, see information about the onstat utility in the IBM Informix Administrator's Reference.

Monitor virtual processors with command-line utilities
 Use onstat -g options to monitor virtual processors.

Monitor virtual processors with SMI tables
 Query the sysvpprof table to obtain information about the virtual processors that are currently running.

Copyright© 2020 HCL Technologies Limited

Monitor virtual processors with command-line utilities

Use onstat -g options to monitor virtual processors.

The following options can be used to monitor virtual processors:

The onstat -g ath command
 The onstat -g glo command
 Use the onstat -g glo command to display information about each virtual processor that is currently running, and cumulative statistics for each virtual processor

class.
The onstat -g ioq command

 Use the onstat -g ioq option to determine whether you must allocate additional virtual processors. The command onstat -g ioq displays the length and other
statistics about I/O queues.
The onstat -g rea command

 Use the onstat -g rea option to monitor the number of threads in the ready queue.

Copyright© 2020 HCL Technologies Limited

The onstat -g ath command

The onstat -g ath command displays information about system threads and the virtual-processor classes.

Copyright© 2020 HCL Technologies Limited

The onstat -g glo command

Use the onstat -g glo command to display information about each virtual processor that is currently running, and cumulative statistics for each virtual processor class.

For an example of onstat -g glo output, see information about the onstat utility in the IBM® Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

The onstat -g ioq command

Use the onstat -g ioq option to determine whether you must allocate additional virtual processors. The command onstat -g ioq displays the length and other statistics
about I/O queues.

If the length of the I/O queue is growing, I/O requests are accumulating faster than the AIO virtual processors can process them. If the length of the I/O queue continues
to show that I/O requests are accumulating, consider adding AIO virtual processors.

For an example of onstat -g ioq output, see information in the IBM® Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 73

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The onstat -g rea command

Use the onstat -g rea option to monitor the number of threads in the ready queue.

If the number of threads in the ready queue is growing for a class of virtual processors (for example, the CPU class), you might be required to add more virtual processors
to your configuration.

For an example of onstat -g rea output, see information in the IBM® Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Monitor virtual processors with SMI tables

Query the sysvpprof table to obtain information about the virtual processors that are currently running.

This table contains the following columns.

Column Description

vpid Virtual-processor ID number

class Virtual-processor class

usercpu Minutes of user CPU used

syscpu Minutes of system CPU used

Copyright© 2020 HCL Technologies Limited

Shared memory

These topics describe the content of database server shared memory, the factors that determine the sizes of shared-memory areas, and how data moves into and out of
shared memory.

For information about how to change the database server configuration parameters that determine shared memory allocations, see Manage shared memory.

Shared memory
 Shared memory is an operating-system feature that allows the database server threads and processes to share data by sharing access to pools of memory.

Shared-memory use
 The database server uses shared memory to enable virtual processors and utilities to share data and to provide a fast communications channel for local client

applications that use IPC communication.
Processes that attach to shared memory

 A number of processes attach to the database server shared memory.
Resident portion of shared memory
The operating system, as it switches between the processes that run on the system, normally swaps the contents of portions of memory to disk. When a portion of
memory is designated as resident, however, it is not swapped to disk. Keeping frequently accessed data resident in memory improves performance because it
reduces the number of disk I/O operations that would otherwise be required to access that data.
Buffer pool portion of shared memory

 The buffer pool portion of shared memory contains the buffers that store dbspace pages that are read from disk.
Virtual portion of shared memory

 The virtual portion of shared memory is expandable by the database server and can be paged out to disk by the operating system.
Communications portion of shared memory (UNIX)

 The database server allocates memory for the IPC communication portion of shared memory if you configure at least one of your connections as an IPC shared-
memory connection. The database server performs this allocation when you set up shared memory.
Virtual-extension portion of shared memory

 The virtual-extension portion of shared memory contains additional virtual segments and virtual-extension segments.
Concurrency control

 The database server threads that run on the same virtual processor and on separate virtual processors share access to resources in shared memory.
Database server thread access to shared buffers

 Database server threads access shared buffers through a system of queues, using mutexes and locks to synchronize access and protect data.
Flush data to disk

 Writing a buffer to disk is called buffer flushing.
Buffer large-object data

 Simple large objects (TEXT or BYTE data) can be stored in either dbspaces or blobspaces. Smart large objects (CLOB or BLOB data) are stored only in sbspaces.
Memory use on 64-bit platforms

 With 64-bit addressing, you can have larger buffer pools to reduce the amount of I/O operations to obtain data from disks.

Related reference:
 Database server maintenance tasks

Copyright© 2020 HCL Technologies Limited

Shared memory

74 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Shared memory is an operating-system feature that allows the database server threads and processes to share data by sharing access to pools of memory.

The database server uses shared memory for the following purposes:

To reduce memory usage and disk I/O
To perform high-speed communication between processes

Shared memory enables the database server to reduce overall memory usage because the participating processes, in this case, virtual processors, do not require
maintaining private copies of the data that is in shared memory.

Shared memory reduces disk I/O, because buffers, which are managed as a common pool, are flushed on a database server-wide basis instead of a per-process basis.
Furthermore, a virtual processor can often avoid reading data from disk because the data is already in shared memory as a result of an earlier read operation. The
reduction in disk I/O reduces execution time.

Shared memory provides the fastest method of interprocess communication, because it processes read and write messages at the speed of memory transfers.

Copyright© 2020 HCL Technologies Limited

Shared-memory use

The database server uses shared memory to enable virtual processors and utilities to share data and to provide a fast communications channel for local client applications
that use IPC communication.

The following figure illustrates the shared-memory scheme.
Figure 1. How the database server uses shared memory

Shared-memory allocation
 The database server creates portions in shared memory to handle different processes.

Shared-memory size
 Each portion of the database server shared memory consists of one or more operating-system segments of memory, each one divided into a series of blocks that

are 4 KB in size and managed by a bitmap.
Action to take if SHMTOTAL is exceeded

 When the database server requires more memory than SHMTOTAL allows, a transient condition occurs, perhaps caused by a burst of activity that exceeds the
normal processing load.

Copyright© 2020 HCL Technologies Limited

Shared-memory allocation

The database server creates portions in shared memory to handle different processes.

The database server creates the following portions of shared memory:

The resident portion
The buffer pool portion
The virtual portion
The IPC communications or message portion
If the sqlhosts file specifies shared-memory communications, the database server allocates memory for the communications portion.

The virtual-extension portion

The database server adds operating-system segments, as required, to the virtual and virtual-extension portions of shared memory.

For more information about shared-memory settings for your platform, see the machine notes. The following figure shows the contents of each portion of shared memory.

Part VI: Administering 75

https://www.hcltech.com/
https://www.hcltech.com/

All database server virtual processors have access to the same shared-memory segments. Each virtual processor manages its work by maintaining its own set of pointers
to shared-memory resources such as buffers, locks, and latches. Virtual processors attach to shared memory when you take the database server from offline mode to
quiescent, administration, or online. The database server uses locks and latches to manage concurrent access to shared-memory resources by multiple threads.
Figure 1. Contents of database server shared memory

Copyright© 2020 HCL Technologies Limited

Shared-memory size

Each portion of the database server shared memory consists of one or more operating-system segments of memory, each one divided into a series of blocks that are 4 KB
in size and managed by a bitmap.

The header-line output by the onstat utility contains the size of the database server shared memory, expressed in KB. You can also use onstat -g seg to monitor how much
memory the database server allocates for each portion of shared memory. For information about how to use onstat, see the IBM® Informix® Administrator's Reference.

You can set the SHMTOTAL parameter in the onconfig file to limit the amount of memory overhead that the database server can place on your computer or node. The
SHMTOTAL parameter specifies the total amount of shared memory that the database server can use for all memory allocations. However, certain operations might fail if
the database server requires more memory than the amount set in SHMTOTAL. If this condition occurs, the database server displays the following message in the
message log:

size of resident + virtual segments x + y > z
 total allowed by configuration parameter SHMTOTAL

In addition, the database server returns an error message to the application that initiated the offending operation. For example, if the database server requires more
memory than you specify in SHMTOTAL while it tries to perform an operation such as an index build or a hash join, it returns an error message to the application that is
similar to one of the following messages:

-567 Cannot write sorted rows.
-116 ISAM error: cannot allocate memory.

After the database server sends these messages, it rolls back any partial results performed by the offending query.

Internal operations, such as page-cleaner or checkpoint activity, can also cause the database server to exceed the SHMTOTAL ceiling. When this situation occurs, the
database server sends a message to the message log. For example, suppose that the database server attempts and fails to allocate additional memory for page-cleaner
activity. As a consequence, the database server sends information to the message log that is similar to the following messages:

17:19:13 Assert Failed: WARNING! No memory available for page cleaners
17:19:13 Who: Thread(11, flush_sub(0), 9a8444, 1)
17:19:13 Results: Database server may be unable to complete a checkpoint
17:19:13 Action: Make more virtual memory available to database server
17:19:13 See Also: /tmp/af.c4

After the database server informs you about the failure to allocate additional memory, it rolls back the transactions that caused it to exceed the SHMTOTAL limit.
Immediately after the rollback, operations no longer fail from lack of memory, and the database server continues to process transactions as usual.

Copyright© 2020 HCL Technologies Limited

Action to take if SHMTOTAL is exceeded

When the database server requires more memory than SHMTOTAL allows, a transient condition occurs, perhaps caused by a burst of activity that exceeds the normal
processing load.

Only the operation that caused the database server to run out of memory temporarily fails. Other operations continue to be processed in a normal fashion.

If messages indicate on a regular basis that the database server requires more memory than SHMTOTAL allows, you have not configured the database server correctly.
Lowering DS_TOTAL_MEMORY or the buffers value in the BUFFERPOOL configuration parameter is one possible solution; increasing the value of SHMTOTAL is another.

76 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Processes that attach to shared memory

A number of processes attach to the database server shared memory.

The following processes attach to the database server shared memory:

Client-application processes that communicate with the database server through the shared-memory communications portion (ipcshm)
Database server virtual processors
Database server utilities

The following topics describe how each type of process attaches to the database server shared memory.

How a client attaches to the communications portion (UNIX)
 Client-application processes that communicate with the database server through shared memory (nettype ipcshm) attach transparently to the communications

portion of shared memory. System-library functions that are automatically compiled into the application enable it to attach to the communications portion of shared
memory.
How utilities attach to shared memory

 Database server utilities such as onstat, onmode, and ontape attach to shared memory.
How virtual processors attach to shared memory

 The database server virtual processors attach to shared memory during setup.

Copyright© 2020 HCL Technologies Limited

How a client attaches to the communications portion (UNIX)

Client-application processes that communicate with the database server through shared memory (nettype ipcshm) attach transparently to the communications portion of
shared memory. System-library functions that are automatically compiled into the application enable it to attach to the communications portion of shared memory.

For information about specifying a shared-memory connection, see Client/server communication, and Network virtual processors.

If the INFORMIXSHMBASE environment variable is not set, the client application attaches to the communications portion at an address that is platform-specific. If the
client application attaches to other shared-memory segments (not database server shared memory), the user can set the INFORMIXSHMBASE environment variable to
specify the address at which to attach the database server shared-memory communications segments. When you specify the address at which to address the shared-
memory communications segments, you can prevent the database server from colliding with the other shared-memory segments that your application uses. For
information about how to set the INFORMIXSHMBASE environment variable, see the IBM® Informix® Guide to SQL: Reference.

Related reference:
 Shared-memory connections (UNIX)

Environment variables for network connections

Copyright© 2020 HCL Technologies Limited

How utilities attach to shared memory

Database server utilities such as onstat, onmode, and ontape attach to shared memory.

The onstat, onmode, and ontape utilities attach to shared memory through one of the following files.

Operating system File

UNIX $INFORMIXDIR/etc/.infos.servername

Windows %INFORMIXDIR%\etc\.infos.servername

The variable servername is the value of the DBSERVERNAME parameter in the onconfig file. The utilities obtain the servername portion of the file name from the
INFORMIXSERVER environment variable.

The oninit process reads the onconfig file and creates the file .infos.servername when it starts the database server. The file is removed when the database server
terminates.

Copyright© 2020 HCL Technologies Limited

How virtual processors attach to shared memory

The database server virtual processors attach to shared memory during setup.

During this process, the database server must satisfy the following two requirements:

Ensure that all virtual processors can locate and access the same shared-memory segments
Ensure that the shared-memory segments are located in physical memory locations that are different than the shared-memory segments assigned to other
instances of the database server, if any, on the same computer

Part VI: Administering 77

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The database server uses two configuration parameters, SERVERNUM and SHMBASE, to meet these requirements.

When a virtual processor attaches to shared memory, it performs the following major steps:

Accesses the SERVERNUM parameter from the onconfig file
Uses SERVERNUM to calculate a shared-memory key value
Requests a shared-memory segment using the shared-memory key value
The operating system returns the shared-memory identifier for the first shared-memory segment.

Directs the operating system to attach the first shared-memory segment to its process space at SHMBASE
Attaches additional shared-memory segments, if required, to be contiguous with the first segment

The following topics describe how the database server uses the values of the SERVERNUM and SHMBASE configuration parameters in the process of attaching shared-
memory segments.

Obtain key values for shared-memory segments
 The values of the SERVERNUM configuration parameter and shmkey, an internally calculated number, determine the unique key value for each shared-memory

segment.
Specify where to attach the first shared-memory segment

 The SHMBASE parameter in the onconfig file specifies the virtual address where each virtual processor attaches the first, or base, shared-memory segment.
Attach additional shared-memory segments

 To attach additional shared-memory segments, a virtual processor requests them from the operating system in much the same way that it requested the first
segment.
Define the shared-memory lower-boundary address

 If your operating system uses a parameter to define the lower boundary address for shared memory, and the parameter is set incorrectly, it can prevent the shared-
memory segments from being attached contiguously.

Copyright© 2020 HCL Technologies Limited

Obtain key values for shared-memory segments

The values of the SERVERNUM configuration parameter and shmkey, an internally calculated number, determine the unique key value for each shared-memory segment.

To see the key values for shared-memory segments, run the onstat -g seg command. For more information, see the sections on SHMADD and the buffer pool in your IBM®
Informix® Performance Guide.

When a virtual processor requests that the operating system attach the first shared-memory segment, it supplies the unique key value to identify the segment. In return,
the operating system passes back a shared-memory segment identifier associated with the key value. Using this identifier, the virtual processor requests that the
operating system attach the segment of shared memory to the virtual-processor address space.

Copyright© 2020 HCL Technologies Limited

Specify where to attach the first shared-memory segment

The SHMBASE parameter in the onconfig file specifies the virtual address where each virtual processor attaches the first, or base, shared-memory segment.

Each virtual processor attaches to the first shared-memory segment at the same virtual address. This situation enables all virtual processors within the same database
server instance to reference the same locations in shared memory without calculating shared-memory addresses. All shared-memory addresses for an instance of the
database server are relative to SHMBASE.
Warning: Do not change the value of SHMBASE.
The value of SHMBASE is sensitive for the following reasons:

The specific value of SHMBASE depends on the platform and whether the processor is a 32-bit or 64-bit processor. The value of SHMBASE is not an arbitrary
number and is intended to keep the shared-memory segments safe when the virtual processor dynamically acquires additional memory space.
Different operating systems accommodate additional memory at different virtual addresses. Some architectures extend the highest virtual address of the virtual-
processor data segment to accommodate the next segment. In this case, the data segment might grow into the shared-memory segment.
Some versions of UNIX require the user to specify an SHMBASE parameter of virtual address zero. The zero address informs the UNIX kernel that the kernel picks
the best address at which to attach the shared-memory segments. However, not all UNIX architectures support this option. Moreover, on some systems, the
selection that the kernel makes might not be the best selection.

For information about SHMBASE, see your IBM® Informix® machine notes.

Copyright© 2020 HCL Technologies Limited

Attach additional shared-memory segments

To attach additional shared-memory segments, a virtual processor requests them from the operating system in much the same way that it requested the first segment.

Each virtual processor must attach to the total amount of shared memory that the database server has acquired. After a virtual processor attaches each shared-memory
segment, it calculates how much shared memory it has attached and how much remains. The database server facilitates this process by writing a shared-memory header
to the first shared-memory segment. Sixteen bytes into the header, a virtual processor can obtain the following data:

The total size of shared memory for this database server
The size of each shared-memory segment

78 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

For the additional segments, however, the virtual processor adds 1 to the previous value of shmkey. The virtual processor directs the operating system to attach the
segment at the address that results from the following calculation:

SHMBASE + (seg_size x number of attached segments)

The virtual processor repeats this process until it has acquired the total amount of shared memory.

Given the initial key value of (SERVERNUM * 65536) + shmkey, the database server can request up to 65,536 shared-memory segments before it can request a shared-
memory key value used by another database server instance on the same computer.

Copyright© 2020 HCL Technologies Limited

Define the shared-memory lower-boundary address

If your operating system uses a parameter to define the lower boundary address for shared memory, and the parameter is set incorrectly, it can prevent the shared-
memory segments from being attached contiguously.

The following figure illustrates the problem. If the lower-boundary address is less than the ending address of the previous segment plus the size of the current segment,
the operating system attaches the current segment at a point beyond the end of the previous segment. This action creates a gap between the two segments. Because
shared memory must be attached to a virtual processor so that it looks like contiguous memory, this gap creates problems. The database server receives errors when this
situation occurs.

To correct the problem, check the operating-system kernel parameter that specifies the lower-boundary address or reconfigure the kernel to allow larger shared-memory
segments.
Figure 1. Shared-memory lower-boundary address overview

Copyright© 2020 HCL Technologies Limited

Resident portion of shared memory

The operating system, as it switches between the processes that run on the system, normally swaps the contents of portions of memory to disk. When a portion of
memory is designated as resident, however, it is not swapped to disk. Keeping frequently accessed data resident in memory improves performance because it reduces the
number of disk I/O operations that would otherwise be required to access that data.

The database server requests that the operating system keep the virtual portions in physical memory when the following two conditions exist:

The operating system supports shared-memory residency.
The RESIDENT parameter in the onconfig file is set to -1 or a value that is greater than 0.

Warning: You must consider the use of shared memory by all applications when you consider whether to set the RESIDENT parameter to -1. Locking all shared memory for
the use of the IBM® Informix® database server can adversely affect the performance of other applications, if any, on the same computer.
The resident portion of the database server shared memory stores the following data structures that do not change in size while the database server is running:

Shared-memory header
Logical-log buffer
Physical-log buffer
Lock table

Shared-memory header
 The shared-memory header contains a description of all other structures in shared memory, including internal tables and the buffer pool, and pointers to the

locations of these structures.
Logical-log buffer

 The database server uses the logical log to store a record of changes to the database server data since the last dbspace backup. The logical log stores records that
represent logical units of work for the database server.
Physical-log buffer

 The database server uses the physical-log buffer to hold before-images of some of the modified dbspace pages.
High-Availability Data-Replication buffer

 Data replication requires two instances of the database server, a primary instance and a secondary instance, running on two computers.
Lock table

 A lock is created when a user thread writes an entry in the lock table. A single transaction can own multiple locks. The lock table is the pool of available locks.

Part VI: Administering 79

https://www.hcltech.com/
https://www.hcltech.com/

Related information:
RESIDENT configuration parameter

Copyright© 2020 HCL Technologies Limited

Shared-memory header

The shared-memory header contains a description of all other structures in shared memory, including internal tables and the buffer pool, and pointers to the locations of
these structures.

When a virtual processor first attaches to shared memory, it reads address information in the shared-memory header for directions to all other structures.

The size of the shared-memory header is about 200 KB, but the size varies depending on the computer platform. You cannot tune the size of the header.

Copyright© 2020 HCL Technologies Limited

Logical-log buffer

The database server uses the logical log to store a record of changes to the database server data since the last dbspace backup. The logical log stores records that
represent logical units of work for the database server.

The logical log contains the following five types of log records, in addition to many others:

SQL data definition statements for all databases
SQL data manipulation statements for databases that were created with logging
Record of a change to the logging status of a database
Record of a checkpoint
Record of a change to the configuration

The database server uses only one of the logical-log buffers at a time. This buffer is the current logical-log buffer. Before the database server flushes the current logical-
log buffer to disk, it makes the second logical-log buffer the current one so that it can continue writing while the first buffer is flushed. If the second logical-log buffer fills
before the first one finishes flushing, the third logical-log buffer becomes the current one. This process is illustrated in the following figure.
Figure 1. The logical-log buffer and its relation to the logical-log files on disk

For a description of how the database server flushes the logical-log buffer, see Flush the logical-log buffer.

The LOGBUFF configuration parameter specifies the size of the logical-log buffers. Small buffers can create problems if you store records larger than the size of the buffers
(for example, TEXT or BYTE data in dbspaces). The recommended value for the size of a logical log buffer is 64 KB. Whenever the setting is less than the recommended
value, the database server suggests a value during server startup. For the possible values that you can assign to this configuration parameter, see the IBM® Informix®
Administrator's Reference.

For information about the affect of TEXT and BYTE data on shared memory buffers, see Buffer large-object data.

Copyright© 2020 HCL Technologies Limited

Physical-log buffer

The database server uses the physical-log buffer to hold before-images of some of the modified dbspace pages.

The before-images in the physical log and the logical-log records enable the database server to restore consistency to its databases after a system failure.

The physical-log buffer is actually two buffers. Double buffering permits the database server processes to write to the active physical-log buffer while the other buffer is
being flushed to the physical log on disk. For a description of how the database server flushes the physical-log buffer, see Flush the physical-log buffer. For information
about monitoring the physical-log file, see Monitor physical and logical-logging activity.

The PHYSBUFF parameter in the onconfig file specifies the size of the physical-log buffers. A write to the physical-log buffer writes exactly one page. If the specified size
of the physical-log buffer is not evenly divisible by the page size, the database server rounds the size down to the nearest value that is evenly divisible by the page size.
Although some operations require the buffer to be flushed sooner, in general the database server flushes the buffer to the physical-log file on disk when the buffer fills.
Thus, the size of the buffer determines how frequently the database server must flush it to disk.

The default value for the physical log buffer size is 512 KB. If you decide to use a smaller value, the database server displays a message indicating that optimal
performance might not be attained. Using a physical log buffer smaller than 512 KB affects performance only, not transaction integrity.

80 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

For more information about this configuration parameter, see the IBM® Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

High-Availability Data-Replication buffer

Data replication requires two instances of the database server, a primary instance and a secondary instance, running on two computers.

If you implement data replication for your database server, the primary database server holds logical-log records in the data replication buffers before it sends them to the
secondary database server. A data replication buffer is always the same size as the logical-log buffer. For information about the size of the logical-log buffer, see the
preceding topic, Logical-log buffer. For more information about how the data replication buffer is used, see How data replication works.

Copyright© 2020 HCL Technologies Limited

Lock table

A lock is created when a user thread writes an entry in the lock table. A single transaction can own multiple locks. The lock table is the pool of available locks.

For an explanation of locking and the SQL statements associated with locking, see the IBM® Informix® Guide to SQL: Tutorial.

The following information, which is stored in the lock table, describes the lock:

The address of the transaction that owns the lock
The type of lock (exclusive, update, shared, byte, or intent)
The page or rowid that is locked
The table space where the lock is placed
Information about the bytes locked (byte-range locks for smart large objects):

Smart-large-object ID
Offset into the smart large object where the locked bytes begin
The number of bytes locked, starting at the offset

To specify the initial size of the lock table, set the LOCKS configuration parameter. For information about using the LOCKS configuration parameter to specify the number of
locks for a session, see the topics about configuration parameters in the IBM Informix Administrator's Reference and the topics about configuration effects on memory
utilization in your IBM Informix Performance Guide.

If the number of locks allocated by sessions exceeds the value specified in the LOCKS configuration parameter, the database server doubles the size of the lock table, up
to 15 times. The database server increases the size of the lock table by attempting to double the lock table on each increase. However, the amount added during each
increase is limited to a maximum value. For 32-bit platforms, a maximum of 100,000 locks can be added during each increase. Therefore, the total maximum locks
allowed for 32-bit platforms is 8,000,000 (maximum number of starting locks) + 99 (maximum number of dynamic lock table extensions) x 100,000 (maximum number of
locks added per lock table extension). For 64-bit platforms, a maximum of 1,000,000 locks can be added during each increase. Therefore, the total maximum locks
allowed is 500,000,000 (maximum number of starting locks) + 99 (maximum number of dynamic lock table extensions) x 1,000,000 (maximum number of locks added
per lock table extension).

Use the DEF_TABLE_LOCKMODE configuration parameter to set the lock mode to page or row for new tables.

Locks can prevent sessions from reading data until after a concurrent transaction is committed or rolled back. For databases created with transaction logging, you can use
the USELASTCOMMITTED configuration parameter in the onconfig file to specify whether the database server uses the last committed version of the data. The last
committed version of the data is the version of the data that existed before any updates occurred. The value you set with the USELASTCOMMITTED configuration
parameter overrides the isolation level that is specified in the SET ISOLATION TO COMMITTED READ statement of SQL. For more information about using the
USELASTCOMMITTED configuration parameter, see the topics about configuration parameters in the IBM Informix Administrator's Reference.

For more information about using and monitoring locks, see the topics about locking in your IBM Informix Performance Guide and the IBM Informix Guide to SQL: Tutorial.

Copyright© 2020 HCL Technologies Limited

Buffer pool portion of shared memory

The buffer pool portion of shared memory contains the buffers that store dbspace pages that are read from disk.

The following figure illustrates the shared-memory header and the buffer pool.
Figure 1. Shared-memory buffer pool

Part VI: Administering 81

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

You use the BUFFERPOOL configuration parameter to specify information about a buffer pool, including the number of buffers in the buffer pool or the overall size of the
buffer pool. Each buffer is the size of one database server page. Too few buffers can severely affect performance. You can set the BUFFERPOOL configuration parameter to
allow the database server to automatically increase the number of buffers as needed to improve performance. Otherwise, you must monitor the database server and tune
the number of buffers to determine an acceptable value.

A buffer pool manages one size of pages. You need a different buffer pool for each page size that is used by storage spaces in the database server. The database server
automatically creates the required buffer pools. For example, if you create the first dbspace that has a page size of 6 KB, the database server creates a buffer pool to
cache the default number of 6 KB pages in memory. You can control the properties of buffer pools with the BUFFERPOOL configuration parameter.

If the database server is in online, quiescent, or administration mode, you can also use the onparams -b command to add a buffer pool of a different size. When you use
the onparams -b command, the information that you specify is transferred automatically to the onconfig file as a new entry of the BUFFERPOOL configuration parameter.

In general, the database server performs I/O in full-page units, the size of a buffer. The exceptions are I/O performed from big buffers, from blobspace buffers, or from
lightweight I/O buffers.

Automatic LRU (least recently used) tuning affects all buffer pools and adjusts the lru_min_dirty and lru_max_dirty values that can be explicitly set by the BUFFERPOOL
configuration parameter.

The status of the buffers is tracked through the buffer table. Within shared memory, buffers are organized into FIFO/LRU buffer queues. Buffer acquisition is managed by
mutexes and lock-access information.

The onstat -b command shows information about the buffers.

Related concepts:
 Thread data

Mutexes
Related reference:

 Creation of blobpage buffers
Related information:

 BUFFERPOOL configuration parameter
onstat -b command: Print buffer information for buffers in use
The BUFFERPOOL configuration parameter and memory utilization
onparams -b: Add a buffer pool

Copyright© 2020 HCL Technologies Limited

Virtual portion of shared memory

The virtual portion of shared memory is expandable by the database server and can be paged out to disk by the operating system.

As the database server executes, it automatically attaches additional operating-system segments, as necessary, to the virtual portion.

Management of the virtual portion of shared memory
 The database server uses memory pools to track memory allocations that are similar in type and size.

Components of the virtual portion of shared memory
 The virtual portion of shared memory stores a variety of data.

Data-distribution cache
 The database server uses distribution statistics generated by the UPDATE STATISTICS statement in the MEDIUM or HIGH mode to determine the query plan with

the lowest cost.

Copyright© 2020 HCL Technologies Limited

Management of the virtual portion of shared memory

The database server uses memory pools to track memory allocations that are similar in type and size.

Keeping related memory allocations in a pool helps to reduce memory fragmentation. It also enables the database server to free a large allocation of memory at one time,
as opposed to freeing each piece that makes up the pool.

All sessions have one or more memory pools. When the database server requires memory, it looks first in the specified pool. If insufficient memory is available in a pool to
satisfy a request, the database server adds memory from the system pool. If the database server cannot find enough memory in the system pool, it dynamically allocates
more segments to the virtual portion.

The database server allocates virtual shared memory for each of its subsystems (session pools, stacks, heaps, control blocks, system catalog, SPL routine caches, SQL
statement cache, sort pools, and message buffers) from pools that track free space through a linked list. When the database server allocates a portion of memory, it first
searches the pool free-list for a fragment of sufficient size. If it finds none, it brings new blocks into the pool from the virtual portion. When memory is freed, it goes back to
the pool as a free fragment and remains there until the pool is deleted. When the database server starts a session for a client application, for example, it allocates memory
for the session pool. When the session terminates, the database server returns the allocated memory as free fragments.

Size of the virtual portion of shared memory
 Use configuration parameters to specify the initial size of the virtual portion of shared memory, the size of segments to be added later, and the amount of memory

available for PDQ queries.

Copyright© 2020 HCL Technologies Limited

82 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Size of the virtual portion of shared memory

Use configuration parameters to specify the initial size of the virtual portion of shared memory, the size of segments to be added later, and the amount of memory
available for PDQ queries.

To specify the initial size of the virtual shared-memory portion, set the SHMVIRTSIZE configuration parameter. To specify the size of segments that are added later to the
virtual shared memory, set the SHMADD and the EXTSHMADD configuration parameter.

To specify the amount of memory available for PDQ queries, set the DS_TOTAL_MEMORY parameter.

If you want to increase the amount of memory that is available for a query that is not a PDQ query and the PDQ priority is set to 0 (zero), you can change the amount in any
of the following ways:

Set the DS_NONPDQ_QUERY_MEM configuration parameter
Run the onmode -wm or the onmode -wf command

For example, if you use the onmode utility, specify a value as shown in the following example:

onmode -wf DS_NONPDQ_QUERY_MEM=500

The minimum value for DS_NONPDQ_QUERY_MEM is 128 KB. The maximum supported value is 25 percent of the value of DS_TOTAL_MEMORY.
Related reference:

 Add a segment to the virtual portion of shared memory
Related information:

 DS_TOTAL_MEMORY configuration parameter
DS_NONPDQ_QUERY_MEM configuration parameter
SHMVIRTSIZE configuration parameter
SHMADD configuration parameter
EXTSHMADD configuration parameter

Copyright© 2020 HCL Technologies Limited

Components of the virtual portion of shared memory

The virtual portion of shared memory stores a variety of data.

The following data is stored in the virtual portion of shared memory:

Internal tables
Big buffers
Session data
Thread data (stacks and heaps)
Data-distribution cache
Dictionary cache
SPL routine cache
SQL statement cache
Sorting pool
Global pool

Shared-memory internal tables
 The database server shared memory contains seven internal tables that track shared-memory resources.

Big buffers
 A big buffer is a single buffer that is made up of several pages. The actual number of pages is platform-dependent.

Session data
 When a client application requests a connection to the database server, the database server begins a session with the client and creates a data structure for the

session in shared memory. The created data structure is called the session-control block.
Thread data

 When a client connects to the database server, in addition to starting a session, the database server starts a primary session thread and creates a thread-control
block for it in shared memory.

Copyright© 2020 HCL Technologies Limited

Shared-memory internal tables

The database server shared memory contains seven internal tables that track shared-memory resources.

The shared-memory internal tables are as follows:

Buffer table
Chunk table
Dbspace table
Page-cleaner table
Tblspace table
Transaction table
User table

Part VI: Administering 83

https://www.hcltech.com/
https://www.hcltech.com/

Buffer table
The buffer table tracks the addresses and status of the individual buffers in the shared-memory pool.
Chunk table
The chunk table tracks all chunks in the database server.
Dbspace table
The dbspace table tracks storage spaces in the database server.
Page-cleaner table
The page-cleaner table tracks the state and location of each of the page-cleaner threads.
Tblspace table
he tblspace table tracks all active tblspaces in a database server instance.
Transaction table
The transaction table tracks all transactions in the database server.
User table
The user table tracks all user threads and system threads.

Copyright© 2020 HCL Technologies Limited

Buffer table

The buffer table tracks the addresses and status of the individual buffers in the shared-memory pool.

When a buffer is used, it contains an image of a data or index page from disk. For more information about the purpose and content of a disk page, see Pages.

Each buffer in the buffer table contains the following control information, which is required for buffer management:

Buffer status
Buffer status is described as empty, unmodified, or modified. An unmodified buffer contains data, but the data can be overwritten. A modified (dirty) buffer contains
data that must be written to disk before it can be overwritten.

Current lock-access level
Buffers receive lock-access levels depending on the type of operation that the user thread is executing. The database server supports two buffer lock-access levels:
shared and exclusive.

Threads waiting for the buffer
Each buffer header maintains a list of the threads that are waiting for the buffer and the lock-access level that each waiting thread requires.

Each database server buffer has one entry in the buffer table.

For information about the database server buffers, see Resident portion of shared memory. For information about how to monitor the buffers, see Monitor buffers.

The database server determines the number of entries in the buffer-table hash table, based on the number of allocated buffers. The maximum number of hash values is
the largest power of 2 that is less than the value of buffers, which is specified in one of the BUFFERPOOL configuration parameter fields.

Copyright© 2020 HCL Technologies Limited

Chunk table

The chunk table tracks all chunks in the database server.

If mirroring has been enabled, a corresponding mirror chunk table is also created when shared memory is set up. The mirror chunk table tracks all mirror chunks.

The chunk table in shared memory contains information that enables the database server to locate chunks on disk. This information includes the number of the initial
chunk and the number of the next chunk in the dbspace. Flags also describe chunk status: mirror or primary; offline, online, or recovery mode; and whether this chunk is
part of a blobspace. For information about monitoring chunks, see Monitor chunks.

The maximum number of entries in the chunk table might be limited by the maximum number of file descriptors that your operating system allows per process. You can
usually specify the number of file descriptors per process with an operating-system kernel-configuration parameter. For details, consult your operating-system manuals.

Copyright© 2020 HCL Technologies Limited

Dbspace table

The dbspace table tracks storage spaces in the database server.

The dbspace-table information includes the following information about each dbspace:

Dbspace number
Dbspace name and owner
Dbspace mirror status (mirrored or not)
Date and time that the dbspace was created

If the storage space is a blobspace, flags indicate the media where the blobspace is located: magnetic or removable. If the storage space is an sbspace, it contains internal
tables that track metadata for smart large objects and large contiguous blocks of pages containing user data.

For information about monitoring dbspaces, see Monitor disk usage.

84 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Page-cleaner table

The page-cleaner table tracks the state and location of each of the page-cleaner threads.

The number of page-cleaner threads is specified by the CLEANERS configuration parameter in the onconfig file. For advice on how many page-cleaner threads to specify,
see the chapter on configuration parameters in the IBM® Informix® Administrator's Reference.

The page-cleaner table always contains 128 entries, regardless of the number of page-cleaner threads specified by the CLEANERS parameter in the onconfig file.

For information about monitoring the activity of page-cleaner threads, see information about the onstat -F option in the IBM Informix Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Tblspace table

he tblspace table tracks all active tblspaces in a database server instance.

TAn active tblspace is one that is currently in use by a database session. Each active table accounts for one entry in the tblspace table. Active tblspaces include database
tables, temporary tables, and internal control tables, such as system catalog tables. Each tblspace table entry includes header information about the tblspace, the
tblspace name, and pointers to the tblspace tblspace in dbspaces on disk. (The shared-memory active tblspace table is different from the tblspace tblspace.) For
information about monitoring tblspaces, see Monitor tblspaces and extents.

The database server manages one tblspace table for each dbspace.

Copyright© 2020 HCL Technologies Limited

Transaction table

The transaction table tracks all transactions in the database server.

Tracking information derived from the transaction table is shown in the onstat -x display. For an example of the output that onstat -x displays, see monitoring transactions
in your IBM® Informix® Performance Guide.

The database server automatically increases the number of entries in the transaction table, up to a maximum of 32,767, based on the number of current transactions.

For more information about transactions and the SQL statements that you use with transactions, see the IBM Informix Guide to SQL: Tutorial, the IBM Informix Guide to
SQL: Reference, and the IBM Informix Guide to SQL: Syntax.

UNIX only: The transaction table also specifically supports the X/Open environment. Support for the X/Open environment requires TP/XA.

Copyright© 2020 HCL Technologies Limited

User table

The user table tracks all user threads and system threads.

Each client session has one primary thread and zero-to-many secondary threads, depending on the level of parallelism specified. System threads include one to monitor
and control checkpoints, one to process onmode commands, the B-tree scanner threads, and page-cleaner threads.

The database server increases the number of entries in the user table as necessary. You can monitor user threads with the onstat -u command.

Copyright© 2020 HCL Technologies Limited

Big buffers

A big buffer is a single buffer that is made up of several pages. The actual number of pages is platform-dependent.

The database server allocates big buffers to improve performance on large reads and writes. The database server uses a big buffer whenever it writes to disk multiple
pages that are physically contiguous. For example, the database server tries to use a big buffer to perform a series of sequential reads (light scans) or to read into shared
memory simple large objects that are stored in a dbspace.

Users do not have control over the big buffers. If the database server uses light scans, it allocates big buffers from shared memory.

For information about monitoring big buffers with the onstat command, see the topics about configuration effects on I/O activity in your IBM® Informix® Performance
Guide.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 85

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Session data

When a client application requests a connection to the database server, the database server begins a session with the client and creates a data structure for the session in
shared memory. The created data structure is called the session-control block.

The session-control block stores the session ID, the user ID, the process ID of the client, the name of the host computer, and various status flags.

The database server allocates memory for session data as necessary.

You can impose restrictions on the memory allocated for sessions by setting the SESSION_LIMIT_MEMORY configuration parameter to specify the maximum amount of
memory that a session can allocate. The limits do not apply to a user who holds administrative privileges, such as user informix or a DBSA user.

Related information:
 SESSION_LIMIT_MEMORY configuration parameter

onstat -g ses command: Print session-related information

Copyright© 2020 HCL Technologies Limited

Thread data

When a client connects to the database server, in addition to starting a session, the database server starts a primary session thread and creates a thread-control block for
it in shared memory.

The database server also starts internal threads on its own behalf and creates thread-control blocks for them. When the database server switches from running one thread
to running another one (a context switch), it saves information about the thread— such as the register contents, program counter (address of the next instruction), and
global pointers—in the thread-control block. For more information about the thread-control block and how it is used, see Context switching.

The database server allocates memory for thread-control blocks as necessary.

Stacks
 Each thread in the database server has its own stack area in the virtual portion of shared memory.

Heaps
 Each thread has a heap to hold data structures that it creates while it is running.

Related concepts:
 Buffer pool portion of shared memory

Copyright© 2020 HCL Technologies Limited

Stacks

Each thread in the database server has its own stack area in the virtual portion of shared memory.

For a description of how threads use stacks, see Stacks. For information about how to monitor the size of the stack for a session, see monitoring sessions and threads
section in your IBM® Informix® Performance Guide.

The size of the stack space for user threads is specified by the STACKSIZE parameter in the onconfig file. You can change the size of the stack for all user threads, if
necessary, by changing the value of STACKSIZE.

You can use the INFORMIXSTACKSIZE environment variable to override the STACKSIZE value in the server configuration file. Set INFORMIXSTACKSIZE in the environment
and recycle the instance.

Related information:
 STACKSIZE configuration parameter

Copyright© 2020 HCL Technologies Limited

Heaps

Each thread has a heap to hold data structures that it creates while it is running.

A heap is dynamically allocated when the thread is created. The size of the thread heap is not configurable.

Copyright© 2020 HCL Technologies Limited

Data-distribution cache

The database server uses distribution statistics generated by the UPDATE STATISTICS statement in the MEDIUM or HIGH mode to determine the query plan with the
lowest cost.

86 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

When the database server accesses the distribution statistics for a specific column the first time, it reads the distribution statistics from the sysdistrib system catalog
table on disk and stores the statistics in the data-distribution cache. These statistics can then be read for the optimization of subsequent queries that access the column.

Performance improves if these statistics are efficiently stored and accessed from the data-distribution cache. You can configure the size of the data-distribution cache
with the DS_HASHSIZE and DS_POOLSIZE configuration parameters. For information about changing the default size of the data-distribution cache, see the topics about
queries and the query optimizer in your IBM® Informix® Performance Guide.

Dictionary cache
 When a session executes an SQL statement that requires access to a system catalog table, the database server reads data from the system catalog tables.

SQL statement cache
 The SQL statement cache reduces memory usage and preparation time for queries.

Sort memory
 The amount of virtual shared memory that the database server allocates for a sort depends on the number of rows to be sorted and the size of the row, along with

other factors.
SPL routine and the UDR cache

 The database server converts an SPL routine to executable format and stores the routine in the UDR cache, where it can be accessed by any session.
Global pool

 The global pool stores structures that are global to the database server.

Copyright© 2020 HCL Technologies Limited

Dictionary cache

When a session executes an SQL statement that requires access to a system catalog table, the database server reads data from the system catalog tables.

The database server stores the catalog data for each queried table in structures that it can access more efficiently during subsequent queries on that table. These
structures are created in the virtual portion of shared memory for use by all sessions. These structures constitute the dictionary cache.

You can configure the size of the dictionary cache with the DD_HASHSIZE and DD_HASHMAX configuration parameters. For more information about these parameters, see
the chapter on configuration effects on memory in your IBM® Informix® Performance Guide.

Copyright© 2020 HCL Technologies Limited

SQL statement cache

The SQL statement cache reduces memory usage and preparation time for queries.

The database server uses the SQL statement cache to store optimized SQL statements that a user runs. When users run a statement that is stored in the SQL statement
cache, the database server does not optimize the statement again, so performance improves.

For more information, see Set SQL statement cache parameters. For details on how these parameters affect the performance of the SQL statement cache, see the IBM®
Informix® Performance Guide.

Copyright© 2020 HCL Technologies Limited

Sort memory

The amount of virtual shared memory that the database server allocates for a sort depends on the number of rows to be sorted and the size of the row, along with other
factors.

The following database operations can use large amounts of the virtual portion of shared memory to sort data:

Decision-support queries that involve joins, groups, aggregates and sort operations
Index builds
UPDATE STATISTICS statement in SQL

For information about parallel sorts, see your IBM® Informix® Performance Guide.

Copyright© 2020 HCL Technologies Limited

SPL routine and the UDR cache

The database server converts an SPL routine to executable format and stores the routine in the UDR cache, where it can be accessed by any session.

When a session is required to access an SPL routine or other user-defined routine for the first time, the database server reads the definition from the system catalog tables
and stores the definition in the UDR cache.

You can configure the size of the UDR cache with the PC_HASHSIZE and PC_POOLSIZE configuration parameters. For information about changing the default size of the
UDR cache, see the chapter on queries and the query optimizer in your IBM® Informix® Performance Guide.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 87

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Global pool

The global pool stores structures that are global to the database server.

The global pool contains the message queues where poll threads for network communications deposit messages from clients. The sqlexec threads pick up the messages
from the global pool and process them.

For more information, see the sections on network buffer pools and virtual portion of shared memory in your IBM® Informix® Performance Guide.

Copyright© 2020 HCL Technologies Limited

Communications portion of shared memory (UNIX)

The database server allocates memory for the IPC communication portion of shared memory if you configure at least one of your connections as an IPC shared-memory
connection. The database server performs this allocation when you set up shared memory.

The communications portion contains the message buffers for local client applications that use shared memory to communicate with the database server.

The size of the communications portion of shared memory equals approximately 12 KB multiplied by the expected number of connections required for shared-memory
communications (nettype ipcshm). If nettype ipcshm is not present, the expected number of connections defaults to 50. For information about how a client attaches to
the communications portion of shared memory, see How a client attaches to the communications portion (UNIX).

Related reference:
 Shared-memory connections (UNIX)

Copyright© 2020 HCL Technologies Limited

Virtual-extension portion of shared memory

The virtual-extension portion of shared memory contains additional virtual segments and virtual-extension segments.

Virtual-extension segments contain thread heaps for DataBlade modules and user-defined routines that run in user-defined virtual processors.

The EXTSHMADD configuration parameter sets the size of virtual-extension segments. The SHMADD and SHMTOTAL configuration parameters apply to the virtual-
extension portion of shared memory, just as they do to the other portions of shared memory.

Copyright© 2020 HCL Technologies Limited

Concurrency control

The database server threads that run on the same virtual processor and on separate virtual processors share access to resources in shared memory.

When a thread writes to shared memory, it uses mechanisms called mutexes and locks to prevent other threads from simultaneously writing to the same area. A mutex
gives a thread the right to access a shared-memory resource. A lock prevents other threads from writing to a buffer until the thread that placed the lock is finished with the
buffer and releases the lock.

Shared-memory mutexes
 The database server uses mutexes to coordinate threads as they attempt to modify data in shared memory. Every modifiable shared-memory resource is associated

with a mutex.
Shared-memory buffer locks

 A primary benefit of shared memory is the ability of database server threads to share access to disk pages stored in the shared-memory buffer pool. The database
server maintains thread isolation while it achieves this increased concurrency through a strategy for locking the data buffers.

Copyright© 2020 HCL Technologies Limited

Shared-memory mutexes

The database server uses mutexes to coordinate threads as they attempt to modify data in shared memory. Every modifiable shared-memory resource is associated with a
mutex.

Before a thread can modify a shared-memory resource, it must first acquire the mutex associated with that resource. After the thread acquires the mutex, it can modify
the resource. When the modification is complete, the thread releases the mutex.

If a thread tries to obtain a mutex and finds that it is held by another thread, the incoming thread must wait for the mutex to be released.

For example, two threads can attempt to access the same slot in the chunk table, but only one can acquire the mutex associated with the chunk table. Only the thread that
holds the mutex can write its entry in the chunk table. The second thread must wait for the mutex to be released and then acquire it.

For information about monitoring mutexes (which are also called latches), see Monitor the shared-memory profile and latches.

88 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Shared-memory buffer locks

A primary benefit of shared memory is the ability of database server threads to share access to disk pages stored in the shared-memory buffer pool. The database server
maintains thread isolation while it achieves this increased concurrency through a strategy for locking the data buffers.

Types of buffer locks
 The database server uses two types of locks to manage access to shared-memory buffers.

Copyright© 2020 HCL Technologies Limited

Types of buffer locks

The database server uses two types of locks to manage access to shared-memory buffers.

The two types of locks are:

Share locks
Exclusive locks

Each of these lock types enforces the required level of thread isolation during execution.

Share lock
 A buffer is in share mode, or has a share lock, if multiple threads have access to the buffer to read the data but none intends to modify the data.

Exclusive lock
 A buffer is in exclusive mode, or has an exclusive lock, if a thread demands exclusive access to the buffer.

Copyright© 2020 HCL Technologies Limited

Share lock

A buffer is in share mode, or has a share lock, if multiple threads have access to the buffer to read the data but none intends to modify the data.

Copyright© 2020 HCL Technologies Limited

Exclusive lock

A buffer is in exclusive mode, or has an exclusive lock, if a thread demands exclusive access to the buffer.

All other thread requests that access the buffer are placed in the wait queue. When the executing thread is ready to release the exclusive lock, it wakes the next thread in
the wait queue.

Copyright© 2020 HCL Technologies Limited

Database server thread access to shared buffers

Database server threads access shared buffers through a system of queues, using mutexes and locks to synchronize access and protect data.

FIFO/LRU queues
 A buffer holds data for the purpose of caching. The database server uses the least-recently used (LRU) queues to replace the cached data. IBM® Informix® also has

a first-in first-out (FIFO) queue. When you set the number of LRU queues, you are actually setting the number of FIFO/LRU queues.
Read-ahead operations

 The database server automatically reads several pages ahead of the current pages that are being processed for a query, unless you disable automatic read ahead
operations. Reading ahead enables applications to run faster because they spend less time waiting for disk I/O.
Database server thread access to buffer pages

 The database server uses shared-lock buffering to allow more than one database server thread to access the same buffer concurrently in shared memory.

Copyright© 2020 HCL Technologies Limited

FIFO/LRU queues

A buffer holds data for the purpose of caching. The database server uses the least-recently used (LRU) queues to replace the cached data. IBM® Informix® also has a first-
in first-out (FIFO) queue. When you set the number of LRU queues, you are actually setting the number of FIFO/LRU queues.

Part VI: Administering 89

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Use the BUFFERPOOL configuration parameter to specify information about the buffer pool, including information about the number of LRU queues to create when
database server shared memory is set up and values for lru_min_dirty and lru_max_dirty, which control how frequently the shared-memory buffers are flushed to disk.

To improve transaction throughput, increase the lru_min_dirty and lru_max_dirty values. However, do not change the gap between the lru_min_dirty and lru_max_dirty
values. If the AUTO_LRU_TUNING configuration parameter is enabled, the values of the lru_max_dirty and lru_min_dirty fields are reset automatically as needed to
improve performance.

Components of LRU queue
 Each LRU queue is composed of a pair of linked lists.

Pages in least-recently used order
 When the database server processes a request to read a page from disk, it must decide which page to replace in memory.

LRU queues and buffer-pool management
 Before processing begins, all page buffers are empty, and every buffer is represented by an entry in one of the FLRU queues.

Number of LRU queues to configure
 Multiple LRU queues reduce user-thread contention and allow multiple cleaners to flush pages from the queues so that the percentage of dirty pages is maintained

at an acceptable level.
Number of cleaners to allocate

 You must configure one cleaner for each disk that your applications update frequently. However, you must also consider the length of your LRU queues and
frequency of checkpoints.
Number of pages added to the MLRU queues

 The page-cleaner threads flush the modified buffers in an MLRU queue to disk. To specify the point at which cleaning begins, use the BUFFERPOOL configuration
parameter to specify a value for lru_max_dirty, which limits the number of page buffers that can be appended to an MLRU queue.
End of MLRU cleaning

 You can also specify the point at which MLRU cleaning can end.

Related information:
 AUTO_LRU_TUNING configuration parameter

BUFFERPOOL configuration parameter

Copyright© 2020 HCL Technologies Limited

Components of LRU queue

Each LRU queue is composed of a pair of linked lists.

The linked list pairs are as follows:

FLRU (free least-recently used) list, which tracks free or unmodified pages in the queue
MLRU (modified least-recently used) list, which tracks modified pages in the queue

The free or unmodified page list is called the FLRU queue of the queue pair, and the modified page list is called the MLRU queue. The two separate lists eliminate the task
of searching a queue for a free or unmodified page. The following figure illustrates the structure of the LRU queues.
Figure 1. LRU queue

Copyright© 2020 HCL Technologies Limited

Pages in least-recently used order

When the database server processes a request to read a page from disk, it must decide which page to replace in memory.

Rather than select a page randomly, the database server assumes that recently referenced pages are more likely to be referenced in the future than pages that it has not
referenced for some time. Thus, rather than replacing a recently accessed page, the database server replaces a least-recently accessed page. By maintaining pages in
least-recently to most-recently used order, the database server can easily locate the least-recently used pages in memory.

Copyright© 2020 HCL Technologies Limited

LRU queues and buffer-pool management

Before processing begins, all page buffers are empty, and every buffer is represented by an entry in one of the FLRU queues.

The buffers are evenly distributed among the FLRU queues. To calculate the number of buffers in each queue, divide the total number of buffers by the number of LRU
queues. The number of buffers and LRU queues are specified in the BUFFERPOOL configuration parameter.

When a user thread is required to acquire a buffer, the database server randomly selects one of the FLRU queues and uses the oldest or least-recently used entry in the
list. If the least-recently used page can be latched, that page is removed from the queue.

90 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

If the FLRU queue is locked, and the end page cannot be latched, the database server randomly selects another FLRU queue.

If a user thread is searching for a specific page in shared memory, it obtains the LRU-queue location of the page from the control information stored in the buffer table.

After an executing thread finishes its work, it releases the buffer. If the page has been modified, the buffer is placed at the most-recently used end of an MLRU queue. If
the page was read but not modified, the buffer is returned to the FLRU queue at its most-recently used end. For information about how to monitor LRU queues, see
Monitor buffers.

Copyright© 2020 HCL Technologies Limited

Number of LRU queues to configure

Multiple LRU queues reduce user-thread contention and allow multiple cleaners to flush pages from the queues so that the percentage of dirty pages is maintained at an
acceptable level.

You specify the number of LRU queues by setting the lrus value in the BUFFERPOOL configuration parameter. The default number of LRU queues depends on the number
of CPUs on your computer:

If you have a uniprocessor computer, the default value of the lrus field is 8.
If you have a multiprocessor computer and the MULTIPROCESSOR configuration parameter is enabled, the default value of the lrus field is the greater of 8 or the
number of CPU virtual processors.

After you provide an initial value for the lrus field in the BUFFERPOOL configuration parameter, monitor your LRU queues with the onstat -R command. If you find that the
percentage of dirty LRU queues consistently exceeds the value of the lru_max_dirty field in the BUFFERPOOL configuration parameter, increase the value of the lrus field
to add more LRU queues.

For example, if the value of the lru_max_dirty field is 70 and your LRU queues are consistently 75 percent dirty, you can increase the value of the lrus field. If you increase
the number of LRU queues, you shorten the length of the queues, which reduces the work of the page cleaners. However, you must allocate enough page cleaners with the
CLEANERS configuration parameter.

Related information:
 LRU tuning

BUFFERPOOL configuration parameter

Copyright© 2020 HCL Technologies Limited

Number of cleaners to allocate

You must configure one cleaner for each disk that your applications update frequently. However, you must also consider the length of your LRU queues and frequency of
checkpoints.

Another factor that influences whether page cleaners keep up with the number of pages that require cleaning is whether you have enough page-cleaner threads allocated.
The percent of dirty pages might exceed the BUFFERPOOL value specified for lru_max_dirty in some queues because no page cleaners are available to clean the queues.
After a while, the page cleaners might be too far behind to catch up, and the buffer pool becomes dirtier than the percent that you specified in lru_max_dirty.

For example, suppose that the CLEANERS parameter is set to 8, and you increase the number of LRU queues from 8 to 12. You can expect little in the way of a
performance gain because the 8 cleaners must now share the work of cleaning an additional 4 queues. If you increase the number of CLEANERS to 12, each of the now-
shortened queues can be more efficiently cleaned by a single cleaner.

Setting CLEANERS too low can cause performance to suffer whenever a checkpoint occurs because page cleaners must flush all modified pages to disk during
checkpoints. If you do not configure a sufficient number of page cleaners, checkpoints take longer, causing overall performance to suffer.

For more information, see Flush buffer-pool buffers.

Copyright© 2020 HCL Technologies Limited

Number of pages added to the MLRU queues

The page-cleaner threads flush the modified buffers in an MLRU queue to disk. To specify the point at which cleaning begins, use the BUFFERPOOL configuration
parameter to specify a value for lru_max_dirty, which limits the number of page buffers that can be appended to an MLRU queue.

The initial setting of lru_max_dirty is 60.00, so page cleaning begins when 60 percent of the buffers managed by a queue are modified.

In practice, page cleaning begins under several conditions, only one of which is when an MLRU queue reaches the value of lru_max_dirty. For more information about how
the database server performs buffer-pool flushing, see Flush data to disk.

The following example shows how the value of lru_max_dirty is applied to an LRU queue to specify when page cleaning begins and thereby limit the number of buffers in
an MLRU queue.

Buffers specified as 8000
lrus specified as 8
lru_max_dirty specified as 60 percent

Page cleaning begins when the number of buffers in the MLRU
 queue is equal to lru_max_dirty.

Part VI: Administering 91

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Buffers per lru queue = (8000/8) = 1000

Max buffers in MLRU queue and point at which page cleaning
 begins: 1000 x 0.60 = 600

Copyright© 2020 HCL Technologies Limited

End of MLRU cleaning

You can also specify the point at which MLRU cleaning can end.

The lru_min_dirty value in the BUFFERPOOL configuration parameter specifies the acceptable percentage of buffers in an MLRU queue. For example, if lru_min_dirty is
set to 50.00, page cleaning is not required when 50 percent of the buffers in an LRU queue are modified. In practice, page cleaning can continue beyond this point, as
directed by the page-cleaner threads.

The following example shows how the value of lru_min_dirty is applied to the LRU queue to specify the acceptable percent of buffers in an MLRU queue and the point at
which page cleaning ends.

Buffers specified as 8000
lrus specified as 8
lru_min_dirty specified as 50 percent

The acceptable number of buffers in the MLRU queue and
 the point at which page cleaning can end is equal
 to lru_min_dirty.

Buffers per LRU queue = (8000/8) = 1000

Acceptable number of buffers in MLRU queue and the point
 at which page cleaning can end: 1000 x .50 = 500

You can use decimals for the lru_max_dirty and the lru_min_dirty values. For example, if you set lru_max_dirty to 1.0333 and lru_min_dirty to 1.0, this triggers the
LRU to write at 3,100 dirty buffers and to stop at 3,000 dirty buffers.

For more information about how the database server flushes the buffer pool, see Flush data to disk.

Copyright© 2020 HCL Technologies Limited

Read-ahead operations

The database server automatically reads several pages ahead of the current pages that are being processed for a query, unless you disable automatic read ahead
operations. Reading ahead enables applications to run faster because they spend less time waiting for disk I/O.

Automatic read-ahead requests for pages to be brought into the bufferpool cache during sequential scans of data records improves the performance of a query, including
OLTP queries and index scans, when the server detects that the query is encountering I/O.

By default, the database server automatically determines when to issue read-ahead requests and when to stop based on when the query is encountering i/o from disk:

If queries encounter I/O, the server issues read-ahead requests to improve the performance of the query. This performance improvement occurs because read-
ahead requests can greatly increase the speed of database processing by compensating for the slowness of I/O processing relative to the speed of CPU processing.
If queries are mostly cached, the server detects that no I/O is occurring and does not read ahead.

Use the AUTO_READAHEAD configuration parameter to change the automatic read-ahead mode or to disable automatic read ahead for a query. You can:

Dynamically change the value of the AUTO_READAHEAD configuration parameter by running an onmode -wm or onmode -wf command.
Run a SET ENVIRONMENT AUTO_READAHEAD statement to change the mode or enable or disable automatic read-ahead for a session.

You can use the onstat -p command to view database server reads and writes and monitor number of times that a thread was required to wait for a shared-memory latch.
The RA-pgsused output field shows the number of pages used that the database server read ahead and monitor the database server use of read-ahead.

Use the onstat -g rah command to display statistics about read-ahead requests.

Related information:
 AUTO_READAHEAD configuration parameter

onstat -p command: Print profile counts
onstat -g rah command: Print read-ahead request statistics

Copyright© 2020 HCL Technologies Limited

Database server thread access to buffer pages

The database server uses shared-lock buffering to allow more than one database server thread to access the same buffer concurrently in shared memory.

The database server uses two types of buffer locks to provide this concurrency without a loss in thread isolation. The two types of lock access are share and exclusive. (For
more information, see Types of buffer locks.)

Copyright© 2020 HCL Technologies Limited

92 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Flush data to disk

Writing a buffer to disk is called buffer flushing.

When a user thread modifies data in a buffer, it marks the buffer as dirty. When the database server flushes the buffer to disk, it subsequently marks the buffer as not dirty
and allows the data in the buffer to be overwritten.

The database server flushes the following buffers:

Buffer pool (covered in this section)
Physical-log buffer
See Flush the physical-log buffer.

Logical-log buffer
See Flush the logical-log buffer.

Page-cleaner threads manage buffer flushing. The database server always runs at least one page-cleaner thread. If the database server is configured for more than one
page-cleaner thread, the LRU queues are divided among the page cleaners for more efficient flushing. For information about specifying how many page-cleaner threads
the database server runs, see the CLEANERS configuration parameter in the IBM® Informix® Administrator's Reference.

Flushing the physical-log buffer, the modified shared-memory page buffers, and the logical-log buffer must be synchronized with page-cleaner activity according to
specific rules designed to maintain data consistency.

Flush buffer-pool buffers
Flushing of the buffers is triggered by specific conditions.
Flush before-images first

 The before-images of modified pages are flushed to disk before the modified pages themselves.
Flush the physical-log buffer

 The database server always flushes the contents of the physical-log buffer to disk before any data buffers.
Synchronize buffer flushing

 When shared memory is first set up, all buffers are empty. As processing occurs, data pages are read from disk into the buffers, and user threads begin to modify
these pages.
Types of writes during flushing

 To provide you with information about the specific condition that prompted buffer-flushing activity, the database server defines three types of writes and counts
how often each write occurs.
Flush the logical-log buffer

 A number of events can cause the logical-log buffer to flush.

Copyright© 2020 HCL Technologies Limited

Flush buffer-pool buffers

Flushing of the buffers is triggered by specific conditions.

Flushing of the buffers is initiated when:

The number of buffers in an MLRU queue reaches the number specified by the lru_max_dirty value in the BUFFERPOOL configuration parameter.
The page-cleaner threads cannot keep up. In other words, a user thread must acquire a buffer, but no unmodified buffers are available.
The database server must execute a checkpoint. (See Checkpoints.)

Automatic LRU tuning affects all buffer pools and adjusts the lru_min_dirty and lru_max_dirty values in the BUFFERPOOL configuration parameter.

Copyright© 2020 HCL Technologies Limited

Flush before-images first

The before-images of modified pages are flushed to disk before the modified pages themselves.

In practice, the physical-log buffer is flushed first and then the buffers that contain modified pages. Therefore, even when a shared-memory buffer page must be flushed
because a user thread is trying to acquire a buffer but none is available (a foreground write), the buffer pages cannot be flushed until the before-image of the page has
been written to disk.

Copyright© 2020 HCL Technologies Limited

Flush the physical-log buffer

The database server always flushes the contents of the physical-log buffer to disk before any data buffers.

The database server temporarily stores before-images of some of the modified disk pages in the physical-log buffer. If the before-image is written to the physical-log
buffer but not to the physical log on disk, the server flushes the physical-log buffer to disk before flushing the modified page to disk.

The following events cause the active physical-log buffer to flush:

Part VI: Administering 93

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The active physical-log buffer becomes full.
A modified page in shared memory must be flushed, but the before-image is still in the active physical-log buffer.
A checkpoint occurs.

The database server uses only one of the two physical-log buffers at a time. This buffer is the active (or current) physical-log buffer. Before the database server flushes the
active physical-log buffer to disk, it makes the other buffer the active physical-log buffer so that the server can continue writing to a buffer while the first buffer is being
flushed.

Both the physical-log buffer and the physical log help maintain the physical and logical consistency of the data. For information about physical logging, checkpoints, and
fast recovery, see Physical logging, checkpoints, and fast recovery.

Copyright© 2020 HCL Technologies Limited

Synchronize buffer flushing

When shared memory is first set up, all buffers are empty. As processing occurs, data pages are read from disk into the buffers, and user threads begin to modify these
pages.

Copyright© 2020 HCL Technologies Limited

Types of writes during flushing

To provide you with information about the specific condition that prompted buffer-flushing activity, the database server defines three types of writes and counts how often
each write occurs.

The types of writes are as follows:

Foreground write
LRU write
Chunk write

To see the write counts that the database server maintains, run the onstat -F command.

If you implement mirroring for the database server, data is always written to the primary chunk first. The write is then repeated on the mirror chunk. Writes to a mirror
chunk are included in the counts.

Foreground write
 Whenever an sqlexec thread writes a buffer to disk, it is termed a foreground write. A foreground write occurs when an sqlexec thread searches through the LRU

queues on behalf of a user but cannot locate an empty or unmodified buffer.
LRU write

 LRU writes are performed by page cleaners rather than by sqlexec threads. The database server performs LRU writes as background writes that typically occur
when the percentage of dirty buffers exceeds the percent that is specified for lru_max_dirty in the BUFFERPOOL configuration parameter.
Chunk write

 Chunk writes are commonly performed by page-cleaner threads during a checkpoint or, possibly, when every page in the shared-memory buffer pool is modified.
Chunk writes, which are performed as sorted writes, are the most efficient writes available to the database server.

Related reference:
 Monitor buffers

Related information:
 onstat -F command: Print counts

Copyright© 2020 HCL Technologies Limited

Foreground write

Whenever an sqlexec thread writes a buffer to disk, it is termed a foreground write. A foreground write occurs when an sqlexec thread searches through the LRU queues
on behalf of a user but cannot locate an empty or unmodified buffer.

To make space, the sqlexec thread flushes pages, one at a time, to hold the data to be read from disk. For more information, see FIFO/LRU queues.

If the sqlexec thread must perform buffer flushing just to acquire a shared-memory buffer, performance can suffer. Foreground writes must be avoided. To display a count
of the number of foreground writes, run onstat -F. If you find that foreground writes are occurring on a regular basis, tune the value of the page-cleaning parameters.
Either increase the number of page cleaners or decrease the BUFFERPOOL lru_max_dirty value.

Copyright© 2020 HCL Technologies Limited

LRU write

LRU writes are performed by page cleaners rather than by sqlexec threads. The database server performs LRU writes as background writes that typically occur when the
percentage of dirty buffers exceeds the percent that is specified for lru_max_dirty in the BUFFERPOOL configuration parameter.

94 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

A foreground write can trigger an LRU write. When a foreground write occurs, the sqlexec thread that performed the write alerts a page-cleaner to wake up and clean the
LRU for which it performed the foreground write.

In an appropriately tuned system, page cleaners ensure that enough unmodified buffer pages are available for storing pages to be read from disk. Thus, sqlexec threads
that perform a query are not required to flush a page to disk before they read in the disk pages required by the query. This condition can result in significant performance
gains for queries that do not make use of foreground writes.

LRU writes are preferred over foreground writes because page-cleaner threads perform buffer writes much more efficiently than sqlexec threads do. To monitor both
types of writes, use onstat -F.

Copyright© 2020 HCL Technologies Limited

Chunk write

Chunk writes are commonly performed by page-cleaner threads during a checkpoint or, possibly, when every page in the shared-memory buffer pool is modified. Chunk
writes, which are performed as sorted writes, are the most efficient writes available to the database server.

During a chunk write, each page-cleaner thread is assigned to one or more chunks. Each page-cleaner thread reads through the buffer headers and creates an array of
pointers to pages that are associated with its specific chunk. (The page cleaners have access to this information because the chunk number is contained within the
physical page number address, which is part of the page header.) This sorting minimizes head movement (disk seek time) on the disk and enables the page-cleaner
threads to use the big buffers during the write, if possible.

In addition, because user threads must wait for the checkpoint to complete, the page-cleaner threads are not competing with many threads for CPU time. As a result, the
page-cleaner threads can finish their work with less context switching.

Copyright© 2020 HCL Technologies Limited

Flush the logical-log buffer

A number of events can cause the logical-log buffer to flush.

The database server uses the shared-memory logical-log buffer as temporary storage for records that describe modifications to database server pages. From the logical-
log buffer, these records of changes are written to the current logical-log file on disk and eventually to the logical-log backup media. For a description of logical logging,
see Logical log.

Five events cause the current logical-log buffer to flush:

The current logical-log buffer becomes full.
A transaction is prepared or committed in a database with unbuffered logging.
A nonlogging database session terminates.
A checkpoint occurs.
A page is modified that does not require a before-image in the physical log.

The following topics explain each of these events in detail.

After a transaction is prepared or terminated in a database with unbuffered logging
 A number of log records cause flushing of the logical-log buffers in a database that uses unbuffered logging.

When a session that uses nonlogging databases or unbuffered logging terminates
 Even for nonlogging databases, the database server logs certain activities that alter the database schema, such as the creation of tables or extents.

When a checkpoint occurs
 Checkpoints occur after specific events.

When a page is modified that does not require a before-image in the physical-log file
 When a page is modified that does not require a before-image in the physical log, the logical-log buffer must be flushed before that page is flushed to disk.

Copyright© 2020 HCL Technologies Limited

After a transaction is prepared or terminated in a database with unbuffered logging

A number of log records cause flushing of the logical-log buffers in a database that uses unbuffered logging.

The log records that cause flushing are:

COMMIT
PREPARE
XPREPARE
ENDTRANS

For a comparison of buffered versus unbuffered logging, see the SET LOG statement in the IBM® Informix® Guide to SQL: Syntax.

Copyright© 2020 HCL Technologies Limited

When a session that uses nonlogging databases or unbuffered logging terminates
Part VI: Administering 95

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Even for nonlogging databases, the database server logs certain activities that alter the database schema, such as the creation of tables or extents.

When the database server terminates sessions that use unbuffered logging or nonlogging databases, the logical-log buffer is flushed to make sure that any logging activity
is recorded.

Copyright© 2020 HCL Technologies Limited

When a checkpoint occurs

Checkpoints occur after specific events.

For a detailed description of the events that occur during a checkpoint, see Checkpoints.

Copyright© 2020 HCL Technologies Limited

When a page is modified that does not require a before-image in the physical-log file

When a page is modified that does not require a before-image in the physical log, the logical-log buffer must be flushed before that page is flushed to disk.

Copyright© 2020 HCL Technologies Limited

Buffer large-object data

Simple large objects (TEXT or BYTE data) can be stored in either dbspaces or blobspaces. Smart large objects (CLOB or BLOB data) are stored only in sbspaces.

The database server uses different methods to access each type of storage space. The following topics describe buffering methods for each.

Write simple large objects
 The database server writes simple large objects to disk pages in a dbspace in the same way that it writes any other data type.

Access smart large objects
 The database server accesses smart large objects through the shared-memory buffers, in the same way that it accesses data that is stored in a dbspace. However,

the user-data portion of a smart large object is buffered at a lower priority than normal buffer pages to prevent flushing data of higher value out of the buffer pool.
Buffering permits faster access to smart large objects that are accessed frequently.

Copyright© 2020 HCL Technologies Limited

Write simple large objects

The database server writes simple large objects to disk pages in a dbspace in the same way that it writes any other data type.

For more information, see Flush data to disk.

You can also assign simple large objects to a blobspace. The database server writes simple large objects to a blobspace differently from the way that it writes other data to
a shared-memory buffer and then flushes it to disk. For a description of blobspaces, see the chapter on disk structure and storage in the IBM® Informix® Administrator's
Reference.

Blobpages and shared memory
 Blobspace blobpages store large amounts of data.

Creation of simple large objects
 When simple-large-object data is written to disk, the row to which it belongs might not exist yet.

Creation of blobpage buffers
 To receive simple large object data from the application process, the database server creates a pair of blobspace buffers, one for reading and one for writing, each

the size of one blobspace blobpage. Each user has only one set of blobspace buffers and, therefore, can access only one simple large object at a time.

Copyright© 2020 HCL Technologies Limited

Blobpages and shared memory

Blobspace blobpages store large amounts of data.

The database server does not create or access blobpages by way of the shared-memory buffer pool, and it does not write blobspace blobpages to either the logical or
physical logs.

If blobspace data passed through the shared-memory pool, it might dilute the effectiveness of the pool by driving out index pages and data pages. Instead, blobpage data
is written directly to disk when it is created.

To reduce logical-log and physical-log traffic, the database server writes blobpages from magnetic media to dbspace backup tapes and logical-log backup tapes in a
different way than it writes dbspace pages. For a description of how blobspaces are logged, see Log blobspaces and simple large objects.

96 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Creation of simple large objects

When simple-large-object data is written to disk, the row to which it belongs might not exist yet.

During an insert, for example, the simple large object is transferred before the rest of the row data. After the simple large object is stored, the data row is created with a
56-byte descriptor that points to its location. For a description of how simple large objects are stored physically, see the structure of a dbspace blobpage in the disk
storage and structure chapter of the IBM® Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Creation of blobpage buffers

To receive simple large object data from the application process, the database server creates a pair of blobspace buffers, one for reading and one for writing, each the size
of one blobspace blobpage. Each user has only one set of blobspace buffers and, therefore, can access only one simple large object at a time.

Simple large object data is transferred from the client-application process to the database server in 1 KB segments. The database server begins filling the blobspace
buffers with the 1 KB pieces and attempts to buffer two blobpages at a time. The database server buffers two blobpages so that it can determine when to add a forwarding
pointer from one page to the next. When it fills the first buffer and discovers that more data remains to transfer, it adds a forward pointer to the next page before it writes
the page to disk. When no more data remains to transfer, the database server writes the last page to disk without a forward pointer.

When the thread begins writing the first blobspace buffer to disk, it attempts to perform the I/O based on the user-defined blobpage size. For example, if the blobpage size
is 32 KB, the database server attempts to read or write the data in 32,768-byte increments. If the underlying hardware (such as the disk controller) cannot transfer this
amount of data in a single operation, the operating-system kernel loops internally (in kernel mode) until the transfer is complete.

The blobspace buffers remain until the thread that created them is finished. When the simple large object is written to disk, the database server deallocates the pair of
blobspace buffers. The following figure illustrates the process of writing a simple large object to a blobspace.
Figure 1. Writing simple large object to a blobspace

Blobspace blobpages are allocated and tracked with the free-map page. Links that connect the blobpages and pointers to the next blobpage segments are created as
necessary.

A record of the operation (insert, update, or delete) is written to the logical-log buffer.

Related concepts:
 Buffer pool portion of shared memory

Copyright© 2020 HCL Technologies Limited

Access smart large objects

The database server accesses smart large objects through the shared-memory buffers, in the same way that it accesses data that is stored in a dbspace. However, the
user-data portion of a smart large object is buffered at a lower priority than normal buffer pages to prevent flushing data of higher value out of the buffer pool. Buffering
permits faster access to smart large objects that are accessed frequently.

A smart large object is stored in an sbspace. You cannot store simple large objects in an sbspace, and you cannot store smart large objects in a blobspace. An sbspace
consists of a user-data area and a metadata area. The user-data area contains the smart-large-object data. The metadata area contains information about the content of
the sbspace. For more information about sbspaces, see Sbspaces.

Because smart large objects pass through the shared-memory buffer pool and can be logged, you must consider them when you allocate buffers. Use the BUFFERPOOL
configuration parameter to allocate shared-memory buffers. As a general rule, try to have enough buffers to hold two smart-large-object pages for each concurrently open
smart large object. (The additional page is available for read-ahead purposes.) For more information about tuning buffers for smart large objects, see your IBM® Informix®
Performance Guide.

Use the LOGBUFF configuration parameter to specify the size of the logical-log buffer. For information about setting each of the following configuration parameters, see
the IBM Informix Administrator's Reference:

BUFFERPOOL
LOGBUFF

The user-data area of smart large objects that are logged does not pass through the physical log, so changing the PHYSBUFF parameter is not required for smart large
objects.

For more information about the structure of an sbspace, see sbspace structure in the disk structures and storage chapter of the IBM Informix Administrator's Reference.
For information about creating an sbspace, see information about the onspaces utility in the IBM Informix Administrator's Reference.

Part VI: Administering 97

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Memory use on 64-bit platforms

With 64-bit addressing, you can have larger buffer pools to reduce the amount of I/O operations to obtain data from disks.

Because 64-bit platforms allow for larger memory-address space, the maximum values for the following memory-related configuration parameters are larger on 64-bit
platforms:

BUFFERPOOL
CLEANERS
DS_MAX_QUERIES
DS_TOTAL_MEMORY
LOCKS
SHMADD
SHMVIRTSIZE

The machine notes for each 64-bit platform lists the maximum values for these configuration parameters and platform-specific parameters such as SHMMAX. For more
information about the configuration parameters, see the IBM® Informix® Administrator's Reference and the chapter on shared memory in the IBM Informix Performance
Guide.

Copyright© 2020 HCL Technologies Limited

Manage shared memory

These topics inform you how to perform the following tasks, which concern managing shared memory:

Setting the shared-memory configuration parameters
Setting up shared memory
Turning residency on or off for the resident portion of the database server shared memory
Adding a segment to the virtual portion of shared memory
Reserving memory for critical activities
Maintaining a targeted amount of memory in applications with memory limitations
Monitoring shared memory

These topics do not cover the DS_TOTAL_MEMORY configuration parameter. This parameter places a ceiling on the allocation of memory for decision-support queries. For
information about this parameter, see your IBM® Informix® Performance Guide.

Set operating-system shared-memory configuration parameters
 Several operating-system configuration parameters can affect the use of shared memory by the database server.

Set database server shared-memory configuration parameters
 You can modify the configuration parameters that affect the resident, buffer pool, or virtual portion of shared memory.

Set SQL statement cache parameters
There are different ways that you can configure the SQL statement cache.
Set up shared memory

 To set up shared memory, take the database server offline and then online.
Turn residency on or off for resident shared memory

 You can turn residency on or off for the resident portion of shared memory.
Add a segment to the virtual portion of shared memory

 You can use the -a option of the onmode utility to add a segment of specified size to virtual shared memory.
Reserve memory for critical activities

 You can reserve a specific amount of memory for use when critical activities (such as rollback activities) are required and the database server has limited free
memory. This prevents the database server from crashing if the server runs out of free memory during critical activities.
Configure the server response when memory is critically low

 You can configure the actions that primary or standard database server takes when memory is critically low. You can specify the criteria for terminating sessions
based on idle time, memory usage, and other factors so that the targeted application can continue to process. Low-memory responses are useful for embedded
applications that have memory limitations.
Monitor shared memory

 These topics describe how to monitor shared-memory segments, the shared-memory profile, and the use of specific shared-memory resources (buffers, latches,
and locks).
Deleting shared memory segments after a server failure

 You must close shared memory segments after a database server failure.

Copyright© 2020 HCL Technologies Limited

Set operating-system shared-memory configuration parameters

Several operating-system configuration parameters can affect the use of shared memory by the database server.

Parameter names are not provided because names vary among platforms, and not all parameters exist on all platforms. The following list describes these parameters by
function:

Maximum operating-system shared-memory segment size, expressed in bytes or KB

98 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Minimum shared-memory segment size, expressed in bytes
Maximum number of shared-memory identifiers
Lower-boundary address for shared memory
Maximum number of attached shared-memory segments per process
Maximum amount of systemwide shared memory

UNIX only:

Maximum number of semaphore identifiers
Maximum number of semaphores
Maximum number of semaphores per identifier

On UNIX, the machine notes file contains recommended values that you use to configure operating-system resources. Use these recommended values when you
configure the operating system. For information about how to set these operating-system parameters, consult your operating-system manuals.

For specific information about your operating-system environment, see the machine notes file that is provided with the database server.

Maximum shared-memory segment size
 When the database server creates the required shared-memory segments, it attempts to acquire as large an operating-system segment as possible.

Semaphores (UNIX)
 The database server operation requires one UNIX semaphore for each virtual processor, one for each user who connects to the database server through shared

memory (ipcshm protocol), six for database server utilities, and sixteen for other purposes.

Related information:
 UNIX configuration parameters that affect CPU utilization

Windows configuration parameters that affect CPU utilization

Copyright© 2020 HCL Technologies Limited

Maximum shared-memory segment size

When the database server creates the required shared-memory segments, it attempts to acquire as large an operating-system segment as possible.

The first segment size that the database server tries to acquire is the size of the portion that it is allocating (resident, virtual, or communications), rounded up to the
nearest multiple of 8 KB.

The database server receives an error from the operating system if the requested segment size exceeds the maximum size allowed. If the database server receives an
error, it divides the requested size by two and tries again. Attempts at acquisition continue until the largest segment size that is a multiple of 8 KB can be created. Then the
database server creates as many additional segments as it requires.

Using more than two gigabytes of memory (Windows)
 The database server can access shared-memory segments larger than two gigabytes on Windows.

Maximum number of shared-memory identifiers (UNIX)
 The operating system identifies each shared-memory segment with a shared-memory identifier. Shared-memory identifiers affect the database server operation

when a virtual processor attempts to attach to shared memory.

Copyright© 2020 HCL Technologies Limited

Using more than two gigabytes of memory (Windows)

The database server can access shared-memory segments larger than two gigabytes on Windows.

For Windows version 2003 and earlier, you must enable this feature with an entry in the Windows boot file. Enabling larger shared-memory segments is referred to by
Microsoft as 4-gigabyte tuning (4GT).

To add the entry, edit the boot.ini file (in the top level, or root directory). You can either add a boot option or use the currently existing boot option. To enable support for
more than two gigabytes, add the following text to the end of the boot line:

/3GB

The following example has support for more than two gigabytes enabled:

[boot loader]
timeout=30
default=multi(0)disk(0)rdisk(0)partition(1)\WINDOWS
[operating systems]
multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Windows NT
Workstation Version 4.00"
/3GB

The maximum size of the shared-memory segment depends on the operating system, but it is approximately 3 gigabytes for Windows without additional drivers.

Copyright© 2020 HCL Technologies Limited

Maximum number of shared-memory identifiers (UNIX)

Part VI: Administering 99

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The operating system identifies each shared-memory segment with a shared-memory identifier. Shared-memory identifiers affect the database server operation when a
virtual processor attempts to attach to shared memory.

For most operating systems, virtual processors receive identifiers on a first-come, first-served basis, up to the limit that is defined for the operating system as a whole. For
more information about shared-memory identifiers, see How virtual processors attach to shared memory.

You might be able to calculate the maximum amount of shared memory that the operating system can allocate by multiplying the number of shared-memory identifiers by
the maximum shared-memory segment size.

Copyright© 2020 HCL Technologies Limited

Semaphores (UNIX)

The database server operation requires one UNIX semaphore for each virtual processor, one for each user who connects to the database server through shared memory
(ipcshm protocol), six for database server utilities, and sixteen for other purposes.

Copyright© 2020 HCL Technologies Limited

Set database server shared-memory configuration parameters

You can modify the configuration parameters that affect the resident, buffer pool, or virtual portion of shared memory.

Set parameter for buffer pool shared memory
The BUFFERPOOL configuration parameter in the onconfig file specifies information about a buffer pool. Each page size that is used by the database server requires a
buffer pool, which is represented in the onconfig file by a BUFFERPOOL configuration parameter entry.

Set parameters for resident shared memory
The following list contains parameters in the onconfig file that specify the configuration of the buffer pool and the internal tables in the resident portion of shared memory.
Before any changes that you make to the configuration parameters take effect, you must shut down and restart the database server.

LOCKS
Specifies the initial number of locks for database objects; for example, rows, key values, pages, and tables.

LOGBUFF
Specifies the size of the logical-log buffers.

PHYSBUFF
Specifies the size of the physical-log buffers.

RESIDENT
Specifies residency for the resident portion of the database server shared memory.

SERVERNUM
Specifies a unique identification number for the database server on the local host computer.

SHMTOTAL
Specifies the total amount of memory to be used by the database server.

Set parameters for virtual shared memory
The following list contains the configuration parameters that you use to configure the virtual portion of shared memory:

DS_HASHSIZE
Number of hash buckets for lists in the data-distribution cache.

DS_POOLSIZE
Maximum number of entries in the data-distribution cache.

PC_HASHSIZE
Specifies the number of hash buckets for the UDR cache and other caches that the database server uses.

PC_POOLSIZE
Specifies the number of UDRs (SPL routines and external routines) that can be stored in the UDR cache. In addition, this parameter specifies the size of other
database server caches, such as the typename cache and the opclass cache.

SHMADD
Specifies the size of dynamically added shared-memory segments.

SHMNOACCES
Specifies a list of virtual memory address ranges that are not used to attach shared memory. Use this parameter to avoid conflicts with other processes.

EXTSHMADD
Specifies the size of a virtual-extension segment added when a user-defined routine or a DataBlade routine runs in a user-defined virtual processor.

SHMTOTAL
Specifies the total amount of memory to be used by the database server.

SHMVIRTSIZE
Specifies the initial size of the virtual portion of shared memory.

STACKSIZE
Specifies the stack size for the database server user threads.

Set parameters for shared-memory performance

100 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

The following configuration parameters affect shared-memory performance.

AUTO_READAHEAD
Specifies the automatic read-ahead mode or disables automatic read-ahead operations for a query. Automatic read-ahead operations help improve query
performance by issuing asynchronous page requests when the database server detects that the query is encountering I/O. Asynchronous page requests can
improve query performance by overlapping query processing with the processing necessary to retrieve data from disk and put it in the buffer pool.

CKPTINTVL
Specifies the maximum number of seconds that can elapse before the database server checks if a checkpoint is required and the RTO_SERVER_RESTART
configuration parameter is not set to turn on automatic checkpoint tuning.

CLEANERS
Specifies the number of page-cleaner threads that the database server is to run.

Related information:
 Configuration parameters that affect memory utilization

Database configuration parameters
Shared memory
Modifying the onconfig file

Copyright© 2020 HCL Technologies Limited

Set SQL statement cache parameters

There are different ways that you can configure the SQL statement cache.

The following table shows ways to configure the SQL statement cache.

Table 1. Configure the SQL statement cache

Configuration parameter Purpose The onmode command

STMT_CACHE Turns on, enables, or disables the SQL statement cache in memory. If
turned on, specifies whether the SQL statement cache can hold a
parsed and optimized SQL statement.

onmode -e mode
onmode -wm STMT_CACHE=0 (0 is mode
‘off’)

onmode -wm STMT_CACHE=1 (1 is mode
‘on’)

onmode -wm STMT_CACHE=2 (2 is mode
‘enable’)

STMT_CACHE_HITS Specifies the number of hits (references) to a statement before it is
fully inserted into the SQL statement cache.

onmode -W STMT_CACHE_HITS
onmode -wm STMT_CACHE_HITS=
<numhits>

STMT_CACHE_NOLIMIT Controls whether to insert statements into the SQL statement cache
after its size is greater than the STMT_CACHE_SIZE value.

onmode -W STMT_CACHE_NOLIMIT
onmode -wm STMT_CACHE_NOLIMIT={0/1}

STMT_CACHE_NUMPOOL Defines the number of memory pools for the SQL statement cache. None

STMT_CACHE_SIZE Specifies the size of the SQL statement cache. None

STMT_QUERY_PLAN Specifies the query plan from any query that exists in the Statement
Cache.

onmode -wm STMT_QUERY_PLAN={0/1}

Use the following onstat options to monitor the SQL statement cache:

onstat -g ssc
onstat -g ssc all
onstat -g ssc pool

For more information about these configuration parameters, onstat -g options, and onmode commands, see the IBM® Informix® Administrator's Reference.

For more information about using the SQL statement cache, monitoring it with the onstat -g options, and tuning the configuration parameters, see improving query
performance in the IBM Informix Performance Guide. For details on qualifying and identical statements, see the IBM Informix Guide to SQL: Syntax.

Copyright© 2020 HCL Technologies Limited

Set up shared memory

To set up shared memory, take the database server offline and then online.

For information about how to take the database server from online mode to offline, see Changing database server operating modes.

Copyright© 2020 HCL Technologies Limited

Turn residency on or off for resident shared memory

You can turn residency on or off for the resident portion of shared memory.

Part VI: Administering 101

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Residency can be turned on or off in either of the following two ways:

Use the onmode utility to reverse the state of shared-memory residency immediately while the database server is in online mode.
Change the RESIDENT parameter in the onconfig file to turn shared-memory residency on or off for the next time that you set up the database server shared
memory.

For a description of the resident portion of shared memory, see Resident portion of shared memory.

Turn residency on or off in online mode
 To turn residency on or off while the database server is in online mode, use the onmode utility.

Turn residency on or off when restarting the database server
 You can use a text editor to turn residency on or off.

Copyright© 2020 HCL Technologies Limited

Turn residency on or off in online mode

To turn residency on or off while the database server is in online mode, use the onmode utility.

To turn on residency immediately for the resident portion of shared memory, run the following command:% onmode -r

To turn off residency immediately for the resident portion of shared memory, run the following command: % onmode -n

These commands do not change the value of the RESIDENT parameter in the onconfig file. That is, this change is not permanent, and residency reverts to the state
specified by the RESIDENT parameter the next time that you set up shared memory. On UNIX, you must be root or user informix to turn residency on or off. On Windows,
you must be a user in the Informix® Admin group to turn residency on or off.

Copyright© 2020 HCL Technologies Limited

Turn residency on or off when restarting the database server

You can use a text editor to turn residency on or off.

To change the current state of residency, use a text editor to locate the RESIDENT parameter. Set RESIDENT to 1 to turn residency on or to 0 to turn residency off, and
rewrite the file to disk. Before the changes take effect, you must shut down and restart the database server.

Copyright© 2020 HCL Technologies Limited

Add a segment to the virtual portion of shared memory

You can use the -a option of the onmode utility to add a segment of specified size to virtual shared memory.

You are not normally required to add segments to virtual shared memory because the database server automatically adds segments as necessary.

The option to add a segment with the onmode utility is useful if the number of operating-system segments is limited, and the initial segment size is so low, relative to the
amount that is required, that the operating-system limit of shared-memory segments is nearly exceeded.

Related concepts:
 Size of the virtual portion of shared memory

Copyright© 2020 HCL Technologies Limited

Reserve memory for critical activities

You can reserve a specific amount of memory for use when critical activities (such as rollback activities) are required and the database server has limited free memory.
This prevents the database server from crashing if the server runs out of free memory during critical activities.

If you enable the new LOW_MEMORY_RESERVE configuration parameter by setting it to a specified value in kilobytes, critical activities, such as rollback activities, can
complete even when a user is getting out of memory errors. If the value of LOW_MEMORY_RESERVE is 0, the low memory reserve functionality is turned off.

For example, 512 kilobytes is a reasonable amount of reserved memory. To reserve 512 kilobytes, specify:

LOW_MEMORY_RESERVE 512

You can also use the onmode -wm or onmode -wf command to dynamically adjust the value of the LOW_MEMORY_RESERVE configuration parameter.

Use the onstat -g seg command to monitor the LOW_MEMORY_RESERVE value. Look for the last two lines of output, which contain the phrase "low memory reserve."
The first of these output lines shows the size of memory reserved in bytes. The second of these lines shows the number times that the database server has used this
memory and the maximum memory required. Both of these values are reset when the server is restarted.

Related information:
 LOW_MEMORY_RESERVE configuration parameter

onstat -g seg command: Print shared memory segment statistics

102 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

onmode -wf, -wm: Dynamically change certain configuration parameters

Copyright© 2020 HCL Technologies Limited

Configure the server response when memory is critically low

You can configure the actions that primary or standard database server takes when memory is critically low. You can specify the criteria for terminating sessions based on
idle time, memory usage, and other factors so that the targeted application can continue to process. Low-memory responses are useful for embedded applications that
have memory limitations.

To set up automatic low-memory management on a primary or standard server:

Set the LOW_MEMORY_MGR configuration parameter to 1, which enables low-memory management when the database server starts.
Set the threshold parameters for the amount of memory to maintain by using an SQL administration API command with the scheduler lmm enable argument.
Verify that the SHMTOTAL configuration parameter is set to a positive integer value.

To disable automatic low-memory management, run an SQL administration API command with the scheduler lmm disable argument.

Scenario for maintaining a targeted amount of memory
 The scenario in this topic shows how you can maintain a targeted amount of memory in applications that have memory limitations.

Related information:
 LOW_MEMORY_MGR configuration parameter

scheduler lmm enable argument: Specify automatic low memory management settings (SQL administration API)
scheduler lmm disable argument: Stop automatic low memory management (SQL administration API)
onstat -g lmm command: Print low memory management information

Copyright© 2020 HCL Technologies Limited

Scenario for maintaining a targeted amount of memory

The scenario in this topic shows how you can maintain a targeted amount of memory in applications that have memory limitations.

Suppose you want to specify that when the database server has 10 MB or less of free memory, it starts running the low memory management processes that can stop
applications and free memory. Suppose you also want to specify that the server stops running the low memory management processes when the server has 20 MB or
more of free memory:

1. Set the LOW_MEMORY_MGR configuration parameter to 1 and restart the server, or run an onmode -wf command to change the value of the LOW_MEMORY_MGR
configuration parameter.

2. Run an SQL administration API command with the scheduler lmm enable argument and low memory parameters, as follows:

EXECUTE FUNCTION task("scheduler lmm enable",
 "LMM START THRESHOLD", "10MB",
 "LMM STOP THRESHOLD", "20MB",
 "LMM IDLE TIME", "300");

3. Run the onstat -g lmm command to display information about automatic low memory management settings, including the amount of memory that the server is
attempting to maintain, the amount of memory currently used by the server, the low memory start and stop thresholds, and other memory-related statistics.
You can also view low memory management information in the online.log file.

Related information:
 LOW_MEMORY_MGR configuration parameter

scheduler lmm enable argument: Specify automatic low memory management settings (SQL administration API)
scheduler lmm disable argument: Stop automatic low memory management (SQL administration API)
onstat -g lmm command: Print low memory management information

Copyright© 2020 HCL Technologies Limited

Monitor shared memory

These topics describe how to monitor shared-memory segments, the shared-memory profile, and the use of specific shared-memory resources (buffers, latches, and
locks).

You can use the onstat -o utility to capture a static snapshot of database server shared memory for later analysis and comparison.

Monitor shared-memory segments
 Monitor the shared-memory segments to determine the number and size of the segments that the database server creates.

Monitor the shared-memory profile and latches
 Monitor the database server profile to analyze performance and the use of shared-memory resources.

Monitor buffers
 You can obtain both statistics on buffer use and information about specific buffers.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 103

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Monitor shared-memory segments

Monitor the shared-memory segments to determine the number and size of the segments that the database server creates.

The database server allocates shared-memory segments dynamically, so these numbers can change. If the database server is allocating too many shared-memory
segments, you can increase the SHMVIRTSIZE configuration parameter. For more information, see the topics about configuration parameters in the IBM® Informix®
Administrator's Reference.

The onstat -g seg command lists information for each shared-memory segment, including the address and size of the segment, and the amount of memory that is free or
in use. For an example of onstat -g seg output, see information about the onstat utility in the IBM Informix Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Monitor the shared-memory profile and latches

Monitor the database server profile to analyze performance and the use of shared-memory resources.

You can obtain statistics on latch use and information about specific latches. These statistics provide a measure of the system activity.

To reset these statistics to zero, use the onstat -z option. For a description of all the fields that onstat displays, see information about the onstat utility in the IBM®
Informix® Administrator's Reference.

Command-line utilities to monitor shared memory and latches
 Use command-line utilities to monitor shared memory and latches.

SMI tables
Query the sysprofile table to obtain shared-memory statistics.

Copyright© 2020 HCL Technologies Limited

Command-line utilities to monitor shared memory and latches

Use command-line utilities to monitor shared memory and latches.

You can use the following command-line utilities to monitor shared memory and latches:

onstat -s
Use onstat -s command to obtain latch information.

onstat -p
Run onstat -p to display statistics on database server activity and waiting latches (in the lchwaits field). For an example of onstat -p output, see information about
the onstat utility in the IBM® Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

SMI tables

Query the sysprofile table to obtain shared-memory statistics.

This table contains all of the statistics available in onstat -p output except the ovbuff, usercpu, and syscpu statistics.

Copyright© 2020 HCL Technologies Limited

Monitor buffers

You can obtain both statistics on buffer use and information about specific buffers.

The statistical information includes the percentage of data writes that are cached to buffers and the number of times that threads were required wait to obtain a buffer.
The percentage of writes that are cached is an important measure of performance. The number of waits for buffers gives a measure of system concurrency.

Information about specific buffers includes a listing of all the buffers in shared memory that are held by a thread. You can use this information to track the status of a
particular buffer. For example, you can determine whether another thread is waiting for the buffer.

You can obtain statistics that relate to buffer availability and information about the buffers in each LRU queue. The statistical information includes the number of times
that the database server attempted to exceed the maximum number of buffers and the number of writes to disk (categorized by the event that caused the buffers to
flush). These statistics help you determine if the number of buffers is appropriate. Information about the buffers in each LRU queue consists of the length of the queue and
the percentage of the buffers in the queue that were modified.

You can obtain information about buffer pool activity from the onstat utility, the sysprofile SMI table.

104 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

onstat commands to monitor buffers
You can use the following onstat commands to monitor buffers:

onstat -g buf
Run the onstat -g buf command to obtain statistics about how active and efficient each buffer is. The following types of statistics are shown:

Page reads and writes
Caching percentages
Waits for buffers
Flushes
Extensions of the buffer pool
Buffer pool segments
Fast cache

onstat -B
Run the onstat -B command to obtain information about all of the buffers that are not on the free-list, including:

The shared memory address of the buffer
The address of the thread that currently holds the buffer
The address of the first thread that is waiting for each buffer
Information about buffer pools

onstat -b
Run the onstat -b command to obtain the following information about each buffer:

Address of each buffer that is currently held by a thread
Page numbers for the page that is held in the buffer
Type of page that is held in the buffer (for example, data page, tblspace page, and so on)
Type of lock that is placed on the buffer (exclusive or shared)
Address of the thread that is holding the buffer
Address of the first thread that is waiting for each buffer
Information about buffer pools

You can compare the addresses of the user threads to the addresses that are shown in the onstat -u output to obtain the session ID number.

onstat -X
Run the onstat -X command to obtain the same information as for onstat -b, along with the complete list of all threads that are waiting for buffers, not just the first
waiting thread.

onstat -R
Run the onstat -R command to show information about buffer pools, the number of buffers in each LRU queue, and the number and percentage of the buffers that
are modified or free.

onstat -F
Run the onstat-F command to obtain a count by write type of the writes that are performed and the following information about the page cleaners:

Page-cleaner number
Page-cleaner shared-memory address
Current state of the page cleaner
LRU queue to which the page cleaner was assigned

The sysprofile SMI table
Query the sysprofile table to obtain statistics on cached reads and writes, write types, and total buffer waits. The following rows are relevant.

bufreads
Number of reads from buffers

bufwrites
Number of writes to buffers

buffwts
Number of times that any thread was required to wait for a buffer

chunkwrites
Number of chunk writes

dskreads
Number of reads from disk

dskwrites
Number of writes to disk

fgwrites
Number of foreground writes

lruwrites
Number of LRU writes

Related concepts:
 Types of writes during flushing

Related information:
 onstat -g buf command: Print buffer pool profile information

onstat -b command: Print buffer information for buffers in use
onstat -B command: Prints information about used buffers
onstat -X command: Print thread information
onstat -R command: Print LRU, FLRU, and MLRU queue information
onstat -F command: Print counts
sysprofile

Part VI: Administering 105

Copyright© 2020 HCL Technologies Limited

Deleting shared memory segments after a server failure

You must close shared memory segments after a database server failure.

Important: This procedure must be performed by a DBA with experience using IBM® Informix®. Consult technical support for assistance. This procedure is for UNIX
systems only.
In the event of a failure of a database server instance, follow this procedure to delete shared memory segments:

1. Log on as user informix.
2. Use the onmode -k command to take the database server to offline mode and remove shared memory.
3. If the onmode -k command fails and the server is not offline, either run the onclean -k command, or perform the following steps:

a. Use the onstat -g glo command to display multithreading information.
b. In the output from the previous command, find the process ID (pid) associated with the first instance of cpu in the class column. For example, in the

following output from the onstat -g glo command, there are four occurrences of cpu in the class column, having pids of 2599, 2603, 2604, and 2605:

MT global info:
sessions threads vps lngspins
0 49 14 1
 sched calls thread switches yield 0 yield n yield forever
total: 900100 898846 1238 27763 423778
per sec: 327 325 2 12 151
Virtual processor summary:
 class vps usercpu syscpu total
 cpu 4 0.92 0.10 1.02
 aio 4 0.02 0.02 0.04
 lio 1 0.00 0.00 0.00
 pio 1 0.00 0.00 0.00
 adm 1 0.00 0.01 0.01
 msc 1 0.00 0.00 0.00
 fifo 2 0.00 0.00 0.00
 total 14 0.94 0.13 1.07
Individual virtual processors:
 vp pid class usercpu syscpu total
 1 2599 cpu 0.25 0.06 0.31
 2 2602 adm 0.00 0.01 0.01
 3 2603 cpu 0.23 0.00 0.23
 4 2604 cpu 0.21 0.03 0.24
 5 2605 cpu 0.23 0.01 0.24
 6 2606 lio 0.00 0.00 0.00
 7 2607 pio 0.00 0.00 0.00
 8 2608 aio 0.02 0.02 0.04
 9 2609 msc 0.00 0.00 0.00
 10 2610 fifo 0.00 0.00 0.00
 11 2611 fifo 0.00 0.00 0.00
 12 2612 aio 0.00 0.00 0.00
 13 2613 aio 0.00 0.00 0.00
 14 2614 aio 0.00 0.00 0.00
 tot 0.94 0.13 1.07

c. Use the kill command to terminate (in order) process IDs 2599, 2603, 2604, and 2605.
4. If the shared segments have not been removed then follow these steps:

a. Determine the server number. The server number can be found by examining the onconfig file of the instance
b. Add the server number to 21078. For example, if the server number is 1, then add 1 to 21078, giving 21079.
c. Convert the sum from the previous step to hexadecimal. In the previous example, 21079 is 5257 hexadecimal.
d. Concatenate 48 to the hex value from the previous step. For example, 525748.
e. Run the ipcs utility as root to display the shared memory segments, if any, left open by the server. Search the key column for the number from 4.d.
f. Remove each shared memory ID associated with the number from 4.d.

For more information about the onclean utility, see the IBM Informix Administrator's Reference.

Consult your operating system documentation for the correct ipcm syntax for your system.

Copyright© 2020 HCL Technologies Limited

Data storage

The database server uses physical units of storage to allocate disk space. It stores data in logical units. Unlike the logical units of storage whose size fluctuates, each of
the physical units has a fixed or assigned size that is determined by the disk architecture.

The following topics define terms and explain concepts that you must understand to manage disk space. These topics cover the following areas:

Definitions of the physical and logical units that the database server uses to store data on disk
Instructions on how to calculate the amount of disk space that you require to store your data
Guidelines on how to lay out your disk space and where to place your databases and tables
Instructions on using external tables

The database server uses the following physical units to manage disk space:
Chunks
Pages
Blobpages

106 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Sbpages
Extents

The database server stores data in the following logical units:
Dbspaces
Temporary dbspaces
Blobspaces
Sbspaces
Temporary sbspaces
Plogspace
Extspaces
Databases
Tables
Tblspaces
Partitions and offsets

The database server maintains the following storage structures to ensure physical and logical consistency of data:
Logical log
Physical log
Reserved pages

Table fragmentation and data storage
 The fragmentation feature gives you more control over where the database stores data. You are not limited to specifying the locations of individual tables and

indexes. You can also specify the location of table and index fragments, which are different parts of a table or index that are on different storage spaces.
Amount of disk space needed to store data

 To determine how much disk space you require, follow these steps:
The storage pool

 Every instance of the database server has a storage pool. The storage pool contains information about the directories, cooked files, and raw devices that the server
can use if necessary to automatically expand an existing dbspace, temporary dbspace, sbspace, temporary sbspace, or blobspace.
Disk-layout guidelines

 The following goals are typical for efficient disk layout:
Sample disk layouts

 When setting out to organize disk space, the database server administrator usually has one or more of the following objectives in mind:
Logical-volume manager

 You can use the logical-volume manager (LVM) utility to manage your disk space through user-defined logical volumes.

Related concepts:
 Storage space creation and management

Manage disk space
Related information:

 Limits in Informix
Reserved Pages

Copyright© 2020 HCL Technologies Limited

Chunks

A chunk is the largest unit of physical disk dedicated to database server data storage.

Chunks provide administrators with a significantly large unit for allocating disk space. The maximum size of an individual chunk is 4 TB. The number of allowable chunks is
32,766. If you have upgraded from a version before version 10.00, you must run the onmode -BC 2 command to enable the maximum size of a chunk and the maximum
number allowable, otherwise, the maximum chunk size is 2 GB.

The following storage spaces are comprised of chunks:

Dbspaces
Blobspaces
Sbspaces
Temporary dbspaces
Temporary sbspaces

When you create a chunk, you specify its path, size, and the associated storage space name.

The database server also uses chunks for mirroring. When you mirror a chunk, the database server maintains two copies of the data on the chunk. Every write operation to
a primary chunk is automatically followed by an identical write operation to the mirror chunk. Read operations are evenly divided between the two chunks. If either the
primary chunk or the mirror chunk fails, the chunk that failed is marked as down, and the other chunk performs all operations without interrupting the user access to data.

When you create tables, indexes, and other database objects, chunk space is allocated, or assigned, to those objects. Space that is allocated is not necessarily used. For
example, when you create a table, you allocate space for it, but that space is not used until you add data to the table. When all the chunks in a dbspace report 0 free
pages, you cannot create new database objects in that dbspace. However, you can continue to add data to existing database objects as long as they have unused space.
You can monitor chunks by using the onstat -d command.

Disk allocation for chunks
 The database server can use regular operating-system files or raw disk devices to store data. On UNIX, you must use raw disk devices to store data whenever

performance is important. On Windows, using NTFS files to store data is recommended for ease of administration.
Extendable chunks

 Extendable chunks are chunks that Informix® can automatically extend or you can manually extend when additional storage space is required for an application. If
you have extendable chunks, you are not required to add new chunks or spend time trying to determine which storage space will run out of space and when it will
run out of space.

Part VI: Administering 107

https://www.hcltech.com/

Partitions and offsets
The system administrator might divide a physical disk into partitions, which are different parts of a disk that have separate path names. Although you must use an
entire disk partition when you allocate a chunk on a raw disk device, you can subdivide partitions or cooked files into smaller chunks using offsets.

Related concepts:
 Sbspaces

Blobspaces
Dbspaces
Mirroring
Related reference:

 Specify names for storage spaces and chunks
Related information:

 onstat -d command: Print chunk information
onmode -BC: Allow large chunk mode

Copyright© 2020 HCL Technologies Limited

Disk allocation for chunks

The database server can use regular operating-system files or raw disk devices to store data. On UNIX, you must use raw disk devices to store data whenever performance
is important. On Windows, using NTFS files to store data is recommended for ease of administration.

A storage space can be on an NFS-mounted file system using regular operating-system files.

Disk access on Windows
 On Windows, both raw disks and NTFS use kernel asynchronous I/O (KAIO). The Windows file system manager adds additional overhead to disk I/O, so using raw

disks provides slight performance advantages. Because NTFS files are a more standard method of storing data, you must use NTFS files instead of raw disks.
Consider using raw disks if your database server requires a large amount of disk access.
Unbuffered or buffered disk access on UNIX

 You can allocate disk space in two ways. You can either use files that are buffered through the operating system, or you can use unbuffered disk access.

Copyright© 2020 HCL Technologies Limited

Disk access on Windows

On Windows, both raw disks and NTFS use kernel asynchronous I/O (KAIO). The Windows file system manager adds additional overhead to disk I/O, so using raw disks
provides slight performance advantages. Because NTFS files are a more standard method of storing data, you must use NTFS files instead of raw disks. Consider using raw
disks if your database server requires a large amount of disk access.

Raw disk space on Windows
On Windows, raw disk space can be either a physical drive without a drive letter or a logical disk partition that has been assigned a drive letter using the Disk
Administrator. The space can either be formatted or unformatted. If it contains data, the data is overwritten after the space has been allocated to the database server. For
more information, see Allocating raw disk space on Windows.

NTFS files
You must use NTFS files, not FAT files, for disk space on Windows. For more information, see Allocating NTFS file space on Windows.

Copyright© 2020 HCL Technologies Limited

Unbuffered or buffered disk access on UNIX

You can allocate disk space in two ways. You can either use files that are buffered through the operating system, or you can use unbuffered disk access.

Files that are buffered through the operating system are often called cooked files.

Unbuffered disk access is also called raw disk space.

When dbspaces are located on raw disk devices (also called character-special devices), the database server uses unbuffered disk access.

To create a raw device, configure a block device (hard disk) with a raw interface. The storage space that the device provides is called raw disk space. A chunk of raw disk
space is physically contiguous.

The name of the chunk is the name of the character-special file in the /dev directory. In many operating systems, you can distinguish the character-special file from the
block-special file by the first letter in the file name (typically r). For example, /dev/rsd0f is the character-special device that corresponds to the /dev/sd0f block-special
device.

For more information, see Allocating raw disk space on UNIX.

A cooked file is a regular file that the operating system manages. Cooked file chunks and raw disk chunks are equally reliable. Unlike raw disk space, the logically
contiguous blocks of a cooked file might not be physically contiguous.

108 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

You can more easily allocate cooked files than raw disk space. To allocate a cooked file, you must create the file on any existing partition. The name of the chunk is the
complete path name of the file. These steps are described in Allocating cooked file spaces on UNIX.

In a learning environment, where performance is not critical, or for static data, cooked files can be convenient. If you must use cooked UNIX files, store the least
frequently accessed data in those files. Store the files in a file system with minimal activity.

For cooked file chunks, the operating system processes all chunk I/O from its own buffer pool and ensures that all writes to chunks are physically written to the disk.

Important: While you must generally use raw disk devices on UNIX to achieve better performance, if you enable the DIRECT_IO configuration parameter, the performance
for cooked files can approach the performance of raw devices used for dbspace chunks. This occurs because direct I/O bypasses the use of the file system buffers. If you
have an AIX® operating system, you can also enable concurrent I/O for IBM® Informix® to use with direct IO when reading and writing to chunks that use cooked files. For
more information about using direct IO or concurrent IO, see the IBM Informix Performance Guide.
To determine the best device for performance, perform benchmark testing on the system with both types of devices for the dbspace and table layout.

When using raw disks, you are not required to take any special action to create chunks and files that are larger than two gigabytes. If you want to create large chunks in
cooked files, or if you want to use the various database export and import utilities with large files, you must ensure that the files systems that hold the large files are
appropriately configured.

Copyright© 2020 HCL Technologies Limited

Extendable chunks

Extendable chunks are chunks that Informix® can automatically extend or you can manually extend when additional storage space is required for an application. If you
have extendable chunks, you are not required to add new chunks or spend time trying to determine which storage space will run out of space and when it will run out of
space.

Configuring Informix to automatically add more storage space prevents the error that can occur if a partition requires additional storage space and cannot find that space
in one of the chunks in the space in which the partition is located.

An extendable chunk must be in a nonmirrored dbspace or temporary dbspace.

You use an SQL administration API command with the modify space sp_sizes argument to modify the extend size and the create size for the space in which your
extendable chunk is located.

Related concepts:
 Automatic space management

The storage pool
Related tasks:

 Marking a chunk as extendable or not extendable
Manually expanding a space or extending an extendable chunk

Copyright© 2020 HCL Technologies Limited

Partitions and offsets

The system administrator might divide a physical disk into partitions, which are different parts of a disk that have separate path names. Although you must use an entire
disk partition when you allocate a chunk on a raw disk device, you can subdivide partitions or cooked files into smaller chunks using offsets.

Tip: With a 4-terabyte limit to the size of a chunk, you can avoid partitioning a disk by assigning a single chunk per disk drive.
You can use an offset to indicate the location of a chunk on the disk partition, file, or device. For example, suppose that you create a 1000 KB chunk that you want to divide
into two chunks of 500 KB each. You can use an offset of 0 KB to mark the beginning of the first chunk and an offset of 500 KB to mark the beginning of the second chunk.

You can specify an offset whenever you create, add, or drop a chunk from a dbspace, blobspace, or sbspace.

You might also be required to specify an offset to prevent the database server from overwriting partition information.

Related concepts:
 Disk-layout guidelines

Related tasks:
 Allocating raw disk space on UNIX

Copyright© 2020 HCL Technologies Limited

Pages

A page is the physical unit of disk storage that the database server uses to read from and write to IBM® Informix® databases.

The following figure illustrates the concept of a page, represented by a darkened sector of a disk platter.
Figure 1. A page on disk

Part VI: Administering 109

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

On most UNIX platforms, the page size is 2 KB. On Windows, the page size is 4 KB. Because your hardware determines the size of your page, you cannot alter this value.

A chunk contains a certain number of pages, as the following figure illustrates. A page is always entirely contained within a chunk; that is, a page cannot cross chunk
boundaries.
Figure 2. A chunk, logically separated into a series of pages

For information about how the database server structures data within a page, see the chapter on disk structures and storage in the IBM Informix Administrator's Reference

Copyright© 2020 HCL Technologies Limited

Blobpages

A blobpage is the unit of disk-space allocation that the database server uses to store simple large objects (TEXT or BYTE data) within a blobspace.

You specify blobpage size as a multiple of the database server page size. Because the database server allocates blobpages as contiguous spaces, it is more efficient to
store simple large objects in blobpages that are as close to the size of the data as possible. The following figure illustrates the concept of a blobpage, represented as a
multiple (three) of a data page.
Figure 1. A blobpage on disk

For information about how IBM® Informix® structures data stored in a blobpage, see structure of a blobspace blobpage in the disk structures and storage topics of the IBM
Informix Administrator's Reference.

Just as with pages in a chunk, a certain number of blobpages compose a chunk in a blobspace, as the following figure illustrates. A blobpage is always entirely contained in
a chunk and cannot cross chunk boundaries.
Figure 2. A chunk in a blobspace, logically separated into a series of blobpages

Instead of storing simple-large-object data in a blobspace, you can choose to store it in a dbspace. However, for a simple large object larger than two pages, performance
improves when you store it in a blobspace. Simple large objects stored in a dbspace can share a page, but simple large objects stored in a blobspace do not share pages.

For information about how to determine the size of a blobpage, see Determine blobpage size. For a description of blobspaces, see Blobspaces.

Copyright© 2020 HCL Technologies Limited

Sbpages

An sbpage is the type of page that the database server uses to store smart large objects within an sbspace. Unlike blobpages, sbpages are not configurable. An sbpage is
the same size as the database server page, which is usually 2 KB on UNIX and 4 KB on Windows.

The unit of allocation in an sbspace is an extent, whereas the unit of allocation in a blobspace is a blobpage. Just as with pages in a chunk, a certain number of smart large
object extents compose a chunk in an sbspace, as the following figure illustrates. An extent is always entirely contained in a chunk and cannot cross chunk boundaries.
Figure 1. A chunk in an sbspace, logically separated into a series of extents

Smart large objects cannot be stored in a dbspace or blobspace. For more information, see Sbspaces, and sbspace structure in the disk structures and storage chapter of
the IBM® Informix® Administrator's Reference.

110 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

The database server calculates the extent size for a smart large object from a set of heuristics, such as the number of bytes in a write operation. For more information, see
Extent sizes for sbspaces.

Copyright© 2020 HCL Technologies Limited

Extents

An extent consists of a collection of contiguous pages that store data for a given table.

When you create a table, the database server allocates a fixed amount of space to contain the data to be stored in that table. (See Tables.) When this space fills, the
database server must allocate space for additional storage. The physical unit of storage that the database server uses to allocate both the initial and subsequent storage
space is called an extent.

The following figure illustrates the concept of an extent.
Figure 1. An extent that consists of six contiguous pages on a raw disk device

Every permanent database table has two extent sizes associated with it. The initial-extent size is the number of KB allocated to the table when it is first created. The next-
extent size is the number of KB allocated to the table when the initial extent (and any subsequent extents) becomes full. For permanent tables and user-defined temporary
tables, the next-extent size begins to double after each extent. For system-created temporary tables, the next-extent size begins to double after 4 extents have been
added.

When you create a table, you can specify the size of the initial extent, and the size of the extents to be added as the table grows. You can also modify the size of an extent
in a table in a dbspace, and you can modify the size of new subsequent extents. To specify the initial-extent size and next-extent size, use the CREATE TABLE and ALTER
TABLE statements. For more information, see the IBM® Informix® Guide to SQL: Syntax and disk structures in the IBM Informix Administrator's Reference.

When you create a table with a column for CLOB or BLOB data types, you also define extents for an sbspace. For more information, see Storage characteristics of
sbspaces.

The following figure shows how the database server allocates six pages for an extent:

An extent is always entirely contained in a chunk; an extent cannot cross chunk boundaries.
If the database server cannot find the contiguous disk space that is specified for the next-extent size, it searches the next chunk in the dbspace for contiguous
space.

Figure 2. Process of extent allocation

Related concepts:
 Tables

Related information:
 Extent size doubling

Copyright© 2020 HCL Technologies Limited

Dbspaces

A dbspace is a logical unit that can contain between 1 and 32,766 chunks. The database server uses the dbspace to store databases and tables. Place databases, tables,
logical-log files, and the physical log in dbspaces.

Part VI: Administering 111

https://www.hcltech.com/
https://www.hcltech.com/

When you create a standard or temporary dbspace, you can specify the page size for the dbspace. You cannot specify a page size for blobspaces, sbspaces, or external
spaces. If you do not specify a page size, the size of the root dbspace is the default page size.

When you create a standard dbspace, you can specify the first and next extent sizes for the tblspace in the dbspace. Specifying the extent sizes reduces the number of
tblspace extents and reduces the frequency of situations when you must place the tblspace extents in non-primary chunks.

You can mirror every chunk in a mirrored dbspace. As soon as the database server allocates a mirror chunk, it flags all space in that mirror chunk as full.

Control of where simple large object data is stored
 A key responsibility of the database server administrator is to control where the database server stores data.

Root dbspace
 The root dbspace is the initial dbspace that the database server creates.

Temporary dbspaces
 A temporary dbspace is a dbspace reserved exclusively for the storage of temporary tables. It behaves differently from a standard dbspace in many ways.

Related concepts:
 Chunks

Copyright© 2020 HCL Technologies Limited

Control of where simple large object data is stored

A key responsibility of the database server administrator is to control where the database server stores data.

By storing high-use access tables or critical dbspaces (root dbspace, physical log, and logical log) on your fastest disk drive, you can improve performance. By storing
critical data on separate physical devices, you ensure that when one of the disks that holds noncritical data fails, the failure affects only the availability of data on that disk.

As the following figure shows, to control the placement of databases or tables, you can use the IN dbspace option of the CREATE DATABASE or CREATE TABLE statements.
Figure 1. Control table placement with the CREATE TABLE... IN statement

Before you create a database or table in a dbspace, you must first create the dbspace.

A dbspace includes one or more chunks, as the following figure shows. You can add more chunks at any time. A database server administrator must to monitor dbspace
chunks for fullness and to anticipate the necessity to allocate more chunks to a dbspace. When a dbspace contains more than one chunk, you cannot specify the chunk in
which the data is located.
Figure 2. Dbspaces that link logical and physical units of storage

Related concepts:
 Tables

Manage dbspaces
Related reference:

 Monitor disk usage

Copyright© 2020 HCL Technologies Limited

Root dbspace

The root dbspace is the initial dbspace that the database server creates.

The root dbspace is special because it contains reserved pages and internal tables that describe and track all physical and logical units of storage. (For more information
about these topics, see Tables and the disk structures and storage chapter in the IBM® Informix® Administrator's Reference.) The initial chunk of the root dbspace and its
mirror are the only chunks created during disk-space setup. You can add other chunks to the root dbspace after disk-space setup.

112 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

The following disk-configuration parameters in the onconfig configuration file refer to the first (initial) chunk of the root dbspace:

ROOTPATH
ROOTOFFSET
ROOTNAME
MIRRORPATH
MIRROROFFSET
TBLTBLFIRST
TBLTBLNEXT

The root dbspace is also the default dbspace location for any database created with the CREATE DATABASE statement.

The root dbspace is the default location for all temporary tables created by the database server to perform requested data management.

See Size of the root dbspace for information about how much space to allocate for the root dbspace. You can also add extra chunks to the root dbspace after you set up
database server disk space.

Copyright© 2020 HCL Technologies Limited

Temporary dbspaces

A temporary dbspace is a dbspace reserved exclusively for the storage of temporary tables. It behaves differently from a standard dbspace in many ways.

A temporary dbspace is temporary only in the sense that the database server does not preserve any of its contents when the database server restarts. The database
server never drops a temporary dbspace unless it is explicitly directed to do so.

Temporary dbspaces cannot be mirrored by the database server.

Whenever you start the database server, all chunks in temporary dbspaces are recreated from scratch. These chunks can therefore be located on RAM drives if desired.

The database server does not perform logical or physical logging for temporary dbspaces. Because temporary dbspaces are not physically logged, fewer checkpoints and
I/O operations occur, which improves performance.

For a temporary table in a standard dbspace, at minimum the server logs table creation, the allocation of extents, and the dropping of the table. In contrast, the database
server does not log any operations on tables stored in temporary dbspaces. Logical-log suppression in temporary dbspaces reduces the number of log records to roll
forward during logical recovery as well, thus improving the performance during critical downtime.

Temporary dbspaces are never archived by the database server, reducing the size of your storage-space backup.

In addition to temporary tables, the database server uses temporary dbspaces to store the before images of data that is overwritten while backups are occurring and
overflow from query processing that occurs in memory. Make sure that you have correctly set the DBSPACETEMP environment variable or parameter to specify dbspaces
with enough space for your needs. If there is not enough room in the specified dbspaces, the root dbspace is used. If the root dbspace fills, the backup may fail.

If you have more than one temporary dbspace and execute a SELECT statement into a temporary table, the results of the query are inserted in round robin order.

For detailed instructions on how to create a temporary dbspace, see Creating a temporary dbspace.

Copyright© 2020 HCL Technologies Limited

Blobspaces

A blobspace is a logical storage unit composed of one or more chunks that store only TEXT and BYTE data.

A blobspace stores TEXT and BYTE data in the most efficient way possible. You can store TEXT and BYTE columns associated with distinct tables (see Tables) in the same
blobspace.

The database server writes data stored in a blobspace directly to disk. This data does not pass through resident shared memory. If it did, the volume of data might occupy
so many of the buffer-pool pages that other data and index pages would be forced out. For the same reason, the database server does not write TEXT or BYTE objects that
are assigned to a blobspace to either the logical or physical log. The database server logs blobspace objects by writing them directly from disk to the logical-log backup
tapes when you back up the logical logs. Blobspace objects never pass through the logical-log files.

When you create a blobspace, you assign to it one or more chunks. You can add more chunks at any time. One of the tasks of a database server administrator is to monitor
the chunks for fullness and anticipate the necessity to allocate more chunks to a blobspace. For instructions on how to monitor chunks for fullness, see Monitor simple
large objects in a blobspace. For instructions on how to create a blobspace, add chunks to a blobspace, or drop a chunk from a blobspace, see Manage disk space.

For information about the structure of a blobspace, see the topics about disk structures and storage in the IBM® Informix® Administrator's Reference.

Related concepts:
 Chunks

Copyright© 2020 HCL Technologies Limited

Sbspaces

An sbspace is a logical storage unit composed of one or more chunks that store smart large objects.

Part VI: Administering 113

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Smart large objects consist of CLOB (character large object) and BLOB (binary large object) data types. User-defined data types can also use sbspaces. For more
information about data types, see the IBM® Informix® Guide to SQL: Reference.

Advantages of using sbspaces
 Sbspaces have advantages over blobspaces.

Sbspaces and Enterprise Replication
 Before you define a replication server for Enterprise Replication, you must create an sbspace. Enterprise Replication spools the replicated data to smart large

objects.
Metadata, user data, and reserved area
As with blobspaces and dbspaces, when you create an sbspace, you assign to it one or more chunks. The first chunk of an sbspace always has three areas.
Control of where smart large object data is stored

 You specify the data type of a column when you create the table.
Storage characteristics of sbspaces
As the database server administrator, you can use the system default values for these storage characteristics, or you can specify them in the -Df tags when you
create the sbspace with onspaces -c. You can change these sbspace characteristics with the onspaces -ch option.
Levels of inheritance for sbspace characteristics

 The four levels of inheritance for sbspace characteristics are system, sbspace, column, and smart large objects. You can use the system default values for sbspace
attributes, or override them for specific sbspaces, columns in a table, or smart large objects.
More information about sbspaces

 There are various tasks related to using and managing sbspaces.
Temporary sbspaces

 Use a temporary sbspace to store temporary smart large objects without metadata logging and user-data logging.

Related concepts:
 Chunks

Copyright© 2020 HCL Technologies Limited

Advantages of using sbspaces

Sbspaces have advantages over blobspaces.

The following are advantages of using sbspaces:

They have read, write, and seek properties similar to a standard UNIX file.
Programmers can use functions similar to UNIX and Windows functions to read, write, and seek smart large objects. IBM® Informix® provides this smart-large-
object interface in the DataBlade API and the Informix ESQL/C programming interface.

They are recoverable.
You can log all write operations on data stored in sbspaces. You can commit or roll back changes if a failure occurs during a transaction.

They obey transaction isolation modes.
You can lock smart large objects at different levels of granularity, and the lock durations obey the rules for transaction isolation levels. For more information about
locking and concurrency, see your IBM Informix Performance Guide.

Smart large objects within table rows are not required to be retrieved in one statement.
An application can store or retrieve smart large objects in pieces using either the DataBlade API or the Informix ESQL/C programming interface. For more
information about the DataBlade API functions, see the IBM Informix DataBlade API Function Reference. For more information about the Informix ESQL/C functions,
see the IBM Informix ESQL/C Programmer's Manual.

Copyright© 2020 HCL Technologies Limited

Sbspaces and Enterprise Replication

Before you define a replication server for Enterprise Replication, you must create an sbspace. Enterprise Replication spools the replicated data to smart large objects.

Specify the sbspace name in the CDR_QDATA_SBSPACE configuration parameter. Enterprise Replication uses the default log mode with which the sbspace was created for
spooling the row data. The CDR_QDATA_SBSPACE configuration parameter accepts multiple sbspaces, up to a maximum of 32 sbspaces. Enterprise Replication can
support a combination of logging and non-logging sbspaces for storing spooled row data. For more information, see the .

You can have Enterprise Replication automatically configure disk space from the storage pool and set the appropriate configuration parameters when defining a replication
server. If the CDR_QDATA_SBSPACE or the CDR_DBSPACE configuration parameter is not set or is set to blank, the cdr define server command automatically creates the
necessary disk space and sets the configuration parameters to appropriate values.

Copyright© 2020 HCL Technologies Limited

Metadata, user data, and reserved area

As with blobspaces and dbspaces, when you create an sbspace, you assign to it one or more chunks. The first chunk of an sbspace always has three areas.

The following are the three areas of the first chunk of an sbspace:

Metadata area

114 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Metadata identifies key aspects of the sbspace and each smart large object stored in the sbspace, and enables the database server to manipulate and recover
smart large objects stored within.

User-data area
User data is the smart large object data stored in the sbspace by user applications. The chunk has up to two user-data areas.

Reserved area
The database server allocates space from the reserved area to either the metadata or user-data area when more space is required. The chunk has up to two
reserved areas.

For information about correctly allocating metadata and user data for sbspaces, see Size sbspace metadata and the IBM® Informix® Performance Guide.

When you add a chunk to an sbspace, you can specify whether it contains a metadata area and user-data area or whether to reserve the chunk exclusively for user data.
You can add more chunks at any time. If you are updating smart large objects, I/O to the user data is much faster on raw disks than cooked chunk files. For instructions on
how to create an sbspace, add chunks to an sbspace, or drop a chunk from an sbspace, see Manage disk space.
Important: Sbspace metadata is always logged, regardless of the logging setting of the database.

Copyright© 2020 HCL Technologies Limited

Control of where smart large object data is stored

You specify the data type of a column when you create the table.

For smart large objects, you specify CLOB, BLOB, or user-defined data types. As the following figure shows, to control the placement of smart large objects, you can use
the IN sbspace option in the PUT clause of the CREATE TABLE statement.
Figure 1. Control smart-large-object placement

Before you specify an sbspace in a PUT clause, you must first create the sbspace. For more information about how to create an sbspace with the onspaces -c -S
command, see Adding a chunk to a dbspace or blobspace. For more information about how to specify smart large object characteristics in the PUT clause, see the CREATE
TABLE statement in the IBM® Informix® Guide to SQL: Syntax.

If you do not specify the PUT clause, the database server stores the smart large objects in the default sbspace that you specify in the SBSPACENAME configuration
parameter. For more information about SBSPACENAME, see the configuration parameter topics of the IBM Informix Administrator's Reference.

An sbspace includes one or more chunks, as the following figure shows. When an sbspace contains more than one chunk, you cannot specify the chunk in which the data
is located.

You can add more chunks at any time. It is a high-priority task of a database server administrator to monitor sbspace chunks for fullness and to anticipate the necessity to
allocate more chunks to an sbspace. For more information about monitoring sbspaces, see your IBM Informix Performance Guide.
Figure 2. Sbspaces that link logical and physical units of storage

The database server uses sbspaces to store table columns that contain smart large objects. The database server uses dbspaces to store the rest of the table columns.

You can mirror an sbspace to speed recovery in event of a media failure. For more information, see Mirroring.

For information about using onspaces to perform the following tasks, see Manage disk space.

Creating an sbspace
Adding a chunk to an sbspace
Altering storage characteristics of smart large objects
Creating a temporary sbspace
Dropping an sbspace

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 115

https://www.hcltech.com/
https://www.hcltech.com/

Storage characteristics of sbspaces

As the database server administrator, you can use the system default values for these storage characteristics, or you can specify them in the -Df tags when you create the
sbspace with onspaces -c. You can change these sbspace characteristics with the onspaces -ch option.

The administrator or programmer can override these default values for storage characteristics and attributes for individual tables.

Extent sizes for sbspaces
 An extent in an sbspace consists of a collection of contiguous pages that store smart large object data.

Average smart-large-object size
 Smart large objects usually vary in length. You can provide an average size of your smart large objects to calculate space for an sbspace.

Buffering mode
 When you create an sbspace, the default buffering mode is on, which means to use the buffer pool in the resident portion of shared memory.

Last-access time
 When you create an sbspace, you can specify whether the database server must keep the last time that the smart large object was read or updated with the

ACCESSTIME tag of the onspaces -c -Df option.
Lock mode

 When you create an sbspace, you can specify whether the database server locks the whole smart large object or a range of bytes within a smart large object with
the LOCK_MODE tag of the onspaces -c -Df option.
Logging

 When you create an sbspace, you can specify whether to turn on logging for the smart large objects.

Copyright© 2020 HCL Technologies Limited

Extent sizes for sbspaces

An extent in an sbspace consists of a collection of contiguous pages that store smart large object data.

The unit of allocation in an sbspace is an extent. The database server calculates the extent size for a smart large object from a set of heuristics, such as the number of
bytes in a write operation. For example, if an operation asks to write 30 KB, the database server tries to allocate an extent the size of 30 KB.
Important: For most applications, you must use the values that the database server calculates for the extent size.
If you know the size of the smart large object, you can use one of the following functions to set the extent size. The database server allocates the entire smart large object
as one extent (if an extent of that size is available in the chunk):

The DataBlade API mi_lo_specset_estbytes() function
For more information about the DataBlade API functions for smart large objects, see the IBM® Informix DataBlade API Function Reference.

The Informix® ESQL/C ifx_lo_specset_estbytes function
For more information about the Informix ESQL/C functions for smart large objects, see the IBM Informix ESQL/C Programmer's Manual.

For information about tuning extent sizes, see smart large objects in the chapter on configuration effects on I/O utilization in your IBM Informix Performance Guide.

Copyright© 2020 HCL Technologies Limited

Average smart-large-object size

Smart large objects usually vary in length. You can provide an average size of your smart large objects to calculate space for an sbspace.

You specify the average size with the AVG_LO_SIZE tag of the onspaces -c -Df option.

To specify the size and location of the metadata area, specify the -Ms and -Mo flags in the onspaces command. If you do not use the -Ms flag, the database server uses
the value of AVG_LO_SIZE to estimate the amount of space to allocate for the metadata area. For more information, see Size sbspace metadata.

Copyright© 2020 HCL Technologies Limited

Buffering mode

When you create an sbspace, the default buffering mode is on, which means to use the buffer pool in the resident portion of shared memory.

As the database administrator, you can specify the buffering mode with the BUFFERING tag of the onspaces -c -Df option. The default is “buffering=ON”, which means to
use the buffer pool. If you turn off buffering, the database server uses private buffers in the virtual portion of shared memory.
Important: In general, if read and write operations to the smart large objects are less than 8 KB, do not specify a buffering mode when you create the sbspace. If you are
reading or writing short blocks of data, such as 2 KB or 4 KB, leave the default of “buffering=ON” to obtain better performance.
For information about when to use private buffers, see the section on light-weight I/O operations in the topics about configuration effects on I/O utilization in your IBM®
Informix® Performance Guide.

Copyright© 2020 HCL Technologies Limited

Last-access time
116 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

When you create an sbspace, you can specify whether the database server must keep the last time that the smart large object was read or updated with the ACCESSTIME
tag of the onspaces -c -Df option.

The default is “ACCESSTIME=OFF”. The database server keeps this last-access time in the metadata area.

For more information about how programmers use this last-access time, see the IBM® Informix® DataBlade API Programmer's Guide and IBM Informix ESQL/C
Programmer's Manual.

Copyright© 2020 HCL Technologies Limited

Lock mode

When you create an sbspace, you can specify whether the database server locks the whole smart large object or a range of bytes within a smart large object with the
LOCK_MODE tag of the onspaces -c -Df option.

The default is “LOCK_MODE=BLOB”, which means to lock the entire smart large object. For more information, see the locking chapter in your IBM® Informix® Performance
Guide.

Copyright© 2020 HCL Technologies Limited

Logging

When you create an sbspace, you can specify whether to turn on logging for the smart large objects.

The default is no logging. For more information, see Log sbspaces and smart large objects.
Important: When you use logging databases, turn logging on for the sbspaces. If a failure occurs that requires log recovery, you can keep the smart large objects
consistent with the rest of the database.
You specify the logging status with the LOGGING tag of the onspaces -c -Df option. The default is “LOGGING=off”. You can change the logging status with the onspaces -c
-Df option. You can override this logging status with the PUT clause in the SQL statements CREATE TABLE or ALTER TABLE. For more information about these SQL
statements, see the IBM® Informix Guide to SQL: Syntax.

The programmer can override this logging status with functions that the DataBlade API and Informix® ESQL/C provide. For more information about the DataBlade API
functions for smart large objects, see the IBM Informix DataBlade API Function Reference. For more information about the Informix ESQL/C functions for smart large
objects, see the IBM Informix ESQL/C Programmer's Manual.

When you turn on logging for an sbspace, the smart large objects pass through the resident portion of shared memory. Although applications can retrieve pieces of a smart
large object, you still must consider the larger size of data that might pass through the buffer pool and logical-log buffers. For more information, see Access smart large
objects.

Copyright© 2020 HCL Technologies Limited

Levels of inheritance for sbspace characteristics

The four levels of inheritance for sbspace characteristics are system, sbspace, column, and smart large objects. You can use the system default values for sbspace
attributes, or override them for specific sbspaces, columns in a table, or smart large objects.

The following figure shows the storage-characteristics hierarchy for a smart large object.
Figure 1. Storage-characteristics hierarchy

The figure shows that you can override the system default in the following ways:

Use the -Df tags of the onspaces -c -S command to override the system default for a specific sbspace.
You can later change these sbspace attributes for the sbspace with the onspaces -ch option. For more information about valid ranges for the -Df tags, see the
onspaces topics in the IBM® Informix Administrator's Reference.

You override the system default for a specific column when you specify these attributes in the PUT clause of the CREATE TABLE or ALTER TABLE statements.

Part VI: Administering 117

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

For more information about these SQL statements, see the IBM Informix Guide to SQL: Syntax.

The programmer can override the default values for sbspace attributes for specific smart large objects with functions that the DataBlade API and Informix® ESQL/C
programming interface provide.

Copyright© 2020 HCL Technologies Limited

More information about sbspaces

There are various tasks related to using and managing sbspaces.

The following table lists sources of information tasks related to using and managing sbspaces.
Table 1. Finding information for sbspace tasks

Task Reference

Setting memory configuration parameters for smart large objects Manage shared memory

Understanding sbpages Sbpages

Specifying I/O characteristics for an sbspace onspaces option in Storage characteristics of sbspaces

Allocating space for an sbspace Creating an sbspace

Adding a chunk to an sbspace Adding a chunk to an sbspace

Defining or altering storage characteristics for a smart large object Alter storage characteristics of smart large objects
PUT clause of CREATE TABLE or ALTER TABLE statement in IBM Informix Guide to SQL:
Syntax

Monitoring sbspaces Monitor sbspaces
Topics about table performance considerations in IBM Informix Performance Guide

Setting up logging for an sbspace Log sbspaces and smart large objects

Backing up an sbspace Back up sbspaces

Checking consistency of an sbspace Validate metadata

Understanding an sbspace structure Topics about disk structures in the IBM Informix Administrator's Reference

Using onspaces for sbspaces Topics about utilities in the IBM Informix Administrator's Reference

Creating a table with CLOB or BLOB data types IBM Informix Guide to SQL: Syntax

Accessing smart large objects in an application IBM Informix DataBlade API Programmer's GuideIBM Informix ESQL/C Programmer's
Manual

Calculating the metadata area size
Improving metadata I/O

Changing storage characteristics

Topics about table performance in IBM Informix Performance Guide

Understanding smart-large-object locking Topics about locking in IBM Informix Performance Guide

Configuring sbspaces for temporary smart large objects Topics about configuration effects on I/O activity in IBM Informix Performance Guide

Copyright© 2020 HCL Technologies Limited

Temporary sbspaces

Use a temporary sbspace to store temporary smart large objects without metadata logging and user-data logging.

If you store temporary smart large objects in a standard sbspace, the metadata is logged. Temporary sbspaces are similar to temporary dbspaces. To create a temporary
sbspace, use the onspaces -c -S command with the -t option. For more information, see Creating a temporary sbspace.

You can store temporary large objects in a standard sbspace or temporary sbspace.

If you specify a temporary sbspace in the SBSPACETEMP parameter, you can store temporary smart large objects there.
If you specify a standard sbspace in the SBSPACENAME parameter, you can store temporary and permanent smart large objects there.
If you specify a temporary sbspace name in the CREATE TEMP TABLE statement, you can store temporary smart large objects there.
If you specify a permanent sbspace name in the CREATE TABLE statement, you can store temporary smart large objects there.
If you omit the SBSPACETEMP and SBSPACENAME parameters and create a smart large object, error message -12053 might display.
If you specify a temporary sbspace in the SBSPACENAME parameter, you cannot store a permanent smart large object in that sbspace. You can store temporary
smart large objects in that sbspace.

Comparison of temporary and standard sbspaces
 Temporary smart large objects

 Use temporary smart large objects to store text or image data (CLOB or BLOB) that do not require restoring from a backup or log replay in fast recovery.

Copyright© 2020 HCL Technologies Limited

118 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Comparison of temporary and standard sbspaces

The following table compares standard and temporary sbspaces.

Table 1. Temporary and standard sbspaces

Characteristics Standard sbspace Temporary sbspace

Stores smart large objects Yes No

Stores temporary smart large objects Yes Yes

Logs metadata Metadata is always logged Metadata is not logged

Logs user data User data is not logged for temporary smart large objects but
is logged for permanent smart large objects if LOGGING=ON

User data is not logged
Creation and deletion of space, and addition of chunks is
logged

Fast recovery Yes No (the sbspace is emptied when the database server
restarts) To set up shared memory without cleaning up
temporary smart large objects, specify oninit -p. If you keep
the temporary large objects, their state is indeterminate.

Backup and restore Yes No

Add and drop chunks Yes Yes

Configuration parameter SBSPACENAME SBSPACETEMP

Copyright© 2020 HCL Technologies Limited

Temporary smart large objects

Use temporary smart large objects to store text or image data (CLOB or BLOB) that do not require restoring from a backup or log replay in fast recovery.

Temporary smart large objects last for the user session and are much faster to update than smart large objects.

You create a temporary smart large object in the same way as a permanent smart large object, except you set the LO_CREATE_TEMP flag in the ifx_lo_specset_flags or
mi_lo_specset_flags function. Use mi_lo_copy or ifx_lo_copy to create a permanent smart large object from a temporary smart large object. For details on creating
temporary smart large objects, see the IBM® Informix® DataBlade API Programmer's Guide.
Important: Store pointers to temporary large objects in temporary tables only. If you store them in standard tables and reboot the database server, it results in an error
that says that the large object does not exist.
The following table compares standard and temporary smart large objects.

Table 1. Temporary and standard smart large objects

Characteristics Smart large object Temporary smart large object

Creation flags LO_CREATE_LOG or LO_CREATE_NOLOG LO_CREATE_TEMP

Rollback Yes No

Logging Yes, if turned on No

Duration Permanent (until user deletes it) Deleted at end of user session or
transaction

Table type stored in Permanent or temporary table Temporary tables

Copyright© 2020 HCL Technologies Limited

Plogspace

A plogspace is a logical storage unit that is composed of one chunk that stores the physical log. When the physical log is in the plogspace, the database server increases
the size of the physical log as needed to improve performance.

If you did not create a server during installation, the physical log is created in the root dbspace. However, you can create the plogspace to move the physical log to a
different dbspace to prevent the physical log from filling the root dbspace. For optimal performance, create the plogspace on a different disk from the root dbspace or the
location of the logical logs. If you created a server during installation, the plogspace is created automatically with a default size that depends on the value of the
AUTO_TUNE_SERVER_SIZE configuration parameter.

By default, the chunk that you assign to the plogspace is extendable, therefore, the initial size of the chunk can be small. The database server automatically expands the
chunk when the physical log requires more space.

The plogspace has the following restrictions:

A database server instance can have only one plogspace.
The plogspace can contain only the physical log.
The plogspace can have only one chunk.
The chunk must have the same page size as the root dbspace.

Related concepts:

Part VI: Administering 119

https://www.hcltech.com/
https://www.hcltech.com/

Manage the plogspace
Related reference:
Size and location of the physical log
Related information:
AUTO_TUNE_SERVER_SIZE configuration parameter

Copyright© 2020 HCL Technologies Limited

Extspaces

An extspace is a logical name associated with an arbitrary string that signifies the location of external data. The resource that the extspace references depends on a user-
defined access method for accessing its contents.

For example, a database user might require access to binary files encoded in a proprietary format. First, a developer creates an access method, which is a set of routines
that access the data. These routines are responsible for all interaction between the database server and the external file. A DBA then adds an extspace that has the file as
its target to the database. After the DBA creates a table in the extspace, the users can access the data in the proprietary files through SQL statements. To locate those
files, use the extspace information.

An extspace is not required to be a file name. For example, it can be a network location. The routines that access the data can use information found in the string
associated with the extspace in any manner.

For more information about user-defined access methods, see the IBM® Informix® Virtual-Table Interface Programmer's Guide. For more information about creating
functions and primary access methods, see the IBM Informix Guide to SQL: Syntax.

Copyright© 2020 HCL Technologies Limited

Databases

A database is a logical storage unit that contains tables and indexes. Each database also contains a system catalog that tracks information about many of the elements in
the database, including tables, indexes, SPL routines, and integrity constraints.

A database is stored in the dbspace that is specified by the IN clause of the CREATE DATABASE statement. When you do not explicitly name a dbspace in the CREATE
DATABASE statement, the database is stored in the root dbspace, unless automatic location is enabled. You can enable automatic location by setting the AUTOLOCATE
configuration parameter or session environment variable to a positive integer. The database server chooses the dbspaces in which to create new databases and new
tables that are created without specified storage locations. Tables are automatically fragmented by round robin in the dbspaces that are chosen by the server.

When you do specify a dbspace in the CREATE DATABASE statement, this dbspace is the location for the following tables:

Database system catalog tables
Any table that belongs to the database

The following figure shows the tables that are contained in the stores_demo database.
Figure 1. The stores_demo database

The size limits that apply to databases are related to their location in a dbspace. To be certain that all tables in a database are created on a specific physical device, assign
only one chunk to the device, and create a dbspace that contains only that chunk. Place your database in that dbspace. When you place a database in a chunk that is
assigned to a specific physical device, the database size is limited to the size of that chunk.

Related concepts:
 Managing automatic location and fragmentation

Related reference:
 Display databases

Copyright© 2020 HCL Technologies Limited

Tables

In relational database systems, a table is a row of column headings together with zero or more rows of data values. The row of column headings identifies one or more
columns and a data type for each column.

120 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

When you create a table, the database server allocates disk space for the table in a block of pages that is called an extent. You can specify the size of both the first and any
subsequent extents.

You can place the table in a specific dbspace by naming the dbspace when the table is created (with the IN dbspace clause of the CREATE TABLE statement). When you do
not specify the dbspace, the database server places the table in the dbspace where the database is located. You can fragment a table over more than one dbspace or
within a dbspace by specifying a fragmentation distribution scheme. However, if you set the AUTOLOCATE configuration parameter to a positive integer, the database
server automatically fragments new tables by round robin, in the dbspaces that are optimal for the table.

A table or table fragment is located completely in the dbspace in which it was created. The database server administrator can use this fact to limit the growth of a table by
placing a table in a dbspace and then refusing to add a chunk to the dbspace when it becomes full.

A table, which is composed of extents, can span multiple chunks, as the following figure shows.
Figure 1. Table that spans more than one chunk

Simple large objects are in blobpages in either the dbspace with the data pages of the table or in a separate blobspace.

Damaged tables
 There are a number of ways you can damage a table.

Related concepts:
 Extents

Table fragmentation and data storage
Disk-layout guidelines
Control of where simple large object data is stored

Copyright© 2020 HCL Technologies Limited

Damaged tables

There are a number of ways you can damage a table.

The following items can damage a table:

An incorrect buffer flush
A user error
Mounting a files system or another chunk on top of a chunk
Deleting or updating when the scope of the change is not as narrow as you require

Damaged indexes can cause a table to seem damaged, even though it is not.

The oncheck commands cannot fix most damaged tables. If a page is damaged, oncheck can detect and try to fix the page, but cannot correct the data within the page.

Copyright© 2020 HCL Technologies Limited

Table types for Informix

You can create logging or nonlogging tables in a logging database on IBM® Informix®. The two table types are STANDARD (logging tables) and RAW (nonlogging tables).
The default standard table is like a table created in earlier versions without a special keyword specified. You can create either a STANDARD or RAW table and change
tables from one type to another.

In a nonlogging database, both STANDARD tables and RAW tables are nonlogging. In a nonlogging database, the only difference between STANDARD and RAW tables is
that RAW tables do not support primary-key constraints, unique constraints, referential constraints, or rollback. However, these tables can be indexed and updated.

The following table lists the properties of the types of tables available with . The flag values are the hexadecimal values for each table type in the flags column of
systables.

Table 1. Table types for

Characteristic STANDARD RAW TEMP

Permanent Yes Yes No

Logged Yes No Yes

Indexes Yes Yes Yes

Part VI: Administering 121

https://www.hcltech.com/
https://www.hcltech.com/

Characteristic STANDARD RAW TEMP

Constraints Yes No referential or unique constraints
NULL and NOT NULL constraints are
allowed

Yes

Rollback Yes No Yes

Recoverable Yes Yes, if not updated No

Restorable Yes Yes, if not updated No

Loadable Yes Yes Yes

Enterprise Replication servers Yes No No

Primary servers in a high-availability
cluster

Yes Yes, cannot alter logging mode Yes

Secondary servers in a high-availability
cluster

Yes Yes, but not accessible for any operation Yes

Flag Value None 0x10 None

Standard permanent tables
 A STANDARD table is the same as a table in a logged database that the database server creates.

RAW tables
 RAW tables are nonlogging permanent tables that are similar to tables in a nonlogging database.

Temp tables
 Temp tables are temporary, logged tables that are dropped when the user session closes, the database server shuts down, or on reboot after a failure.

Properties of table types
 These topics explain loading tables, fast recovery, and backup and restore of table types.

Temporary tables
 The database server must provide disk space for specific types of temporary table.

Copyright© 2020 HCL Technologies Limited

Standard permanent tables

A STANDARD table is the same as a table in a logged database that the database server creates.

STANDARD tables do not use light appends. All operations are logged, record by record, so STANDARD tables can be recovered and rolled back. You can back up and
restore STANDARD tables. Logging enables updates since the last physical backup to be applied when you perform a warm restore or point-in-time restore. Enterprise
Replication is allowed on STANDARD tables.

A STANDARD table is the default type on both logging and nonlogging databases. STANDARD tables are logged if stored in a logging database but are not logged if stored
in a nonlogging database.

Copyright© 2020 HCL Technologies Limited

RAW tables

RAW tables are nonlogging permanent tables that are similar to tables in a nonlogging database.

The following statement creates a RAW table called r_tab:

CREATE RAW TABLE IF NOT EXISTS
 r_tab1 (col1 INT, col2 CHAR(40) NOT NULL);

Update, insert, and delete operations on rows in a RAW table are supported but are not logged. You can define indexes on RAW tables, but you cannot define unique
constraints, primary-key constraints, or referential constraints on RAW tables.

A RAW table has the same attributes, whether it is stored in a logging database or in a nonlogging database. If you update a RAW table, you cannot reliably restore the
data unless you perform a level-0 backup after the update. If the table has not been updated since that backup, you can restore the RAW table from the last physical
backup, but backing up only the logical logs is not sufficient for a RAW table to be recoverable. Fast recovery can roll back incomplete transactions on STANDARD tables
but not on RAW tables. For information about creating and altering RAW tables, see the IBM Informix Guide to SQL: Syntax.

RAW tables are intended for the initial loading and validation of data. To load RAW tables, you can use any loading utility, including dbexport, the LOAD statement of DB-
Access, or the HPL in express mode. If an error or failure occurs while loading a RAW table, the resulting data is whatever was on the disk at the time of the failure.

Restriction: Do not use RAW tables within a transaction. After you have loaded the data, use the ALTER TABLE statement to change the table to type STANDARD and
perform a level-0 backup before you use the table in a transaction.
Restriction: Do not use Enterprise Replication on RAW or TEMP tables.
There are some restrictions when using RAW tables in a high-availability cluster environment. Because modifications made to RAW tables are not logged, and because
secondary servers (including HDR, RSS and SDS) use log records to stay synchronized with the primary server, you are restricted from performing certain operations on
RAW tables:

On a primary server, RAW tables can be created, dropped, and accessed. Altering the table mode, however, from unlogged to logged, or from logged to unlogged, is
not allowed. Altering the logging mode of a table in a high-availability cluster environment yields error -19845.
On secondary servers (HDR, SDS, or RSS), RAW tables are not accessible for any operation. Attempting to access a RAW table from SQL yields error -19846.

122 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Temp tables

Temp tables are temporary, logged tables that are dropped when the user session closes, the database server shuts down, or on reboot after a failure.

Temp tables support indexes, constraints, and rollback. You cannot recover, back up, or restore temp tables. Temp tables support bulk operations such as light appends,
which add rows quickly to the end of each table fragment. For more information about light appends, see your IBM Informix Performance Guide.

For more information, see Temporary tables.

Copyright© 2020 HCL Technologies Limited

Properties of table types

These topics explain loading tables, fast recovery, and backup and restore of table types.

Loading of data into a table
 You can use the CREATE RAW TABLE statement to create a RAW table or use the ALTER TABLE statement to change a STANDARD table to RAW before loading the

table. After you load the table, run UPDATE STATISTICS on it.
Fast recovery of table types

 There are fast recovery scenarios for the table types available with IBM Informix.
Backup and restore of RAW tables

 There are backup scenarios for the table types available on IBM Informix.

Copyright© 2020 HCL Technologies Limited

Loading of data into a table

You can use the CREATE RAW TABLE statement to create a RAW table or use the ALTER TABLE statement to change a STANDARD table to RAW before loading the table.
After you load the table, run UPDATE STATISTICS on it.

IBM® Informix® creates STANDARD tables that use logging by default. Data warehousing applications can have huge tables that take a long time to load. Nonlogging tables
are faster to load than logging tables.

For more information about how to improve the performance of loading very large tables, see your IBM Informix Performance Guide. For more information about using
ALTER TABLE to change a table from logging to nonlogging, see the IBM Informix Guide to SQL: Syntax.

Copyright© 2020 HCL Technologies Limited

Fast recovery of table types

There are fast recovery scenarios for the table types available with IBM® Informix®.

The following table shows fast recovery scenarios for table types.
Table 1. Fast recovery of table types

Table type Fast recovery behavior

Standard Fast recovery is successful. All committed log records are rolled forward, and all incomplete transactions are rolled back.

RAW If a checkpoint completed since the raw table was modified last, all the data is recoverable.
Inserts, updates, and deletions that occurred after the last checkpoint are lost.

Incomplete transactions in a RAW table are not rolled back.

Copyright© 2020 HCL Technologies Limited

Backup and restore of RAW tables

There are backup scenarios for the table types available on IBM® Informix®.

The following table explains backup scenarios for table types.
Table 1. Backing up tables on

Table type Backup allowed?

Standard Yes.

Temp No.

Part VI: Administering 123

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Table type Backup allowed?

RAW Yes. If you update a RAW table, you must back it up so that you can restore all the data in it. Backing up only the logical logs is not
enough.

Important: After you load a RAW table or change a RAW table to type STANDARD, you must perform a level-0 backup.
The following table shows restore scenarios for these table types.

Table 2. Restoring tables on

Table type Restore allowed?

Standard Yes. Warm restore, cold restore, and point-in-time restore work.

Temp No.

RAW When you restore a RAW table, it contains only data that was on disk at the time of the last backup. Because RAW tables are not logged, any
changes that occurred since the last backup are not restored.

Copyright© 2020 HCL Technologies Limited

Temporary tables

The database server must provide disk space for specific types of temporary table.

Disk space is required for the following temporary tables:

Temporary tables that you create with an SQL statement, such as CREATE TEMP TABLE. . .
Temporary tables that the database server creates as it processes a query

Make sure that your database server has configured enough temporary space for both user-created and database server-created temporary tables. Some uses of the
database server might require as much temporary storage space as permanent storage space, or more.

By default, the database server stores temporary tables in the root dbspace. If you decide not to store your temporary tables in the root dbspace, use the DBSPACETEMP
environment variable or the DBSPACETEMP configuration parameter to specify a list of dbspaces for temporary tables.

Temporary tables that you create
 You can create temporary tables with some SQL statements.

Temporary tables that the database server creates
 The database server sometimes creates temporary tables while running queries against the database or backing it up.

Copyright© 2020 HCL Technologies Limited

Temporary tables that you create

You can create temporary tables with some SQL statements.

Temporary tables can be created with the following SQL statements:

TEMP TABLE option of the CREATE TABLE statement
INTO TEMP clause of the SELECT statement, such as SELECT * FROM customer INTO TEMP cust_temp

Only the session that creates a temporary table can use the table. When the session exits, the table is dropped automatically.

When you create a temporary table, the database server uses the following criteria:

If the query used to populate the TEMP table produces no rows, the database server creates an empty, unfragmented table.
If the rows that the query produces do not exceed 8 KB, the temporary table is located in only one dbspace.
If the rows exceed 8 KB, the database server creates multiple fragments and uses a round-robin fragmentation scheme to populate them unless you specify a
fragmentation method and location for the table.

If you use the CREATE TEMP and SELECT...INTO TEMP SQL statements and DBSPACETEMP has been set:

LOGGING dbspaces in the list are used to create the tables that specify or imply the WITH LOG clause.
NON-LOGGING temporary dbspaces in the list are used to create the tables that specify the WITH NO LOG clause.

When CREATE TEMP and SELECT...INTO TEMP SQL statements are used and DBSPACETEMP has not been set or does not contain the correct type of dbspace, IBM®
Informix® uses the dbspace of the database to store the temporary table. See the IBM Informix Guide to SQL: Syntax for more information.

Where user-created temporary tables are stored
 If your application lets you specify the location of a temporary table, you can specify either logging spaces or nonlogging spaces that you create exclusively for

temporary tables.

Copyright© 2020 HCL Technologies Limited

Where user-created temporary tables are stored

124 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

If your application lets you specify the location of a temporary table, you can specify either logging spaces or nonlogging spaces that you create exclusively for temporary
tables.

For information about creating temporary dbspaces, see the onspaces topics in the IBM® Informix® Administrator's Reference.

If you do not specify the location of a temporary table, the database server stores the temporary table in one of the spaces that you specify as an argument to the
DBSPACETEMP configuration parameter or environment variable. The database server remembers the name of the last dbspace that it used for a temporary table. When
the database server receives another request for temporary storage space, it uses the next available dbspace to spread I/O evenly across the temporary storage space.

For information about where the database stores temporary tables when you do not list any spaces as an argument to DBSPACETEMP, see the DBSPACETEMP section in
the IBM Informix Administrator's Reference.

When you use an application to create a temporary table, you can use the temporary table until the application exits or performs one of the following actions:

Closes the database in which the table was created and opens a database in a different database server
Closes the database in which the table was created
Explicitly drops the temporary table

Copyright© 2020 HCL Technologies Limited

Temporary tables that the database server creates

The database server sometimes creates temporary tables while running queries against the database or backing it up.

The database server might create a temporary table in any of the following circumstances:

Statements that include a GROUP BY or ORDER BY clause
Statements that use aggregate functions with the UNIQUE or DISTINCT keywords
SELECT statements that use auto-index or hash joins
Complex CREATE VIEW statements
DECLARE statements that create a scroll cursor
Statements that contain correlated subqueries
Statements that contain subqueries that occur within an IN or ANY clause
CREATE INDEX statements

When the process that initiated the creation of the table is complete, the database server deletes the temporary tables that it creates.

If the database server shuts down without removing temporary tables, the database server removes the temporary tables the next time it is started. To start the database
server without removing temporary tables, run the oninit command with the -p option.

Applications and analytic tools can define queries in which a derived table contains multiple views joined with base tables, potentially including hundreds of columns. The
database server attempts to fold views or derived tables into the main query. Any such views or derived tables that cannot be folded are materialized into a temporary
table. The temporary table excludes all the columns that are not referenced in the main query. The temporary table is created with only the columns referenced in the
Projection clause and in other clauses of the parent query, including the WHERE, HAVING, GROUP BY, and ON clauses.

By excluding from the system-generated temporary table any columns that are not referenced in the main query, this reduced schema can improve query performance by
conserving storage resources, and by avoiding unnecessary I/O of data in the unused columns.

In a nested query, however, projected columns from views and derived table are checked only in the parent query, but not in the levels above the immediate parent query.

Important: In addition to temporary tables, the database server uses temporary disk space to store the before images of data records that are overwritten while backups
are occurring, and for overflow from query processing that occurs in memory. Make sure that you have correctly set the DBSPACETEMP environment variable or the
DBSPACETEMP configuration parameter to specify dbspaces with enough space for your needs. If there is not enough room in the specified dbspaces, the backup fails,
root dbspace is used, or the backup fails after filling the root dbspace.

Where database server-created temporary tables are stored
 When the database server creates a temporary table, it stores the temporary table in one of the dbspaces that you specify in the DBSPACETEMP configuration

parameter or the DBSPACETEMP environment variable. The environment variable supersedes the configuration parameter.

Copyright© 2020 HCL Technologies Limited

Where database server-created temporary tables are stored

When the database server creates a temporary table, it stores the temporary table in one of the dbspaces that you specify in the DBSPACETEMP configuration parameter
or the DBSPACETEMP environment variable. The environment variable supersedes the configuration parameter.

When you do not specify any temporary dbspaces in DBSPACETEMP, or the temporary dbspaces that you specify have insufficient space, the database server creates the
table in a standard dbspace according to the following rules:

If you created the temporary table with CREATE TEMP TABLE, the database server stores this table in the dbspace that contains the database to which the table
belongs.
If you created the temporary table with the INTO TEMP option of the SELECT statement, the database server stores this table in the root dbspace.

For more information, see Creating a temporary dbspace.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 125

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Tblspaces

Database server administrators sometimes must track disk use by a particular table. A tblspace contains all the disk space allocated to a given table or table fragment (if
the table is fragmented). A separate tblspace contains the disk space allocated for the associated index.

A tblspace, for example, does not correspond to any particular part of a chunk or even to any particular chunk. The indexes and data that make up a tblspace might be
scattered throughout your chunks. The tblspace, however, represents a convenient accounting entity for space across chunks devoted to a particular table. (See Tables.)

Maximum number of tblspaces in a table
 You can specify a maximum of 2**20 (or 1,048,576) tblspaces in a table.

Table and index tblspaces
 The table tblspace and index tblspace contain certain types of pages.

Extent interleaving
 The database server allocates the pages that belong to a tblspace as extents. Although the pages within an extent are contiguous, extents might be scattered

throughout the dbspace where the table is located (even on different chunks).

Copyright© 2020 HCL Technologies Limited

Maximum number of tblspaces in a table

You can specify a maximum of 2**20 (or 1,048,576) tblspaces in a table.

Copyright© 2020 HCL Technologies Limited

Table and index tblspaces

The table tblspace and index tblspace contain certain types of pages.

The table tblspace contains the following types of pages:

Pages allocated to data
Pages allocated to indexes
Pages used to store TEXT or BYTE data in the dbspace (but not pages used to store TEXT or BYTE data in a blobspace)
Bitmap pages that track page use within the table extents

The index tblspace contains the following types of pages:

Pages allocated to indexes
Bitmap pages that track page use within the index extents

The following table illustrates the tblspaces for three tables that form part of the stores_demo database. Only one table (or table fragment) exists per tblspace. Blobpages
represent TEXT or BYTE data stored in a dbspace.
Figure 1. Sample tblspaces in the stores_demo database

Copyright© 2020 HCL Technologies Limited

Extent interleaving

The database server allocates the pages that belong to a tblspace as extents. Although the pages within an extent are contiguous, extents might be scattered throughout
the dbspace where the table is located (even on different chunks).

126 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The following figure depicts this situation with two noncontiguous extents that belong to the tblspace for table_1 and a third extent that belongs to the tblspace for
table_2. A table_2 extent is located between the first table_1 extent and the second table_1 extent. When this situation occurs, the extents are interleaved. Because
sequential access searches across table_1 require the disk head to seek across the table_2 extent, performance is worse than if the table_1 extents were contiguous. For
instructions on how to avoid and eliminate interleaving extents, see your IBM® Informix® Performance Guide.
Figure 1. Three extents that belong to two different tblspaces in a single dbspace

Copyright© 2020 HCL Technologies Limited

Table fragmentation and data storage

The fragmentation feature gives you more control over where the database stores data. You are not limited to specifying the locations of individual tables and indexes. You
can also specify the location of table and index fragments, which are different parts of a table or index that are on different storage spaces.

You can fragment a table in the following ways:

Fragment a table over more than one dbspace. However, you cannot put fragments into dbspaces that have different page sizes. All fragments must have the same
page size.
Create multiple partitions of a fragmented table within a single dbspace if the fragmented table uses an expression-based or round-robin distribution scheme.

You can fragment the following storage spaces:

Dbspaces
Sbspaces

Usually you fragment a table when you initially create it. The CREATE TABLE statement takes one of the following forms:

CREATE TABLE tablename ... FRAGMENT BY ROUND ROBIN IN dbspace1,
 dbspace2, dbspace3;

CREATE TABLE tablename ...FRAGMENT BY EXPRESSION
 <Expression 1> in dbspace1,
 <Expression 2> in dbspace2,
 <Expression 3> in dbspace3;

The FRAGMENT BY ROUND ROBIN and FRAGMENT BY EXPRESSION keywords refer to two different distribution schemes. Both statements associate fragments with
dbspaces.

If you set the AUTOLOCATE configuration parameter or session environment variable to a positive integer, and you do not specify a location for the table, new tables are
fragmented in round-robin order in dbspaces that are chosen by the database server.

When you fragment a table, you can also create multiple partitions of the table within the same dbspace, as shown in this example:

CREATE TABLE tb1(a int)
 FRAGMENT BY EXPRESSION
 PARTITION part1 (a >=0 AND a < 5) in dbs1,
 PARTITION part2 (a >=5 AND a < 10) in dbs1
 ...
 ;

The following figure illustrates the role of fragments in specifying the location of data.
Figure 1. Dbspaces that link logical units (including table fragments) and physical units of storage

Part VI: Administering 127

https://www.hcltech.com/

Related concepts:
Manage disk space
Managing automatic location and fragmentation
Tables
Related information:
Table fragmentation strategies
Fragmentation guidelines

Copyright© 2020 HCL Technologies Limited

Amount of disk space needed to store data

To determine how much disk space you require, follow these steps:

1. Calculate the size requirements of the root dbspace.
2. Estimate the total amount of disk space to allocate to all the database server databases, including space for overhead and growth.

The following topics explain these steps.

Size of the root dbspace
 You can calculate the size of the root dbspace, which stores information that describes your database server.

Amount of space that databases require
 The amount of additional disk space required for the database server data storage depends on the requirements of users, plus overhead and growth.

Copyright© 2020 HCL Technologies Limited

Size of the root dbspace

You can calculate the size of the root dbspace, which stores information that describes your database server.

The following storage structures can be stored in the root dbspace:

Physical and logical logs (200 KB minimum for each type)
Although the root dbspace is the default location for the physical log and logical log files, move the log files to other dbspaces. You can set the AUTO_LLOG
configuration parameter to specify the dbspace for logical log files. You can store the physical log in a plogspace.
Recommendation: Set up the system with a small physical log and a few small logical logs. For example, create three 1000 KB logical log files, or 3000 KB for the
total log space. After the initial setup is complete, create a new dbspace for logical logs in an area that does not compete for I/O with other dbspaces, and set the
AUTO_LLOG configuration parameter to that dbspace. Create a set of larger logical-log files in the dbspace for logical logs, and drop the original logs from the root
dbspace. Then create a plogspace for the physical log. Make the plogspace large enough to hold your final physical log, and isolate it from other dbspaces as much
as possible. This configuration optimizes logging performance and the root dbspace for the following reasons:

The unused space that is left in the root dbspace after you move the logs is minimized.
The physical and logical logs do not contend for space and I/O on the same disk as each other or the root dbspace.
The server automatically increases the total logical log space and the size of the physical log if increasing logs measurably improves performance.

Temporary tables
Analyze user applications to estimate the amount of disk space that the database server might require for temporary tables. Try to estimate how many of these
statements are to run concurrently. The space that is occupied by the rows and columns that are returned provides a good basis for estimating the amount of space
required. The largest temporary table that the database server creates during a warm restore is equal to the size of your logical log. You calculate the size of your
logical log by adding the sizes of all logical-log files. You must also analyze user applications to estimate the amount of disk space that the database server might
require for explicit temporary tables.

Data
Although the root dbspace is the default location for databases, do not store databases and tables in the root dbspace.

System databases (the size varies between versions)

128 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

The sysmaster, sysutils, syscdr, and sysuuid databases, and the system catalogs must be stored in the root dbspace. The sysadmin database is stored in the root
dbspace by default, however, you can move the sysadmin database to a different dbspace.

Reserved pages (~24 KB)
The reserved pages contain control and tracking information that is used by the database server. Reserved pages must be stored in the root dbspace.

Tblspace tblspace (100 - 200 KB minimum)
The tblspace tblspace contains information about tblspaces. The tblspace tblspace must be stored in the root dbspace.

This estimate is the root dbspace size before you initialize the database server. The size of the root dbspace depends on whether you plan to store the physical log, logical
logs, and temporary tables in the root dbspace or in another dbspace. The root dbspace must be large enough for the minimum size configuration during disk initialization.

Allow extra space in the root dbspace for the system databases to grow, for the extended reserved pages, and ample free space. The number of extended reserved pages
depends on the number of primary chunks, mirror chunks, logical-log files, and storage spaces in the database server.

If you need to make the root dbspace larger after the server is initialized, you can add a chunk to the root dbspace. You can enable automatic space management to
expand the root dbspace as needed.

Important: Mirror the root dbspace and other dbspaces that contain critical data such as the physical log and logical logs.
Related concepts:

 Automatic space management
Manage dbspaces
Move logical-log files
Related tasks:

 Creating a temporary dbspace
Related reference:

 Change the physical-log location and size
Related information:

 ROOTSIZE configuration parameter
reset sysadmin argument: Move the sysadmin database (SQL administration API)

Copyright© 2020 HCL Technologies Limited

Amount of space that databases require

The amount of additional disk space required for the database server data storage depends on the requirements of users, plus overhead and growth.

Every application that users run has different storage requirements. The following list suggests some of the steps that you can take to calculate the amount of disk space
to allocate (beyond the root dbspace):

Decide how many databases and tables you must to store. Calculate the amount of space required for each one.
Calculate a growth rate for each table and assign some amount of disk space to each table to accommodate growth.
Decide which databases and tables you want to mirror.

For instructions about calculating the size of your tables, see your IBM® Informix® Performance Guide.

Copyright© 2020 HCL Technologies Limited

The storage pool

Every instance of the database server has a storage pool. The storage pool contains information about the directories, cooked files, and raw devices that the server can
use if necessary to automatically expand an existing dbspace, temporary dbspace, sbspace, temporary sbspace, or blobspace.

When the storage space falls below a threshold defined in the SP_THRESHOLD configuration parameter, the database server can automatically run a task that expands the
space, either by extending an existing chunk in the space or by adding a new chunk.

You can use SQL administration API commands to:

Add, delete, or modify an entry that describes one directory, cooked file, or raw device in the storage pool. The server can use the specified directory, cooked file, or
raw device when necessary to automatically add space to an existing storage space.
Control how a storage pool entry is used by modifying two different dbspace sizes that are associated with expanding a storage space, the extend size and the
create size.
Mark a chunk as extendable or not extendable.
Immediately expand the size of a space, when you do not want the database server to automatically expand the space.
Immediately extend the size of a chunk by a specified minimum amount.
Create a storage space or chunk from an entry in the storage pool
Return empty space from a dropped storage space or chunk to the storage pool

The storagepool table in sysadmin database contains information about all of the entries in a storage pool for a database server instance.

Related concepts:
 Extendable chunks

Automatic space management
Related tasks:

 Creating and managing storage pool entries

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 129

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Disk-layout guidelines

The following goals are typical for efficient disk layout:

Limiting disk-head movement
Reducing disk contention
Balancing the load
Maximizing availability

You must make some trade-offs among these goals when you design your disk layout. For example, separating the system catalog tables, the logical log, and the physical
log can help reduce contention for these resources. However, this action can also increase the chances that you must perform a system restore. For detailed disk-layout
guidelines, see the IBM® Informix® Performance Guide.

Dbspace and chunk guidelines
 This topic lists some general strategies for disk layout that do not require any information about the characteristics of a particular database.

Table-location guidelines
 This topic lists some strategies for optimizing the disk layout, given certain characteristics about the tables in a database.

Related concepts:
 Partitions and offsets

Tables

Copyright© 2020 HCL Technologies Limited

Dbspace and chunk guidelines

This topic lists some general strategies for disk layout that do not require any information about the characteristics of a particular database.

Associate disk partitions with chunks and allocate at least one additional chunk for the root dbspace.
A disk that is already partitioned might require the use of offsets. For details, see Allocating raw disk space on UNIX.
Tip: With the 4-terabyte maximum size of a chunk, you can avoid partitioning by assigning a chunk per disk drive.
Mirror critical dbspaces: the root dbspace, the dbspaces that contain the physical log and the logical-log files. Also mirror high-use databases and tables.
You specify mirroring at the dbspace level. Mirroring is either on or off for all chunks belonging to a dbspace. Locate the primary and the mirrored dbspaces on
different disks. Ideally, different controllers handle the different disks.

Spread temporary tables and sort files across multiple disks.
To define several dbspaces for temporary tables and sort files, use onspaces -t. When you place these dbspaces on different disks and list them in the
DBSPACETEMP configuration parameter, you can spread the I/O associated with temporary tables and sort files across multiple disks. For information about using
the DBSPACETEMP configuration parameter or environment variable, see the chapter on configuration parameters in the IBM® Informix® Administrator's Reference.

Keep the physical log in the root dbspace but move the logical logs from the root dbspace. However, if you plan to store the system catalogs in the root dbspace,
move the physical log to another dbspace.
For advice on where to store your logs, see Location of logical-log files. Also see Move logical-log files and Change the physical-log location and size.

To improve backup and restore performance:
Cluster system catalogs with the data that they track.
If you use ON-Bar to perform parallel backups to a high-speed tape drive, store the databases in several small dbspaces.
For additional performance recommendations, see the IBM Informix Backup and Restore Guide.

Copyright© 2020 HCL Technologies Limited

Table-location guidelines

This topic lists some strategies for optimizing the disk layout, given certain characteristics about the tables in a database.

You can implement many of these strategies with a higher degree of control using table fragmentation:

Isolate high-use tables on a separate disk.
To isolate a high-use table on its own disk device, assign the device to a chunk, and assign the same chunk to a dbspace. Finally, place the frequently used table in
the dbspace just created using the IN dbspace option of CREATE TABLE.

To display the level of I/O operations against each chunk, run the onstat -g iof option.

Fragment high-use tables over multiple disks.
Group related tables in a dbspace.
If a device that contains a dbspace fails, all tables in that dbspace are inaccessible. However, tables in other dbspaces remain accessible. Although you must
perform a cold restore if a dbspace that contains critical information fails, you must only perform a warm restore if a noncritical dbspace fails.

Place high-use tables on the middle partition of a disk.
Optimize table extent sizes.

For more information, see the chapter on table performance considerations in your IBM® Informix® Performance Guide. For information about onstat options, see the IBM
Informix Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

130 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Sample disk layouts

When setting out to organize disk space, the database server administrator usually has one or more of the following objectives in mind:

High performance
High availability
Ease and frequency of backup and restore

Meeting any one of these objectives has trade-offs. For example, configuring your system for high performance usually results in taking risks regarding the availability of
data. The sections that follow present an example in which the database server administrator must make disk-layout choices given limited disk resources. These sections
describe two different disk-layout solutions. The first solution represents a performance optimization, and the second solution represents an availability-and-restore
optimization.

The setting for the sample disk layouts is a fictitious sporting goods database that uses the structure (but not the volume) of the stores_demo database. In this example,
the database server is configured to handle approximately 350 users and 3 gigabytes of data. The disk space resources are shown in the following table.

Disk drive Size of drive High performance

Disk 1 2.5 gigabytes No

Disk 2 3 gigabytes Yes

Disk 3 2 gigabytes Yes

Disk 4 1.5 gigabytes No

The database includes two large tables: cust_calls and items. Assume that both of these tables contain more than 1,000,000 rows. The cust_calls table represents a
record of all customer calls made to the distributor. The items table contains a line item of every order that the distributor ever shipped.

The database includes two high-use tables: items and orders. Both of these tables are subject to constant access from users around the country.

The remaining tables are low-volume tables that the database server uses to look up data such as postal code or manufacturer.

Table name Maximum size Access rate

cust_calls 2.5 gigabytes Low

items 0.5 gigabytes High

orders 50 megabytes High

customers 50 megabytes Low

stock 50 megabytes Low

catalog 50 megabytes Low

manufact 50 megabytes Low

state 50 megabytes Low

call_type 50 megabytes Low

Sample layout when performance is highest priority
To optimize performance, use multiple storage spaces and multiple disks. The following figure shows a disk layout that is optimized for performance. This disk layout uses
the following strategies to improve performance:

Migration of the logical log and physical log files from the root dbspace
This strategy separates the logical log and the physical log and reduces contention for the root dbspace. For best performance, take advantage of automatic
performance tuning for the logical and physical logs:

Create a plogspace to enable the automatic expansion of the physical log.
Set the AUTO_LLOG configuration parameter to enable the automatic expansion of the logical log in a specified dbspace.

If you create a server during installation, the plogspace is created and the AUTO_LLOG configuration parameter is set to a non-critical dbspace.
Location of the two tables that undergo the highest use in dbspaces on separate disks
Neither of these disks stores the logical log or the physical log. Ideally you might store each of the items and orders tables on a separate high-performance disk.
However, in the present scenario, this strategy is not possible because one of the high-performance disks is required to store the large cust_calls table (the other
two disks are too small for this task).

Figure 1. Disk layout optimized for performance

Part VI: Administering 131

Sample layout when availability is highest priority
The weakness of the previous disk layout is that if either Disk 1 or Disk 2 fails, the whole database server goes down until you restore the dbspaces on these disks from
backups. In other words, the disk layout is poor with respect to availability.

An alternative disk layout that optimizes for availability and involves mirroring is shown in following figure. This layout mirrors all the critical data spaces (the system
catalog tables, the physical log, and the logical log) to a separate disk. Ideally you might separate the logical log and physical log (as in the previous layout) and mirror
each disk to its own mirror disk. However, in this scenario, the required number of disks does not exist; therefore, the logical log and the physical log both are located in
the root dbspace.
Figure 2. Disk layout optimized for availability

Copyright© 2020 HCL Technologies Limited

Logical-volume manager

You can use the logical-volume manager (LVM) utility to manage your disk space through user-defined logical volumes.

Many computer manufacturers ship their computers with a proprietary LVM. You can use the database server to store and retrieve data on disks that are managed by most
proprietary LVMs. Logical-volume managers provide some advantages and some disadvantages, as explained in the remainder of this section.

Most LVMs can manage multiple gigabytes of disk space. The database server chunks are limited to a size of 4 terabytes, and this size can be attained only when the chunk
being allocated has an offset of zero. Consequently, you must limit the size of any volumes to be allocated as chunks to a size of 4 terabytes.

132 Part VI: Administering

https://www.hcltech.com/

Because you can use LVMs to partition a disk drive into multiple volumes, you can control where data is placed on a given disk. You can improve performance by defining a
volume that consists of the middle-most cylinders of a disk drive and placing high-use tables in that volume. (Technically, you do not place a table directly in a volume. You
must first allocate a chunk as a volume, then assign the chunk to a dbspace, and finally place the table in the dbspace. For more information, see Control of where simple
large object data is stored.)
Tip: If you choose to use large disk drives, you can assign a chunk to one drive and eliminate the necessity to partition the disk.
You can also improve performance by using a logical volume manager to define a volume that spreads across multiple disks and then placing a table in that volume.

Many logical volume managers also allow a degree of flexibility that standard operating-system format utilities do not. One such feature is the ability to reposition logical
volumes after you define them. Thus getting the layout of your disk space right the first time is not so critical as with operating-system format utilities.

LVMs often provide operating-system-level mirroring facilities. For more information, see Alternatives to mirroring.

Copyright© 2020 HCL Technologies Limited

Manage disk space

You can use several utilities and tools to manage disk spaces and the data that the database server controls.

You can use the following utilities to manage storage spaces:

The onspaces utility commands
SQL administration API commands

Your IBM® Informix Performance Guide also contains information about managing disk space. In particular, it describes how to eliminate interleaved extents, how to
reclaim space in an empty extent, and how to improve disk I/O.

You can generate SQL administration API or onspaces commands for reproducing the storage spaces, chunks, and logs that exist in a file with the dbschema utility.

Allocate disk space
 This section explains how to allocate disk space for the database server.

Specify names for storage spaces and chunks
 Chunk names follow the same rules as storage-space names.

Monitor storage spaces
 You can monitor the status of storage spaces and configure how you are notified when a storage space becomes full.

Manage dbspaces
 This section contains information about creating standard and temporary dbspaces with and without the default page size, specifying the first and next extent sizes

for the tblspace tblspace in a dbspace when you create the dbspace, and adding a chunk to a dbspace or blobspace.
Manage blobspaces

 This section explains how to create a blobspace and determine the blobpage size.
Manage sbspaces

 This section describes how to create a standard or temporary sbspace, monitor the metadata and user-data areas, add a chunk to an sbspace, and alter storage
characteristics of smart large objects.
Manage the plogspace

 You create or move the plogspace with the onspaces utility or equivalent SQL administration API command.
Automatic space management

 You can configure the server to add more storage space automatically when more space is required. You use space more effectively and ensure that space is
allocated as necessary, while reducing out-of-space errors. You reduce the time required to manually monitor your spaces to determine which storage space might
run out of free space. If you configure the server to automatically add space, you can also manually expand a space or extend a chunk.
Drop a chunk

 Use the onspaces utility to drop a chunk from a dbspace.
Drop a storage space

 Use onspaces to drop a dbspace, temporary dbspace, blobspace, sbspace, temporary sbspace, or extspace.
Creating a space or chunk from the storage pool

 If your storage pool contains entries, you can create storage spaces or chunks from free space in the storage pool.
Returning empty space to the storage pool

 You can return the space from an empty chunk or storage space to the storage pool.
Manage extspaces

 Skip inaccessible fragments
 Display databases

 You can display the databases that you create with SMI tables.
Monitor disk usage

 Multitenancy
 You can segregate data, storage space, and processing resources for multiple client organizations by creating multiple tenant databases in a single instance of

Informix®.
Storage optimization

 Data compression and consolidation processes can minimize the disk space that is used by your data and indexes.
Load data into a table

Related concepts:

 Table fragmentation and data storage
Storage space creation and management
Data storage
Related information:

 Storage space, chunk, and log creation
SQL Administration API Functions
Managing extents
Managing sbspaces

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 133

https://www.hcltech.com/
https://www.hcltech.com/

Allocate disk space

This section explains how to allocate disk space for the database server.

Read the following sections before you allocate disk space:

Unbuffered or buffered disk access on UNIX
Amount of disk space needed to store data
Disk-layout guidelines

Before you can create a storage space or chunk, or mirror an existing storage space, you must allocate disk space for the chunk file. You can allocate either an empty file or
a portion of raw disk for database server disk space.

UNIX only: On UNIX, if you allocate raw disk space, you must use the UNIX ln command to create a link between the character-special device name and another file name.
For more information about this topic, see Create symbolic links to raw devices (UNIX).
Using a UNIX file and its inherent operating-system interface for database server disk space is called using cooked space.

Windows only: On Windows, you must use NTFS files for database server disk space. For more information about this recommendation, see Unbuffered or buffered disk
access on UNIX.
You can balance chunks over disks and controllers. Placing multiple chunks on a single disk can improve throughput.

Specify an offset
 When you allocate a chunk of disk space to the database server, specify an offset.

Allocating cooked file spaces on UNIX
 The following procedure shows an example of allocating disk space for a cooked file.

Allocating raw disk space on UNIX
 To allocate raw space, you must have a disk partition available that is dedicated to raw space. To create raw disk space, you can either repartition your disks or

unmount an existing file system. Back up any files before you unmount the device.
Create symbolic links to raw devices (UNIX)

 Use symbolic links to assign standard device names and to point to the device.
Allocating NTFS file space on Windows
On Windows, the database server uses NTFS files by default. You can use standard file names for unbuffered files in the NTFS file system. If all your partitions are
FAT files, you can convert one to NTFS.
Allocating raw disk space on Windows
You can configure raw disk space on Windows as a logical drive or physical drive.

Copyright© 2020 HCL Technologies Limited

Specify an offset

When you allocate a chunk of disk space to the database server, specify an offset.

Specify an offset for one of the following two purposes:

To prevent the database server from overwriting the partition information
To define multiple chunks on a partition, disk device, or cooked file

The maximum value for the offset is 4 terabytes.

Many computer systems and some disk-drive manufacturers keep information for a physical disk drive on the drive itself. This information is sometimes called a volume
table of contents (VTOC) or disk label. The VTOC is commonly stored on the first track of the drive. A table of alternative sectors and bad-sector mappings (also called a
revectoring table) might also be stored on the first track.

If you plan to allocate partitions at the start of a disk, you might be required to use offsets to prevent the database server from overwriting critical information required by
the operating system. For the exact offset required, see your disk-drive manuals.
Important: If you are running two or more instances of the database server, be extremely careful not to define chunks that overlap. Overlapping chunks can cause the
database server to overwrite data in one chunk with unrelated data from an overlapping chunk. This overwrite effectively deletes overlapping data.

Specify an offset for the initial chunk of root dbspace
 For the initial chunk of root dbspace and its mirror, if it has one, specify the offsets with the ROOTOFFSET and MIRROROFFSET parameters, respectively.

Specify an offset for additional chunks
 To specify an offset for additional chunks of database server space, you must supply the offset as a parameter when you assign the space to the database server.

Use offsets to create multiple chunks
 You can create multiple chunks from a disk partition, disk device, or file, by specifying offsets and assigning chunks that are smaller than the total space available.

Copyright© 2020 HCL Technologies Limited

Specify an offset for the initial chunk of root dbspace

For the initial chunk of root dbspace and its mirror, if it has one, specify the offsets with the ROOTOFFSET and MIRROROFFSET parameters, respectively.

For more information, see the topics about configuration parameters in the IBM® Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

134 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Specify an offset for additional chunks

To specify an offset for additional chunks of database server space, you must supply the offset as a parameter when you assign the space to the database server.

For more information, see Creating a dbspace that uses the default page size.

Copyright© 2020 HCL Technologies Limited

Use offsets to create multiple chunks

You can create multiple chunks from a disk partition, disk device, or file, by specifying offsets and assigning chunks that are smaller than the total space available.

The offset specifies the beginning location of a chunk. The database server determines the location of the last byte of the chunk by adding the size of the chunk to the
offset.

For the first chunk, assign any initial offset, if necessary, and specify the size as an amount that is less than the total size of the allocated disk space. For each additional
chunk, specify the offset to include the sizes of all previously assigned chunks, plus the initial offset, and assign a size that is less than or equal to the amount of space
remaining in the allocation.

Copyright© 2020 HCL Technologies Limited

Allocating cooked file spaces on UNIX

The following procedure shows an example of allocating disk space for a cooked file.

,

To allocate disk space for a cooked file called usr/data/my_chunk, on UNIX:

1. Log-in as user informix: su informix
2. Change directories to the directory where the cooked space will be located: cd /usr/data
3. Create your chunk by concatenating null to the file name that the database server will use for disk space: cat /dev/null > my_chunk
4. Set the file permissions to 660 (rw-rw----): chmod 660 my_chunk
5. You must set both group and owner of the file to informix:

ls -l my_chunk -rw-rw----
 1 informix informix
 0 Oct 12 13:43 my_chunk

6. Use onspaces to create the storage space or chunk.

For information about how to create a storage space using the file you have allocated, see Creating a dbspace that uses the default page size, Creating a blobspace, and
Creating an sbspace.

Copyright© 2020 HCL Technologies Limited

Allocating raw disk space on UNIX

To allocate raw space, you must have a disk partition available that is dedicated to raw space. To create raw disk space, you can either repartition your disks or unmount
an existing file system. Back up any files before you unmount the device.

To allocate raw disk space

1. Create and install a raw device.
For specific instructions on how to allocate raw disk space on UNIX, see your operating-system documentation and Unbuffered or buffered disk access on UNIX.

2. Change the ownership and permissions of the character-special devices to informix.
The file name of the character-special device usually begins with the letter r. For the procedure, see steps 4 and 5 in Allocating cooked file spaces on UNIX.

3. Verify that the operating-system permissions on the character-special devices are crw-rw----.
4. Create a symbolic link between the character-special device name and another file name with the UNIX link command, ln -s. For details, see Create symbolic links

to raw devices (UNIX).

Restriction: After you create the raw device that the database server uses for disk space, do not create file systems on the same raw device that you allocate for the
database server disk space. Also, do not use the same raw device as swap space that you allocate for the database server disk space.
Related concepts:

 Partitions and offsets

Copyright© 2020 HCL Technologies Limited

Create symbolic links to raw devices (UNIX)

Part VI: Administering 135

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Use symbolic links to assign standard device names and to point to the device.

To create a link between the character-special device name and another file name, use the UNIX link command (usually ln). To verify that both the devices and the links
exist, run the UNIX command ls -l (ls -lg on BSD) on your device directory. The following example shows links to raw devices. If your operating system does not support
symbolic links, hard links also work.

ln -s /dev/rxy0h /dev/my_root # orig_device link to symbolic_name
ln -s /dev/rxy0a /dev/raw_dev2
ls -l
crw-rw--- /dev/rxy0h
crw-rw--- /dev/rxy0a
lrwxrwxrwx /dev/my_root@->/dev/rxy0h
lrwxrwxrwx /dev/raw_dev2@->/dev/rxy0a

Why use symbolic links? If you create chunks on a raw device and that device fails, you cannot restore from a backup until you replace the raw device and use the same
path name. All chunks that were accessible at the time of the last backup must be accessible when you perform the restore.

Symbolic links simplify recovery from disk failure and enable you to replace quickly the disk where the chunk is located. You can replace a failed device with another
device, link the new device path name to the same file name that you previously created for the failed device, and restore the data. You are not required to wait for the
original device to be repaired.

Copyright© 2020 HCL Technologies Limited

Allocating NTFS file space on Windows

On Windows, the database server uses NTFS files by default. You can use standard file names for unbuffered files in the NTFS file system. If all your partitions are FAT
files, you can convert one to NTFS.

To allocate NTFS file space for database server disk space or mirrored space, the first step is to create a null (zero bytes) file.

To allocate NTFS file space:

1. Log in as a member of the Informix-Admin group.
2. Open an MS-DOS command shell.
3. Change to the directory where you want to allocate the space, as in the following example:

c:> cd \usr\data

4. If necessary, convert the partition to NTFS by running the following command: convert /fs:ntfs
5. Create a null file with the following command: c:> copy nul my_chunk
6. If you want to verify that the file was created, use the dir command to do so.

After you allocate the file space, you can create the dbspace or other storage space as you normally would, using onspaces. For information about how to create a
dbspace or a blobspace, see Creating a dbspace that uses the default page size and Creating a blobspace.

Copyright© 2020 HCL Technologies Limited

Allocating raw disk space on Windows

You can configure raw disk space on Windows as a logical drive or physical drive.

To find the drive letter or disk number, run the Disk Administrator. If the drives must be striped (multiple physical disks combined into one logical disk), only logical drive
specification would work.

You must be a member of the Informix-Admin group when you create a storage space or add a chunk. The raw disk space can be formatted or unformatted disk space.

Important: If you allocate a formatted drive or disk partition as raw disk space and it contains data, the database server overwrites the data when it begins to use the disk
space. You must ensure that any data on raw disk space is expendable before you allocate the disk space to the database server.
To specify a logical drive:

1. Assign a drive letter to the disk partition.
2. Specify the following value for ROOTDBS in the onconfig file: \\.\drive_letter
3. To create a storage space or add a chunk, specify the logical drive partition.

This example adds a chunk of 5000 KB on the e: drive, at an offset of 5200 KB, to dbspace dpspc3.

onspaces -a dbspc3 \\.\e: -o 5200 -s 5000

To specify a physical drive

1. If the disk partition has not been assigned a drive letter, specify the following value for ROOTDBS in the onconfig file: \\.\PhysicalDrive<number>
2. To create a storage space or add a chunk, specify the physical drive partition.

This example adds a chunk of 5000 KB on PhysicalDrive0, at an offset of 5200 KB, to dbspace dpspc3.

onspaces -a dbspc3 \\.\PhysicalDrive0 : -o 5200 -s 5000

Copyright© 2020 HCL Technologies Limited

Specify names for storage spaces and chunks
136 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Chunk names follow the same rules as storage-space names.

Specify an explicit path name for a storage space or chunk as follows:

If you are using raw disks on UNIX, you must use a linked path name. (See Create symbolic links to raw devices (UNIX).)
If you are using raw disks on Windows, the path name takes the following form, where x specifies the disk drive or partition:

\\.\x:

If you are using a file for database server disk space, the path name is the complete path and file name.

Use these naming rules when you create storage spaces or add a chunk. The file name must have the following characteristics:

Be unique and not exceed 128 bytes
Begin with a letter or underscore
Contain only letters, digits, underscores, or $ characters

The name is not case-sensitive unless you use quotation marks around it. By default, the database server converts uppercase characters in the name to lowercase. If you
want to use uppercase in names, put quotation marks around them and set the DELIMIDENT environment variable to ON.

Specify the maximum size of chunks
 On most platforms, the maximum chunk size is 4 terabytes, but on other platforms, the maximum chunk size is 8 terabytes.

Specify the maximum number of chunks and storage spaces
 You can specify a maximum of 32,766 chunks for a storage space, and a maximum of 32,766 storage spaces on the database server system.

Back up after you change the physical schema
 You must perform a level-0 backup of the root dbspace and the modified storage spaces to ensure that you can restore the data in certain circumstances.

Related concepts:
 Chunks

Copyright© 2020 HCL Technologies Limited

Specify the maximum size of chunks

On most platforms, the maximum chunk size is 4 terabytes, but on other platforms, the maximum chunk size is 8 terabytes.

To determine which chunk size your platform supports see your machine notes file. If you have upgraded from a version before version 10.00 and did not run the onmode
-BC 2 command, the maximum chunk size is 2 GB.

Copyright© 2020 HCL Technologies Limited

Specify the maximum number of chunks and storage spaces

You can specify a maximum of 32,766 chunks for a storage space, and a maximum of 32,766 storage spaces on the database server system.

The storage spaces can be any combination of dbspaces, blobspaces, and sbspaces.

Considering all limits that can apply to the size of an instance of the database server, the maximum size of an instance is approximately 8 petabytes.

If you have upgraded from a version before version 10.00, you must run onmode -BC 2 to enable the maximum number of chunks and storage spaces.

Copyright© 2020 HCL Technologies Limited

Back up after you change the physical schema

You must perform a level-0 backup of the root dbspace and the modified storage spaces to ensure that you can restore the data in certain circumstances.

Perform a level-0 backup to ensure that you can restore data when you:

Add or drop mirroring
Drop a logical-log file
Change the size or location of the physical log
Change your storage-manager configuration
Add, move, or drop a dbspace, blobspace, or sbspace
Add, move, or drop a chunk to a dbspace, blobspace, or sbspace

Important: When you add a new logical log, you no longer are required to perform a level-0 backup of the root dbspace and modified dbspace to use the new logical log.
However, you must perform the level-0 backup to prevent level-1 and level-2 backups from failing.
You must perform a level-0 backup of the modified storage spaces to ensure that you can restore the unlogged data before you switch to a logging table type:

When you convert a nonlogging database to a logging database
When you convert a RAW table to standard

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 137

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Monitor storage spaces

You can monitor the status of storage spaces and configure how you are notified when a storage space becomes full.

When a storage space or partition becomes full, a message is shown in the online message log file.

You can configure alarms that are triggered when storage spaces become full with the STORAGE_FULL_ALARM configuration parameter. You can specify how often alarms
are sent and the minimum severity level of alarms to be sent. By default, the alarm interval is 600 seconds and the alarm severity level is 3. For more information about
the STORAGE_FULL_ALARM configuration parameters and event alarms, see the IBM Informix Administrator's Reference.

If the primary server in a high-availability cluster encounters an out-of-space condition, and the STORAGE_FULL_ALARM configuration parameter is enabled, the event
alarm is triggered and an error status is returned on the primary server but not on any of the secondary servers. This is expected behavior because log records are no
longer sent from the primary server to the secondary servers when the primary server encounters an out-of-space condition. In this case, the secondary servers never
exceed their storage limits and thus do not trigger an event alarm or return an error status.

You can use the IBM® Informix® Scheduler to set up a task that automatically monitors the status of storage spaces. The properties of the task define the information that
Scheduler collects and specifies how frequently the task runs. For example, you might define a task to monitor storage spaces every hour, five days a week. For more
information, see The Scheduler and Creating a task.

Copyright© 2020 HCL Technologies Limited

Manage dbspaces

This section contains information about creating standard and temporary dbspaces with and without the default page size, specifying the first and next extent sizes for the
tblspace tblspace in a dbspace when you create the dbspace, and adding a chunk to a dbspace or blobspace.

For information about monitoring dbspaces, see Monitor storage spaces.

Creating a dbspace that uses the default page size
 You can use onspaces to create a standard dbspace and a temporary dbspace.

Creating a dbspace with a non-default page size
 You can specify a page size for a standard or temporary dbspace if you want a longer key length than is available for the default page size.

Improving the performance of cooked-file dbspaces by using direct I/O
 On UNIX systems, you can improve the performance of cooked files used for dbspace chunks by using direct I/O.

Storing multiple named fragments in a single dbspace
 For fragmented tables that use expression-based, interval, list, or round-robin distribution schemes, you can create named fragments that can be located within a

single dbspace.
Creating a temporary dbspace

 To specify where to allocate the temporary files, create temporary dbspaces.
What to do if you run out of disk space

 When the initial chunk of the dbspace that you are creating is a cooked file on UNIX or an NTFS file on Windows, the database server verifies that the disk space is
sufficient for the initial chunk.
Adding a chunk to a dbspace or blobspace

 You add a chunk when a dbspace, blobspace, or sbspace is becoming full or requires more disk space.
Rename dbspaces

 You can use the onspaces utility to rename a dbspace if you are user informix or have DBA privileges and the database server is in quiescent mode (and not any
other mode).
Managing automatic location and fragmentation

 You can control whether the database server automatically chooses the location for databases, indexes, and tables and automatically fragments tables. You can
control the list of dbspaces in which the database server stores databases, indexes, and table fragments.

Related concepts:
 Control of where simple large object data is stored

Size of the root dbspace

Copyright© 2020 HCL Technologies Limited

Creating a dbspace that uses the default page size

You can use onspaces to create a standard dbspace and a temporary dbspace.

For information about creating a dbspace with a non-default page size, see Creating a dbspace with a non-default page size.

Any newly added dbspace (and its mirror, if one exists) is available immediately. If you are using mirroring, you can mirror the dbspace when you create it. Mirroring takes
effect immediately.

To create a standard dbspace using onspaces:

1. On UNIX, you must be logged in as user informix or root to create a dbspace.
On Windows, users in the Informix-Admin group can create a dbspace.

2. Ensure that the database server is in online, administration, or quiescent mode.
3. Allocate disk space for the dbspace, as described in Allocate disk space.
4. To create a dbspace, use the onspaces -c -d options.

KB is the default unit for the -s size and -o offset options. To convert KB to megabytes, multiply the unit by 1024 (for example, 10 MB = 10 * 1024 KB).

138 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

See Creating a dbspace with a non-default page size for information about additional onspaces options if you are creating a dbspace with a non-default page size.

5. If you do not want to specify the first and next extent sizes for the tblspace tblspace in a dbspace, go to 6.
If you want to specify the first and next extent sizes for the tblspace tblspace in a dbspace, see additional information in Specifying the first and next extent sizes
for the tblspace tblspace.

6. After you create the dbspace, you must perform a level-0 backup of the root dbspace and the new dbspace.

The following example shows how to create a 10-megabyte mirrored dbspace, dbspce1, with an offset of 5000 KB for both the primary and mirror chunks, using raw disk
space on UNIX:

onspaces -c -d dbspce1 -p /dev/raw_dev1 -o 5000 -s 10240 -m /dev/raw_dev2 5000

The following example shows how to create a 5-megabyte dbspace, dbspc3, with an offset of 200 KB, from raw disk space (drive e:) on Windows:

onspaces -c -d dbspc3 \\.\e: -o 200 -s 5120

For more information about creating a dbspace with onspaces, see Dbspaces and information about the onspaces utility in the IBM® Informix® Administrator's Reference.

Specifying the first and next extent sizes for the tblspace tblspace
 You can specify first and next extent sizes if you want to reduce the number of tblspace tblspace extents and reduce the frequency of situations when you must

place the tblspace tblspace extents in non-primary chunks. (A primary chunk is the initial chunk in a dbspace.)

Copyright© 2020 HCL Technologies Limited

Specifying the first and next extent sizes for the tblspace tblspace

You can specify first and next extent sizes if you want to reduce the number of tblspace tblspace extents and reduce the frequency of situations when you must place the
tblspace tblspace extents in non-primary chunks. (A primary chunk is the initial chunk in a dbspace.)

You can choose to specify the first extent size, the next extent size, both the first and the next extent size, or neither extent size. If you do not specify first or next extent
sizes for the tblspace tblspace, IBM® Informix® uses the existing default extent sizes.

You can use the TBLTBLFIRST and TBLTBLNEXT configuration parameters to specify the first and next extent sizes for the tblspace tblspace in the root dbspace that is
created when the server is initialized.

You can use the onspaces utility to specify the first and next extent sizes for the tblspace tblspace in non-root dbspaces.

You can only specify the first and next extent sizes when you create dbspace. You cannot alter the specification of the first and next extent sizes after the creation of the
dbspace. In addition, you cannot specify extent sizes for temporary dbspaces, sbspaces, blobspaces, or external spaces. You cannot alter the specification of the first and
next extents sizes after the creation of the dbspace.

To specify the first and next extent sizes:

1. Determine the total number of pages required in the tblspace tblspace. The number of pages is equal to the sum of the number of tables, detached indexes, and
table fragments likely to be located in the dbspace plus one page for the tblspace tblspace.

2. Calculate the number of KB required for the number of pages. This number depends on the number of KB to a page on the system.
3. Determine the space management requirements on your system by considering the importance of having all of the extents for the tblspace tblspace allocated

during dbspace creation and whether the extents must be allocated contiguously. The more important these issues are, the larger the first extent size must be. If
you are less concerned with having non-contiguous extents, possibly in secondary chunks, then the first and next extent sizes can be smaller.

4. Specify the extent size as follows:
If the space requirement is for the root dbspace, specify the first extent size in the TBLTBLFIRST configuration parameter and the next extent size in the
TBLTBLNEXT configuration parameter. Then initialize the database server instance.
If the space requirement is for a non-root dbspace, indicate the first and next extent sizes on the command line using the onspaces utility to create the
dbspace.

Extent sizes must be in KB and must be multiples of the page size. When you specify first and next extent sizes, follow these guidelines:

Type of extent Minimum size Maximum size

First extent in a non-root dbspace The equivalent of 50 pages, specified in KB. This is the
system default. For example, for a 2 KB page system,
the minimum length is 100.

The size of the initial chunk, minus the space required
for any system objects such as the reserved pages, the
database tblspace, and the physical and logical logs.

First extent in a root dbspace The equivalent of 250 pages specified in KB. This is the
system default.

The size of the initial chunk, minus the space required
for any system objects such as the reserved pages, the
database tblspace, and the physical and logical logs.

Next Extent Four times the disk-page size on the system. The
default is 50 pages on any type of dbspace.

The maximum chunk size minus three pages.

You use the following onspaces utility -ef and -en options to specify the first and next extent sizes for the tblspace tblspace in non-root dbspaces:

First extent size: -ef size_in_kbytes
Next extent size: -en size_in_kbytes

For example, you can specify:

onspaces -c -d dbspace1 -p /usr/data/dbspace1 -o 0 -s 1000000 -e 2000 -n 1000

You can use Oncheck -pt and oncheck -pT to show the first and next extent sizes of a tblspace tblspace.

If data replication is being used and a dbspace is created on the primary database server, the first and next extent sizes are passed to the secondary database server
through the ADDCHK log record.

Part VI: Administering 139

https://www.hcltech.com/

For more information about the onspaces utility, oncheck commands, and specifying the first and next extent sizes for the tblspace tblspace, see the IBM Informix
Administrator's Reference.

Related information:
 TBLTBLFIRST configuration parameter

TBLTBLNEXT configuration parameter

Copyright© 2020 HCL Technologies Limited

Creating a dbspace with a non-default page size

You can specify a page size for a standard or temporary dbspace if you want a longer key length than is available for the default page size.

The root dbspace uses the default page size. If you want to create a dbspace with a different page size, the size must be an integral multiple of the default page size, and
cannot be greater than 16 KB.

For systems with sufficient storage, the performance advantages of a larger page size include:

Reduced depth of B-tree indexes, even for smaller index keys.
Decreased checkpoint time, which typically occurs with larger page sizes.

Additional performance advantages occur because you can:

Group on the same page long rows that currently span multiple pages of the default page size.
Define a different page size for temporary tables, so the temporary tables have a separate buffer pool.

A table can be in one dbspace and the index for that table can be in another dbspace. The page size for these partitions can be different.

To create a dbspace with a non-default page size:

1. If you upgraded from a version before version 10.00, run the onmode -BC 2 command to enable the large chunk mode. By default, when IBM® Informix® is first
initialized or restarted, starts with the large chunk mode enabled.

2. Optional: Create a buffer pool that corresponds to the page size of the dbspace. You can use the onparams utility or the BUFFERPOOL configuration parameter.
If you create a dbspace with a page size that does not have a corresponding buffer pool, automatically creates a buffer pool using the default values for the
BUFFERPOOL configuration parameter as defined in the onconfig file.

You cannot have multiple buffer pools with the same page size.

3. Define the page size of the dbspace when you create the dbspace. You can use the onspaces utility.

Tip: If you use non-default page sizes, you might be required to increase the size of your physical log. If you perform many updates to non-default pages you might require
a 150 - 200 percent increase of the physical log size. Some experimentation might be required to tune the physical log. You can adjust the size of the physical log as
necessary according to how frequently the filling of the physical log triggers checkpoints.

Copyright© 2020 HCL Technologies Limited

Improving the performance of cooked-file dbspaces by using direct I/O

On UNIX systems, you can improve the performance of cooked files used for dbspace chunks by using direct I/O.

Direct I/O must be available and the file system must support direct I/0 for the page size used for the dbspace chunk.
You can use IBM® Informix® to use either raw devices or cooked files for dbspace chunks. In general, cooked files are slower because of the additional overhead and
buffering provided by the file system. Direct I/O bypasses the use of the file system buffers, and therefore is more efficient for reads and writes that go to disk. You specify
direct I/O with the DIRECT_IO configuration parameter. If your file system supports direct I/O for the page size used for the dbspace chunk and you use direct I/O,
performance for cooked files can approach the performance of raw devices used for dbspace chunks.

To improve the performance of cooked-file dbspaces by using direct I/O:

1. Verify that you have direct I/O and the file system supports direct I/O for the page size used for the dbspace chunk.
2. Enable direct I/O by setting the DIRECT_IO configuration parameter to 1.

If you have an AIX® operating system, you can also enable concurrent I/O for to use with direct IO when reading and writing to chunks that use cooked files.

For more information about using direct IO or concurrent IO, see the IBM Informix Performance Guide.

Copyright© 2020 HCL Technologies Limited

Storing multiple named fragments in a single dbspace

For fragmented tables that use expression-based, interval, list, or round-robin distribution schemes, you can create named fragments that can be located within a single
dbspace.

Storing multiple table or index fragments in a single dbspace improves query performance over storing each fragment in a different dbspace and simplifies management of
dbspaces.

140 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Suppose you are creating a fragmented table using an expression-based distribution scheme in which each expression specifies the data sets that are placed in particular
fragments. You might decide to separate the data in the table with data from one month in one dbspace and data from the next 11 months in 11 other dbspaces. However,
if you want to use only one dbspace for all the yearly data, you can create named fragments so the data for each month is stored in one dbspace.

If you create a fragmented table with named fragments, each row in the sysfragments system catalog table contains a fragment name in the partition column. If you
create a fragmented table without named fragments, the name of the dbspace is in the partition column. The flags column in the sysfragments system catalog table tells
you if the fragmentation scheme has named fragments.

You can create tables and indexes with named fragments, and you can create, drop, and alter named fragments using the PARTITION keyword and the fragment name.

To create a fragmented table with named fragments, use SQL syntax as shown in the following example:

CREATE TABLE tb1(a int)
 FRAGMENT BY EXPRESSION
 PARTITION part1 (a >=0 AND a < 5) IN dbspace1,
 PARTITION part2 (a >=5 AND a < 10) IN dbspace1
 ...
 ;

If you created a table or index fragment containing named fragments, you must use syntax containing the fragment name when you use the ALTER FRAGMENT statement,
as shown in the following examples:

ALTER FRAGMENT ON TABLE tb1 INIT FRAGMENT BY EXPRESSION
 PARTITION part_1 (a >=0 AND a < 5) IN dbspace1,
 PARTITION part_2 (a >=5 AND a < 10) IN dbspace1;

ALTER FRAGMENT ON INDEX ind1 INIT FRAGMENT BY EXPRESSION
 PARTITION part_1 (a >=0 AND a < 5) IN dbspace1,
 PARTITION part_2 (a >=5 AND a < 10) IN dbspace1;

You can use the PARTITION BY EXPRESSION keywords in place of the FRAGMENT BY EXPRESSION keywords in the CREATE TABLE, CREATE INDEX, and ALTER
FRAGMENT ON INDEX statements, as shown in this example:

ALTER FRAGMENT ON INDEX idx1 INIT PARTITION BY EXPRESSION
 PARTITION part1 (a <= 10) IN idxdbspc1,
 PARTITION part2 (a <= 20) IN idxdbspc1,
 PARTITION part3 (a <= 30) IN idxdbspc1;

Use ALTER FRAGMENT syntax to change fragmented tables and indexes that do not have named fragments into tables and indexes that have named fragments. The
following syntax shows how you might convert a fragmented table with multiple dbspaces into a fragmented table with named fragments:

CREATE TABLE t1 (c1 int) FRAGMENT BY EXPRESSION
 (c1=10) IN dbs1,
 (c1=20) IN dbs2;
ALTER FRAGMENT ON TABLE t1 MODIFY dbs2 TO PARTITION part_3 (c1=20)
 IN dbs1

The following syntax shows how you might convert a fragmented index into an index that contains named fragments:

CREATE TABLE t1 (c1 int) FRAGMENT BY EXPRESSION
 (c1=10) IN dbs1, (c1=20) IN dbs2, (c1=30) IN dbs3
CREATE INDEX ind1 ON t1 (c1) FRAGMENT BY EXPRESSION
 (c1=10) IN dbs1, (c1=20) IN dbs2, (c1=30) IN dbs3

ALTER FRAGMENT ON INDEX ind1 INIT FRAGMENT BY EXPRESSION
 PARTITION part_1 (c1=10) IN dbs1, PARTITION part_2 (c1=20) IN dbs1,
 PARTITION part_3 (c1=30) IN dbs1,

See the IBM® Informix® Performance Guide for more information about fragmentation, including fragmentation guidelines, procedures for fragmenting indexes, procedures
for creating attached and detached indexes with named fragments, and examples of SQL statements used to create attached and detached indexes containing named
fragments.

See the IBM Informix Guide to SQL: Syntax for more syntax details, including information about named fragments in the GRANT FRAGMENT and REVOKE FRAGMENT
statements, and details for using the DROP, DETACH, and MODIFY clauses of the ALTER FRAGMENT statement.

Copyright© 2020 HCL Technologies Limited

Creating a temporary dbspace

To specify where to allocate the temporary files, create temporary dbspaces.

To define temporary dbspaces:

1. Use the onspaces utility with the -c -d -t options.
For more information, see Creating a dbspace that uses the default page size.

Or, use the create tempdbspace command with the SQL administration API admin() or task() function.

For more information, see create tempdbspace argument: Create a temporary dbspace (SQL administration API).

2. Use the DBSPACETEMP environment variables or the DBSPACETEMP configuration parameter to specify the dbspaces that the database server can use for
temporary storage.
The DBSPACETEMP configuration parameter can contain dbspaces with a mix of page sizes.

For further information about DBSPACETEMP, see the topics about configuration parameters in the IBM® Informix® Administrator's Reference.

3. If you create more than one temporary dbspace, the dbspaces should be located on separate disks to optimize the I/O.

Part VI: Administering 141

https://www.hcltech.com/

After you have created a temporary dbspace, you must make the database server aware of the existence of the newly created temporary dbspace by setting the
DBSPACETEMP configuration parameter, the DBSPACETEMP environment variable, or both.

The following example shows how to create 5-megabyte temporary dbspace named temp_space with an offset of 5000 KB:

onspaces -c -t -d temp_space -p /dev/raw_dev1 -o 5000 -s 5120

The equivalent SQL administration API statement:

EXECUTE FUNCTION task(“create tempdbspace”, “temp_space”, “/dev/raw_dev1”, “5 MB”, “5000 KB”);

By allocating the space from a pre-defined storage pool you may avoid specifying the device or offset:

EXECUTE FUNCTION task(“create tempdbspace from storagepool”, “temp_space”, “5 MB”);

For more information, see Temporary dbspaces.

Related concepts:
 Size of the root dbspace

Related information:
 create dbspace from storagepool argument: Create a dbspace from the storage pool (SQL administration API)

create tempdbspace argument: Create a temporary dbspace (SQL administration API)

Copyright© 2020 HCL Technologies Limited

What to do if you run out of disk space

When the initial chunk of the dbspace that you are creating is a cooked file on UNIX or an NTFS file on Windows, the database server verifies that the disk space is
sufficient for the initial chunk.

If the size of the chunk is greater than the available space on the disk, a message is displayed and no dbspace is created. However, the cooked file that the database
server created for the initial chunk is not removed. Its size represents the space left on your file system before you created the dbspace. Remove this file to reclaim the
space.

Copyright© 2020 HCL Technologies Limited

Adding a chunk to a dbspace or blobspace

You add a chunk when a dbspace, blobspace, or sbspace is becoming full or requires more disk space.

Important: The newly added chunk (and its associated mirror, if one exists) is available immediately. If you are adding a chunk to a mirrored storage space, you must also
add a mirror chunk.
To add a chunk using onspaces:

1. On UNIX, you must be logged in as user informix or root to add a chunk.
On Windows, users in the Informix-Admin group can add a chunk.

2. Ensure that the database server is in online, administration, or quiescent mode, or the cleanup phase of fast-recovery mode.
3. Allocate disk space for the chunk, as described in Allocate disk space.
4. To add a chunk, use the -a option of onspaces.

If the storage space is mirrored, you must specify the path name of both a primary chunk and mirror chunk.

If you specify an incorrect path name, offset, or size, the database server does not create the chunk and displays an error message. Also see What to do if you run
out of disk space.

5. After you create the chunk, you must perform a level-0 backup of the root dbspace and the dbspace, blobspace, or sbspace that contains the chunk.

The following example adds a 10-megabyte mirror chunk to blobsp3. An offset of 200 KB for both the primary and mirror chunk is specified. If you are not adding a mirror
chunk, you can omit the -m option.

onspaces -a blobsp3 -p /dev/raw_dev1 -o 200 -s 10240 -m /dev/raw_dev2 200

The next example adds a 5-megabyte chunk of raw disk space, at an offset of 5200 KB, to dbspace dbspc3.

onspaces -a dbspc3 \\.\e: -o 5200 -s 5120

You can also define information that Informix® can use to automatically extend the size of a chunk when additional storage space is required for an application. If you have
extendable chunks, you are not required to add new chunks or spend time trying to determine which storage space will run out of space and when it will run out of space.

Related concepts:
 Automatic space management

Related tasks:
 Adding a chunk to an sbspace

Copyright© 2020 HCL Technologies Limited

Rename dbspaces

142 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

You can use the onspaces utility to rename a dbspace if you are user informix or have DBA privileges and the database server is in quiescent mode (and not any other
mode).

To rename a dbspace use the following onspaces utility command:

onspaces -ren old_dbspace_name-n new_dbspace_name

You can rename standard dbspaces and all other spaces, including blobspaces, smart blobspaces, temporary spaces, and external spaces. However, you cannot rename
any critical dbspace, such as a root dbspace or a dbspace that contains physical logs.

You can rename a dbspace and an sbspace:

When Enterprise Replication is enabled
On a primary database server when data replication is enabled

You cannot rename a dbspace and an sbspace on a secondary database server or when the secondary database server is part of the Enterprise Replication configuration

The rename dbspace operation only changes the dbspace name; it does not reorganize data.

The rename dbspace command updates the dbspace name in all places where that name is stored. This includes reserved pages on disk, system catalogs, the ONCONFIG
configuration file, and in-memory data structures.

Important: After renaming a dbspace, perform a level-0 archive of the renamed dbspace and the root dbspace. For information, see the IBM® Informix® Backup and
Restore Guide.

Additional actions that may be required after you rename a dbspace
 If you rename a dbspace, you must rewrite and recompile any stored procedure code that references the old dbspace name.

Copyright© 2020 HCL Technologies Limited

Additional actions that may be required after you rename a dbspace

If you rename a dbspace, you must rewrite and recompile any stored procedure code that references the old dbspace name.

If you have a stored procedure that contains the ALTER FRAGMENT keywords and a reference to the dbspace name, you must rewrite and recompile that stored
procedure.

If you rename dbspaces that are specified in the DATASKIP configuration parameter, you must manually update the DATASKIP configuration parameter after renaming the
dbspace.

Copyright© 2020 HCL Technologies Limited

Managing automatic location and fragmentation

You can control whether the database server automatically chooses the location for databases, indexes, and tables and automatically fragments tables. You can control
the list of dbspaces in which the database server stores databases, indexes, and table fragments.

If you enable automatic location and fragmentation, the database server performs the following tasks:

Stores new databases for which you do not specify a location in the optimal dbspace instead of in the root dbspace. By default, all dbspaces except dbspaces that
are dedicated to tenant databases are available.
Stores new tables and indexes for which you do not specify a location in the optimal dbspace instead of in the same dbspace as the database.
Allocates an initial number of round-robin fragments for new tables. A table fragment does not have an extent until a row is inserted into the fragment, unless you
include the FIRST EXTENT clause in the CREATE TABLE statement.
Adds more table fragments as the table grows.

To enable automatic location and fragmentation, set the AUTOLOCATE configuration parameter or the AUTOLOCATE session environment variable to a positive integer.

Automatic location is not applicable to tenant databases or the tables, fragments, and indexes within tenant databases.

To view the list of available dbspaces, query the sysautolocate system catalog table.

To add a dbspace to the list of available dbspaces, run the task() or admin() SQL administration API function with the autolocate database, the autolocate database add,
or the autolocate database anywhere argument.

To remove a dbspace from the list of available dbspaces, run the task() or admin() SQL administration API function with the autolocate database remove argument.

To disable automatic location and fragmentation for tables in a particular database, run the task() or admin() SQL administration API function with the autolocate
database off argument.

To disable automatic location and fragmentation of tables in all databases, set the AUTOLOCATE configuration parameter or the AUTOLOCATE session environment
variable to 0.

Related concepts:
 Table fragmentation and data storage

Storage space creation and management
Databases
Related information:

 AUTOLOCATE configuration parameter
autolocate database argument: Specify dbspaces for automatic location and fragmentation (SQL administration API)

Part VI: Administering 143

https://www.hcltech.com/
https://www.hcltech.com/

autolocate database add argument: Add a dbspace to the dbspace list (SQL administration API)
autolocate database remove argument: Remove a dbspace from the dbspace list (SQL administration API)
autolocate database anywhere argument: Add all dbspaces to the dbspace list (SQL administration API)
autolocate database off argument: Disable automatic fragmentation for a database (SQL administration API)
AUTOLOCATE session environment option
SYSAUTOLOCATE

Copyright© 2020 HCL Technologies Limited

Manage blobspaces

This section explains how to create a blobspace and determine the blobpage size.

The database server stores TEXT and BYTE data in dbspaces or blobspaces, but blobspaces are more efficient. For information about adding a chunk, see Adding a chunk
to a dbspace or blobspace.

For information about monitoring blobspaces, see Monitor storage spaces

Creating a blobspace
 You can use onspaces to create a blobspace.

Prepare blobspaces to store TEXT and BYTE data
 A newly created blobspace is not immediately available for storage of TEXT or BYTE data. Blobspace logging and recovery require that the statement that creates a

blobspace and the statements that insert TEXT and BYTE data into that blobspace be created in separate logical-log files.
Determine blobpage size

 When you create a blobspace, use the size of the most frequently occurring simple large object as the size of the blobpage. In other words, choose a blobpage size
that wastes the least amount of space.

Copyright© 2020 HCL Technologies Limited

Creating a blobspace

You can use onspaces to create a blobspace.

Before you create a blobspace:

1. Allocate disk space for the blobspace, as described in Allocate disk space.
2. Determine what blobpage size is optimal for your environment.

For instructions, see Determine blobpage size.

Specify a blobspace name of up to 128 bytes. The name must be unique and must begin with a letter or underscore. You can use letters, digits, underscores, and $
characters in the name.
Important: You can mirror the blobspace when you create it if mirroring is enabled for the database server. Mirroring takes effect immediately.
To create a blobspace using onspaces:

1. To create a blobspace on UNIX, you must be logged in as user informix or root.
To create a blobspace on Windows, you must be a member of the Informix-Admin group.

2. Ensure that the database server is in online, administration, or quiescent mode, or the cleanup phase of fast-recovery mode.
3. To add a blobspace, use the onspaces -c -b options.

a. Specify an explicit path name for the blobspace. If the blobspace is mirrored, you must specify the path name and size of both the primary chunk and mirror
chunk.

b. Use the -o option to specify an offset for the blobspace.
c. Use the -s option to specify the size of the blobspace chunk, in KB.
d. Use the -g option to specify the blobpage size in terms of the number of disk pages per blobpages.

See Determine blobpage size. For example, if your database server instance has a disk-page size of 2 KB, and you want your blobpages to have a size of 10
KB, enter 5 in this field.

If you specify an incorrect path name, offset, or size, the database server does not create the blobspace and displays an error message. Also see What to do
if you run out of disk space.

4. After you create the blobspace, you must perform a level-0 backup of the root dbspace and the new blobspace.

The following example shows how to create a 10-megabyte mirrored blobspace, blobsp3, with a blobpage size of 10 KB, where the database server page size is 2 KB. An
offset of 200 KB for the primary and mirror chunks is specified. The blobspace is created from raw disk space on UNIX.

onspaces -c -b blobsp3 -g 5 -p /dev/raw_dev1 -o 200 -s 10240 -m /dev/raw_dev2 200

For reference information about creating a blobspace with onspaces, see information about the onspaces utility in the IBM® Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Prepare blobspaces to store TEXT and BYTE data

A newly created blobspace is not immediately available for storage of TEXT or BYTE data. Blobspace logging and recovery require that the statement that creates a
blobspace and the statements that insert TEXT and BYTE data into that blobspace be created in separate logical-log files.

144 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

This requirement is true for all blobspaces, regardless of the logging status of the database. To accommodate this requirement, switch to the next logical-log file after you
create a blobspace. (For instructions, see Back up log files to free blobpages.)

Copyright© 2020 HCL Technologies Limited

Determine blobpage size

When you create a blobspace, use the size of the most frequently occurring simple large object as the size of the blobpage. In other words, choose a blobpage size that
wastes the least amount of space.

For information about calculating an optimal blobpage size, see blobpage size considerations in the topics on the effect of configuration on I/O activity in the IBM®
Informix® Performance Guide.

If a table has more than one TEXT or BYTE column, and the objects are not close in size, store each column in a different blobspace, each with an appropriately sized
blobpage. See Tables.

Determine database server page size
 When you specify the blobpage size, you specify it in terms of the database server base page size.

Obtain blobspace storage statistics
 To help you determine the optimal blobpage size for each blobspace, you can use database server utility commands

Copyright© 2020 HCL Technologies Limited

Determine database server page size

When you specify the blobpage size, you specify it in terms of the database server base page size.

You can use one of the following methods to determine the database server page size for your system:

Run the onstat -b utility to display the system page size, given as buffer size on the last line of the output.
To view the contents of the PAGE_PZERO reserved page, run the oncheck -pr utility.

Copyright© 2020 HCL Technologies Limited

Obtain blobspace storage statistics

To help you determine the optimal blobpage size for each blobspace, you can use database server utility commands

The following database server utility commands to determine the optimal blobpage size:

oncheck -pe
oncheck -pB

The oncheck -pe command provides background information about the objects stored in a blobspace:

Complete ownership information (displayed as database:owner.table) for each table that has data stored in the blobspace chunk
The total number of pages used by each table to store its associated TEXT and BYTE data
The total free and total overhead pages in the blobspace

The oncheck -pB command lists the following statistics for each table or database:

The number of blobpages used by the table or database in each blobspace
The average fullness of the blobpages used by each simple large object stored as part of the table or database

For more information, see Monitor blobspace usage with oncheck -pe, Determine blobpage fullness with oncheck -pB, and optimizing blobspace blobpage size in the
topics about table performance considerations in the IBM® Informix® Performance Guide.

Copyright© 2020 HCL Technologies Limited

Manage sbspaces

This section describes how to create a standard or temporary sbspace, monitor the metadata and user-data areas, add a chunk to an sbspace, and alter storage
characteristics of smart large objects.

For information about monitoring sbspaces, see Monitor storage spaces.

Creating an sbspace
 Use the onspaces utility or IBM® Informix® Server Administrator (ISA) to create an sbspace.

Size sbspace metadata
 The first chunk of an sbspace must have a metadata area. It is important to size the metadata area for an sbspace correctly to ensure that the sbspace does not run

out of metadata space.

Part VI: Administering 145

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Adding a chunk to an sbspace
You can add a chunk to an sbspace or temporary sbspace.
Alter storage characteristics of smart large objects
Creating a temporary sbspace

Copyright© 2020 HCL Technologies Limited

Creating an sbspace

Use the onspaces utility or IBM® Informix® Server Administrator (ISA) to create an sbspace.

Use the onspaces utility to create an sbspace.

To create an sbspace using onspaces:

1. To create an sbspace on UNIX, you must be logged in as user informix or root.
To create an sbspace on Windows, you must be a member of the Informix-Admin group.

2. Ensure that the database server is online, administration, or quiescent mode, or in the cleanup phase of fast-recovery mode.
3. Use the onspaces -c -S options to create the sbspace.

a. Use the -p option to specify the path name, the -o option to specify the offset, and the -s option to specify the sbspace size.
b. If you want to mirror the sbspace, use the -m option to specify the mirror path and offset.
c. If you want to use the default storage characteristics for the sbspace, omit the -Df option.

If you want to specify different storage characteristics, use the -Df option. For more information, see Storage characteristics of sbspaces.

d. The first chunk in an sbspace must have a metadata area.
You can specify a metadata area for an sbspace or let the database server calculate the size of the metadata area. For more information, see Size sbspace
metadata.

4. After you create the sbspace, you must perform a level-0 backup of the root dbspace and the new sbspace.
5. To start storing smart large objects in this sbspace, specify the space name in the SBSPACENAME configuration parameter.
6. Use onstat -d, onstat -g smb s, and oncheck -cs, -cS, -ps, or -pS to display information about the sbspace.

For more information, see Monitor sbspaces.

This shows how to create a 20-megabyte mirrored sbspace, sbsp4. Offsets of 500 KB for the primary and 500 KB for the mirror chunks are specified, and a metadata size
of 150 KB with a 200 KB offset. The AVG_LO_SIZE -Df tag specifies an expected average smart-large-object size of 32 KB.

onspaces -c -S sbsp4 -p /dev/rawdev1 -o 500 -s 20480 -m /dev/rawdev2 500
-Ms 150 -Mo 200 -Df "AVG_LO_SIZE=32"

For information about creating an sbspace and default options for smart large objects, see information about the onspaces utility in the IBM Informix Administrator's
Reference. For information about creating smart large objects, see the IBM Informix DataBlade API Programmer's Guide and IBM Informix ESQL/C Programmer's Manual.

Copyright© 2020 HCL Technologies Limited

Size sbspace metadata

The first chunk of an sbspace must have a metadata area. It is important to size the metadata area for an sbspace correctly to ensure that the sbspace does not run out of
metadata space.

When you add smart large objects and chunks to the sbspace, the metadata area grows. In addition, the database server reserves 40 percent of the user area to be used in
case the metadata area runs out of space.

To ensure that this does not happen, you can either:

Let the database server calculate the size of the metadata area for the new sbspace chunk.
Specify the size of the metadata area explicitly.

For instructions on estimating the size of the sbspace and metadata area, see table performance considerations in the IBM® Informix® Performance Guide. Also see
Monitoring the metadata and user-data areas.

Copyright© 2020 HCL Technologies Limited

Adding a chunk to an sbspace

You can add a chunk to an sbspace or temporary sbspace.

You can specify a metadata area for a chunk, let the database server calculate the metadata area, or use the chunk for user data only.

To add a chunk to an sbspace using onspaces:

1. Ensure that the database server is online, administration, or quiescent mode, or in the cleanup phase of fast-recovery mode.
2. Use the onspaces -a option to create the sbspace chunk.

a. Use the -p option to specify the path name, the -o option to specify the offset, and the -s option to specify the chunk size.
b. If you want to mirror the chunk, use the -m option to specify the mirror path and offset.

146 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

c. To specify the size and offset of the metadata space, use the -Mo and -Ms options.
The database server allocates the specified amount of metadata area on the new chunk.

d. To allow the database server to calculate the size of the metadata for the new chunk, omit the -Mo and -Ms options.
The database server divides the estimated average size of the smart large objects by the size of the user data area.

e. To use the chunk for user data only, specify the -U option.
If you use the -U option, the database server does not allocate metadata space in this chunk. Instead, the sbspace uses the metadata area in one of the
other chunks.

3. After you add a chunk to the sbspace, the database server writes the CHRESERV and CHKADJUP log records.
4. Perform a level-0 backup of the root dbspace and the sbspace.
5. Use onstat -d and oncheck -pe to monitor the amount of free space in the sbspace chunk.

This example adds a 10-megabyte mirror chunk to sbsp4. An offset of 200 KB for both the primary and mirror chunk is specified. If you are not adding a mirror chunk, you
can omit the -m option. The -U option specifies that the new chunk contains user data exclusively.

onspaces -a sbsp4 -p /dev/rawdev1 -o 200 -s 10240 -m /dev/rawdev2 200 -U

You can also define information that Informix® can use to automatically expand the size of a chunk when additional storage space is required for an application. If you
have extendable chunks, you are not required to add new chunks or spend time trying to determine which storage space (dbspace, temporary dbspace, sbspace,
temporary sbspace, or blobspace) will run out of space and when it will run out of space.

Related concepts:
 Automatic space management

Related tasks:
 Adding a chunk to a dbspace or blobspace

Related reference:
 Monitor sbspaces

Copyright© 2020 HCL Technologies Limited

Alter storage characteristics of smart large objects

Use the onspaces -ch command to change the following default storage characteristics for the sbspace:

Extent sizes
Average smart-large-object size
Buffering mode
Last-access time
Lock mode
Logging

For more information, see Storage characteristics of sbspaces and managing sbspaces in the topics about table performance considerations in your IBM® Informix®
Performance Guide.

Copyright© 2020 HCL Technologies Limited

Creating a temporary sbspace

For background information and the rules for determining where temporary smart large objects are stored, see Temporary sbspaces. You can store temporary smart large
objects in a standard or temporary sbspace. You can add or drop chunks in a temporary sbspace.

To create a temporary sbspace with a temporary smart large object:

1. Allocate space for the temporary sbspace. For details, see Allocate disk space.
For information about SBSPACETEMP, see the configuration parameters topics in the IBM® Informix Administrator's Reference.

2. Create the temporary sbspace as the following example shows:

onspaces -c -S tempsbsp -t -p ./tempsbsp -o 0 -s 1000

3. You can specify any of the following onspaces options:
a. Specify a metadata area and offset (-Ms and -Mo).
b. Specify storage characteristics (-Df).

You cannot turn on logging for a temporary sbspace.

4. Set the SBSPACETEMP configuration parameter to the name of the default temporary sbspace storage area.
Restart the database server.

5. Use onstat -d to display the temporary sbspace.
For information and an example of onstat -d output, see the onstat utility in the IBM Informix Administrator's Reference.

6. Specify the LO_CREATE_TEMP flag when you create a temporary smart large object.
Using DataBlade API:

mi_lo_specset_flags(lo_spec,LO_CREATE_TEMP);

Using Informix® ESQL/C:

Part VI: Administering 147

https://www.hcltech.com/
https://www.hcltech.com/

ifx_lo_specset_flags(lo_spec,LO_CREATE_TEMP);

For information about creating smart large objects, see the IBM Informix DataBlade API Programmer's Guide and IBM Informix ESQL/C Programmer's Manual.

Copyright© 2020 HCL Technologies Limited

Manage the plogspace

You create or move the plogspace with the onspaces utility or equivalent SQL administration API command.

To create the plogspace, run the onspaces -c -P command or the admin() or task() SQL administration API function with the create plogspace argument.

If you want to change the location of the plogspace to a different chunk, create a new plogspace. The physical log is moved to the new plogspace and the old plogspace is
dropped.

You can modify the chunk in the plogspace in the following ways:

Mark the chunk as not extendable. Run the admin() or task() SQL administration API function with the modify chunk extendable off argument
Change the extend size of the chunk. The default extend size is 10000 KB. Run the admin() or task() SQL administration API function with the modify space
sp_sizes argument.

Related concepts:
 Plogspace

Related information:
 onspaces -c -P: Create a plogspace

create plogspace: Create a plogspace (SQL administration API)
modify chunk extendable off argument: Mark a chunk as not extendable (SQL administration API)
modify space sp_sizes argument: Modify sizes of an extendable storage space (SQL administration API)

Copyright© 2020 HCL Technologies Limited

Automatic space management

You can configure the server to add more storage space automatically when more space is required. You use space more effectively and ensure that space is allocated as
necessary, while reducing out-of-space errors. You reduce the time required to manually monitor your spaces to determine which storage space might run out of free
space. If you configure the server to automatically add space, you can also manually expand a space or extend a chunk.

When the server expands a dbspace, temporary dbspace, sbspace, temporary sbspace, or blobspace, the server can add a chunk to the storage space. The server can also
extend a chunk in a dbspace, plogspace, or temporary dbspace that is not mirrored. If the storage space is a non-mirrored dbspace or a temporary dbspace, the server can
also extend a chunk in the storage space.

To configure for the automatic and manual space management, you run SQL administration API commands to perform these tasks:

1. Create, modify, and delete one or more entries in the storage pool. The storage pool contains entries for available raw devices, cooked files, and directories that
Informix® uses to expand a storage space.

2. Mark a chunk as extendable.
3. Modify the create and extend size of a storage space (optional).
4. Change the threshold and wait time for the automatic addition of more space (optional).
5. Configure the frequency of the monitor low storage task (optional).

If your storage pool contains entries, you can also run SQL administration API commands to:

Manually expand the storage space or extend a chunk, when you do not want to wait for the task that automatically expands the space to run.
Manually create storage spaces from storage pool entries and return space from empty storage spaces to the storage pool.

By default, the SP_AUTOEXPAND configuration parameter is set to 1 to enable automatic expansion of storage spaces. If you do not want to the server to automatically
expand space, set the SP_AUTOEXPAND configuration parameter to 0 to disable the automatic creation or extension of chunks. You can also specify that a chunk is not
extendable.

Tip:
In some situations, the database server might not automatically expand a temporary dbspace that is listed in the DBSPACETEMP configuration parameter after you
configured the server to automatically expand an existing storage space. If operations (such as an index build or sort) that use the temporary dbspace run out of space,
you receive an out of space error. To work around this problem, you must manually add a chunk to the temporary dbspace or use a bigger temporary dbspace.

If you have a storage pool and the database server participates in Enterprise Replication, storage spaces that are necessary for replication are created automatically if
needed when you define a replication server.

Creating and managing storage pool entries
 You can add, modify, and delete the entries in the storage pool.

Marking a chunk as extendable or not extendable
 You mark a chunk as extendable to enable the automatic or manual extension of the chunk. You can change the mark to not extendable to prevent the automatic or

manual extension of the chunk.
Modifying the sizes of an extendable storage space

 You can control how an extendable storage space in the storage pool grows by modifying the create size and the extend size. By default, the maximum size of an
extendable storage space is unlimited. You can limit the size of an extendable storage space by setting a maximum size.
Changing the threshold and wait time for the automatic addition of more space

 While Informix can react to out-of-space conditions by automatically extending or adding chunks when a storage space is full, you can also configure the server to
extend or add chunks before a storage space is full.

148 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Configuring the frequency of the monitor low storage task
You can change the frequency of the mon_low_storage task, which periodically scans the list of dbspaces to find spaces that fall below the threshold indicated by
SP_THRESHOLD configuration parameter. If the task finds spaces that below the threshold, the task attempts to expand the space, by extending an extendable
chunk or by using the storage pool to add a chunk.
Manually expanding a space or extending an extendable chunk
You can manually expand a space or extend a chunk when necessary, instead of waiting for Informix to automatically expand the space or extend a chunk.
Example of minimally configuring for and testing the automatic addition of more space
This example shows how you can minimally configure and then test the automatic addition of more space. You can do this by creating a dbspace, filling the space,
adding an entry to the Informix storage pool, and loading tables into the space. When the space fills, Informix automatically expands it.
Example of configuring for the automatic addition of more space
This example shows how you can fully configure for the automatic addition of more space by changing some configuration parameter settings, changing the
frequency of a task that monitors low storage, and specifying information for extendable spaces and chunks.

Related concepts:
 Storage space creation and management

Size of the root dbspace
Extendable chunks
The storage pool
Related tasks:

 Adding a chunk to a dbspace or blobspace
Adding a chunk to an sbspace
Creating a tenant database
Related information:

 SP_WAITTIME configuration parameter

Copyright© 2020 HCL Technologies Limited

Creating and managing storage pool entries

You can add, modify, and delete the entries in the storage pool.

Each entry in the storage pool contains information about a directory, cooked file, or raw device that a database server instance can use if necessary to automatically
expand an existing storage space.

Creating a storage pool entry
To create a storage pool entry, run the admin() or task() function with the storagepool add argument, as follows:

EXECUTE FUNCTION task("storagepool add", "path", "begin_offset",
"total_size", "chunk size", "priority");

Specify the following information:

The path for the file, directory, or device that the server can use when additional storage space is required.
The offset in KB into the device where Informix® can begin allocating space.
The total space available to Informix in this entry. The server can allocate multiple chunks from this amount of space.
The minimum size in KB of a chunk that can be allocated from the device, file, or directory. The smallest chunk that you can create is 1000 KB. Therefore, the
minimum chunk size that you can specify is 1000 KB.
A number from 1 to 3 for the priority (1 = high; 2 = medium; 3 = low). The server attempts to allocate space from a high-priority entry before it allocates
space from a lower priority entry.

The default units for storage pool sizes and offsets are KB. However, you can specify information in any of the ways shown in the following examples:

"100000"
"100000 K"
"100 MB"
"100 GB"
"100 TB"

Modifying a storage pool entry
To modify a storage pool entry, run the admin() or task() function with the storagepool modify argument, as follows:

EXECUTE FUNCTION task("storagepool modify", "storage_pool_entry_id",
"new_total_size", "new_chunk size", "new_priority");

Deleting storage pool entries
To delete a storage pool entry, run the admin() or task() function with the storagepool delete argument, as follows:

EXECUTE FUNCTION task("storagepool delete", "storage_pool_entry_id");

To delete all storage pool entries, run the admin() or task() function with the storagepool purge all argument, as follows:

EXECUTE FUNCTION task("storagepool purge all");

To delete all storage pool entries that are full, run the admin() or task() function with the storagepool purge full argument, as follows:

EXECUTE FUNCTION task("storagepool purge full");

To delete storage pool entries that have errors, run the admin() or task() function with the storagepool purge errors argument, as follows:

EXECUTE FUNCTION task("storagepool purge errors");

Examples

Part VI: Administering 149

https://www.hcltech.com/

The following command adds a directory named /region2/dbspaces with a beginning offset of 0, a total size of 0, an initial chunk size of 20 MB, and a high priority. In this
example the offset of 0 and the total size of 0 are the only acceptable entries for a directory.

EXECUTE FUNCTION task("storagepool add", "/region2/dbspaces", "0", "0",
"20000", "1");

The following command changes the total size, chunk size, and priority of storage pool entry 8 to 10 GB, 10 MB, and a medium priority.

EXECUTE FUNCTION task("storagepool modify", "8", "10 GB", "10000", "2");

The following command deletes the storage pool entry with an entry ID of 7:

EXECUTE FUNCTION task("storagepool delete", "7");

Related concepts:
 The storage pool

Related information:
 storagepool purge argument: Delete storage pool entries (SQL administration API)

storagepool modify argument: Modify a storage pool entry (SQL administration API)
storagepool delete argument: Delete one storage pool entry (SQL administration API)

Copyright© 2020 HCL Technologies Limited

Marking a chunk as extendable or not extendable

You mark a chunk as extendable to enable the automatic or manual extension of the chunk. You can change the mark to not extendable to prevent the automatic or
manual extension of the chunk.

If a chunk is marked as not extendable:

The server cannot automatically extend the chunk when there is little or no free space in the chunk. (However, if the storage pool contains entries, the server can
expand a storage space by adding another chunk to the storage space.)
You cannot manually extend the size of the chunk.

Prerequisite: An extendable chunk must be in an unmirrored dbspace or temporary dbspace.

To mark a chunk as extendable:

1. Run the admin() or task() function with the modify chunk extendable argument, as follows:

2. EXECUTE FUNCTION task("modify chunk extendable", "chunk number");

To mark a chunk as not extendable:

1. Run the admin() or task() function with the modify chunk extendable off argument, as follows:

EXECUTE FUNCTION task("modify chunk extendable off", "chunk number");

The following command specifies that chunk 12 can be extended:

EXECUTE FUNCTION task("modify chunk extendable", "12");

Related concepts:
 Extendable chunks

Related information:
 modify chunk extendable argument: Mark a chunk as extendable (SQL administration API)

modify chunk extendable off argument: Mark a chunk as not extendable (SQL administration API)

Copyright© 2020 HCL Technologies Limited

Modifying the sizes of an extendable storage space

You can control how an extendable storage space in the storage pool grows by modifying the create size and the extend size. By default, the maximum size of an
extendable storage space is unlimited. You can limit the size of an extendable storage space by setting a maximum size.

To modify the create, extend, or maximum size of a storage space:

Run the admin() or task() SQL administration API function with the modify space sp_sizes argument, as follows:

EXECUTE FUNCTION task("modify space sp_sizes", "space_name",
 "new_create_size", "new_extend_size", "max_size");

The space_name is the name of the storage space.

The new_create_size is the minimum size that the server can use to create a new chunk in the specified dbspace, temporary dbspace, sbspace, temporary sbspace, or
blobspace.

The new_extend_size is the minimum size that the server can use to extend a chunk in the specified unmirrored dbspace or temporary dbspace.

Specify either sizes with a number (for the number of KB) or a percentage (for a percentage of the total space).

The max_size is the maximum size, in KB, to which the server can expand the storage space. A value of 0 indicates unlimited.

150 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

The following command sets the create size to 60 MB, the extend size to 10 MB, and the maximum size to 200 MB for a space that is named dbspace3:

EXECUTE FUNCTION task("modify space sp_sizes", "dbspace3", "60000",
 "10000", "200000");

The following command sets the create size to 20 percent and the extend size to 1.5 percent for a space that is named logdbs:

EXECUTE FUNCTION task("modify space sp_sizes", "logdbs", "20", "1.5");

Related information:
 modify space sp_sizes argument: Modify sizes of an extendable storage space (SQL administration API)

Copyright© 2020 HCL Technologies Limited

Changing the threshold and wait time for the automatic addition of more space

While Informix® can react to out-of-space conditions by automatically extending or adding chunks when a storage space is full, you can also configure the server to extend
or add chunks before a storage space is full.

Specify a threshold for the minimum amount of free KB in a storage space to trigger a task that expands the space.

You can also use the SP_WAITTIME configuration parameter to specify the maximum number of seconds that a thread waits for a space to expand before returning an out-
of-space error.

To change the threshold and wait time:

1. Change the value of the threshold specified in the SP_THRESHOLD configuration parameter from 0 (disabled) to a non-zero value. Specify a value from either 1 to 50
for a percentage of a value from 1000 to the maximum size of a chunk in KB.

2. Change the value of the SP_WAITTIME configuration parameter, which specifies the maximum number of seconds that a thread waits for a space to expand before
returning an out-of-space error.

Related information:
 SP_THRESHOLD configuration parameter

SP_WAITTIME configuration parameter

Copyright© 2020 HCL Technologies Limited

Configuring the frequency of the monitor low storage task

You can change the frequency of the mon_low_storage task, which periodically scans the list of dbspaces to find spaces that fall below the threshold indicated by
SP_THRESHOLD configuration parameter. If the task finds spaces that below the threshold, the task attempts to expand the space, by extending an extendable chunk or
by using the storage pool to add a chunk.

The default frequency of the mon_low_storage task is once per hour, but you can configure the task to run more or less frequently

Prerequisite: Specify a value in the SP_THRESHOLD configuration parameter for the minimum amount of free KB in a storage space.

To configure the mon_low_storage task to run more or less frequently:

Run the following SQL statements, where minutes is the number of minutes between each run:

DATABASE sysadmin;
UPDATE ph_task set tk_frequency = INTERVAL (minutes)
 MINUTE TO MINUTE WHERE tk_name = “mon_low_storage”;

For example, to configure the task to run every 10 minutes, run the following SQL statements:

DATABASE sysadmin;
UPDATE ph_task set tk_frequency = INTERVAL (10) MINUTE TO MINUTE
 WHERE tk_name = “mon_low_storage”;

Copyright© 2020 HCL Technologies Limited

Manually expanding a space or extending an extendable chunk

You can manually expand a space or extend a chunk when necessary, instead of waiting for Informix® to automatically expand the space or extend a chunk.

Prerequisites:

You can extend a chunk only if it is in an unmirrored dbspace or temporary dbspace.
The chunk must be marked as extendable before it can be extended. If not, you must run the admin() or task() function with the modify chunk extendable argument
to specify that the chunk is extendable.
If a space cannot be expanded by extending a chunk, the storage pool must contain active entries that the server can use to create new chunks.

To immediately increase your storage space:

Either:

Part VI: Administering 151

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Manually expand a space by running the admin() or task() function with the modify space expand argument, as follows:

EXECUTE FUNCTION task("modify space expand", "space_name", "size");

For example, the following command expands space number 8 by 1 gigabyte:

EXECUTE FUNCTION task("modify space expand", "8", "1000000");

The server expands the space either by extending a chunk in the space or adding a new chunk. The server might round the requested size up, depending on the
page size of the storage space and the configured chunk size for any storage pool entry used during the expansion.

Manually extend a chunk by running the admin() or task() function with the modify chunk extend argument, as follows:

EXECUTE FUNCTION task("modify chunk extend", "chunk_number", "extend_amount");

For example, the following command extends chunk number 12 by 5000 KB:

EXECUTE FUNCTION task("modify chunk extend", "12", "5000");

The server might round the requested size up, depending on the page size of the storage space.

Related concepts:
 Extendable chunks

Related information:
 modify space expand argument: Expand the size of a space (SQL administration API)

modify chunk extend argument: Extend the size of a chunk (SQL administration API)

Copyright© 2020 HCL Technologies Limited

Example of minimally configuring for and testing the automatic addition of more
space

This example shows how you can minimally configure and then test the automatic addition of more space. You can do this by creating a dbspace, filling the space, adding
an entry to the Informix® storage pool, and loading tables into the space. When the space fills, Informix automatically expands it.

To minimally configure for and test the automatic addition of more space:

1. Create a dbspace.
For example, create a dbspace named expandable_dbs and allocate an initial chunk using the first 10000 KB of a cooked file named /my_directory/my_chunk, as
follows:

onspaces -c -d expandable_dbs -p /my_directory/my_chunk -o 0 -s 10000

2. Fill the dbspace.
For example, fill the dbspace without loading a row of data. Instead, create a table and allocate a large set of contiguous free pages to the first extent, as follows:

CREATE TABLE large_tab (col1 int) IN expandable_dbs EXTENT SIZE 10000000;

You can monitor the free pages in your chunks by using the onstat -d command . If your dbspace is full, you receive out-of-space errors when attempting to create
and load data into another new table.

3. Add an entry to the Informix storage pool.
For example, add the $INFORMIXDIR/tmp directory to the storage pool, as follows:

DATABASE sysadmin;
EXECUTE FUNCTION task("storagepool add", "$INFORMIXDIR/tmp",
 "0", "0", "10000", "2");

4. In the SP_THRESHOLD configuration parameter, set a threshold for the minimum amount of free KB that can exist in a storage space before Informix automatically
runs a task to expand the space.

5. Create and load new tables into your database.
Now, if a storage space becomes full, instead of receiving an out-of-space error, Informix automatically creates a cooked file in the $INFORMIXDIR/tmp file and add
a chunk to the expandable_dbs database using the new cooked file. As you continue to fill this chunk, the server automatically extends it. The server will always
extend chunks if possible before adding new ones to a dbspace.

6. Reduce the free space in a storage space to test the value in the SP_THRESHOLD configuration parameter.
Allocate enough pages in a storage space to reduce the free space so it is below the threshold indicated by SP_THRESHOLD. However, do not completely fill the
space.

You must see the space automatically expanded the next time that the mon_low_storage task runs.

7. Create an out-of-space condition.
Allocate all pages in a storage space. Then try to allocate more pages. The allocation must be successful and you must not receive an out-of-space error.

Informix writes messages to the log whenever it extends or adds a chunk and marks new chunks as extendable.

Run the onstat -d command to display all chunks in the instance. Look for extendable chunks, which are marked with an E flag. The command output shows that
the server automatically expanded the space, either through the addition of a new chunk or by extending the size of an existing chunk.

Copyright© 2020 HCL Technologies Limited

Example of configuring for the automatic addition of more space
152 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

This example shows how you can fully configure for the automatic addition of more space by changing some configuration parameter settings, changing the frequency of a
task that monitors low storage, and specifying information for extendable spaces and chunks.

To configure for the automatic addition of more storage space:

1. Add entries to the storage pool.
For example, add the $INFORMIXDIR/tmp directory to the storage pool, as follows:

DATABASE sysadmin;
EXECUTE FUNCTION task("storagepool add", "$INFORMIXDIR/tmp",
 "0", "0", "10000", "2");

2. Mark some chunks in unmirrored dbspaces and temporary dbspaces as extendable so that the server can extend the chunks if necessary in the future.
For example, specify that chunk 12 can be extended:

EXECUTE FUNCTION task("modify chunk extendable", "12");

You can also change the mark to of an extendable chunk to not extendable. For example, specify that chunk number 10 cannot be extended:

EXECUTE FUNCTION task("modify chunk extendable off", "10");

3. In the SP_THRESHOLD configuration parameter, set a threshold for the minimum amount of free KB that can exist in a storage space before Informix® automatically
runs a task to expand the space. Specify either:

A value from 1 to 50 for a percentage,
A value from 1000 to the maximum size of the chunk in KB

If an individual storage space fills beyond this threshold that you define and remains that full until the space-monitoring task (mon_low_storage) next runs, the
server attempts to expand the space by extending an extendable chunk or by using the storage pool to add a chunk.

For example, suppose the SP_THRESHOLD value is 5.5, which the server treats as 5.5 percent. If a space runs low on free pages, and the free space percentage falls
below 5.5 percent and remains below that level until the mon_low_storage task runs next, that task attempts to expand the space. If SP_THRESHOLD is set to
50000 and a space has fewer than free 50000 KB, that space is expanded the next time mon_low_storage runs.

4. Optional: Change how often the mon_low_storage task runs. This task periodically scans the list of dbspaces to find spaces that fall below the threshold indicated
by SP_THRESHOLD configuration parameter.
For example, to configure the task to run every 10 minutes, run the following SQL statements:

DATABASE sysadmin;
UPDATE ph_task set tk_frequency = INTERVAL (10) MINUTE TO MINUTE
 WHERE tk_name = “mon_low_storage”;

5. Optional: Change the value of the SP_WAITTIME configuration parameter, which specifies the maximum number of seconds that a thread waits for a space to
expand before returning an out-of-space error.

6. Optional: Change two sizes that are associated with expanding a storage space:
The extend size, which is the minimum size that is used when extending a chunk in a dbspace, temporary dbspace, or the plogspace
The create size, which is the minimum size that is used when creating a new chunk in a dbspace, temporary dbspace, sbspace, temporary sbspace, or
blobspace that is not a mirror space
For example, the following command sets the create size and extend size to 60 MB and 10 MB, respectively, for space number 3:

EXECUTE FUNCTION task("modify dbspace sp_sizes",
 "3", "60000", "10000");

After you configure for the automatic expansion of a storage space, you can also manually expand the space or extend a chunk in the space, as necessary.

Copyright© 2020 HCL Technologies Limited

Drop a chunk

Use the onspaces utility to drop a chunk from a dbspace.

Before you drop a chunk, ensure that the database server is in the correct mode, using the following table as a guideline.
Table 1. Database server modes for dropping chunks

Chunk type Database server in online mode Database server in administration
or quiescent mode

Database server in offline mode

Dbspace chunk Yes Yes No

Temporary dbspace chunk Yes Yes No

Blobspace chunk No Yes No

Sbspace or temporary sbspace chunk Yes Yes No

Verify whether a chunk is empty
 Drop a chunk from a dbspace with onspaces

 Drop a chunk from a blobspace
 Drop a chunk from an sbspace with onspaces

Copyright© 2020 HCL Technologies Limited

Verify whether a chunk is empty

Part VI: Administering 153

https://www.hcltech.com/
https://www.hcltech.com/

To drop a chunk successfully from a dbspace with either of these utilities, the chunk must not contain any data. All pages other than overhead pages must be freed.

If any pages remain allocated to nonoverhead entities, the utility returns the following error: Chunk is not empty.

In addition, when a dbspace consists of two or more chunks and the additional chunks do not contain user data, the additional chunks cannot be deleted if the chunks
contain a tblspace tblspace.

If you receive the Chunk is not empty message, you must determine which table or other entity still occupies space in the chunk by running oncheck -pe to list
contents of the extent.

Usually, the pages can be removed when you drop the table that owns them. Then reenter the utility command.

Copyright© 2020 HCL Technologies Limited

Drop a chunk from a dbspace with onspaces

The following example drops a chunk from dbsp3 on UNIX. An offset of 300 KB is specified.

onspaces -d dbsp3 -p /dev/raw_dev1 -o 300

You cannot drop the initial chunk of a dbspace with the syntax in the previous example. Instead, you must drop the dbspace. Use the fchunk column of onstat -d to
determine which is the initial chunk of a dbspace. For more information about onstat, see information about the onspaces utility in the IBM® Informix® Administrator's
Reference.

For information about dropping a chunk from a dbspace with onspaces, see the IBM Informix Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Drop a chunk from a blobspace

The procedure for dropping a chunk from a blobspace is identical to the procedure for dropping a chunk from a dbspace described in Drop a chunk from a dbspace with
onspaces except that the database server must be in quiescent or administration mode. Other than this condition, you must substitute the name of your blobspace
wherever a reference to a dbspace occurs.

Copyright© 2020 HCL Technologies Limited

Drop a chunk from an sbspace with onspaces

The following example drops a chunk from sbsp3 on UNIX. An offset of 300 KB is specified. The database server must be in online administration, or quiescent mode
when you drop a chunk from an sbspace or temporary sbspace.

onspaces -d sbsp3 -p /dev/raw_dev1 -o 300

You cannot drop the initial chunk of an sbspace with the syntax in the previous example. Instead, you must drop the sbspace. Use the fchunk column of onstat -d to
determine which chunk is the initial chunk of an sbspace.

The -f (force) option
 Delete smart large objects without any pointers

Copyright© 2020 HCL Technologies Limited

The -f (force) option

You can use the -f option of onspaces to drop an sbspace chunk without metadata allocated in it. If the chunk contains metadata for the sbspace, you must drop the
entire sbspace. Use the Chunks section of onstat -d to determine which sbspace chunks contain metadata.

onspaces -d sbsp3 -f

Warning: If you force the drop of an sbspace, you might introduce consistency problems between tables and sbspaces.

Copyright© 2020 HCL Technologies Limited

Delete smart large objects without any pointers

Each smart large object has a reference count, the number of pointers to the smart large object. When the reference count is greater than 0, the database server assumes
that the smart large object is in use and does not delete it.

Rarely, a smart large object with a reference count of 0 remains. You can use the onspaces -cl command to delete all smart large objects that have a reference count of 0,
if it is not open by any application.

154 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

For information about using onspaces -cl, see information about the onspaces utility in the IBM® Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Drop a storage space

Use onspaces to drop a dbspace, temporary dbspace, blobspace, sbspace, temporary sbspace, or extspace.

On UNIX, you must be logged in as root or informix to drop a storage space. On Windows, you must be a member of the Informix-Admin group to drop a storage space.

You can drop a storage space only when the database server is in online, administration, or quiescent mode.

Preparation for dropping a storage space
 Drop a mirrored storage space

 Drop a storage space with onspaces
 Back up after dropping a storage space

Copyright© 2020 HCL Technologies Limited

Preparation for dropping a storage space

Before you drop a dbspace, you must first drop all databases and tables that you previously created in that dbspace. You cannot drop the root dbspace.

Before you drop a blobspace, you must drop all tables that have a TEXT or BYTE column that references the blobspace.

Run oncheck -pe to verify that no tables or log files are located in the dbspace or blobspace.

Before you drop an sbspace, you must drop all tables that have a CLOB or BLOB column that reference objects that are stored in the sbspace. For sbspaces, you are not
required to delete columns that point to an sbspace, but these columns must be null; that is, all smart large objects must be deallocated from the sbspace.
Tip: If you drop tables on dbspaces where light appends are occurring, the light appends might be slower than you expect. The symptom of this problem is physical
logging activity. If light appends are slower than you expect, make sure that no tables are dropped in the dbspace either before or during the light appends. If you have
dropped tables, force a checkpoint with onmode -c before you perform the light append.
Important: Dropping a chunk or a dbspace triggers a blocking checkpoint, which forces all database updates to wait while all the buffer pools are flushed to disk. This
update blocking can be significantly longer during a blocking checkpoint than during a non-blocking checkpoint, especially if the buffer pool is large.

Copyright© 2020 HCL Technologies Limited

Drop a mirrored storage space

If you drop a storage space that is mirrored, the mirror spaces are also dropped.

If you want to drop only a storage-space mirror, turn off mirroring. (See End mirroring.) This action drops the dbspace, blobspace, or sbspace mirrors and frees the chunks
for other uses.

Copyright© 2020 HCL Technologies Limited

Drop a storage space with onspaces

To drop a storage space with onspaces, use the -d option as illustrated in the following examples.

This example drops a dbspace called dbspce5 and its mirrors.

onspaces -d dbspce5

This example drops a dbspace called blobsp3 and its mirrors.

onspaces -d blobsp3

Use the -d option with the -f option if you want to drop an sbspace that contains data. If you omit the -f option, you cannot drop an sbspace that contains data. This
example drops an sbspace called sbspc4 and its mirrors.

onspaces -d sbspc4 -f

Warning: If you use the -f option, the tables in the database server might have dead pointers to the deleted smart large objects.
For information about dropping a storage space with onspaces, see information about the onspaces utility in the IBM® Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Back up after dropping a storage space

Part VI: Administering 155

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

If you create a storage space with the same name as the deleted storage space, perform another level-0 backup to ensure that future restores do not confuse the new
storage space with the old one. For more information, see the IBM® Informix® Backup and Restore Guide.
Important: After you drop a dbspace, blobspace, or sbspace, the newly freed chunks are available for reassignment to other dbspaces, blobspaces, or sbspaces. However,
before you reassign the newly freed chunks, you must perform a level-0 backup of the root dbspace and the modified storage space. If you do not perform this backup,
and you subsequently must perform a restore, the restore might fail because the backup reserved pages are not up-to-date.

Copyright© 2020 HCL Technologies Limited

Creating a space or chunk from the storage pool

If your storage pool contains entries, you can create storage spaces or chunks from free space in the storage pool.

Prerequisite: The storage pool must contain entries (a directory, cooked file, or raw device).

To create a storage space or chunk from the storage pool:

Run the admin() or task() function with one of the following arguments for creating a space from the storage pool. The elements you use in the command vary, depending
on the type of space that you are creating.

EXECUTE FUNCTION task("create dbspace from storagepool", "space_name",
 "size", "page_size", "mirroring_flag", "first_extent", "next_extent");

EXECUTE FUNCTION task("create tempdbspace from storagepool",
 "space_name", "size", "page_size");

EXECUTE FUNCTION task("create blobspace from storagepool", "space_name",
 "size", "page_size", "mirroring_flag",);

EXECUTE FUNCTION task("create sbspace from storagepool", "space_name",
 "size", "log_flag", "mirroring_flag",);

EXECUTE FUNCTION task("create tempsbspace from storagepool",
 "space_name", "size",);

EXECUTE FUNCTION task("create chunk from storagepool",
 "space_name", "size",);

Examples
The following command creates a mirrored blobspace named blobspace1. The new blobspace has a size of 100 gigabytes and a blobpage size of 100 pages.

EXECUTE FUNCTION task("create blobspace from storagepool", "blobspace1", "100 GB",
 "100", "1");

The following command adds a chunk to the dbspace named logdbs. The new chunk has a size of 200 megabytes.

EXECUTE FUNCTION task("create chunk from storagepool", "logdbs", "200 MB");

Related information:
 create dbspace from storagepool argument: Create a dbspace from the storage pool (SQL administration API)

create tempdbspace from storagepool argument: Create a temporary dbspace from the storage pool (SQL administration API)
create blobspace from storagepool argument: Create a blobspace from the storage pool (SQL administration API)
create sbspace from storagepool argument: Create an sbspace from the storage pool (SQL administration API)
create tempsbspace from storagepool argument: Create a temporary sbspace from the storage pool (SQL administration API)
create chunk from storagepool argument: Create a chunk from the storage pool (SQL administration API)

Copyright© 2020 HCL Technologies Limited

Returning empty space to the storage pool

You can return the space from an empty chunk or storage space to the storage pool.

To return storage space from an empty chunk, dbspace, temporary dbspace, blobspace, sbspace, or temporary sbspace to the storage pool:

Run the admin() or task() function with one of the following arguments for returning space to the storage pool. The elements you use in the command vary, depending on
the type of object that you are dropping.

EXECUTE FUNCTION task("drop chunk to storagepool", "space_name",
 "chunk_path", "chunk_offset")

EXECUTE FUNCTION task("drop dbspace to storagepool", "space_name");

EXECUTE FUNCTION task("drop tempdbspace to storagepool", "space_name");

EXECUTE FUNCTION task("drop blobspace to storagepool", "space_name");

EXECUTE FUNCTION task("drop sbspace to storagepool", "space_name");

EXECUTE FUNCTION task("drop tempsbspace to storagepool", "space_name");

156 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Examples
The following command drops an empty blobspace named blob4 and adds all of the freed space to the storage pool.

EXECUTE FUNCTION task("drop blobspace to storagepool", "blob4");

The following command drops an empty chunk in a dbspace named health and adds all of the freed space to the storage pool.

EXECUTE FUNCTION task("drop chunk to storagepool", "health",
 "/health/rawdisk23", "100 KB");

Related information:
 drop chunk to storagepool argument: Return space from an empty chunk to the storage pool (SQL administration API)

drop dbspace to storagepool argument: Return space from an empty dbspace to the storage pool (SQL administration API)
drop tempdbspace to storagepool argument: Return space from an empty temporary dbspace to the storage pool (SQL administration API)
drop blobspace to storagepool argument: Return space from an empty blobspace to the storage pool (SQL administration API)
drop sbspace to storagepool argument: Return space from an empty sbspace to the storage pool (SQL administration API)
drop tempsbspace to storagepool argument: Return space from an empty temporary sbspace to the storage pool (SQL administration API)

Copyright© 2020 HCL Technologies Limited

Manage extspaces

An extspace does not require allocation of disk space. You create and drop extspaces using the onspaces utility. For more information about extspaces, see Extspaces.

Create an extspace
 Drop an extspace

Copyright© 2020 HCL Technologies Limited

Create an extspace

You create an extspace with the onspaces utility. But you must first have a valid data source and a valid access method with which to access that data source. Although
you can create an extspace without a valid access method or a valid data source, any attempts to retrieve data from the extspace generate an error. For information about
access methods, see the IBM® Informix® Virtual-Table Interface Programmer's Guide.

To create an extspace with onspaces, use the -c option as illustrated in the following example. The following example shows how to create an extspace, pass_space, that
is associated with the UNIX password file.

onspaces -c -x pass_space -l /etc/passwd

Specify an extspace name of up to 128 bytes. The name must be unique and begin with a letter or underscore. You can use letters, digits, underscores, and $ characters in
the name.
Important: The preceding example assumes that you have coded a routine that provides functions for correctly accessing the file passwd and that the file itself exists.
After you have created the extspace, you must use the appropriate commands to allow access to the data in the file passwd. For more information about user-defined
access methods, see the IBM Informix Virtual-Table Interface Programmer's Guide.
For reference information about creating an extspace with onspaces, see information about the onspaces utility in the IBM Informix Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Drop an extspace

To drop an extspace with onspaces, use the -d option as illustrated in the following examples. An extspace cannot be dropped if it is associated with an existing table or
index.

This example drops an extspace called pass_space.

onspaces -d pass_space

Copyright© 2020 HCL Technologies Limited

Skip inaccessible fragments

One benefit that fragmentation provides is the ability to skip table fragments that are unavailable during an I/O operation. For example, a query can proceed even when a
fragment is located on a chunk that is currently down as a result of a disk failure. When this situation occurs, a disk failure affects only a portion of the data in the
fragmented table. By contrast, tables that are not fragmented can become completely inaccessible if they are located on a disk that fails.

This function is controlled as follows:

By the database server administrator with the DATASKIP configuration parameter
By individual applications with the SET DATASKIP statement

Part VI: Administering 157

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The DATASKIP configuration parameter
The dataskip feature of onspaces
Use onstat to check dataskip status
The SQL statement SET DATASKIP
Effect of the dataskip feature on transactions
Determine when to use dataskip
Monitor fragmentation use

Copyright© 2020 HCL Technologies Limited

The DATASKIP configuration parameter

You can set the DATASKIP parameter to OFF, ALL, or ON dbspace_list. OFF means that the database server does not skip any fragments. If a fragment is unavailable, the
query returns an error. ALL indicates that any unavailable fragment is skipped. ON dbspace_list instructs the database server to skip any fragments that are located in the
specified dbspaces.

Copyright© 2020 HCL Technologies Limited

The dataskip feature of onspaces

Use the dataskip feature of the onspaces utility to specify the dbspaces that are to be skipped when they are unavailable. For example, the following command sets the
DATASKIP parameter so that the database server skips the fragments in dbspace1 and dbspace3, but not in dbspace2:

onspaces -f ON dbspace1 dbspace3

For the complete syntax of this onspaces option, see information about the onspaces utility in the IBM® Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Use onstat to check dataskip status

Use the onstat utility to list the dbspaces currently affected by the dataskip feature. The -f option lists both the dbspaces that were set with the DATASKIP configuration
parameter and the -f option of the onspaces utility.

When you run onstat -f, you receive a message that tells you whether the DATASKIP configuration parameter is set to on for all dbspaces, off for all dbspaces, or on for
specific dbspaces.

Copyright© 2020 HCL Technologies Limited

The SQL statement SET DATASKIP

An application can use the SQL statement SET DATASKIP to control whether a fragment is skipped if it is unavailable. Applications must include this statement only in
limited circumstances, because it causes queries to return different results, depending on the availability of the underlying fragments. Like the configuration parameter
DATASKIP, the SET DATASKIP statement accepts a list of dbspaces that indicate to the database server which fragments to skip. For example, suppose that an application
programmer included the following statement at the beginning of an application:

SET DATASKIP ON dbspace1, dbspace5

This statement causes the database server to skip dbspace1 or dbspace5 whenever both of these conditions are met:

The application attempts to access one of the dbspaces.
The database server finds that one of the dbspaces is unavailable.

If the database server finds that both dbspace1 and dbspace5 are unavailable, it skips both dbspaces.

A database server administrator can use the DEFAULT setting for the SET DATASKIP statement to control the dataskip feature. Suppose that an application developer
includes the following statement in an application:

SET DATASKIP DEFAULT

When a query is run subsequent to this SQL statement, the database server checks the value of the configuration parameter DATASKIP. A database server administrator
can encourage users to use this setting to specify which dbspaces are to be skipped as soon as the database server administrator becomes aware that one or more
dbspaces are unavailable.

Copyright© 2020 HCL Technologies Limited

Effect of the dataskip feature on transactions

158 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

If you turn the dataskip feature on, a SELECT statement always executes. In addition, an INSERT statement always succeeds if the table is fragmented by round-robin and
at least one fragment is online. However, the database server does not complete operations that write to the database if a possibility exists that such operations might
compromise the integrity of the database. The following operations fail:

All UPDATE and DELETE operations where the database server cannot eliminate the down fragments
If the database server can eliminate the down fragments, the update or delete is successful, but this outcome is independent of the DATASKIP setting.

An INSERT operation for a table fragmented according to an expression-based distribution scheme where the appropriate fragment is down
Any operation that involves referential constraint checking if the constraint involves data in a down fragment
For example, if an application deletes a row that has child rows, the child rows must also be available for deletion.

Any operation that affects an index value (for example, updates to a column that is indexed) where the index in question is located in a down chunk

Copyright© 2020 HCL Technologies Limited

Determine when to use dataskip

Use this feature sparingly and with caution because the results are always suspect. Consider using it in the following situations:

You can accept the compromised integrity of transactions.
You can determine that the integrity of the transaction is not compromised.

The latter task can be difficult and time consuming.

Determine when to skip selected fragments
 Determine when to skip all fragments

Copyright© 2020 HCL Technologies Limited

Determine when to skip selected fragments

In certain circumstances, you might want the database server to skip some fragments, but not others. This usually occurs in the following situations:

Fragments can be skipped because they do not contribute significantly to a query result.
Certain fragments are down, and you decide that skipping these fragments and returning a limited amount of data is preferable to canceling a query.

When you want to skip fragments, use the ON dbspace-list setting to specify a list of dbspaces with the fragments that the database server must skip.

Copyright© 2020 HCL Technologies Limited

Determine when to skip all fragments

Setting the DATASKIP configuration parameter to ALL causes the database server to skip all unavailable fragments. Use this option with caution. If a dbspace becomes
unavailable, all queries initiated by applications that do not issue a SET DATASKIP OFF statement before they execute can be subject to errors.

Copyright© 2020 HCL Technologies Limited

Monitor fragmentation use

The database administrator might find the following aspects of fragmentation useful to monitor:

Data distribution over fragments
I/O request balancing over fragments
The status of chunks that contain fragments

The administrator can monitor the distribution of data over table fragments. If the goal of fragmentation is improved administration response time, it is important for data
to be distributed evenly over the fragments. To monitor fragmentation disk use, you must monitor database server tblspaces, because the unit of disk storage for a
fragment is a tblspace. (For information about how to monitor the data distribution for a fragmented table, see Monitor tblspaces and extents.)

The administrator must monitor I/O request queues for data that is contained in fragments. When I/O queues become unbalanced, the administrator must work with the
DBA to tune the fragmentation strategy. (For an explanation of how to monitor chunk use, including the I/O queues for each chunk, see Monitor chunks.)

The administrator must monitor fragments for availability and take appropriate steps when a dbspace that contains one or more fragments fails. For how to determine if a
chunk is down, see Monitor chunks.

Copyright© 2020 HCL Technologies Limited

Display databases

Part VI: Administering 159

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

You can display the databases that you create with SMI tables.

SMI tables

Related concepts:
 Databases

Copyright© 2020 HCL Technologies Limited

SMI tables

Query the sysdatabases table to display a row for each database managed by the database server. For a description of the columns in this table, see the sysdatabases
information in the topics about the sysmaster database in the IBM® Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Monitor disk usage

These topics describe methods of tracking the disk space used by various database server storage units.

For background information about internal database server storage units mentioned in this section, see the chapter about disk structures and storage in the IBM®
Informix® Administrator's Reference.

Monitor chunks
 Monitor tblspaces and extents

 Monitor simple large objects in a blobspace
 Monitor sbspaces

Related concepts:

 Control of where simple large object data is stored

Copyright© 2020 HCL Technologies Limited

Monitor chunks

You can monitor chunks for the following information:

Chunk size
Number of free pages
Tables within the chunk

You can use this information to track the disk space used by chunks, monitor chunk I/O activity, and check for fragmentation.

The onstat -d utility
 The onstat -d update option

 The onstat -D option
 Monitor chunk I/O activity with the onstat -g iof command

 Use the onstat -g iof command to monitor chunk I/O activity, including the distribution of I/O requests against the different fragments of a fragmented table.
The oncheck -pr command

 The oncheck -pe command
 SMI tables

Copyright© 2020 HCL Technologies Limited

The onstat -d utility

The onstat -d utility lists all dbspaces, blobspaces, and sbspaces and the following information for the chunks within those spaces.

The address of the chunk
The chunk number and associated dbspace number
The offset into the device (in pages)
The size of the chunk (in pages)
The number of free pages in the chunk
The path name of the physical device

If you issue the onstat -d command on an instance with blobspace chunks, the number of free pages shown is out of date. The tilde (~) that precedes the free value
indicates that this number is approximate. The onstat -d command does not register a blobpage as available until the logical login which a deletion occurred is backed up
and the blobpage is freed. Therefore, if you delete 25 simple large objects and immediately run onstat -d, the newly freed space is not in the onstat output.

To obtain an accurate number of free blobpages in a blobspace chunk, issue the onstat -d update command. For details, see The onstat -d update option.

In onstat -d update output, the flags column in the chunk section provides the following information:

160 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Whether the chunk is the primary chunk or the mirror chunk
Whether the chunk is online, is down, is being recovered, or is a new chunk

For an example of onstat -d output, see information about the onstat utility in the IBM® Informix® Administrator's Reference.

Important: You must perform a level-0 backup of the root dbspace and the modified dbspace before mirroring can become active and after turning off mirroring.

Copyright© 2020 HCL Technologies Limited

The onstat -d update option

The onstat -d update option displays the same information as onstat -d and an accurate number of free blobpages for each blobspace chunk.

Copyright© 2020 HCL Technologies Limited

The onstat -D option

The onstat -D option displays the same information as onstat -d, plus the number of pages read from the chunk (in the page Rd field).

Copyright© 2020 HCL Technologies Limited

Monitor chunk I/O activity with the onstat -g iof command

Use the onstat -g iof command to monitor chunk I/O activity, including the distribution of I/O requests against the different fragments of a fragmented table.

The onstat -g iof command displays:

The number of reads from each chunk and the number of writes to each chunk
I/0 by service level, broken down by individual operation
The type of operation
The number of times the operation occurred
The average time the operation took to complete

If one chunk has a disproportionate amount of I/O activity against it, this chunk might be a system bottleneck.

For an example of onstat -g iof output, see information about the onstat utility in the IBM® Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

The oncheck -pr command

The database server stores chunk information in the reserved pages PAGE_1PCHUNK and PAGE_2PCHUNK.

To list the contents of the reserve pages, run oncheck -pr. The following example shows sample output for oncheck -pr. This output is essentially the same as the onstat -
d output; however, if the chunk information has changed since the last checkpoint, these changes are not in the oncheck -pr output.

Validating PAGE_1DBSP & PAGE_2DBSP...
 Using dbspace page PAGE_2DBSP.

 DBspace number 1
 DBspace name rootdbs
 Flags 0x20001 No mirror chunks
 Number of chunks 2
 First chunk 1
 Date/Time created 07/28/2008 14:46:55
 Partition table page number 14
 Logical Log Unique Id 0
 Logical Log Position 0
 Oldest Logical Log Unique Id 0
 Last Logical Log Unique Id 0
 Dbspace archive status No archives have occurred
.
.
Validating PAGE_1PCHUNK & PAGE_2PCHUNK...
 Using primary chunk page PAGE_2PCHUNK.

 Chunk number 1
 Flags 0x40 Chunk is online
 Chunk path /home/server/root_chunk
 Chunk offset 0 (p)
 Chunk size 75000 (p)
 Number of free pages 40502
 DBSpace number 1
.

Part VI: Administering 161

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

.

.

Copyright© 2020 HCL Technologies Limited

The oncheck -pe command

To obtain the physical layout of information in the chunk, run oncheck -pe. The dbspaces, blobspaces, and sbspaces are listed. The following example shows sample
output for oncheck -pe.

The following information is displayed:

The name, owner, and creation date of the dbspace
The size in pages of the chunk, the number of pages used, and the number of pages free
A listing of all the tables in the chunk, with the initial page number and the length of the table in pages

The tables within a chunk are listed sequentially. This output is useful for determining chunk fragmentation. If the database server is unable to allocate an extent in a
chunk despite an adequate number of free pages, the chunk might be badly fragmented.

DBSpace Usage Report: rootdbs Owner: informix Created: 08/08/2006

Chunk Pathname Size Used Free
 1 /home/server/root_chunk 75000 19420 55580

Description Offset Size
--- --------------------
RESERVED PAGES 0 12
CHUNK FREELIST PAGE 12 1
rootdbs:'informix'.TBLSpace 13 250
PHYSICAL LOG 263 1000
FREE 1263 1500
LOGICAL LOG: Log file 2 2763 1500
LOGICAL LOG: Log file 3 4263 1500
...
sysmaster:'informix'.sysdatabases 10263 4
sysmaster:'informix'.systables 10267 8
...

Chunk Pathname Size Used Free
 2 /home/server/dbspace1 5000 53 4947

Description Offset Size
--- --------------------
RESERVED PAGES 0 2
CHUNK FREELIST PAGE 2 1
dbspace1:'informix'.TBLSpace 3 50
FREE 53 4947

Related reference:
 Change the physical-log location and size

Copyright© 2020 HCL Technologies Limited

SMI tables

Query the syschunks table to obtain the status of a chunk. The following columns are relevant.

chknum
Number of the chunk within the dbspace

dbsnum
Number of the dbspace

chksize
Total size of the chunk in pages

nfree
Number of pages that are free

is_offline
Whether the chunk is down

is_recovering
Whether the chunk is recovering

mis_offline
Whether the mirror chunk is down

mis_recovering
Whether the mirror chunk is being recovered

The syschkio table contains the following columns.

pagesread
Number of pages read from the chunk

pageswritten
Number of pages written to the chunk

162 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Monitor tblspaces and extents

Monitor tblspaces and extents to determine disk usage by database, table, or table fragment. Monitoring disk usage by table is particularly important when you are using
table fragmentation, and you want to ensure that table data and table index data are distributed appropriately over the fragments.

Run oncheck -pt to obtain extent information. The oncheck -pT option returns all the information from the oncheck -pt option and the additional information about page
and index usage.

SMI tables

Copyright© 2020 HCL Technologies Limited

SMI tables

Query the systabnames table to obtain information about each tblspace. The systabnames table has columns that indicate the corresponding table, database, and table
owner for each tblspace.

Query the sysextents table to obtain information about each extent. The sysextents table has columns that indicate the database and the table that the extent belongs to,
and the physical address and size of the extent.

Copyright© 2020 HCL Technologies Limited

Monitor simple large objects in a blobspace

Monitor blobspaces to determine the available space and whether the blobpage size is optimal.

Determine blobpage fullness with oncheck -pB
 Monitor blobspace usage with oncheck -pe

 Monitor simple large objects in a dbspace with oncheck -pT

Copyright© 2020 HCL Technologies Limited

Determine blobpage fullness with oncheck -pB

The oncheck -pB command displays statistics that describe the average fullness of blobpages. If you find that the statistics for a significant number of simple large
objects show a low percentage of fullness, the database server might benefit from changing the size of the blobpage in the blobspace.

Run oncheck -pB with either a database name or a table name as a parameter. The following example retrieves storage information for all simple large objects stored in
the table sriram.catalog in the stores_demo database:

oncheck -pB stores_demo:sriram.catalog

For detailed information about interpreting the oncheck -pB output, see optimizing blobspace blobpage size in the chapter on table performance considerations in the
IBM® Informix® Performance Guide.

Copyright© 2020 HCL Technologies Limited

Monitor blobspace usage with oncheck -pe

The oncheck -pe command provides information about blobspace usage:

Names of the tables that store TEXT and BYTE data, by chunk
Number of disk pages (not blobpages) used, by table
Number of free disk pages remaining, by chunk
Number of overhead pages used, by chunk

The following example shows sample oncheck -pe output.

BLOBSpace Usage Report: fstblob Owner: informix Created: 03/01/08
 Chunk: 3 /home/server/blob_chunk Size Used Free
 4000 304 3696
 Disk usage for Chunk 3 Total Pages
 --
 OVERHEAD 8
 stores_demo:chrisw.catalog 296
 FREE 3696

Part VI: Administering 163

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Monitor simple large objects in a dbspace with oncheck -pT

Use oncheck -pT to monitor dbspaces to determine the number of dbspace pages that TEXT and BYTE data use.

This command takes a database name or a table name as a parameter. For each table in the database, or for the specified table, the database server displays a general
tblspace report.

Following the general report is a detailed breakdown of page use in the extent, by page type. See the Type column for information about TEXT and BYTE data.

The database server can store more than one simple large object on the same blobpage. Therefore, you can count the number of pages that store TEXT or BYTE data in the
tblspace, but you cannot estimate the number of simple large objects in the table.

The following example shows sample output.

TBLSpace Usage Report for mydemo:chrisw.catalog

 Type Pages Empty Semi-Full Full Very-Full
 ---------------- ---------- ---------- ---------- ---------- ----------
 Free 7
 Bit-Map 1
 Index 2
 Data (Home) 9
 Data (Remainder) 0 0 0 0 0
 Tblspace BLOBs 5 0 0 1 4

 Total Pages 24

 Unused Space Summary

 Unused data bytes in Home pages 3564
 Unused data bytes in Remainder pages 0
 Unused bytes in Tblspace Blob pages 1430

Index Usage Report for index 111_16 on mydemo:chrisw.catalog

 Average Average
 Level Total No. Keys Free Bytes
 ----- -------- -------- ----------
 1 1 74 1058
 ----- -------- -------- ----------
 Total 1 74 1058

Index Usage Report for index 111_18 on mydemo:chrisw.catalog

 Average Average
 Level Total No. Keys Free Bytes
 ----- -------- -------- ----------
 1 1 74 984
 ----- -------- -------- ----------
 Total 1 74 984

Copyright© 2020 HCL Technologies Limited

Monitor sbspaces

One of the most important areas to monitor in an sbspace is the metadata page use. When you create an sbspace, you specify the size of the metadata area. Also, any time
that you add a chunk to the sbspace, you can specify that metadata space be added to the chunk.

If you attempt to insert a new smart large object, but no metadata space is available, you receive an error. The administrator must monitor metadata space availability to
prevent this situation from occurring.

Use the following commands to monitor sbspaces.

Command Description

onstat -g smb s Displays the storage attributes for all sbspaces in the system:

sbspace name, flags, owner
Logging status
Average smart-large-object size
First extent size, next extent size, and minimum extent size
Maximum I/O access time
Lock mode

164 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Command Description

onstat -g smb c Displays the following information for each sbspace chunk:

Chunk number and sbspace name
Chunk size and path name
Total user data pages and free user data pages
Location and number of pages in each user-data and metadata areas

oncheck -ce oncheck -
pe

Displays the following information about sbspace use:

Names of the tables that store smart-large-object data, by chunk
Number of disk pages (not sbpages) used, by table
Number of free user-data pages that remain, by chunk
Number of reserved user-data pages that remain, by chunk
Number of metadata pages used, by chunk

The output provides the following totals:

Total number of used pages for all user-data areas and metadata area. The system adds 53 pages for the reserved area to the totals
for the user-data area and metadata area.
Number of free pages that remain in the metadata area
Number of free pages that remain in all user-data areas

onstat -d Displays the following information about the chunks in each sbspace:

Number of free sbpages in each sbspace chunk, in the metadata area, and in the user-data areas
Total number of sbpages in each sbspace chunk, in the metadata area, and in the user-data areas

oncheck -cs oncheck -ps Validates and displays information about the metadata areas for sbspaces..

oncheck -cS Displays information about smart-large-object extents and user-data areas for sbspaces.

oncheck -pS Displays information about smart-large-object extents, user-data areas, and metadata areas for sbspaces. For more information about
oncheck -cS and -pS, see managing sbspaces in the topics on table performance considerations in your IBM® Informix® Performance Guide.

The onstat -d option
 The oncheck -ce and oncheck -pe options

 The oncheck -cs option
 The oncheck -ps option
 Monitoring the metadata and user-data areas

Related tasks:

 Adding a chunk to an sbspace
Monitoring the metadata and user-data areas
Related reference:

 The oncheck -ce and oncheck -pe options
The onstat -d option
The oncheck -ps option
The oncheck -cs option
Related information:

 onstat -g smb command: Print sbspaces information

Copyright© 2020 HCL Technologies Limited

The onstat -d option

Use the onstat -d option to display the following information about the chunks in each sbspace:

Number of free sbpages in each sbspace chunk, in the metadata area, and in the user-data area
Total number of sbpages in each sbspace chunk, in the metadata area, and in the user-data area

For an example of onstat -d output, see information about the onstat utility in the IBM® Informix® Administrator's Reference.

To find out the total amount of used space, run the oncheck -pe command. For more information, see The oncheck -ce and oncheck -pe options.

The onstat -d option does not register an sbpage as available until the logical login which a deletion occurred is backed up and the sbpage is freed. Therefore, if you delete
25 smart large objects and immediately run onstat -d, the newly freed space is not in the onstat output.

Related reference:
 Monitor sbspaces

Copyright© 2020 HCL Technologies Limited

The oncheck -ce and oncheck -pe options

Run oncheck -ce to display the size of each sbspace chunk, the total amount of used space, and the amount of free space in the user-data area. The oncheck -pe option
displays the same information as oncheck -ce plus a detailed listing of chunk use. First the dbspaces are listed and then the sbspaces. The -pe output provides the

Part VI: Administering 165

https://www.hcltech.com/
https://www.hcltech.com/

following information about sbspace use:

Names of the tables that store smart-large-object data, by chunk
Number of disk pages (not sbpages) used, by table
Number of free user-data pages that remain, by chunk
Number of metadata pages used, by chunk

The output provides the following totals:

Total number of used pages for the user-data area, metadata area, and reserved area
The system adds 53 extra pages for the reserved area to the totals for the user-data area and metadata area.

Number of free pages that remain in the metadata area
Number of free pages that remain in the user-data area

Tip: The oncheck -pe option provides information about sbspace use in terms of database server pages, not sbpages.
The following example shows sample output. In this example, the sbspace s9_sbspc has a total of 214 used pages, 60 free pages in the metadata area, and 726 free
pages in the user-data area.

Chunk Pathname Size Used Free
 2 /ix/ids9.2/./s9_sbspc 1000 940 60

 Description Offset Size
 -- -------- --------
 RESERVED PAGES 0 2
 CHUNK FREELIST PAGE 2 1
 s9_sbspc:'informix'.TBLSpace 3 50
 SBLOBSpace LO [2,2,1] 53 8
 SBLOBSpace LO [2,2,2] 61 1
...
SBLOBSpace LO [2,2,79] 168 1
 SBLOBSpace FREE USER DATA 169 305
 s9_sbspc:'informix'.sbspace_desc 474 4
 s9_sbspc:'informix'.chunk_adjunc 478 4
 s9_sbspc:'informix'.LO_hdr_partn 482 8
 s9_sbspc:'informix'.LO_ud_free 490 5
 s9_sbspc:'informix'.LO_hdr_partn 495 24
 FREE 519 60
 SBLOBSpace FREE USER DATA 579 421

 Total Used: 214
 Total SBLOBSpace FREE META DATA: 60
 Total SBLOBSpace FREE USER DATA: 726

You can use CHECK EXTENTS as the SQL administration API command equivalent to oncheck -ce. For information about using SQL API commands, see Remote
administration with the SQL administration API and the IBM® Informix® Administrator's Reference.

Related reference:
 Monitor sbspaces

Copyright© 2020 HCL Technologies Limited

The oncheck -cs option

The oncheck -cs and the oncheck -Cs options validate the metadata area of an sbspace. The following example shows an example of the -cs output for s9_sbspc. If you
do not specify an sbspace name on the command line, oncheck checks and displays the metadata for all sbspaces.

Use the oncheck -cs output to see how much space is left in the metadata area. If it is full, allocate another chunk with adequate space for the metadata area. To find the
number of used pages in the metadata area, total the numbers in the Used column. To find the number of free pages in the metadata area, total the numbers in the Free
column.

For example, based on the field values displayed in the following figure, the total number of used pages in the metadata area for s9_sbspc is 33 2 KB pages (or 66 KB).
The metadata area contains a total of 62 free pages (or 124 KB).

Validating space 's9_sbspc' ...

SBLOBspace Metadata Partition Partnum Used Free
s9_sbspc:'informix'.TBLSpace 0x200001 6 44
s9_sbspc:'informix'.sbspace_desc 0x200002 2 2
s9_sbspc:'informix'.chunk_adjunc 0x200003 2 2
s9_sbspc:'informix'.LO_hdr_partn 0x200004 21 11
s9_sbspc:'informix'.LO_ud_free 0x200005 2 3

Related reference:
 Monitor sbspaces

Copyright© 2020 HCL Technologies Limited

The oncheck -ps option

The oncheck -ps option validates and displays information about the metadata areas in sbspace partitions. The following example shows an example of the -ps output for
s9_sbspc. If you do not specify an sbspace name on the command line, oncheck validates and displays tblspace information for all storage spaces.

166 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

To monitor the amount of free metadata space, run the following command:

oncheck -ps spacename

The -ps output includes information about the locking granularity, partnum, number of pages allocated and used, extent size, and number of rows in the metadata area.
Use the oncheck -ps output to see how much space is left in the metadata area. If it is full, allocate another chunk with adequate space for the metadata area.

If you run oncheck -ps for the dbspace that contains the tables where the smart large objects are stored, you can find the number of rows in the table.

Validating space 's9_sbspc' ...

TBLSpace Report for
 TBLspace Flags 2801 Page Locking
 TBLspace use 4 bit bit-maps
 Permanent System TBLspace

 Partition partnum 0x200001
 Number of rows 92
 Number of special columns 0
 Number of keys 0
 Number of extents 1
 Current serial value 1
 First extent size 50
 Next extent size 50
 Number of pages allocated 50
 Number of pages used 6
 Number of data pages 0
 Number of rows 0
 Partition lockid 2097153

 Current SERIAL8 value 1
 Current REFID value 1
 Created Thu May 24 14:14:33 2007

Related reference:
 Monitor sbspaces

Copyright© 2020 HCL Technologies Limited

Monitoring the metadata and user-data areas

The database server reserves 40 percent of the user-data area as a reserved area. The database server uses this reserved space for either the metadata or user data. The
metadata area gets used up as smart large objects are added to that sbspace. When the database server runs out of metadata or user-data space, it moves a block of the
reserved space to the corresponding area.

When all of the reserve area is used up, the database server cannot move space to the metadata area, even if the user-data area contains free space.

1. As you add smart large objects to the sbspace, use oncheck -pe or onstat -g smb c to monitor the space in the metadata area, user-data area, and reserved area.
For an example, see The oncheck -ce and oncheck -pe options.

2. Use the message log to monitor metadata stealing.
The database server prints messages about the number of pages allocated from the reserved area to the metadata area.

3. Add another chunk to the sbspace before the sbspace runs out of space in the metadata and reserved areas.
For more information, see Adding a chunk to an sbspace.

4. The database server writes the FREE_RE and CHKADJUP log records when it moves space from the reserve area to the metadata or user-data area.

For more information, see Size sbspace metadata.

Related reference:
 Monitor sbspaces

Copyright© 2020 HCL Technologies Limited

Multitenancy

You can segregate data, storage space, and processing resources for multiple client organizations by creating multiple tenant databases in a single instance of Informix®.

For example, assume that you want to provide payroll services to small businesses. You sell the use of the payroll application as a service to small business clients.
Instead of providing a separate Informix instance to each client, you can configure a tenant database for each client in a single Informix instance.

When you configure multitenancy, you segregate the following aspects of a database server:

Data
You create a separate tenant database for each client.

Storage spaces
Each tenant database has dedicated storage spaces to store data. Tables, fragments, and indexes that are created in the tenant database must be created in the
dedicated storage spaces. Only the tenant database can use the dedicated storage spaces.
You can limit the amount of permanent storage space that is available to a tenant database to conserve system resources.

Temporary storage spaces can be dedicated to a specific tenant database or shared between databases.

Part VI: Administering 167

https://www.hcltech.com/
https://www.hcltech.com/

You can encrypt tenant storage spaces if the DlSK_ENCRYPTION configuration parameter is set. Each encrypted storage space has a separate encryption key.

Users
You can set permissions for client users to access each tenant database. You can grant certain users permission to create, modify, or drop tenant databases. By
default, only a DBA or user informix can create a tenant database.

Processing resources
You can segregate CPU resources for a tenant database by defining a tenant virtual processor class and creating virtual processors for running the session threads
for the tenant database. Otherwise, the session threads for tenant databases have access to all CPU virtual processors.

Session limits
You can set the following limits for tenant sessions:

The number of locks a tenant session can acquire.
The amount of memory that can be allocated for a session.
The amount of temporary storage space that can be allocated for a session.
The size of transactions within a session, based on the amount of log space that individual transactions would fill.
The amount of time that a transaction is allowed to run within a session.
The amount of shared memory for all sessions that are connected to the tenant database.
The number of client connections to a tenant database.

The following illustration shows a possible configuration for two clients in the Informix server instance. Each client has a database and users who are allowed to access
the tenant database. Each tenant database has their own storage spaces. Both tenant databases share the default temporary sbspace. Tenant A has a tenant virtual
processor class with two virtual processors, while Tenant B has a virtual process class with one virtual processor.

Figure 1. Multiple tenants in the Informix server instance

Replication and tenant databases
You can replicate tenant databases with Enterprise Replication and high-availability clusters.

You can run the commands to create, modify, or delete tenant databases through an Enterprise Replication grid.

You cannot run the commands to create, modify, or delete tenant databases from an updatable secondary server in a high-availability cluster.

Backup and restore of tenant databases
You can back up tenant databases as part of a database server backup or by specifying the tenant storage spaces in the backup command. You can restore a single tenant
database with ON-Bar by specifying the -T option in the onbar -r command.

If storage space encryption is enabled, you can encrypt all storage spaces that are assigned to a tenant during a restore. Whether storage space encryption is enabled or
not enabled, you can decrypt all tenant storage spaces during a restore.

Creating a tenant database
 You can create a tenant database to segregate data, storage, and processing resources to a specific client organization.

Managing tenant databases
 You can view the properties of tenant databases, update the properties of tenant databases, and delete tenant databases.

Restoring a tenant database to a point in time
 You can restore a tenant database to a point in time with the ON-Bar utility.

Related concepts:
 Storage space creation and management

Tenant virtual processor class
Related information:

 Storage space encryption
DISK_ENCRYPTION configuration parameter

Copyright© 2020 HCL Technologies Limited

Creating a tenant database

168 Part VI: Administering

https://www.hcltech.com/

You can create a tenant database to segregate data, storage, and processing resources to a specific client organization.

You must be user informix, a DBSA, or have the TENANT privilege to create a tenant database.
You cannot convert an existing database to a tenant database. You cannot convert a tenant database to a non-tenant database. You cannot run the CREATE DATABASE
statement to create a tenant database.
To create a tenant database:

1. Create the storage spaces for the tenant database. All dedicated storage spaces must be empty when you create the tenant database. You can create the following
types of dedicated spaces for a tenant database:

dbspaces
You must create at least one dbspace for the tenant database. The tenant database must be stored in one or more dedicated dbspaces.

blobspaces
If the tenant database will contain simple large objects, you must create one or more blobspaces.

sbspaces
If the tenant database will contain smart large objects, you must create one or more sbspaces. Smart large objects can include BLOB or CLOB data, or data
and table statistics that are too large to fit in a row. Some Informix® features, such as Enterprise Replication, spatial data, and basic text searching, require
sbspaces.

temporary dbspaces
Optional: Create one or more temporary dbspaces to store temporary tables. Otherwise, temporary tables are stored in the temporary dbspaces that are
specified by the DBSPACETEMP configuration parameter or environment variable.

temporary sbspaces
Optional: Create one or more temporary sbspaces to store temporary smart large objects. Otherwise, temporary smart large objects are stored in the
temporary sbspaces that are specified by the SBSPACETEMP configuration parameter.

2. Optional: Set limits for the tenant database so that it cannot monopolize system resources. Tenant database limits do not apply to a user who holds administrative
privileges, such as user informix or a DBSA user. You can set the following limits for a tenant database:

Locks available to a session
Set the session_limit_locks property to specify the maximum number of locks available to a session.

Logspace available to transactions in a session
Set the session_limit_logspace property to specify the maximum amount of log space that a session can use for individual transactions.

Memory available to a session
Set the session_limit_memory property to specify the maximum amount of memory that a session can allocate.

Temporary table space available to a session
Set the session_limit_tempspace property to specify the maximum amount of temporary table space that a session can allocate.

Amount of time that a transaction can run
Set the session_limit_txn_time property to specify the maximum amount of time that a transaction can run in a session

Total space available to a tenant database
Set the tenant_limit_space property to specify the maximum amount of storage space available to a tenant user.

3. Optional: Set up a storage pool so that storage spaces can grow automatically. You can specify maximum sizes for extendable storage spaces to limit the growth of
tenant databases.

4. Optional: Provide TENANT privileges to specific users to create, modify, and delete tenant databases. For example, the following command gives the user jsmith
TENANT privileges:

EXECUTE FUNCTION task("grant admin", "jsmith", "tenant");

5. Create a tenant database and define its properties by running the admin() or task() SQL administration API function with the tenant create argument. For example,
the following statement creates a tenant database that is named companyA:

EXECUTE FUNCTION task('tenant create', 'companyA',
 '{dbspace:"companyA_dbs1,companyA_dbs2", sbspace:"companyA_sbs1",
 vpclass:"tvp_A,num=2", logmode:"ansi"}');

The tenant database has two dbspaces, an sbspace, two tenant virtual processors, and the ANSI logging mode.

When you explicitly specify storage locations during the creation or altering of tables and indexes in the tenant database, you must specify the dbspaces that are listed in
the tenant database definition. Otherwise, the statement fails. If you do not explicitly specify storage for tables or indexes, they are created in the first dbspace that is
listed in the tenant definition.

Note: Improve the security of your databases by performing the following tasks:

Run GRANT and REVOKE statements to control user access to databases.
Set the DBCREATE_PERMISSION configuration parameter to restrict the ability to create non-tenant databases.

Related concepts:
 Automatic space management

Related information:
 tenant create argument: Create a tenant database (SQL Administration API)

The tenant table

Copyright© 2020 HCL Technologies Limited

Managing tenant databases

You can view the properties of tenant databases, update the properties of tenant databases, and delete tenant databases.

Part VI: Administering 169

https://www.hcltech.com/

Viewing tenant database properties
To view the tenant database definition, query the tenant table in the sysadmin database. For example, the following statement lists the tenant databases and their
properties:

SELECT hex(tenant_id),tenant_dbsname,tenant_resources::json,
 tenant_create_time,tenant_last_updated
FROM tenant;

The tenant_resources column, which contains the tenant properties, is of type BSON, so you must cast the column to JSON to view the properties.

Updating the properties of tenant databases
To update properties, run the admin() or task() SQL administration API function with the tenant update argument. The updates take effect for new sessions.

You can append dbspaces, blobspaces, or sbspaces to the existing lists of storage spaces for a tenant database. The storage spaces must be empty. You must have DBA or
TENANT privileges to change tenant database properties.

You cannot remove dedicated storage spaces from a tenant database unless you delete the database.

When you specify new values for the following tenant database properties, existing values are replaced.

dbspacetemp (temporary dbspaces that are assigned to the tenant)
session_limit_logspace (limit on log space for individual transactions)
session_limit_memory (limit on memory that is allocated per session)
session_limit_tempspace (limit on temporary table space per session)
session_limit_txn_time (limit on the length of time a transaction can run)
sbspacetemp (temporary sbspaces that are assigned to the tenant)
session_limit_locks (limit on the number of locks per session)
tenant_limit_space (limit on total storage space)
vpclass (virtual processor classes names and quantities)

Deleting tenant databases
To delete a tenant database, run the admin() or task() SQL administration API function with the tenant drop argument. You must have DBA or TENANT privileges to delete
tenant databases. You cannot delete a tenant database with the DROP DATABASE statement. All dedicated storage spaces for the tenant database are emptied and
become available. Any tenant virtual processors that are not shared with other tenant databases are dropped.

Related information:
 tenant update argument: Modify tenant database properties (SQL Administration API)

tenant drop argument: Drop a tenant database (SQL Administration API)
The tenant table

Copyright© 2020 HCL Technologies Limited

Restoring a tenant database to a point in time

You can restore a tenant database to a point in time with the ON-Bar utility.

You must meet the following prerequisites before you start a tenant restore:

The tenant database storage spaces must have a physical backup.
The database server must be online.
All tenant storage spaces that are listed in the tenant definition must exist.
Tenant storage spaces must have unique names for existing backups. For example, if a tenant database that has backups is dropped and storage spaces with the
same names are used in a new tenant database, the backups of the dropped tenant database must be removed.
No other warm restores or tenant restores are in progress.

A tenant database point-in-time restore has the following additional prerequisites if the tenant database is in a high-availability cluster:

The cluster cannot include shared-disk secondary servers or updatable secondary servers. The cluster can include only read-only HDR secondary servers and
remote stand-alone secondary servers.
All secondary servers must be online.
You can run the restore command only on the primary server.
However, during the tenant point in time restore process, internally generated commands are run on the secondary servers to restore the new state of the tenant
database spaces on the secondaries. A tenant point in time restore command includes new physical backups of the tenant spaces in their new state. The tenant
point in time restore command that is run on the primary server does not return until all secondary servers acknowledge the completion of the automatically
generated restores of the new tenant space backups.

Like other warm restores, the logical logs that are required for the tenant database restore are restored to the temporary spaces that are specified by the DBSPACETEMP
configuration parameter. If the DBSPACETEMP configuration parameter is not set, temporary files are created in the root dbspace.
To restore a tenant database to a point in time, run the following command:

onbar -r -T tenant_database -t "time" -O

Substitute tenant_database with the name of the tenant database. Substitute time with the time of the last transaction to be restored from the logical logs.

If you omit the -O option, all the permanent tenant spaces must be marked as down before you run the restore command. Temporary spaces are never backed up or
restored.

170 Part VI: Administering

https://www.hcltech.com/

If the restore fails, fix the problem and run the restore again. Until the restore succeeds, the tenant database is blocked from accepting connections. During the restore,
the value of the tenant_state field is set to restoring in the tenant_resources column of the sysadmin:tenant table. When a tenant database is blocked, the value of
the tenant_state field is set to blocked. You can view the value of the tenant_state field by running the following query:

SELECT bson_value_lvarchar(tenant_resources, 'tenant_state') AS tenant_state
 FROM sysadmin:tenant
 WHERE tenant_dbsname = 'tenant_dbname';

Substitute tenant_dbname with the name of the tenant database.

Example
The following command restores a tenant database that is named tenant1 to the specified point in time:

onbar -r -T tenant1 -t "2015-10-10 11:35:57" -O

Related information:
 The tenant table

onbar -r syntax: Restoring data

Copyright© 2020 HCL Technologies Limited

Storage optimization

Data compression and consolidation processes can minimize the disk space that is used by your data and indexes.

The following table describes the processes that you can use to reduce the amount of disk space that is used by data in rows, simple large objects in dbspaces, and index
keys. You can automate any or all of these processes or do them as needed.

Table 1. Storage optimization processes
Storage
optimization
process Purpose When to use

Compressing Compresses data in tables and fragments, compress simple large objects in
dbspaces, and compresses keys in indexes. Reduces the amount of required disk
space.
After you enable compression, new data or index keys is automatically compressed.

When you want to reduce the size of 2000 or more rows of data,
simple large objects in dbspaces, or 2000 or more index keys

Repacking Consolidates free space in tables, fragments, and indexes. After you compress or when you want to consolidate free space

Shrinking Returns free space to the dbspace. After you compress or repack or when you want to return free
space to the dbspace

Defragmenting Brings data rows or index keys closer together in contiguous, merged extents. When frequently updated tables or indexes become scattered
among multiple non-contiguous extents

The following illustration shows uncompressed data that uses most of the space in a fragment, free space that is created when the data is compressed, free space that is
moved to the end of the fragment after a repack operation, and data that remains in the fragment after a shrink operation. The process for storage optimization of indexes
is the same.

Figure 1. Data in a fragment during the compression and storage optimization process

Part VI: Administering 171

https://www.hcltech.com/

Storage optimization methods
You can optimize individual tables, fragments, or indexes. You can schedule the automatic optimization of all tables and fragments.
Scheduling data optimization
You can configure the automatic compressing, shrinking, repacking, and defragmenting of all tables and extents by enabling the auto_crsd Scheduler task.
Example: Optimizing data storage on demand
In this example, you learn how to run SQL administration API commands to determine how much space you can save by compressing a table, how to compress the
table, and how to optimize storage on demand. You also learn how to uncompress the table and remove the compression dictionaries.
Partition defragmentation
You can improve performance by defragmenting partitions to merge non-contiguous extents.
Compression
You can compress and uncompress row data in tables and fragments and simple large objects in dbspaces. You can compress B-tree indexes. You can also
consolidate free space in a table or fragment and you can return this free space to the dbspace. Before you compress data, you can estimate the amount of disk
space that you can save.

Related concepts:
 Storage space creation and management

Copyright© 2020 HCL Technologies Limited

Storage optimization methods

You can optimize individual tables, fragments, or indexes. You can schedule the automatic optimization of all tables and fragments.

You can use the COMPRESSED option in the CREATE TABLE statement to enable automatic compression of the table when the table has at least 2000 rows.

You can use the COMPRESSED option in the CREATE INDEX statement to enable automatic compression of the index if the index has 2000 or more keys. Compression is
not enabled if the index has fewer than 2000 keys.

You can use the SQL administration API task or admin function to perform any type of storage optimization on a table, fragment, or index.

You can enable the auto_crsd Scheduler task to automatically compress, repack, shrink, and defragment all tables and table fragments.

Table 1. Methods of storage optimization
Goal SQL statement SQL administration API argument Scheduler task OAT page

Automatically compress data for a table or
fragment

CREATE TABLE with the
COMPRESSED option

table compress or fragment compress Storage

Automatically compress data for all tables and
fragments

 auto_crsd Server Optimization
Policies

Repack and shrink a table or fragment table repack shrink or fragment
repack shrink

 Storage

Automatically repack and shrink all tables and
fragments

 auto_crsd Server Optimization
Policies

Automatically compress a B-tree index CREATE INDEX with the
COMPRESSED option

index compress Storage

Repack and shrink a B-tree index index repack shrink Storage

Defragment a table of fragment defragment Storage

Automatically defragment all tables and
fragments

 auto_crsd Server Optimization
Policies

Related concepts:
 Data that you can compress

Methods for viewing compression information
Compression
Related information:

 COMPRESSED option for tables
COMPRESSED option for indexes
defragment argument: Dynamically defragment partition extents (SQL administration API)
Table and fragment compress and uncompress operations (SQL administration API)
index compress repack shrink arguments: Optimize the storage of B-tree indexes (SQL administration API)

Copyright© 2020 HCL Technologies Limited

Scheduling data optimization

You can configure the automatic compressing, shrinking, repacking, and defragmenting of all tables and extents by enabling the auto_crsd Scheduler task.

You can enable and configure the auto_crsd task by updating Scheduler tables in the sysadmin database.
To enable the auto_crsd task by updating the Scheduler tables:

1. Connect to the sysadmin database as user informix or another authorized user.
2. Enable the auto_crsd Scheduler task by using an UPDATE statement on the ph_task table to set the value of the tk_enable column to T. For example, the following

statement enables the auto_crsd task:

172 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

UPDATE ph_task
 SET tk_enable = 'T'
 WHERE tk_name = 'auto_crsd';

3. Optional: Change the frequency of when the task is run by running an UPDATE statement on the ph_task table to change the value of the tk_frequency column. The
default value is 7 00:00:00, which indicates that the task runs once a week. For example, the following statement changes the frequency to once a day:

UPDATE ph_task
 SET tk_frequency = '1 00:00:00'
 WHERE tk_name = 'auto_crsd';

4. Optional: Disable individual operations by using an UPDATE statement on the ph_threshold table to set the value column for a threshold to F:
AUTOCOMPRESS_ENABLED: controls compression
AUTOREPACK_ENABLED: controls repacking
AUTOSHRINK_ENABLED: controls shrinking
AUTODEFRAG_ENABLED: controls defragmenting

For example, the following statement disables just the defragmentation operation of the auto_crsd task:

UPDATE ph_threshold
 SET value = 'F'
 WHERE name = 'AUTODEFRAG_ENABLED';

5. Optional: Change the thresholds of individual operations by using and UPDATE statement on the ph_threshold table to change the value of the value column for a
threshold:

AUTOCOMPRESS_ROWS: The threshold for compression is the number of uncompressed rows. The default threshold is 50 000 rows. A table is compressed
when the number of uncompressed rows exceeds 50 000.
AUTOREPACK_SPACE: The threshold for repacking a table is the percentage of noncontiguous space. The default is 90%. A table is repacked when more than
90% of the space the table occupies is noncontiguous.
AUTOSHRINK_UNUSED: The threshold for shrinking a table or fragment is the percentage of unused, allocated space. The default is 50%. A table or
fragment is shrunk when more than 50% of the allocated space is unused.
AUTODEFRAG_EXTENTS: The threshold for defragmenting table or fragment extents is the number of extents. The default is 100. A table or fragment is
defragmented when the number of extents exceeds 100.

For example, the following statement changes the compression threshold to 5000 rows:

UPDATE ph_threshold
 SET value = '5000'
 WHERE name = 'AUTOCOMPRESS_ROWS';

When a threshold for an operation that you enabled is exceeded, the Scheduler runs the operation.
Related concepts:

 Partition defragmentation
The Scheduler
Related information:

 The Scheduler tables

Copyright© 2020 HCL Technologies Limited

Example: Optimizing data storage on demand

In this example, you learn how to run SQL administration API commands to determine how much space you can save by compressing a table, how to compress the table,
and how to optimize storage on demand. You also learn how to uncompress the table and remove the compression dictionaries.

Assume that you have a table named rock in a database named music that is owned by user mario. The rock table is not fragmented. You can run the same operations on
a table fragment as you can on a whole table, but the syntax is slightly different.

Prerequisites:

There must be at least 2,000 rows in each fragment of the table, not just a total of 2,000 rows in the whole table.
You must be able to connect to the sysadmin database (by default only user informix), and you must be a DBSA.
Logical and physical logs are large enough to handle normal processing and compression operations. Compression, repacking, and uncompressing, operations can
use large amounts of logs.

To compress both row data and simple large objects in dbspaces:

1. You run the following command to check how much space you might save by compressing the table:

EXECUTE FUNCTION task("table estimate_compression", "rock", "music", "mario");

You review the resulting report, which indicates you can save 75 percent of the space that is used by the rock table. You decide to compress the table.

2. Before you compress data, you want to create a compression dictionary, which contains information that IBM® Informix® uses to compress data in the rock table.
You run the following command

EXECUTE FUNCTION task("table create_dictionary", "rock", "music", "mario");

Tip: If you do not create the compression dictionary as a separate step, creates the dictionary automatically when you compress data.
3. You decide that you want to compress data in the rock table and simple large objects in dbspaces, consolidate the data, and then return the free space to the

dbspace. You run the following command:

EXECUTE FUNCTION task("table compress repack shrink", "rock", "music", "mario");

You can perform the same operations faster by running them in parallel. You run the following command:

EXECUTE FUNCTION task("table compress repack shrink parallel", "rock",
"music", "mario");

Part VI: Administering 173

https://www.hcltech.com/

You can adjust the command by specifying what you want to compress or shrink. For example:

To compress only row data, specify:

EXECUTE FUNCTION task("table compress rows parallel","rock","music","mario");

To compress only row data and then repack and shrink the data, specify:

EXECUTE FUNCTION task("table compress repack shrink rows parallel",
"rock","music","mario");

To compress only simple large objects in the dbspace, specify:

EXECUTE FUNCTION task("table compress blobs parallel","rock","music","mario");

After the existing rows and simple large objects are compressed, consolidates the free space that is left at the end of the table, and then removes the free space
from the table, returning that space to the dbspace.

If the simple large objects or rows are not smaller when compressed, the database server does not compress them.

4. Now suppose that you want to uncompress the data. You run the following command:

EXECUTE FUNCTION task("table uncompress parallel", "rock", "music", "mario");

5. You want to remove the compression dictionary.
a. Verify that Enterprise Replication does not require the dictionary.

If you do require the dictionaries for Enterprise Replication, do not remove compression dictionaries for uncompressed or dropped tables and fragments.

b. Archive the dbspace that contains the table or fragment with a compression dictionary.
c. Run this command:

EXECUTE FUNCTION task("table purge_dictionary", "rock", "music", "mario");

To run compression and other storage optimization commands on table fragments, include the fragment argument instead of the table argument and the fragment
partition number instead of the table name.

EXECUTE FUNCTION task("fragment command_arguments", "partnum_list");

Related concepts:
 Compression

Related information:
 table or fragment arguments: Compress data and optimize storage (SQL administration API)

Copyright© 2020 HCL Technologies Limited

Partition defragmentation

You can improve performance by defragmenting partitions to merge non-contiguous extents.

A frequently updated table can become fragmented over time, which degrades performance every time the table is accessed by the server. Defragmenting a table brings
data rows closer together and avoids partition header page overflow problems. Defragmenting an index brings the entries closer together, which improves the speed at
which the table information is accessed.

Before you defragment a table, index, or partition, be sure that none of the following conflicting operations are in progress:

An existing defragment operation on the table, index, or dbspace.
DDL statements, such as DROP TABLE or ALTER FRAGMENT, are being run on the table or partition.
The table is being truncated.
The table is being compressed or uncompressed.
An online index build is running.

You cannot defragment the following objects:

Pseudo tables, such as virtual-table interface (VTI) tables
Tables with virtual-index interface (VII) indexes
Tables with functional indexes
Temporary tables
Sort files
A table that has exclusive access set

To determine how many extents a table, index, or partition has, you can run the oncheck -pt command.

To defragment a table, index, or partition, run the SQL administration API task() or admin() function with the defragment argument or the defragment partnum argument
and specify the table name, index, or partition number that you want to defragment.

You cannot stop a defragment request after you run the command.

If there are problems in completing a defragment request, error messages are sent to the online log file.

Related tasks:
 Scheduling data optimization

Related information:
 oncheck -pt and -pT: Display tblspaces for a Table or Fragment

defragment argument: Dynamically defragment partition extents (SQL administration API)

174 Part VI: Administering

https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Compression

You can compress and uncompress row data in tables and fragments and simple large objects in dbspaces. You can compress B-tree indexes. You can also consolidate
free space in a table or fragment and you can return this free space to the dbspace. Before you compress data, you can estimate the amount of disk space that you can
save.

Compressing data, simple large objects, or indexes, consolidating data, and returning free space have the following benefits:

Significant savings in disk storage space
Reduced disk usage for compressed fragments
Significant saving of logical log usage, which saves more space and can prevent bottlenecks for high-throughput OLTP after the compression operation is
completed.
Fewer page reads because more rows can fit on a page
Smaller buffer pools because more data fits in the same size pool
Reduced I/O activity:

More compressed rows than uncompressed rows fit on a page
Log records for insert, update, and delete operations of compressed rows are smaller

Ability to compress older fragments of time-fragmented data that are not often accessed, while leaving more recent data that is frequently accessed in
uncompressed form
Ability to free space no longer required for a table
Faster backup and restore

If your applications run with high buffer cache hit ratios and high performance is more important than space usage, you might not want to compress your data, because
compression might slightly decrease performance.

You can compress data and indexes in parallel.

Queries can access data in a compressed table.

Because compressed data covers fewer pages and has more rows per page than uncompressed data, the query optimizer might choose different plans after compression.

If you use Enterprise Replication, compressing data on one replication server does not affect the data on any other replication server.

If you use high-availability clusters, data that is compressed in the source table is compressed in the target table. You cannot perform compression operations on
secondary servers, because secondary servers must have the same data and physical layout as the primary server.

The main alternative to compression is to buy more physical storage. The main alternative for reducing bottlenecks in IO-bound workloads is to buy more physical
memory to enable the expansion of the buffer pools.

Data that you can compress
 You can compress data in rows and simple large objects in dbspaces. However, you might not want to compress all the types of data that you can compress.

Data that you cannot compress
 You cannot compress data in rows in some types of tables and fragments.

B-tree index compression
 You can compress detached B-tree indexes. You can also consolidate free space in the index and you can return free space at the end of the index to the dbspace.

Before you compress an index, you can estimate the amount of disk space that you can save.
Compression ratio estimates

 The compression ratio depends on the data that is being compressed. Before you compress a table or table fragment, you can estimate the amount of space you
can save if data is compressed. Compression estimates are based on samples of row data. The actual ratio of saved space might vary.
Compression dictionaries

 A compression dictionary is a library of frequently occurring patterns in data or index keys and the symbol numbers that replace the patterns.
Tools for moving compressed data

 You can use the High-Performance Loader (HPL) and other IBM® Informix® data migration utilities to move compressed data between databases.
BLOBspace Blob Compression

 A partition BLOB (binary large object) column is a TEXT or BYTE column that is stored in a DBspace, in the same RSAM partition as the home row. A BLOBspace BLOB
column is the same data type (TEXT or BYTE), but the BLOB data is stored in a BLOBspace.
Methods for viewing compression information

 You can display compression statistics, information about compression dictionaries, and the compression dictionary.

Related concepts:
 Storage optimization methods

Related tasks:
 Example: Optimizing data storage on demand

Copyright© 2020 HCL Technologies Limited

Data that you can compress

You can compress data in rows and simple large objects in dbspaces. However, you might not want to compress all the types of data that you can compress.

You can compress the following types of data:

The contents of data rows, including any remainder pieces for rows that span pages, and the images of those rows that are contained in logical log records.
Simple large objects (TEXT or BYTE data types) that are stored in dbspaces.

Part VI: Administering 175

https://www.hcltech.com/
https://www.hcltech.com/

Table or table-fragment data with frequently repeating long patterns is very compressible. Certain types of data, such as text, might be more compressible than other
types of data, such as numeric data, because data types like text might contain longer and more frequently repeating patterns.

I/O-bound tables, for example, tables that have bad cache hit ratios, are good candidates for compression. In OLTP environments, compressing I/O-bound tables can
improve performance.

IBM® Informix® can compress any combination of data types, because it treats all data to be compressed as unstructured sequences of bytes. Thus, the server can
compress patterns that span columns, for example, in city, state, and zip code combinations. (The server uncompresses a sequence of bytes in the same sequence that
existed before the data was compressed.)

Related concepts:
 Storage optimization methods

Copyright© 2020 HCL Technologies Limited

Data that you cannot compress

You cannot compress data in rows in some types of tables and fragments.

You cannot compress data in rows in the following database objects:

Tables or fragments that are in the sysmaster, sysutils, sysuser, syscdr, and syscdcv1 databases
Catalogs
Temporary tables
Virtual-table interface tables
The tblspace tblspace
Internal partition tables
Dictionary tables (these tables, one per dbspace, hold compression dictionaries for the fragments or tables that are compressed in that dbspace and metadata
about the dictionaries.)

You cannot compress a table while an online index build is occurring on the table.

You cannot compress simple large objects in blobspaces.

Encrypted data, data that is already compressed by another algorithm, and data without long repeating patterns compresses poorly or does not compress. Try to avoid
placing columns with data that compresses poorly between columns that have frequent patterns to prevent the potential disruption of column-spanning patterns.

IBM® Informix® compresses images of the rows only if the images of the compressed rows are smaller than the uncompressed images. Even if compressed rows are only
slightly smaller than their uncompressed images, a small saving of space can enable the server to put more rows onto pages.

Very small tables are not good candidates for compression, because you might not be able to gain back enough space from compressing the rows to offset the storage
cost of the compression dictionary.

cannot compress an individual row to be smaller than four bytes long. The server must leave room in case the row image later grows beyond what the page can hold.
Therefore, you must not try to compress fragments or non-fragmented tables with rows that contain four bytes or are shorter than four bytes.

Copyright© 2020 HCL Technologies Limited

B-tree index compression

You can compress detached B-tree indexes. You can also consolidate free space in the index and you can return free space at the end of the index to the dbspace. Before
you compress an index, you can estimate the amount of disk space that you can save.

You can compress a detached B-tree index that is on a fragmented or non-fragmented table.

An index must have at least 2000 keys to be compressed.

You cannot compress the following types of indexes:

An index that is not a B-tree index
An attached B-tree index
Virtual B-tree indexes
An index that does not have at least 2000 keys

The compression operation compresses only the leaves (bottom level) of the index.

You cannot uncompress a compressed index. If you no longer need the compressed index, you can drop the index and then re-create it as an uncompressed index.

You can compress a new index when you create it by including the COMPRESSED option in the CREATE INDEX statement. You compress an existing index with an SQL
administration API command.

Related information:
 index compress repack shrink arguments: Optimize the storage of B-tree indexes (SQL administration API)

index estimate_compression argument: Estimate index compression (SQL administration API)
CREATE INDEX statement
Creation of Root and Leaf Nodes

Copyright© 2020 HCL Technologies Limited

176 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Compression ratio estimates

The compression ratio depends on the data that is being compressed. Before you compress a table or table fragment, you can estimate the amount of space you can save
if data is compressed. Compression estimates are based on samples of row data. The actual ratio of saved space might vary.

The compression algorithm that IBM® Informix® uses is a dictionary-based algorithm that performs operations on the patterns of the data that were found to be the most
frequent, weighted by length, in the data that was sampled at the time the dictionary was built.

If the typical data distribution skews away from the data that was sampled when the dictionary was created, compression ratios can decrease.

The maximum compression ratio is 90 percent. The maximum compression of any sequence of bytes occurs by replacing each group of 15 bytes with a single 12-bit
symbol number, yielding a compressed image that is ten percent of the size of the original image. However, the 90 percent ratio is never achieved because adds a single
byte of metadata to each compressed image.

IBM Informix estimates the compression ratios by random sampling of row data and then summing up the sizes of the following items:

Uncompressed row images
Compressed row images, based on a new compression dictionary that is temporarily created by the estimate compression command
Compressed row images, based on the existing dictionary, if there is one. If there is no existing dictionary, this value is the same as the sum of the sizes of the
uncompressed row images.

The actual space saving ratios that are achieved might vary from the compression estimates due to a sampling error, the type of data, how data fits in data pages, or
whether other storage optimization operations are also run.

Some types of data compress more than other types of data:

Text in different languages or character sets might have different compression ratios, even though the text is stored in CHAR or VARCHAR columns.
Numeric data that consists mostly of zeros might compress well, while more variable numeric data might not compress well.
Data with long runs of blank spaces compresses well.
Data that is already compressed by another algorithm and data that is encrypted might not compress well. For example, images and sound samples in rows might
already be compressed, so compressing the data again does not save more space.

Compression estimates are based on raw compressibility of the rows. The server generally puts a row onto a single data page. How the rows fit on data pages can affect
how much the actual compression ratio varies from the estimated compression ratio:

When each uncompressed row nearly fills a page and the compression ratio is less than 50 percent, each compressed row fills more than half a page. The server
puts each compressed row on a separate page. In this case, although the estimated compression ratio might be 45 percent, the actual space savings is nothing.
When each uncompressed row fills slightly more than half a page and the compression ratio is low, each compressed row might be small enough to fit in half a page.
The server puts two compressed rows on a page. In this case, even though the estimated compression ratio might be as low as 5 percent, the actual space savings
is 50 percent.

does not store more than 255 rows on a single page. Thus, small rows or large pages can reduce the total savings that compression can achieve. For example, if 200 rows
fit onto a page before compression, no matter how small the rows are when compressed, the maximum effective compression ratio is approximately 20 percent, because
only 255 rows can fit on a page after compression.

If you are using a page size that is larger than the minimum page size, one way to increase the realized compression space savings is to switch to smaller pages, so that:

The 255 row limit can no longer be reached.
If this limit is still reached, there is less unused space on the pages.

More (or less) space can be saved, compared to the estimate, if the compress operation is combined with a repack operation, shrink operation, or repack and shrink
operation. The repack operation can save extra space only if more compressed rows fit on a page than uncompressed rows. The shrink operation can save space at the
dbspace level if the repack operation frees space.

Related information:
 Output of the estimate compression operation (SQL administration API)

Copyright© 2020 HCL Technologies Limited

Compression dictionaries

A compression dictionary is a library of frequently occurring patterns in data or index keys and the symbol numbers that replace the patterns.

One compression dictionary exists for each compressed fragment, each compressed non-fragmented table, each compressed simple large object in a dbspace, and each
compressed index partition.

A compression dictionary is built using data that is sampled randomly from a fragment or non-fragmented table that contains at least 2,000 rows, or an index that has at
least 2,000 keys. Typically, approximately 100 KB of space is required for storing the compression dictionary.

The compression dictionary can store a maximum of 3,840 patterns, each of which can be from two to 15 bytes in length. (Patterns that are longer than seven bytes
reduce the total number of patterns that the dictionary can hold.) Each of these patterns is represented by a 12-bit symbol number in a compressed row. To be
compressed, a sequence of bytes in the input row image must exactly match a complete pattern in the dictionary. A row that does not have enough pattern matches
against the dictionary might not be compressible because each byte of an input row that did not completely match is replaced in the compressed image by 12 bits (1.5
bytes).

attempts to capture the best compressible patterns (the frequency of the pattern that is multiplied by the length). Data is compressed by replacing occurrences of the
patterns with the corresponding symbol numbers from the dictionary, and replacing occurrences of bytes that do not match any pattern with special reserved symbol
numbers.

Part VI: Administering 177

https://www.hcltech.com/

All dictionaries for the tables or fragments in a dbspace are stored in a hidden dictionary table in that dbspace. The syscompdicts_full table and the syscompdicts view in
the sysmaster database provide information about the compression dictionaries.

Related information:
 syscompdicts_full

Copyright© 2020 HCL Technologies Limited

Tools for moving compressed data

You can use the High-Performance Loader (HPL) and other IBM® Informix® data migration utilities to move compressed data between databases.

You cannot use the onunload and onload utilities to move compressed data from one database to another. You must uncompress data in compressed tables and
fragments before you use the onunload and onload utilities.

The dbexport utility uncompresses compressed data. Therefore, you must recompress the data after you use the dbimport utility to import the data.

Related information:
 Data migration utilities

High-Performance Loader User's Guide

Copyright© 2020 HCL Technologies Limited

BLOBspace Blob Compression

A partition BLOB (binary large object) column is a TEXT or BYTE column that is stored in a DBspace, in the same RSAM partition as the home row. A BLOBspace BLOB
column is the same data type (TEXT or BYTE), but the BLOB data is stored in a BLOBspace.

All TEXT and BYTE BLOBs may be compressed, whether they are stored in the partition or a BLOBspace. If a table containing TEXT or BYTES columns is created with the
COMPRESSED keyword, the BLOB data will be automatically compressed along with the home row data once the number of rows has reached a certain threshold (2000 by
default). Separate compression dictionaries are built for the home rows and each BLOB column.

By using the "compress" sysadmin task() command rather than the auto compress feature, it is possible to compress only the BLOB data in a table, or to compress
only the home row data without compressing BLOBs.
ER is able to replicate BLOB data whether it is compressed or uncompressed.

Copyright© 2020 HCL Technologies Limited

Methods for viewing compression information

You can display compression statistics, information about compression dictionaries, and the compression dictionary.

The following table describes the different methods that you can use to view compression information.

Table 1. Methods to view compression information

Method Description

oncheck -pT or oncheck -pt command Displays statistics on any compressed items in the "Compressed Data Summary" section of the output. If no
items are compressed, the "Compressed Data Summary" section does not appear in the output.
For example, for row data, oncheck -pT displays the number of any compressed rows in a table or table
fragment and the percentage of table or table-fragment rows that are compressed.

onlog -c option Uses the compression dictionary to expand compressed data and display the uncompressed contents of
compressed log records.

onstat –g dsk option Displays information about the progress of currently running compression operations.

onstat -g ppd option Displays information about the active compression dictionaries that exist for currently open compressed
fragments (also referred to as partitions). This option shows the same information as the syscompdicts view in
the sysmaster database.

syscompdicts_full table in the sysmaster database Displays metadata about the compression dictionary and the compression dictionary binary object.
Only user informix can access this table.

syscompdicts view in the sysmaster database Displays the same information as the syscompdicts_full table, except that for security reasons, it excludes the
dict_dictionary column, which contains the compression dictionary binary object.

UNLOAD TO 'compression_dictionary_file'
SELECT * FROM sysmaster:syscompdicts_full;
SQL statement

View the compression dictionary in a file.

Related concepts:
 Storage optimization methods

Related information:
 onstat -g dsk command: Print the progress of the currently running compression operation

onstat -g ppd command: Print partition compression dictionary information
oncheck -pt and -pT: Display tblspaces for a Table or Fragment
The onlog utility

178 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

syscompdicts_full

Copyright© 2020 HCL Technologies Limited

Load data into a table

You can load data into an existing table in the following ways.

Method to load data TEXT or BYTE data CLOB or BLOB data Reference

DB-Access LOAD statement Yes Yes LOAD statement in the IBM® Informix Guide to SQL:
Syntax

dbload utility Yes Yes IBM Informix Migration Guide

dbimport utility Yes Yes IBM Informix Migration Guide

Informix® ESQL/C programs Yes Yes IBM Informix ESQL/C Programmer's Manual

Insert MERGE, using an EXTERNAL source table Yes Yes IBM Informix Guide to SQL: Syntax

onload utility No No IBM Informix Migration Guide

onpladm utility Yes, deluxe mode Yes, deluxe mode IBM Informix High-Performance Loader User's
Guide

High-Performance Loader (HPL) Yes, deluxe mode Yes, deluxe mode IBM Informix High-Performance Loader User's
Guide

Important: The database server does not contain any mechanisms for compressing TEXT and BYTE data after the data has been loaded into a database.

Copyright© 2020 HCL Technologies Limited

Moving data with external tables

You can use external tables to load and unload database data.

You issue a series of SQL statements that perform the following functions:

Transfer operational data efficiently to or from other systems
Transfer data files across platforms in IBM® Informix® internal data format
Use the database server to convert data between delimited ASCII, fixed-ASCII, and IBM Informix internal (raw) representation
Use SQL INSERT and SELECT statements to specify the mapping of data to new columns in a database table
Provide parallel standard INSERT operations so that data can be loaded without dropping indexes
Use named pipes to support loading data to and unloading data from storage devices, including tape drives and direct network connections
Maintain a record of load and unload statistics during the run
Perform express (high-speed) and deluxe (data-checking) transfers

You can issue the SQL statements with DB-Access or embed them in an ESQL/C program.

External tables
 An external table is a data file that is not managed by the IBM Informix database server. The definition of the external table includes data-formatting type, external

data description fields, and global parameters.
Defining external tables

 To define an external table, you use SQL statements to describe the data file, define the table, and then specify the data to load or unload.
Map columns to other columns

 Load data from and unload to a named pipe
 You can use a named pipe, also called a first-in-first-out (FIFO) data file, to load from and unload to a nonstandard device, such as a tape drive.

Monitor the load or unload operations
 You can monitor the status of an external table load or unload operation.

External tables in high-availability cluster environments
 You use external tables on secondary servers in much the same way they are used on the primary server.

System catalog entries for external tables
 You can query system catalog tables to determine the status of external tables.

Performance considerations when using external tables
 Use external tables when you want to manipulate data in an ASCII file using SQL commands, or when loading data from an external data file to a RAW database

table.
Manage errors from external table load and unload operations

 You can manage errors that occur during external table load and unload operations.

Copyright© 2020 HCL Technologies Limited

External tables

An external table is a data file that is not managed by the IBM® Informix® database server. The definition of the external table includes data-formatting type, external data
description fields, and global parameters.

Part VI: Administering 179

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

To map external data to internal data, the database server views the external data as an external table. Treating the external data as a table provides a powerful method
for moving data into or out of the database and for specifying transformations of the data.

When the database server runs a load task, it reads data from the external source and performs the conversion required to create the row and then inserts the row into the
table. The database server writes errors to a reject file.

If the data in the external table cannot be converted, you can specify that the database server write the record to a reject file, along with the reason for the failure. To do
this, you specify the REJECTFILE keyword in the CREATE EXTERNAL TABLE statement.

The database server provides a number of different conversion mechanisms, which are performed within the database server and therefore provide maximum
performance during the conversion task. The database server optimizes data conversion between ASCII and IBM Informix data representations, in both fixed and
delimited formats.

To perform customized conversions, you can create a filter program that writes converted data to a named pipe. The database server then reads its input from the named
pipe in one of the common formats.

Copyright© 2020 HCL Technologies Limited

Defining external tables

To define an external table, you use SQL statements to describe the data file, define the table, and then specify the data to load or unload.

To set up loading and unloading tasks, you issue a series of SQL statements:

CREATE EXTERNAL TABLE to describe the data file to load or unload
CREATE TABLE to define the table to load
INSERT...SELECT to load and unload

The following steps outline the load process:

1. The CREATE EXTERNAL TABLE statement describes the location of the various external files, which can be on disk or come from a pipe (tape drive or direct network
connection), and the format of the external data. The following example is a CREATE EXTERNAL TABLE statement:

CREATE EXTERNAL TABLE emp_ext
 (name CHAR(18) EXTERNAL CHAR(18),
 hiredate DATE EXTERNAL CHAR(10),
 address VARCHAR(40) EXTERNAL CHAR(40),
 empno INTEGER EXTERNAL CHAR(6))
USING (
 FORMAT 'FIXED',
 DATAFILES
 ("DISK:/work2/mydir/emp.fix")
);

2. The CREATE TABLE statement defines the table to load. The following sample CREATE TABLE statement defines the employee table:

CREATE TABLE employee
 FRAGMENT BY ROUND ROBIN IN dbspaces;

3. The INSERT...SELECT statement maps the movement of the external data from or to the database table. The following sample INSERT statement loads the
employee table from the external table:

INSERT INTO employee SELECT * FROM emp_ext

Important: If you specify more than one INSERT...SELECT statement to unload data, each subsequent INSERT statement overwrites the data file. Use absolute paths for
data files.
When you load data into the database, the FROM table portion of the SELECT clause is the external table that the CREATE EXTERNAL statement defined. When you unload
data to an external file, the SELECT clause controls the retrieval of the data from the database.

Unlike a TEMP table, the external table has a definition that remains in the catalog until it is dropped. When you create an external table you can save the external
description of the data for reuse. This action is particularly helpful when you unload a table into the IBM® Informix® internal data representation because you can later use
the same external table description to reload that data.

On Windows systems, if you use the DB-Access utility or the dbexport utility to unload a database table into a file and then plan to use the file as an external table
datafile, you must define RECORDEND as '\012' in the CREATE EXTERNAL TABLE statement.

The external table definition contains all the information required to define the data in the external data file as follows:

The description of the fields in the external data.
The DATAFILES clause.
This clause specifies:

Whether the data file is located on disk or a named pipe.
The path name of the file.

The FORMAT clause.
This clause specifies the type of data formatting in the external data file. The database server converts external data from several data formats, including delimited
and fixed ASCII, and IBM Informix internal.

Any global parameters that affect the format of the data.

If you map the external table directly into the internal database table in delimited format, you can use the CREATE EXTERNAL TABLE statement to define the columns and
add the clause SAMEAS internal-table instead of enumerating the columns explicitly.

Copyright© 2020 HCL Technologies Limited

180 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Map columns to other columns

If the data file is to have fields in a different order (for example, empno, name, address, hiredate), you can use the INSERT statement to map the columns. First, create
the table with the columns in the order in which they are found in the external file.

CREATE EXTERNAL TABLE emp_ext
 (
 f01 INTEGER,
 f02 CHAR(18),
 f03 VARCHAR(40),
 f04 DATE
)
USING (
 DATAFILES ("DISK:/work2/mydir/emp.dat"),
 REJECTFILE "/work2/mydir/emp.rej"
);
INSERT INTO employee (empno, name, address, hiredate)
 SELECT * FROM emp_ext;

With this method, the insert columns are mapped to match the field order of the external table.

Another way to reorder columns is to use the SELECT clause to match the order of the database table.

INSERT INTO employee
 SELECT f02, f04, f03, f01 FROM emp_ext;

Copyright© 2020 HCL Technologies Limited

Load data from and unload to a named pipe

You can use a named pipe, also called a first-in-first-out (FIFO) data file, to load from and unload to a nonstandard device, such as a tape drive.

Unlike ordinary operating-system files, named pipes do not have a 2-gigabyte size limitation. The operating system opens and checks for the end of file differently for
named pipes than for ordinary files.

Loading data with named pipes
 You can use a named pipe to load data from external tables.

FIFO virtual processors
 The database server uses FIFO virtual processors (VPs) to read and write to external tables on named pipes.

Unloading data with named pipes
 You can use a named pipe to unload data from the database to external tables.

Copying data from one instance to another using the PIPE option
 You can use a named pipe to copy data from one Informix® instance to another without writing the data to an intermediate file.

Copyright© 2020 HCL Technologies Limited

Loading data with named pipes

You can use a named pipe to load data from external tables.

To use a named pipe to load data from an external table, follow these steps:

1. Specify the named pipes in the DATAFILES clause of the CREATE EXTERNAL TABLE statement in SQL.
2. Create the named pipes that you specified in the DATAFILES clause. Use operating-system commands to create the named pipes.

Use the mknod UNIX command with the -p option to create a named pipe. To avoid blocking open problems for pipes on UNIX, start separate UNIX processes for
pipe-readers and pipe-writers or open the pipes with the O_NDELAY flag set.

3. Open the named pipes with a program that reads the named pipe.
4. Execute the INSERT statement in SQL.

INSERT INTO employee SELECT * FROM emp_ext;

Important: If you do not create and open the named pipes before you execute the INSERT statement, the INSERT succeeds, but no rows are loaded.

Copyright© 2020 HCL Technologies Limited

FIFO virtual processors

The database server uses FIFO virtual processors (VPs) to read and write to external tables on named pipes.

The default number of FIFO virtual processors is 1.

The database server uses one FIFO VP for each named pipe that you specify in the DATAFILES clause of the CREATE EXTERNAL TABLE statement. For example, suppose
you define an external table with the following SQL statement:

Part VI: Administering 181

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

CREATE EXTERNAL TABLE ext_items
 SAMEAS items
 USING (
 DATAFILES("PIPE:/tmp/pipe1",
 "PIPE:/tmp/pipe2",
 "PIPE:/tmp/pipe3"
));

If you use the default value of 1 for FIFO VPs, the database server does not read from pipe2 until it finishes reading all the data from pipe1, and does not read from pipe3
until it finishes reading all the data from pipe2.

Copyright© 2020 HCL Technologies Limited

Unloading data with named pipes

You can use a named pipe to unload data from the database to external tables.

To use named pipes to unload data to external tables, follow these steps:

1. Specify the named pipe in the DATAFILES clause of either the CREATE EXTERNAL TABLE statement or the SELECT INTO EXTERNAL statement of SQL.

DATAFILES ("PIPE:/usr/local/TAPE")

2. Create the named pipes that you specified in the DATAFILES clause. Use operating-system commands to create the named pipes.
3. Open the named pipes with a program that writes to the named pipe.
4. Unload data to the named pipe.

CREATE EXTERNAL TABLE emp_ext
 (name CHAR(18) EXTERNAL CHAR(20),
 hiredate DATE EXTERNAL CHAR(10),
 address VARCHAR(40) EXTERNAL CHAR(40),
 empno INTEGER EXTERNAL CHAR(6))
 USING (
 FORMAT 'FIXED',
 DATAFILES
 ("PIPE:/usr/local/TAPE")
);

INSERT INTO emp_ext SELECT * FROM employee;

Important: If you do not create and open the named pipes before you execute the SELECT or INSERT statement, the unload fails with the ENXIO error message (no such
device or address).

Copyright© 2020 HCL Technologies Limited

Copying data from one instance to another using the PIPE option

You can use a named pipe to copy data from one Informix® instance to another without writing the data to an intermediate file.

You can use a named pipe to unload data from one Informix instance and load it into another instance without writing data to an intermediate file. You can also use a
named pipe to copy data from one table to another on the same Informix instance. In the following example, data is copied from a source table on one instance to a
destination table on a second instance.

Depending on the hardware platform you are using, you must first create a named pipe using one of the following commands. For this example, the named pipe is called
pipe1.

% mkfifo /work/pipe1
% mknod /work/pipe1

Follow these steps to copy data from a table on a source instance to a table on a destination instance on the same computer.

1. Create the source table on the source instance. In this example, the source table is called source_data_table:

CREATE TABLE source_data_table
(
 empid CHAR(5),
 empname VARCHAR(40),
 empaddr VARCHAR(100)
);

2. Create the external table on the source instance. In this example, the external table is named ext_table:

CREATE EXTERNAL TABLE ext_table
(
 empid CHAR(5),
 empname VARCHAR(40),
 empaddr VARCHAR(100)
)
USING
(DATAFILES
 (
 'PIPE:/work/pipe1'
)
);

182 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

3. Create the destination table on the destination instance. In this example, the destination table is called destin_data_table:

CREATE TABLE destin_data_table
(
 empid CHAR(5),
 empname VARCHAR(40),
 empaddr VARCHAR(100)
);

4. Create the external table on the destination instance. In this example, the external table is named ext_table:

CREATE EXTERNAL TABLE ext_table
(
 empid CHAR(5),
 empname VARCHAR(40),
 empaddr VARCHAR(100)
)
USING
(DATAFILES
 (
 'PIPE:/work/pipe1_1'
)
);

5. Run the following command from a UNIX shell. The command redirects data from /work/pipe1 to /work/pipe1_1

cat /work/pipe1 > /work/pipe1_1

6. Run the following command on the destination instance to direct data from the named pipe to the destination table:

INSERT INTO destin_data_table SELECT * FROM ext_table;

7. Run the following command on the source instance to spool data to the named pipe:

INSERT INTO ext_table SELECT * FROM source_data_table;

You can use more than one pipe by inserting multiple PIPE statements in the DATAFILES clause and creating a named pipe for each.

Copyright© 2020 HCL Technologies Limited

Monitor the load or unload operations

You can monitor the status of an external table load or unload operation.

You might want to monitor the load or unload operations for the following situations:

If you expect to load and unload the same table often to build a data mart or data warehouse, monitor the progress of the job to estimate the time of similar jobs for
future use.
If you load or unload from named pipes, monitor the I/O queues to determine if you have a sufficient number of FIFO virtual processors.

Monitor frequent load and unload operations
 Use the onstat -g iof command to find the global file descriptor (gfd) in the file that you want to examine. Then the onstat -g sql command to monitor load and

unload operations.
Monitor FIFO virtual processors

Copyright© 2020 HCL Technologies Limited

Monitor frequent load and unload operations

Use the onstat -g iof command to find the global file descriptor (gfd) in the file that you want to examine. Then the onstat -g sql command to monitor load and unload
operations.

The following example shows sample onstat -g iof command output.

AIO global files:
gfd path name bytes read page reads bytes write page writes io/s
3 rootdbs 1918976 937 145061888 70831 36.5

 op type count avg. time
 seeks 0 N/A
 reads 937 0.0010
 writes 4088 0.0335
 kaio_reads 0 N/A
 kaio_writes 0 N/A

To determine if a load or unload operation can use parallel execution, execute the SET EXPLAIN ON statement before the INSERT statement. The SET EXPLAIN output
shows the following counts:

Number of parallel SQL operators that the optimizer chooses for the INSERT statement
Number of rows to be processed by each SQL operator

To monitor a load operation, run onstat -g sql to obtain the session ID.

Part VI: Administering 183

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Monitor FIFO virtual processors

You can monitor the effective usage of FIFO VPs with onstat commands.

Use the onstat -g ioq option to display the length of each FIFO queue that is waiting to perform I/O requests. The following example shows sample output.

AIO I/O queues:
q name/id len maxlen totalops dskread dskwrite dskcopy
 fifo 0 0 0 0 0 0 0
 adt 0 0 0 0 0 0 0
 msc 0 0 1 153 0 0 0
 aio 0 0 9 3499 1013 77 0
 pio 0 0 2 3 0 2 0
 lio 0 0 2 2159 0 2158 0
 gfd 3 0 16 39860 38 39822 0
 gfd 4 0 16 39854 32 39822 0
 gfd 5 0 1 2 2 0 0
 gfd 6 0 1 2 2 0 0
...
 gfd 19 0 1 2 2 0 0

The q name field in the sample output in the previous example shows the type of the queue, such as fifo for a FIFO VP or aio for an AIO VP. If the q name field shows gfd
or gfdwq, it is a queue for a file whose global file descriptor matches the id field of the output. Disk files have both read and write requests in one queue. One line per disk
file displays in the onstat -g ioq output. Pipes have separate read and write queues. Two lines per pipe display in the output: gfd for read requests and gfdwq for write
requests.

The len or maxlen field has a value of up to 4 for a load or 4 * number_of_writer_threads for an unload. The xuwrite operator controls the number of writer threads.

Use the values in the totalops field rather than the len or maxlen field to monitor the number of read or write requests done on the file or pipe. The totalops field
represents 34 KB of data read from or written to the file. If totalops is not increasing, it means the read or write operation on a file or pipe is stalled (because the FIFO VPs
are busy).

To improve performance, use the onmode -p command to add more FIFO VPs. The default number of FIFO VPs is 1. In this sample output, the FIFO queue does not
contain any data. For example, if you usually define more than two pipes to load or unload, increase the number of FIFO VPs with the following sample onmode command:

onmode -p +2 FIFO

For more information, see IBM® Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

External tables in high-availability cluster environments

You use external tables on secondary servers in much the same way they are used on the primary server.

You can perform the following operations on the primary and on secondary servers:

Unload data from a database table to an external table:

INSERT INTO external_table SELECT * FROM base_table WHERE ...

Load data from an external table into a database table:

INSERT INTO base_table SELECT * FROM external_table WHERE ...

Loading data on SDS, RSS, or HDR secondary servers is slower than loading data on the primary server.

The CREATE EXTERNAL TABLE statement and the SELECT ... INTO EXTERNAL ... statement are not supported on secondary servers.

When unloading data from a database table to an external table, data files are created on the secondary server but not on the primary server. External table data files
created on secondary servers are not automatically transferred to the primary server, nor are external table data files that are created on the primary server automatically
transferred to secondary servers.

When creating an external table on a primary server, only the schema of the external table is replicated to the secondary servers, not the data file.

To synchronize external tables between the primary server and a secondary server, you can either copy the external table file from the primary server to the secondary
servers, or use the following steps:

1. On the primary server:
a. Create a temporary table with the same schema as the external table.
b. Populate the temporary table:

INSERT INTO dummy_table SELECT * FROM external_table

2. On the secondary server:
Use the following command to populate the external table:

INSERT INTO external_table SELECT * FROM dummy_table

Copyright© 2020 HCL Technologies Limited

184 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

System catalog entries for external tables

You can query system catalog tables to determine the status of external tables.

IBM® Informix® updates the sysexternal and sysextdfiles system catalog tables each time an external table is created. The sysextcols system catalog table is updated
when the external format type (fmttype) FIXED is specified.

Table 1. System catalog tables that describe external table files

Table name Description

sysexternal Stores name and attributes of each external table file

sysextdfiles Stores file-path and directory of each external table file

sysextcols Stores attributes of each column in FIXED-type external
tables

See the IBM Informix Guide to SQL: Reference for more information.

A row is inserted into the systables system catalog when an external table is created; however, the nrows (number of rows) and the npused (number of data pages used)
columns might not accurately reflect the number of rows and the number of data pages used by the external table unless the NUMROWS clause was specified when the
external table was created.

When an external table is created without specifying a value for the NUMROWS clause, is unable to determine the number of rows in the external table because the data
exists outside the database in data files. updates the nrows column in the systables system catalog by inserting a large value (MAXINT – 1), and computes the number of
data pages used based on the nrows value. The values stored in npused and nrows are later used by the optimizer to determine the most efficient execution plan. While
the NUMROWS clause is not required to be specified precisely, the more accurately it is specified, the more accurate the values for nrows and npused are.

Copyright© 2020 HCL Technologies Limited

Performance considerations when using external tables

Use external tables when you want to manipulate data in an ASCII file using SQL commands, or when loading data from an external data file to a RAW database table.

There are several ways to load information into a database, including:

LOAD FROM ... INSERT INTO... DB-Access command
dbimport utility
High-Performance Loader utility
External tables

The High Performance Loader utility provides best performance for loading external data into a database table with indexes.

External tables provide the best performance for loading data into a RAW table with no indexes.

Note: Locking an external table prior to loading data increases the load performance

Copyright© 2020 HCL Technologies Limited

Manage errors from external table load and unload operations

You can manage errors that occur during external table load and unload operations.

These topics describe how to use the reject file and error messages to manage errors, and how to recover data loaded into the database.

Reject files
 Rows that have conversion errors during a load are written to a reject file on the server that performs the conversion.

External table error messages
 Most of the error messages related to external tables are in the -26151 to -26199 range.

Recoverability of table types for external tables
 The database server checks the recoverability level of the table when loading of data.

Copyright© 2020 HCL Technologies Limited

Reject files

Rows that have conversion errors during a load are written to a reject file on the server that performs the conversion.

The REJECTFILE keyword in the CREATE EXTERNAL TABLE statement determines the name given to the reject file.

Instead of using a reject file, you can use the MAXERRORS keyword in the CREATE EXTERNAL TABLE statement to specify the number of errors that are allowed before the
database server stops loading data. (If you do not set the MAXERRORS keyword, the database server processes all data regardless of the number of errors.)

The database server removes the reject files, if any, at the beginning of a load. The reject files are recreated and written only if errors occur during the load.

Part VI: Administering 185

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Reject file entries are single lines with the following comma-separated fields:

file name, record, reason-code, field-name: bad-line

file name
Name of the input file

record
Record number in the input file where the error was detected

reason-code
Description of the error

field-name
The external field name where the first error in the line occurred or <none> if the rejection is not specific to a particular column

bad-line
For delimited or fixed-ASCII files only, the bad line itself

The load operation writes file name, record, field-name, and reason-code in ASCII.

The bad-line information varies with the type of input file:

For delimited files or fixed text files, the entire bad line is copied directly into the reject file. However, if the delimited format table has TEXT or BYTE columns, the
reject file does not include any bad data. The load operation generates only a header for each rejected row.
For IBM® Informix® internal data files, the bad line is not placed in the reject file because you cannot edit the binary representation in a file. However, the file name,
record, reason-code, and field-name are still reported in the reject file so that you can isolate the problem.

The following types of errors can cause a row to be rejected.

CONSTRAINT constraint name
This constraint was violated.

CONVERT_ERR
Any field encounters a conversion error.

MISSING_DELIMITER
No delimiter was found.

MISSING_RECORDEND
No record end was found.

NOT NULL
A null was found in field-name.

ROW_TOO_LONG
The input record is longer than 2 GB.

Copyright© 2020 HCL Technologies Limited

External table error messages

Most of the error messages related to external tables are in the -26151 to -26199 range.

Additional messages are -615, -999, -23852, and -23855. In the messages, n macro and r macro refer to the values generated from the substitution character
%r(first..last). For a list of error messages, see IBM® Informix® Error Messages or use the finderr utility. For information about the violations table error messages, see
your IBM Informix Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Recoverability of table types for external tables

The database server checks the recoverability level of the table when loading of data.

If the logging type of the table is RAW, the database server can use light append (or EXPRESS) mode to load data and to process check constraints. However, if the
database server crashes while inserting data rows into a RAW table in EXPRESS mode, this unlogged light append operation is not rolled back, and the table might
be left in an unknown state.
Only DELUXE mode supports data recoverability. DELUXE mode uses logged, regular inserts. To recover data after a failed express-mode load, revert to the most
recent level-0 backup. The table type must be STANDARD for this level of recoverability.

For information about restoring tables of RAW or STANDARD logging types, see the IBM® Informix® Backup and Restore Guide.

Copyright© 2020 HCL Technologies Limited

Storage space encryption

You can encrypt storage spaces (dbspaces, blobspaces and smart blobspaces) with Informix Dynamic Server. The data in encrypted storage spaces is unintelligible
without the encryption key. Encrypting storage spaces is an effective way to protect sensitive information that is stored on disk.

You must have IBM® Global Security Kit (GSKit) installed to enable storage space encryption. GSKit is installed by default when you install the database server.

You can enable storage space encryption by setting the DISK_ENCRYPTION configuration parameter.

186 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Each storage space is encrypted separately with its own encryption key. By default, the encryption cipher is set to AES with 128-bit keys. You can specify a stronger
encryption key by including the cipher option in the DISK_ENCRYPTION configuration parameter value.

Any storage space that you create when storage space encryption is enabled is automatically encrypted, unless you explicitly specify to create it as unencrypted with the
onspaces utility. If you initialize a new database server before setting the DISK_ENCRYPTION configuration parameter, the root dbspace and all storage spaces created
before setting DISK_ENCRYPTION are not encrypted. However, you can encrypt unencrypted storage spaces, including the root dbspace, by running a restore that
encrypts the spaces.

As mentioned above, each storage space is encrypted with its own Space Encryption Key (SEK). The SEKs are generated by the system (oninit) based on a Master
Encryption Key (MEK). The MEK is created by the onkstore utility and can be stored locally in the keystore created by the onkstore, or remotely in a Remote Key Server
(RKS). In both cases, you must use the onkstore utility to create a keystore that will contain a MEK or the credentials necessary to reach the MEK at a Remote Key Server.

Figure 1. Storage Space Encryprtion

See The onkstore utility for information on creating and managing keystore files.

Once you have created and verified your keystore file, you enable storage space encryption by setting the DISK_ENCRYPTION configuration parameter to point to the
keystore you created and then restarting the database server. The value of the DISK_ENCRYPTION parameter is a comma-separated list of attributes, one of which points
to your keystore file. For example:

DISK_ENCRYPTION keystore=/work/ifmx/keystores/my_ks,cipher=aes192

See The DISK_ENCRYPTION configuration parameter for information on setting this important value correctly.

Using a locally stored Master Encryption Key
When using a local Master Encryption Key (MEK), the MEK is created locally and stored inside the keystore file pointed by the DISK_ENCRYPTION configuration parameter.
In this scenario, the MEK is generated locally by the onkstore and placed inside the keystore file.

Using a remotely stored Master Encryption Key
The Master Encryption Key can also be created and/or stored in a Remote Key Server. Currently, it is possible to use servers that conform with the KMIP standard and also,
selected Cloud Providers (Amazon AWS KMS and Azure KeyVault at this moment). If using a Remote Key Server, the credentials necessary to access the Remote Key
Server are recorded inside the keystore file pointed by the DISK_ENCRYPTION configuration parameter.

The credentials needed to reach the RKS change depending on the type of RKS you are using. You can see details about this on the description of the onsktore utilty.

If you are using a RKS, there are two options on how we manage the MEK:

Option 1: The MEK is stored at the RKS encrypted using a a Remote Master Encryption Key. The Remote Master Encryption Key (RMEK) is a managed key (managed
by the RKS) and never leaves the RKS. Currently, we will use this method with AWS-KMS and Azure KeyVault RKS. In the case of AWS, the MEK is generated
remotely at the AWS infrastructure. In the case of Azure, the MEK is generated locally. In bothe cases the MEK will the be encrypted with RMEK and the result
stored at the Cloud server.
Figure 2. Method 1 to manage the MEK

Option 2: The MEK is the Managed Key (Managed by the RKS), its encrypted and protected internally by the RKS. Currently, this method is used with KMIP RKS.
Figure 3. Method 2 to manage the MEK

Part VI: Administering 187

Keystore Files May Be Shared
Once you have a valid keystore file, whether a local or network type, it can be used with any number of IDS instances. You are not required to create a new keystore file for
an HDR secondary, for example. It can utilize a copy of the keystore file (along with any associated stash file) from the primary, or an entirely different keystore file. There
is no forced connection between the encryption keys used for a primary node and HDR or RSS secondaries. However, the SDS secondary must use the same keystore file
used by its primary, as they are reading from the same disk. That file may be a duplicate or the same inode, as long as the contents are identical between the file used by
the primary and the one used by the SDS secondary.

Creating encrypted or unencrypted storage spaces
 When storage space encryption is enabled, the storage spaces that you create are encrypted by default, however, you can specify to create unencrypted storage

spaces. When storage space encryption is disabled, you cannot create encrypted storage spaces.
Changing storage space encryption during a restore

 When storage space encryption is enabled, storage spaces are restored with the same encryption state as during the back up, by default. However, you can specify
to restore storage spaces as encrypted or unencrypted.
Monitoring the encryption of storage spaces

 You can monitor whether storage space encryption is enabled and which storage spaces are encrypted.

Copyright© 2020 HCL Technologies Limited

Creating encrypted or unencrypted storage spaces

When storage space encryption is enabled, the storage spaces that you create are encrypted by default, however, you can specify to create unencrypted storage spaces.
When storage space encryption is disabled, you cannot create encrypted storage spaces.

To create an encrypted storage space, set the DISK_ENCRYPTION configuration parameter, restart the database server, and then run the appropriate onspaces or SQL
administration API command.

To create an unencrypted storage space when storage space encryption is enabled, use one of the following methods:

Run the appropriate onspaces command for the storage space and include the -u option.
Run the appropriate SQL administration API command for the storage space and include the unencrypt option.

Copyright© 2020 HCL Technologies Limited

Changing storage space encryption during a restore

When storage space encryption is enabled, storage spaces are restored with the same encryption state as during the back up, by default. However, you can specify to
restore storage spaces as encrypted or unencrypted.

The encryption state of storage spaces on disk does not affect the encryption state of backups. Storage spaces that are encrypted on disk are decrypted before they are
sent to the backup front end (on-Bar/ontape). To encrypt the backup, you can use the Integrated backup encryption feature. When you restore a storage space that was
encrypted on disk before its backup, the storage space is encrypted during the restore, unless you specify to restore the space as unencrypted. Similarly, you can restore a
storage space that was not encrypted on disk by specifying to encrypt the space during the restore.

You can choose to restore some or all storage spaces as encrypted or unencrypted.

The following table shows the ways you can encrypt and decrypt storage spaces during a restore with the ON-Bar or ontape utilities when storage space encryption is
enabled.

Table 1. Storage space encryption options during a restore

Task Method

Encrypt or decrypt all existing storage spaces Run a full restore with the -encrypt or -decrypt option.

Encrypt or decrypt critical storage spaces Run a cold restore with the -encrypt or -decrypt option and specify the spaces
with the -D option.

Encrypt or decrypt some non-critical storage spaces Run a warm restore with the -encrypt or -decrypt option and specify the spaces
with the -D option.

Encrypt or decrypt all storage spaces for a tenant database (ON-Bar only) Run a tenant restore with the onbar -T command and include the -encrypt or -
decrypt option.

188 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Task Method

Encrypt or decrypt storage spaces that are created by a roll-forward of logical logs Include the rollfwd_create_dbs=encrypt or rollfwd_create_dbs=decrypt option
in the DISK_ENCRYPTION configuration parameter value.

When you run a full or a cold restore, new keystore and stash files are created. If you receive an error message that the restore failed because of existing keystore and
stash files, follow the instructions in the message and rerun the restore.

During an external restore, storage spaces are restored to the same encryption state as during the backup. You cannot change the encryption state of storage spaces
during an external restore.

When storage space encryption is not enabled, you see the following behavior:

If you attempt to encrypt storage spaces during a restore with the -encrypt option, the restore fails.
If you restore encrypted storage spaces, the storage spaces are restored as unencrypted.

Examples
The following command encrypts all existing storage spaces during a whole-system restore:

onbar -r -encrypt -w

The following command encrypts two storage spaces during a physical restore:

ontape -p -encrypt -D space1 space2

The following command decrypts all storage spaces that belong to a tenant database:

onbar -T tenant1 -decrypt -t "08-08-2016 00:00:00"

Copyright© 2020 HCL Technologies Limited

Monitoring the encryption of storage spaces

You can monitor whether storage space encryption is enabled and which storage spaces are encrypted.

To determine whether storage space encryption is enabled, run the oncheck -pr command. If storage space encryption is enabled, the output includes the following line,
which identifies the encryption cipher:

Encryption-at-rest is enabled using cipher 'cipher'

If the root dbspace is encrypted, the output of the oncheck -pr command contains the following line:

The ROOT Dbspace is encrypted

To see which storage spaces are encrypted, use one of the following methods:

Run the onstat -d command. Position 6 of the flags field contains an E if the storage space is encrypted.
Query the sysdbspaces table in the sysmaster database. The is_encrypted column shows whether a storage space is encrypted.

Copyright© 2020 HCL Technologies Limited

Logging and log administration

Logging
 Manage the database-logging mode

 You can monitor and modify the database-logging mode.
Logical log

 Manage logical-log files
 Physical logging, checkpoints, and fast recovery

 Manage the physical log

Copyright© 2020 HCL Technologies Limited

Logging

These topics describe logging of IBM® Informix® databases and addresses the following questions:

Which database server processes require logging?
What is transaction logging?
What database server activity is logged?
What is the database-logging status?
Who can set or change the database logging status?

All the databases managed by a single database server instance store their log records in the same logical log, regardless of whether they use transaction logging. Most
database users might be concerned with whether transaction logging is buffered or whether a table uses logging.

Part VI: Administering 189

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

If you want to change the database-logging status, see Settings or changes for logging status or mode.

Database server processes that require logging
 Transaction logging

 Logging of SQL statements and database server activity
 Database-logging status

 Settings or changes for logging status or mode

Copyright© 2020 HCL Technologies Limited

Database server processes that require logging

As IBM® Informix® operates, processing transactions, tracking data storage, and ensuring data consistency, automatically generates logical-log records for some of the
actions that it takes. Most of the time the database server makes no further use of the logical-log records. However, when the database server is required to roll back a
transaction, to run a fast recovery after a system failure, for example, the logical-log records are critical. The logical-log records are at the heart of the data-recovery
mechanisms.

The database server stores the logical-log records in a logical log. The logical log is made up of logical-log files that the database server manages on disk until they have
been safely transferred offline (backed up). The database server administrator keeps the backed up logical-log files until they are required during a data restore, or until
the administrator decides that the records are no longer required for a restore. See Logical log for more information about logical logs.

The logical-log records themselves are variable length. This arrangement increases the number of logical-log records that can be written to a page in the logical-log buffer.
However, the database server often flushes the logical-log buffer before the page is full. For more information about the format of logical-log records, see the topics about
interpreting logical-log records in the IBM Informix Administrator's Reference.

The database server uses logical-log records when it performs various functions that recover data and ensure data consistency, as follows:

Transaction rollback
If a database is using transaction logging and a transaction must be rolled back, the database server uses the logical-log records to reverse the changes made
during the transaction. For more information, see Transaction logging.

Fast recovery
If the database server shuts down in an uncontrolled manner, the database server uses the logical-log records to recover all transactions that occurred since the
oldest update not yet flushed to disk and to roll back any uncommitted transactions. (When all the data in shared memory and on disk are the same, they are
physically consistent.) The database server uses the logical-log records in fast recovery when it returns the entire database server to a state of logical consistency
up to the point of the most recent logical-log record. (For more information, see Fast recovery after a checkpoint.)

Data restoration
The database server uses the most recent storage-space and logical-log backups to recreate the database server system up to the point of the most recently
backed-up logical-log record. The logical restore applies all the log records since the last storage-space backup.

Deferred checking
If a transaction uses the SET CONSTRAINTS statement to set checking to DEFERRED, the database server does not check the constraints until the transaction is
committed. If a constraint error occurs while the transaction is being committed, the database server uses logical-log records to roll back the transaction. For more
information, see SET Database Object Mode in the IBM Informix Guide to SQL: Syntax.

Cascading deletes
Cascading deletes on referential constraints use logical-log records to ensure that a transaction can be rolled back if a parent row is deleted and the system fails
before the children rows are deleted. For information about table inheritance, see the IBM Informix Database Design and Implementation Guide. For information
about primary key and foreign key constraints, see the IBM Informix Guide to SQL: Tutorial.

Distributed transactions
Each database server involved in a distributed transaction keeps logical-log records of the transaction. This process ensures data integrity and consistency, even if a
failure occurs on one of the database servers that is performing the transaction. For more information, see Two-phase commit and logical-log records.

Data Replication
Data Replication environments that use HDR secondary, SD secondary, and RS secondary servers use logical-log records to maintain consistent data on the primary
and secondary database servers so that one of the database servers can be used quickly as a backup database server if the other fails. For more details, see How
data replication works.

Enterprise Replication
You must use database logging with Enterprise Replication because it replicates the data from the logical-log records. For more information, see the .

Copyright© 2020 HCL Technologies Limited

Transaction logging

A database or table is said to have or use transaction logging when SQL data manipulation statements in a database generate logical-log records.

The database-logging status indicates whether a database uses transaction logging. The log-buffering mode indicates whether a database uses buffered or unbuffered
logging, or ANSI-compliant logging. For more information, see Database-logging status and Manage the database-logging mode.

When you create a database, you specify whether it uses transaction logging and, if it does, what log-buffering mechanism it uses. After the database is created, you can
turn off database logging or change to buffered logging, for example. Even if you turn off transaction logging for all databases, the database server always logs some
events. For more information, see Activity that is always logged and Database logging in an X/Open DTP environment.

You can use logging or nonlogging tables within a database. The user who creates the table specifies the type of table. Even if you use nonlogging tables, the database
server always logs some events. For more information, see Table types for Informix.

Copyright© 2020 HCL Technologies Limited

190 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Logging of SQL statements and database server activity

Three types of logged activity are possible in the database server:

Activity that is always logged
Activity logged for databases with transaction logging

 Activity that is not logged
 Some SQL statements are not logged.

Copyright© 2020 HCL Technologies Limited

Activity that is always logged

Some database operations always generate logical-log records, even if you turn off transaction logging or use nonlogging tables.

The following operations are always logged for permanent tables:

Certain SQL statements, including SQL data definition statements
Storage-space backups
Checkpoints
Administrative changes to the database server configuration such as adding a chunk or dbspace
Allocation of new extents to tables
A change to the logging status of a database
Smart-large-object operations:

Creating
Deleting
Allocating and deallocating extents
Truncating
Combining and splitting chunk free list pages
Changing the LO header and the LO reference count

Sbspace metadata
Blobspaces

The following table lists statements that generate operations that are logged even if transaction logging is turned off.

ALTER ACCESS_METHOD
ALTER FRAGMENT
ALTER FUNCTION
ALTER INDEX
ALTER PROCEDURE
ALTER ROUTINE
ALTER SECURITY LABEL COMPONENT
ALTER SEQUENCE
ALTER TABLE
ALTER TRUSTED CONTEXT
ALTER USER
CLOSE DATABASE
CREATE ACCESS_METHOD
CREATE AGGREGATE
CREATE CAST
CREATE DATABASE
CREATE DISTINCT TYPE
CREATE EXTERNAL TABLE
CREATE FUNCTION
CREATE FUNCTION FROM
CREATE INDEX
CREATE OPAQUE TYPE
CREATE OPCLASS
CREATE PROCEDURE
CREATE PROCEDURE FROM
CREATE ROLE
CREATE ROUTINE FROM
CREATE ROW TYPE
CREATE SCHEMA
CREATE SECURITY LABEL
CREATE SECURITY LABEL COMPONENT
CREATE SECURITY POLICY
CREATE SEQUENCE
CREATE SYNONYM
CREATE TABLE
CREATE TEMP TABLE
CREATE TRIGGER
CREATE TRUSTED CONTEXT
CREATE USER
CREATE VIEW
CREATE XADATASOURCE

Part VI: Administering 191

https://www.hcltech.com/

CREATE XADATASOURCE TYPE
DROP ACCESS_METHOD
DROP AGGREGATE
DROP CAST
DROP DATABASE
DROP FUNCTION
DROP INDEX
DROP OPCLASS
DROP PROCEDURE
DROP ROLE
DROP ROUTINE
DROP ROW TYPE
DROP SECURITY
DROP SEQUENCE
DROP SYNONYM
DROP TABLE
DROP TRIGGER
DROP TRUSTED CONTEXT
DROP TYPE
DROP USER
DROP VIEW
DROP XADATASOURCE
DROP XADATASOURCE TYPE
GRANT
GRANT FRAGMENT
RENAME COLUMN
RENAME DATABASE
RENAME INDEX
RENAME SECURITY
RENAME SEQUENCE
RENAME TABLE
RENAME TRUSTED CONTEXT
RENAME USER
REVOKE
REVOKE FRAGMENT
TRUNCATE
UPDATE STATISTICS
SAVE EXTERNAL DIRECTIVES
SET CONSTRAINTS
SET Database Object Mode
SET INDEXES
SET TRIGGERS
START VIOLATIONS TABLE
STOP VIOLATIONS

Copyright© 2020 HCL Technologies Limited

Activity logged for databases with transaction logging

If a database uses transaction logging, the following SQL statements generate one or more log records. If these statements are rolled back, the rollback also generates log
records.

DELETE
FLUSH
INSERT
LOAD
MERGE
PUT
SELECT INTO TEMP
UNLOAD
UPDATE

The following SQL statements generate logs in special situations.
Table 1. SQL statements that generate logs in special situations.

SQL statement Log record that the statement generates

BEGIN WORK Returns an error unless the database uses transaction logging. A log record is produced if the transaction does some other
logging work.

COMMIT WORK Returns an error unless the database uses transaction logging. A log record is produced if the transaction does some other
logging work.

ROLLBACK WORK Returns an error unless the database uses transaction logging. A log record is produced if the transaction does some other
logging work.

EXECUTE Whether this statement generates a log record depends on the command being run.

EXECUTE FUNCTION Whether this statement generates a log record depends on the function being executed.

192 Part VI: Administering

https://www.hcltech.com/

SQL statement Log record that the statement generates

EXECUTE IMMEDIATE Whether this statement generates a log record depends on the command being run.

EXECUTE PROCEDURE Whether this statement generates a log record depends on the procedure being executed.

Copyright© 2020 HCL Technologies Limited

Activity that is not logged

Some SQL statements are not logged.

The following SQL statements do not produce log records, regardless of the database logging mode.

ALLOCATE COLLECTION
ALLOCATE DESCRIPTOR
ALLOCATE ROW
CLOSE
CONNECT
DATABASE
DEALLOCATE COLLECTION
DEALLOCATE DESCRIPTOR
DEALLOCATE ROW
DECLARE
DESCRIBE
DISCONNECT
FETCH
FREE
GET DESCRIPTOR
GET DIAGNOSTICS
INFO
LOCK TABLE
OPEN
OUTPUT
PREPARE
RELEASE SAVEPOINT
SAVEPOINT
SELECT
SET AUTOFREE
SET COLLATION
SET CONNECTION
SET DATASKIP
SET DEBUG FILE
SET DEFERRED_PREPARE
SET DESCRIPTOR
SET ENCRYPTION PASSWORD
SET ISOLATION
SET LOCK MODE
SET LOG
SET OPTIMIZATION
SET PDQPRIORITY
SET ROLE
SET SESSION AUTHORIZATION
SET STATEMENT CACHE
SET TRANSACTION
SET Transaction Mode
SET USER PASSWORD
UNLOCK TABLE
WHENEVER
SET ENVIRONMENT
SET EXPLAIN

For temporary tables in temporary dbspaces, nothing is logged, not even the SQL statements that are always logged for other types of tables. If you include temporary
(nonlogging) dbspaces in the value of the DBSPACETEMP configuration parameter, the database server places nonlogging tables in these temporary dbspaces first.

Copyright© 2020 HCL Technologies Limited

Database-logging status

You must use transaction logging with a database to take advantage of any of the features listed in Database server processes that require logging.

Every database that the database server manages has a logging status. The logging status indicates whether the database uses transaction logging and, if so, which log-
buffering mechanism the database employs. To find out the transaction-logging status of a database, use the database server utilities, as explained in Monitor the logging
mode of a database. The database-logging status indicates any of the following types of logging:

Unbuffered transaction logging

Part VI: Administering 193

https://www.hcltech.com/
https://www.hcltech.com/

Buffered transaction logging
ANSI-compliant transaction logging
No logging

All logical-log records pass through the logical-log buffer in shared memory before the database server writes them to the logical log on disk. However, the point at which
the database server flushes the logical-log buffer is different for buffered transaction logging and unbuffered transaction logging. For more information, see Figure 1 and
Flush the logical-log buffer.

Unbuffered transaction logging
 Buffered transaction logging

 ANSI-compliant transaction logging
 No database logging

 Databases with different log-buffering status
 Database logging in an X/Open DTP environment

Copyright© 2020 HCL Technologies Limited

Unbuffered transaction logging

If transactions are made against a database that uses unbuffered logging, the records in the logical-log buffer are guaranteed to be written to disk during commit
processing. When control returns to the application after the COMMIT statement (and before the PREPARE statement for distributed transactions), the logical-log records
are on the disk. The database server flushes the records as soon as any transaction in the buffer is committed (that is, a commit record is written to the logical-log buffer).

When the database server flushes the buffer, only the used pages are written to disk. Used pages include pages that are only partially full, however, so some space is
wasted. For this reason, the logical-log files on disk fill up faster than if all the databases on the same database server use buffered logging.

Unbuffered logging is the best choice for most databases because it guarantees that all committed transactions can be recovered. In the event of a failure, only
uncommitted transactions at the time of the failure are lost. However, with unbuffered logging, the database server flushes the logical-log buffer to disk more frequently,
and the buffer contains many more partially full pages, so it fills the logical log faster than buffered logging does.

Copyright© 2020 HCL Technologies Limited

Buffered transaction logging

If transactions are made against a database that uses buffered logging, the records are held (buffered) in the logical-log buffer for as long as possible. They are not flushed
from the logical-log buffer in shared memory to the logical log on disk until one of the following situations occurs:

The buffer is full.
A commit on a database with unbuffered logging flushes the buffer.
A checkpoint occurs.
The connection is closed.

If you use buffered logging and a failure occurs, you cannot expect the database server to recover the transactions that were in the logical-log buffer when the failure
occurred. Thus, you might lose some committed transactions. In return for this risk, performance during alterations improves slightly. Buffered logging is best for
databases that are updated frequently (when the speed of updating is important), as long as you can recreate the updates in the event of failure. You can tune the size of
the logical-log buffer to find an acceptable balance for your system between performance and the risk of losing transactions to system failure.

Copyright© 2020 HCL Technologies Limited

ANSI-compliant transaction logging

The ANSI-compliant database logging status indicates that the database owner created this database using the MODE ANSI keywords. ANSI-compliant databases always
use unbuffered transaction logging, enforcing the ANSI rules for transaction processing. You cannot change the buffering status of ANSI-compliant databases.

Copyright© 2020 HCL Technologies Limited

No database logging

If you turn off logging for a database, transactions are not logged, but other operations are logged. For more information, see Activity that is always logged. Usually, you
would turn off logging for a database when you are loading data, or just running queries.

If you are satisfied with your recovery source, you can decide not to use transaction logging for a database to reduce the amount of database server processing. For
example, if you are loading many rows into a database from a recoverable source such as tape or an ASCII file, you might not require transaction logging, and the loading
would proceed faster without it. However, if other users are active in the database, you would not have logical-log records of their transactions until you reinitiate logging,
which must wait for a level-0 backup.

Copyright© 2020 HCL Technologies Limited

194 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Databases with different log-buffering status

All databases on a database server use the same logical log and the same logical-log buffers. Therefore, transactions against databases with different log-buffering
statuses can write to the same logical-log buffer. In that case, if transactions exist against databases with buffered logging and against databases with unbuffered logging,
the database server flushes the buffer either when it is full or when transactions against the databases with unbuffered logging complete.

Copyright© 2020 HCL Technologies Limited

Database logging in an X/Open DTP environment

Databases in the X/Open distributed transaction processing (DTP) environment must use unbuffered logging. Unbuffered logging ensures that the database server logical
logs are always in a consistent state and can be synchronized with the transaction manager. If a database created with buffered logging is opened in an X/Open DTP
environment, the database status automatically changes to unbuffered logging. The database server supports both ANSI-compliant and non-ANSI databases. For more
information, see Transaction managers.

Copyright© 2020 HCL Technologies Limited

Settings or changes for logging status or mode

The user who creates a database with the CREATE DATABASE statement establishes the logging status or buffering mode for that database. For more information about
the CREATE DATABASE statement, see the IBM® Informix® Guide to SQL: Syntax.

If the CREATE DATABASE statement does not specify a logging status, the database is created without logging.

Only the database server administrator can change logging status. Manage the database-logging mode, describes this topic. Ordinary users cannot change database-
logging status.

If a database does not use logging, you are not required to consider whether buffered or unbuffered logging is more appropriate. If you specify logging but do not specify
the buffering mode for a database, the default is unbuffered logging.

Users can switch from unbuffered to buffered (but not ANSI-compliant) logging and from buffered to unbuffered logging for the duration of a session. The SET LOG
statement performs this change within an application. For more information about the SET LOG statement, see the IBM Informix Guide to SQL: Syntax.

Copyright© 2020 HCL Technologies Limited

Manage the database-logging mode

You can monitor and modify the database-logging mode.

The topics in this section provide information about:

Understanding database-logging mode
Modifying database-logging mode with ondblog
Modifying database-logging mode with ontape
Monitoring transaction logging

As a database server administrator, you can alter the logging mode of a database as follows:

Change transaction logging from buffered to unbuffered.
Change transaction logging from unbuffered to buffered.
Make a database ANSI compliant.
Add transaction logging (buffered or unbuffered) to a database.
End transaction logging for a database.

For information about database-logging mode, when to use transaction logging, and when to buffer transaction logging, see Logging. To find out the current logging mode
of a database, see Monitor the logging mode of a database.

For information about using SQL administration API commands instead of some ondblog and ontape commands, see Remote administration with the SQL administration
API and the IBM® Informix® Administrator's Reference.

Change the database-logging mode
 Modify the database-logging mode with ondblog

 Modify the database logging mode with ontape
 Modify the table-logging mode

 Monitor transactions
 Monitor the logging mode of a database

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 195

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Change the database-logging mode

You can use ondblog or ontape to add or change logging. Then use ON-Bar, or ontape to back up the data. When you use ON-Bar or ontape, the database server must be
in online, administration, or quiescent mode.

For information about ON-Bar and ontape, see the IBM® Informix® Backup and Restore Guide.

The following table shows how the database server administrator can change the database-logging mode. Certain logging mode changes take place immediately, while
other changes require a level-0 backup.

Table 1. Logging mode transitions

Converting from: Converting to no logging Converting to unbuffered
logging

Converting to buffered logging Converting to ANSI compliant

No logging Not applicable Level-0 backup (of affected
storage spaces)

Level-0 backup (of affected
storage spaces)

Level-0 backup (of affected
storage spaces)

Unbuffered logging Yes Not applicable Yes Yes

Buffered logging Yes Yes Not applicable Yes

ANSI compliant Illegal Illegal Illegal Not applicable

Changing the database-logging mode has the following effects:

While the logging status is being changed, the database server places an exclusive lock on the database to prevent other users from accessing the database, and
frees the lock when the change is complete.
If a failure occurs during a logging-mode change, check the logging mode in the flags in the sysdatabases table in the sysmaster database, after you restore the
database server data. For more information, see Monitor the logging mode of a database. Then try the logging-mode change again.
After you choose either buffered or unbuffered logging, an application can use the SQL statement SET LOG to change from one logging mode to the other. This
change lasts for the duration of the session. For information about SET LOG, see the IBM Informix Guide to SQL: Syntax.
If you add logging to a database, the change is not complete until the next level-0 backup of all the storage spaces for the database.

Copyright© 2020 HCL Technologies Limited

Modify the database-logging mode with ondblog

You can use the ondblog utility to change the logging mode for one or more databases. If you add logging to a database, you must create a level-0 backup of the
dbspace(s) that contains the database before the change takes effect. For more information, see the topics on using ondblog in the IBM® Informix® Administrator's
Reference.

Change the buffering mode with ondblog
 Cancel a logging mode change with ondblog

 End logging with ondblog
 Make a database ANSI compliant with ondblog

 Changing the logging mode of an ANSI-compliant database

Copyright© 2020 HCL Technologies Limited

Change the buffering mode with ondblog

To change the buffering mode from buffered to unbuffered logging on a database called stores_demo, run the following command:

ondblog unbuf stores_demo

To change the buffering mode from unbuffered to buffered logging on a database called stores_demo, run the following command:

ondblog buf stores_demo

Copyright© 2020 HCL Technologies Limited

Cancel a logging mode change with ondblog

To cancel the logging mode change request before the next level-0 backup occurs, run the following command:

ondblog cancel stores_demo

You cannot cancel the logging changes that are executed immediately.

Copyright© 2020 HCL Technologies Limited

End logging with ondblog

196 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

To end logging for two databases that are listed in a file called dbfile, run the following command:

ondblog nolog -f dbfile

Copyright© 2020 HCL Technologies Limited

Make a database ANSI compliant with ondblog

To make a database called stores_demo into an ANSI-compliant database with ondblog, run the following command:

ondblog ansi stores_demo

Copyright© 2020 HCL Technologies Limited

Changing the logging mode of an ANSI-compliant database

After you create or convert a database to ANSI mode, you cannot easily change it to any other logging mode. If you accidentally convert a database to ANSI mode, follow
these steps to change the logging mode:

To change the logging mode:

1. To unload the data, use dbexport or any other migration utility. The dbexport utility creates the schema file.
For information about how to load and unload data, see the IBM® Informix® Migration Guide.

2. To recreate a database with buffered logging and load the data, use the dbimport -l buffered command.
To recreate a database with unbuffered logging and load the data, use the dbimport -l command.

Copyright© 2020 HCL Technologies Limited

Modify the database logging mode with ontape

If you use ontape as your backup tool, you can use ontape to change the logging mode of a database.

Turn on transaction logging with ontape
 End logging with ontape

 Change buffering mode with ontape
 Make a database ANSI compliant with ontape

Copyright© 2020 HCL Technologies Limited

Turn on transaction logging with ontape

Before you modify the database-logging mode, read Change the database-logging mode.

You add logging to a database with ontape at the same time that you create a level-0 backup.

For example, to add buffered logging to a database called stores_demo with ontape, run the following command:

ontape -s -B stores_demo

To add unbuffered logging to a database called stores_demo with ontape, run the following command:

ontape -s -U stores_demo

In addition to turning on transaction logging, these commands create full-system storage-space backups. When ontape prompts you for a backup level, specify a level-0
backup.
Tip: With ontape, you must perform a level-0 backup of all storage spaces.

Copyright© 2020 HCL Technologies Limited

End logging with ontape

To end logging for a database called stores_demo with ontape, run the following command:

ontape -N stores_demo

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 197

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Change buffering mode with ontape

To change the buffering mode from buffered to unbuffered logging on a database called stores_demo, using ontape, without creating a storage-space backup, run the
following command:

ontape -U stores_demo

To change the buffering mode from unbuffered to buffered logging on a database called stores_demo, using ontape, without creating a storage-space backup, run the
following command:

ontape -B stores_demo

Copyright© 2020 HCL Technologies Limited

Make a database ANSI compliant with ontape

To make a database called stores_demo, which already uses transaction logging (either unbuffered or buffered), into an ANSI-compliant database with ontape, run the
following command:

ontape -A stores_demo

To make a database called stores_demo, which does not already use transaction logging, into an ANSI-compliant database with ontape, run the following command:

ontape -s -A stores_demo

In addition to making a database ANSI compliant, this command also creates a storage-space backup at the same time. Specify a level-0 backup when you are prompted
for a level.
Tip: After you change the logging mode to ANSI compliant, you cannot easily change it again. To change the logging mode of ANSI-compliant databases, unload the data,
recreate the database with the new logging mode, and reload the data. For details, see Changing the logging mode of an ANSI-compliant database.

Copyright© 2020 HCL Technologies Limited

Modify the table-logging mode

The database server creates standard tables that use logging by default. To create a nonlogging table, use the CREATE TABLE statement with the WITH LOG clause. For
information about the CREATE TABLE and ALTER TABLE statements, see the IBM Informix Guide to SQL: Syntax. For more information, see Table types for Informix.

Alter a table to turn off logging
 Alter a table to turn on logging
 Disable logging on temporary tables

Copyright© 2020 HCL Technologies Limited

Alter a table to turn off logging

To switch a table from logging to nonlogging, use the SQL statement ALTER TABLE with the TYPE option of RAW. For example, the following statement changes table
tablog to a RAW table:

ALTER TABLE tablog TYPE (RAW)

Copyright© 2020 HCL Technologies Limited

Alter a table to turn on logging

To switch from a nonlogging table to a logging table, use the SQL statement ALTER TABLE with the TYPE option of STANDARD. For example, the following statement
changes table tabnolog to a STANDARD table:

ALTER TABLE tabnolog TYPE (STANDARD)

Important: When you alter a table to STANDARD, you turn logging on for that table. After you alter the table, perform a level-0 backup if you must be able to restore the
table.

Copyright© 2020 HCL Technologies Limited

Disable logging on temporary tables

198 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

You can disable logging on temporary tables to improve performance and to prevent IBM® Informix® from transferring temporary tables when using a primary server in a
data replication environment such as with HDR secondary, RS secondary, and SD secondary servers.

To disable logging on temporary tables, set the TEMPTAB_NOLOG configuration parameter to 1.

For HDR, RSS, and SDS secondary servers in a high-availability cluster, logical logging on temporary tables must always be disabled by setting the TEMPTAB_NOLOG
configuration parameter to 1 or 2.

You can use the onmode -wf command to change the value of TEMPTAB_NOLOG.

Related information:
 TEMPTAB_NOLOG configuration parameter

Copyright© 2020 HCL Technologies Limited

Monitor transactions

This topic contains references for information about ways to monitor transactions.

Command Description Reference

onstat -x Monitor transactions. Monitor a global transaction

onstat -g sql Monitor SQL statements, listed by session ID and database. Performance monitoring in the IBM® Informix® Performance Guide

onstat -g spf Display detailed information about SQL queries.

onstat -g stm Monitor memory usage of prepared SQL statements. Memory utilization in the IBM Informix Performance Guide

Copyright© 2020 HCL Technologies Limited

Monitor the logging mode of a database

These topics explain ways to monitor the logging mode of your database and tables.

Monitor the logging mode with SMI tables

Copyright© 2020 HCL Technologies Limited

Monitor the logging mode with SMI tables

Query the sysdatabases table in the sysmaster database to determine the logging mode. This table contains a row for each database that the database server manages.
The flags field indicates the logging mode of the database. The is_logging, is_buff_log, and is_ansi fields indicate whether logging is active, and whether buffered logging
or ANSI-compliant logging is used. For a description of the columns in this table, see the sysdatabases section in the chapter about the sysmaster database in the IBM®
Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Logical log

The information in Logging, and these topics explains how the database server uses the logical log. For information about how to perform logical-log tasks, see Manage
logical-log files, and Manage the database-logging mode.

What is the logical log?
 Location of logical-log files

 When the database server initializes disk space, it places the logical-log files and the physical log in the root dbspace.
Identification of logical-log files

 Status flags of logical-log files
 Size of the logical-log file

Dynamic log allocation
Freeing of logical-log files

 Log blobspaces and simple large objects
 Log sbspaces and smart large objects

 Logging process

Related reference:
 Database server maintenance tasks

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 199

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

What is the logical log?

To keep a history of transactions and database server changes since the time of the last storage-space backup, the database server generates log records. The database
server stores the log records in the logical log, a circular file that is composed of three or more logical-log files. The log is called logical because the log records represent
logical operations of the database server, as opposed to physical operations. At any time, the combination of a storage-space backup plus logical-log backup contains a
complete copy of your database server data.

As the database server administrator, you must configure and manage the logical log. For example, if you do not back up the log files regularly, the logical log fills and the
database server suspends processing.

These responsibilities include the following tasks:

Choosing an appropriate location for the logical log
See Location of logical-log files.

Monitoring the logical-log file status
See Identification of logical-log files.

Allocating an appropriate amount of disk space for the logical log
See Size of the logical-log file.

Allocating additional log files whenever necessary
See Allocate logical log files.

Backing up the logical-log files to media
See Back up logical-log files and Freeing of logical-log files.

Managing logging of blobspaces and sbspaces
See Log blobspaces and simple large objects and Log sbspaces and smart large objects.

Copyright© 2020 HCL Technologies Limited

Location of logical-log files

When the database server initializes disk space, it places the logical-log files and the physical log in the root dbspace.

To improve performance by reducing the number of writes to the root dbspace and minimize contention, move the logical-log files out of the root dbspace to a dbspace on
a disk that is not shared by active tables or the physical log.

To improve performance further, separate the logical-log files into two groups and store them on two separate disks (neither of which contains data). For example, if you
have six logical-log files, you might locate files 1, 3, and 5 on disk 1, and files 2, 4, and 6 on disk 2. This arrangement improves performance because the same disk drive
never is required to handle writes to the current logical-log file and backups at the same time.

The logical-log files contain critical information and must be mirrored for maximum data protection. If you move logical-log files to a different dbspace, plan to start
mirroring on that dbspace.

Related concepts:
 Move logical-log files

Copyright© 2020 HCL Technologies Limited

Identification of logical-log files

Each logical-log file, whether backed up to media or not, has a unique ID number. The sequence begins with 1 for the first logical-log file filled after you initialize the
database server disk space. When the current logical-log file becomes full, the database server switches to the next logical-log file and increments the unique ID number
for the new log file by one. Log files that are newly added or marked for deletion have unique ID numbers of 0.

The actual disk space allocated for each logical-log file has an identification number known as the log file number. For example, if you configure six logical-log files, these
files have log numbers one through six. The log numbers might be out of sequence. As logical-log files are backed up and freed, the database server reuses the disk space
for the logical-log files.

The following table illustrates the relationship between the log numbers and the unique ID numbers. Log 7 is inserted after log 5 and used for the first time in the second
rotation.

Table 1. Logical-log file-numbering sequence

Log file number First rotation unique ID number Second rotation unique ID number Third rotation unique ID number

1 1 7 14

2 2 8 15

3 3 9 16

4 4 10 17

5 5 11 18

7 0 12 19

200 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Log file number First rotation unique ID number Second rotation unique ID number Third rotation unique ID number

6 6 13 20

Copyright© 2020 HCL Technologies Limited

Status flags of logical-log files

All logical-log files have one of the following status flags in the first position: Added (A), Deleted (D), Free (F), or Used (U). The following table shows the possible log-
status flag combinations.

Table 1. Logical-log status flags

Status flag Status of logical-log file

A------ Log file has been added, and is available, but has not yet been used.

D------ If you drop a log file with a status of U-B, it is marked as deleted. This log file is dropped and its space is freed for reuse when you take a level-0
backup of all storage spaces.

F------ Log file is free and available for use.
A logical-log file is freed after it is backed up, all transactions within the logical-log file are closed, and the oldest update stored in this file is
flushed to disk.

U Log file has been used but not backed up.

U-B---- Log file is backed up but still required for recovery. (The log file is freed when it is no longer required for recovery.)

U-B---L Log is backed up but still required for recovery. Contains the last checkpoint record.

U---C The database server is currently filling the log file.

U---C-L This current log file contains the last checkpoint record.

Use the onstat -l command to list the log files by number and monitor the status flags and percentage of log space used. For more details, see The onstat -l command.

Copyright© 2020 HCL Technologies Limited

Size of the logical-log file

The minimum size for a logical-log file is 200 KB.

The maximum size for a logical-log file is 524288 pages (equivalent to 0x7ffff + 1), with a 2 KB or 4 KB base-page size, depending on the operating system. To determine
the database server's base-page size on your operating system, run onstat -d and then check the pgsize value for the root dbspace.

Determine the size and number of log files to use. If you allocate more disk space than necessary, space is wasted. If you do not allocate enough disk space, however,
performance might be adversely affected. Use larger log files when many users are writing to the logs at the same time.

Note: Smaller log files mean that you can recover to a later time if the disk that contains the log files goes down. If continuous log backup is set, log files are automatically
backed up as they fill. Smaller logs result in slightly longer logical recovery.

Number of logical-log files
 Performance considerations

Copyright© 2020 HCL Technologies Limited

Number of logical-log files

When you think about the number of logical-log files, consider these points:

You must always have at least three logical-log files and a maximum of 32,767 log files.
The number of log files affects the frequency of logical-log backups.
The number of logical-log files affects the rate at which blobspace blobpages can be reclaimed. See Back up log files to free blobpages.

Copyright© 2020 HCL Technologies Limited

Performance considerations

For a given level of system activity, the less logical-log disk space that you allocate, the sooner that logical-log space fills up, and the greater the likelihood that user
activity is blocked due to backups and checkpoints. Tune the logical-log size to find the optimum value for your system.

Logical-log backups
When the logical-log files fill, you must back them up. The backup process can hinder transaction processing that involves data located on the same disk as the
logical-log files. Put the physical log, logical logs, and user data on separate disks. (See the IBM® Informix® Backup and Restore Guide.)

Part VI: Administering 201

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Size of the logical log
A smaller logical log fills faster than a larger logical log. You can add a larger logical-log file, as explained in Adding logical-log files manually.

Size of individual logical-log records
The sizes of the logical-log records vary, depending on both the processing operation and the database server environment. In general, the longer the data rows,
the larger the logical-log records. The logical log contains images of rows that have been inserted, updated, or deleted. Updates can use up to twice as much space
as inserts and deletes because they might contain both before-images and after-images. (Inserts store only the after-image and deletes store only the before-
image.)

Number of logical-log records
The more logical-log records written to the logical log, the faster it fills. Databases with transaction logging fill the logical log faster than transactions against
databases without transaction logging.

Type of log buffering
Databases that use unbuffered transaction logging fill the logical log faster than databases that use buffered transaction logging.

Enterprise Replication on a table
Because Enterprise Replication generates before-images and after-images of the replicated tables, it might cause the logical log to fill.

Frequency of rollbacks
More rollbacks fill the logical log faster. The rollbacks themselves require logical-log file space although the rollback records are small.

Number of smart large objects
Smart large objects that have user data logging enabled and have a large volume of user data updates can fill logical logs at a prodigious rate. Use temporary smart
large objects if you do not want to log the metadata.

Copyright© 2020 HCL Technologies Limited

Dynamic log allocation

Dynamic log allocation prevents log files from filling and hanging the system during long transaction rollbacks. The only time that this feature becomes active is when the
next log file contains an open transaction. (A transaction is long if it is not committed or rolled back when it reaches the long-transaction high-watermark.)

The database server automatically (dynamically) allocates a log file after the current log file when the next log file contains an open transaction. You can use dynamic log
allocation for the following actions:

Add a log file while the system is active
Insert a log file after the current log file
Immediately access new log files even if the root dbspace is not backed up

The best way to test dynamic log allocation is to produce a transaction that spans all the log files and then use onstat -l to check for newly added log files. For more
information, see Allocate logical log files.
Important: You still must back up log files to prevent them from filling. If the log files fill, the system hangs until you perform a backup.

Copyright© 2020 HCL Technologies Limited

Freeing of logical-log files

Each time the database server commits or rolls back a transaction, it attempts to free the logical-log file in which the transaction began. The following criteria must be
satisfied before the database server frees a logical-log file for reuse:

The log file is backed up.
No records within the logical-log file are associated with open transactions.
The logical-log file does not contain the oldest update not yet flushed to disk.

Action if the next logical-log file is not free
 Action if the next log file contains the last checkpoint

Copyright© 2020 HCL Technologies Limited

Action if the next logical-log file is not free

If the database server attempts to switch to the next logical-log file but finds that the next log file in sequence is still in use, the database server immediately suspends all
processing. Even if other logical-log files are free, the database server cannot skip a file in use and write to a free file out of sequence. Processing stops to protect the data
within the logical-log file.

The logical-log file might be in use for any of the following reasons:

The file contains the latest checkpoint or the oldest update not yet flushed to disk.
Issue the onmode -c command to perform a checkpoint and free the logical-log file. For more information, see Force a checkpoint.

The file contains an open transaction.
The open transaction is the long transaction explained in Controlling long transactions.

The file is not backed up.

202 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

If the logical-log file is not backed up, processing resumes when you use ON-Bar or ontape to back up the logical-log files.

Copyright© 2020 HCL Technologies Limited

Action if the next log file contains the last checkpoint

The database server does not suspend processing when the next log file contains the last checkpoint or the oldest update. The database server always forces a checkpoint
when it switches to the last available log, if the previous checkpoint record or oldest update that is not yet flushed to disk is located in the log that follows the last available
log. For example, if four logical-log files have the status shown in the following list, the database server forces a checkpoint when it switches to logical-log file 3.

Log file number
Logical-log file status

1
U-B----

2
U---C--

3
F

4
U-B---L

Copyright© 2020 HCL Technologies Limited

Log blobspaces and simple large objects

Simple-large-object data (TEXT and BYTE data types) is potentially too voluminous to include in a logical-log record. If simple large objects are always logged, they might
be so large that they slow down the logical log.

The database server assumes that you designed your databases so that smaller simple large objects are stored in dbspaces and larger simple large objects are stored in
blobspaces:

The database server includes simple-large-object data in log records for simple large objects stored in dbspaces.
The database server does not include simple-large-object data in log records for simple large objects stored in blobspaces. The logical log records blobspace data
only when you back up the logical logs.

To obtain better overall performance for applications that perform frequent updates of simple large objects in blobspaces, reduce the size of the logical log. Smaller logs
can improve access to simple large objects that must be reused. For more information, see the chapter on configuration effects on I/O utilization in your IBM® Informix®
Performance Guide.

Switch log files to activate blobspaces
 Back up log files to free blobpages

 Back up blobspaces after inserting or deleting TEXT and BYTE data

Copyright© 2020 HCL Technologies Limited

Switch log files to activate blobspaces

You must switch to the next logical-log file in these situations:

After you create a blobspace, if you intend to insert simple large objects in the blobspace right away
After you add a new chunk to an existing blobspace, if you intend to insert simple large objects in the blobspace that uses the new chunk

The database server requires that the statement that creates a blobspace, the statement that creates a chunk in the blobspace, and the statements that insert simple
large objects into that blobspace are created in separate logical-log files. This requirement is independent of the database-logging status.

For instructions on switching to the next log file, see Switch to the next logical-log file.

Copyright© 2020 HCL Technologies Limited

Back up log files to free blobpages

When you delete data stored in blobspace pages, those pages are not necessarily freed for reuse. The blobspace pages are free only when both of the following actions
have occurred:

The TEXT or BYTE data has been deleted, either through an UPDATE to the column or by deleting the row
The logical log that stores the INSERT of the row that has TEXT or BYTE data is backed up

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 203

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Back up blobspaces after inserting or deleting TEXT and BYTE data

Be sure to back up all blobspaces and logical logs containing transactions on simple large objects stored in a blobspace. During log backup, the database server uses the
data pointer in the logical log to copy the changed text and byte data from the blobspace into the logical log.

Copyright© 2020 HCL Technologies Limited

Log sbspaces and smart large objects

Sbspaces, described in Sbspaces, contain two components: metadata and user data. By default, sbspaces are not logged.

The metadata component of the sbspace describes critical characteristics of smart large objects stored in a particular sbspace. The metadata contains pointers to the
smart large objects. If the metadata were to be damaged or become inaccessible, the sbspace would be corrupted and the smart large objects within that sbspace would
be unrecoverable.

Metadata in a standard sbspace is always logged, even if logging is turned off for a database. Logging sbspace metadata ensures that the metadata can always be
recovered to a consistent transaction state. However, metadata in a temporary sbspace is not logged.

Sbspace logging
 Smart-large-object log records

 Prevent long transactions when logging smart-large-object data

Copyright© 2020 HCL Technologies Limited

Sbspace logging

When an sbspace is logged, the database server slows down, and the logical logs fill up quickly. If you use logging for sbspaces, you must ensure that the logical logs are
large enough to hold the logging data. For more information, see Estimate the log size when logging smart large objects.

When you turn on logging for a database, the database server does not begin logging until you perform a level-0 backup. However, when you turn on logging for a smart
large object, the database server begins logging changes to it immediately. To reduce the volume of log entries, load smart large objects with logging turned off and then
turn logging back on to capture updates to the smart large objects.
Important: When you turn logging on for a smart large object, you must immediately perform a level-0 backup to be able to recover and restore the smart large object.
For more information, see Back up sbspaces and the IBM® Informix® Backup and Restore Guide.

Logging for smart large objects
 Logging for updated smart large objects

 Turn logging on or off for an sbspace
 You can control whether logging is on of off for an sbspace with several different methods.

Copyright© 2020 HCL Technologies Limited

Logging for smart large objects

Use logging for smart large objects if users are updating the data frequently or if the ability to recover any updated data is critical. The database server writes a record of
the operation (insert, update, delete, read, or write) to the logical-log buffer. The modified portion of the CLOB or BLOB data is included in the log record.

To increase performance, turn off logging for smart large objects. Also turn off logging if users are primarily analyzing the data and updating it infrequently, or if the data is
not critical to recover.

Copyright© 2020 HCL Technologies Limited

Logging for updated smart large objects

When you update a smart large object, the database server does not log the entire object. Assume that the user is writing X bytes of data at offset Y with logging enabled
for smart large objects. The database server logs the following information:

If Y is set to the end of the large object, the database server logs X bytes (the updated byte range).
If Y is at the beginning or in the middle of the large object, the database server logs the smallest of these choices:

Difference between the old and new image
Before-image and after-image
Nothing is logged if the before- and after-images are the same

Copyright© 2020 HCL Technologies Limited

204 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Turn logging on or off for an sbspace

You can control whether logging is on of off for an sbspace with several different methods.

If you want to use logging in an sbspace, specify the -Df "LOGGING=ON" option of the onspaces command when you create the sbspace. If logging is turned off in the
sbspace, you can turn on logging for smart large objects in specific columns. One column that contains smart large objects can have logging turned on while another
column has logging turned off.

To verify that smart large objects in an sbspace are logged, use the oncheck -pS sbspace_name | grep “Create Flags” command.

If you create smart large objects in the sbspace with the default logging option and you see the LO_NOLOG flag in the output, the smart large objects in this sbspace are
not logged. If you see the LO_LOG flag in the output, all smart large objects in this sbspace are logged.

You can modify the logging status of an sbspace in any of the following ways.

Function or statement to specify Logging action References

onspaces -ch -Df "LOGGING=ON"
onspaces -ch -Df "LOGGING=OFF"

Turns logging on or off for an existing sbspace Alter storage characteristics of smart large objects
onspaces -ch: Change sbspace default specifications

The SQL administration API task() or admin() function
with the set sbspace logging on or set sbspace logging
off argument

Turns logging on or off for an existing sbspace set sbspace logging argument: Change the logging of
an sbspace (SQL administration API)

LOG option in the PUT clause of the CREATE TABLE or
alter table statement

Turns on logging for all smart large objects that you
load into the column

Logging
PUT Clause

mi_lo_create DataBlade API function Turns off logging for a smart large object when it is
initially loaded

IBM® Informix DataBlade API Function Reference

mi_lo_alter DataBlade API function Turns on logging after the load is complete IBM Informix DataBlade API Function Reference

ifx_lo_create Informix® ESQL/C function Turns off logging for a smart large object when it is
initially loaded

IBM Informix ESQL/C Programmer's Manual

ifx_lo_alter Informix ESQL/C function Turns on logging after the load is complete IBM Informix ESQL/C Programmer's Manual

Copyright© 2020 HCL Technologies Limited

Smart-large-object log records

When you create a smart large object with the LOG option, the logical log creates a smart-blob log record. Smart-blob log records track changes to user data or metadata.
When smart large objects are updated, only the modified portion of the sbpage is in the log record. User-data log records are created in the logical log only when logging is
enabled for the smart large object.
Warning: Be careful about enabling logging for smart large objects that are updated frequently. This logging overhead might significantly slow down the database server.
For information about the log records for smart large objects, see the chapter on interpreting logical-log records in the IBM® Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Prevent long transactions when logging smart-large-object data

You can use smart large objects in situations where the data collection process for a single smart large object lasts for long periods of time. Consider, for example, an
application that records many hours of low-quality audio information. Although the amount of data collected might be modest, the recording session might be long,
resulting in a long-transaction condition.
Tip: To prevent long transactions from occurring, periodically commit writes to smart large objects.

Copyright© 2020 HCL Technologies Limited

Logging process

These topics describe in detail the logging process for dbspaces, blobspaces, and sbspaces. This information is not required for performing normal database server
administration tasks.

Dbspace logging
 Blobspace logging

Copyright© 2020 HCL Technologies Limited

Dbspace logging

The database server uses the following logging process for operations that involve data stored in dbspaces:

Part VI: Administering 205

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

1. Reads the data page from disk to the shared-memory page buffer
2. Copies the unchanged page to the physical-log buffer, if required
3. Writes the new data to the page buffer and creates a logical-log record of the transaction, if required
4. Flushes the physical-log buffer to the physical log on disk
5. Flushes the logical-log buffer to a logical-log file on disk
6. Flushes the page buffer and writes it back to disk

Copyright© 2020 HCL Technologies Limited

Blobspace logging

The database server logs blobspace data, but the data does not pass through either shared memory or the logical-log files on disk. The database server copies data stored
in a blobspace directly from disk to tape. Records of modifications to the blobspace overhead pages (the free-map and bitmap pages) are the only blobspace data that
reaches the logical log.

Copyright© 2020 HCL Technologies Limited

Manage logical-log files

You must manage logical-log files even if none of your databases uses transaction logging. See Logical log for background information about logical logs.

You must log-in as either informix or root on UNIX to make any of the changes described in this chapter. You must be a member of the Informix-Admin group on
Windows.

You perform these tasks when setting up your logical log:

Before you initialize or restart the database server, use the LOGFILES parameter to specify the number of logical-log files to create.
After the database server is online, estimate the size and number of logical-log files that your system requires.
See Estimate the size and number of log files.

If you do not want to use the default values, change the LOGSIZE and LOGBUFF configuration parameters.
Add the estimated number of logical-log files.
See Allocate logical log files.

You perform the following tasks routinely:

Backing up a logical-log file
Switching to the next logical-log file
Freeing a logical-log file
Monitoring logging activity and log-backup status

You perform these tasks occasionally, if necessary:

Adding a logical-log file
Dropping a logical-log file
Changing the size of a logical-log file
Moving a logical-log file
Changing the logical-log configuration parameters
Monitoring event alarms for logical logs
Setting high-watermarks for transactions

For information about using SQL administration API commands instead of some oncheck, onmode, onparams and onspaces commands, see Remote administration with
the SQL administration API and the IBM® Informix Administrator's Reference.

Estimate the size and number of log files
 Back up logical-log files

 Switch to the next logical-log file
 Free a logical-log file

 Monitor logging activity
 Allocate logical log files
 When you initialize or restart the database server, it creates the number of logical-log files that are specified by the LOGFILES configuration parameter. The size of

the logical log files is specified by the LOGSIZE configuration parameter.
Dropping logical-log files

 You can use an onparams command to drop logical-log files.
Change the size of logical-log files

 Move logical-log files
 You might want to move logical-log files for performance reasons or to make more space in the dbspace.

Display logical-log records
 Controlling long transactions

Copyright© 2020 HCL Technologies Limited

Estimate the size and number of log files

206 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Use the LOGSIZE configuration parameter to set the size of the logical-log files.

The amount of log space that is optimal for your database server system depends on the following factors:

Your application requirements and the amount of update activity your applications experience. Increased update activity requires increased log space.
The recovery time objective (RTO) standards for the amount of time, in seconds, that the server is given to recover from a problem after you restart the server and
bring it into online or quiescent mode.
In the case of a catastrophic event, consider how much data loss you can tolerate. More frequent log backups, which reduce the risk of data and transaction loss,
require increased log space.

Whether you use Enterprise Replication or data replication configurations such as HDR secondary, SD secondary or RS secondary servers.
These replication services can influence the number and size of log files. If your system uses any of these replication services, see guidelines in High-availability
cluster configuration or in the .

Some guidelines for determining log size are:

Generally, you can more easily manage a few large log files than you can manage many small log files.
Having too much log space does not affect performance. However, not having enough log files and log space can affect performance, because the database server
triggers frequent checkpoints.
Smart large objects in blobspaces are not logged, but they are included in the log backup in which the object was created. This means that the objects are not freed
until the server backs up the log in which they were created. Therefore, if smart large objects in a blobspace are frequently updated, you might require more
frequent log backups to acquire additional free space within a blobspace.
For applications that generate a small amount of log data, start with 10 log files of 10 megabytes each.
For applications that generate a large amount of log data, start with 10 log files with 100 megabytes.

There are two ways to maintain an RTO policy, which determines the tolerance for loss of data in case of a catastrophic event such as the loss of the data server:

One way to maintain an RTO policy is to use automatic log backups that trigger log backups whenever a log file fills up. This limits data loss to the transactions
contained in the log file during the backup, plus any additional transactions that occur during the log backup.
Another way to maintain an RTO policy is to use the Scheduler. You can create a task that automatically backs up any new log data at timed intervals since the last
log backup. This limits data loss to the transactions not backed up between time intervals. For information about using the Scheduler, see The Scheduler.

If an RTO policy is required, you can use the Scheduler to insert a task that executes at an appropriate frequency to maintain the policy. This automatically backs up log
files at certain times within the daily cycle. If the log space fills before the logs being backed up and recycled, you can back up the logs and add a new log file to allow
transaction processing to continue, or you can use the Scheduler to add a new task to detect this situation and perform either operation automatically.

You can add log files at any time, and the database server automatically adds log files when required for transaction consistency, for example, for long transactions that
might consume large amounts of log space.

The easiest way to increase the amount of space for the logical log is to add another logical-log file. See Adding logical-log files manually.

The following expression provides an example total-log-space configuration, in KB:

LOGSIZE = (((connections * maxrows) * rowsize) / 1024) / LOGFILES

Expression element Explanation

LOGSIZE Specifies the size of each logical-log file in KB.

connections Specifies the maximum number of connections for all network types that you specify in the sqlhosts file or registry and in the NETTYPE
parameter. If you configured more than one connection by setting multiple NETTYPE configuration parameters in your configuration file, add
the users fields for each NETTYPE, and substitute this total for connections in the preceding formula.

maxrows Specifies the largest number of rows to be updated in a single transaction.

rowsize Specifies the average size of a table row in bytes. To calculate the rowsize, add the length (from the syscolumns system catalog table) of the
columns in the row.

1024 Converts the LOGSIZE to the specified units of KB.

LOGFILES Specifies the number of logical-log files.

Estimate the log size when logging smart large objects
 Estimate the number of logical-log files

Copyright© 2020 HCL Technologies Limited

Estimate the log size when logging smart large objects

If you plan to log smart-large-object user data, you must ensure that the log size is considerably larger than the amount of data being written. If you store smart large
objects in standard sbspaces, the metadata is always logged, even if the smart large objects are not logged. If you store smart large objects in temporary sbspaces, there
is no logging at all.

Copyright© 2020 HCL Technologies Limited

Estimate the number of logical-log files

The LOGFILES parameter provides the number of logical-log files at system initialization or restart. If all your logical-log files are the same size, you can calculate the total
space allocated to the logical-log files as follows:

Part VI: Administering 207

https://www.hcltech.com/
https://www.hcltech.com/

total logical log space = LOGFILES * LOGSIZE

If the database server contains log files of different sizes, you cannot use the (LOGFILES * LOGSIZE) expression to calculate the size of the logical log. Instead, you must
add the sizes for each individual log file on disk. Check the size field in the onstat -l output. For more information, see The onstat -l command.

For information about LOGSIZE, LOGFILES, and NETTYPE, see the topics about configuration parameters in the IBM® Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Back up logical-log files

The logical logs contain a history of the transactions that have been performed. The process of copying a logical-log file to media is called backing up a logical-log file.
Backing up logical-log files achieves the following two objectives:

It stores the logical-log records on media so that they can be rolled forward if a data restore is required.
It makes logical-log-file space available for new logical-log records.
If you neglect to back up the log files, you can run out of log space.

You can initiate a manual logical-log backup or set up continuous logical-log backups. After you restore the storage spaces, you must restore the logical logs to bring the
data to a consistent state. For more information about log backups, see the IBM® Informix® Backup and Restore Guide.

Backing up blobspaces
 Back up sbspaces

Copyright© 2020 HCL Technologies Limited

Backing up blobspaces

It does not matter whether you back up the logical logs or blobspaces first.

To back up blobspace data:

1. Close the current logical log if it contains transactions on simple large objects in a blobspace.
2. Perform a backup of the logical logs and blobspace as soon as possible after updating simple-large-object data.

Warning: If you do not back up these blobspaces and logical logs, you might not be able to restore the blobspace data. If you wait until a blobspace is down to perform the
log backup, the database server cannot access the blobspace to copy the changed data into the logical log.

Copyright© 2020 HCL Technologies Limited

Back up sbspaces

When you turn on logging for smart large objects, you must perform a level-0 backup of the sbspace.

The following figure shows what happens if you turn on logging in an sbspace that is not backed up. The unlogged changes to smart large object LO1 are lost during the
failure, although the logged changes are recoverable. You cannot fully restore LO1.

During fast recovery, the database server rolls forward all committed transactions for LO1. If LO1 is unlogged, the database server would be unable to roll back
uncommitted transactions. Then the LO1 contents would be incorrect. For more information, see Fast recovery.
Figure 1. Turn on logging in an sbspace

Copyright© 2020 HCL Technologies Limited

Switch to the next logical-log file

You might want to switch to the next logical-log file before the current log file becomes full for the following reasons:

To back up the current log
To activate new blobspaces and blobspace chunks

The database server can be in online mode to make this change. Run the following command to switch to the next available log file: onmode -l

The change takes effect immediately. (Be sure that you type a lowercase L on the command line, not a number 1.)

208 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Free a logical-log file

If a log file is newly added (status A), it is immediately available for use. It also can be dropped immediately.

You might want to free a logical-log file for the following reasons:

So that the database server does not stop processing
To free the space used by deleted blobpages

The procedures for freeing log files vary, depending on the status of the log file. Each procedure is described in the following topics. To find out the status of logical-log
files, see Status flags of logical-log files and Monitor logging activity.
Tip: For information using ON-Bar or ontape to back up storage spaces and logical logs, see the IBM® Informix® Backup and Restore Guide.

Delete a log file with status D
 Free a log file with status U

 Freeing a log file with status U-B or F
 If a log file is backed up but still in use (status U-B), some transactions in the log file are still under way, or the log file contains the oldest update that is required for

fast recovery. Because a log file with status F has been used in the past, it follows the same rules as for status U-B.
Freeing a log file with status U-C or U-C-L

 Free a log file with status U-B-L
 If a log file is backed up and all transactions within it are closed but the file is not free (status U-B-L), this logical-log file contains the most-recent checkpoint

record. You can free log files with a status U-B-L.

Copyright© 2020 HCL Technologies Limited

Delete a log file with status D

When you drop a used log file, it is marked as deleted (status D) and cannot be used again, and onparams prints this message:

Log file log_file_number has been pre-dropped. It will be
deleted from the log list and its space can be reused
once you take level 0 archives of all BLOBspaces,
Smart BLOBspaces and non-temporary DBspaces.

The level 0 archive is necessary to make sure that the log file itself and all of the associated information in the different dbspaces has been archived. The log file is deleted
at the end of the level 0 archive; however, because the removal of the log file is itself a change in the root reserved pages structure on the disk, the next archive to be taken
also must be a level 0 archive. The level 0 archive must occur before a level 1 or level 2 archive can be performed.

Copyright© 2020 HCL Technologies Limited

Free a log file with status U

If a log file contains records, but is not yet backed up (status U), back up the file using the backup tool that you usually use.

If backing up the log file does not change the status to free (F), its status changes to either U-B or U-B-L. See Freeing a log file with status U-B or F or Free a log file with
status U-B-L.

Copyright© 2020 HCL Technologies Limited

Freeing a log file with status U-B or F

If a log file is backed up but still in use (status U-B), some transactions in the log file are still under way, or the log file contains the oldest update that is required for fast
recovery. Because a log file with status F has been used in the past, it follows the same rules as for status U-B.

To free a backed up log file that is in use:

1. If you do not want to wait until the transactions complete, take the database server to quiescent mode. See Changing database server operating modes. Any active
transactions are rolled back.

2. Use the onmode -c command to force a checkpoint. Do this because a log file with status U-B might contain the oldest update.

A log file that is backed up but not in use (status U-B) is not required to be freed. In the following example, log 34 is not required to be freed, but logs 35 and 36 do. Log 35
contains the last checkpoint, and log 36 is backed up but still in use.

34 U-B-- Log is used, backed up, and not in use
35 U-B-L Log is used, backed up, contains last checkpoint
36 U-B-- Log is used, backed up, and not in use
37 U-C-- This is the current log file, not backed up

Tip: You can free a logical log with a status of U-B (and not L) only if it is not spanned by an active transaction and does not contain the oldest update.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 209

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Freeing a log file with status U-C or U-C-L

Follow these steps to free the current log file.

To free the current log file (status C):

1. Run the following command to switch the current log file to the next available log file: onmode -l
2. Back up the original log file with ON-Bar or ontape.
3. After all full log files are backed up, you are prompted to switch to the next available log file and back up the new current log file.

You are not required to do the backup because you just switched to this log file.

After you free the current log file, if the log file has status U-B or U-B-L, see Freeing a log file with status U-B or F or Free a log file with status U-B-L.

Copyright© 2020 HCL Technologies Limited

Free a log file with status U-B-L

If a log file is backed up and all transactions within it are closed but the file is not free (status U-B-L), this logical-log file contains the most-recent checkpoint record. You
can free log files with a status U-B-L.

To free log files with a status U-B-L, the database server must create a new checkpoint. You can run the following command to force a checkpoint: onmode -c

Copyright© 2020 HCL Technologies Limited

Monitor logging activity

Monitor the logical-log files to determine the total available space (in all the files), the space available in the current file, and the status of a file (for example, whether the
log has been backed up yet). For information about monitoring the logical-log buffers, see Monitor physical and logical-logging activity.

Monitor the logical log for fullness
 Monitor temporary logical logs

 SMI tables
Monitor log-backup status

Copyright© 2020 HCL Technologies Limited

Monitor the logical log for fullness

You can use the following command-line utilities to monitor logical-log files.

The onstat -l command
 The oncheck -pr command

Copyright© 2020 HCL Technologies Limited

The onstat -l command

The onstat -l command displays information about physical and logical logs.

The output section that contains information about each logical-log file includes the following information:

The address of the logical-log file descriptor
The log file number
Status flags that indicate the status of each log (free, backed up, current, and so on)
The unique ID of the log file
The beginning page of the file
The size of the file in pages, the number of pages used, and the percentage of pages used

The log file numbers in the numbers field can get out of sequence if you drop several logs in the middle of the list or if the database server dynamically adds log files.

For more information about and an example of onstat -l output, see the IBM® Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

The oncheck -pr command

210 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The database server stores logical-log file information in the reserved pages dedicated to checkpoint information. Because the database server updates this information
only during a checkpoint, it is not as recent as the information that the onstat -l option displays. For more details on using these options to display reserved page
information, see the IBM® Informix® Administrator's Reference.

You can view the checkpoint reserved pages with the oncheck -pr command. The following example shows sample output for one of the logical-log files.

...
Log file number 1
Unique identifier 7
Log contains last checkpoint Page 0, byte 272
Log file flags 0x3 Log file in use
 Current log file
Physical location 0x1004ef
Log size 750 (p)
Number pages used 1
Date/Time file filled 01/29/2001 14:48:32
...

Copyright© 2020 HCL Technologies Limited

Monitor temporary logical logs

The database server uses temporary logical logs to roll forward transactions during a warm restore, because the permanent logs are not available then. When the
rollforward completes, the database server frees the temporary log files. If you issue onstat -l during a warm restore, the output includes a fourth section on temporary
log files in the same format as regular log files. Temporary log files use only the B, C, F, and U status flags.

Copyright© 2020 HCL Technologies Limited

SMI tables

Query the syslogs table to obtain information about logical-log files. This table contains a row for each logical-log file. The columns are as follows.

number
Identification number of the logical-log file

uniqid
Unique ID of the log file

size
Size of the file in pages

used
Number of pages used

is_used
Flag that indicates whether the log file is being used

is_current
Flag that indicates whether the log file is current

is_backed_up
Flag that indicates whether the log file has been backed up

is_new
Flag that indicates whether the log file has been added since the last storage space backup

is_archived
Flag that indicates whether the log file has been written to the archive tape

is_temp
Flag that indicates whether the log file is flagged as a temporary log file

Copyright© 2020 HCL Technologies Limited

Monitor log-backup status

To monitor the status of the logs and to see which logs have been backed up, use the onstat -l command. A status flag of B indicates that the log has been backed up.

Copyright© 2020 HCL Technologies Limited

Allocate logical log files

When you initialize or restart the database server, it creates the number of logical-log files that are specified by the LOGFILES configuration parameter. The size of the
logical log files is specified by the LOGSIZE configuration parameter.

You can manually add logical log files or configure the database server to add logical log files as needed. The database server updates the value of the LOGFILES
configuration parameter dynamically when logical log files are added.

The following configuration parameters also affect logical log files. You can update the value of these configuration parameters while the server is running, unless
otherwise noted.

Part VI: Administering 211

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

AUTO_LLOG
Automatically adds logical logs to improve performance and limits the total size of logical log files.

DYNAMIC_LOGS
Automatically adds logical logs to prevent transaction blocking.

LOGBUFF
Sets the size of the three logical-log buffers in shared memory. You must restart the database server when you change the value of the LOGBUFF configuration
parameter.

LTXEHWM
Sets the percentage of available log space that, when filled, triggers the database server to give the long transaction currently that is being rolled back exclusive
access to the logical log.

LTXHWM
Sets the percentage of available log space that, when filled, triggers the database server to check for a long transaction.

Dynamically add a logical-log file to prevent transaction blocking
 The DYNAMIC_LOGS configuration parameter determines when the database server dynamically adds a logical-log file to prevent transaction blocking.

Dynamically add logical logs for performance
 You can set the AUTO_LLOG configuration parameter to enable the database server to dynamically add logical logs to improve performance.

Adding logical-log files manually
 You can use an onparams command to add logical-log files.

Related information:
 LOGFILES configuration parameter

LOGSIZE configuration parameter
AUTO_LLOG configuration parameter
DYNAMIC_LOGS configuration parameter
LOGBUFF configuration parameter
LTXEHWM configuration parameter
LTXHWM configuration parameter

Copyright© 2020 HCL Technologies Limited

Dynamically add a logical-log file to prevent transaction blocking

The DYNAMIC_LOGS configuration parameter determines when the database server dynamically adds a logical-log file to prevent transaction blocking.

When you use the default value of 2 for DYNAMIC_LOGS, the database server dynamically adds a new log file and sets off an alarm if the next active log file contains the
beginning of the oldest open transaction.

The database server checks the logical-log space at these points:

After switching to a new log file
At the beginning of the transaction-cleanup phase of logical recovery

If the DYNAMIC_LOGS parameter is set to 1 and the next active log file contains records from an open transaction, the database server prompts you to add a log file
manually and sets off an alarm. After you add the log file, the database server resumes processing the transaction.

If the DYNAMIC_LOGS parameter is set to 0 and the logical log runs out of space during a long transaction rollback, the database server can hang. (The long transaction
prevents the first logical-log file from becoming free and available for reuse.) To fix the problem and complete the long transaction, set DYNAMIC_LOGS to 2 and restart
the database server.

Size and number of dynamically added log files
 The purpose of enabling dynamic logs with the DYNAMIC_LOGS configuration parameter is to add enough log space to allow transactions to roll back.

Location of dynamically added logical log files
 If the DYNAMIC_LOGS configuration parameter is set to 2, the default location of dynamically added log files is the dbspace that contains the newest log file.

Monitor events for dynamically added logs
 You can monitor the event alarms that are triggered when the database server dynamically adds logical log files to prevent transaction blocking. The

DYNAMIC_LOGS configuration parameter value must be 1 or 2.

Related reference:
 Monitor events for dynamically added logs

Controlling long transactions
Related information:

 DYNAMIC_LOGS configuration parameter

Copyright© 2020 HCL Technologies Limited

Size and number of dynamically added log files

The purpose of enabling dynamic logs with the DYNAMIC_LOGS configuration parameter is to add enough log space to allow transactions to roll back.

When dynamically adding a log file, the database server uses the following factors to calculate the size of the log file:

Average log size
Amount of contiguous space available

If the logical log is low on space, the database server adds as many log files as necessary to allow the transaction to roll back. The number of log files is limited by:

The maximum number of log files supported

212 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

The amount of disk space for the log files
The amount of free contiguous space in the root chunk

If the database server stops adding new log files because it is out of disk space, it writes an error message and sets off an alarm. Add a dbspace or chunk to an existing
dbspace. Then the database server automatically resumes processing the transaction.

The reserve pages in the root chunk store information about each log file. The extents that contain this information expand as more log files are added. The root chunk
requires two extents of 1.4 megabytes each to track 32,767 log files, the maximum number supported.

If during reversion, the chunk reserve page extent is allocated from a non-root chunk, the server attempts to put it back in the root chunk. If not enough space is available
in the root chunk, the reversion fails. A message containing the required space displays in the online log. The required space must be freed from the root chunk before
trying the reversion again.

Copyright© 2020 HCL Technologies Limited

Location of dynamically added logical log files

If the DYNAMIC_LOGS configuration parameter is set to 2, the default location of dynamically added log files is the dbspace that contains the newest log file.

The database server allocates log files in dbspaces, in the following search order. A dbspace becomes critical if it contains logical-log files or the physical log.

Pass
Allocate log file in

1
The dbspace that contains the newest log files
(If this dbspace is full, the database server searches other dbspaces.)

2
Mirrored dbspace that contains log files (but excluding the root dbspace)

3
All dbspaces that already contain log files (excluding the root dbspace)

4
The dbspace that contains the physical log

5
The root dbspace

6
Any mirrored dbspace

7
Any dbspace

If you do not want to use this search order to allocate the new log file, you must set the DYNAMIC_LOGS parameter to 1 and run onparams -a -i with the location you want
to use for the new log. For details, see Monitor events for dynamically added logs.

Copyright© 2020 HCL Technologies Limited

Monitor events for dynamically added logs

You can monitor the event alarms that are triggered when the database server dynamically adds logical log files to prevent transaction blocking. The DYNAMIC_LOGS
configuration parameter value must be 1 or 2.

When each alarm is triggered, a message is written to the message log.

You can include the onparams command to add log files in your alarm script for event class ID 27, log file required. Your script can also run the onstat -d command to
check for adequate space and run the onparams a -i command with the location that has enough space. You must use the -i option to add the new log right after the
current log file.

Table 1. Event alarms for dynamically added log files

Class ID Severity Class message Message

26 3 Dynamically added log file
log_number

This message shows when the database server dynamically adds a log file.
Dynamically added log file log_number to DBspace dbspace_number.

27 4 Log file required This message shows when DYNAMIC_LOGS is set to 1 and the database server is waiting for
you to add a log file.
ALERT: The oldest logical log log_number contains records from an open transaction
transaction_address. Logical logging remains blocked until a log file is added. Add the log
file with the onparams -a command, using the -i (insert) option, as in: onparams -a -d
dbspace -s size-i

Then complete the transaction as soon as possible.

28 4 No space for log file ALERT: Because the oldest logical log log_number contains records from an open transaction
transaction_address, the server is attempting to dynamically add a log file. But there is no
space available. Add a dbspace or chunk, then complete the transaction as soon as possible.

The following table shows the actions that the database server takes for each setting of the DYNAMIC_LOGS configuration parameter.

Table 2. The DYNAMIC_LOGS settings

Part VI: Administering 213

https://www.hcltech.com/
https://www.hcltech.com/

DYNAMIC_ LOGS value Meaning Event alarm Wait to add log? Dynamic log added?DYNAMIC_ LOGS value Meaning Event alarm Wait to add log? Dynamic log added?

2 (default) Allows automatic allocation of new log files to prevent open
transactions from hanging the system.

Yes (26, 28) No Yes

1 Allows manual addition of new log files. Yes (27) Yes No

0 Does not allocate log files but issues the following message
about open transactions:
Warning: The oldest logical-log file log_number contains
records from an open transaction transaction_address,
but the dynamic log feature is turned off.

No No No

Related reference:
 Dynamically add a logical-log file to prevent transaction blocking

Related information:
 Event Alarms

DYNAMIC_LOGS configuration parameter

Copyright© 2020 HCL Technologies Limited

Dynamically add logical logs for performance

You can set the AUTO_LLOG configuration parameter to enable the database server to dynamically add logical logs to improve performance.

When you set the AUTO_LLOG configuration parameter, you also specify a dbspace in which to create new logical log files and the size of all logical log files at which the
server stops adding logs for performance.

The AUTO_LLOG and DYNAMIC_LOGS configuration parameters add logical logs under different conditions that do not directly interact. When the AUTO_LLOG
configuration parameter is enabled, logical logs are added to improve performance. When the DYNAMIC_LOGS configuration parameter is enabled, logical logs are added
under more urgent conditions, such as when a long transaction threatens to block the server by using all available log space. The settings of the two configuration
parameters do not constrain each other. For example, the maximum size that is specified in the AUTO_LLOG configuration parameter does not affect the amount of log
space that can be added by the DYNAMIC_LOGS configuration parameter. Similarly, the value of AUTO_LLOG configuration parameter does not affect the amount of log
space that you can add manually.

Related information:
 AUTO_LLOG configuration parameter

Copyright© 2020 HCL Technologies Limited

Adding logical-log files manually

You can use an onparams command to add logical-log files.

You might add logical-log files manually for the following reasons:

To increase the disk space allocated to the logical log
To change the size of your logical-log files
To enable an open transaction to roll back
As part of moving logical-log files to a different dbspace

Restriction: You cannot do the following actions:

Add a log file to a blobspace or sbspace.
Add logical or physical logs to dbspaces that have non-default page sizes.

Add logical-log files one at a time, up to a maximum of 32,767 files, to any dbspace. As soon as you add a log file to a dbspace, it becomes a critical dbspace. You can add
a logical-log file during a storage space backup.

You can add a logical-log file in either of the following locations:

At the end of the file list using the onparams -a command
After the current logical-log file using the onparams -a -i command

To add a logical-log file using onparams

1. Log-in as user informix or root on UNIX or as a member of the Informix-Admin group on Windows.
2. Ensure that the database server is in online, administration, or quiescent, or cleanup phase of fast-recovery mode.

The database server writes the following message to the log during the cleanup phase:

Logical recovery has reached the transaction cleanup phase.

3. Decide whether you want to add the log file to the end of the log file list or after the current log file.
You can insert a log file after the current log file regardless of the DYNAMIC_LOGS parameter value. Adding a log file of a new size does not change the value of
LOGSIZE.

The following command adds a logical-log file to the end of the log file list in the logspace dbspace, using the log-file size specified by the LOGSIZE
configuration parameter:

onparams -a -d logspace

214 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

The following command inserts a 1000 KB logical-log file after the current log file in the logspace dbspace:

onparams -a -d logspace -s 1000 -i

To add a logical-log file with a new size (in this case, 250 KB), run the following command:

onparams -a -d logspace -s 250

4. Use onstat -l to check the status of the log files. The status of the new log file is A and is immediately available.
5. The next time you must back up data, perform a level-0 backup of the root dbspace and the dbspaces that contain the new log files.

Although you are no longer required to back up immediately after adding a log file, your next backup must be level-0 because the data structures have changed. For
information about backing up data, see the IBM® Informix® Backup and Restore Guide.

For more information about using onparams to add a logical-log file, see the IBM Informix Administrator's Reference.

Related concepts:
 Move logical-log files

Related information:
 onstat -g iov command: Print AIO VP statistics

Copyright© 2020 HCL Technologies Limited

Dropping logical-log files

You can use an onparams command to drop logical-log files.

To drop a logical-log file and increase the amount of the disk space available within a dbspace, you can use onparams. The database server requires a minimum of three
logical-log files at all times. You cannot drop a log if your logical log is composed of only three log files.

The rules for dropping log files have changed:

If you drop a log file that has never been written to (status A), the database server deletes it and frees the space immediately.
If you drop a used log file (status U-B), the database server marks it as deleted (D). After you take a level-0 backup of the dbspaces that contain the log files and the
root dbspace, the database server deletes the log file and frees the space.
You cannot drop a log file that is currently in use or contains the last checkpoint record (status C or L).

To drop a logical-log file with onparams:

1. Ensure that the database server is in online, administration, or quiescent mode.
2. Run the following command to drop a logical-log file whose log file number is 21: onparams -d -l 21

Drop log files one at a time. You must know the log file number of each logical log that you intend to drop.

3. If the log file has a status of newly Added (A), it is dropped immediately.
If the log file has a status of Used (U), it is marked as Deleted (D).

4. To drop a used log file, take a level-0 backup of all the dbspaces.
This backup prevents the database server from using the dropped log files during a restore and ensures that the reserved pages contain information about the
current number of log files.

For information about using onparams to drop a logical-log file, see the IBM® Informix® Administrator's Reference.

For information about using onlog to display the logical-log files and unique ID numbers, see Display logical-log records.

Related concepts:
 Move logical-log files

Related information:
 onparams -d -l lognum: Drop a logical-log file

The onlog utility

Copyright© 2020 HCL Technologies Limited

Change the size of logical-log files

If you want to change the size of the log files, it is easier to add new log files of the appropriate size and then drop the old ones. You can change the size of logical-log files
in the following ways:

Use onparams with the -s option to add a new log file of a different size.
See Adding logical-log files manually.

Increase the LOGSIZE value in the onconfig file if you want the database server to create larger log files.

Copyright© 2020 HCL Technologies Limited

Move logical-log files

You might want to move logical-log files for performance reasons or to make more space in the dbspace.

Part VI: Administering 215

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

To find the location of logical-log files, run the onstat -l command. Although moving the logical-log files is not difficult, it can be time-consuming.

Moving logical-log files is a combination of two simpler actions:

Optionally dropping logical-log files from their current dbspace.
Adding the logical-log files to their new dbspace

Restriction: You cannot move logical log files into dbspaces that have non-default page sizes.
The database server must be in online, administration, quiescent, or fast-recovery mode.

You can change the location for new logical logs by setting the AUTO_LLOG configuration parameter to 1 and the name of the dbspace. The AUTO_LLOG configuration
parameter enables the database server to add logical logs as needed to improve performance.

Example
The following procedure provides an example of how to move six logical-log files from the root dbspace to another dbspace, dbspace_1:

1. Add six new logical-log files to dbspace_1 by running the following command:

onparams -a -d dbspace_1

2. Take a level-0 backup of all storage spaces to free all log files except the current log file. For example, you can run the following command to back up all log files,
including the current log file:

onbar -l -b -c

3. Run the onmode -l command to switch to a new current log file.
4. Drop all six logical-log files in the root dbspace by running the onparams -d -l command with the log file number for each log file. You cannot drop the current

logical-log file.
5. Create a level-0 backup of the root dbspace and dbspace_1. For example, you can run the following command:

onbar -b root dbspace_1

Related concepts:
 Size of the root dbspace

Related tasks:
 Dropping logical-log files

Adding logical-log files manually
Related reference:

 Location of logical-log files
Related information:

 AUTO_LLOG configuration parameter
onstat -l command: Print physical and logical log information
onbar -b syntax: Backing up

Copyright© 2020 HCL Technologies Limited

Display logical-log records

Use the onlog utility to display and interpret logical-log records. For information about using onlog, see the IBM® Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Controlling long transactions

There are multiple ways to control long transactions:

Adjust the long-transaction high-watermark setting
Adjust the exclusive access, long-transaction high-watermark setting
Adjust the size of log files
Set limits on logspace available to individual transactions
Set limits on the amount of time a transaction can run

The database server uses the LTXHWM and LTXEHWM configuration parameters to set high-watermarks for long transactions. If DYNAMIC_LOGS is set to 1 or 2, the
default LTXHWM value is 80 percent and LTXEHWM is 90 percent. If DYNAMIC_LOGS is set to 0, the default LTXHWM value is 50 percent and the default LTXHEWM value
is 60 percent.

If you decrease your high-watermark values, you increase the likelihood of long transactions. To compensate, allocate additional log space.

Long-transaction high-watermark (LTXHWM)
The long-transaction high-watermark is the percentage of total log space that a transaction is allowed to span before it is rolled back.

If the database server finds an open transaction in the oldest used log file, it dynamically adds log files. Because the log space is increasing, the high-watermark expands
outward. When the log space reaches the high-watermark, the database server rolls back the transaction. The transaction rollback and other processes also generate
logical-log records. The database server continues adding log files until the rollback is complete to prevent the logical log from running out of space. More than one
transaction can be rolled back if more than one long transaction exists.

216 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

For example, the database server has 10 logical logs and LTXHWM is set to 98. A transaction begins in log file 1 and update activity fills logs 1 - 9. The database server
dynamically adds log file 11 after log file 10. If the transaction does not complete, this process continues until the database server adds 40 log files. When the database
server adds the 50th log, the transaction is caught up to the high-watermark and the database server rolls it back.

Exclusive access, long-transaction high-watermark (LTXEHWM)
The exclusive-access, long-transaction high-watermark occurs when the long transaction currently being rolled back is given exclusive access to the logical log. The
database server dramatically reduces log-record generation. Only threads that are currently rolling back transactions and threads that are currently writing COMMIT
records are allowed access to the logical log. Restricting access to the logical log preserves as much space as possible for rollback records that are being written by the
user threads that are rolling back transactions.
Important: If you set both LTXHWM and LTXEHWM to 100, long transactions are never stopped by the database server. Therefore, you must set LTXHWM to below 100 for
normal database server operations. Set LTXHWM to 100 to run scheduled transactions of unknown length. Set LTXEHWM to 100 if you have enough disk space, and you
never want to block other users while a long transaction is rolling back.

Adjust the size of log files to prevent long transactions
Use larger log files when many users are writing to the logs at the same time. If you use small logs and long transactions are likely to occur, reduce the high-watermark.
Set the LTXHWM value to 50 and the LTXEHWM value to 60.

If the log files are too small, the database server might run out of log space while rolling back a long transaction. In this case, the database server cannot block fast
enough to add a log file before the last one fills. If the last log file fills, the system hangs and displays an error message. To fix the problem, shut down and restart the
database server.

Set limits on logspace available to transactions
The SESSION_LIMIT_LOGSPACE configuration parameter limits how much log space a session can use for each transaction, which prevents transactions above a specific
size from occurring, and prevents large transactions from a single session from monopolizing system resources.

The database server terminates a transaction that exceeds the log space limit, and produces an error in the database server message log.

The size limit does not apply to a user who holds administrative privileges, such as user informix or a DBSA user.

Set limits on the amount of time a transaction can run
The SESSION_LIMIT_TXN_TIME configuration parameter limits how much time a transaction can run in a session, which prevents transactions that require a large amount
of time from occurring, and prevents long transactions from a single session from monopolizing system resources.

The database server terminates a transaction that exceeds the time limit, and produces an error in the database server message log.

The time limit does not apply to a user who holds administrative privileges, such as user informix or a DBSA user.

Related reference:
 Dynamically add a logical-log file to prevent transaction blocking

Related information:
 SESSION_LIMIT_LOGSPACE configuration parameter

SESSION_LIMIT_TXN_TIME configuration parameter

Copyright© 2020 HCL Technologies Limited

Physical logging, checkpoints, and fast recovery

These topics cover the three procedures that the database server uses to achieve data consistency:

Physical logging
Checkpoints
Fast recovery

The physical log is a set of disk pages where the database server stores an unmodified copy of the page called a before-image. Physical logging is the process of storing a
before-image of a page that the database server is going to change. A checkpoint is a point when the database server synchronizes the pages on disk with the pages in the
shared-memory buffers. Fast recovery is an automatic procedure that restores the database server to a consistent state after it goes offline under uncontrolled conditions.

These procedures ensure that multiple, logically related writes are recorded as a unit, and that data in shared memory is periodically made consistent with data on disk.

For the tasks to manage and monitor the physical log and checkpoints, see Manage the physical log.

Critical sections
 Physical logging
 Size and location of the physical log

 When the database server initializes disk space, it places the physical log in the root dbspace. The initial size of the physical log is set by the PHYSFILE configuration
parameter.
Checkpoints

 Fast recovery

Related reference:
 Database server maintenance tasks

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 217

https://www.hcltech.com/
https://www.hcltech.com/

Critical sections

A critical section is a section of code (or machine instructions) that must be performed as a single unit. A critical section ensures the integrity of a thread by allowing it to
run a series of instructions before it is swapped out.

Copyright© 2020 HCL Technologies Limited

Physical logging

Physical logging is the process of storing the pages that the database server is going to change before the changed pages are actually recorded on disk. Before the
database server modifies certain pages in the shared-memory buffer pool, it stores before-images of the pages in the physical-log buffer in shared memory.

The database server maintains the before-image page in the physical-log buffer in shared memory for those pages until one or more page cleaners flush the pages to disk.
The unmodified pages are available in case the database server fails or the backup procedure requires them to provide an accurate snapshot of the database server data.
Fast recovery and database server backups use these snapshots.

The database server recycles the physical log at each checkpoint, except in the special circumstances. For more information about checkpoints, see Checkpoints.

Fast recovery use of physically-logged pages
 Backup use of physically-logged pages

 Database server activity that is physically logged

Copyright© 2020 HCL Technologies Limited

Fast recovery use of physically-logged pages

After a failure, the database server uses the before-images of pages to restore these pages on the disk to their state at the last checkpoint. Then the database server uses
the logical-log records to return all data to physical and logical consistency, up to the point of the most-recently completed transaction. Fast recovery explains this
procedure in more detail.

Copyright© 2020 HCL Technologies Limited

Backup use of physically-logged pages

When you perform a backup, the database server performs a checkpoint and coordinates with the physical log to identify the correct version of pages that belong on the
backup. In a level-0 backup, the database server backs up all disk pages. For more details, see the IBM® Informix® Backup and Restore Guide.

Copyright© 2020 HCL Technologies Limited

Database server activity that is physically logged

If multiple modifications were made to a page between checkpoints, typically only the first before-image is logged in the physical log.

The physical log is a cyclical log in which the pages within the physical log are used once per checkpoint. If the RTO_SERVER_RESTART configuration parameter is set,
additional physical logging occurs to improve fast recovery performance.

Physical recovery messages
Physical logging and simple large objects

 Physical logging and smart large objects

Copyright© 2020 HCL Technologies Limited

Physical recovery messages

When fast recovery begins, the database server logs the following message with the name of the chunk and offset:

Physical recovery started at page chunk:offset.

When the fast recovery completes, the database server logs the following message with the number of pages examined and restored:

Physical recovery complete: number pages examined, number pages restored.

Copyright© 2020 HCL Technologies Limited

218 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Physical logging and simple large objects

The database server pages in the physical log can be any database server page, including simple large objects in table spaces (tblspaces). Even overhead pages (such as
chunk free-list pages, blobspace free-map pages, and blobspace bitmap pages) are copied to the physical log before data on the page is modified and flushed to disk.

Blobspace blobpages are not logged in the physical log. For more information about blobspace logging, see Log blobspaces and simple large objects.

Copyright© 2020 HCL Technologies Limited

Physical logging and smart large objects

The user-data portion of smart large objects is not physically logged. However, the metadata is physically logged. For information about smart large objects, see Sbspaces.

Copyright© 2020 HCL Technologies Limited

Size and location of the physical log

When the database server initializes disk space, it places the physical log in the root dbspace. The initial size of the physical log is set by the PHYSFILE configuration
parameter.

After you initialize the database server for the first time, you can change the size or location of the physical log with the onparams utility.

To improve performance (specifically, to reduce the number of writes to the root dbspace and minimize disk contention), you can move the physical log out of the root
dbspace to another dbspace, preferably to a disk that does not contain active tables or the logical-log files. For best performance, create the plogspace to store the
physical log and allow the database server to expand the size of the physical log as needed to improve performance.

Recommendation: Locate critical dbspaces on fault-tolerant storage devices. If the storage that the physical log is in is not fault-tolerant, use IBM® Informix® mirroring for
the dbspace that contain the physical log. This protects the database if the storage device fails. However, if you mirror the plogspace, it cannot be expanded.

Strategy for estimating the size of the physical log
 The size of the physical log depends on two factors: the rate at which transactions generate physical log activity and whether you set the RTO_SERVER_RESTART

configuration parameter
Physical-log overflow when transaction logging is turned off

Related concepts:

 Plogspace
Related reference:

 Change the physical-log location and size

Copyright© 2020 HCL Technologies Limited

Strategy for estimating the size of the physical log

The size of the physical log depends on two factors: the rate at which transactions generate physical log activity and whether you set the RTO_SERVER_RESTART
configuration parameter

The rate at which transactions generate physical log activity can affect checkpoint performance. During checkpoint processing, if the physical log starts getting too full as
transactions continue to generate physical log data, the database server blocks transactions to allow the checkpoint to complete and to avoid a physical log overflow.

To avoid transaction blocking, the database server must have enough physical log space to contain all of the transaction activity that occurs during checkpoint processing.
Checkpoints are triggered whenever the physical log becomes 75 percent full. When the physical log becomes 75 percent full, checkpoint processing must complete
before the remaining 25 percent of the physical log is used. Transaction blocking occurs as soon as the system detects a potential for a physical log overflow, because
every active transaction might generate physical log activity.

For example, suppose you have a one gigabyte physical log and 1000 active transactions. 1000 active transactions have the potential to generate approximately 80
megabytes of physical log activity if every transaction is in a critical section simultaneously. When 750 megabytes of the physical log fills, the database server triggers a
checkpoint. If the checkpoint has not completed by the time the 920 megabytes of the physical log are used, transaction blocking occurs until the checkpoint completes.
If transaction blocking takes place, the server automatically triggers more frequent checkpoints to avoid transaction blocking. You can disable the generation of automatic
checkpoints.

The server might also trigger checkpoints if many dirty partitions exist, even if the physical log is not 75 percent full, because flushing the modified partition data to disk
requires physical log space. When the server checks if the Physical Log is 75 percent full, the server also checks if the following condition is true:

(Physical Log Pages Used + Number of Dirty Partitions) >=
(Physical Log Size * 9) /10)

For more information about checkpoint processing and automatic checkpoints, see Checkpoints.

The second factor to consider when estimating the size of the physical log depends on your use of the RTO_SERVER_RESTART configuration parameter to specify a target
amount of time for fast recovery. If you are not required to consider fast recovery time, you are not requires to enable the RTO_SERVER_RESTART configuration parameter.
If you specify a value for the RTO_SERVER_RESTART configuration parameter, transaction activity generates additional physical log activity.

Part VI: Administering 219

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Typically, this additional physical log activity has little or no affect on transaction performance. The extra logging is used to assist the buffer pool during fast recovery, so
that log replay performs optimally. If the physical log is considerably larger than the combined sizes of all buffer pools, page flushing and page faulting occur during fast
recovery. The page flushing and page faulting substantially reduce fast recovery performance, and the database server cannot maintain the RTO_SERVER_RESTART policy.

For systems with less that four gigabytes of buffer pool space, the physical log can be sized at 110 percent of the combined size of all the buffer pools. For larger buffer
pools, start with four gigabytes of physical log space and then monitor checkpoint activity. If checkpoints occur too frequently and seem to affect performance, increase
the physical log size.

A rare condition, called a physical-log overflow, can occur when the database server is configured with a small physical log and has many users. Following the previously
described size guidelines helps avoid physical-log overflow. The database server generates performance warnings to the message log whenever it detects suboptimal
configurations.

You can use the onstat -g ckp command to display configuration recommendations if a suboptimal configuration is detected.

Copyright© 2020 HCL Technologies Limited

Physical-log overflow when transaction logging is turned off

The physical log can overflow if you use simple large objects or smart large objects in a database with transaction logging turned off, as the following example shows.

When the database server processes simple large objects, each portion of the simple large object that the database server stores on disk can be logged separately,
allowing the thread to exit the critical sections of code between each portion. However, if logging is turned off, the database server must carry out all operations on the
simple large object in one critical section. If the simple large object is large and the physical log small, this scenario can cause the physical logs to become full. If this
situation occurs, the database server sends the following message to the message log:

Physical log file overflow

The database server then initiates a shutdown. For the suggested corrective action, see your message log.

Copyright© 2020 HCL Technologies Limited

Checkpoints

Periodically, the database server flushes transactions and data within the buffer pool to disk. Until the transactions and data are flushed to disk, the data and transactions
are in a state of flux. Instead of forcing every transaction to disk immediately after a transaction is completed, the database server writes transactions to the logical log.
The database server logs the transactions as they occur. In the event of a system failure, the server:

Replays the log to redo and restore the transactions.
Returns the database to a state consistent with the state of the database system at the time of the failure.

To facilitate the restoration or logical recovery of a database system, the database server generates a consistency point, called a checkpoint. A checkpoint is a point in time
in the log when a known and consistent state for the database system is established. Typically, a checkpoint involves recording a certain amount of information so that, if a
failure occurs, the database server can restart at that established point.

The purpose of a checkpoint is to periodically move the restart point forward in the logical log. If checkpoints did not exist and a failure occurred, the database server
would be required to process all the transactions that were recorded in the logical log since the system restarted.

A checkpoint can occur in one of these situations:

When specific events occur. For example, a checkpoint occurs whenever a dbspace is added to the server or a database backup is performed.
Typically, these types of events trigger checkpoints that block transaction processing. Therefore, these checkpoints are called blocking checkpoints.

When resource limitations occur. For example, a checkpoint is required for each span of the logical log space to guarantee that the log has a checkpoint at which to
begin fast recovery. The database server triggers a checkpoint when the physical log is 75 percent full to avoid physical log overflow.
Checkpoints triggered by resource limitations usually do not block transactions. Therefore, these checkpoints are called nonblocking checkpoints.

However, if the database server begins to run out of resources during checkpoint processing, transaction blocking occurs in the midst of checkpoint processing to
make sure that the checkpoint completes before a resource is depleted. If transactions are blocked, the server attempts to trigger checkpoints more frequently to
avoid transaction blocking during checkpoint processing. For more information, see Strategy for estimating the size of the physical log.

If failover occurs, and the secondary server becomes the primary server, checkpoint discrepancies between the two servers can affect re-connection attempts. If a
checkpoint on the new secondary server does not exist on the new primary server, attempts to connect the secondary server to the primary server fail. The secondary
server must be fully restored before it can connect to the primary server.

Automatic checkpoints cause the database server to trigger more frequent checkpoints to avoid transaction blocking. Automatic checkpoints attempt to monitor system
activity and resource usage (physical and logical log usage along with how dirty the buffer pools are) to trigger checkpoints in a timely manner so that the processing of the
checkpoint can complete before the physical or logical log is depleted. The database server generates at least one automatic checkpoint for each span of the logical-log
space. This guarantees the existence of a checkpoint where fast recovery can begin. Use the AUTO_CKPTS configuration parameter to enable or disable automatic
checkpoints when the database server starts. (You can dynamically enable or disable automatic checkpoints by using onmode -wm or onmode -wf.)
Tip:

If automatic checkpoints are triggered too frequently because of physical log activity, you can increase the physical log size or use a plogspace to automatically
tune the physical log resources.
If automatic checkpoints are triggered too frequently because of logical log activity, you can set the AUTO_LLOG parameter in the onconfig file to allow the server to
automatically increase the logical log space to reduce checkpoint frequency.

Manual checkpoints are event-based checkpoints that you can initiate. The database server provides two methods for determining how long fast recovery takes in the
event of an unplanned outage.

220 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Use the CKPTINTVL configuration parameter to specify how frequently the server triggers checkpoints.
Use the RTO_SERVER_RESTART configuration parameter to specify how much time fast recovery takes.
When you use the RTO_SERVER_RESTART configuration parameter:

The database server ignores the CKPTINTVL configuration parameter.
The database server monitors the physical and logical log usage to estimate the duration of fast recovery. If the server estimates that fast recovery exceeds
the time specified in the RTO_SERVER_RESTART configuration parameter, the server automatically triggers a checkpoint.

The RTO_SERVER_RESTART configuration parameter is intended to be a target amount of time, not a guaranteed amount of time. Several factors that can increase restart
time can also influence fast recovery time. These factors include rolling back long transactions that were active at the time of an unplanned outage. For more information
about the RTO_SERVER_RESTART and AUTO_CKPTS configuration parameters, see the topics on configuration parameters in the IBM® Informix® Administrator's Reference.

LRU values for flushing a buffer pool between checkpoints
 Checkpoints during backup

Copyright© 2020 HCL Technologies Limited

LRU values for flushing a buffer pool between checkpoints

The LRU values for flushing a buffer pool between checkpoints are not critical for checkpoint performance. The lru_max_dirty and lru_min_dirty values, which are set in
the BUFFERPOOL configuration parameter, are usually necessary only for maintaining enough clean pages for page replacement. Start by setting lru_min_dirty to 70 and
lru_max_dirty to 80.

If transactions are blocked during a checkpoint, the database server subsequently attempts to increase checkpoint frequency to eliminate the transaction being blocked.
When the server searches for a free page to perform page replacement and a foreground write occurs, the server subsequently automatically increases the LRU flushing
frequency to prevent this event from occurring again. When the database server completes page replacement and finds a frequently accessed page, the server
automatically increases LRU flushing. Any automatic adjustments to LRU flushing do not persist to the onconfig file.

For more information about monitoring and tuning checkpoint parameters and information about LRU tuning and adjustments, see the IBM® Informix® Performance Guide.

Copyright© 2020 HCL Technologies Limited

Checkpoints during backup

If you perform a backup, the database server runs a checkpoint and flushes all changed pages to the disk. If you perform a restore, the database server reapplies all
logical-log records.

For information about ON-Bar or ontape, see the IBM® Informix® Backup and Restore Guide.

Copyright© 2020 HCL Technologies Limited

Fast recovery

Fast recovery is an automatic, fault-tolerant feature that the database server executes every time that it moves from offline to quiescent, administration, or online mode.
You are not required to take any administrative actions for fast recovery; it is an automatic feature.

The fast-recovery process checks if, the last time that the database server went offline, it did so in uncontrolled conditions. If so, fast recovery returns the database server
to a state of physical and logical consistency.

If the fast-recovery process finds that the database server came offline in a controlled manner, the fast-recovery process terminates, and the database server moves to
online mode.

See Fast recovery after a checkpoint.

Need for fast recovery
 Situations when fast recovery is initiated

 Fast recovery after a checkpoint

Copyright© 2020 HCL Technologies Limited

Need for fast recovery

Fast recovery restores the database server to physical and logical consistency after any failure that results in the loss of the contents of memory for the database server.
For example, the operating system fails without warning. System failures do not damage the database but instead affect transactions that are in progress at the time of the
failure.

Copyright© 2020 HCL Technologies Limited

Situations when fast recovery is initiated

Part VI: Administering 221

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Every time that the administrator brings the database server to quiescent, administration, or online mode from offline mode, the database server checks to see if fast
recovery is required.

As part of shared-memory initialization, the database server checks the contents of the physical log. The physical log is empty when the database server shuts down
under control. The move from online mode to quiescent mode includes a checkpoint, which flushes the physical log. Therefore, if the database server finds pages in the
physical log, the database server clearly went offline under uncontrolled conditions, and fast recovery begins.

Fast recovery and buffered logging
 Possible physical log overflow during fast recovery

 Fast recovery and no logging

Copyright© 2020 HCL Technologies Limited

Fast recovery and buffered logging

If a database uses buffered logging (as described in Buffered transaction logging), some logical-log records associated with committed transactions might not be written
to the logical log at the time of the failure. If this occurs, fast recovery cannot restore those transactions. Fast recovery can restore only transactions with an associated
COMMIT record stored in the logical log on disk. (For this reason, buffered logging represents a trade-off between performance and data vulnerability.)

Copyright© 2020 HCL Technologies Limited

Possible physical log overflow during fast recovery

During fast recovery, the physical log can overflow. If this occurs, the database server tries to extend the physical log space to a disk file named plog_extend.servernum.
The default location of this file is $INFORMIXDIR/tmp.

Use the ONCONFIG parameter PLOG_OVERFLOW_PATH to define the location for creating this file.

The database server removes the plog_extend.servernum file when the first checkpoint is performed during a fast recovery.

Copyright© 2020 HCL Technologies Limited

Fast recovery and no logging

For databases or tables that do not use logging, fast recovery restores the database to its state at the time of the most recent checkpoint. All changes made to the
database since the last checkpoint are lost.

Copyright© 2020 HCL Technologies Limited

Fast recovery after a checkpoint

Fast recovery returns the database server to a consistent state as part of shared-memory initialization. All committed transactions are restored, and all uncommitted
transactions are rolled back.

Fast recovery occurs in the following steps:

1. The database server uses the data in the physical log to return all disk pages to their condition at the time of the most recent checkpoint. This point is known as
physical consistency.

2. The database server locates the most recent checkpoint record in the logical-log files.
3. The database server rolls forward all logical-log records written after the most recent checkpoint record.
4. The database server rolls back all uncommitted transactions. Some XA transactions might be unresolved until the XA resource manager is available.

The server returns to the last-checkpoint state
 The server locates the checkpoint record in the logical log

 The server rolls forward logical-log records
 The server rolls back uncommitted transactions

Copyright© 2020 HCL Technologies Limited

The server returns to the last-checkpoint state

To return all disk pages to their condition at the time of the most recent checkpoint, the database server writes the before-images stored in the physical log to shared
memory and then back to disk. Each before-image in the physical log contains the address of a page that was updated after the checkpoint. When the database server
writes each before-image page in the physical log to shared memory and then back to disk, changes to the database server data since the time of the most recent
checkpoint are undone. The database server is now physically consistent. The following figure illustrates this step.
Figure 1. Writing all remaining before-images in the physical log back to disk

222 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

The server locates the checkpoint record in the logical log

After returning to the last checkpoint state, the database server locates the address of the most recent checkpoint record in the logical log. The most recent checkpoint
record is guaranteed to be in the logical log on disk.

Copyright© 2020 HCL Technologies Limited

The server rolls forward logical-log records

After locating the checkpoint record in the logical log, the database server rolls forward the logical-log records that were written after the most recent checkpoint record.
This action reproduces all changes to the databases since the time of the last checkpoint, up to the point at which the uncontrolled shutdown occurred. The following
figure illustrates this step.
Figure 1. Rolling forward the logical-log records written since the most recent checkpoint

Copyright© 2020 HCL Technologies Limited

The server rolls back uncommitted transactions

After rolling the logical-log records forward, the database server rolls back all logical-log records for transactions that were not committed at the time the system failed.
All databases are logically consistent because all committed transactions are rolled forward and all uncommitted transactions are rolled back. Some XA transactions
might be unresolved until the XA resource manager is available.

Transactions that have completed the first phase of a two-phase commit are exceptional cases. For more information, see How the two-phase commit protocol handles
failures.

Because one or more transactions possibly spanned several checkpoints without being committed, this rollback procedure might read backward through the logical log,
past the most recent checkpoint record. All logical-log files that contain records for open transactions are available to the database server because a log file is not freed
until all transactions that it contains are closed.

The following figure illustrates the rollback procedure. Here, uncommitted changes are rolled back from the logical log to a dbspace on a particular disk. When fast
recovery is complete, the database server returns to quiescent, administration, or online mode.
Figure 1. Rolling back all incomplete transactions

Copyright© 2020 HCL Technologies Limited

Manage the physical log

These topics describe the following procedures:

Changing the location and size of the physical log
Monitoring the physical log, physical-log buffers, and logical-log buffers
Monitoring and forcing checkpoints

See Physical logging, checkpoints, and fast recovery for background information.

Change the physical-log location and size
 You can use the onparams utility to change the location and size of the physical log.

Monitor physical and logical-logging activity

Part VI: Administering 223

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Monitor checkpoint information
Monitor checkpoint activity to view information that includes the number of times that threads were required to wait for the checkpoint to complete. This
information is useful for determining if the checkpoint interval is appropriate.
Turn automatic LRU tuning on or off
Use the AUTO_LRU_TUNING configuration parameter to enable or disable automatic LRU tuning when the database server starts.

Copyright© 2020 HCL Technologies Limited

Change the physical-log location and size

You can use the onparams utility to change the location and size of the physical log.

You can move the physical-log file to try to improve performance. When the database server initializes disk space, it places the disk pages that are allocated for the
physical log in the root dbspace. You might improve performance by moving the physical log to another dbspace.

You can move the physical log to a dbspace or the plogspace. When the physical log is in the plogspace, the database server increases the size of the physical log as
needed to improve performance. When the physical log is in a dbspace, you must manually increase the size of the physical log.

To move the physical log to the plogspace, create the plogspace by running the onspaces -c -P command or the SQL administration API admin() or task() function with
the create plogspace argument. To change the location of the plogspace, create a new plogspace. The physical log is moved to the new plogspace and the old plogspace
is dropped.

Prerequisites to moving the physical log to a dbspace:

Log in as user informix or root on UNIX or as a member of the Informix-Admin group on Windows.
Determine whether adequate contiguous space in the target chunk is available by running the oncheck -pe command.
The space that is allocated for the physical log must be contiguous. When you change the physical log size or location, if the target dbspace does not contain
adequate contiguous space, the server does not change the physical log. Additionally, if insufficient resources for the physical log exist when you initialize the
database server, the initialization fails. The dbspace must use the default page size.

To move the physical log to a dbspace, run the onparams -p -s command or the SQL administration API admin() or task() function with the create dbspace argument.

The following example changes the size and location of the physical log. The new physical-log size is 400 KB, and the log is in the dbspace6 dbspace:

onparams -p -s 400 -d dbspace6

Related concepts:
 Size of the root dbspace

Related reference:
 Monitor physical and logical-logging activity

Size and location of the physical log
The oncheck -pe command
Related information:

 onparams -p: Change physical-log parameters
onspaces -c -P: Create a plogspace

Copyright© 2020 HCL Technologies Limited

Monitor physical and logical-logging activity

Monitor the physical log to determine the percentage of the physical-log file that gets used before a checkpoint occurs. You can use this information to find the optimal
size of the physical-log file. It must be large enough that the database server is not required to force checkpoints too frequently and small enough to conserve disk space
and guarantee fast recovery.

Monitor physical-log and logical-log buffers to determine if they are the optimal size for the current level of processing. The important statistic to monitor is the pages-per-
disk-write statistic. For more information about tuning the physical-log and logical-log buffers, see your IBM® Informix® Performance Guide.

To monitor the physical-log file, physical-log buffers, and logical-log buffers, use the following commands.

Utility Command Additional information

224 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Utility Command Additional information

Command line onstat -l The first line displays the following information for each physical-log buffer:

The number of buffer pages used (bufused)
The size of each physical log buffer in pages (bufsize)
The number of pages written to the buffer (numpages)
The number of writes from the buffer to disk (numwrits)
The ratio of pages written to the buffer to the number of writes to disk (pages/IO)

The second line displays the following information about the physical log:

The page number of the first page in the physical-log file (phybegin)
The size of the physical-log file in pages (physize)
The current position in the log where the next write occurs, specified as a page number
(physpos)
The number of pages in the log that have been used (phyused)
The percentage of the total physical-log pages that have been used (%used)

The third line displays the following information about each logical-log buffer:

The number of buffer pages used (bufused)

The size of each logical-log buffer in pages (bufsize)
The number of records written to the buffer (numrecs)
The number of pages written to the buffer (numpages)
The number of writes from the buffer to disk (numwrits)
The ratio of records to pages in the buffer (recs/pages)
The ratio of pages written to the buffer to the number of writes to disk (pages/IO)

Command line onparams -p Moves or resizes the physical log.

Command line onmode -l Advances to the next logical-log file.

For more information about and an example of onstat -l output, see the IBM Informix Administrator's Reference.

For information about using SQL administration API commands instead of some onparams and onmode commands, see Remote administration with the SQL
administration API and the IBM Informix Guide to SQL: Syntax.

Related reference:
 Change the physical-log location and size

Copyright© 2020 HCL Technologies Limited

Monitor checkpoint information

Monitor checkpoint activity to view information that includes the number of times that threads were required to wait for the checkpoint to complete. This information is
useful for determining if the checkpoint interval is appropriate.

To monitor checkpoints, use the following commands.

Utility Command Additional Information

The onstat utility onstat -m View the last 20 lines in the message log.
If a checkpoint message is not in the last 20 lines, read the message log directly with a text editor. The
database server writes individual checkpoint messages to the log when the checkpoint ends.

If a checkpoint occurs, but the database server has no pages to write to disk, the database server
does not write any messages to the message log.

The onstat utility onstat -p Obtains these checkpoint statistics:

numckpts: Number of checkpoints that occurred since the database server was brought online.
ckptwaits: Number of times that a user thread waits for a checkpoint to finish. The database
server prevents a user thread from entering a critical section during a checkpoint.

For information about tuning the checkpoint interval, see your IBM® Informix® Performance Guide.

Turn checkpoint tuning on or off
 Force a checkpoint

 When necessary, you can force a checkpoint with an onmode or SQL administration API command.
Server-provided checkpoint statistics

 SMI tables

Copyright© 2020 HCL Technologies Limited

Turn checkpoint tuning on or off

Part VI: Administering 225

https://www.hcltech.com/
https://www.hcltech.com/

To turn automatic checkpoint tuning on, issue an onmode –wf AUTO_CKPTS=1 command. To turn automatic checkpoint tuning off, issue an onmode –wf AUTO_CKPTS=0
command.

Copyright© 2020 HCL Technologies Limited

Force a checkpoint

When necessary, you can force a checkpoint with an onmode or SQL administration API command.

Force a checkpoint in any of the following situations:

To free a logical-log file that contains the most recent checkpoint record and that is backed up but not yet released (onstat -l status of U-B-L or U-B)
Before you issue onmode -sy to place the database server in quiescent mode
After building a large index, if the database server terminates before the next checkpoint. The index build restarts the next time that you restart the database
server.
If a checkpoint has not occurred for a long time and you are about to attempt a system operation that might interrupt the database server
If foreground writes are taking more resources than you want (force a checkpoint to bring this down to zero temporarily)
Before you run dbexport or unload a table, to ensure physical consistency of all data before you export or unload it
After you perform a large load of tables using PUT or INSERT statements (Because table loads use the buffer cache, forcing a checkpoint cleans the buffer cache.)

To force a checkpoint, run onmode -c.

For information about using SQL administration API commands instead of some onmode commands, see Remote administration with the SQL administration API and the
IBM® Informix® Guide to SQL: Syntax.

Copyright© 2020 HCL Technologies Limited

Server-provided checkpoint statistics

The database server provides history information about the previous twenty checkpoints. You can access this information through the SMI sysckptinfo table.

Related information:
 sysckptinfo

Copyright© 2020 HCL Technologies Limited

SMI tables

Query the sysprofile table to obtain statistics on the physical-log and logical-log buffers. The sysprofile table also provides the same checkpoint statistics that are
available from the onstat -p option. These rows contain the following statistics.

plgpagewrites
Number of pages written to the physical-log buffer

plgwrites
Number of writes from the physical-log buffer to the physical log file

llgrecs
Number of records written to the logical-log buffer

llgpagewrites
Number of pages written to the logical-log buffer

llgwrites
Number of writes from the logical-log buffer to the logical-log files

numckpts
Number of checkpoints that have occurred since the database server was brought online)

ckptwaits
Number of times that threads waited for a checkpoint to finish entering a critical section during a checkpoint

value
Values for numckpts and ckptwaits

Copyright© 2020 HCL Technologies Limited

Turn automatic LRU tuning on or off

Use the AUTO_LRU_TUNING configuration parameter to enable or disable automatic LRU tuning when the database server starts.

If the RTO_SERVER_RESTART configuration parameter is set, the database server automatically triggers checkpoints so that it can bring the server online within the
specified time. The database server prints warning messages in the message log if the server cannot meet the RTO_SERVER_RESTART policy.

To turn off automatic LRU tuning for a particular session, issue an onmode –wm AUTO_LRU_TUNING=0 command.

To turn on automatic LRU tuning after turning it off during a session, issue an onmode –wm AUTO_LRU_TUNING=1 command

226 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Automatic LRU tuning changes affect all buffer pools and adjust lru_min_dirty and lru_max_dirty values in the BUFFERPOOL configuration parameter.

For more information about LRU tuning, see the IBM® Informix® Performance Guide.

Copyright© 2020 HCL Technologies Limited

Fault tolerance

Mirroring
 Using mirroring

 Consistency checking

Copyright© 2020 HCL Technologies Limited

Mirroring

These topics describe the database server mirroring feature. For instructions on how to perform mirroring tasks, see Using mirroring.

Mirroring
 Mirroring process

Related concepts:

 Feature configuration
Chunks

Copyright© 2020 HCL Technologies Limited

Mirroring

Mirroring is a strategy that pairs a primary chunk of one defined dbspace, blobspace, or sbspace with an equal-sized mirror chunk.

Every write to the primary chunk is automatically accompanied by an identical write to the mirror chunk. This concept is illustrated in the following figure. If a failure
occurs on the primary chunk, mirroring enables you to read from and write to the mirror chunk until you can recover the primary chunk, all without interrupting user access
to data.
Figure 1. Writing data to both the primary chunk and the mirror chunk

Mirroring is not supported on disks that are managed over a network. The same database server instance must manage all the chunks of a mirrored set.

Benefits of mirroring
 Costs of mirroring

 Consequences of not mirroring
 Data to mirror

 Alternatives to mirroring

Copyright© 2020 HCL Technologies Limited

Benefits of mirroring

If media failure occurs, mirroring provides the database server administrator with a means of recovering data without taking the database server offline. This feature
results in greater reliability and less system downtime. Furthermore, applications can continue to read from and write to a database whose primary chunks are on the
affected media, provided that the chunks that mirror this data are located on separate media.

Any critical database must be located in a mirrored dbspace. The root dbspace, which contains the database server reserved pages, must be mirrored.

Copyright© 2020 HCL Technologies Limited

Costs of mirroring

Disk-space costs and performance costs are associated with mirroring. The disk-space cost is due to the additional space required for storing the mirror data. The
performance cost results from performing writes to both the primary and mirror chunks. The use of multiple virtual processors for disk writes reduces this performance

Part VI: Administering 227

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

cost. The use of split reads, whereby the database server reads data from either the primary chunk or the mirror chunk, depending on the location of the data within the
chunk, actually causes performance to improve for read-only data. For more information about how the database server performs reads and writes for mirror chunks, see
Actions during processing.

Copyright© 2020 HCL Technologies Limited

Consequences of not mirroring

If you do not mirror your dbspaces, the frequency with which you must restore from a storage-space backup after media failure increases.

When a mirror chunk suffers media failure, the database server reads exclusively from the chunk that is still online until you bring the down chunk back online. When the
second chunk of a mirrored pair goes down, the database server cannot access the data stored on that chunk. If the chunk contains logical-log files, the physical log, or
the root dbspace, the database server goes offline immediately. If the chunk does not contain logical-log files, the physical log, or the root dbspace, the database server
can continue to operate, but threads cannot read from or write to the down chunk. If an unmirrored chunk goes down, you must restore it by recovering the dbspace from
a backup.

Copyright© 2020 HCL Technologies Limited

Data to mirror

Ideally, you must mirror all of your data. If disk space is an issue, however, you might not be able to do so. In this case, select certain critical chunks to mirror.

Critical chunks always include the chunks that are part of the root dbspace, the chunk that stores the logical-log files, and the chunk that stores the physical logs. If any
one of these critical chunks fail, the database server goes offline immediately.

If some chunks hold data that is critical to your business, give these chunks high priority for mirroring.

Also give priority for mirroring to chunks that store frequently used data. This action ensures that the activities of many users would not be halted if one widely used chunk
goes down.

Copyright© 2020 HCL Technologies Limited

Alternatives to mirroring

Mirroring, as explained in this manual, is a database server feature. Your operating system or hardware might provide alternative mirroring solutions.

If you are considering a mirroring feature provided by your operating system instead of database server mirroring, compare the implementation of both features before
you decide which to use. The slowest step in the mirroring process is the actual writing of data to disk. The database server strategy of performing writes to mirror chunks
in parallel helps to reduce the time required for this step. (See Disk writes to mirror chunks.) In addition, database server mirroring uses split reads to improve read
performance. (See Disk reads from mirror chunks.) Operating-system mirroring features that do not use parallel mirror writes and split reads might provide inferior
performance.

Nothing prevents you from running database server mirroring and operating-system mirroring at the same time. They run independently of each other. In some cases, you
might decide to use both the database server mirroring and the mirroring feature provided by your operating system. For example, you might have both database server
data and other data on a single disk drive. You can use the operating-system mirroring to mirror the other data and database server mirroring to mirror the database server
data.

Logical volume managers
 Hardware mirroring

 External backup and restore

Copyright© 2020 HCL Technologies Limited

Logical volume managers

Logical volume managers are an alternative mirroring solution. Some operating-system vendors provide this type of utility to have multiple disks seem to be one file
system. Saving data to more than two disks gives you added protection from media failure, but the additional writes have a performance cost.

Copyright© 2020 HCL Technologies Limited

Hardware mirroring

Another solution is to use hardware mirroring such as redundant array of inexpensive disks (RAID). An advantage of this type of hardware mirroring is that it requires less
disk space than database server mirroring does to store the same amount of data to prevent media failure.

Some hardware mirroring systems support hot swapping. You can swap a bad disk while keeping the database server online. Reducing I/O activity before performing a hot
swap is recommended.

228 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Important: If problems occur with the database server while using hardware mirroring, see the operating-system or disk documentation or technical support for
assistance.

Copyright© 2020 HCL Technologies Limited

External backup and restore

If you use hardware disk mirroring, you can get your system online faster with external backup and restore than with conventional ON-Bar commands. For more
information about external backup and restore, see the IBM® Informix® Backup and Restore Guide.

Copyright© 2020 HCL Technologies Limited

Mirroring process

This section describes the mirroring process in greater detail. For instructions on how to perform mirroring operations such as creating mirror chunks, starting mirroring,
changing the status of mirror chunks, and so forth, see Using mirroring.

Creation of a mirror chunk
 Mirror status flags

 Recovery
 Actions during processing

Result of stopping mirroring
 Structure of a mirror chunk

Copyright© 2020 HCL Technologies Limited

Creation of a mirror chunk

When you specify a mirror chunk, the database server copies all the data from the primary chunk to the mirror chunk. This copy process is known as recovery. Mirroring
begins as soon as recovery is complete.

The recovery procedure that marks the beginning of mirroring is delayed if you start to mirror chunks within a dbspace that contains a logical-log file. Mirroring for
dbspaces that contain a logical-log file does not begin until you create a level-0 backup of the root dbspace. The delay ensures that the database server can use the
mirrored logical-log files if the primary chunk that contains these logical-log files becomes unavailable during a dbspace restore.

The level-0 backup copies the updated database server configuration information, including information about the new mirror chunk, from the root dbspace reserved
pages to the backup. If you perform a data restore, the updated configuration information at the beginning of the backup directs the database server to look for the
mirrored copies of the logical-log files if the primary chunk becomes unavailable. If this new storage-space backup information does not exist, the database server is
unable to take advantage of the mirrored log files.

For similar reasons, you cannot mirror a dbspace that contains a logical-log file while a dbspace backup is being created. The new information that must be in the first
block of the dbspace backup tape cannot be copied there after the backup has begun.

For more information about creating mirror chunks, see Using mirroring.

Copyright© 2020 HCL Technologies Limited

Mirror status flags

Dbspaces, blobspaces, and sbspaces have status flags that indicate whether they are mirrored or unmirrored.

You must perform a level-0 backup of the root dbspace before mirroring starts.

Chunks have status flags that indicate the following information:

Whether the chunk is a primary or mirror chunk
Whether the chunk is currently online, down, a new mirror chunk that requires a level-0 backup of the root dbspace, or in the process of being recovered

For descriptions of these chunk status flags, see the description of the onstat -d option in the IBM® Informix® Administrator's Reference. For information about how to
display these status flags, see Monitor disk usage.

Copyright© 2020 HCL Technologies Limited

Recovery

When the database server recovers a mirror chunk, it performs the same recovery procedure that it uses when mirroring begins. The mirror-recovery process consists of
copying the data from the existing online chunk onto the new, repaired chunk until the two are identical.

Part VI: Administering 229

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

When you initiate recovery, the database server puts the down chunk in recovery mode and copies the information from the online chunk to the recovery chunk. When the
recovery is complete, the chunk automatically receives online status. You perform the same steps whether you are recovering the primary chunk of a mirrored pair or
recovering the mirror chunk.
Tip: You can still use the online chunk during the recovery process. If data is written to a page that has already been copied to the recovery chunk, the database server
updates the corresponding page on the recovery chunk before it continues with the recovery process.
For information about how to recover a down chunk, see the information about recovering a mirror chunk on page Recover a mirror chunk.

Copyright© 2020 HCL Technologies Limited

Actions during processing

These topics explain some of the details of disk I/O for mirror chunks and how the database server handles media failure for these chunks.

Disk writes to mirror chunks
 Disk reads from mirror chunks

 Detection of media failures
 Chunk recovery

Copyright© 2020 HCL Technologies Limited

Disk writes to mirror chunks

During database server processing, the database server performs mirroring by executing two parallel writes for each modification: one to the primary chunk and one to the
mirror chunk.

Copyright© 2020 HCL Technologies Limited

Disk reads from mirror chunks

The database server uses mirroring to improve read performance because two versions of the data are located on separate disks. A data page is read from either the
primary chunk or the mirror chunk, depending on which half of the chunk includes the address of the data page. This feature is called a split read. Split reads improve
performance by reducing the disk-seek time. Disk-seek time is reduced because the maximum distance over which the disk head must travel is reduced by half. The
following figure illustrates a split read.
Figure 1. Split read reducing the maximum distance over which the disk head must travel

Copyright© 2020 HCL Technologies Limited

Detection of media failures

The database server checks the return code when it first opens a chunk and after any read or write. Whenever the database server detects that a primary (or mirror) chunk
device has failed, it sets the chunk-status flag to down (D). For information about chunk-status flags, see Mirror status flags.

If the database server detects that a primary (or mirror) chunk device has failed, reads and writes continue for the one chunk that remains online. This statement is true
even if the administrator intentionally brings down one of the chunks.

After the administrator recovers the down chunk and returns it to online status, reads are again split between the primary and mirror chunks, and writes are made to both
chunks.

Copyright© 2020 HCL Technologies Limited

Chunk recovery

The database server uses asynchronous I/O to minimize the time required for recovering a chunk. The read from the chunk that is online can overlap with the write to the
down chunk, instead of the two processes occurring serially. That is, the thread that performs the read is not required to wait until the thread that performs the write has
finished before it reads more data.

Copyright© 2020 HCL Technologies Limited

230 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Result of stopping mirroring

When you end mirroring, the database server immediately frees the mirror chunks and makes the space available for reallocation. The action of ending mirroring takes
only a few seconds.

Create a level-0 backup of the root dbspace after you end mirroring to ensure that the reserved pages with the updated mirror-chunk information are copied to the
backup. This action prevents the restore procedure from assuming that mirrored data is still available.

Copyright© 2020 HCL Technologies Limited

Structure of a mirror chunk

The mirror chunk contains the same control structures as the primary chunk, as follows:

Mirrors of blobspace chunks contain blobspace overhead pages.
Mirrors of dbspace chunks contain dbspace overhead pages.
Mirrors of sbspaces contain metadata pages.

For information about these structures, see the section on the structure of a mirror chunk in the disk structures and storage chapter of the IBM® Informix® Administrator's
Reference.

A display of disk-space use, provided by one of the methods explained under Monitor chunks, always indicates that the mirror chunk is full, even if the primary chunk has
free space. The full mirror chunk indicates that none of the space in the chunk is available for use other than as a mirror of the primary chunk. The status remains full for as
long as both primary chunk and mirror chunk are online.

If the primary chunk goes down and the mirror chunk becomes the primary chunk, disk-space allocation reports then accurately describe the fullness of the new primary
chunk.

Copyright© 2020 HCL Technologies Limited

Using mirroring

These topics describe the various mirroring tasks that are required to use the database server mirroring feature. It provides an overview of the steps required for mirroring
data.

Preparing to mirror data
 Enable the MIRROR configuration parameter

 You can set the MIRROR configuration parameter to enable (or disable) mirroring.
Allocate disk space for mirrored data

 Using mirroring
 Manage mirroring

 You can use the onspaces utility to manage mirroring.

Copyright© 2020 HCL Technologies Limited

Preparing to mirror data

This section describes how to start mirroring data on a database server that is not running with the mirroring function enabled.

To prepare to mirror data:

1. Take the database server offline and enable mirroring.
See Enable the MIRROR configuration parameter.

2. Bring the database server back online.
3. Allocate disk space for the mirror chunks.

You can allocate this disk space at any time, as long as the disk space is available when you specify mirror chunks in the next step. The mirror chunks must be on a
different disk than the corresponding primary chunks. See Allocate disk space for mirrored data.

4. Choose the dbspace, blobspace, or sbspace that you want to mirror, and specify a mirror-chunk path name and offset for each primary chunk in that storage space.
The mirroring process starts after you perform this step. Repeat this step for all the storage spaces that you want to mirror. See Using mirroring.

Copyright© 2020 HCL Technologies Limited

Enable the MIRROR configuration parameter

You can set the MIRROR configuration parameter to enable (or disable) mirroring.

Part VI: Administering 231

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Enabling mirroring starts the database server functions required for mirroring tasks. However, when you enable mirroring, you do not initiate the mirroring process.
Mirroring does not actually start until you create mirror chunks for a dbspace, blobspace, or sbspace. See Using mirroring.

Enable mirroring when you initialize the database server if you plan to create a mirror for the root dbspace as part of initialization; otherwise, leave mirroring disabled. If
you later decide to mirror a storage space, you can change the value of the MIRROR configuration parameter.

To enable mirroring for the database server, you must set the MIRROR parameter in onconfig to 1. The default value of MIRROR is 0, indicating that mirroring is disabled.

Do not set the MIRROR parameter to 1 if you are not using mirroring.

To change the value of MIRROR, you can edit the onconfig file with a text editor while the database server is in online mode. After you change the onconfig file, take the
database server offline and then to quiescent for the change to take effect.

Copyright© 2020 HCL Technologies Limited

Allocate disk space for mirrored data

Before you can create a mirror chunk, you must allocate disk space for this purpose. You can allocate either raw disk space or cooked file space for mirror chunks. For an
explanation of allocating disk space, see Allocate disk space.

Always allocate disk space for a mirror chunk on a different disk than the corresponding primary chunk with, ideally, a different controller. You can use this setup to access
the mirror chunk if the disk on which the primary chunk is located goes down, or vice versa.

Link chunks (UNIX)
 Relink a chunk to a device after a disk failure

Copyright© 2020 HCL Technologies Limited

Link chunks (UNIX)

Use the UNIX link (ln) command to link the actual files or raw devices of the mirror chunks to mirror path names. If a disk failure occurs, you can link a new file or raw
device to the path name, eliminating the necessity to physically replace the disk that failed before the chunk is brought back online.

Copyright© 2020 HCL Technologies Limited

Relink a chunk to a device after a disk failure

On UNIX, if the disk on which the actual mirror file or raw device is located goes down, you can relink the chunk to a file or raw device on a different disk. If you do this, you
can recover the mirror chunk before the disk that failed is brought back online. Typical UNIX commands that you can use for relinking are shown in the following examples.

The original setup consists of a primary root chunk and a mirror root chunk, which are linked to the actual raw disk devices, as follows:

ln -l
lrwxrwxrwx 1 informix 10 May 3 13:38 /dev/root@->/dev/rxy0h
lrwxrwxrwx 1 informix 10 May 3 13:40 /dev/mirror_root@->/dev/rsd2b

Assume that the disk on which the raw device /dev/rsd2b is located has gone down. You can use the rm command to remove the corresponding symbolic link, as follows:

rm /dev/mirror_root

Now you can relink the mirror chunk path name to a raw disk device, on a disk that is running, and proceed to recover the chunk, as follows:

ln -s /dev/rab0a /dev/mirror_root

Copyright© 2020 HCL Technologies Limited

Using mirroring

Mirroring starts when you create a mirror chunk for each primary chunk in a dbspace, blobspace, or sbspace.

When you create a mirror chunk, the database server copies data from the primary chunk to the mirror chunk. When this process is complete, the database server begins
mirroring data. If the primary chunk contains logical-log files, the database server does not copy the data immediately after you create the mirror chunk but waits until you
perform a level-0 backup. For an explanation of this behavior see Creation of a mirror chunk.
Important: You must always start mirroring for an entire dbspace, blobspace, or sbspace. The database server does not permit you to select particular chunks in a
dbspace, blobspace, or sbspace to mirror. You must create mirror chunks for every chunk in the space.
You start mirroring a storage space when you perform the following operations:

Create a mirrored root dbspace during system initialization
Change the status of a dbspace from unmirrored to mirrored
Create a mirrored dbspace, blobspace, or sbspace

Each of these operations requires you to create mirror chunks for the existing chunks in the storage space.

232 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Mirroring the root dbspace during initialization
Change the mirror status

Copyright© 2020 HCL Technologies Limited

Mirroring the root dbspace during initialization

If you enable mirroring when you initialize the database server, you can also specify a mirror path name and offset for the root chunk. The database server creates the
mirror chunk when the server is initialized. However, because the root chunk contains logical-log files, mirroring does not actually start until you perform a level-0 backup.

To specify the root mirror path name and offset, set the values of MIRRORPATH and MIRROROFFSET in the onconfig file before you start the database server.

If you do not provide a mirror path name and offset, but you do want to start mirroring the root dbspace, you must change the mirroring status of the root dbspace after
the database server is initialized.

Copyright© 2020 HCL Technologies Limited

Change the mirror status

You can make the following two changes to the status of a mirror chunk:

Change a mirror chunk from online to down
Change a mirror chunk from down to recovery

You can take down or restore a chunk only if it is part of a mirrored pair. You can take down either the primary chunk or the mirror chunk, as long as the other chunk in the
pair is online.

For information about how to determine the status of a chunk, see Monitor disk usage.

Copyright© 2020 HCL Technologies Limited

Manage mirroring

You can use the onspaces utility to manage mirroring.

For a full description of the onspaces syntax, see The onspaces utility in the IBM® Informix® Administrator's Reference.

Start mirroring for unmirrored storage spaces
 You can prepare mirroring for a dbspace, blobspace, or sbspace at any time. However, the mirroring does not start until you perform a level-0 backup.

Start mirroring for new storage spaces
 You can also start mirroring when you create a new dbspace, blobspace, or sbspace.

Add mirror chunks
 Swap mirror chunk
 Take down a mirror chunk

 Recover a mirror chunk
 End mirroring

Copyright© 2020 HCL Technologies Limited

Start mirroring for unmirrored storage spaces

You can prepare mirroring for a dbspace, blobspace, or sbspace at any time. However, the mirroring does not start until you perform a level-0 backup.

Start mirroring for unmirrored dbspaces using onspaces

Copyright© 2020 HCL Technologies Limited

Start mirroring for unmirrored dbspaces using onspaces

You can use the onspaces utility to start mirroring a dbspace, blobspace, or sbspace. For example, the following onspaces command starts mirroring for the dbspace
db_project, which contains two chunks, data1 and data2:

onspaces -m db_project\
-p /dev/data1 -o 0 -m /dev/mirror_data1 0\
-p /dev/data2 -o 5000 -m /dev/mirror_data2 5000

The following example shows how to turn on mirroring for a dbspace called sp1. You can either specify the primary path, primary offset, mirror path, and mirror offset in
the command or in a file.

Part VI: Administering 233

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

onspaces -m sp1 -f mirfile

The mirfile file contains the following line:

/ix/9.3/sp1 0 /ix/9.2/sp1mir 0

In this line, /ix/9.3/sp1 is the primary path, 0 is the primary offset, /ix/9.3/sp1mir is the mirror path, and 0 is the mirror offset.

Copyright© 2020 HCL Technologies Limited

Start mirroring for new storage spaces

You can also start mirroring when you create a new dbspace, blobspace, or sbspace.

Start mirroring for new spaces using onspaces

Copyright© 2020 HCL Technologies Limited

Start mirroring for new spaces using onspaces

You can use the onspaces utility to create a mirrored dbspace. For example, the following command creates the dbspace db_acct with an initial chunk /dev/chunk1 and a
mirror chunk /dev/mirror_chk1:

onspaces -c -d db_acct -p /dev/chunk1 -o 0 -s 2500 -m /dev/mirror_chk1 0

Another way to start mirroring is to select Index by Utility > onspaces -m.

Copyright© 2020 HCL Technologies Limited

Add mirror chunks

If you add a chunk to a dbspace, blobspace, or sbspace that is mirrored, you must also add a corresponding mirror chunk.

Add mirror chunks using onspaces

Copyright© 2020 HCL Technologies Limited

Add mirror chunks using onspaces

You can use the onspaces utility to add a primary chunk and its mirror chunk to a dbspace, blobspace, or sbspace. The following example adds a chunk, chunk2, to the
db_acct dbspace. Because the dbspace is mirrored, a mirror chunk, mirror_chk2, is also added.

onspaces -a db_acct -p /dev/chunk2 -o 5000 -s 2500 -m /dev/mirror_chk2 5000

Copyright© 2020 HCL Technologies Limited

Swap mirror chunk

You can use the swap_mirror command to swap a mirror chunk and a primary chunk, making the original primary chunk the mirror, and the original mirror chunk the new
primary. This operation is especially useful as an on-line method of migrating chunks to a newer, faster set of disk drives.

To swap a single mirrored chunk, use the following command:

execute function task("modify chunk swap_mirror",<chunk number>).

To swap all the chunks in a mirrored space, use the following command:

execute function task("modify space swap_mirrors","<space name>").

Note: You cannot swap a chunk if either its primary or mirror is down.

Copyright© 2020 HCL Technologies Limited

Take down a mirror chunk

234 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

When a mirror chunk is down, the database server cannot write to it or read from it. You might take down a mirror chunk to relink the chunk to a different device. (See
Relink a chunk to a device after a disk failure.)

Taking down a chunk is not the same as ending mirroring. You end mirroring for a complete dbspace, which causes the database server to drop all the mirror chunks for
that dbspace.

Take down mirror chunks using onspaces

Copyright© 2020 HCL Technologies Limited

Take down mirror chunks using onspaces

You can use the onspaces utility to take down a chunk. The following example takes down a chunk that is part of the dbspace db_acct:

onspaces -s db_acct -p /dev/mirror_chk1 -o 0 -D

Copyright© 2020 HCL Technologies Limited

Recover a mirror chunk

To begin mirroring the data in the chunk that is online, you must recover the down chunk.

Recover a mirror chunk using onspaces

Copyright© 2020 HCL Technologies Limited

Recover a mirror chunk using onspaces

You can use the onspaces -s utility to recover a down chunk. For example, to recover a chunk that has the path name /dev/mirror_chk1 and an offset of 0 KB, issue the
following command:

onspaces -s db_acct -p /dev/mirror_chk1 -o 0 -O

Copyright© 2020 HCL Technologies Limited

End mirroring

When you end mirroring for a dbspace, blobspace, or sbspace, the database server immediately releases the mirror chunks of that space. These chunks are immediately
available for reassignment to other storage spaces.

Only users informix and root on UNIX or members of the Informix-Admin group on Windows can end mirroring.

You cannot end mirroring if any of the primary chunks in the dbspace are down. The system can be in online mode when you end mirroring.

End mirroring using onspaces

Copyright© 2020 HCL Technologies Limited

End mirroring using onspaces

You can end mirroring with the onspaces utility. For example, to end mirroring for the root dbspace, enter the following command:

onspaces -r rootdbs

Another way to end mirroring is to select Index by Utility > onspaces -r.

Copyright© 2020 HCL Technologies Limited

Consistency checking

IBM® Informix® database servers are designed to detect database server malfunctions or problems caused by hardware or operating-system errors. It detects problems
by performing assertions in many of its critical functions. An assertion is a consistency check that verifies that the contents of a page, structure, or other entity match what
would otherwise be assumed.

Part VI: Administering 235

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

When one of these checks finds that the contents are incorrect, the database server reports an assertion failure and writes text that describes the check that failed in the
database server message log. The database server also collects further diagnostics information in a separate file that might be useful to IBM Informix Technical Support
staff.

These topics provide an overview of consistency-checking measures and ways of handling inconsistencies.

Perform periodic consistency checking
 Deal with corruption

 Collect diagnostic information
 Disable I/O errors

 Monitor the database server for disabling I/O errors

Related reference:
 Database server maintenance tasks

Copyright© 2020 HCL Technologies Limited

Perform periodic consistency checking

To gain the maximum benefit from consistency checking and to ensure the integrity of dbspace backups, you must periodically take the following actions:

Verify that all data and the database server overhead information is consistent.
Check the message log for assertion failures while you verify consistency.
Create a level-0 dbspace backup after you verify consistency.

The following topics describe each of these actions.

Verify consistency
 Monitor for data inconsistency

 Retain consistent level-0 backups

Copyright© 2020 HCL Technologies Limited

Verify consistency

Because of the time required for this check and the possible contention that the check can cause, schedule this check for times when activity is at its lowest. You must
perform this check just before you create a level-0 backup.

Run the commands shown in the following table as part of the consistency check.
Table 1. Checking data consistency

Type of validation Command

System catalog tables oncheck -cc

Data oncheck -cD dbname

Extents oncheck -ce

Indexes oncheck -cI dbname

Reserved pages oncheck -cr

Logical logs and reserved pages oncheck -cR

Metadata and smart large objects oncheck -cs
You can run each of these commands while the database server is in online mode. For information about how each command locks objects as it checks them and which
users can perform validations, see oncheck in the IBM® Informix® Administrator's Reference.

In most cases, if one or more of these validation procedures detects an error, the solution is to restore the database from a dbspace backup. However, the source of the
error might also be your hardware or operating system.

Validate system catalog tables
 Validate data pages

 Validate extents
 Validate indexes
 If an index is corrupted, the database server cannot use it in queries.

Validate logical logs
 Validate reserved pages

 Validate metadata

Copyright© 2020 HCL Technologies Limited

Validate system catalog tables

To validate system catalog tables, use the oncheck -cc command.

236 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Each database contains its own system catalog, which contains information about the database tables, columns, indexes, views, constraints, stored procedures, and
privileges.

If a warning is displayed when validation completes, its only purpose is to alert you that no records of a specific type were found. These warnings do not indicate any
problem with your data, your system catalog, or even your database design. This warning indicates only that no synonym exists for any table; that is, the system catalog
contains no records in the table syssyntable. For example, the following warning might be displayed if you validate system catalog tables for a database that has no
synonyms defined for any table:

WARNING: No syssyntable records found.

However, if you receive an error message when you validate system catalog tables, the situation is quite different. Contact IBM® Informix® Technical Support immediately.

Copyright© 2020 HCL Technologies Limited

Validate data pages

To validate data pages, use the oncheck -cD command.

If data-page validation detects errors, try to unload the data from the specified table, drop the table, recreate the table, and reload the data. For information about loading
and unloading data, see the IBM® Informix® Migration Guide. If this procedure does not succeed, perform a data restore from a storage-space backup.

Copyright© 2020 HCL Technologies Limited

Validate extents

To validate extents in every database, use the oncheck -ce command.

Extents must not overlap. If this command detects errors, perform a data restore from a storage-space backup.

Copyright© 2020 HCL Technologies Limited

Validate indexes

If an index is corrupted, the database server cannot use it in queries.

You can validate indexes on each of the tables in the database by using the oncheck -cI command.

In addition, the Scheduler task bad_index_alert looks for indexes that have been marked as corrupted by the server. This task runs nightly. An entry is made into the
sysadmin:ph_alert table for each corrupted index found by the task.

If an index is corrupted, drop and recreate it.

Copyright© 2020 HCL Technologies Limited

Validate logical logs

To validate logical logs and the reserved pages, use the oncheck -cR command.

Copyright© 2020 HCL Technologies Limited

Validate reserved pages

To validate reserved pages, use the oncheck -cr command.

Reserved pages are pages that are located at the beginning of the initial chunk of the root dbspace. These pages contain the primary database server overhead
information. If this command detects errors, perform a data restore from storage-space backup.

This command might provide warnings. In most cases, these warnings call your attention to situations of which you are already aware.

Copyright© 2020 HCL Technologies Limited

Validate metadata

Run oncheck -cs for each database to validate metadata for all smart large objects in a database. If necessary, restore the data from a dbspace backup.

Part VI: Administering 237

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Monitor for data inconsistency

If the consistency-checking code detects an inconsistency during database server operation, an assertion failure is reported to the database server message log. (See the
message-log topics in the IBM® Informix® Administrator's Reference.)

Read assertion failures in the message log and dump files
 Validate table and tblspace data

Copyright© 2020 HCL Technologies Limited

Read assertion failures in the message log and dump files

The following example shows the form that assertion failures take in the message log.

Assert Failed: Short description of what failed
 Who: Description of user/session/thread running at the time
 Result: State of the affected database server entity
 Action: What action the database server administrator should take
 See Also: file(s) containing additional diagnostics

The See Also: line contains one or more of the following file names:

af.xxx
shmem.xxx
gcore.xxx
gcore.xxx
/path name/core

In all cases, xxx is a hexadecimal number common to all files associated with the assertion failures of a single thread. The files af.xxx, shmem.xxx, and gcore.xxx are in the
directory that the ONCONFIG parameter DUMPDIR specifies.

The file af.xxx contains a copy of the assertion-failure message that was sent to the message log, and the contents of the current, relevant structures and data buffers.

The file shmem.xxx contains a complete copy of the database server shared memory at the time of the assertion failure, but only if the ONCONFIG parameter
DUMPSHMEM is set to 1 or to 2.

UNIX only: On UNIX, gcore.xxx contains a core dump of the database server virtual process on which the thread was running at the time, but only if the ONCONFIG
parameter DUMPGCORE is set to 1 and your operating system supports the gcore utility. The core file contains a core dump of the database server virtual process on
which the thread was running at the time, but only if the ONCONFIG parameter DUMPCORE is set to 1. The path name for the core file is the directory from which the
database server was last invoked.

Copyright© 2020 HCL Technologies Limited

Validate table and tblspace data

To validate table and tblspace data, use the oncheck -cD command on the database or table.

Most of the general assertion-failure messages are followed by additional information that usually includes the tblspace where the error was detected. If this check
verifies the inconsistency, unload the data from the table, drop the table, recreate the table, and reload the data. Otherwise, no other action is required.

In many cases, the database server stops immediately when an assertion fails. However, when failures seem to be specific to a table or smaller entity, the database server
continues to run.

When an assertion fails because of inconsistencies on a data page that the database server accesses on behalf of a user, an error is also sent to the application process.
The SQL error depends on the operation in progress. However, the ISAM error is almost always either -105 or -172, as follows:

-105 ISAM error: bad isam file format
-172 ISAM error: Unexpected internal error

For additional details about the objectives and contents of messages, see the topics about message-log messages in the IBM® Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Retain consistent level-0 backups

After you perform the checks described in Verify consistency without errors, create a level-0 backup. Retain this storage-space backup and all subsequent logical-log
backup tapes until you complete the next consistency check. Perform the consistency checks before every level-0 backup. If you do not, then at minimum keep all the
tapes necessary to recover from the storage-space backup that was created immediately after the database server was verified to be consistent.

Copyright© 2020 HCL Technologies Limited

238 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Deal with corruption

This section describes some of the symptoms of database server system corruption and actions that the database server or you, as administrator, can take to resolve the
problems. Corruption in a database can occur as a consequence of hardware or operating-system problems, or from some unknown database server problems. Corruption
can affect either data or database server overhead information.

Find symptoms of corruption
 You can find information about corruption several different ways.

Fix index corruption
 Fix I/O errors on a chunk

Copyright© 2020 HCL Technologies Limited

Find symptoms of corruption

You can find information about corruption several different ways.

The database server alerts the user and administrator to possible corruption in the following ways:

Error messages reported to the application state that pages, tables, or databases cannot be found. One of the following errors is always returned to the application
if an operation has failed because of an inconsistency in the underlying data or overhead information:

-105 ISAM error: bad isam file format
-172 ISAM error: Unexpected internal error

Assertion-failure reports are written to the database server message log. They always indicate files that contain additional diagnostic information that can help you
determine the source of the problem. See Verify consistency.
The oncheck utility returns errors
The ph_alert table shows information about corrupted indexes.

Copyright© 2020 HCL Technologies Limited

Fix index corruption

At the first indication of corruption, run the oncheck -cI command to determine if corruption exists in the index.

If you check indexes while the database server is in online mode, oncheck detects the corruption but does not prompt you for repairs. If corruption exists, you can drop
and recreate the indexes using SQL statements while you are in online mode (the database server locks the table and index). If you run oncheck -cI in quiescent mode
and corruption is detected, you are prompted to confirm whether the utility attempts to repair the corruption.

Copyright© 2020 HCL Technologies Limited

Fix I/O errors on a chunk

If an I/O error occurs during the database server operation, the status of the chunk on which the error occurred changes to down.

If a chunk is down, the onstat -d display shows the chunk status as PD- for a primary chunk and MD- for a mirror chunk. For an example of onstat -d output, see the IBM®
Informix® Administrator's Reference.

In addition, the message log lists a message with the location of the error and a suggested solution. The listed solution is a possible fix, but does not always correct the
problem.

If the down chunk is mirrored, the database server continues to operate using the mirror chunk. Use operating-system utilities to determine what is wrong with the down
chunk and correct the problem. You must then direct the database server to restore mirror chunk data.

For information about recovering a mirror chunk, see Recover a mirror chunk.

If the down chunk is not mirrored and contains logical-log files, the physical log, or the root dbspace, the database server immediately initiates a stop action. Otherwise,
the database server can continue to operate but cannot write to or read from the down chunk or any other chunks in the dbspace of that chunk. You must take steps to
determine why the I/O error occurred, correct the problem, and restore the dbspace from a backup.

If you take the database server to offline mode when a chunk is marked as down (D), you can restart the database server, provided that the chunk marked as down does
not contain critical data (logical-log files, the physical log, or the root dbspace).

Copyright© 2020 HCL Technologies Limited

Collect diagnostic information

Part VI: Administering 239

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Several ONCONFIG parameters affect the way in which the database server collects diagnostic information. Because an assertion failure is generally an indication of an
unforeseen problem, notify IBM® Informix® Technical Support whenever one occurs. The diagnostic information collected is intended for the use of IBM Informix technical
staff. The contents and use of af.xxx files and shared core are not further documented.

To determine the cause of the problem that triggered the assertion failure, it is critically important that you not delete diagnostic information until IBM Informix Technical
Support indicates that you can do so. The af.xxx file often contains information that they require to resolve the problem.

Several ONCONFIG parameters direct the database server to preserve diagnostic information whenever an assertion failure is detected or whenever the database server
enters into an end sequence:

DUMPDIR
DUMPSHMEM
DUMPCNT
DUMPCORE
DUMPGCORE

For more information about the configuration parameters, see the IBM Informix Administrator's Reference.

You decide whether to set these parameters. Diagnostic output can use a large amount of disk space. (The exact content depends on the environment variables set and
your operating system.) The elements of the output can include a copy of shared memory and a core dump.
Tip: A core dump is an image of a process in memory at the time that the assertion failed. On some systems, core dumps include a copy of shared memory. Core dumps are
useful only if this is the case.
Database server administrators with disk-space constraints might prefer to write a script that detects the presence of diagnostic output in a specified directory and sends
the output to tape. This approach preserves the diagnostic information and minimizes the amount of disk space used.

Copyright© 2020 HCL Technologies Limited

Disable I/O errors

IBM® Informix® divides disabling I/O errors into two general types: destructive and nondestructive. A disabling I/O error is destructive when the disk that contains a
database becomes damaged in some way. This type of event threatens the integrity of data, and the database server marks the chunk and dbspace as down. The database
server prohibits access to the damaged disk until you repair or replace the disk and perform a physical and logical restore.

A disabling I/O error is nondestructive when the error does not threaten the integrity of your data. Nondestructive errors occur when someone accidentally disconnects a
cable, you somehow erase the symbolic link that you set up to point to a chunk, or a disk controller becomes damaged.

Before the database server considers an I/O error to be disabling, the error must meet two criteria. First, the error must occur when the database server attempts to
perform an operation on a chunk that has at least one of the following characteristics:

The chunk has no mirror.
The primary or mirror companion of the chunk under question is offline.

Second, the error must occur when the database server attempts unsuccessfully to perform one of the following operations:

Seek, read, or write on a chunk
Open a chunk
Verify that chunk information about the first used page is valid
The database server performs this verification as a sanity check immediately after it opens a chunk.

You can prevent the database server from marking a dbspace as down while you investigate disabling I/O errors. If you find that the problem is trivial, such as a loose
cable, you can bring the database server offline and then online again without restoring the affected dbspace from backup. If you find that the problem is more serious,
such as a damaged disk, you can use onmode -O to mark the affected dbspace as down and continue processing.

Copyright© 2020 HCL Technologies Limited

Monitor the database server for disabling I/O errors

The database server notifies you about disabling I/O errors in two ways:

Message log
Event alarms

The message log to monitor disabling I/O errors
 The database server sends a message to the message log when a disabling I/O error occurs.

Event alarms to monitor disabling I/O errors
 When a dbspace incurs a disabling I/O error, the database server passes the specified values as parameters to your event-alarm executable file.

No bad-sector mapping

Copyright© 2020 HCL Technologies Limited

The message log to monitor disabling I/O errors

The database server sends a message to the message log when a disabling I/O error occurs.

240 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The message is:

Assert Failed: Chunk {chunk-number} is being taken OFFLINE.
Who: Description of user/session/thread running at the time
Result: State of the affected database server entity
Action: What action the database server administrator should take
See Also: DUMPDIR/af.uniqid containing more diagnostics

The result and action depend on the current setting of ONDBSPACEDOWN, as described in the following table.

ONDBSPACEDOWN setting Result Action

0 Dbspace {space_name} is disabled. Restore dbspace {space_name}.

 Blobspace {space_name} is disabled. Restore blobspace {space_name}.

1 The database server must stop. Shut down and restart the database server.

2 The database server blocks at next checkpoint. Use onmode -k to shut down, or use onmode -O to
override.

The value of ONDBSPACEDOWN has no affect on temporary dbspaces. For temporary dbspaces, the database server continues processing regardless of the
ONDBSPACEDOWN setting. If a temporary dbspace requires fixing, you can drop and recreate it.

For more information about interpreting messages that the database server sends to the message log, see the topics about message-log messages in the IBM® Informix®
Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Event alarms to monitor disabling I/O errors

When a dbspace incurs a disabling I/O error, the database server passes the specified values as parameters to your event-alarm executable file.

Event alarm values:
Severity

4 (Emergency)
Class

5
Class message

Dbspace is disabled: 'dbspace-name'
Specific message

Chunk {chunk-number} is being taken OFFLINE.
Event ID

5001

If you want the database server to use event alarms to notify you about disabling I/O errors, write a script that the database server executes when it detects a disabling
I/O error. For information about how to set up this executable file that you write, see the appendix on event alarms and the topics on configuration parameters in the IBM®
Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

No bad-sector mapping

IBM® Informix® relies on the operating system of your host computer for bad-sector mapping. The database server learns of a bad sector or a bad track when it receives a
failure return code from a system call. When this situation occurs, the database server retries the access several times to ensure that the condition is not spurious. If the
condition is confirmed, the database server marks as down the chunk where the read or write was attempted.

The database server cannot take any action to identify the bad cylinder, track, or sector location because the only information available is the byte displacement within the
chunk where the I/O operation was attempted.

If the database server detects an I/O error on a chunk that is not mirrored, it marks the chunk as down. If the down chunk contains logical-log files, the physical log, or the
root dbspace, the database server immediately initiates a stop action. Otherwise, the database server can continue to operate, but applications cannot access the down
chunk until its dbspace is restored.

Copyright© 2020 HCL Technologies Limited

High availability and scalability

A successful production environment requires database systems that are always available, with minimal if any planned outages, and that can be scaled quickly and easily
as business requirements change.

Businesses must provide continuous access to database resources during planned and unplanned outages. Planned outages include scheduled maintenance of software
or hardware. Unplanned outages are unexpected system failures such as power interruptions, network outages, hardware failures, operating system or other software
errors. In the event of a disaster, such as an earthquake or a tsunami, there is the possibility of extensive system failure.

Part VI: Administering 241

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Businesses want to avoid overloading a server in the system to ensure data availability and to prevent, for example, denial of service attacks.

Businesses also want to quickly and easily expand their systems as their business grows, during seasonal business peak periods, and for end-of-month or end-of-year
processing.

Systems with one or more of the following abilities can be resilient to outages and can improve the availability of data:

Redundancy
The ability of a system to maintain secondary servers that are copies of the primary server and that can take over from the primary server if a failure occurs.

Failover
The ability of a system to transfer all of the workload from a failed server to another server.

Workload balancing
The ability of a system to automatically direct client requests to the server with the most workload capacity.

Scalability
The ability of a system to take advantage of additional resources, such as database servers, processors, memory, or disk space.

Minimized affect on maintenance
The ability to maintain all servers quickly and easily so that user applications are affected a little as possible.

Strategies for high availability and scalability
 IBM Informix database software can be customized to create the appropriate high availability and scalability solution to match your business goals and

environment.
High-availability cluster configuration

 Cluster administration
 Connection management through the Connection Manager

 Connection Managers can control automatic failover for high-availability clusters, monitor client connections and direct requests to appropriate database servers,
act as proxy servers and handle client/server communication, and prioritize connections between application servers and the primary server of a high-availability
cluster. Connection Managers support high-availability clusters, replicate sets, server sets, and grids.
Cluster failover, redirection, and restoration

 To maintain availability, you must plan for the failover of primary servers, redirecting client connections from unavailable servers, and restoring the cluster to its
original configuration after a failure.

Related concepts:
 Feature configuration

XA in high-availability clusters

Copyright© 2020 HCL Technologies Limited

Strategies for high availability and scalability

IBM® Informix® database software can be customized to create the appropriate high availability and scalability solution to match your business goals and environment.

To determine the best way to customize your database system for high availability and scalability, you must identify the strategies that help you achieve your business
goals. You can use the appropriate technologies and components to support those strategies.

Components supporting high availability and scalability
 IBM Informix database software can be customized to create systems that provide uninterrupted services, minimize maintenance and downtime, automatically

redirect client connection requests to the most appropriate database servers, and distribute both processing and storage across hardware.
Transparent scaling and workload balancing strategies

 IBM Informix servers scale easily and they dynamically balance workloads to ensure optimal use of resources.
High availability strategies

 IBM Informix can be configured to maximize availability in various business situations.

Copyright© 2020 HCL Technologies Limited

Components supporting high availability and scalability

IBM® Informix® database software can be customized to create systems that provide uninterrupted services, minimize maintenance and downtime, automatically redirect
client connection requests to the most appropriate database servers, and distribute both processing and storage across hardware.

High-availability clusters
A high-availability cluster consists of a primary server that contains the master copy of data, and is securely networked to at least one secondary server that is
synchronized with the primary server or has access to the primary server's data. Transactions are sent to secondary servers after they are committed on the primary
server, so database data is reliable. If the primary server fails, a secondary server can become the primary server, and client connections can be redirected to the new
primary server.

High-availability cluster servers are configured with identical hardware and software. High-availability cluster servers can be in close proximity or geographically remote
from each other, and applications can securely connect to any of the cluster servers.

There are three types of secondary servers:

Shared-disk (SD) secondary servers, which share disk space with the primary server.
High-availability data replication (HDR) secondary servers, which maintain synchronously or asynchronously updated copies of the entire primary server and can be
accessed quickly if the primary server fails.
Remote stand-alone (RS) secondary servers, which maintain asynchronously updated copies of the entire primary server, and can serve as remote-backup servers
in disaster-recovery scenarios.

242 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Enterprise Replication
Using Enterprise Replication, you can maintain complete or partial copies of your data across multiple servers by replicating transactions. Data is replicated
asynchronously through transactions captured from the logical log. If a remote database server or network failure occurs, a local database server can service local users,
and store transactions to be replicated until remote servers become available. At each database server, Enterprise Replication reads the logical logs to capture locally
originating transactions, and then replicates those transactions to other database servers in the Enterprise Replication domain.

Shard clusters
IBM Informix can horizontally partition (shard) a table or collection across multiple database servers. The set of database servers that data is sharded across is called a
shard cluster, and each of the database servers in the set is a shard server. Distributing rows or documents across a shard cluster reduces the size of the associated index
on each shard server, and distributes performance across your hardware. As your database grows in size, you can scale up by adding more database servers. Horizontal
partitioning is also known as sharding.

Rows or documents that are inserted on one shard server can be replicated or sent to other shard servers, depending on the sharding rules you specify. Queries that are
performed on a shard server can select data from other shard servers in a shard cluster. When data is sharded based on a replication key that specifies certain
segmentation characteristics, queries can skip shard servers that do not contain relevant data. This query optimization is another benefit that comes from data sharding.

Connection management
The Connection Manager is a utility that can monitor the workload and status of database servers in high-availability clusters, Enterprise Replication domains, grids, and
server sets, and then use a redirection policy to send client connection requests to the most appropriate database server. Connection Managers can also act as proxy
servers to handle client/server communication and circumvent connection issues that are related to firewalls.
Connection Managers can control failover for high-availability clusters, automatically promoting secondary servers to the role of the primary server if the original primary
server fails.

If a partial network failure occurs, Connection Managers can prioritize connections between application servers and the primary server of a high-availability cluster, to
better define failover.

Grids
A grid is a set of interconnected replication servers, where SQL commands can be propagated from one server to all the others. Grids provide an easier way to administer a
large group of servers, update database schemas, run stored procedures and user-defined routines, and administer replication.

Advantages of data replication

Related concepts:
 Connection management through the Connection Manager

Related information:
 JSON data sharding

Shard cluster setup
Grid setup and management
Setting up and managing Enterprise Replication

Copyright© 2020 HCL Technologies Limited

Advantages of data replication

The advantages of data replication do not come without a cost. Data replication obviously requires more storage, and updating replicated data can take more processing
time than updating a single object.

You can implement data replication in the logic of client applications by explicitly specifying where data must be updated. However, this method of achieving data
replication is costly, prone to error, and difficult to maintain. Instead, the concept of data replication is often coupled with replication transparency. Replication
transparency is built into a database server (instead of into client applications) to handle automatically the details of locating and maintaining data replicas.

Clustering versus mirroring
 Clustering versus two-phase commit

 Type of data replicated in clusters
 Primary and secondary database servers

Copyright© 2020 HCL Technologies Limited

Clustering versus mirroring

Clustering and mirroring are transparent methods for increasing fault tolerant.

Mirroring, described Mirroring, is the mechanism by which a single database server maintains a copy of a specific dbspace on a separate disk. This mechanism protects
the data in mirrored dbspaces against disk failure because the database server automatically updates data on both disks and automatically uses the other disk if one of
the dbspaces fails.

Alternatively, a cluster duplicates on an entirely separate database server all the data that a database server manages, not just the specified dbspaces. Because clustering
involves two separate database servers, it protects the data that these database servers manage, not just against disk failures, but against all types of database server
failures, including a computer failure or the catastrophic failure of an entire site.
Figure 1. A comparison of mirroring and clustering

Part VI: Administering 243

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Clustering versus two-phase commit

The two-phase commit protocol, described in detail in Multiphase commit protocols, ensures that transactions are uniformly committed or rolled back across multiple
database servers.

In theory, you can take advantage of two-phase commit to replicate data by configuring two database servers with identical data and then defining triggers on one of the
database servers that replicate updates to the other database server. However, this sort of implementation has numerous synchronization problems in different failure
scenarios. Also, the performance of distributed transactions is inferior to clustering.

Copyright© 2020 HCL Technologies Limited

Type of data replicated in clusters

A high-availability cluster replicates data in dbspaces and sbspaces, but does not replicate data in blobspaces.

All built-in and extended data types are replicated to the secondary server. User-defined types (UDTs) must be logged and are located in a single database server. Data
types with out-of-row data are replicated if the data is stored in an sbspace or in a different table on the same database server. For data stored in an sbspace to be
replicated, the sbspace must be logged.

Data stored in operating system files or persistent external files or memory objects associated with user-defined routines are not replicated.

User-defined types, user-defined routines, and DataBlade modules have special installation and registration requirements. For instructions, see How data initially
replicates.

Copyright© 2020 HCL Technologies Limited

Primary and secondary database servers

When you configure a set of database servers to use data replication, one database server is called the primary database server, and the others are called secondary
database servers. (In this context, a database server that does not use data replication is called a standard database server.) The secondary server can include any
combination of the SD secondary, RS secondary, and HDR secondary servers.

As the following figure illustrates, the secondary database server is dynamically updated, with changes made to the data that the primary database server manages.
Figure 1. A primary and secondary database server in a data replication configuration

If one of the database servers fails, as the following figure shows, you can redirect the clients that use that database server to the other database server in the pair, which
becomes the primary server.
Figure 2. Database servers and clients in a data replication configuration after a failure

244 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Transparent scaling and workload balancing strategies

IBM® Informix® servers scale easily and they dynamically balance workloads to ensure optimal use of resources.

IBM Informix can address these objectives:

Periodically increase capacity
Geographically disperse processing and increase capacity
Balance workload to optimize resource use

Periodically increase capacity
If your business environment experiences peak periods, you might be required to periodically increase capacity. You can increase capacity by adding a remote stand-alone
secondary server. That type of secondary server maintains a complete copy of the data, with updates transmitted asynchronously from the primary server over secure
network connections. If the amount of data is large and making multiple copies of it is difficult, use shared-disk secondary servers instead of remote stand-alone
secondary servers. You can use high-availability data replication (HDR) secondary servers if you want to increase capacity only for reporting (read-only) workloads.

Table 1. Scalability with shared-disk secondary servers

Advantages Potential disadvantages

High availability. This secondary server shares disks with
the primary server.

No failover. The secondary server might be configured to run on the same computer hardware as
the primary server.
No data redundancy. This secondary server does not maintain a copy of the data. (Use SAN
devices for disk storage.)
The primary and secondary servers require the same hardware, operating system, and version of
the database server product.

Use an SD secondary server for these reasons:

Increased reporting capacity
Multiple secondary servers can offload reporting function without affecting the primary server.

Server failure backup
If a failure of the primary server, an SD secondary can be promoted quickly and easily to a primary server. For example, if you are using SAN (storage area network)
devices that provide ample and reliable disk storage but you are concerned with server failure, SD secondary servers can provide a reliable backup.

Table 2. Scalability with remote stand-alone secondary servers

Advantages Potential disadvantages

Data redundancy. This secondary server maintains a copy of the data.
Failover. The secondary server can be geographically remote from the primary
server, such as in another building, another town, or another country.
No requirement to change applications. Client connections to primary or secondary
server can be automatically switched in the event of server failure.

The primary and secondary servers require the same hardware,
operating system, and version of the database server product.

Geographically disperse processing and increase capacity
Businesses with offices in various locations might want to use local servers for processing local requests instead of relying on a single, centralized server. In that case, you
can set up a network of Enterprise Replication servers. Remote database server outages are tolerated. If database server or network failure occurs, the local database
server continues to service local users. The local database server stores replicated transactions in persistent storage until the remote server becomes available.
Enterprise Replication on the local server captures transactions to be replicated by reading the logical log, storing the transactions, and reliably transmitting each
transaction as replication data to the target servers.

You can also use Enterprise Replication to set up a shard cluster, where your data is horizontally partitioned (sharded) across multiple servers. As your capacity
requirements grow, you can add additional database servers to the shard cluster, increasing your overall capacity.

Table 3. Scalability with Enterprise Replication

Advantages Potential disadvantages

The servers can be in another building, another town, or another country.
The servers can be on different hardware.
The servers can run on different operating systems.
The servers can run different versions of the database server product.
A subset of the data can be replicated (asynchronous, log-based replication).
It is possible to add shared-disk secondary servers to assist the replication servers, using multiple
Connection Managers for automatic client redirection.
You can add additional shard servers to an established shard cluster as your capacity needs
increase.

Conflicts are possible.
Transaction failures are possible. If one occurs, you
must repair inconsistent data.

Use an RS secondary server in your environment for the following reasons:

Increased server availability
One or more RS secondary servers provide added assurance by maintaining multiple servers that can be used to increase availability.

Geographically distant backup support

Part VI: Administering 245

https://www.hcltech.com/

It is often desirable to have a secondary server located at some distance from the site for worst-case disaster recovery scenarios. An RS secondary server is an
ideal remote backup solution. The high level of coordination between a primary and secondary HDR pair can cause performance issues if the secondary server is
located on a WAN (Wide-Area Network). Keeping the primary and secondary servers relatively close together eases maintenance and minimizes the affect on
performance.

Improved reporting performance
Multiple secondary servers can offload reporting function without affecting the primary server. Also, an RS secondary server configuration makes it easier to isolate
reporting requirements from the HA requirements, resulting in better solutions for both environments.

Availability over unstable networks
A slow or unstable network environment can cause delays on both the primary and secondary server if checkpoints are achieved synchronously. RS secondary
server configurations use fully duplexed networking and require no such coordination. An RS secondary server is an attractive solution if network performance
between the primary server and RS secondary server is less than optimal.

Balance workload to optimize resource use
You can configure workload balancing when you create or modify a service level agreement SLA. Informix gathers information from each server in a cluster and
automatically connects the client application to the server that has the least amount of activity.

You can create groups within a cluster that are specific to certain types of applications, such as those for online transaction processing (OLTP) or (warehouse).
Applications can choose to connect to the specific group for optimized performance of each type of query.

Related information:
 JSON data sharding

Shard cluster setup
Setting up and managing Enterprise Replication

Copyright© 2020 HCL Technologies Limited

High availability strategies

IBM® Informix® can be configured to maximize availability in various business situations.

Goal Strategy Advantages Potential disadvantages

Protect system from server failure Use a secondary server that shares disk
space with the primary server. (shared-
disk secondary server)

Very high availability. This
secondary server has access to
the same data as the primary
server. If the primary server fails,
the secondary server can take
over quickly.
The database is always in sync
because this secondary server
has access to the same data as
the primary server.
No requirement to change
applications. Client connections
to primary or secondary server
are automatically switched in the
event of server failure.

This secondary server on the
same computer as the primary
server.
No data redundancy. This
secondary server does not
maintain a copy of the data. (Use
SAN devices for disk storage.)
Primary and secondary servers
require the same hardware,
operating system, and version of
the database server product.
Secondary server hardware must
be able to handle the same load
as the primary server. If the
secondary server is too small, it
might affect the performance of
the primary.

Protection from site failure Use a secondary server that
maintains a copy of the database
server and the data. (high
availability data replication
server)
(Can also use RSS and ER)

Very high availability. Applications
can access this server quickly if
they cannot connect to a primary
server.
Data is replicated synchronously.
Increased scalability
No requirement to change
applications

Local to the primary
Requires an exact replica of the
data (including table and
database schemas).
Primary and secondary servers
require the same hardware,
operating system, and version of
the database server product.

Multilevel site failure protection Use a secondary server that is
geographically distant from the
primary server and that is
updated asynchronously from the
primary server. (remote stand-
alone secondary server)
(Can also use ER)

Very high availability. Applications
can access this server quickly if
they cannot connect to a primary
server.
Data is replicated asynchronously.
Increased scalability
No requirement to change
applications

Geographically dispersed processing
with site failure protection

ER and HDR ER and backup for ER Multiple connection managers required

Copyright© 2020 HCL Technologies Limited

246 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

High-availability cluster configuration

These topics describe how to plan, configure, start, and monitor high-availability clusters for IBM® Informix®, and how to restore data after a media failure. If you plan to
use a high-availability cluster, read all the topics within this section first. If you plan to use IBM Informix Enterprise Replication, see the .

High availability and scalability, explains what a high-availability cluster is, how it works, and how to design client applications for a cluster environment.

Plan for a high-availability cluster
 Configuring clusters

 Configure clusters by securing confirming the hardware, operating-system, and database requirements. You also set up a security protocol and the secure
connection.
Starting HDR for the First Time

 Remote standalone secondary servers
 Shared disk secondary servers

Copyright© 2020 HCL Technologies Limited

Plan for a high-availability cluster

Before you start setting up computers and database servers to use a high-availability cluster, you might want to do some initial planning. The following list contains
planning tasks to perform:

Choose and acquire appropriate hardware.
If you are using more than one database server to store data that you want to replicate, migrate and redistribute data, so that it can be managed by a single
database server.
Ensure that all databases you want to replicate use transaction logging. To turn on transaction logging, see Manage the database-logging mode.
Develop client applications to make use of both database servers in the replication pair. For an explanation of design considerations, see Redirection and
connectivity for data-replication clients and Design data replication group clients.
Create a schedule for starting HDR for the first time.
Design a storage-space and logical-log backup schedule for the primary database server.
Produce a plan for how to handle failures of either database server and how to restart HDR after a failure. Read Redirection and connectivity for data-replication
clients.

Copyright© 2020 HCL Technologies Limited

Configuring clusters

Configure clusters by securing confirming the hardware, operating-system, and database requirements. You also set up a security protocol and the secure connection.

To configure your system as a high-availability cluster, you must take the following actions:

Meet hardware and operating-system requirements.
Meet database and data requirements.
Meet database server configuration requirements.
Configure connectivity.

Each of these topics are explained in this section.

You can configure your system to use the Secure Sockets Layer (SSL) protocol, a communication protocol that ensures the privacy and integrity of data transmitted over
the network, for HDR communications. You can use the SSL protocol for connections between primary and secondary servers and for connections with remote standalone
(RS) and shared disk (SD) secondary servers in a high-availability configuration. For information about using the SSL protocol, see Configuring server-to-server SSL
connections.

The Connection Manager also supports Distributed Relational Database Architecture™ (DRDA) connections. For more information, see Distributed Relational Database
Architecture (DRDA) communications.

Hardware and operating-system requirements for clusters
 For a high-availability cluster to function, your hardware must meet certain requirements.

Database and data requirements for clusters
 For a high-availability cluster to function, your database and data must meet certain requirements.

Database server configuration requirements for clusters
 Configuring secure connections for high-availability clusters

 For a high-availability cluster to function, the database servers must establish trusted connection with each other. Secure connections between cluster servers by
using a trusted-host file on each cluster server and including the connection security option in sqlhosts file entries.

Copyright© 2020 HCL Technologies Limited

Hardware and operating-system requirements for clusters

For a high-availability cluster to function, your hardware must meet certain requirements.

Part VI: Administering 247

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Your hardware must meet the following requirements:

The primary and secondary servers must be able to run the same IBM® Informix® executable image, even if they do not have identical hardware or operating
systems. For example, you can use servers with different Linux 32-bit operating systems because those operating systems can run the same executable image. In
this situation, you cannot add a server on a Linux 64-bit operating system because that operating system requires a different executable image. Check the machine
notes file: you can use any combination of hardware and operating systems listed as supported in the same machine notes file.
The hardware that runs the primary and secondary database servers must support network capabilities.
The amount of disk space allocated to dbspaces for the primary and secondary database servers must be equal. The type of disk space is irrelevant; you can use
any mixture of raw or cooked spaces on the two database servers.
The chunks on each computer must have the same path names. Symbolic links are allowed for UNIX platforms, but not for Windows platforms.

Copyright© 2020 HCL Technologies Limited

Database and data requirements for clusters

For a high-availability cluster to function, your database and data must meet certain requirements.

Your database and data must meet the following requirements:

All data must be logged.
All databases that you want to replicate must have transaction logging turned on.

This requirement is important because the secondary database server uses logical-log records from the primary database server to update the data that it
manages. If databases managed by the primary database server do not use logging, updates to those databases do not generate log records, so the secondary
database server has no means of updating the replicated data. Logging can be buffered or unbuffered.

If you must turn on transaction logging before you start HDR, see Turn on transaction logging with ontape.

The data must be located in dbspaces or sbspaces.
If your primary database server has simple large objects stored in blobspaces, modifications to the data within those blobspaces is not replicated as part of normal
HDR processing. However, simple-large-object data within dbspaces is replicated.

Smart large objects, which are stored in sbspaces, are replicated. The sbspaces must be logged. User-defined types (UDTs) are replicated, unless they have out-of-
row data stored in operating system files. Data types with out-of-row data are replicated if the data is stored in an sbspace or in a different table on the same
database server.

You can encrypt storage spaces on high-availability servers. The encryption state of corresponding storage spaces on HDR and RS primary and secondary servers
can be different. The encryption state of corresponding storage spaces on SD primary and secondary servers must be the same.

The secondary servers must not use disk compression.
If you use the IBM® Informix® disk compression feature, data that is compressed in the source table is compressed in the target table. You cannot perform
compression operations on an HDR secondary, RS secondary, or SD secondary server, because the HDR target server must have the same data and physical layout
as the source server.

Copyright© 2020 HCL Technologies Limited

Database server configuration requirements for clusters

For a high-availability cluster server pair to function, you must fully configure each of the database servers. For information about configuring a database server, see
Overview of database server configuration and administration. You can then use the relevant aspects of that configuration to configure the other database server in the
pair. For more information about the configuration parameters, see the IBM Informix Administrator's Reference.

These topics describe the following configuration considerations for cluster database server pairs:

Database server version
 Storage space and chunk configuration

 Non-default page sizes in an HDR environment
 Mirroring

 Physical-log configuration
 Dbspace and logical-log tape backup devices

 Logical-log configuration
 High-availability cluster configuration parameters

 Cluster transaction coordination
 You can configure your high-availability cluster so that when a client session issues a commit, the server blocks the session until the transaction is applied in that

session, on a secondary server, or across the cluster. Set the CLUSTER_TXN_SCOPE configuration parameter or run the SET ENVIRONMENT CLUSTER_TXN_SCOPE
statement to configure this behavior.

Copyright© 2020 HCL Technologies Limited

Database server version

The versions of the database server on the primary and secondary database servers must be identical.

248 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Storage space and chunk configuration

The number of dbspaces, the number of chunks, their sizes, their path names, and their offsets must be identical on the primary and secondary database servers. In
addition, the configuration must contain at least one temporary dbspace if the HDR secondary server is used for creating activity reports. See Use of temporary dbspaces
for sorting and temporary tables.

UNIX Only:
You must use symbolic links for the chunk path names, as explained in Allocating raw disk space on UNIX.
Important: If you do not use symbolic links for chunk path names, you cannot easily change the path name of a chunk. For more information, see Renaming chunks.

The following ONCONFIG parameters must have the same value on each database server:

ROOTNAME
ROOTOFFSET
ROOTPATH
ROOTSIZE

Copyright© 2020 HCL Technologies Limited

Non-default page sizes in an HDR environment

The page size of a dbspace and the buffer pool specifications are automatically propagated from the primary to the secondary database server. While both the primary and
the secondary database servers must have the same buffer pools, the number of buffers in the buffer pools are not required to match.

Copyright© 2020 HCL Technologies Limited

Mirroring

You are not required to set the MIRROR parameter to the same value on the two database servers; you can enable mirroring on one database server and disable mirroring
on the other. However, if you specify a mirror chunk for the root chunk of the primary database server, you must also specify a mirror chunk for the root chunk on the
secondary database server. Therefore, the following ONCONFIG parameters must be set to the same value on both database servers:

MIRROROFFSET
MIRRORPATH

Copyright© 2020 HCL Technologies Limited

Physical-log configuration

The physical log must be identical on both database servers. The following ONCONFIG parameters must have the same value on each database server:

PHYSBUFF
PHYSFILE

Copyright© 2020 HCL Technologies Limited

Dbspace and logical-log tape backup devices

You can specify different tape devices for the primary and secondary database servers.

If you use ON-Bar, set the ON-Bar configuration parameters to the same value on both database servers. For information about the ON-Bar parameters, see the IBM®
Informix® Backup and Restore Guide.

If you use ontape, the tape size and tape block size for the storage-space and logical-log backup devices must be identical. The following ONCONFIG parameters must
have the same value on each database server:

LTAPEBLK
LTAPESIZE
TAPEBLK
TAPESIZE

To use a tape to its full physical capacity, set LTAPESIZE and TAPESIZE to 0.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 249

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Logical-log configuration

All log records are replicated to the secondary server. You must configure the same number of logical-log files and the same logical-log size for both database servers. The
following ONCONFIG parameters must have the same value on each database server:

LOGBUFF
LOGFILES
LOGSIZE
DYNAMIC_LOGS

The database server logs the addition of logical-log files. Logical-log files added dynamically on the primary server are automatically replicated on the secondary server.
Although the DYNAMIC_LOGS value on the secondary server has no effect, keep DYNAMIC_LOGS in sync with the value on the primary server, in case their roles switch.

Copyright© 2020 HCL Technologies Limited

High-availability cluster configuration parameters

Set the HA_ALIAS configuration parameter on each database server that participates in a high-availability cluster.

Set TEMPTAB_NOLOG configuration parameter to 1 or 2 on each secondary server in a high-availability cluster. Secondary servers in a high-availability cluster must
disable logical logging on temporary tables.

Set the following configuration parameters to the same value on both database servers in a HDR pair:

DRAUTO
DRINTERVAL
DRTIMEOUT

Related information:
 TEMPTAB_NOLOG configuration parameter

Copyright© 2020 HCL Technologies Limited

Cluster transaction coordination

You can configure your high-availability cluster so that when a client session issues a commit, the server blocks the session until the transaction is applied in that session,
on a secondary server, or across the cluster. Set the CLUSTER_TXN_SCOPE configuration parameter or run the SET ENVIRONMENT CLUSTER_TXN_SCOPE statement to
configure this behavior.

Multistep client operations that are performed on different high-availability cluster servers or in different sessions with high-availability cluster servers can fail because of
asynchronous log processing. If a client application loads data onto a cluster server, and then attempts to process the same data on a second cluster server before the
data is replicated to the second server, the operation fails. The client transaction must be applied on the second server before its data can be further processed.

Cluster transaction coordination causes client applications to wait for either cluster-wide or secondary-server application of transactions before the transaction commits
are returned. This process prevents operation failures and ensures that the steps of multistep processes occur in serial order.

The different scopes for cluster transaction are:

SESSION: When a client session issues a commit, the database server blocks the session until the effects of the transaction commit are returned to that session.
After control is returned to the session, other sessions at the same database server or on other database servers in the cluster might be unaware of the transaction
commit and the transaction's effects.
SERVER: When a client session issues a commit, the database server blocks the session until the transaction is applied at the database server from which the client
session issued the commit. Other sessions at that database server are aware of the transaction commit and the transaction's effects. Sessions at other database
servers in the cluster might be unaware of the transaction's commit and its effects. This behavior is default for high-availability cluster servers.
CLUSTER: When a client session issues a commit, the database server blocks the session until the transaction is applied at all database servers in the high-
availability cluster, excluding RS secondary servers that are using DELAY_APPLY or STOP_APPLY. Other sessions at any database server in the high-availability
cluster, excluding RS secondary servers that are using DELAY_APPLY or STOP_APPLY, are aware of the transaction commit and the transaction's effects.

Cluster transaction coordination was introduced in IBM® Informix® version 11.70.xC6. Before IBM Informix version 11.70.xC6, high-availability cluster servers had the
following default behaviors:

Primary servers had a cluster transaction scope of SERVER.
Read-only secondary servers were in the dirty-read isolation level, and could read uncommitted data.
Updatable secondary servers had a cluster transaction scope of SESSION.

Setting a CLUSTER_TXN_SCOPE value to CLUSTER does not change the behavior that is specified by the DRINTERVAL configuration parameter value. When a client
application commits a transaction on a primary server, the primary server sends the HDR secondary server logical log buffers at maximum intervals that are specified by
the DRINTERVAL configuration parameter. After the primary server sends logical log buffers to the HDR secondary server, it returns control to a session, but the session
still does not receive a commit until the transaction is applied on all cluster servers.

Related information:
 CLUSTER_TXN_SCOPE configuration parameter

DELAY_APPLY Configuration Parameter
STOP_APPLY configuration parameter
SET ENVIRONMENT statement

250 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Configuring secure connections for high-availability clusters

For a high-availability cluster to function, the database servers must establish trusted connection with each other. Secure connections between cluster servers by using a
trusted-host file on each cluster server and including the connection security option in sqlhosts file entries.

The secure ports that are specified in sqlhosts files are used only for communication between database servers. Client applications cannot connect to secure ports.
To configure a trusted environment for replication, complete the following steps for each cluster server:

1. Edit the sqlhosts file on each host that contains a cluster server:
a. Add an entry for each cluster server that is running on that host, and include the s=6 option.
b. Add an entry for each other cluster server that participates in the cluster, and do not include the s=6 option.

2. Set the nettype field of the sqlhosts file or registry and the NETTYPE configuration parameter to a network protocol such as ontlitcp or onsoctcp so that the
database servers on two different computers can communicate with each other. Do not specify a non-network protocol such as onipcshm, onipcstr, or onipcnmp.

3. Specify trusted-host information. Trusted-host information can be specified in the following ways:
Create a hosts.equiv file in the $INFORMIXDIR/etc directory, and then manually add entries to the file.
Create a trusted-host file in the $INFORMIXDIR/etc directory, and then manually add entries to the file. You must set the REMOTE_SERVER_CFG
configuration parameter to the trusted-host file's name and set the S6_USE_REMOTE_SERVER_CFG configuration parameter to 1.
Run the admin() or task() function with the cdr add trustedhost argument, and specify trusted-host information. Trusted-host information that is specified by
the cdr add trustedhost argument propagates to all servers in the high-availability cluster. Do not run this function if you have manually entered trusted-host
information on any of the database servers in a high-availability cluster or Enterprise Replication domain.

4. Create a server alias for running utilities and client applications. For example, set the INFORMIXSERVER environment variable to the alias to run utilities such as
onstat and ontape and client applications such as DB-Access.

Related concepts:
 Trusted-host information

Related tasks:
 Changing client connectivity information

Related reference:
 sqlhosts connectivity information

sqlhosts file and SQLHOSTS registry key options
Related information:

 S6_USE_REMOTE_SERVER_CFG configuration parameter
REMOTE_SERVER_CFG configuration parameter

Copyright© 2020 HCL Technologies Limited

Starting HDR for the First Time

After you complete the HDR configuration, you are ready to start HDR. This topic describes the necessary steps for starting HDR.

You want to start HDR on two database servers, ServerA and ServerB. The procedure for starting HDR, using ServerA as the primary database server and ServerB as the
secondary database server, is described in the following steps. The following table lists the commands required to perform each step and the messages sent to the
message log. You can use ontape or ON-Bar to perform the backup and restore. You must use the same utility throughout the procedure.
Important: Even if you use ON-Bar to perform the backup and restore, the ontape utility is still required on both database servers to perform back ups and to apply logical
logs. Do not remove the ontape utility from database servers that participate in an HDR cluster environment.
You can also set up HDR using external backup and restore. See the IBM® Informix® Backup and Restore Guide for information about how to perform an external backup
and restore. See Decrease setup time using the ontape STDIO feature for the quickest way to set up your HDR secondary directly from the HDR primary.
To start HDR:

1. Install user-defined types, user-defined routines, and DataBlade modules on both database servers, and then register them on ServerA only.
2. Create a level-0 backup of ServerA.
3. Use the onmode -d command to set the type of ServerA to primary and to indicate the name of the associated secondary database server (in this case ServerB).

When you issue an onmode -d command, the database server attempts to establish a connection with the other database server in the HDR pair and to start HDR
operation. The attempt to establish a connection succeeds only if the other database server in the pair is already set to the correct type.

At this point, ServerB is not online and is not set to type secondary, so the HDR connection is not established.

4. Perform a physical restore of ServerB from the level-0 backup that you created in step 1. Do not perform a logical restore.
If you are using:

ON-Bar, use the onbar -r -p command to perform a physical restore.
ON-Bar and performing an external restore, use the onbar -r -p -e command to perform the physical restore.
ontape, use the ontape -p option. You cannot use the ontape -r option because it performs both a physical and a logical restore.
Note: You must place the physical restore of your primary server on the secondary server if they are on two different machines. The location of the physical
restore is defined by the onconfig parameter TAPE. You must set your IFX_ONTAPE_FILE_PREFIX variable on your secondary server before you can run
ontape -p.
ontape and performing an external restore, use the ontape -p -e command to perform the physical restore.

5. Use the onmode -d command to set the type of ServerB to secondary and indicate the associated primary database server.
ServerB tries to establish an HDR connection with the primary database server (ServerA) and start operation. The connection must be successfully established.

Before HDR begins, the secondary database server performs a logical recovery using the logical-log records written to the primary database server since step 2. If
all these logical-log records still are located on the primary database server disk, the primary database server sends these records directly to the secondary
database server over the network and logical recovery occurs automatically.

If you have backed up and freed logical-log files on the primary database server, the records in these files are no longer on disk. The secondary database server
prompts you to recover these files from tape. In this case, you must perform step 6.

Part VI: Administering 251

https://www.hcltech.com/
https://www.hcltech.com/

Important: You must complete steps 4 to 5 during the same session. If you must shut down and restart the secondary database server after step 4, you must redo
step 4.

6. If logical-log records that were written to the primary database server are no longer on the primary disk, the secondary database server prompts you to recover
these files from tape backups.
If the secondary database server must read the backed-up logical-log files over the network, set the tape device parameters on the secondary database server to a
device on the computer that is running the primary database server or to a device at the same location as the primary database server.

After you recover all the logical-log files on tape, the logical restore completes using the logical-log files on the primary database server disk.

The following table illustrates the preceding steps so that you can clearly determine which steps are performed on the primary server and which are performed on the
secondary server. The table also shows information written to the log file after each step is performed.

Table 1. Steps to start HDR for the first time

Step On the primary (ServerA) On the secondary (ServerB)

1. Install UDRs, UDTs, and DataBlade modules.
Register UDRs, UDTs, and DataBlade modules.

Install UDRs, UDTs, and DataBlade modules.

2. ontape command:
Run ontape -s -L 0

ON-Bar command

:Run onbar -b -L 0
Messages to message log:

Level 0 archive started on rootdbs
Archive on rootdbs completed

3. onmode command

onmode -d primary sec_name

Messages to message log:

DR: new type = primary
 server name = sec_name
DR: Trying to connect to secondary server
DR: Cannot connect to secondary server

4. ontape command
Run ontape -p or ontape -p -e

Answer no when you are prompted to back up the logs.

ON-Bar command

Run onbar -r -p or onbar -r -p -e

Messages to message log:

IBM Informix Database Server Initialized --
 Shared Memory Initialized
Recovery Mode
Physical restore of rootdbs started
Physical restore of rootdbs completed

5. Run onmode -d secondary prim_name
Messages to message log:

DR: new type = secondary, primary server
 name = prim_name

If all the logical-log records written to the primary database server since step 1
still are located on the primary database server disk, the secondary database
server reads these records to perform logical recovery. (Otherwise, step 6 must
be performed).

 Messages to message log:

DR: Primary server connected
DR: Primary server operational

Messages to message log:

DR: Trying to connect to primary server
DR: Secondary server connected
DR: Failure recovery from disk in progress
n recovery worker threads will be started
Logical Recovery Started
Start Logical Recovery - Start Log n, End Log ?
Starting Log Position - n 0xnnnnn
DR: Secondary server operational

6. ontape command
ontape -l

ON-Bar command

onbar -r -l

252 Part VI: Administering

Step On the primary (ServerA) On the secondary (ServerB)

 Messages to message log:

DR: Primary server connected
DR: Primary server operational

Messages to message log:

DR: Secondary server connected
DR: Failure recovery from disk in progress
n recovery worker threads will be started
Logical Recovery Started
Start Logical Recovery - Start Log n, End Log ?
Starting Log Position - n 0xnnnnn
DR: Secondary server operational

Decrease setup time using the ontape STDIO feature

Related concepts:
 Backup and restore with high-availability clusters

Related reference:
 Recovering a cluster after critical data is damaged

Copyright© 2020 HCL Technologies Limited

Decrease setup time using the ontape STDIO feature

You can dramatically improve the speed of setting up HDR by using the ontape STDIO feature. Using this feature, ontape writes the data to the shell's standard output
during a backup, and then read it from standard input during a restore. Combining a STDIO backup with a simultaneous STDIO restore in a pipe using a remote command
interpreter (such as rsh or ssh), allows performing the initial setup of an HDR (or RSS) secondary server using a single command line. This saves storage space by not
writing to or reading from tape or disk, and does not require waiting for the backup to finish before the restore can start.

See the IBM® Informix Backup and Restore Guide for details about using the STDIO value.

This method for setting up HDR using ontape can be used regardless of which backup utility is used (ontape or ON-Bar).

Important: When you use STDIO in this way, no persistent backup is saved anywhere that can be used to perform a restore. The use of the -F (fake) option on the source
(backup) side does not record the backup in the database server's reserved pages. Also, any interactive dialog is suppressed and no prompts or questions are displayed.
You must also ensure that the remote part of the pipe picks the appropriate environment for the remote Informix® instance. The script must not produce any output other
than the backup data since this would be read by the restore process (for example, do not enable tracing).
The steps in the following table must be performed by user informix, the scripts must be executable, and, if called without a complete path, must be located in your home
directory. You can use ssh instead of rsh if you require secure data transmission across the network.

1. On the secondary server, install UDRs, UDTs, and DataBlade modules.
2. On the primary server, install UDRs, UDTs, and DataBlade modules.
3. On the primary server, register UDRs, UDTs, and modules.
4. On the primary server, run the following command:

onmode -d primary secondary_server

5. On the primary server, run the following command:

ontape -s -L 0 -t STDIO -F | rsh secondary_host ontape_HDR_restore.ksh

6. On the secondary server, run the following command:

onmode -d secondary primary_server

In the previous table, the script ontape_HDR_restore.ksh on the secondary server must contain the following commands:

#!/bin/ksh
first get the proper Informix environment set
. hdr_sec.env
redirecting stdout and stderr required since otherwise command might never return
ontape -p -t STDIO > /dev/null 2>&1

The following steps show how to set up HDR from the secondary server:

1. On the secondary server, install UDRs, UDTs, and DataBlade modules.
2. On the primary server, install UDRs, UDTs, and DataBlade modules.
3. On the primary server, register UDRs, UDTs, and DataBlade modules.
4. On the primary server, run the following command:

onmode -d primary secondary_server

5. On the secondary server, run the following command:

rsh primary_host ontape_HDR_backup.ksh | ontape -p -t STDIO

6. On the secondary server, run the following command:

onmode -d secondary primary_server

In the previous table, the script ontape_HDR_backup.ksh on the primary server must contain the following commands:

#!/bin/ksh
first get the proper Informix environment set
. hdr_pri.env
ontape -s -L 0 -F -t STDIO

Part VI: Administering 253

https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Remote standalone secondary servers

These topics provide an overview of setting up and configuring remote standalone (RS) secondary servers in a high availability environment.

Comparison of RS secondary servers and HDR secondary servers
 Index page logging

 Starting an RS secondary server for the first time
 After you complete the hardware configuration of the RS secondary server, you are ready to start the RS secondary server and connect it to the primary server.

Converting an offline primary server to an RS secondary server
 After a planned or unplanned failover of the primary server to an RS secondary server, you can convert the old primary server to an RS secondary server.

Delayed application of log records
 To aid in disaster recovery scenarios, you can configure RS secondary servers to wait for a specified period of time before applying logs received from the primary

server.
Flow control for remote standalone secondary servers

 Flow control provides a way to limit log activity on the primary server so that remote standalone (RS) secondary servers in the cluster do not fall too far behind on
processing transactions. Enabling flow control ensures that logs on RS secondary servers remain current if the servers are on a busy or intermittent network.

Copyright© 2020 HCL Technologies Limited

Comparison of RS secondary servers and HDR secondary servers

An RS secondary server is similar in many ways to an HDR secondary server. Logs are sent to the RS secondary server in much the same way as a primary server sends
logs to an HDR secondary server. However, the RS secondary server is designed to function entirely within an asynchronous communication framework so that its effect on
the primary server is minimized. Neither transaction commits nor checkpoints are synchronized between the primary server and RS secondary servers. Any transaction
committed on the primary server is not guaranteed to be committed at the same time on the RS secondary server.

In a high-availability cluster, the log of the HDR secondary server must be ahead of the logs of any RS secondary servers. If the HDR secondary server becomes offline, the
primary server continues to send logs to the RS secondary servers. However, when the HDR secondary comes back online, IBM® Informix® stops sending logs to RS
secondary servers and prioritizes sending logs to the HDR secondary server until its log replay is ahead of the RS secondary server. This prioritization of the HDR
secondary server logs is required because the HDR secondary server is the first failover choice in the cluster. If the RS secondary server logs are ahead of the HDR
secondary server logs when a failover occurs, then the RS secondary server cannot synchronize with the new primary server.

While an RS secondary server is similar to an HDR secondary server, there are several things that an HDR secondary server supports that an RS secondary server does not
support:

SYNC mode
DRAUTO parameter
Synchronized checkpoints

For HDR, RSS, and SDS secondary servers in a high-availability cluster, logical logging on temporary tables must always be disabled by setting the TEMPTAB_NOLOG
configuration parameter to 1 or 2.

Related information:
 TEMPTAB_NOLOG configuration parameter

Copyright© 2020 HCL Technologies Limited

Index page logging

You must enable index page logging to use an RS secondary server.

How index page logging works
 Enable or disable index page logging

 View index page logging statistics

Related concepts:
 Replication of primary-server data to secondary servers

Copyright© 2020 HCL Technologies Limited

How index page logging works

When an index is created, index page logging writes the pages to the logical log for the purpose of synchronizing index creation between servers in high-availability
environments.

Index page logging writes the full index to the log file, which is then transmitted asynchronously to the secondary server. The secondary server can be either an RS
secondary or an HDR secondary server. The log file transactions are then read into the database on the secondary server. The secondary server is not required to rebuild
the index during recovery. For RS secondary servers, the primary server does not wait for an acknowledgment from the secondary server, which allows immediate access
to the index on the primary server.

254 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Control index page logging with the ONCONFIG parameter LOG_INDEX_BUILDS. Set the LOG_INDEX_BUILDS parameter to 1 (enabled), to build indexes on the primary
server and send them to the secondary server.

Copyright© 2020 HCL Technologies Limited

Enable or disable index page logging

Use the LOG_INDEX_BUILDS configuration parameter to enable or disable index page logging when the database server starts. You can change the value of
LOG_INDEX_BUILDS in the onconfig file by running onmode -wf LOG_INDEX_BUILDS=1 (enable) or 0 (disable).

Index page logging must be enabled when an RS secondary server exists in a high-availability environment.

Copyright© 2020 HCL Technologies Limited

View index page logging statistics

You can use the onstat utility or system-monitoring interface (SMI) tables to view whether index page logging is enabled or disabled. The statistics also display the date
and time index page logging was enabled or disabled.

To view index page logging statistics, use the onstat -g ipl command, or query the sysipl table.

For an example of onstat -g ipl output, see information about the onstat utility in the IBM® Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Starting an RS secondary server for the first time

After you complete the hardware configuration of the RS secondary server, you are ready to start the RS secondary server and connect it to the primary server.

Suppose you want to start a primary server and an RS secondary server, ServerA and ServerB. The procedure for starting the servers, using ServerA as the primary
database server and ServerB as the RS secondary database server, is described in the following steps. The table ahead lists the commands required to perform each step.

The procedure requires that the primary server be backed up and then restored onto the secondary server. You can use ontape or ON-Bar to perform the backup and
restore. You must use the same utility throughout the procedure.
Important: Even if you use ON-Bar to perform the backup and restore, the ontape utility is still required on both database servers to perform back ups and to apply logical
logs. Do not remove the ontape utility from database servers that participate in an HDR cluster environment.
You can also set up an RS secondary server using standard ON-Bar or ontape commands for external backup and restore.
To start a primary server with an RS secondary server:

1. Install user-defined types, user-defined routines, and DataBlade modules on both database servers, and then register them on ServerA only.
For information about how to install user-defined types or user-defined routines see the IBM® Informix® User-Defined Routines and Data Types Developer's Guide.
For information about how to install DataBlade modules, see the IBM Informix DataBlade Module Installation and Registration Guide.

2. Activate index page logging on the primary server.
3. Record the identity of the RS secondary server on the primary server. The optional password provides authentication between the primary and RS secondary server

when the connection between the primary and secondary servers is established for the first time.
4. Create a level-0 backup of ServerA.
5. Perform a physical restore of ServerB from the level-0 backup that you created in step 4. Do not perform a logical restore.

Use the appropriate command:
Use the onbar -r -p command to perform a physical restore.
Use the onbar -r -p -e command to perform a physical external restore.
Use the ontape -p option. (Do not use the ontape -r option because it performs both a physical and a logical restore.)
Use the ontape -p -e command to perform the physical external restore.

6. Use the onmode -d RSS ServerA password command to set the type of ServerB to an RS secondary server and indicate the associated primary database server.
For this example, ServerA's DBSERVERNAME and HA_ALIAS configuration parameters are both set to ServerA, and ServerB's DBSERVERNAME and HA_ALIAS
configuration parameters are both set to ServerB.
Using the database server's HA_ALIAS configuration parameter value, ServerB tries to establish a connection with the primary database server (ServerA) and start
operation. The connection must be successfully established.

The secondary database server performs a logical recovery using the logical-log records written to the primary database server since step 4. If all these logical-log
records are still located on the primary database server disk, the primary database server sends these records directly to the RS secondary server over the network
and logical recovery occurs automatically.

If you have backed up and freed logical-log files on the primary database server, the records in these files are no longer on disk. The secondary database server
prompts you to recover these files from tape. In this case, you must perform step 7.
Important: You must complete steps 5 through 6 during the same session. If you must shut down and restart the secondary database server after step 5, you must
redo step 5.

7. If logical-log records that were written to the primary database server are no longer on the primary disk, the secondary database server prompts you to recover
these files from tape backups.
If the secondary database server must read the backed-up logical-log files over the network, set the tape device parameters on the secondary database server to a
device on the computer that is running the primary database server or to a device at the same location as the primary database server.

After you recover all the logical-log files on tape, the logical restore completes using the logical-log files on the primary database server disk.

Part VI: Administering 255

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Table 1. Steps to start a primary with an RS secondary server for the first time

Step On the primary On the RS secondary

1. Install UDRs, UDTs, and DataBlade modules.
Register UDRs, UDTs, and DataBlade modules.

Install UDRs, UDTs, and DataBlade modules.

2. onmode command
onmode -wf LOG_INDEX_BUILDS=1

3. onmode command
onmode -d add RSS rss_ha_alias password

4. ontape command
ontape -s -L 0

ON-Bar command

onbar -b -L 0

5. ontape command
ontape -p or ontape -p -e

Answer no when you are prompted to back up the logs.

ON-Bar command

onbar -r -p or onbar -r -p -e

6. onmode command
onmode -d RSS primary_ha_alias password

If all the logical-log records written to the primary database server since step 1
still are located on the primary database server disk, the secondary database
server reads these records to perform logical recovery. (Otherwise, step 7 must
be performed).

7. ontape command
ontape -l

ON-Bar command onbar -r -l

This step is required only when the secondary database server prompts you to
recover the logical-log files from the tape backup.

Decrease setup time through an alternative backup method

Related concepts:
 Backup and restore with high-availability clusters

Copyright© 2020 HCL Technologies Limited

Decrease setup time through an alternative backup method

You can dramatically improve the speed of setting up a secondary server by using the ontape STDIO feature. See Decrease setup time using the ontape STDIO feature for
more information.

See the IBM® Informix® Backup and Restore Guide for details about using the STDIO value.

Copyright© 2020 HCL Technologies Limited

Converting an offline primary server to an RS secondary server

After a planned or unplanned failover of the primary server to an RS secondary server, you can convert the old primary server to an RS secondary server.

For example, assume you have a primary server named srv1 that has failed over to an RS secondary server named srv2. The following steps show how to convert the old
primary server to an RS secondary server.

1. On the new primary server (srv2) register the old primary server (srv1 as the RS secondary server.

onmode -d add RSS srv1

2. If you are converting the old primary server to an RS secondary server and the server is offline, then initialize the server using backup and restore commands shown
here: Starting an RS secondary server for the first time. Alternatively you can initialize the old primary server by running the following command:

oninit -PHY

See The oninit utility for more information.

3. Convert the server to an RS secondary server using the following commands:

onmode -d RSS srv2

256 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Delayed application of log records

To aid in disaster recovery scenarios, you can configure RS secondary servers to wait for a specified period of time before applying logs received from the primary server.

By delaying the application of log files you can recover quickly from erroneous database modifications by restoring the database from the RS secondary server. You can
also stop the application of logs on an RS secondary server at a specified time.

For example, suppose a database administrator wants to delete certain rows from a table based on the age of the row. Each row in the table contains a timestamp that
indicates when the row was created. If the database administrator inadvertently sets the filter to the wrong date, more rows than intended might be deleted. By delaying
the application of log files, the rows would still exist on the RS secondary server. The database administrator can then extract the rows from the secondary server and
insert them on the primary server.

Now suppose a database administrator is required to perform changes to the schema by renaming a table, but types the wrong command and drops the table orders
instead of changing the table name to store_orders. If an RS secondary server is configured to delay application of logs, the database administrator can recover the orders
table from the secondary server.

When delayed application of log files configured, transactions sent from the primary server are not applied until after a specified period of time has elapsed. Log files
received from the primary server are staged in a specified secure directory on the RS secondary server, and then applied after the specified period of time. There are two
ways to delay the application of log files:

Apply the staged log files after a specified time interval
Stop applying log files at a specified time

You enable the delayed application of log files by setting configuration parameters in the onconfig file of the RS secondary server. You must specify the directory in which
log files are staged by setting the LOG_STAGING_DIR configuration parameter before enabling the delayed application of log files. After specifying the LOG_STAGING_DIR
configuration parameter, you configure the DELAY_APPLY or STOP_APPLY configuration parameters either by editing the onconfig file or dynamically using onmode -wf
commands.

Where log records are stored
The server creates additional directories named ifmxlog_## in the directory specified by LOG_STAGING_DIR, where ## is the instance specified by SERVERNUM. The
directories are used to store the logical logs and are also used during the recovery of the RS secondary server. If recovery of the RS secondary server becomes necessary,
and the logs have wrapped on the primary server, then the logs in ifmxlog_## can be used to recover the server. The files within ifmxlog_## are purged when no longer
required.

Conditions that trigger delays
The time values in the BEGIN WORK, COMMIT WORK, and ROLLBACK WORK log records are used to calculate how to delay or stop the application of log files. The time
values are calculated before passing the log pages to the recovery process.

When a BEGIN WORK statement is issued, the BEGIN WORK log record is not written until the first update activity is performed by the transaction; therefore, there can be
a delay between the time that the BEGIN WORK statement is issued and when the BEGIN WORK log is written.

Interaction with secondary server updates
You must consider the interaction between secondary server updates and delayed application of log files. If updates are enabled, and the secondary server is updated, the
updates are not applied until after the amount of time specified by DELAY_APPLY. Disabling secondary server updates, however, also disables Committed Read, which
guarantees that every retrieved row is committed in the table at the time that the row is retrieved.

To retain the Committed Read isolation level, consider enabling secondary server updates using the UPDATABLE_SECONDARY configuration parameter, but removing the
RS secondary server used for delayed application of log files from the Connection Manager service-level agreement list. Alternatively, consider moving the RS secondary
server to a new SLA.

See Database updates on secondary servers and IBM® Informix® Administrator's Reference for more information.

Specifying the log staging directory
 You configure the log staging directory to specify where log files on RS secondary servers are staged before being applied to the database.

Delay application of log records on an RS secondary server
 You can delay the application of log records on an RS secondary server to prepare for disaster recovery scenarios.

Stop the application of log records
 You can halt the application of log records on an RS secondary server to prepare for disaster recovery scenarios.

Copyright© 2020 HCL Technologies Limited

Specifying the log staging directory

You configure the log staging directory to specify where log files on RS secondary servers are staged before being applied to the database.

You must specify a staging directory for log files sent from the primary server before enabling delayed application of log files. No default staging directory is defined. The
server creates additional directories in the directory specified by LOG_STAGING_DIR named ifmxlog_##, where ## is the instance specified by SERVERNUM. The
directories are used to store the logical logs and are also used during the recovery of the RS secondary server. The staged log files are automatically removed when they
are no longer required. If the files within LOG_STAGING_DIR are lost, and the primary server has overwritten the logs, then the RS secondary server must be rebuilt.

Part VI: Administering 257

https://www.hcltech.com/
https://www.hcltech.com/

You must ensure that the directory specified by LOG_STAGING_DIR exists and is secure. The directory must be owned by user informix, must belong to group informix,
and must not have public read, write, or execute permission. If role separation is enabled, the directory specified by LOG_STAGING_DIR must be owned by the user or
group that owns $INFORMIXDIR/etc. If the directory specified by LOG_STAGING_DIR is not secure, then the server cannot be initialized. The following message is written
to the online message log if the directory is not secure:

The log staging directory (directory_name) is not secure.

You must also ensure that the disk contains sufficient space to hold all of the logs from the primary server, and that the directory does not contain staged logs from
previous instances that are no longer being used.
To see information about the data being sent to the log-staging directory set for a RS secondary server, run the onstat -g rss verbose command on the RS secondary
server.

If the write to the staging file fails, the RS secondary server raises event alarm 40007.

See IBM® Informix® Administrator's Reference for more information.

To set LOG_STAGING_DIR:

1. Ensure that the directory in which logs are to be stored exists and is secure.
2. Edit the RS secondary server onconfig file.
3. Specify the staging directory as follows: LOG_STAGING_DIR directory_name where directory_name is the name of the directory in which to store the logs.
4. Restart the server.

You can also set the LOG_STAGING_DIR configuration parameter without restarting the server by using the onmode -wf command; however, the delayed application of
log files must not be active when the command is run.

Copyright© 2020 HCL Technologies Limited

Delay application of log records on an RS secondary server

You can delay the application of log records on an RS secondary server to prepare for disaster recovery scenarios.

You enable the delayed application of log files by setting the DELAY_APPLY configuration parameter. You can manually edit the onconfig file and restart the server, or you
can change the value dynamically using the onmode -wf command. When setting the value of DELAY_APPLY you must also set LOG_STAGING_DIR. If DELAY_APPLY is
configured and LOG_STAGING_DIR is not set to a valid and secure directory, then the server cannot be initialized.

Set DELAY_APPLY using both a number and a modifier. Number can contain up to three digits and indicates the number of modifier units. Modifier is one of:

D (or d) for days
H (or h) for hours
M (or m) for minutes
S (or s) for seconds

See IBM® Informix® Administrator's Reference for more information.

To delay the application of log files on the RS secondary for four hours:

onmode –wf DELAY_APPLY=4H

To delay the application of log files for one day:

onmode -wf DELAY_APPLY=1D

To disable delayed application of log files:

onmode –wf DELAY_APPLY=0

Copyright© 2020 HCL Technologies Limited

Stop the application of log records

You can halt the application of log records on an RS secondary server to prepare for disaster recovery scenarios.

You stop the application of log files on the RS secondary server by setting the STOP_APPLY configuration parameter. You can manually edit the onconfig file and restart the
server, or you can change the value dynamically using the onmode -wf command. When setting the value of STOP_APPLY you must also set LOG_STAGING_DIR. If
STOP_APPLY is configured and LOG_STAGING_DIR is not set to a valid and secure directory, then the server cannot be initialized.

See IBM® Informix® Administrator's Reference for more information.

To stop the application of log files on the RS secondary server immediately, run the following command:

onmode –wf STOP_APPLY=1

To stop the application of log files at 11:00 p.m. on April 15th, 2009:

onmode –wf STOP_APPLY=2009:04:15-23:00:00

To resume the normal application of log files

onmode –wf STOP_APPLY=0

258 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Flow control for remote standalone secondary servers

Flow control provides a way to limit log activity on the primary server so that remote standalone (RS) secondary servers in the cluster do not fall too far behind on
processing transactions. Enabling flow control ensures that logs on RS secondary servers remain current if the servers are on a busy or intermittent network.

Set the RSS_FLOW_CONTROL configuration parameter on the primary server to enable flow control. All RS secondary servers in the cluster are affected by the primary
server's RSS_FLOW_CONTROL configuration parameter setting. When flow control is active, users connected to the primary server may experience slower response time.

Logs are always sent to the RS secondary server in the order in which they were received.

To check if flow control is active for a RS secondary server, use the onstat -g rss verbose command, and compare the RSS flow control value to the Approximate
Log Page Backlog value. If the Approximate Log Page Backlog is higher than the first value of RSS flow control, flow control is active. If the Approximate
Log Page Backlog is lower than the second value of RSS flow control, flow control is disabled.

Related information:
 RSS_FLOW_CONTROL configuration parameter

SDS_FLOW_CONTROL configuration parameter

Copyright© 2020 HCL Technologies Limited

Shared disk secondary servers

These topics provide an overview of setting up and configuring SD (shared disk) secondary servers in a high-availability environment. SD secondary server options are
available with the standard version of IBM® Informix®.

SD secondary server
 A shared-disk (SD) secondary server participates in high-availability cluster configurations. In such configurations, the primary server and the SD secondary server

share the same disk or disk array.
Disk requirements for SD secondary servers

 Setting up a shared disk secondary server
 You set up a shared disk system by configuring the primary server, configuring the SD secondary server, and starting the SD secondary.

Obtain SD secondary server statistics
 Promote an SD secondary server to a primary server

 Convert a primary server to a standard server
 SD secondary server security

 Flow control for shared-disk secondary servers
 Flow control provides a way to limit log activity on the primary server so that shared-disk (SD) secondary servers in the cluster do not fall too far behind on

processing transactions.

Copyright© 2020 HCL Technologies Limited

SD secondary server

A shared-disk (SD) secondary server participates in high-availability cluster configurations. In such configurations, the primary server and the SD secondary server share
the same disk or disk array.

An SD secondary server does not maintain a copy of the physical database on its own disk space. Rather, it shares disks with the primary server.

SD secondary servers must be configured to access shared disk devices that allow concurrent access. Do not configure an SD secondary server that uses operating system
buffering, such as NFS cross-mounted file systems. If the SD secondary server instance and the primary server instance both are located on a single machine, then both
servers can access local disks. If the SD secondary server and the primary server are on separate physical machines, then they must be configured to access shared disk
devices that appear locally attached, such as Veritas or GPFS™.

SD secondary servers can be used in conjunction with HDR secondary servers, with RS secondary servers, and with Enterprise Replication.

SD secondary servers can be added to a high availability environment very quickly, because they do not require a separate copy of the disk. Because the SD server shares
the disk storage resources of the primary server, it is recommended that you provide some other means of disk backup, such as disk mirroring, or the use of an RS
secondary server or an HDR secondary server.

The following restrictions affect the promotion of database server instances that are shared-disk secondary servers:

An SD secondary server cannot be promoted to an RS secondary server.
An SD secondary server cannot be promoted to a standard server that would exist outside the primary high availability environment.

Copyright© 2020 HCL Technologies Limited

Disk requirements for SD secondary servers

Part VI: Administering 259

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Except for disk requirements (which are shared with the primary server), hardware and software requirements are generally the same as for HDR secondary servers (See
the Machine Notes for specific supported platforms). In addition, the primary disk system must be shared across the computers that are hosting the database servers.
This means that the path to the dbspaces from the SD secondary is the same dbspace path as the primary server. see Configuring clusters.

Copyright© 2020 HCL Technologies Limited

Setting up a shared disk secondary server

You set up a shared disk system by configuring the primary server, configuring the SD secondary server, and starting the SD secondary.

Related information:
 Database configuration parameters

Setting up the SD primary server
To set up the primary server:

1. Set the SDS_TIMEOUT configuration parameter to specify the amount of time in seconds that the primary server waits for a log position acknowledgment to be sent
from the SD secondary server.

2. Configure the alias name of the SD primary server by running the following command:

onmode -d set SDS primary ha_alias

The server name that is specified by ha_alias becomes the primary server of the shared disk environment and the source of logs for the SD secondary server.

Setting up the SD secondary server
To set up the SD secondary server:

1. Set the following configuration parameters in the configuration file.
HA_ALIAS: set to define an alias for server-to-server communication in a high-availability cluster.
SDS_ENABLE: set to 1 (enable) on the secondary server to enable the shared disk environment.
SDS_PAGING: set to the path to two files that are used to hold pages that might be required to be flushed between checkpoints. Each file acts as temporary
disk storage for chunks of any page size.
SDS_TEMPDBS: set to the temporary dbspace for the SD secondary server that is dynamically created when the server is first started.
SDS_LOGCHECK: set to the number of seconds to delay a failover if network communications between the primary and secondary servers is temporarily
unavailable.
TEMPTAB_NOLOG: set to 1 or 2 to prevent logical logging on temporary tables.
UPDATABLE_SECONDARY: set to a positive integer if you want to enable client applications to perform update, insert, and delete operations on the
secondary server.

2. Set the following configuration parameters to match those on the primary server:
ROOTNAME
ROOTPATH
ROOTOFFSET
ROOTSIZE
PHYSFILE
LOGFILES
LOGSIZE
DISK_ENCRYPTION

You can set other configuration parameters to match those of the primary server except for DBSERVERALIASES, DBSERVERNAME, and SERVERNUM.
3. Add an entry to the sqlhosts file to identify the primary server:

#dbservername nettype host servicename options
 name protocol name port

4. Start the SD secondary server using the oninit command.
The SD secondary server processes any open transactions as a fast recovery in quiescent mode. There is increased memory usage in the LGR memory pool during
fast recovery.

5. Examine the online.log file on the secondary server to verify that it completed processing open transactions and is in online mode.
6. Allow client applications to connect to the SD secondary server.

Copyright© 2020 HCL Technologies Limited

Obtain SD secondary server statistics

Use the onstat utility or system-monitoring interface (SMI) tables to view SD secondary server statistics.

Use onstat -g sds to view SD secondary server statistics. The output of the onstat utility depends on whether the utility is run on the primary or secondary server.

Query the syssrcsds table to obtain information about shared disk statistics on the primary server.

Query the systrgsds table to obtain information about shared disk statistics on the secondary server.

For information about onstat and SMI tables see the IBM® Informix® Administrator's Reference.

260 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Promote an SD secondary server to a primary server

Convert an SD secondary server to a primary server by issuing the following command on the SD secondary server:

onmode -d set SDS primary <alias>

An SD secondary server cannot be converted to a standard server.

Copyright© 2020 HCL Technologies Limited

Convert a primary server to a standard server

You can convert a primary server to a standard server and disconnect it from the shared disk environment using the following command on the primary server:

onmode -d clear SDS primary <alias>

Copyright© 2020 HCL Technologies Limited

SD secondary server security

SD secondary servers support similar encryption rules as HDR. See Database server configuration requirements for clusters for details.

Encryption can be enabled or disabled between any primary and secondary server pair. That is, you can encrypt traffic between the primary server and one SD secondary
server and not encrypt traffic between the primary server and another SD secondary server.

See the Configure SMX connections topic for additional information about setting up and configuring encryption between primary servers and SD secondary servers.

Copyright© 2020 HCL Technologies Limited

Flow control for shared-disk secondary servers

Flow control provides a way to limit log activity on the primary server so that shared-disk (SD) secondary servers in the cluster do not fall too far behind on processing
transactions.

Set the SDS_FLOW_CONTROL configuration parameter on the primary server to enable flow control. All SD secondary servers in the cluster are affected by the primary
server's SDS_FLOW_CONTROL configuration parameter setting. When flow control is active, users connected to the primary server may experience slower response time.

Logs are always sent to the SD secondary server in the order in which they were received.

Related information:
 SDS_FLOW_CONTROL configuration parameter

RSS_FLOW_CONTROL configuration parameter

Copyright© 2020 HCL Technologies Limited

Cluster administration

This chapter describes various administrative tasks, some optional, for monitoring and maintaining a cluster. For example, load-balancing to optimize performance,
ensuring security.

How data replication works
 Performing basic administration tasks

 Obtain RS secondary server statistics
 Remove an RS secondary server

 RS secondary server security
 Transaction completion during cluster failover

 You can configure servers in a high-availability cluster environment to continue processing transactions after failover of the primary server.

Copyright© 2020 HCL Technologies Limited

How data replication works

These topics describe the mechanisms that the database server uses to perform replication of data to secondary servers. For instructions on how to set up, start, and
administer the various types of secondary servers, see the table

Part VI: Administering 261

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Table 1. Secondary server setup information

Secondary server
type See

HDR secondary See High-availability cluster configuration, and information about starting an HDR pair using external backup and restore in the IBM® Informix®
Backup and Restore Guide.

RS secondary See Remote standalone secondary servers.

SD secondary See Shared disk secondary servers

How data initially replicates
 Replication of primary-server data to secondary servers

 All secondary server types use logs to replicate primary-server replicate data. The primary server sends its entire logical log to HDR and RS secondary servers, but
only the log page's position to SD secondary servers.
Data replication configuration examples

 Troubleshooting high-availability cluster environments
 A high-availability cluster environment requires little or no additional troubleshooting when compared with a stand-alone server environment. This topic explains

the terminology used to describe high-availability cluster environments and provides some common troubleshooting procedures.
Design data replication group clients

Copyright© 2020 HCL Technologies Limited

How data initially replicates

HDR secondary and RS secondary servers use storage-space backups and logical-log backups (both those backed up to tape and those on disk) to perform an initial
replication of the data on the primary database server to the secondary database server.

SD secondary servers do not require a backup and restore from the primary server because SD secondary servers share the same disks as the primary.

To replicate data:

1. Install user-defined types, user-defined routines, and DataBlade modules on both database servers.
2. Register user-defined types, user-defined routines, and DataBlade modules on the primary database server only.
3. To synchronize the data managed by the two database servers, create a level-0 backup of all the storage spaces on the primary database server.
4. Restore all the storage spaces from the backup on the secondary database server in the data-replication pair.

The secondary database server that you restored from a storage-space backup in the previous step then reads all the logical-log records generated since that
backup from the primary database server.

The database server reads the logical-log records first from any backed-up logical-log files that are no longer on disk and then from any logical-log files on disk.

For detailed instructions about replicating data, see Starting HDR for the First Time. The IBM® Informix® Backup and Restore Guide explains how to start replication using
ON-Bar.

You must perform the initial backup with a storage-space backup. You cannot use data-migration utilities such as onload and onunload to replicate data because the
physical page layout of tables on each database server must be identical in order for data replication to work.

Copyright© 2020 HCL Technologies Limited

Replication of primary-server data to secondary servers

All secondary server types use logs to replicate primary-server replicate data. The primary server sends its entire logical log to HDR and RS secondary servers, but only
the log page's position to SD secondary servers.

Index page logging can be used by all secondary servers, but is required for replication to RS secondary servers.

Databases must use transaction logging to be replicated.

Warning: If the primary server and secondary server disconnect from each other, and are allowed to independently run as standard servers or primary servers, then high-
availability data replication might have to be reestablished.

Replication to HDR secondary servers
There are three synchronization modes that the primary database server can use to replicate data to an HDR secondary server:

Fully synchronous mode, where transactions require acknowledgement of completion on the HDR secondary server before they can complete.
Data integrity is highest when you use fully synchronous mode, but system performance can be negatively affected if client applications use unbuffered logging and
have many small transactions.

Asynchronous mode, where transactions do not require acknowledgement of being received or completed on the HDR secondary server before they can complete.
System performance is best when you use asynchronous mode, but if there is a server failure, data can be lost.

Nearly synchronous mode, where transactions require acknowledgement of being received on the HDR secondary server before they can complete.
Nearly synchronous mode can have better performance than fully synchronous mode and better data integrity than asynchronous mode. If used with unbuffered
logging, SYNC mode, which is turned on when DRINTERVAL is set to -1, is the same as nearly synchronous mode.

262 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

The synchronization mode is controlled by the combination of DRINTERVAL configuration parameter value, HDR_TXN_SCOPE configuration parameter value, and database
logging type.
The following two figures illustrate replication from a primary server to an HDR secondary server.
Figure 1. How data replicates from a primary to HDR secondary server

Figure 2. Threads that manage data replication

The contents of the primary server's logical-log buffer are copied to the shared-memory data-replication buffer and flushed to disk. If the primary server is using fully
synchronous or nearly synchronous mode, it must receive an acknowledgement from the HDR secondary server before it can complete the logical-log flush. The primary
server starts a drprsend thread to transmit the data-replication buffer across the network to the secondary server's drsecrcv thread, which then writes the data into the
shared-memory reception buffer. The drsecapply thread copies the reception buffer to the recovery buffer. Both HDR and RS secondary servers use logrecvr threads to
apply logical-log records their dbspaces. You can adjust the number of logrecvr threads by changing the value of the OFF_RECVRY_THREADS configuration parameter.

The drprping and drsecping threads send and receive messages to monitor the connection between two servers.

Replication to RSS secondary servers
Because checkpoints between a primary server and an RS secondary server are asynchronous, RS secondary servers require index page logging.

The following figure illustrated replication from a primary server to an RS secondary server.
Figure 3. Threads that manage data replication for RS secondary servers

If the primary server can verify that it is connected to an RS secondary server, the RSS_send thread copies a page from either the disk or the logical-log buffer to the data-
replication buffer. The RSS_Send thread uses a Server Multiplexer Group (SMX) connection to send the data-replication buffer to the RS secondary server's RSS_recv
thread. The RSS_recv thread then writes the data into the reception buffer. The RSS_apply thread copies the reception buffer to the recovery buffer.

Unlike with HDR fully synchronous mode or nearly synchronous mode, the primary server does not require acknowledgment from the secondary server before sending the
next buffer. The primary server sends up to 32 unacknowledged data-replication buffers before the RSS_send thread waits for the RSS_Recv thread to receive an
acknowledgment from the RS secondary server.

Replication to SD secondary servers
SD secondary servers read logical log pages from disk and then apply the data to their memory data buffers.

Fully synchronous mode for HDR replication
 HDR fully synchronous mode ensures that any transaction committed on a primary server was also committed on the HDR secondary server, which can protects

transactional consistency if a failure occurs.
Nearly synchronous mode for HDR replication

 When you use nearly synchronous mode for HDR replication, the primary server flushes the logical-log buffer to disk after receiving acknowledgement that the HDR
secondary server received a transmitted transaction. The primary server does not wait for acknowledgement that the transaction was committed on the HDR
secondary server.
Asynchronous mode for HDR replication

 Asynchronous HDR replication means that the primary server does not wait for a response from the HDR secondary server before flushes the logical log to disk.
Asynchronous HDR replication can increase replication speed, but transactions can be lost.

Part VI: Administering 263

Lost-and-found transactions

Related concepts:
 Cluster failures

Index page logging
Related information:

 DRINTERVAL configuration parameter
HDR_TXN_SCOPE configuration parameter
HDR_TXN_SCOPE session environment option

Copyright© 2020 HCL Technologies Limited

Fully synchronous mode for HDR replication

HDR fully synchronous mode ensures that any transaction committed on a primary server was also committed on the HDR secondary server, which can protects
transactional consistency if a failure occurs.

After the primary database server writes the logical-log buffer contents to the HDR buffer, it sends the records from the buffer to the HDR secondary database server. The
logical-log buffer flush on the primary database server completes only after the primary database server receives acknowledgment from the HDR secondary database
server that the records were received.

To track synchronization, both the primary and HDR secondary server store the following information in their reserved pages:

The ID of the logical-log file that contains the last completed checkpoint
The position of the checkpoint record within the logical-log file
The ID of the last logical-log file that was sent or received
The page number of the last logical-log record that was sent or received

To view this information, run the onstat -g dri ckpt command.
Checkpoints between database servers in an HDR replication pair are synchronous. The primary server waits for the HDR secondary server to acknowledge that it received
the checkpoint log record before the primary server completes its checkpoint. If the checkpoint does not complete within the time that is specified by the DRTIMEOUT
configuration parameter, the primary database server assumes that a failure occurred.

HDR fully synchronous mode has the following requirements:

The DRINTERVAL configuration parameter on the primary and HDR secondary server must be set to 0.
The DRTIMEOUT configuration parameter on the primary and HDR secondary server must be set to the same value.

Administration can be easier if the operating-system times on the primary and HDR secondary servers are synchronized.
To turn on fully synchronous data replication, set the DRINTERVAL configuration parameter to 0, and then use one of the following methods:

Set the HDR_TXN_SCOPE configuration parameter to FULL_SYNC.
Run SET ENVIRONMENT HDR_TXN_SCOPE 'FULL_SYNC';

Log records are applied in the order in which they were received. When the log transmission buffer contains many log records, the application of those log records on the
HDR secondary server requires more time, and performance can be negatively affected. If this situation occurs, consider using nearly synchronous mode for HDR data
replication.

Related information:
 DRINTERVAL configuration parameter

onstat -g dri command: Print high-availability data replication information
HDR_TXN_SCOPE session environment option

Copyright© 2020 HCL Technologies Limited

Nearly synchronous mode for HDR replication

When you use nearly synchronous mode for HDR replication, the primary server flushes the logical-log buffer to disk after receiving acknowledgement that the HDR
secondary server received a transmitted transaction. The primary server does not wait for acknowledgement that the transaction was committed on the HDR secondary
server.

When the log transmission buffer contains many log records, the application of those log records on the HDR secondary server requires more time. Nearly synchronous
mode for HDR replication provides better performance than fully synchronous mode, and better data integrity than asynchronous mode.

The primary server stores the following near-synchronization information in its reserved page:

The number of unprocessed data replication buffers queued to the drprsend thread.
The log unique value, the page number for the most recently paged log.
The pointer to the thread-control block (TCB), the thread id in parentheses, and the log sequence number (LSN) of the commit that was performed by that thread.
The LSNs of commits that are waiting for acknowledgement of being received on the HDR secondary.

To view this information, run the onstat -g dri que command.
HDR nearly synchronous mode has the following requirements:

The DRINTERVAL configuration parameters on the primary and HDR secondary server must be set to -1, or the DRINTERVAL configuration parameter on the
primary server must be set to 0.
The DRTIMEOUT configuration parameters on the primary and HDR secondary server must be set to the same value.
The operating-system time on the primary and HDR secondary servers must be synchronized.

264 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

To turn on nearly synchronous data replication, set the DRINTERVAL configuration parameter to 0, and then use one of the following methods:

Set the HDR_TXN_SCOPE configuration parameter to NEAR_SYNC.
Run SET ENVIRONMENT HDR_TXN_SCOPE 'NEAR_SYNC';

Related information:
 DRINTERVAL configuration parameter

onstat -g dri command: Print high-availability data replication information
HDR_TXN_SCOPE session environment option

Copyright© 2020 HCL Technologies Limited

Asynchronous mode for HDR replication

Asynchronous HDR replication means that the primary server does not wait for a response from the HDR secondary server before flushes the logical log to disk.
Asynchronous HDR replication can increase replication speed, but transactions can be lost.

There are multiple ways to turn on asynchronous mode for HDR replication:

Set the DRINTERVAL configuration parameter to a positive integer value.
Set the DRINTERVAL configuration parameter to 0, and set the HDR_TXN_SCOPE configuration parameter to ASYNC.
Run the following statement:

SET ENVIRONMENT HDR_TXN_SCOPE 'ASYNC';

In asynchronous mode, the primary database server flushes the logical-log to disk after it copies the contents of the logical-log buffer to the data-replication buffer. The
primary database server sends the contents of the HDR buffer across the network when one of the following conditions occurs:

The HDR buffer becomes full.
The time interval since the records were sent to the HDR secondary database server exceeds the value of the primary server's DRINTERVAL configuration
parameter.

To reduce the risk of lost transactions in a cluster that uses asynchronous replication, use unbuffered logging for all the databases. Unbuffered logging reduces the amount
of time between transaction-record writing and transfer. If your primary server uses buffered logging, and you receive an error -7350 Attempt to update a stale
version of a row message, switch to unbuffered logging.

If a failover does occur, but the primary server is restarted with data replication, transactions that were committed on the primary server and not committed on the
secondary server are stored in a file that is specified by the DRLOSTFOUND configuration parameter.

Related information:
 DRINTERVAL configuration parameter

onstat -g dri command: Print high-availability data replication information
HDR_TXN_SCOPE session environment option

Copyright© 2020 HCL Technologies Limited

Lost-and-found transactions

With asynchronous updating, a transaction committed on the primary database server might not be replicated on the secondary database server. This situation can result
if a failure occurs after the primary database server copies a commit record to the HDR buffer but before the primary database server sends that commit record to the
secondary database server.

If the secondary database server is changed to a standard database server after a failure of the primary database server, it rolls back any open transactions. These
transactions include any that were committed on the primary database server but for which the secondary database server did not receive a commit record. As a result,
transactions are committed on the primary database server but not on the secondary database server. When you restart data replication after the failure, the database
server places all the logical-log records from the lost transactions in a file (which the DRLOSTFOUND configuration parameter specifies) during logical recovery of the
primary database server. The following figure illustrates the process.
Figure 1. Using a lost-and-found file

If the lost-and-found file is created on the computer that is running the primary database server after it restarts data replication, a transaction has been lost. The database
server cannot reapply the transaction records in the lost-and-found file because conflicting updates might have occurred while the secondary database server was acting
as a standard database server.

Part VI: Administering 265

https://www.hcltech.com/
https://www.hcltech.com/

To reduce the risk of a lost transaction without running data replication in synchronous mode, use unbuffered logging for all the databases. This method reduces the
amount of time between the writing and transfer of the transaction records from the primary database server to the secondary database server.

Copyright© 2020 HCL Technologies Limited

Data replication configuration examples

These topics describe some examples of how a data replication environment can be configured.

Remote standalone secondary configuration examples
 Shared disk secondary configuration examples

 Enterprise Replication as part of the recoverable group
 High-availability clusters with Enterprise Replication configuration example

 Example of a complex failover recovery strategy

Copyright© 2020 HCL Technologies Limited

Remote standalone secondary configuration examples

The following figure illustrates an example of a configuration consisting of multiple RS secondary servers. This configuration would be useful in a situation where the
primary server is located a long distance from the RS secondary servers or if the network speed between the primary server and the RS secondary server is slow or erratic.
Because RS secondary servers use fully duplexed communication protocols, and do not require synchronous checkpoints processing, the primary-server's performance is
usually unaffected.

Figure 1. Primary server with three RS secondary servers

The next illustration shows an example of a configuration of an RS secondary server along with an HDR secondary server. In this example, the HDR secondary provides
high availability while the RS secondary provides additional disaster recovery if both the primary and HDR secondary servers are lost. The RS secondary server can be
geographically remote from the primary and HDR secondary servers so that a regional disruption such as an earthquake or flood would not affect the RS secondary server.

Figure 2. Primary server with HDR secondary and RS secondary servers

If a primary database server fails, it is possible to convert the existing HDR secondary server into the primary server, as in the following diagram:
Figure 3. Failover of primary server to HDR secondary server

If the original primary is going to be offline for an extended period of time, then the RS secondary server can be converted to an HDR secondary server. Then when the
original primary comes back online, it can be configured as an RS secondary server, as in the following illustration:
Figure 4. RS secondary server assuming role of HDR secondary server

Copyright© 2020 HCL Technologies Limited

Shared disk secondary configuration examples

266 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The following figure shows an example of a primary server with two SD secondary servers. In this case the role of the primary server can be transferred to either of the two
SD secondary servers. This is true whether the primary must be taken out of service because of a planned outage, or because of failure of the primary server.
Figure 1. Primary server configured with two SD secondary servers

Because both of the SD secondary servers are reading from the same disk subsystem, they are both equally able to assume the primary server role. The following figure
illustrates a situation in which the primary server is offline.
Figure 2. SD secondary server assuming role of primary server

There are several ways to protect against hardware failure of the shared disk. Probably the most common way is to configure the disk array based on RAID technology
(such as RAID-5). Another way to protect against disk failure is to use SAN (Storage Area Technology) to include some form of remote disk mirroring. Since SAN disks can
be located a short distance from the primary disk and its mirror, this provides a high degree of availability for both the planned and unplanned outage of either the server
or of the disk subsystem. The following illustration depicts such a configuration:
Figure 3. Primary server and SD secondary servers with mirrored disks

In the event of a disk failure, the servers can be reconfigured as in the following illustration:
Figure 4. Shared disk mirror after failure of primary shared disk

In addition to configuring a mirrored disk subsystem as in the previous illustration, you might want to configure additional servers. For example, you might want to use the
primary and two SD secondary servers within a single blade server enclosure. By placing the server group within a single blade server, the blade server itself can become a
failure point. The configuration in the following illustration is an attractive solution when you must periodically increase read processing ability such as when performing
large reporting tasks.
Figure 5. Primary and SD secondary servers in a blade server

You might decide to avoid the possible failure point of a single blade server by using multiple blade servers, as in the following illustration.
Figure 6. Multiple blade server configuration to prevent single point of failure

In the previous illustration, if Blade Server A fails, it would be possible to transfer the primary server role to the SD secondary server on Blade Server B. Since it is possible
to bring additional SD secondary servers online very quickly, it would be possible to dynamically add additional SD secondary servers to Blade Server B as in the following
illustration.

Figure 7. Failover after failure of blade server

Because of limits on the distance between the primary and mirrored disks that disk mirroring can support, you might be concerned about using shared disks and relying on
shared disk mirroring to provide disk availability. For example, you might want significant distance between the two copies of the disk subsystem. In this case, you might
choose to use either an HDR secondary or an RS secondary server to maintain the secondary copy of the disk subsystem. If the network connection is fairly fast (that is, if

Part VI: Administering 267

a ping to the secondary server is less than 50 milliseconds) you must consider using an HDR secondary server. For slower network connections, consider using an RS
secondary server. The following illustration shows an example of an HDR secondary server in a blade server configuration.
Figure 8. HDR secondary server in blade server configuration

In the configuration shown in the previous illustration, if the primary node fails, but the shared disks are intact and the blade server is still functional, it is possible to
transfer the primary server role from the first server in Blade Server A to another server in the same blade server. Changing the primary server would cause the source of
the remote HDR secondary server to automatically reroute to the new primary server, as illustrated in the following diagram:
Figure 9. Failover of primary server to SD secondary server in blade server configuration

Suppose, however, that the failure described in the previous illustration was not a blade within the blade server, but the entire blade server. In this case you might be
required to fail over to the HDR secondary. Since starting an SD secondary server is very quick, you can easily add additional SD secondary servers. Note that the SD
secondary server can only work with the primary node; when the primary has been transferred to Blade Server B, then it becomes possible to start SD secondary servers
on Blade Server B as well, as shown in the following illustration.
Figure 10. Failure of entire blade server

Copyright© 2020 HCL Technologies Limited

Enterprise Replication as part of the recoverable group

While Enterprise Replication does not support a SYNC (synchronous) mode of operation, it does provide the ability to support environments with multiple active servers.
During a failover event, Enterprise Replication is able to reconcile database differences between two servers. You must consider Enterprise Replication as a means of
improving synchronization between servers because each Enterprise Replication system maintains an independent logging system. A configuration using Enterprise
Replication is shown in the following figure.
Figure 1. Configure Enterprise Replication as part of the recoverable group

Copyright© 2020 HCL Technologies Limited

High-availability clusters with Enterprise Replication configuration example

Suppose you require Enterprise Replication between two high-availability server clusters configured as follows:

Cluster 1:

Primary server
HDR secondary server
SD secondary server 1
SD secondary server 2
RS secondary server 1
RS secondary server 2

Cluster 2:

Primary server
HDR secondary server
SD secondary server 1
SD secondary server 2

268 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

RS secondary server 1
RS secondary server 2

Suppose further that each of the servers is named according to the following convention:

First three characters: name of enterprise
Character 4: host short number
Characters 5, 6, and 7: cluster number
Characters 8, 9, and 10: server type: "pri" for primary server, "sec" for secondary server
Characters 11, 12, and 13: connection type: "shm" or "tcp"

For example, a server with the name: srv4_1_pri_shm is described as follows:

srv = name of enterprise
4 = host short number
1 = cluster number
pri = this is a primary server
shm = connection type uses shared memory communication

The following entries in the sqlhosts file would support the previous configuration:

srv4_1_pri_shm onipcshm sun-mach4 srv4_1_pri_shm
srv4_1_sec_shm onipcshm sun-mach4 srv4_1_sec_shm
srv5_1_rss_shm onipcshm sun-mach5 srv5_1_rss_shm
srv5_1_sds_shm onipcshm sun-mach5 srv5_1_sds_shm
srv6_1_rss_shm onipcshm sun-mach6 srv6_1_rss_shm
srv6_1_sds_shm onipcshm sun-mach6 srv6_1_sds_shm
srv_1_cluster group - - i=1
srv4_1_pri_tcp ontlitcp sun-mach4 21316 g=srv_1_cluster
srv4_1_sec_tcp ontlitcp sun-mach4 21317 g=srv_1_cluster
srv5_1_rss_tcp ontlitcp sun-mach5 21316 g=srv_1_cluster
srv5_1_sds_tcp ontlitcp sun-mach5 21317 g=srv_1_cluster
srv6_1_rss_tcp ontlitcp sun-mach6 21316 g=srv_1_cluster
srv6_1_sds_tcp ontlitcp sun-mach6 21317 g=srv_1_cluster

srv4_2_pri_shm onipcshm sun-mach4 srv4_2_pri_shm
srv4_2_sec_shm onipcshm sun-mach4 srv4_2_sec_shm
srv5_2_rss_shm onipcshm sun-mach5 srv5_2_rss_shm
srv5_2_sds_shm onipcshm sun-mach5 srv5_2_sds_shm
srv6_2_rss_shm onipcshm sun-mach6 srv6_2_rss_shm
srv6_2_sds_shm onipcshm sun-mach6 srv6_2_sds_shm
srv_2_cluster group - - i=2
srv4_2_pri_tcp ontlitcp sun-mach4 21318 g=srv_2_cluster
srv4_2_sec_tcp ontlitcp sun-mach4 21319 g=srv_2_cluster
srv5_2_rss_tcp ontlitcp sun-mach5 21318 g=srv_2_cluster
srv5_2_sds_tcp ontlitcp sun-mach5 21319 g=srv_2_cluster
srv6_2_rss_tcp ontlitcp sun-mach6 21318 g=srv_2_cluster
srv6_2_sds_tcp ontlitcp sun-mach6 21319 g=srv_2_cluster

Copyright© 2020 HCL Technologies Limited

Example of a complex failover recovery strategy

This topic describes a three-tiered server approach for achieving maximum availability in the case of a large region-wide disaster.

In general, an HDR Secondary server provides backup for SD secondary servers and provides support for a highly available system which is geographically remote from the
main system. RS secondary servers provide additional availability for the HDR secondary and are viewed as a disaster-availability solution. If you must use an RS
secondary server for availability, then you are forced to manually rebuild the other systems by performing backup and restore in order to return to normal operation. To
further understand this, a scenario is presented in which a large region-wide disaster occurs, such as a hurricane.

To provide maximum availability to survive a regional disaster requires layered availability. The first layer provides availability solutions to deal with transitory local
failures. For example, this might include having a couple of blade servers attached to a single disk subsystem running SD secondary servers. Placing the SD secondary
servers in several locations throughout your campus makes it possible to provide seamless failover in the event of a local outage.

You might want to add a second layer to increase availability by including an alternative location with its own copy of the disks. To protect against a large regional disaster,
you might consider configuring an HDR secondary server located some distance away, perhaps hundreds of miles. You might also want to make the remote system a blade
server or some other multiple-server system. By providing this second layer, if a fail-over occurs and the remote HDR secondary became the primary, then it would be
possible to easily start SD secondary servers at the remote site.

However, even a two-tiered approach might not be enough. A hurricane in one region can create tornadoes hundreds of miles away. To protect against this, consider
adding a third tier of protection, such as an RS secondary server located one or more thousand miles away. This three-tier approach provides for additional redundancy
that can significantly reduce the risk of an outage.

Figure 1. Configuration for three-tiered server availability

Part VI: Administering 269

https://www.hcltech.com/

Now suppose that a local outage occurred in Building-A on the New Orleans campus. Perhaps a pipe burst in the machine room causing water damage to the blade server
and the primary copy of the shared disk subsystem. You can switch the role of primary server to Building-B by running onmode -d make primary servername on one of the
SD secondary servers running on the blade server in Building-B. This would cause all other secondary nodes to automatically connect to the new primary node.
Figure 2. First tier of protection

If there be a regional outage in New Orleans such that both building A and building B were lost, then you can shift the primary server role to Memphis. In addition, you
might also want to make Denver into an HDR secondary and possibly add additional SD secondary servers to the machine in Memphis.
Figure 3. Second tier of protection

An even larger outage which affected both sites would require switching to the most remote system.
Figure 4. Third tier of protection

Table 1. Suggested configurations for various requirements

Requirement Suggested configuration

270 Part VI: Administering

Requirement Suggested configuration

You periodically must increase reporting capacity Use SD secondary servers

You are using SAN devices, which provide ample disk hardware availability, but are
concerned about server failures

Use SD secondary servers

You are using SAN devices, which provide ample disk hardware mirroring, but also want
a second set of servers that are able to be brought online if the main operation is lost
(and the limitations of mirrored disks are not a problem)

Consider using two blade centers running SD secondary servers at the two
sites

You want to have a backup site some moderate distance away, but cannot tolerate any
loss of data during failover

Consider using two blade centers with SD secondary servers on the main
blade center and an HDR secondary on the remote.

You want to have a highly available system in which no transaction is ever lost, but must
also have a remote system on the other side of the world

Consider using a local HDR secondary server that is running fully synchronous
mode or nearly synchronous mode for data replication, and also using an RS
secondary server on the other side of the world.

You want to have a high availability solution, but because of the networks in your region,
the best response time from a ping is about 200 ms

Consider using an RS secondary server

You want a backup site but you do not have any direct communication with the backup
site

Consider using Continuous Log Restore with backup and recovery

You can tolerate a delay in the delivery of data as long as the data arrives eventually;
however you must have quick failover in any case

Consider using SD secondary servers with hardware disk mirroring in
conjunction with ER.

You require additional write processing power, can tolerate some delay in the delivery of
those writes, require something highly available, and can partition the workload

Consider using ER with SD secondary servers

Copyright© 2020 HCL Technologies Limited

Troubleshooting high-availability cluster environments

A high-availability cluster environment requires little or no additional troubleshooting when compared with a stand-alone server environment. This topic explains the
terminology used to describe high-availability cluster environments and provides some common troubleshooting procedures.

You use the diagnostic tools to display the configuration of a high-availability environment and to verify that your secondary servers are set up correctly to update data.

Transactions are processed by the servers very quickly. The onstat commands display status information only for the instant the command was run.

To update data on secondary servers, IBM® Informix® creates proxy distributors on both the primary and the secondary database servers. Each proxy distributor is
assigned an ID that is unique within the cluster. The proxy distributor is responsible for sending DML update requests from secondary servers to the primary server.
Secondary servers determine how many instances of the proxy distributors to create based on the UPDATABLE_SECONDARY setting in the secondary server's onconfig
file.

For updatable secondary servers in a high-availability cluster environment, encryption from the updatable secondary server to primary server requires SMX encryption. To
encrypt data sent from an updatable secondary server to the primary server, set the ENCRYPT_SMX configuration parameter on the secondary server. See ENCRYPT_SMX
configuration parameter for more information.

When initializing an updatable secondary server in a high-availability cluster, the server remains in fast recovery mode until all open transactions, including open and
prepared XA transactions, are complete. Applications cannot connect to the server while it is in fast recovery mode. The server remains in fast recovery mode until all
open transactions are either committed or rolled back.

Use the onstat -g proxy command on the primary server to view information about all proxy distributors in the high-availability cluster.

onstat -g proxy

Secondary Proxy Reference Transaction Hot Row
Node ID Count Count Total
serv2 392 0 2 112
serv2 393 0 2 150

Examining the output from the onstat command in the previous example, there are two proxy distributors whose IDs are 392 and 393. The Transaction Count indicates
the number of transactions currently being processed by each proxy distributor.
You run onstat -g proxy on a secondary server to view information about the proxy distributors that are able to service update requests from the secondary server.

onstat -g proxy

Primary Proxy Reference Transaction Hot Row
Node ID Count Count Total
serv1 392 0 2 112
serv1 393 0 2 150

In this example, the server is a shared disk (SD) secondary server, and is configured to update data. In addition, the server is connected to the primary server named
serv1, and there are two proxy distributors, each with a transaction count of 2.
Use onstat -g proxy all on the primary server to display information about proxy distributors and proxy agent threads. One or more proxy agent threads are created by the
proxy distributor to handle data updates from the secondary server.

onstat -g proxy all

Secondary Proxy Reference Transaction Hot Row
Node ID Count Count Total
serv2 392 0 2 1
serv2 393 0 2 0

TID Flags Proxy Source Proxy Current sqlerrno iserrno

Part VI: Administering 271

https://www.hcltech.com/

 ID SessID TxnID Seq
63 0x00000024 392 22 1 5 0 0
64 0x00000024 392 19 2 5 0 0
62 0x00000024 393 23 1 5 0 0
65 0x00000024 393 21 2 5 0 0

In the output of the onstat -g proxy all command, TID represents the ID of the proxy agent thread that is running on the primary server. Source SessID represents the ID
of the user's session on the secondary server. Proxy TxnID displays the sequence number of the current transaction. Each Proxy TxnID is unique to the proxy distributor.
Current Seq represents the sequence number of the current operation in the transaction being processed. Each database transaction sent to a secondary server is
separated internally into one or more operations that are then sent to the primary server. The last two fields, sqlerrno and iserrno, display any SQL or ISAM/RSAM errors
encountered in the transaction. An error number of 0 indicates completion with no errors.
Running onstat -g proxy all on the secondary server displays information about all of the sessions that are currently able to update data on secondary servers.

onstat -g proxy all

Primary Proxy Reference Transaction Hot Row
Node ID Count Count Total
serv1 3466 0 0 1
serv1 3465 0 1 0

Session Proxy Proxy Proxy Current Pending Reference
 ID TID TxnID Seq Ops Count
19 3465 67 1 23 0 1

In the output from the onstat -g proxy all command run on the secondary server, Session represents the ID of a user's session on the secondary server. The Proxy ID and
Proxy TID are the same as those displayed on the primary server. Pending Ops displays the number of operations that are waiting to be transferred to the primary server.
Reference Count displays the number of threads in use for the transaction. When Reference Count displays 0 the transaction processing is complete.
To display detailed information about the current work being performed by a given distributor, use:

onstat -g proxy <proxy id> [proxy transaction id] [operation number]

The proxy transaction ID and operation number are both optional parameters. When supplied, the first number is considered the proxy transaction ID. If a secondary
number follows it is interpreted as the operation number. If no proxy transaction ID exists, the command performs the same as: onstat -. Similarly, if no such operation
number for the given proxy transaction ID exists, the command performs the same as: onstat -.
Use the following command to display information about whether a server is configured to allow updates to data. The command can be run either on the primary or
secondary server:

onstat -g <server_type>

Examples:

onstat -g rss
onstat -g sds
onstat -g dri

Copyright© 2020 HCL Technologies Limited

Design data replication group clients

This topic explains various design considerations for clients that connect to database servers that are running data replication.

Also see Isolation levels on secondary servers for information about committed read and committed read last committed isolation levels on secondary servers.

Use of temporary dbspaces for sorting and temporary tables

Copyright© 2020 HCL Technologies Limited

Use of temporary dbspaces for sorting and temporary tables

Even though the secondary database server is in read-only mode, it does write when it must sort or create a temporary table. Temporary dbspaces explains where the
database server finds temporary space to use during a sort or for a temporary table.

To prevent the secondary database server from writing to a dbspace that is in logical-recovery mode, you must take the following actions:

1. Ensure that one or more temporary dbspaces exist. For instructions on creating a temporary dbspace, see Creating a dbspace that uses the default page size.
2. Perform one of the following actions:

Set the DBSPACETEMP parameter in the onconfig file of the secondary database server to the temporary dbspace or dbspaces.
Set the DBSPACETEMP environment variable of the client applications to the temporary dbspace or dbspaces.

Temporary tables created on secondary servers (SD secondary servers, RS secondary servers, and HDR secondary servers) must be created using the WITH NO LOG
option. Alternatively, set the TEMPTAB_NOLOG configuration parameter to 1 or 2 on the secondary server to change the default logging mode for temporary tables to no
logging. Tables created with logging enabled result in ISAM errors.

For SD secondary servers, set the SDS_TEMPDBS configuration parameter for configuring temporary dbspaces to be used by the SD secondary server.

For SD secondary servers, it is not necessary to explicitly add a temporary dbspace because the secondary server allocates the chunk specified by SDS_TEMPDBS when
the server is started. It is only necessary to prepare the device that accepts the chunk.

If the primary server in a high-availability cluster fails and an SD secondary server takes over as the primary server, then the value set for the SDS_TEMPDBS configuration
parameter on the SD secondary server is used for temporary dbspaces until the server is restarted. You must ensure that the value specified for the SDS_TEMPDBS

272 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

configuration parameter on the SD secondary server is different than the value specified on the primary server. After the SD secondary server is restarted, the
DBSPACETEMP configuration parameter is used.

Copyright© 2020 HCL Technologies Limited

Performing basic administration tasks

These topics contain instructions on how to perform database server administration tasks when your system is running HDR.

Changing the configuration parameters for an HDR replication pair
 Back up storage spaces and logical-log files

 When you use HDR, you must back up logical-log files and storage spaces only on the primary database server. Be prepared, however, to perform storage-space and
logical-log backups on the secondary database server in case the type of the database server is changed to standard.
Changing the logging mode of databases

 Add and drop chunks and storage spaces
 Renaming chunks

 Saving chunk status on the secondary database server
 For high-availability cluster servers, if the status of a chunk (down or online) is changed on the secondary database server, and that secondary server is restarted

before a checkpoint is completed, the updated chunk status is not saved.
Use and change mirroring of chunks

 Manage the physical log
 Manage the logical log

 Manage virtual processors
 Manage shared memory

 Configure SMX connections
 Server Multiplexer Group (SMX) is a communications interface that supports encrypted multiplexed network connections between servers in high availability

environments. SMX provides a reliable, secure, high-performance communication mechanism between database server instances.
Replicate an index to an HDR secondary database server

 Encrypting data traffic between HDR database servers
 Adjust LRU flushing and automatic tuning in HDR server pairs

 Cloning a primary server
 You can use the ifxclone utility to perform one-step server instantiation, allowing a primary server in a high-availability cluster to be cloned with minimum setup or

configuration.
Database updates on secondary servers

 You can enable applications connected to secondary servers to update database data. If you enable write operations on a secondary server, DELETE, INSERT,
MERGE, and UPDATE operations are propagated to the primary server.
Backup and restore with high-availability clusters

 You cannot perform most backup and restore operations on secondary servers.
Change the database server mode

 If you change the mode of a database server in a high-availability cluster, replication stops.
Changing the database server type

 You can change the type of either the primary or the secondary database server.
Prevent blocking checkpoints on HDR servers

 Monitor HDR status

Copyright© 2020 HCL Technologies Limited

Changing the configuration parameters for an HDR replication pair

Certain configuration parameters must be set to the same value on both database servers in a HDR replication pair (as listed under Database server configuration
requirements for clusters.) Configuration parameters that can have different values on each database server can be changed individually.

To make changes to onconfig files:

1. Bring each database server offline with the onmode -k option. If automatic failover by Connection Managers or automatic switchover from DRAUTO settings of 1 or
2 are enabled, bring the HDR secondary server offline first.

2. Change the parameters on each database server.
3. Starting with the database server that was last brought offline, bring each database server back online.

For example, if you brought the HDR secondary database server offline last, bring the HDR secondary database server online first. Table 1 lists the procedures for
bringing the primary and secondary database servers back online.

Copyright© 2020 HCL Technologies Limited

Back up storage spaces and logical-log files

When you use HDR, you must back up logical-log files and storage spaces only on the primary database server. Be prepared, however, to perform storage-space and
logical-log backups on the secondary database server in case the type of the database server is changed to standard.

You must use the same backup and restore tool on both database servers.

The block size and tape size used (for both storage-space backups and logical-log backups) must be identical on the primary and secondary database servers.

Part VI: Administering 273

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

You can use ontape to set the tape size to 0 to automatically use the full physical capacity of a tape.

Copyright© 2020 HCL Technologies Limited

Changing the logging mode of databases

You cannot turn on transaction logging for databases on the primary database server while you are using HDR. You can turn logging off for a database; however,
subsequent changes to that database are not duplicated on the secondary database server.

To turn on database logging:

1. To turn HDR off, shut down the secondary database server.
2. Turn on database logging.

After you turn on logging for a database, if you start data replication without performing the level-0 backup on the primary database server and restore on the
secondary database server, the database on the primary and secondary database servers might have different data. This situation might cause data-replication
problems.

3. Perform a level-0 backup on the primary database server and restore on the secondary database server. This procedure is described in Starting HDR for the First
Time.

Copyright© 2020 HCL Technologies Limited

Add and drop chunks and storage spaces

You can perform disk-layout operations, such as adding or dropping chunks and dbspaces, only from the primary database server. The operation is replicated on the
secondary database server. This arrangement ensures that the disk layout on both database servers in the replication pair remains consistent.

The directory path name or the actual file for chunks must exist before you create them. Make sure the path names (and offsets, if applicable) exist on the secondary
database server before you create a chunk on the primary database server, or else the database server turns off data replication.

Tip: When adding a dbspace on the primary server of a high-availability cluster that has one or more SD secondary servers, the online.log of an SD secondary server might
show this error: "Assert Failed: Page Check Error". If that happens, shut down and restart that SD secondary server. After restarting that SD secondary server, the newly
added dbspace will be available and fully functional.

Copyright© 2020 HCL Technologies Limited

Renaming chunks

If you use symbolic links for chunk path names, you can rename chunks while HDR is operating. For instructions on renaming chunks, see the IBM® Informix® Backup and
Restore Guide.

If you do not use symbolic links for chunk path names, you must take both database servers offline while renaming the chunks, for the time that it takes to complete a cold
restore of the database server.

To rename chunks on a failed HDR server:

1. Change the mode of the undamaged server to standard.
2. Take a level-0 backup of the standard server.
3. Shut down the standard server.
4. Rename the chunks on the standard server during a cold restore from the new level-0 archive (for instructions, see the IBM Informix Backup and Restore Guide).
5. Start the standard server.
6. Take another level-0 archive of the standard server. Be sure the server is in standard mode.
7. Restore the failed server with the new level-0 backup and reestablish the HDR pair.

Copyright© 2020 HCL Technologies Limited

Saving chunk status on the secondary database server

For high-availability cluster servers, if the status of a chunk (down or online) is changed on the secondary database server, and that secondary server is restarted before a
checkpoint is completed, the updated chunk status is not saved.

To ensure that the new chunk status is flushed to the reserved pages on the secondary database server, force a checkpoint on the primary database server and verify that
a checkpoint also completes on the secondary database server. The new chunk status is now retained even if the secondary database server is restarted.

If the primary chunk on the secondary database server is down, you can recover the primary chunk from the mirror chunk.

To recover the primary chunk from the mirror chunk:

1. Run onspaces -s on the secondary database server to bring the primary chunk online.
2. Run onmode -c on the primary database server to force a checkpoint.
3. Run onmode -m on the primary database server to verify that a checkpoint was completed.

274 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

4. Run onmode -m on the secondary database server to verify that a checkpoint was also completed on the secondary database server.

After you complete these steps, the primary chunk is online when you restart the secondary database server.

Copyright© 2020 HCL Technologies Limited

Use and change mirroring of chunks

Before you can add a mirror chunk, the disk space for that chunk must already be allocated on both the primary and secondary database servers. If you want to mirror a
dbspace on one of the database servers in the replication pair, you must create mirror chunks for that dbspace on both database servers. For general information about
allocating disk space, see Allocate disk space.

Do not set the MIRROR configuration parameter to 1 unless you are using mirroring.

You can perform disk-layout operations from the primary database server only. Thus, you can add or drop a mirror chunk only from the primary database server. A mirror
chunk that you add to or drop from the primary database server is added to or dropped from the secondary database server as well. You must perform mirror recovery for
the newly added mirror chunk on the secondary database server. For more information, see Recover a mirror chunk.

When you drop a chunk from the primary database server, IBM® Informix® automatically drops the corresponding chunk on the secondary database server. This applies to
both primary and mirror chunks.

When you turn mirroring off for a dbspace on the primary database server, does not turn mirroring off for the corresponding dbspace on the secondary database server. To
turn off mirroring for a dbspace on the secondary database server independent of the primary server, use onspaces -r. For more information about turning off mirroring,
see End mirroring.

You can take down a mirror chunk or recover a mirror chunk on either the primary or secondary database server. These processes are transparent to HDR.

Copyright© 2020 HCL Technologies Limited

Manage the physical log

The size of the physical log must be the same on both database servers. If you change the size and location of the physical log on the primary database server, this change
is replicated to the secondary database server. ONCONFIG values on secondary are updated automatically.

For information about changing the size and location of the physical log, see Manage the physical log.

Copyright© 2020 HCL Technologies Limited

Manage the logical log

The size of the logical log must be the same on both database servers. You can add or drop a logical-log file with the onparams utility, as described in Manage logical-log
files. IBM® Informix® replicates this change on the secondary database server; however, the LOGFILES parameter on the secondary database server is not updated. After
you issue the onparams command from the primary database server, therefore, you must manually change the LOGFILES parameter to the appropriate value on the
secondary database server. Finally, for the change to take effect, you must perform a level-0 backup of the root dbspace on the primary database server.

If you add a logical-log file to the primary database server, this file is available for use and flagged F as soon as you perform the level-0 backup. The new logical-log file on
the secondary database server is still flagged A. However, this condition does not prevent the secondary database server from writing to the file.

Copyright© 2020 HCL Technologies Limited

Manage virtual processors

The number of virtual processors has no effect on data replication. You can configure and tune each database server in the pair individually.

Copyright© 2020 HCL Technologies Limited

Manage shared memory

If you make changes to the shared-memory ONCONFIG parameters on one database server, you must make the same changes at the same time to the shared-memory
ONCONFIG parameters on the other database server. For the procedure for making this change, see Changing the configuration parameters for an HDR replication pair.

Copyright© 2020 HCL Technologies Limited

Configure SMX connections

Part VI: Administering 275

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Server Multiplexer Group (SMX) is a communications interface that supports encrypted multiplexed network connections between servers in high availability
environments. SMX provides a reliable, secure, high-performance communication mechanism between database server instances.

Reduce latency between servers
You can reduce latency between high-availability servers by increasing the number of pipes that are used for SMX connections between the servers. Set the
SMX_NUMPIPES configuration parameter to the number of pipes.

Obtain SMX statistics
You can use the onstat utility or system-monitoring interface (SMI) tables to view SMX connection statistics or SMX session statistics.

To view SMX connection statistics, use the onstat -g smx command.

To view SMX session statistics, use the onstat -g smx ses command.

Encrypt SMX connections
Use the ENCRYPT_SMX configuration parameter to set the level of encryption for high availability configurations. If you set the ENCRYPT_SMX parameter to 1, encryption
is used for SMX transactions only when the database server being connected to also supports encryption. If you set the ENCRYPT_SMX configuration parameter to 2 , only
connections to encrypted database servers are allowed. Setting ENCRYPT_SMX to 0 disables encryption between servers.

Set the wait time for SMX activity between servers
You can set the SMX_PING_INTERVAL and SMX_PING_RETRY configuration parameters to adjust the interval that secondary server in a high-availability cluster waits for
activity from the primary server. Use the SMX_PING_INTERVAL configuration parameter to specify the number of seconds in a timeout interval, where a secondary server
waits for activity from the primary server in an SMX connection.

Use the SMX_PING_RETRY configuration parameter to specify the maximum number of times that a secondary server repeats the timeout interval that is specified by the
SMX_PING_INTERVAL configuration parameter if a response from the primary server is not received. If the maximum number is reached without a response, the
secondary server prints an error message in the online.log and closes the Server Multiplexer Group (SMX) connection.

Compress data through SMX connections
You can specify the level of compression that the database server uses before sending data from the source database server to the target database server with the
SMX_COMPRESS configuration parameter. Network compression saves network bandwidth over slow links but uses more CPU to compress and decompress the data.

Related information:
 SMX_COMPRESS configuration parameter

SMX_PING_INTERVAL configuration parameter
SMX_NUMPIPES configuration parameter
SMX_PING_RETRY configuration parameter
ENCRYPT_SMX configuration parameter
onstat -g smx command: Print multiplexer group information

Copyright© 2020 HCL Technologies Limited

Replicate an index to an HDR secondary database server

If index page logging is enabled, index replication to the HDR secondary database server occurs automatically (see Index page logging). If index page logging is disabled,
and an index on an HDR secondary database server becomes corrupted and must be rebuilt, you can either:

Manually replicate the index from the primary server to the secondary server.
Let the secondary server automatically replicate the index if you enabled the secondary server to do this.

To enable the secondary database server to automatically replicate the index, either:

Set onmode -d idxauto to on.
Set the value of the DRIDXAUTO configuration parameter to 1.

After you set either of these values, when one of the threads on the secondary database server detects a corrupted index, the index is automatically replicated to the
secondary database server. Restarting index replication can take up to the amount of time specified in seconds in the DRTIMEOUT configuration parameter.

Sometimes, you might want to replicate an index manually, for example, when you want to postpone index repair because the table is locked. If you want to be able to
manually replicate an index on the HDR secondary server, turn off the automatic replication feature.

To turn off the automatic index replication feature, either:

Set onmode -d idxauto to off.
Set the DRIDXAUTO configuration parameter to 0.

If onmode -d idxauto is set to off or DRIDXAUTO is set to 0 and the secondary server detects a corrupted index, you can manually replicate an index on the HDR
secondary server by issuing an onmode -d index command in the following format.onmode -d index database:[ownername].table#index

For example:onmode -d index cash_db:user_dx.table_12#index_z

In the case of a fragmented index with one corrupted fragment, the onmode -d idxauto option only transfers the single affected fragment, whereas the onmode -d index
option transfers the whole index.

276 Part VI: Administering

https://www.hcltech.com/

Important: When turning the automatic index replication feature on or off, you can use either the onmode command or the DRIDXAUTO configuration parameter. If you
use the onmode command, you are not required to stop and restart the database server. When you use the DRIDXAUTO parameter, the database server is restarted with
the setting you specify. The onmode command does not change the DRIDXAUTO value. If you use the onmode command, you must manually change the value of
DRIDXAUTO.
The online.log file produced by the secondary server contains information about any replicated index.

Related information:
 onmode -d command: Replicate an index with data-replication

DRIDXAUTO configuration parameter

Copyright© 2020 HCL Technologies Limited

Encrypting data traffic between HDR database servers

To support encrypted HDR connections in conjunction with Communication Support Module (CSM) client/server encryption, two network ports must be configured:

One network port must be configured for HDR.
The other network port must be configured for CSM client/server connections.

You can use Informix® server encryption options to encrypt the data traffic between the database servers of an HDR pair. Do this when you want to ensure secure
transmission of data.

After you enable encryption, the first database server in an HDR pair encrypts the data before sending the data to the other server in the pair. The server that receives the
data, decrypts the data as soon as it receives the data.

For updatable secondary servers in a high-availability cluster environment, encryption from the updatable secondary server to primary server requires SMX encryption. To
encrypt data sent from an updatable secondary server to the primary server, set the ENCRYPT_SMX configuration parameter on the secondary server. See ENCRYPT_SMX
configuration parameter for more information.
Restriction: You cannot start HDR on a network connection that is configured to use CSM encryption for client/server connections.
Additional buffers or larger buffers might be necessary to accommodate the size of encrypted data.

To encrypt data traffic between two HDR database servers:

1. Set the following configuration parameters on the first server in the HDR pair.
ENCRYPT_HDR, which enables or disables HDR encryption
ENCRYPT_CIPHERS, which specifies the ciphers and modes to use for encryption
ENCRYPT_MAC, which controls the level of message authentication code (MAC) generation
ENCRYPT_MACFILE, which specifies a list of the full path names of MAC key files
ENCRYPT_SWITCH, which specifies the number of minutes between automatic renegotiations of ciphers and keys

To change these parameters, follow the instructions in Changing the configuration parameters for an HDR replication pair.

2. Set the encryption configuration parameters on the secondary server. The ENCRYPT_HDR, ENCRYPT_CIPHERS, ENCRYPT_MAC, and the ENCRYPT_SWITCH
configuration parameters must have the same values as the corresponding configuration parameters on the primary server. The ENCRYPT_MACFILE configuration
parameter can have a different value on each server, but the files must contain the same MAC keys.

For example, specify the following information about the primary and secondary servers in an HDR pair:

Configuration parameter Sample setting on primary server Sample setting on secondary server

ENCRYPT_HDR 1 1

ENCRYPT_CIPHERS all all

ENCRYPT_MAC medium medium

ENCRYPT_MACFILE /vobs/tristan/sqldist/etc/mac1.dat vobs/tristan/sqldist/etc/mac2.dat

ENCRYPT_SWITCH 60,60 60,60

In this example, the file name in the ENCRYPT_MACFILE path for the primary server is mac1.dat and the file name in the ENCRYPT_MACFILE path for the secondary server
is mac2.dat. Otherwise, all settings are the same on both servers.

Only use these configuration parameters to specify encryption information for HDR. You cannot specify HDR encryption information by using the CSM option in the
sqlhosts file.

HDR encryption works in conjunction with Enterprise Replication encryption and operates whether Enterprise Replication encryption is enabled or not. When working in
conjunction with each other, HDR and Enterprise Replication share the same ENCRYPT_CIPHER, ENCRYPT_MAC, ENCRYPT_MACFILE and ENCRYPT_SWITCH configuration
parameters.

For more information about these configuration parameters, see the IBM® Informix Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Adjust LRU flushing and automatic tuning in HDR server pairs

When a server is configured for HDR, checkpoints triggered by the secondary database server are nonblocking. These types of checkpoints occur infrequently. If a
nonblocking checkpoint is triggered by the secondary server, transactions are blocked on the primary server to make sure that the integrity of the secondary server is not
compromised. If nonblocking checkpoints triggered by the secondary server occur on your system, you must tune LRU flushing more aggressively on the primary server to
reduce transaction blocking.

To increase LRU flushing, reduce the values of lru_min_dirty and lru_max_dirty in the BUFFERPOOL configuration parameter.

Part VI: Administering 277

https://www.hcltech.com/
https://www.hcltech.com/

Automatic LRU tuning can be turned on or off independently on each HDR node. The setting can be different on each HDR database server. For information about turning
off automatic LRU tuning, see Turn automatic LRU tuning on or off.

For more information about LRU tuning, see the IBM® Informix® Performance Guide.

Copyright© 2020 HCL Technologies Limited

Cloning a primary server

You can use the ifxclone utility to perform one-step server instantiation, allowing a primary server in a high-availability cluster to be cloned with minimum setup or
configuration.

You can use the ifxclone utility to create one of the following database server types:

Standalone server
Remote standalone (RS) secondary server
High-availability data replication (HDR) secondary server
Shared-disk (SD) secondary server
Enterprise Replication server

Using the ifxclone utility, the database administrator can quickly, easily, and securely create a clone server from a running Informix® instance without requiring to back up
data on the source server, and transfer and restore it to the clone server. The backup and restore processes are started simultaneously using the ifxclone utility and there
is no requirement to read or write data to disk or tape.
Data is transferred from the source server to the target server over the network using encrypted Server Multiplexer Group (SMX) Connections.

You can automate the creation of clone instances by calling the ifxclone utility from a script.

Creating a clone of a primary server
 Use the ifxclone utility to create a clone of a primary server.

Copyright© 2020 HCL Technologies Limited

Creating a clone of a primary server

Use the ifxclone utility to create a clone of a primary server.

The general steps to create a clone of a server are as follows:

1. Verify that the ENABLE_SNAPSHOT_COPY configuration parameter on the source server is set to 1.
2. Verify that the CDR_AUTO_DISCOVER configuration parameter is set to 1, and that the REMOTE_SERVER_CFG file is set on all cluster servers.
3. Set the following environment variables on the target server:

INFORMIXDIR
INFORMIXSERVER
ONCONFIG
INFORMIXSQLHOSTS

4. On the target server, create all of the chunks that exist on the source server. You can use the --createchunkfile option (-k) to automatically create cooked chunks
on the target server. Follow these steps to create the chunks:

a. On the source server, run the onstat -d command to display a list of chunks
b. On the target server, log-in as user informix and use the commands touch, chown, and chmod to create the chunks. For example, to create a chunk that is

named /usr/informix/chunks/rootdbs.chunk, follow these steps:

$ su informix
Password:
$ touch /usr/informix/chunks/rootdbs.chunk
$ chown informix:informix /usr/informix/chunks/rootdbs.chunk
$ chmod 660 /usr/informix/chunks/rootdbs.chunk

c. Repeat all of the commands in the previous step for each chunk reported by the onstat -d command.
5. Create an sqlhosts file on the target server's host, and add the target server's connectivity information to the file.
6. On the source server, run the admin() or task() function with the cdr add trustedhost argument, including the target server's trusted-host information.
7. While still logged in as user informix, run the ifxclone utility with the --autoconf option (-a) and other appropriate parameters on the target system on which the

clone server is started.
Note: If trusted-host information was added manually, do not use the --autoconf option; you must configure trusted hosts and sqlhosts file information manually.

Example: Cloning a primary server
For this example, you have the following system:

server_1 is the source server and has the following sqlhosts file entries:

#dbservername nettype hostname servicename options
 server_1 onsoctcp host1.example.com 123

server_1 has the following configuration parameter settings:
ENABLE_SNAPSHOT_COPY 1
CDR_AUTO_DISCOVER 1
REMOTE_SERVER_CFG authfile.server_1

server_1 has the following trusted-host file entries

278 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

#trustedhost
host1
host1.example.com
host2
host2.example.com

server_2 is the target server, is on host2.example.com, and uses port 456.

1. On the target server, log in as user informix and use the touch, chown, and chmod commands to create, change the owner, and change the permissions for the
chunks. The chunk paths must match the paths of the chunks on the source server. You can use the --createchunkfile option (-k) to automatically create cooked
chunks on the target server.

2. Run the ifxclone utility on the target server as user informix:

ifxclone -T -S server_1 -I host1.example.com -P 123 -t server_2
 -i host2.example.com -p 456 -a -k

The ifxclone utility modifies the sqlhosts file on the source server and creates a copy of the file on the new target server:

#dbservername nettype hostname servicename options
 server_1 onsoctcp host1.example.com 123
 server_2 onsoctcp host2.example.com 456

The ifxclone utility also propagates the trusted-host file on the source server to the target server.
Related information:

 The ifxclone utility

Copyright© 2020 HCL Technologies Limited

Database updates on secondary servers

You can enable applications connected to secondary servers to update database data. If you enable write operations on a secondary server, DELETE, INSERT, MERGE, and
UPDATE operations are propagated to the primary server.

Use the UPDATABLE_SECONDARY configuration parameter to control whether the secondary server can update data and to configure the number of connections that
update operations use.

Both data definition language (DDL) statements and data manipulation language (DML) statements are supported on secondary servers.

The dbimport utility is supported on all updatable secondary servers.

You cannot use the dbexport utility on HDR secondary servers or shared disk (SD) secondary servers. The dbexport utility is supported on a remote standalone (RS)
secondary server only if the server is set to stop applying log files. Use the STOP_APPLY configuration parameter to stop application of log files.

The dbschema utility is supported on all updatable secondary servers.

The dbschema utility is also supported on read-only secondary servers. However, the dbschema utility displays a warning message when running on these servers.

Most applications that use DDL or DML can run on any of the secondary servers in a high-availability cluster; however, the following DDL statements are not supported:

CREATE DATABASE (with no logging)
CREATE EXTERNAL TABLE
CREATE RAW TABLE
CREATE TEMP TABLE (with logging)
CREATE XADATASOURCE
CREATE XADATASOURCE TYPE
DROP XADATASOURCE
DROP XADATASOURCE TYPE
UPDATE STATISTICS

In cluster environments, the SET CONSTRAINTS, SET INDEXES, and SET TRIGGERS statements are not supported on updatable secondary servers. Any session-level
index, trigger, or constraint modes that the SET Database Object Mode statement specifies are not redirected for UPDATE operations on table objects in databases of
secondary servers.

Client applications can insert, update, and delete rows on a secondary server only if the secondary server image matches that of the primary server. The following data
types are supported:

BIGINT
BIGSERIAL
BLOB
BOOLEAN
BSON
BYTE (stored in the table)
CHAR
CLOB
DATE
DECIMAL
DATETIME
FLOAT
INT
INT8
INTERVAL
JSON
MONEY

Part VI: Administering 279

https://www.hcltech.com/

NCHAR
NVCHAR
SERIAL
SERIAL8
SMALLFLOAT
SMALLINT
TEXT (stored in the table)
VARCHAR

BYTE and TEXT data types that are stored in blobspaces are not supported because blobspace data is not replicated.

The following data types are also supported if they do not receive a pointer reference to a different partition:

COLLECTION
LIST
LVARCHAR
MULTISET
ROW
SET
UDTVAR

Any difference between the primary server image and the secondary server image causes an SQL error and the rollback of any changes.

You cannot use the following utilities on HDR secondary servers, remote standalone (RS) secondary servers, or shared disk (SD) secondary servers:

archecker
dbload
High-Performance Loader (HPL)
ondblog
onload
onparams
onperf
onsnmp
onspaces
onunload

SD secondary servers are not supported in Windows environments.

Byte range locking is not supported on secondary servers configured for updates. Byte range locks on secondary servers are promoted to full object locks.

Replicate smart large objects
You might receive one or more of the following error messages while working with updatable secondary servers:

12014
12015
12233

These errors generally indicate a problem with a smart large object file descriptor. These errors can be caused by any of the following conditions:

A smart large object identifier is passed to another transaction or process before committing the transaction. Because all objects including smart large objects are
uncommitted until the transaction is committed, do not allow other transactions to use the smart large object. In particular, dirty reads can access locked smart
large objects.
Smart large objects are not closed after opening them. At the end of a transaction, all smart large objects must be closed on secondary servers, especially those
that are created and then the transaction is rolled back. Leaving smart large object file descriptors open causes memory to remain allocated until the session
terminates.
Another process has deleted the smart large object on the primary server. Share locks are not automatically propagated from secondary servers to the primary
server so a different secondary server might access a smart large object that has actually been deleted on the primary. These accesses work until either the log
record containing the delete is replayed on the secondary server or the secondary server is updated by the primary server.

Three additional error codes might be returned when processing dirty read information.

-126 (ISAM error: bad row id)
-244 (SQL error: Could not do a physical-order read to fetch next row)
-937

Try your query again if you receive any of the previous codes.

LOCK TABLE statement behavior on secondary servers
You can set an exclusive lock on a table from an updatable secondary server in a high-availability cluster. For exclusive mode locks requested from a secondary server,
sessions can read the table but not update it. This behavior is similar to shared access mode on a secondary server; that is, when one session has an exclusive lock on a
given table, no other session can obtain a shared or exclusive lock on that table.

On read-only secondary servers, the session issuing the LOCK TABLE statement does not lock the table and the database server does not return an error to the client.

Shared mode locks in a cluster behave the same as for a standalone server. After a LOCK TABLE statement runs successfully, users can read the table but cannot modify it
until the lock is released.

Isolation levels on secondary servers
 Transient types on high-availability cluster secondary servers

 Row versioning

280 Part VI: Administering

Related concepts:
XA in high-availability clusters

Copyright© 2020 HCL Technologies Limited

Isolation levels on secondary servers

The following statements are supported on all types of secondary servers:

Set isolation to committed read
Set isolation to committed read last committed

Secondary servers on which Committed Read isolation is set can read locally committed data. They can also read data committed on the primary server when it becomes
available and committed on the secondary server. Applications connected to a secondary server receive data that is currently committed on the secondary server. See
Design data replication group clients for additional information about design considerations for clients that connect to database servers that are running data replication.
The default isolation level on secondary servers is Dirty Read; however, setting an explicit isolation level enables the correct isolation level: Dirty Read, Committed Read,
or Committed Read Last Committed.

Repeatable Read and Cursor Stability isolation levels are not supported. Using the SET ISOLATION statement with Cursor Stability and Repeatable Read levels is ignored.

After starting a secondary server, client applications connect to the server only when all transactions open at the startup checkpoint have either committed or rolled back.

If the UPDATABLE_SECONDARY configuration parameter is disabled (by being unset or being set to zero), a secondary data replication server is read-only. In this case,
only the DIRTY READ or READ UNCOMMITTED transaction isolation levels are available on secondary servers.

If the UPDATABLE_SECONDARY parameter is enabled (by setting it to a valid number of connections greater than zero), a secondary data replication server can support
the COMMITTED READ, COMMITTED READ LAST COMMITTED, or COMMITTED READ transaction isolation level, or the USELASTCOMMITTED session environment
variable. Only DML statements of SQL (the DELETE, INSERT, UPDATE, and MERGE statements), and the dbexport utility, can support write operations on an updatable
secondary server. (Besides UPDATABLE_SECONDARY, the STOP_APPLY and USELASTCOMMITTED configuration parameters must also be set to enable write operations
by dbexport on a secondary data replication server.)

Use onstat -g ses or onstat -g sql to view isolation level settings. See the IBM® Informix® Administrator's Reference for more information.

Set lock mode

Copyright© 2020 HCL Technologies Limited

Set lock mode

Issuing a SET LOCK MODE TO WAIT or SET LOCK MODE TO WAIT n statement on a secondary server sets the lock wait timeout value for that session just like on a primary
server. The value set by SET LOCK MODE is used by the proxy thread created for the current session on the primary server when it performs updates from a secondary
server. If the value for SET LOCK MODE is greater than the ONCONFIG parameter value of DEADLOCK_TIMEOUT, the value of DEADLOCK_TIMEOUT is used instead.

Copyright© 2020 HCL Technologies Limited

Transient types on high-availability cluster secondary servers

Transient unnamed complex data types (ROW, SET, LIST, and MULTISET) can be used on high-availability cluster secondary servers, whether the secondary servers are
read-only or updatable. The following types of operations that use transient types are supported on secondary servers:

SQL queries that use transient types
SQL queries that use derived tables, collection subqueries, and XML functions (these statements implicitly use transient types)
Temporary tables created with the CREATE TEMP statement that uses transient types

See the IBM® Informix® Guide to SQL: Reference and IBM Informix Guide to SQL: Syntax for information about complex data types.

Copyright© 2020 HCL Technologies Limited

Row versioning

Use row versioning to determine whether a row was changed and to detect collisions. With row versioning enabled, each row of a table is configured to contain both a
checksum and a version number. When a row is first inserted, the checksum is generated automatically, and the version is set to 1. Every time the row is updated the
version is incremented by one, while the checksum value is not changed. With row versioning, if a row is deleted and another row is reinserted in a table, it is possible to
recognize that the row is different. By comparing the row checksum and row version between the secondary and the primary servers, it is possible to detect data
collisions.

Web applications can use a version column to determine whether information contained in a previously retrieved object is still current. For example, a web application
might display items for sale to a customer. When the customer decides to purchase an item, the application can check the version column of the item's row to determine
whether any information about the item has changed.

If client applications can update data on the secondary servers in your environment, use row versioning to minimize network use, especially if your tables have many
columns. Otherwise, entire rows on the secondary server are compared with entire rows on the primary server to determine whether updates occurred.

Part VI: Administering 281

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

To add row versioning to an existing table, use the following syntax:

 ALTER TABLE tablename add VERCOLS;

Similarly, you can delete row versioning from a table with the following syntax:

 ALTER TABLE tablename drop VERCOLS;

To create a new table with row versioning, use the following syntax:

 CREATE TABLE tablename (
 Column Name Datatype
 Column Name Datatype
 Column Name Datatype
) with VERCOLS;

When row versioning is enabled, ifx_row_version is incremented by one each time the row is updated; however, row updates made by Enterprise Replication do not
increment the row version. To update the row version on a server using Enterprise Replication, you must include the ifx_row_version column in the replicate participant
definition.

Copyright© 2020 HCL Technologies Limited

Backup and restore with high-availability clusters

You cannot perform most backup and restore operations on secondary servers.

Before you can establish a server as an HDR (high-availability data replication) or RS (remote stand-alone) secondary server, you must perform a cold restore on it.

After you have set up a server as an HDR or RSS secondary server, you can only perform the following backup and restore operations:

You can perform a logical restore on HDR or RS secondary servers when you are setting up a high-availability cluster.
You can perform an external backup on an RS secondary server. For more information, see the IBM® Informix® Backup and Restore Guide.

SD secondary servers must be shut down during a cold restore of the primary server, but can be online during a warm restore, after they have been shut down and
restarted.

Related tasks:
 Starting an RS secondary server for the first time

Starting HDR for the First Time
Recovering a shared-disk cluster after data is damaged

Copyright© 2020 HCL Technologies Limited

Change the database server mode

If you change the mode of a database server in a high-availability cluster, replication stops.

To change the database server mode, use the onmode utility.

The following table summarizes the effects of changing the mode of the primary database server.

Table 1. Mode changes on the primary database server
On the primary On the secondary To restart HDR

From any mode to offline:
(onmode -k)

Secondary displays: DR: Receive error.
HDR is turned off.

The mode remains read-only.

If DRAUTO is set to 0, the mode remains read-only.

If DRAUTO is set to 1, the secondary server
switches to standard type and can accept updates.
(If DRAUTO is set to 2 , the secondary database
server becomes a primary database server as soon
as the connection ends when the old primary
server fails.)

Treat it like a failure of the primary. Two different scenarios are
possible, depending on what you do with the secondary database
server while the primary database server is offline. See these sections
for information:

The secondary server was not changed to the primary server
The secondary server was changed to the primary server
automatically

See Restart if the primary server fails.

To online, quiescent, or administration
mode:
(onmode -s / onmode -u)

(onmode -j)

Secondary does not receive errors.
HDR remains on.

Mode remains read-only.

Use onmode -m on the primary.

The following table summarizes the effects of changing the mode of the secondary database server.

Table 2. Mode changes on the secondary database server
On the secondary On the primary To restart HDR

Read-only offline
(onmode -k)

Primary displays: DR: Receive error.
HDR is turned off.

Treat it as you would a failure of the secondary. Follow the procedures
in Restarting HDR or RS clusters if the secondary server fails.

282 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

On the secondary On the primary To restart HDR

Quiescent
(onmode -s)

Primary does not receive errors.
HDR remains on.

Use onmode -m on the secondary.

Administration mode operates the same way on an HDR secondary database server as it does on the primary database server.

Copyright© 2020 HCL Technologies Limited

Changing the database server type

You can change the type of either the primary or the secondary database server.

You can change the type of either the primary or the secondary database server.

You can change the database server type from secondary to standard only if HDR is turned off on the secondary database server. HDR is turned off when the data
replication connection to the primary database server breaks or data replication fails on the secondary database server. When you take the standard database server
offline and bring it back online, it does not attempt to connect to the other database server in the replication pair.

Use the following commands to switch the type:

hdrmksec.[sh|bat] and hdrmkpri.[sh|bat] scripts

To switch the database server type using hdrmkpri and hdrmksec scripts:

1. Shut down the primary database server (ServerA): onmode -ky
2. With the secondary database server (ServerB) online, run the hdrmkpri.sh script on UNIX or hdrmkpri.bat script on Windows.Now ServerB is a primary database

server.
3. For ServerA, run the hdrmksec.sh script on UNIX or hdrmksec.bat script on Windows.Now ServerA is a secondary database server.
4. Bring ServerB (primary database server) online.

The following commands can also be used to switch the server type:

1. Change ServerA to the primary server by running the following command:

onmode -d make primary ServerA

This command makes ServerA the primary server, and redirects any other secondary servers in the cluster to point to the new primary server. The command also
shuts down the old HDR primary (ServerB) because only a single primary server can exist in a high-availability environment.

2. Initialize ServerB as the HDR secondary server by running the following command:
On UNIX systems:

$INFORMIXDIR/bin/hdrmksec.sh ServerB

On Windows systems:

hdrmksec.bat ServerB

Related concepts:
 Manual switchover

Copyright© 2020 HCL Technologies Limited

Prevent blocking checkpoints on HDR servers

On an HDR secondary server, checkpoint processing must wait until the flushing of buffer pools is complete. You can configure non-blocking checkpoints on an HDR
secondary server so that log data sent from the primary server is stored, or staged, in a directory until checkpoint processing is complete.

You configure non-blocking checkpoints on an HDR secondary server by setting the LOG_STAGING_DIR and LOG_INDEX_BUILDS configuration parameters. When non-
blocking checkpoints is configured, log data sent from the primary server is staged in a directory specified by the LOG_STAGING_DIR configuration parameter. When the
HDR secondary server finishes processing the checkpoint it reads and applies the log data stored in the staging area. When the staging directory is empty the HDR
secondary server reads and applies log data as it is received from the primary server.

You enable non-blocking checkpoints by setting the LOG_STAGING_DIR configuration parameter on the HDR secondary server, and LOG_INDEX_BUILDS on both the
primary server and the HDR secondary server. The value for LOG_INDEX_BUILDS must be the same on both the primary server and the HDR secondary server.

When the HDR secondary server encounters a checkpoint, it enters a buffering mode. While in buffering mode, the secondary server stages any log page data from the
primary server into files in the staging directory.

When the HDR secondary server completes checkpoint processing, the server enters a drain mode. In this mode, the HDR secondary server reads data from the staging
file and also receives new data from the primary server. After the staging area is empty, the HDR secondary server resumes normal operation.

Where log records are stored on the HDR server
The HDR secondary server creates additional directories named ifmxhdrstage_## in the directory specified by LOG_STAGING_DIR, where ## is the instance specified by
SERVERNUM. The directories are used to store the logical logs sent from the primary server during checkpoint processing. The files within ifmxhdrstage_## are purged
when no longer required.

Interaction of non-blocking checkpoints with secondary server updates

Part VI: Administering 283

https://www.hcltech.com/
https://www.hcltech.com/

You must consider the interaction between secondary server updates and non-blocking checkpoints on HDR secondary servers. If the HDR secondary server receives an
update request, the updates are not applied until the HDR secondary server processes the corresponding log records. When non-blocking checkpoints are enabled on the
HDR secondary server, a delay in the application of data on the secondary server might occur because log data is staged at the secondary server due to checkpoint
processing.

View statistics for nonblocking checkpoints on HDR servers

Copyright© 2020 HCL Technologies Limited

View statistics for nonblocking checkpoints on HDR servers

You use the onstat utility to view information about nonblocking checkpoints on primary servers and on HDR secondary servers.

To view information about staged logs, use the onstat -g dri ckpt command.

For an example of onstat -g dri ckpt output, see information about the onstat utility in the IBM® Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Monitor HDR status

Monitor the HDR status of a database server to determine the following information:

The database server type (primary, secondary, or standard)
The name of the other database server in the pair
Whether HDR is on
The values of the HDR parameters

Command-line utilities
 SMI tables

The sysdri table provides information about the High-Availability Data-Replication status of the database server.

Copyright© 2020 HCL Technologies Limited

Command-line utilities

The header information displayed every time you run onstat has a field to indicate if a database server is operating as a primary or secondary database server.

The following example shows a header for a database server that is the primary database server in a replication pair, and in online mode:

IBM Informix Dynamic Server Version 11.50.UC1 -- online(Prim) -- Up 45:08:57

This example shows a database server that is the secondary database server in a replication pair, and in read-only mode.

IBM Informix Dynamic Server Version 11.50.UC1 -- Read-Only (Sec) -- Up 45:08:57

The following example shows a header for a database server that is not involved in HDR. The type for this database server is standard.

IBM Informix Dynamic Server Version 11.50.UC1 -- online -- Up 20:10:57

The onstat -g dri option
 The oncheck -pr option

Copyright© 2020 HCL Technologies Limited

The onstat -g dri option

To obtain full HDR monitoring information, run the onstat -g dri option. The following fields are displayed:

The database server type (primary, secondary, or standard)
The HDR state (on or off)
The paired database server
The last HDR checkpoint
The values of the HDR configuration parameters

For an example of onstat -g dri output, see the IBM® Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

The oncheck -pr option
284 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

If your database server is running HDR, the reserved pages PAGE_1ARCH and PAGE_2ARCH store the checkpoint information that HDR uses to synchronize the primary
and secondary database servers. An example of the relevant oncheck -pr output is given in the following example.

Validating Informix Database Server reserved pages - PAGE_1ARCH &
 PAGE_2ARCH
 Using archive page PAGE_1ARCH.

 Archive Level 0
 Real Time Archive Began 01/11/95 16:54:07
 Time Stamp Archive Began 11913
 Logical Log Unique Id 3
 Logical Log Position b018

 DR Ckpt Logical Log Id 3
 DR Ckpt Logical Log Pos 80018
 DR Last Logical Log Id 3
 DR Last Logical Log Page 128

Copyright© 2020 HCL Technologies Limited

SMI tables

The sysdri table provides information about the High-Availability Data-Replication status of the database server.

The sysdri table, described in these topics on the sysmaster database in the IBM® Informix® Administrator's Reference, contains the following columns.

type
HDR server type

state
HDR server state

name
Database server name

intvl
HDR buffer flush interval

timeout
Network timeout

lostfound
HDR lost-and-found path name

Copyright© 2020 HCL Technologies Limited

Obtain RS secondary server statistics

Use the onstat command to display information about the state of RS secondary servers. To display the number of RS secondary servers, information about the data that
has been sent to the RS secondary servers, and information about what the RS secondary servers have acknowledged receiving, use the onstat -g rss command.

This command has options to show extended information about a single server or multiple secondary servers. For examples of onstat -g rss output, see information about
the onstat utility in the IBM® Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Remove an RS secondary server

Remove an RS secondary server from a high-availability cluster by issuing the following command:

onmode -d delete RSS rss_servername

Copyright© 2020 HCL Technologies Limited

RS secondary server security

RS secondary servers support similar encryption rules as HDR. See Encrypting data traffic between HDR database servers for details.

See Configure SMX connections for additional information about setting up and configuring encryption between servers and RS secondary servers.

Create or change a password on an RS secondary server
 You can create a password for an RS secondary server to provide authentication between the primary server and the secondary server when the cluster is

established. The password is optional. The password is valid only the first time the primary and secondary connect to each other.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 285

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Create or change a password on an RS secondary server

You can create a password for an RS secondary server to provide authentication between the primary server and the secondary server when the cluster is established. The
password is optional. The password is valid only the first time the primary and secondary connect to each other.

The password prevents an unwanted instance on the network from initializing and accepting transaction data from the primary. The password is independent of the
informix user password.

You create the password with the same command that you use to specify the RS secondary server name. The name and password of each RS secondary server can be
defined either before or after the level-0 backup of the primary server.

To set the RS secondary server name and password, run the onmode -d add RSS rss_ha_alias password command on the primary server. During secondary server setup,
you include the password when you run the onmode -d RSS rss_ha_alias password command on the secondary server.

You can change the password only if the server is not connected to a high availability environment. Attempting to change the password of an RS secondary server that is
already connected returns an error.

To change the password on an RS secondary server before the server is connected, use the onmode -d change RSS password command on the primary server.

Examples
The following commands establish an RS secondary server named ServerB using a password of s#cure. The server's HA_ALIAS configuration parameter is set to
ServerB.

On the primary server:

onmode -d add RSS ServerB s#cure

On the secondary server:

onmode -d RSS ServerB s#cure

The following command changes the password of the RS secondary server named ServerB that is not connected to the primary to s@fest. The server's HA_ALIAS
configuration parameter is set to ServerB.

onmode -d change RSS ServerB s@fest

Copyright© 2020 HCL Technologies Limited

Transaction completion during cluster failover

You can configure servers in a high-availability cluster environment to continue processing transactions after failover of the primary server.

Transactions running on any server except the failed primary server continue to run. Configure the cluster environment for the following results:

Transactions running on secondary servers are not affected.
Transactions running on the secondary server that becomes the primary server are not affected.
Transactions running on the failed primary server are terminated.

Transaction completion after failover is not supported for smart large objects, XA transactions, and when running DDL statements on secondary servers.

When a failover occurs, the secondary servers in the cluster temporarily suspend running user transactions until the new primary server is running. After failover, the
secondary servers resend the saved transactions to the new primary server. The new primary server resumes execution of the transactions from the surviving secondary
servers.

When distributed transactions (transactions that span multiple database servers) are running, any transaction that is running on the primary server at the time of server
failure is terminated.

When failover occurs, whether it is manual or performed by the Connection Manager, the database server that receives failover must have the most advanced log-replay
position of all active servers in the cluster. If the database server that receives failover does not have the most advanced log replay position, all transactions in the cluster
are terminated and rolled back. Because the primary and SD secondary server read from the same physical disk, failover to an SD secondary server should occur first. If
the failover server is an HDR secondary server, SD secondary servers are shut down.

For best Connection Manager failover performance, use the FOC ORDER=ENABLED setting in the Connection Manager configuration file, and set the HA_FOC_ORDER
configuration parameter on the cluster's primary server.

Configuring the server so that transactions complete after failover
 Use the FAILOVER_TX_TIMEOUT configuration parameter to configure the servers in a high-availability cluster so that transactions complete after failover.

Copyright© 2020 HCL Technologies Limited

Configuring the server so that transactions complete after failover

Use the FAILOVER_TX_TIMEOUT configuration parameter to configure the servers in a high-availability cluster so that transactions complete after failover.

The value of FAILOVER_TX_TIMEOUT indicates the maximum number of seconds the server waits before rolling back transactions after failure of the primary server. Set
FAILOVER_TX_TIMEOUT to the same value on all servers in the cluster. For example, to specify 20 seconds for transaction completion, set the value of the

286 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

FAILOVER_TX_TIMEOUT configuration parameter in the onconfig file to 20.

To disable transaction completion after failover, set the FAILOVER_TX_TIMEOUT configuration parameter to 0 on all servers in the cluster.

Related information:
 FAILOVER_TX_TIMEOUT configuration parameter

Copyright© 2020 HCL Technologies Limited

Connection management through the Connection Manager

Connection Managers can control automatic failover for high-availability clusters, monitor client connections and direct requests to appropriate database servers, act as
proxy servers and handle client/server communication, and prioritize connections between application servers and the primary server of a high-availability cluster.
Connection Managers support high-availability clusters, replicate sets, server sets, and grids.

Automatic failover for database servers
If the Connection Manager detects that a primary server of a high-availability cluster has failed, it can promote a secondary server to the role of the primary server.

If you use multiple Connection Managers to manager failover for a cluster, you can enforce a consistent failover policy by setting the onconfig file HA_FOC_ORDER
configuration parameter on the cluster's primary server. The value of the onconfig file HA_FOC_ORDER configuration parameter replaces the value of the FOC parameter's
ORDER attribute in the configuration file of each Connection Manager that connects to the primary server.

Rule-based connection redirection and load balancing
Client applications can connect to a Connection Manager as if they are connecting to a database server. The Connection Manager gathers workload statistics from each
server in the connection unit and uses service level agreements (SLAs) to manage and direct client connection requests to appropriate servers. When a client application
makes a connection request through a redirect-mode SLA, the Connection Manager returns a database server's IP address and port number to the client application. The
client application then uses the information to connect to the specified database server.

Connection Manager redirection takes place in the communication layer, so additional action is not required by client applications. Connection Managers can use
redirection policies that are based on workload, latency, apply failures, or the apply backlog. Redirection can also be configured to occur round-robin.

Redirection-policy SLAs do not support connections from application that are compiled with Data Server Driver for JDBC and SQLJ version 3.5.1 or before, or with 3.00 or
before.

Proxy-server connection management
Proxy-mode SLAs and redirect-mode SLAs are similar; in both cases, the Connection Manager gathers workload statistics from connection-unit servers, and controls
which servers receive client connection request servers. When a client application makes a connection request through a proxy-mode SLA, client/server communication
travels through the Connection Manager. When a database server is behind a firewall, Connection Managers can act as proxy servers, and handle client/server
communication.

Proxy-policy SLAs do not have the same version restrictions that redirect-policy SLAs have. Connections from application that are compiled with any version of Data Server
Driver for JDBC and SQLJ, or with any version of are supported.

Failover prioritization for application servers
You can install Connection Managers on the same hosts as application servers, and then prioritize the connections between each application server and the primary server
of a high-availability cluster. This can help the highest priority application server maintain a connection to the cluster's primary server if a portion of the network fails.

Configuring connection management
 To configure connection management, you must install software, set environments and connectivity information, create Connection Manager configuration files, and

run the oncmsm utility.
Monitoring and troubleshooting connection management

 Tools are available to monitor connection management, and help you diagnose potential problems.
Strategies for increasing availability with Connection Managers

 You can increase the resiliency of your client/server communication environment.
Configuration examples for connection management

 The following examples show steps for setting up connection management for various connection units and various systems.

Related concepts:
 Redirection and connectivity for data-replication clients

Failover configuration for high-availability clusters
Overview of DRDA
Components supporting high availability and scalability

Copyright© 2020 HCL Technologies Limited

Configuring connection management

To configure connection management, you must install software, set environments and connectivity information, create Connection Manager configuration files, and run
the oncmsm utility.

Part VI: Administering 287

https://www.hcltech.com/
https://www.hcltech.com/

To configure and start connection management, complete the following steps:

1. Install at least one Connection Manager as part of the installation.
a. If Connection Managers are installed on hosts where database servers are not installed, set each Connection Manager's host INFORMIXDIR environment

variable to the directory the Connection Manager is installed into.
2. Modify connectivity information in the sqlhosts files that are on all client, database server, and Connection Manager hosts.

a. If sqlhosts files are in host directories other than $INFORMIXDIR/etc, set host INFORMIXSQLHOSTS environment variables to the appropriate sqlhosts file
location.

b. If Connection Managers or clients are installed on hosts where database servers are not installed, create a sqlhosts file on each host, and then set each
Connection Manager's or client's host INFORMIXSQLHOSTS environment variable to the location of the sqlhosts file.

3. If Connection Managers, application servers, or database servers are on an untrusted network, complete the following steps:
a. Create a password file.
b. Encrypt the password file by running the onpassword utility.
c. Distribute the password file to the database servers that Connection Managers connect to. If the database servers are on other operating systems, distribute

the unencrypted password file, and then encrypt it on the other operating systems.
4. On Connection Manager hosts, create a configuration file for each installed Connection Manager.

a. If the configuration file is in a directory other than $INFORMIXDIR/etc, set the CMCONFIG environment variable to specify the file's location.
b. If you define a service-level agreement that uses a transaction-latency or apply-failure redirection policy, start quality of data (QOD) monitoring by running

the cdr define qod and cdr start qod commands.
5. Set onconfig parameters on the cluster database servers.

a. If Connection Managers control failover for a high-availability cluster, set the DRAUTO configuration parameter to 3 on all managed cluster database servers,
and set the HA_FOC_ORDER configuration parameter on the primary server of each cluster to a failover order.

b. On each database server that uses multiple ports, set the DBSERVERALIASES configuration parameter to the alias names listed in Connection Manager and
database server sqlhosts file entries.

6. Optional: Configure the cmalarmprogram script that is installed with Connection Managers.
7. Run the oncmsm utility to start Connection Managers.

Creating Connection Manager configuration files
 Configuring environments and setting configuration parameters for connection management

 Before you start a Connection Manager, you must configure its environment.
Defining sqlhosts information for connection management

 You must define sqlhosts network-connectivity information for client applications that connect to Connection Managers, Connection Managers that connect to
database servers, and database servers that are part of a Connection Manager connection unit.
Creating a password file for connecting to database servers on untrusted networks

 If a client, Connection Manager, or any of the database servers that a Connection Manager connects to are on an untrusted network, you can create encrypted
password files to verify connection requests.
Starting Connection Managers on UNIX and Linux

 Use the oncmsm utility to start a Connection Manager.
Starting Connection Managers on Windows

 Use the oncmsm utility to start a Connection Manager.
Stopping connection management

 When you no longer want a Connection Manager to manage connection units, run the oncmsm utility to stop the Connection Manager instance.

Related concepts:
 The sqlhosts information

Related information:
 The oncmsm utility

The onpassword utility
DBSERVERALIASES configuration parameter
DRAUTO configuration parameter
HA_FOC_ORDER configuration parameter
INFORMIXSQLHOSTS environment variable
INFORMIXDIR environment variable
cdr define qod
cdr start qod

Copyright© 2020 HCL Technologies Limited

Creating Connection Manager configuration files

To configure a Connection Manager, you must create a configuration file, and then load the configuration file by running the oncmsm utility.
A Connection Manager configuration file consists of two parts:

The header, which contains Connection Manager parameters that are specific to the Connection Manager.
The body, which consists of one or more connection unit sections that contain parameters and attributes that are specific to the defined connection units.

The following steps apply to all connection-unit types:

1. Create an ASCII text file in the $INFORMIXDIR/etc directory of the host the Connection Manager is installed on.
2. On the first line of the file, specify the NAME parameter, followed by a name for the Connection Manager. Connection Manager names must be unique in the domain

of the connection units that are managed. For example:

NAME my_connection_manager_1

3. Specify optional header parameters. For example:

NAME my_connection_manager_1
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm_1.log

288 Part VI: Administering

https://www.hcltech.com/

4. Create the body of the configuration file by specifying at least one connection unit type followed by the name of the connection unit, and then opening and closing
braces. For example:

NAME my_connection_manager_1
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm_1.log

CLUSTER my_cluster
{
}

5. Set the connection unit's INFORMIXSERVER parameter to the sqlhosts file entries for connection-unit participants. For example:

NAME my_connection_manager_1
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm_1.log

CLUSTER my_cluster
{
 INFORMIXSERVER group_name
}

6. If the Connection Manager manages connection requests, specify SLA parameters, SLA names, and DBSERVER attributes. For example:

NAME my_connection_manager_1
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm_1.log

CLUSTER my_cluster
{
 INFORMIXSERVER group_name
 SLA sla_1 DBSERVERS=PRI
 SLA sla_2 DBSERVERS=HDR,SDS,RSS
}

7. Specify the FOC parameter and PRIORITY attribute. If the Connection Manager manages failover, specify the ORDER attribute, as well. For example:

NAME my_connection_manager_1
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm_1.log

CLUSTER my_cluster
{
 INFORMIXSERVER group_name
 SLA sla_1 DBSERVERS=PRI
 SLA sla_2 DBSERVERS=HDR,SDS,RSS
 FOC ORDER=ENABLED \
 PRIORITY=1
}

8. Specify optional SLA parameter attributes. For example:

NAME my_connection_manager_1
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm_1.log

CLUSTER my_cluster
{
 INFORMIXSERVER group_name
 SLA sla_1 DBSERVERS=PRI
 SLA sla_2 DBSERVERS=(HDR,SDS,RSS) \
 POLICY=ROUNDROBIN
 FOC ORDER=ENABLED \
 PRIORITY=1
}

9. If the Connection Manager manages more than one connection unit, add the other connection units to the body of the configuration file. For example:

NAME my_connection_manager_1
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm_1.log

CLUSTER my_cluster
{
 INFORMIXSERVER group_name
 SLA sla_1 DBSERVERS=PRI
 SLA sla_2 DBSERVERS=(HDR,SDS,RSS) \
 POLICY=ROUNDROBIN
 FOC ORDER=ENABLED \
 PRIORITY=1
}

CLUSTER my_cluster_2
{
 INFORMIXSERVER group_name_2
 SLA sla_3 DBSERVERS=PRI
 SLA sla_4 DBSERVERS=(HDR,SDS) \
 POLICY=ROUNDROBIN
 FOC ORDER=ENABLED \
 PRIORITY=1
}

Parameters and format of the Connection Manager configuration file
 The following example shows the format of the Connection Manager configuration file, and shows which parameters and attributes can be set for each connection-

unit type.

Part VI: Administering 289

Modifying Connection Manager configuration files
Use the oncmsm utility to load a modified configuration file into a Connection Manager and change the Connection Manager's configuration.
Converting older formats of the Connection Manager configuration file to the current format
The Connection Manager configuration file in versions of before version 3.70.xC3 are incompatible with the current version of the Connection Manager. You must
convert configuration files from versions before 3.70.xC3 by running the oncmsm utility.

Copyright© 2020 HCL Technologies Limited

Parameters and format of the Connection Manager configuration file

The following example shows the format of the Connection Manager configuration file, and shows which parameters and attributes can be set for each connection-unit
type.

#******************************* HEADER *******************************

NAME connection_manager_instance_name

Optional Parameters
MACRO name_1=value
MACRO name_2=value
MACRO name_n=value_n
.
.
.
LOCAL_IP ip_address_list
LOG value
LOGFILE path_and_filename
DEBUG value
CM_TIMEOUT seconds
EVENT_TIMEOUT seconds
SECONDARY_EVENT_TIMEOUT seconds
SQLHOSTS value
SSL_LABEL certificate_name

#******************************** BODY ********************************

Replicate set connection-unit example

REPLSET unit_name_1
{
 INFORMIXSERVER sqlhosts_group_names_list

 #Optional Parameters and Attributes
 SLA sla_name_1 DBSERVERS=value_list \

 #Optional SLA Attributes
 MODE=value \
 USEALIASES=value \
 POLICY=value \
 WORKERS=number_of_threads \
 HOST=host_name \
 NETTYPE=network_protocol \
 SERVICE=service_name \
 SQLHOSTSOPT="options"
 SLA sla_name_2 DBSERVERS=value_list ...
 SLA sla_name_n DBSERVERS=value_list ...
 .
 .
 .
}

High-availability cluster connection-unit example

CLUSTER unit_name_2
{
 INFORMIXSERVER sqlhosts_group_name
 FOC ORDER=value \
 PRIORITY=value \
 TIMEOUT=value

 #Optional Parameters and Attributes
 SLA sla_name_1 DBSERVERS=value_list \

 #Optional SLA Attributes
 MODE=value \
 USEALIASES=value \
 POLICY=value \
 WORKERS=number_of_threads \
 HOST=host_name \
 NETTYPE=network_protocol \
 SERVICE=service_name \
 SQLHOSTSOPT="options"
 SLA sla_name_2 DBSERVERS=value_list ...
 SLA sla_name_n DBSERVERS=value_list ...
.
.
.
 CMALARMPROGRAM path_and_filename
}

290 Part VI: Administering

https://www.hcltech.com/

Server set connection-unit example

SERVERSET unit_name_3
{

 INFORMIXSERVER sqlhosts_group_names_and_standalone_servers_list

 #Optional Parameter and Attributes
 SLA sla_name_1 DBSERVERS=value_list \

 #Optional SLA Attributes
 MODE=value \
 USEALIASES=value \
 POLICY=value \
 WORKERS=number_of_threads \
 HOST=host_name \
 NETTYPE=network_protocol \
 SERVICE=service_name \
 SQLHOSTSOPT="options"
 SLA sla_name_2 DBSERVERS=value_list ...
 SLA sla_name_n DBSERVERS=value_list ...
 .
 .
 .
}

Grid connection-unit example

GRID unit_name_4
{
 INFORMIXSERVER server_list

 #Optional Parameter and Attributes
 SLA sla_name_1 DBSERVERS=value_list \

 #Optional SLA Attributes
 MODE=value \
 USEALIASES=value \
 POLICY=value \
 WORKERS=number_of_threads \
 HOST=host_name \
 NETTYPE=network_protocol \
 SERVICE=service_name \
 SQLHOSTSOPT="options"
 SLA sla_name_2 DBSERVERS=value_list ...
 SLA sla_name_n DBSERVERS=value_list ...
 .
 .
 .
}

Connection Unit n
connection_unit_type unit_name_n
{
 INFORMIXSERVER values
 .
 .
 .
}
#**

Tip: For increased readability, break long configuration-file lines by using a backslash (\) line-continuation character.
The following example shows a macro definition that uses two text-file lines, but is read as a single line:

MACRO servers=node1,node2,node3,node4,node5,node6,node7,node8, \
 node9,node10,node11,node12,node13,node14,node15

CMALARMPROGRAM Connection Manager configuration parameter
 The CMALARMPROGRAM parameter specifies the path and file name of a program or script to run if failover processing encounters an error.

CM_TIMEOUT Connection Manager configuration parameter
 The CM_TIMEOUT parameter specifies the number of seconds that a cluster of database servers waits to receive events from the failover-arbitrator Connection

Manager. If the specified period elapses with no events received by the cluster, the primary server promotes the Connection Manager with the highest priority to the
role of failover arbitrator.
CLUSTER Connection Manager configuration parameter

 The CLUSTER parameter specifies that a connection unit is composed of a high-availability cluster, and specifies a name for that connection unit. A high-availability
cluster is a primary server plus one or more secondary servers, which can be high-availability data replication secondary servers, shared-disk secondary servers, or
remote stand-alone secondary servers.
DEBUG Connection Manager configuration parameter

 The DEBUG parameter specifies whether logging of SQL and ESQL/C error messages is enabled or disabled.
EVENT_TIMEOUT Connection Manager configuration parameter

 The EVENT_TIMEOUT parameter specifies the number of seconds that must elapse with no primary-server events before the active-arbiter Connection Manager
starts failover processing. The Connection Manager waits for primary-server events or notifications from secondary servers that the primary server is offline. A
primary-server event is an indication from the primary server that the server is still functioning, such as a sent performance-statistics or administration messages,
or node-changes.
FOC Connection Manager configuration parameter

 The FOC parameter and attributes specify the failover configuration for high-availability clusters, and specify the priority of the connection between the Connection
Manager and the primary server.
GRID Connection Manager configuration parameter

 The GRID parameter specifies that a connection unit is an Enterprise Replication grid, and specifies the name of the grid. A grid is a set of replication servers that
you can administer as a unit.

Part VI: Administering 291

INFORMIXSERVER Connection Manager configuration parameter
The INFORMIXSERVER parameter specifies database servers or Enterprise Replication nodes that the Connection Manager connects to after it starts. The values of
the INFORMIXSERVER parameter are also used for providing database server information for service-level agreements when a Connection Manager's SQLHOSTS
parameter is set to REMOTE or LOCAL+REMOTE.
LOCAL_IP Connection Manager configuration parameter
The LOCAL_IP parameter specifies IP addresses to monitor on the computer that is running the Connection Manager. The LOCAL_IP parameter is used with the
FOC parameter's PRIORITY attribute to determine if database-failover occurs during a partial network failure.
LOG Connection Manager configuration parameter
The LOG parameter specifies logging for Connection Manager modes.
LOGFILE Connection Manager configuration parameter
The LOGFILE parameter specifies the name and location of the Connection Manager log file.
MACRO Connection Manager configuration parameter
The MACRO parameter specifies the name of a macro and a value that can be reused in the Connection Manager configuration file.
NAME Connection Manager configuration parameter
The NAME parameter specifies the name of the Connection Manager instance.
REPLSET Connection Manager configuration parameter
The REPLSET parameter specifies that a connection unit is an Enterprise Replication replicate set, and specifies the name of the replicate set. A replicate set
combines several replicates to form a set that can be administered together as a unit.
SECONDARY_EVENT_TIMEOUT Connection Manager configuration parameter
The SECONDARY_EVENT_TIMEOUT parameter specifies the number of seconds that must elapse with no secondary-server events before the Connection Manager
disconnects from a secondary server. A secondary-server event is an indication from a secondary server that the server is still functioning, such as a sent
performance-statistics or administration messages.
SERVERSET Connection Manager configuration parameter
The SERVERSET parameter specifies that a connection unit is a server set, and specifies the name of the server set. A server set contains unrelated, standard
servers that do not use replication or failover.
SLA Connection Manager configuration parameter
The SLA parameter defines service-level agreements that direct client requests to database servers.
SQLHOSTS Connection Manager configuration parameter
The SQLHOSTS parameter specifies where a Connection Manager can search for database servers that are specified by the INFORMIXSERVER parameter and
DBSERVERS attribute.
SSL_LABEL Connection Manager configuration parameter
The SSL_LABEL parameter specifies the certificate label used for authentication by the CM when listening for an SSL connection.

Copyright© 2020 HCL Technologies Limited

CMALARMPROGRAM Connection Manager configuration parameter

The CMALARMPROGRAM parameter specifies the path and file name of a program or script to run if failover processing encounters an error.

Syntax

|--CMALARMPROGRAM--path_and_filename----------------------------|

Usage
The CMALARMPROGRAM parameter is optional, and is supported by the following connection units:

CLUSTER
GRID
REPLSET
SERVERSET

If the Connection Manager cannot find a server capable of receiving failover, it searches for ORDER-attribute servers at increasing intervals, up to 60 seconds, for a
maximum of two days. If failover processing fails after eight attempts, the Connection Manager calls the program that is specified by the CMALARMPROGRAM parameter.
The first eight failover attempts take approximately one minute.

Before you can use the cmalarmprogram script, you must edit the file, and set the script parameters.

The ALARMADMIN and ALARMPAGER parameters determine the level of Connection Manager event alarms that are sent to specified email addresses.
Table 1. Connection Manager event-alarm levels

Level of Connection Manager event
alarm Alarm type

0 (default) None

1 Unimportant informational alarms

2 Informational alarms

3 Alarms requiring attention

4 Emergency alarms

5 Fatal error alarms

Example
In the following example, cmalarmprogram.sh is called if failover processing fails after eight attempts:

292 Part VI: Administering

https://www.hcltech.com/

CMALARMPROGRAM $INFORMIXDIR/etc/cmalarmprogram.sh

Related reference:
 FOC Connection Manager configuration parameter

Copyright© 2020 HCL Technologies Limited

CM_TIMEOUT Connection Manager configuration parameter

The CM_TIMEOUT parameter specifies the number of seconds that a cluster of database servers waits to receive events from the failover-arbitrator Connection Manager.
If the specified period elapses with no events received by the cluster, the primary server promotes the Connection Manager with the highest priority to the role of failover
arbitrator.

Syntax

 .-60------.
|--CM_TIMEOUT--+-seconds-+--------------------------------------|

Usage
The CM_TIMEOUT parameter is optional, and applies to CLUSTER connection units.

If the CM_TIMEOUT parameter is not specified, the timeout is 60 seconds.

Example
In the following example, if 100 seconds elapse without the servers of a high-availability cluster receiving any events from the current failover arbiter, the primary server
of the cluster promotes an active Connection Manager to the role of failover arbiter:

CM_TIMEOUT 100

Copyright© 2020 HCL Technologies Limited

CLUSTER Connection Manager configuration parameter

The CLUSTER parameter specifies that a connection unit is composed of a high-availability cluster, and specifies a name for that connection unit. A high-availability cluster
is a primary server plus one or more secondary servers, which can be high-availability data replication secondary servers, shared-disk secondary servers, or remote stand-
alone secondary servers.

Syntax

|--CLUSTER--connection_unit_name--------------------------------|

Usage
Each CLUSTER parameter value must be unique within the Connection Manager configuration file.

CLUSTER parameter values cannot use multibyte characters.

CLUSTER connection units can use the following redirection policies:

Round-robin
Secondary apply backlog
Workload

Each CLUSTER connection-unit definition that references a specific high-availability cluster must have a unique PRIORITY attribute value. For example, the following high-
availability cluster, composed of server_1 and server_2, must have unique PRIORITY values in each definition.

my_connection_manager_1's configuration file:

NAME my_connection_manager_1
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm_1.log

CLUSTER my_cluster
{
 INFORMIXSERVER server_1,server_2
 FOC ORDER=ENABLED \
 PRIORITY=1
}

my_connection_manager_2's configuration file:

NAME my_connection_manager_2
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm_2.log

Part VI: Administering 293

https://www.hcltech.com/
https://www.hcltech.com/

CLUSTER my_cluster
{
 INFORMIXSERVER server_1,server_2
 FOC ORDER=ENABLED \
 PRIORITY=2
}

Example 1: Specifying a high-availability cluster as a CLUSTER connection unit
In the following example, a high-availability cluster composed of the servers in my_server_group is specified as the CLUSTER connection unit my_cluster:

CLUSTER my_cluster
{
 INFORMIXSERVER my_server_group
 SLA sla_1 DBSERVERS=ANY
 FOC ORDER=ENABLED
 PRIORITY=1
}

Copyright© 2020 HCL Technologies Limited

DEBUG Connection Manager configuration parameter

The DEBUG parameter specifies whether logging of SQL and ESQL/C error messages is enabled or disabled.

Syntax

 .-0-.
|--DEBUG--+-1-+---|

Table 1. Values for the DEBUG Connection Manager configuration parameter

DEBUG parameter value Description

1 Enables logging of SQL and ESQL/C error messages.

0 (default) Disables logging of SQL and ESQL/C error messages.

Usage
The DEBUG parameter is optional, and applies to the following connection units:

CLUSTER
GRID
REPLSET
SERVERSET

Debug messages are created in the location that is specified by the LOGFILE parameter in the Connection Manager configuration file. If the LOGFILE parameter is not
specified, then the Connection Manager creates $INFORMIXDIR/tmp/connection_manager_name.pid.log.

Connection Manager debug logging is enabled in the configuration file; you cannot enable debug mode from the command line.

Example
In the following example, a my_log is created in $INFORMIXDIR/tmp and logging of SQL and ESQL/C error messages is enabled.

LOGFILE $INFORMIXDIR/tmp/my_log
DEBUG 1

Copyright© 2020 HCL Technologies Limited

EVENT_TIMEOUT Connection Manager configuration parameter

The EVENT_TIMEOUT parameter specifies the number of seconds that must elapse with no primary-server events before the active-arbiter Connection Manager starts
failover processing. The Connection Manager waits for primary-server events or notifications from secondary servers that the primary server is offline. A primary-server
event is an indication from the primary server that the server is still functioning, such as a sent performance-statistics or administration messages, or node-changes.

Syntax

 .-60------.
|--EVENT_TIMEOUT--+- -1-----+-----------------------------------|
 '-seconds-'

Table 1. Values for the EVENT_TIMEOUT Connection Manager configuration parameter

294 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

EVENT_TIMEOUT parameter value DescriptionEVENT_TIMEOUT parameter value Description

-1 Connection Manager waits indefinitely

0 to 30 Connection Manager waits 30 seconds.

> 30 Connection Manager waits the specified number of seconds.

Usage
The EVENT_TIMEOUT parameter is optional, and applies to CLUSTER connection units.

If EVENT_TIMEOUT is not specified in the Connection Manager configuration file, the Connection Manager waits 60 seconds for primary-server events or notifications from
secondary servers that the primary server is offline before it starts failover processing.

Example
In the following example, the active-arbiter Connection Manager begins failover processing after 200 seconds elapse with no primary-server events.

EVENT_TIMEOUT 200

Related reference:
 FOC Connection Manager configuration parameter

Copyright© 2020 HCL Technologies Limited

FOC Connection Manager configuration parameter

The FOC parameter and attributes specify the failover configuration for high-availability clusters, and specify the priority of the connection between the Connection
Manager and the primary server.

Syntax

 .-ORDER=ENABLED--.
|--FOC--+-ORDER=DISABLED-+--PRIORITY=value---------------------->

>--+-----------------+--|
 '-TIMEOUT=seconds-'

Attributes of the FOC Connection Manager configuration parameter
The FOC parameter is required by CLUSTER connection units.

Table 1. Attributes of the FOC parameter

Attribute of the FOC parameter Description

ORDER Disables automatic failover or specifies that the value of the primary server's HA_FOC_ORDER configuration
parameter is used for automatic failover.
If the ORDER attribute is not specified, the value of the primary server's HA_FOC_ORDER configuration
parameter is used for automatic failover.

If the ORDER attribute is not specified, and the primary server's HA_FOC_ORDER configuration parameter is not
set, the failover order is SDS, HDR, and then RSS.

PRIORITY Specifies the priority of connections between Connection Managers and the primary server of a cluster.
The value must be a positive integer and unique among all Connection Manager CLUSTER units specified for a
high-availability cluster. The lower the number, the higher the priority.

For CLUSTER connection units, a PRIORITY value must be specified, even if ORDER is set to DISABLED.

TIMEOUT Specifies the number of additional seconds the Connection Manager waits for primary-server events before the
Connection Manager begins failover processing.
The TIMEOUT attribute value applies after the EVENT_TIMEOUT parameter value is exceeded. For example, if
the EVENT_TIMEOUT parameter is set to 60 and the TIMEOUT value is set to 10, 70 seconds of no primary
server events must elapse before failover can begin.

If the TIMEOUT attribute is not specified, failover begins immediately after the amount of time that is specified
by the EVENT_TIMEOUT parameter value is exceeded.

Values for the ORDER attribute of the FOC Connection Manager configuration parameter
Table 2. Values for the ORDER attribute of the FOC Connection Manager configuration parameter.

ORDER attribute value Description

Part VI: Administering 295

https://www.hcltech.com/

ORDER attribute value Description

ENABLED Specifies that the Connection Manager can perform automatic failover. The Connection Manager uses the value of the
primary server's onconfig file HA_FOC_ORDER configuration parameter to determine failover sequence.
If the ORDER attribute is set to ENABLED, but the primary server's HA_FOC_ORDER configuration parameter is not
specified, the failover order is SDS, HDR, and then RSS.

ORDER Usage
The ORDER attribute specifies if automatic failover is enabled. If failover cannot complete, the Connection Manager reattempts failover at increasing intervals, up to 60
seconds, for a maximum of two days.

To modify the number of seconds that must elapse before the active-arbiter Connection Manager starts failover processing, set the EVENT_TIMEOUT parameter.

If you configure failover, you can set the CMALARMPROGRAM parameter to specify a program or script to run if failover processing cannot complete after eight tries.

Important: If automatic failover is enabled, and failover processing begins, you must not manually restart the failed primary server until failover processing completes.

PRIORITY Usage
If you install Connection Managers on application-server hosts, you can use the PRIORITY attribute to prioritize the connections between the application servers and the
primary server of a cluster.

If the network connection between a specific Connection Manager and primary database server fails, PRIORITY determines whether the Connection Manager starts
failover. If failover would promote a database server that cannot communicate with an active, higher-priority Connection Manager, then failover does not occur. If failover
would promote a database server that cannot communicate with an active, lower-priority Connection Manager, failover can occur.

Example 1: Configuring multiple Connection Managers for failover
In the following example, the HA_FOC_ORDER configuration parameter in the my_primary_server_1 onconfig file is set:

HA_FOC_ORDER SDS,HDR,RSS

Three Connection Managers are installed and have the following configuration files:

cm_configuration_file_1

NAME my_connection_manager_1

CLUSTER my_cluster_1
{
 INFORMIXSERVER my_server_group_1
 SLA sla_1 DBSERVERS=ANY
 FOC ORDER=ENABLED \
 PRIORITY=1
 CMALARMPROGRAM $INFORMIXDIR/etc/cmalarmprogram.sh
}

cm_configuration_file_2

NAME my_connection_manager_2

CLUSTER my_cluster_1
{
 INFORMIXSERVER my_server_group_1
 SLA sla_2 DBSERVERS=ANY
 FOC ORDER=ENABLED \
 PRIORITY=2
 CMALARMPROGRAM $INFORMIXDIR/etc/cmalarmprogram.sh
}

cm_configuration_file_3

NAME my_connection_manager_3

CLUSTER my_cluster_1
{
 INFORMIXSERVER my_server_group_1
 SLA sla_3 DBSERVERS=ANY
 FOC ORDER=ENABLED \
 PRIORITY=3
 CMALARMPROGRAM $INFORMIXDIR/etc/cmalarmprogram.sh
}

When the connection managers are initialized, they each search their hosts's sqlhosts file for a my_server_group_1 entry and connect with the servers that are in the
group. The value of the HA_FOC_ORDER configuration parameter in the onconfig file of the primary server in my_server_group_1 is set for each of the Connection
Manager, so that all the Connection Managers have a consistent failover policy. The value of the primary server's HA_FOC_ORDER configuration parameter replaces the
values of the HA_FOC_ORDER configuration parameters in the onconfig files of all secondary servers in the cluster. This process maintains failover-order consistency if the
primary server fails and then a Connection Manager restarts.

If a Connection Manager detects that the primary server failed, it first attempts to convert the most suitable SD secondary server to the primary server. If no SD secondary
server is available, the Connection Manager attempts to convert the HDR secondary server into the primary server. If the HDR secondary server is not available, the
Connection Manager attempts to convert the most suitable RS secondary server to the primary server.

If failover processing fails after eight attempts, the Connection Manager calls $INFORMIXDIR/etc/cmalarmprogram.sh.

296 Part VI: Administering

Example 2: Configuring multiple Connection Managers to prioritize the connections between
application servers and the primary server of a cluster

In the following example, the HA_FOC_ORDER configuration parameter in the my_primary_server_2 onconfig file is set:

HA_FOC_ORDER HDR,RSS

The two Connection Managers, my_important_app_cm and my_non_essential_app_cm, are installed and configured:

cm_configuration_file_4

NAME important_app_cm
LOCAL_IP 192.0.2.0, 192.0.2.256

CLUSTER my_cluster
{
 INFORMIXSERVER my_server_group_1
 SLA sla_1 DBSERVERS=ANY
 FOC ORDER=ENABLED \
 PRIORITY=1
}

cm_configuration_file_5

NAME non_essential_app_cm
LOCAL_IP 192.0.2.257, 192.0.2.258

CLUSTER my_cluster
{
 INFORMIXSERVER my_server_group_1,
 SLA sla_2 DBSERVERS=ANY
 FOC ORDER=ENABLED \
 PRIORITY=2
}

The network state is:
important_app_cm can connect to the primary server and RS secondary server, but cannot connect to the HDR secondary server.
non_essential_app_cm can connect to the primary server and the HDR server, but cannot connect to the RS secondary server.

If the network between non_essential_app_cm and my_primary_server goes down, non_essential_app_cm attempts failover to the HDR secondary server. Because
important_app_cm cannot connect to the HDR secondary server, and has higher priority than non_essential_app_cm, the failover attempt is blocked.

If, instead, the network between important_app_cm and my_primary_server goes down, important_app_cm attempts failover to the HDR secondary server. Because
important_app_cm cannot connect to the HDR secondary server, it then attempts failover to the RS secondary server. non_essential_app_cm cannot connect to the RS
secondary server, but it has a lower priority than important_app_cm, so failover occurs.

In both situations, the connection between important_app_cm and the primary server is prioritized over the connection between non_essential_app_cm and the primary
server. Because the Connection Managers are on the application-server hosts, the connections between the application servers and the primary server are, essentially,
prioritized.

Related tasks:
 Example of configuring connection management for prioritizing connections and network monitoring

Related reference:
 LOCAL_IP Connection Manager configuration parameter

CMALARMPROGRAM Connection Manager configuration parameter
EVENT_TIMEOUT Connection Manager configuration parameter
Related information:

 HA_FOC_ORDER configuration parameter

Copyright© 2020 HCL Technologies Limited

GRID Connection Manager configuration parameter

The GRID parameter specifies that a connection unit is an Enterprise Replication grid, and specifies the name of the grid. A grid is a set of replication servers that you can
administer as a unit.

Syntax

|--GRID--unit_name--|

Usage
Each connection-unit name must be unique within the Connection Manager configuration file.

GRID connection units can use the following redirection policies:

Apply failure
Round-robin
Transaction latency
Workload

Part VI: Administering 297

https://www.hcltech.com/

Grid names can use multibyte characters.

Example
In the following example, the grid connection unit named my_grid is defined:

GRID my_grid
{
 INFORMIXSERVER my_server_group_1,my_server_group_2
 SLA sla_1 DBSERVERS=ANY
}

Copyright© 2020 HCL Technologies Limited

INFORMIXSERVER Connection Manager configuration parameter

The INFORMIXSERVER parameter specifies database servers or Enterprise Replication nodes that the Connection Manager connects to after it starts. The values of the
INFORMIXSERVER parameter are also used for providing database server information for service-level agreements when a Connection Manager's SQLHOSTS parameter is
set to REMOTE or LOCAL+REMOTE.

Syntax

CLUSTER connection unit

 .-,-----------.
 V |
|--INFORMIXSERVER----+---server_name-+-----+--------------------|
 '-sqlhosts_group_name-'

GRID connection unit

 .-,-----------------------.
 V |
|--INFORMIXSERVER------sqlhosts_group_name---+------------------|

REPLSET connection unit

 .-,-----------------------.
 V |
|--INFORMIXSERVER------sqlhosts_group_name---+------------------|

SERVERSET connection unit

 .-,---------------------------.
 V |
|--INFORMIXSERVER----+-sqlhosts_group_name-----+-+--------------|
 '-stand_alone_server_name-'

Usage
The INFORMIXSERVER parameter is required, and is supported by the following connection units:

CLUSTER
GRID
REPLSET
SERVERSET

For Enterprise Replication domains, list group names for the nodes that receive client requests from the Connection Manager.

For server-set replication domains, list group names for the nodes that receive client requests from the Connection Manager. List standalone server names, as well.

For high-availability clusters, list the group name for the cluster, or list the names of database servers.

Example
In the following example, the Connection Manager connects to all database servers that are members of the my_server_group group in the Connection Manager sqlhosts
file.

NAME my_connection_manager

CLUSTER my_cluster
{
 INFORMIXSERVER my_server_group
 FOC ORDER=ENABLED \

298 Part VI: Administering

https://www.hcltech.com/

 PRIORITY=1
}

Related reference:
 Group information

Copyright© 2020 HCL Technologies Limited

LOCAL_IP Connection Manager configuration parameter

The LOCAL_IP parameter specifies IP addresses to monitor on the computer that is running the Connection Manager. The LOCAL_IP parameter is used with the FOC
parameter's PRIORITY attribute to determine if database-failover occurs during a partial network failure.

Syntax

 .-,--------------.
 V |
|--LOCAL_IP------ip_address---+---------------------------------|

Usage
The LOCAL_IP parameter is optional, and applies to CLUSTER connection units.

You must list the IP address of each network interface card to be monitored.

Example
In the following example, the Connection Manager monitors the network connection between its host and the primary server of a cluster through the network interface
cards that have IP addresses of 192.0.2.0 and 192.0.2.1:

LOCAL_IP 192.0.2.0,192.0.2.1

Related tasks:
 Example of configuring connection management for prioritizing connections and network monitoring

Related reference:
 FOC Connection Manager configuration parameter

Copyright© 2020 HCL Technologies Limited

LOG Connection Manager configuration parameter

The LOG parameter specifies logging for Connection Manager modes.

Syntax

 .-0-.
|--LOG--+-1-+---|
 +-2-+
 '-3-'

Table 1. Values for the LOG Connection Manager configuration parameter

LOG parameter value Description

0 (default) Specifies that logging is turned off.

1 The Connection Manager logs proxy-mode and redirect-mode SLA information.

2 The Connection Manager logs proxy-mode SLA information only. Data send-and-receive activities between clients and
the Connection Manager is logged.

3 The Connection Manager logs proxy-mode SLA information only. Data content between clients and the Connection
Manager is logged.

Usage
The LOG parameter is optional, and applies to the following connection units:

CLUSTER
GRID
REPLSET
SERVERSET

Set the LOGFILE parameter to specify where log files are stored. If the LOGFILE parameter is not set, the Connection Manager creates a log file in the $INFORMIXDIR/tmp
directory, with a name of connection_manager_name.process_ID.log.

Part VI: Administering 299

https://www.hcltech.com/
https://www.hcltech.com/

Example
In the following example, the Connection Manager logs proxy-mode and redirect-mode SLA information to $INFORMIXDIR/tmp/my_cm.log.

LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm.log

Copyright© 2020 HCL Technologies Limited

LOGFILE Connection Manager configuration parameter

The LOGFILE parameter specifies the name and location of the Connection Manager log file.

Syntax

|--LOGFILE--path_and_filename-----------------------------------|

Usage
The LOGFILE parameter is optional, and applies to the following connection units:

CLUSTER
GRID
REPLSET
SERVERSET

The path and file name of the log file display when the Connection Manager is started, and the log file is continuously updated with status information while the
Connection Manager is running. If multiple Connection Managers are installed on the same host, specify a different path and file name for each Connection Manager.

Make sure that the directory for the log file exists, and that access to the file is enabled for the user that starts the Connection Manager.

If the LOGFILE parameter is not set, the Connection Manager creates a log file in the $INFORMIXDIR/tmp directory, with a name of
connection_manager_name.process_ID.log.

Example
In the following example, the Connection Manager logs proxy-mode SLA information about data send-and-receive activities between clients and the Connection Manager.
The information is logged to $INFORMIXDIR/tmp/my_cm.log.

LOG 2
LOGFILE $INFORMIXDIR/tmp/my_cm.log

Copyright© 2020 HCL Technologies Limited

MACRO Connection Manager configuration parameter

The MACRO parameter specifies the name of a macro and a value that can be reused in the Connection Manager configuration file.

Macro definition format

|--MACRO--name--=--value--|

Macro use format

|--${--macro_name--}--|

Usage
The MACRO parameter is optional, and applies to the Connection Manager configuration file.

A macro can contain spaces, but not line breaks.

The MACRO parameter can be set multiple times to create multiple macros.

After a macro is defined, it can be used in other macros. For example:

MACRO WA=wa_server_1,wa_server_2,wa_server_3,wa_server_4
MACRO OR=or_server_1,or_server_2,or_server_3,or_server_4
MACRO ID=id_server_1,id_server_2,id_server_3,id_server_4
MACRO PNW=${WA),${OR),${ID)

Example 1: Using a macro in a service-level agreement

300 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

In the following example, the macro CA contains the names of eight servers.

NAME my_connection_manager_1
MACRO CA=ca_server_1,ca_server_2,ca_server_3,ca_server_4, \
 ca_server_5,ca_server_6,ca_server_7,ca_server_8

CLUSTER my_cluster_1
{
 INFORMIXSERVER group_name_1
 SLA sla_1 DBSERVERS=${CA}
 FOC ORDER=ENABLED PRIORITY=1
}

The macro expands in the following way:

{
 INFORMIXSERVER group_name_1
 SLA sla_1 DBSERVERS=ca_server_1,ca_server_2,ca_server_3,ca_server_4, \
 ca_server_5,ca_server_6,ca_server_7,ca_server_8
 FOC ORDER=ENABLED PRIORITY=1
}

Example 2: Using multiple macros in service-level agreements
In the following example, the macros WA, OR, and ID each contain the names of servers. Macro ID also contains parentheses to create a redirection-policy group.

NAME my_connection_manager_2
MACRO WA=wa_server_1,wa_server_2,wa_server_3
MACRO OR=or_server_1,or_server_2,or_server_3
MACRO ID=(id_server_1,id_server_2,id_server_3)

CLUSTER my_cluster_2
{
 INFORMIXSERVER group_name_2
 SLA sla_1 DBSERVERS=PRI
 SLA sla_2 DBSERVERS=${WA},${OR}
 SLA sla_3 DBSERVERS=${ID} POLICY=ROUNDROBIN
 FOC ORDER=ENABLED PRIORITY=1
}

The macros expand in the following ways:

{
 INFORMIXSERVER group_name_2
 SLA sla_1 DBSERVERS=PRI
 SLA sla_2 DBSERVERS=wa_server_1,wa_server_2,wa_server_3,or_server_1,or_server_2,or_server_3
 SLA sla_3 DBSERVERS=(id_server_1,id_server_2,id_server_3) POLICY=ROUNDROBIN
 FOC ORDER=ENABLED PRIORITY=1
}

Copyright© 2020 HCL Technologies Limited

NAME Connection Manager configuration parameter

The NAME parameter specifies the name of the Connection Manager instance.

Syntax

|--NAME--connection_manager_name--------------------------------|

Usage
The NAME parameter is required, and applies to the Connection Manager instance.

The name of the Connection Manager instance is necessary for monitoring, shutting down, or reloading the Connection Manager.

Connection Manager names must be unique in the domain of the connection units that are managed.

Example
In the following example, a Connection Manager instance is named my_connection_manager.

NAME my_connection_manager

Copyright© 2020 HCL Technologies Limited

REPLSET Connection Manager configuration parameter

Part VI: Administering 301

https://www.hcltech.com/
https://www.hcltech.com/

The REPLSET parameter specifies that a connection unit is an Enterprise Replication replicate set, and specifies the name of the replicate set. A replicate set combines
several replicates to form a set that can be administered together as a unit.

Syntax

|--REPLSET--unit_name---|

Usage
Each connection-unit name must be unique within the Connection Manager configuration file.

REPLSET connection units can use the following redirection policies:

Apply failure
Round-robin
Transaction latency
Workload

Replicate set names can use multibyte characters.

Example
In the following example, the replicate-set connection unit named my_replicate_set is defined:

REPLSET my_replicate_set
{
 INFORMIXSERVER my_group_1,my_group_2
 SLA sla_1 DBSERVERS=ANY
}

Copyright© 2020 HCL Technologies Limited

SECONDARY_EVENT_TIMEOUT Connection Manager configuration parameter

The SECONDARY_EVENT_TIMEOUT parameter specifies the number of seconds that must elapse with no secondary-server events before the Connection Manager
disconnects from a secondary server. A secondary-server event is an indication from a secondary server that the server is still functioning, such as a sent performance-
statistics or administration messages.

Syntax

 .-60------.
|--SECONDARY_EVENT_TIMEOUT--+- -1-----+-------------------------|
 '-seconds-'

Table 1. Values for the SECONDARY_EVENT_TIMEOUT Connection Manager configuration parameter

SECONDARY_EVENT_TIMEOUT parameter value Description

-1 The Connection Manager waits indefinitely

0 to 30 The Connection Manager waits 30 seconds.

> 30 The Connection Manager waits the specified number of
seconds.

Usage
The SECONDARY_EVENT_TIMEOUT parameter is optional, and applies CLUSTER connection units.

If the SECONDARY_EVENT_TIMEOUT parameter is not specified in the Connection Manager configuration file, the Connection Manager waits 60 seconds for secondary-
server events before it disconnects from the server.

Example
In the following example, the Connection Manager disconnects from a secondary server after 300 seconds elapse with no secondary-server events.

SECONDARY_EVENT_TIMEOUT 300

Copyright© 2020 HCL Technologies Limited

SERVERSET Connection Manager configuration parameter

The SERVERSET parameter specifies that a connection unit is a server set, and specifies the name of the server set. A server set contains unrelated, standard servers that
do not use replication or failover.

302 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Syntax

|--SERVERSET--unit_name---|

Usage
Each connection-unit name must be unique within the Connection Manager configuration file.

SERVERLSET connection units can use the following redirection policies

Round-robin
Workload

Server set names cannot use multibyte characters.

Example
In the following example, the server-set connection unit named my_server_set is defined:

SERVERSET my_server_set
{
 INFORMIXSERVER my_group_1,my_group_2
 SLA sla_1 DBSERVERS=ANY
}

Copyright© 2020 HCL Technologies Limited

SLA Connection Manager configuration parameter

The SLA parameter defines service-level agreements that direct client requests to database servers.

Syntax

>>-SLA--sla_name--+-| CLUSTER SLA syntax |---------+------------>
 +-| GRID or REPLSET SLA syntax |-+
 '-| SERVERSET SLA syntax |-------'

>--+--------------------+--+---------------------+-------------->
 | .-REDIRECT-. | | .-ON--. |
 '-MODE=-+-PROXY----+-' '-USEALIASES=-+-OFF-+-'

>--+--------------------------------+--------------------------->
 | .-4-----------------. |
 '-WORKERS=-+-Number_of_threads-+-'

>--+----------------------+--+-----------------------+---------->
 '-HOST=-+-host_name--+-' '-NETTYPE=-+-drsocssl-+-'
 '-ip_address-' +-drsoctcp-+
 +-onsocssl-+
 '-onsoctcp-'

>--+---------------------------+-------------------------------->
 '-SERVICE=-+-port_number--+-'
 '-service_name-'

>--+--------------------------------+--------------------------><
 | .-,----------. |
 | V | |
 '-SQLHOSTSOPT="-----option---+-"-'

CLUSTER SLA syntax fragment

|--DBSERVERS=-+-ANY--+---+-------------------------+--|
 | '-POLICY=-+-ROUNDROBIN------------------------------+-' |
 | | .-WORKLOAD-. | |
 | '-+----------+-+------------------------+-' |
 | '-+SECAPPLYBACKLOG:pages-' |
 | .-,-----------. |
 | V | (1) |
 +---+-group---+-+--+
 | +-HDR-----+ |
 | +-PRI-----+ |
 | +-primary-+ |
 | +-RSS-----+ |
 | +-SDS-----+ |
 | '-server--' |
 | .-,-----------------------. |
 | | .-,-----------. | |
 | V V | | |
 '---+---+-group---+-+-----+-+--+---+-'
 | +-HDR-----+ | '-POLICY=-+-ROUNDROBIN------------------------------+-'
 | +-PRI-----+ | | .-WORKLOAD-. |
 | +-primary-+ | '-+----------+-+------------------------+-'
 | +-RSS-----+ | '-+SECAPPLYBACKLOG:pages-'
 | +-SDS-----+ |

Part VI: Administering 303

https://www.hcltech.com/

 | '-server--' |
 | .-,-----------. |
 | V | |
 '-(---+-group---+-+-)-'
 +-HDR-----+
 +-PRI-----+
 +-primary-+
 +-RSS-----+
 +-SDS-----+
 '-server--'

GRID or REPLSET SLA syntax fragment

|--DBSERVERS=-+-ANY--+--+-----------------------------+--|
 | | .-+------------------------. | | | | |
 | | | .-+---------+-WORKLOAD-. | | |
 | | V | '-weight*-' | | | |
 | '-POLICY=-+---+-+---------+-FAILURE--+-+-+-' |
 | | | '-weight*-' | | |
 | | '-+---------+--LATENCY-' | |
 | | '-weight*-' | |
 | '-ROUNDROBIN-------------------' |
 | .-,---------. |
 | V | |
 +-----group---+---+
 | .-,---------------------. |
 | | .-,---------. | |
 | (1) V V | | |
 '---------+-----group---+-----+-+--+--+-'
 | .-,---------. | | .-+------------------------. |
 | V | | | | .-+---------+-WORKLOAD-. | |
 '-(-----group---+-)-' | V | '-weight*-' | | |
 '-POLICY=-+---+-+---------+-FAILURE--+-+-+-'
 | | '-weight*-' | |
 | '-+---------+--LATENCY-' |
 | '-weight*-' |
 '-ROUNDROBIN-------------------'

SERVERSET SLA syntax fragment

|--DBSERVERS=-+-ANY--+------------------------+------------------------------+--|
 | | .-WORKLOAD---. | |
 | '-POLICY=-+-ROUNDROBIN-+-' |
 | .-,----------. |
 | V | |
 +---+-group--+-+---+
 | '-server-' |
 | .-,----------------------. |
 | | .-,----------. | |
 | (1) V V | | |
 '---------+---+-group--+-+-----+-+--+------------------------+-'
 | '-server-' | | .-WORKLOAD---. |
 | .-,----------. | '-POLICY=-+-ROUNDROBIN-+-'
 | V | |
 '-(---+-group--+-+-)-'
 '-server-'

Notes:

1. You must use at least one cluster keyword or a group of values that are enclosed by parentheses if you specify a redirection policy.

SLA parameter attributes
Table 1. The attributes of the SLA Connection Manager configuration parameter

Attribute name Description

DBSERVERS Specifies servers, server aliases, server groups, or server types for directing connection requests. Use the ANY keyword,
the SDS or RSS cluster keywords, or enclose a group of values in parentheses to enable a redirection policy for that
group.

HOST Specifies a database server's host. The value in the SLA is used, rather than the value in the Connection Manager's host
sqlhosts file.

MODE Specifies whether connection requests go through the Connection Manager or if the Connection Manager provides
connection information to the source of a connection request.
The default value is REDIRECT.

NETTYPE Specifies the network protocol of a database server. The value in the SLA is used, rather than the value in the Connection
Manager's host sqlhosts file.

POLICY Specifies how the Connection Manager redirects client connection requests to the servers specified in the DBSERVER
attribute.
Redirection policy applies to the ANY keyword, the SDS and RSS cluster keywords, and to a group of values that are
enclosed in parentheses. Parentheses within parentheses are ignored.

The default value is WORKLOAD.

Workload, apply-failure, and transaction-latency policies can be given relative weights.

SERVICE Specifies a database server's port number or service name. The value in the SLA is used, rather than the value in the
Connection Manager's host sqlhosts file.

304 Part VI: Administering

Attribute name Description

SQLHOSTSOPT Specifies connectivity options for a database server that is specified in a SLA. Enclose all connectivity options in a single
pair of quotation marks. The value in the SLA is used, rather than the value in the Connection Manager's host sqlhosts
file.

USEALIASES Specifies whether the Connection Manager can redirect client connection requests to database server aliases specified
by the DBSERVERALIASES configuration parameter.
The default value is ON.

WORKERS Specifies the number of worker threads that are allocated to the SLA. When a service-level agreement is specified, the
Connection Manager creates an SLA listener process to intercept client connection requests. The SLA listener process
can have one or more worker threads.
The default value is 4.

DBSERVERS attribute values
Table 2. Values of the DBSERVERS attribute.

Attribute value Value

ANY Specifies that connection requests can be sent to any available database server in the specified cluster, grid, or replicate set.
For a SERVERSET connection unit, ANY specifies that connection requests can be sent to any available database server specified by the
SERVERSET connection-unit's INFORMIXSERVER parameter.

You do not need to enclose ANY in parentheses to apply a redirection policy to it. If no redirection policy is specified, ANY uses the
workload redirection policy.

group Specifies a group entry in the Connection Manager's host sqlhosts file. Connection requests can be sent to the members of the group.

HDR Is a cluster keyword that specifies that connection requests can be sent to the high-availability data replication server. HDR is supported
only by CLUSTER connection units.

PRI or PRIMARY Is a cluster keyword that specifies that connection requests can be sent to the primary database server. PRI and PRIMARY are supported
only by CLUSTER connection units.

RSS Is a cluster keyword that specifies that connection requests can be sent to remote standalone secondary servers. RSS is supported only
by CLUSTER connection units.
You do not need to enclose RSS in parentheses to apply a redirection policy to the servers it specifies. If no redirection policy is specified,
RSS uses the workload redirection policy.

SDS Is a cluster keyword that specifies that connection requests can be sent to shared-disk secondary servers. SDS is supported only by
CLUSTER connection units.
You do not need to enclose SDS in parentheses to apply a redirection policy to the servers it specifies. If no redirection policy is specified,
SDS uses the workload redirection policy.

server Specifies server or alias entry in the Connection Manager's host sqlhosts file. Connection requests can be sent to the server.

MODE attribute values
Table 3. Values of the MODE attribute.

Attribute value Value

PROXY Specifies that the Connection Manager acts as a proxy server for client connections.
Use proxy mode for the following cases:

A firewall is preventing a client application from connecting to database servers.
You do not want to recompile applications are compiled with Data Server Driver for JDBC and SQLJ version 3.5.1 or before, or with
3.00 or before.

Because a proxy-server Connection Manager handles all client/server communication, configure multiple Connection Manager instances,
to avoid a Connection Manager becoming a single point of failure.

Note: For proxy mode, you must set your operating system to allow the maximum number of file descriptors.
For example, use the ulimit command on UNIX operating systems.

REDIRECT (default) Specifies that client connections use redirect mode, which configures the Connection Manager to return the appropriate database server
name, IP address, and port number to the requesting client application. The client application then uses the returned IP address and port
number to connect to the specified database server.
Redirection-policy SLAs do not support connections from application that are compiled with Data Server Driver for JDBC and SQLJ version
3.5.1 or before, or with 3.00 or before.

POLICY attribute values
Table 4. Values of the POLICY attribute.

Attribute value Value

Part VI: Administering 305

Attribute value Value

FAILURE Specifies that connection requests are directed or proxied to the replication server with the fewest
apply failures.
The apply-failure policy is supported by the following connection units:

REPLSET
GRID

To use the apply-failure policy, you must enable quality of data (QOD) monitoring by running the cdr
define qod and cdr start qod commands. To use the apply-failure policy for a grid, the grid must have
a replication-enabled table.

LATENCY Specifies that connection requests are directed or proxied to the replication server with the lowest
transaction latency.
The transaction-latency policy is supported by the following connection units:

REPLSET
GRID

The attribute value does not indicate a specific transaction latency period; the Connection Manager
uses a formula with relative values to decide where to redirect client connection requests.

To use the transaction-latency policy, you must enable quality of data monitoring by running the cdr
define qod and cdr start qod commands. To use the transaction-latency policy for a grid, the grid
must have a replication-enabled table.

ROUNDROBIN Specifies that connection requests are directed or proxied in a repeating, ordered fashion (round-
robin) to a group of servers.
If you use a round-robin policy, the DBSERVERS attribute values are used to create round-robin
groups. Servers that are specified more than one time in a DBSERVERS-attribute group value are
treated as single participants in a round-robin group. For example, if a SLA has the following definition:

SLA sla_1 DBSERVERS=(server_1,server_3,server_1,server_2) \
 POLICY=ROUNDROBIN

The round-robin group participants are:

server_1
server_2
server_3

The round-robin policy is supported by the following connection units:

CLUSTER
REPLSET
GRID
SERVERSET

The round-robin policy is supported by the following software:

All IBM® Informix® server versions.
Connection Managers from 3.70.xC8 and later, and 4.10xC2 and later.

SECAPPLYBACKLOG:number_of_pages Specifies that if a secondary server's apply backlog exceeds number_of_pages, the Connection
Manager does not redirect or proxy new connections to server. For example:

SLA sla_1 DBSERVERS=(server_1,server_2,server_3) \
 POLICY=SECAPPLYBACKLOG:500

The Connection Manager sends connection requests to whichever of server_1, server_2, or server_3
has an apply backlog below 500 pages and the lowest workload.

To view the apply backlogs of all servers in a cluster, run the onstat -g cluster command.

To view the apply backlog for a specific secondary server, run one of the following commands:

onstat -g dri
onstat -g sds
onstat -g rss

The apply-backlog policy is supported by CLUSTER connection units.

The apply-backlog policy is supported by the following software:

IBM Informix server versions 11.70.xC8 and later, and 12.10.xC2 and later.
Connection Managers from 3.70.xC8 and later, and 4.10xC2 and later.

306 Part VI: Administering

Attribute value Value

WORKLOAD (default) Specifies that connection requests are directed or proxied to the database server with the lowest
workload.
Workload calculations are based on the number of virtual processors a server has and the number of
threads in the server's ready queue.

The WORKLOAD policy is supported by the following connection units:

CLUSTER
GRID
REPLSET
SERVERSET

USEALIASES attribute values
Table 5. Values of the USEALIASES attribute.

Attribute value Value

ON (default) Specifies that the Connection Manager can direct client connection requests to server aliases specified by a database server's
DBSERVERALIASES configuration parameter.

OFF Specifies that the Connection Manager cannot direct client connection requests to server aliases specified by a database server's
DBSERVERALIASES configuration parameter.

HOST attribute values
Table 6. Values of the HOST attribute.

Attribute value Value

host_name Specifies a host name or host alias for a database server.

ip_address Specifies a TCP/IP address for a database server.

NETTYPE attribute values
Table 7. Values of the NETTYPE attribute.

Attribute value Value

drsocssl Specifies secured sockets layer (SSL) protocol for Distributed Relational Database Architecture™ (DRDA).

drsoctcp Specifies TCP/IP protocol for Distributed Relational Database Architecture

onsocssl Specifies secured sockets layer protocol.

onsoctcp Specifies sockets with TCP/IP protocol.

SERVICE attribute values
Table 8. Values of the SERVICE attribute.

Attribute value Value

port_number Specifies a port number.

service_name Specifies a service name.

Usage
The SLA parameter is optional, and is supported by the following connection units:

CLUSTER
GRID
REPLSET
SERVERSET

Client applications use the SLA name to connect to the database servers or database-server types that are specified by the value of the DBSERVERS attribute. For each
SLA, a listener thread is installed at the specified port on the server to detect incoming client requests. The SLA parameter can be specified multiple times in the same
configuration file; however, each SLA name must be unique.

Example 1: Connection request redirection from a service-level agreement
The following example shows a simple Connection Manager configuration. The configuration specifies a single SLA.

NAME my_connection_manager_1

CLUSTER my_cluster_1
{
 INFORMIXSERVER my_server_group_1
 SLA sla_1 DBSERVERS=SDS,HDR,PRI

Part VI: Administering 307

 FOC ORDER=ENABLED PRIORITY=1
}

CONNECT TO @sla_1 connection requests as are directed in the following way:

1. Connect to any available SD secondary servers.
2. If SD secondary servers are unavailable, connect to the HDR secondary server.
3. If the HDR secondary server is unavailable, connect to the primary server.

Example 2: Defining multiple service-level agreements
The following example shows a simple Connection Manager configuration. The configuration specifies two SLAs.

NAME my_connection_manager_2

CLUSTER my_cluster_2
{
 INFORMIXSERVER my_server_group_2
 SLA sla_1 DBSERVERS=server_1
 SLA sla_2 DBSERVERS=server_2,server_3
 FOC ORDER=ENABLED PRIORITY=1
}

This example configures the Connection Manager for a high-availability cluster and defines two SLAs:

CONNECT TO @sla_1 connection requests are directed to server_1.
CONNECT TO @sla_2 connection requests are directed to server_2. If server_2 is not available, connection requests are directed to server_3.

Example 3: Redirection policies in service-level agreements
The following example shows a Connection Manager configuration that uses a workload-balancing redirection policy. The configuration specifies a single SLA.

NAME my_connection_manager_3

CLUSTER my_cluster_3
{
 INFORMIXSERVER my_server_group_3
 SLA sla_1 DBSERVERS=(server_1,server_2) \
 POLICY=WORKLOAD
 SLA sla_2 DBSERVERS=(server_3,server_4,server_5) \
 POLICY=ROUNDROBIN
 SLA sla_3 DBSERVERS=(server_6,server_7,server_8) \
 POLICY=ROUNDROBIN+SECAPPLYBACKLOG:400
 FOC ORDER=ENABLED PRIORITY=1
}

CONNECT TO @sla_1 connection requests are directed to whichever of server_1 and server_2 has the lowest workload. WORKLOAD is the default redirection
policy, so specifying POLICY=WORKLOAD in the SLA is not required.
CONNECT TO @sla_2 connection requests are directed round-robin to server_3, server_4 and server_5.
CONNECT TO @sla_3 connection requests are directed round-robin to server_6, server_7 and server_8. If a server's apply backlog is 400 pages or greater, that
server is ignored in the round-robin order and does not receive connection requests until its apply backlog falls below 400 pages.

Example 4: Proxy and redirect mode in service-level agreements
In redirect mode, the Connection Manager responds to client redirection requests by returning a specified database server's IP address and port number to the client
application. The client application then uses the IP address and port number to connect to the database server. In proxy mode, the Connection Manager acts as a proxy
server, and client requests are routed through the Connection Manager. Redirect mode is the default if no SLA mode is specified.

NAME my_connection_manager_4

CLUSTER my_cluster_4
{
 INFORMIXSERVER my_server_group_4
 SLA sla_1 DBSERVERS=ANY \
 MODE=REDIRECT #Default value, so is not required for the SLA definition
 SLA sla_2 DBSERVERS=ANY \
 MODE=PROXY
 FOC ORDER=ENABLED PRIORITY=1
}

CONNECT TO @sla_1 connection requests result in the Connection Manager returning the IP address and port number for a cluster server to the client application.
CONNECT TO @sla_2 connection requests are directed through the Connection Manager to a cluster server.

Example 5: Adjusting timeout values for the Connection Manager and cluster servers
The following example shows a Connection Manager configuration where default timeout values are changed:

NAME my_connection_manager_5
CM_TIMEOUT 300
EVENT_TIMEOUT 45
SECONDARY_EVENT_TIMEOUT 50

CLUSTER my_cluster_5
{
 INFORMIXSERVER my_server_group_5
 SLA sla_1 DBSERVERS=ANY

308 Part VI: Administering

 FOC ORDER=ENABLED PRIORITY=1
}

If a cluster does not receive any events from the Connection Manager within 300 seconds, the primary server of the cluster promotes the next available Connection
Manager to the role of failover arbitrator.
If the Connection Manager does not receive any events from the primary server within 45 seconds, the Connection Manager begins failover processing, and
attempts to promote a secondary server to the primary server.
If the Connection Manager does not receive any events from a secondary server within 50 seconds, the Connection Manager disconnects from the secondary
server.

Example 6: Macros and workload balancing in service-level agreements
The following example shows a Connection Manager configuration that uses defined macros in SLAs.

NAME my_connection_manager_6
MACRO CA=ca_server_1,ca_server_2,ca_server_3
MACRO NY=ny_server_1,ny_server_2,ny_server_3

REPLSET my_replicate_set_1
{
 INFORMIXSERVER my_er_group_1,my_er_group_2
 SLA sla_1 DBSERVERS=${CA}
 SLA sla_2 DBSERVERS=(${NY}) \
 POLICY=ROUNDROBIN
}

In this example, two macros are defined:

CA, which is composed of ca_server_1, ca_server_2, and ca_server_3.
NY, which is composed of ny_server_1, ny_server_2, and ny_server_3.

The Connection Manager redirects client connection requests as follows:

CONNECT TO @sla_1 connection requests are directed to ca_server_1. If ca_server_1 is unavailable, connection requests are directed to ca_server_2. If
ca_server_2 is also unavailable, connection requests are directed to ca_server_3.
CONNECT TO @sla_2 connection requests are directed round-robin to ny_server_1, ny_server_2, and ny_server_3.

Example 7: Quality of data redirection policies in service-level agreements
The following example shows a Connection Manager configuration that uses transaction-latency and apply-failure redirection policies to direct connection requests in a
grid. Quality-of-data (QOD) monitoring is turned on with the cdr define qod and cdr start qod commands.

NAME my_connection_manager_7

GRID my_grid_1
{
 INFORMIXSERVER my_server_group_1,my_server_group_2,my_server_group_3
 SLA sla_1 DBSERVERS=ANY \
 POLICY=LATENCY
 SLA sla_2 DBSERVERS=ANY \
 POLICY=FAILURE
 SLA sla_3 DBSERVERS=ANY \
 POLICY=2*Failure+LATENCY
}

CONNECT TO @sla_1 connection requests are directed to the server with the lowest transaction latency.
CONNECT TO @sla_2 connection requests are directed to the server with the lowest number of apply failures.
CONNECT TO @sla_3 connection requests are directed to the server with the lowest number of apply failures and lowest transaction latency. The smallest apply-
failure count is twice as important as low transaction latency in the Connection Manager's calculations.

Example 8: sqlhosts connectivity information in service-level agreements
The following example shows a Connection Manager configuration that uses attribute values instead of the values in its host sqlhosts file for directing connection requests.

NAME my_connection_manager_8

SERVERSET my_server_set
{
 INFORMIXSERVER server_1,server_2,server_3
 SLA sla_1 DBSERVERS=server_1 \
 NETTYPE=onsoctcp
 HOST=host_1 \
 SERVICE=port_1 \
 SLA sla_2 DBSERVERS=server_2 \
 NETTYPE=onsoctcp
 HOST=host_2 \
 SERVICE=port_2 \
}

The Connection Manager uses the values of the HOST, SERVICE, and NETTYPE attributes, rather than the values in its host sqlhosts file for directing connection requests.

Example 9: Controlling connection-requests with aliases
The following example shows a Connection Manager configuration that specifies which database-server aliases SLAs can use.

The onconfig file for server_1 has the following parameter setting:

Part VI: Administering 309

DBSERVERALIASES server_1_alias_1,server_1_alias_2

The sqlhosts file that server_1 uses has the following entries:

#dbservername nettype hostname servicename options
my_group_9 group - - e=server_1_alias_2
server_1 onsoctcp my_host_1 my_port_1 g=my_group_9
server_1_alias_1 onsoctcp my_host_1 my_port_2 g=my_group_9
server_1_alias_2 onsoctcp my_host_1 my_port_3 g=my_group_9

The Connection Manager configuration file for server_1 has the following entries:

NAME my_connection_manager_9

SERVERSET my_server_set_2
{
 INFORMIXSERVER my_group_9
 SLA sla_1 DBSERVERS=server_1
 SLA sla_2 DBSERVERS=server_1 \
 USEALIASES=OFF
 SLA sla_3 DBSERVERS=server_1_alias_1
 SLA sla_4 DBSERVERS=server_1_alias_1 \
 USEALIASES=OFF
}

The Connection Manager directs client requests in the following ways:

CONNECT TO @sla_1 and CONNECT TO @sla_3 requests can be directed to server_1, through my_port_1, my_port_2, or my_port_3.
CONNECT TO @sla_2 requests are directed to server_1 through my_port_1 only.
CONNECT TO @sla_4 requests are directed to server_1 through my_port_2 only.

Related reference:
 Group information

Copyright© 2020 HCL Technologies Limited

SQLHOSTS Connection Manager configuration parameter

The SQLHOSTS parameter specifies where a Connection Manager can search for database servers that are specified by the INFORMIXSERVER parameter and DBSERVERS
attribute.

Syntax

 .-LOCAL+REMOTE-.
|--SQLHOSTS--=--+-LOCAL--------+--------------------------------|
 '-REMOTE-------'

Table 1. Values for the SQLHOSTS Connection Manager configuration parameter
SQLHOSTS parameter value Description

LOCAL The Connection Manager searches the local sqlhosts file for requested database server instances.

REMOTE The Connection Manager searches for requested database server instances in remote sqlhosts files. The Connection
Manager searches the sqlhosts files of database servers that are specified by a connection-unit's INFORMIXSERVER
parameter.

LOCAL+REMOTE (default) The Connection Manager searches the local sqlhosts file for requested database server instances. If a database server
cannot be found, the Connection Manager searches the sqlhosts files of database servers that are specified by a
connection-unit's INFORMIXSERVER parameter.

Usage
The SQLHOSTS parameter is optional, and applies to the following connection units:

CLUSTER
GRID
REPLSET
SERVERSET

The SQLHOSTS option is useful when you want to restrict client applications from accessing one or more database servers in a high-availability cluster.

Example
In the following example, the SQLHOSTS parameter is used to limit the servers that the Connection Manager connects to.

NAME my_connection_manager
SQLHOSTS LOCAL

CLUSTER my_cluster
{
 INFORMIXSERVERS my_servers
 SLA my_sla DBSERVERS=server_1,server_2,server_3,server_4

310 Part VI: Administering

https://www.hcltech.com/

 FOC ORDER=ENABLED PRIORITY=1
}

The local sqlhosts file has the following entries:

#dbservername nettype hostname servicename options
 my_servers group - - c=1,e=server_3
 server_1 onsoctcp host_1 port_1 g=my_servers
 server_2 onsoctcp host_2 port_2 g=my_servers
 server_3 onsoctcp host_3 port_3 g=my_servers

Remote database-server sqlhosts files have the following entries:

#dbservername nettype hostname servicename options
 my_servers group - - c=1,e=server_4
 server_1 onsoctcp host_1 port_1 g=my_servers
 server_2 onsoctcp host_2 port_2 g=my_servers
 server_3 onsoctcp host_3 port_3 g=my_servers
 server_4 onsoctcp host_3 port_3 g=my_servers

server_4 is not defined in the local sqlhosts file, and the Connection Manager is configured to not search remote sqlhosts files, so the Connection Manager does not send
connection requests to server_4.
Related reference:

 Group information

Copyright© 2020 HCL Technologies Limited

SSL_LABEL Connection Manager configuration parameter

The SSL_LABEL parameter specifies the certificate label used for authentication by the CM when listening for an SSL connection.

SSL_LABEL certificate_name

The certificate name can be a single value, combination of alphanumeric characters, symbols or numbers.

Usage
The SSL_LABEL parameter is optional, and applies to the following connection units:

CLUSTER
GRID
REPLSET
SERVERSET

The SSL_LABEL option is useful when you want the CM to use the name of certificate specified in SSL_LABEL to authenticate incoming SSL connections.

Example
SSL_LABEL cm1ListeningCertificate

Copyright© 2020 HCL Technologies Limited

Modifying Connection Manager configuration files

Use the oncmsm utility to load a modified configuration file into a Connection Manager and change the Connection Manager's configuration.

If you are using multiple Connection Managers, you can run the onstat -g cmsm command to display the names of Connection Manager instances.

1. Modify the existing Connection Manager configuration file. The default location of the configuration file is the $INFORMIXDIR/etc directory.
2. On the Connection Manager's host, run the oncmsm utility with the r parameter and the name of the Connection Manager instance. For example:

oncmsm -r connection_manager_name

Because multiple instances of the Connection Manager can be active at the same time, you must specify the name of the Connection Manager instance.

After you reload a Connection Manager's configuration file, the new configuration immediately takes effect.
Related information:

 The oncmsm utility
onstat -g cmsm command: Print Connection Manager information

Copyright© 2020 HCL Technologies Limited

Converting older formats of the Connection Manager configuration file to the current
format

Part VI: Administering 311

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The Connection Manager configuration file in versions of before version 3.70.xC3 are incompatible with the current version of the Connection Manager. You must convert
configuration files from versions before 3.70.xC3 by running the oncmsm utility.

If you have multiple configuration files to convert, combine related SLA definitions into a single configuration file.

You can convert Connection Manager configuration files, even if a Connection Manager is running.

To convert a Connection Manager file to the current format:

1. Log on to the computer on which the updated Client SDK is installed.
2. Run the oncmsm utility, specifying old and new configuration file names.

After the configuration file is converted, it can be loaded into a Connection Manager.

Example: Converting a configuration file and loading it into a Connection Manager
For the following example:

You are using a UNIX operating system.
You updated a Connection Manager from 3.50.xC9 to 4.10xC1, and must update your configuration file.
The Connection Manager was using a configuration file that is named configuration_file_old and located in $INFORMIXDIR/etc.
You want to convert the file to the new format and rename the file to configuration_file_new.

Run the following commands:

1. oncmsm -c configuration_file_old -n configuration_file_new
2. oncmsm -c configuration_file_new

Related information:
 The oncmsm utility

Copyright© 2020 HCL Technologies Limited

Configuring environments and setting configuration parameters for connection
management

Before you start a Connection Manager, you must configure its environment.

To set environment variables:

For UNIX C use the appropriate shell command. The following examples use C shell (csh).
For Windows, use the Environment tab of the setnet32 utility.

1. If clients or Connection Managers are installed on hosts where database servers are not installed, set each host's INFORMIXDIR environment variable to the
directory the client or Connection Manager is installed in. Run the following command:

setenv INFORMIXDIR path

2. If clients or Connection Managers are installed on hosts where database servers are not installed, set each host's INFORMIXSQLHOSTS environment variable to the
location of the sqlhosts file that the host uses. Run the following command:

setenv INFORMIXSQLHOSTS path_and_filename

3. If a Connection Manager's configuration file is in a directory other than $INFORMIXDIR/etc, set the CMCONFIG environment variable to the directory. Run the
following command:

setenv CMCONFIG path_and_filename

4. If Connection Managers control failover for a high-availability cluster, set the onconfig file DRAUTO configuration parameter to 3 on all managed cluster database
servers. For example:

DRAUTO 3

5. If Connection Managers control failover for a high-availability cluster, set the onconfig file HA_FOC_ORDER configuration parameter on the primary server of each
cluster to a failover order. For example:

HA_FOC_ORDER SDS,HDR,RSS

6. On each database server that uses multiple ports, set the onconfig file DBSERVERALIASES configuration parameter to the alias names listed in Connection Manager
and database server sqlhosts file entries. For example:
A Connection Manager's host has the following sqlhost file entries:

#dbservername nettype hostname servicename options
 my_servers group - - c=1,e=server_3
 server_1 onsoctcp host_1 port_1 s=6,g=my_servers
 server_2 onsoctcp host_2 port_2 s=6,g=my_servers
 server_3 onsoctcp host_3 port_3 s=6,g=my_servers

 my_aliases group - - c=1,e=a_server_3
 a_server_1 onsoctcp host_1 port_4 g=my_aliases
 a_server_2 onsoctcp host_2 port_5 g=my_aliases
 a_server_3 onsoctcp host_3 port_6 g=my_aliases

In the onconfig file for server_1, set the following value:

312 Part VI: Administering

https://www.hcltech.com/

DBSERVERALIASES a_server_1

In the onconfig file for server_2, set the following value:

DBSERVERALIASES a_server_2

In the onconfig file for server_3, set the following value:

DBSERVERALIASES a_server_3

Related information:
 INFORMIXDIR environment variable

INFORMIXSQLHOSTS environment variable
CMCONFIG environment variable
DBSERVERALIASES configuration parameter
DRAUTO configuration parameter
HA_FOC_ORDER configuration parameter

Copyright© 2020 HCL Technologies Limited

Defining sqlhosts information for connection management

You must define sqlhosts network-connectivity information for client applications that connect to Connection Managers, Connection Managers that connect to database
servers, and database servers that are part of a Connection Manager connection unit.

If Connection Managers or clients are installed on hosts where database servers are not installed, you must create a sqlhosts file on each host.

Entries in an sqlhosts file can specify connection information for the following connection-unit components:

Database servers
Aliases for database servers that are using secure ports
Connection Manager service-level agreements (SLAs)
Groups that can contain database servers, database-server aliases, or SLAs.

All database servers that a Connection Manager connects to must be listed in the sqlhosts file that the Connection Manager uses. If the Connection Manager is monitoring
a high-availability cluster, the sqlhosts file the Connection Manager uses must contain entries for all cluster servers.

1. Create entries in each database server's host sqlhosts file. You can modify one sqlhosts file, and then distribute it to the hosts of other database servers.
2. Create entries in each Connection Manager's host sqlhosts file. You can create one sqlhosts file, and then distribute it to the hosts of other Connection Managers.
3. Create entries in each client application's host sqlhosts file. You can create one sqlhosts file, and then distribute it to the hosts of other client applications.
4. If a host has multiple database servers that are installed on it, if the sqlhosts file is in a directory other than $INFORMIXDIR/etc, or if you are using a network-

connectivity file other than $INFORMIXDIR/etc/sqlhosts, set the host's INFORMIXSQLHOSTS environment variable to the location of the sqlhosts file.

If sqlhosts file entries use the s=6 option to define secure ports, use the information in the sqlhosts file to create a password file.

Defining sqlhosts information for connection management of high-availability clusters
 You must define sqlhosts network-connectivity information for connection management of high-availability clusters.

Defining sqlhosts information for connection management of high-availability clusters that use secure ports
 You must define sqlhosts network-connectivity information for connection management of high-availability clusters. If Connection Managers, database servers, or

client applications are outside of a trusted network, you must also create an encrypted password file for security.
Defining sqlhosts information for high-availability clusters that use Distributed Relational Database Architecture (DRDA)

 Connection Managers support Distributed Relational Database Architecture™ (DRDA) connections for high-availability clusters. You must define sqlhosts network-
connectivity information for connection management of high-availability clusters that use DRDA.
Defining sqlhosts information for high-availability clusters that use Distributed Relational Database Architecture (DRDA) and secure ports

 Connection Managers support Distributed Relational Database Architecture (DRDA) connections for high-availability clusters. You must define sqlhosts network-
connectivity information for connection management of high-availability clusters that use DRDA. If Connection Managers, database servers, or client applications
are outside of a trusted network, you must also create an encrypted password file for security.
Defining sqlhosts information for connection management of grids and replicate sets

 You must define sqlhosts network-connectivity information for connection management of replicate sets or grids.
Defining sqlhosts information for connection management of grids and replicate sets that use secure ports

 You must define sqlhosts network-connectivity information for connection management of replicate sets or grids. If Connection Managers, database servers, or
client applications are outside of a trusted network, you must also create an encrypted password file for security.
Defining sqlhosts information for connection management high-availability replication systems

 You must define sqlhosts network-connectivity information for connection management of high-availability replication systems.
Defining sqlhosts information for connection management of high-availability replication systems that use secure ports

 You must define sqlhosts network-connectivity information for connection management of high-availability replication systems. If Connection Managers, database
servers, or client applications are outside of a trusted network, you must also create an encrypted password file for security.
Defining sqlhosts information for connection management of server sets

 You must define sqlhosts network-connectivity information for connection management of server sets.

Related concepts:
 The sqlhosts information

Related reference:
 Group information

Related information:
 INFORMIXSQLHOSTS environment variable

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 313

https://www.hcltech.com/
https://www.hcltech.com/

Defining sqlhosts information for connection management of high-availability
clusters

You must define sqlhosts network-connectivity information for connection management of high-availability clusters.

To use a file other than $INFORMIXDIR/etc/sqlhosts on a specific host, set the host's INFORMIXSQLHOSTS environment variable to the alternative file.

1. On the host of each Connection Manager and database server, create sqlhosts file entries for each database server in the cluster. For example:

#dbservername nettype hostname servicename options
 server_1 onsoctcp host_1 port_1
 server_2 onsoctcp host_2 port_2
 server_3 onsoctcp host_3 port_3

2. On the host of each Connection Manager, add a group entry that contains each database server in the cluster, and add group options to the database-server entries.
Use the c=1 group-entry option, so that connection-attempt starting points in the list of group members is random. Use the e=last_member group-entry option so
that the entire sqlhosts is not scanned for group members. For example:

#dbservername nettype hostname servicename options
 my_servers - - c=1,e=server_3
 server_1 onsoctcp host_1 port_1 g=my_servers
 server_2 onsoctcp host_2 port_2 g=my_servers
 server_3 onsoctcp host_3 port_3 g=my_servers

3. On the host of each client application, create an sqlhosts file entry for each service-level agreement (SLA) in each Connection Manager configuration file.
The first Connection Manager's configuration file has the following entries:

NAME connection_manager_1

CLUSTER my_cluster
{
 INFORMIXSERVER my_servers
 SLA sla_primary_1 DBSERVERS=PRI
 SLA sla_secondaries_1 DBSERVERS=SDS,HDR
 FOC ORDER=ENABLED \
 PRIORITY=1
}

The second Connection Manager's configuration file has the following entries:

NAME connection_manager_2

CLUSTER my_cluster
{
 INFORMIXSERVER my_servers
 SLA sla_primary_2 DBSERVERS=PRI
 SLA sla_secondaries_2 DBSERVERS=SDS,HDR
 FOC ORDER=ENABLED \
 PRIORITY=2
}

Add the following entries to each client application's host sqlhosts file:

#dbservername nettype hostname servicename options
 sla_primary_1 onsoctcp cm_host_1 cm_port_1
 sla_primary_2 onsoctcp cm_host_2 cm_port_2

 sla_secondaries_2 onsoctcp cm_host_1 cm_port_3
 sla_secondaries_2 onsoctcp cm_host_2 cm_port_4

4. On the host of each client application, create sqlhosts file entries for each group of SLA entries, and add group options to the SLA entries. Use the c=1 group-entry
option, so that connection-attempt starting points in the list of group members is random. Use the e=last_member group-entry option so that the entire sqlhosts
is not scanned for group members.

#dbservername nettype hostname servicename options
 g_primary group - - c=1,e=sla_primary_2
 sla_primary_1 onsoctcp cm_host_1 cm_port_1 g=g_primary
 sla_primary_2 onsoctcp cm_host_2 cm_port_2 g=g_primary

 g_secondaries group - - c=1,e=sla_secondaries_2
 sla_secondaries_2 onsoctcp cm_host_1 cm_port_3 g=g_secondaries
 sla_secondaries_2 onsoctcp cm_host_2 cm_port_4 g=g_secondaries

Client connection requests to @g_primary are directed to one of the Connection Managers. If connection_manager_1 receives the request, it uses sla_primary_1 to
provide the client application with connection information for the primary server. If connection_manager_2 receives the request, it uses sla_primary_2 to provide the
client application with connection information for the primary server.
Related concepts:

 The sqlhosts information
Related reference:

 Group information
Related information:

 INFORMIXSQLHOSTS environment variable

Copyright© 2020 HCL Technologies Limited

314 Part VI: Administering

https://www.hcltech.com/

Defining sqlhosts information for connection management of high-availability
clusters that use secure ports

You must define sqlhosts network-connectivity information for connection management of high-availability clusters. If Connection Managers, database servers, or client
applications are outside of a trusted network, you must also create an encrypted password file for security.

To use a file other than $INFORMIXDIR/etc/sqlhosts on a specific host, set the host's INFORMIXSQLHOSTS environment variable to the alternative file.

1. On the host of each Connection Manager and database server, create sqlhosts file entries for each database server in the cluster, and specify the s=6 secure-port
option. For example:

#dbservername nettype hostname servicename options
 server_1 onsoctcp host_1 port_1 s=6
 server_2 onsoctcp host_2 port_2 s=6
 server_3 onsoctcp host_3 port_3 s=6

2. On the host of each Connection Manager and database server, create sqlhosts file alias entries for each database server. For example:

#dbservername nettype hostname servicename options
 server_1 onsoctcp host_1 port_1 s=6
 a_server_1 onsoctcp host_1 port_4

 server_2 onsoctcp host_2 port_2 s=6
 a_server_2 onsoctcp host_2 port_5

 server_3 onsoctcp host_3 port_3 s=6
 a_server_3 onsoctcp host_3 port_6

3. On the host of each Connection Manager, add a group entry the individual entries. Add group options to the database server and database server alias entries. Use
the c=1 group-entry option, so that connection-attempt starting points in the list of group members is random. Use the e=last_member group-entry option so that
the entire sqlhosts is not scanned for group members. For example:

#dbservername nettype hostname servicename options
 my_servers group - - c=1,e=a_server_3
 server_1 onsoctcp host_1 port_1 s=6,g=my_servers
 a_server_1 onsoctcp host_1 port_4 g=my_servers
 server_2 onsoctcp host_2 port_2 s=6,g=my_servers
 a_server_2 onsoctcp host_2 port_5 g=my_servers
 server_3 onsoctcp host_3 port_3 s=6,g=my_servers
 a_server_3 onsoctcp host_3 port_6 g=my_servers

A password file that is encrypted through the onpassword utility is required for connectivity through secure ports. The entries in the previously shown sqlhosts file
are represented in the following password file.

my_servers a_server_1 user_1 my_password_1
my_servers a_server_2 user_2 my_password_2
my_servers a_server_3 user_3 my_password_3

server_1 a_server_1 user_1 my_password_1
server_2 a_server_2 user_2 my_password_2
server_3 a_server_3 user_3 my_password_3

a_server_1 a_server_1 user_1 my_password_1
a_server_2 a_server_2 user_2 my_password_2
a_server_3 a_server_3 user_3 my_password_3

4. In each database server's onconfig file, set the DBSERVERALIASES parameter to that database server's alias.
The onconfig file entry for server_1:

DBSERVERALIASES a_server_1

The onconfig file entry for server_2:

DBSERVERALIASES a_server_2

The onconfig file entry for server_3:

DBSERVERALIASES a_server_3

5. On the host of each client application, create an sqlhosts file entry for each service-level agreement (SLA) in each Connection Manager configuration file.
The first Connection Manager's configuration file has the following entries:

NAME connection_manager_1

CLUSTER my_cluster
{
 INFORMIXSERVER my_servers
 SLA sla_primary_1 DBSERVERS=PRI
 SLA sla_secondaries_1 DBSERVERS=SDS,HDR
 FOC ORDER=ENABLED PRIORITY=1
}

The second Connection Manager's configuration file has the following entries:

NAME connection_manager_2

CLUSTER my_cluster
{
 INFORMIXSERVER my_servers
 SLA sla_primary_2 DBSERVERS=PRI

Part VI: Administering 315

 SLA sla_secondaries_2 DBSERVERS=SDS,HDR
 FOC ORDER=ENABLED PRIORITY=2
}

Add the following entries to each client application's host sqlhosts file:

#dbservername nettype hostname servicename options
 sla_primary_1 onsoctcp cm_host_1 cm_port_1
 sla_primary_2 onsoctcp cm_host_2 cm_port_2

 sla_secondaries_2 onsoctcp cm_host_1 cm_port_3
 sla_secondaries_2 onsoctcp cm_host_2 cm_port_4

6. On the host of each client application, create sqlhosts file group entries for each group of SLA entries, and add group options to the SLA entries. Use the c=1 group-
entry option, so that connection-attempt starting points in the list of group members is random. Use the e=last_member group-entry option so that the entire
sqlhosts is not scanned for group members.

#dbservername nettype hostname servicename options
 g_primary group - - c=1,e=sla_primary_2
 sla_primary_1 onsoctcp cm_host_1 cm_port_1 g=g_primary
 sla_primary_2 onsoctcp cm_host_2 cm_port_2 g=g_primary

 g_secondaries group - - c=1,e=sla_secondaries_2
 sla_secondaries_2 onsoctcp cm_host_1 cm_port_3 g=g_secondaries
 sla_secondaries_2 onsoctcp cm_host_2 cm_port_4 g=g_secondaries

Client connection requests to @g_primary are directed to one of the Connection Managers. If connection_manager_1 receives the request, it uses sla_primary_1 to
provide the client application with connection information for the primary server. If connection_manager_2 receives the request, it uses sla_primary_2 to provide the
client application with connection information for the primary server.

Related concepts:
 The sqlhosts information

Related reference:
 Group information

Related information:
 INFORMIXSQLHOSTS environment variable

DBSERVERALIASES configuration parameter

Copyright© 2020 HCL Technologies Limited

Defining sqlhosts information for high-availability clusters that use Distributed
Relational Database Architecture (DRDA)

Connection Managers support Distributed Relational Database Architecture™ (DRDA) connections for high-availability clusters. You must define sqlhosts network-
connectivity information for connection management of high-availability clusters that use DRDA.

To use a file other than $INFORMIXDIR/etc/sqlhosts on a specific host, set the host's INFORMIXSQLHOSTS environment variable to the alternative file.

1. On the host of each Connection Manager and database server, create sqlhosts file entries for each database server in the cluster. For example:

#dbservername nettype hostname servicename options
 server_1 onsoctcp host_1 port_1
 server_2 onsoctcp host_3 port_2
 server_3 onsoctcp host_5 port_3

2. In each database server's onconfig file, set the DBSERVERALIASES parameter to specify an alias for the server.
The onconfig file entry for server_1:

DBSERVERALIASES drda_1

The onconfig file entry for server_2:

DBSERVERALIASES drda_2

The onconfig file entry for server_3:

DBSERVERALIASES drda_3

3. On the host of each Connection Manager, add entries for the DRDA aliases. Use a DRDA protocol for the nettype value. For example:

#dbservername nettype hostname servicename options
 server_1 onsoctcp host_1 port_1
 server_2 onsoctcp host_2 port_2
 server_3 onsoctcp host_3 port_3

 drda_1 drsoctcp host_1 port_4
 drda_2 drsoctcp host_2 port_5
 drda_3 drsoctcp host_3 port_6

4. On the host of each Connection Manager, add a group entry for the group of database server and add a group entry for the group of DRDA aliases. Add group options
to the database server and DRDA alias entries. Use the c=1 group-entry option, so that connection-attempt starting points in the list of group members is random.
Use the e=last_member group-entry option so that the entire sqlhosts is not scanned for group members. For example:

#dbservername nettype hostname servicename options
 my_servers group - - c=1,e=server_3
 server_1 onsoctcp host_1 port_1 g=my_servers
 server_2 onsoctcp host_2 port_2 g=my_servers

316 Part VI: Administering

https://www.hcltech.com/

 server_3 onsoctcp host_3 port_3 g=my_servers

 drda_aliases group - - c=1,e=drda_3
 drda_1 drsoctcp host_1 port_4 g=drda_aliases
 drda_2 drsoctcp host_2 port_5 g=drda_aliases
 drda_3 drsoctcp host_3 port_6 g=drda_aliases

5. On the host of each client application, create an sqlhosts file entry for each service-level agreement (SLA) in each Connection Manager configuration file.
The first Connection Manager's configuration file has the following entries:

NAME connection_manager_1

CLUSTER my_cluster
{
 INFORMIXSERVER my_servers
 SLA sla_primary_1 DBSERVERS=PRI
 SLA sla_primary_drda_1 DBSERVERS=PRI
 SLA sla_secondaries_1 DBSERVERS=SDS,HDR
 SLA sla_secondaries_drda_1 DBSERVERS=SDS,HDR
 FOC ORDER=ENABLED \
 PRIORITY=1
}

The second Connection Manager's configuration file has the following entries:

NAME connection_manager_2

CLUSTER my_cluster
{
 INFORMIXSERVER my_servers
 SLA sla_primary_2 DBSERVERS=PRI
 SLA sla_primary_drda_2 DBSERVERS=PRI
 SLA sla_secondaries_2 DBSERVERS=SDS,HDR
 SLA sla_secondaries_drda_2 DBSERVERS=SDS,HDR
 FOC ORDER=ENABLED \
 PRIORITY=2
}

Add the following entries to each client application's host sqlhosts file:

#dbservername nettype hostname servicename options
 sla_primary_1 onsoctcp cm_host_1 cm_port_1
 sla_primary_2 onsoctcp cm_host_2 cm_port_2

 sla_secondaries_2 onsoctcp cm_host_1 cm_port_3
 sla_secondaries_2 onsoctcp cm_host_2 cm_port_4

 sla_primary_1_drda drsoctcp cm_host_1 cm_port_5
 sla_primary_2_drda drsoctcp cm_host_2 cm_port_6

 sla_secondaries_2_drda drsoctcp cm_host_1 cm_port_7
 sla_secondaries_2_drda drsoctcp cm_host_2 cm_port_8

6. On the host of each client application, create sqlhosts file group entries for each group of SLA entries, and add group options to the SLA entries. Use the c=1 group-
entry option, so that connection-attempt starting points in the list of group members is random. Use the e=last_member group-entry option so that the entire
sqlhosts is not scanned for group members.

#dbservername nettype hostname servicename options
 g_primary group - - c=1,e=sla_primary_2
 sla_primary_1 onsoctcp cm_host_1 cm_port_1 g=g_primary
 sla_primary_2 onsoctcp cm_host_2 cm_port_2 g=g_primary

 g_secondaries group - - c=1,e=sla_secondaries_2
 sla_secondaries_2 onsoctcp cm_host_1 cm_port_3 g=g_secondaries
 sla_secondaries_2 onsoctcp cm_host_2 cm_port_4 g=g_secondaries

 g_primary_drda group - - c=1,e=sla_primary_2_drda
 sla_primary_1_drda drsoctcp cm_host_1 cm_port_5 g=g_primary_drda
 sla_primary_2_drda drsoctcp cm_host_2 cm_port_6 g=g_primary_drda

 g_secondaries_drda group - - c=1,e=sla_secondaries_2_drda
 sla_secondaries_2_drda drsoctcp cm_host_1 cm_port_7 g=g_secondaries_drda
 sla_secondaries_2_drda drsoctcp cm_host_2 cm_port_8 g=g_secondaries_drda

Client connection requests to @g_primary_drda are sent by drsoctcp protocol to one of the Connection Managers. If connection_manager_1 receives the request, it
uses sla_primary_1_drda to provide the client application with connection information for the primary server. If connection_manager_2 receives the request, it uses
sla_primary_2_drda to provide the client application with connection information for the primary server.
Related concepts:

 The sqlhosts information
Related tasks:

 Configuring connectivity between Informix database servers and IBM Data Server clients
Related reference:

 Group information
Related information:

 INFORMIXSQLHOSTS environment variable
DBSERVERALIASES configuration parameter

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 317

https://www.hcltech.com/

Defining sqlhosts information for high-availability clusters that use Distributed
Relational Database Architecture (DRDA) and secure ports

Connection Managers support Distributed Relational Database Architecture™ (DRDA) connections for high-availability clusters. You must define sqlhosts network-
connectivity information for connection management of high-availability clusters that use DRDA. If Connection Managers, database servers, or client applications are
outside of a trusted network, you must also create an encrypted password file for security.

The Connection Manager's sqlhosts file must contain entries for all database servers that it connects to.

To use a file other than $INFORMIXDIR/etc/sqlhosts on a specific host, set the host's INFORMIXSQLHOSTS environment variable to the alternative file.

1. On the host of each Connection Manager and database server, create sqlhosts file entries for each database server in the cluster, and specify the s=6 secure-port
option. For example:

#dbservername nettype hostname servicename options
 server_1 onsoctcp host_1 port_1 s=6
 server_2 onsoctcp host_3 port_2 s=6
 server_3 onsoctcp host_5 port_3 s=6

2. On the host of each Connection Manager and database server, add DRDA alias entries. Use a DRDA protocol for the nettype value, and specify the s=6 secure-port
option. For example:

#dbservername nettype hostname servicename options
 server_1 onsoctcp host_1 port_1 s=6
 server_2 onsoctcp host_2 port_2 s=6
 server_3 onsoctcp host_3 port_3 s=6

 drda_1 drsoctcp host_1 port_4 s=6
 drda_2 drsoctcp host_2 port_5 s=6
 drda_3 drsoctcp host_3 port_6 s=6

3. On the host of each Connection Manager and database server, create sqlhosts file alias entries for each database server and each DRDA alias. For example:

#dbservername nettype hostname servicename options
 server_1 onsoctcp host_1 port_1 s=6
 a_server_1 onsoctcp host_1 port_7

 server_2 onsoctcp host_2 port_2 s=6
 a_server_2 onsoctcp host_2 port_8

 server_3 onsoctcp host_3 port_3 s=6
 a_server_3 onsoctcp host_3 port_9

 drda_1 drsoctcp host_1 port_4 s=6
 a_drda_1 drsoctcp host_1 port_10

 drda_2 drsoctcp host_2 port_5 s=6
 a_drda_2 drsoctcp host_2 port_11

 drda_3 drsoctcp host_3 port_6 s=6
 a_drda_3 drsoctcp host_3 port_12

4. On the host of each Connection Manager, add group entries for the groups of database servers and DRDA entries. Add group options to the individual entries. Use
the c=1 group-entry option, so that connection-attempt starting points in the list of group members is random. Use the e=last_member group-entry option so that
the entire sqlhosts is not scanned for group members. For example:

#dbservername nettype hostname servicename options
 g_servers group - - c=1,e=a_server_3
 server_1 onsoctcp host_1 port_1 s=6,g=g_servers
 a_server_1 onsoctcp host_1 port_7 g=g_servers
 server_2 onsoctcp host_2 port_2 s=6,g=g_servers
 a_server_2 onsoctcp host_2 port_8 g=g_servers
 server_3 onsoctcp host_3 port_3 s=6,g=g_servers
 a_server_3 onsoctcp host_3 port_9 g=g_servers

 g_drda group - - c=1,e=a_drda_3
 drda_1 drsoctcp host_1 port_4 s=6,g=g_drda
 a_drda_1 drsoctcp host_1 port_10 g=g_drda
 drda_2 drsoctcp host_2 port_5 s=6,g=g_drda
 a_drda_2 drsoctcp host_2 port_11 g=g_drda
 drda_3 drsoctcp host_3 port_6 s=6,g=g_drda
 a_drda_3 drsoctcp host_3 port_12 g=g_drda

A password file that is encrypted through the onpassword utility is required for connectivity through secure ports. The entries in the previously shown sqlhosts file
are represented in the following password file.

g_servers a_server_1 user_1 password_1
g_servers a_server_2 user_2 password_2
g_servers a_server_3 user_3 password_3

server_1 a_server_1 user_1 password_1
server_2 a_server_2 user_2 password_2
server_3 a_server_3 user_3 password_3

a_server_1 a_server_1 user_1 password_1
a_server_2 a_server_2 user_2 password_2
a_server_3 a_server_3 user_3 password_3

g_drda a_drda_1 user_1 password_1
g_drda a_drda_2 user_2 password_2

318 Part VI: Administering

g_drda a_drda_3 user_3 password_3

drda_1 a_drda_1 user_1 password_1
drda_2 a_drda_2 user_2 password_2
drda_3 a_drda_3 user_3 password_3

a_drda_1 a_drda_1 user_1 password_1
a_drda_2 a_drda_2 user_2 password_2
a_drda_3 a_drda_3 user_3 password_3

5. In each database server's onconfig file, set the DBSERVERALIASES parameter to that database server's aliases.
The onconfig file entry for server_1:

DBSERVERALIASES a_server_1,drda_1,a_drda_1

The onconfig file entry for server_2:

DBSERVERALIASES a_server_2,drda_2,a_drda_2

The onconfig file entry for server_3:

DBSERVERALIASES a_server_3,drda_3,a_drda_3

6. On the host of each client application, create an sqlhosts file entry for each service-level agreement (SLA) in each Connection Manager configuration file.
The first Connection Manager's configuration file has the following entries:

NAME connection_manager_1

CLUSTER my_cluster
{
 INFORMIXSERVER g_servers,g_drda
 SLA sla_primary_1 DBSERVERS=PRI
 SLA sla_primary_drda_1 DBSERVERS=PRI
 SLA sla_secondaries_1 DBSERVERS=SDS,HDR
 SLA sla_secondaries_drda_1 DBSERVERS=SDS,HDR
 FOC ORDER=ENABLED \
 PRIORITY=1
}

The second Connection Manager's configuration file has the following entries:

NAME connection_manager_2

CLUSTER my_cluster
{
 INFORMIXSERVER g_servers,g_drda
 SLA sla_primary_2 DBSERVERS=PRI
 SLA sla_primary_drda_2 DBSERVERS=PRI
 SLA sla_secondaries_2 DBSERVERS=SDS,HDR
 SLA sla_secondaries_drda_2 DBSERVERS=SDS,HDR
 FOC ORDER=ENABLED \
 PRIORITY=2
}

Add the following entries to each client application's host sqlhosts file:

#dbservername nettype hostname servicename options
 sla_primary_1 onsoctcp cm_host_1 cm_port_1
 sla_primary_2 onsoctcp cm_host_2 cm_port_2

 sla_secondaries_2 onsoctcp cm_host_1 cm_port_3
 sla_secondaries_2 onsoctcp cm_host_2 cm_port_4

 sla_primary_1_drda drsoctcp cm_host_1 cm_port_5
 sla_primary_2_drda drsoctcp cm_host_2 cm_port_6

 sla_secondaries_2_drda drsoctcp cm_host_1 cm_port_7
 sla_secondaries_2_drda drsoctcp cm_host_2 cm_port_8

7. On the host of each client application, create sqlhosts file group entries for each group of SLA entries, and add group options to the SLA entries. Use the c=1 group-
entry option, so that connection-attempt starting points in the list of group members is random. Use the e=last_member group-entry option so that the entire
sqlhosts is not scanned for group members.

#dbservername nettype hostname servicename options
 g_primary group - - c=1,e=sla_primary_2
 sla_primary_1 onsoctcp cm_host_1 cm_port_1 g=g_primary
 sla_primary_2 onsoctcp cm_host_2 cm_port_2 g=g_primary

 g_secondaries group - - c=1,e=sla_secondaries_2
 sla_secondaries_2 onsoctcp cm_host_1 cm_port_3 g=g_secondaries
 sla_secondaries_2 onsoctcp cm_host_2 cm_port_4 g=g_secondaries

 g_primary_drda group - - c=1,e=sla_primary_2_drda
 sla_primary_1_drda drsoctcp cm_host_1 cm_port_5 g=g_primary_drda
 sla_primary_2_drda drsoctcp cm_host_2 cm_port_6 g=g_primary_drda

 g_secondaries_drda group - - c=1,e=sla_secondaries_2_drda
 sla_secondaries_2_drda drsoctcp cm_host_1 cm_port_7 g=g_secondaries_drda
 sla_secondaries_2_drda drsoctcp cm_host_2 cm_port_8 g=g_secondaries_drda

Client connection requests to @g_primary_drda are sent by drsoctcp protocol to one of the Connection Managers. If connection_manager_1 receives the request, it
uses sla_primary_1_drda to provide the client application with connection information for the primary server. If connection_manager_2 receives the request, it uses
sla_primary_2_drda to provide the client application with connection information for the primary server.

Part VI: Administering 319

Related concepts:
The sqlhosts information
Related tasks:
Configuring connectivity between Informix database servers and IBM Data Server clients
Related reference:
Group information
Related information:
INFORMIXSQLHOSTS environment variable
DBSERVERALIASES configuration parameter

Copyright© 2020 HCL Technologies Limited

Defining sqlhosts information for connection management of grids and replicate sets

You must define sqlhosts network-connectivity information for connection management of replicate sets or grids.

To use a file other than $INFORMIXDIR/etc/sqlhosts on a specific host, set the host's INFORMIXSQLHOSTS environment variable to the alternative file.

1. On the host of each Connection Manager and replication server, create sqlhosts file entries for each replication server. For example:

#dbservername nettype hostname servicename options
 server_1 onsoctcp host_1 port_1
 server_2 onsoctcp host_2 port_2
 server_3 onsoctcp host_3 port_3
 server_4 onsoctcp host_4 port_4

2. On the host of each Connection Manager and replication server, create a sqlhosts file group entry for each replication server. Add group options to each replication-
server entry. Use the i=unique_number group-entry option to assign an identifier to the group for Enterprise Replication. Use the e=last_member group-entry
option so that the entire sqlhosts is not scanned for group members. For example:

#dbservername nettype hostname servicename options
 g_server_1 group - - i=1,e=server_1
 server_1 onsoctcp host_1 port_1 g=g_server_1

 g_server_2 group - - i=2,e=server_2
 server_2 onsoctcp host_2 port_2 g=g_server_2

 g_server_3 group - - i=3,e=server_3
 server_3 onsoctcp host_3 port_3 g=g_server_3

 g_server_4 group - - i=4,e=server_4
 server_4 onsoctcp host_4 port_4 g=g_server_4

3. On the host of each client application, create an sqlhosts file entry for each service-level agreement (SLA) in each Connection Manager configuration file.
The first Connection Manager's configuration file has the following entries:

NAME connection_manager_1

REPLSET my_replset
{
 INFORMIXSERVER g_server_1,g_server_2,g_server_3,g_server_4
 SLA sla_1 DBSERVERS=ANY
}

The second Connection Manager's configuration file has the following entries:

NAME connection_manager_2

REPLSET my_replset
{
 INFORMIXSERVER g_server_1,g_server_2,g_server_3,g_server_4
 SLA sla_2 DBSERVERS=ANY
}

Add the following entries to each client application's host sqlhosts file:

#dbservername nettype hostname servicename options
 sla_1 onsoctcp cm_host_1 cm_port_1
 sla_2 onsoctcp cm_host_2 cm_port_2

4. On the host of each client application, create sqlhosts file group entries for each group of SLA entries, and add group options to the SLA entries. Use the c=1 group-
entry option, so that connection-attempt starting points in the list of group members is random. Use the e=last_member group-entry option so that the entire
sqlhosts is not scanned for group members. For example:

#dbservername nettype hostname servicename options
 g_sla onsoctcp - - c=1,e=sla_2
 sla_1 onsoctcp cm_host_1 cm_port_1 g=g_sla
 sla_2 onsoctcp cm_host_2 cm_port_2 g=g_sla

Client connection requests to @g_sla are directed to one of the Connection Managers. If connection_manager_1 receives the request, it uses sla_1 to provide the client
application with connection information for the primary server. If connection_manager_2 receives the request, it uses sla_2 to provide the client application with
connection information for a replication server.
Related concepts:

 The sqlhosts information
Related reference:

 Group information
Related information:

320 Part VI: Administering

https://www.hcltech.com/

INFORMIXSQLHOSTS environment variable

Copyright© 2020 HCL Technologies Limited

Defining sqlhosts information for connection management of grids and replicate sets
that use secure ports

You must define sqlhosts network-connectivity information for connection management of replicate sets or grids. If Connection Managers, database servers, or client
applications are outside of a trusted network, you must also create an encrypted password file for security.

To use a file other than $INFORMIXDIR/etc/sqlhosts on a specific host, set the host's INFORMIXSQLHOSTS environment variable to the alternative file.

1. On the host of each Connection Manager and replication server, create sqlhosts file entries for each replication server, and specify the s=6 secure-port option. For
example:

#dbservername nettype hostname servicename options
 server_1 onsoctcp host_1 port_1 s=6
 server_2 onsoctcp host_2 port_3 s=6
 server_3 onsoctcp host_3 port_5 s=6
 server_4 onsoctcp host_4 port_7 s=6

2. On the host of each Connection Manager and replication server, create a sqlhosts file alias entry for each replication server. For example:

#dbservername nettype hostname servicename options
 server_1 onsoctcp host_1 port_1 s=6
 a_server_1 onsoctcp host_1 port_2

 server_2 onsoctcp host_2 port_3 s=6
 a_server_2 onsoctcp host_2 port_4

 server_3 onsoctcp host_3 port_5 s=6
 a_server_3 onsoctcp host_3 port_6

 server_4 onsoctcp host_4 port_7 s=6
 a_server_4 onsoctcp host_4 port_8

The aliases are used by the cdr utility, which cannot connect to a secure port.
3. On the host of each Connection Manager and replication server, create a sqlhosts file group entry for each replication server and alias pair. Use the
i=unique_number group-entry option to assign an identifier to the group for Enterprise Replication. Add group options to each replication server and alias entry.
Use the e=last_member group-entry option so that the entire sqlhosts is not scanned for group members. For example:

#dbservername nettype hostname servicename options
 g_server_1 group - - i=1,e=a_server_1
 server_1 onsoctcp host_1 port_1 g=g_server_1,s=6
 a_server_1 onsoctcp host_1 port_2 g=g_server_1

 g_server_2 group - - i=2,e=a_server_2
 server_2 onsoctcp host_2 port_3 g=g_server_2,s=6
 a_server_2 onsoctcp host_2 port_4 g=g_server_2

 g_server_3 group - - i=3,e=a_server_3
 server_3 onsoctcp host_3 port_5 g=g_server_3,s=6
 a_server_3 onsoctcp host_3 port_6 g=g_server_3

 g_server_4 group - - i=4,e=a_server_4
 server_4 onsoctcp host_4 port_7 g=g_server_4,s=6
 a_server_4 onsoctcp host_4 port_8 g=g_server_4

A password file that is encrypted through the onpassword utility is required for connectivity through secure ports. The entries in the previously shown sqlhosts file
are represented in the following password file.

 g_server_1 a_server_1 user_1 my_password_1
 server_1 a_server_1 user_1 my_password_1
 a_server_1 a_server_1 user_1 my_password_1

 g_server_2 a_server_2 user_2 my_password_2
 server_2 a_server_2 user_2 my_password_2
 a_server_2 a_server_2 user_2 my_password_2

 g_server_3 a_server_3 user_3 my_password_3
 server_3 a_server_3 user_3 my_password_3
 a_server_3 a_server_3 user_3 my_password_3

 g_server_4 a_server_4 user_4 my_password_4
 server_4 a_server_4 user_4 my_password_4
 a_server_4 a_server_4 user_4 my_password_4

4. In each replication server's onconfig file, set the DBSERVERALIASES parameter to that database server's aliases.
The onconfig file entry for server_1:

DBSERVERALIASES a_server_1

The onconfig file entry for server_2:

DBSERVERALIASES a_server_2

The onconfig file entry for server_3:

Part VI: Administering 321

https://www.hcltech.com/

DBSERVERALIASES a_server_3

The onconfig file entry for server_4:

DBSERVERALIASES a_server_4

5. On the host of each client application, create an sqlhosts file entry for each service-level agreement (SLA) in each Connection Manager configuration file.
The first Connection Manager's configuration file has the following entries:

NAME connection_manager_1

REPLSET my_replset
{
 INFORMIXSERVER g_server_1,g_server_2,g_server_3,g_server_4
 SLA sla_1 DBSERVERS=ANY
}

The second Connection Manager's configuration file has the following entries:

NAME connection_manager_2

REPLSET my_replset
{
 INFORMIXSERVER g_server_1,g_server_2,g_server_3,g_server_4
 SLA sla_2 DBSERVERS=ANY
}

Add the following entries to each client application's host sqlhosts file:

#dbservername nettype hostname servicename options
 sla_1 onsoctcp cm_host_1 cm_port_1
 sla_2 onsoctcp cm_host_2 cm_port_2

6. On the host of each client application, create sqlhosts file group entries for each group of SLA entries, and add group options to the SLA entries. Use the c=1 group-
entry option, so that connection-attempt starting points in the list of group members is random. Use the e=last_member group-entry option so that the entire
sqlhosts is not scanned for group members. For example:

#dbservername nettype hostname servicename options
 g_sla group - - c=1,e=sla_2
 sla_1 onsoctcp cm_host_1 cm_port_1 g=g_sla
 sla_2 onsoctcp cm_host_2 cm_port_2 g=g_sla

Client connection requests to @g_sla are directed to one of the Connection Managers. If connection_manager_1 receives the request, it uses sla_1 to provide the client
application with connection information for the primary server. If connection_manager_2 receives the request, it uses sla_2 to provide the client application with
connection information for the primary server.

Related concepts:
 The sqlhosts information

Related reference:
 Group information

Related information:
 INFORMIXSQLHOSTS environment variable

DBSERVERALIASES configuration parameter

Copyright© 2020 HCL Technologies Limited

Defining sqlhosts information for connection management high-availability
replication systems

You must define sqlhosts network-connectivity information for connection management of high-availability replication systems.

To use a file other than $INFORMIXDIR/etc/sqlhosts on a specific host, set the host's INFORMIXSQLHOSTS environment variable to the alternative file.

For this example, you are setting up Enterprise Replication between the primary servers of three high-availability clusters.

Cluster 1:

server_1 (primary)
server_2 (SD secondary)
server_3 (HDR secondary)
server_4 (RS secondary)

Cluster 2:

server_5 (primary)
server_6 (SD secondary)
server_7 (HDR secondary)
server_8 (RS secondary)

Cluster 3:

server_9 (primary)
server_10 (SD secondary)
server_11 (HDR secondary)
server_12 (RS secondary)

322 Part VI: Administering

https://www.hcltech.com/

1. On the host of each Connection Manager and database server, create sqlhosts file entries for each server. For example:

#dbservername nettype hostname servicename options
server_1 onsoctcp host_1 port_1
server_2 onsoctcp host_1 port_2
server_3 onsoctcp host_2 port_3
server_4 onsoctcp host_3 port_4

server_5 onsoctcp host_4 port_5
server_6 onsoctcp host_4 port_6
server_7 onsoctcp host_5 port_7
server_8 onsoctcp host_6 port_8

server_9 onsoctcp host_7 port_9
server_10 onsoctcp host_7 port_10
server_11 onsoctcp host_8 port_11
server_12 onsoctcp host_9 port_12

2. On the host of each Connection Manager and database server, create a sqlhosts file group entry for each replication-server entry and each cluster. Add group
options to each database server entry. Use the i=unique_number group-entry option to assign an identifier to the group for Enterprise Replication. Use the c=1
group-entry option for cluster groups, so that connection-attempt starting points in the list of group members is random. Use the e=last_member group-entry
option so that the entire sqlhosts is not scanned for group members. For example:

#dbservername nettype hostname servicename options
 cluster_1 group - - i=1,c=1,e=server_4
 server_1 onsoctcp host_1 port_1 g=cluster_1
 server_2 onsoctcp host_1 port_2 g=cluster_1
 server_3 onsoctcp host_2 port_3 g=cluster_1
 server_4 onsoctcp host_3 port_4 g=cluster_1

 cluster_2 group - - i=2,c=1,e=server_8
 server_5 onsoctcp host_4 port_5 g=cluster_2
 server_6 onsoctcp host_4 port_6 g=cluster_2
 server_7 onsoctcp host_5 port_7 g=cluster_2
 server_8 onsoctcp host_6 port_8 g=cluster_2

 cluster_3 group - - i=3,c=1,e=server_12
 server_9 onsoctcp host_7 port_9 g=cluster_3
 server_10 onsoctcp host_7 port_10 g=cluster_3
 server_11 onsoctcp host_8 port_11 g=cluster_3
 server_12 onsoctcp host_9 port_12 g=cluster_3

3. On the host of each client application, create an sqlhosts file entry for each service-level agreement (SLA) in each Connection Manager configuration file.
The first Connection Manager's configuration file has the following entries:

NAME connection_manager_1

REPLSET my_replset
{
 INFORMIXSERVER cluster_1,cluster_2,cluster_3
 SLA sla_1 DBSERVERS=ANY
}

CLUSTER my_cluster_1
{
 INFORMIXSERVER cluster_1
 FOC ORDER=ENABLED \
 PRIORITY=1
}

CLUSTER my_cluster_2
{
 INFORMIXSERVER cluster_2
 FOC ORDER=ENABLED \
 PRIORITY=1
}

CLUSTER my_cluster_3
{
 INFORMIXSERVER cluster_3
 FOC ORDER=ENABLED \
 PRIORITY=1
}

The second Connection Manager's configuration file has the following entries:

NAME connection_manager_2

REPLSET my_replset
{
 INFORMIXSERVER cluster_1,cluster_2,cluster_3
 SLA sla_2 DBSERVERS=ANY
}

CLUSTER my_cluster_1
{
 INFORMIXSERVER cluster_1
 FOC ORDER=ENABLED \
 PRIORITY=2
}

CLUSTER my_cluster_2
{
 INFORMIXSERVER cluster_2
 FOC ORDER=ENABLED \

Part VI: Administering 323

 PRIORITY=2
}

CLUSTER my_cluster_3
{
 INFORMIXSERVER cluster_3
 FOC ORDER=ENABLED \
 PRIORITY=2
}

Add the following entries to each client application's host sqlhosts file:

#dbservername nettype hostname servicename options
 sla_1 onsoctcp cm_host_1 cm_port_1
 sla_2 onsoctcp cm_host_2 cm_port_2

4. On the host of each client application, create sqlhosts file group entries for each group of SLA entries, and add group options to the SLA entries. Use the c=1 group-
entry option, so that connection-attempt starting points in the list of group members is random. Use the e=last_member group-entry option so that the entire
sqlhosts is not scanned for group members. For example:

#dbservername nettype hostname servicename options
 g_sla onsoctcp - - c=1,e=sla_2
 sla_1 onsoctcp cm_host_1 cm_port_1 g=g_sla
 sla_2 onsoctcp cm_host_2 cm_port_2 g=g_sla

Client connection requests to @g_sla are directed to one of the Connection Managers. If connection_manager_1 receives the request, it uses sla_1 to provide the client
application with connection information for the primary server. If connection_manager_2 receives the request, it uses sla_2 to provide the client application with
connection information for a replication server.
Related concepts:

 The sqlhosts information
Related reference:

 Group information
Related information:

 High-availability replication systems
INFORMIXSQLHOSTS environment variable

Copyright© 2020 HCL Technologies Limited

Defining sqlhosts information for connection management of high-availability
replication systems that use secure ports

You must define sqlhosts network-connectivity information for connection management of high-availability replication systems. If Connection Managers, database
servers, or client applications are outside of a trusted network, you must also create an encrypted password file for security.

To use a file other than $INFORMIXDIR/etc/sqlhosts on a specific host, set the host's INFORMIXSQLHOSTS environment variable to the alternative file.

For this example, you are setting up Enterprise Replication between the primary servers of two high-availability clusters.

Cluster 1:

server_1 (primary)
server_2 (SD secondary)
server_3 (HDR secondary)
server_4 (RS secondary)

Cluster 2:

server_5 (primary)
server_6 (SD secondary)
server_7 (HDR secondary)
server_8 (RS secondary)

1. On the host of each Connection Manager and database server, create sqlhosts file entries for each database server. For example:

#dbservername nettype hostname servicename options
 server_1 onsoctcp host_1 port_1 s=6
 server_2 onsoctcp host_1 port_2 s=6
 server_3 onsoctcp host_2 port_3 s=6
 server_4 onsoctcp host_3 port_4 s=6

 server_5 onsoctcp host_4 port_5 s=6
 server_6 onsoctcp host_4 port_6 s=6
 server_7 onsoctcp host_5 port_7 s=6
 server_8 onsoctcp host_6 port_8 s=6

2. On the host of each Connection Manager and database server, create a sqlhosts file alias entry for each database server. For example:

#dbservername nettype hostname servicename options
 server_1 onsoctcp host_1 port_1 s=6
 a_server_1 onsoctcp host_1 port_9

 server_2 onsoctcp host_1 port_2 s=6
 a_server_2 onsoctcp host_1 port_10

 server_3 onsoctcp host_2 port_3 s=6
 a_server_3 onsoctcp host_2 port_11

324 Part VI: Administering

https://www.hcltech.com/

 server_4 onsoctcp host_3 port_4 s=6
 a_server_4 onsoctcp host_3 port_12

 server_5 onsoctcp host_4 port_5 s=6
 a_server_5 onsoctcp host_4 port_13

 server_6 onsoctcp host_4 port_6 s=6
 a_server_6 onsoctcp host_4 port_14

 server_7 onsoctcp host_5 port_7 s=6
 a_server_7 onsoctcp host_5 port_15

 server_8 onsoctcp host_6 port_8 s=6
 a_server_8 onsoctcp host_6 port_16

The aliases are used by the cdr utility, which cannot connect to a secure port.
3. On the host of each Connection Manager and database server, create a sqlhosts file group entry for each cluster. Add group options to each database server entry.

Use the i=unique_number group-entry option to assign an identifier to the group for Enterprise Replication. Use the c=1 group-entry option for cluster groups, so
that connection-attempt starting points in the list of group members is random. Use the e=last_member group-entry option so that the entire sqlhosts is not
scanned for group members. For example:

#dbservername nettype hostname servicename options
 cluster_1 group - - i=1,c=1,e=a_server_4
 server_1 onsoctcp host_1 port_1 s=6,g=cluster_1
 a_server_1 onsoctcp host_1 port_9 g=cluster_1
 server_2 onsoctcp host_1 port_2 s=6,g=cluster_1
 a_server_2 onsoctcp host_1 port_10 g=cluster_1
 server_3 onsoctcp host_2 port_3 s=6,g=cluster_1
 a_server_3 onsoctcp host_2 port_11 g=cluster_1
 server_4 onsoctcp host_3 port_4 s=6,g=cluster_1
 a_server_4 onsoctcp host_3 port_12 g=cluster_1

 cluster_2 group - - i=1,c=1,e=a_server_8
 server_5 onsoctcp host_4 port_5 s=6,g=cluster_2
 a_server_5 onsoctcp host_4 port_13 g=cluster_2
 server_6 onsoctcp host_4 port_6 s=6,g=cluster_2
 a_server_6 onsoctcp host_4 port_14 g=cluster_2
 server_7 onsoctcp host_5 port_7 s=6,g=cluster_2
 a_server_7 onsoctcp host_5 port_15 g=cluster_2
 server_8 onsoctcp host_6 port_8 s=6,g=cluster_2
 a_server_8 onsoctcp host_6 port_16 g=cluster_2

A password file that is encrypted through the onpassword utility is required for connectivity through secure ports. The entries in the previously shown sqlhosts file
are represented in the following password file.

cluster_1 a_server_1 user_1 password_1
cluster_1 a_server_2 user_2 password_2
cluster_1 a_server_3 user_3 password_3
cluster_1 a_server_4 user_4 password_4

cluster_2 a_server_5 user_5 password_5
cluster_2 a_server_6 user_6 password_6
cluster_2 a_server_7 user_7 password_7
cluster_2 a_server_8 user_8 password_8

server_1 a_server_1 user_1 password_1
server_2 a_server_2 user_2 password_2
server_3 a_server_3 user_3 password_3
server_4 a_server_4 user_4 password_4
server_5 a_server_5 user_5 password_5
server_6 a_server_6 user_6 password_6
server_7 a_server_7 user_7 password_7
server_8 a_server_8 user_8 password_8

a_server_1 a_server_1 user_1 password_1
a_server_2 a_server_2 user_2 password_2
a_server_3 a_server_3 user_3 password_3
a_server_4 a_server_4 user_4 password_4
a_server_5 a_server_5 user_5 password_5
a_server_6 a_server_6 user_6 password_6
a_server_7 a_server_7 user_7 password_7
a_server_8 a_server_8 user_8 password_8

4. In each database server's onconfig file, set the DBSERVERALIASES parameter to that database server's aliases. For example:
The onconfig file entry for server_1:

DBSERVERALIASES a_server_1

5. On the host of each client application, create an sqlhosts file entry for each service-level agreement (SLA) in each Connection Manager configuration file.
The first Connection Manager's configuration file has the following entries:

NAME connection_manager_1

REPLSET my_replset
{
 INFORMIXSERVER cluster_1,cluster_2
 SLA sla_1 DBSERVERS=ANY
}

CLUSTER my_cluster_1
{
 INFORMIXSERVER cluster_1
 FOC ORDER=ENABLED \

Part VI: Administering 325

 PRIORITY=1
}

CLUSTER my_cluster_2
{
 INFORMIXSERVER cluster_2
 FOC ORDER=ENABLED \
 PRIORITY=1
}

The second Connection Manager's configuration file has the following entries:

NAME connection_manager_2

REPLSET my_replset
{
 INFORMIXSERVER cluster_1,cluster_2
 SLA sla_2 DBSERVERS=ANY
}

CLUSTER my_cluster_1
{
 INFORMIXSERVER cluster_1
 FOC ORDER=ENABLED \
 PRIORITY=2
}

CLUSTER my_cluster_2
{
 INFORMIXSERVER cluster_2
 FOC ORDER=ENABLED \
 PRIORITY=2
}

Add the following entries to each client application's host sqlhosts file:

#dbservername nettype hostname servicename options
 sla_1 onsoctcp cm_host_1 cm_port_1
 sla_2 onsoctcp cm_host_2 cm_port_2

6. On the host of each client application, create sqlhosts file group entries for each group of SLA entries, and add group options to the SLA entries. Use the c=1 group-
entry option, so that connection-attempt starting points in the list of group members is random. Use the e=last_member group-entry option so that the entire
sqlhosts is not scanned for group members. For example:

#dbservername nettype hostname servicename options
 g_sla onsoctcp - - c=1,e=sla_2
 sla_1 onsoctcp cm_host_1 cm_port_1 g=g_sla
 sla_2 onsoctcp cm_host_2 cm_port_2 g=g_sla

Client connection requests to @g_sla are directed to one of the Connection Managers. If connection_manager_1 receives the request, it uses sla_1 to provide the client
application with connection information for the primary server. If connection_manager_2 receives the request, it uses sla_2 to provide the client application with
connection information for a replication server.

Related concepts:
 The sqlhosts information

Related reference:
 Group information

Related information:
 High-availability replication systems

INFORMIXSQLHOSTS environment variable
DBSERVERALIASES configuration parameter

Copyright© 2020 HCL Technologies Limited

Defining sqlhosts information for connection management of server sets

You must define sqlhosts network-connectivity information for connection management of server sets.

The Connection Manager's sqlhosts file must contain entries for all database servers that it connects to.

To use a file other than $INFORMIXDIR/etc/sqlhosts on a specific host, set the host's INFORMIXSQLHOSTS environment variable to the alternative file.

1. On the host of each Connection Manager and database server, create sqlhosts file entries for each database server. For example:

#dbservername nettype hostname servicename options
 standalone_1 onsoctcp host_1 port_1

 standalone_2 onsoctcp host_2 port_2

 standalone_3 onsoctcp host_3 port_3

2. On the host of each client application, create an sqlhosts file entry for each service-level agreement (SLA) in each Connection Manager configuration file.
The first Connection Manager's configuration file has the following entries:

NAME connection_manager_1
MACRO servers=standalone_1,standalone_2,standalone_3

SERVERSET ${servers}
{

326 Part VI: Administering

https://www.hcltech.com/

 INFORMIXSERVER ${servers}
 SLA sla_1a DBSERVERS=standalone_1
 SLA sla_2a DBSERVERS=standalone_2
 SLA sla_3a DBSERVERS=standalone_3
}

The second Connection Manager's configuration file has the following entries:

NAME connection_manager_2
MACRO servers=standalone_1,standalone_2,standalone_3

SERVERSET ${servers}
{
 INFORMIXSERVER ${servers}
 SLA sla_1b DBSERVERS=standalone_1
 SLA sla_2b DBSERVERS=standalone_2
 SLA sla_3b DBSERVERS=standalone_3
}

Add the following entries to each client application's host sqlhosts file:

#dbservername nettype hostname servicename options
 sla_1a onsoctcp cm_host_1 cm_port_1
 sla_1b onsoctcp cm_host_2 cm_port_2

 sla_2a onsoctcp cm_host_1 cm_port_3
 sla_2b onsoctcp cm_host_2 cm_port_4

 sla_3a onsoctcp cm_host_1 cm_port_5
 sla_3b onsoctcp cm_host_2 cm_port_6

3. On the host of each client application, create sqlhosts file group entries for each group of SLA entries, and add group options to the SLA entries. Use the c=1 group-
entry option so that connection-attempt starting points in the list of group members is random. Use the e=last_member group-entry option so that the entire
sqlhosts is not scanned for group members. For example:

#dbservername nettype hostname servicename options
 sla_1 group - - c=1,e=sla_1b
 sla_1a onsoctcp cm_host_1 cm_port_1 g=sla_1
 sla_1b onsoctcp cm_host_2 cm_port_2 g=sla_1

 sla_2 group - - c=1,e=sla_2b
 sla_2a onsoctcp cm_host_1 cm_port_3 g=sla_2
 sla_2b onsoctcp cm_host_2 cm_port_4 g=sla_2

 sla_3 group - - c=1,e=sla_3b
 sla_3a onsoctcp cm_host_1 cm_port_5 g=sla_3
 sla_3b onsoctcp cm_host_2 cm_port_6 g=sla_3

Client connection requests to @sla_1 are directed to one of the Connection Managers. If connection_manager_1 receives the request, it uses sla_1a to provide the client
application with connection information for the primary server. If connection_manager_2 receives the request, it uses sla_1b to provide the client application with
connection information for a replication server.
Related concepts:

 The sqlhosts information
Related reference:

 Group information
Related information:

 INFORMIXSQLHOSTS environment variable

Copyright© 2020 HCL Technologies Limited

Creating a password file for connecting to database servers on untrusted networks

If a client, Connection Manager, or any of the database servers that a Connection Manager connects to are on an untrusted network, you can create encrypted password
files to verify connection requests.

In certain situations, an encrypted password file is required for trusted network environments, such as when a local system account attempts to connect to a database
server in a high-availability cluster or Enterprise Replication domain, or when the user ID does not exist on a database server. The password file provides the correct
system-level access, so that a local system account or a Windows account can connect directly to a remote server.

The password file has separate entries for the following items:

Each Enterprise Replication group
Each High-availability cluster group
Each High-availability cluster server
Each Enterprise Replication server that is in a group that is also configured for high-availability
Each database server's alternative server alias, if the database server is using a secure port for communication

A password file entry contains the following information:

The name of an alternative server to connect to if a connection cannot be made to the listed server or group. For example, alternative_server_name is used when
server_or_group_name uses a secure port, as specified by the s=6 option in an sqlhosts file entry.
The user ID for a database server or the database servers in a group. User IDs must have the following privileges:

Permission to connect to the sysadmin database
CONNECT permission on the remote servers
On UNIX operating systems, membership in the group informix DBSA group
On Windows operating systems, membership in the Informix-Admin DBSA group

Part VI: Administering 327

https://www.hcltech.com/

Only user informix has all of these privileges by default
The password for a server

1. On a Connection Manager host, use a text editor to create an ASCII text file to be used as a password file. Save the file to the $INFORMIXDIR/tmp directory. If you
have a high-availability replication system, your password file contains password information for replication servers and cluster servers.
Note: The password file must not contain comments.
The replication-server entries of the password file have the following format:

group_name database_server_alias user_name database_server_password
database_server_name database_server_alias user_name database_server_password
database_server_alias database_server_alias user_name database_server_password

For example:

group_1 unsecure_server_alias_1 user_1 password_1
server_1 unsecure_server_alias_1 user_1 password_1
alias_1 unsecure_server_alias_1 user_1 password_1

group_2 unsecure_server_alias_2 user_2 password_2
server_2 unsecure_server_alias_2 user_2 password_2
alias_2 unsecure_server_alias_2 user_2 password_2

group_n unsecure_server_alias_n user_n password_n
server_n unsecure_server_alias_n user_n password_n
alias_n unsecure_server_alias_n user_n password_n

The cluster-server entries of the password file have the following format:

alias_group_name db_server_alias user_name db_server_password

db_server_name db_server_alias user_name db_server_password

For example:

alias_group_1 unsecure_alias_1 user_1 password_1
alias_group_1 unsecure_alias_2 user_2 password_2
alias_group_1 unsecure_alias_n user_n password_n

alias_group_2 unsecure_alias_1 user_1 password_1
alias_group_2 unsecure_alias_2 user_2 password_2
alias_group_2 unsecure_alias_n user_n password_n

alias_group_n unsecure_alias_1 user_1 password_1
alias_group_n unsecure_alias_2 user_2 password_2
alias_group_n unsecure_alias_n user_n password_n

server_1 unsecure_alias_1 user_1 password_1
server_2 unsecure_alias_2 user_2 password_2
server_n unsecure_alias_n user_n password_n

2. Encrypt the password file with the onpassword utility and an encryption key. For example, if your password file is $INFORMIXDIR/tmp/my_passwords.txt, and the
encryption key you want to use is my_secret_encryption_key_efgh, run the following command:

onpassword -k my_secret_encryption_key_efgh -e my_passwords.txt

This example creates the encrypted passwd_file file in the $INFORMIXDIR/etc directory.

To later decrypt the password file, you must enter the same key that was used to encrypt the password file. If you lose the encryption key that was used to encrypt
a password file, re-encrypt the original ASCII text password file. If the ASCII text password file was deleted, you must create a new one.

3. Distribute $INFORMIXDIR/etc/passwd_file to all the database servers that Connection Managers or the cdr utility connects to, and to all Connection Managers.
Note: An encrypted password file that is created on one type of operating system is not supported on a different type of operating system. On each operating
system, you must run the onpassword utility with the same text file and encryption key.

Modifying encrypted password information
 Modify the information in the encrypted passwd_file file by running the onpassword utility.

Related tasks:
 Example: Configuring connection management for untrusted networks

Related information:
 The onpassword utility

DBSERVERALIASES configuration parameter

Copyright© 2020 HCL Technologies Limited

Modifying encrypted password information

Modify the information in the encrypted passwd_file file by running the onpassword utility.

Modify the encrypted passwd_file file when the following events occur:

Database servers are added to or removed from a high-availability cluster or replication domain
sqlhosts file server aliases or groups change
User IDs or server passwords change
You want to change your encryption key

1. Decrypt the passwd_file file by running onpassword utility, specifying the previously used encryption key and a name for the output file. For example, if you
previously encrypted the file, and used my_secret_encryption_key_asdf as the encryption key, run the following command:

328 Part VI: Administering

https://www.hcltech.com/

onpassword -k my_secret_encryption_key_asdf -d my_passwords.txt

The onpassword utility creates the ASCII text my_passwords.txt output file in the $INFORMIXDIR/etc directory.
2. Optional: Open the file with a text editor, and modify the information in the file.
3. Encrypt the password file with the onpassword utility, specifying an encryption key and the name of the text file. For example:

onpassword -k my_secret_encryption_key_lmnop -e my_passwords.txt

This example uses the new encryption key, my_secret_encryption_key_lmnop, and creates the encrypted passwd_file file in the $INFORMIXDIR/etc directory.
4. Redistribute passwd_file to all the database servers that the Connection Manager or cdr utility connects to, replacing the previous $INFORMIXDIR/etc/passwd_file

files. If you update the passwd_file on multiple operating systems, you must run the onpassword utility on each type of operating system, and use the same text
file and encryption key.

Related information:
 The onpassword utility

Copyright© 2020 HCL Technologies Limited

Starting Connection Managers on UNIX and Linux

Use the oncmsm utility to start a Connection Manager.

A Connection Manager can be started before the database servers it manages are started. If a connection unit is managed by a Connection Manager, the Connection
Manager connects to database servers in the connection unit after the database servers start.

If the database servers of a connection unit are online before a Connection Manager is initialized, start the Connection Manager, and then direct client application requests
to the Connection Manager instead of the database servers.

1. Start the Connection Manager by running the oncmsm utility with the c parameter and the name of the Connection Manager configuration file.

oncmsm -c configuration_file

The default location for the configuration file is the $INFORMIXDIR/etc directory.
2. If you enabled Connection Manager logging by setting the LOG and LOGFILE parameters in the Connection Manager's configuration file, check the log to verify that

the Connection Manager successfully started. The following message displays is the Connection Manager started:

Connection Manager started successfully

After a Connection Manager initializes, it attempts to connect to the database servers or groups of database servers that are specified by the INFORMIXSERVER parameter
in the Connection Manager's configuration file. The Connection Manager then searches for and connects to all the database servers that are in each specified server's
cluster, grid, or replicate set.
Related information:

 The oncmsm utility

Copyright© 2020 HCL Technologies Limited

Starting Connection Managers on Windows

Use the oncmsm utility to start a Connection Manager.

A Connection Manager can be started before the database servers it manages are started. If a connection unit is managed by a Connection Manager, the Connection
Manager connects to database servers in the connection unit after the database servers start.

If the database servers of a connection unit are online before a Connection Manager is initialized, start the Connection Manager, and then direct client application requests
to the Connection Manager instead of the database servers.

1. Install the Connection Manager as a service by running the oncmsm utility with the i parameter, the c parameter, and the name of the Connection Manager
configuration file.

oncmsm -i -c configuration_file

The default location for the configuration file is the %INFORMIXDIR%\etc directory.
2. Initialize the Connection Manager by running the oncmsm utility with the name of the Connection Manager that is specified in the Connection Manager

configuration file.

oncmsm connection_manager_name

The following message is displayed:

Specify the user and password to run this service.
Press <ENTER> to run Connection Manager as 'localsystem'

3. Enter the informix user ID and password, or press Enter to automatically create an informix-admin group and assign it access rights.
4. If you enabled Connection Manager logging by setting the LOG and LOGFILE parameters in the Connection Manager's configuration file, check the log to verify that

the Connection Manager successfully started. The following message displays if the Connection Manager started:

Connection Manager started successfully

After a Connection Manager initializes, it attempts to connect to the database servers or groups of database servers that are specified by the INFORMIXSERVER parameter
in the Connection Manager's configuration file. The Connection Manager then searches for and connects to all the database servers that are in each specified server's
cluster, grid, or replicate set.
Related information:

Part VI: Administering 329

https://www.hcltech.com/
https://www.hcltech.com/

The oncmsm utility

Copyright© 2020 HCL Technologies Limited

Stopping connection management

When you no longer want a Connection Manager to manage connection units, run the oncmsm utility to stop the Connection Manager instance.

If you are using multiple Connection Managers, you can run onstat -g cmsm to display the names of Connection Manager instances.

1. Log on to the computer on which the Connection Manager instance is running.
2. Run the oncmsm utility with the -k parameter. For example:

oncmsm -k connection_manager_name

3. If quality of data (QOD) monitoring is turned on, and you want to stop it, run the cdr stop qod command on the master server. For example:

cdr stop qod -c server_1

The Connection Manager stops.

To unistall a stopped Connection Manager from a Windows operating system, run the following command on the computer that the Connection Manager is installed on:

oncmsm -u connection_manager_name

Related information:
 The oncmsm utility

Copyright© 2020 HCL Technologies Limited

Monitoring and troubleshooting connection management

Tools are available to monitor connection management, and help you diagnose potential problems.

The following options are available for connection management monitoring and troubleshooting:

Set the LOG and LOGFILE parameters in Connection Manager configuration files. Log files contain information about service level agreements, failover configuration,
and status information. The location of the log file is displayed when the Connection Manager is started.
Run onstat -g cmsm to display information about Connection Manager instances.
Set the CMALARMPROGRAM parameter in Connection Manager configuration files, and configure the cmalarmprogram script to handle event alarms.
If the Connection Manager raises an event alarm:

The INFORMIXCMNAME environment variable stores the name of the Connection Manager instance that raised the alarm.
TheINFORMIXCMCONUNITNAME environment variable stores the name of the Connection Manager connection unit that raised the alarm.

Related information:
 The oncmsm utility

onstat -g cmsm command: Print Connection Manager information
Managing client connections

Copyright© 2020 HCL Technologies Limited

Strategies for increasing availability with Connection Managers

You can increase the resiliency of your client/server communication environment.

Install multiple network-interface cards (NICs) on client, Connection Manager, and database-
server hosts

You can prevent a network-connectivity failure by installing multiple NICs on each host in a connection-management domain. If a NIC fails, the host can use other
available NICs.

Install multiple Connection Managers
You can prevent a Connection Manager from becoming a single point of failure in your system by installing multiple Connection Managers to manage a domain.

Install Connection Managers separate from database servers
To prevent simultaneous Connection Manager and database server failure if a host fails, install Connection Managers on hosts that are not running database servers.

Use keywords in Connection Manager service-level-agreements

330 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

If a Connection Manager manages a high-availability cluster, you can use the cluster keywords to maintain connection consistency after failover. If database servers in a
cluster switch roles after failover, the Connection Manager can use cluster keywords to continue directing client connection requests to the appropriate cluster-server
type.

The cluster keywords are:

HDR - High-availability data replication server
RSS - Remote standalone secondary server
SDS - Shared-disk secondary server
PRI - Primary server
PRIMARY - Primary server

Use group entries in sqlhosts files and Connection Manager configuration files
Create database-server groups in the host sqlhosts file of each Connection Manager that manages a high-availability cluster. Then, specify sqlhosts groups, rather than
individual server names, in Connection Manager configuration files. If you specify database server names for a connection unit's INFORMIXSERVER parameter, and those
specified servers are offline when a Connection Manager restarts, the Connection Manager is unable to reconnect to the cluster. If you specify a sqlhosts group for a
connection unit's INFORMIXSERVER parameter, and at least one of the group's database servers is online when a Connection Manager restarts, the Connection Manager
can reconnect to the cluster.

Specify the c=1 option for sqlhosts group entries so that the connection-attempt starting point for a list of group members is random. For example:

#dbservername nettype hostname servicename options
 my_servers - - c=1
 server_1 onsoctcp host_1 port_1 g=my_servers
 server_2 onsoctcp host_2 port_2 g=my_servers
 server_3 onsoctcp host_3 port_3 g=my_servers

Related concepts:
 The sqlhosts information

Related reference:
 Group information

Related information:
 HA_FOC_ORDER configuration parameter

Copyright© 2020 HCL Technologies Limited

Configuration examples for connection management

The following examples show steps for setting up connection management for various connection units and various systems.

You can use these examples as a basis for developing your own connection-management system.

Example of configuring connection management for a high-availability cluster
 This example shows steps that are required to configure connection management for a high-availability cluster.

Example of configuring connection management for a grid or replicate set
 You can use a Connection Manager to route client connections for the replication servers of a grid or replicate set.

Example of configuring connection management for a high-availability replication system
 You can use a Connection Manager to route client connections for the participants of a replicate set and to control failover for high-availability clusters that

participate in Enterprise Replication.
Example: Configuring connection management for untrusted networks

 This example shows steps that are required to configure connection management for an untrusted network.
Example of configuring connection management for prioritizing connections and network monitoring

 You can install Connection Managers on the hosts of application servers, and then prioritize the connections between specific application servers and the primary
server of a high-availability cluster. This configuration allows the highest priority application server to maintain its connection to the cluster's primary server if a
portion of the network fails.
Example of configuring for an SSL connection

 This example shows the steps to configure CM to listen for SSL connections from database clients.

Copyright© 2020 HCL Technologies Limited

Example of configuring connection management for a high-availability cluster

This example shows steps that are required to configure connection management for a high-availability cluster.

For this example, you have a high-availability cluster on a trusted network. The cluster consists of three servers:

A primary server (server_1)
A shared-disk secondary server (server_2)
An HDR secondary server (server_3)

The cluster supports the following application services:

Online transaction processing (OLTP), which runs only on the primary server
Payroll services, which can run on the primary server or HDR secondary server
Reporting services, which can run on any of the secondary servers

Part VI: Administering 331

https://www.hcltech.com/
https://www.hcltech.com/

Your system has the following needs:

The database servers' workloads are balanced.
The Connection Managers control failover.
If failover occurs, the SD secondary server takes priority over the HDR secondary server.
If the primary server fails, the Connection Managers can still connect to the cluster after restarting.
The system can withstand the failure of a Connection Manager.
The system can withstand a network-interface card (NIC) failure on each host.

To configure connection management:

1. Install at least two network interface cards on each host. This prevents the failure of a network interface card from causing Connection Manager or database server
failure.

2. Install two Connection Managers. Install each Connection Manager onto a different host, and do not install the Connection Managers onto the hosts that database
servers are installed on. This installation strategy prevents a Connection Manager from becoming a single point of failure, and prevents the simultaneous failure of
database servers and Connection Managers if a host fails.
You can install Connection Managers on application-server hosts if you want to prioritize an application server's connectivity to the primary cluster server.

3. On each host Connection Manager host, set the INFORMIXDIR environment to the directory the Connection Manager was installed into. Run the following
command:

setenv INFORMIXDIR path

4. Create a configuration file in each Connection Manager installation's $INFORMIXDIR/etc directory.
The first Connection Manager's configuration file is named cm_1.cfg and has the following entries:

NAME connection_manger_1
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm1_log.log
LOCAL_IP 192.0.2.0,192.0.2.1

CLUSTER cluster_1
{
 INFORMIXSERVER servers_1
 SLA oltp_1 DBSERVERS=primary
 SLA payroll_1 DBSERVERS=(PRI,HDR) \
 POLICY=WORKLOAD
 SLA report_1 DBSERVERS=(SDS,HDR) \
 POLICY=WORKLOAD
 FOC ORDER=ENABLED \
 PRIORITY=1
 CMALARMPROGRAM $INFORMIXDIR/etc/CMALARMPROGRAM.sh
}

The second Connection Manager's configuration file is named cm_2.cfg and has the following entries:

NAME connection_manger_2
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm2_log.log
LOCAL_IP 192.0.2.2,192.0.2.3

CLUSTER cluster_1
{
 INFORMIXSERVER cluster_1
 SLA oltp_2 DBSERVERS=primary
 SLA payroll_2 DBSERVERS=(PRI,HDR)\
 POLICY=WORKLOAD
 SLA report_2 DBSERVERS=(SDS,HDR) \
 POLICY=WORKLOAD
 FOC ORDER=ENABLED \
 PRIORITY=2
 CMALARMPROGRAM $INFORMIXDIR/etc/CMALARMPROGRAM.sh
}

The configuration file specifies the following information and behavior:
Logging is enabled, and the log files are $INFORMIXDIR/tmp/my_cm1_log.log and $INFORMIXDIR/tmp/my_cm2_log.log.
connection_manager_1 monitors 192.0.2.0 and 192.0.2.1 and connection_manager_2 monitors 192.0.2.2 and 192.0.2.3 for network failure.
When the Connection Managers start, they each search their sqlhosts files for cluster_1 entry, and then connect to the servers in that group.
CONNECT TO @oltp_1 and CONNECT TO @oltp_2 connection requests are directed to the primary server.
CONNECT TO @payroll_1 and CONNECT TO @payroll_2 connection requests are directed to whichever of the primary and HDR secondary servers has
the lowest workload.
CONNECT TO @report_1 and CONNECT TO @report_2 connection requests are directed to the secondary server that has the lowest workload.
The connection between connection_manager_1 and the primary server is prioritized over the connection between connection_manager_2 and the primary
server. Failover that would break the connectivity between connection_manager_1 and the primary server is blocked.
If failover processing fails after eight attempts, $INFORMIXDIR/etc/CMALARMPROGRAM.sh is called.

Certain parameters and attributes are not included in this configuration file, so the Connection Manager has the following default behavior:
The EVENT_TIMEOUT parameter is not set, so the Connection Managers wait 60 seconds for primary-server events before failover processing begins.
The MODE attributes of the SLA parameters are not set, so the Connection Managers return connection information for server_1, server_2, and server_3 to
client applications, rather than acting as proxy servers.
The SECONDARY_EVENT_TIMEOUT parameter is not set, so the Connection Managers wait 60 seconds for secondary-server events before the Connection
Manager disconnects from the secondary server.
The HOST, NETTYPE, SERVICE, and SQLHOSTSOPT attributes of the SLA parameters are not set, so each Connection Manager uses connection information in
local and remote sqlhosts files.
The SQLHOSTS parameter is not set, so each Connection Manager first searches its local sqlhosts file, and then remote database server sqlhosts files for
connectivity information related to server_1, server_2, and server_3.
The WORKERS attributes of the SLA parameters are not set, so four worker threads are allocated to each of the SLAs.

5. Set the onconfig file DRAUTO configuration parameter on all database servers to 3

332 Part VI: Administering

DRAUTO 3

This setting specifies that a Connection Manager controls failover arbitration.
6. Set the onconfig file HA_FOC_ORDER configuration parameter on server_1 to SDS,HDR

HA_FOC_ORDER SDS,HDR

After the Connection Managers start, and connect to server_1, the HA_FOC_ORDER value replaces the value of the ORDER attributes in each Connection Manager's
configuration file.

If server_1 fails, the Connection Managers attempt failover to the SD secondary server. If the SD secondary server is also unavailable, the Connection Managers
attempt failover to the HDR secondary server.

7. Optional: Configure the cmalarmprogram script on each Connection Manager host. Event alarms can be sent to specified email addresses.
8. Add entries to the sqlhosts files on server_1 and server_2's host and on server_3's host.

#dbservername nettype hostname servicename options
 server_1 onsoctcp host_1 port_1
 server_2 onsoctcp host_1 port_2
 server_3 onsoctcp host_2 port_3

9. Create a sqlhosts file on each Connection Manager.

#dbservername nettype hostname servicename options
 cluster_1 group - - c=1,e=server_3
 server_1 onsoctcp host_1 port_1 g=cluster_1
 server_2 onsoctcp host_1 port_2 g=cluster_1
 server_3 onsoctcp host_2 port_3 g=cluster_1

If a Connection Manager restarts after a primary-server failure, it is able to connect to other database servers in the cluster because the cluster_1 group is defined.

10. Create a sqlhosts file on each client host.

#dbservername nettype hostname servicename options
 oltp group - - c=1,e=oltp_2
 oltp_1 onsoctcp cm_host_1 cm_port_1 g=oltp
 oltp_2 onsoctcp cm_host_2 cm_port_2 g=oltp

 report group - - c=1,e=report_2
 report_1 onsoctcp cm_host_1 cm_port_3 g=report
 report_2 onsoctcp cm_host_2 cm_port_4 g=report

 payroll group - - c=1,e=payroll_2
 payroll_1 onsoctcp cm_host_1 cm_port_5 g=payroll
 payroll_2 onsoctcp cm_host_2 cm_port_6 g=payroll

If a Connection Manager fails, client applications can still connect to the other Connection Manager because the oltp, report, and payroll groups are defined.

CONNECT TO @oltp connection requests are directed through one of the Connection Managers to the primary server.
CONNECT TO @payroll connection requests are directed through one of the Connection Managers to whichever of the primary and HDR secondary servers
has the lowest workload.
CONNECT TO @report connection requests are directed through one of the Connection Managers to the secondary server that has the lowest workload.

11. Set each INFORMIXSQLHOSTS environment variable to the sqlhosts file location by running the setenv command on each Connection Manager and client host.

setenv INFORMIXSQLHOSTS path_and_file_name

12. Run the oncmsm utility on each Connection Manager host, to start each Connection Manager.
On the host of connection_manager_1:

oncmsm -c cm_1.cfg

On the host of connection_manager_2:

oncmsm -c cm_2.cfg

13. Check each Connection Manager's log file to verify that the Connection Manager started correctly.

Related reference:
 Group information

Related information:
 The oncmsm utility

HA_FOC_ORDER configuration parameter
INFORMIXSQLHOSTS environment variable

Copyright© 2020 HCL Technologies Limited

Example of configuring connection management for a grid or replicate set

You can use a Connection Manager to route client connections for the replication servers of a grid or replicate set.

For this example, you have a replicate set that consists of four replication servers:

server_1
server_2
server_3
server_4

Part VI: Administering 333

https://www.hcltech.com/

The replication set supports reporting services, which can run on any of the replication servers.

Your system has the following needs

Client requests are directed to the replication server with the fewest apply failures.
The system can withstand the failure of a Connection Manager.
The system can withstand a network-interface card (NIC) failure on each host.

To configure connection management:

1. Install at least two network interface cards on each host. This prevents the failure of a network interface card from causing Connection Manager or database server
failure.

2. Install two Connection Managers. Install each Connection Manager onto a different host, and do not install the Connection Managers onto the hosts that database
servers are installed on. This installation strategy prevents a Connection Manager from becoming a single point of failure, and prevents the simultaneous failure of
database servers and Connection Managers if a host fails.

3. On each Connection Manager host, set the INFORMIXDIR environment to the directory the Connection Manager was installed into. Run the following command:

setenv INFORMIXDIR path

4. Create a configuration file in each Connection Manager installation's $INFORMIXDIR/etc directory.
The first Connection Manager's configuration file is named cm_1.cfg and has the following entries:

NAME connection_manger_1
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm1_log.log

REPLSET replicate_set_1
{
 INFORMIXSERVER g_server_1,g_server_2,g_server_3,g_server_4
 SLA report_1 DBSERVERS=ANY \
 POLICY=FAILURE
}

The second Connection Manager's configuration file is named cm_2.cfg and has the following entries:

NAME connection_manger_2
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm2_log_.log

REPLSET replicate_set_1
{
 INFORMIXSERVER g_server_1,g_server_2,g_server_3,g_server_4
 SLA report_2 DBSERVERS=ANY \
 POLICY=FAILURE
}

The configuration file specifies the following information and behavior:
Logging is enabled, and the log files are $INFORMIXDIR/tmp/my_cm1_log.log and $INFORMIXDIR/tmp/my_cm2_log.log.
When the Connection Managers start, they each search their sqlhosts files for g_server_1, g_server_2, g_server_3, and g_server_4 entries, and then
connect to the servers server_1, server_2, server_3, and server_4 that are in those groups.
CONNECT TO @report_1 and CONNECT TO @report_2 connection requests are directed to the replication server that has the fewest apply failures.

Certain parameters and attributes are not included in this configuration file, so the Connection Manager has the following default behavior:
The MODE attributes of the SLA parameters are not set, so the Connection Managers return connection information for server_1, server_2, server_3, and
server_4 to client applications, rather than acting as proxy servers.
The HOST, NETTYPE, SERVICE, and SQLHOSTSOPT attributes of the SLA parameters are not set, so each Connection Manager uses connection information in
local and remote sqlhosts files.
The SQLHOSTS parameter is not set, so each Connection Manager first searches its local sqlhosts file, and then remote database server sqlhosts files for
connectivity information related to server_1, server_2, server_3, and server_4.
The WORKERS attributes of the SLA parameters are not set, so four worker threads are allocated to each of the SLAs.

5. Add entries to thesqlhosts files on the hosts of each database server, connection_manger_1, and connection_manger_2.

#dbservername nettype hostname servicename options
 g_server_1 group - - i=1,e=server_1
 server_1 onsoctcp host_1 port_1 g=g_server_1

 g_server_2 group - - i=2,e=server_2
 server_2 onsoctcp host_2 port_2 g=g_server_2

 g_server_3 group - - i=3,e=server_3
 server_3 onsoctcp host_3 port_3 g=g_server_3

 g_server_4 group - - i=4,e=server_4
 server_4 onsoctcp host_4 port_4 g=g_server_4

6. Create a sqlhosts file on each client host.

#dbservername nettype hostname servicename options
 report group - - c=1,e=report_2
 report_1 onsoctcp cm_host_1 cm_port_3 g=report
 report_2 onsoctcp cm_host_2 cm_port_4 g=report

If a Connection Manager fails, client applications can still connect to the other Connection Manager because the report group is defined.

CONNECT TO @report connection requests are directed through one of the Connection Managers to the replication server that has the fewest apply failures.

7. Set each INFORMIXSQLHOSTS environment variable to the sqlhosts file location by running the setenv command on each Connection Manager and client host.

setenv INFORMIXSQLHOSTS path_and_file_name

8. Turn on quality of data (QOD) monitoring by running the cdr define qod command.

334 Part VI: Administering

cdr define qod -c server_1 --start

The command connects to server_1, defines server_1 as a master server for monitoring data, and then turns on quality of data monitoring.
server_1 maintains a failed-transaction count for the servers in the replicate set. The failed-transaction count determines which replication server the Connection
Managers send a client connection requests to.

9. Run the oncmsm utility on each Connection Manager host, to start each Connection Manager.
On the host of connection_manager_1:

oncmsm -c cm_1.cfg

On the host of connection_manager_2:

oncmsm -c cm_2.cfg

10. Check each Connection Manager's log file to verify that the Connection Manager started correctly.

Related reference:
 Group information

Related information:
 The oncmsm utility

HA_FOC_ORDER configuration parameter
INFORMIXSQLHOSTS environment variable
cdr define qod
cdr start qod

Copyright© 2020 HCL Technologies Limited

Example of configuring connection management for a high-availability replication
system

You can use a Connection Manager to route client connections for the participants of a replicate set and to control failover for high-availability clusters that participate in
Enterprise Replication.

For this example, you have a grid that consists of four nodes. One of the nodes is a primary server in a high-availability cluster that consists of a primary server, an SD
secondary server, an HDR secondary server, and an RS secondary server:

server_1a - ER Node 1, primary server
server_1b - SD secondary server
server_1c - HDR secondary server
server_1d - RS secondary server
server_2 - ER Node 2
server_3 - ER Node 3
server_4 - ER Node 4

The grid supports reporting services, which can run on any of the ER nodes.

Your system has the following needs

Client requests are directed to the ER node with the lowest transaction latency.
The system can withstand the failure of a Connection Manager.
The system can withstand a network-interface card (NIC) failure on each host.
The Connection Managers control failover for the cluster.
If failover occurs, it the SD secondary server takes priority over the HDR secondary server. The HDR secondary server takes priority over the RS secondary server.
If the primary server fails, the Connection Managers can still connect to the cluster after restarting.

To configure connection management:

1. Install at least two network interface cards on each host. This prevents the failure of a network interface card from causing Connection Manager or database server
failure.

2. Install two Connection Managers. Install each Connection Manager onto a different host, and do not install the Connection Managers onto the hosts that database
servers are installed on. This installation strategy prevents a Connection Manager from becoming a single point of failure, and prevents the simultaneous failure of
database servers and Connection Managers if a host fails.

3. On each Connection Manager host, set the INFORMIXDIR environment to the directory the Connection Manager was installed into. Run the following command:

setenv INFORMIXDIR path

4. Create a configuration file in each Connection Manager installation's $INFORMIXDIR/etc directory.
The first Connection Manager's configuration file is named cm_1.cfg and has the following entries:

NAME connection_manger_1
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm1_log.log
LOCAL_IP 192.0.0.2,192.0.2.1

REPLSET replicate_set_1
{
 INFORMIXSERVER g_server_1,g_server_2,g_server_3,g_server_4
 SLA report_1 DBSERVERS=ANY \
 POLICY=LATENCY
}

CLUSTER cluster_1

Part VI: Administering 335

https://www.hcltech.com/

{
 INFORMIXSERVER g_server_1
 FOC ORDER=ENABLED \
 PRIORITY=1
 CMALARMPROGRAM $INFORMIXDIR/etc/CMALARMPROGRAM.sh
}

The second Connection Manager's configuration file is named cm_2.cfg and has the following entries:

NAME connection_manger_2
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm2_log_.log
LOCAL_IP 192.0.2.2,192.0.2.3

REPLSET replicate_set_1
{
 INFORMIXSERVER g_server_1,g_server_2,g_server_3,g_server_4
 SLA report_2 DBSERVERS=ANY \
 POLICY=LATENCY
}
CLUSTER cluster_1
{
 INFORMIXSERVER g_server_1
 FOC ORDER=ENABLED \
 PRIORITY=2
 CMALARMPROGRAM $INFORMIXDIR/etc/CMALARMPROGRAM.sh
}

The configuration file specifies the following information and behavior:
Logging is enabled, and the log files are $INFORMIXDIR/tmp/my_cm1_log.log and $INFORMIXDIR/tmp/my_cm2_log.log.
connection_manager_1 monitors 192.0.2.0 and 192.0.2.1 and connection_manager_2 monitors 192.0.2.2 and 192.0.2.3 for network failure.
When the Connection Managers start, they each search their sqlhosts files for g_server_1, g_server_2, g_server_3, and g_server_4 entries, and then
connect to the servers server_1a, server_1b, server_1c, server_1d,server_2, server_3, and server_4 that are in those groups.
CONNECT TO @report_1 and CONNECT TO @report_2 connection requests are directed to the replication server that has the lowest transaction latency.
The connection between connection_manager_1 and the primary server is prioritized over the connection between connection_manager_2 and the primary
server. Failover that would break the connectivity between connection_manager_1 and the primary server is blocked.
If failover processing fails after eight attempts, $INFORMIXDIR/etc/CMALARMPROGRAM.sh is called.

Certain parameters and attributes are not included in this configuration file, so the Connection Manager has the following default behavior:
The EVENT_TIMEOUT parameter is not set, so the Connection Managers wait 60 seconds for primary-server events before failover processing begins. The
SECONDARY_EVENT_TIMEOUT parameter is not set, so the Connection Managers wait 60 seconds for secondary-server events before the Connection
Manager disconnects from the secondary server.
The HOST, NETTYPE, SERVICE, and SQLHOSTSOPT attributes of the SLA parameters are not set, so each Connection Manager uses connection information in
local and remote sqlhosts files.
The SQLHOSTS parameter is not set, so each Connection Manager first searches its local sqlhosts file, and then remote database server sqlhosts files for
connectivity information related to server_1, server_2, server_3, and server_4.
The WORKERS attributes of the SLA parameters are not set, so four worker threads are allocated to each of the SLAs.

5. Set the onconfig file DRAUTO configuration parameter on server_1a, server_1b, server_1c, and server_1d to 3

DRAUTO 3

This setting specifies that a Connection Manager controls failover arbitration.
6. Set the onconfig file HA_FOC_ORDER configuration parameter on server_1a to SDS,HDR,RSS

HA_FOC_ORDER SDS,HDR,RSS

After the Connection Managers start, and connect to server_1a, the HA_FOC_ORDER value replaces the value of the ORDER attributes in each Connection
Manager's configuration file.

If server_1a fails, the Connection Managers attempt failover to the SD secondary server. If the SD secondary server is also unavailable, the Connection Managers
attempt failover to the HDR secondary server. If the HDR secondary server is also unavailable, the Connection Managers attempt failover to the RS secondary
server.

7. Add entries to thesqlhosts files on the hosts of each database server and Connection Manager.

#dbservername nettype hostname servicename options
 g_server_1 group - - i=1,c=1,e=server_1d
 server_1a onsoctcp host_1 port_1 g=g_server_1
 server_1b onsoctcp host_1 port_2 g=g_server_1
 server_1c onsoctcp host_2 port_3 g=g_server_1
 server_1d onsoctcp host_3 port_4 g=g_server_1

 g_server_2 group - - i=2,e=server_2
 server_2 onsoctcp host_4 port_5 g=g_server_2

g_server_3 group - - i=3,e=server_3
 server_3 onsoctcp host_5 port_6 g=g_server_3

 g_server_4 group - - i=4,e=server_4
 server_4 onsoctcp host_6 port_7 g=g_server_4

8. Create a sqlhosts file on each client host.

#dbservername nettype hostname servicename options
 report group - - c=1,e=report_2
 report_1 onsoctcp cm_host_1 cm_port_3 g=report
 report_2 onsoctcp cm_host_2 cm_port_4 g=report

If a Connection Manager fails, client applications can still connect to the other Connection Manager because the report group is defined.

CONNECT TO @report connection requests are directed through one of the Connection Managers to the replication server that has the lowest transaction latency.

336 Part VI: Administering

9. Set each INFORMIXSQLHOSTS environment variable to the sqlhosts file location by running the setenv command on each Connection Manager and client host.

setenv INFORMIXSQLHOSTS path_and_file_name

10. Turn on quality of data (QOD) monitoring by running the cdr define qod command.

cdr define qod -c server_1a --start

The command connects to server_1a, defines server_1a as a master server for monitoring data, and then turns on quality of data monitoring.
server_1a monitors transaction latency for the replication servers in the grid.

11. Run the oncmsm utility on each Connection Manager host, to start each Connection Manager.
On the host of connection_manager_1:

oncmsm -c cm_1.cfg

On the host of connection_manager_2:

oncmsm -c cm_2.cfg

12. Check each Connection Manager's log file to verify that the Connection Manager started correctly.

Related reference:
 Group information

Related information:
 The oncmsm utility

HA_FOC_ORDER configuration parameter
INFORMIXSQLHOSTS environment variable
cdr define qod
cdr start qod

Copyright© 2020 HCL Technologies Limited

Example: Configuring connection management for untrusted networks

This example shows steps that are required to configure connection management for an untrusted network.

For this example, you have a high-availability cluster on an untrusted network. All hosts use UNIX operating systems. The cluster consists of four servers:

A primary server (server_1)
A shared-disk secondary server (server_2)
An HDR secondary server (server_3)
An RS secondary server (server_4)

To configure connection management:

1. Install at least two network interface cards on each host.
2. Install at least two Connection Managers. Install each Connection Manager onto a different host, and do not install the Connection Managers onto the hosts that

database servers are installed on.
3. On each host Connection Manager host, set the INFORMIXDIR environment to the directory the Connection Manager was installed into. Run the following

command:

setenv INFORMIXDIR path

4. Create a configuration file in each Connection Manager installation's $INFORMIXDIR/etc directory.
The first Connection Manager's configuration file is named cm_1.cfg and has the following entries:

NAME connection_manger_1
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm1_log.log
LOCAL_IP 192.0.2.0,192.0.2.1

CLUSTER cluster_1
{
 INFORMIXSERVER cluster_1
 SLA oltp_1 DBSERVERS=primary
 SLA payroll_1 DBSERVERS=(PRI,HDR) \
 POLICY=WORKLOAD
 SLA report_1 DBSERVERS=(SDS,HDR,RSS) \
 POLICY=WORKLOAD
 FOC ORDER=ENABLED \
 PRIORITY=1
 CMALARMPROGRAM $INFORMIXDIR/etc/CMALARMPROGRAM.sh
}

The second Connection Manager's configuration file is named cm_2.cfg and has the following entries:

NAME connection_manger_2
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm2_log.log
LOCAL_IP 192.0.2.2,192.0.2.3

CLUSTER cluster_1
{
 INFORMIXSERVER cluster_1
 SLA oltp_2 DBSERVERS=primary
 SLA payroll_2 DBSERVERS=(PRI,HDR)\

Part VI: Administering 337

https://www.hcltech.com/

 POLICY=WORKLOAD
 SLA report_2 DBSERVERS=(SDS,HDR,RSS) \
 POLICY=WORKLOAD
 FOC ORDER=ENABLED \
 PRIORITY=2
 CMALARMPROGRAM $INFORMIXDIR/etc/CMALARMPROGRAM.sh
}

5. Set the onconfig file DRAUTO configuration parameter on all database servers to 3, to specify that Connection Managers control failover arbitration.

DRAUTO 3

6. Set the onconfig file HA_FOC_ORDER configuration parameter on server_1 to SDS,HDR,RSS

HA_FOC_ORDER SDS,HDR,RSS

7. Optional: Configure the cmalarmprogram script on each Connection Manager host.
8. Add entries to thesqlhosts files on server_1 and server_2's host, server_3's host, and server_4's host.

#dbservername nettype hostname servicename options
 server_1 onsoctcp host_1 port_1 s=6
 a_server_1 onsoctcp host_1 port_2

 server_2 onsoctcp host_1 port_3 s=6
 a_server_2 onsoctcp host_1 port_4

 server_3 onsoctcp host_2 port_5 s=6
 a_server_3 onsoctcp host_2 port_6

 server_4 onsoctcp host_3 port_7 s=6
 a_server_4 onsoctcp host_3 port_8

9. Create a sqlhosts file on each Connection Manager's host.

#dbservername nettype hostname servicename options
 cluster_1 group - - c=1,e=a_server_4
 server_1 onsoctcp host_1 port_1 s=6,g=cluster_1
 a_server_1 onsoctcp host_1 port_2 g=cluster_1
 server_2 onsoctcp host_1 port_3 s=6,g=cluster_1
 a_server_2 onsoctcp host_1 port_4 g=cluster_1
 server_3 onsoctcp host_2 port_5 s=6,g=cluster_1
 a_server_3 onsoctcp host_2 port_6 g=cluster_1
 server_4 onsoctcp host_3 port_7 s=6,g=cluster_1
 a_server_4 onsoctcp host_3 port_8 g=cluster_1

10. In each database server's onconfig file, set the DBSERVERALIASES parameter to that database server's alias.
The onconfig file entry for server_1:

DBSERVERALIASES a_server_1

The onconfig file entry for server_2:

DBSERVERALIASES a_server_2

The onconfig file entry for server_3:

DBSERVERALIASES a_server_3

The onconfig file entry for server_4:

DBSERVERALIASES a_server_4

11. On one of the Connection Manager hosts, use a text editor to create an ASCII-text password file that contains security information. Save the file to the
$INFORMIXDIR/tmp directory. For example, my_passwords.txt has the following entries:

cluster_1 a_server_1 user_1 password_1
cluster_1 a_server_2 user_2 password_2
cluster_1 a_server_3 user_3 password_3
cluster_1 a_server_4 user_4 password_4

server_1 a_server_1 user_1 password_1
server_2 a_server_2 user_2 password_2
server_3 a_server_3 user_3 password_3
server_4 a_server_4 user_4 password_4

a_server_1 a_server_1 user_1 password_1
a_server_2 a_server_2 user_2 password_2
a_server_3 a_server_3 user_3 password_3
a_server_4 a_server_4 user_4 password_4

12. On the host where the password file is saved, run the onpassword utility with a specified encryption key to encrypt the password and create passwd_file in the
$INFORMIXDIR/etc directory. For example, run the following command, specifying my_secret_encryption_key_456 as your encryption key:

onpassword -k my_secret_encryption_key_456 -e my_passwords.txt

13. Store the original text file and encryption key in a safe place.
14. Distribute $INFORMIXDIR/etc/passwd_file to all the database servers that Connection Managers connect to, and to all Connection Managers. For systems that use

Enterprise Replication, also distribute $INFORMIXDIR/etc/passwd_file to all the database servers that the cdr utility connects to.
15. Create a sqlhosts file on each client host.

#dbservername nettype hostname servicename options
 oltp group - - c=1,e=oltp_2
 oltp_1 onsoctcp cm_host_1 cm_port_1 g=oltp
 oltp_2 onsoctcp cm_host_2 cm_port_2 g=oltp

338 Part VI: Administering

 report group - - c=1,e=report_2
 report_1 onsoctcp cm_host_1 cm_port_3 g=report
 report_2 onsoctcp cm_host_2 cm_port_4 g=report

 payroll group - - c=1,e=payroll_2
 payroll_1 onsoctcp cm_host_1 cm_port_5 g=payroll
 payroll_2 onsoctcp cm_host_2 cm_port_6 g=payroll

16. Set each INFORMIXSQLHOSTS environment variable to the sqlhosts file location by running the setenv command on each Connection Manager and client host.

setenv INFORMIXSQLHOSTS path_and_file_name

17. Run the oncmsm utility on each Connection Manager host, to start each Connection Manager.
On the host of connection_manager_1:

oncmsm -c cm_1.cfg

On the host of connection_manager_2:

oncmsm -c cm_2.cfg

18. Check each Connection Manager's log file to verify that the Connection Manager started correctly.

Related tasks:
 Creating a password file for connecting to database servers on untrusted networks

Related reference:
 Group information

Related information:
 The onpassword utility

DBSERVERALIASES configuration parameter

Copyright© 2020 HCL Technologies Limited

Example of configuring connection management for prioritizing connections and
network monitoring

You can install Connection Managers on the hosts of application servers, and then prioritize the connections between specific application servers and the primary server of
a high-availability cluster. This configuration allows the highest priority application server to maintain its connection to the cluster's primary server if a portion of the
network fails.

You can configure failover for the following conditions:

When the primary server becomes inoperative.
When an application server loses network connectivity with the primary server.

If network monitoring and failover priority are enabled and a network failure occurs, an application server that loses connectivity to the primary server but maintains
connectivity to a secondary server can, through a shared-host Connection Manager, initiate failover to the secondary server. If, however, failover would cause an
application server with more priority to lose connectivity to the primary server, the Connection Managers block failover.

Network monitoring and failover priority are enabled by setting the following parameters and attributes in each Connection Manager's configuration file:

The Connection Manager's LOCAL_IP parameter
A CLUSTER connection-unit's SLA parameters
A CLUSTER connection-unit's FOC parameter
The FOC parameter's ORDER attribute
The FOC parameter's PRIORITY attribute

1. Install at least two network interface cards on each host. This method prevents the failure of a network interface card from causing client, Connection Manager, or
database server connectivity failure.

2. Install and configure Connection Managers on each application server's host.
a. Set the LOCAL_IP parameter in each Connection Manager configuration file to the IP addresses of the host's NIC cards. For example:

The first Connection Manager's configuration file is named cm_1.cfg and has the following entries:

NAME connection_manager_1
LOCAL_IP 192.0.2.0,192.0.2.1

The second Connection Manager's configuration file is named cm_2.cfg and has the following entries:

NAME connection_manager_2
LOCAL_IP 192.0.2.2,192.0.2.3

b. Create service-level agreements for each Connection Manager. For example:
cm_1.cfg now has the following entries:

NAME connection_manager_1
LOCAL_IP 192.0.2.0,192.0.2.1

CLUSTER my_cluster

{
 INFORMIXSERVER my_servers
 SLA sla_1 DBSERVERS=PRI
 SLA sla_2 DBSERVERS=SDS,HDR,RSS
}

Part VI: Administering 339

https://www.hcltech.com/

cm_2.cfg now has the following entries:

NAME connection_manager_1
LOCAL_IP 192.0.2.2,192.0.2.3

CLUSTER my_cluster

{
 INFORMIXSERVER my_servers
 SLA sla_3 DBSERVERS=PRI
 SLA sla_4 DBSERVERS=SDS,HDR,RSS
}

c. Specify each application server's priority by setting the FOC parameter's PRIORITY attribute for each shared-host Connection Manager. A PRIORITY value
must be a positive integer and unique among all the Connection Managers that are configured to manage a specific cluster. If you specify a PRIORITY value in
a connection-unit definition, you must set the ORDER attribute to ENABLED, and specify the failover order in the primary server's HA_FOC_ORDER
configuration parameter. For example:
The primary server has the following onconfig file entry:

HA_FOC_ORDER SDS,HDR,RSS

cm_1.cfg now has the following entries:

NAME connection_manager_1
LOCAL_IP 192.0.2.0,192.0.2.1

CLUSTER my_cluster

{
 INFORMIXSERVER my_servers
 SLA sla_1 DBSERVERS=PRI
 SLA sla_2 DBSERVERS=SDS,HDR,RSS
 FOC ORDER=ENABLED PRIORITY=1
}

cm_2.cfg now has the following entries:

NAME connection_manager_2
LOCAL_IP 192.0.2.2,192.0.2.3

CLUSTER my_cluster

{
 INFORMIXSERVER my_servers
 SLA sla_3 DBSERVERS=PRI
 SLA sla_4 DBSERVERS=SDS,HDR,RSS
 FOC ORDER=ENABLED PRIORITY=2
}

3. Create sqlhosts files that contain network connectivity information for each Connection Manager and database server host.
4. Optional: Create a password file if you configure secure ports for database servers.
5. Run the oncmsm utility on each Connection Manager host, to start each Connection Manager.

On the host of connection_manager_1:

oncmsm -c cm_1.cfg

On the host of connection_manager_2:

oncmsm -c cm_2.cfg

6. Check each Connection Manager's log file to verify that the Connection Manager started correctly.

The Connection Managers now initiate failover if a network failure occurs, and failover would not cause a higher-priority application server to lose its connectivity to the
cluster's primary server.
Related reference:

 Group information
FOC Connection Manager configuration parameter
LOCAL_IP Connection Manager configuration parameter
Related information:

 The oncmsm utility
HA_FOC_ORDER configuration parameter

Copyright© 2020 HCL Technologies Limited

Example of configuring for an SSL connection

This example shows the steps to configure CM to listen for SSL connections from database clients.

The steps to perform depend on the encryption library used by the CM: GSKit or OpenSSL. This in turn depends on whether the CM is installed in the same directory as the
database server. If co-located with the database server, then the CM uses the same encryption library as the server, i.e. GSKit. Otherwise, the CM uses OpenSSL.
Note: You may determine which encryption library is used by the CM by running the utility onkstash with command line parameter version: onkstash -version

Example: Using the OpenSSL encryption library
 This example shows the steps to configure CM to listen for SSL connection using the OpenSSL encryption library.

Example: Using the GSKit encryption library
 This example shows the steps to configure CM to listen for SSL connection using the GSKit encryption library.

340 Part VI: Administering

https://www.hcltech.com/

Configuring a CM to connect to Oninit using SSL
To configure a CM to connect to oninit using SSL, follow the steps in Configuring a client for SSL connections at Configuring a client for SSL connections.
Configuring a client to connect to a CM using SSL
A client can be configured to connect to a CM via SSL by following the same steps used to configure a client to connect to an Informix server via SSL. In this case the
CM acts like a server. Follow the steps in Configuring a client for SSL connections at Configuring a client for SSL connections.

Copyright© 2020 HCL Technologies Limited

Example: Using the OpenSSL encryption library

This example shows the steps to configure CM to listen for SSL connection using the OpenSSL encryption library.

Use the openssl utility of your OpenSSL installation.

1. Create a private key for the self-signed certificate:

$ openssl genrsa -out cm1key.pem

Create the self-signed certificate using the private key

$ openssl req -new -x509 -key cm1key.pem -subj "CN=`hostname`" -days 3650 -out cm1cert.pem

Put the private key and the self-signed certificate into a single PEM file

$ cat cm1key.pem cm1cert.pem > filewithcertificatetoimport.pem

2. Create the keystore file to contain the private key and certificate that are contained in a PEM file:

$ openssl pkcs12 -export -in filewithcertificatetoimport.pem -name cm1ListeningCert -passout pass:test -out cm1.p12

3. Create the stash file to contain the encrypted keystore password:

onkstash cm1.p12 test

4. In cm1's config file set "SSL_LABEL" to the certificate's label:

SSL_LABEL cm1ListeningCert

Copyright© 2020 HCL Technologies Limited

Example: Using the GSKit encryption library

This example shows the steps to configure CM to listen for SSL connection using the GSKit encryption library.

Use the gsk8capicmd utility of your GSKit installation.

1. To configure cm1 to listen for an SSL connection, create a keystore file named cm1.p12 in the CM's $INFORMIXDIR/ssl directory.

$ gsk8capicmd -keydb -create -db cm1.p12 -pw test -type pkcs12 -expire 3650 -stash

Note: Ensure that this file is owned by the user running oncmsm (usually informix) and has 600 permissions.
2. Obtain the certificate, either creating it or importing it from a PEM file. Note its label.

 Example command for creating a certificate in the keystore:
$ gsk8capicmd -cert -create -db cm1.p12 -pw test -dn "CN=`hostname`" -size 2048 -label cm1ListeningCert -ca true -sigalg
SHA256WithRSA

Example command for importing a certificate in a PEM file into the keystore:
$ gsk8capicmd -cert -add -db cm1.p12 -pw test -file filewithcertificatetoimport.pem -label cm1ListeningCert -format ascii
-trust enable

3. In cm1's config file set "SSL_LABEL" to the certificate's label:

SSL_LABEL cm1ListeningCert

Copyright© 2020 HCL Technologies Limited

Configuring a CM to connect to Oninit using SSL

To configure a CM to connect to oninit using SSL, follow the steps in Configuring a client for SSL connections at Configuring a client for SSL connections.

Copyright© 2020 HCL Technologies Limited

Configuring a client to connect to a CM using SSL

Part VI: Administering 341

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

A client can be configured to connect to a CM via SSL by following the same steps used to configure a client to connect to an Informix server via SSL. In this case the CM
acts like a server. Follow the steps in Configuring a client for SSL connections at Configuring a client for SSL connections.

Copyright© 2020 HCL Technologies Limited

Cluster failover, redirection, and restoration

To maintain availability, you must plan for the failover of primary servers, redirecting client connections from unavailable servers, and restoring the cluster to its original
configuration after a failure.

Failover configuration for high-availability clusters
 A failure in a high-availability cluster means that one of the servers is no longer available. If a primary server fails, you must promote a secondary server to the role

of primary server. Connection Managers can be configured to perform automatic failover.
Redirection and connectivity for data-replication clients

 When any server in a high-availability cluster becomes unavailable, any client connections to it should be redirected to an available server. The best way to handle
connection redirection is to use Connection Manager to automatically reconnect client connections to the servers that you specify in service level agreements.
Alternatively, you can control connection redirection with environment variables or connection information.
Recover HDR and RS clusters after failure

 When you restore the HDR or RS cluster back to the original configuration, you might need to restore critical media, as well as restart and configure servers in the
cluster.
Recovering a shared-disk cluster after data is damaged

 If a shared-disk cluster fails, you must perform a restore of affected dbspaces. The type of restore that you need to perform depends on whether critical data is
damaged.
Recovering an SD cluster after the secondary server became the primary server

 If a secondary server in an SD cluster became the primary server after the original primary server failed, you can use a script to reestablish the original primary and
convert the current primary server back to a secondary server.

Copyright© 2020 HCL Technologies Limited

Failover configuration for high-availability clusters

A failure in a high-availability cluster means that one of the servers is no longer available. If a primary server fails, you must promote a secondary server to the role of
primary server. Connection Managers can be configured to perform automatic failover.

You must set the DRAUTO configuration parameter to specify how failover is performed, and then use one of the following failover options:

Connection Manager
ISV cluster management software
Manual switchover

Failover with ISV cluster management software
 You can use independent software vendor (ISV) cluster management software instead of the Connection Manager to manage failover processing in high-availability

cluster environments.
I/O fencing for shared file systems

 You can configure I/O fencing to protect shared resources in a high-availability cluster environment.
Cluster failures

 A high-availability cluster failure is a loss of connection between the database servers in a cluster that can be caused by several different situations.

Related concepts:
 Connection management through the Connection Manager

Related information:
 DRAUTO configuration parameter

Copyright© 2020 HCL Technologies Limited

Failover with ISV cluster management software

You can use independent software vendor (ISV) cluster management software instead of the Connection Manager to manage failover processing in high-availability cluster
environments.

If the primary server in a high-availability cluster encounters a problem that requires a secondary server to assume the role of the primary, it is important that, before
performing the actual failover, disk I/O is prohibited on the failed primary server and is allowed on the new primary server. In addition, network access to the failed
primary server must be prevented. This is especially true for SD secondary servers, where disk corruption can occur if these steps are not done correctly.

The mechanism for enabling disk I/O operations from a server in a high-availability cluster environment is known as I/O Fencing. I/O Fencing is configured using a callback
script. When a failure of the primary server occurs, the failover process executes a callback script on the secondary server before the secondary server assumes the role of
the primary server. The script calls any I/O specific commands to enable or disable disk access. The script enables write access to the shared disk on the server that is to
become the primary server, and disables write access to the shared disk on the failed server.

Use the FAILOVER_CALLBACK configuration parameter to specify the name of the script to run when a database server transitions from a secondary server to a primary
server, or from a secondary server to a standard server. A template script named ifx_failover_callback.sh (UNIX) or ifx_failover_callback.bat (Windows) is provided in
the $INFORMIXDIR/etc directory. When configured, the script specified by FAILOVER_CALLBACK is executed before the secondary server is switched to a primary or
standard server.

342 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

You can test the failover script by performing one of the following actions, depending on your type of high-availability cluster:

Converting an SD secondary server into a primary server.
If the DRAUTO configuration parameter is set to 0, shutting down the primary server and convert the HDR secondary server to standard mode.
If the DRAUTO configuration parameter is set to 1, shutting down the primary server in an HDR pair.
Shutting down the primary server in a remote stand-alone cluster and converting the RS secondary server to standard mode.

An Invoking Failover Callback message is in the online.log listing the path and file name of the failover script after it is run.

See the information about the FAILOVER_CALLBACK configuration parameter in the IBM® Informix® Administrator's Reference.

If the script specified by FAILOVER_CALLBACK fails (that is, if it returns a non-zero exit code), the failover of the secondary to the primary (or standard) server also fails. In
this case, the DBA must manually perform the failover.

Copyright© 2020 HCL Technologies Limited

I/O fencing for shared file systems

You can configure I/O fencing to protect shared resources in a high-availability cluster environment.

A software or hardware malfunction might cause unresolved operations to be written to shared storage devices. I/O fencing can be used to isolate a server and prevent it
from accessing shared storage. I/O fencing must be used if maintenance or testing is being performed on a server in a high-availability cluster. If a problem is detected on
a server or within an application, the cluster manager can detect the problem and prevent the server from connecting to the shared data.

You can configure a script to run when a primary server fails. Fencing commands are called by setting the FAILOVER_CALLBACK configuration parameter, which runs a
script when a failover is initiated.

Although I/O fencing is not required in order to use Informix® database software, configuring I/O fencing must be used to protect shared-disk systems from inadvertent
loss

Types of I/O fencing
Several types of I/O fencing are available, including:

Power fencing - Powers off nodes if a problem is detected.
Fibre Channel Switch Fencing (requires SCSI-3 persistent group reservation) - Blocks a port on the fibre channel device by removing the problem node's
reservation.

Perhaps the most common method of implementing I/O fencing is to use fibre channel fencing. The fibre channel switch supports the industry-standard SCSI-3 persistent
group reservation (PR) technology. PR technology allows a set of systems to have temporary registrations with the disk and to coordinate a write-exclusive reservation
with the disk containing the data.

In most cases, cluster manager software must be installed. The cluster manager software provides the drivers and utilities required to issue commands to the fibre
channel switch. For example, the Linux Cluster Suite provides a script named fence_scsi. Sun Cluster provides a command named scdidadm.

Other fencing methods are also available depending on the cluster manger software used and different hardware capabilities.

The IBM® General Parallel File System (GPFS™) is a high performance shared disk clustered file system developed by IBM. The file system is available for use with AIX®,
Linux, and Windows platforms. The file system can be used with the IBM HACMP™ Cluster Management Software. GPFS uses the SCSI PR fencing mechanism to support
I/O fencing. Fencing issues must be resolved by the IBM GPFS support team.

Implementing I/O fencing
I/O fencing can be configured on several platforms, including:

Linux
Solaris
AIX
Windows

see the documentation provided by the manufacturer of your equipment for specific information about configuring I/O fencing.

Related information:
 FAILOVER_CALLBACK configuration parameter

Copyright© 2020 HCL Technologies Limited

Cluster failures

A high-availability cluster failure is a loss of connection between the database servers in a cluster that can be caused by several different situations.

Any of the following situations might cause a cluster failure:

Equipment failure or destruction
A network failure
An excessive processing delay on one of the database servers

The database server interprets either of the following conditions as a cluster failure:

Part VI: Administering 343

https://www.hcltech.com/
https://www.hcltech.com/

The DRTIMEOUT configuration parameter value was exceeded without confirmation of communication with other cluster servers.
A database server in the cluster does not respond to the periodic messaging attempts over the network. Cluster servers ping each other even if the primary server
does not send records to the secondary database servers.
A cluster server pings other cluster servers at the interval specified by its DRTIMEOUT configuration parameter.

After a database server detects a cluster failure, it writes a message to its message log (for example, DR: receive error) and turns off data replication. If a cluster
failure occurs, the connection between the two database servers is dropped and the secondary database server remains in read-only mode.

You can configure automatic switchover for HDR replication pairs by setting the DRAUTO configuration parameter to 1 or 2.

You can configure automatic failover for a high-availability cluster by configuring Connection Managers. Connection Managers have many advantages over automatic
switchover, and can manage failover to SD and RS secondary servers, as well.

Automatic switchover
 If the primary server in a HDR-availability system fails, the HDR secondary server can be automatically converted to either a standard or primary database server.

Automatic switchover without a reliable network
 Manual switchover

 Manual switchover means that the administrator of the secondary database server changes the type of the secondary database server to standard.
Connecting offline servers to the new primary server

 After failover, you must reconnect any offline secondary servers to the new primary server.

Related concepts:
 Replication of primary-server data to secondary servers

Copyright© 2020 HCL Technologies Limited

Automatic switchover

If the primary server in a HDR-availability system fails, the HDR secondary server can be automatically converted to either a standard or primary database server.

If automatic switchover occurs, the HDR secondary server to rolls back open transactions, and then switches to online mode as either a primary or standard database
server. Automatic switchover does not redirect client applications the new primary or standard database server.

Automatic switchover can be a better option than manual failover, but using Connection Managers to control failover for a high-availability cluster has even more
advantages.

Automatic switchover requires a very stable network, and works only with primary servers and HDR secondary servers. Connection Managers can be configured to be
tolerant of network instability, and can perform failover to HDR, RS, and SD secondary servers. Connection Managers can also prioritize connections between application
servers and the primary server if a network failure occurs.

Automatic switchover does not redirect client connections from the old primary server to the new standard or primary server. Connection Managers can redirect clients to
whichever secondary server becomes the primary server.

If you use automatic switchover, you must ensure that logical-log files are backed up, and that the HDR server has enough logical-log disk space to allow processing to
continue without backing up logical-log files.

To configure automatic switchover or Connection Manager failover, you must set the DRAUTO configuration parameter on all database servers of a high-availability cluster.

Related concepts:
 Redirection and connectivity for data-replication clients

Automatic switchover without a reliable network
Related reference:

 Restart if the primary server fails

Copyright© 2020 HCL Technologies Limited

Automatic switchover without a reliable network

Although automatic switchover might seem to be the best solution, it is not appropriate for all environments.

Consider what might happen if the primary database server does not actually fail, but the secondary database server registers that the primary has failed. For example, if
the secondary database server does not receive responses when it signals (pings) the primary database server because of a slow or unstable network, the secondary
server assumes that the primary database server failed and switches automatically to the standard type. If the primary database server also does not receive responses
when it signals the secondary database server, it assumes that the secondary database server failed and turns off data replication but remains in online mode. Now the
primary database server and the secondary database server (switched to the standard type) are both in online mode.

If clients can update the data on both database servers independently, the database servers in the pair reach a state in which each database server has the logical-log
records that are required by the other. In this situation, you must start again and perform initial data replication with a level-0 dbspace backup of one entire database
server, as described in Starting HDR for the First Time. Therefore, if your network is not entirely stable, you might not want to use automatic switchover. HDR cannot be
reinstated without the risk of losing transactions on the previous secondary server.

Related concepts:
 Automatic switchover

Copyright© 2020 HCL Technologies Limited

Manual switchover
344 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Manual switchover means that the administrator of the secondary database server changes the type of the secondary database server to standard.

The secondary database server rolls back any open transactions and then comes into online mode as a standard database server, so that it can accept updates from client
applications.

Related concepts:
 Changing the database server type

Copyright© 2020 HCL Technologies Limited

Connecting offline servers to the new primary server

After failover, you must reconnect any offline secondary servers to the new primary server.

If the primary server in a high-availability cluster fails, all online secondary servers are notified of the failure. The secondary servers connect to the new primary server and
continue to operate. However, RS secondary servers and HDR secondary servers that are not online at the time of the failover do not receive the failover notification, and
attempts to connect to the original (failed) primary server when the servers are back online. In this case, the primary server must be manually reset on those secondary
servers.

Run the following commands on secondary servers that were offline when the failover occurred.

For HDR secondary servers:

oninit -PHY
onmode -d secondary new_primary

new_primary indicates the name of the current primary server.
For RS secondary servers:

oninit -PHY
onmode -d RSS new_primary

new_primary indicates the name of the current primary server.

Copyright© 2020 HCL Technologies Limited

Redirection and connectivity for data-replication clients

When any server in a high-availability cluster becomes unavailable, any client connections to it should be redirected to an available server. The best way to handle
connection redirection is to use Connection Manager to automatically reconnect client connections to the servers that you specify in service level agreements.
Alternatively, you can control connection redirection with environment variables or connection information.

If you do not use Connection Manager, you can automatically redirect clients to different database servers in a cluster by configuring applications to connect to the server
group to which the servers belong. When you create a connection to a server group, by default the connection is made to the current primary server in the group. If
replication is down because one of the servers failed, the connection is made to the server which is online (in Standard mode or Primary mode without a secondary
server). You can also automate this action from within the application. Some of the client connectivity drivers included in the have specific mechanisms for automating
redirection. For details, see the documentation.

When you design client applications, you must make some decisions on redirection strategies. Specifically, you must decide whether to handle redirection within the
application and which redirection mechanism to use. The three different redirection mechanisms are as follows:

Automatic redirection with the DBPATH environment variable
Administrator-controlled redirection with the connectivity information
User-controlled redirection with the INFORMIXSERVER environment variable

The mechanism that you employ determines which CONNECT syntax you can use in your application.

Redirecting clients automatically with the DBPATH environment variable
 You can use the DBPATH environment variable in applications to redirect connections.

Redirecting clients with the connectivity information
 You can redirect client connections to the new primary server by using sqlhosts information.

Redirecting clients with the INFORMIXSERVER environment variable
 The INFORMIXSERVER environment variable redirection method can be used when an application does not explicitly specify a database server in the CONNECT

statement, so that the client connects to the database server that the INFORMIXSERVER environment variable specifies.
Redirecting clients with application code

 If you use the DBPATH environment variable or connectivity information to redirect connections, you can include in your clients a routine that handles errors when
clients encounter a cluster failure. The routine can call another function that contains a loop that tries repeatedly to connect to the other database server in the
cluster. This routine redirects clients without requiring the user to exit the application and restart it.
Comparison of redirection methods

 The different redirection methods have different requirements.

Related concepts:
 Connection management through the Connection Manager

Automatic switchover

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 345

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Redirecting clients automatically with the DBPATH environment variable

You can use the DBPATH environment variable in applications to redirect connections.

What the administrator must do
Administrators take no action to redirect clients, but they might be required to attend to the type of the database server.

What the user must do
If your applications contain code that tests if a connection has failed and issues a reconnect statement if necessary, redirection is handled automatically. The user has no
responsibilities.

If your applications do not include such code, users who are running clients must quit and restart all applications.

How the DBPATH redirection method works

Copyright© 2020 HCL Technologies Limited

How the DBPATH redirection method works

When an application does not explicitly specify a database server in the CONNECT statement, and the database server that the INFORMIXSERVER environment variable
specifies is unavailable, the client uses the DBPATH environment variable to locate the database (and database server).

If one of the database servers in a replication pair is unusable, applications that use that database server are not required to reset their INFORMIXSERVER environment
variable if their DBPATH environment variable is set to the other database server in the pair. Their INFORMIXSERVER environment variable must always contain the name
of the database server that they use regularly, and their DBPATH environment variable must always contain the name of the alternative database server in the pair.

For example, if applications normally use a database server called cliff_ol, and the database server paired with cliff_ol in a replication pair is called beach_ol, the
environment variables for those applications would be as follows:

INFORMIXSERVER cliff_ol
DBPATH //beach_ol

Because the DBPATH environment variable is read only (if required) when an application issues a CONNECT statement, applications must restart in order for redirection to
occur.

An application can contain code that tests whether a connection has failed and, if so, attempts to reconnect. If an application has this code, you are not required to restart
it.

You can use the CONNECT TO database statement with this method of redirection. For this method to work, you cannot use any of the following statements:

CONNECT TO DEFAULT
CONNECT TO database@dbserver
CONNECT TO @dbserver

The reason for this restriction is that an application does not use DBPATH if a CONNECT statement specifies a database server. For more information about DBPATH, see
the IBM® Informix® Guide to SQL: Reference.

Copyright© 2020 HCL Technologies Limited

Redirecting clients with the connectivity information

You can redirect client connections to the new primary server by using sqlhosts information.

The connectivity information-redirection method relies on the fact that when an application connects to a database server, it uses the connectivity information to find that
database server.

If one of the database servers in a replication pair is unusable, an administrator can change the definition of the unavailable database server in the connectivity
information. As described in Changing client connectivity information, the fields of the unavailable database server (except for the dbservername field) are changed to
point to the remaining database server in the replication pair.

Because the connectivity information is read when a CONNECT statement is issued, applications might be required to restart for redirection to occur. Applications can
contain code that tests whether a connection failed and that issues a reconnect statement, if necessary. If a connection failed, redirection is automatic, and you are not
required to restart applications for redirection to occur.

Applications can use the following connectivity statements to support this method of redirection:

CONNECT TO database@dbserver
CONNECT TO @dbserver

Applications can also use the following connectivity statements, provided that the INFORMIXSERVER environment variable always remains set to the same database
server name and the DBPATH environment variable is not set:

CONNECT TO DEFAULT

346 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

CONNECT TO database

On UNIX, the INFORMIXSQLHOSTS environment variable specifies the full path name and file name of the connection information in $INFORMIXDIR/etc/sqlhosts. For
more information about INFORMIXSQLHOSTS, see the IBM Informix Guide to SQL: Reference.

On Windows, the connectivity information is in a key in the Windows registry.

Changing client connectivity information
 To use the connectivity information to redirect clients, you must change the connectivity information for the clients and change other connectivity files, if necessary.

Connecting to the database server
 After the administrator changes the connectivity information and other connectivity files (if required), clients connect to the database server to which the

administrator redirects them when they issue their next CONNECT statement.
Automatic redirection with server groups

Related concepts:

 The sqlhosts file and the SQLHOSTS registry key
Trusted-host information
Trusted-user information

Copyright© 2020 HCL Technologies Limited

Changing client connectivity information

To use the connectivity information to redirect clients, you must change the connectivity information for the clients and change other connectivity files, if necessary.

To change the connectivity information about the client computer:

1. In the sqlhosts file or registry, comment out the entry for the failed database server.
2. Add an entry that specifies the dbservername of the failed database server in the servername field and information for the database server to which you are

redirecting clients in the nettype, hostname, and servicename fields.
3. Use the following options in the sqlhosts file or registry to redirect applications to another database server if a failure occurs:

a. Connection-redirection option
b. End-of-group option
c. Group option

4. Edit the /etc/hosts file on UNIX or hosts file on Windows to add an entry, if necessary, for the hostname of the computer that is running the database server to
which you are redirecting clients.

5. Edit the /etc/services file on UNIX or services file on Windows to add an entry, if necessary, for the servicename of the database server to which you are redirecting
clients.

The following figure shows how connectivity values might be modified to redirect clients.

You are not required to change entries in the connectivity information on either of the computers that is running the database servers.
Figure 1. Connectivity values before and after a failure of the cliff_ol database server

Related concepts:
 Client/server communication

Related tasks:
 Configuring secure connections for high-availability clusters

Part VI: Administering 347

https://www.hcltech.com/

Related reference:
sqlhosts connectivity information

Copyright© 2020 HCL Technologies Limited

Connecting to the database server

After the administrator changes the connectivity information and other connectivity files (if required), clients connect to the database server to which the administrator
redirects them when they issue their next CONNECT statement.

If your applications contain code that tests if a connection has failed and issues a reconnect statement if necessary, redirection is handled automatically. The user has no
responsibilities. If your applications do not include such code, users who are running clients must quit and restart all applications.

Copyright© 2020 HCL Technologies Limited

Automatic redirection with server groups

You can use the group option in the sqlhosts file to specify a server group to which applications connect instead of an individual database server. To make connection
redirection automatic, add a database server definition for both the primary and secondary servers to the server group definition. By default, when a connection request is
made to an HDR server group, the connection is routed to the primary server. If the primary server is unavailable, then the connection request is routed to the secondary
server that gets promoted to the primary server after failover processing.

For example, the following sqlhosts entries represent an HDR server group, g_hdr, with a primary server definition, hdr_prim, and a secondary server definition, hdr_sec.

#dbservername nettype hostname servicename options
g_hdr group - - i=1
hdr_prim ontlitcp machine1pri port1 g=g_hdr
hdr_sec ontlitcp machine1sec port1 g=g_hdr

Applications can use the following connectivity statements to support this method of redirection:

CONNECT TO database@dbserver_group
CONNECT TO @dbserver_group

If your applications contain code that tests if a connection has failed and issues a reconnect statement if necessary, redirection is handled automatically. The user has no
responsibilities. If your applications do not include such code, users who are running clients must quit and restart all applications.

Copyright© 2020 HCL Technologies Limited

Redirecting clients with the INFORMIXSERVER environment variable

The INFORMIXSERVER environment variable redirection method can be used when an application does not explicitly specify a database server in the CONNECT
statement, so that the client connects to the database server that the INFORMIXSERVER environment variable specifies.

If one of the database servers in a cluster is unusable, applications that use that database server can reset their INFORMIXSERVER environment variable to the another
database server in the cluster to access the same data.

Applications read the value of the INFORMIXSERVER environment variable only when they start. Therefore, applications must be restarted to recognize a change in the
environment variable.

To support this method of redirection, you can use the following connectivity statements:

CONNECT TO DEFAULT
CONNECT TO database

You cannot use the CONNECT TO database@dbserver or CONNECT TO @dbserver statements for this method. When a database server is explicitly named, the CONNECT
statement does not use the INFORMIXSERVER environment variable to find a database server.

Administrators take no action to redirect the clients, but they might be required to change the type of the database server.

Users who are running client applications must perform the following three steps when they decide to redirect clients with the INFORMIXSERVER environment variable.

To redirect clients with the INFORMIXSERVER environment variable:

1. Quit their applications.
2. Change their INFORMIXSERVER environment variable to hold the name of the other database server in the replication pair.
3. Restart their applications.

Copyright© 2020 HCL Technologies Limited

Redirecting clients with application code

348 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

If you use the DBPATH environment variable or connectivity information to redirect connections, you can include in your clients a routine that handles errors when clients
encounter a cluster failure. The routine can call another function that contains a loop that tries repeatedly to connect to the other database server in the cluster. This
routine redirects clients without requiring the user to exit the application and restart it.

The following example shows an example of a function in a client application using the DBPATH redirection mechanism that loops as it attempts to reconnect. After it
establishes a connection, it also tests the type of the database server to make sure it is not a secondary database server. If the database server is still a secondary type, it
calls another function to alert the user (or database server administrator) that the database server cannot accept updates.

/* The routine assumes that the INFORMIXSERVER environment
 * variable is set to the database server that the client
 * normally uses and that the DBPATH environment variable
 * is set to the other database server in the pair.
 */

#define SLEEPTIME 15
#define MAXTRIES 10

main()
{
 int connected = 0;
 int tries;
 for (tries = 0;tries < MAXTRIES && connected == 0;tries++)
 {
 EXEC SQL CONNECT TO "superstores";
 if (strcmp(SQLSTATE,"00000"))
 {
 if (sqlca.sqlwarn.sqlwarn6 != 'W')
 {
 notify_admin();
 if (tries < MAXTRIES - 1)
 sleep(SLEEPTIME);
 }
 else connected =1;
 }
 }
 return ((tries == MAXTRIES)? -1:0);
 }

This example assumes the DBPATH redirection mechanism and uses a form of the CONNECT statement that supports the DBPATH redirection method. If you used the
connectivity information to redirect, you might have a different connection statement, as follows:

EXEC SQL CONNECT TO "superstores@cliff_ol";

In this example, superstores@cliff_ol is a database on a database server that the client computer recognizes. For redirection to occur, the administrator must change
the connectivity information to make that name refer to a different database server. You might be required to adjust the amount of time that the client waits before it tries
to connect or the number of tries that the function makes. Provide enough time for an administrative action on the database server (to change the connectivity information
or change the type of the secondary database server to standard).

Copyright© 2020 HCL Technologies Limited

Comparison of redirection methods

The different redirection methods have different requirements.

The following tables summarize the differences among redirection mechanisms:
Table 1. Redirection methods for DBPATH connectivity

DBPATH Automatic redirection User redirection

When is a client redirected? When the client next tries to connect with a specified
database

When the client next tries to connect with a specified
database

Do clients require being restarted to be
redirected?

No Yes

What is the scope of the redirection? Individual clients redirected Individual clients redirected

Are changes to environment variables required? No No

Table 2. Redirection methods for Connectivity information

Connectivity
information Automatic redirection User redirection

When is a client
redirected?

After the administrator changes the connectivity information, when
the client next tries to establish a connection with a database server

After the administrator changes the connectivity information, when
the client next tries to establish a connection with a database server

Do clients require being
restarted to be
redirected?

No Yes

What is the scope of the
redirection?

All clients that use a given database server redirected Individual clients redirected

Are changes to
environment variables
required?

No No

Table 3. Redirection methods for INFORMIXDIR connectivity

Part VI: Administering 349

https://www.hcltech.com/

INFORMIXDIR Automatic redirectionINFORMIXDIR Automatic redirection

When is a client redirected? When the client restarts and reads a new value for the INFORMIXSERVER environment variable

Do clients require being restarted to be redirected? Yes

What is the scope of the redirection? Individual clients redirected

Are changes to environment variables required? Yes

Table 4. Redirection methods for Connection Manager connectivity
Connection Manager Automatic redirection

When is a client redirected? When the configured service level agreement (SLA) is attained.

Do clients require being restarted to be redirected? No

What is the scope of the redirection? Individual clients redirected

Are changes to environment variables required? No

Copyright© 2020 HCL Technologies Limited

Recover HDR and RS clusters after failure

When you restore the HDR or RS cluster back to the original configuration, you might need to restore critical media, as well as restart and configure servers in the cluster.

The result of a disk failure depends on whether the disk failure occurs on the primary or the secondary database server, whether the chunks on the disk contain critical
media (the root dbspace, a logical-log file, or the physical log), and whether the chunks are mirrored.

If chunks are mirrored, you can perform recovery just as you would for a standard database server that used mirroring.

If chunks are not mirrored, the procedure for restoring a primary database server depends on whether the disk that failed contains critical media:

If the disk contains critical media, the primary database server fails. You must perform a full restore using the primary dbspace backups (or the secondary dbspace
backups if a secondary database server was switched to standard mode and activity redirected).
If the disk does not contain critical media, you can restore the affected dbspaces individually with a warm restore. A warm restore consists of two parts: first a
restore of the failed dbspace from a backup and next a logical restore of all logical-log records written since that dbspace backup. You must back up all logical-log
files before you perform the warm restore.

If chunks are not mirrored, a secondary database server fails if the disk contains critical media but remains online if the disk does not contain critical media. In both cases,
you must perform a full restore using the dbspace backups on the primary database server. In the second case, you cannot restore selected dbspaces from the secondary
dbspace backup because they might now deviate from the corresponding dbspaces on the primary database server. You must perform a full restore.

Recovering a cluster after critical data is damaged
 If one of the database servers in a high-availability cluster experiences a failure that damages the root dbspace, the dbspace that contains logical-log files, or the

dbspace that contains the physical log, you must treat the failed database server as if it has no data on the disks as is being started for the first time. Use the
functioning database server with the intact disks as the database server with the data.
Restarting HDR or RS clusters after a network failure

 After a network failure, the HDR or RS cluster might need to be restarted. After a network failure, the primary database server is in online mode, and the secondary
database server is in read-only mode. Replication is turned off on both database servers (state = off).
Restarting HDR or RS clusters if the secondary server fails

 If you must restart HDR or an RS cluster after a failure of a secondary server, in addition to starting the secondary server, you might need to perform a logical log
restore on the secondary server.
Recovering an HDR cluster after the secondary server became the primary server

 If a secondary server in an HDR cluster became the primary server after the original primary server failed, you can use a script to reestablish the original primary
and convert the current primary server back to a secondary server.
Restart if the primary server fails

 The process for restarting an HDR or RS cluster after the primary server fails depends on whether a secondary server became the primary server, and the method
by which the secondary server became the primary server.

Related reference:
 Recovering a cluster after critical data is damaged

Copyright© 2020 HCL Technologies Limited

Recovering a cluster after critical data is damaged

If one of the database servers in a high-availability cluster experiences a failure that damages the root dbspace, the dbspace that contains logical-log files, or the dbspace
that contains the physical log, you must treat the failed database server as if it has no data on the disks as is being started for the first time. Use the functioning database
server with the intact disks as the database server with the data.

Primary server failure
For the following steps, assume that the configuration consists of a primary server named srv_A and an HDR secondary server named srv_B. The steps for restarting an RS
cluster are the similar.

To restart HDR after a critical media failure:

1. The DRAUTO configuration parameter on srv_B affects what you do next

350 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

If it is set to 0, then you must convert the server to the primary server by running the onmode -d make primary command.
If it is set to 1, then convert the server to the primary server by running the onmode -d make primary command.
If it is set to 2, the secondary database server becomes a primary database server as soon as the connection ends when the old primary server fails.

2. Restore srv_A (the primary database server) from the last dbspace backup.
3. Use the onmode -d command to set srv_A to an HDR secondary database server and to start HDR.

The onmode -d command starts a logical recovery from the logical-log files on srv_B. If logical recovery cannot complete because you backed up and freed logical-
log files on srv_B, HDR does not start until you perform the next step.

4. Apply the logical-log files from srv_B (the new primary database server), which were backed up to tape. The HDR pair is now operational; however the roles of
srv_A and srv_B are swapped. To swap srv_A and srv_B back to their original roles, follow the instructions: Recovering an HDR cluster after the secondary server
became the primary server.

Table 1. Steps for restarting HDR after a critical media failure on the primary database server
Step On the primary database server (svr_A) On the secondary database server (svr_B)

1. onmode command
onmode -d make primary srv_A

2. ontape command

ontape -p

ON-Bar command

onbar -r -p

3. onmode command
onmode -d secondary srv_B

4. ontape command
ontape -l

ON-Bar command

onbar -r -l

Secondary server failure
If the secondary database server suffers a critical media failure, recover the cluster by following the steps for starting a cluster for the first time.

Primary and secondary server failure
In the unfortunate event that both of the computers that are running database servers in a replication pair experience a failure that damages the root dbspace, the
dbspaces that contain logical-log files or the physical log, you must restart the cluster.

To restart a high-availability cluster after a critical media failure on both database servers:

1. Restore the primary database server from the storage space and logical-log backup.
2. After you restore the primary database server, treat the other failed database server as if it had no data on the disks and you were starting the high-availability

cluster for the first time.

Related concepts:
 Recover HDR and RS clusters after failure

Related tasks:
 Starting HDR for the First Time

Copyright© 2020 HCL Technologies Limited

Restarting HDR or RS clusters after a network failure

After a network failure, the HDR or RS cluster might need to be restarted. After a network failure, the primary database server is in online mode, and the secondary
database server is in read-only mode. Replication is turned off on both database servers (state = off).

Restarting the cluster might not be necessary because the primary database server attempts to reconnect every 10 seconds and displays a message regarding the
inability to connect every 2 minutes.

If the cluster does not restart automatically, when the connection is reestablished, you can restart the cluster by running the following commands on the secondary
server:

onmode -d secondary primary_name

Copyright© 2020 HCL Technologies Limited

Restarting HDR or RS clusters if the secondary server fails

If you must restart HDR or an RS cluster after a failure of a secondary server, in addition to starting the secondary server, you might need to perform a logical log restore on
the secondary server.

Part VI: Administering 351

https://www.hcltech.com/
https://www.hcltech.com/

The steps assume that you have been backing up logical-log files on the primary database server as necessary since the failure of the secondary database server.

Table 1. Steps in restarting after a failure on the secondary database server

Step On the primary On the secondary

1. The primary database server must be in online mode. oninit
If you receive the following message in the message log, continue with step 2:

DR: Start Failure recovery from tape

2. ontape command
ontape -l

ON-Bar command

onbar -r -l

Copyright© 2020 HCL Technologies Limited

Recovering an HDR cluster after the secondary server became the primary server

If a secondary server in an HDR cluster became the primary server after the original primary server failed, you can use a script to reestablish the original primary and
convert the current primary server back to a secondary server.

Suppose the primary server, named srv_pri, has encountered an error that has caused it to fail over to an HDR secondary server named srv_hdr_sec. At this point, the
primary server is srv_hdr_sec, and any other secondary servers in the cluster are now pointing to srv_hdr_sec.

To restore the cluster to the way it was before srv_pri failed over, follow these steps:

1. Initialize srv_pri as the HDR secondary server by running the appropriate command:
UNIX systems:

$INFORMIXDIR/bin/hdrmksec.sh srv_hdr_sec

Windows systems:

hdrmksec.bat srv_hdr_sec

2. Change srv_pri to the primary server by running:

onmode -d make primary srv_pri

This command makes srv_pri the primary server, and redirects any other secondary servers in the cluster to point to the new primary server. The command also
shuts down the old HDR primary (srv_hdr_sec) because only a single primary server can exist in a high-availability environment.

3. Initialize srv_hdr_sec as the HDR secondary server by running the following command:
On UNIX systems:

$INFORMIXDIR/bin/hdrmksec.sh srv_pri

On Windows systems:

hdrmksec.bat srv_pri

Copyright© 2020 HCL Technologies Limited

Restart if the primary server fails

The process for restarting an HDR or RS cluster after the primary server fails depends on whether a secondary server became the primary server, and the method by which
the secondary server became the primary server.

The secondary database server was not changed to a standard database server
If you must restart an HDR or RS cluster after a failure of the primary database server if the secondary database server is not changed to standard, start the primary
database server by using the oninit command.

The secondary database server was changed to a standard database server manually
If you must restart an HDR or RS cluster after a failure of the primary database server, and you have manually changed the secondary database server to be a standard
database server, complete the steps in the following table.

Table 1. Steps to restart if you changed the secondary database server to standard

Step On the primary database server On the secondary database server

1. onmode -s
This step takes the secondary database server (now
standard) to quiescent mode. All clients that are
connected to this database server must disconnect.
Applications that perform updates must be redirected
to the primary.

352 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Step On the primary database server On the secondary database server

2. onmode -d secondary prim_name

3. oninit
If all the logical-log records that were written to the secondary database server are still on the
secondary database server disk, the primary database server recovers these records from that
disk when you issue the oninit command.

If you have backed up and freed the logical-log files on the secondary, the records in these
files are no longer on disk. In this case, you are prompted to recover these logical-log files
from tape (step 4).

For ontape users:

If you want to read the logical-log records over the network, set the logical-log tape device to a
device on the computer that is running the secondary database server.

4. If you are prompted to recover logical-log records from tape, perform this step.
ontape command

ontape -l

ON-Bar command

onbar -r -l

The secondary database server was changed to a standard database server automatically
If you must restart an HDR or RS cluster after a failure of the primary database server, and the secondary database server was automatically changed to a standard
database server, complete the steps shown in the following table.

Table 2. Steps to restart if you changed the secondary database server to standard automatically
Step On the primary database server On the secondary database server

1. % oninit
If DRAUTO = 1, the type of this database server is set to primary.

If DRAUTO = 2, the type of this database server is set to secondary when it is restarted.

If all the logical-log records that were written to the secondary database server are still on the
secondary database server disk, the primary database server recovers these records from that
disk when you issue the oninit command.

If logical-log files that you have backed up and freed are on the secondary database server,
the records in these files are no longer on disk. In this case, you are prompted to recover these
logical-log files from tape (step 2).

For ontape users:

Set the logical-log tape device to a device on the computer running the secondary
database server.

If DRAUTO = 1, the secondary database server
automatically goes through graceful shutdown when
you bring the primary back up. This ensures that all
clients are disconnected. The type is then switched
back to secondary. Any applications that perform
updates must be redirected back to the primary
database server.

If DRAUTO = 2, the secondary database server
switches automatically to primary. The old primary
database server becomes a secondary database
server after it restarts and connects to the other
server and determines that it is now a primary
database server.

2. If you are prompted to recover logical-log records from tape, perform this step.

ontape command

% ontape -l

ON-Bar command

onbar -r -l

Related concepts:
 Automatic switchover

Copyright© 2020 HCL Technologies Limited

Recovering a shared-disk cluster after data is damaged

If a shared-disk cluster fails, you must perform a restore of affected dbspaces. The type of restore that you need to perform depends on whether critical data is damaged.

Related concepts:
 Backup and restore with high-availability clusters

Critical data is damaged
If the primary server experiences a failure that damages the root dbspace, the dbspace that contains logical-log files, or the dbspace that contains the physical log, you
must treat the failed database server as if it has no data on the disks. You must perform a full restore of the primary server. In this situation, the primary server and the SD
secondary servers are offline.
To recover a shared-disk cluster after critical media failure:

Part VI: Administering 353

https://www.hcltech.com/

1. Perform a full restore of the primary server. Run one of the following commands, depending on whether the backup was performed with ON-Bar or the ontape
utility:

onbar -r
ontape -r

The primary server restarts after the restore is complete.
2. Restart the SD secondary servers.

Alternatively, you can perform a cold restore of the critical dbspaces on the primary server, restart the SD secondary servers, and then perform a warm restore of non-
critical dbspaces.

Critical data is not damaged
If a disk that does not contain critical media fails, you can restore the affected dbspaces with a warm restore. In this situation the primary server and the SD secondary
servers are online.
To recover non-critical data in a shared-disk cluster:

1. Shut down and restart the SD secondary servers.
2. Perform a warm restore of the affected dbspaces. Run one of the following commands, depending on whether the backup was performed with ON-Bar or the

ontape utility:
onbar -r with the names of the dbspaces to restore
ontape -r -D with the names of the dbspaces to restore

Copyright© 2020 HCL Technologies Limited

Recovering an SD cluster after the secondary server became the primary server

If a secondary server in an SD cluster became the primary server after the original primary server failed, you can use a script to reestablish the original primary and
convert the current primary server back to a secondary server.

In this example, the primary server, named srv_pri, has failed over to an SD secondary server named srv_sds_sec. At this point, the primary server is srv_sds_sec, and any
other secondary servers in the cluster are now pointing to srv_sds_sec. To restore the cluster to the way it was before srv_pri failed over, follow these steps:

1. If necessary, set the following parameters in the onconfig file of srv_pri:

SDS_ENABLE 1
SDS_PAGING <path 1>,<path 2>
SDS_TEMPDBS <dbsname>,<dbspath>,<pagesize>,<offset>,<size>

The dbsname value must be unique. In addition, the dbsname must be unique among all existing dbspaces, blobspaces, and sbspaces, including those (possibly
disabled) temporary spaces that are inherited from a primary server. If you have multiple SD secondary servers, the dbsname value must be unique for each server
and not shared with any other SD secondary server or the primary server. See Setting up a shared disk secondary server for more information about setting these
parameters.

2. Initialize srv_pri as an SD secondary server by running the oninit command on srv_pri.
3. Perform a manual failover of srv_pri to make it the primary server:

onmode –d make primary srv_pri

The previous command removes srv_sds_sec from the cluster and makes srv_pri the primary server.
4. Restore srv_sds_sec as an SD secondary server by running the oninit command on srv_sds_sec.

Copyright© 2020 HCL Technologies Limited

Distributed data

Multiphase commit protocols
 Manually recovering from failed two-phase commit

Copyright© 2020 HCL Technologies Limited

Multiphase commit protocols

A two-phase commit protocol ensures that transactions are uniformly committed or rolled back across multiple database servers. You can use IBM® Informix® database
servers with IBM Informix Enterprise Gateway products or transaction managers to manipulate data in non-Informix databases. Distributed queries across IBM Informix
database servers support two-phase commit.

The heterogeneous commit protocol ensures that updates to one or more IBM Informix databases and one non-Informix database in a single transaction are uniformly
committed or rolled back.

These topics contain information about the use of the two-phase commit protocol. For information about recovering manually from a failed two-phase commit transaction,
see Manually recovering from failed two-phase commit.

These topics also contain information about using transaction support for XA-compliant, external data sources, which can participate in two-phase commit transactions.
See Informix transaction support for XA-compliant, external data sources.

354 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Transaction managers
Two-phase commit protocol
Independent actions
Two-phase commit protocol errors
Two-phase commit and logical-log records
Configuration parameters used in two-phase commits
Heterogeneous commit protocol

Copyright© 2020 HCL Technologies Limited

Transaction managers

Transaction managers support two-phase commit and roll back. For example, if your database is IBM® Informix®, your accounting system is Oracle, and your remittance
system is Sybase, you can use a transaction manager to communicate between the different databases. You also can use transaction managers to ensure data consistency
between IBM Informix or non-Informix databases by using distributed transactions instead of Enterprise Replication or High-Availability Data Replication.

TP/XA Library with a transaction manager
 Microsoft Transaction Server (MTS/XA)

 Informix transaction support for XA-compliant, external data sources
 XA in high-availability clusters

 The X/Open Distributed Transaction Processing (DTP) Model allows an updatable secondary server in a high-availability cluster to serve as a resource manager in a
distributed transaction.
Loosely-coupled and tightly-coupled modes

Copyright© 2020 HCL Technologies Limited

TP/XA Library with a transaction manager

A global transaction is a distributed query where more than one database server is involved in the query. A global transaction environment has the following parts:

The client application
The resource manager (IBM® Informix® database server)
The transaction manager (vendor software)

TP/XA is a library of functions that lets the database server act as a resource manager in the X/Open DTP environment. Install the TP/XA library as part of IBM Informix
ESQL/C to enable communication between a third-party transaction manager and the database server. The X/Open environment supports large-scale, high-performance
OLTP applications.

Use TP/XA when your database has the following characteristics:

Data is distributed across multivendor databases
Transactions include IBM Informix and non-Informix data

Related concepts:
 XA in high-availability clusters

Copyright© 2020 HCL Technologies Limited

Microsoft Transaction Server (MTS/XA)

The database server supports the Microsoft Transaction Server (MTS/XA) as a transaction manager in the XA environment. To use MTS/XA, install IBM® Informix® Client
Software Development Kit, the latest version of IBM Informix ODBC Driver, and MTS/XA. MTS/XA works on Windows. For more information, contact IBM Informix
Technical Support, and see the Informix Client Products Installation Guide and the MTS/XA documentation.

Related concepts:
 XA in high-availability clusters

Copyright© 2020 HCL Technologies Limited

Informix transaction support for XA-compliant, external data sources

The IBM® Informix® Transaction Manager, which is an integral part of , not a separate module, recognizes XA-compliant, external data sources. These data sources can
participate in two-phase commit transactions.

The transaction manager runs support routines for each XA-compliant, external data source that participates in a distributed transaction at a particular transactional
event, such as prepare, commit, or rollback. This interaction conforms to X/Open XA interface standards.

Transaction support for XA-compliant, external data sources, which are also called resource managers, enables you to:

Create XA-compliant, external data source types and instances of XA-compliant, external data sources.

Part VI: Administering 355

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Create or modify a user-defined routine (UDR), virtual table interface, or virtual index interface to enable XA-compliant data sources to provide data access
mechanisms for external data from XA-compliant data sources.
The MQ extension is an example of a set of UDRs that provide this type of external data access.

Register XA-compliant, external data sources with .
Unregister XA-compliant, external data sources.
Use multiple XA-compliant, external data sources within the same global transaction.

The transaction coordination with an XA-compliant, external data source is supported only in IBM Informix logged databases and ANSI-compliant databases, since these
databases support transactions. Transaction coordination with an XA-compliant, external data source is not supported in non-logged databases.

You can use the following DDL statements, which are extensions to SQL statements to manage XA data source types and data sources:

Statement Description

CREATE XADATASOURCE TYPE Creates a type of XA-compliant, external data source

CREATE XADATASOURCE Creates an instance of an XA-compliant, external data
source

DROP XADATASOURCE Deletes an instance of an XA-compliant, external data source

DROP XADATASOURCE TYPE Deletes a type of XA-compliant, external data source

For more information about these statements, see the IBM Informix Guide to SQL: Syntax.

The interaction between IBM Informix and an XA-compliant, external data source occurs through a set of user-defined XA-support routines, such as xa_open, xa_end,
xa_commit, and xa_prepare. You create these support routines before using the CREATE XADATASOURCE TYPE statement. For more information, see the IBM Informix
DataBlade API Programmer's Guide.

After you create an external XA-compliant data source, you can register the data source to a current transaction and you can unregister the data source using the
mi_xa_register_xadatasource() or ax_reg() and mi_xa_unregister_xadatasource() or ax_unreg() functions. In a distributed environment, you must register a data
source at the local, coordinator server. Registration is transient, lasting only for the duration of the transaction. For more information about using these functions, see the
IBM Informix DataBlade API Function Reference and the IBM Informix DataBlade API Programmer's Guide.

Use the following onstat options to display information about transactions involving XA-compliant data sources:

The onstat option What XA-compliant data source information this command displays

onstat -x Displays information about XA participants in a transaction.

onstat -G Displays information about XA participants in a global transaction.

onstat -g ses session id Displays session information, including information about XA data sources participating in a
transaction.

The IBM Informix MQ extension provides external data access mechanisms for XA data sources.

Related concepts:
 XA in high-availability clusters

Related information:
 MQ Messaging

Copyright© 2020 HCL Technologies Limited

XA in high-availability clusters

The X/Open Distributed Transaction Processing (DTP) Model allows an updatable secondary server in a high-availability cluster to serve as a resource manager in a
distributed transaction.

There are three types of participants in any XA global transaction:

Application Program (AP): Defines transaction boundaries and specifies actions that constitute the transaction branch.
Resource Manager (RM): Provides access to the resources, such as databases.
Transaction Manager (TM): Assigns identifier (XID) to transaction branches, monitors transaction progress, coordinates the transaction branches into completion
and failure recovery.

In a high-availability cluster, sessions are able to create or attach to a transaction branch from any server in the cluster. For example, a transaction branch detached from
server_1 can be attached from server_2. The application can connect to the cluster using the Connection Manager without tracking the server on which the transaction
began. The transaction manager can also connect to the cluster using the Connection Manager to complete an XA transaction by committing the transaction, rolling it
back, or forgetting it, for both loosely and tightly coupled transactions (see Loosely-coupled and tightly-coupled modes).

All global transaction branches started from a secondary server are redirected to the primary server using the existing proxy interface. The primary server starts and
maintains all transaction branches and performs all requested work associated with the branches.

When an XA transaction is started on an updatable secondary server, a corresponding XA transaction is started on the primary server. The XA transaction on the primary
server executes the full life cycle of an XA transaction (start, end, prepare, and commit or roll back). XA transactions on secondary servers are used to support queries that
are not redirected to the primary server. When a call to the xa_end() function is issued, the XA transaction is freed and the user session is detached from the XA
transaction. All XA transaction requests and all write operations issued within the XA transaction are redirected to the primary server.

The following features are specific to the Informix® XA implementation:

All XA interface requests are available on updatable secondary servers (see Database updates on secondary servers.
Starting, preparing, and committing or rolling back XA transactions from an updatable secondary server is supported.
The xa_recover() function, which obtains a list of prepared transaction branches from a resource manager, is supported.
XA transaction branch migration among high-availability cluster servers is supported. Any server in a cluster can attach to an XA transaction branch irrespective of
whether the transaction branch was originated from it.

356 Part VI: Administering

https://www.hcltech.com/

XA clients and the Transaction Manager can connect to any high-availability cluster server using the Connection Manager (see Connection management through the
Connection Manager).
Redirection of XA requests from secondary servers to the primary server is supported.
Transaction survival is supported for XA transactions, with the exception of transaction completion after failover (see Transaction completion during cluster
failover).
If a secondary server on which a redirected XA transaction is running fails, the transaction is rolled back.
Support is provided for SQL transactions that run within the XA environment but which are outside the XA transaction

The following restrictions exist for XA transactions running on secondary servers:

Resuming a suspended global transaction branch from a different user session (on the same or different secondary server) is not supported.
A user session cannot attach to a global transaction branch that is associated with a different user session on another secondary server.
XA transactions have the same restrictions as other data on secondary servers. See Database updates on secondary servers.
XA transactions cannot be started on read-only secondary servers. If an application attempts to create a new XA transaction on a read-only secondary server, it
receives XA error code XAER_RMERR. In addition, running xa_prepare(), xa_commit(), or xa_rollback() on a read-only secondary server returns error code
XA_NOTA (-4).
The following XA APIs are supported on read-only secondary servers:

xa_open()
xa_close()

Important: If you are using the .NET Framework with the Microsoft Transaction Server to manage XA transactions on a high availability cluster, you must use the
TransactionScope class instead of the ServiceConfig class. The TransactionScope class is available in .NET Framework 3.5.
Related concepts:

 High availability and scalability
Database updates on secondary servers
Related reference:

 TP/XA Library with a transaction manager
Microsoft Transaction Server (MTS/XA)
Informix transaction support for XA-compliant, external data sources
Loosely-coupled and tightly-coupled modes

Copyright© 2020 HCL Technologies Limited

Loosely-coupled and tightly-coupled modes

The database server supports XA global transactions in loosely coupled and tightly coupled modes:

Loosely coupled mode means that the different database servers coordinate transactions, but do not share resources. The records from all branches of the
transactions display as separate transactions in the logical log.
Tightly coupled mode means that the different database servers coordinate transactions and share resources such as locking and logging. The records from all
branches of the transactions display as a single transaction in the logical log.

The Tuxedo Transaction Manager, provided by BEA systems, supports loosely coupled mode. Tuxedo operates on both UNIX and Windows.

Windows only: The MTS/XA Transaction Manager, which operates only on Windows, supports the tightly coupled mode. MTS tightly coupled transaction support on the
database server includes:

Support for application programs with two tiers (a business-logic layer and a data-access layer).
Connection pooling and session pooling.

MTS tightly coupled transaction support does not affect existing loosely coupled-transaction support. The same database server can use both loosely coupled and tightly
coupled transaction support at the same time.

MTS tightly coupled transaction support has the following restrictions:

Temporary tables are limited to one transaction branch. Different transaction branches within one global transaction cannot share a temporary table.
Different transaction branches within one global transaction cannot share cursors.
Different transaction branches within one global transaction cannot share an isolation level or lock-wait mode. The isolation level and lock-wait mode of each
transaction branch must be set individually or set to the default level. If you want the same isolation level for all transaction branches, you must use SQL to specify
this information for each transaction branch.

For a complete list of supported transaction managers, contact your marketing representative.

Related concepts:
 XA in high-availability clusters

Copyright© 2020 HCL Technologies Limited

Two-phase commit protocol

The two-phase commit protocol provides an automatic recovery mechanism in case a system or media failure occurs during execution of the transaction. The two-phase
commit protocol ensures that all participating database servers receive and implement the same action (either to commit or to roll back a transaction), regardless of local
or network failure.

If any database server is unable to commit its portion of the transaction, all database servers participating in the transaction must be prevented from committing their
work.

When the two-phase commit protocol is used

Part VI: Administering 357

https://www.hcltech.com/
https://www.hcltech.com/

Two-phase commit concepts
Phases of the two-phase commit protocol
How the two-phase commit protocol handles failures
Presumed-end optimization

Copyright© 2020 HCL Technologies Limited

When the two-phase commit protocol is used

A database server automatically uses the two-phase commit protocol for any transaction that modifies data on multiple database servers.

For example, suppose three database servers that have the names australia, italy, and france, are connected, as shown in the following figure.
Figure 1. Connected database servers

If you run the commands shown in the following example, the result is one update and two inserts at three different database servers.

CONNECT TO stores_demo@italy
BEGIN WORK
 UPDATE stores_demo:manufact SET manu_code = 'SHM' WHERE manu_name = 'Shimara'
 INSERT INTO stores_demo@france:manufact VALUES ('SHM', 'Shimara', '30')
 INSERT INTO stores_demo@australia:manufact VALUES ('SHM', 'Shimara', '30')
COMMIT WORK

Copyright© 2020 HCL Technologies Limited

Two-phase commit concepts

Every global transaction has a coordinator and one or more participants, defined as follows:

The coordinator directs the resolution of the global transaction. It decides whether the global transaction must be committed or stopped.
The two-phase commit protocol always assigns the role of coordinator to the current database server. The role of coordinator cannot change during a single
transaction. In the sample transaction in When the two-phase commit protocol is used, the coordinator is italy. If you change the first line in this example to the
following statement, the two-phase commit protocol assigns the role of coordinator to france:

CONNECT TO stores_demo@france

Use the onstat -x option to display the coordinator for a distributed transaction. For more information, see Monitor a global transaction.

Each participant directs the execution of one transaction branch, which is the part of the global transaction involving a single local database. A global transaction
includes several transaction branches when:

An application uses multiple processes to work for a global transaction
Multiple remote applications work for the same global transaction

In When the two-phase commit protocol is used, the participants are france and australia. The coordinator database server, italy, also functions as a participant
because it is also doing an update.

The two-phase commit protocol relies on two kinds of communication, messages and logical-log records:

Messages pass between the coordinator and each participant. Messages from the coordinator include a transaction identification number and instructions (such as
prepare to commit, commit, or roll back). Messages from each participant include the transaction status and reports of action taken (such as can commit or
cannot commit, committed, or rolled back).
Logical-log records of the transaction are kept on disk or tape to ensure data integrity and consistency, even if a failure occurs at a participating database server
(participant or coordinator).
For more details, see Two-phase commit and logical-log records.

Copyright© 2020 HCL Technologies Limited

Phases of the two-phase commit protocol

In a two-phase commit transaction, the coordinator sends all the data modification instructions (for example, inserts) to all the participants. Then, the coordinator starts
the two-phase commit protocol. The two-phase commit protocol has two parts, the precommit phase and the postdecision phase.

Precommit phase
 Postdecision phase

Copyright© 2020 HCL Technologies Limited

Precommit phase

358 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

During the precommit phase, the coordinator and participants perform the following dialog:

Coordinator
The coordinator directs each participant database server to prepare to commit the transaction.

Participants
Every participant notifies the coordinator whether it can commit its transaction branch.

Coordinator
The coordinator, based on the response from each participant, decides whether to commit or roll back the transaction. It decides to commit only if all participants
indicate that they can commit their transaction branches. If any participant indicates that it is not ready to commit its transaction branch (or if it does not respond),
the coordinator decides to end the global transaction.

Copyright© 2020 HCL Technologies Limited

Postdecision phase

During the postdecision phase, the coordinator and participants perform the following dialog:

Coordinator
The coordinator writes the commit record or rollback record to the coordinator's logical log and then directs each participant database server to either commit or
roll back the transaction.

Participants
If the coordinator issued a commit message, the participants commit the transaction by writing the commit record to the logical log and then sending a message to
the coordinator acknowledging that the transaction was committed. If the coordinator issued a rollback message, the participants roll back the transaction but do
not send an acknowledgment to the coordinator.

Coordinator
If the coordinator issued a message to commit the transaction, it waits to receive acknowledgment from each participant before it ends the global transaction. If
the coordinator issued a message to roll back the transaction, it does not wait for acknowledgments from the participants.

Copyright© 2020 HCL Technologies Limited

How the two-phase commit protocol handles failures

The two-phase commit protocol is designed to handle system and media failures in such a way that data integrity is preserved across all the participating database
servers. The two-phase commit protocol performs an automatic recovery if a failure occurs.

Types of failures that automatic recovery handles
 Administrator's role in automatic recovery

 Automatic-recovery mechanisms for coordinator failure
 Automatic-recovery mechanisms for participant failure

Copyright© 2020 HCL Technologies Limited

Types of failures that automatic recovery handles

The following events can cause the coordinating thread or the participant thread to terminate or hang, thereby requiring automatic recovery:

System failure of the coordinator
System failure of a participant
Network failure
Termination of the coordinating thread by the administrator
Termination of the participant thread by the administrator

Copyright© 2020 HCL Technologies Limited

Administrator's role in automatic recovery

The only role of the administrator in automatic recovery is to bring the coordinator or participant (or both) back online after a system or network failure.
Important: A slow network cannot trigger automatic recovery. None of the recovery mechanisms described here go into effect unless a coordinator system fails, a network
fails, or the administrator terminates the coordinating thread.

Copyright© 2020 HCL Technologies Limited

Automatic-recovery mechanisms for coordinator failure

If the coordinating thread fails, each participant database server must decide whether to initiate automatic recovery before it commits or rolls back the transaction or after
it rolls back a transaction. This responsibility is part of the presumed-end optimization. (See Presumed-end optimization.)

Part VI: Administering 359

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Automatic-recovery mechanisms for participant failure

Participant recovery occurs whenever a participant thread precommits an item of work that is terminated before the two-phase commit protocol can be completed. The
goal of participant recovery is to complete the two-phase commit protocol according to the decision reached by the coordinator.

Participant recovery is driven by either the coordinator or the participant, depending on whether the coordinator decided to commit or to roll back the global transaction.

Important: To support automatic recovery after a subordinate server is shut down or restarted while a cross-server transaction is open, the sqlhosts file must include an
entry for every database server from which distributed operations might be initiated. During automatic recovery, the name of the coordinator is recovered from the logical
logs, and the subordinate server reconnects with the coordinator to complete the transaction. Because the coordinator always identifies itself to the participants using the
name that is in the DBSERVERNAME configuration parameter in its own onconfig file, the DBSERVERNAME setting of the coordinator must be an Internet protocol
connection name known to the participants, but you can also define at least one DBSERVERALIASES setting with the correct connection protocol for connectivity between
the coordinator and the subordinate servers. The subordinate server must be able to connect to the coordinator using either the DBSERVERNAME setting or a
DBSERVERALIASES setting of the coordinator.

Copyright© 2020 HCL Technologies Limited

Presumed-end optimization

Presumed-end optimization is a term that describes how the two-phase commit protocol handles the rollback of a transaction.

Rollback is handled in the following manner. When the coordinator determines that the transaction must be rolled back, it sends a message to all the participants to roll
back their piece of work. The coordinator does not wait for an acknowledgment of this message, but proceeds to close the transaction and remove it from shared memory.
If a participant tries to determine the status of this transaction—that is, find out whether the transaction was committed or rolled back (during participant recovery, for
example)—it does not find any transaction status in shared memory. The participant must interpret this as meaning that the transaction was rolled back.

Copyright© 2020 HCL Technologies Limited

Independent actions

An independent action in the context of two-phase commit is an action that occurs independently of the two-phase commit protocol. Independent actions might or might
not be in opposition to the actions that the two-phase commit protocol specifies. If the action is in opposition to the two-phase commit protocol, the action results in an
error or a heuristic decision. Heuristic decisions can result in an inconsistent database and require manual two-phase commit recovery. Manual recovery is an extremely
complicated administrative procedure that you must try to avoid. (For an explanation of the manual-recovery process, see Manually recovering from failed two-phase
commit.)

Situations that initiate independent action
 Possible results of independent action

 The heuristic rollback scenario
 The heuristic end-transaction scenario

 Monitor a global transaction

Copyright© 2020 HCL Technologies Limited

Situations that initiate independent action

Independent action during a two-phase commit protocol is rare, but it can occur in the following situations:

The participant's piece of work develops into a long-transaction error and is rolled back.
An administrator stops a participant thread during the postdecision phase of the protocol with onmode -z.
An administrator ends a participant transaction (piece of work) during the postdecision phase of the protocol with onmode -Z.
An administrator ends a global transaction at the coordinator database server with onmode -z or onmode -Z after the coordinator issued a commit decision and
became aware of a participant failure. This action always results in an error, specifically error -716.

Copyright© 2020 HCL Technologies Limited

Possible results of independent action

As mentioned earlier, not all independent actions are in opposition to the two-phase commit protocol. Independent actions can yield the following three possible results:

Successful completion of the two-phase commit protocol
An error condition
A heuristic decision

360 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

If the action is not in opposition to the two-phase protocol, the transaction either commits or rolls back normally. If the action ends the global transaction prematurely, an
error condition results. Ending the global transaction at the coordinator is not considered a heuristic decision. If the action is in opposition to the two-phase commit
protocol, a heuristic decision results. All these situations are explained in the sections that follow.

Independent actions that allow transactions to complete successfully
 Independent actions that result in an error condition

 Independent actions that result in heuristic decisions

Copyright© 2020 HCL Technologies Limited

Independent actions that allow transactions to complete successfully

Independent actions are not necessarily in opposition to the two-phase commit protocol. For example, if a piece of work at a participant database server is rolled back
because it developed into a long transaction, and the coordinator issues a decision to roll back the global transaction, the database remains consistent.

Copyright© 2020 HCL Technologies Limited

Independent actions that result in an error condition

If you, as administrator at the coordinator database server, run either onmode -z (stop the coordinator thread) or onmode -Z (stop the global transaction) after the
coordinator issues its final commit decision, you are removing all knowledge of the transaction from shared memory at the coordinator database server.

This action is not considered a heuristic decision because it does not interfere with the two-phase protocol; it is either acceptable, or it interferes with participant recovery
and causes an error.

The action is acceptable any time that all participants are able to commit the transaction without difficulty. In this case, your action to end the transaction forcibly is
superfluous. The indication that you ran onmode -Z reaches the coordinator only when the coordinator is preparing to terminate the transaction.

In practice, however, you would probably consider running onmode -z or onmode -Z at the coordinator database server only if you were attempting to hasten the
conclusion of a global transaction that has remained open for an unusually long period. In this scenario, the source of the problem is probably a failure at some participant
database server. The coordinator has not received acknowledgment that the participant committed its piece of work, and the coordinator is attempting to establish
communication with the participant to investigate.

If you run either onmode -z or onmode -Z while the coordinator is actively trying to reestablish communication, the coordinating thread obeys your instruction to die, but
not before it writes error -716 into the database server message log. The action is considered an error because the two-phase commit protocol was forcibly broken,
preventing the coordinator from determining whether the database is consistent.

Stopping a global transaction at a coordinator database server is not considered a heuristic decision, but it can result in an inconsistent database. For example, if the
participant eventually comes back online and does not find the global transaction in the coordinator shared memory, it rolls back its piece of work, thereby causing a
database inconsistency.

Copyright© 2020 HCL Technologies Limited

Independent actions that result in heuristic decisions

Some independent actions can develop into heuristic decisions when both of the following conditions are true:

The participant database server already sent a can commit message to the coordinator and then rolls back.
The coordinator's decision is to commit the transaction.

When both conditions are true, the net result is a global transaction that is inconsistently implemented (committed by one or more database servers and rolled back by
another). The database becomes inconsistent.

The following two heuristic decisions are possible:

Heuristic rollback (described in The heuristic rollback scenario)
Heuristic end transaction (described in The heuristic end-transaction scenario)

After a heuristic rollback or end transaction occurs, you might be required to perform manual recovery, a complex and time-consuming process. you must understand
heuristic decisions fully in order to avoid them. Always be wary of running onmode -z or onmode -Z within the context of two-phase commit.

Copyright© 2020 HCL Technologies Limited

The heuristic rollback scenario

In a heuristic rollback, either the database server or the administrator rolls back a piece of work that has already sent a can commit message.

Conditions that result in a heuristic rollback
 Results of a heuristic rollback

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 361

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Conditions that result in a heuristic rollback

The following two conditions can cause a heuristic rollback:

The logical log fills to the point defined by the LTXEHWM configuration parameter. (See the topics about configuration parameters in the IBM® Informix®
Administrator's Reference.) The source of the long-transaction condition is a piece of work being performed on behalf of a global transaction.
An administrator executes onmode -z session_id to stop a database server thread that is executing a piece of work being performed on behalf of a global
transaction.

In either case, if the piece of work has already sent a can commit message to its coordinator, the action is considered a heuristic decision.

Condition 1: Logical log fills to a high-watermark
 Condition 2: System administrator executes onmode -z

Copyright© 2020 HCL Technologies Limited

Condition 1: Logical log fills to a high-watermark

Under two-phase commit, a participant database server that is waiting for instructions from the coordinator is blocked from completing its transaction. Because the
transaction remains open, the logical-log files that contain records associated with this transaction cannot be freed. The result is that the logical log continues to fill
because of the activity of concurrent users.

If the logical log fills to the value of the long-transaction high-watermark (LTXHWM) while the participant is waiting, the database server directs all database server
threads that own long transactions to begin rolling them back. If a piece of work that is precommitted is the offending long transaction, the database server has initiated a
heuristic rollback. That is, this database server is rolling back a precommitted piece of work without the instruction or knowledge of the coordinator.

Under two-phase commit, the logical-log files that contain records associated with the piece of work are considered open until an ENDTRANS logical-log record is written.
This type of transaction differs from a transaction involving a single database server where a rollback actually closes the transaction.

The logical log might continue to fill until the exclusive high-watermark is reached (LTXEHWM). If this happens, all user threads are suspended except those that are
currently rolling back or currently committing. In the two-phase commit scenario, the open transaction prevents you from backing up the logical-log files and freeing
space in the logical log. Under these specific circumstances, the logical log can fill completely. If this happens, the participant database server shuts down, and you must
perform a data restore.

Copyright© 2020 HCL Technologies Limited

Condition 2: System administrator executes onmode -z

You, as administrator, can decide to initiate a heuristic rollback of a precommitted piece of work by running onmode -z. You might make this decision because you want to
free the resources that are held by the piece of work. (If you stop the participant thread by running onmode -z, you free all locks and shared-memory resources that are
held by the participant thread even though you do not end the transaction.)

Copyright© 2020 HCL Technologies Limited

Results of a heuristic rollback

These topics describe what happens at both the coordinator and participant when a heuristic rollback occurs and how this process can result in an inconsistent database:

1. At the participant database server where the rollback occurred, a record is placed in the database server logical log (type HEURTX). Locks and resources held by the
transaction are freed. The participant thread writes the following message in the database server message log, indicating that a long-transaction condition and
rollback occurred:

Transaction Completed Abnormally (rollback):

tx=address flags=0xnn

2. The coordinator issues postdecision phase instructions to commit the transaction.
The participant thread at the database server where the heuristic rollback occurred returns error message -699 to the coordinator as follows:

-699 Transaction heuristically rolled back.

This error message is not returned to the application at this point; it is an internal notification to the coordinator. The coordinator waits until all participants respond
to the commit instruction. The coordinator does not determine database consistency until all participants report.

3. The next steps depend on the actions that occur at the other participants. Two situations are possible.

Situation 1: Coordinator issues a commit and all participants report heuristic rollbacks
 Situation 2: Coordinator issued a commit; one participant commits and one reports a heuristic rollback

Copyright© 2020 HCL Technologies Limited

362 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Situation 1: Coordinator issues a commit and all participants report heuristic
rollbacks

The coordinator gathers all responses from participants. If every participant reports a heuristic rollback, the following events occur as a consequence:

1. The coordinator writes the following message to its own database-server message log:

Transaction heuristically rolled back.

2. The coordinator sends a message to all participants to end the transaction.
3. Each participant writes an ENDTRANS record in its logical-log buffer. (The transaction entry is removed from the transaction table.)
4. The coordinator returns error -699 to the application, as follows:

-699 Transaction heuristically rolled back.

5. In this situation, all databases remain consistent.

Copyright© 2020 HCL Technologies Limited

Situation 2: Coordinator issued a commit; one participant commits and one reports a
heuristic rollback

The coordinator gathers all responses from participants. If at least one participant reports a heuristic rollback and at least one reports an acknowledgment of a commit,
the result is called a mixed-transaction result. The following events occur as a consequence:

1. The coordinator writes the following message to its own database server message log:

Mixed transaction result. (pid=nn user=userid)

The pid value is the user-process identification number of the coordinator process. The user value is the user ID associated with the coordinator process.
Associated with this message are additional messages that list each of the participant database servers that reported a heuristic rollback. The additional messages
take the following form:

Participant database server dbservername heuristically rolled back.

2. The coordinator sends a message to each participant that heuristically rolled back its piece of work, directing each one to end the transaction.
3. Each participant writes an ENDTRANS message in its logical-log buffer. (The transaction entry is removed from the transaction table.)
4. The coordinator writes an ENDTRANS message in its logical-log buffer. (The transaction entry is removed from the shared-memory transaction table.)
5. The coordinator returns error -698 to the application, as follows:

-698 Inconsistent transaction. Number and names of servers rolled back.

6. Associated with this error message is the list of participant database servers that reported a heuristic rollback. If many database servers rolled back the
transaction, this list might be truncated. The complete list is always included in the message log for the coordinator database server.

In this situation, examine the logical log at each participant database server site and determine whether your database system is consistent. (See Determine if a
transaction was implemented inconsistently.)

Copyright© 2020 HCL Technologies Limited

The heuristic end-transaction scenario

A heuristic end transaction is an independent action taken by the administrator to roll back a piece of work and remove all information about the transaction from the
transaction table. The heuristic end-transaction process is initiated when the administrator executes the onmode -Z address command.

Whenever you initiate a heuristic end transaction by running onmode -Z, you remove critical information required by the database server to support the two-phase
commit protocol and its automatic-recovery features. If you run onmode -Z, it becomes your responsibility to determine whether your networked database system is
consistent.

When to perform a heuristic end transaction
 How to use onmode -Z

 Action when the transaction is ended heuristically

Copyright© 2020 HCL Technologies Limited

When to perform a heuristic end transaction

You must run the onmode -Z option to initiate a heuristic end transaction in only one, rare, situation. This situation occurs when a piece of work that has been heuristically
rolled back remains open, preventing your logical-log files from becoming free. As a result, the logical log is dangerously close to full.

In general, the coordinator issues its commit-or-rollback decision within a reasonable period of time. However, if the coordinator fails and does not return online to end a
transaction that was heuristically rolled back at your participant database server, you might face a serious problem.

Part VI: Administering 363

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The problem scenario begins in this way:

1. The participant thread that is executing a piece of work on behalf of a global transaction has sent a can commit response to the coordinator.
2. The piece of work waits for instructions from the coordinator.
3. While the piece of work is waiting, the logical log fills past the long-transaction high-watermark.
4. The piece of work that is waiting for instructions is the source of the long transaction. The participant database server directs the executing thread to roll back the

piece of work. This action is a heuristic rollback.
5. The participant continues to wait for the coordinator to direct it to end the transaction. The transaction remains open. The logical log continues to fill.

If the coordinator contacts the participant and directs it to end the transaction in a reasonable period of time, no problem develops. The serious problem arises if the
heuristic rollback occurs at a participant database server and subsequently the coordinator fails, preventing the coordinator from directing the participant to end the
transaction.

As a consequence, the transaction remains open. The open transaction prevents you from backing up logical-log files and freeing space in the logical log. As the logical log
continues to fill, it might reach the point specified by the exclusive-access, long-transaction high-watermark (LTXEHWM). If this point is reached, normal processing is
suspended. At some point after the high-watermark is reached, you must decide if the open transaction is endangering your logical log. The danger is that if the logical log
fills completely, the database server shuts down, and you must perform a data restore.

You must decide whether to end the transaction and protect your system against the possibility of filling the logical log, despite all the problems associated with running
onmode -Z, or to wait and see if communication with the coordinator can be reestablished in time to end the transaction before the logical log fills.

Copyright© 2020 HCL Technologies Limited

How to use onmode -Z

The onmode -Z address command is intended for use only if communication between the coordinator and the participant is broken. To ensure that communication is
really broken, the onmode -Z command does not run unless the thread that was executing the piece of work has been dead for the amount of time specified by
TXTIMEOUT. For more information about this option, see the IBM® Informix® Administrator's Reference.

The address parameter is obtained from onstat -x output. For more information about the onstat -x option, see the IBM Informix Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Action when the transaction is ended heuristically

When you run onmode -Z, you direct the onmode utility to remove the participant transaction entry, which is located at the specified address, from the transaction table.

Two records are written in the logical log to document the action. The records are type ROLLBACK and ENDTRANS, or if the transaction was already heuristically rolled
back, ENDTRANS only. The following message is written to the participant database server message log:

(time_stamp) Transaction Completed Abnormally (endtx): tx=address flags:0xnn user username tty ttyid

The coordinator receives an error message from the participant where the onmode -Z occurred, in response to its COMMIT instruction. The coordinator queries the
participant database server, which no longer has information about the transaction. The lack of a transaction-table entry at the participant database server indicates that
the transaction committed. The coordinator assumes that the acknowledgment message was sent from the participant, but somehow it was not received. Because the
coordinator does not know that this participant's piece of work did not commit, it does not generate messages indicating that the global transaction was inconsistently
implemented. Only the administrator who ran the onmode -Z command is aware of the inconsistent implementation.

Copyright© 2020 HCL Technologies Limited

Monitor a global transaction

Use the onstat -x command to track open transactions and determine whether they have been heuristically rolled back.

For example, in the output, an H flag in the flags field identifies a heuristic rollback, the G flag identifies a global transaction, the L flag indicates loosely coupled mode, and
the T flag indicates tightly coupled mode.

The curlog and logposit fields provide the exact position of a logical-log record. If a transaction is not rolling back, curlog and logposit describe the position of the most
recently written log record. When a transaction is rolling back, these fields describe the position of the most recently “undone” log record. As the transaction rolls back,
the curlog and logposit values decrease. In a long transaction, the rate at which the logposit and beginlg values converge can help you estimate how much longer the
rollback is going to take.

For more information about and an example of onstat -x output, see the IBM® Informix® Administrator's Reference.

You also can use the onstat -u and onstat -k commands to track transactions and the locks that they hold. For details, see the monitoring transactions topics in your IBM
Informix Performance Guide. For a description of the fields that onstat -x displays, see the IBM Informix Administrator's Reference.

On a secondary server, when transaction completion after failover is enabled (by setting the FAILOVER_TX_TIMEOUT configuration parameter), it is possible that two
global transactions might have the same global transaction identifier: one is a local temporary global transaction, and the other is the global transaction that belongs to
the recovery thread. A quick way to tell the real global transaction from the temporary transaction is that the real transaction has a B flag if the transaction has performed
any operations. You can also check the owner of the transaction by using the onstat -g ath command. The temporary global transaction on the secondary server is deleted
after the xa_end() function is called.

The following onstat utility example output illustrates XA transaction support on both primary and secondary servers in a high-availability cluster environment. The onstat
-x, onstat -G, and onstat -ath commands are separately documented, but output from the combined onstat -xG command is of special interest for global transactions.

364 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The examples show each state of a redirected transaction.

In the examples, the global transaction shown running on the secondary server is a temporary transaction. The temporary transaction is used to support the SQL
statements performed on the secondary server (not transactions redirected to the primary server). The temporary transaction is only shown when a user thread is actively
associated with the global transaction branch.

The following example shows output from the onstat -xG command run on a secondary server after an xa_start() function:

Transactions
 est.
address flags userthread locks begin_logpos current logpos isol rb_time retrys coord
7000000104d4190 AT--G 7000000104a7b68 0 - - LC - 0
7000000104d8bd0 ALB-G 7000000104a5aa8 1 180:0x0 180:0x4eb018 DIRTY 0:00 0

Global Transaction Identifiers
address flags isol timeout fID gtl bql data
7000000104d4190 AT--G COMMIT 0 5067085 15 4 000102030405060708090A0B0C0D0E0F000000
7000000104d8bd0 ALB-G DIRTY 0 5067085 15 4 000102030405060708090A0B0C0D0E0F000000

Output from onstat -g ath run on the secondary server:

Threads:
 tid tcb rstcb prty status vp-class name
 317 7000001500902c8 7000000104a7b68 1 cond wait netnorm 1cpu sqlexec
 84 7000001403a7dc0 7000000104a5aa8 3 sleeping secs: 1 5cpu xchg_2.0

Output from onstat -xG run on the primary server:

Transactions
 est.
address flags userthread locks begin_logpos current logpos isol rb_time retrys coord
7000000104d9e60 ATB-M 7000000104a8bc8 2 180:0x4ea018 180:0x4eb018 COMMIT 0:00 0

Global Transaction Identifiers
address flags isol timeout fID gtl bql data
7000000104d9e60 AT--M COMMIT 0 5067085 15 4 000102030405060708090A0B0C0D0E0F000000

The M flag in the previous example indicates that the global transaction was started from a secondary server. Global transactions started on the primary server display a G
flag. The M flag is displayed only on the primary server.

Output from the onstat -g ath|grep 7000000104a8bc8 command:

 196 70000013012d3a8 7000000104a8bc8 1 sleeping secs: 1 4cpu proxyTh

The following example shows output from the onstat -xG command run on secondary server after the xa_end() function:

Transactions
 est.
address flags userthread locks begin_logpos current logpos isol rb_time retrys coord
7000000104d8bd0 ALB-G 7000000104a5aa8 1 180:0x0 180:0x4ee018 DIRTY 0:00 0

Global Transaction Identifiers
address flags isol timeout fID gtl bql data
7000000104d8bd0 ALB-G DIRTY 0 5067085 15 4 000102030405060708090A0B0C0D0E0F000000

Output from the onstat -xG command run on the primary server:

Transactions
 est.
address flags userthread locks begin_logpos current logpos isol rb_time retrys coord
7000000104d9e60 -TB-M 0 2 180:0x4ea018 180:0x4ee018 COMMIT 0:00 0

Global Transaction Identifiers
address flags isol timeout fID gtl bql data
7000000104d9e60 -T--M COMMIT -1 5067085 15 4 000102030405060708090A0B0C0D0E0F000000

Output from the onstat -xG command run on the secondary server after running the xa_prepare() function:

Transactions
 est.
address flags userthread locks begin_logpos current logpos isol rb_time retrys coord
7000000104d8bd0 ALX-G 7000000104a5aa8 1 180:0x0 180:0x4ef018 DIRTY 0:00 0

Global Transaction Identifiers
address flags isol timeout fID gtl bql data
7000000104d8bd0 ALX-G DIRTY 0 5067085 15 4 000102030405060708090A0B0C0D0E0F000000

Output from the onstat -xG command run on the primary server:

Transactions
 est.
address flags userthread locks begin_logpos current logpos isol rb_time retrys coord
7000000104d9e60 -TX-M 0 2 180:0x4ea018 180:0x4ef018 COMMIT 0:00 0

Global Transaction Identifiers
address flags isol timeout fID gtl bql data
7000000104d9e60 -TX-M COMMIT -1 5067085 15 4 0

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 365

https://www.hcltech.com/

Two-phase commit protocol errors

The following two-phase commit protocol errors require special attention from the administrator.

Error number
Description

-698
If you receive error -698, a heuristic rollback has occurred and has caused an inconsistently implemented transaction. The circumstances leading up to this event
are described in Results of a heuristic rollback. For an explanation of how the inconsistent transaction developed and to learn the options available to you, see this
information.

-699
If you receive error -699, a heuristic rollback has occurred. The circumstances leading up to this event are described in Results of a heuristic rollback. For an
explanation of how the inconsistent transaction developed, see this information.

-716
If you receive error -716, the coordinating thread has been terminated by administrator action after it issued its final decision. This scenario is described under
Independent actions that result in an error condition.

Copyright© 2020 HCL Technologies Limited

Two-phase commit and logical-log records

The database server uses logical-log records to implement the two-phase commit protocol. You can use these logical-log records to detect heuristic decisions and, if
necessary, to help you perform a manual recovery. (See Manually recovering from failed two-phase commit.)

The following logical-log records are involved in distributed transactions:

BEGPREP
PREPARE
TABLOCKS
HEURTX
ENDTRANS

For information about these logical-log records, see the chapter on interpreting the logical log in the IBM® Informix® Administrator's Reference.

This section examines the sequence of logical-log records that are written during the following database server scenarios:

Logical-log records when the transaction commits
 Logical-log records written during a heuristic rollback

 Logical-log records written after a heuristic end transaction

Copyright© 2020 HCL Technologies Limited

Logical-log records when the transaction commits

The following figure illustrates the writing sequence of the logical-log records during a successful two-phase commit protocol that results in a committed transaction.
Figure 1. Logical-log records written during a committed transaction

366 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Some of the logical-log records must be flushed from the logical-log buffer immediately; for others, flushing is not critical.

The coordinator's commit-work record (COMMIT record) contains all information required to initiate the two-phase commit protocol. It also serves as the starting point for
automatic recovery in the event of a failure on the coordinator's host computer. Because this record is critical to recovery, it is not allowed to remain in the logical-log
buffer. The coordinator must immediately flush the COMMIT logical-log record.

The participants in the preceding figure must immediately flush both the PREPARE and the COMMIT logical-log records. Flushing the PREPARE record ensures that, if the
participant's host computer fails, fast recovery is able to determine that this participant is part of a global transaction. As part of recovery, the participant might query the
coordinator to learn the final disposition of this transaction.

Flushing the participant's COMMIT record ensures that, if the participant's host computer fails, the participant has a record of what action it took regarding the transaction.
To understand why this information is crucial, consider the situation in which a participant crashes after the PREPARE record is written but before the COMMIT record
flushes. After fast recovery, the PREPARE record is restored, but the COMMIT record is lost (because it was in the logical-log buffer at the time of the failure). The
existence of the PREPARE record would initiate a query to the coordinator about the transaction. However, the coordinator would know nothing of the transaction, because
it ended the transaction after it received the participant's acknowledgment that the commit occurred. In this situation, the participant would interpret the lack of
information as a final direction to roll back the transaction. The two-phase commit protocol requires the participant's COMMIT record to be flushed immediately to prevent
this kind of misunderstanding.

Copyright© 2020 HCL Technologies Limited

Logical-log records written during a heuristic rollback

The following figure illustrates the sequence in which the database server writes the logical-log records during a heuristic rollback. Because a heuristic rollback only
occurs after the participant sends a message that it can commit and the coordinator sends a message to commit, the first phase of this protocol is the same as that shown
in Figure 1. When a heuristic rollback occurs, the rollback is assumed to be the consequence of a long-transaction condition that occurs at the Participant 1 (P1) database
server. The end result is a transaction that is inconsistently implemented. See The heuristic rollback scenario.
Figure 1. Logical-log records written during a heuristic rollback

Copyright© 2020 HCL Technologies Limited

Logical-log records written after a heuristic end transaction

The following figure illustrates the writing sequence of the logical-log records during a heuristic end transaction. The event is always the result of a database server
administrator ending a transaction (see information about the onmode utility in the IBM® Informix® Administrator's Reference) at a participant database server after the
participant has sent a can commit message. In the following figure, the heuristic end transaction is assumed to have occurred at the Participant 1 (P1) database server.
The result is an inconsistently implemented transaction. See The heuristic end-transaction scenario.
Figure 1. Logical-log records written during a heuristic end transaction

Part VI: Administering 367

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Configuration parameters used in two-phase commits

The following two configuration-file parameters are specific to distributed environments:

DEADLOCK_TIMEOUT
TXTIMEOUT

Although both parameters specify timeout periods, the two are independent. For more information about these configuration parameters, see the IBM® Informix®
Administrator's Reference.

Function of the DEADLOCK_TIMEOUT parameter
 Function of the TXTIMEOUT parameter

Copyright© 2020 HCL Technologies Limited

Function of the DEADLOCK_TIMEOUT parameter

If a distributed transaction is forced to wait longer than the number of seconds specified by DEADLOCK_TIMEOUT for a shared-memory resource, the thread that owns the
transaction assumes that a multiserver deadlock exists. The following error message is returned:

-154 ISAM error: deadlock timeout expired - Possible deadlock.

The default value of DEADLOCK_TIMEOUT is 60 seconds. Adjust this value carefully. If you set it too low, individual database servers end transactions that are not
deadlocks. If you set it too high, multiserver deadlocks might reduce concurrency.

Copyright© 2020 HCL Technologies Limited

Function of the TXTIMEOUT parameter

The TXTIMEOUT configuration parameter is specific to the two-phase commit protocol. It is used only if communication between a transaction coordinator and participant
has been interrupted and must be reestablished.

The TXTIMEOUT parameter specifies a period of time that a participant database server waits to receive a commit instruction from a coordinator database server during a
distributed transaction. If the period of time specified by TXTIMEOUT elapses, the participant database server checks the status of the transaction to determine if the
participant must initiate automatic participant recovery.

TXTIMEOUT is specified in seconds. The default value is 300 (five minutes). The optimal value for this parameter varies, depending on your specific environment and
application. Before you modify this parameter, read the explanation How the two-phase commit protocol handles failures.

368 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Heterogeneous commit protocol

Used in the context of IBM® Informix® database servers, the term heterogeneous environment is a group of database servers in which at least one of the database servers
is a different database server. Heterogeneous commit ensures the all-or-nothing basis of distributed transactions in a heterogeneous environment.

Unlike the two-phase commit protocol, the heterogeneous commit protocol supports the participation of a participant that is not Informix. The other participant, called a
gateway participant, must communicate with the coordinator through the IBM Informix gateway.

The database server uses heterogeneous commit protocol when the following criteria are met:

Heterogeneous commit is enabled. (That is, the HETERO_COMMIT configuration parameter is set to 1.)
The coordinator of the commit is a version 7.2 or later IBM Informix.
The gateway participant communicates with the IBM Informix database server through the IBM Informix gateway.
At most, one gateway participant performs an update within a single transaction.

The following figure illustrates this scenario.
Figure 1. Configuration that requires heterogeneous commit for distributed transactions

Gateways that can participate in a heterogeneous commit transaction
 Enable and disable of heterogeneous commit

 How heterogeneous commit works
 Implications of a failed heterogeneous commit

Copyright© 2020 HCL Technologies Limited

Gateways that can participate in a heterogeneous commit transaction

A gateway acts as a bridge between the IBM® Informix® application (in this case, a database server) and a different database server. You can use a gateway to use IBM
Informix applications to access and modify data that is stored in a database that is not IBM Informix.

The following table lists the gateways and corresponding database servers that can participate in a transaction in which the database server uses the heterogeneous
commit protocol.

Table 1. Gateways and corresponding database servers/heterogeneous commit
transaction

Gateway Database servers

IBM Informix Enterprise Gateway with DRDA IBM DB2®, OS/400®, SQL/DS

IBM Informix Enterprise Gateway for EDA/SQL EDA/SQL

IBM Informix Enterprise Gateway Manager Any database server with ODBC
connectivity

Copyright© 2020 HCL Technologies Limited

Enable and disable of heterogeneous commit

Use a text editor to change the HETERO_COMMIT configuration parameter which enables or disables heterogeneous commit: The change takes effect when you shut down
and restart the database server.

When you set HETERO_COMMIT to 1, the transaction coordinator checks for distributed transactions that require the use of heterogeneous commit. When the coordinator
detects such a transaction, it automatically executes the heterogeneous commit protocol.

If you set HETERO_COMMIT to 0 or any number other than 1, the transaction coordinator disables the heterogeneous commit protocol. The following table summarizes
which protocol the transaction coordinator uses, heterogeneous commit or two-phase commit, to ensure the integrity of a distributed transaction.

HETERO_COMMIT setting Gateway participant updated Database server protocol

Disabled No Two-phase commit

Disabled Yes Two-phase commit

Part VI: Administering 369

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

HETERO_COMMIT setting Gateway participant updated Database server protocol

Enabled No Two-phase commit

Enabled Yes Heterogeneous commit

Copyright© 2020 HCL Technologies Limited

How heterogeneous commit works

The heterogeneous commit protocol is a modified version of the standard two-phase commit protocol. The postdecision phase in the heterogeneous commit protocol is
identical to the postdecision phases in the two-phase commit protocol. The precommit phase contains a minor modification, and a new phase, called the gateway commit
phase, is added to the heterogeneous commit protocol.

The following topics explain the modification to the precommit phase and the gateway commit phase. For a detailed explanation of the postdecision phases, see
Postdecision phase.

Precommit phase
 Gateway commit phase

 Heterogeneous commit optimization

Copyright© 2020 HCL Technologies Limited

Precommit phase

The coordinator directs each update participant (except the gateway participant) to prepare to commit the transaction.

If the updates satisfy all deferred constraints, all participants (except the gateway participant) return messages to the coordinator indicating that they can commit their
piece of work.

Copyright© 2020 HCL Technologies Limited

Gateway commit phase

If all participants successfully return a message indicating that they are prepared to commit, the coordinator sends a commit message to the gateway. The gateway in turn
sends a response to the coordinator indicating whether the gateway committed its piece of the transaction. If the gateway commits the transaction, the coordinator
decides to commit the entire transaction. The following figure illustrates this process.
Figure 1. Heterogeneous commit phase that results in a committed transaction

If the gateway fails to commit the transaction, the coordinator rolls back the entire transaction, as the previous figure illustrates.

Copyright© 2020 HCL Technologies Limited

Heterogeneous commit optimization

The database server optimizes the heterogeneous commit protocol when the only participant that receives an update is a non-Informix® database. In this case, the
coordinator sends a single commit message to all participants without invoking the heterogeneous commit protocol.

Copyright© 2020 HCL Technologies Limited

Implications of a failed heterogeneous commit

370 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

At any time during a distributed transaction that the database server processes using heterogeneous commit, the coordinator or any number of participants can fail. The
database server handles these failures in the same way as in the two-phase commit protocol, except in certain instances. The following topics examine these special
instances in detail.

Database server coordinator failure
 Participant failure

 Interpretation of heterogeneous commit error messages

Copyright© 2020 HCL Technologies Limited

Database server coordinator failure

The consistency of data after a coordinator failure depends on the point in the heterogeneous commit process at which the coordinator fails. If the coordinator fails before
sending the commit message to the gateway, the entire transaction is stopped upon recovery, as is the case with two-phase commit.

If the coordinator fails after it writes the commit log record, the entire transaction is committed successfully upon recovery, as is the case with two-phase commit.

If the coordinator fails after it sends the commit message to the gateway but before it writes the commit log record, the remote IBM® Informix® database server sites in
the transaction are stopped upon recovery. This can result in inconsistencies if the gateway received the commit message and committed the transaction.

The following table summarizes these scenarios.

Point of database server coordinator failure Expected result

After the coordinator writes the PREPARE log record and before the gateway commit
phase

Data consistency is maintained.

After the coordinator sends a commit message to the gateway but before it receives a
reply

Data is probably inconsistent. No indication of probable data inconsistency
from the coordinator.

After gateway commit phase but before the coordinator writes a COMMIT record to the
logical log

Data consistency is lost. No indication of data inconsistency from the
coordinator.

Copyright© 2020 HCL Technologies Limited

Participant failure

Whenever a participant in a distributed transaction that uses the heterogeneous protocol fails, the coordinator sends the following error message:

-441 Possible inconsistent data at the target DBMS name due to an
aborted commit.

In addition, the database server sends the following message to the message log:

Data source accessed using gateway name might be in an inconsistent state.

A participant failure is not limited to the failure of a database server or gateway. In addition, a failure of the communication link between the coordinator and the gateway
is considered a gateway failure. The gateway terminates if a link failure occurs. The gateway must terminate because it does not maintain a transaction log and therefore
cannot reestablish a connection with the coordinator and resume the transaction. Because of this restriction, some scenarios exist in which a gateway failure might leave
data in an inconsistent state. The following table summarizes these scenarios.

Point of participant failure Expected result

After participant receives commit transaction message from coordinator, but
before participant performs commit

Data consistency is maintained.

After participant receives commit transaction message from coordinator and
commits the transaction, but before the participant replies to coordinator

Data is inconsistent.

After participant commits the transaction and sends a reply to coordinator If the communications link fails before the coordinator receives the reply, then data
is inconsistent. If the coordinator receives the reply, then data is consistent
(provided the coordinator does not fail before writing the COMMIT record).

The recovery procedure that the database server follows when a participant fails is identical to the procedure that is followed in two-phase commit. For more information
about this procedure, see How the two-phase commit protocol handles failures.

Copyright© 2020 HCL Technologies Limited

Interpretation of heterogeneous commit error messages

When the database server fails to process a distributed transaction using heterogeneous commit, it returns one of the two error messages that are explained in the
following topics.

Application attempts to update multiple gateway participants
 Failed attempt to commit distributed transaction using heterogeneous commit

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 371

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Application attempts to update multiple gateway participants

If your client application attempts to update data at more than one gateway participant when HETERO_COMMIT is set to 1, the coordinator returns the following error
message:

-440 Cannot update more than one non-Informix DBMS within a transaction.

If you receive this error message, rewrite the offending application so that it updates at most one gateway participant in a single distributed transaction.

Copyright© 2020 HCL Technologies Limited

Failed attempt to commit distributed transaction using heterogeneous commit

The database server can fail to commit a distributed transaction while it is using the heterogeneous protocol for one or more of the following reasons:

Communication error
Site failure
Gateway failure
Other unknown error

When such a failure occurs, the coordinator returns the following message:

-441 Possible inconsistent data at the target DBMS name due to
an aborted commit.

After the database server sends this message, it rolls back all update sites that are participating in the transaction, with the possible exception of the work done at the site
of the gateway participant. The gateway participant might have committed its updates if the failure occurred after the gateway participant processed the commit message.
If the gateway participant committed the updates, you must manually roll back these updates.

Copyright© 2020 HCL Technologies Limited

Manually recovering from failed two-phase commit

Distributed transactions follow the two-phase commit protocol. Certain actions occur independently of the two-phase commit protocol and cause the transaction to be
inconsistently implemented. (See Independent actions.) In these situations, it might be necessary to recover manually from the transaction.

Determine if manual recovery is required
 Example of manual recovery

Copyright© 2020 HCL Technologies Limited

Determine if manual recovery is required

The following topics outline the steps in the procedure to determine database consistency and to correct the situation if required.

Each of these steps is described in the following topics.

Determine if a transaction was implemented inconsistently
 Determine if the distributed database contains inconsistent data

 Decide if action is needed to correct the situation

Copyright© 2020 HCL Technologies Limited

Determine if a transaction was implemented inconsistently

Your first task is to determine whether the transaction was implemented inconsistently as a result of an independent action.

Global transaction ended prematurely
 Heuristic end transaction

 Heuristic rollback

Copyright© 2020 HCL Technologies Limited

Global transaction ended prematurely

372 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

If you ran an onmode -z command to end the global transaction on the coordinator, the transaction might be inconsistently implemented. (For an explanation of how this
situation can arise, see Independent actions that result in an error condition.) You can check for an inconsistent transaction by first examining the database server
message log for the coordinator. Look for the following error message:

-716 Possible inconsistent transaction.
Unknown servers are server-name-list.

This message lists all the database servers that were participants. Examine the logical log of each participant. If at least one participant performed a commit and one
performed a rollback, the transaction was inconsistently implemented.

Copyright© 2020 HCL Technologies Limited

Heuristic end transaction

If you ran an onmode -Z address command to end a piece of work performed by a participant, and the coordinator decided to commit the transaction, the transaction is
implemented inconsistently. (For a description of this scenario, see The heuristic end-transaction scenario.) Examine the logical log of each participant. If at least one
participant performed a commit and one performed a rollback, the transaction was inconsistently implemented.

Copyright© 2020 HCL Technologies Limited

Heuristic rollback

You can determine the specific database server participants affected by a heuristic decision to roll back a transaction in the following ways:

Examine the return code from the COMMIT WORK statement in the application.
The following message indicates that one of the participants performed a heuristic rollback:

-698 Inconsistent transaction. Number and names of servers rolled back.

Examine the messages in the database server message-log file.
If a database inconsistency is possible because of a heuristic decision at a participating database server, the following message is in the database server message-
log file of the coordinator:

Mixed transaction result. (pid=nn user=user_id)

This message is written whenever error -698 is returned. Associated with this message is a list of the participant database servers where the transaction was rolled
back. This is the complete list. The list that is created with the -698 error message might be truncated if many participants rolled back the transaction.

Examine the logical log for each participant.
If at least one participant rolls back its piece of work and one participant commits its piece of work, the transaction is implemented incorrectly.

Copyright© 2020 HCL Technologies Limited

Determine if the distributed database contains inconsistent data

If you determine that a transaction was inconsistently implemented, you must determine what this situation means for your distributed database system. Specifically, you
must determine if data integrity has been affected.

A transaction that is inconsistently implemented causes problems whenever the piece of work rolled back by one participant is dependent on a piece of work that was
updated by another participant. It is impossible to define these dependencies with SQL because distributed transactions do not support constraints that reference data at
multiple database servers. The pieces of work are independent (no dependencies exist) only if the data could have been updated in two independent transactions.
Otherwise, the pieces of work are considered to be dependent.

Before you proceed, consider the transaction that caused the error. Are the pieces of data that were updated and rolled back dependent on one another? Multiple updates
might be included in a single transaction for reasons other than maintaining data integrity. For example, three possible reasons are as follows:

Reduced transaction overhead
Simplified coding
Programmer preference

Verify also that every participant database server that is assumed to have committed the transaction actually modified data. A read-only database server might be listed
as a participant that committed a transaction.

If an inconsistent transaction does not lead to a violation of data integrity, you can quit the procedure at this point.

Obtaining information from the logical log
 Obtain the global transaction identifier

Copyright© 2020 HCL Technologies Limited

Obtaining information from the logical log

Part VI: Administering 373

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

To determine if data integrity has been affected by an inconsistently implemented global transaction, you must reconstruct the global transaction and determine which
parts of the transaction were committed and which were rolled back. Use the onlog utility to obtain the necessary information. The procedure is as follows:

1. Reconstruct the transaction at the participant that contains the HEURTX record.
a. A participant database server logical log is the starting point for your information search. Each record in the log has a local transaction identification number

(xid). Obtain the xid of the HEURTX record.
b. Use the local xid to locate all associated log records that rolled back as part of this piece of work.

2. Determine which database server acted as coordinator for the global transaction.
a. Look for the PREPARE record on the participant that contains the same local xid. The PREPARE record marks the start of the two-phase commit protocol for

the participant.
b. Use the onlog -l option to obtain the long output of the PREPARE record. This record contains the global transaction identifier (GTRID) and the name of the

coordinating database server. For information about GTRID, see Obtain the global transaction identifier.
3. Obtain a list of the other participants from the coordinator log.

a. Examine the log records on the coordinator database server. Find the BEGPREP record.
b. Examine the long output for the BEGPREP record. If the first 32 bytes of the GTRID in this record match the GTRID of the participant, the BEGPREP record is

part of the same global transaction. Note the participants displayed in the ASCII part of the BEGPREP long output.
4. Reconstruct the transaction at each participant.

a. At each participant database server, read the logical log to find the PREPARE record that contains the GTRID associated with this transaction and obtain the
local xid for the piece of work performed by this participant.

b. At each participant database server, use the local xid to locate all logical-log records associated with this transaction (committed or rolled back).

After you follow this procedure, you know what all the participants for the transaction were, which pieces of work were assigned to each participant, and whether each
piece of work was rolled back or committed. From this information, you can determine if the independent action affected data integrity.

Copyright© 2020 HCL Technologies Limited

Obtain the global transaction identifier

When a global transaction starts, it receives a unique identification number called a global transaction identifier (GTRID). The GTRID includes the name of the coordinator.
The GTRID is written to the BEGPREP logical-log record of the coordinator and the PREPARE logical-log record of each participant.

To see the GTRID, use the onlog -l option. The GTRID is offset 20 bytes into the data portion of the record and is 144 bytes long. The following example shows the onlog -l
output for a BEGPREP record. The coordinator is chrisw.

4a064 188 BEGPREP 4 0 4a038 0 1
 000000bc 00000043 00000004 0004a038C8
 00087ef0 00000002 63687269 73770000 ..~..... chrisw..
 00000000 00000000 00000000 00087eeb~.
 00006b16 00000000 00000000 00000000 ..k.....
 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000000
 00000000 00000001 6a756469 74685f73 judith_s
 6f630000 736f6374 63700000 oc..soct cp..

The first 32 bytes of the GTRID are identical for the BEGPREP record on the coordinator and the PREPARE records on participants, which are part of the same global
transaction. For example, compare the GTRID for the PREPARE record in the following example with that of the BEGPREP record in the previous example.

c7064 184 PREPARE 4 0 c7038 chrisw
 000000b8 00000044 00000004 000c7038Dp8
 00005cd6 00000002 63687269 73770000 chrisw..
 00000000 00000000 00000069 00087eebi..~.
 00006b16 00000000 00000010 00ba5a10 ..k.....Z.
 00000002 00ba3a0c 00000006 00000000:.
 00ba5a10 00ba5a1c 00000000 00000000 ..Z...Z.
 00ba3a0e 00254554 00ba2090 00000001 ..:..%ET
 00000000 00ab8148 0005fd70 00ab8148H ...p...H
 0005fe34 0000003c 00000000 00000000 ...4...<
 00000000 00ab80cc 00000000 00ab80c4
 00ba002f 63687269 73770000 00120018 .../chrisw......
 00120018 00ba0000

Copyright© 2020 HCL Technologies Limited

Decide if action is needed to correct the situation

If an inconsistent transaction creates an inconsistent database, the following three options are available to you:

Leave the networked database in its inconsistent state.
Remove the effects of the transaction wherever it was committed, thereby rolling back the entire transaction.
Reapply the effects of the transaction wherever it was rolled back, thereby committing the transaction.

You can leave the database in its inconsistent state if the transaction does not significantly affect database data. You might encounter this situation if the application that
is performing the transaction can continue as it is, and you decide that the price (in time and effort) of returning the database to a consistent state by either removing the
effects or reapplying the transaction is too high.

374 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

You are not required to make this decision immediately. You can use the methods described in the following paragraphs to determine what data the transaction was
updating and which records are affected.

As you make your decision, consider that no automatic process or utility can perform a rollback of a committed transaction or can commit part of a transaction that has
been rolled back. The following paragraphs describe how to look through the database server message log and the logical log to locate affected records. Without detailed
knowledge of the application, messages are not enough to determine what has happened. Based on your knowledge of your application and your system, you must
determine whether to roll back or to commit the transaction. You must also program the compensating transaction that performs the rollback or the commit.

Copyright© 2020 HCL Technologies Limited

Example of manual recovery

This example illustrates the kind of work that is involved in manual recovery. The following SQL statements were executed by user nhowe. Error -698 was returned.

dbaccess
CREATE DATABASE tmp WITH LOG;
CREATE TABLE t (a int);
CLOSE DATABASE;
CREATE DATABASE tmp@apex WITH LOG;
CREATE TABLE t (a int);
CLOSE DATABASE;
DATABASE tmp;
BEGIN WORK;
INSERT INTO t VALUES (2);
INSERT INTO tmp@apex:t VALUES (2);
COMMIT WORK;
return code -698

The following excerpt is taken from the logical log at the current database server:

addr len type xid id link
.....
17018 16 CKPOINT 0 0 13018 0

18018 20 BEGIN 2 1 0 08/27/91 10:56:57
 3482 nhowe

1802c 32 HINSERT 2 0 18018 1000018 102
 4

1804c 40 CKPOINT 0 0 17018 1

 begin xid id addr user

 1 2 1 1802c nhowe

19018 72 BEGPREP 2 0 1802c 6d69 1

19060 16 COMMIT 2 0 19018 08/27/91 11:01:38

1a018 16 ENDTRANS 2 0 19060 580543

The following excerpt is taken from the logical log at the database server apex:

addr len type xid id link
.....
16018 20 BEGIN 2 1 0 08/27/91
 10:57:07 3483 pault

1602c 32 HINSERT 2 0 16018 1000018 102
 4

1604c 68 PREPARE 2 0 1602c eh

17018 16 HEURTX 2 0 1604c 1

17028 12 CLR 2 0 1602c

17034 16 ROLLBACK 2 0 17018 08/27/91 11:01:22

17044 40 CKPOINT 0 0 15018 1

 begin xid id addr user
 1 2 1 17034 --------

18018 16 ENDTRANS 2 0 17034 8806c3

First, you would try to match the transactions in the current database server log with the transactions in the apex database server log. The BEGPREP and PREPARE log
records each contain the GTRID. You can extract the GTRID by using onlog -l and looking at the data portion of the BEGPREP and PREPARE log records. The GTRID is
offset 22 bytes into the data portion and is 68 bytes long. A more simple, though less precise, approach is to look at the time of the COMMIT or ROLLBACK records. The
times must be close, although there is a slight delay because of the time taken to transmit the commit (or rollback) message from the coordinator to the participant. (This
second approach lacks precision because concurrent transactions can commit at the same time although concurrent transactions from one coordinator would probably
not commit at the same time.)

To correct this sample situation

1. Find all records that were updated.

Part VI: Administering 375

https://www.hcltech.com/

2. Identify their type (insert, delete, update) using onlog and the table of record types.
3. Use the onlog -l output for each record to obtain the local xid, the tblspace number, and the rowid.
4. Map the tblspace number to a table name by comparing the tblspace number to the value in the partnum column of the systables system catalog table.
5. Using your knowledge of the application, determine what action is required to correct the situation.

In this example, the time stamps on the COMMIT and ROLLBACK records in the different logs are close. No other active transactions introduce the possibility of another
concurrent commit or rollback. In this case, an insert (HINSERT) of assigned rowid 102 hex (258 decimal) was committed on the current database server. Therefore, the
compensating transaction is as follows:

DELETE FROM t WHERE rowid = 258

Copyright© 2020 HCL Technologies Limited

Overview of automatic monitoring and corrective actions

You can use the SQL administration API, the Scheduler, and drill-down queries to manage automatic maintenance, monitoring, and administrative tasks.

These components of IBM® Informix® simplify the collection of information and maintenance of the server in complex systems.

SQL administration API
The SQL administration API performs remote administration through SQL functions. Because SQL administration API operations occur entirely in SQL, these
functions can be used in client tools to administer the database server.

Scheduler
The Scheduler is a set of tasks that execute SQL statements at predefined times or as determined internally by the server. The SQL statements can either collect
information or monitor and adjust the server.

Query Drill-Down
Query drill-down provides statistical information about recently executed SQL statements to track the performance of individual SQL statements and analyze
statement history.

You can use the SQL administration API and the Scheduler on the primary server of an HDR pair of servers.

Each of these tools requires additional disk space to store information.

The Scheduler
 You can use the Scheduler to create jobs to run administrative tasks or collect information at predictable times. The Scheduler uses SQL statements instead of

operating system job scheduling tools.
Remote administration with the SQL administration API

 You can use the SQL administration API to perform remote administration tasks by using SQL statements.
Query drill-down

 You can use query drill-down, or SQL tracing, to gather statistical information about each SQL statement that was run and to analyze statement history.

Related concepts:
 The Scheduler

Query drill-down
Related tasks:

 Viewing SQL administration API history
Related reference:

 Remote administration with the SQL administration API

Copyright© 2020 HCL Technologies Limited

The Scheduler

You can use the Scheduler to create jobs to run administrative tasks or collect information at predictable times. The Scheduler uses SQL statements instead of operating
system job scheduling tools.

The Scheduler is controlled by a set of tables in the sysadmin database.

The Scheduler has four different job types that you can choose from:

Task
Runs an action at a specific time and frequency.

Sensor
Runs an action at a specific time and frequency to collect data, create a results table, store the data in the results table, and purge old data after a specified time.

Startup task
A task that runs only when the server moves from quiescent mode to online mode.

Startup sensor
A sensor that runs only when the server moves from quiescent mode to online mode.

The action of a task or sensor can be one or more SQL statements, user-defined routines, or stored procedures.

In addition to defining an action for a task or sensor, you can also use the Scheduler to:

Associate tasks and sensors into functional groups
Track the execution time and return value each time a task or sensor is run
Define alerts with varying severity
Define thresholds to control when tasks or sensors are run

376 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

The Scheduler contains built-in tasks and sensors that run automatically. You can modify the built-in tasks and sensors and define your own tasks and sensors.

Disk space requirements
The Scheduler tables and sensor results tables can use significant amounts of disk space.
You can use the following formula to estimate the disk usage for one sensor:

Number of rows collected * size of the row collected * the frequency of data collection per day * the retention period

Repeat this estimate for all sensors and you can determine a close estimate of the space required.

You can reduce the amount of data stored by decreasing the frequency of data collection or shortening the retention period by updating the ph_task table.

You can move the sysadmin database to a different dbspace by using the SQL administration API, however, all existing data in the database will be lost.

For more information about the sysadmin database, see the IBM® Informix® Administrator's Reference.

Scheduler tables
 The Scheduler tables are located in the sysadmin database and contain information about tasks and sensors.

Built-in tasks and sensors
 The Scheduler contains built-in tasks and sensors that run automatically.

Creating a task
 You can create a Scheduler task to perform a specific action at specific times.

Creating a sensor
 You can create a Scheduler sensor to collect and store data about the database server.

Actions for task and sensors
 The action for a task or sensor is an SQL statement or routine that performs one or more operations.

Creating a group
 You can create a group to organize Scheduler tasks and sensors.

Creating a threshold
 You can create a threshold to determine under what conditions a Scheduler task or sensor is run.

Creating an alert
 You can create an alert as part of the action of a Scheduler task or sensor.

Monitor the scheduler
 You can monitor Scheduler threads that are in progress with the onstat -g dbc command. You can view information about tasks and sensors that have completed in

the ph_run table.
Modifying the scheduler

 You can modify the properties of Scheduler tasks, sensors, alerts, thresholds, or groups. You can modify both built-in properties and properties that you added.

Related concepts:
 Overview of automatic monitoring and corrective actions

Related tasks:
 Scheduling data optimization

Related information:
 The Scheduler tables

Copyright© 2020 HCL Technologies Limited

Scheduler tables

The Scheduler tables are located in the sysadmin database and contain information about tasks and sensors.

The sysadmin database contains the Scheduler tables listed in the following table. The ph_task table has a direct relationship with each of the other tables.
Table 1. Scheduler tables

Table Description

ph_alert Contains a list of errors, warnings, or information messages associated with tasks that must be monitored. The ph_alert table contains built-in alerts
that the database server uses automatically. You can add your own alerts.

ph_group Contains a list of group names. Each task and sensor is a member of a group. The ph_group table contains built-in groups that the database server
uses. You can add your own groups.

ph_run Contains information about how and when each task and sensor was run.

ph_task Lists tasks and sensors and contains information about how and when the database server runs them. The ph_task table contains built-in tasks and
sensors that the database server uses automatically. You can add your own tasks and sensors.

ph_threshold Contains a list of thresholds that are associated with tasks or sensors. If a threshold is met, the associated task can perform an action, such as
inserting an alert in the ph_alert table. The ph_threshold table contains built-in thresholds that the database server uses. You can add your own
thresholds.

results Multiple tables that contain historical data collected by sensors. The structure of these tables is determined by the CREATE TABLE statement in the
sensor definition in the ph_task table.

For details about these tables, see the IBM® Informix® Administrator's Reference.

Related information:
 The Scheduler tables

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 377

https://www.hcltech.com/
https://www.hcltech.com/

Built-in tasks and sensors

The Scheduler contains built-in tasks and sensors that run automatically.

The following table shows the built-in Scheduler tasks and sensors. Sensors have results tables to store the information they collect, and retention periods to determine
how long that information is stored. You can change task and sensor properties, for example, the frequency, by updating the ph_task table. Some tasks are triggered by
thresholds. You can change thresholds by updating the ph_threshold table. You can disable a task or sensor by changing the value of the tk_enable column in the
ph_task table to f.

You can determine how long tasks take by querying the run_duration column in the ph_task table.

Table 1. Built-in tasks and sensors
Task or sensor Description Results table Frequency Retention

add_storage This task add more storage space
automatically when automatic space
management is configured.

 As needed

Alert Cleanup This task removes all alert entries from the
ph_alert table that are older than the
threshold of 15 days. The threshold is
named ALERT HISTORY RETENTION in the
ph_threshold table.

 Once a day

auto_compress This task compresses tables that are
configured for automatic compression.

auto_crsd This task compresses, shrinks, repacks, and
defragments tables and fragments.
By default, this task is disabled. You must
enable it by updating the ph_task table.

Each of the operations has 2 rows in the
ph_threshold table: one to control whether
it is enabled and one to control its
threshold.

For more information, see Scheduling data
optimization.

 Once a week

autoreg exe This task registers database extensions
when they are first used.

 As necessary

autoreg migrate-console Internal. This task checks every database
with a logging option of log or buffered log,
and, if necessary, migrates all built-in
database extensions to the correct version
for the database server. This task creates
sub-tasks for individual databases, as
necessary.

 At server startup

autoreg vp This task creates a specialized virtual
processor for a database extension as
necessary.

 As necessary

auto_tune_cpu_vps This task automatically adds CPU virtual
processors if the number of allocated VPs is
less than half the number of CPU
processors on the computer.

 At server startup

Auto Update Statistics Evaluation This task analyzes all the tables in all logged
databases, identifies the tables whose
distributions must be updated, and
generates UPDATE STATISTICS statements
for those tables, based on the current
automatic update statistics (AUS) policies.
The AUS policies are set by thresholds in
the ph_threshold table:

AUS_AGE: statistics are updated
after 30 days.
AUS_CHANGE: statistics are updated
after 10 percent of the data is
changed.
AUS_AUTO_RULES: guidelines are
followed for updating statistics.
AUS_SMALL_TABLES: tables
containing fewer than 100 rows
always have their statistics updated.

For more information, see Automatic
statistics updating.

 Once a day

378 Part VI: Administering

Task or sensor Description Results table Frequency Retention

Auto Update Statistics Refresh This task runs the UPDATE STATISTICS
statements generated by the Auto Update
Statistics Evaluation task. The PDQ priority
for updating statistics is set to 10 by the
threshold named AUS_PDQ in the
ph_threshold table.

 Saturday and
Sunday between
1:00 AM and 5:00
AM

bad_index_alert This task checks for corrupted indexes. If
any corrupted indexes are found, a warning
alert is added to the ph_alert table.
For more information, see Validate indexes.

 Once a day

bar_act_log_rotate This task rotates the ON-Bar activity log file
that is specified in the BAR_ACT_LOG
configuration parameter.
When the ON-Bar activity log rotates, the
server switches to a new online message
log file and increments the ID numbers for
the previous log files by one. When the
maximum number of log files is reached,
the log file with the highest ID is deleted.

The threshold for the maximum logs to
rotate is specified in the ph_threshold
table.

 3 A.M. every 30
days (with a
maximum of 12 log
files)

bar_debug_log_rotate This task rotates the ON-Bar debug log file
that is specified in the BAR_DEBUG_LOG
configuration parameter.
When the ON-Bar debug log rotates, the
server switches to a new online message
log file and increments the ID numbers for
the previous log files by one. When the
maximum number of log files is reached,
the log file with the highest ID is deleted.

The threshold for the maximum logs to
rotate is specified in the ph_threshold
table.

 3 A.M. every 30
days (with a
maximum of 12 log
files)

check_backup This task checks to ensure that backups
have run since the time specified by
thresholds in the ph_threshold table:

REQUIRED LEVEL BACKUP:
maximum of 2 days between
backups of any level
REQUIRED LEVEL 0 BACKUP:
maximum of 2 days between level-0
backups

If a backup has not occurred, a warning
alert is added to the ph_alert table.

 Once a day

check_for_ipa This task adds an entry in the ph_alert
table for each table that has one or more
outstanding in-place alter operations.

 Once a week

idle_user_timeout This task terminates user sessions that
have been idle for longer than 60 minutes.
By default, this task is disabled. You must
enable it by updating the ph_task table.

For more information, see Automatically
terminating idle connections.

 Every 2 hours

ifx_ha_monitor_log_replay_task This task monitors the high-availability
cluster replay position.

 Not set

ifx_TrickleFeed_load_ID This task continuously refreshed the data in
a data mart. The name of the data mart and
accelerator are listed in the task
description. This task appears in the
Scheduler after trickle feed is enabled for a
data mart. Each data mart for which trickle
feed is enabled has a separate task. The ID
in the task name is unique.
For more information, see
ifx_setupTrickleFeed() function.

 Every number of
seconds that are
specified when
trickle feed is
enabled

mon_checkpoint This sensor saves information about
checkpoints.

mon_checkpoint Every hour 7 days

Part VI: Administering 379

Task or sensor Description Results table Frequency Retention

mon_chunk This sensor saves general information about
chunk usage and I/O chunk performance.

mon_chunk Every hour 30 days

mon_command_history This task deletes rows from the
command_history table that are older than
the threshold of 30 days. The threshold is
named COMMAND HISTORY RETENTION in
the ph_threshold table.

 Once a day

mon_compression_estimates This sensor saves information about how
much space might be saved if the data is
compressed.

mon_compression_ estimates Once a week 30 days

mon_config This sensor saves the most recent value for
each configuration parameter in the
onconfig file.

mon_config Once a day

mon_config_startup This sensor saves the value for each
configuration parameter in the onconfig file
when the server starts.

mon_config At server startup 99 days

mon_iohistory This sensor saves performance information
about chunk I/O. You can change the
IO_SAMPLES_PER_HOUR parameter in the
ph_threshold table to collect information
more frequently.

 Every hour 30 days

mon_low_storage This task scans the list of dbspaces to find
spaces that fall below the threshold
specified by the SP_THRESHOLD
configuration parameter. Then, the task
expands the spaces by extending chunks or
adding chunks using entries in the storage
pool.
For more information, see Automatic space
management.

mon_low_storage Every hour 7 days

mon_memory_system This sensor collects information about the
amount of memory the server uses.

mon_memory_system Every hour 7 days

mon_page_usage This sensor saves information about the
pages that are used and free in storage
spaces.

mon_page_usage Once a day 7 days

mon_profile This sensor saves server profile information. mon_prof Every 4 hours 30 days

mon_sysenv This startup sensor saves information about
the environment when the database server
starts.

mon_sysenv At server startup 60 days

mon_table_names This sensor saves table names along with
their creation time.

mon_table_names Once a day 30 days

mon_table_profile This sensor saves table profile information,
including the total number of update, insert,
and delete operations that occurred on this
table.

mon_table_profile Once a day 7 days

mon_users This sensor saves profile information about
each user.

mon_users Every 4 hours 7 days

mon_vps This sensor collects virtual processor
information.

mon_vps Every 4 hours 15 days

online_log_rotate This task rotates the online message log file
that is specified in the MSGPATH
configuration parameter.
When the online message log rotates, the
server switches to a new online message
log file and increments the ID numbers for
the previous log files by one. When the
maximum number of log files is reached,
the log file with the highest ID is deleted.

The threshold for the maximum logs to
rotate is specified in the ph_threshold
table.

 3 A.M. every 30
days (with a
maximum of 12 log
files)

post_alarm_message This task posts alerts. Every hour

purge_tables This task identifies rolling window tables
whose purge policies have been exceeded.
It discards or detaches qualifying
fragments, according to each purge policy,
until that policy is satisfied, or until no more
fragments can be removed.

 Daily at 00:45

380 Part VI: Administering

Task or sensor Description Results table Frequency Retention

SET tk_enable This task enables the tasks that rotate
message log files.

 3 A.M. every 30
days

sync_registry This task automatically converts the
connection information between the
sqlhosts file format and the Windows
registry format.

 Every 15 minutes

Related concepts:
 Automatic performance tuning

Related tasks:
 Modifying the scheduler

Related information:
 The Scheduler tables

Copyright© 2020 HCL Technologies Limited

Creating a task

You can create a Scheduler task to perform a specific action at specific times.

You must be connected to the sysadmin database as user informix or another authorized user.
To create a task, use an INSERT statement to add a row into the ph_task table:

1. Include values for the following columns:
a. tk_name: Give the task a unique name.
b. tk_type: Change the job type to TASK or STARTUP TASK.
c. tk_description: Add a description of the action the task performs.
d. tk_execute: Add the action that the task performs. The action can be a user-defined function, a single SQL statement, or a multiple-statement prepared

object that was created using the PREPARE SQL to enable the assembly of one or more SQL statements at runtime. The length of the command is limited to
2048 bytes.

2. Optional: Change the default values for the following columns:
tk_start_time: The default start time is 8:00:00. For a startup task, set the start time to NULL.
tk_stop_time: The default stop time is 19:00:00. For a startup task, set the stop time to NULL.
tk_frequency: The default frequency once a day. For a startup task, set the frequency to NULL.
tk_group: The default group is MISC.
tk_monday through tk_sunday: The default is to run every day.

The task runs at the specified start time and subsequently at the time calculated from the frequency.

Example
The following task uses the SQL administration API to take a checkpoint every two minutes between the hours of 8:00 A.M. and 7:00 P.M. on Mondays, Wednesdays, and
Fridays.

INSERT INTO ph_task
(tk_name,
tk_description,
tk_type,
tk_group,
tk_execute,
tk_start_time,
tk_stop_time,
tk_frequency,
tk_Monday,
tk_Tuesday,
tk_Wednesday,
tk_Thursday,
tk_Friday,
tk_Saturday,
tk_Sunday)
VALUES
("Example Checkpoint",
"Example to do a checkpoint every 2 minutes.",
"TASK",
"EXAMPLES",
"EXECUTE FUNCTION admin('checkpoint')",
DATETIME(08:00:00) HOUR TO SECOND,
DATETIME(19:00:00) HOUR TO SECOND,
INTERVAL (2) MINUTE TO MINUTE,
't',
‘f',
't',
‘f',
't',
‘f',
‘f');

The following example shows the code for a task that runs once a day at 2:00 A.M. to ensure that the command_history table contains only recent data. In this example,
the definition of recent data is stored in a Command History Interval column in the ph_threshold table.

INSERT INTO ph_task
(

Part VI: Administering 381

https://www.hcltech.com/

tk_name,
tk_group,
tk_description,
tk_type,
tk_execute,
tk_start_time,
tk_frequency
)
VALUES
(
"mon_command_history",
"TABLES",
"Monitor how much data is kept in the command history table",
"TASK",
"delete from command_history where cmd_exec_time < (
 select current - value::INTERVAL DAY to SECOND
 from ph_threshold
 where name = 'COMMAND HISTORY INTERVAL') ",
"2:00:00",
"1 0:00:00"
);

Related concepts:
 Actions for task and sensors

Related tasks:
 Modifying the scheduler

Copyright© 2020 HCL Technologies Limited

Creating a sensor

You can create a Scheduler sensor to collect and store data about the database server.

You must be connected to the sysadmin database as user informix or another authorized user.
To create a sensor, use an INSERT statement to add a row into the ph_task table:

1. Include values for the following columns:
tk_name: Give the task a unique name.
tk_description: Add a description of the action the task performs.
tk_result_table: Add the name of the table that holds the data that the sensor gathers.
tk_create: Add a CREATE statement to create the results table. The results table must have an INTEGER column named ID to hold the sensor ID. You can
add other columns to the table.
tk_execute: Add the action that the sensor performs. The action can be a user-defined function, a single SQL statement, or a multiple-statement prepared
object that was created using the PREPARE SQL to enable the assembly of one or more SQL statements at runtime.

2. Optionally change the default values for the following columns:
tk_type: The default value is SENSOR. For a startup sensor, change the value to STARTUP SENSOR.
tk_delete: The default interval after which to delete sensor data is one day.
tk_start_time: The default start time is 8:00:00. For a startup sensor, set the start time to NULL.
tk_stop_time: The default stop time is 19:00:00. For a startup sensor, set the stop time to NULL.
tk_frequency: The default frequency once a day. For a startup sensor, set the frequency to NULL.
tk_group: The default group is MISC.
tk_monday through tk_sunday: The default is to run every day.

The sensor runs at the specified start time and subsequently at the time calculated from the frequency.

Examples
The following example shows the code for a sensor that tracks the startup environment of the database server. The $DATA_SEQ_ID variable is the current execution of the
sensor.

INSERT INTO ph_task
(
tk_name,
tk_type,
tk_group,
tk_description,
tk_result_table,
tk_create,
tk_execute,
tk_stop_time,
tk_start_time,
tk_frequency,
tk_delete
)
VALUES
(
"mon_sysenv",
"STARTUP SENSOR",
"SERVER",
"Tracks the database servers startup environment.",
"mon_sysenv",
"create table mon_sysenv (ID integer, name varchar(250), value lvarchar(1024))",
"insert into mon_sysenv select $DATA_SEQ_ID, env_name, env_value
FROM sysmaster:sysenv",

382 Part VI: Administering

https://www.hcltech.com/

NULL,
NULL,
NULL,
"60 0:00:00"
);

The following example shows the code for a sensor that collects information about the amount of memory that is being used and stores the information in the
mon_memory_system table. If that table does not exist, the task creates it. This task, which runs every 30 minutes, deletes any data in the mon_memory_system table
that has existed for more than 30 days.

INSERT INTO ph_task
(
tk_name,
tk_group,
tk_description,
tk_result_table,
tk_create,
tk_execute,
tk_stop_time,
tk_start_time,
tk_frequency,
tk_delete
)
VALUES
("mon_memory_system",
"MEMORY",
"Server memory consumption",
"mon_memory_system",
"create table mon_memory_system (ID integer, class smallint, size int8,
 used int8, free int8)",
"insert into mon_memory_system select $DATA_SEQ_ID, seg_class, seg_size,
 seg_blkused, seg_blkfree FROM sysmaster:sysseglst",
NULL,
NULL,
INTERVAL (30) MINUTE TO MINUTE,
INTERVAL (30) DAY TO DAY
);

Related concepts:
 Actions for task and sensors

Related tasks:
 Modifying the scheduler

Copyright© 2020 HCL Technologies Limited

Actions for task and sensors

The action for a task or sensor is an SQL statement or routine that performs one or more operations.

SQL statements are useful if the action consists of a single operation. A stored procedure or a user-defined routine written in C or Java™ is useful if the action consists of
multiple operations. The action is stored in the tk_execute column of the ph_task table.

You have a great deal of flexibility when you create an action. Possible types of operations include:

Perform a DML operation. You can use a sensor to insert or update data in a table. You can use a task to delete older data from a table.
Perform an administrative operation. You can use a task to run an SQL administration API function to administer the database server. For example, you can create a
task to take checkpoints every two minutes.
Perform an operation based on a threshold. You can use a threshold from the ph_threshold table to determine if a task action must be run. For example, you can
create a task that adds a shared memory segment if the amount of available shared memory falls below a threshold value.
Create an alert to report an operation or warn of a potential problem. For example, you can create a task to terminate idle users that inserts a row into the ph_alert
table when a user session is terminated. You can also create a task to monitor backups and insert a warning into the ph_alert table when a backup has not
occurred.

Use the following variables in your task or sensor action:

$DATA_TASK_ID: Use to indicate the current task or sensor. This variable corresponds to the value of the tk_id field in the ph_task table.
$DATA_SEQ_ID: Use to indicate the current execution of the task or sensor. This variable corresponds to the value of the tk_sequence field in the ph_task table and
the run_task_sequence field in the ph_run table.

Examples
The following action is an SQL statement that the built-in mon_command_history task uses to remove older rows from the command_history table.

DELETE FROM command_history
WHERE cmd_exec_time < (
SELECT CURRENT - value::INTERVAL DAY to SECOND
FROM ph_threshold
WHERE name = 'COMMAND HISTORY RETENTION')

The following example is an SQL statement that the built-in mon_vps sensor uses to add data to the mon_vps result table:

INSERT INTO mon_vps
SELECT $DATA_SEQ_ID, vpid, num_ready,
class, usecs_user, usecs_sys
FROM sysmaster:sysvplst

Part VI: Administering 383

https://www.hcltech.com/

The following example is a stored procedure that terminates user sessions that are idle for longer than a value set by a threshold, and then adds an alert to the ph_alert
table.

/*
 **
 * Create a function that will find all users that have
 * been idle for the specified time. Call the SQL admin API to
 * terminate those users. Create an alert to track which
 * users have been terminated.
 **
 */
CREATE FUNCTION idle_timeout(task_id INT, task_seq INT)
RETURNING INTEGER

DEFINE time_allowed INTEGER;
DEFINE sys_hostname CHAR(16);
DEFINE sys_username CHAR(257);
DEFINE sys_sid INTEGER;
DEFINE rc INTEGER;

 {*** Get the maximum amount of time to be idle ***}
 SELECT value::integer
 INTO time_allowed
 FROM ph_threshold
 WHERE name = "IDLE TIMEOUT";

 {*** Find all users who are idle longer than the threshold ***}
 FOREACH SELECT admin("onmode","z",A.sid), A.username, A.sid, hostname
 INTO rc, sys_username, sys_sid, sys_hostname
 FROM sysmaster:sysrstcb A , sysmaster:systcblst B,
 sysmaster:sysscblst C
 WHERE A.tid = B.tid
 AND C.sid = A.sid
 AND lower(name) in ("sqlexec")
 AND CURRENT - DBINFO("utc_to_datetime",last_run_time) > time_allowed UNITS MINUTE
 AND lower(A.username) NOT IN("informix", "root")

 {*** If a user is successfully terminated, log ***}
 {*** the information into the alert table. ***}
 IF rc > 0 THEN
 INSERT INTO ph_alert
 (
 ID, alert_task_id,alert_task_seq,
 alert_type, alert_color,
 alert_state,
 alert_object_type, alert_object_name,
 alert_message,
 alert_action
) VALUES (
 0,task_id, task_seq,
 "INFO", "GREEN",
 "ADDRESSED",
 "USER","TIMEOUT",
 "User "||TRIM(sys_username)||"@"||TRIM(sys_hostname)||
 " sid("||sys_sid||")"||
 " terminated due to idle timeout.",
 NULL
);
 END IF

 END FOREACH;

 RETURN 0;

END FUNCTION;

Related tasks:
 Creating a task

Creating a sensor
Creating a threshold
Creating an alert

Copyright© 2020 HCL Technologies Limited

Creating a group

You can create a group to organize Scheduler tasks and sensors.

You must be connected to the sysadmin database as user informix or another authorized user.
When you create a task or sensor, you can specify a group name from the ph_group table in the tk_group column of the ph_task table.

To create a group:
Use an INSERT statement to add a row into the ph_group table in the sysadmin database. You must include a name for the group for the group_name column and a
description of the group for the group_description column. The database server generates an ID for the group in the group_id column.

Example
The following example adds a group named TABLES:

384 Part VI: Administering

https://www.hcltech.com/

INSERT INTO ph_group
(
group_name,
group_description
)
VALUES
(
"TABLES",
"Tasks that trim history and results tables."
);

Copyright© 2020 HCL Technologies Limited

Creating a threshold

You can create a threshold to determine under what conditions a Scheduler task or sensor is run.

You must be connected to the sysadmin database as user informix or another authorized user.
A threshold specifies a value that can be compared to a current value to determine whether a task or sensor must be run.

To create a threshold:

1. Use an INSERT statement to add values for the following columns in the ph_threshold table:
name: the name of the threshold
task_name: the name of the task from the ph_task table
value: the value of the threshold
value_type: the data type of the threshold (STRING or NUMERIC)
description: a description of what the threshold does

2. Write the task or sensor action to use the threshold.

Example
The following example adds a threshold named IDLE TIMEOUT for a task named Idle_timeout:

INSERT INTO ph_threshold
(
name,
task_name,
value,
value_type,
description
)
VALUES
(
"IDLE TIMEOUT",
"Idle_timeout",
"60",
"NUMERIC",
"Maximum amount of time in minutes for non-informix users to be idle."
);

The task action subtracts the time of the last user action from the current time and compare that value with the value column in the ph_threshold table.
Related concepts:

 Actions for task and sensors

Copyright© 2020 HCL Technologies Limited

Creating an alert

You can create an alert as part of the action of a Scheduler task or sensor.

You must be connected to the sysadmin database as user informix or another authorized user.
To create an alert:
Use an INSERT statement to add a row to the ph_alert table. Include values for the following columns:

ID: System generated; use 0 for the value.
alert_task_id: Must reference the job ID from the ph_task table.
alert_task_seq: Must reference the job sequence number from the ph_task table.
alert_type: Choose INFO, WARNING, or ERROR.
alert_color: Choose GREEN, YELLOW, or RED.
alert_state: Choose NEW, IGNORED, ACKNOWLEDGED, ADDRESSED.
alert_object_type: The type of object the alert describes, for example, SERVER.
alert_object_name: The name of the object.
alert_message: The message describing the alert.
alert_action: An SQL statement or function that performs a corrective action, or NULL.

Example

Part VI: Administering 385

https://www.hcltech.com/
https://www.hcltech.com/

The following example adds an alert to warn that a backup has not been taken. This code snippet is part of a stored procedure that takes task_id and task_seq as its
arguments.

INSERT INTO ph_alert
(
ID,
alert_task_id,
alert_task_seq,
alert_type,
alert_color,
alert_state,
alert_object_type,
alert_object_name,
alert_message,
alert_action
)
VALUES
(
0,
task_id,
task_seq,
"WARNING",
"RED",
"NEW",
"SERVER",
"dbspace_name",
"Dbspace ["||trim(dbspace_name)|| "] has never had a level-0 backup.
 Recommend taking a level-0 backup immediately.",
NULL
);

Related concepts:
 Actions for task and sensors

Copyright© 2020 HCL Technologies Limited

Monitor the scheduler

You can monitor Scheduler threads that are in progress with the onstat -g dbc command. You can view information about tasks and sensors that have completed in the
ph_run table.

The Scheduler uses two types of threads while it is running:

dbWorker: These threads are running scheduled tasks and sensors.
dbScheduler: This thread prepares the next task or sensor that is scheduled to be run.

To view information about currently running tasks and sensor, and the next task or sensor that is run, use the onstat -g dbc command.

To view information about tasks and sensor that have completed, query the ph_run table in the sysadmin database. You must be connected to the sysadmin database as
user informix or another authorized user.

Examples
The following output from the onstat -g dbc command shows two dbWorker threads and the dbScheduler thread:

Worker Thread(0) 46fa6f10
=====================================
Task: 47430c18
Task Name: mon_config_startup
Task ID: 3
Task Type: STARTUP SENSOR
Last Error
 Number -310
 Message Table (informix.mon_onconfig)
 already exists in database.
 Time 09/11/2007 11:41
 Task Name mon_config_startup

Task Execution: onconfig_save_diffs

WORKER PROFILE
 Total Jobs Executed 10
 Sensors Executed 8
 Tasks Executed 2
 Purge Requests 8
 Rows Purged 0

Worker Thread(1) 46fa6f80
=====================================
Task: 4729fc18
Task Name: mon_sysenv
Task ID: 4
Task Type: STARTUP SENSOR
Task Execution: insert into mon_sysenv select 1, env_name,
 env_value FROM sysmaster:sysenv

WORKER PROFILE

386 Part VI: Administering

https://www.hcltech.com/

 Total Jobs Executed 3
 Sensors Executed 2
 Tasks Executed 1
 Purge Requests 2
 Rows Purged 0

Scheduler Thread 46fa6f80
=====================================
Run Queue
 Empty
Run Queue Size 0
Next Task 7
Next Task Waittime 57

The following output shows the history of four Scheduler jobs from the ph_run table:

SELECT * FROM ph_run;

RUN_ID 1
RUN_TASK_ID 2
RUN_TASK_SEQ 1
RUN_RETCODE 0
RUN_TIME 2009-07-20 13:04:59
RUN_DURATION 0.131850300007433
RUN_ZTIME 1248109468
RUN_BTIME 1248109468
RUN_MTIME 1248109499

RUN_ID 2
RUN_TASK_ID 3
RUN_TASK_SEQ 1
RUN_RETCODE 0
RUN_TIME 2009-07-20 13:04:59
RUN_DURATION 0.120845244247991
RUN_ZTIME 1248109468
RUN_BTIME 1248109468
RUN_MTIME 1248109499

RUN_ID 3
RUN_TASK_ID 4
RUN_TASK_SEQ 1
RUN_RETCODE 0
RUN_TIME 2009-07-20 13:04:59
RUN_DURATION 0.00254887164461759
RUN_ZTIME 1248109468
RUN_BTIME 1248109468
RUN_MTIME 1248109499

RUN_ID 2087
RUN_TASK_ID 7
RUN_TASK_SEQ 742
RUN_RETCODE 0
RUN_TIME 2009-09-09 11:09:51
RUN_DURATION 0.00489335523104662
RUN_ZTIME 1248109468
RUN_BTIME 1248109468
RUN_MTIME 1252508991

Copyright© 2020 HCL Technologies Limited

Modifying the scheduler

You can modify the properties of Scheduler tasks, sensors, alerts, thresholds, or groups. You can modify both built-in properties and properties that you added.

You must be connected to the sysadmin database as user informix or another authorized user.
To modify Scheduler properties:
Use an UPDATE statement for the appropriate Scheduler table in the sysadmin database.

Examples
The following example stops a task named task1 from running:

UPDATE ph_task
 SET tk_enable = "F"
 WHERE tk_name = "task1";

The following example changes the amount of time that data collected by the built-in sensor mon_profile to 99 days:

UPDATE ph_task
SET tk_delete = "INTERVAL (99) DAY TO DAY"
WHERE tk_name = "mon_profile";

The following example changes the threshold named COMMAND HISTORY RETENTION to 20 so that the command_history table retains information about SQL
administration API commands for 20 days:

UPDATE ph_threshold SET value = "20 0:00:00"
WHERE name = "COMMAND HISTORY RETENTION";

Part VI: Administering 387

https://www.hcltech.com/

Related tasks:
Creating a task
Creating a sensor
Related reference:
Built-in tasks and sensors

Copyright© 2020 HCL Technologies Limited

Remote administration with the SQL administration API

You can use the SQL administration API to perform remote administration tasks by using SQL statements.

The SQL administration API functions take one or more arguments that define the task. Many of the tasks are ones that you can also complete with command-line utilities.
The advantage of using the SQL administration API functions is that you can run them remotely from other database servers. You must be directly connected to the
database server when you run command-line utility commands.

You can perform the following types of administrative tasks with the SQL administration API:

Control data compression
Update configuration parameters
Check data, partitions, and extents consistency, control the B-tree scanner, and force a checkpoint
Set up and administer Enterprise Replication
Set up and administer high-availability clusters
Control logging and logical logs
Control shared-memory and add buffer pools
Control mirroring
Control decision-support queries
Change the server mode
Add, drop, and configure storage spaces
Control the SQL statement cache
Control and configure SQL tracing
Start and stop the listen control threads dynamically
Perform other tasks, such as moving the sysadmin database, terminating a session, or adding a virtual processor

For more information about the SQL administration API, see the IBM® Informix® Administrator's Reference.

SQL administration API admin() and task() functions
 The SQL administration API consists of two functions: admin() and task() that are defined in the sysadmin database.

Viewing SQL administration API history
 You can view the history of all the SQL administration API functions that the were run in the previous 30 days in the command_history table in the sysadmin

database.

Related concepts:
 Overview of automatic monitoring and corrective actions

Related information:
 SQL Administration API Overview

Copyright© 2020 HCL Technologies Limited

SQL administration API admin() and task() functions

The SQL administration API consists of two functions: admin() and task() that are defined in the sysadmin database.

These functions perform the same tasks, but return results in different formats. The task() function returns a string that describes the results of the command. The
admin() function returns an integer.

By default, only user informix, can connect to the sysadmin database. If user root or a member of the DBSA group is granted privileges to connect to the sysadmin
database, user root or a member of the DBSA group can also run the SQL administration API task() and admin() functions.

Run the task() or admin() function in a transaction that does not include any other statements.

You can use EXECUTE FUNCTION statement to execute the admin() and task() functions. For example, the following SQL statement, which is equivalent to the oncheck -
ce command, instructs the database server to check the extents:

BEGIN WORK;
EXECUTE FUNCTION admin("check extents");
END WORK;

You use SQL administration API functions in your Scheduler task actions. For example, you can define a task that creates a dbspace by using the following statement in the
task action:

EXECUTE FUNCTION admin("create dbspace","dbspace2","/work/dbspace2","20 MB");

Related information:
 SQL Administration API Overview

Copyright© 2020 HCL Technologies Limited

388 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Viewing SQL administration API history

You can view the history of all the SQL administration API functions that the were run in the previous 30 days in the command_history table in the sysadmin database.

You must be connected to the sysadmin database as user informix or another authorized user.
The command_history table shows if an administrative task was executed through an admin() or task() function and displays information about the user who ran the
command, the time the command was run, the command, and the message returned when the database server completed running the command.

To display command history:
Use a SELECT statement to return the data from the command_history table.
The following example displays all command history for the past 30 days:

SELECT * FROM command_history;

The following table shows sample commands and the associated results in a sample command_history table. For a description of all information in the
command_history table, see the IBM® Informix® Administrator's Reference.

Table 1. Example of some information in a command_history table

Command Sample returned messages

set sql tracing on SQL tracing on with 1000 buffers of 2024 bytes.

create dbspace Space 'space12' added.

checkpoint Checkpoint completed.

add log Added 3 logical logs to dbspace logdbs.

Controlling the size of the command_history table
 You can reduce the retention period or remove rows from the command_history table to prevent it from becoming too large.

Related concepts:
 Overview of automatic monitoring and corrective actions

Related information:
 The command_history table

Copyright© 2020 HCL Technologies Limited

Controlling the size of the command_history table

You can reduce the retention period or remove rows from the command_history table to prevent it from becoming too large.

You must be connected to the sysadmin database as user informix or another authorized user.
By default, rows in the command_history table are automatically removed after a 30 days. The retention period is controlled by the COMMAND HISTORY RETENTION row
in the ph_threshold table.

To reduce the retention period:
Use an UPDATE statement to modify the value of the COMMAND HISTORY RETENTION row in the ph_threshold table.
The following example sets the retention period to 25 days:

UPDATE ph_threshold
SET value = "25"
WHERE name = "COMMAND HISTORY RETENTION";

You can use SQL commands like DELETE or TRUNCATE TABLE to manually remove data from this table. You can also create a task in the ph_task table to purge data from
the command_history table.

The following example shows a task that monitors the amount of data in the command_history table and purges data when it becomes too old.

INSERT INTO ph_task
(tk_name, tk_type, tk_group, tk_description, tk_execute,
tk_start_time, tk_stop_time, tk_frequency)
VALUES
("mon_command_history",
"TASK",
"TABLES",
"Monitor how much data is kept in the command history table",
"delete from command_history where cmd_exec_time < (
 select current - value::INTERVAL DAY to SECOND
 from ph_threshold
 where name = 'COMMAND HISTORY RETENTION') ",
DATETIME(02:00:00) HOUR TO SECOND,
NULL,
INTERVAL (1) DAY TO DAY);

Related information:
 The command_history table

Copyright© 2020 HCL Technologies Limited

Query drill-down
Part VI: Administering 389

https://www.hcltech.com/
https://www.hcltech.com/

You can use query drill-down, or SQL tracing, to gather statistical information about each SQL statement that was run and to analyze statement history.

SQL tracing helps you answer questions such as:

How long do SQL statements take?
How many resources are individual statements using?
How long did statement execution take?
How much time was involved waiting for each resource?

The statistical information is stored in a circular buffer, which is an in-memory pseudo table, called syssqltrace, that is stored in the sysmaster database. You can
dynamically resize the circular buffer.

By default SQL tracing turned off, but you can turn it on for all users or for a specific set of users. When SQL tracing is enabled with its default configuration, the database
server tracks the last 1000 SQL statements that ran, along with the profile statistics for those statements. You can also disable SQL tracing globally or for a particular user.

The memory required by SQL tracing is large if you plan to keep much historical information. The default amount of space required for SQL tracing is two megabytes. You
can expand or reduce the amount of storage according to your requirements.

Information displayed includes:

The user ID of the user who ran the command
The database session ID
The name of the database
The type of SQL statement
The duration of the SQL statement execution
The time this statement completed
The text of the SQL statement or a function call list (also called stack trace) with the statement type, for example:

procedure1() calls procedure2() calls procedure3()

Statistics including the:
Number of buffer reads and writes
Number of page reads and writes
Number of sorts and disk sorts
Number of lock requests and waits
Number of logical log records
Number of index buffer reads
Estimated number of rows
Optimizer estimated cost
Number of rows returned

Database isolation level.

You can also specify escalating levels of information to include in the tracing, as follows:

low-level tracing, which is enabled by default, captures the information shown in the example below. This information includes statement statistics, statement text,
and statement iterators.
Medium level tracing captures all of the information included in low-level tracing, plus the list of table names, database name and stored procedure stacks.
high-level tracing captures all of the information included in medium-level tracing, plus host variables.

The amount of information traced affects the amount of memory required for this historical data.

You can enable and disable the tracing at any point in time, and you can change the number and size of the trace buffers while the database server is running. If you resize
the trace buffer, the database server attempts to maintain the content of the buffer. If the parameters are increased, data is not truncated. However, if the number or the
size of the buffers are reduced, the data in the trace buffers might be truncated or lost.

The number of buffers determines how many SQL statements are traced. Each buffer contains the information for a single SQL statement. By default, an individual trace
buffer is a fixed size. If the text information stored in the buffer exceeds the size of the trace buffer, then the data is truncated.

The following example shows SQL tracing information:

select * from syssqltrace where sql_id = 5678;

sql_id 5678
sql_address 4489052648
sql_sid 55
sql_uid 2053
sql_stmttype 6
sql_stmtname INSERT
sql_finishtime 1140477805
sql_begintxtime 1140477774
sql_runtime 30.86596333400
sql_pgreads 1285
sql_bfreads 19444
sql_rdcache 93.39127751491
sql_bfidxreads 5359
sql_pgwrites 810
sql_bfwrites 17046
sql_wrcache 95.24815205913
sql_lockreq 10603
sql_lockwaits 0
sql_lockwttime 0.00
sql_logspace 60400
sql_sorttotal 0
sql_sortdisk 0
sql_sortmem 0
sql_executions 1
sql_totaltime 30.86596333400
sql_avgtime 30.86596333400
sql_maxtime 30.86596333400

390 Part VI: Administering

sql_numiowaits 2080
sql_avgiowaits 0.014054286131
sql_totaliowaits 29.23291515300
sql_rowspersec 169.8958799132
sql_estcost 102
sql_estrows 1376
sql_actualrows 5244
sql_sqlerror 0
sql_isamerror 0
sql_isollevel 2
sql_sqlmemory 32608
sql_numiterators 4
sql_database db3
sql_numtables 3
sql_tablelist t1
sql_statement insert into t1 select {+ AVOID_FULL(sysindices) } 0, tabname

For an explanation of all table rows, see information about the syssqltrace table in the sysmaster database section of the IBM® Informix® Administrator's Reference.

Specifying startup SQL tracing information by using the SQLTRACE configuration parameter
 Use the SQLTRACE configuration parameter to control the default tracing behavior when the database server starts. By default, this parameter is not set. The

information you set includes the number of SQL statements to trace and the tracing mode.
Disable SQL tracing globally or for a session

 Even if the mode specified in the SQLTRACE configuration parameter is global or user, you can disable SQL tracing if you want to completely turn off all user and
global tracing and deallocate resources currently in use by SQL tracing. By default, SQL tracing is off for all users.
Enable SQL tracing

 After you specify user as the mode in the SQLTRACE configuration parameter, you must run the SQL administration API task() or admin() function to turn SQL
history tracing on for a particular user.
Enable global SQL tracing for a session

 You can enable global SQL tracing for the current session by running the SQL administration API task() or admin() function.

Related concepts:
 Overview of automatic monitoring and corrective actions

Copyright© 2020 HCL Technologies Limited

Specifying startup SQL tracing information by using the SQLTRACE configuration
parameter

Use the SQLTRACE configuration parameter to control the default tracing behavior when the database server starts. By default, this parameter is not set. The information
you set includes the number of SQL statements to trace and the tracing mode.

Any user who can modify the onconfig file can modify the value of the SQLTRACE configuration parameter and effect the startup configuration. However, only user
informix, root, or a DBSA who has been granted connect privileges to the sysadmin database can use SQL administration API commands to modify the runtime status of
the SQL tracing.

To specify SQL tracing information when the database server starts:

1. Set the SQLTRACE configuration parameter in the onconfig file.
2. Restart the database server.

Example
The following setting in the onconfig file specifies that the database server gathers low-level information about up to 2000 SQL statements executed by all users on the
system and allocates approximately four megabytes of memory (2000 * two KB).

SQLTRACE level=LOW,ntraces=2000,size=2,mode=global

If you use only a percentage of the allocated buffer space (for example, 42 percent of the buffer space), the amount of memory that is allocated is still two KB.

If you do not want to set the SQLTRACE configuration parameter and restart the server, you can run the following SQL administration API command, which provides the
same function as setting SQLTRACE for the current session:

EXECUTE FUNCTION task("set sql tracing on", 100,"1k","med","user");

After enabling the SQL tracing system in user mode, you can then enable tracing for each user. See Enable SQL tracing.

For more information about using task() and admin() functions, see the IBM® Informix® Administrator's Reference.

For more information about the SQLTRACE configuration parameter, including minimum and maximum values for some fields, see the IBM Informix Administrator's
Reference.

Copyright© 2020 HCL Technologies Limited

Disable SQL tracing globally or for a session

Even if the mode specified in the SQLTRACE configuration parameter is global or user, you can disable SQL tracing if you want to completely turn off all user and global
tracing and deallocate resources currently in use by SQL tracing. By default, SQL tracing is off for all users.

Part VI: Administering 391

https://www.hcltech.com/
https://www.hcltech.com/

You must be connected to the sysadmin database as user informix or another authorized user.

To disable global SQL tracing, run the SQL administration API task() or admin() function with the set sql tracing off argument.

To disable SQL tracing for a particular session, run the SQL administration API task() or admin() function with set sql tracing off as the first argument and the session
identification number as the second argument.

Examples
The following example disables SQL tracing globally:

EXECUTE FUNCTION task('set sql tracing off');
(expression) SQL tracing off.

1 row(s) retrieved.

The following example disables SQL tracing for the session with an ID of 47:

EXECUTE FUNCTION task(“set sql user tracing off”,47);

For more information about using task() or admin() functions, see the IBM® Informix® Guide to SQL: Syntax.

Copyright© 2020 HCL Technologies Limited

Enable SQL tracing

After you specify user as the mode in the SQLTRACE configuration parameter, you must run the SQL administration API task() or admin() function to turn SQL history
tracing on for a particular user.

You must be connected to the sysadmin database as user informix or another authorized user.

Global SQL tracing is not required to be enabled to allow SQL tracing for a particular user.

To enable SQL tracing for a particular user, run the SQL administration API task() or admin() function with set sql tracing on as the first argument and the user session ID
as the second argument.

To enable user SQL tracing for all users except root or informix, you can run a task() or admin() function with the set sql tracing on argument and information that defines
the users.

Example
The following example enables SQL tracing for the user with the session ID of 74:

EXECUTE FUNCTION task("set sql user tracing on", 74);

The following example enables the tracing of SQL statements of users who are currently connected to the system as long as they are not logged in as user root or
informix.

dbaccess sysadmin -<<END
 execute function task("set sql tracing on", 1000, 1,"low","user");
 select task("set sql user tracing on", sid)
 FROM sysmaster:syssessions
 WHERE username not in ("root","informix");
END

For more information about the task() and admin() functions, see the IBM® Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Enable global SQL tracing for a session

You can enable global SQL tracing for the current session by running the SQL administration API task() or admin() function.

You must be connected to the sysadmin database as user informix or another authorized user.

By default, global SQL tracing is not enabled. You can set the SQLTRACE configuration parameter to permanently enable global tracing.

To enable global user SQL history tracing for the current database server session, run the SQL administration API task() or admin() function with the set sql tracing on
argument.

Example
The following example enables global low-level SQL tracing for all users:

EXECUTE FUNCTION task("set sql tracing on", 1000, 1,"low","global");

If a new user logs on to the system after your statement runs, you can enable tracing for the new user. See Enable SQL tracing.

For more information about the task() and admin() functions, see the IBM® Informix® Guide to SQL: Syntax.

392 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Administrator's Reference

These topics include comprehensive descriptions of IBM® Informix® configuration parameters, the system-monitoring interface (SMI) tables in the sysmaster database,
the syntax of database server utilities such as onmode and onstat, logical-log records, disk structures, event alarms, and unnumbered error messages.

These topics are of interest to the following users:

Database administrators
System administrators
Performance engineers

These topics are written with the assumption that you have the following background:

A working knowledge of your computer, your operating system, and the utilities that your operating system provides
Some experience working with relational databases or exposure to database concepts
Some experience with database server administration, operating-system administration, or network administration

These topics are from the IBM Informix Administrator's Reference.

Configuring and monitoring Informix
 Administrative Utilities

 SQL Administration API
 Appendixes

Copyright© 2020 HCL Technologies Limited

Configuring and monitoring Informix

Database configuration parameters
 The Informix database server uses a configuration file, which is called the onconfig file, during initialization. This file contains default configuration parameter

values. You can modify the parameter values to improve performance and other characteristics of the instance or database.
The sysmaster database

 These topics describe the sysmaster database and provide reference information for the system-monitoring interface (SMI).
The sysadmin Database

 The sysadmin database contains the tables that contain and organize the Scheduler tasks and sensors, store data collected by sensors, and record the results of
Scheduler jobs and SQL administration API functions.
Disk Structures and Storage

 Interpreting Logical-Log Records

Copyright© 2020 HCL Technologies Limited

Database configuration parameters

The Informix® database server uses a configuration file, which is called the onconfig file, during initialization. This file contains default configuration parameter values. You
can modify the parameter values to improve performance and other characteristics of the instance or database.

The ONCONFIG environment variable identifies your onconfig file.

onconfig file
 When you add or change information in the onconfig file, you must follow the conventions that are used in the file.

onconfig Portal: Configuration parameters by functional category
 The information in this section lists configuration parameters as they are in the UNIX onconfig.std file.

ADMIN_MODE_USERS configuration parameter
 The ADMIN_MODE_USERS configuration parameter specifies a list of users, besides the user informix and members of the DBSA group, that you want to access the

database server in the administration mode.
ADMIN_USER_MODE_WITH_DBSA configuration parameter

 The ADMIN_USER_MODE_WITH_DBSA configuration parameter specifies which users, besides the user informix, can connect to the database server in the
administration mode.
ALARMPROGRAM configuration parameter

 Use the ALARMPROGRAM configuration parameter to specify the full pathname of the alarmprogram file that handles event alarms and controls logical-log
backups.
ALLOW_NEWLINE configuration parameter

 Use the ALLOW_NEWLINE configuration parameter to allow or disallow newline characters in quoted strings for all sessions.
ALRM_ALL_EVENTS configuration parameter

 Use the ALRM_ALL_EVENTS configuration parameter to specify whether the ALARMPROGRAM configuration parameter runs for all events that are logged in the
MSGPATH configuration parameter, or only for noteworthy events.
AUTO_AIOVPS configuration parameter

 The AUTO_AIOVPS configuration parameter enables the database server to automatically increase the number of asynchronous I/O virtual processors (AIO VPs)
and page cleaner threads when the database server detects that the I/O workload outpaced the performance of the existing AIO VPs.
AUTO_CKPTS configuration parameter

 The AUTO_CKPTS configuration parameter allows the server to trigger checkpoints more frequently to avoid the blocking of transactions.

Part VI: Administering 393

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

AUTO_LLOG configuration parameter
Use the AUTO_LLOG configuration parameter to automatically add logical logs in the specified dbspace to improve performance.
AUTO_TUNE_SERVER_SIZE configuration parameter
Use the AUTO_TUNE_SERVER_SIZE configuration parameter to set the sizes of memory and storage spaces to allocate based on the number of expected
concurrent users.
AUTO_LRU_TUNING configuration parameter
Use the AUTO_LRU_TUNING configuration parameter to enable automatic LRU tuning, which automatically maintains enough clean pages for page replacement.
AUTO_READAHEAD configuration parameter
Use the AUTO_READAHEAD configuration parameter to change the automatic read-ahead mode or to disable automatic read-ahead operations for a query.
AUTO_REPREPARE configuration parameter
The AUTO_REPREPARE configuration parameter controls whether the database server automatically reoptimizes SPL routines and reprepares prepared objects
after the schema of a table that is referenced by the SPL routine or by the prepared object was changed.
AUTO_STAT_MODE configuration parameter
Use the AUTO_STAT_MODE configuration parameter to enable or disable the mode for selectively updating only stale or missing data distributions in UPDATE
STATISTICS operations instead of updating statistics for all data distributions.
AUTO_TUNE configuration parameter
Use the AUTO_TUNE configuration parameter to enable or disable all automatic tuning configuration parameters that have values that are not present in the
onconfig file.
AUTOLOCATE configuration parameter
Use the AUTOLOCATE configuration parameter to enable the automatic location of databases, indexes, and tables, and the automatic fragmentation of tables.
BATCHEDREAD_INDEX configuration parameter
Use the BATCHEDREAD_INDEX configuration parameter to enable the optimizer to execute light scans for indexes. This reduces the number of times that a buffer is
read, thus improving performance.
BATCHEDREAD_TABLE configuration parameter
Use the BATCHEDREAD_TABLE configuration parameter to enable or disable light scans on compressed tables, tables with rows that are larger than a page, and
tables with VARCHAR, LVARCHAR, and NVARCHAR data.
BLOCKTIMEOUT configuration parameter
Use the BLOCKTIMEOUT configuration parameter to specify the number of seconds that a thread or database server will hang. After the timeout, the thread or
database server will either continue processing or fail.
BTSCANNER Configuration Parameter
Use the BTSCANNER configuration parameter to set the B-tree scanner. The B-tree scanner improves transaction processing for logged databases when rows are
deleted from a table with indexes. The B-tree scanner threads remove deleted index entries and rebalance the index nodes. The B-tree scanner automatically
determines which index items are to be deleted.
BUFFERPOOL configuration parameter
Use the BUFFERPOOL configuration parameter to configure how many data pages are cached in shared memory and how often those pages are flushed to disk
between checkpoints. The default values of the BUFFERPOOL configuration parameter are adequate for many systems. However, you can change the values to tune
the performance of your system.
CHECKALLDOMAINSFORUSER configuration parameter
Use the CHECKALLDOMAINSFORUSER configuration parameter to check all of the domains for all users.
CKPTINTVL configuration parameter
Use the CKPTINTVL configuration parameter to specify the frequency, expressed in seconds, at which the database server checks to determine whether a
checkpoint is needed. When a checkpoint occurs, all pages in the shared-memory buffer pool are written to disk.
CLEANERS configuration parameter
Use the CLEANERS configuration parameter to specify the number of page-cleaner threads available during the database server operation. By default, the database
server always runs one page-cleaner thread. A general guideline is one page cleaner per disk drive. The value specified has no effect on the size of shared memory.
CLUSTER_TXN_SCOPE configuration parameter
Set the CLUSTER_TXN_SCOPE configuration parameter to configure your high-availability cluster so that when a client session issues a commit, the server blocks
the session until the transaction is applied in that session, on a secondary server, or across the cluster.
CONSOLE configuration parameter
Use the CONSOLE configuration parameter to specify the path and name for console-message file.
CONVERSION_GUARD configuration parameter
Use the CONVERSION_GUARD configuration parameter to specify whether IBM® Informix stops or continues an upgrade to a new version of the server if an error
occurs during the upgrade process.
DATASKIP Configuration Parameter
Use the DATASKIP configuration parameter to control whether the database server skips a dbspace that is unavailable during the processing of a transaction.
DBCREATE_PERMISSION configuration parameter
Use the DBCREATE_PERMISSION configuration parameter to restrict the permission to create databases to the user that you specify.
DB_LIBRARY_PATH configuration parameter
Use the DB_LIBRARY_PATH configuration parameter to specify a comma-separated list of valid directory prefix locations from which the database server can load
external modules, such as DataBlade modules. You can also include server environment variables, such as $INFORMIXDIR, in the list.
DBSERVERALIASES configuration parameter
Use the DBSERVERALIASES configuration parameter to specify an alias name, or a list of unique alias names for the database server. Each alias defined by the
DBSERVERALIASES configuration parameter can be used in a different connection, as specified by entries in the sqlhosts information.
DBSERVERNAME configuration parameter
Use the DBSERVERNAME configuration parameter to specify a unique name that you want to associate with the database server. You specify this configuration
parameter when you install the database server.
DBSPACETEMP configuration parameter
Use the DBSPACETEMP configuration parameter to specify a list of dbspaces that the database server uses to globally manage the storage of temporary tables.
DD_HASHMAX configuration parameter
Use the DD_HASHMAX configuration parameter to specify the maximum number of tables in each hash bucket in the data-dictionary cache.
DD_HASHSIZE configuration parameter
Use the DD_HASHSIZE configuration parameter to specify the number of hash buckets or lists that are in the data-dictionary cache.
DEADLOCK_TIMEOUT configuration parameter
Use the DEADLOCK_TIMEOUT configuration parameter to specify the maximum number of seconds that a database server thread can wait to acquire a lock.
DEF_TABLE_LOCKMODE configuration parameter
Use the DEF_TABLE_LOCKMODE configuration parameter to specify the lock mode at the page or row level for new tables.
DEFAULTESCCHAR configuration parameter
The DEFAULTESCCHAR configuration parameter specifies the default escape character that is used for LIKE and MATCHES conditions.
DELAY_APPLY Configuration Parameter
Use the DELAY_APPLY configuration parameter to configure RS secondary servers to wait for a specified period of time before applying logs.

394 Part VI: Administering

DIRECT_IO configuration parameter (UNIX)
Use the DIRECT_IO configuration parameter to control the use of direct I/O for cooked files used for dbspace chunks.
DIRECTIVES configuration parameter
Use the DIRECTIVES configuration parameter to enable or disable the use of optimizer directives. These directives specify behavior for the query optimizer in
developing query plans for SELECT, UPDATE, and DELETE statements.
DISABLE_B162428_XA_FIX configuration parameter
Use the DISABLE_B162428_XA_FIX configuration parameter to specify when transactions are freed.
DISK_ENCRYPTION configuration parameter
The DISK_ENCRYPTION configuration parameter controls the encryption of storage spaces.
DRDA_COMMBUFFSIZE configuration parameter
Use the DRDA_COMMBUFFSIZE configuration parameter to specify the size of the DRDA communications buffer.
DRAUTO configuration parameter
Set the DRAUTO configuration parameter to specify a HDR-failover method for HDR high-availability systems.
DRIDXAUTO configuration parameter
Use the DRIDXAUTO configuration parameter to specify whether the primary High-Availability Data Replication (HDR) server automatically starts index replication if
the secondary HDR server detects a corrupted index.
DRINTERVAL configuration parameter
Use the DRINTERVAL configuration parameter to specify the maximum number of seconds between flushes of the data-replication buffer, whether to use HDR
SYNC mode, or whether to use the synchronization mode that is specified by the HDR_TXN_SCOPE configuration parameter.
DRLOSTFOUND configuration parameter
Use the DRLOSTFOUND configuration parameter to specify the path name to the HDR lost-and-found file. This file indicates that some transactions were committed
on the HDR primary database server before that were not committed on the secondary database server when the primary database server experienced a failure.
DRTIMEOUT configuration parameter
Use the DRTIMEOUT configuration parameter to specify the length of time, in seconds, that a database server in a high-availability data-replication pair waits for a
transfer acknowledgment from the other database server in the pair. This parameter applies only to high-availability data-replication pairs.
DS_HASHSIZE configuration parameter
Use the DS_HASHSIZE configuration parameter to specify the number of hash buckets in the data-distribution cache and other caches. The database server stores
and accesses column statistics that the UPDATE STATISTICS statement generates in the MEDIUM or HIGH mode in the data-distribution cache.
DS_MAX_QUERIES configuration parameter
Use the DS_MAX_QUERIES configuration parameter to specify the maximum number of parallel database queries (PDQ) that can run concurrently.
DS_MAX_SCANS configuration parameter
Use the DS_MAX_SCANS configuration parameter to limit the number of PDQ scan threads that the database server can execute concurrently.
DS_NONPDQ_QUERY_MEM configuration parameter
Use the DS_NONPDQ_QUERY_MEM configuration parameter to increase the amount of memory that is available for a query that is not a Parallel Database Query
(PDQ). (You can only use this parameter if PDQ priority is set to zero.)
DS_POOLSIZE configuration parameter
Use the DS_POOLSIZE parameter to specify the maximum number of entries in the data-distribution cache and other caches. The database server stores and
accesses column statistics that the UPDATE STATISTICS statement generates in the MEDIUM or HIGH mode in the data-distribution cache.
DS_TOTAL_MEMORY configuration parameter
Use the DS_TOTAL_MEMORY configuration parameter to specify the amount of memory available for PDQ queries. The amount should be smaller than the
computer physical memory, minus fixed overhead such as operating-system size and buffer-pool size.
DUMPCNT configuration parameter (UNIX)
Use the DUMPCNT configuration parameter to specify the number of assertion failures in a thread for which a database server dumps shared memory or generates
a core file by calling the gcore utility.
DUMPCORE configuration parameter (UNIX)
Use the DUMPCORE configuration parameter to control whether assertion failures cause a virtual processor to dump a core image. The core file is left in the
directory from which the database server was last invoked. (The DUMPDIR parameter has no impact on the location of the core file.)
DUMPDIR configuration parameter
DUMPDIR specifies a directory in which the database server dumps shared memory, gcore files, or messages from a failed assertion.
DUMPGCORE configuration parameter (UNIX)
Use the DUMPGCORE configuration parameter to specify whether to dump the gcore core file. Use this configuration parameter with operating systems that support
gcore.
DUMPSHMEM configuration parameter (UNIX)
Use the DUMPSHMEM configuration parameter to indicate whether a shared memory dump is created on an assertion failure. This configuration parameter also
specifies how much memory is written to the shmem.pid.cnt file in the directory specified by the DUMPDIR configuration parameter.
DYNAMIC_LOGS configuration parameter
Use the DYNAMIC_LOGS configuration parameter to allow logical logs to be dynamically added when necessary to prevent transaction blocking.
EILSEQ_COMPAT_MODE configuration parameter
Use the EILSEQ_COMPAT_MODE configuration parameter to control if IBM Informix checks whether character data inserted by a client application contains code
point sequences not recognized by the locale of the current database.
ENABLE_SNAPSHOT_COPY configuration parameter
Use the ENABLE_SNAPSHOT_COPY configuration parameter to enable or disable the ability to clone a server using the ifxclone utility.
ENCRYPT_CIPHERS configuration parameter
Use the ENCRYPT_CIPHERS configuration parameter to define all ciphers and modes that can be used by the current database session. ENCRYPT_CIPHERS is used
for Enterprise Replication and High-Availability Data Replication only.
ENCRYPT_HDR configuration parameter
Use the ENCRYPT_HDR configuration parameter to enable or disable HDR encryption.
ENCRYPT_MAC configuration parameter
Use the ENCRYPT_MAC configuration parameter to control the level of message authentication code (MAC) generation. This configuration parameter is used only for
Enterprise Replication and High-Availability Data Replication.
ENCRYPT_MACFILE configuration parameter
Use the ENCRYPT_MACFILE configuration parameter to specify a list of the full path names of MAC key files. This configuration parameter is used only for Enterprise
Replication and High-Availability Data Replication.
ENCRYPT_SMX configuration parameter
Use the ENCRYPT_SMX configuration parameter to set the level of encryption for high-availability configurations on secondary servers and between Enterprise
Replication Servers.
ENCRYPT_SWITCH configuration parameter
Use the ENCRYPT_SWITCH configuration parameter to define the frequency at which ciphers or secret keys are renegotiated. This configuration parameter is used
only for Enterprise Replication and High-Availability Data Replication.

Part VI: Administering 395

EXPLAIN_STAT configuration parameter
Use the EXPLAIN_STAT configuration parameter to enable or disable the inclusion of a Query Statistics section in the explain output file.
EXT_DIRECTIVES configuration parameter
Use the EXT_DIRECTIVES configuration parameter to enable or disable the use of external query optimizer directives.
EXTSHMADD configuration parameter
Use the EXTSHMADD configuration parameter to specify the size of virtual-extension segments that are added when a user-defined routine or a DataBlade routine
is run in a user-defined virtual processor.
FAILOVER_CALLBACK configuration parameter
Use the FAILOVER_CALLBACK configuration parameter to specify the script executed by the database server when a database server transitions from a secondary
server to a primary or standard server.
FAILOVER_TX_TIMEOUT configuration parameter
In high-availability cluster environments, use the FAILOVER_TX_TIMEOUT configuration parameter to enable transactions to complete after failover of the primary
server.
FASTPOLL configuration parameter
Use the FASTPOLL configuration parameter to enable or disable fast polling of your network. FASTPOLL is a platform-specific configuration parameter.
FILLFACTOR configuration parameter
Use the FILLFACTOR configuration parameter to specify the degree of index-page fullness. A low value provides room for growth in the index. A high value compacts
the index.
FULL_DISK_INIT configuration parameter
Use the FULL_DISK_INIT configuration parameter to prevent an accidental disk reinitialization of an existing database server instance. This configuration
parameter specifies whether or not the disk initialization command (oninit -i) can run on your IBM Informix instance when a page zero exists at the root path
location, which is at the first page of the first chunk location.
GSKIT_VERSION configuration parameter
Use the GSKIT_VERSION configuration parameter to specify the major version of IBM Global Security Kit (GSKit) that the database server uses for encryption and
SSL communication.
HA_ALIAS configuration parameter
The HA_ALIAS configuration parameter defines a network alias that is used for server-to-server communication in a high-availability cluster. The specified network
alias is also used by Connection Managers, the ifxclone utility, and onmode -d commands.
HA_FOC_ORDER configuration parameter
Use the HA_FOC_ORDER configuration parameter to define a single connection-management failover rule for a high-availability cluster of servers.
HDR_TXN_SCOPE configuration parameter
The HDR_TXN_SCOPE configuration parameter is used with the DRINTERVAL configuration parameter to specify the synchronization mode for HDR replication in a
high-availability cluster.
HETERO_COMMIT configuration parameter
Use the HETERO_COMMIT configuration parameter to control whether the database server participates in heterogeneous commit transactions.
IFX_EXTEND_ROLE configuration parameter
Your database system administrator (DBSA), by default user informix, can use the IFX_EXTEND_ROLE parameter to control which users are authorized to register
DataBlade modules or external user-defined routines (UDRs).
IFX_FOLDVIEW configuration parameter
Use the IFX_FOLDVIEW configuration parameter to enable or disable view folding. For certain situations where a view is involved in a query, view folding can
significantly improve the performance of the query. In these cases, views are folded into a parent query instead of the query results being put into a temporary
table.
IFX_XA_UNIQUEXID_IN_DATABASE configuration parameter
Use the IFX_XA_UNIQUEXID_IN_DATABASE configuration parameter to enable the transaction manager to use the same XID to represent global transactions on
different databases in the same database server instance.
INFORMIXCONRETRY configuration parameter
Use the INFORMIXCONRETRY configuration parameter to specify the maximum number of connection attempts that can be made to each database server after the
initial connection attempt fails. These attempts are made within the time limit that the INFORMIXCONTIME configuration parameter specifies.
INFORMIXCONTIME configuration parameter
Use the INFORMIXCONTIME configuration parameter to specify the number of seconds that the CONNECT statement attempts to establish a connection to a
database server.
LIMITNUMSESSIONS configuration parameter
Use the LIMITNUMSESSIONS configuration parameter to define the maximum number of sessions that you want connected to IBM Informix.
LISTEN_TIMEOUT configuration parameter
Use the LISTEN_TIMEOUT configuration parameter to specify the number of seconds in which the server waits for a connection.
LOCKS configuration parameter
The LOCKS configuration parameter specifies the initial size of the lock table.
LOGBUFF configuration parameter
Use the LOGBUFF configuration parameter to specify the size in kilobytes for the three logical-log buffers in shared memory.
LOGBUF_INTVL configuration parameter
Use the LOGBUF_INTVL configuration parameter to ensure the logical log buffer is flushed periodically when only buffered logging is used.
LOGFILES configuration parameter
Use the LOGFILES configuration parameter to specify the number of logical-log files that the database server creates during disk initialization.
LOG_INDEX_BUILDS configuration parameter
Use the LOG_INDEX_BUILDS configuration parameter to enable or disable index page logging.
LOG_STAGING_DIR configuration parameter
Use the LOG_STAGING_DIR configuration parameter to specify the location of log files received from the primary server when configuring delayed application of log
files on RS secondary servers.
LOGSIZE configuration parameter
Use the LOGSIZE configuration parameter to specify the size that is used when logical-log files are created.
LOW_MEMORY_MGR configuration parameter
Use the LOW_MEMORY_MGR configuration parameter to enable automatic low memory management, which you can use to change the default behavior of a
primary or standard server when it reaches its memory limit.
LOW_MEMORY_RESERVE configuration parameter
Use the LOW_MEMORY_RESERVE configuration parameter to reserve a specific amount of memory for use when critical activities are needed and the server has
limited free memory.
LTXEHWM configuration parameter
Use the LTXEHWM configuration parameter to specify the long-transaction, exclusive-access, high-watermark. When the logical-log space reaches the LTXEHWM
threshold, the long transaction currently being rolled back is given exclusive access to the logical log.

396 Part VI: Administering

LTXHWM configuration parameter
Use the LTXHWM configuration parameter to specify the long-transaction high-watermark. The long-transaction high-watermark is the percentage of available log
space that, when filled, triggers the database server to check for a long transaction.
MAX_FILL_DATA_PAGES configuration parameter
Use the MAX_FILL_DATA_PAGES configuration parameter to control inserting more rows to pages that have variable-length rows.
MAX_INCOMPLETE_CONNECTIONS configuration parameter
Use the MAX_INCOMPLETE_CONNECTIONS configuration parameter to specify the maximum number of incomplete connections in a session.
MAX_PDQPRIORITY configuration parameter
Use the MAX_PDQPRIORITY configuration parameter to limit the PDQ resources that the database server can allocate to any one DSS query.
MIRROR configuration parameter
Use the MIRROR configuration parameter to enable or disable mirroring for the database server.
MIRROROFFSET configuration parameter
In IBM Informix, MIRROROFFSET specifies the offset into the disk partition or into the device to reach the chunk that serves as the mirror for the initial chunk of the
root dbspace.
MIRRORPATH configuration parameter
Use the MIRRORPATH configuration parameter to specify the full path name of the mirrored chunk for the initial chunk of the root dbspace.
MSG_DATE configuration parameter
Use the MSG_DATE configuration parameter to enable the insertion of a date in MM/DD/YY format at the beginning of each message printed to the online log.
MSGPATH configuration parameter
Use the MSGPATH configuration parameter to specify the full path name of the message-log file. The database server writes status messages and diagnostic
messages to this file during operation.
MULTIPROCESSOR configuration parameter
Use the MULTIPROCESSOR configuration parameter to specify whether the database server performs locking in a manner that is suitable for a single-processor
computer or a multiprocessor computer.
NET_IO_TIMEOUT_ALARM configuration parameter
Use the NET_IO_TIMEOUT_ALARM configuration parameter to control whether to be notified if network write operations have been blocked for 30 minutes or more.
NETTYPE configuration parameter
Use the NETTYPE parameter to tune the network protocols that are defined in the sqlhosts information.
NS_CACHE configuration parameter
Use the NS_CACHE configuration parameter to define the maximum retention time for entries in the Informix name service caches: the host name/IP address
cache, the service cache, the user cache, and the group cache.
NUMFDSERVERS configuration parameter
For network connections on UNIX, use the NUMFDSERVERS configuration parameter to specify the maximum number of poll threads to handle network
connections migrating between IBM Informix virtual processors (VPs).
OFF_RECVRY_THREADS configuration parameter
Use the OFF_RECVRY_THREADS configuration parameter to specify the number of recovery threads that are used for logical recovery during a cold restore or fast
recovery.
ON_RECVRY_THREADS configuration parameter
The ON_RECVRY_THREADS configuration parameter is the maximum number of recovery threads that the database server uses for logical recovery when the
database server is online (during a warm restore).
ONDBSPACEDOWN configuration parameter
Use the ONDBSPACEDOWN configuration parameter to define the action that the database server takes when any disabling event occurs on a primary chunk within
a noncritical dbspace.
ONLIDX_MAXMEM configuration parameter
Use the ONLIDX_MAXMEM configuration parameter to limit the amount of memory that is allocated to a single preimage pool and a single updator log pool.
OPTCOMPIND configuration parameter
Use the OPTCOMPIND to specify information that helps the optimizer choose an appropriate query plan for your application.
OPT_GOAL configuration parameter
Use the OPT_GOAL configuration parameter to specify an optimization goal for queries.
PC_HASHSIZE configuration parameter
Use PC_HASHSIZE to specify the number of hash buckets in the caches that the database server uses. PC_HASHSIZE applies to UDR cache only.
PC_POOLSIZE configuration parameter
Use the PC_POOLSIZE configuration parameter to specify the maximum number of user-defined routines that are stored in the UDR cache.
PFSC_BOOST configuration parameter
Use the PFSC_BOOST configuration parameter to enable or disable the boosted partition free space cache feature.
PHYSBUFF configuration parameter
Use the PHYSBUFF configuration parameter to specify the size in kilobytes of the two physical-log buffers in shared memory.
PHYSFILE configuration parameter
Use the PHYSFILE configuration parameter to specify the size of the physical log file when you first initialize the disk space and bring the database server online.
PLOG_OVERFLOW_PATH configuration parameter
The PLOG_OVERFLOW_PATH parameter specifies the location of the file that is used during fast recovery if the physical log file overflows.
PLCY_HASHSIZE configuration parameter
The PLCY_HASHSIZE configuration parameter specifies the number of hash buckets in the security policy information cache.
PLCY_POOLSIZE configuration parameter
Use the PLCY_POOLSIZE configuration parameter to specify the maximum number of entries in each hash bucket of the security policy information cache.
PN_STAGEBLOB_THRESHOLD configuration parameter
Use the PN_STAGEBLOB_THRESHOLD configuration parameter to reserve space for BYTE and TEXT data in round-robin fragments.
PRELOAD_DLL_FILE configuration parameter
The PRELOAD_DLL_FILE configuration parameter specifies the path name for a shared library file that is preloaded when the database server is started.
QSTATS configuration parameter
The QSTATS configuration parameter specifies the ability of onstat -g qst to print queue statistics.
REMOTE_SERVER_CFG configuration parameter
Use the REMOTE_SERVER_CFG configuration parameter to specify the file that lists trusted remote hosts.
REMOTE_USERS_CFG configuration parameter
Use the REMOTE_USERS_CFG configuration parameter to specify the file that lists the names of trusted users that exist on remote hosts.
RESIDENT configuration parameter
Use the RESIDENT configuration parameter to specify whether resident and virtual segments of shared memory remain resident in operating-system physical
memory.
RESTARTABLE_RESTORE configuration parameter
Use the RESTARTABLE_RESTORE configuration parameter to control whether the database server performs restartable restores.

Part VI: Administering 397

RESTORE_POINT_DIR configuration parameter
Use the RESTORE_POINT_DIR configuration parameter to change the path name of the directory where restore point files will be placed during a failed upgrade to a
new version of the server. IBM Informix will store restore point files in a subdirectory of the specified directory, with the server number as the subdirectory name,
only if the CONVERSION_GUARD configuration parameter is enabled.
ROOTNAME configuration parameter
ROOTNAME specifies a name for the root dbspace for this database server configuration.
ROOTOFFSET configuration parameter
ROOTOFFSET specifies the offset into an allocation of disk space (file, disk partition, or device) at which the initial chunk of the root dbspace begins.
ROOTPATH configuration parameter
Use the ROOTPATH configuration parameter to specify the full path name, including the device or file name, of the initial chunk of the root dbspace. The ROOTPATH
configuration parameter is stored in the reserved pages as a chunk name.
ROOTSIZE configuration parameter
Use the ROOTSIZE configuration parameter to specify the size in kilobytes of the initial chunk of the root dbspace. The size that you select depends on your
immediate plans for your database server.
RSS_FLOW_CONTROL configuration parameter
Specifies when flow control occurs in a high-availability cluster that contains at least one remote standalone (RS) secondary server.
RSS_NONBLOCKING_CKPT configuration parameter
Use the RSS_NONBLOCKING_CKPT configuration parameter to enable non-blocking checkpoint at RS secondary server.
RTO_SERVER_RESTART configuration parameter
Use the RTO_SERVER_RESTART configuration parameter to specify recovery time objective (RTO) standards for the amount of time, in seconds, that IBM Informix
has to recover from a problem after you restart the server and bring it into online or quiescent mode.
S6_USE_REMOTE_SERVER_CFG configuration parameter
Use the S6_USE_REMOTE_SERVER_CFG configuration parameter to control whether the file specified by the REMOTE_SERVER_CFG configuration parameter is
used to authenticate secure connections for server clusters and Enterprise Replication.
SB_CHECK_FOR_TEMP configuration parameter
Use the SB_CHECK_FOR_TEMP configuration parameter to prevent the copying of a temporary smart large object into a permanent table.
SBSPACENAME configuration parameter
Use the SBSPACENAME configuration parameter specifies the name of the default sbspace.
SBSPACETEMP configuration parameter
Use the SBSPACETEMP configuration parameter to specify a list of default temporary sbspace for storing temporary smart large objects without metadata or user-
data logging. If you store temporary smart large objects in a standard sbspace, the metadata is logged.
SDS_ALTERNATE configuration parameter
Use the SDS_ALTERNATE configuration parameter to define an alternate means of communication between the primary server and SD secondary servers in a high-
availability cluster.
SDS_ENABLE configuration parameter
Use the SDS_ENABLE configuration parameter to enable SD secondary server functionality.
SDS_FLOW_CONTROL configuration parameter
Specifies when flow control occurs in a high-availability cluster that contains at least one shared-disk (SD) secondary server.
SDS_LOGCHECK configuration parameter
Use the SDS_LOGCHECK configuration parameter to set the number of seconds to delay the secondary server from taking over the role of the primary server. If the
secondary server detects that the primary server is generating log records during the delay period, then the failover is prevented. The delay can prevent an
unnecessary failover if network communication between the primary and secondary servers is temporarily unavailable.
SDS_PAGING configuration parameter
The SDS_PAGING configuration parameter specifies the location of two files that serve as buffer paging files.
SDS_TEMPDBS configuration parameter
Use the SDS_TEMPDBS configuration parameter to specify information that the shared disk (SD) secondary server uses to dynamically create temporary dbspaces.
This configuration parameter can be specified only on the SD secondary server.
SDS_TIMEOUT configuration parameter
Use the SDS_TIMEOUT configuration parameter to specify the amount of time in seconds that the primary server in a high-availability cluster will wait for a log-
position acknowledgment to be sent from a shared disk (SD) secondary server.
SEC_APPLY_POLLTIME configuration parameter
Use the SEC_APPLY_POLLTIME configuration parameter to control how long log replay thread should poll for new work before yielding.
SEC_DR_BUFS configuration parameter
Use the SEC_DR_BUFS configuration parameter to control the number of replication buffers to be used for replicating log records to secondary server. Buffer size is
same as LOGBUFF config value.
SEC_LOGREC_MAXBUFS configuration parameter
Use the SEC_LOGREC_MAXBUFS configuration parameter to control the number of log buffers to be used for replaying log records at secondary server. Each log
buffer is of size 16KB.
SEC_NONBLOCKING_CKPT configuration parameter
Use the SEC_NONBLOCKING_CKPT configuration parameter to enable non-blocking checkpoint at HDR and RS secondary server.
SECURITY_LOCALCONNECTION configuration parameter
Use the SECURITY_LOCALCONNECTION configuration parameter to verify security on local connections by verifying that the ID of the local user who is running a
program is the same ID of the user who is trying to access the database.
SEQ_CACHE_SIZE configuration parameter
Use the SEQ_CACHE_SIZE configuration parameter to specify the maximum number of sequence objects that are cached in memory.
SERVERNUM configuration parameter
The SERVERNUM configuration parameter specifies a relative location in shared memory.
SESSION_LIMIT_LOCKS configuration parameter
The SESSION_LIMIT_LOCKS configuration parameter specifies the maximum number of locks available in a session. This limit does not apply to a user who holds
administrative privileges, such as user informix or a DBSA user.
SESSION_LIMIT_LOGSPACE configuration parameter
The SESSION_LIMIT_LOGSPACE configuration parameter specifies the maximum amount of log space that a session can use for individual transactions. This limit
does not apply to a user who holds administrative privileges, such as user informix or a DBSA user.
SESSION_LIMIT_MEMORY configuration parameter
The SESSION_LIMIT_MEMORY configuration parameter specifies the maximum amount of memory that a session can allocate. This limit does not apply to a user
who holds administrative privileges, such as user informix or a DBSA user.
SESSION_LIMIT_TEMPSPACE configuration parameter
The SESSION_LIMIT_TEMPSPACE configuration parameter specifies the maximum amount of temporary table space that a session can allocate. This limit does not
apply to a user who holds administrative privileges, such as user informix or a DBSA user.

398 Part VI: Administering

SESSION_LIMIT_TXN_TIME configuration parameter
The SESSION_LIMIT_TXN_TIME configuration parameter specifies the maximum amount of time that a transaction can run in a session. This limit does not apply to
a user who holds administrative privileges, such as user informix or a DBSA user.
SHMADD configuration parameter
Use the SHMADD configuration parameter to specify the size of the segments that are dynamically added to the virtual portion of shared memory.
SHMBASE configuration parameter
Use the SHMBASE configuration parameter to specifiy the base address where shared memory is attached to the memory space of a virtual processor.
SHMNOACCESS configuration parameter
The SHMNOACCESS configuration parameter specifies a virtual memory address range to not use to attach shared memory.
SHMTOTAL configuration parameter
Use the SHMTOTAL configuration parameter to specify the total amount of shared memory (resident, virtual, communications, and virtual extension portions) to be
used by the database server for all memory allocations. The onconfig.std value of 0 implies that no limit on memory allocation is stipulated.
SHMVIRT_ALLOCSEG configuration parameter
Use the SHMVIRT_ALLOCSEG configuration parameter to specify a threshold at which Informix should allocate a new shared memory segment and the level of the
event alarm activated if the server cannot allocate the new memory segment.
SHMVIRTSIZE configuration parameter
Use the SHMVIRTSIZE configuration parameter to specify the initial size of a virtual shared-memory segment.
SINGLE_CPU_VP configuration parameter
The SINGLE_CPU_VP configuration parameter specifies whether or not the database server is running with only one CPU virtual processor.
SMX_COMPRESS configuration parameter
Use the SMX_COMPRESS configuration parameter to specify the level of compression that the database server uses before sending data from the source database
server to the target database server.
SMX_NUMPIPES configuration parameter
The SMX_NUMPIPES configuration parameter sets the number of pipes for server multiplexer group (SMX) connections.
SMX_PING_INTERVAL configuration parameter
Use the SMX_PING_INTERVAL configuration parameter to specify the number of seconds in a timeout interval, where a secondary server waits for activity from the
primary server in a Server Multiplexer Group (SMX) connection.
SMX_PING_RETRY configuration parameter
Use the SMX_PING_RETRY configuration parameter to specify the maximum number of times that a secondary server repeats the timeout interval that is specified
by the SMX_PING_INTERVAL configuration parameter if a response from the primary server is not received. If the maximum number is reached without a response,
the secondary server prints an error message in the online.log and closes the Server Multiplexer Group (SMX) connection.
SP_AUTOEXPAND configuration parameter
Use the SP_AUTOEXPAND configuration parameter to enable or disable the automatic creation or extension of chunks.
SP_THRESHOLD configuration parameter
Use the SP_THRESHOLD configuration parameter to define the minimum amount of free kilobytes that can exist in a storage space before IBM Informix
automatically runs a task to expand the space, either by extending an existing chunk in the space or by adding a new chunk.
SP_WAITTIME configuration parameter
Use the SP_WAITTIME configuration parameter to specify the maximum number of seconds that a thread waits for a dbspace, temporary dbspace, plogspace,
sbspace, temporary sbspace, or blobspace space to expand before returning an out-of-space error.
SQL_LOGICAL_CHAR configuration parameter
Use the SQL_LOGICAL_CHAR configuration parameter to enable or disable the expansion of size specifications in declarations of built-in character data types.
SQLTRACE configuration parameter
Use the SQLTRACE parameter to control the startup environment of SQL tracing.
SSL_KEYSTORE_LABEL configuration parameter
Use the SSL_KEYSTORE_LABEL configuration parameter to specify the label of the server digital certificate used in the keystore database, a protected database
that stores SSL keys and digital certificates.
STACKSIZE configuration parameter
Use the STACKSIZE configuration parameter to specify the stack size for the database server user threads.
STATCHANGE configuration parameter
Use the STATCHANGE configuration parameter to specify a positive integer for a global percentage of a change threshold for the server to use to determine if
distribution statistics qualify for an update when the automatic mode for UPDATE STATISTICS operations is enabled.
STMT_CACHE configuration parameter
Use the STMT_CACHE configuration parameter to determine whether the database server uses the SQL statement cache.
STMT_CACHE_HITS configuration parameter
Use the STMT_CACHE_HITS configuration parameter to specify the number of hits (references) to a statement before it is fully inserted in the SQL statement cache.
STMT_CACHE_NOLIMIT configuration parameter
Use the STMT_CACHE_NOLIMIT configuration parameter to control whether to insert qualified statements into the SQL statement cache.
STMT_CACHE_NUMPOOL configuration parameter
Use the STMT_CACHE_NUMPOOL configuration parameter to specify the number of memory pools for the SQL statement cache. To obtain information about these
memory pools, use onstat -g ssc pool.
STMT_CACHE_QUERY_PLAN configuration parameter
Use the STMT_CACHE_QUERY_PLAN configuration parameter to produce a query plan from any query that exists in the Statement Cache.
STMT_CACHE_SIZE configuration parameter
Use the STMT_CACHE_SIZE configuration parameter to specify the size of the SQL statement caches in kilobytes. The new cache size takes effect the next time a
statement is added to a cache.
STOP_APPLY configuration parameter
Use the STOP_APPLY configuration parameter to stop an RS secondary server from applying log files received from the primary server.
STORAGE_FULL_ALARM configuration parameter
Use the STORAGE_FULL_ALARM configuration parameter to configure the frequency and severity of messages and alarms when storage spaces become full.
SYSALARMPROGRAM configuration parameter
Use the SYSALARMPROGRAM configuration parameter to specify the full path name of the evidence.sh script. The database server executes evidence.sh when a
database server failure occurs. You can use the output from the evidence.sh script to diagnose the cause of a database server failure.
SYSSBSPACENAME configuration parameter
Use the SYSSBSPACENAME configuration parameter to specify the name of the sbspace in which the database server stores fragment-level data-distribution
statistics, which the syfragsdist system catalog table stores as BLOB objects in its encsdist column. Also use SYSSBSPACENAME to specify the name of the
sbspace in which the database server stores statistics that the UPDATE STATISTICS statement collects for certain user-defined data types.
TBLSPACE_STATS configuration parameter
Use the TBLSPACE_STATS configuration parameter to turn on and off the collection of tblspace statistics. Use the onstat -g ppf command to list tblspace statistics.
TBLTBLFIRST configuration parameter
Use the TBLTBLFIRST configuration parameter if you want to specify the first extent size of tblspace tblspace in the root dbspace. Set this parameter if you do not

Part VI: Administering 399

want the database server to automatically manage the extent size.
TBLTBLNEXT configuration parameter
The TBLTBLNEXT configuration parameter specifies the next extent size of tblspace tblspace in the root dbspace. Set this parameter if you do not want the
database server to automatically manage the extent size.
TEMPTAB_NOLOG configuration parameter
Use the TEMPTAB_NOLOG configuration parameter to disable logging on temporary tables.
TENANT_LIMIT_CONNECTIONS configuration parameter
The TENANT_LIMIT_CONNECTIONS configuration parameter specifies the maximum number of connections to a tenant database.
TENANT_LIMIT_MEMORY configuration parameter
The TENANT_LIMIT_MEMORY configuration parameter specifies the maximum amount of shared memory for all sessions that are connected to the tenant
database.
TENANT_LIMIT_SPACE configuration parameter
The TENANT_LIMIT_SPACE configuration parameter specifies the maximum amount of storage space available to a tenant database. Storage space includes all
permanent dbspaces, BLOB spaces, and sbspaces.
TLS_VERSION configuration parameter
TXTIMEOUT configuration parameter
Use the TXTIMEOUT configuration parameter to specify the amount of time that a participant in a two-phase commit waits before it initiates participant recovery.
This parameter is used only for distributed queries that involve a remote database server. Nondistributed queries do not use this parameter.
UNSECURE_ONSTAT configuration parameter
Use the UNSECURE_ONSTAT configuration parameter to remove the database system administrator (DBSA) user access restriction for onstat commands.
UPDATABLE_SECONDARY configuration parameter
Use the UPDATABLE_SECONDARY configuration parameter to set the number of connections to establish between the primary and secondary servers. Setting this
configuration parameter enables client applications to perform update, insert, and delete operations on a high-availability secondary server.
USELASTCOMMITTED configuration parameter
Use the USELASTCOMMITTED configuration parameter to specify the isolation level for which the LAST COMMITTED feature of the COMMITTED READ isolation
level is implicitly in effect.
USEOSTIME configuration parameter
Use the USEOTIME configuration parameter to control whether the database server uses subsecond precision when obtaining the current time from the operating
system.
USERMAPPING configuration parameter (UNIX, Linux)
Use the USERMAPPING configuration parameter to set whether or not the database server accepts connections from mapped users.
USRC_HASHSIZE configuration parameter
The USRC_HASHSIZE configuration parameter specifies the number of hash buckets in the LBAC credential memory cache. This memory cache holds information
about the LBAC credentials of users.
USRC_POOLSIZE configuration parameter
The USRC_POOLSIZE configuration parameter specifies the maximum number of entries in each hash bucket of the LBAC credential memory cache. This memory
cache holds information about the LBAC credentials of users.
USTLOW_SAMPLE configuration parameter
Use the USTLOW_SAMPLE configuration parameter to enable the generation of index statistics based on sampling when you run UPDATE STATISTICS statements in
LOW mode.
VP_MEMORY_CACHE_KB configuration parameter
Use the VP_MEMORY_CACHE_KB parameter to create a private memory cache for each CPU virtual processor and tenant virtual processor.
VPCLASS configuration parameter
Use the VPCLASS configuration parameter to create and configure virtual processors.
VP_KAIO_PERCENT configuration parameter
VP_KAIO_PERCENT is the percentage of total KAIO event resources on the system that each CPU VP will allocate.
WSTATS configuration parameter
Use the WSTATS configuration parameter to specify whether the onstat -g wst command displays wait statistics for threads within the system.

Copyright© 2020 HCL Technologies Limited

onconfig file

When you add or change information in the onconfig file, you must follow the conventions that are used in the file.

The parameter description and the possible values are specified in the comments above their entries in the onconfig.std file.

The following line shows the syntax for a parameter line:

PARAMETER_NAME parameter_value comments

The following rules describe the onconfig file behavior:

Each parameter is on a separate line.
Lines that start with the # symbol are comments.
The maximum line limit of the onconfig file is 512 bytes. Lines that exceed this limit are truncated and might cause configuration problems.
White space (tabs, spaces, or both) is required between the parameter name, the parameter value, and an optional comment. Do not use any tabs or spaces within
a parameter value. Any characters after the parameter value and blank space are interpreted as comments, regardless of whether they are preceded by a # symbol.
Parameters and their values are case-sensitive. The parameter names are always uppercase. If the value entry is described with uppercase letters, you must use
uppercase (for example, the CPU value of the NETTYPE parameter).
Most parameters can have one valid entry. If more than one entry for these parameters exists in the onconfig file, the first entry is used. Some parameters, however,
can have multiple entries, such as the DBSERVERALIASES configuration parameter, which requires a comma between entries. Some parameters, such as the
VPCLASS configuration parameter, can exist multiple times.
Unrecognized parameters are copied but ignored and no error is given.

Tip: If you run a utility like grep on the onconfig.std template file, specify the new line character (^) to return just the configuration parameter name and value. Without the
new line character, the parameter description is also returned.
For example, the following command returns both the configuration parameter description and the value:

400 Part VI: Administering

https://www.hcltech.com/

grep "MSGPATH" onconfig.std
MSGPATH - The path of the IDS message log file
MSGPATH $INFORMIXDIR/tmp/online.log

Whereas, the following command returns only the configuration parameter value:

grep "^MSGPATH" onconfig.std
MSGPATH $INFORMIXDIR/tmp/online.log

Conventions for environment variables
You can enter an environment variable as a value in any configuration parameter in which the variable is applicable. For example, for the DBSERVERNAME configuration
parameter you can specify the following environment variable instead of the name of your database server:

DBSERVERNAME $MY_DBSERVERNAME

Important: If you enter an environment variable as a value, you must set that environment variable in the environment of any executable program or utility that reads the
onconfig file. Utilities that read the onconfig file include the oninit, oncheck, onbar, ontape, onlog, and archecker utilities.

Modifying the onconfig file
 You can modify the onconfig file for your database server to customize server function or tune server behavior.

Displaying the settings in the onconfig file
 There are several tools that you can use to display the settings in the onconfig file.

Related tasks:
 Setting local environment variables for utilities

Copyright© 2020 HCL Technologies Limited

Modifying the onconfig file

You can modify the onconfig file for your database server to customize server function or tune server behavior.

By default, the onconfig file is in the INFORMIXDIR/etc directory. The ONCONFIG environment variable specifies the name and location of the onconfig file.

The onconfig.std file is a template configuration file from which you can copy configuration parameter settings. The onconfig.std file is a template and not a functional
configuration. You can copy and rename the onconfig.std file, but do not modify or delete theonconfig.std file. If you omit a parameter value in your copy of the
configuration file, the database server either uses default values in onconfig.std template file or calculates values that are based on other parameter values.

You can modify the onconfig file by any of the following methods:

You can use a text editor to modify configuration parameter values. The changes take effect after the next time the database server is shut down and restarted.
You can modify the values of many configuration parameters dynamically without restarting the database server by running the onmode -wf to update
configuration parameters permanently or by running the onmode -wm command to update configuration parameters in memory.
You can generate an onconfig file with settings that are optimized for the connections, disk space, and CPU usage that you estimate by running the genoncfg utility.
You can export, import, and modify configuration parameters in groups:

Use the onmode –we command to export a snapshot of the current configuration to a file. The resulting snapshot can then be archived, used as a
configuration file, or imported to another running instance.
Use the onmode –wi command to import tunable configuration parameters from a previously exported file. Configuration parameters in the file that are not
dynamically tunable are ignored.

You can modify, reset, export, and import a configuration file with SQL administration API commands:
Use modify config argument with the admin() or task() function to change the value of a configuration parameter.
Use the export config and import config arguments with the admin() or task() function to export or import a file that contains one or more dynamically
tunable configuration parameters.
Use the reset config or reset config all argument with the admin() or task() function to revert the value of a configuration parameter or all configuration
parameters to its value in the onconfig file.

You can compare two onconfig files by running the onconfig_diff utility.

Related reference:
 The genoncfg Utility

onmode -wf, -wm: Dynamically change certain configuration parameters
onmode -we: Export a file that contains current configuration parameters
onmode -wi: Import a configuration parameter file
modify config arguments: Modify configuration parameters (SQL administration API)
reset config argument: Revert configuration parameter value (SQL administration API)
reset config all argument: Revert all dynamically updatable configuration parameter values (SQL administration API)
import config argument: Import configuration parameter values (SQL administration API)
export config argument: Export configuration parameter values (SQL administration API)
The onconfig_diff utility
Related information:

 Database server configuration

Copyright© 2020 HCL Technologies Limited

Displaying the settings in the onconfig file

There are several tools that you can use to display the settings in the onconfig file.

Part VI: Administering 401

https://www.hcltech.com/
https://www.hcltech.com/

To display the settings in the onconfig file, use one of the following tools:

Open the onconfig file with a text editor.
View the contents of the onconfig file with the onstat -c command.
View a list of configuration parameters and their current values by running the onstat -g cfg command. If configuration parameters are updated dynamically, the
current values differ from the permanent values in the onconfig file.
You can use additional options with the onstat -g cfg command to display only the configuration parameters that were changed dynamically or to display additional
information about all configuration parameters.

Related reference:
 onstat -c command: Print ONCONFIG file contents

onstat -g cfg command: Print the current values of configuration parameters
Related information:

 ONCONFIG environment variable

Copyright© 2020 HCL Technologies Limited

onconfig Portal: Configuration parameters by functional category

The information in this section lists configuration parameters as they are in the UNIX onconfig.std file.

Category list
To use this section, you first determine the appropriate category from the following list, then follow the link to the configuration parameters for that category. The
categories are listed in the same order as they are in the onconfig.std file. Parameters that are not in the onconfig.std file but that you can add to your onconfig file are
listed in Table 60.

Root dbspace configuration parameters
Physical log configuration parameters
Logical log configuration parameters
Long transaction configuration parameters
Server message file configuration parameters
Tblspace configuration parameters
Temporary dbspace and sbspace configuration parameters
Dbspace and sbspace configuration parameters
System configuration parameters
Network configuration parameters
CPU-related configuration parameters
Automatic tuning configuration parameters
AIO and cleaner-related configuration parameters
Lock-related configuration parameters
Shared memory configuration parameters
Checkpoint and system block configuration parameters
Conversion guard configuration parameters
Transaction-related configuration parameters
ontape Tape device configuration parameters
ontape Logical log tape device configuration parameters
Backup and restore configuration parameters
Primary Storage Manager configuration parameters
Data dictionary cache configuration parameters
Data distribution configuration parameters
User defined routine (UDR) configuration parameters
SQL statement cache configuration parameters
Operating system session-related configuration parameters
Index-related configuration parameters
Parallel database queries (PDQ) configuration parameters
Optimizer configuration parameters
Scan configuration parameters
SQL tracing configuration parameters
Security configuration parameters
Label-based access control configuration parameters
Built-in character data types configuration parameters
Sequence cache configuration parameters
High-availability and Enterprise Replication security configuration parameters
Enterprise Replication configuration parameters
Parallel sharded queries configuration parameters
High-availability cluster configuration parameters
Logical recovery configuration parameters
Diagnostic dump configuration parameters
Alarm program configuration parameters
Technical support configuration parameters
Character processing configuration parameter
Statistics configuration parameters
User mapping configuration parameter
Storage provisioning configuration parameters
Automatic location of database objects
Default escape configuration parameter

402 Part VI: Administering

https://www.hcltech.com/

WebSphere MQ server configuration parameters
Non-root user server installation configuration parameters
Low memory configuration parameters
Global Security Kitconfiguration parameter
Connection parameters
Session limits
Tenant limits
Java configuration parameters
Buffer pool and LRU tuning configuration parameters
Additional parameters

Root dbspace configuration parameters
Use the following configuration parameters to configure the root dbspace.

Table 1. Root dbspace configuration parameters

Configuration Parameter Reference

ROOTNAME configuration parameter The root dbspace name.

ROOTPATH configuration parameter The path for the root dbspace.

ROOTOFFSET configuration parameter The offset for the root dbspace.

ROOTSIZE configuration parameter The size of the root dbspace.

MIRROR configuration parameter Enables or disables mirroring.

MIRRORPATH configuration parameter The path for the mirrored root dbspace.

MIRROROFFSET configuration parameter The offset for the mirrored root dbspace.

Physical log configuration parameters
Use the following configuration parameters to configure physical logs.

Table 2. Physical log configuration parameters

Configuration Parameter Reference

PHYSFILE configuration parameter The size of the physical log.

PLOG_OVERFLOW_PATH configuration parameter The overflow directory for physical log files.

PHYSBUFF configuration parameter The size of the physical log buffer.

Logical log configuration parameters
Use the following configuration parameters to configure logical logs.

Table 3. Logical log configuration parameters

Configuration Parameter Reference

LOGFILES configuration parameter The number of logical log files.

LOGSIZE configuration parameter The size of each logical log file.

DYNAMIC_LOGS configuration parameter The type of dynamic log allocation.

LOGBUFF configuration parameter The size of the logical log buffer.

Long transaction configuration parameters
Use the following configuration parameters to control when long transactions are rolled back.

Table 4. Long transaction configuration parameters

Configuration Parameter Reference

LTXHWM configuration parameter The percentage of the logical log files that can be filled before a long transaction is rolled back.

LTXEHWM configuration parameter The percentage of the logical log files that can be filled before the server suspends other activities so that a long
transaction has exclusive use of the logs.

Server message file configuration parameters
Use the following configuration parameters to configure the server message file.

Table 5. Server message file configuration parameters

Configuration Parameter Reference

MSGPATH configuration parameter The path of the message file.

CONSOLE configuration parameter The path of the console message file.

Part VI: Administering 403

Tblspace configuration parameters
Use the following configuration parameters to configure the tblspace in the root dbspace.

Table 6. Tblspace configuration parameters

Configuration Parameter Reference

TBLTBLFIRST configuration parameter The first extent size for the tblspace tblspace.

TBLTBLNEXT configuration parameter The next extent size for the tblspace tblspace.

TBLSPACE_STATS configuration parameter Enables or disables tblspace statistics.

Temporary dbspace and sbspace configuration parameters
Use the following configuration parameters to configure the default temporary dbspaces and sbspaces.

Table 7. Temporary dbspace and sbspace configuration parameters

Configuration Parameter Reference

DBSPACETEMP configuration parameter The list of dbspaces for temporary objects.

SBSPACETEMP configuration parameter The list of sbspaces for temporary smart large objects.

Dbspace and sbspace configuration parameters
Use the following configuration parameters to configure the default dbspaces and sbspaces.

Table 8. Default dbspaces and sbspaces configuration parameters

Configuration Parameter Reference

SBSPACENAME configuration parameter The default sbspace to store smart large objects.

SYSSBSPACENAME configuration parameter The default sbspace for system statistics.

ONDBSPACEDOWN configuration parameter Specifies the behavior of the server when a dbspace is down.

System configuration parameters
Use the following configuration parameters to set server instance information.

Table 9. System configuration parameters

Configuration Parameter Reference

SERVERNUM configuration parameter The unique ID for the database server instance.

DBSERVERNAME configuration parameter The name of the default database server.

DBSERVERALIASES configuration parameter List of alternative database server names.

FULL_DISK_INIT configuration parameter Prevents an accidental disk reinitialization of an existing server instance.

Network configuration parameters
Use the following configuration parameters to configure the network.

Table 10. Network configuration parameters

Configuration Parameter Reference

NETTYPE configuration parameter The configuration of poll threads for a specific protocol.

LISTEN_TIMEOUT configuration parameter The time the database server waits for a connection.

MAX_INCOMPLETE_CONNECTIONS configuration parameter The maximum number of incomplete connections.

FASTPOLL configuration parameter Enables or disables fast polling.

NUMFDSERVERS configuration parameter For network connections on UNIX, use the NUMFDSERVERS configuration parameter to
specify the maximum number of poll threads to handle network connections that are
moving between VPs.

NS_CACHE configuration parameter Defines the maximum retention time for an individual entry in the host name/IP address
cache, the service cache, the user cache, and the group cache.

CPU-related configuration parameters
Use the following configuration parameters to configure CPU virtual processors.

Table 11. CPU virtual processors configuration parameters

Configuration Parameter Reference

404 Part VI: Administering

Configuration Parameter Reference

MULTIPROCESSOR configuration parameter Setting of 1 supports multiple CPU VPs.

VPCLASS configuration parameter Defines the properties of each CPU virtual processor class.

VP_MEMORY_CACHE_KB configuration parameter The amount of private memory blocks for the CPU virtual processors.

SINGLE_CPU_VP configuration parameter Set to 0 to enable user-defined CPU VPs, or 1 for a single CPU VP.

Automatic tuning configuration parameters
Use the following configuration parameters to automatically tune the configuration of the database server.

Table 12. CPU virtual processors configuration parameters
Configuration Parameter Reference

AUTO_TUNE configuration parameter Enable or disables all automatic tuning configuration parameters that have values that are not present in the
onconfig file.

AUTO_LRU_TUNING configuration parameter Enables or disables automatic tuning of LRU queues:

AUTO_AIOVPS configuration parameter Enables or disables automatic management of AIO virtual processors.

AUTO_CKPTS configuration parameter Enables or disables automatic checkpoints.

AUTO_REPREPARE configuration parameter Enables or disables automatically reoptimizing stored procedures and repreparing prepared statements.

AUTO_STAT_MODE configuration parameter Enables or disables the mode for selectively updating statistics for your system.

AUTO_READAHEAD configuration parameter Changes the automatic read-ahead mode or disables or enables automatic read ahead for a query.

AIO and cleaner-related configuration parameters
Use the following configuration parameters to configure AIO virtual processors and buffer cleaners.

Table 13. AIO and buffer cleaner configuration parameters
Configuration Parameter Reference

VPCLASS configuration parameter Configures the AIO virtual processors.

CLEANERS configuration parameter The number of page cleaner threads.

DIRECT_IO configuration parameter (UNIX) Specifies whether to use direct I/O.

Lock-related configuration parameters
Use the following configuration parameters to set locking behavior.

Table 14. Locking configuration parameters
Configuration Parameter Reference

LOCKS configuration parameter The initial number of locks at startup.

DEF_TABLE_LOCKMODE configuration parameter The default table lock mode.

Shared memory configuration parameters
Use the following configuration parameters to configure shared memory.

Table 15. Shared memory configuration parameters
Configuration Parameter Reference

RESIDENT configuration parameter Controls whether shared memory is resident.

SHMBASE configuration parameter The shared memory base address. Do not change this value.

SHMVIRTSIZE configuration parameter The initial size, in KB, of the virtual segment of shared memory.

SHMADD configuration parameter The size of virtual shared memory segments.

EXTSHMADD configuration parameter The size of each virtual-extension shared memory segment for user-defined routines and DataBlade routines
that run in user-defined virtual processors.

SHMTOTAL configuration parameter The maximum amount of shared memory for the database server.

SHMVIRT_ALLOCSEG configuration parameter Controls when to add a memory segment.

SHMNOACCESS configuration parameter Lists shared memory addresses that the server cannot access.

Checkpoint and system block configuration parameters
Use the following configuration parameters to configure checkpoints, recovery time objective, and system block time.

Table 16. Checkpoints, recovery time objective, and system block time configuration parameters

Part VI: Administering 405

Configuration Parameter ReferenceConfiguration Parameter Reference

CKPTINTVL configuration parameter How often to check if a checkpoint is needed.

RTO_SERVER_RESTART configuration parameter The recovery time objective for a restart after a failure.

BLOCKTIMEOUT configuration parameter The amount of time for a system block.

Conversion guard configuration parameters
Use the following configuration parameters to control information Informix uses during an upgrade to a new version of the server.

Table 17. Conversion guard configuration parameters
Configuration Parameter Reference

CONVERSION_GUARD configuration parameter Specifies whether to stop or continue an upgrade if an error occurs during the upgrade.

RESTORE_POINT_DIR configuration parameter Specifies the path name to an empty directory where restore point files are placed during a failed upgrade when
the CONVERSION_GUARD configuration parameter is enabled.

Transaction-related configuration parameters
Use the following configuration parameters to control distributed transactions.

Table 18. Distributed transaction configuration parameters

Configuration Parameter Reference

TXTIMEOUT configuration parameter The distributed transaction timeout period.

DEADLOCK_TIMEOUT configuration parameter The maximum amount of time to wait for a lock in a distributed transaction.

HETERO_COMMIT configuration parameter Enables or disables heterogeneous commits for transactions that use an EGM gateway.

ontape Tape device configuration parameters
Use the following configuration parameters to configure the tape device for backups with the ontape utility.

Table 19. Tape device configuration parameters

Configuration Parameter Reference

TAPEDEV configuration parameter The tape device for backups.

TAPEBLK configuration parameter The tape block size.

TAPESIZE configuration parameter The maximum amount of data to put on one backup tape.

ontape Logical log tape device configuration parameters
Use the following configuration parameters to configure the tape device for logical logs with the ontape utility.

Table 20. Logical log tape device configuration parameters

Configuration Parameter Reference

LTAPEDEV configuration parameter The tape device for logical log backups.

LTAPEBLK configuration parameter The tape block size for logical log backups.

LTAPESIZE configuration parameter The maximum amount of data to put on one logical log backup tape.

Backup and restore configuration parameters
Use the following configuration parameters to control backup and restore with the ON-Bar utility. Unless specified otherwise, these configuration parameters are
documented in the IBM Informix Backup and Restore Guide.

Table 21. ON-Bar configuration parameters

Configuration Parameter Reference

BAR_ACT_LOG configuration parameter The location of the ON-Bar activity log file.

BAR_DEBUG_LOG configuration parameter The location of the ON-Bar debug log file.

BAR_DEBUG configuration parameter The debug level for ON-Bar.

BAR_MAX_BACKUP configuration parameter The number of backup threads used in a backup.

BAR_MAX_RESTORE configuration parameter The number of restore threads used in a restore.

BAR_RETRY configuration parameter The number of times to try a backup or restore again.

BAR_NB_XPORT_COUNT configuration parameter The number of data buffers each backup process uses.

BAR_XFER_BUF_SIZE configuration parameter The size of each data buffer.

RESTARTABLE_RESTORE configuration parameter Enables ON-Bar to continue a backup after a failure.

406 Part VI: Administering

Configuration Parameter Reference

BAR_PROGRESS_FREQ configuration parameter How often progress messages are put in the activity log.

BAR_BSALIB_PATH configuration parameter The path for the shared library for ON-Bar and the storage manager.

BACKUP_FILTER configuration parameter The path of a filter program to use during backups.

RESTORE_FILTER configuration parameter The path of a filter program to use during restores.

BAR_PERFORMANCE configuration parameter The type of ON-Bar performance statistics to report.

BAR_CKPTSEC_TIMEOUT configuration parameter Time in seconds to wait for an archive checkpoint to complete in the secondary server.

Primary Storage Manager configuration parameters
Use the following configuration parameters to configure the IBM Informix Primary Storage Manager.

Table 22. Informix Primary Storage Manager configuration parameters

Configuration Parameter Reference

PSM_ACT_LOG configuration parameter Specifies the location of the Informix Primary Storage Manager activity log if you do not want the log information
included in the ON-Bar activity log.

PSM_DEBUG_LOG configuration parameter Specifies the location of the Informix Primary Storage Manager debug log if you do not want the log information
included in the ON-Bar debug log.

PSM_DEBUG configuration parameter Specifies the amount of information that prints in the Informix Primary Storage Manager debug log if you want to
use a debug level that is different from the one used by ON-Bar.

PSM_CATALOG_PATH configuration parameter Specifies the full path to the directory that contains the Informix Primary Storage Manager catalog tables.

PSM_DBS_POOL configuration parameter Specifies the name of the pool in which theInformix Primary Storage Manager places backup and restore
dbspace data.

PSM_LOG_POOL configuration parameter Specifies the name of the pool in which theInformix Primary Storage Manager places backup and restore log
data.

Data dictionary cache configuration parameters
Use the following configuration parameters to configure the data dictionary caches.

Table 23. Data dictionary cache configuration parameters

Configuration Parameter Reference

DD_HASHSIZE configuration parameter The number of hash buckets in the data dictionary cache.

DD_HASHMAX configuration parameter The maximum number of tables in each hash bucket.

Data distribution configuration parameters
Use the following configuration parameters to configure the data distribution pools.

Table 24. Data distribution configuration parameters

Configuration Parameter Reference

DS_HASHSIZE configuration parameter The number of hash buckets in the data distribution cache and other caches.

DS_POOLSIZE configuration parameter The maximum number of entries in the data distribution cache and other caches.

User defined routine (UDR) configuration parameters
Use the following configuration parameters to configure UDRs.

Table 25. UDR configuration parameters

Configuration Parameter Reference

PC_HASHSIZE configuration parameter The number of hash buckets in the UDR cache.

PC_POOLSIZE configuration parameter The maximum number of entries in the UDR cache.

PRELOAD_DLL_FILE configuration parameter The C UDR shared library path name to load when the server starts.

SQL statement cache configuration parameters
Use the following configuration parameters to configure the SQL statement cache.

Table 26. SQL statement cache configuration parameters

Configuration Parameter Reference

STMT_CACHE configuration parameter Controls SQL statement caching.

STMT_CACHE_HITS configuration parameter The number of times an SQL statement is run before it is cached.

Part VI: Administering 407

Configuration Parameter Reference

STMT_CACHE_SIZE configuration parameter The size of the SQL statement cache.

STMT_CACHE_NOLIMIT configuration parameter Controls additional memory consumption of the SQL statement cache.

STMT_CACHE_NUMPOOL configuration parameter The number of pools for the SQL statement cache.

Operating system session-related configuration parameters
Use the following configuration parameters to configure operating system and session features.

Table 27. Operating system and session configuration parameters

Configuration Parameter Reference

USEOSTIME configuration parameter The precision of SQL statement timing.

STACKSIZE configuration parameter The size of a session stack.

ALLOW_NEWLINE configuration parameter Whether embedded new line characters are allowed in SQL statements.

USELASTCOMMITTED configuration parameter Controls committed read isolation level.

Index-related configuration parameters
Use the following configuration parameters to configure index features.

Table 28. Index configuration parameters

Configuration Parameter Reference

FILLFACTOR configuration parameter The percentage of index page fullness.

MAX_FILL_DATA_PAGES configuration parameter Enables or disables filling data pages as full as possible if they have variable length rows.

BTSCANNER Configuration Parameter Configures B-tree scanner threads.

ONLIDX_MAXMEM configuration parameter The amount of memory for the pre-image and updator log pools.

Parallel database queries (PDQ) configuration parameters
Use the following configuration parameters to configure PDQ.

Table 29. PDQ configuration parameters

Configuration Parameter Reference

MAX_PDQPRIORITY configuration parameter The maximum percentage of resources for a single query.

DS_MAX_QUERIES configuration parameter The maximum number of concurrent decision support queries.

DS_TOTAL_MEMORY configuration parameter The maximum amount of decision support memory.

DS_MAX_SCANS configuration parameter The maximum number of decision support scans.

DS_NONPDQ_QUERY_MEM configuration parameter The amount of non-PDQ query memory.

DATASKIP Configuration Parameter Whether to skip a dbspace when processing a query.

Optimizer configuration parameters
Use the following configuration parameters to influence query execution optimizer plans and directives.

Table 30. Optimizer configuration parameters

Configuration Parameter Reference

OPTCOMPIND configuration parameter Controls how the optimizer determines the best query path.

DIRECTIVES configuration parameter Enables or disables inline optimizer directives.

EXT_DIRECTIVES configuration parameter Enables or disables external directives.

OPT_GOAL configuration parameter Controls how to optimize for fastest retrieval.

IFX_FOLDVIEW configuration parameter Enables or disables folding views.

STATCHANGE configuration parameter Specifies a positive integer for a global percentage of a change threshold to identify data distribution statistics
that need to be updated.

USTLOW_SAMPLE configuration parameter Enables or disables the generation of index statistics based on sampling when you run UPDATE STATISTICS
statements in LOW mode.

Scan configuration parameters
Use the following configuration parameters to set read-ahead behavior.

Table 31. Scan configuration parameters

408 Part VI: Administering

Configuration Parameter ReferenceConfiguration Parameter Reference

BATCHEDREAD_TABLE configuration parameter Enables or disables light scans on compressed tables, tables with rows that are larger than a page, and tables
with VARCHAR, LVARCHAR, and NVARCHAR data.

BATCHEDREAD_INDEX configuration parameter Enables the optimizer to perform light scans for indexes.

SQL tracing configuration parameters
Use the following configuration parameters to set SQL tracing.

Table 32. SQL tracing configuration parameters

Configuration Parameter Reference

EXPLAIN_STAT configuration parameter Enables or disables including query statistics in the explain output file.

SQLTRACE configuration parameter Configures SQL tracing.

Security configuration parameters
Use the following configuration parameters to configure security options.

Table 33. Security configuration parameters

Configuration Parameter Reference

DBCREATE_PERMISSION configuration parameter Specifies users who can create databases.

DB_LIBRARY_PATH configuration parameter Specifies the locations of UDR or UDT shared libraries.

IFX_EXTEND_ROLE configuration parameter Controls how to specify which users can register external routines.

SECURITY_LOCALCONNECTION configuration parameter Whether the database server checks the security of local connections.

UNSECURE_ONSTAT configuration parameter Whether non-DBSA users can run onstat commands.

ADMIN_USER_MODE_WITH_DBSA configuration parameter Controls who can connect to the server in administration mode.

ADMIN_MODE_USERS configuration parameter Lists the users who can connect in administration mode.

SSL_KEYSTORE_LABEL configuration parameter The SSL label.

TLS_VERSION configuration parameter Specifies the Transport Layer Security (TLS) version for network
connections.

DISK_ENCRYPTION configuration parameter Controls the encryption of storage spaces.

Label-based access control configuration parameters
Use the following configuration parameters to configure the label-based access control (LBAC) cache. These configuration parameters are documented in the IBM Informix
Security Guide.

Table 34. LBAC configuration parameters

Configuration Parameter Reference

PLCY_POOLSIZE configuration parameter The number of hash buckets in the LBAC security information cache.

PLCY_HASHSIZE configuration parameter The maximum number of entries in each hash bucket of the LBAC security information
cache.

USRC_POOLSIZE configuration parameter The number of hash buckets in the LBAC credential memory cache.

USRC_HASHSIZE configuration parameter The maximum number of entries in each hash bucket of the LBAC credential memory cache.

Built-in character data types configuration parameters
Use the following configuration parameter to configure built-in character data types.

Table 35. Built-in character data types configuration parameters

Configuration Parameter Reference

SQL_LOGICAL_CHAR configuration parameter Enables or disables the expansion of size specifications in declarations of built-in character data
types.

Sequence cache configuration parameters
Use the following configuration parameter to configure the sequence cache:

Table 36. Sequence cache data types configuration parameters

Configuration Parameter Reference

SEQ_CACHE_SIZE configuration parameter Specifies the maximum number of sequence objects that are cached in memory.

Part VI: Administering 409

High-availability and Enterprise Replication security configuration parameters
Use the following configuration parameters to configure security for high-availability clusters and Enterprise Replication.

Table 37. High-availability and Enterprise Replication security configuration parameters

Configuration Parameter Reference

ENCRYPT_HDR configuration parameter Enables or disables encryption for HDR.

ENCRYPT_SMX configuration parameter The level of encryption for SDS or RSS servers.

ENCRYPT_CDR Configuration Parameter The level of encryption for Enterprise Replication.

ENCRYPT_CIPHERS configuration parameter Lists encryption ciphers and modes.

ENCRYPT_MAC configuration parameter The level of the message authentication code (MAC).

ENCRYPT_MACFILE configuration parameter The paths of MAC key files.

ENCRYPT_SWITCH configuration parameter The frequency to switch ciphers and keys.

Enterprise Replication configuration parameters
Use the following configuration parameters to configure Enterprise Replication (ER). These configuration parameters are documented in the .

Table 38. Enterprise Replication configuration parameters

Configuration Parameter Reference

CDR_EVALTHREADS Configuration Parameter The numbers of evaluator threads.

CDR_DSLOCKWAIT Configuration Parameter The amount of time data sync threads wait for database locks.

CDR_QUEUEMEM Configuration Parameter The maximum amount of memory for send and receive queues.

CDR_NIFCOMPRESS Configuration Parameter The network interface compression level.

CDR_SERIAL Configuration Parameter The incremental size and starting value of serial columns.

CDR_DBSPACE Configuration Parameter The dbspace name for the syscdr database.

CDR_QDATA_SBSPACE Configuration Parameter The names of sbspaces for spooled transactions.

CDR_SUPPRESS_ATSRISWARN Configuration Parameter The data sync warnings and errors to suppress in ATS and RIS files.

CDR_DELAY_PURGE_DTC configuration parameter The amount of time to retain delete tables.

CDR_LOG_LAG_ACTION configuration parameter The action taken when the database server comes close to overwriting a logical log that Enterprise
Replication did not yet process.

CDR_LOG_STAGING_MAXSIZE Configuration Parameter The maximum amount of space that Enterprise Replication uses to stage log files.

CDR_MAX_DYNAMIC_LOGS Configuration Parameter The maximum number of dynamic log requests that Enterprise Replication can make in a session.

GRIDCOPY_DIR Configuration Parameter The default directory used by the ifx_grid_copy procedure.

CDR_TSINSTANCEID configuration parameter The unique identifier for time series instances that are replicated.

CDR_MAX_FLUSH_SIZE configuration parameter The maximum number of transactions that are applied before the logs are flushed to disk.

CDR_AUTO_DISCOVER configuration parameter Allow auto-configuration of Enterprise Replication though the cdr autoconfig serv command,
installation wizard, or ifxclone utility.

CDR_MEM configuration parameter Specifies the method of memory pool allocation for Enterprise Replication.

Parallel sharded queries configuration parameters
Use the following configuration parameters to configure parallel sharded queries.

Table 39. Parallel sharded queries configuration parameters

Configuration Parameter Reference

SHARD_MEM configuration parameter Specifies how to allocate shared memory for sharded queries on a shard
server.

SHARD_ID configuration parameter Sets the unique ID for a shard server in a shard cluster.

High-availability cluster configuration parameters
Use the following configuration parameters to configure high-availability clusters.

Table 40. High-availability cluster configuration parameters

Configuration Parameter Reference

DRAUTO configuration parameter Controls automatic failover of primary servers.

DRINTERVAL configuration parameter The maximum interval between buffer flushes.

HDR_TXN_SCOPE configuration parameter Adjust transaction synchronization between client applications, the primary server, and the HDR
secondary server.

410 Part VI: Administering

Configuration Parameter Reference

DRTIMEOUT configuration parameter The network timeout period.

DRLOSTFOUND configuration parameter The path of the HDR lost-and-found file.

DRIDXAUTO configuration parameter Enables or disables automatic index repair.

HA_ALIAS configuration parameter The server alias for a high-availability cluster.

HA_FOC_ORDER configuration parameter Defines a single failover rule used by Connection Managers.

LOG_INDEX_BUILDS configuration parameter Enables or disables index page logging.

SDS_ENABLE configuration parameter Enables or disables and SD secondary server.

SDS_TIMEOUT configuration parameter The time the primary waits for acknowledgment from an SD secondary server.

SDS_TEMPDBS configuration parameter The temporary dbspace used by an SD secondary server.

SDS_ALTERNATE configuration parameter The alternate means of communication between the primary server and SD secondary servers in a
high-availability cluster.

SDS_PAGING configuration parameter The paths of SD secondary paging files.

SDS_LOGCHECK configuration parameter Whether the primary server is generating log activity and to allow or prevent failover of the primary
server.

UPDATABLE_SECONDARY configuration parameter Whether the secondary server can accept update, insert, or delete operations from clients.

FAILOVER_CALLBACK configuration parameter The program called when a secondary server makes the transition to a standard or primary server.

TEMPTAB_NOLOG configuration parameter The default logging mode for temporary tables.

DELAY_APPLY Configuration Parameter The delay time for applying transactions on an RS secondary server.

STOP_APPLY configuration parameter Stops applying transactions on an RS secondary server.

LOG_STAGING_DIR configuration parameter The directory to stage log files.

RSS_FLOW_CONTROL configuration parameter Enables flow control for RS secondary servers.

FAILOVER_TX_TIMEOUT configuration parameter Enables or disables transaction survival behavior during failover.

ENABLE_SNAPSHOT_COPY configuration parameter Whether the server instance can be cloned by the ifxclone utility.

SMX_COMPRESS configuration parameter The level of compression that the database server uses when sending data from the source database
server to the target database server.

SMX_PING_INTERVAL configuration parameter The number of seconds in a timeout interval.

SMX_PING_RETRY configuration parameter The number of timeout intervals before a secondary server closes the SMX connection to the primary
server.

CLUSTER_TXN_SCOPE configuration parameter Controls when transaction commits can be returned to a client application.

SMX_NUMPIPES configuration parameter Sets the number of pipes for SMX connections.

SEC_NONBLOCKING_CKPT configuration parameter Enables non-blocking checkpoint at HDR and RS secondary server.

Logical recovery configuration parameters
Use the following configuration parameters to set logical recovery threads.

Table 41. Logical recovery configuration parameters

Configuration Parameter Reference

ON_RECVRY_THREADS configuration parameter The number of logical recovery threads that run in parallel during a warm restore.

OFF_RECVRY_THREADS configuration parameter The number of logical recovery threads used in a cold restore and for fast recovery.

Diagnostic dump configuration parameters
Use the following configuration parameters to control diagnostic dump information.

Table 42. Diagnostic configuration parameters

Configuration Parameter Reference

DUMPDIR configuration parameter The location of assertion failure diagnostic files.

DUMPSHMEM configuration parameter (UNIX) Controls shared memory dumps.

DUMPGCORE configuration parameter (UNIX) Enables or disables whether the database server dumps a core to the gcore file.

DUMPCORE configuration parameter (UNIX) Enables or disables whether the database server dumps a core after an assertion failure.

DUMPCNT configuration parameter (UNIX) The maximum number of shared memory dumps for a session.

Alarm program configuration parameters
Use the following configuration parameters to configure the alarm program.

Table 43. Alarm program configuration parameters

Part VI: Administering 411

Configuration Parameter ReferenceConfiguration Parameter Reference

ALARMPROGRAM configuration parameter The alarm program to display event alarms.

ALRM_ALL_EVENTS configuration parameter Whether the alarm program runs for all events.

STORAGE_FULL_ALARM configuration parameter How often messages and events are raised when a storage space is full or a partition runs out of pages or
extents.

SYSALARMPROGRAM configuration parameter The system alarm program triggered after an assertion failure.

Technical support configuration parameters
The following configuration parameters to are used by technical support and are set automatically.

Table 44. Technical support configuration parameters
Configuration Parameter Reference

RAS_PLOG_SPEED Reserved for support.

RAS_LLOG_SPEED Reserved for support.

Character processing configuration parameter
Use the following configuration parameter to control whether Informix checks if characters are valid for the locale.

Table 45. Character processing configuration parameter
Configuration Parameter Reference

EILSEQ_COMPAT_MODE configuration parameter Enables or disables checking character validity.

Statistics configuration parameters
Use the following configuration parameters to control the collection of queue and wait statistics.

Table 46. Queue and wait statistics configuration parameters
Configuration Parameter Reference

QSTATS configuration parameter Enables or disables collecting queue statistics.

WSTATS configuration parameter Enables or disables collecting wait statistics.

User mapping configuration parameter
Use this configuration parameter to control user mapping.

Table 47. User mapping
Configuration Parameter Description

USERMAPPING configuration parameter (UNIX, Linux) Whether mapped users can connect to , and if so, whether the mapped user can have administrative privileges.

Storage provisioning configuration parameters
Use the following configuration parameters to control information that enables the server to automatically extend or add a chunk when more space is needed in an
existing storage space (dbspace, temporary dbspace, sbspace, temporary sbspace, or blobspace).

Table 48. Storage provisioning configuration parameters
Configuration Parameter Reference

SP_AUTOEXPAND configuration parameter Enables or disables the automatic creation or extension of chunks in a storage space.

SP_THRESHOLD configuration parameter Defines the minimum amount of free KB that can exist in a storage space.

SP_WAITTIME configuration parameter Specifies the maximum number of seconds that a thread waits for a storage pool to expand before returning an
"out of space" error.

Automatic location of database objects
Use the following configuration parameter to enable automatic location and fragmentation.

Table 49. Automatic location configuration parameter

Configuration Parameter Reference

AUTOLOCATE configuration parameter Enables the automatic location of databases and tables and the automatic fragmentation of
tables.

Default escape configuration parameter

412 Part VI: Administering

Use the following configuration parameter as needed.

Table 50. Default escape configuration parameter

Configuration Parameter Reference

DEFAULTESCCHAR configuration parameter Specifies a default escape character.

WebSphere MQ server configuration parameters
Use the following configuration parameters to configure the database server for MQ messaging. These configuration parameters are documented in the IBM Informix
Database Extensions User's Guide.

Table 51. MQ configuration parameters

Configuration Parameter Reference

MQSERVER configuration parameter Defines a channel, specifies the location of the WebSphere® MQ server, and specifies the communication
method to be used.

MQCHLLIB configuration parameter Specifies the path to the directory that contains the WebSphere MQ client channel definition table.

MQCHLTAB configuration parameter Specifies the name of WebSphere the client channel definition table.

Non-root user server installation configuration parameters
Use the following configuration parameters with non-root server installations.

Table 52. Non-root user server installation

Configuration Parameter Reference

REMOTE_SERVER_CFG configuration parameter Specifies the name of a file that lists the remote hosts that are trusted by the database server
computer.

REMOTE_USERS_CFG configuration parameter Specifies the name of a file that lists names of trusted users that exist on remote hosts.

S6_USE_REMOTE_SERVER_CFG configuration parameter Specifies the file used to authenticate secure server connections in a trusted network environment.

Low memory configuration parameters
Use the following configuration parameters to manage low memory.

Table 53. Low memory configuration parameters

Configuration Parameter Reference

LOW_MEMORY_RESERVE configuration parameter Reserves a specific amount of memory for use when critical activities are needed and the server has limited free
memory.

LOW_MEMORY_MGR configuration parameter Change the default behavior of the server when it reaches the memory limit.

Global Security Kitconfiguration parameter
Use this parameter to set the IBM Informix Global Security Kit (GSKit) version.

Table 54. Global Security Kit

Configuration Parameter Description

GSKIT_VERSION configuration parameter Specifies which version of IBM Global Security Kit (GSKit) the database server uses.

Connection parameters
Use the following parameters to manage connections.

Table 55. Connection configuration parameters

Configuration
Parameter Description

INFORMIXCONRETRY
configuration
parameter

Specifies the number of connection attempts that can be made to the database server after the initial connection attempt fails. With the
INFORMIXCONTIME configuration parameter, specifies the frequency at which the CONNECT statement tries to connect to the database server.

INFORMIXCONTIME
configuration
parameter

Specifies the duration, in seconds, that the CONNECT statement attempts to establish a connection to the database server. With the
INFORMIXRETRY configuration parameter, specifies the frequency at which the CONNECT statement tries to connect to the database server.

Session limits
Use the following configuration parameters to create limits for individual sessions.

Table 56. Session-limit configuration parameters.

Part VI: Administering 413

Configuration Parameter ReferenceConfiguration Parameter Reference

SESSION_LIMIT_LOCKS configuration parameter Limits the number of locks.

SESSION_LIMIT_MEMORY configuration parameter Limits the available memory.

SESSION_LIMIT_TEMPSPACE configuration parameter Limits temporary table space.

SESSION_LIMIT_LOGSPACE configuration parameter Limits logspace available to individual transactions.

SESSION_LIMIT_TXN_TIME configuration parameter Limits the amount of time that a transaction can run.

Tenant limits
Use the following configuration parameters to specify limits on tenant databases.

Table 57. Tenant limits configuration parameters.
Configuration Parameter Reference

TENANT_LIMIT_SPACE configuration parameter Limits the amount of storage space available to a tenant database.

TENANT_LIMIT_MEMORY configuration parameter Limits the amount of shared memory for all sessions that are connected to the tenant
database.

TENANT_LIMIT_CONNECTIONS configuration parameter Limits the number of connections to a tenant database.

Java configuration parameters
Use the following configuration parameters to configure Java™ virtual processors. These configuration parameters are documented in the IBM J/Foundation Developer's
Guide.

Table 58. Java configuration parameters
Configuration Parameter Reference

VPCLASS Configures a Java virtual processor class.

JVPPROPFILE The Java VP property file.

JVPLOGFILE The Java VP log file.

JVPARGS Configures the Java VM.

JVPCLASSPATH The Java class path.

Buffer pool and LRU tuning configuration parameters
Use the following configuration parameters to configure buffer pools and tune LRU queues.

Table 59. Buffer pool and LRU tuning configuration parameters
Configuration Parameter Reference

BUFFERPOOL configuration parameter Configures buffer pools.

Additional parameters
Some configuration parameters are not in the onconfig.std file. You can add these parameters to your onconfig file as necessary.

Table 60. Parameters that are not in the onconfig.std file
Configuration Parameter Reference

AUTO_TUNE_SERVER_SIZE configuration parameter Sets the size of the database server based on the number of expected users.
If you create a server during installation, this parameter is set in your onconfig file.

AUTO_LLOG configuration parameter Automatically adds logical logs in the specified dbspace to improve performance and to limit
the total size of logical log files.
If you create a server during installation, this parameter is set in your onconfig file.

CDR_APPLY Configuration Parameter Specifies the minimum and maximum number of data sync threads.

CDR_ENV Configuration Parameter Sets some specific Enterprise Replication environment variables.

CHECKALLDOMAINSFORUSER configuration parameter Specifies how the database server searches for user names in a networked Windows
environment.

DISABLE_B162428_XA_FIX configuration parameter Specifies whether to free global transactions after a rollback operation.

DRDA_COMMBUFFSIZE configuration parameter Specifies the size of the DRDA communications buffer.

IFXGUARD configuration parameter Enables auditing with IBM Security Guardium® and sets the actions of the database server if
the IBM Security Guardium server does not respond in the timeout period.

IFX_XA_UNIQUEXID_IN_DATABASE configuration parameter Enables the transaction manager to use same XID to represent global transactions on
different databases in the same database server instance.

LIMITNUMSESSIONS configuration parameter Specifies the maximum number of sessions that can connect to the database server.

414 Part VI: Administering

Configuration Parameter Reference

MSG_DATE configuration parameter Inserts a date stamp at the beginning of messages that are printed to the online log.

NET_IO_TIMEOUT_ALARM configuration parameter Sends notification if network write operations are blocked for 30 minutes or more.

PN_STAGEBLOB_THRESHOLD configuration parameter Reserves space for BYTE and TEXT data in round-robin fragments.

Related reference:
 Database server files

Copyright© 2020 HCL Technologies Limited

ADMIN_MODE_USERS configuration parameter

The ADMIN_MODE_USERS configuration parameter specifies a list of users, besides the user informix and members of the DBSA group, that you want to access the
database server in the administration mode.

onconfig.std value
Not set. Only user informix and members of the DBSA group can access Informix® in administration mode.

separators
Comma-separated user names, such as: Karin,Sarah,Andrew, as a string of up to 127 bytes

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
The list of users is in the ADMIN_MODE_USERS configuration parameter is preserved indefinitely. You can use the onmode -wm or onmode -wf command to remove
users.

Use the onmode -j -U command to allow one or more users to access the database server in administration mode when the database is running.

You must set the ADMIN_USER_MODE_WITH_DBSA configuration parameter to 1 to enable the users that are listed in the ADMIN_MODE_USERS configuration parameter
to connect to the database server in the administration mode.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Changing the Database Server to Administration Mode with the -j Option
ADMIN_USER_MODE_WITH_DBSA configuration parameter
The oninit utility

Copyright© 2020 HCL Technologies Limited

ADMIN_USER_MODE_WITH_DBSA configuration parameter

The ADMIN_USER_MODE_WITH_DBSA configuration parameter specifies which users, besides the user informix, can connect to the database server in the
administration mode.

onconfig.std value
Not set. Only the user informix can connect to the database server in administration mode.

values
0 = Only the user informix can connect in the administration mode
1 = If the ADMIN_USER_MODE configuration parameter is not set, the following users can connect in the administration mode:

The user informix
Members of the DBSA group

If the ADMIN_USER_MODE configuration parameter is set to a list of one or more user names, then following users can connect in the administration mode:

The user informix
The users who have the informix group included in their group list (UNIX only)
Members of the DBSA group
The administration users that are listed in the ADMIN_MODE_USERS configuration parameter

takes effect
After you edit your onconfig file and restart the database server.

Related reference:
 ADMIN_MODE_USERS configuration parameter

Copyright© 2020 HCL Technologies Limited

ALARMPROGRAM configuration parameter

Part VI: Administering 415

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Use the ALARMPROGRAM configuration parameter to specify the full pathname of the alarmprogram file that handles event alarms and controls logical-log backups.

onconfig.std value
On UNIX: $INFORMIXDIR/etc/alarmprogram.sh
On Windows: %INFORMIXDIR%\etc\alarmprogram.bat

if not present
On UNIX: $INFORMIXDIR/etc/no_log.sh
On Windows: %INFORMIXDIR%\etc\no_log.bat

value
pathname = Full path name of the alarmprogram file.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
You can set the ALRM_ALL_EVENTS configuration parameter to specify whether the ALARMPROGRAM configuration parameter runs for all events that are logged in the
MSGPATH, or only for specified noteworthy events (events greater than severity 1).

If the script that the ALARMPROGRAM configuration parameter specifies does not exist, the default alarm handler, no_log.sh or no_log.bat, is substituted. After you have
the correct script in place, update the value of the ALARMPROGRAM configuration parameter to specify the script. You can make this update with the server online by
using the onmode -wm command.

The following sample scripts are provided.
Table 1. Sample scripts

Script name (UNIX) Script name (Windows) Description

log_full.sh log_full.bat To back up logical logs automatically when the database server issues a log-full event alarm, set
ALARMPROGRAM to log_full.sh or log_full.bat.
You can modify the script and set it to the full path of ALARMPROGRAM in the onconfig file.

no_log.sh no_log.bat To disable automatic logical-log backups, set ALARMPROGRAM to no_log.sh or no_log.bat.

alarmprogram.sh alarmprogram.bat Handles event alarms and controls logical-log backups. Modify alarmprogram.sh or
alarmprogram.bat and set ALARMPROGRAM to the full path name of alarmprogram.sh or
alarmprogram.bat. See Customizing the ALARMPROGRAM Scripts.

Instead of using the supplied scripts, you can write your own shell script, batch file, or binary program to execute events. Set ALARMPROGRAM to the full pathname of this
file. The database server executes this script when noteworthy events occur. These events include database, table, index, or simple-large-object failure; all logs are full;
internal subsystem failure; initialization failure; and long transactions. You can have the events noted in an email or pagermail message.

To generate event alarms, set ALARMPROGRAM to $INFORMIXDIR/etc/alarmprogram.sh or %INFORMIXDIR%\etc\alarmprogram.bat and modify the file according.

Important: When you choose automatic logical-log backups, backup media should always be available for the backup process.
Do not use the continuous log backup command (onbar -b -l -C) if you have automatic log backup setup through the ALARMPROGRAM parameter.

Related concepts:
 Event Alarms

Related tasks:
 Customizing the ALARMPROGRAM Scripts

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Writing Your Own Alarm Script
ALRM_ALL_EVENTS configuration parameter

Copyright© 2020 HCL Technologies Limited

ALLOW_NEWLINE configuration parameter

Use the ALLOW_NEWLINE configuration parameter to allow or disallow newline characters in quoted strings for all sessions.

To allow all remote sessions in a distributed query to support embedded newline characters, specify ALLOW_NEWLINE in their onconfig files.

onconfig.std value
ALLOW_NEWLINE 0

values
0 = Disallow the newline character in quoted strings for all sessions.
1 = Allow the newline character in quoted strings for all sessions.

takes effect
After you edit your onconfig file and restart the database server.

Usage
You can specify that you want the database server to allow the newline character (\n) in a quoted string either for all sessions or for a specific session. A session is the
duration of a client connection to the database server.

416 Part VI: Administering

https://www.hcltech.com/

To allow or disallow newline characters in quoted strings for the current session when ALLOW_NEWLINE is not set, you can execute the built-in ifx_allow_newline()
routine with 't' or 'f' as its only argument.

't' enables support for newline characters within quoted strings.
'f' has the opposite effect.

Calls to ifx_allow_newline() affect only the user session from which that routine is invoked.
Related information:

 Quoted String
Newline characters in quoted strings

Copyright© 2020 HCL Technologies Limited

ALRM_ALL_EVENTS configuration parameter

Use the ALRM_ALL_EVENTS configuration parameter to specify whether the ALARMPROGRAM configuration parameter runs for all events that are logged in the MSGPATH
configuration parameter, or only for noteworthy events.

onconfig.std value
ALRM_ALL_EVENTS 0

values
0 = Only for noteworthy events.
1 = The parameter triggers the ALARMPROGRAM configuration parameter and the ALRM_ALL_EVENTS configuration parameter displays all event alarms.

takes effect
After you edit your onconfig file and restart the database server.

Related concepts:
 Event Alarms

Related reference:
 ALARMPROGRAM configuration parameter

Copyright© 2020 HCL Technologies Limited

AUTO_AIOVPS configuration parameter

The AUTO_AIOVPS configuration parameter enables the database server to automatically increase the number of asynchronous I/O virtual processors (AIO VPs) and page
cleaner threads when the database server detects that the I/O workload outpaced the performance of the existing AIO VPs.

onconfig.std value
Not set. If the AUTO_TUNE configuration parameter is set to 1, AIO VPs and page cleaner threads are automatically increased.

values
0 = Off
1 = On

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.
If an AUTO_AIOVPS value is not set in your current onconfig file and you edit the AUTO_TUNE configuration parameter and restart the database server

Usage
The VPCLASS aio configuration parameter controls the number of AIO VPs, If the VP aio parameter is not set in the onconfig file, the initial number of AIO VPs the
database server starts when AUTO_AIOVPS is enabled is equal to the number of AIO chunks. The maximum number of AIO VPs the database server can start if VP aio is
not set is 128.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

AUTO_TUNE configuration parameter
VPCLASS configuration parameter
DIRECT_IO configuration parameter (UNIX)
Related information:

 Automatic checkpoints, LRU tuning, and AIO virtual processor tuning

Copyright© 2020 HCL Technologies Limited

AUTO_CKPTS configuration parameter

The AUTO_CKPTS configuration parameter allows the server to trigger checkpoints more frequently to avoid the blocking of transactions.

onconfig.std value
Not set. If the AUTO_TUNE configuration parameter is set to 1, automatic checkpoints are enabled.

values

Part VI: Administering 417

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

0 = Off
1 = On

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.
If an AUTO_CKPTS value is not set in your current onconfig file and you edit the AUTO_TUNE configuration parameter and restart the database server

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

AUTO_TUNE configuration parameter
Related information:

 Checkpoints
Automatic checkpoints, LRU tuning, and AIO virtual processor tuning

Copyright© 2020 HCL Technologies Limited

AUTO_LLOG configuration parameter

Use the AUTO_LLOG configuration parameter to automatically add logical logs in the specified dbspace to improve performance.

onconfig.std value
Not in the onconfig.std file.

default value if you created a server during installation

AUTO_LLOG 1,llog,max_size

The max_size value depends on the value of the AUTO_TUNE_SERVER_SIZE configuration parameter.
values

0 = Default. Disabled. Logical logs are not automatically added to improve performance.
1,dbspace_name,max_size

1 = Enabled. Logical logs are automatically added when needed to improve performance.
dbspace_name = The name of the dbspace in which to add logical log files. The dbspace must have the default page size for the operating system.
max_size = Optional. Default is 2048000 KB (2 GB). The maximum size, in KB, of all logical log files, including any logical log files that are not stored in the
dbspace dbspace_name. When the maximum size is reached, the database server no longer adds logical log files to improve performance. If max_size is not
specified, the AUTO_TUNE_SERVER_SIZE configuration parameter setting affects the maximum size. See the Usage section.

separators
Separate fields with a comma.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
If you created a server during installation, the AUTO_LLOG configuration parameter is enabled automatically. A dbspace that is named llog is created for logical logs. The
installation program sets the initial size and value of the max_size option of the dbspace based on the value of the AUTO_TUNE_SERVER_SIZE configuration parameter.
You can change the max_size option by resetting the value of the AUTO_LLOG configuration parameter.

If you did not create a server during installation, you can enable the AUTO_LLOG configuration parameter to automatically add logical log files when the database server
detects that adding logical log files improves performance. For optimal performance, choose a dbspace on a separate disk from the root dbspace and the physical log.

When the AUTO_LLOG configuration parameter is enabled, the database server adds logical logs when the lack of logical logs causes too high a percentage of checkpoints,
blocking checkpoints, or long checkpoints.

When the maximum size of the logical log files is reached, logical log files are no longer added to improve performance. However, if the DYNAMIC_LOGS configuration
parameter is enabled, logical logs are added to prevent transaction blocking. The settings of the DYNAMIC_LOGS and the AUTO_LLOG configuration parameters do not
interact. Similarly, you can continue to manually add logical log files.

If the value of the max_size field is larger than the size of the specified dbspace, make sure that your storage pool has available space.

Example
The following setting enables the automatic addition of logical log files until size of all logical log files is 204800 KB and sets the dbspace for logical log files to llog:

AUTO_LLOG 1,llog,204800

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

AUTO_TUNE_SERVER_SIZE configuration parameter
Related information:

 AUTO_LLOG and its effect on logging

Copyright© 2020 HCL Technologies Limited

418 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

AUTO_TUNE_SERVER_SIZE configuration parameter

Use the AUTO_TUNE_SERVER_SIZE configuration parameter to set the sizes of memory and storage spaces to allocate based on the number of expected concurrent
users.

onconfig.std value
Not in the onconfig.std file.

Default value
Not set.

value if you created a server during installation
Depends on the number of users you specify in the installation program.

values
SMALL = 1 - 100 users
MEDIUM = 101 - 500 users
LARGE = 501 - 1000 users
XLARGE = more than 1000 users

takes effect
If you create a server during installation.
After you edit your onconfig file and restart the database server for the first time.

Usage
If you create a server during installation, you specify the number of expected users for the database server. The AUTO_TUNE_SERVER_SIZE configuration parameter is set
to the corresponding size, which affects the size of the following properties:

The size of the buffer pool.
The maximum size of logical log files before the server stops automatically adding logical logs to improve performance
The initial size of the following created storage spaces, which are created automatically during installation:

An extendable plogspace for the physical log
A dbspace for the logical log
Dbspaces for databases and tables
A temporary dbspace
An sbspace
A temporary sbspace

The following table shows how the value of the AUTO_TUNE_SERVER_SIZE configuration parameter affects sizes.

Table 1. Effect on memory and storage space allocations

Value
Maximum size of buffer pools
(BUFFERPOOL)

Initial size of automatically created storage
spaces

Maximum size of logical log files
(AUTO_LLOG)

SMALL 10% of available shared memory 50 MB 200 MB

MEDIUM 20% 100 MB 500 MB

LARGE 33% 200 MB 1 GB

XLARGE 50% 500 MB 2 GB

If you did not create a server during installation, or you change the value of the AUTO_TUNE_SERVER_SIZE configuration parameter after you initialize the server for the
first time, the new value affects the size of only the following properties:

The size of the buffer pool, if the BUFFERPOOL configuration parameter setting includes the memory='auto' option.
The maximum size of all logical log files before the server stops automatically adding logical logs to improve performance.

Related reference:
 BUFFERPOOL configuration parameter

AUTO_LLOG configuration parameter

Copyright© 2020 HCL Technologies Limited

AUTO_LRU_TUNING configuration parameter

Use the AUTO_LRU_TUNING configuration parameter to enable automatic LRU tuning, which automatically maintains enough clean pages for page replacement.

onconfig.std value
Not set. If the AUTO_TUNE configuration parameter is set to 1, automatic LRU tuning is enabled.

values
0 = Off
1 = On

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.
If an AUTO_LRU_TUNING value is not set in your current onconfig file and you edit the AUTO_TUNE configuration parameter and restart the database server

Part VI: Administering 419

https://www.hcltech.com/

Usage
Automatic LRU tuning changes affect all buffer pools and adjust the lru_min_dirty and lru_max_dirty values in the BUFFERPOOL configuration parameter.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

AUTO_TUNE configuration parameter
BUFFERPOOL configuration parameter
Related information:

 Automatic checkpoints, LRU tuning, and AIO virtual processor tuning

Copyright© 2020 HCL Technologies Limited

AUTO_READAHEAD configuration parameter

Use the AUTO_READAHEAD configuration parameter to change the automatic read-ahead mode or to disable automatic read-ahead operations for a query.

onconfig.std value
Not set. If the AUTO_TUNE configuration parameter is set to 1, read ahead is performed automatically in the standard mode.

values
An integer from 0 - 2 that specifies the mode, optionally followed by a comma and an integer that specifies the number of pages that are automatically requested to
be read ahead. For example, the value 1,4096 enables automatic read-ahead in standard mode for 4096 pages at a time.
0 = Disable automatic read-ahead requests.

1 = Enable automatic read-ahead requests in the standard mode. The database server automatically processes read-ahead requests only when a query waits on
I/O.

2 = Enable automatic read-ahead requests in the aggressive mode. The database server automatically processes read-ahead requests at the start of the query and
continuously through the duration of the query.

number_of_pages = 4 - 4096, indicating the number of pages that are automatically requested to be read ahead. The default is 128 pages.

separators
Separate the mode and the number of pages with a comma.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.
If an AUTO_READAHEAD value is not set in your current onconfig file and you edit the AUTO_TUNE configuration parameter and restart the database server

Usage
Automatic read-ahead operations help improve query performance by issuing asynchronous page requests when the database server detects that the query is
encountering I/O. Asynchronous page requests can improve query performance by overlapping query processing with the processing necessary to retrieve data from disk
and put it in the buffer pool.

Generally, the default value of 1 is appropriate for most production environments.

While there are no specific circumstances in which aggressive read-ahead operations perform significantly better than standard read-ahead operations, aggressive read-
ahead might be slightly more effective:

For some scans that read a small amount of data
In situations in which you switch between turning read-ahead off for small scans and on for longer scans
For scans that look only at a small number of rows, because the server performs read-ahead operations immediately rather than waiting for the scan to encounter
I/O.

For scans that might turn read-ahead operations off and on because the scan hits pockets of cached data, aggressive read-ahead operations do not turn off read-ahead
operations.

Use aggressive read-ahead operations only in situations in which you tested both settings and know that aggressive read-ahead operations are more effective. Do not use
aggressive read-ahead operations if you are not sure that they are more effective.

You can use the AUTO_READAHEAD environment option of the SET ENVIRONMENT statement of SQL to enable or disable the value of the AUTO_READAHEAD
configuration parameter for a session.

The precedence of read-ahead setting is as follows:

1. A SET ENVIRONMENT AUTO_READAHEAD statement for a session.
2. The AUTO_READAHEAD configuration parameter value of 1 or 2.
3. If the value for the AUTO_READAHEAD configuration parameter is not present in the onconfig file, the server performs read-ahead on 128 data pages (which

equates to AUTO_READAHEAD mode set to 1), when the server completes a query.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

AUTO_TUNE configuration parameter
Related information:

 Sequential scans
Read-ahead operations
AUTO_READAHEAD session environment option

420 Part VI: Administering

https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

AUTO_REPREPARE configuration parameter

The AUTO_REPREPARE configuration parameter controls whether the database server automatically reoptimizes SPL routines and reprepares prepared objects after the
schema of a table that is referenced by the SPL routine or by the prepared object was changed.

onconfig.std value
Not set. If the AUTO_TUNE configuration parameter is set to 1, SPL routines are automatically reoptimized and prepared objects are automatically reprepared.

values
0 = Disables the automatic repreparation of prepared objects after the schema of a directly or an indirectly referenced table is modified. Also disables the automatic
reoptimization of SPL routines after the schema of an indirectly referenced table is modified.
1 = Enables automatic repreparation.

3 = Enables automatic repreparation in optimistic mode.

5 = Enables automatic repreparation on update statistics.

7 = Enables automatic repreparation in optimistic mode and on update statistics.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
If an AUTO_REPREPARE value is not set in your current onconfig file and you edit the AUTO_TUNE configuration parameter and restart the database server
When you reset the value in memory by running the onmode -wm command.

Usage
Enable the AUTO_REPREPARE configuration parameter to reduce the number of reprepare operations that you must perform explicitly after modifying the schema of a
table that is referenced by a dynamic SQL statement or a DML statement in an SPL routine.

For example, certain DDL statements modify the schema of a table, such as CREATE INDEX, DROP INDEX, DROP COLUMN, and RENAME COLUMN. If the
AUTO_REPREPARE configuration parameter is disabled when these DDL statements are run, users might receive -710 errors. These errors occur the next time that you
run:

An SPL routine that directly or indirectly references tables that were modified by the DDL statements
A prepared object that references the tables that were modified by the DDL statements

Optimistic mode offers faster performance by not checking statements that successfully executed less than a second ago. In the unlikely event that tables were modified
in the interim, some -710 errors might occur.

Set automatic repreparation on update statistics if you want to avoid the database server using an older, suboptimal execution plan.
Restriction:
Enabling AUTO_REPREPARE might have no effect on prepared statements or on SPL routines that reference tables in which DDL operations change the number of columns
in the table, or change the data type of a column. After these schema changes, typically you must reissue the DESCRIBE statement, the PREPARE statement (for prepared
objects), and the UPDATE STATISTICS FOR ROUTINE statement (for cursors associated with routines) for optimized execution plans of SPL routines that reference the
table whose schema has been modified. Otherwise, the database server might issue SQL error -710.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

AUTO_TUNE configuration parameter
Related information:

 IFX_AUTO_REPREPARE session environment option
PREPARE statement
SET ENVIRONMENT statement
UPDATE STATISTICS statement

Copyright© 2020 HCL Technologies Limited

AUTO_STAT_MODE configuration parameter

Use the AUTO_STAT_MODE configuration parameter to enable or disable the mode for selectively updating only stale or missing data distributions in UPDATE STATISTICS
operations instead of updating statistics for all data distributions.

onconfig.std value
Not set. If the AUTO_TUNE configuration parameter is set to 1, statistics are updated selectively.

values
0 = Disables selective UPDATE STATISTICS operations.
1 = Enables selective UPDATE STATISTICS operations.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.
If an AUTO_STAT_MODE value is not set in your current onconfig file and you set the AUTO_TUNE configuration parameter.

Part VI: Administering 421

https://www.hcltech.com/
https://www.hcltech.com/

Usage
When the AUTO_STAT_MODE configuration parameter or the AUTO_STAT_MODE session environment variable have enabled the automatic mode for selectively updating
only stale or missing data distributions in UPDATE STATISTICS operations, the database server uses the value of the STATCHANGE configuration parameter to identify
table or fragment distribution statistics that need to be updated.

In sessions where the AUTO_STAT_MODE configuration parameter and the AUTO_STAT_MODE session environment variable have different settings, the session
environment variable takes precedence for the duration of that session, or until the AUTO_STAT_MODE session environment variable is reset.

Related reference:
 STATCHANGE configuration parameter

AUTO_TUNE configuration parameter
Related information:

 Statistics options of the CREATE TABLE statement
AUTO_STAT_MODE session environment option

Copyright© 2020 HCL Technologies Limited

AUTO_TUNE configuration parameter

Use the AUTO_TUNE configuration parameter to enable or disable all automatic tuning configuration parameters that have values that are not present in the onconfig file.

onconfig.std value
AUTO_TUNE 1

values
0 = disabled
1 = enabled

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
If an individual automatic tuning configuration parameter is not set in your current onconfig file, the database server uses the value specified in the AUTO_TUNE
configuration parameter for that configuration parameter.

The automatic tuning configuration parameters are:

AUTO_AIOVPS
AUTO_CKPTS
AUTO_LRU_TUNING
AUTO_READAHEAD
AUTO_REPREPARE
AUTO_STAT_MODE

If an automatic tuning configuration parameter is set in the current onconfig file, the database server uses the value that is in the onconfig file. The AUTO_TUNE
configuration parameter does not change that value.

Your onconfig file is in the %INFORMIXDIR%\etc or $INFORMIXDIR/etc directory.

Examples
Example 1: Suppose some of your automatic tuning configuration parameters are not set, but others have values:

AUTO_LRU_TUNING (value not set)
AUTO_STAT_MODE (value not set)
AUTO_LRU_CKPTS (value not set)
AUTO_AIOVPS 0
AUTO_REPREPARE 1
AUTO_READAHEAD 0

If you set the AUTO_TUNE configuration parameter to 1, the database server automatically changes the values that are not set to 1. The values that were previously set
remain the same. The automatic tuning configuration parameters now have the following values:

AUTO_LRU_TUNING 1
AUTO_STAT_MODE 1
AUTO_CKPTS 1
AUTO_AIOVPS 0
AUTO_REPREPARE 1
AUTO_READAHEAD 0

Example 2: Suppose all of your automatic tuning configuration parameters are set and have the following values:

AUTO_LRU_TUNING 1
AUTO_STAT_MODE 1
AUTO_LRU_CKPTS 1
AUTO_AIOVPS 0

422 Part VI: Administering

https://www.hcltech.com/

AUTO_REPREPARE 1
AUTO_READAHEAD 0

In this situation, the AUTO_TUNE configuration does not change any of the values.

Example 3: Suppose that you removed the automatic tuning configuration parameters from your onconfig file but now want to use them. You can set AUTO_TUNE to 1 to
re-enable all of the automatic tuning configuration parameters.

Related reference:
 AUTO_AIOVPS configuration parameter

AUTO_CKPTS configuration parameter
AUTO_LRU_TUNING configuration parameter
AUTO_REPREPARE configuration parameter
AUTO_STAT_MODE configuration parameter
AUTO_READAHEAD configuration parameter

Copyright© 2020 HCL Technologies Limited

AUTOLOCATE configuration parameter

Use the AUTOLOCATE configuration parameter to enable the automatic location of databases, indexes, and tables, and the automatic fragmentation of tables.

onconfig.std and default value
AUTOLOCATE 0

values
0 = Disable automatic location and fragmentation.
1 - 32 = Enable automatic location and fragmentation. The number indicates how many round-robin fragments to initially allocate to a table.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in memory and in your onconfig file by running the onmode -wf command.
When you reset the value dynamically in memory by running the onmode -wm command.

Usage
Use the AUTOLOCATE configuration parameter to control whether the database server controls the location of new databases, indexes, and tables and the fragmentation
of those tables. If you set the AUTOLOCATE configuration parameter to a positive integer, the database server performs the following tasks:

Stores new databases for which you do not specify a location in the optimal dbspace instead of in the root dbspace. By default, all dbspaces except dbspaces that
are dedicated to tenant databases are available. However, you can control the list of available dbspaces.
Fragments new tables by round-robin, where the number of fragments is equal to the value of the AUTOLOCATE configuration parameter.
Adds more table fragments as the table grows.

If you set the value of the AUTOLOCATE configuration parameter to 0, new databases are created in the root dbspace by default. New tables and indexes are created in the
same dbspace as the database and are not fragmented.

Automatic location is not applicable to tenant databases or the tables, fragments, and indexes within tenant databases.

You can override the automatic location of a database by specifying a dbspace with the IN clause in the CREATE DATABASE statement. Similarly, you can override the
automatic location and fragmentation of a table by specifying a dbspace with the IN clause or a fragmentation strategy with the FRAGMENT BY clause in the CREATE
TABLE statement.

When this configuration parameter is enabled, you can use the autolocate database arguments with the admin() or task() function to:

Manage the list of dbspaces for automatic location and fragmentation. The list of available dbspaces is in the sysautolocate system catalog table.
Disable automatic location and fragmentation for the specified database.

You can use the AUTOLOCATE environment option of the SET ENVIRONMENT statement of SQL to enable or disable the value of the AUTOLOCATE configuration parameter
for a session.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

autolocate database argument: Specify dbspaces for automatic location and fragmentation (SQL administration API)
autolocate database add argument: Add a dbspace to the dbspace list (SQL administration API)
autolocate database remove argument: Remove a dbspace from the dbspace list (SQL administration API)
autolocate database anywhere argument: Add all dbspaces to the dbspace list (SQL administration API)
autolocate database off argument: Disable automatic fragmentation for a database (SQL administration API)
Related information:

 AUTOLOCATE session environment option
Managing automatic location and fragmentation

Copyright© 2020 HCL Technologies Limited

BATCHEDREAD_INDEX configuration parameter

Use the BATCHEDREAD_INDEX configuration parameter to enable the optimizer to execute light scans for indexes. This reduces the number of times that a buffer is read,
thus improving performance.

Part VI: Administering 423

https://www.hcltech.com/
https://www.hcltech.com/

onconfig.std value
BATCHEDREAD_INDEX 1

values
0 = Disable light scans for indexes.
1 = Enable light scans for indexes.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

In sessions where the IFX_BATCHEDREAD_INDEX configuration parameter and the IFX_BATCHEDREAD_INDEX session environment variable have different settings, the
session environment variable takes precedence for the duration of that session, or until the IFX_BATCHEDREAD_INDEX session environment variable is reset.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Copyright© 2020 HCL Technologies Limited

BATCHEDREAD_TABLE configuration parameter

Use the BATCHEDREAD_TABLE configuration parameter to enable or disable light scans on compressed tables, tables with rows that are larger than a page, and tables
with VARCHAR, LVARCHAR, and NVARCHAR data.

onconfig.std value
BATCHEDREAD_TABLE 1

values
0 = Disable light scans on variable record-length tables
1 = Enable light scans on variable record-length tables.

Compressed tables, and tables with rows longer than a page, are treated here as of variable record-length.
takes effect

After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
Except for compressed tables, tables with rows that are larger than a page, and tables of varying record length (such as VARCHAR, LVARCHAR, and NVARCHAR columns),
the setting of BATCHEDREAD_TABLE has no effect on whether the query optimizer chooses a query execution path that includes a light scan.

The database server does not perform light scans on indexes, on system tables, nor on user tables whose rows include large objects with any of these storage attributes:

blobspaces
smartblob spaces
partition blob.

You can use the IFX_BATCHEDREAD_TABLE environment option of the SET ENVIRONMENT statement to override the value of the BATCHEDREAD_TABLE configuration
parameter for the current session.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Related information:
 SET ENVIRONMENT statement

Light scans

Copyright© 2020 HCL Technologies Limited

BLOCKTIMEOUT configuration parameter

Use the BLOCKTIMEOUT configuration parameter to specify the number of seconds that a thread or database server will hang. After the timeout, the thread or database
server will either continue processing or fail.

onconfig.std value
BLOCKTIMEOUT 3600

units
Seconds

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Copyright© 2020 HCL Technologies Limited

424 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

BTSCANNER Configuration Parameter

Use the BTSCANNER configuration parameter to set the B-tree scanner. The B-tree scanner improves transaction processing for logged databases when rows are deleted
from a table with indexes. The B-tree scanner threads remove deleted index entries and rebalance the index nodes. The B-tree scanner automatically determines which
index items are to be deleted.

onconfig.std value
BTSCANNER num=1,threshold=5000,rangesize=-1,alice=6,compression=default

range of values
See the Usage section.

separators
Use a comma between each field.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -C command.
After you run the SQL administration API task() or admin() function with the onmode and C arguments.

Usage
By default, the BTSCANNER configuration parameter starts one index cleaner thread, prioritizes cleaning indexes that have over 5000 deleted items, automatically adjusts
the mode of index cleaning, and merges index pages at a level appropriate for indexes that have moderate growth and changes.

Syntax for the BTSCANNER configuration parameter

>>-BTSCANNER--+------------------------+------------------------>
 | .-1-------. |
 '-num--=--+-threads-+--,-'

>--+------------------------------+--+----------------------+--->
 '-threshold--=--thresh_size--,-' '-rangesize--=--100--,-'

>--+-------------------------+---------------------------------->
 '-alice--=--alice_mode--,-'

>--+-----------------------------+-----------------------------><
 | .-default-. |
 '-compression--=--+-low-----+-'
 +-med-----+
 '-high----'

Table 1. Options for the BTSCANNER configuration parameter value
Field Values

num The threads value is a positive integer that sets the number of B-tree scanner threads to start at system startup.
The default is 1.

threshold The thresh_size value is the minimum number of deleted items an index must encounter before an index is
prioritized for cleaning. The default is 5000.

rangesize Specifies whether to allow leaf scans for small indexes:

-1 = Off. The alice mode is used for all index cleaning.
100 = Small indexes are scanned by the leaf scan method.

alice The alice_mode value controls index cleaning:

0 = Off.
1 = Uses exactly 8 bytes of memory.
2 = Uses exactly 16 bytes of memory.
3 - 12 = Default is 6. Sets the initial amount of memory that is used for index cleaning. Subsequently, the B-
tree scanners automatically adjust the mode based on the efficiency of past cleaning operations.

compression The level at which two partially used index pages are merged:

low = Use if you expect an index to grow quickly with frequent splits.
med or default = Default. Use if an index has moderate growth or changes.
high = Use if an index is 90 percent or more read-only or does not have many changes.

After all of the indexes above the threshold are cleaned, the indexes below the threshold are added to the prioritized list of indexes to be cleaned. Systems updated
frequently should increase this value by a factor of 10 times or 100 times.

Related reference:
 onmode -C: Control the B-tree scanner

onmode and C arguments: Control the B-tree scanner (SQL administration API)
Related information:

 Configure B-tree scanner information to improve transaction processing

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 425

https://www.hcltech.com/

BUFFERPOOL configuration parameter

Use the BUFFERPOOL configuration parameter to configure how many data pages are cached in shared memory and how often those pages are flushed to disk between
checkpoints. The default values of the BUFFERPOOL configuration parameter are adequate for many systems. However, you can change the values to tune the
performance of your system.

onconfig.std values
Operating systems with 2 KB default page size:

BUFFERPOOL default,buffers=10000,lrus=8,lru_min_dirty=50.00,
lru_max_dirty=60.50
BUFFERPOOL size=2k,buffers=50000,lrus=8,lru_min_dirty=50,
lru_max_dirty=60

Operating systems with 4 KB default page size:

BUFFERPOOL default,buffers=10000,lrus=8,lru_min_dirty=50.00,
lru_max_dirty=60.50
BUFFERPOOL size=4k,buffers=10000,lrus=8,lru_min_dirty=50,
lru_max_dirty=60

default value if you created a server during installation

BUFFERPOOL default,memory='auto'
BUFFERPOOL size=page_size,memory=memory_size

The page_size value is the default page size. The initial size of the buffer pool is 32 MB. The maximum size, which is specified by the value of the memory field as
either auto or the memory_size value, depends on the value of the AUTO_TUNE_SERVER_SIZE configuration parameter.

values
See the Usage section.

separators
Separate fields with a comma.

takes effect
After you edit your onconfig file and restart the database server.
When you add an entry dynamically in your onconfig file by running the onparams -b command.
When you add an entry dynamically by adding a dbspace with a different page size by running the onspaces -c -d command.
After you add an entry dynamically in your onconfig file by running the SQL administration API task() or admin() function with the add bufferpool argument.

Usage
Cached data pages are held in buffers. Buffers are contained in buffer pools. You need a buffer pool for each page size that you use for storage spaces. When the database
server moves new data pages into shared memory, data pages that are the least-recently used are moved out of shared memory. The BUFFERPOOL configuration
parameter controls the size of the buffer pool and how frequently data pages are flushed to disk.

The BUFFERPOOL configuration parameter has two entries in the onconfig.std file or in the onconfig file that was generated if you created a server during installation:

The first entry specifies the default values for a buffer pool for a dbspace with a non-default page size.
The second entry specifies the default values for a buffer pool that is based on the default page size of the system.

The BUFFERPOOL configuration parameter entries that include the size field take precedence over the entry that includes the default field.

The BUFFERPOOL configuration parameter has two formats:

Use the BUFFERPOOL configuration parameter with the memory field if you want to specify the size of your buffer pool in units of memory like MB or GB.
Use the BUFFERPOOL configuration parameter with the buffers field if you want to specify the size of your buffer pool in units of pages, or to retain settings from a
previous release.

You can use either format to enable the database server to expand the size of the buffer pool as needed to improve performance.

Restriction: You cannot combine formats in the onconfig file. All entries for the BUFFERPOOL configuration parameter in the onconfig file must have the same format or the
database server does not start and the following error shows:

ERROR: Cannot mix buffer arguments with memory arguments. (BUFFERPOOL)

The fields in the BUFFERPOOL entries are not case-sensitive and the fields can be listed in any order.

Syntax with the memory field

>>-BUFFERPOOL--+-default-------------+-------------------------->
 '-size--=--page_sizek-'

>--+-------------------------+---------------------------------->
 '-,--lrus--=--number_lrus-'

>--+-------------------------------------+---------------------->
 '-,--lru_min_dirty--=--min_percentage-'

>--+-------------------------------------+---------------------->
 '-,--lru_max_dirty--=--max_percentage-'

>--+---+-->
 '-,--extendable--=--+-0-----------------------------------+-'
 '-1--+------------------------------+-'
 '-,--cache_hit_ratio--=--ratio-'

426 Part VI: Administering

>--+--+--------------->
 '-,--start_memory--=--+-auto---------------+-'
 '-start_size--+----+-'
 +-kb-+
 +-mb-+
 '-gb-'

>--,--memory--=--+-auto-------------+--------------------------><
 '-max_size--+----+-'
 +-kb-+
 +-mb-+
 '-gb-'

Syntax with the buffers field

>>-BUFFERPOOL--+-default-------------------+-------------------->
 '-size--=--page_size--+---+-'
 '-k-'

>--+-------------------------+---------------------------------->
 '-,--lrus--=--number_lrus-'

>--+-------------------------------------+---------------------->
 '-,--lru_min_dirty--=--min_percentage-'

>--+-------------------------------------+---------------------->
 '-,--lru_max_dirty--=--max_percentage-'

>--,--buffers--=--number_buffers-------------------------------->

>--+---+-----><
 '-,--extendable--=--+-0-----------------------------+-'
 '-1--+------------------------+-'
 '-| extendable options |-'

extendable options

|--+----------------------------+------------------------------->
 '-,--max_extends--=--extends-'

>--+------------------------------------+----------------------->
 '-,--next_buffers--=--number_buffers-'

>--+------------------------------+-----------------------------|
 '-,--cache_hit_ratio--=--ratio-'

Table 1. Options for the BUFFERPOOL configuration parameter value
Field Values

buffers Default is 1000.
The number_buffers value is an integer >= 1000 that specifies the maximum number of shared-memory buffers. The maximum
allowed number of buffers depends on the operating system, the bit size, and the page size:

UNIX, 32-bit, with a 2 KB page size: 1000 - 1843200
UNIX, 32-bit, with a 4 KB page size: 1000 - 921600
Windows, 32-bit: 100 - 524288
64-bit: 100 - (231-1). For the actual value for your 64-bit platform, see your machine notes. For example, the maximum
number of buffers on the Solaris platform is 536,870,912.

Set the value of the buffers field to at least four buffers per user. If your system handles more than 500 concurrent users,
specify at least 2000 buffers.

Each buffer is the size of the operating system page. Therefore, the number of buffers that the database server requires
depends on the amount of physical memory and how much memory is used by applications. For example, if the database
server accesses 15 percent of the application data 90 percent of the time, allocate enough buffers to hold 15 percent of the
data. Increasing the number of buffers can improve system performance. The number of buffers can have a significant affect on
performance and use a large percentage of physical memory.

For more information, see The BUFFERPOOL configuration parameter and memory utilization.

cache_hit_ratio Default is 90.
The ratio value is an integer 0 - 100 that represents the threshold below which the buffer pool is extended. When the average
read cache hit ratio remains below the value of ratio for approximately five minutes, the database server extends the buffer
pool.

The cache_hit_ratio field is valid only if extendable=1 is set.

extendable Default is 1 if the memory field is set.
Default is 0 if the buffers field is set.

Whether the database server can extend the size of the buffer pool:

0 = Disabled. The buffer pool cannot grow.
1 = Enabled. The buffer pool can grow.

Part VI: Administering 427

Field Values

lru_max_dirty Default is 60.00.
The max_percentage value is a decimal number 0 - 100.00 that sets the percentage of modified pages in the LRU queues at
which the queue is cleaned.

This value is updated automatically as needed if the AUTO_LRU_TUNING configuration parameter is enabled.

lru_min_dirty Default is 50.00.
The min_percentage value is a decimal number 0 - 100.00 that sets the percentage of modified pages in the LRU queues at
which page cleaning is no longer mandatory.

Page cleaners might continue cleaning beyond the specified percentage under some circumstances.

This value is updated automatically as needed if the AUTO_LRU_TUNING configuration parameter is enabled.

lrus Default is 8. If the MULTIPROCESSOR configuration parameter is enabled, the default is the greater of 8 or the number of CPU
VPs.
The number_lrus value is a positive integer that specifies the number of LRU (least recently used) queues in the buffer pool.

The range of values depends on the bit size of the operating system:

32-bit platforms: 8 - 128
64-bit platforms: 8 - 512

The more LRU queues that you specify, the more page cleaners work in parallel. However, setting the value of lrus field too high
might result in excessive page-cleaner activity.

The value of lrus field, in combination with the lru_min_dirty and lru_max_dirty fields control how frequently the shared-
memory buffers are flushed to disk.

For more information, see BUFFERPOOL and its effect on page cleaning.

max_extends Default is 8.
The extends value represents the maximum number of times that the database server can extend the buffer pool. The value of
extends is 0 through the maximum number of segments, which depends on the operating system and bit size:

32 bit = 16
UNIX 64 bit = 24
Windows 64 bit = 8

The max_extends field is valid only if buffers and extendable=1 are set.

memory Default is auto.
The max_size value represents the maximum size of the buffer pool. The range of values for max_size is:

An integer that represents 32 MB - 4 TB. You can specify the size units of KB, MB, or GB. If you do not specify units, the
default units are KB.
auto = The database server determines the maximum amount of shared memory to allocate to the buffer pool. The
value of the AUTO_TUNE_SERVER_SIZE configuration parameter, if it is set, controls the maximum size of the buffer
pool.

next_buffers Default is 1000.
The number_buffers value is an integer >= 1000 that specifies the number of shared-memory buffers by which the database
server extends the buffer pool. The maximum value of number_buffers is limited by the amount of virtual shared memory.

The number_buffers value is doubled every four extensions.

The next_buffers field is valid only if buffers and extendable=1 are set.

size The page_size value specifies the page size for buffers, in KB. The page size must be 2 - 16 KB and must be a multiple of the
default page size. For example, if the default page size is 2 KB, the page size can be 2, 4, 6, 8, 10, 12, 14, or 16. If the default
page size is 4 KB, the page size can be 4, 8, 12, or 16. The default value depends on the system default page size:

2 KB default page size: size=2k
4 KB default page size: size=4k

The k is optional.

start_memory Default is 32 MB.
The start_size value represents the initial size of the buffer pool when the database server starts:

An integer that represents 32 MB through the maximum amount of shared memory that is available. You can specify the
size units of KB, MB, or GB. If you do not specify units, the default units are KB. The initial size of the buffer pool might be
larger than the value of start_size because the size must be a multiple of the size of a shared memory segment.
auto = The database server determines the initial amount of shared memory to allocate to the buffer pool.

If you do not set the start_memory field, the initial size of the buffer pool is equal to the value of the memory field.

The start_memory field is valid only if the memory field is set.

The size of the buffer pool with the memory format
If you use the memory format, by default the buffer pool grows in size as needed. Shared memory segments are added to the buffer pool when the average cache read hit
ratio is under the threshold. You can set the initial and maximum size of the buffer pool or allow the database server to determine the optimal sizes.

428 Part VI: Administering

If the extendable field is set to 0, the buffer pool does not grow. The size is equal to the value of the start_memory field, if it is set, otherwise, the value of the memory
field.

When you restart the server, the size of the buffer pool is reset to the value of the start_memory field.

The size of the buffer pool with the buffers format
If you use the buffers format, by default the buffer pool does not grow in size. The size is equal to the value of the buffers field.

If you set the extendable field to 1, shared memory segments are added to the buffer pool when the average cache read hit ratio is under the threshold. You must set the
initial number of buffers in the buffers field. You can optionally set the number of buffers by which to extend the buffer pool, and the maximum number of times that the
buffer pool can be extended, and the cache hit ratio. The number of buffers that are added to the buffer pool doubles every fourth extension.

Example: Adding a BUFFERPOOL entry with the memory field
The following entry creates a buffer pool that has a 10 KB page size:

BUFFERPOOL size=10k,start_memory=auto,memory=4gb

The buffer pool is extendable up to 4 GB. The database server determines the initial size of the buffer pool and the sizes of extensions to the buffer pool.

Example: Adding a BUFFERPOOL entry with the buffers field
The following entry creates a buffer pool that has a 2 KB page size:

BUFFERPOOL size=2k,extendable=1,buffers=1000,next_buffers=2000,max_extends=8

The buffer pool is extendable eight times. The buffer pool starts with 1000 buffers. The first three extensions to the buffer pool add 2000 buffers. The fourth through
seventh extensions add 4000 buffers. The eighth extension adds 8000 buffers.

Example: Adding a BUFFERPOOL entry by adding a dbspace with a different page size
When you add a dbspace with a different page size with the onspaces utility, or when you add a buffer pool with the onparams utility, a BUFFERPOOL configuration
parameter entry is added in the onconfig file. The following example shows a third entry:

BUFFERPOOL default,buffers=10000,lrus=8,lru_min_dirty=50.00,lru_max_dirty=60.50
BUFFERPOOL size=2k,buffers=10000,lrus=8,lru_min_dirty=50,lru_max_dirty=60
BUFFERPOOL size=6k

When you create a dbspace with a non-default page size, the database server uses the existing BUFFERPOOL entry for that page size, if that entry exists. Otherwise, the
database server uses the values from the BUFFERPOOL default line.

Related reference:
 onparams -b: Add a buffer pool

add bufferpool argument: Add a buffer pool (SQL administration API)
AUTO_LRU_TUNING configuration parameter
AUTO_TUNE_SERVER_SIZE configuration parameter
onstat -g buf command: Print buffer pool profile information
Related information:

 The BUFFERPOOL configuration parameter and memory utilization
BUFFERPOOL and its effect on page cleaning
Buffer pool portion of shared memory
FIFO/LRU queues

Copyright© 2020 HCL Technologies Limited

CHECKALLDOMAINSFORUSER configuration parameter

Use the CHECKALLDOMAINSFORUSER configuration parameter to check all of the domains for all users.

onconfig.std value
Not in the onconfig.std file

values
0 = Disabled
1 = Enabled

takes effect
After you edit your onconfig file and restart the database server.

Related information:
 Windows network domain

Copyright© 2020 HCL Technologies Limited

CKPTINTVL configuration parameter

Part VI: Administering 429

https://www.hcltech.com/
https://www.hcltech.com/

Use the CKPTINTVL configuration parameter to specify the frequency, expressed in seconds, at which the database server checks to determine whether a checkpoint is
needed. When a checkpoint occurs, all pages in the shared-memory buffer pool are written to disk.

onconfig.std value
CKPTINTVL 300

values
Any value greater than or equal to 0

units
Seconds

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
The RTO_SERVER_RESTART and CKPTINTVL configuration parameters are mutually exclusive. If the RTO_SERVER_RESTART configuration parameter is enabled, it will
trigger checkpoints and CKPTINTVL values are ignored. Otherwise, CKPTINTVL values are used to trigger checkpoints.

If you set the CKPTINTVL configuration parameter to an interval that is too short, the system spends too much time performing checkpoints, and the performance of other
work suffers. If you set the CKPTINTVL configuration parameter to an interval that is too long, fast recovery might take too long.

In practice, 30 seconds is the smallest interval that the database server checks. If you specify a checkpoint interval of 0, the database server does not check if the
checkpoint interval has elapsed. However, the database server still performs checkpoints. Other conditions, such as the physical log becoming 75 percent full, also cause
the database server to perform checkpoints.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

RTO_SERVER_RESTART configuration parameter
Related information:

 Checkpoints
Performance Guide

Copyright© 2020 HCL Technologies Limited

CLEANERS configuration parameter

Use the CLEANERS configuration parameter to specify the number of page-cleaner threads available during the database server operation. By default, the database server
always runs one page-cleaner thread. A general guideline is one page cleaner per disk drive. The value specified has no effect on the size of shared memory.

Based on the server work load, the server automatically attempts to optimize AIO VPs and page-cleaner threads and adjust the number of AIO VPs and page-cleaner
threads upward when needed. Automatic AIO VP and page-cleaner thread tuning can be disabled using the environmental variable IFX_NO_AIOVP_TUNING or the
onmode -wm utility option.

onconfig.std value
CLEANERS 8

values
1 - 128

units
Number of page-cleaner threads

takes effect
After you edit your onconfig file and restart the database server.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

onstat -F command: Print counts
Related information:

 Flush data to disk

Copyright© 2020 HCL Technologies Limited

CLUSTER_TXN_SCOPE configuration parameter

Set the CLUSTER_TXN_SCOPE configuration parameter to configure your high-availability cluster so that when a client session issues a commit, the server blocks the
session until the transaction is applied in that session, on a secondary server, or across the cluster.

onconfig.std value
CLUSTER_TXN_SCOPE SERVER

values

SESSION = When a client session issues a commit, the database server blocks the session until the effects of the transaction commit are returned to that
session. After control is returned to the session, other sessions at the same database server or on other database servers in the cluster might be unaware of
the transaction commit and the transaction's effects.
SERVER (default behavior) = When a client session issues a commit, the database server blocks the session until the transaction is applied at the database
server from which the client session issued the commit. Other sessions at that database server are aware of the transaction commit and the transaction's

430 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

effects. Sessions at other database servers in the cluster might be unaware of the transaction's commit and its effects. This behavior is default for high-
availability cluster servers.
CLUSTER = When a client session issues a commit, the database server blocks the session until the transaction is applied at all database servers in the high-
availability cluster, excluding RS secondary servers that are using DELAY_APPLY or STOP_APPLY. Other sessions at any database server in the high-
availability cluster, excluding RS secondary servers that are using DELAY_APPLY or STOP_APPLY, are aware of the transaction commit and the transaction's
effects.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.
After you run the SQL administration API task() or admin() function with the -wf CLUSTER_TXN_SCOPE=value or -wm CLUSTER_TXN_SCOPE=value arguments.

Usage
Set the CLUSTER_TXN_SCOPE configuration parameter to control transaction-commit returns from a high-availability cluster to client applications. Cluster transaction
coordination can delay the returning of a transaction commit to a client application until the transaction is applied to a secondary-server or all secondary servers in a high-
availability cluster. This process prevents operation failures due to asynchronous log processing, and ensures that the steps of multistep processes occur in serial order.

Cluster transaction coordination does not apply to RS secondary servers that have a DELAY_APPLY or STOP_APPLY configuration parameter value other than 0.
Transactions do not need to be applied on the RS secondary servers before client applications can receive commits.

CLUSTER_TXN_SCOPE affects sessions on read-only secondary servers and updatable secondary servers.

Before IBM® Informix® version 11.70.xC6, high-availability cluster servers had the following default behaviors:

Primary servers had a cluster transaction scope of SERVER.
Read-only secondary servers were in the dirty-read isolation level, and could read uncommitted data.
Updatable secondary servers had a cluster transaction scope of SESSION.

Example 1: Transactions coordination between high-availability cluster servers
In this example, a client application starts a two-step process. The client application inserts data on the primary database server, and then starts processing of the data on
an HDR secondary server.

If a SELECT on the inserted data is attempted on the HDR secondary server before the logs from the primary server are applied on the HDR secondary server, the
operation fails. To prevent this failure, set the primary server's CLUSTER_TXN_SCOPE configuration parameter to CLUSTER, so that the client application does not receive
a commit, and cannot start data processing, until the data insertion is also applied on the HDR secondary server.

Example 2: Transaction coordination on a database server
In this example, you have a client application that is divided into several stages of processing. Each stage of processing uses a different SQL session to connect to the
database server. The application updates data, and then another part of the application processes the updated data in a different SQL session.

If CLUSTER_TXN_SCOPE is set to SESSION, the part of the application that processes the updated data might not be aware of an update's results and a failure can occur.
To prevent this failure, set the database server's CLUSTER_TXN_SCOPE configuration parameter to SERVER, so that the client application does not receive a commit, and
cannot start data processing until the update completes on the database server.

Related reference:
 DELAY_APPLY Configuration Parameter

STOP_APPLY configuration parameter
Related information:

 SET ENVIRONMENT statement
CLUSTER_TXN_SCOPE session environment option
Cluster transaction coordination

Copyright© 2020 HCL Technologies Limited

CONSOLE configuration parameter

Use the CONSOLE configuration parameter to specify the path and name for console-message file.

onconfig.std values
On UNIX: $INFORMIXDIR/tmp/online.con
On Windows: online.con

values
pathname = Full path name of the online.con file.

takes effect
After you edit your onconfig file and restart the database server.

Copyright© 2020 HCL Technologies Limited

CONVERSION_GUARD configuration parameter

Part VI: Administering 431

https://www.hcltech.com/
https://www.hcltech.com/

Use the CONVERSION_GUARD configuration parameter to specify whether IBM® Informix® stops or continues an upgrade to a new version of the server if an error occurs
during the upgrade process.

onconfig.std value
CONVERSION_GUARD 2

values
0 = Disabled.
1 = Enable a restore point as part of the upgrade process, and stop the upgrade if an error related to capturing restore point data occurs.

2 = Enable a restore point as part of the upgrade process, and continue the upgrade even if an error related to capturing restore point data occurs.

units
Integer

takes effect
When the database server is restarted

Usage
By default:

The CONVERSION_GUARD configuration parameter is on (set to 2). If an upgrade to the new version of the server fails, you can use the onrestorept utility to restore
your data.
The server stores the restore point data in the $INFORMIXDIR/tmp directory.

If the CONVERSION_GUARD configuration parameter is set to 1 or 2 and the upgrade to the new version of the server fails, you can use the onrestorept utility to restore
your data.

If the CONVERSION_GUARD configuration parameter is set to 2 and conversion guard operations fail (for example, because the server has insufficient space to store
restore point data), and the upgrade fails, you cannot use the onrestorept utility to restore your data.

You can change the value of the CONVERSION_GUARD configuration parameter or change the directory specified in the RESTORE_POINT_DIR configuration parameter
before starting the server that initiates an upgrade to a new version of the server. You cannot change the CONVERSION_GUARD or RESTORE_POINT_DIR values during an
upgrade.

Related reference:
 RESTORE_POINT_DIR configuration parameter

Related information:
 The onrestorept utility

Copyright© 2020 HCL Technologies Limited

DATASKIP Configuration Parameter

Use the DATASKIP configuration parameter to control whether the database server skips a dbspace that is unavailable during the processing of a transaction.

onconfig.std value
Not set. No dbspaces are skipped.

values
See the Usage section.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onspaces -f command.
After you run the SQL administration API task() or admin() function with the set dataskip argument.

Usage
Whenever the database server skips over a dbspace during query processing, a warning is returned.

Enable the DATASKIP configuration parameter with caution because the results are always suspect. Only enable the parameter in the following situations:

You can accept the compromised integrity of transactions.
You can determine that the integrity of the transaction is not compromised, which can be difficult and time consuming.

Syntax for the DATASKIP configuration parameter

>>-DATASKIP--+-ALL------------------+--------------------------><
 +-OFF------------------+
 | .--------------. |
 | V | |
 '-ON----dbspace_name-+-'

Table 1. Options for the DATASKIP configuration parameter value

Field Description

ALL Skip all unavailable fragments.

OFF All fragments, including unavailable fragments, are processed.

432 Part VI: Administering

https://www.hcltech.com/

Field Description

ON The dbspace_name value specifies one or more dbspaces to skip, separated by
commas.

An application can use the SQL statement SET DATASKIP to override the value of the DATASKIP configuration parameter.

The previously reserved SQLCA warning flag sqlwarn.sqlwarn7 is set to W for IBM® Informix® ESQL/C.

Related reference:
 onspaces -f: Specify DATASKIP parameter

onstat -f command: Print dbspace information affected by dataskip
set dataskip argument: Start or stop skipping a dbspace (SQL administration API)
Related information:

 How DATASKIP affects table I/O
SET DATASKIP statement

Copyright© 2020 HCL Technologies Limited

DBCREATE_PERMISSION configuration parameter

Use the DBCREATE_PERMISSION configuration parameter to restrict the permission to create databases to the user that you specify.

The informix user always has permission to create databases. To restrict the ability to create databases to the informix user, set the DBCREATE_PERMISSION
configuration parameter to informix.

onconfig.std value
On UNIX: Not set. Any user can create databases.
On Windows: #DBCREATE_PERMISSION informix

default value
Any user can create databases.

units
user names

separator
Comma. You can also include multiple copies of the DBCREATE_PERMISSION configuration parameter in the onconfig file to give more users permission to create
databases.

takes effect
After you edit your onconfig file and restart the database server.

The DBCREATE_PERMISSION configuration parameter does not provide permissions to create tenant databases. Users must have the TENANT privilege to create tenant
databases. Grant the TENANT privilege by running the admin() or task() SQL administration API function with the grant admin argument.

Related reference:
 grant admin argument: Grant privileges to run SQL administration API commands

Copyright© 2020 HCL Technologies Limited

DB_LIBRARY_PATH configuration parameter

Use the DB_LIBRARY_PATH configuration parameter to specify a comma-separated list of valid directory prefix locations from which the database server can load external
modules, such as DataBlade modules. You can also include server environment variables, such as $INFORMIXDIR, in the list.

You must specify the paths to the external modules exactly as the paths are registered with the database server. Relative paths or paths that include double periods (..)
are not valid. External modules in the file systems that are not specified by this parameter cannot be loaded. This list is scanned prior to loading C language modules.

If you set this configuration parameter, you must also include the string $INFORMIXDIR/extend as part of the value. If the string $INFORMIXDIR/extend is not included
in DB_LIBRARY_PATH, built-in extensions, DataBlade modules, and the BladeManager utility do not load.

onconfig.std value
Not set

if not present
The database server can load external modules from any location

values
List of path names (up to 512 bytes)

separators
Comma

takes effect
After you edit your onconfig file and restart the database server.

Copyright© 2020 HCL Technologies Limited

DBSERVERALIASES configuration parameter

Use the DBSERVERALIASES configuration parameter to specify an alias name, or a list of unique alias names for the database server. Each alias defined by the
DBSERVERALIASES configuration parameter can be used in a different connection, as specified by entries in the sqlhosts information.

Part VI: Administering 433

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

onconfig.std value
Not set. No aliases are defined.

values
One to 32 alias names, separated by commas. Each alias name can be optionally followed by a minus sign and an integer from 1 - 50 that specifies the number of
multiple listener threads to use for the onimcsoc or onsoctcp protocols. For example, the following two alias names each have four listener threads: alias_a-
4,alias_b-4. The listener thread number is ignored for other protocols.
The maximum length of an alias is 128 bytes. Additional aliases beyond 32 are ignored. The maximum length of a DBSERVERALIASES entry is 512 bytes. You can
include multiple lines of DBSERVERALIASES configuration parameters in the onconfig file.
An alias name must begin with a letter and can include any printable character, except the following:

Uppercase characters
A field delimiter (blank space or tab)
A newline character
A comment character (#)
A hyphen or minus (= ASCII 45) character
The @ character
A blank space

separators
Separate entries with a comma. Do not include blank spaces.

takes effect
After you edit your onconfig file and restart the database server and update the sqlhosts information of each database server.

Usage
You can use the DBSERVERALIASES configuration parameter to specify aliases for both Secure Sockets Layer (SSL) and for non-SSL connection protocols.

If Informix® supports more than one communication protocol (for example, both an IPC mechanism and the TCP network protocol), you must describe each valid
connection to the database server with an entry in the sqlhosts information. For example, suppose you have a server that has the name sanfrancisco defined by the
DBSERVERNAME configuration parameter setting, and you set a DBSERVERALIASES value of menlo for an SSL connection. You must specify information for both of the
sanfrancisco and menlo servers in the sqlhosts information. Similarly, if the database server needs to support both the standard Informix protocols and the Distributed
Relational Database Architecture™ (DRDA) protocols, assign an alias to the DRDA database server and add an entry for this alias in the sqlhosts file.

For each alias listed in the DBSERVERALIASES configuration parameter, the database server starts an additional listener thread. If you have many client applications
connecting to the database server, you can distribute the connection requests between several listener threads and speed connection times. To take advantage of the
alternate connections, program some of your client applications to connect to a database server alias name instead of the database server name.

If you use Informix MaxConnect with more than one communication protocol, specify additional database server aliases for the DBSERVERALIASES configuration
parameter. The value of the INFORMIXSERVER environment variable on the client must match either the value of the DBSERVERNAME configuration parameter or one of
the values of the DBSERVERALIASES configuration parameter.

High-availability cluster servers that use shared-memory connections must also have TCP connection aliases for server-to-server communication. If a high-availability
cluster server's DBSERVERNAME is associated with a shared-memory sqlhosts file entry, you must create a TCP alias for the server by setting a DBSERVERALIASES value,
setting the HA_ALIAS configuration parameter to the DBSERVERALIASES value, and then creating a TCP sqlhost file entry for the alias.

Note: Service name used for loopback replication group should be added to DBSERVERALIAS list, and it should appear after service name used for primary Enterprise
Replication group.
Related reference:

 DBSERVERNAME configuration parameter
HA_ALIAS configuration parameter
NETTYPE configuration parameter
NUMFDSERVERS configuration parameter
onmode -d: Set data-replication types
onmode -d: Set High Availability server characteristics
onmode -d command: Replicate an index with data-replication
Related information:

 Configuration parameters related to connectivity
Multiple connection types
Add listen threads

Copyright© 2020 HCL Technologies Limited

DBSERVERNAME configuration parameter

Use the DBSERVERNAME configuration parameter to specify a unique name that you want to associate with the database server. You specify this configuration parameter
when you install the database server.

onconfig.std value
Not set. A database server name is not defined.

if not present
On UNIX: hostname
On Windows: ol_hostname

The hostname variable is the name of the host computer.
values

A database server name that has a maximum length of 128 bytes.The database server name can be optionally followed by a minus sign and an integer from 1 - 50
that specifies the number of multiple listener threads to use for the onimcsoc or onsoctcp protocols. The default number of listener threads is 1. For example, the
following database server name has four listener threads: ifxserver-4. The listener thread number is ignored for other protocols.
A database server name must begin with a letter and can include any printable character, except the following:

434 Part VI: Administering

https://www.hcltech.com/

Uppercase characters
A field delimiter (blank space or tab)
A newline character
A comment character (#)
A hyphen or minus (= ASCII 45) character
The @ character
A blank space

takes effect
After you edit your onconfig file and restart the database server and update the sqlhosts file or registry of each database server. In addition, the INFORMIXSERVER
environment variable for all users might need to be changed.

Usage
The database server name is associated with a communication protocol that is specified in the sqlhosts file or registry. If the database server uses multiple
communication protocols, define values for database server names with the DBSERVERALIASES configuration parameter.

Client applications use the database server name in the INFORMIXSERVER environment variable and in SQL statements such as CONNECT and DATABASE, which
establish a connection to a database server.
Important: To avoid conflict with other instances of Informix® database servers on the same computer or node, you should use the DBSERVERNAME configuration
parameter to assign a database server name explicitly.
For Informix MaxConnect users, the value of the INFORMIXSERVER environment variable on the client must match either the value of the DBSERVERNAME configuration
parameter or one of the entries of the DBSERVERALIASES configuration parameter.

High-availability cluster servers that use shared-memory connections must also have TCP connection aliases for server-to-server communication. If a high-availability
cluster server's DBSERVERNAME is associated with a shared-memory sqlhosts file entry, you must create a TCP alias for the server by setting a DBSERVERALIASES value,
setting the HA_ALIAS configuration parameter to the DBSERVERALIASES value, and then creating a TCP sqlhost file entry for the alias.

Related reference:
 DBSERVERALIASES configuration parameter

HA_ALIAS configuration parameter
NETTYPE configuration parameter
NUMFDSERVERS configuration parameter
onmode -d: Set data-replication types
onmode -d: Set High Availability server characteristics
onmode -d command: Replicate an index with data-replication
Related information:

 Connection information set in the DBSERVERNAME configuration parameter
Multiple connection types
Add listen threads
INFORMIXSERVER environment variable

Copyright© 2020 HCL Technologies Limited

DBSPACETEMP configuration parameter

Use the DBSPACETEMP configuration parameter to specify a list of dbspaces that the database server uses to globally manage the storage of temporary tables.

DBSPACETEMP improves performance by enabling the database server to spread out I/O for temporary tables efficiently across multiple disks. The database server also
uses temporary dbspaces during backups to store the before-images of data that are overwritten while the backup is occurring.

onconfig.std value
Not set. Temporary tables are stored in the root dbspace.

separators
Comma or colon (no white space)

values
One or more dbspace names. Dbspaces can be standard dbspace, temporary dbspaces, or both. Separate dbspace names with a colon or comma. The length of the
list cannot exceed 254 bytes.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
DBSPACETEMP can contain dbspaces with a non-default page size and dbspaces in the DBSPACETEMP list can have different page sizes.

If a client application needs to specify an alternative list of dbspaces to use for its temporary-table locations, the client can use the DBSPACETEMP environment variable
to list them. The database server uses the storage locations that the DBSPACETEMP environment variable specifies only when you use the HIGH option of UPDATE
STATISTICS.

If both standard and temporary dbspaces are listed in the DBSPACETEMP configuration parameter or environment variable, the following rules apply:

Sort, backup, implicit, and nonlogging explicit temporary tables are created in temporary dbspaces if adequate space exists.
Explicit temporary tables created without the WITH NO LOG option are created in standard (rather than temporary) dbspaces.

When you create a temporary dbspace with the onspaces utility or the SQL administration API admin() or task() function, the database server does not use the newly
created temporary dbspace until you modify the DBSPACETEMP configuration parameter to include the new temporary dbspace or set the DBSPACETEMP environment

Part VI: Administering 435

https://www.hcltech.com/

variable and restart the session. Note that the DBSPACETEMP configuration parameter may be modified dynamically with the onmode -wf or onmode -wm commands.

The DBSPACETEMP environment variable takes effect immediately and overrides the DBSPACETEMP configuration parameter.

Use Hash Join Overflow and DBSPACETEMP
 Informix uses an operating-system directory or file to direct any overflow that results from certain database operations, if you do not set the DBSPACETEMP

environment variable or DBSPACETEMP configuration parameter.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

onspaces -c -d: Create a dbspace
onstat -d command: Print chunk information
Related information:

 Temporary tables
Configure dbspaces for temporary tables and sort files
DBSPACETEMP environment variable
PSORT_DBTEMP environment variable

Copyright© 2020 HCL Technologies Limited

Use Hash Join Overflow and DBSPACETEMP

Informix® uses an operating-system directory or file to direct any overflow that results from certain database operations, if you do not set the DBSPACETEMP
environment variable or DBSPACETEMP configuration parameter.

You can specify the operating-system directory or file in the following ways:

SELECT statement with GROUP BY clause
SELECT statement with ORDER BY clause
Hash-join operation
Nested-loop join operation
Index builds

Location of the sort overflow files
The following table lists the environment variables and ONCONFIG configuration parameters that you can use to specify the location of the sort overflow files.

Table 1. Location of sort overflow files

Variable or Parameter Location of the sort overflow files

PSORT_DBTEMP environment variable The location specified in the environment variable

DBSPACETEMP environment variable The location specified in the environment variable

DBSPACETEMP configuration parameter specified in the ONCONFIG file The dbspace that is specified in the ONCONFIG file DBSPACETEMP configuration parameter

If more than one variable or parameter is specified, the priority by which the Informix determines the location of the sort overflow files is:

1. PSORT_DBTEMP environment variable
2. DBSPACETEMP environment variable
3. DBSPACETEMP ONCONFIG variable
4. DUMPDIR
5. $INFORMIXDIR/tmp

If the environment variables or configuration parameter are not set, the sort overflow files are placed in the $INFORMIXDIR/tmp directory and the temporary tables are
placed in the rootdbspace.

Copyright© 2020 HCL Technologies Limited

DD_HASHMAX configuration parameter

Use the DD_HASHMAX configuration parameter to specify the maximum number of tables in each hash bucket in the data-dictionary cache.

A hash bucket is the unit of storage (typically a page) whose address is computed by the hash function. A hash bucket contains several records.

For example, if the DD_HASHMAX configuration parameter is set to 10 and the DD_HASHSIZE configuration parameter is set to 59, you can store information about 590
tables in the data-dictionary cache, and each hash bucket can have a maximum of 10 tables.

Use a text editor to modify the configuration file.

onconfig.std value
DD_HASHMAX 10

values
Positive integers

units
Maximum number of tables in a hash bucket

takes effect
After you edit your onconfig file and restart the database server.

436 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Related reference:
DD_HASHSIZE configuration parameter
Related information:
Effect of configuration on memory utilization

Copyright© 2020 HCL Technologies Limited

DD_HASHSIZE configuration parameter

Use the DD_HASHSIZE configuration parameter to specify the number of hash buckets or lists that are in the data-dictionary cache.

Use a text editor to modify the configuration file.

onconfig.std value
DD_HASHSIZE 31

values
Any positive integer; a prime number is recommended

units
Number of hash buckets or lists

takes effect
After you edit your onconfig file and restart the database server.

Related reference:
 DD_HASHMAX configuration parameter

Related information:
 Effect of configuration on memory utilization

Copyright© 2020 HCL Technologies Limited

DEADLOCK_TIMEOUT configuration parameter

Use the DEADLOCK_TIMEOUT configuration parameter to specify the maximum number of seconds that a database server thread can wait to acquire a lock.

Use this parameter only for distributed queries that involve a remote database server. Do not use this parameter for nondistributed queries.

onconfig.std value
DEADLOCK_TIMEOUT 60

values
Positive integers

units
Seconds

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
If a distributed transaction is forced to wait longer than the number of seconds specified with the DEADLOCK_TIMEOUT configuration parameter, the thread that owns the
transaction assumes that a multi-server deadlock exists.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

onstat -p command: Print profile counts
Related information:

 Multiphase commit protocols
Configuration parameters used in two-phase commits

Copyright© 2020 HCL Technologies Limited

DEF_TABLE_LOCKMODE configuration parameter

Use the DEF_TABLE_LOCKMODE configuration parameter to specify the lock mode at the page or row level for new tables.

onconfig.std value
PAGE

values
PAGE = sets lock mode to page for new tables
ROW = sets lock mode to row for new tables

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Part VI: Administering 437

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

precedence rules
You can supersede all other lock mode settings for a specific table by including the LOCK MODE clause in the CREATE TABLE or ALTER TABLE statement.
The IFX_DEF_TABLE_LOCKMODE environment variable set on the client takes precedence over the variable on the server and the DEF_TABLE_LOCKMODE
configuration parameter.
The IFX_DEF_TABLE_LOCKMODE environment variable set on the server takes precedence over the DEF_TABLE_LOCKMODE configuration parameter.

Usage
If the DEF_TABLE_LOCKMODE configuration parameter is set to ROW, it sets the lock mode to row for every newly created table for all sessions that are connected to
logging or nonlogging databases. This parameter has no effect on the lock mode for existing tables.

If the DEF_TABLE_LOCKMODE configuration parameter is set to PAGE, the USELASTCOMMITTED configuration parameter and COMMITTED READ LAST COMMITTED
option of the SET ISOLATION statement cannot enable access to the most recently committed data in tables on which uncommitted transactions hold exclusive locks,
unless the tables were explicitly created or altered to have ROW as their locking granularity.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

USELASTCOMMITTED configuration parameter
Related information:

 IFX_DEF_TABLE_LOCKMODE environment variable
Configuring the lock mode
Precedence and Default Behavior

Copyright© 2020 HCL Technologies Limited

DEFAULTESCCHAR configuration parameter

The DEFAULTESCCHAR configuration parameter specifies the default escape character that is used for LIKE and MATCHES conditions.

onconfig.std value
DEFAULTESCCHAR backslash character (\).

if not present
The backslash character (\) is used if no value is set in the onconfig file.

values
\ = The backslash character is used as the escape character.
NONE = No default escape character.

character = Any one-character value can be used as the escape character.

takes effect
After you edit your onconfig file and restart the database server.

Usage
The default value can be overridden in a session by using the SET ENVIRONMENT DEFAULTESCCHAR statement with the escape character that you want to use. For
example:

SET ENVIRONMENT DEFAULTESCCHAR '\'

Related information:
 DEFAULTESCCHAR session environment option

Copyright© 2020 HCL Technologies Limited

DELAY_APPLY Configuration Parameter

Use the DELAY_APPLY configuration parameter to configure RS secondary servers to wait for a specified period of time before applying logs.

onconfig.std value
DELAY_APPLY 0

default value
0

values
0 = Apply logs
-1= Stage log files and apply data immediately.
A number followed by a time unit: for example, 1H sets the delay to one hour.
number: -1-999 = Number of days, minutes, hours, or seconds to wait.
time_unit: D, H, M, or S, where D = Days, H = Hours, M = Minutes, and S = Seconds. Values are not case sensitive.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage

438 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Delaying the application of log files allows you to recover quickly from erroneous database modifications by restoring the data from the RS secondary server. When setting
the value of DELAY_APPLY you must also set LOG_STAGING_DIR. If DELAY_APPLY is configured and LOG_STAGING_DIR is not set to a valid and secure directory, then the
server cannot be initialized.

You must specify a valid and secure location for the log files by setting the LOG_STAGING_DIR configuration parameter. The logs in the staging directory are purged after
the last checkpoint has been processed on the RS secondary server.

To see information about the data being sent to the log-staging directory set for a RS secondary server, run the onstat -g rss verbose command on the RS secondary
server.

If the write to the staging file fails, the RS secondary server raises event alarm 40007.

If a remote stand-alone secondary (RSS) server has its DELAY_APPLY configuration parameter set to a value other than 0, that server cannot use cluster transaction
coordination.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

STOP_APPLY configuration parameter
CLUSTER_TXN_SCOPE configuration parameter
LOG_STAGING_DIR configuration parameter
onstat -g cluster command: Print high-availability cluster information
Related information:

 CLUSTER_TXN_SCOPE session environment option
Delayed application of log records

Copyright© 2020 HCL Technologies Limited

DIRECT_IO configuration parameter (UNIX)

Use the DIRECT_IO configuration parameter to control the use of direct I/O for cooked files used for dbspace chunks.

This parameter enables direct I/O (bypassing file system buffering) on UNIX platforms or concurrent IO (bypassing both file system buffering and unnecessary write
serialization) on AIX® operating systems.

onconfig.std value
DIRECT_IO 0

values
0 = Neither direct I/O or concurrent I/O is used
1 = Direct I/O, which bypasses file system buffering, is used if available
2 = Concurrent I/O is enabled on AIX operating systems (The concurrent I/O option includes direct I/O and concurrent I/O.)

takes effect
After you edit your onconfig file and restart the database server.

Usage
Direct I/O can only be used for dbspace chunks whose file systems support direct I/O for the page size.

By using direct I/O, you might be able to reduce the number of AIO virtual processors.

If direct I/O is enabled, KAIO (kernel asynchronous I/O) is used if the file system supports it. However, KAIO is not used if the environment variable KAIOOFF is set. When
direct IO and KAIO are both used, the number of AIO virtual processors can be reduced. If direct IO is used, but KAIO is not, the number of AIO virtual processors should
not be reduced.

IBM® Informix® does not use direct or concurrent I/O for cooked files used for temporary dbspace chunks.

On AIX, if Informix uses concurrent I/O for a chunk, another program (such as an online external backup program) must also use concurrent I/O. If not, the file open
operation will fail.

If Informix uses direct I/O for a chunk, and another program tries to open the chunk file without using direct I/O, the open operation will normally succeed, but there can
be a performance penalty. The penalty can occur because the file system might attempt to ensure that each open operation views the same file data, either by not using
direct I/O at all for the duration of the conflicting open operation, or by flushing the file system cache before each direct I/O and invalidating the file system cache after
each direct write.

Direct I/O is used for dbspace chunks on Windows platforms regardless of the value of the DIRECT_IO configuration parameter.

Related reference:
 AUTO_AIOVPS configuration parameter

onstat -d command: Print chunk information
Related information:

 Improving the performance of cooked-file dbspaces by using direct I/O
Direct I/O (UNIX)
Concurrent I/O (AIX only)

Copyright© 2020 HCL Technologies Limited

DIRECTIVES configuration parameter

Part VI: Administering 439

https://www.hcltech.com/
https://www.hcltech.com/

Use the DIRECTIVES configuration parameter to enable or disable the use of optimizer directives. These directives specify behavior for the query optimizer in developing
query plans for SELECT, UPDATE, and DELETE statements.

onconfig.std value
DIRECTIVES 1

values
0 = Optimizer directives disabled
1 = Optimizer directives enabled

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

environment variable
IFX_DIRECTIVES

Usage
Set DIRECTIVES to 1, which is the default value, to enable the database server to process optimizer directives. Set DIRECTIVES to 0 to disable the database server from
processing directives.

Client programs also can set the IFX_DIRECTIVES environment variable to ON or OFF to enable or disable processing of directives by the database server. The setting of
the IFX_DIRECTIVES environment variable overrides the setting of the DIRECTIVES configuration parameter. If you do not set the IFX_DIRECTIVES environment variable,
all sessions for a client inherit the database server configuration for processing directives.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Related information:
 Optimizer directives

IFX_DIRECTIVES environment variable
Other syntax segments

Copyright© 2020 HCL Technologies Limited

DISABLE_B162428_XA_FIX configuration parameter

Use the DISABLE_B162428_XA_FIX configuration parameter to specify when transactions are freed.

onconfig.std value
Not in the onconfig.std file.

values
0 = (Default) Frees transactions only when an xa_rollback is called.
1 = Frees transactions if transaction rollback for other than an xa_rollback.

units
Integer

takes effect
After you edit your onconfig file and restart the database server.

Usage
Set DISABLE_B162428_XA_FIX to 1 to immediately free all global transactions after a transaction rollback, which is the default for IBM® Informix® 9.40 and earlier
versions. The default behavior for Informix 10.0 is to free global transactions after an xa_rollback is called, and this behavior is required to confirm to the XA state table
that a transaction can be freed only after xa_rollback is called. Setting DISABLE_B162428_XA_FIX to 1 ensures that applications written for the earlier version of
Informix work properly.

You can override the DISABLE_B162428_XA_FIX configuration parameter for a client session with the IFX_XASTDCOMPLIANCE_XAEND environment variable. Setting
IFX_XASTDCOMPLIANCE_XAEND to 1 will free transactions only when an xa_rollback is called. Setting IFX_XASTDCOMPLIANCE_XAEND to 0 will free transactions if the
transaction rollback is for other than an xa_rollback.

Related information:
 IFX_XASTDCOMPLIANCE_XAEND environment variable

Copyright© 2020 HCL Technologies Limited

DISK_ENCRYPTION configuration parameter

The DISK_ENCRYPTION configuration parameter controls the encryption of storage spaces.

onconfig.std value
Not set. Storage space encryption is disabled.

values
See Usage section.

takes effect
After you edit your onconfig file and restart the database server.

440 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Usage
Use the DISK_ENCRYPTION configuration parameter to enable storage space encryption, set the name of the encryption file names, and specify the encryption cipher.
Any storage spaces that you create after you set the DISK_ENCRYPTION configuration parameter are encrypted by default. Storage spaces that you created before you set
the DISK_ENCRYPTION configuration parameter are not automatically encrypted. When storage space encryption is enabled, you can restore a storage space as
encrypted or unencrypted, regardless of whether the space was encrypted at the time of the back up.

Syntax for the DISK_ENCRYPTION configuration parameter

>>-DISK_ENCRYPTION--keystore--=--keystore_name------------------>

>--+--------------------------+--------------------------------->
 '-,--cipher--=--+-aes128-+-'
 +-aes192-+
 '-aes256-'

>--+---------------------------------------+-------------------><
 '-,--rollfwd_create_dbs--=--+-encrypt-+-'
 '-decrypt-'

Table 1. Options for the DISK_ENCRYPTION configuration parameter value
Field Value

keystore The keystore specifies the name of the keystore and stash file names. The files are
created in the INFORMIXDIR/etc directory:

keystore.p12 = The keystore file that contains the security certificates.
keystore.sth = The stash file that contains the encryption password.

You must manually back up the keystore and password stash files. These files are
not backed up when you run a back up with the ON-Bar or ontape utilities.

cipher Specifies the encryption cipher:

aes128 = Default. Advanced Encryption Standard cipher with 128-bit keys.
aes192 = Advanced Encryption Standard cipher with 192-bit keys.
aes256 = Advanced Encryption Standard cipher with 256-bit keys.

rollfwd_create_dbs Specifies whether to encrypt a storage space that is created by the rolling forward
of the logical log during a restore:

encrypt = Encrypt the newly created storage space
decrypt = Do not encrypt the newly created storage space

By default, storage spaces that are created by the rolling forward of the logical log
have the same encryption state as the original storage space.

Related information:
 Storage space encryption

Copyright© 2020 HCL Technologies Limited

DRDA_COMMBUFFSIZE configuration parameter

Use the DRDA_COMMBUFFSIZE configuration parameter to specify the size of the DRDA communications buffer.

When a DRDA session is established, the session is allocated a communication buffer equal to the current buffer size. If the buffer size is subsequently changed, existing
connections are not affected, but new DRDA connections use the new size. IBM® Informix® silently resets values greater than 2 Megabyte to 2 Megabytes and resets
values less than 4 Kilobytes to the 32 Kilobyte default value.

onconfig.std value
Not in the onconfig.std file.

if not present
32K

values
Minimum = 4 Kilobytes
Maximum = 2 Megabytes

takes effect
When shared memory is initialized

Usage
Users might specify the DRDA_COMMBUFFSIZE value in either MB or KB by adding either ‘M' or ‘K' to the value. The letter is not case sensitive, and the default is
kilobytes. For example, a one megabyte buffer can be specified in any of these ways:

DRDA_COMMBUFFSIZE 1M
DRDA_COMMBUFFSIZE 1m
DRDA_COMMBUFFSIZE 1024K
DRDA_COMMBUFFSIZE 1024k
DRDA_COMMBUFFSIZE 1024

Part VI: Administering 441

https://www.hcltech.com/

Related information:
Specify the size of the DRDA communication buffer with the DRDA_COMMBUFFSIZE configuration parameter

Copyright© 2020 HCL Technologies Limited

DRAUTO configuration parameter

Set the DRAUTO configuration parameter to specify a HDR-failover method for HDR high-availability systems.

onconfig.std value
DRAUTO 0

Range of values

Value Description

0 Automatic failover is disabled. When the primary server fails or loses network connectivity, the HDR secondary server becomes read-only.

1 Automatic failover is enabled. When the primary server fails or loses network connectivity, convert the HDR secondary server to a standard
server. The HDR secondary server gracefully ends client connections and shuts down, and then restarts as a standard server.
When the failed primary server restarts or reconnects to the network, convert the standard server back to the HDR secondary server.

Do not use this setting if you configured Connection Managers to perform failover.

2 Automatic failover is enabled. When the primary server fails or loses network connectivity, convert the HDR secondary server to a primary
server. The HDR secondary server maintains client connections and does not shut down.
When the failed primary server restarts or reconnects to the network, convert it to an HDR secondary server.

Do not use this setting if you configured Connection Managers to perform failover.

3 Failover is controlled by Connection Managers. Connection Managers must be configured and active for automatic failover.

Takes effect
When shared memory is initialized.

Usage
All servers of a high-availability cluster must have the same DRAUTO configuration parameter setting.

The DRAUTO configuration parameter does not control failover for SDS secondary servers or RS secondary servers. To set automatic failover for a high-availability cluster
that has SD secondary servers or RS secondary servers, configure Connection Managers.

Important: If you are using Connection Managers to control failover, the DRAUTO configuration parameter must be set to 3 on all cluster servers. You must not perform a
manual failover while Connection Managers are active.
Related reference:

 onstat -g dri command: Print high-availability data replication information
Related information:

 Fully synchronous mode for HDR replication
Asynchronous mode for HDR replication
Nearly synchronous mode for HDR replication
Replication of primary-server data to secondary servers

Copyright© 2020 HCL Technologies Limited

DRIDXAUTO configuration parameter

Use the DRIDXAUTO configuration parameter to specify whether the primary High-Availability Data Replication (HDR) server automatically starts index replication if the
secondary HDR server detects a corrupted index.

onconfig.std value
DRIDXAUTO 0

values
0 = Off
1 = On

takes effect
After you edit your onconfig file and restart the database server.

Usage
To alter the value of the DRIDXAUTO configuration parameter for an active server instance, use the onmode -d idxauto command. You do not need to restart the server
instance. However, the onmode -d idxauto command will not change the value of the DRIDXAUTO configuration parameter in the onconfig file.

Related reference:
 onstat -g dri command: Print high-availability data replication information

onmode -d command: Replicate an index with data-replication

Copyright© 2020 HCL Technologies Limited

442 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

DRINTERVAL configuration parameter

Use the DRINTERVAL configuration parameter to specify the maximum number of seconds between flushes of the data-replication buffer, whether to use HDR SYNC
mode, or whether to use the synchronization mode that is specified by the HDR_TXN_SCOPE configuration parameter.

onconfig.std value
DRINTERVAL 0

values
-1 = Use HDR SYNC mode. Replication is synchronous if the primary server uses unbuffered logging.
0 = The value of the HDR_TXN_SCOPE configuration parameter determines the synchronization mode for HDR data replication.

positive integers = Use HDR ASYNC mode. The positive integer is the maximum number of seconds between flushes of the data-replication buffer.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
The DRINTERVAL configuration parameter controls replication latency, and is used to set the replication synchronization.

If used with unbuffered logging, HDR SYNC mode is the same as the nearly synchronous mode that is set through the HDR_TXN_SCOPE configuration parameter.

Table 1. Matrix of DRINTERVAL, HDR_TXN_SCOPE, and logging settings,
and their resulting HDR replication modes.

DRINTERVAL HDR_TXN_SCOPE Logging Result

-1 n/a buffered Asynchronous replication

-1 n/a unbuffered Nearly synchronous replication

0 FULL_SYNC buffered Fully synchronous replication

0 FULL_SYNC unbuffered Fully synchronous replication

0 ASYNC buffered Asynchronous replication

0 ASYNC unbuffered Asynchronous replication

0 NEAR_SYNC buffered Nearly synchronous replication

0 NEAR_SYNC unbuffered Nearly synchronous replication

positive integer n/a buffered Asynchronous replication

positive integer n/a unbuffered Asynchronous replication

Related reference:
onmode -wf, -wm: Dynamically change certain configuration parameters
onstat -g dri command: Print high-availability data replication information
HDR_TXN_SCOPE configuration parameter
FAILOVER_TX_TIMEOUT configuration parameter
Related information:
HDR_TXN_SCOPE session environment option
Fully synchronous mode for HDR replication
Asynchronous mode for HDR replication
Nearly synchronous mode for HDR replication
Replication of primary-server data to secondary servers
Replication latency for secondary servers

Copyright© 2020 HCL Technologies Limited

DRLOSTFOUND configuration parameter

Use the DRLOSTFOUND configuration parameter to specify the path name to the HDR lost-and-found file. This file indicates that some transactions were committed on the
HDR primary database server before that were not committed on the secondary database server when the primary database server experienced a failure.

onconfig.std values
On UNIX: $INFORMIXDIR/etc/dr.lostfound
On Windows: $INFORMIXDIR\tmp

values
pathname = Path name of the dr.lostfound file

takes effect
After you edit your onconfig file and restart the database server.

The DRLOSTFOUND configuration parameter is not applicable if updates between the primary and secondary database servers occur synchronously, when the
DRINTERVAL configuration parameter is set to -1.

Part VI: Administering 443

https://www.hcltech.com/

The lost-and-found file, dr.lostfound.timestamp, is created with a time stamp that is appended to the file name so that the database server does not overwrite another lost
and found file if another file exists. You cannot use the lost-and-found file to reapply lost transactions.

Related reference:
 onstat -g dri command: Print high-availability data replication information

Related information:
 Lost-and-found transactions

Copyright© 2020 HCL Technologies Limited

DRTIMEOUT configuration parameter

Use the DRTIMEOUT configuration parameter to specify the length of time, in seconds, that a database server in a high-availability data-replication pair waits for a transfer
acknowledgment from the other database server in the pair. This parameter applies only to high-availability data-replication pairs.

onconfig.std value
DRTIMEOUT 30

values
Positive integers

units
Seconds

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
Use the following formula to calculate the value to specify for the DRTIMEOUT configuration parameter:

DRTIMEOUT = wait_time / 4

In this formula, wait_time is the length of time, in seconds, that a database server in a high-availability data-replication pair must wait before the server assumes that a
high-availability data-replication failure occurred.

For example, you determine that wait_time for your system is 160 seconds. Use the preceding formula to set DRTIMEOUT as follows:

DRTIMEOUT = 160 seconds / 4 = 40 seconds

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

onstat -g dri command: Print high-availability data replication information
Related information:

 Fully synchronous mode for HDR replication
Asynchronous mode for HDR replication
Nearly synchronous mode for HDR replication
Replication of primary-server data to secondary servers

Copyright© 2020 HCL Technologies Limited

DS_HASHSIZE configuration parameter

Use the DS_HASHSIZE configuration parameter to specify the number of hash buckets in the data-distribution cache and other caches. The database server stores and
accesses column statistics that the UPDATE STATISTICS statement generates in the MEDIUM or HIGH mode in the data-distribution cache.

onconfig.std value
DS_HASHSIZE 31

values
Any positive integer; a prime number is recommended

units
Number of hash buckets or lists

takes effect
After you edit your onconfig file and restart the database server.

Usage
Update the value of the DS_HASHSIZE and the DS_POOLSIZE configuration parameter to improve the performance of frequently used queries in a multiuser environment.

The DS_HASHSIZE configuration parameter sets the number of hash buckets for the following caches:

Data-distribution cache
Extend type name cache
Extended type ID cache
Cast cache
Operator class instance cache
Routine resolution cache

444 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Aggregate cache
Secondary transient cache

Related reference:
 DS_POOLSIZE configuration parameter

onstat -g dsc command: Print distribution cache information
Related information:

 Data-distribution configuration
Configure and monitor memory caches

Copyright© 2020 HCL Technologies Limited

DS_MAX_QUERIES configuration parameter

Use the DS_MAX_QUERIES configuration parameter to specify the maximum number of parallel database queries (PDQ) that can run concurrently.

The value of the DS_MAX_QUERIES configuration parameter is dependent on the setting for the DS_TOTAL_MEMORY configuration parameter:

If the DS_TOTAL_MEMORY configuration parameter is set, then the value of the DS_MAX_QUERIES is DS_TOTAL_MEMORY / 128, rounded down to the nearest
integer value.
If the DS_TOTAL_MEMORY configuration parameter is not set, then the value of the DS_MAX_QUERIES configuration parameter is 2 * num, where num is the
number of CPUs specified in the VPCLASS configuration parameter.

onconfig.std value
Not set.

if not present
2* num * 128, where num is the number of CPUs specified in the VPCLASS configuration parameter.

values
Minimum value = 1
Maximum value = 8,388,608 (8 megabytes)

units
Number of queries

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
The Memory Grant Manager (MGM) reserves memory for a query based on the following formula:

memory_reserved = DS_TOTAL_MEMORY *
 (PDQ-priority / 100) *
 (MAX_PDQPRIORITY / 100)

The value of PDQPRIORITY is specified in either the PDQPRIORITY environment variable or the SQL statement SET PDQPRIORITY.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

onmode -D, -M, -Q, -S: Change decision-support parameters
onstat -g mgm command: Print MGM resource information
VPCLASS configuration parameter
Related information:

 Parallel database query (PDQ)
PDQPRIORITY environment variable

Copyright© 2020 HCL Technologies Limited

DS_MAX_SCANS configuration parameter

Use the DS_MAX_SCANS configuration parameter to limit the number of PDQ scan threads that the database server can execute concurrently.

onconfig.std value
DS_MAX_SCANS 1048576 or (1024 * 1024)

values
10 - (1024 * 1024)

units
Number of PDQ scan threads

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
When a user issues a query, the database server apportions some number of scan threads, depending on the following values:

Part VI: Administering 445

https://www.hcltech.com/
https://www.hcltech.com/

The value of PDQ priority (set by the environment variable PDQPRIORITY or the SQL statement SET PDQPRIORITY)
The ceiling that you set with DS_MAX_SCANS
The factor that you set with MAX_PDQPRIORITY
The number of fragments in the table to scan (nfrags in the formula)

The Memory Grant Manager (MGM) tries to reserve scan threads for a query according to the following formula:

reserved_threads = min (nfrags, (DS_MAX_SCANS *
 PDQPRIORITY / 100 *
 MAX_PDQPRIORITY / 100))

If the DS_MAX_SCANS part of the formula is greater than or equal to the number of fragments in the table to scan, the query is held in the ready queue until as many scan
threads are available as there are table fragments. Once underway, the query executes quickly because threads are scanning fragments in parallel.

For example, if nfrags equals 24, DS_MAX_SCANS equals 90, PDQPRIORITY equals 50, and MAX_PDQPRIORITY equals 60, the query does not begin execution until
nfrags scan threads are available. Scanning takes place in parallel.

If the DS_MAX_SCANS formula falls below the number of fragments, the query might begin execution sooner, but the query takes longer to execute because some threads
scan fragments serially.

If you reduce DS_MAX_SCANS to 40 in the previous example, the query needs fewer resources (12 scan threads) to begin execution, but each thread needs to scan two
fragments serially. Execution takes longer.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

onmode -D, -M, -Q, -S: Change decision-support parameters
onstat -g mgm command: Print MGM resource information
Related information:

 Parallel database query (PDQ)
PDQPRIORITY environment variable

Copyright© 2020 HCL Technologies Limited

DS_NONPDQ_QUERY_MEM configuration parameter

Use the DS_NONPDQ_QUERY_MEM configuration parameter to increase the amount of memory that is available for a query that is not a Parallel Database Query (PDQ).
(You can only use this parameter if PDQ priority is set to zero.)

onconfig.std value
DS_NONPDQ_QUERY_MEM:

On UNIX: 256
On Windows: 128

values
From the default value to 25 percent of the value of DS_TOTAL_MEMORY

units
Kilobytes

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
If you specify a value for the DS_NONPDQ_QUERY_MEM parameter, determine and adjust the value based on the number and size of table rows.
Tip: Set the value to generally not exceed the largest available temporary dbspace size.
The DS_NONPDQ_QUERY_MEM value is calculated during database server initialization based on the calculated DS_TOTAL_MEMORY value. If during the processing of the
DS_NONPDQ_QUERY_MEM, the database server changes the value that you set, the server sends a message in this format:

DS_NONPDQ_QUERY_MEM recalculated and changed from old_value Kb to new_value Kb.

In the message, old_value represents the value that you assigned to DS_NONPDQ_QUERY_MEM in the user configuration file, and new_value represents the value
determined by the database server.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

onstat -g mgm command: Print MGM resource information

Copyright© 2020 HCL Technologies Limited

DS_POOLSIZE configuration parameter

Use the DS_POOLSIZE parameter to specify the maximum number of entries in the data-distribution cache and other caches. The database server stores and accesses
column statistics that the UPDATE STATISTICS statement generates in the MEDIUM or HIGH mode in the data-distribution cache.

onconfig.std value
DS_POOLSIZE 127

446 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

values
A positive value 127 or greater that represents half of the initial maximum number of entries in the cache. The maximum value is dependent upon the shared
memory configuration and available shared memory for the server instance.

takes effect
After you edit your onconfig file and restart the database server.
When you increase the value in memory by running the onmode -wm command.
When you reset the value in memory by running the onmode -wm command.

Usage
Use the DS_HASHSIZE and the DS_POOLSIZE configuration parameters to improve performance of frequently run queries in a multi-user environment.

The initial number of entries in the cache is twice the value of the DS_POOLSIZE configuration parameter. For example, if the DS_POOLSIZE configuration parameter is set
to 127, 254 entries are allowed in the cache. If all entries in a cache are full, the cache size automatically grows by 10%. To reduce the size of the cache, decrease the
value of the DS_POOLSIZE configuration parameter in the onconfig file and restart the server.

The DS_POOLSIZE configuration parameter sets the number of entries in the following caches:

Data-distribution cache
Extend type name cache
Extended type ID cache
Cast cache
Operator class instance cache
Routine resolution cache
Aggregate cache
Secondary transient cache

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

DS_HASHSIZE configuration parameter
onstat -g dsc command: Print distribution cache information
Related information:

 Data-distribution configuration
Configure and monitor memory caches

Copyright© 2020 HCL Technologies Limited

DS_TOTAL_MEMORY configuration parameter

Use the DS_TOTAL_MEMORY configuration parameter to specify the amount of memory available for PDQ queries. The amount should be smaller than the computer
physical memory, minus fixed overhead such as operating-system size and buffer-pool size.

onconfig.std value
Not set.

if not present
If SHMTOTAL=0 and DS_MAX_QUERIES is set, DS_TOTAL_MEMORY = DS_MAX_QUERIES * 128.
If SHMTOTAL=0 and DS_MAX_QUERIES is not set, DS_TOTAL_MEMORY = num_cpu_vps * 2 * 128.

values
If DS_MAX_QUERIES is set, the minimum value is DS_MAX_QUERIES * 128.
If DS_MAX_QUERIES is not set, the minimum value is num_cpu_vps * 2 * 128.

There is no maximum value limit other than any limit that you might have with the software that you use on your machine.

units
Kilobytes

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
Do not confuse DS_TOTAL_MEMORY with the configuration parameters SHMTOTAL and SHMVIRTSIZE. The SHMTOTAL setting specifies all the memory for the database
server (total of the resident, virtual, and message portions of memory). The SHMVIRTSIZE setting specifies the size of the virtual portion. DS_TOTAL_MEMORY is a logical
subset of SHMVIRTSIZE.

For OLTP applications, set DS_TOTAL_MEMORY to between 20 and 50 percent of the value of SHMTOTAL in kilobytes.

For applications that involve large decision-support (DSS) queries, increase the value of DS_TOTAL_MEMORY to between 50 and 80 percent of SHMTOTAL. If you use your
database server for DSS queries exclusively, set this parameter to 90 and 100 percent of SHMTOTAL.

Set the DS_TOTAL_MEMORY configuration parameter to any value not greater than the quantity (SHMVIRTSIZE - 10 megabytes).

For information on the maximum memory available on your platform, see the machine notes.

Algorithm for DS_TOTAL_MEMORY

Related reference:

Part VI: Administering 447

https://www.hcltech.com/

onmode -wf, -wm: Dynamically change certain configuration parameters
SHMTOTAL configuration parameter
SHMVIRTSIZE configuration parameter
VPCLASS configuration parameter
onmode -D, -M, -Q, -S: Change decision-support parameters
onstat -g mgm command: Print MGM resource information
Related information:
Algorithm for determining DS_TOTAL_MEMORY

Copyright© 2020 HCL Technologies Limited

Algorithm for DS_TOTAL_MEMORY

The database server derives a value for DS_TOTAL_MEMORY when you do not set DS_TOTAL_MEMORY, or if you set it to an inappropriate value. For information on the
algorithms, see configuration effects on memory utilization in your IBM® Informix® Performance Guide.

Copyright© 2020 HCL Technologies Limited

DUMPCNT configuration parameter (UNIX)

Use the DUMPCNT configuration parameter to specify the number of assertion failures in a thread for which a database server dumps shared memory or generates a core
file by calling the gcore utility.

onconfig.std value
DUMPCNT 1

values
Positive integers or a number of comma-separated fields as described in the Usage section.

units
Number of shared memory dumps or core files that can be generated by each thread.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
An assertion failure occurs when the database server cannot continue normal processing.

Assertion failures can generate as many core files or shared memory dumps as permitted by the DUMPCNT configuration parameter. Further assertion failures generate
errors in the message log and perhaps to the application, but no further diagnostic information is saved.

>>-DUMPCNT--+----thread_count-----------------------+-----><
 | |
 | '----------------------------,----' |
 | | | |
 '--+-+-thrdlimit-=-thread_count----+-+--'
 | |
 +-instlimit-=-instance_count--+
 | |
 +-insttime-=-time_period------+
 | |
 '-interval-=-time_interval----'

Table 1. Options for the DUMPCNT configuration parameter value

Field Values

thrdlimit The thread_count value is a positive integer that represents the maximum number of shared memory dumps to be
created by each thread. It also represents the maximum number of core files to be created by each thread if the
DUMPGCORE onconfig parameter is enabled. The default is 1.

instlimit The instance_count value is a positive integer that represents the maximum number of shared memory dumps to
be created by all threads in the database server instance in the time period specified by the insttime field. The
default is 0 which implies no limit.

insttime The time_period value is a positive integer to represent the period of time in seconds to be applied to the instlimit
field. When the count of shared memory dumps reaches the limit set by instlimit then no further dumps will be
created until the expiry of the time period. The start of the time period is the completion of the first shared
memory dump. The default value is 0 which means that there is no time period and in this case, the instlimit field
becomes an absolute count on the number of shared memory dumps to be created which remains in effect until
the database server is restarted.

interval The time_interval value is a positive integer representing the minimum time interval in seconds between the
completion of one shared memory dump before another is permitted. The default value is 300 seconds.

Note: When used, the fields instlimit, insttime, and interval are valid only for determination of creating a shared memory dump, not a core file. They are effective only when
managed shared memory dumps are enabled by the DUMPSHMEM onconfig parameter. Furthermore, in order to prevent the loss of useful diagnostic information, they are
not applied for an AFCRASH event.
Related reference:

448 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

onmode -wf, -wm: Dynamically change certain configuration parameters
DUMPDIR configuration parameter
DUMPSHMEM configuration parameter (UNIX)
Related information:
Collect diagnostic information

Copyright© 2020 HCL Technologies Limited

DUMPCORE configuration parameter (UNIX)

Use the DUMPCORE configuration parameter to control whether assertion failures cause a virtual processor to dump a core image. The core file is left in the directory from
which the database server was last invoked. (The DUMPDIR parameter has no impact on the location of the core file.)

onconfig.std value
DUMPCORE 0

values
0 = Do not dump core image.
1 = Dump core image.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
Warning: When DUMPCORE is set to 1, an assertion failure causes a virtual processor to dump a core image, which in turn causes the database server to abort. Set
DUMPCORE only for debugging purposes in a controlled environment.
Related reference:

 onmode -wf, -wm: Dynamically change certain configuration parameters
Related information:

 Collect diagnostic information

Copyright© 2020 HCL Technologies Limited

DUMPDIR configuration parameter

DUMPDIR specifies a directory in which the database server dumps shared memory, gcore files, or messages from a failed assertion.

Because shared memory can be large, set DUMPDIR to a file system with a significant amount of space. The directory to which DUMPDIR is set must exist for the server to
start.

onconfig.std values
On UNIX: $INFORMIXDIR/tmp
On Windows: $INFORMIXDIR\tmp

values
Any directory to which user informix has write access

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Related reference:
 DUMPCNT configuration parameter (UNIX)

DUMPSHMEM configuration parameter (UNIX)
Related information:

 Collect diagnostic information

Copyright© 2020 HCL Technologies Limited

DUMPGCORE configuration parameter (UNIX)

Use the DUMPGCORE configuration parameter to specify whether to dump the gcore core file. Use this configuration parameter with operating systems that support
gcore.

onconfig.std value
DUMPGCORE 0

values
0 = Do not dump gcore.
1 = Dump gcore.

takes effect

Part VI: Administering 449

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
If you set DUMPGCORE, but your operating system does not support gcore, messages in the database server message log indicate that an attempt was made to dump a
core image, but the database server cannot find the expected file. (If your operating system does not support gcore, set DUMPCORE instead.)

If DUMPGCORE is set, the database server calls gcore whenever a virtual processor encounters an assertion failure. The gcore utility directs the virtual processor to dump
a core image to the core.pid.cnt file in the directory that DUMPDIR specifies and continue processing.

The pid value is the process identification number of the virtual processor. The cnt value is incremented each time that this process encounters an assertion failure. The
cnt value can range from 1 to the value of DUMPCNT. After that, no more core files are created. If the virtual processor continues to encounter assertion failures, errors are
reported to the message log (and perhaps to the application), but no further diagnostic information is saved.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Related information:
 Collect diagnostic information

Copyright© 2020 HCL Technologies Limited

DUMPSHMEM configuration parameter (UNIX)

Use the DUMPSHMEM configuration parameter to indicate whether a shared memory dump is created on an assertion failure. This configuration parameter also specifies
how much memory is written to the shmem.pid.cnt file in the directory specified by the DUMPDIR configuration parameter.

onconfig.std value
DUMPSHMEM 1

values
0 = Do not create a shared memory dump.
1 = Create a shared memory dump of all the shared memory that the database uses.

2 = Create a shared memory dump that excludes the buffer pools.

5 = Enables the managed shared memory dump feature. When permitted, create a shared memory dump of all the shared memory that the database uses.

6 = Enables the managed shared memory dump feature. When permitted, create a shared memory dump that excludes the buffer pools.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
If DUMPSHMEM is set to 1, all the shared memory that the database server uses is dumped, which can result in a large file. When space is limited, set DUMPSHMEM to 2
because this setting creates a smaller shared-memory dump file.

The values of 5 and 6 enables the managed shared memory dump feature. This determines whether or not a shared memory dump will be created depending on the type
of Assertion Failure and how many shared memory dumps may have already been created by the thread or instance. When enabled the feature manages concurrent
shared memory dump requests according to the type of Assertion Failure:

A non-fatal request (AFWARN, AFFAIL) will be ignored if a shared memory dump is already in progress. The requesting thread will continue immediately.
A fatal request (AFCRASH) will block the requesting thread if a shared memory dump is in progress. The thread is allowed to continue upon completion of the
shared memory dump.

The DUMPCNT onconfig parameter provides options to control the working of the feature.

The pid value is the process identification number for the virtual processor. The cnt value increments each time that this virtual processor encounters an assertion failure.
The cnt value can range from 1 to the value of the DUMPCNT configuration parameter. After the value of DUMPCNT is reached, no more files are created. If the database
server continues to detect inconsistencies, errors are reported to the message log (and perhaps to the application), but no further diagnostic information is saved.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

DUMPCNT configuration parameter (UNIX)
DUMPDIR configuration parameter
Running onstat Commands on a Shared Memory Dump File
onstat -o command: Output shared memory contents to a file
Related information:

 Collect diagnostic information

Copyright© 2020 HCL Technologies Limited

DYNAMIC_LOGS configuration parameter

450 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Use the DYNAMIC_LOGS configuration parameter to allow logical logs to be dynamically added when necessary to prevent transaction blocking.

onconfig.std value
DYNAMIC_LOGS 2

values
0 = Turn off dynamic-log allocation.
1 = Set off the “log file required” alarm and pause to allow manual addition of a logical-log file. You can add a log file immediately after the current log file or to the
end of the log file list.

2 = Turn on dynamic-log allocation. When the database server dynamically adds a log file, it sets off the “dynamically added log file” alarm.

takes effect
For HDR: when the database server is shut down and restarted
For Enterprise Replication: when Enterprise Replication is started
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
If DYNAMIC_LOGS is 2, the database server automatically allocates a new log file when the next active log file contains an open transaction. Dynamic-log allocation
prevents long transaction rollbacks from blocking transactions.

If you want to choose the size and location of the new logical-log file, set DYNAMIC_LOGS to 1. Use the onparams -a command with the size (-s), location (-d dbspace),
and -i options to add a log file after the current log file.

If the value of the DYNAMIC_LOGS configuration parameter is 0 and transaction blocking occurs, shut down the database server, set DYNAMIC_LOGS to 1 or 2, and then
restart the database server.
Important: If you are using Enterprise Replication with dynamic log allocation, set LTXEHWM to no higher than 70.
Related reference:

 onmode -wf, -wm: Dynamically change certain configuration parameters
LTXEHWM configuration parameter
LTXHWM configuration parameter
onparams -a -d dbspace: Add a logical-log file
Related information:

 Logical log

Copyright© 2020 HCL Technologies Limited

EILSEQ_COMPAT_MODE configuration parameter

Use the EILSEQ_COMPAT_MODE configuration parameter to control if IBM® Informix® checks whether character data inserted by a client application contains code point
sequences not recognized by the locale of the current database.

onconfig.std value
EILSEQ_COMPAT_MODE 0

values
0 = validates incoming character sequences with the current locale and returns error -202 if any characters are not valid.
1 = does not validate incoming character sequences.

takes effect
After you edit your onconfig file and restart the database server.

Usage
If you set the EILSEQ_COMPAT_MODE configuration parameter to 0, only valid byte sequences can be inserted to the database.

The EILSEQ_COMPAT_MODE configuration parameter prevents a 202 error in these conditions:

When data is being retrieved from the database.
When an invalid character is at the end of the string and is a partial character.

Related information:
 DB_LOCALE environment variable

GL_USEGLU environment variable

Copyright© 2020 HCL Technologies Limited

ENABLE_SNAPSHOT_COPY configuration parameter

Use the ENABLE_SNAPSHOT_COPY configuration parameter to enable or disable the ability to clone a server using the ifxclone utility.

onconfig.std value
0

values
0 = prohibit clone
1 = permit clone

Part VI: Administering 451

https://www.hcltech.com/
https://www.hcltech.com/

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
The ENABLE_SNAPSHOT_COPY configuration parameter determines whether you can create a clone of a server using the ifxclone utility. Set the
ENABLE_SNAPSHOT_COPY configuration parameter to 1 to allow cloning. Set the value to 0 to prohibit cloning the server using the ifxclone utility.

If you created a server during installation, the ENABLE_SNAPSHOT_COPY configuration parameter is enabled automatically.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

The ifxclone utility

Copyright© 2020 HCL Technologies Limited

ENCRYPT_CIPHERS configuration parameter

Use the ENCRYPT_CIPHERS configuration parameter to define all ciphers and modes that can be used by the current database session. ENCRYPT_CIPHERS is used for
Enterprise Replication and High-Availability Data Replication only.

onconfig.std value
Not set. Encryption ciphers are not used.

values
See the Usage section.

takes effect
After you edit your onconfig file and restart the database server.

Usage
The encryption cipher and mode used is randomly chosen among the ciphers common between the two servers. If a specific cipher is discovered to have a weakness, you
should reset the ENCRYPT_CIPHERS configuration parameter value to eliminate that cipher by using the allbut option.

Important: Including all ciphers is more secure than including specific ciphers.

Syntax for the ENCRYPT_CIPHERS configuration parameter

>>-ENCRYPT_CIPHERS--+-all-----------------------------+--------><
 | .-,----------. |
 | V | |
 +-allbut--:--<----+-cipher-+-+-->-+
 | '-mode---' |
 | .-,---------------. |
 | V | |
 '---cipher--:--mode-+-------------'

Table 1. Options for the ENCRYPT_CIPHERS configuration parameter value

Field Description

all Include all available ciphers and modes, except ECB mode, which is considered weak.
For example: ENCRYPT_CIPHERS all

allbut Include all ciphers and modes, except ECB and the ciphers and modes listed.
For example: ENCRYPT_CIPHERS allbut:<cbc,bf>

The cipher list can include unique, abbreviated entries. For example, bf can represent bf-1, bf-2, and bf-3; however, if the
abbreviation is the name of an actual cipher, then only that cipher is eliminated. Therefore, des eliminates only the des cipher,
but de eliminates the des, des3, and desx ciphers.

cipher The following ciphers are supported:

des = DES (64-bit key)
des3 = Triple DES
desx = Extended DES (128-bit key). Only supports cbc mode.
aes = AES 128bit key
aes192 = AES 192bit key
bf-1 = Blow Fish (64-bit key)
bf-2 = Blow Fish (128-bit key)
bf-3 = Blow Fish (192-bit key)
aes128 = AES 128bit key
aes256 = AES 256bit key

All modes are supported for all ciphers, except the desx cipher.

For an updated list of supported ciphers, see the Release Notes.

452 Part VI: Administering

https://www.hcltech.com/

Field Description

mode The following modes are supported:

ecb = Electronic Code Book (ECB). Only included if specified.

cbc = Cipher Block Chaining
cfb = Cipher Feedback
ofb = Output Feedback

Related reference:
 ENCRYPT_HDR configuration parameter

ENCRYPT_MAC configuration parameter
ENCRYPT_MACFILE configuration parameter
ENCRYPT_SWITCH configuration parameter
Related information:

 Encrypting data traffic between HDR database servers
Set configuration parameters for replication

Copyright© 2020 HCL Technologies Limited

ENCRYPT_HDR configuration parameter

Use the ENCRYPT_HDR configuration parameter to enable or disable HDR encryption.

onconfig.std value
Not set.

values
0 = Disables HDR encryption
1 = Enables HDR encryption

takes effect
When the server is initialized

Usage
Enabling HDR encryption provides a secure method for transferring data from one server to another in an HDR pair. HDR encryption works in conjunction with Enterprise
Replication (ER) encryption. However, it is not necessary to have ER encryption enabled for HDR encryption. HDR encryption works whether ER encryption is enabled or
not. HDR and ER share the same encryption configuration parameters: ENCRYPT_CIPHERS, ENCRYPT_MAC, ENCRYPT_MACFILE and ENCRYPT_SWITCH.

Related reference:
 ENCRYPT_CIPHERS configuration parameter

ENCRYPT_MAC configuration parameter
ENCRYPT_MACFILE configuration parameter
ENCRYPT_SWITCH configuration parameter
Related information:

 Encrypting data traffic between HDR database servers
Using High-Availability Clusters with Enterprise Replication

Copyright© 2020 HCL Technologies Limited

ENCRYPT_MAC configuration parameter

Use the ENCRYPT_MAC configuration parameter to control the level of message authentication code (MAC) generation. This configuration parameter is used only for
Enterprise Replication and High-Availability Data Replication.

onconfig.std value
Not set

values
off = Does not use MAC generation
low = Uses XOR folding on all messages

medium = Uses SHA1 MAC generation for all messages that are greater than 20 bytes long and XOR folding on smaller messages

high = Uses SHA1 MAC generation on all messages.

example
ENCRYPT_MAC medium,high

takes effect
For HDR: when the database server is shut down and restarted
For Enterprise Replication: when Enterprise Replication is started

Usage
The level is prioritized to the highest value. For example, if one node has a level of high and medium enabled and the other node has only low enabled, then the
connection attempt fails. Use the off entry between servers only when a secure network connection is guaranteed.

Part VI: Administering 453

https://www.hcltech.com/
https://www.hcltech.com/

Related reference:
ENCRYPT_CIPHERS configuration parameter
ENCRYPT_HDR configuration parameter
ENCRYPT_MACFILE configuration parameter
ENCRYPT_SWITCH configuration parameter
Related information:
Encrypting data traffic between HDR database servers
Using High-Availability Clusters with Enterprise Replication

Copyright© 2020 HCL Technologies Limited

ENCRYPT_MACFILE configuration parameter

Use the ENCRYPT_MACFILE configuration parameter to specify a list of the full path names of MAC key files. This configuration parameter is used only for Enterprise
Replication and High-Availability Data Replication.

onconfig.std value
Not set.

values
One or more full path and file names separated by commas, and the optional builtin keyword. For example:

ENCRYPT_MACFILE /usr/local/bin/mac1.dat, /usr/local/bin/mac2.dat,builtin

units
Path names up to 1536 bytes in length

takes effect
For HDR: when the database server is shut down and restarted.
For Enterprise Replication: when Enterprise Replication is started.

Usage
Each of the entries for the ENCRYPT_MACFILE configuration parameter is prioritized and negotiated at connect time. The prioritization for the MAC key files is based on
their creation time by the GenMacKey utility. The entry created from the builtin keyword has the lowest priority. Because the MAC key files are negotiated, you should
periodically change the keys.

Related reference:
 ENCRYPT_CIPHERS configuration parameter

ENCRYPT_HDR configuration parameter
ENCRYPT_MAC configuration parameter
ENCRYPT_SWITCH configuration parameter
Related information:

 Encrypting data traffic between HDR database servers
Using High-Availability Clusters with Enterprise Replication
Generating a new MAC key file

Copyright© 2020 HCL Technologies Limited

ENCRYPT_SMX configuration parameter

Use the ENCRYPT_SMX configuration parameter to set the level of encryption for high-availability configurations on secondary servers and between Enterprise Replication
Servers.

onconfig.std value
Not set.

values
0 = Off. Do not encrypt.
1 = On. Encrypt where possible. Encrypt SMX transactions when the database server being connected to also supports encryption.

2 = On. Always encrypt. Only connections to encrypted database servers are allowed.

takes effect
After you edit your onconfig file and restart the database server.

Note: From 14.10xC6 onwards, Enterprise Replication uses SMX connection for communicating with peer servers.
Related information:

 Set the wait time for SMX activity between servers
Using High-Availability Clusters with Enterprise Replication

Copyright© 2020 HCL Technologies Limited

ENCRYPT_SWITCH configuration parameter

Use the ENCRYPT_SWITCH configuration parameter to define the frequency at which ciphers or secret keys are renegotiated. This configuration parameter is used only for
Enterprise Replication and High-Availability Data Replication.

454 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The longer the secret key and encryption cipher remains in use, the more likely the encryption rules might be broken by an attacker. To avoid this, cryptologists
recommend changing the secret keys on long-term connections. The default time that this renegotiation occurs is once an hour.

onconfig.std value
Not set.

values
Two positive integers separated by a comma. The first integer represents the number of minutes between cipher renegotiation. The second integer represents the
number of minutes between secret key renegotiation. For example: ENCRYPT_SWITCH 2,5.

units
minutes

takes effect
For HDR: when the database server is shut down and restarted
For Enterprise Replication: when Enterprise Replication is started

Related reference:
 ENCRYPT_CIPHERS configuration parameter

ENCRYPT_HDR configuration parameter
ENCRYPT_MAC configuration parameter
ENCRYPT_MACFILE configuration parameter
Related information:

 Encrypting data traffic between HDR database servers
Using High-Availability Clusters with Enterprise Replication

Copyright© 2020 HCL Technologies Limited

EXPLAIN_STAT configuration parameter

Use the EXPLAIN_STAT configuration parameter to enable or disable the inclusion of a Query Statistics section in the explain output file.

You can generate the output file by using either the SET EXPLAIN statement or the onmode -Y sessionid command. When you enable the EXPLAIN_STAT configuration
parameter, the Query Statistics section shows the estimated number of rows and the actual number of returned rows in the Query Plan.

onconfig.std value
EXPLAIN_STAT 1

values
0 = Disable the inclusion of a Query Statistics section in the explain output file.
1 = Enable the inclusion of a Query Statistics section in the explain output file.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

onmode -Y: Dynamically change SET EXPLAIN
Related information:

 SET EXPLAIN statement
Sample query plan reports

Copyright© 2020 HCL Technologies Limited

EXT_DIRECTIVES configuration parameter

Use the EXT_DIRECTIVES configuration parameter to enable or disable the use of external query optimizer directives.

onconfig.std value
EXT_DIRECTIVES 0

values
0 (default) = Off. The directive cannot be enabled even if IFX_EXTDIRECTIVES is on.
1 = On. The directive can be enabled for a session if IFX_EXTDIRECTIVES is on.

2 = On. The directive can be used even if IFX_EXTDIRECTIVES is not set.

takes effect
After you edit your onconfig file and restart the database server.

Usage
Enable external directives by using the EXT_DIRECTIVES configuration parameter in combination with the client-side IFX_EXTDIRECTIVES environment variable as
follows:

The setting of the IFX_EXTDIRECTIVES environment variable overrides the setting of the EXT_DIRECTIVES configuration parameter. If you do not set the
IFX_EXTDIRECTIVES environment variable, all sessions for a client inherit the database server configuration for processing external directives.

The setting specified by the SET ENVIRONMENT EXTDIRECTIVES statement of SQL overrides (for the current user session only) the settings of both the
IFX_EXTDIRECTIVES environment variable and of the EXT_DIRECTIVES configuration parameter.

Part VI: Administering 455

https://www.hcltech.com/
https://www.hcltech.com/

Related information:
External optimizer directives
IFX_EXTDIRECTIVES environment variable
EXTDIRECTIVES session environment option
Optimizer Directives

Copyright© 2020 HCL Technologies Limited

EXTSHMADD configuration parameter

Use the EXTSHMADD configuration parameter to specify the size of virtual-extension segments that are added when a user-defined routine or a DataBlade routine is run in
a user-defined virtual processor.

onconfig.std value
EXTSHMADD 8192

values
32-bit operating systems: 1024 - 524288
64-bit operating systems: 1024 - 4294967296

units
KB

takes effect
After you edit your onconfig file and restart the database server.

Usage
When a thread is run in a user defined virtual processor, a virtual-extension segment is created. In the output of the onstat -g seg command, the virtual-extension
segment has a class of VX. If the EXTSHMADD configuration parameter is not set in the onconfig file, the size of virtual-extension segments is set by the value of the
SHMADD configuration parameter.

Related reference:
 onstat -g seg command: Print shared memory segment statistics

SHMADD configuration parameter
Related information:

 Virtual-extension portion of shared memory

Copyright© 2020 HCL Technologies Limited

FAILOVER_CALLBACK configuration parameter

Use the FAILOVER_CALLBACK configuration parameter to specify the script executed by the database server when a database server transitions from a secondary server
to a primary or standard server.

onconfig.std value
Not set.

values
pathname = The full path name of the script specified by the FAILOVER_CALLBACK parameter.

takes effect
After you edit your onconfig file and restart the database server.

Usage
Set FAILOVER_CALLBACK to the full path name of the script.

Copyright© 2020 HCL Technologies Limited

FAILOVER_TX_TIMEOUT configuration parameter

In high-availability cluster environments, use the FAILOVER_TX_TIMEOUT configuration parameter to enable transactions to complete after failover of the primary server.

Use the FAILOVER_TX_TIMEOUT configuration parameter to indicate the maximum number of seconds after failover that the server waits before it begins rolling back
transactions. Set the FAILOVER_TX_TIMEOUT configuration parameter to the same value on all servers in a high-availability cluster.

onconfig.std value
FAILOVER_TX_TIMEOUT 0

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage

456 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

When a failover occurs in a high-availability cluster environment, one of the secondary servers takes over the role of the primary server. The secondary server that
becomes the new primary server is called the failover server.

You enable transaction survival by setting the FAILOVER_TX_TIMEOUT configuration parameter to a value greater than zero. When transaction survival is enabled, the
failover server must be able to contact the remaining secondary servers to synchronize and resume any open transactions. Similarly, the surviving secondary servers must
be able to establish connections to the failover server to re-send any pending transactions. The FAILOVER_TX_TIMEOUT configuration parameter specifies how long the
servers wait before they begin rolling back transactions.

On the failover server, if the number of seconds specified by FAILOVER_TX_TIMEOUT is exceeded, any open transactions that are not synchronized with a surviving server
are terminated and rolled back.

On the remaining secondary servers, if the number of seconds specified by FAILOVER_TX_TIMEOUT is exceeded, any open transactions on that server return an error.

Set FAILOVER_TX_TIMEOUT to 0 to immediately roll back all open transactions when failover occurs.

If the primary server fails and a secondary server fails to take over the role of the primary server, then any open transactions are rolled back, and the client is unable to
make updates. For example, if an update activity has been started on a secondary server and the primary server fails, and then that failover processing does not complete
and a new primary server is not established, after a predetermined amount of time, the client request times out, placing the sqlexec thread in an indeterminate state.

In the preceding scenario, active transactions are rolled back, but the physical rollback cannot occur until the new primary server is established (because the primary
server manages the logs). Under these circumstances, the session can be unaware of operations that were performed on the secondary server. The session can be
unaware of the rollback of a partially applied transaction because the rollback of the partial transaction cannot occur until a new primary server is established.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

DRINTERVAL configuration parameter
HDR_TXN_SCOPE configuration parameter
Related information:

 Replication of primary-server data to secondary servers
Fully synchronous mode for HDR replication
Nearly synchronous mode for HDR replication

Copyright© 2020 HCL Technologies Limited

FASTPOLL configuration parameter

Use the FASTPOLL configuration parameter to enable or disable fast polling of your network. FASTPOLL is a platform-specific configuration parameter.

onconfig.std value
FASTPOLL 1

values
0 = Disables fast polling.
1 = Enables fast polling.

takes effect
After you edit your onconfig file and restart the database server.

Copyright© 2020 HCL Technologies Limited

FILLFACTOR configuration parameter

Use the FILLFACTOR configuration parameter to specify the degree of index-page fullness. A low value provides room for growth in the index. A high value compacts the
index.

If an index is full (100 percent), any new inserts result in splitting nodes. You can also set the FILLFACTOR as an option on the CREATE INDEX statement. The setting on
the CREATE INDEX statement overrides the ONCONFIG file value.

You cannot use the FILLFACTOR configuration parameter with a forest of trees index.

onconfig.std value
FILLFACTOR 90

values
1 - 100

units
Percent

takes effect
When the index is built. Existing indexes are not changed. To use the new value, the indexes must be rebuilt.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Related concepts:
 Structure of B-Tree Index Pages

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 457

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

FULL_DISK_INIT configuration parameter

Use the FULL_DISK_INIT configuration parameter to prevent an accidental disk reinitialization of an existing database server instance. This configuration parameter
specifies whether or not the disk initialization command (oninit -i) can run on your IBM® Informix® instance when a page zero exists at the root path location, which is at
the first page of the first chunk location.

onconfig.std value
FULL_DISK_INIT 0

values
0 = The oninit -i command runs only if there is not a page zero at the root path location.
1 = The oninit -i command runs under all circumstances, but also resets the FULL_DISK_INIT configuration parameter to 0 after the disk initialization.

takes effect
After you edit your onconfig file and restart the database server.

Usage
When the FULL_DISK_INIT configuration parameter is set to 1, any instance startup command (for example, oninit as well as oninit -i) resets the configuration parameter
to 0.

If you start to run the oninit -i command when the FULL_DISK_INIT configuration parameter is set to 0 and the database server finds a page zero, the oninit -i command
does not run and the server reports an error in the online.log.

Page zero is the system page that contains general information about the server instance. This page is created when the server instance is initialized.

Related reference:
 The oninit utility

Copyright© 2020 HCL Technologies Limited

GSKIT_VERSION configuration parameter

Use the GSKIT_VERSION configuration parameter to specify the major version of IBM® Global Security Kit (GSKit) that the database server uses for encryption and SSL
communication.

onconfig.std value
Not set. The version of IBM Global Security Kit installed with Informix® is used.

values
IBM Global Security Kit versions are whole numbers that run between 7 and the latest major release number.

units
Positive integer

takes effect
During database initialization

If the database server is used with other products on the same computer, and a different version of IBM Global Security Kit is installed with one of the other products, the
database server can be configured to use the different version of IBM Global Security Kit.

Related information:
 Secure sockets layer protocol

Copyright© 2020 HCL Technologies Limited

HA_ALIAS configuration parameter

The HA_ALIAS configuration parameter defines a network alias that is used for server-to-server communication in a high-availability cluster. The specified network alias is
also used by Connection Managers, the ifxclone utility, and onmode -d commands.

onconfig.std value
Not set. The HA_ALIAS configure parameter applies to high-availability cluster servers.

values
The HA_ALIAS configuration parameter value must match a DBSERVERNAME or DBSERVERALIASES configuration parameter value that is associated with a TCP
sqlhosts file entry. If the DBSERVERNAME or the DBSERVERALIASES configuration parameter value includes the optional number of listener threads, omit the
optional listener thread value from the HA_ALIAS configuration parameter value. For example, if DBSERVERNAME is set to my_server-4, HA_ALIAS is set to
my_server.

takes effect
After you edit your onconfig file and restart the database server.
For the primary server in a high-availability cluster, reset the value dynamically in your onconfig file by running the onmode -wf command. This method does not
work for secondary servers in a high-availability cluster.
For the primary server in a high-availability cluster, reset the value in memory by running the onmode -wm command. This method does not work for secondary
servers in a high-availability cluster.

Usage

458 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

The HA_ALIAS configuration parameter is required for high-availability cluster servers that use shared-memory connections.

For example, if a high-availability cluster server's DBSERVERNAME configuration parameter is associated with a shared-memory sqlhosts file entry, set a DBSERVERALIAS
configuration parameter and a matching HA_ALIAS configuration parameter value, and then create a TCP sqlhosts file entry for the for the alias.

onconfig file values:

DBSERVERNAME my_server
DBSERVERALIAS alias_1
HA_ALIAS alias_1

sqlhosts file values:

#dbservername nettype hostname servicename options
 my_server onipcshm host_1 port_1 #client-to-server
 alias_1 onsoctcp host_1 port_2 #server-to-server

Setting the HA_ALIAS configuration parameter for all servers in a high-availability cluster also enables you to separate client/server communication from server-to-server
communication .

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

DBSERVERALIASES configuration parameter
DBSERVERNAME configuration parameter
onmode -d: Set data-replication types
onmode -d: Set High Availability server characteristics
onmode -d command: Replicate an index with data-replication
Related information:

 Connection information set in the HA_ALIAS configuration parameter

Copyright© 2020 HCL Technologies Limited

HA_FOC_ORDER configuration parameter

Use the HA_FOC_ORDER configuration parameter to define a single connection-management failover rule for a high-availability cluster of servers.

onconfig.std value
HA_FOC_ORDER SDS,HDR,RSS

values
A list of secondary server types, which are separated by commas and listed in priority order. For example, the default value of SDS,HDR,RSS means that the
primary server fails over to the SD secondary server, then the HDR secondary server, and then the RS secondary server.

HDR = High-availability data replication server
RSS = Remote stand-alone secondary server
SDS = Shared-disk secondary server

MANUAL = Disable automated failover for all Connection Managers in the cluster.

separators
Separate values with a comma.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.
After you run the SQL administration API task() or admin() function with the -wf HA_FOC_ORDER=value or -wm HA_FOC_ORDER=value arguments.

Usage
If the HA_FOC_ORDER configuration parameter is set on the primary database server of a high-availability cluster, every Connection Manager that connects to the primary
server adopts the setting. The value replaces the connection unit's ORDER=rule failover-sequence rule. Each database server in the high-availability cluster then adopts
the primary server's HA_FOC_ORDER configuration parameter value for its own HA_FOC_ORDER configuration parameter.

If the HA_FOC_ORDER configuration parameter on the primary server is set to MANUAL, automated failover is disabled on all Connection Managers that manager the
primary server's cluster.

If the FOC ORDER value for a connection unit in a Connection Manager's configuration file is set to DISABLED the Connection Manager does not perform failover for that
connection unit.

Syntax for the HA_FOC_ORDER configuration parameter

 .-,-------.
 V |
 .---+-SDS-+-+-.
 | +-HDR-+ |
 | '-RSS-' |
>>-HA_FOC_ORDER--+-MANUAL------+-------------------------------><

Example
In the following example, you have two Connection Managers that are configured to manage a cluster of three servers.

Part VI: Administering 459

https://www.hcltech.com/

The three servers are:

server_1 (primary server)
server_2 (SD secondary server)
server_3 (HDR secondary server)

The first Connection Manager has the following configuration file:

NAME connection_manger_1

CLUSTER cluster_1
{
 INFORMIXSERVER servers_1
 SLA sla_1 DBSERVERS=ANY
 FOC ORDER=ENABLED \
 PRIORITY=1
}

The second Connection Manager has the following configuration file:

NAME connection_manger_2

CLUSTER cluster_1
{
 INFORMIXSERVER servers_1
 SLA sla_2 DBSERVERS=ANY
 FOC ORDER=ENABLED \
 PRIORITY=2
}

The onconfig file of server_1 has the following value:

HA_FOC_ORDER SDS,HDR

When connection_manger_1 and connection_manger_2 connect with server_1, their configurations become:

NAME connection_manger_1

CLUSTER cluster_1
{
 INFORMIXSERVER servers_1
 SLA sla_1 DBSERVERS=ANY
 FOC ORDER=SDS,HDR \
 PRIORITY=1
}

NAME connection_manger_2

CLUSTER cluster_1
{
 INFORMIXSERVER servers_1
 SLA sla_2 DBSERVERS=ANY
 FOC ORDER=SDS,HDR \
 PRIORITY=2
}

The values of the HA_FOC_ORDER entries in the onconfig files of server_2 and server_3 are updated to SDS,HDR.

Related information:
 Example of configuring connection management for a high-availability cluster

FOC Connection Manager configuration parameter

Copyright© 2020 HCL Technologies Limited

HDR_TXN_SCOPE configuration parameter

The HDR_TXN_SCOPE configuration parameter is used with the DRINTERVAL configuration parameter to specify the synchronization mode for HDR replication in a high-
availability cluster.

onconfig.std value
HDR_TXN_SCOPE NEAR_SYNC

values
FULL_SYNC = HDR replication if fully synchronous. Transactions require acknowledgement of completion on the HDR secondary server before they can complete.
NEAR_SYNC = HDR replication if nearly synchronous. Transactions require acknowledgement of being received on the HDR secondary server before they can
complete. If used with unbuffered logging, SYNC mode, which is turned on when DRINTERVAL is set to -1, is the same as nearly synchronous mode.

ASYNC = HDR replication if fully asynchronous. Transactions do not require acknowledgement of being received or completed on the HDR secondary server before
they can complete.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.
After you run the SQL administration API task() or admin() function with the "onmode","-wf HDR_TXN_SCOPE=value" or "onmode","-wm
HDR_TXN_SCOPE=value" argument.

460 Part VI: Administering

https://www.hcltech.com/

Usage
When the DRINTERVAL configuration parameter is set to 0, the value of the HDR_TXN_SCOPE parameter determines the synchronization mode for HDR replication.

If unbuffered logging is used, HDR SYNC mode is the same as the nearly synchronous mode that is set through the HDR_TXN_SCOPE configuration parameter.

Table 1. Matrix of DRINTERVAL, HDR_TXN_SCOPE, and logging settings,
and their resulting HDR replication modes.

DRINTERVAL HDR_TXN_SCOPE Logging Result

-1 n/a buffered Asynchronous replication

-1 n/a unbuffered Nearly synchronous replication

0 FULL_SYNC buffered Fully synchronous replication

0 FULL_SYNC unbuffered Fully synchronous replication

0 ASYNC buffered Asynchronous replication

0 ASYNC unbuffered Asynchronous replication

0 NEAR_SYNC buffered Nearly synchronous replication

0 NEAR_SYNC unbuffered Nearly synchronous replication

positive integer n/a buffered Asynchronous replication

positive integer n/a unbuffered Asynchronous replication

Related reference:
 DRINTERVAL configuration parameter

FAILOVER_TX_TIMEOUT configuration parameter
Related information:

 HDR_TXN_SCOPE session environment option

Copyright© 2020 HCL Technologies Limited

HETERO_COMMIT configuration parameter

Use the HETERO_COMMIT configuration parameter to control whether the database server participates in heterogeneous commit transactions.

onconfig.std value
HETERO_COMMIT 0

values
1 = Enable heterogeneous commit.
0 = Disable heterogeneous commit.

takes effect
After you edit your onconfig file and restart the database server.

Usage
The HETERO_COMMIT configuration parameter specifies whether or not the database server is prepared to participate with IBM® Informix® Gateway products in
heterogeneous commit transactions. Setting HETERO_COMMIT to 1 allows a single transaction to update one non-Informix database (accessed with any of the Gateway
products) and one or more databases.

If HETERO_COMMIT is 0, a single transaction can update databases as follows:

One or more databases and no non-Informix databases
One non-Informix database and no databases

You can read data from any number of and non-Informix databases, regardless of the setting of HETERO_COMMIT.

Related information:
 Heterogeneous commit protocol

Copyright© 2020 HCL Technologies Limited

IFX_EXTEND_ROLE configuration parameter

Your database system administrator (DBSA), by default user informix, can use the IFX_EXTEND_ROLE parameter to control which users are authorized to register
DataBlade modules or external user-defined routines (UDRs).

onconfig.std value
IFX_EXTEND_ROLE 1

values
1 or On (default) = Enables the requirement for the EXTEND role so that administrators can grant privileges to a user to create or drop a UDR that includes the
EXTERNAL clause.
0 or Off = Disables the requirement for the EXTEND role, so that any user who holds the USAGE ON LANGUAGE privilege for the appropriate external language (C or
JAVA) can register or drop an external routine that was written in that language.

Part VI: Administering 461

https://www.hcltech.com/
https://www.hcltech.com/

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Related information:
 Security for external routines (UDRs)

Copyright© 2020 HCL Technologies Limited

IFX_FOLDVIEW configuration parameter

Use the IFX_FOLDVIEW configuration parameter to enable or disable view folding. For certain situations where a view is involved in a query, view folding can significantly
improve the performance of the query. In these cases, views are folded into a parent query instead of the query results being put into a temporary table.

onconfig.std value
IFX_FOLDVIEW 1

values
0 or Off = Disables view folding.
1 or On = Default. Enables view folding.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
The following types of queries can take advantage of view folding:

Views that contain a UNION ALL clause and the parent query includes a regular join, IBM® Informix® join, ANSI join, or an ORDER BY clause

A temporary table is created and view folding is not performed for the following types of queries that perform a UNION ALL operation involving a view:

The view has one of the following clauses: AGGREGATE, GROUP BY, ORDER BY, UNION, DISTINCT, or OUTER JOIN (either or ANSI type).
The parent query has a UNION or UNION ALL clause.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Related information:
 Enable view folding to improve query performance

Copyright© 2020 HCL Technologies Limited

IFX_XA_UNIQUEXID_IN_DATABASE configuration parameter

Use the IFX_XA_UNIQUEXID_IN_DATABASE configuration parameter to enable the transaction manager to use the same XID to represent global transactions on different
databases in the same database server instance.

onconfig.std value
None

default value
0

values
0 = disabled
1 = enabled

takes effect
After you edit your onconfig file and restart the database server.

Usage
An XID is a global transaction ID for a distributed XA transaction.

If you set the IFX_XA_UNIQUEXID_IN_DATABASE configuration parameter to 1, the database server allows the transaction manager to use the same XID to represent
global transactions on different databases in the same database server instance. Thus, the database can be the domain instead of the server.

Related reference:
 onstat -G command: Print TP/XA transaction information

Related information:
 XA-compliant external data sources

Copyright© 2020 HCL Technologies Limited

462 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

INFORMIXCONRETRY configuration parameter

Use the INFORMIXCONRETRY configuration parameter to specify the maximum number of connection attempts that can be made to each database server after the initial
connection attempt fails. These attempts are made within the time limit that the INFORMIXCONTIME configuration parameter specifies.

onconfig.std value
INFORMIXCONRETRY 1

values
Positive integers

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
The INFORMIXCONTIME setting takes precedence over the INFORMIXCONRETRY setting. Connection attempts can end after the INFORMIXCONTIME value is exceeded,
but before the INFORMIXCONRETRY value is reached.

To override the value of the INFORMIXCONRETRY configuration parameter for the current session, you can set either the INFORMIXCONRETRY environment option of the
SET ENVIRONMENT statement or the client's INFORMIXCONRETRY environment variable.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Related information:
 INFORMIXCONRETRY session environment option

INFORMIXCONRETRY environment variable

Copyright© 2020 HCL Technologies Limited

INFORMIXCONTIME configuration parameter

Use the INFORMIXCONTIME configuration parameter to specify the number of seconds that the CONNECT statement attempts to establish a connection to a database
server.

onconfig.std value
INFORMIXCONTIME 60

values
Positive integers

units
Seconds

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
To set the optimal value for the INFORMIXCONTIME configuration parameter, take into account the total distance between nodes, the hardware speed, the volume of
traffic, and the concurrency level of the network.

The INFORMIXCONTIME value is divided by the INFORMIXCONRETRY value to determine the number of seconds between connection attempts. If you set the
INFORMIXCONTIME configuration parameter to zero, the database server uses the default value of 60 seconds.

To override the value of the INFORMIXCONTIME configuration parameter for the current session, you can set either the INFORMIXCONTIME environment option of the
SET ENVIRONMENT statement or the client's INFORMIXCONTIME environment variable.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Related information:
 INFORMIXCONTIME session environment option

INFORMIXCONTIME environment variable

Copyright© 2020 HCL Technologies Limited

LIMITNUMSESSIONS configuration parameter

Use the LIMITNUMSESSIONS configuration parameter to define the maximum number of sessions that you want connected to IBM® Informix®.

If you specify a maximum number, you can also specify whether you want to print messages to the online.log file when the number of sessions approaches the maximum
number.

Part VI: Administering 463

https://www.hcltech.com/
https://www.hcltech.com/

If the LIMITNUMSESSIONS configuration parameter is enabled and sessions are restricted because of this limit, both regular user threads and DBSA user threads
connecting to any database count against the limit. However, a DBSA user is allowed to connect to the server even after the limit has been reached.

Distributed queries against a server are also counted against the limit.

The LIMITNUMSESSIONS configuration parameter is not intended to be used as a means to adhere to license agreements.

onconfig.std value
Not set in the onconfig.std file

values
maximum_number_of_sessions = 0 to 2,097,152 (2*1024*1024). The default is 0.
print_warning = 0 (off) or 1 (on). The default for this optional value is 0.

separators
Comma

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
If the print_warning is set to 1, a warning is triggered when the number of sessions is greater than or equal to 95 percent of the maximum_number_of_sessions value. If
print_warning is set to zero, or if it is not set, no warning is issued No new user sessions can be opened after the maximum_number_of_sessions limit is reached.

If the maximum_number_of_sessions value for the LIMITNUMSESSIONS configuration parameter is set to 0, or if it is not set, there is no limit to the number of sessions
that can connect to the server.

The following example specifies that you want a maximum of 100 sessions to connect to the server and you want to print a warning message when the number of
connected sessions approaches 100.

LIMITNUMSESSIONS 100,1

The settings in this example cause a warning to be printed when more than 94 sessions are concurrently connected. Only a member of the DBSA group can start a new
session when 100 sessions are already connected.

Use onmode -wf or onmode -wm, or the equivalent SQL administration API ONMODE commands, to dynamically increase or temporarily disable the LIMITNUMSESSIONS
setting. Use this configuration parameter to allow administrative utilities to run if the database server is reaching the maximum_number_of_sessions limit.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Copyright© 2020 HCL Technologies Limited

LISTEN_TIMEOUT configuration parameter

Use the LISTEN_TIMEOUT configuration parameter to specify the number of seconds in which the server waits for a connection.

onconfig.std value
LISTEN_TIMEOUT 60

units
Seconds

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
You can set LISTEN_TIMEOUT to a lower number to guard against faulty connection requests that might indicate a Denial of Service attack.

Depending on the machine capability of holding the threads (in number), you can configure MAX_INCOMPLETE_CONNECTIONS to a higher value and depending on the
network traffic, you can set LISTEN_TIMEOUT to a lower value to reduce the chance that an attack can reach the maximum limit.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

MAX_INCOMPLETE_CONNECTIONS configuration parameter

Copyright© 2020 HCL Technologies Limited

LOCKS configuration parameter

The LOCKS configuration parameter specifies the initial size of the lock table.

The lock table holds an entry for each lock. If the number of locks allocated exceeds the value of the LOCKS configuration parameter, the database server increases the
size of the lock table. The lock table can be increased a maximum of 99 times.

onconfig.std value

464 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

LOCKS 20000
values

2,000 through 8,000,000 for 32-bit database servers 2,000 through 500,000,000 for 64-bit database servers
units

Number of locks in the internal lock table
takes effect

After you edit your onconfig file and restart the database server.

Usage
The database server increases the size of the lock table by attempting to double the lock table on each increase. However, the amount added during each increase is
limited to a maximum value. For 32-bit platforms, a maximum of 100,000 locks can be added during each increase. Therefore, the total maximum locks allowed for 32-bit
platforms is 8,000,000 (maximum number of starting locks) + (99 (maximum number of dynamic lock table extensions) x 100,000 (maximum number of locks added per
lock table extension). For 64-bit platforms, a maximum of 1,000,000 locks can be added during each increase. Therefore, the total maximum locks allowed is
500,000,000 (maximum number of starting locks) + (99 (maximum number of dynamic lock table extensions) x 1,000,000 (maximum number of locks added per lock
table extension).

With the initial lock table stored in resident memory and each additional lock stored in virtual memory, locks can become a resource drain if you have a limited amount of
shared memory. The amount of storage occupied by a single lock depends on the word size and operating system, and is subject to change. Currently, the amount of
storage ranges from approximately 100 to 200 bytes. You can see the amount of storage required to support additional locks by restarting the server with a different value
of the LOCKS configuration parameter (without making other changes), and observing the increase in memory used as shown by "onstat -g mem" for the resident pool.

Tip: When you drop a database, a lock is acquired and held on each table in the database until the database is dropped.
Related reference:

 onstat -k command: Print active lock information
Related information:

 The LOCKS configuration parameter and memory utilization
Locking
Shared memory
DROP DATABASE statement

Copyright© 2020 HCL Technologies Limited

LOGBUFF configuration parameter

Use the LOGBUFF configuration parameter to specify the size in kilobytes for the three logical-log buffers in shared memory.

onconfig.std value
LOGBUFF 64

units
Kilobytes

values
An integer in the range of 32 - (32767 * pagesize / 1024), where pagesize is the default system page size. The value must be evenly divisible by the default system
page size. If the value is not evenly divisible by the page size, the database server rounds down the size to the nearest value that is evenly divisible by the page size.

takes effect
After you edit your onconfig file and restart the database server.

Usage
The three logical log buffers permit user threads to write to the active buffer while one of the other buffers is being flushed to disk. If flushing is not complete by the time
the active buffer fills, the user thread begins writing to the third buffer.

If the RTO_SERVER_RESTART configuration parameter is enabled, set the value of the LOGBUFF configuration parameter to 256 kilobytes. If the value of the LOGBUFF
configuration parameter is less than 256 kilobytes, a warning message displays when you restart the server.

Otherwise, set the value of the LOGBUFF configuration parameter to 32 kilobytes for standard workloads or 64 kilobytes for heavy workloads. The database server uses
the LOGBUFF parameter to set the size of internal buffers that are used during recovery. If you set LOGBUFF too high, the database server can run out of memory and shut
down during recovery.

If you log user data in smart large objects, increase the size of the log buffer to make the system more efficient. The database server logs only the portion of a smart-large-
object page that changed.

You can view information about the logical log buffers by running the onstat -l command.

Related reference:
 onstat -l command: Print physical and logical log information

Related information:
 Determine database server page size

Logical-log buffer

Copyright© 2020 HCL Technologies Limited

LOGBUF_INTVL configuration parameter

Use the LOGBUF_INTVL configuration parameter to ensure the logical log buffer is flushed periodically when only buffered logging is used.

Part VI: Administering 465

https://www.hcltech.com/
https://www.hcltech.com/

onconfig.std value
LOGBUF_INTVL 0

units
Seconds

values
The integer value of the parameter is the maximum number of seconds between logical log buffer flushes.
Default value: 0 – The feature is disabled by default. The time since the last logical log buffer flush will not be used as a criterion for flushing the buffer.

Minimum value = 1

Maximum value = 2147483647

takes effect
After you edit your onconfig file and restart the database server.

Usage
Setting this parameter will also positively affect latency in a replication environment when buffered logging is used. During relatively quiet periods on the primary, log
records may be pushed to secondaries more frequently.

Copyright© 2020 HCL Technologies Limited

LOGFILES configuration parameter

Use the LOGFILES configuration parameter to specify the number of logical-log files that the database server creates during disk initialization.

onconfig.std value
LOGFILES 6

values
3 - 32,767 (integers only)

units
Number of logical-log files

takes effect
During disk initialization and when you add a new log file. You add a new log with one of the onparms utilities.

Usage
To change the number of logical-log files, add or drop logical-log files.

If you use onparams to add or drop log files, the database server automatically updates LOGFILES.

Related reference:
 The onparams Utility

Related information:
 Size of the logical-log file

Adding logical-log files manually
Dropping logical-log files

Copyright© 2020 HCL Technologies Limited

LOG_INDEX_BUILDS configuration parameter

Use the LOG_INDEX_BUILDS configuration parameter to enable or disable index page logging.

onconfig.std value
Not set.

values
0 = Disable
1 = Enable

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
If LOG_INDEX_BUILDS is enabled, logical log file space consumption will increase, depending on the size of the indexes. This might lead to logical log file backups being
required more frequently. Messages are written to the online.log file when index page logging status changes.

Tip for RS secondary servers: Using onmode -wm enables or disables index page logging for the current session only, and does not affect the setting in the onconfig file. If
the server is stopped and restarted, the setting in the onconfig file determines whether index page logging is enabled. Therefore, enabling index page logging using
onmodem -wm is not recommended when using RS secondary servers; instead, use onmode -wf to update the onconfig file, so that index page logging is enabled after
restarting the server. Index page logging is a requirement when using RS secondary servers.

466 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Related reference:
onmode -wf, -wm: Dynamically change certain configuration parameters

Copyright© 2020 HCL Technologies Limited

LOG_STAGING_DIR configuration parameter

Use the LOG_STAGING_DIR configuration parameter to specify the location of log files received from the primary server when configuring delayed application of log files
on RS secondary servers.

onconfig.std value
Not set.

values (first parameter)
Any valid, secure directory.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
The LOG_STAGING_DIR configuration parameter specifies the directory where log files sent from the primary are stored in the following circumstances:

The DELAY_APPLY configuration parameter is set on an RS secondary server to delay the application of logs
The STOP_APPLY configuration parameter is set on an RS secondary server to stop the application of logs
An RS secondary server must temporarily buffer logs
The LOG_INDEX_BUILDS parameter is set on the HDR secondary server, and the HDR secondary server is processing checkpoints

Delaying the application of log files allows you to recover quickly from erroneous database modifications by restoring the data from the RS secondary server.
The directory specified by the LOG_STAGING_DIR configuration parameter must be secure. The directory must be owned by user informix, must belong to group
informix, and must not have public read, write, or execute permission.

The directory should have enough space to hold all the logical logs that are staged. Choose a directory capable of storing at least twice the total logical logs on the primary
server. To estimate the storage size, multiply the value of the LOGBUFF configuration parameter with the value of the LOGFILES configuration parameter, and then double
that value.

To see information about the data being sent to the log-staging directory set for a RS secondary server, run the onstat -g rss verbose command on the RS secondary
server.

If the write to the staging file fails, the RS secondary server raises event alarm 40007.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

DELAY_APPLY Configuration Parameter
STOP_APPLY configuration parameter
Related information:

 Delayed application of log records
Remote standalone secondary servers

Copyright© 2020 HCL Technologies Limited

LOGSIZE configuration parameter

Use the LOGSIZE configuration parameter to specify the size that is used when logical-log files are created.

onconfig.std value
LOGSIZE 10000

units
Kilobytes

values
An integer value.
Minimum value = 200

Maximum value when the database server is first initialized = (ROOTSIZE - PHYSFILE - 512 - (63 * pagesize/1024)) / LOGFILES

The pagesize value is the default system page size for the operating system.

If you expand the root dbspace or move logical logs to a different dbspace, the maximum size of logical log files cannot exceed the following page size-dependent
value:

1 GiB for page size = 2 KiB
2 GiB for page size = 4 KiB

This limit is the maximum number of pages that the log position can describe for those page sizes.
takes effect

After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.

Part VI: Administering 467

https://www.hcltech.com/
https://www.hcltech.com/

When you reset the value in memory by running the onmode -wm command.

Usage
When you change the value of the LOGSIZE configuration parameter, only new log files are affected. The size of existing log files does not change. The total logical-log size
is the product of the LOGSIZE configuration parameter setting multiplied by the value of the LOGFILES configuration parameter. However, if you change the value of the
LOGSIZE configuration parameter, the total size of all logical log files depends on the number of log files of each size.

If the AUTO_LLOG configuration parameter is enabled, logical log files are added automatically as needed to improve performance, up to a configurable maximum total
logical-log size.

To verify the page size that the database server uses on your platform, run the onstat -b command.

If you declare logging for a smart-large-object column, you must ensure that the logical log is considerably larger than the amount of data that is logged during inserts or
updates. The database server cannot back up open transactions. If many transactions are active, the total logging activity must not force open transactions to the log
backup files. For example, if your log size is 1000 KB and the high-watermark is 60 percent, do not use more than 600 KB of the logical log for the smart-large-object
updates. The database server starts rolling back the transaction when it reaches the high-watermark of 600 KB.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

LTXHWM configuration parameter
onparams -p: Change physical-log parameters
Related information:

 Determine database server page size
Size of the logical-log file
Estimate the size and number of log files

Copyright© 2020 HCL Technologies Limited

LOW_MEMORY_MGR configuration parameter

Use the LOW_MEMORY_MGR configuration parameter to enable automatic low memory management, which you can use to change the default behavior of a primary or
standard server when it reaches its memory limit.

onconfig.std value
LOW_MEMORY_MGR 0

values
1 = Enables automatic low memory management when the database server starts.
0 = Disables automatic low memory management.

takes effect
After you edit your onconfig file and restart the database server.

Usage
If you configure a primary or standard server to use a percentage of the SHMTOTAL configuration parameter value for automatic low memory management start and stop
thresholds, the SHMTOTAL configuration parameter must be set to a positive integer value.

Attention: Changing the value of the SHMTOTAL configuration parameter can cause the configuration of automatic low memory management to become invalid, forcing the
database server to use default settings.
To enable automatic low memory management, specify:

LOW_MEMORY_MGR 1

Related reference:
 SHMTOTAL configuration parameter

scheduler lmm enable argument: Specify automatic low memory management settings (SQL administration API)
scheduler lmm disable argument: Stop automatic low memory management (SQL administration API)
onstat -g lmm command: Print low memory management information
Related information:

 Reserve memory for critical activities

Copyright© 2020 HCL Technologies Limited

LOW_MEMORY_RESERVE configuration parameter

Use the LOW_MEMORY_RESERVE configuration parameter to reserve a specific amount of memory for use when critical activities are needed and the server has limited
free memory.

If you enable the new LOW_MEMORY_RESERVE configuration parameter by setting it to a specified value in kilobytes, critical activities, such as rollback activities, can
complete even when you receive out-of-memory errors.

onconfig.std value
LOW_MEMORY_RESERVE 0

values
0 or 128 - 2147483648, although the maximum value cannot be higher than 20 percent of the value of the SHMVIRTSIZE configuration parameter

468 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

units
kilobytes

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
No matter how the LOW_MEMORY_RESERVE configuration parameter is set, the maximum size of reserved memory is 20 percent of the value of the SHMVIRTSIZE
configuration parameter.

For example, to reserve 512 kilobytes of memory, specify:

LOW_MEMORY_RESERVE 512

You can use the onstat -g seg command to view low-memory reserve information. The output includes lines that show the size of reserved memory, the number of times
that the server has used the reserved memory, and the maximum memory needed.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

onstat -g seg command: Print shared memory segment statistics
SHMVIRTSIZE configuration parameter

Copyright© 2020 HCL Technologies Limited

LTXEHWM configuration parameter

Use the LTXEHWM configuration parameter to specify the long-transaction, exclusive-access, high-watermark. When the logical-log space reaches the LTXEHWM
threshold, the long transaction currently being rolled back is given exclusive access to the logical log.

onconfig.std value
LTXEHWM 80

if not present
90 (if DYNAMIC_LOGS is set to 1 or 2) 60 (if DYNAMIC_LOGS is set to 0)

range of values
LTXHWM through 100

units
Percent

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
A transaction is long if it is not committed or rolled back when it reaches the long-transaction high-watermark.

If your system runs out of log space before the rollback completes, lower the LTXEHWM value.

If you do not want too many logical logs to be added, LTXEHWM should be set to a smaller value (around 60). If dynamic logging is turned off (DYNAMIC_LOGS = 0),
LTXEHWM should be set lower (around 50) to avoid running out of logical space.
Tip: To allow users to continue to access the logical logs, even during a long transaction rollback, set LTXEHWM to 100. Set DYNAMIC_LOGS to 1 or 2 so that the database
server can add a sufficient number of log files to prevent long transactions from hanging and to allow long transactions to roll back.
Related reference:

 onmode -wf, -wm: Dynamically change certain configuration parameters
DYNAMIC_LOGS configuration parameter
LTXHWM configuration parameter
Related information:

 Controlling long transactions

Copyright© 2020 HCL Technologies Limited

LTXHWM configuration parameter

Use the LTXHWM configuration parameter to specify the long-transaction high-watermark. The long-transaction high-watermark is the percentage of available log space
that, when filled, triggers the database server to check for a long transaction.

onconfig.std value
LTXHWM 70

if not present
80 (if DYNAMIC_LOGS is set to 1 or 2) 50 (if DYNAMIC_LOGS is set to 0)

values
1 - 100

units

Part VI: Administering 469

https://www.hcltech.com/
https://www.hcltech.com/

Percent
takes effect

After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
When the logical-log space reaches the LTXHWM threshold, the database server starts rolling back the transaction. If you decrease the LTXHWM value, increase the size or
number of log files to make rollbacks less likely.

If DYNAMIC_LOGS is set to 1 or 2, the database server can add a sufficient number of log files to complete the transactions or to prevent rollbacks from hanging when you
have long transactions.

If you do not want too many logical logs to be added, LTXHWM should be set to a smaller value (around 60). If dynamic logging is turned off (DYNAMIC_LOGS = 0),
LTXHWM should be set lower (around 50) to avoid running out of logical space.
Warning: If you set both LTXHWM and LTXEHWM to 100, long transactions are never aborted. Although you can use this configuration to your advantage, you should set
LTXHWM to below 100 for normal database server operations.
If you set LTXHWM to 100, the database server issues a warning message:

LTXHWM is set to 100%. This long transaction high water mark
will never be reached. Transactions will not be aborted automatically
by the server, regardless of their length.

If the transaction hangs, follow the instructions for recovering from a long transaction hang, in the chapter on managing logical-log files in the IBM® Informix
Administrator's Guide.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

DYNAMIC_LOGS configuration parameter
LTXEHWM configuration parameter
LOGSIZE configuration parameter
Related information:

 Controlling long transactions

Copyright© 2020 HCL Technologies Limited

MAX_FILL_DATA_PAGES configuration parameter

Use the MAX_FILL_DATA_PAGES configuration parameter to control inserting more rows to pages that have variable-length rows.

onconfig.std value
MAX_FILL_DATA_PAGES 0

values
0 or 1

units
Integer

takes effect
After you edit your onconfig file and restart the database server.

Usage
Set the MAX_FILL_DATA_PAGES value to 1 to allow more rows to be inserted per page in tables that have variable-length rows. This setting can reduce disk space, make
more efficient use of the buffer pool, and reduce table scan times.

If MAX_FILL_DATA_PAGES is enabled, the server will add a new row to a recently modified page with existing rows if adding the row leaves at least 10 percent of the page
free for future expansion of all the rows in the page. If MAX_FILL_DATA_PAGES is not set, the server will add the row only if there is sufficient room on the page to allow
the new row to grow to its maximum length.

A possible disadvantage of enabling MAX_FILL_DATA_PAGES and allowing more variable-length rows per page is that the server might store rows in a different physical
order. Also, as the page fills, updates made to the variable-length columns in a row could cause the row to expand so it no longer completely fits on the page. This causes
the server to split the row onto two pages, increasing the access time for the row.

To take advantage of this setting, existing tables with variable-length rows must be reloaded or existing pages must be modified, followed by further inserts.

Related information:
 Reduce disk space in tables with variable length rows

Copyright© 2020 HCL Technologies Limited

MAX_INCOMPLETE_CONNECTIONS configuration parameter

Use the MAX_INCOMPLETE_CONNECTIONS configuration parameter to specify the maximum number of incomplete connections in a session.

onconfig.std value
MAX_INCOMPLETE_CONNECTIONS 1024

units

470 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Number of incomplete connections
takes effect

After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
After the number specified in the MAX_INCOMPLETE_CONNECTIONS configuration parameter is reached, an error message is written in the online message log stating
that the server might be under a Denial of Service attack. See also information about the LISTEN_TIMEOUT configuration parameter, which specifies the number of
seconds the server waits for a connection. .

Depending on the machine capability of holding the threads (in number), you can configure MAX_INCOMPLETE_CONNECTIONS to a higher value. Depending on the
network traffic, you can also set the LISTEN_TIMEOUT configuration parameter, which specifies the number of seconds the server waits for a connection, to a lower value
to reduce the chance that an attack can reach the maximum limit.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

LISTEN_TIMEOUT configuration parameter

Copyright© 2020 HCL Technologies Limited

MAX_PDQPRIORITY configuration parameter

Use the MAX_PDQPRIORITY configuration parameter to limit the PDQ resources that the database server can allocate to any one DSS query.

onconfig.std value
MAX_PDQPRIORITY 100

values
0 = Turns off PDQ. DSS queries use no parallelism.
1 = Fetches data from fragmented tables in parallel (parallel scans) but uses no other form of parallelism.

2 - 100 = Sets the percentage of the user-requested PDQ resources actually allocated to the query. 100 uses all available resources for processing queries in
parallel.

takes effect
On all user sessions after you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
MAX_PDQPRIORITY is a factor that is used to scale the value of PDQ priority set by users. For example, suppose that the database administrator sets MAX_PDQPRIORITY
to 80. If a user sets the PDQPRIORITY environment variable to 50 and then issues a query, the database server silently processes the query with a PDQ priority of 40.

You can use the onmode utility to change the value of MAX_PDQPRIORITY while the database server is online.

In IBM® Informix®, PDQ resources include memory, CPU, disk I/O, and scan threads. MAX_PDQPRIORITY lets the database administrator run decision support
concurrently with OLTP, without a deterioration of OLTP performance. However, if MAX_PDQPRIORITY is too low, the performance of decision-support queries can
degrade.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

onmode -D, -M, -Q, -S: Change decision-support parameters
onstat -g mgm command: Print MGM resource information
Related information:

 Parallel database query (PDQ)
PDQPRIORITY environment variable

Copyright© 2020 HCL Technologies Limited

MIRROR configuration parameter

Use the MIRROR configuration parameter to enable or disable mirroring for the database server.

onconfig.std value
MIRROR 0

values
0 = Disable mirroring
1 = Enable mirroring

takes effect
After you edit your onconfig file and restart the database server.

Usage

Part VI: Administering 471

https://www.hcltech.com/
https://www.hcltech.com/

It is recommended that you mirror the root dbspaces and the critical data as part of initialization. Otherwise, leave mirroring disabled. If you later decide to add mirroring,
you can edit your configuration file to change the parameter value.

You do not have to set the MIRROR configuration parameter to the same value on both database servers in the high-availability data-replication pair. You can enable or
disable mirroring on either the primary or the secondary database server independently. Do not set the MIRROR configuration parameter to 1 unless you are using
mirroring.

Related reference:
 onstat -d command: Print chunk information

Related information:
 Mirroring

Copyright© 2020 HCL Technologies Limited

MIRROROFFSET configuration parameter

In IBM® Informix®, MIRROROFFSET specifies the offset into the disk partition or into the device to reach the chunk that serves as the mirror for the initial chunk of the root
dbspace.

onconfig.std value
MIRROROFFSET 0

values
Any value greater than or equal to 0

units
Kilobytes

takes effect
After you edit your onconfig file and restart the database server.

Related information:
 Mirroring the root dbspace during initialization

Copyright© 2020 HCL Technologies Limited

MIRRORPATH configuration parameter

Use the MIRRORPATH configuration parameter to specify the full path name of the mirrored chunk for the initial chunk of the root dbspace.

onconfig.std value
On UNIX: $INFORMIXDIR/tmp/demo_on.root_mirror
On Windows: None

values
65 or fewer characters

takes effect
After you edit your onconfig file and restart the database server.

Usage
The MIRRORPATH should be a link to the chunk path name of the actual mirrored chunk for the same reasons that ROOTPATH is specified as a link. Similarly, select a short
path name for the mirrored chunk.

You must set the permissions of the file that MIRRORPATH specifies to 660. The owner and group must both be informix.

If you use raw disk space for your mirror chunk on a UNIX platform, it is recommended that you define MIRRORPATH as a path name that is a link to the initial chunk of the
mirror dbspace, instead of entering the actual device name for the initial chunk.

To start mirroring data on a database server that is not running with the mirroring function enabled:

1. Take the database server offline.
2. Change the MIRROR configuration parameter to 1 and leave the MIRRORPATH configuration parameter blank.
3. Bring the database server online.
4. Allocate disk space for the mirror chunks. You can allocate this disk space at any time, however, the disk space must be available when you specify mirror chunks in

the next step. The mirror chunks must be on a different disk than the corresponding primary chunks.
5. Specify the onspaces -m option to start mirroring for a dbspace, blobspace, or sbspace. You must begin with the root dbspace. After the root dbspace command is

successfully run, the MIRRORPATH value is set automatically by the server.

Related information:
 Mirroring the root dbspace during initialization

Manage disk space

Copyright© 2020 HCL Technologies Limited

MSG_DATE configuration parameter

472 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Use the MSG_DATE configuration parameter to enable the insertion of a date in MM/DD/YY format at the beginning of each message printed to the online log.

onconfig.std value
Not in the onconfig.std file.

values
0 = OFF (the default)
1 = ON

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
In the following example MSG_DATE is set to 1 (ON).

04/10/11 10:26:06 Value of MSG_DATE has been changed to 1.
04/10/11 10:27:35 Value of MSG_DATE has been changed to 1.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Copyright© 2020 HCL Technologies Limited

MSGPATH configuration parameter

Use the MSGPATH configuration parameter to specify the full path name of the message-log file. The database server writes status messages and diagnostic messages to
this file during operation.

onconfig.std value
On UNIX: $INFORMIXDIR/tmp/online.log
On Windows: %INFORMIXDIR%\online.log

On Windows, if you create a server instance during installation: %INFORMIXDIR%\server_name.log. The server_name is the name of server in the program group
and the value of the INFORMIXSERVER environment variable.

values
The path name of the online.log file.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
If the file that MSGPATH specifies does not exist, the database server creates the file in the specified directory. If the directory that MSGPATH specifies does not exist, the
database server sends the messages to the system console.

If the file that MSGPATH specifies does exist, the database server opens it and appends messages to it as they occur.

Related concepts:
 Messages in the database server log

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Copyright© 2020 HCL Technologies Limited

MULTIPROCESSOR configuration parameter

Use the MULTIPROCESSOR configuration parameter to specify whether the database server performs locking in a manner that is suitable for a single-processor computer
or a multiprocessor computer.

If MULTIPROCESSOR is set to 0, the parameters that set processor affinity are ignored.

onconfig.std value
MULTIPROCESSOR 0

values
0 = No multiprocessor
1 = Multiprocessor available

takes effect
After you edit your onconfig file and restart the database server.

Related information:
 CPU virtual processors

Part VI: Administering 473

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

NET_IO_TIMEOUT_ALARM configuration parameter

Use the NET_IO_TIMEOUT_ALARM configuration parameter to control whether to be notified if network write operations have been blocked for 30 minutes or more.

Blocked network write operations usually indicate an operating system problem. Use the NET_IO_TIMEOUT_ALARM configuration parameter to enable event alarm 82 for
specific types of network traffic.

onconfig.std value
Not in onconfig.std

values
One of the following values or a sum of one or more of the following values:

0 = Disabled
1 = Enabled for Enterprise Replication operations
2 = Enabled for distributed queries
4 = Enabled for HDR operations
8 = Enabled for SMX operations
16 = Enabled for other component operations

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Copyright© 2020 HCL Technologies Limited

NETTYPE configuration parameter

Use the NETTYPE parameter to tune the network protocols that are defined in the sqlhosts information.

onconfig.std values
UNIX: ipcshm,1,50,CPU
Windows: Not set.

default value
connection_type,1,50,vp_class
The default connection type depends on the operating system:

UNIX: The value of the protocol field from the sqlhosts file.
Windows: onsoctcp

The default type of virtual processor class depends on the dbservername entry in the sqlhosts file:

CPU, if the dbservername sqlhosts entry is defined by the DBSERVERNAME configuration parameter.
NET, if the dbservername sqlhosts entry is defined by the DBSERVERALIASES configuration parameter.

separators
Separate fields with commas. Do not include blank spaces. If you can omit values for fields, but you must include a comma for each field. However, you can omit
trailing commas.

values
See the Usage section.

takes effect
After you edit your onconfig file and restart the database server.

Usage
The NETTYPE parameter provides tuning options for the protocol and interface combinations that are associated with dbservername entries in the sqlhosts information.
Each dbservername entry in the sqlhosts information is defined on either the DBSERVERNAME configuration parameter or the DBSERVERALIASES configuration
parameter in the onconfig file.

 .-1------------.
>>-NETTYPE--connection_type--,--+--------------+--,------------->
 '-poll_threads-'

 .-50--------------.
>--+-----------------+--,--+-----+-----------------------------><
 '-conn_per_thread-' +-CPU-+
 '-NET-'

Table 1. Options for the NETTYPE configuration parameter value

Field Values

474 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Field Values

connection_type A valid protocol and interface combination, with or without the database server prefix of on, ol, or dr.

poll_threads The number of poll threads that are assigned to the connection type. Default is 1. The range of values depends on the operating
system and the virtual processor class:

UNIX: If the virtual processor class type is NET, an integer greater than or equal to 1. Each poll thread requires a
separate virtual processor, so you indirectly specify the number of networking virtual processors when you specify the
number of poll threads for an interface/protocol combination and specify that they are to be run by a network VP.
UNIX: If the virtual processor class is CPU, an integer from 1 through the number of CPU VPs.
Windows: An integer greater than or equal to 1.

If your database server has many connections, you might be able to improve performance by increasing the number of poll
threads. In general, each poll thread can handle approximately 200 - 250 connections.

Windows: If you specify the soctcp protocol, only one poll thread is created, and instead, a socket I/O thread (soctcpio) is
created in its own SOC VP for each poll thread that is specified by the NETTYPE parameter. Socket IO threads handle receive
operations for all connections using I/O completion ports to receive completion notifications. These threads perform the bulk
of the work of servicing network connections on Windows platforms.

conn_per_thread An integer from 1 - 32767 that sets the maximum number of connections for each poll thread. Default is 50.
For shared memory connections, the value of conn_per_thread is the maximum number of connections per thread. In general,
specify double the number of expected connections.

For network connections, the value of conn_per_thread can be exceeded. Poll threads dynamically reallocate resources to
support more connections, as needed. Avoid setting the value for the number of concurrent connections much higher than you
expect. Otherwise, you might waste system resources.

If only a few connections are using a protocol concurrently, you might save memory by explicitly setting the estimated number
of connections.

CPU Specifies a CPU virtual processor. Configure shared memory connections to run in every CPU virtual processor.

NET Specifies to use the appropriate network virtual processor: SOC, STR, SHM, or TLI. Configure network connection to run in
network virtual processors.

You can specify a NETTYPE parameter for each protocol that you want the database server to use.

The following example illustrates NETTYPE parameters for two types of connections to the database server: a shared memory connection for local clients, and a network
connection that uses sockets:

NETTYPE ipcshm,3,,CPU
NETTYPE soctcp,8,300,NET

The NETTYPE parameter for the shared-memory connection (ipcshm) specifies three poll threads to run in CPU virtual processors. The number of connections is not
specified, so it is set to 50. For ipcshm, the number of poll threads correspond to the number of memory segments.

The NETTYPE parameter for the sockets connection (soctcp) specifies that 300 simultaneous connections are expected per thread for this protocol, and that 8 poll
threads run in a network virtual processor.

UNIX: There can be a dependency between the NETTYPE and NUMFDSERVERS configuration parameter settings. When you have multiple CPU virtual processors and poll
threads, and thread-status output from the onstat -g ath command indicates network shared file (NSF) locking, you can increase the NUMFDSERVERS value for poll
threads to reduce NSF lock contention.

IBM Informix MaxConnect
If you are using IBM® Informix® MaxConnect, see the IBM Informix MaxConnect User's Guide for how to specify the fields in the NETTYPE parameter. The ontliimc and
onsocimc protocols use TCP/IP to communicate with Informix MaxConnect. You can use these protocols to either connect Informix MaxConnect or the application clients
to the database server.

Related reference:
 DBSERVERNAME configuration parameter

DBSERVERALIASES configuration parameter
NUMFDSERVERS configuration parameter
VPCLASS configuration parameter
The number of configured inline poll threads exceeds the number of CPU virtual processors.
Virtual processor limit exceeded.
onstat -g nsc command: Print current shared memory connection information
onstat -g nsd command: Print poll threads shared-memory data
onstat -g nss command: Print shared memory network connections status
Related information:

 Specifying the number of connections and poll threads
Run poll threads on CPU or network virtual processors
Specify the number of networking virtual processors
Connection information set in the NETTYPE configuration parameter
sqlhosts connectivity information
CPU virtual processors
Network virtual processors

Copyright© 2020 HCL Technologies Limited

NS_CACHE configuration parameter

Part VI: Administering 475

https://www.hcltech.com/

Use the NS_CACHE configuration parameter to define the maximum retention time for entries in the Informix® name service caches: the host name/IP address cache, the
service cache, the user cache, and the group cache.

onconfig.std value
NS_CACHE host=900,service=900,user=900,group=900,sqlhosts=900

values
Each of the fields takes an integer value equal to or greater than 0.
host = Sets the number of seconds to cache information in the host name or IP address cache.

service = Sets the number of seconds to cache information in the service cache.

user = Sets the number of seconds to cache information in the user cache.

group = Sets the number of seconds to cache information in the group cache.

sqlhosts = Sets the number of seconds to cache information in the sqlhosts cache.

0 = Caching is disabled. The server always gets information from the operating system. You can set an individual cache to 0 or set all name service caches to 0:
NS_CACHE 0.

units
Seconds

separators
Separate values with a comma. Do not include blank spaces.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
For looking up and resolving host names (or IP addresses), service names, users (and passwords) or groups, the database server queries the operating system using
appropriate system calls. Similarly, the information from the sqlhosts file is read every time it is needed. You can avoid many of these lookups and file reads by using the
Informix name service caching mechanism, which can keep and reuse each retrieved piece of information for a configurable amount of time. You should set the NS_CACHE
configuration parameter if your operating system does not provide its own caching.

For the sqlhosts cache, the file cache of the operating system can be an advantage, but the database server should benefit from the sqlhosts cache more as the
open()/read()/close() can be a load for the operating system in a highly concurrent environment.

The server can get information from the cache faster than it does when querying the operating system. However, if you disable one or more of these caches by setting the
retention time to 0, the database server queries the operating system for the host, service, user or group information and uses direct access to the sqlhosts file.

Changes that are made to name services at the operating system level are not immediately reflected in the Informix name server caches: for example, the change of an IP
address, a user added to or removed from a group, or a new password. However, you can use the onmode -wf or onmode -wm command to change NS_CACHE
information immediately. When you change the value for a particular cache with the onmode -wf or onmode -wm command, the server immediately expires all existing
entries in that cache.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Related information:
 Name service maximum retention time set in the NS_CACHE configuration parameter

Improve connection performance and scalability

Copyright© 2020 HCL Technologies Limited

NUMFDSERVERS configuration parameter

For network connections on UNIX, use the NUMFDSERVERS configuration parameter to specify the maximum number of poll threads to handle network connections
migrating between IBM® Informix® virtual processors (VPs).

Specifying NUMFDSERVERS information is useful if has a high rate of new connect and disconnect requests or if you find a high amount of contention between network
shared file (NSF) locks. You can use the onstat -g ath command to display information about all threads. This information includes a status, such as mutex wait
nsf.lock, which indicates that you have a significant amount of NSF lock contention.

onconfig.std value
NUMFDSERVERS 4 (Only the first 4 poll threads of each nettype are involved in managing the connection migrations.)

values
1 - 50
The actual number depends on the number of poll threads, which you specify in the NETTYPE configuration parameter.

takes effect
After you edit your onconfig file and restart the database server.

Usage
The specified value of NUMFDSERVERS has no effect on shared-memory (SHM) connections.

If you use the NUMFDSERVERS configuration parameter, also review, and if necessary, change the number of poll threads in the NETTYPE configuration parameter. For
example, if you have multiple CPU VPs and poll threads and this results in NSF locking, you can increase NUMFDSERVERS and poll threads to reduce NSF lock contention.

476 Part VI: Administering

https://www.hcltech.com/

Related reference:
NETTYPE configuration parameter
DBSERVERNAME configuration parameter
DBSERVERALIASES configuration parameter
onstat -g ath command: Print information about all threads
Related information:
Improve connection performance and scalability

Copyright© 2020 HCL Technologies Limited

OFF_RECVRY_THREADS configuration parameter

Use the OFF_RECVRY_THREADS configuration parameter to specify the number of recovery threads that are used for logical recovery during a cold restore or fast recovery.

onconfig.std value
OFF_RECVRY_THREADS 10

values
Positive integers

units
Number of recovery threads that run in parallel

takes effect
After you edit your onconfig file and restart the database server.

Usage
Before you perform a cold restore, you can set the value of this parameter to approximately the number of tables that have many transactions against them in the logical
log. For single-processor computers or nodes, more than 30 to 40 threads might be too many because the cost of thread management and memory offsets the increase in
parallel processing.

Whenever logical recovery begins, the database server creates an LGR memory pool for the recovery threads. The size of the LGR memory pool is approximately equal to
the value of OFF_RECVRY_THREADS * 100 KB. This pool is used during fast recovery and during cold restores. Do not set the OFF_RECVRY_THREADS configuration
parameter to a value that results in the database server attempting to allocate more memory for the LGR memory pool than is available on your system.

In a high-availability cluster, a secondary server is almost always in fast recovery mode. On secondary servers, set the OFF_RECVRY_THREADS configuration parameter to
a value that takes both roll-forward performance and memory usage into account.

Related information:
 OFF_RECVRY_THREADS and ON_RECVRY_THREADS and their effect on fast recovery

onbar -r syntax: Restoring data

Copyright© 2020 HCL Technologies Limited

ON_RECVRY_THREADS configuration parameter

The ON_RECVRY_THREADS configuration parameter is the maximum number of recovery threads that the database server uses for logical recovery when the database
server is online (during a warm restore).

onconfig.std value
ON_RECVRY_THREADS 1

values
Positive integers

units
Number of recovery threads that run in parallel

takes effect
After you edit your onconfig file and restart the database server.

refer to

IBM® Informix Backup and Restore Guide
IBM Informix Performance Guide

Usage
You can tune ON_RECVRY_THREADS to the number of tables that are likely to be recovered, because the logical-log records that are processed during recovery are
assigned threads by table number. The maximum degree of parallel processing occurs when the number of recovery threads matches the number of tables being
recovered.

To improve the performance of warm restores, increase the number of fast-recovery threads with the ON_RECVRY_THREADS parameter.

Related information:
 OFF_RECVRY_THREADS and ON_RECVRY_THREADS and their effect on fast recovery

onbar -r syntax: Restoring data

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 477

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

ONDBSPACEDOWN configuration parameter

Use the ONDBSPACEDOWN configuration parameter to define the action that the database server takes when any disabling event occurs on a primary chunk within a
noncritical dbspace.

onconfig.std value
ONDBSPACEDOWN 2

values
0 = The database server marks the dbspace as offline and continues.
1 = The database server aborts.

2 = The database server writes the status of the chunk to the logs and waits for user input. If you set this option, but you want the database server to mark a
disabled dbspace as down and continue processing, use onmode -O to override this ONDBSPACEDOWN setting.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Database Server Behavior When ONDBSPACEDOWN Does Not Apply

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

onmode -O: Override ONDBSPACEDOWN WAIT mode
Related information:

 Monitor the database server for disabling I/O errors

Copyright© 2020 HCL Technologies Limited

Database Server Behavior When ONDBSPACEDOWN Does Not Apply

The database server will not come online if a chunk within any critical dbspace (for example, rootdbs or logsdbs) is missing.

The value of ONDBSPACEDOWN has no effect on temporary dbspaces. For temporary dbspaces, the database server continues processing regardless of the
ONDBSPACEDOWN setting. If a temporary dbspace requires fixing, you should drop and recreate it.

For a non-primary chunk within a noncritical dbspace, the behavior of the database server depends on the transaction status of the chunk when the disabling event
occurs:

No transaction: If no transactions are detected against that chunk, the chunk is individually marked as down. In this case, subsequent attempts to write to that
chunk fail, rolling back the associated transaction. You can safely put the chunk back and then use the onspaces -s utility to mark the chunk as back online.
Transaction detected: If there are transactions to roll forward or back, then the database server aborts with an appropriate fast recovery error. In this case, you
should put the chunk back and restart the database server.

Copyright© 2020 HCL Technologies Limited

ONLIDX_MAXMEM configuration parameter

Use the ONLIDX_MAXMEM configuration parameter to limit the amount of memory that is allocated to a single preimage pool and a single updator log pool.

onconfig.std value
ONLIDX_MAXMEM 5120

values
16 - 4294967295

units
Kilobytes

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
The preimage and updator log pools, pimage_partnum and ulog_partnum, are shared memory pools that are created when a CREATE INDEX ONLINE statement is
executed. The pools are freed when the execution of the statement is completed.

If you specify a value for this parameter and then create a table, add rows to the table, and start to execute a CREATE INDEX ONLINE statement on a column, you can also
perform other operations on the column, such as running UPDATE STATISTICS HIGH, without having memory problems.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Copyright© 2020 HCL Technologies Limited

478 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

OPTCOMPIND configuration parameter

Use the OPTCOMPIND to specify information that helps the optimizer choose an appropriate query plan for your application.

Tip: You can think of the name of the variable as arising from “OPTimizer COMPare (the cost of using) INDexes (with other methods).”

onconfig.std value
OPTCOMPIND 2

values
0 = When appropriate indexes exist for each ordered pair of tables, the optimizer chooses index scans (nested-loop joins), without consideration of the cost, over
table scans (hash joins). This value ensures compatibility with previous versions of the database server.
1 = The optimizer uses costs to determine an execution path if the isolation level is not Repeatable Read. Otherwise, the optimizer chooses index scans (it behaves
as it does for the value 0). This setting is recommended for optimal performance.

2 = The optimizer uses cost to determine an execution path for any isolation level. Index scans are not given preference over table scans; the optimizer bases its
decision purely on cost. This value is the default if the variable is not set.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
Because of the nature of hash joins, an application with isolation mode set to Repeatable Read might temporarily lock all records in tables that are involved in the join
(even those records that fail to qualify the join) for each ordered set of tables. This situation leads to higher contention among connections. Conversely, nested-loop joins
lock fewer records but provide inferior performance when the database server retrieves a large number of rows. Thus, both join methods offer advantages and
disadvantages. A client application can also influence the optimizer in its choice of a join method.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Related information:
 OPTCOMPIND environment variable

OPTCOMPIND session environment option

Copyright© 2020 HCL Technologies Limited

OPT_GOAL configuration parameter

Use the OPT_GOAL configuration parameter to specify an optimization goal for queries.

onconfig.std value
OPT_GOAL -1

values
0 or -1

takes effect
After you edit your onconfig file and restart the database server.

Usage
A value of 0 sets the optimization goal to FIRST_ROWS. A value of -1 sets the optimization goal to ALL_ROWS, which is the default.

When you set the optimization goal to optimize for FIRST ROWS, you specify that you want the database server to optimize queries for perceived response time. In other
words, users of interactive applications perceive response time as the time that it takes to display data on the screen. Setting the optimization goal to FIRST ROWS
configures the database server to return the first rows of data that satisfy the query.

When you set the optimization goal to optimize for ALL ROWS, you specify that you want the database server to optimize for the total execution time of the query. Making
ALL ROWS the optimization goal instructs the database server to process the total query as quickly as possible, regardless of how long it takes to return the first rows to
the application.

You can specify the optimization goal in one of four ways:

By query (SELECT statement)
Use the ALL_ROWS and FIRST_ROWS directives.

By session
Use the SET OPTIMIZATION statement.

By environment
Set the OPT_GOAL environment variable.

By database server
Set the OPT_GOAL configuration parameter.

The list above lists the mechanisms for setting this goal in descending order of precedence. To determine the optimization goal, the database server examines the settings
in the order above. The first setting encountered determines the optimization goal. For example, if a query includes the ALL_ROWS directive but the OPT_GOAL
configuration parameter is set to FIRST_ROWS, the database server optimizes for ALL_ROWS, as the query specifies.

Part VI: Administering 479

https://www.hcltech.com/

Related information:
OPT_GOAL environment variable (UNIX)
Optimization-Goal Directives
Optimization-goal directives

Copyright© 2020 HCL Technologies Limited

PC_HASHSIZE configuration parameter

Use PC_HASHSIZE to specify the number of hash buckets in the caches that the database server uses. PC_HASHSIZE applies to UDR cache only.

onconfig.std value
PC_HASHSIZE 31

values
Any positive integer, a prime number is recommended.

takes effect
After you edit your onconfig file and restart the database server.

Copyright© 2020 HCL Technologies Limited

PC_POOLSIZE configuration parameter

Use the PC_POOLSIZE configuration parameter to specify the maximum number of user-defined routines that are stored in the UDR cache.

onconfig.std value
PC_POOLSIZE 127

values
A positive value 127 or greater that represents half of the initial maximum number of entries in the cache. The maximum value is dependent upon the shared
memory configuration and available shared memory for the server instance.

takes effect
After you edit your onconfig file and restart the database server.
When you increase the value in memory by running the onmode -wm command.
When you reset the value in memory by running the onmode -wm command.

The initial number of entries in the cache is twice the value of the PC_POOLSIZE configuration parameter. For example, if the PC_POOLSIZE configuration parameter is set
to 127, 254 entries are allowed in the cache. If all entries in the cache are full, the cache size automatically grows by 10%. To reduce the size of the cache, decrease the
value of the PC_POOLSIZE configuration parameter in the onconfig file and restart the server.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Copyright© 2020 HCL Technologies Limited

PFSC_BOOST configuration parameter

Use the PFSC_BOOST configuration parameter to enable or disable the boosted partition free space cache feature.

onconfig.std value
PFSC_BOOST 1

values
0 = Boosted Partition Free Space Caches disabled
1 = Boosted Partition Free Space Caches enabled

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
Set the PFSC_BOOST configuration parameter to 0 to prevent boosted PFSCs from being created.

For more information, see Boosted Partition Free Space Caches (PFSC).

Copyright© 2020 HCL Technologies Limited

PHYSBUFF configuration parameter

Use the PHYSBUFF configuration parameter to specify the size in kilobytes of the two physical-log buffers in shared memory.

480 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

onconfig.std value
PHYSBUFF 128

units
Kilobytes

values
An integer in the range of 4 - (32767 * pagesize / 1024), where pagesize is the default system page size. The value must be evenly divisible by the default system
page size. If the value is not evenly divisible by the page size, the database server rounds down the size to the nearest value that is evenly divisible by the page size.

takes effect
After you edit your onconfig file and restart the database server.

Usage
Double buffering permits user threads to write to the active physical-log buffer while the other buffer is being flushed to the physical log on disk. A write to the physical-
log buffer is exactly one page in length. The value of the PHYSBUFF parameter determines how frequently the database server needs to flush the physical-log buffer to the
physical-log file.

If the RTO_SERVER_RESTART configuration parameter is enabled, use the 512 kilobyte default value for PHYSBUFF. If the value of the PHYSBUFF configuration parameter
is less than 512 kilobytes when the RTO_SERVER_RESTART configuration parameter is enabled, a warning message displays when you restart the server.

The user-data portion of a smart large object does not pass through the physical-log buffers.

Related reference:
 onstat -l command: Print physical and logical log information

Related information:
 Physical-log buffer

Copyright© 2020 HCL Technologies Limited

PHYSFILE configuration parameter

Use the PHYSFILE configuration parameter to specify the size of the physical log file when you first initialize the disk space and bring the database server online.

onconfig.std value
PHYSFILE 50000

if not present
200

values
An integer 200 or greater

units
KB

takes effect
After you edit the onconfig file and initialize disk space by running the oninit -i command.
After you run the onparams -p -s command.

Usage
You cannot change the value of the PHYSFILE configuration parameter by editing the onconfig file after you start the server for the first time.

The database server updates the value of the PHYSFILE configuration parameter in the onconfig file under the following circumstances:

You change the size of the physical log file by running the onparams -p -s command.
The plogspace is automatically expanded. If the physical log is stored in a plogspace, the database server expands the size of the physical log as needed to improve
performance.

When the RTO_SERVER_RESTART or SEC_NONBLOCKING_CKPT configuration parameter is enabled, ensure that the size of the physical log is equal to at least 110% of
the buffer pool size.

A warning message prints to the message log when:

The value for the PHYSFILE configuration parameter is changed to less than 110% of all of the buffer pools
The server is restarted
A new buffer pool is added

Related reference:
 onparams -p: Change physical-log parameters

RESTARTABLE_RESTORE configuration parameter
SDS_PAGING configuration parameter
Related information:

 Strategy for estimating the size of the physical log
Change the physical-log location and size

Copyright© 2020 HCL Technologies Limited

PLOG_OVERFLOW_PATH configuration parameter

The PLOG_OVERFLOW_PATH parameter specifies the location of the file that is used during fast recovery if the physical log file overflows.

Part VI: Administering 481

https://www.hcltech.com/
https://www.hcltech.com/

The file is plog_extend.servernum and by default located in $INFORMIXDIR/tmp. Use the full path name to specify a different location for the file with the
PLOG_OVERFLOW_PATH parameter.

onconfig.std values
On UNIX: $INFORMIXDIR/tmp
On Windows: None

takes effect
When the database server is brought up (shared memory is initialized)

Related information:
 Possible physical log overflow during fast recovery

Copyright© 2020 HCL Technologies Limited

PLCY_HASHSIZE configuration parameter

The PLCY_HASHSIZE configuration parameter specifies the number of hash buckets in the security policy information cache.

onconfig.std value
PLCY_HASHSIZE 31

values
Any positive integer

units
KB

takes effect
After you edit your onconfig file and restart the database server.

Related information:
 Maintaining a label-based access-control implementation

Copyright© 2020 HCL Technologies Limited

PLCY_POOLSIZE configuration parameter

Use the PLCY_POOLSIZE configuration parameter to specify the maximum number of entries in each hash bucket of the security policy information cache.

onconfig.std value
PLCY_POOLSIZE 127

values
A positive value 127 or greater that represents half of the initial maximum number of entries in the cache. The maximum value is dependent upon the shared
memory configuration and available shared memory for the server instance.

takes effect
After you edit your onconfig file and restart the database server.
When you increase the value in memory by running the onmode -wm command.
When you reset the value in memory by running the onmode -wm command.

The initial number of entries in the cache is twice the value of the PLCY_POOLSIZE configuration parameter. For example, if the PLCY_POOLSIZE configuration parameter
is set to 127, 254 entries are allowed in the cache. If all entries in a cache are full, the cache size automatically grows by 10%. To reduce the size of the cache, decrease
the value of the PLCY_POOLSIZE configuration parameter in the onconfig file and restart the server.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Related information:
 Maintaining a label-based access-control implementation

Copyright© 2020 HCL Technologies Limited

PN_STAGEBLOB_THRESHOLD configuration parameter

Use the PN_STAGEBLOB_THRESHOLD configuration parameter to reserve space for BYTE and TEXT data in round-robin fragments.

onconfig.std value
Not set.

if not present
0

values
0 - 1000000

units
Kilobytes

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

482 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Usage
Set this configuration parameter to the typical or average size of the BYTE or TEXT data that is stored in the table.

Restriction: The PN_STAGEBLOB_THRESHOLD configuration parameter has no effect if the number of extents has reached the maximum extents allowed or if the dbspace
is full.
When a table reaches the maximum number of pages for a fragment, more pages can be added to the table by adding a new fragment. However, if a table contains BYTE or
TEXT columns and that table is fragmented by the round-robin distribution scheme, adding a new fragment does not automatically enable new rows to be inserted into the
new fragment.

For example, if one of the fragments in the table reaches the maximum number of pages, adding a new fragment does not extend the table to store more rows. Because
BYTE and TEXT data tend to be large in size, the data is staged in one of the fragments before being distributed evenly in all of the fragments. The staging fragment must
have sufficient space to store the BYTE or TEXT data. Use the PN_STAGEBLOB_THRESHOLD configuration parameter so that the database server can stage the BYTE or
TEXT data temporarily in a staging fragment until the INSERT operation is completed and the data is permanently stored in the table.

During a UPDATE operation if the fragment does not have the space that is specified in PN_STAGEBLOB_THRESHOLD configuration parameter the table row that is
impacted by the updated is moved into another fragment.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Related information:
 Fragmentation by ROUND ROBIN

Copyright© 2020 HCL Technologies Limited

PRELOAD_DLL_FILE configuration parameter

The PRELOAD_DLL_FILE configuration parameter specifies the path name for a shared library file that is preloaded when the database server is started.

onconfig.std value
Not set. No shared library files are preloaded.

value
pathname = Full path name for the shared library file. Can include $INFORMIXDIR.

takes effect
After you edit your onconfig file and restart the database server.

Usage
Use this parameter to preload the shared library files for DataBlade modules, built-in extensions, or user-defined routines that are created in the C programming language
(C UDRs). Otherwise, the shared libraries are loaded when they are first used after the server starts, which affects performance. Add a separate entry of this parameter for
each library file that you want to preload. A preloaded shared library remains active until the server is stopped.

Restriction: You cannot use the onmode -wm or onmode -wf commands to set the PRELOAD_DLL_FILE configuration parameter.

Examples
The following examples preload the built-in basic text search, spatial, and time series extensions:

PRELOAD_DLL_FILE $INFORMIXDIR/extend/bts.version/bts.bld

PRELOAD_DLL_FILE $INFORMIXDIR/extend/TimeSeries.version/TimeSeries.bld

The version is the specific version number for the extension. To find the correct version number, run the appropriate function to return the release number for the
extension or check the directory name in your installation directory.

Important: The version numbers of built-in extensions can change in any fix pack or release. After you upgrade, you must update the value of the PRELOAD_DLL_FILE
configuration parameter if the version number of an extension changed.
Related reference:

 onstat -g dll command: Print dynamic link library file list

Copyright© 2020 HCL Technologies Limited

QSTATS configuration parameter

The QSTATS configuration parameter specifies the ability of onstat -g qst to print queue statistics.

onconfig.std value
QSTATS 0

values
0 = Disable queue statistics
1 = Enable queue statistics

takes effect
After you edit your onconfig file and restart the database server.

Related reference:

Part VI: Administering 483

https://www.hcltech.com/
https://www.hcltech.com/

onstat -g qst command: Print wait options for mutex and condition queues

Copyright© 2020 HCL Technologies Limited

REMOTE_SERVER_CFG configuration parameter

Use the REMOTE_SERVER_CFG configuration parameter to specify the file that lists trusted remote hosts.

onconfig.std value
Not set. The system hosts.equiv file is used.

values
File name. The path is assumed to be $INFORMIXDIR/etc. Consider using the following naming convention:

authfile.server_name

The file that is specified by the REMOTE_SERVER_CFG configuration parameter must be in $INFORMIXDIR/etc.
takes effect

After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
For applications that connect to the database server as the root user, the REMOTE_SERVER_CFG configuration parameter is not applicable.

The format of the file that is specified by the REMOTE_SERVER_CFG configuration parameter is the same as the format of the system hosts.equiv file.

If the REMOTE_SERVER_CFG configuration parameter is not set, and you run the SQL administration API task() or admin() function with the cdr add trustedhost
argument, the database server performs the following actions:

1. The REMOTE_SERVER_CFG configuration parameter is set to authfile.DBSERVER.
2. The authfile.DBSERVER file is created in $INFORMIXDIR/etc.
3. The specified trusted-host information is added to $INFORMIXDIR/etc/authfile.DBSERVER.
4. If the database server is part of a high-availability cluster, the trusted-host information is propagated to the trusted-host files of the other cluster servers.

Note: If the sqlhosts file of the database server uses the s=6 option, you must also set the S6_USE_REMOTE_SERVER_CFG configuration parameter to 1 to use the file
specified REMOTE_SERVER_CFG configuration parameter. Otherwise, the database server uses the system hosts.equiv file instead of the file specified
REMOTE_SERVER_CFG configuration parameter.
Related reference:

 onmode -wf, -wm: Dynamically change certain configuration parameters
S6_USE_REMOTE_SERVER_CFG configuration parameter
cdr add trustedhost argument: Add trusted hosts (SQL administration API)
cdr remove trustedhost argument: Remove trusted hosts (SQL administration API)
cdr list trustedhost argument: List trusted hosts (SQL administration API)
Related information:

 Trusted-host information
sqlhosts file and SQLHOSTS registry key options

Copyright© 2020 HCL Technologies Limited

REMOTE_USERS_CFG configuration parameter

Use the REMOTE_USERS_CFG configuration parameter to specify the file that lists the names of trusted users that exist on remote hosts.

onconfig.std value
Not set.

values
File name. The path is assumed to be $INFORMIX/etc.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
The file specified by the REMOTE_USERS_CFG configuration parameter must be located in $INFORMIXDIR/etc. If the configuration parameter is set then the file specified
is used instead of the ~/.rhosts file. If the specified file does not exist in $INFORMIXDIR/etc, then authentication will fail.

The format of the file specified by the REMOTE_USERS_CFG configuration parameter is the same as the format of the ~/.rhosts file.

Consider using the following naming convention for the file specified by the REMOTE_USERS_CFG configuration parameter:

users.server_name

Related reference:
onmode -wf, -wm: Dynamically change certain configuration parameters
REMOTE_USERS_CFG configuration parameter

484 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Related information:
Trusted-user information

Copyright© 2020 HCL Technologies Limited

RESIDENT configuration parameter

Use the RESIDENT configuration parameter to specify whether resident and virtual segments of shared memory remain resident in operating-system physical memory.

onconfig.std value
RESIDENT 0

values
-1 - 99
0 = off

1 = lock the resident segment only

-1 = lock all resident and virtual segments

n = lock the resident segment and the next n -1 virtual segments. For example, if you specify 99 as the value, the resident segment is locked and the next 98 virtual
segments are locked.

Certain platforms have different values. For information, see your machine notes.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
Some systems allow you to specify that the resident portion of shared memory must stay (be resident) in memory at all times. If your operating system supports forced
residency, you can specify that resident and virtual segments of shared memory not be swapped to disk.
Warning: Before you decide to enforce residency, verify that the amount of physical memory available is sufficient to execute all required operating-system and application
processes. If insufficient memory is available, a system hang could result that requires a reboot.
On AIX®, Solaris, or Linux systems that support large pages of memory, the DBSA can use operating system commands to configure a pool of large pages.

IBM® Informix® can store non-message virtual memory segments on these large pages if you take the following steps:

Enable large page sizes by setting the IFX_LARGE_PAGES environment variable.
For virtual memory segments that you intend to store on large pages, set the RESIDENT parameter to lock those segments in physical memory, so that they cannot
be swapped to disk

Storing virtual memory segments on large pages can offer significant performance benefits in large memory configurations.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

onmode -n, -r: Change shared-memory residency
Related information:

 Resident portion of shared memory
Set database server shared-memory configuration parameters
IFX_LARGE_PAGES environment variable

Copyright© 2020 HCL Technologies Limited

RESTARTABLE_RESTORE configuration parameter

Use the RESTARTABLE_RESTORE configuration parameter to control whether the database server performs restartable restores.

onconfig.std value
RESTARTABLE_RESTORE ON

values
ON = Restartable restore is enabled
OFF = Restartable restore is disabled

takes effect
After you edit your onconfig file and restart the database server.

If you set RESTARTABLE_RESTORE to ON, you enable the database server to restart a failed physical or cold logical restore at the point at which the failure occurred. To
perform a restartable restore with ON-Bar, use the onbar -RESTART command.

Increase the size of your physical log if you plan to use restartable restore. Although a restartable restore slows down the logical restore if many logs need to be restored,
you save a lot of time from not having to repeat the entire restore.
Important: If the database server fails during a warm logical restore, you must repeat the entire restore. If the database server is still running, use onbar -r -l to complete
the restore.
If you do a cold restore on systems that are not identical, you can assign new pathnames to chunks, and you can rename devices for critical chunks during the restore. You
must perform a level-0 archive after the rename and restore operation completes.

Part VI: Administering 485

https://www.hcltech.com/
https://www.hcltech.com/

The database server uses physical recovery and logical recovery to restore data as follows:

Physical recovery. The database server writes data pages from the backup media to disk. This action leaves the storage spaces consistent to the point at which it
was originally backed up. However, the backup times for each storage space are usually different. A restartable restore is restartable to the level of a storage space.
If only some chunks of a storage space are restored when the restore fails, the entire storage space needs to be recovered again when you restart the restore.
Logical recovery. The database server replays logical-log records on media to bring all the storage spaces up to date. At the end of logical recovery, all storage
spaces are consistent to the same point.

Related reference:
 PHYSFILE configuration parameter

Related information:
 onbar -RESTART syntax: Restarting a failed restore

Copyright© 2020 HCL Technologies Limited

RESTORE_POINT_DIR configuration parameter

Use the RESTORE_POINT_DIR configuration parameter to change the path name of the directory where restore point files will be placed during a failed upgrade to a new
version of the server. IBM® Informix® will store restore point files in a subdirectory of the specified directory, with the server number as the subdirectory name, only if the
CONVERSION_GUARD configuration parameter is enabled.

onconfig.std value
$INFORMIXDIR/tmp

value
Complete path name for a directory

takes effect
After you edit your onconfig file and restart the database server.

Usage
You can change the directory, for example, if you think that the $INFORMIXDIR/tmp directory does not have enough space for restore point data. If you want to change
the directory, you must change it before you initiate an upgrade to a new version of the server. You cannot change the directory during an upgrade.

The directory specified in the RESTORE_POINT_DIR configuration parameter must be empty when an upgrade begins. If the directory contains any restore point files from
a previous upgrade, you must remove the files before a new upgrade begins a new restore point.

Important:
The empty directory is a prerequisite before doing the upgrade, not when recovering from a failed upgrade. After a failed upgrade, do not empty the RESTORE_POINT_DIR
directory before you attempt to run the onrestorept utility.

Related reference:
 CONVERSION_GUARD configuration parameter

Related information:
 The onrestorept utility

Copyright© 2020 HCL Technologies Limited

ROOTNAME configuration parameter

ROOTNAME specifies a name for the root dbspace for this database server configuration.

The name must be unique among all dbspaces that the database server manages. It is recommended that you select a name that is easily recognizable as the root
dbspace.

onconfig.std value
ROOTNAME rootdbs

values
Up to 128 bytes. ROOTNAME must begin with a letter or underscore and must contain only letters, numbers, underscores, or $ characters.

units
A dbspace

takes effect
When disk is initialized (destroys all data)

Related information:
 Allocate disk space

Copyright© 2020 HCL Technologies Limited

ROOTOFFSET configuration parameter

ROOTOFFSET specifies the offset into an allocation of disk space (file, disk partition, or device) at which the initial chunk of the root dbspace begins.

UNIX Only:

486 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

On some UNIX platforms, it is not valid to set ROOTOFFSET to 0. When this parameter is set incorrectly, you must reinitialize disk space and reload data to resume proper
operation of the database server. Before you configure the database server, always check your machine notes file for information about proper settings.

onconfig.std value
ROOTOFFSET 0

values
Any value greater than or equal to 0

units
Kilobytes

takes effect
When disk is initialized (destroys all data)

Related information:
 Allocating raw disk space on UNIX

Copyright© 2020 HCL Technologies Limited

ROOTPATH configuration parameter

Use the ROOTPATH configuration parameter to specify the full path name, including the device or file name, of the initial chunk of the root dbspace. The ROOTPATH
configuration parameter is stored in the reserved pages as a chunk name.

onconfig.std value

On UNIX: $INFORMIXDIR/tmp/demo_on.rootdbs
On Windows: None

values
pathname

takes effect
When disk is initialized (destroys all data)

refer to
The following material in the chapter on managing disk space in the IBM® Informix Administrator's Guide

Allocating disk space
Creating links for raw devices

Usage
On UNIX, you must set the permissions of the file that you specify with the ROOTPATH configuration parameter to 660, and the owner and group must both be informix.
On Windows, a member of the Informix-Admin group must own the file that you specify with the ROOTPATH configuration parameter.

UNIX Only:
If you use unbuffered disk space for your initial chunk on UNIX, you should define the ROOTPATH configuration parameter as a pathname that is a link to the initial chunk
of the root dbspace instead of entering the actual device name for the initial chunk.

Related information:
 Allocate disk space

Create symbolic links to raw devices (UNIX)

Copyright© 2020 HCL Technologies Limited

ROOTSIZE configuration parameter

Use the ROOTSIZE configuration parameter to specify the size in kilobytes of the initial chunk of the root dbspace. The size that you select depends on your immediate
plans for your database server.

The database server uses the value of the ROOTSIZE configuration parameter only during a complete disk initialization. Changing the ROOTSIZE value after the initial
chunk of the root dbspace has been created will have no effect.

onconfig.std value
ROOTSIZE 300000

if not present
0

values
50,000 through maximum capacity of the storage device

units
Kilobytes

takes effect
When disk is initialized (destroys all data)

Related information:
 Size of the root dbspace

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 487

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

RSS_FLOW_CONTROL configuration parameter

Specifies when flow control occurs in a high-availability cluster that contains at least one remote standalone (RS) secondary server.

onconfig.std value
RSS_FLOW_CONTROL 0

values
0 = Flow control is activated when the difference between the current log position and the most recent acknowledged log exceeds 12 times the size of the log
buffer.
-1 = Flow control is disabled. Disabling flow control might lead to wrapping of the log files and the loss of data.

start_value,end_value = The start_value and end_value determine the amount of lag between the current log position and the last acknowledged log page.
The start_value must be greater than the end_value. Values must include one of the following units:

K (Kilobytes)
M (Megabytes)
G (Gigabytes)

For example, setting RSS_FLOW_CONTROL 128M,100M starts flow control when the lag between the logs is 128 MB, and stops flow control when the lag drops to
100 MB.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
Flow control provides a way to limit log activity on the primary server so that RS secondary servers in the cluster do not fall too far behind on processing transactions.
Enabling flow control ensures that logs on RS secondary servers remain current if the servers are on a busy or intermittent network. When flow control is enabled, and
when the difference in log size between the current log position and the last acknowledged log page exceeds thestart_value, then log activity on the primary server
becomes restricted. Users connected to the primary server may experience slower response time when flow control is active. Flow control is started when the lag between
the logs is greater than the start_value and stops flow control when the log lag has dropped to thestop_value.

You set the RSS_FLOW_CONTROL configuration parameter on the primary server only. All RS secondary servers in the cluster are affected by the RSS_FLOW_CONTROL
configuration parameter. Logs are always sent to the RS secondary server in the order in which they were received.

To check if flow control is active for a RS secondary server, use the onstat -g rss verbose command, and compare the RSS flow control value to the Approximate
Log Page Backlog value. If the Approximate Log Page Backlog is higher than the first value of RSS flow control, flow control is active. If the Approximate
Log Page Backlog is lower than the second value of RSS flow control, flow control is disabled.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

SDS_FLOW_CONTROL configuration parameter
Related information:

 Flow control for shared-disk secondary servers
Flow control for remote standalone secondary servers

Copyright© 2020 HCL Technologies Limited

RSS_NONBLOCKING_CKPT configuration parameter

Use the RSS_NONBLOCKING_CKPT configuration parameter to enable non-blocking checkpoint at RS secondary server.

onconfig.std value
RSS_NONBLOCKING_CKPT 0

values

1 - Enable non-blocking checkpoint at RS secondary server
0 – (Default) Disable non-blocking checkpoints

units
Not applicable

takes effect
After you edit your onconfig file and restart the database server.

When you reset the value dynamically in your onconfig file by running the onmode -wf command.

When you reset the value in memory by running the onmode -wm command.

Usage
RSS_NONBLOCKING_CKPT configuration parameter controls the checkpoint behavior at RS secondary server.

RSS_NONBLOCKING_CKPT configuration parameter will be deprecated in future releases. User should use SEC_NONBLOCKING_CKPT instead.

Related reference:

488 Part VI: Administering

https://www.hcltech.com/

SEC_NONBLOCKING_CKPT configuration parameter

Copyright© 2020 HCL Technologies Limited

RTO_SERVER_RESTART configuration parameter

Use the RTO_SERVER_RESTART configuration parameter to specify recovery time objective (RTO) standards for the amount of time, in seconds, that IBM® Informix® has to
recover from a problem after you restart the server and bring it into online or quiescent mode.

onconfig.std value
RTO_SERVER_RESTART 0 (disabled)

range of values
0 = disabled
60 - 1800

units
seconds

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

CKPTINTVL configuration parameter
The onparams Utility
Related information:

 The oncheck -pr command
Checkpoints
Effect of configuration on I/O activity

Copyright© 2020 HCL Technologies Limited

S6_USE_REMOTE_SERVER_CFG configuration parameter

Use the S6_USE_REMOTE_SERVER_CFG configuration parameter to control whether the file specified by the REMOTE_SERVER_CFG configuration parameter is used to
authenticate secure connections for server clusters and Enterprise Replication.

onconfig.std value
S6_USE_REMOTE_SERVER_CFG 0

default value
0

values
0 = The system hosts.equiv file is used to authenticate servers connecting through a secure port.
1 = The file specified by the REMOTE_SERVER_CFG configuration parameter is used to authenticate servers connecting through a secure port.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
The REMOTE_SERVER_CFG configuration parameter is used to specify a file that lists the remote server hosts that are trusted by the computer housing the database
server. If one or more of the listed servers are configured using the sqlhosts file connection-security option s=6, then you must set the S6_USE_REMOTE_SERVER_CFG
configuration parameter to 1.

If S6_USE_REMOTE_SERVER_CFG is unset or set to 0, the system hosts.equiv file, rather than the file specified by the REMOTE_SERVER_CFG configuration parameter, is
used to authenticate servers connecting through a secure port.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

REMOTE_SERVER_CFG configuration parameter
Related information:

 sqlhosts file and SQLHOSTS registry key options

Copyright© 2020 HCL Technologies Limited

SB_CHECK_FOR_TEMP configuration parameter

Use the SB_CHECK_FOR_TEMP configuration parameter to prevent the copying of a temporary smart large object into a permanent table.

onconfig.std value

Part VI: Administering 489

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Not set.
if value not present

The copying of temporary smart large objects into permanent tables is permitted.
values

0 = Permit the copying of temporary smart large objects into permanent tables. Equivalent to the configuration parameter not being set in the onconfig file.
1 = Prevent the copying of temporary smart large objects into permanent tables. The database server returns the following error messages instead of copying the
handle of a temporary smart large object:

-9810: Smart-large-object error.
-12246: Smart large objects: You cannot put a temporary smart large object into a permanent table

takes effect
After you edit your onconfig file and restart the database server.

Usage
By default, you can copy temporary smart large objects into permanent tables. Smart large object data types, BLOB and CLOB, consist of two parts: the data, which is
stored in an sbspace, and the handle, which is stored in a table. When you copy a temporary smart large object into a permanent table, only the BLOB or CLOB handle is
copied into the permanent table. If you subsequently drop the temporary smart large object, the permanent table contains a handle that is no longer valid.

To prevent the copying of a temporary smart large object into a permanent table, set the SB_CHECK_FOR_TEMP configuration parameter to 1 in the onconfig file. For
example, if the SB_CHECK_FOR_TEMP configuration parameter is set to 1, an INSERT INTO . . . SELECT FROM . . . statement that copies a temporary smart large object
into a permanent table fails.

Copyright© 2020 HCL Technologies Limited

SBSPACENAME configuration parameter

Use the SBSPACENAME configuration parameter specifies the name of the default sbspace.

onconfig.std value
Not set.

if not present
0

values
Up to 128 bytes.
SBSPACENAME must be unique, begin with a letter or underscore, and contain only letters, digits, underscores, or $ characters.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
If your database tables include smart-large-object columns that do not explicitly specify a storage space, that data is stored in the sbspace that SBSPACENAME specifies.

The default sbspace is also used by the built-in encryption and decryption functions to store BLOB or CLOB values. If DECRYPT_BINARY or an encryption function cannot
find an sbspace in which to store a BLOB or CLOB argument or returned value, the function fails with the following error message:

Fatal error in server row processing - SQL error -9810 ISAM error -12053

If you see this error message after you invoke an encryption or decryption function that has a CLOB or BLOB argument, configure a default sbspace using the
SBSPACENAME configuration parameter, and then repeat the function call.
You must create the default sbspace with the onspaces -c -S utility before you can use it. The database server validates the name of the default sbspace when one of the
following occurs:

You specify the default sbspace as the storage option for a CLOB or BLOB column in the PUT clause of the CREATE TABLE or ALTER TABLE statement.
The database server attempts to write a smart large object to the default sbspace when no sbspace was specified for the column.
You store multirepresentational data in the default sbspace.

JAVA Language Support:
If you are using J/Foundation, you must provide a smart large object where the database server can store the Java™ archive (JAR) files. These JAR files contain your Java
user-defined routines (UDRs). It is suggested that when you use Java UDRs, you create separate sbspaces for storing smart large objects.

Warning: When you use Enterprise Replication, you must set the CDR_QDATA_SBSPACE parameter and create the sbspace before you define the replication server.

Automatic creation of the default sbspace
Under certain circumstances, a default sbspace is created even if the SBSPACENAME configuration parameter is not set:

If you create a bts index and do not explicitly specify an sbspace name
If you create a table with a spatial data type column and do not explicitly specify an sbspace name

The default sbspace is created in the root dbspace for the database server with a size of 10 000 KB. You must manually increase the size of the default sbspace when it
fills.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

490 Part VI: Administering

https://www.hcltech.com/

SBSPACETEMP configuration parameter
SYSSBSPACENAME configuration parameter
Sbspace Structure
onspaces -c -S: Create an sbspace
Related information:
Sbspaces
Alter storage characteristics of smart large objects
PUT Clause
Row Data sbspaces

Copyright© 2020 HCL Technologies Limited

SBSPACETEMP configuration parameter

Use the SBSPACETEMP configuration parameter to specify a list of default temporary sbspace for storing temporary smart large objects without metadata or user-data
logging. If you store temporary smart large objects in a standard sbspace, the metadata is logged.

onconfig.std value
Not set. Temporary smart large objects are stored in the default sbspace, which is specified by the SBSPACENAME configuration parameter.

separators
Commas

values
One or more sbspace names. Separate names with a comma. The length of the list cannot exceed 128 bytes.
Each sbspace name must be unique, begin with a letter or underscore, and contain only letters, digits, underscores, or $ characters.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

SBSPACENAME configuration parameter
onspaces -c -S: Create an sbspace
Related information:

 Temporary sbspaces
Creating a temporary sbspace
Temporary smart large objects

Copyright© 2020 HCL Technologies Limited

SDS_ALTERNATE configuration parameter

Use the SDS_ALTERNATE configuration parameter to define an alternate means of communication between the primary server and SD secondary servers in a high-
availability cluster.

onconfig.std value
NONE (No SD secondary server alternate communication path is configured.)

values
The name of the blobspace that is to be used as the alternate communication path between the primary server and SD secondary servers.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
You set the SDS_ALTERNATE configuration parameter and create a shared blobspace to allow the primary server and all SD secondary servers in a high-availability cluster
to use an alternate communication path in the event the network is unavailable between the primary server and the SD secondary servers. When an SD secondary server
is about to failover and become the primary server, but TCP/IP communication is unavailable, the shared blobspace set by the SDS_ALTERNATE configuration parameter is
used communicate the shut-down procedure to the original primary.

Set the SDS_ALTERNATE configuration parameter to the same value on the primary server and on all SD secondary servers.

Before setting the SDS_ALTERNATE configuration parameter, you must create the shared blobspace on the primary server. For example, to create a blobspace named
sds_alt_comm enter the following command on the primary server:

onspaces -c -b sds_alt_comm -g <pagesize> -p <path> -o <offset> -s <size>

Run the following command to switch to the next logical log file so that the newly created blobspace is usable:

onmode -l

On each of the SD secondary servers in the high-availability cluster, set the SDS_ALTERNATE configuration parameter to point to the blobspace on the primary server.

SDS_ALTERNATE sds_alt_comm

Part VI: Administering 491

https://www.hcltech.com/
https://www.hcltech.com/

Related reference:
onmode -wf, -wm: Dynamically change certain configuration parameters
The oninit utility
Related information:
SD secondary server

Copyright© 2020 HCL Technologies Limited

SDS_ENABLE configuration parameter

Use the SDS_ENABLE configuration parameter to enable SD secondary server functionality.

onconfig.std value
Not set.

if not present
0

values
0 = Disable
1 = Enable

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
You must set SDS_ENABLE to 1 (enable) on the SD secondary server to enable SD secondary server functionality.

SDS_ENABLE is set to 1 (enabled) automatically when you run the following command:

onmode -d set SDS primary

SDS_ENABLE is set to 0 (disabled) when you run the following command:

onmode -d clear SDS primary

To prevent data corruption, you cannot use the oninit -i or oninit -iy command to initialize disk space on a server if SDS_ENABLE is set to 1 (enabled). To initialize an SD
secondary server, initialize only the shared memory by using oninit with no parameters. To initialize a primary server to which one or more SD secondary servers are
attached, and whose disk has never been initialized, set SDS_ENABLE to 0 and initialize the server memory and disk using oninit -i. To initialize a primary server to which
SD secondary servers are attached, and whose disk is already initialized, set SDS_ENABLE to 1 and initialize shared memory only using oninit with no parameters.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Copyright© 2020 HCL Technologies Limited

SDS_FLOW_CONTROL configuration parameter

Specifies when flow control occurs in a high-availability cluster that contains at least one shared-disk (SD) secondary server.

onconfig.std value
SDS_FLOW_CONTROL 0

values
0 = Flow control is activated when the difference between the current log position and the most recent acknowledged log exceeds 12 times the size of the log
buffer.
-1 = Flow control is disabled. Disabling flow control might lead to wrapping of the log files and the loss of data.

start_value,end_value = The start_value and end_value determine the amount of lag between the current log position and the last acknowledged log page.
The start_value must be greater than the end_value. Values must include one of the following units:

K (Kilobytes)
M (Megabytes)
G (Gigabytes)

For example, setting SDS_FLOW_CONTROL 128M,100M starts flow control when the lag between the logs is 128 MB, and stops flow control when the lag has
dropped to 100 MB.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.

Usage
Flow control provides a way to limit log activity on the primary server so that SD secondary servers in the cluster do not fall too far behind on processing transactions.
When flow control is enabled, and when the difference in log size between the current log position and the last acknowledged log page exceeds thestart_value, then log
activity on the primary server becomes restricted. Users connected to the primary server may experience slower response time when flow control is active. Flow control is
started when the lag between the logs is greater than the start_value and stops flow control when the log lag has dropped to thestop_value.

492 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

You set the SDS_FLOW_CONTROL configuration parameter on the primary server only. All SD secondary servers in the cluster are affected by the SDS_FLOW_CONTROL
configuration parameter. Logs are always sent to the SD secondary server in the order in which they were received.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

RSS_FLOW_CONTROL configuration parameter
Related information:

 Flow control for remote standalone secondary servers
Flow control for shared-disk secondary servers

Copyright© 2020 HCL Technologies Limited

SDS_LOGCHECK configuration parameter

Use the SDS_LOGCHECK configuration parameter to set the number of seconds to delay the secondary server from taking over the role of the primary server. If the
secondary server detects that the primary server is generating log records during the delay period, then the failover is prevented. The delay can prevent an unnecessary
failover if network communication between the primary and secondary servers is temporarily unavailable.

onconfig.std value
SDS_LOGCHECK

On UNIX: 10
On Windows: 0

values
0 = Do not detect log activity; allow immediate failover.
n = Wait up to n seconds. If log activity is detected from the primary server, failover is prevented; otherwise, failover is allowed.

units
Seconds

takes effect
When shared disk functionality is enabled on the primary server

Usage
Important: You must specify the same value for the primary server and for all secondary servers. If the values that you specify are not the same, the database server
automatically changes the value that is different on a secondary server to the value that is set for the primary server.
For example, if the SDS_LOGCHECK configuration parameter is set to 10, and the primary server fails, the SD secondary server waits up to 10 seconds to either detect that
the primary server is generating log records (in which case failover is prevented), or the SD secondary server detects that the primary is not generating log records and
failover occurs.

An unnecessary failover can result in two primary servers that are both receiving input from applications and writing to the same chunks, which can cause unrepairable
data corruption.

Set the SDS_LOGCHECK configuration parameter to a value greater than zero if you do not have I/O fencing configured and your system consists of a primary server and
one or more SD secondary servers.

If your system has I/O fencing configured, and if an SD secondary server becomes a primary server, the I/O fencing script must prevent the failed primary server from
updating any of the shared disks. If the system does not have I/O fencing configured, the SDS_LOGCHECK configuration parameter prevents the occurrence of multiple
primary servers by not failing over to the SD secondary server if the original primary server is generating log records.

Related information:
 SD secondary server

Copyright© 2020 HCL Technologies Limited

SDS_PAGING configuration parameter

The SDS_PAGING configuration parameter specifies the location of two files that serve as buffer paging files.

onconfig.std value
Not set

Values
File paths

Separators
A single comma

Default value
None

Takes effect
When SD secondary server is started

Usage
The SDS_PAGING configuration parameter must be set to a valid value to ensure that the SD secondary server starts. Because the paging files grow dynamically as
needed, you should allocate enough disk space to store two times the size of the value specified by the PHYSFILE configuration parameter.

Part VI: Administering 493

https://www.hcltech.com/
https://www.hcltech.com/

Example
In the following example, the files page1 and page2 are set as the buffer paging files for the SD secondary server.

SDS_PAGING /usr/informix/tmp/page1,/usr/informix/tmp/page2

Related reference:
 PHYSFILE configuration parameter

Related information:
 SD secondary server

Copyright© 2020 HCL Technologies Limited

SDS_TEMPDBS configuration parameter

Use the SDS_TEMPDBS configuration parameter to specify information that the shared disk (SD) secondary server uses to dynamically create temporary dbspaces. This
configuration parameter can be specified only on the SD secondary server.

onconfig.std value
Not set. Temporary dbspaces for shared disk secondary servers are not created.

values
A string containing the following values in the following order, separated by commas:
dbspace = The name of the dbspace to create. Must be unique among all existing dbspaces, blobspaces, and sbspaces, including those any temporary spaces that
are inherited from a primary server. The name cannot exceed 128 bytes. It must begin with a letter or underscore and must contain only letters, numbers,
underscores, or the $ character.

dbpath = The path for the dbspace, either a full path name or a relative path name. If you use a relative path name, it must be relative to the directory that was the
current directory when you initialized the database server.

pagesize = An integer representing the page size of the dbspace, in kilobytes. The page size must be between 2 KB and 16 KB and must be a multiple of the default
page size.

offset = An integer equal to or greater than 0 that specifies offset into the disk partition or into the device to reach the initial chunk of the dbspace. The starting
offset plus the chunk size cannot exceed the maximum chunk size. The offset must be a multiple of the page size. The maximum offset is 2 or 4 terabytes,
depending on the platform. By default, the value is in kilobytes. You can designate different units by appending a single character modifier to the value: M or m for
megabytes, G or g for gigabytes, or T or t for terabytes.

size = A positive integer equal to or greater than 1000 kilobytes and a multiple of the page size that specifies the size of the initial chunk of the dbspace. The value
of offset plus the value of size cannot exceed the maximum chunk size. The maximum size of a chunk is equal to 2 147 483 647 pages multiplied by the page size.
By default, the value is in kilobytes. You can designate different units by appending a single character modifier to the value: M or m for megabytes, G or g for
gigabytes, or T or t for terabytes.

separators
Separate each value with a comma. Do not use blank spaces.

takes effect
After you edit your onconfig file and restart the SD secondary server.

Usage
The temporary dbspaces are created, or initialized if the dbspaces existed previously, when the SD secondary server starts. The temporary dbspaces are used for creating
temporary tables. There must be at least one occurrence of the SDS_TEMPDBS configuration parameter in the onconfig file of the SD secondary server for the SD
secondary server to start. You can specify up to 16 SD secondary temporary dbspaces in the onconfig file by using multiple occurrences of the SDS_TEMPDBS
configuration parameter.

For each occurrence of the SDS_TEMPDBS configuration parameter in the onconfig file:

The dbsname value must unique for each server and not shared with any other SD secondary server or the primary server.
The combination of dbspath, pagesize, offset, and size must not cause any overlap with existing chunks or between temporary dbspaces spaces specified by the
SDS_TEMPDBS configuration parameter.
The pagesize value must be the same for each SDS_TEMPDBS configuration parameter value.

The following example shows two entries for the SDS_TEMPDBS configuration parameter:

SDS_TEMPDBS sds_space1,/dev/raw_dev1,2,0,60M
SDS_TEMPDBS sds_space2,/dev/raw_dev2,2,0,80M

If the primary server in a high-availability cluster fails and an SD secondary server takes over as the primary server, then the value set for the SDS_TEMPDBS configuration
parameter on the SD secondary server is used for temporary dbspaces until the server is restarted. You should ensure that the value specified for the SDS_TEMPDBS
configuration parameter on the SD secondary server is different than the value specified on the primary server. After the SD secondary server is restarted, the
DBSPACETEMP configuration parameter is used.

Related information:
 Shared disk secondary servers

Copyright© 2020 HCL Technologies Limited

SDS_TIMEOUT configuration parameter

494 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Use the SDS_TIMEOUT configuration parameter to specify the amount of time in seconds that the primary server in a high-availability cluster will wait for a log-position
acknowledgment to be sent from a shared disk (SD) secondary server.

onconfig.std value
SDS_TIMEOUT 20

if not present
10

values
2 - 2147483647

units
seconds

takes effect
After you edit your onconfig file and restart the database server.
When you reset the SDS_TIMEOUT value dynamically in your onconfig file by running the onmode -wf command.
When you reset the SDS_TIMEOUT value in memory by running the onmode -wm command.

Usage
If no log-position acknowledgment is received from the SD secondary server in the specified amount of time, the primary server will disconnect from the SD secondary
server and continue. After waiting for the number of seconds specified in the SDS_TIMEOUT configuration parameter setting, the primary server will start removing SD
secondary servers, if page flushing has timed out while waiting for an SD secondary server.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Related information:
 Shared disk secondary servers

Copyright© 2020 HCL Technologies Limited

SEC_APPLY_POLLTIME configuration parameter

Use the SEC_APPLY_POLLTIME configuration parameter to control how long log replay thread should poll for new work before yielding.

onconfig.std value
SEC_APPLY_POLLTIME 0

values

Minimum value: (Default) 0
Recommended value for smaller systems (between 1 to 8 CPUVPs): 0
Recommended value for medium systems (between 8 and 16 CPUVPS): 10
Recommended value for larger systems (> 16 CPUVPS): 1000
Maximum value: 5000

units
micro seconds.

takes effect
After you edit your onconfig file and restart the database server.

When you reset the value dynamically in your onconfig file by running the onmode -wf command.

When you reset the value in memory by running the onmode -wm command.

Usage
In micro seconds, controls how long log replay thread should poll for new work before yielding. Use this parameter to reduce thread context switch overhead while
replaying log records. It is recommended to configure poll threads to run on NET VP if SEC_APPLY_POLLTIME value > 0. For more information see, NETTYPE configuration
parameter.

Copyright© 2020 HCL Technologies Limited

SEC_DR_BUFS configuration parameter

Use the SEC_DR_BUFS configuration parameter to control the number of replication buffers to be used for replicating log records to secondary server. Buffer size is same
as LOGBUFF config value.

onconfig.std value
SEC_DR_BUFS 12

values

Minimum value: (Default) 12
Maximum value: 128
Recommended value: Between 12 and 24

Part VI: Administering 495

https://www.hcltech.com/
https://www.hcltech.com/

units
Number of replication buffers. Buffer size is same as LOGBUFF config value.

takes effect
After you edit your onconfig file and restart the database server.

Usage
SEC_DR_BUFS configuration parameter control the number of replication buffers to be used for replicating log records to secondary server. Buffer size is same as
LOGBUFF config value.

Copyright© 2020 HCL Technologies Limited

SEC_LOGREC_MAXBUFS configuration parameter

Use the SEC_LOGREC_MAXBUFS configuration parameter to control the number of log buffers to be used for replaying log records at secondary server. Each log buffer is
of size 16KB.

onconfig.std value
SEC_LOGREC_MAXBUFS 1000

values

Minimum value: (Default) 5 times OFF_RECVRY_THREADS config parameter value
Maximum value: Do not set to more than 2000 buffers
Recommended value: 1000

units
Number of 16KB buffers

takes effect
After you edit your onconfig file and restart the database server.

Usage
SEC_LOGREC_MAXBUFS configuration parameter control the number of log buffers to be used for replaying log records at secondary server.

Copyright© 2020 HCL Technologies Limited

SEC_NONBLOCKING_CKPT configuration parameter

Use the SEC_NONBLOCKING_CKPT configuration parameter to enable non-blocking checkpoint at HDR and RS secondary server.

onconfig.std value
SEC_NONBLOCKING_CKPT 0

values

1 - Enable non-blocking checkpoint at HDR and RS secondary server
0 – (Default) Disable non-blocking checkpoints

units
Not applicable

takes effect
After you edit your onconfig file and restart the database server.

When you reset the value dynamically in your onconfig file by running the onmode -wf command.

When you reset the value in memory by running the onmode -wm command.

Usage
SEC_NONBLOCKING_CKPT configuration parameter controls the checkpoint behavior at HDR and RS secondary server.

When SEC_NONBLOCKING_CKPT configuration parameter is enabled, HDR secondary applies blocking or non-blocking checkpoint exactly like the Primary server.

When SEC_NONBLOCKING_CKPT configuration parameter is enabled, ensure that the size of the physical log is equal to at least 110% of the buffer pool size.

Related reference:
 PHYSFILE configuration parameter

Copyright© 2020 HCL Technologies Limited

496 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

SECURITY_LOCALCONNECTION configuration parameter

Use the SECURITY_LOCALCONNECTION configuration parameter to verify security on local connections by verifying that the ID of the local user who is running a program
is the same ID of the user who is trying to access the database.

onconfig.std value
Not set.

values
0 = No security checking occurs.
1 = IBM® Informix® checks whether the ID of the user who is running the program matches the ID of the user who is trying to connect to the database.

2 = same as 1, plus retrieves the peer port number from the network API and verifies that the connection is coming from the client program. You can only specify
two if your system has SOCTCP or IPCSTR network protocols.

takes effect
After you edit your onconfig file and restart the database server.

Related information:
 Set database server shared-memory configuration parameters

Copyright© 2020 HCL Technologies Limited

SEQ_CACHE_SIZE configuration parameter

Use the SEQ_CACHE_SIZE configuration parameter to specify the maximum number of sequence objects that are cached in memory.

onconfig.std value
SEQ_CACHE_SIZE 10

values
1 - 2147483647

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
When the maximum number of sequence objects are cached, the database server attempts to remove entries for any sequence objects that are no longer referenced.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Copyright© 2020 HCL Technologies Limited

SERVERNUM configuration parameter

The SERVERNUM configuration parameter specifies a relative location in shared memory.

onconfig.std value
SERVERNUM 0

values
0 - 255

takes effect
After you edit your onconfig file and restart the database server.

Usage
The value that you choose must be unique for each database server on your local computer. The value does not need to be unique on your network. Because the value 0 is
included in the onconfig.std file, it is suggested that you choose a value other than 0 to avoid the inadvertent duplication of the SERVERNUM configuration parameter.

Related information:
 Set database server shared-memory configuration parameters

Copyright© 2020 HCL Technologies Limited

SESSION_LIMIT_LOCKS configuration parameter

The SESSION_LIMIT_LOCKS configuration parameter specifies the maximum number of locks available in a session. This limit does not apply to a user who holds
administrative privileges, such as user informix or a DBSA user.

onconfig.std value

Part VI: Administering 497

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

none
if not present

2147483647
values

500 - 2147483647
units

Number of locks in the internal lock table
takes effect

After you edit your onconfig file and restart the database server.

Usage
For massively lock-intensive operations, administrators can set SESSION_LIMIT_LOCKS to reduces the risk of ordinary users in concurrent sessions depleting the lock
resources of the database server.

The database server terminates a transaction that exceeds the limit of the number of locks, puts a message in the database server message log, and triggers the event
alarm 21014.

Important:
In repeatable read isolation level, because each row in the active set requires a lock, be careful about setting too low a limit for locks on the server. Similarly, setting too
small a lock limit can interfere with Enterprise Replication tasks or with cdr commands issued by non-DBSA users.

Related reference:
 tenant create argument: Create a tenant database (SQL Administration API)

tenant update argument: Modify tenant database properties (SQL Administration API)
Related information:

 IFX_SESSION_LIMIT_LOCKS session environment option
Managing tenant databases
Limit session resources

Copyright© 2020 HCL Technologies Limited

SESSION_LIMIT_LOGSPACE configuration parameter

The SESSION_LIMIT_LOGSPACE configuration parameter specifies the maximum amount of log space that a session can use for individual transactions. This limit does
not apply to a user who holds administrative privileges, such as user informix or a DBSA user.

onconfig.std value
0 (off)

if not present
0 (off)

values
5120 - 2147483648

units
KB

takes effect
After you edit your onconfig file and restart the database server.

Usage
The SESSION_LIMIT_LOGSPACE configuration parameter limits how much log space a session can use for each transaction, and can conserve system resources within a
tenant-database environment.

The database server terminates a transaction that exceeds the log space limit, puts a message in the database server message log, and triggers the event alarm 21018.

The session_limit_logspace tenant database property set through the tenant create or tenant update SQL API command takes precedent over the
SESSION_LIMIT_LOGSPACE configuration parameter setting.

Related reference:
 tenant create argument: Create a tenant database (SQL Administration API)

tenant update argument: Modify tenant database properties (SQL Administration API)
Related information:

 Managing tenant databases
Limit session resources

Copyright© 2020 HCL Technologies Limited

SESSION_LIMIT_MEMORY configuration parameter

The SESSION_LIMIT_MEMORY configuration parameter specifies the maximum amount of memory that a session can allocate. This limit does not apply to a user who
holds administrative privileges, such as user informix or a DBSA user.

onconfig.std value
0 (off)

if not present

498 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

0 (off)
values

20480 - 2147483648
units

KB
takes effect

After you edit your onconfig file and restart the database server.

Usage
The SESSION_LIMIT_MEMORY configuration parameter limits how much memory a session can allocate, and can prevent individual sessions from monopolizing system
resources.

The database server terminates a session that exceeds the memory limit, puts a message in the database server message log, and triggers the event alarm 21016.

The session_limit_memory tenant database property set through the tenant create or tenant update SQL API command takes precedent over the
SESSION_LIMIT_MEMORY configuration parameter setting.

Related reference:
 tenant create argument: Create a tenant database (SQL Administration API)

tenant update argument: Modify tenant database properties (SQL Administration API)
Related information:

 Managing tenant databases
Limit session resources

Copyright© 2020 HCL Technologies Limited

SESSION_LIMIT_TEMPSPACE configuration parameter

The SESSION_LIMIT_TEMPSPACE configuration parameter specifies the maximum amount of temporary table space that a session can allocate. This limit does not apply
to a user who holds administrative privileges, such as user informix or a DBSA user.

onconfig.std value
0 (off)

if not present
0 (off)

values
20480 - 2147483648

units
KB

takes effect
After you edit your onconfig file and restart the database server.

Usage
The SESSION_LIMIT_TEMPSPACE configuration parameter limits how much temporary table space a session can allocate, and can conserve system resources within a
tenant-database environment.

The database server terminates a session that exceeds the space limit, puts a message in the database server message log, and triggers the event alarm 21017.

The session_limit_tempspace tenant database property set through the tenant create or tenant update SQL API command takes precedent over the
SESSION_LIMIT_TEMPSPACE configuration parameter setting.

Related reference:
 tenant create argument: Create a tenant database (SQL Administration API)

tenant update argument: Modify tenant database properties (SQL Administration API)
Related information:

 Managing tenant databases
Limit session resources

Copyright© 2020 HCL Technologies Limited

SESSION_LIMIT_TXN_TIME configuration parameter

The SESSION_LIMIT_TXN_TIME configuration parameter specifies the maximum amount of time that a transaction can run in a session. This limit does not apply to a user
who holds administrative privileges, such as user informix or a DBSA user.

onconfig.std value
0 (off)

if not present
0 (off)

values
1 - 2147483647

units
Seconds

Part VI: Administering 499

https://www.hcltech.com/
https://www.hcltech.com/

takes effect
After you edit your onconfig file and restart the database server.

Usage
The SESSION_LIMIT_TXN_TIME configuration parameter limits how much time a transaction can run in a session, and can prevent individual session transactions from
monopolizing the logical log.

The database server terminates a transaction that exceeds the time limit, puts a message in the database server message log, and triggers the event alarm 21019.

The session_limit_txn_time tenant database property set through the tenant create or tenant update SQL API command takes precedent over the
SESSION_LIMIT_TXN_TIME configuration parameter setting.

Related reference:
 tenant create argument: Create a tenant database (SQL Administration API)

tenant update argument: Modify tenant database properties (SQL Administration API)
Related information:

 Managing tenant databases
Limit session resources

Copyright© 2020 HCL Technologies Limited

SHMADD configuration parameter

Use the SHMADD configuration parameter to specify the size of the segments that are dynamically added to the virtual portion of shared memory.

onconfig.std value
Platform dependent

values
32-bit platforms: 1024 - 524288
64-bit platforms: 1024 - 4294967296

units
KB

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
The value of the SHMADD configuration parameter represents the size of the first set of segments that the database server adds to the virtual portion of shared memory
when additional memory is needed. The size of the first virtual shared memory segment is set by the SHMVIRTSIZE configuration parameter. Set the values of the
SHMVIRTSIZE and SHMADD configuration parameters so that a minimal number of segments are added during the normal operation of the database server. In general,
more segments impair performance.

The maximum number of Informix® shared memory segments is 1024. Many shared memory segments might be required if the SHMADD value is low or the database
server has unexpectedly large amounts of activity or memory use. To prevent the database server from reaching the maximum number of shared memory segments, the
size of virtual segments that are added dynamically by the server doubles every 16 virtual segments. It is more efficient to add memory in large segments, but wasteful if
the added memory is not used. Also, the operating system might require you to add memory in a few large segments rather than many small segments.

The following table contains recommendations for setting the initial value of SHMADD.
Table 1. Recommended SHMADD values

Amount of physical memory Recommended SHMADD
value

Less than 256 MB 8192

256 - 512 MB 16,384

Greater than 512 MB 32,768

You can view information about virtual memory segments by running the onstat -g seg command.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

onstat -g seg command: Print shared memory segment statistics
EXTSHMADD configuration parameter
Related information:

 Virtual portion of shared memory
Monitor shared-memory segments

Copyright© 2020 HCL Technologies Limited

SHMBASE configuration parameter

Use the SHMBASE configuration parameter to specifiy the base address where shared memory is attached to the memory space of a virtual processor.

500 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

onconfig.std value
Platform dependent

values
Positive integers

units
Address

takes effect
After you edit your onconfig file and restart the database server.

Usage
The addresses of the shared-memory segments start at the SHMBASE value and grow until the upper-bound limit, which is platform specific.

Do not change the value of SHMBASE. The onconfig.std value for SHMBASE depends on the platform and whether the processor is 32-bit or 64-bit. For information on
which SHMBASE value to use, see the machine notes.

Related reference:
 onstat -g seg command: Print shared memory segment statistics

Related information:
 Set operating-system shared-memory configuration parameters

Copyright© 2020 HCL Technologies Limited

SHMNOACCESS configuration parameter

The SHMNOACCESS configuration parameter specifies a virtual memory address range to not use to attach shared memory.

onconfig.std values
On UNIX: None
On Windows: #SHMNOACCESS 0x70000000-0x7FFFFFFF, and this value is commented out in the onconfig.std template file.

values
1 - 10 address ranges

separators
Comma

takes effect
After you edit your onconfig file and restart the database server.

Usage
The SHMNOACCESS configuration parameter is used to avoid specific range process addresses, which in turn avoids conflicts with operating system libraries.

Each address in each range must start in hexadecimal format. Each address in a range must be separated by a hyphen and each range must be separated by a comma, as
the following example shows:

SHMNOACCESS 0x70000000-0x75000000,
0x7A000000-0x80000000

Copyright© 2020 HCL Technologies Limited

SHMTOTAL configuration parameter

Use the SHMTOTAL configuration parameter to specify the total amount of shared memory (resident, virtual, communications, and virtual extension portions) to be used
by the database server for all memory allocations. The onconfig.std value of 0 implies that no limit on memory allocation is stipulated.

onconfig.std value
SHMTOTAL 0

values
0 = (no specific limit) or any integer greater than or equal to 1

units
Kilobytes

takes effect
After you edit your onconfig file and restart the database server.

Usage
You can use the SHMTOTAL configuration parameter to limit the demand for memory that the database server can place on your system. However, applications might fail if
the database server requires more memory than the limit imposed by SHMTOTAL. When this situation occurs, the database server writes the following message in the
message log:

size of resident + virtual segments xx + yy > zz total allowed by
configuration parameter SHMTOTAL

This message includes the following values.

Value

Part VI: Administering 501

https://www.hcltech.com/
https://www.hcltech.com/

Description
xx

Current® size of resident segments
yy

Current size of virtual segments
zz

Total shared memory required

If you enabled the LOW_MEMORY_MGR configuration parameter and are configuring the server to use a percentage of the SHMTOTAL configuration parameter value for
automatic low memory management start and stop thresholds, the SHMTOTAL configuration parameter must not be set to 0 (unilmited).

Attention: Changing the value of the SHMTOTAL configuration parameter value can cause the configuration of automatic low memory management to become invalid,
forcing the database server to use the default settings.
UNIX Only:
Set the operating-system parameters for maximum shared-memory segment size, typically SHMMAX, SHMSIZE, or SHMALL, to the total size that your database server
configuration requires. For information about the amount of shared memory that your operating system allows, see the machine notes.

If you have more physical memory than the value specified in the machine notes, and the memory is to be used by IBM® Informix®, you can increase the value of the
SHMALL parameter to as much 90 percent of the physical memory that is specified for your computer. It is recommended that you do not meet or exceed the available
RAM.

Related reference:
 DS_TOTAL_MEMORY configuration parameter

LOW_MEMORY_MGR configuration parameter
scheduler lmm enable argument: Specify automatic low memory management settings (SQL administration API)
Related information:

 Shared memory
Shared-memory size

Copyright© 2020 HCL Technologies Limited

SHMVIRT_ALLOCSEG configuration parameter

Use the SHMVIRT_ALLOCSEG configuration parameter to specify a threshold at which Informix® should allocate a new shared memory segment and the level of the event
alarm activated if the server cannot allocate the new memory segment.

onconfig.std value
SHMVIRT_ALLOCSEG 0,3

values
A numeric value optionally followed by a comma and another numeric value.
threshold = A number that indicates when the database server should add a shared memory segment:

0 = Default. The database server allocated shared memory segments when needed.
.40 - .99 = The percentage of memory used before a segment is added.
256 - 10000000 = The number of kilobytes remaining before a segment is added.

alarm_level: Optional. An integer value from 1 to 5 that specifies the level of the event alarm to raise: 1 = Not noteworthy, 2 = Information, 3 = Attention (Default), 4
= Emergency, 5 = Fatal. The event alarm has a class ID of 24 and an event ID of 24003.

separator
Separate the values with a comma.

takes effect
After you edit your onconfig file and restart the database server.

Usage
Set the SHMVIRT_ALLOGSEG configuration parameter to proactively add shared memory segments instead of waiting until the database server automatically adds shared
memory segments.

The event alarm repeats every thirty minutes if a new memory segment cannot be allocated.

Related reference:
 Event Alarm Parameters

Related information:
 The SHMVIRT_ALLOCSEG configuration parameter and memory utilization

Copyright© 2020 HCL Technologies Limited

SHMVIRTSIZE configuration parameter

Use the SHMVIRTSIZE configuration parameter to specify the initial size of a virtual shared-memory segment.

onconfig.std value
Platform dependent

if not present
If SHMADD is present: the value of the SHMADD configuration parameter.
If SHMADD is not present: 8192.

502 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

values
32-bit platforms: Positive integer with a maximum value of 2 GB
64-bit platforms: Positive integer with a maximum value of 4 TB

The maximum value might be less on some platforms due to operating-system limitations. For the actual maximum value for your UNIX platform, see the machine
notes.

units
KB

takes effect
After you edit your onconfig file and restart the database server.

Usage
To determine the appropriate value for the SHMVIRTSIZE configuration parameter, use the following algorithm to determine the size of the virtual portion of shared
memory:

shmvirtsize = fixed overhead + ((stack size + heap) * number of users)

Variable Value to use

fixed overhead This includes the size of the AIO vectors, sort memory, dbspace backup buffers, dictionary size, size of stored-procedure cache, histogram pool, other
pools, and other overhead.
To obtain an estimate of the fixed overhead, start the database server and see how many additional memory segments are allocated, if any. The
number of users that you have on the system when you start the server, impacts the allocation of memory segments. When you start the server:

If the number of users is typical for your environment, then add the size of the memory segments to the current value for the SHMVIRTSIZE
configuration parameter and restart the server.
If the number of users is far less than what is typical for your environment, you must calculate the appropriate overhead value to use for the
memory segments. You can determine how many memory segments each user consumes by dividing the number of additional memory
segments that are allocated when you started the server by the number of users that you had on the server then. Multiply the value for the
memory segments for each user by the number of users that you typically have on the system. Add this calculated value for the memory
segments to the current value for SHMVIRTSIZE configuration parameter and restart the server.

stack size On 32-bit systems, use 32 KB for the stack size. Typically on 64-bit systems, you use 64 KB for the stack size. However, some 64-bit systems use a
different value.

heap Use 30 KB per user.

number of users Use the maximum number of concurrent user sessions that you anticipate on the server.

If possible, create a virtual portion of shared memory of a size that is more than you require for your daily processing.

Use the onstat -g seg command to determine peak usage and lower the value of the SHMVIRTSIZE configuration parameter accordingly.

Related reference:
 DS_TOTAL_MEMORY configuration parameter

onstat -g seg command: Print shared memory segment statistics
STACKSIZE configuration parameter
LOW_MEMORY_RESERVE configuration parameter
Related information:

 Virtual portion of shared memory
Effect of configuration on memory utilization

Copyright© 2020 HCL Technologies Limited

SINGLE_CPU_VP configuration parameter

The SINGLE_CPU_VP configuration parameter specifies whether or not the database server is running with only one CPU virtual processor.

onconfig.std value
SINGLE_CPU_VP 0

values
0 = running with multiple CPU VPs
1 = running with one CPU VP

takes effect
When the database server is shut down and restarted

Usage
Disable the SINGLE_CPU_VP configuration parameter by setting it to 0 if you want the number of CPU VPs to be automatically increased when the database server starts.

Setting SINGLE_CPU_VP to nonzero allows the database server to use optimized code based on the knowledge that only one CPU virtual processor is running. It enables
the database server to bypass many of the mutex calls that it must use when it runs multiple CPU virtual processors.

It is strongly recommended that you set this parameter when the database server will run only one CPU virtual processor. Depending on the application and workload,
setting this parameter can improve performance by up to 10 percent.

If you set SINGLE_CPU_VP to nonzero and try to add a CPU virtual processor, you receive one of the following messages:

Part VI: Administering 503

https://www.hcltech.com/

onmode: failed when trying to change the number of classname VPs by n.
onmode: failed when trying to change the number of cpu virtual processors by n.

If you set SINGLE_CPU_VP to nonzero and then attempt to bring up the database server with VPCLASS cpu, num set to a value greater than 1, you receive the following
error message, and the database server initialization fails:

Cannot have SINGLE_CPU_VP non-zero and CPU VPs greater than 1.

VPCLASS Values and the SINGLE_CPU_VP Configuration Parameter
 Informix treats user-defined virtual-processor classes as if they were CPU virtual processors. If you set the SINGLE_CPU_VP configuration parameter to a nonzero

value, you cannot create any user-defined virtual-processor classes.

Related information:
 Run on a single-processor computer

Copyright© 2020 HCL Technologies Limited

VPCLASS Values and the SINGLE_CPU_VP Configuration Parameter

Informix® treats user-defined virtual-processor classes as if they were CPU virtual processors. If you set the SINGLE_CPU_VP configuration parameter to a nonzero value,
you cannot create any user-defined virtual-processor classes.

Using a user-defined VPCLASS
If you set this configuration parameter to a nonzero value and then attempt to bring up the database server with a user-defined VPCLASS, you receive the following error
message, and the database server initialization fails:

oninit: Cannot have SINGLE_CPU_VP non-zero and user-defined VP classes

Using the cpu VPCLASS
If you set this configuration parameter to a nonzero value and then attempt to bring up the database server with the VPCLASS cpu value for num set to a value greater than
1, you receive the following error message, and the database server initialization fails:

Cannot have SINGLE_CPU_VP non-zero and CPU VPs greater than 1.

Copyright© 2020 HCL Technologies Limited

SMX_COMPRESS configuration parameter

Use the SMX_COMPRESS configuration parameter to specify the level of compression that the database server uses before sending data from the source database server
to the target database server.

Network compression saves network bandwidth over slow links but uses more CPU to compress and decompress the data. The SMX_COMPRESS configuration parameter
values of the two servers are compared and changed to the higher compression values.

onconfig.std value
SMX_COMPRESS 0

values
-1 = The source database server never compresses the data, regardless of whether or not the target site uses compression.
0 = The source database server compresses the data only if the target database server expects compressed data.

1 = The database server performs a minimum amount of compression.

9 = The database server performs the maximum possible compression.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Note: From 14.10xC6 onwards, Enterprise Replication uses SMX connection for communicating with peer servers.
Related reference:

 onmode -wf, -wm: Dynamically change certain configuration parameters

Copyright© 2020 HCL Technologies Limited

SMX_NUMPIPES configuration parameter

The SMX_NUMPIPES configuration parameter sets the number of pipes for server multiplexer group (SMX) connections.

onconfig.std value
SMX_NUMPIPES 1

values
1 - 32767 = The number of network pipes for SMX connections.

504 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
High-availability clusters and parallel sharded queries use SMX connections. If the lag time between servers is too long, increase the number of SMX pipes.

Note:
From 14.10xC6 onwards, Enterprise Replication uses SMX connection for communicating with peer servers.

Copyright© 2020 HCL Technologies Limited

SMX_PING_INTERVAL configuration parameter

Use the SMX_PING_INTERVAL configuration parameter to specify the number of seconds in a timeout interval, where a secondary server waits for activity from the
primary server in a Server Multiplexer Group (SMX) connection.

onconfig.std value
SMX_PING_INTERVAL 10

values
0 = Wait indefinitely.
A positive integer between 1 and 60, inclusive. = The number of seconds in the timeout interval.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
After you run the SQL administration API task() or admin() function with the "onmode","-wf SMX_PING_INTERVAL=value" or "onmode","-wm
SMX_PING_INTERVAL=value" argument.

Usage
If the secondary server does not receive any message during the length of time that is specified by the SMX_PING_INTERVAL configuration parameter and after the
number of intervals that are specified by the SMX_PING_RETRY configuration parameter, the secondary server prints an error message to the online.log and closes the
SMX connection. If an SMX timeout message is in the online.log, you can increase the SMX_PING_INTERVAL value, the SMX_PING_RETRY value, or both of these values.

This configuration parameter applies only to secondary servers. If you set SMX_PING_INTERVAL on the primary server, it becomes effective if the primary server becomes
a secondary server.

If the onconfig file of a secondary server in a high-availability cluster has the following entries, the secondary server waits a total of 180 seconds for activity from the
primary server. If there is no activity from the primary server during those 180 seconds, the secondary server closes the SMX connection and writes an error message to
the online log.

SMX_PING_INTERVAL 30
SMX_PING_RETRY 6

Note: From 14.10xC6 onwards, Enterprise Replication uses SMX connection for communicating with peer servers.
Related reference:

 SMX_PING_RETRY configuration parameter
Related information:

 Set the wait time for SMX activity between servers

Copyright© 2020 HCL Technologies Limited

SMX_PING_RETRY configuration parameter

Use the SMX_PING_RETRY configuration parameter to specify the maximum number of times that a secondary server repeats the timeout interval that is specified by the
SMX_PING_INTERVAL configuration parameter if a response from the primary server is not received. If the maximum number is reached without a response, the
secondary server prints an error message in the online.log and closes the Server Multiplexer Group (SMX) connection.

onconfig.std value
SMX_PING_RETRY 6

values
Any positive integer = The maximum number of times to repeat the timeout interval.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.
After you run the SQL administration API task() or admin() function with the After you run the SQL administration API task() or admin() function with the
"onmode","-wf SMX_PING_RETRY=value" or "onmode","-wm SMX_PING_RETRY=value" argument.

Usage

Part VI: Administering 505

https://www.hcltech.com/
https://www.hcltech.com/

If the secondary server does not receive any message during the length of time that is specified by the SMX_PING_INTERVAL configuration parameter and after the
number of intervals that are specified by the SMX_PING_RETRY configuration parameter, the secondary server prints an error message to the online.log and closes the
SMX connection. If an SMX timeout message is in the online.log, you can increase the SMX_PING_INTERVAL value, the SMX_PING_RETRY value, or both of these values.

This configuration parameter applies only to secondary servers. If you set SMX_PING_RETRY on the primary server, it becomes effective if the primary server becomes a
secondary server.

If the onconfig file of a secondary server in a high-availability cluster has the following entries, the secondary server waits a total of 60 seconds for activity from the
primary server. If there is no activity from the primary server during those 60 seconds, the secondary server closes the SMX connection and writes an error message to the
online log.

SMX_PING_INTERVAL 12
SMX_PING_RETRY 5

Note: From 14.10xC6 onwards, Enterprise Replication uses SMX connection for communicating with peer servers.
Related reference:

 SMX_PING_INTERVAL configuration parameter
Related information:

 Set the wait time for SMX activity between servers

Copyright© 2020 HCL Technologies Limited

SP_AUTOEXPAND configuration parameter

Use the SP_AUTOEXPAND configuration parameter to enable or disable the automatic creation or extension of chunks.

onconfig.std value
SP_AUTOEXPAND 1

values
0 = The automatic creation or extension of chunks is not enabled.
1 = The automatic creation or extension of chunks is enabled.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
When the SP_AUTOEXPAND configuration parameter is enabled and a storage container such as a dbspace has a defined create size or extend size that is not zero, the
container is auto-expandable.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Related information:
 Automatic space management

Copyright© 2020 HCL Technologies Limited

SP_THRESHOLD configuration parameter

Use the SP_THRESHOLD configuration parameter to define the minimum amount of free kilobytes that can exist in a storage space before IBM® Informix® automatically
runs a task to expand the space, either by extending an existing chunk in the space or by adding a new chunk.

onconfig.std value
SP_THRESHOLD 0

values
0 = No threshold. The trigger that runs the storage space monitoring (mon_low_storage) task for adding space when space is below the threshold is disabled.
1 - 50 = A threshold that is a percentage of free kilobytes in a storage space.

If the value is 50 or below, interprets the value as a percentage (for example, 10 = 10 percent and 2.84 = 2.84 percent).

1000 to the maximum size of a chunk = A threshold that is either 1000 kilobytes or the maximum size of the chunk on the current platform.

If the value is 1000 or higher, interprets the value as a specific number of kilobytes.

Values 50 - 1000 are not valid.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
When you set the SP_THRESHOLD configuration parameter to a valid value that is greater than 0, the built-in Scheduler task, mon_low_storage, runs automatically when
the free space in a dbspace, temporary dbspace, sbspace, temporary sbspace, or blobspace falls below the threshold.

506 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Suppose the value of the SP_THRESHOLD configuration parameter value is 5.5, which the server interprets as 5.5 percent. If a space runs low on free pages, and the free
space percentage falls below 5.5 percent and remains below that level until the mon_low_storage task runs next, that task will attempt to expand the space. If the
SP_THRESHOLD configuration parameter is set to 50000 and a space has fewer than 50000 free kilobytes, that space will be expanded the next time mon_low_storage
task runs.

A value of 0 turns off the mon_low_storage task, and prevents the server from extending any space. However, a value of 0 does not affect the ability of the server to
extend a space when all free pages are depleted and more are needed.

The value specified in the SP_THRESHOLD configuration parameter applies to all spaces belonging to the server.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Related information:
 Automatic space management

Copyright© 2020 HCL Technologies Limited

SP_WAITTIME configuration parameter

Use the SP_WAITTIME configuration parameter to specify the maximum number of seconds that a thread waits for a dbspace, temporary dbspace, plogspace, sbspace,
temporary sbspace, or blobspace space to expand before returning an out-of-space error.

onconfig.std value
SP_WAITTIME 30

values
0 - 2147483647

units
seconds

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
The time that the server uses to automatically add or expand a chunk can vary widely, depending on various factors such as the size of the chunk, the speed of the
associated disk drives, and the load on the system. When IBM® Informix® automatically adds or expands a chunk to prevent free space from falling below the threshold
specified by the SP_THRESHOLD configuration parameter, forces threads that need the space to wait until it is available. You can change the value of the SP_WAITTIME
configuration parameter if you want to change the maximum amount of time that the thread will wait for more space.

A thread will wait for a storage space to expand only if the storage pool contains entries. A thread will not wait if the storage pool is empty.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Related information:
 Automatic space management

Copyright© 2020 HCL Technologies Limited

SQL_LOGICAL_CHAR configuration parameter

Use the SQL_LOGICAL_CHAR configuration parameter to enable or disable the expansion of size specifications in declarations of built-in character data types.

onconfig.std value
SQL_LOGICAL_CHAR OFF (= interpret size specifications in units of bytes)

values
OFF = No expansion of declared sizes.
1 = No expansion of declared sizes.

2 = Use 2 as the expansion factor for declared sizes.

3 = Use 3 as the expansion factor for declared sizes.

4 = Use 4 as the expansion factor for declared sizes.

ON = Use M as the expansion factor, where M is the maximum length in bytes that any logical character requires in the code set of the current database. Depending
on the DB_LOCALE setting, M has an integer range from 1 (in single-byte locales) up to 4.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage

Part VI: Administering 507

https://www.hcltech.com/
https://www.hcltech.com/

For applications that are developed in single-byte locales, but deployed in multibyte locales, this feature can reduce the risk of multibyte logical characters being
truncated during data entry operations.

In a multibyte code set, such as UTF-8 or the multibyte code sets for some East Asian languages, a single logical character can require more than one byte of storage. The
setting of this parameter can instruct the SQL parser to apply logical-character semantics to declarations of these built-in character data types:

BSON
CHAR
CHARACTER
CHARACTER VARYING
JSON
LVARCHAR
NCHAR
NVARCHAR
VARCHAR
DISTINCT types that declare any of these data types as their base types
ROW types (named and unnamed) that include fields of these data types
Collection types (LIST, MULTISET, or SET) that include these types as elements.

The setting that you specify for this parameter must be one of the following values:

Whether the SQL_LOGICAL_CHAR configuration parameter is set to enable or disable the expansion of declared storage sizes, its setting specifies how data type
declarations are interpreted for all sessions of the IBM® Informix® instance.

Automatic Resizing of the Expansion Factor
When SQL_LOGICAL_CHAR is set to a valid digit, and the current session creates a database, compares the SQL_LOGICAL_CHAR value with the maximum number of
bytes that any logical character will use for the code set of the database.

If the SQL_LOGICAL_CHAR setting is greater than that maximum number of bytes, the database uses the maximum value for the locale as the new expansion factor,
overriding what the configuration file specifies. The SQL_LOGICAL_CHAR setting in the configuration file remains unchanged, and continues to act as the default
expansion factor for other user databases.

Similarly, if the SQL_LOGICAL_CHAR value for a session is automatically reset to a digit, as described above, but the same session subsequently connects to another
database whose locale uses a code set in which a logical character requires a larger storage size than the current expansion factor, uses the maximum number of bytes for
the new code set as the new expansion factor while the user session is connected to that database, rather than using the current setting of SQL_LOGICAL_CHAR.

Automatic resetting of the expansion factor to match the largest logical character size in the code set that DB_LOCALE specifies at connection time also occurs when
SQL_LOGICAL_CHAR is set to ON, but the effects of the ON setting are not identical to the database server behavior when SQL_LOGICAL_CHAR is set to a digit (1, 2, 3, or
4) in two ways:

The expansion factor can be automatically reset to a smaller value if ON is the SQL_LOGICAL_CHAR setting.
There is no difference between SQL_LOGICAL_CHAR = 4 and SQL_LOGICAL_CHAR = ON.

You must set SQL_LOGICAL_CHAR to ON, rather than to a digit, if you want a smaller expansion factor when the current session connects to a database whose largest
logical character in the DB_LOCALE code set requires a smaller number of bytes than the current SQL_LOGICAL_CHAR setting. The effective expansion factor will always
be less than or equal to the maximum character size for a locale.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Related information:
 SYSTABLES

Single-byte and multi-byte characters and locales
Data definition statements

Copyright© 2020 HCL Technologies Limited

SQLTRACE configuration parameter

Use the SQLTRACE parameter to control the startup environment of SQL tracing.

onconfig.std value
On UNIX: Not set. SQL tracing is not enabled.
On Windows: #SQLTRACE level=low,ntraces=1000,size=2,mode=global

values
See the Usage section.

takes effect
After you edit your onconfig file and restart the database server.
After you run the SQL administration API task() or admin() function with the set sql tracing argument.

Usage
Remove the # symbol from the onconfig value to retain basic information, up to 2 KB in size, about the last 1000 SQL statements that were run by any user. You can
customize the scope of the SQL tracing information by adjusting the field values of the SQLTRACE configuration parameter.

Syntax for the SQLTRACE configuration parameter

>>-SQLTRACE--+-------------------------+------------------------>
 | .-low----. |

508 Part VI: Administering

https://www.hcltech.com/

 '-level--=--+-medium-+--,-'
 +-high---+
 '-off----'

>--+----------------------------------+------------------------->
 | .-1000----------. |
 '-ntraces--=--+-number_traces-+--,-'

>--+-----------------------------+--+---------------------+----><
 | .-2-----------. | | .-global-. |
 '-size--=--+-buffer_size-+--,-' '-mode--=--+-user---+-'

Table 1. Options for the SQLTRACE configuration parameter value

Field Values

level Amount of information traced:

Low = Default. Captures statement statistics, statement text, and statement iterators.
Medium = Captures all of the information included in low-level tracing, plus table names, the database name, and stored
procedure stacks.
High = Captures all of the information included in medium-level tracing, plus host variables.
Off = Specifies no SQL tracing.

ntraces The number_traces value is the number of SQL statements to trace before reusing the resources. Default is 1000. The range is
500 - 2147483647.

size The buffer_size value is the maximum size of variable length data to be stored, in KB. Default is 2. The range is 1 -100. If this
buffer size is exceeded, the database server discards saved data.

mode Scope of tracing performed:

Global = Default. All users.
User = Users who have tracing enabled by an SQL administration API task() or admin() function. Specify this mode if
you want to get a sample of the SQL that a small set of users is running.

The onstat -g his command displays SQL trace information.

Related reference:
 onstat -g his command: Print SQL trace information

set sql tracing argument: Set global SQL tracing (SQL administration API)
Related information:

 Specifying startup SQL tracing information by using the SQLTRACE configuration parameter

Copyright© 2020 HCL Technologies Limited

SSL_KEYSTORE_LABEL configuration parameter

Use the SSL_KEYSTORE_LABEL configuration parameter to specify the label of the server digital certificate used in the keystore database, a protected database that
stores SSL keys and digital certificates.

onconfig.std value
Not set.

values
Up to 512 characters for the label of the database server certificate used in Secure Sockets Layer (SSL) protocol communications

takes effect
After you edit your onconfig file and restart the database server.

Usage
When setting up the database server keystore that contains the digital key and certificates for SSL communication, the digital certificate of the database server is given a
label (i.e. a name) in the keystore. Use this label as the value for the SSL_KEYSTORE_LABEL parameter.

For more information on the keystore for SSL communication and configuration parameters that you need to set, see the IBM® Informix Security Guide.

Related information:
 Secure sockets layer protocol

Copyright© 2020 HCL Technologies Limited

STACKSIZE configuration parameter

Use the STACKSIZE configuration parameter to specify the stack size for the database server user threads.

onconfig.std value
STACKSIZE 32 for 32-bit database servers
STACKSIZE 64 for 64-bit database servers

values

Part VI: Administering 509

https://www.hcltech.com/
https://www.hcltech.com/

32 through limit determined by the database server configuration and the amount of memory available
units

Kilobytes
takes effect

After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
The value of STACKSIZE does not have an upper limit, but setting a value that is too large wastes virtual memory space and can cause swap-space problems.

For 32-bit platforms, the default STACKSIZE value of 32 kilobytes is sufficient for nonrecursive database activity. For 64-bit platforms, the recommended STACKSIZE
value is 64 kilobytes. When the database server performs recursive database tasks, as in some SPL routines, for example, it checks for the possibility of stack-size
overflow and automatically expands the stack.

User threads execute user-defined routines. To increase the stack size for a particular routine, use the stack modifier on the CREATE FUNCTION statement.
Warning: Setting the value of STACKSIZE too low can cause stack overflow, the result of which is undefined but usually undesirable.
Related reference:

 onmode -wf, -wm: Dynamically change certain configuration parameters
SHMVIRTSIZE configuration parameter
Related information:

 Stacks
INFORMIXSTACKSIZE environment variable
CREATE FUNCTION statement

Copyright© 2020 HCL Technologies Limited

STATCHANGE configuration parameter

Use the STATCHANGE configuration parameter to specify a positive integer for a global percentage of a change threshold for the server to use to determine if distribution
statistics qualify for an update when the automatic mode for UPDATE STATISTICS operations is enabled.

onconfig.std value
STATCHANGE 10

values
0 - 100

units
percentage of a change threshold

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
The database server uses the value of the STATCHANGE configuration parameter when the AUTO_STAT_MODE configuration parameter, the AUTO_STAT_MODE session
environment variable, or the AUTO keyword of the UPDATE STATISTICS statement has enabled the automatic mode for UPDATE STATISTICS operations.

The STATCHANGE setting specifies a change threshold for the database server to use to determine if distribution statistics qualify for an update when the automatic mode
for UPDATE STATISTICS operations is enabled. When this mode is enabled, the UPDATE STATISTICS statement compares the STATCHANGE setting with the percentage of
rows that have changed in each table or fragment since the current data distributions were calculated, and selectively updates only the missing or stale distribution
statistics for each table or fragment within the scope of the UPDATE STATISTICS statement.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

AUTO_STAT_MODE configuration parameter
Related information:

 Statistics options of the CREATE TABLE statement

Copyright© 2020 HCL Technologies Limited

STMT_CACHE configuration parameter

Use the STMT_CACHE configuration parameter to determine whether the database server uses the SQL statement cache.

onconfig.std value
STMT_CACHE 0

values
0 = SQL statement cache not used (equivalent to onmode -e OFF).
1 = SQL statement cache enabled, but user sessions do not use the cache. Users use the cache only if they set the environment variable STMT_CACHE to 1 or
execute the SQL statement SET STATEMENT CACHE ON.

2 = SQL statement cache turned on. All statements are cached. To turn off statement caching, set the environment variable STMT_CACHE to 0 or execute the SQL
statement SET STATEMENT CACHE OFF.

510 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
You can enable the SQL statement cache in one of two modes:

Always use the SQL statement cache unless a user explicitly specifies not to use it. Set the STMT_CACHE configuration parameter to 2 or onmode -e ON.
Use the SQL statement cache only when a user explicitly specifies to use it. Set the STMT_CACHE configuration parameter to 1 or onmode -e ENABLE.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

onmode -e: Change usage of the SQL statement cache
Related information:

 STMT_CACHE environment variable
Using the SQL statement cache

Copyright© 2020 HCL Technologies Limited

STMT_CACHE_HITS configuration parameter

Use the STMT_CACHE_HITS configuration parameter to specify the number of hits (references) to a statement before it is fully inserted in the SQL statement cache.

onconfig.std value
STMT_CACHE_HITS 0

values
0 = Fully insert all qualified statements in the SQL statement cache.
>0 = The first time a user issues a unique statement, the database server inserts a key-only entry in the cache that identifies the statement. Subsequent identical
statements increment the hit count of the key-only cache entry. When the hit count of the key-only cache entry reaches the specified number of hits, the database
server fully inserts the statement in the cache. Set hits to 1 or more to exclude ad hoc queries from entering the cache.

units
Integer

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

onmode -W: Change settings for the SQL statement cache
onstat -g ssc command: Print SQL statement occurrences
Related information:

 Number of SQL statement executions

Copyright© 2020 HCL Technologies Limited

STMT_CACHE_NOLIMIT configuration parameter

Use the STMT_CACHE_NOLIMIT configuration parameter to control whether to insert qualified statements into the SQL statement cache.

onconfig.std value
STMT_CACHE_NOLIMIT 0

if not present
1

values
0 = Prevents statements from being inserted in the cache. The cache can grow beyond the size limit if most of the statements in the cache are currently in use,
because the cache cleaning cannot catch up with the insert rate. If you are concerned about memory usage, turn off STMT_CACHE_NOLIMIT to prevent the
database server from allocating a large amount of memory for the cache.
1 = Always insert statements in the SQL statement cache regardless of the cache size.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

onmode -W: Change settings for the SQL statement cache
onstat -g ssc command: Print SQL statement occurrences
Related information:

 Number of SQL statement executions

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 511

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

STMT_CACHE_NUMPOOL configuration parameter

Use the STMT_CACHE_NUMPOOL configuration parameter to specify the number of memory pools for the SQL statement cache. To obtain information about these
memory pools, use onstat -g ssc pool.

Because the database server does not insert all statements that allocate memory from the memory pools in the cache, the cache size might be smaller than the total size
of the memory pools.

onconfig.std value
STMT_CACHE_NUMPOOL 1

values
1 - 256

units
Positive integer

takes effect
After you edit your onconfig file and restart the database server.

Related reference:
 onstat -g ssc command: Print SQL statement occurrences

Related information:
 Number of SQL statement executions

Copyright© 2020 HCL Technologies Limited

STMT_CACHE_QUERY_PLAN configuration parameter

Use the STMT_CACHE_QUERY_PLAN configuration parameter to produce a query plan from any query that exists in the Statement Cache.

onconfig.std value
STMT_CACHE_QUERY_PLAN

values
0 = Disabled.
1 = Enabled

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
You can use STMT_CACHE_QUERY_PLAN to enable SQL statement cache to hold query plan for each cached statement.

Copyright© 2020 HCL Technologies Limited

STMT_CACHE_SIZE configuration parameter

Use the STMT_CACHE_SIZE configuration parameter to specify the size of the SQL statement caches in kilobytes. The new cache size takes effect the next time a
statement is added to a cache.

onconfig.std value
STMT_CACHE_SIZE 512

values
Positive integer

units
Kilobytes

takes effect
After you edit your onconfig file and restart the database server.

Related information:
 Monitoring and tuning the size of the SQL statement cache

Copyright© 2020 HCL Technologies Limited

STOP_APPLY configuration parameter

Use the STOP_APPLY configuration parameter to stop an RS secondary server from applying log files received from the primary server.

onconfig.std value
STOP_APPLY 0

default value

512 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

0
values

0 = Apply logs
1 = Stop applying logs immediately

YYYY:MM:DD-hh:mm:ss = Stop the log apply at a specified time, where:

YYYY = Year
MM = Month
DD = Day
hh = Hour (24-hour notation)
mm = Minute
ss = Second

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
Stopping the application of log files allows you to recover quickly from erroneous database modifications by restoring the data from the RS secondary server. You can
configure the server to either stop the application of logs immediately, or at a specified point in time. When setting the value of STOP_APPLY you must also set
LOG_STAGING_DIR. If STOP_APPLY is configured and LOG_STAGING_DIR is not set to a valid and secure directory, the server cannot be initialized.

Log files are stored in binary format in a directory specified by the LOG_STAGING_DIR configuration parameter. You must specify a valid and secure location for the log
files.

To see information about the data being sent to the log-staging directory set for a RS secondary server, run the onstat -g rss verbose command on the RS secondary
server.

If the write to the staging file fails, the RS secondary server raises event alarm 40007.

The time value specified for the STOP_APPLY configuration parameter is assumed to be in the same timezone as the RS secondary server.

The dbexport utility cannot support write operations on an updatable secondary server unless the STOP_APPLY parameter is set. (Besides STOP_APPLY, the
UPDATABLE_SECONDARY and USELASTCOMMITTED configuration parameters must also be set to enable write operations by dbexport on a secondary data replication
server.)

If a remote stand-alone secondary (RSS) server has its STOP_APPLY configuration parameter set to a value other than 0, that server cannot use cluster transaction
coordination.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

DELAY_APPLY Configuration Parameter
UPDATABLE_SECONDARY configuration parameter
CLUSTER_TXN_SCOPE configuration parameter
LOG_STAGING_DIR configuration parameter
onstat -g cluster command: Print high-availability cluster information
Related information:

 CLUSTER_TXN_SCOPE session environment option

Copyright© 2020 HCL Technologies Limited

STORAGE_FULL_ALARM configuration parameter

Use the STORAGE_FULL_ALARM configuration parameter to configure the frequency and severity of messages and alarms when storage spaces become full.

onconfig.std value
STORAGE_FULL_ALARM 600,3

values
seconds = 0 (off) or a positive integer indicating the number of seconds between notifications.
severity_level = 0 (no alarms) or 1 - 5

units
seconds,severity_level

takes effect
After you edit your onconfig file and restart the database server.

Usage
When a storage space, such as a dbspace, sbspace, blobspace, or tblspace, or a partition becomes full, an alarm is raised and a message is sent to the online message log.
You can specify the number of seconds between notifications with the first value of this parameter. You can specify the lowest severity for event alarms to be returned.
Setting a specific severity prevents events that have a lower severity from being raised. But events that have the same or greater severity as the severity specified are
raised. You can prevent alarms when storage spaces become full by setting this parameter to 0.

Regardless of the value of STORAGE_FULL_ALARM, messages are sent to the online message log when storage spaces or partitions become full.

Related reference:

Part VI: Administering 513

https://www.hcltech.com/

Event Alarm Parameters
Related information:
Monitor storage spaces

Copyright© 2020 HCL Technologies Limited

SYSALARMPROGRAM configuration parameter

Use the SYSALARMPROGRAM configuration parameter to specify the full path name of the evidence.sh script. The database server executes evidence.sh when a database
server failure occurs. You can use the output from the evidence.sh script to diagnose the cause of a database server failure.

onconfig.std value

On UNIX: $INFORMIXDIR/etc/evidence.sh
On Windows: Not set. (Commented out.) Listed as $INFORMIXDIR\etc\evidence.bat

values
pathname = Full path name of the evidence.sh script.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
On Windows, you must enable command extensions for evidence.bat to successfully complete. You can enable and disable the extensions for the Command Prompt you
are working in by issuing the following commands:

Enable: cmd /x
Disable: cmd /y

You can also enable and disable command extensions from the Windows XP registry:
Table 1. Enabling command extensions from the

Windows registry

Attribute Value

Hive HKEY_CURRENT_USER

Key Software\Microsoft\Command Processor

Name EnableExtensions

Type REG_DWORD

Values 0 (disable), 1 (enable)

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Copyright© 2020 HCL Technologies Limited

SYSSBSPACENAME configuration parameter

Use the SYSSBSPACENAME configuration parameter to specify the name of the sbspace in which the database server stores fragment-level data-distribution statistics,
which the syfragsdist system catalog table stores as BLOB objects in its encsdist column. Also use SYSSBSPACENAME to specify the name of the sbspace in which the
database server stores statistics that the UPDATE STATISTICS statement collects for certain user-defined data types.

onconfig.std value
Not set.

if not present
0

values
Up to 128 bytes. SYSSBSPACENAME must be unique, begin with a letter or underscore, and contain only digits, letters, underscores, or $ characters.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

refer to

Updating statistics, in the chapter on individual query performance in your IBM® Informix Performance Guide
Sbspace characteristics, in the chapter on configuration effects on I/O in your IBM Informix Performance Guide
Writing user-defined statistics, in the performance chapter in IBM Informix User-Defined Routines and Data Types Developer's Guide
Providing statistics data for a column, in the IBM Informix DataBlade API Programmer's Guide

Usage
To support fragment level statistics, you must specify the name of an sbspace as the SYSSBSPACENAME setting, and you must allocate that sbspace (by using the
onspaces utility, as described below. For any table whose STATLEVEL attribute is set to FRAGMENT, the database server returns an error if SYSSBSPACENAME is not set,

514 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

or if the sbspace to which SYSSBSPACENAME is set was not properly allocated).

For the distribution statistics of a column in a fragmented table, you can estimate how many bytes of storage capacity the sbspace requires by this formula:

nfrags * 1.25 * ((10000 / resolution) * ((2 * column_width) + 6))

Here 1.25 approximates the number of overflow bins. The formula also includes these variables:

column_width is the width in bytes of the column that the UPDATE STATISTICS statement specifies.
nfrags is the number of fragments of the table.
resolution is the percent value in the resolution clause of the UPDATE STATISTICS statement that calculates the distribution.

The resolution is also what the dbschema -hd table command displays for the column distribution statistics.
SYSSBSPACENAME also specifies the name of the sbspace in which the database server stores statistics that the UPDATE STATISTICS statement collects for certain user-
defined data types. Normally, the database server stores statistics in the sysdistrib system catalog table.

Do not confuse the SYSSBSPACENAME configuration parameter with the SBSPACENAME configuration parameter .

Because the data distributions for user-defined data types can be large, you have the option to store them in an sbspace instead of in the sysdistrib system catalog table.
If you store the data distributions in an sbspace, use DataBlade API or Informix® ESQL/C functions to examine the statistics.

Even though you specify an sbspace with the SYSSBSPACENAME parameter, you must create the sbspace with the -c -S option of the onspaces utility before you can use
it. The database server validates the name of this sbspace when one of the following occurs:

The database server attempts to write data distributions of the multirepresentational type to SYSSBSPACENAME when it executes the UPDATE STATISTICS
statement with the MEDIUM or HIGH keywords.
The database server attempts to delete data distributions of the multirepresentational type to SYSSBSPACENAME when it executes the UPDATE STATISTICS
statement with the DROP DISTRIBUTIONS keywords.

If SBSSPACENAME is not set, or if storage is not allocated to that sbspace, the database server might not be able to store the distribution statistics, so that the UPDATE
STATISTICS operation fails with error -9814.
Although you can store smart large objects in the sbspace specified in SYSSBSPACENAME, keeping the distribution statistics and smart large objects in separate sbspaces
is recommended, because:

You avoid disk contention when queries are accessing smart large objects, and the query optimizer is using the distributions to determine a query plan.
Disk space takes longer to fill up when each sbspace is used for a different purpose.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

SBSPACENAME configuration parameter
Sbspace Structure
onspaces -c -S: Create an sbspace

Copyright© 2020 HCL Technologies Limited

TBLSPACE_STATS configuration parameter

Use the TBLSPACE_STATS configuration parameter to turn on and off the collection of tblspace statistics. Use the onstat -g ppf command to list tblspace statistics.

onconfig.std value
TBLSPACE_STATS 1

values
0 = Turn off the collection of tblspace statistics. The onstat -g ppf command displays partition profiles disabled.
1 = Turn on the collection of tblspace statistics.

units
Integer

takes effect
After you edit your onconfig file and restart the database server.

Related reference:
 onstat -g ppf command: Print partition profiles

Copyright© 2020 HCL Technologies Limited

TBLTBLFIRST configuration parameter

Use the TBLTBLFIRST configuration parameter if you want to specify the first extent size of tblspace tblspace in the root dbspace. Set this parameter if you do not want
the database server to automatically manage the extent size.

onconfig.std value
TBLTBLFIRST 0

values
From the equivalent of 250 pages specified in kilobytes to the size of the first chunk minus the space needed for any system objects.

units
Kilobytes in multiples of page size

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.

Part VI: Administering 515

https://www.hcltech.com/
https://www.hcltech.com/

When you reset the value in memory by running the onmode -wm command.

Usage
You might want to specify first and next extent sizes to reduce the number of tblspace tblspace extents and reduce the frequency of situations when you need to place the
tblspace tblspace extents in non-primary chunks. (A primary chunk is the initial chunk in a dbspace.)

You can use oncheck -pt and oncheck -pT to show the first and next extent sizes of a tblspace tblspace.

If you want to configure the first extent for a non-root dbspace, use the onspaces utility.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

TBLTBLNEXT configuration parameter
oncheck -pt and -pT: Display tblspaces for a Table or Fragment
The onspaces utility
onspaces -c -d: Create a dbspace
Related information:

 Specifying the first and next extent sizes for the tblspace tblspace

Copyright© 2020 HCL Technologies Limited

TBLTBLNEXT configuration parameter

The TBLTBLNEXT configuration parameter specifies the next extent size of tblspace tblspace in the root dbspace. Set this parameter if you do not want the database
server to automatically manage the extent size.

onconfig.std value
TBLTBLNEXT 0

values
From equivalent of 4 pages specified in kilobytes to the maximum chunk size minus three pages

units
Kilobytes

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
If there is not enough space for a next extent in the primary chunk, the extent is allocated from another chunk. If the specified space is not available, the closest available
space is allocated.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

TBLTBLFIRST configuration parameter
onspaces -c -d: Create a dbspace
Related information:

 Specifying the first and next extent sizes for the tblspace tblspace

Copyright© 2020 HCL Technologies Limited

TEMPTAB_NOLOG configuration parameter

Use the TEMPTAB_NOLOG configuration parameter to disable logging on temporary tables.

onconfig.std value
TEMPTAB_NOLOG 0

values
0 = Enable logical logging on temporary table operations
1 = Disable logical logging on temporary table operations

2 = Enable logical logging on temporary table operations for primary server and disable logical logging on temporary table operations for secondary servers(HDR,
RSS and SDS).

On primary/standard server: same behavior as 0

On secondary servers: same behavior as 1

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage

516 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

This parameter can improve performance in application programs because it prevents IBM® Informix® from transferring temporary tables over the network. The setting
can be updated dynamically with the onmode -wf utility.

If you enable this setting, be aware that because no data is logged when using temporary tables, rolling back a transaction on a temporary table will no longer undo the
work in the temporary table.

For HDR, RSS and SDS secondary servers in a high-availability cluster, logical logging on temporary tables should always be disabled by setting the TEMPTAB_NOLOG
configuration parameter to 1 or 2.

When server type changes, logging for temporary tables will be enabled/disabled depending on the current server role. It will be effective for temporary tables created
afterwards.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Copyright© 2020 HCL Technologies Limited

TENANT_LIMIT_CONNECTIONS configuration parameter

The TENANT_LIMIT_CONNECTIONS configuration parameter specifies the maximum number of connections to a tenant database.

onconfig.std value
0 (off)

if not present
0 (off)

values
1 - 65536

takes effect
After you edit your onconfig file and restart the database server.

Usage
When the limit is reached, subsequent connection requests to the tenant database are rejected.

The tenant_limit_connections tenant database property set through the tenant create or tenant update SQL API command takes precedent over the
TENANT_LIMIT_CONNECTIONS configuration parameter setting.

Related reference:
 tenant create argument: Create a tenant database (SQL Administration API)

tenant update argument: Modify tenant database properties (SQL Administration API)

Copyright© 2020 HCL Technologies Limited

TENANT_LIMIT_MEMORY configuration parameter

The TENANT_LIMIT_MEMORY configuration parameter specifies the maximum amount of shared memory for all sessions that are connected to the tenant database.

onconfig.std value
0 (off)

if not present
0 (off)

values
102400 - 2147483648

units
KB

takes effect
After you edit your onconfig file and restart the database server.

Usage
When the limit is exceeded, the session that is using the most shared memory is terminated. The value ranges from 100 MB to 2 TB, but must be specified as an integer
that represents the number of KB.

The tenant_limit_memory tenant database property set through the tenant create or tenant update SQL administration API command takes precedent over the
TENANT_LIMIT_MEMORY configuration parameter setting.

Related reference:
 tenant create argument: Create a tenant database (SQL Administration API)

Copyright© 2020 HCL Technologies Limited

TENANT_LIMIT_SPACE configuration parameter

Part VI: Administering 517

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The TENANT_LIMIT_SPACE configuration parameter specifies the maximum amount of storage space available to a tenant database. Storage space includes all
permanent dbspaces, BLOB spaces, and sbspaces.

onconfig.std value
0 (off)

if not present
0 (off)

values
1048576 - 1717986918400

units
KB

takes effect
After you edit your onconfig file and restart the database server.

Usage
The TENANT_LIMIT_SPACE configuration parameter limits the amount of permanent storage space available to a tenant database, and can conserve system resources
within a tenant-database environment. When the limit is reached, subsequent operations that require additional disk space are rejected. The value ranges from 1 GB to
200 TB, but must be specified as an integer that represents the number of KB.

The tenant_limit_space tenant database property set through the tenant create or tenant update SQL administration API command takes precedent over the
TENANT_LIMIT_SPACE configuration parameter setting.

Related reference:
 tenant create argument: Create a tenant database (SQL Administration API)

tenant update argument: Modify tenant database properties (SQL Administration API)
Related information:

 Multitenancy
Managing tenant databases
Limit session resources

Copyright© 2020 HCL Technologies Limited

TLS_VERSION configuration parameter

Use the TLS_VERSION configuration parameter to specify the Transport Layer Security (TLS) version that the database server uses for network connections. TLS version
1.2 is enabled by default if no specification is done in onconfig file.

onconfig.std value
Not set. – which defaults to 1.2.

default value
1.2

values
One or more TLS versions. Multiple versions are separated by commas.

1.0 = TLS version 1.0
1.1 = TLS version 1.1
1.2 = TLS version 1.2
1.3 = TLS version 1.3

takes effect
After you edit the onconfig file and restart the database server.

Usage
TLS is the successor to Secure Sockets Layer (SSL) and provides cryptographic protocols for client/server connections.

GSKit TLS 1.3 does not support FIPS mode yet. If the server offers both TLS 1.2 and TLS 1.3, then the preference for FIPS will cause connection via TLS 1.2 .

Note:
Limiting server to TLS 1.3 will require disabling FIPS mode by the client. JDBC support for TLS 1.3 requires Java 11.

Related information:
 Secure sockets layer protocol

Environment variables for client

Copyright© 2020 HCL Technologies Limited

TXTIMEOUT configuration parameter

Use the TXTIMEOUT configuration parameter to specify the amount of time that a participant in a two-phase commit waits before it initiates participant recovery. This
parameter is used only for distributed queries that involve a remote database server. Nondistributed queries do not use this parameter.

onconfig.std value
TXTIMEOUT 300

values

518 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Positive integers
units

Seconds
takes effect

After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Related information:
 How the two-phase commit protocol handles failures

Copyright© 2020 HCL Technologies Limited

UNSECURE_ONSTAT configuration parameter

Use the UNSECURE_ONSTAT configuration parameter to remove the database system administrator (DBSA) user access restriction for onstat commands.

onconfig.std value
Not set.

values
1 = All users can run onstat commands to view running SQL statements

takes effect
After you edit your onconfig file and restart the database server.

Usage
By default, the onstat commands that show the SQL statement text from an active session are restricted to DBSA users. To remove this restriction, set the
UNSECURE_ONSTAT configuration parameter to 1. The onstat commands that show SQL statements include onstat -g his, onstat -g ses, onstat -g stm, onstat -g ssc,
and onstat -g sql.

Copyright© 2020 HCL Technologies Limited

UPDATABLE_SECONDARY configuration parameter

Use the UPDATABLE_SECONDARY configuration parameter to set the number of connections to establish between the primary and secondary servers. Setting this
configuration parameter enables client applications to perform update, insert, and delete operations on a high-availability secondary server.

onconfig.std value
UPDATABLE_SECONDARY 0

values
Any number from zero (the default value) up to twice the number of CPU VPs. Setting the value to 0 configures the secondary server as read-only. Setting the value
from 1 through twice the number of CPU VPs makes the secondary server updatable and configures connection threads.

units
Number of network connections between a given secondary server and its primary server

takes effect
After you edit your onconfig file and restart the database server.

Isolation Levels for Secondary Data Replication Servers
If the UPDATABLE_SECONDARY configuration parameter is not set or is set to zero, a secondary data replication server is read-only. In this case, only the DIRTY READ or
READ UNCOMMITTED transaction isolation levels are available on secondary servers.

If the UPDATABLE_SECONDARY parameter is set to a valid number of connections greater than zero, a secondary data replication server can support the COMMITTED
READ , COMMITTED READ LAST COMMITTED, or COMMITTED READ transaction isolation level, or the USELASTCOMMITTED session environment variable. Only SQL DML
statements, such as INSERT, UPDATE, MERGE, and DELETE, and the dbexport utility, can support write operations on an updatable secondary server. (Besides
UPDATABLE_SECONDARY, the STOP_APPLY and USELASTCOMMITTED configuration parameters must also be set to enable write operations by dbexport on a secondary
data replication server.)

Related reference:
 STOP_APPLY configuration parameter

onstat -g cluster command: Print high-availability cluster information
Related information:

 Database updates on secondary servers
Set the wait time for SMX activity between servers

Copyright© 2020 HCL Technologies Limited

USELASTCOMMITTED configuration parameter

Part VI: Administering 519

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Use the USELASTCOMMITTED configuration parameter to specify the isolation level for which the LAST COMMITTED feature of the COMMITTED READ isolation level is
implicitly in effect.

onconfig.std value
USELASTCOMMITTED "NONE"

default value
"NONE"

values
"NONE" = No isolation level identified. If your session encounters an exclusive lock when attempting to read a row in the Committed Read, Dirty Read, Read
Committed, or Read Uncommitted isolation level, your transaction cannot read that row until the concurrent transaction that holds the exclusive lock is committed
or rolled back.
"COMMITTED READ" = All transactions from a Committed Read isolation level are treated as last committed transactions. The database server reads the most
recently committed version of the data when it encounters an exclusive lock while attempting to read a row in the Committed Read or Read Committed isolation
level.
"DIRTY READ" = All transactions from a Dirty Read isolation level are treated as last committed transactions. The database server reads the most recently
committed version of the data if it encounters an exclusive lock while attempting to read a row in the Dirty Read or Read Uncommitted isolation level.
"ALL" = All transactions from both Committed Read and Dirty Read isolation levels are treated as last committed transactions. database server reads the most
recently committed version of the data if it encounters an exclusive lock while attempting to read a row in the Committed Read, Dirty Read, Read Committed, or
Read Uncommitted isolation level.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
The LAST COMMITTED feature can reduce the risk of locking conflicts between concurrent transactions on tables that have exclusive row locks. The USELASTCOMMITTED
configuration parameter can also enable LAST COMMITTED semantics for READ COMMITTED and READ UNCOMMITTED isolation levels of the SET TRANSACTION
statement.

The USELASTCOMMITTED configuration parameter only works with tables that have been created or altered to have ROW as their locking granularity. Tables created
without any explicit lock mode setting will use the default setting in DEF_TABLE_LOCKMODE. If DEF_TABLE_LOCKMODE is set to PAGE, the USELASTCOMMITTED
configuration parameter cannot enable access to the most recently committed data in tables on which uncommitted transactions hold exclusive locks, unless the tables
were explicitly altered to have ROW level of locking granularity.

Use with Shared Disk secondary database servers
The USELASTCOMMITTED configuration parameter is also valid on Shared Disk (SD) secondary database servers. The following table shows valid values for the
USELASTCOMMITTED configuration parameter on SD secondary servers and their descriptions.

Table 1. Valid secondary server USELASTCOMMITTED values

USELASTCOMMITTED value Description

NONE COMMITTED READ LAST COMMITTED is not the default isolation level for sessions

COMMITTED READ COMMITTED READ LAST COMMITTED is the default isolation level for all sessions with Committed Read isolation

DIRTY READ COMMITTED READ LAST COMMITTED is the default isolation level for all sessions with Dirty Read isolation

ALL COMMITTED READ LAST COMMITTED is the default isolation level for all sessions with Committed Read or Dirty Read
isolation

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

DEF_TABLE_LOCKMODE configuration parameter
Related information:

 USELASTCOMMITTED session environment option
SET ISOLATION statement

Copyright© 2020 HCL Technologies Limited

USEOSTIME configuration parameter

Use the USEOTIME configuration parameter to control whether the database server uses subsecond precision when obtaining the current time from the operating system.

onconfig.std value
USEOSTIME 0

values
0 = Off
1 = On

takes effect
During initialization

refer to

Your IBM® Informix Performance Guide
Using the CURRENT function to return a datetime value, in the IBM Informix Guide to SQL: Syntax

Usage

520 Part VI: Administering

https://www.hcltech.com/

Setting USEOSTIME to 1 specifies that the database server is to use subsecond precision when it obtains the current time from the operating system for SQL statements.
The following example shows subseconds in a datetime value:

2001-09-29 12:50:04.612

If subsecond precision is not needed, the database server retrieves the current time from the operating system once per second, making the precision of time for client
applications one second. If you set USEOSTIME to 0, the current function returns a zero (.000) for the year to fraction field.

When the host computer for the database server has a clock with subsecond precision, applications that depend on subsecond accuracy for their SQL statements should
set USEOSTIME to 1.

Systems that run with USEOSTIME set to nonzero notice a performance degradation of up to 4 to 5 percent compared to running with USEOSTIME turned off.

This setting does not affect any calls regarding the time from application programs to Informix® embedded-language library functions.

Copyright© 2020 HCL Technologies Limited

USERMAPPING configuration parameter (UNIX, Linux)

Use the USERMAPPING configuration parameter to set whether or not the database server accepts connections from mapped users.

default value
OFF

values
OFF = Only users that are registered in the IBM® Informix® host computer OS with a login service can connect to the database server. Externally authenticated users
without OS accounts on the host computer cannot connect to database server resources.
BASIC = Users can connect to without an OS account. A user without an OS account cannot perform privileged user operations on the database server, even if the
user maps to a server administrator user or group ID.

ADMIN = Users can connect to without an OS account. If a user has authenticated with the identity of a privileged user and is mapped to the proper server
administrator group ID, the user can perform DBSA, DBSSO, or AAO work on the database server.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
Externally authenticated users without operating system (OS) accounts on the host computer can access database server resources when USERMAPPING is turned on by
setting the parameter with the BASIC or ADMIN value. The setting of BASIC or ADMIN also determines whether or not mapped users can be granted administrative
privileges.

Important: Changing the USERMAPPING configuration parameter from OFF to ADMIN or BASIC is not the only step in setting up for mapped users. To map users with the
appropriate user properties, you must also use DDL statements such as CREATE USER and ALTER USER to register values in appropriate system tables of the SYSUSER
database. Depending on the DDL statement used and the defined table mapping, the following tables will be updated or populated:

SYSINTAUTHUSERS
SYSUSERMAP
SYSSURORGATES
SYSSURROGATEGROUPS

Copyright© 2020 HCL Technologies Limited

USRC_HASHSIZE configuration parameter

The USRC_HASHSIZE configuration parameter specifies the number of hash buckets in the LBAC credential memory cache. This memory cache holds information about
the LBAC credentials of users.

onconfig.std value
USRC_HASHSIZE 31

values
Any positive integer

units
KB

takes effect
After you edit your onconfig file and restart the database server.

Related information:
 Maintaining a label-based access-control implementation

Copyright© 2020 HCL Technologies Limited

USRC_POOLSIZE configuration parameter

Part VI: Administering 521

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The USRC_POOLSIZE configuration parameter specifies the maximum number of entries in each hash bucket of the LBAC credential memory cache. This memory cache
holds information about the LBAC credentials of users.

onconfig.std value
USRC_POOLSIZE 127

values
A positive value 127 or greater that represents half of the initial maximum number of entries in the cache. The maximum value is dependent upon the shared
memory configuration and available shared memory for the server instance.

takes effect
After you edit your onconfig file and restart the database server.
When you increase the value in memory by running the onmode -wm command.
When you reset the value in memory by running the onmode -wm command.

The initial number of entries in the cache is twice the value of the USRC_POOLSIZE configuration parameter. For example, if the USRC_POOLSIZE configuration parameter
is set to 127, 254 entries are allowed in the cache. If all entries in a cache are full, the cache size automatically grows by 10%. To reduce the size of the cache, decrease
the value of the USRC_POOLSIZE configuration parameter in the onconfig file and restart the server.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Related information:
 Maintaining a label-based access-control implementation

Copyright© 2020 HCL Technologies Limited

USTLOW_SAMPLE configuration parameter

Use the USTLOW_SAMPLE configuration parameter to enable the generation of index statistics based on sampling when you run UPDATE STATISTICS statements in LOW
mode.

For an index with more than 100 K leaf pages, the gathering of statistics using sampling can increase the speed of the UPDATE STATISTICS operation.

onconfig.std value
USTLOW_SAMPLE 1

values
0 = disable sampling
1 = enable sampling

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Related information:
 USTLOW_SAMPLE environment option

Data sampling during update statistics operations

Copyright© 2020 HCL Technologies Limited

VP_MEMORY_CACHE_KB configuration parameter

Use the VP_MEMORY_CACHE_KB parameter to create a private memory cache for each CPU virtual processor and tenant virtual processor.

onconfig.std value
VP_MEMORY_CACHE_KB 0

values
0 = Off
The total size of all private memory caches, optionally followed by a comma and the mode of the caches.
Size, in KB:

800 to 40% of the SHMTOTAL configuration parameter value.

Mode:

STATIC = Default. The specified size is the maximum combined size of all private memory caches.
DYNAMIC = The specified size is the initial size of all private memory caches. The cache size changes dynamically but cannot exceed the value of the
SHMTOTAL configuration parameter.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage

522 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Private memory caches can improve performance for memory that is allocated by threads in the server. Private memory caches have no impact on the memory that is
allocated to and used by buffer pools or shared memory communication.

When you set the value of the VP_MEMORY_CACHE_KB configuration parameter to a number other than 0, a private memory cache is created for each CPU virtual
processor and tenant virtual processor. By default, size of all private memory caches combined is limited to the specified number of KB.

If you want the size of each private memory cache to increase and decrease automatically, as needed, include a comma and the word DYNAMIC after the size, for
example, VP_MEMORY_CACHE_KB 1000,DYNAMIC. Although the maximum initial size of all private memory caches combined cannot exceed 40 percent of the value of
the SHMTOTAL configuration parameter, with DYNAMIC mode set, the size of the caches can expand beyond the initial limit. The total size of the caches cannot exceed the
value of the SHMTOTAL configuration parameter. DYNAMIC mode can improve performance when many threads are disconnecting at the same time or there is contention
for the shared memory lock. You can use the onstat -g wmx command to display information about mutexes, such as the shared memory lock mutex shmcb sh_lock,
and any threads waiting on mutexes.

Attention: Dynamic memory caches on busy systems can grow quickly and use a large amount of available memory. Therefore, if you set the mode to DYNAMIC, set the
SHMTOTAL configuration parameter to a specific limit instead of the default value of 0, which does not limit the amount of memory.
If you reset the VP_MEMORY_CACHE_KB configuration parameter to 0, the memory caches are emptied and disabled.

The onstat -g vpcache command returns statistics about private memory caches.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

onstat -g vpcache command: Print CPU virtual processor and tenant virtual processor private memory cache statistics
scheduler lmm enable argument: Specify automatic low memory management settings (SQL administration API)
Related information:

 Private memory caches

Copyright© 2020 HCL Technologies Limited

VPCLASS configuration parameter

Use the VPCLASS configuration parameter to create and configure virtual processors.

onconfig.std values
UNIX: VPCLASS cpu,num=1,noage

Windows:

VPCLASS cpu,num=1,noage
#VPCLASS aio,num=1
#VPCLASS jvp,num=1

values
Up to 128 bytes of characters. Each VPCLASS configuration parameter value must be unique, begin with a letter or underscore, and contain only digits, letters,
underscores, or $ characters. Do not include blank spaces. See the Usage section.

separators
Separate each field with a comma.

takes effect
After you edit your onconfig file and restart the database server.

Usage
You can add multiple VPCLASS configuration parameter entries in your onconfig file. Each VPCLASS configuration parameter must describe a different class of virtual
processors. Put each definition on a separate line.

Syntax for the VPCLASS configuration parameter

>>-VPCLASS--+-class------------------------+-------------------->
 +-| cpu class |----------------+
 +-aio--+----------+--=--+-0-+--+
 | '-autotune-' '-1-' |
 '-user_defined--+------------+-'
 '-,--noyield-'

>--+-----------------------+--+--------------------+-----------><
 '-,--num--=--number_vps-' '-,--max--=--maximum-'

cpu class

|--cpu-->

>--+---+---->
 | .-,--------------------------------. |
 | V | |
 '-,--aff--=--(----+-processor--------------------+-+--)-'
 '-start -end--+--------------+-'
 '-/--increment-'

>--+----------+--+---------------------------+------------------|
 '-,--noage-' '-,--+----------+--=--+-0-+-'
 '-autotune-' '-1-'

Table 1. Options for the VPCLASS configuration parameter value

Part VI: Administering 523

https://www.hcltech.com/

Field ValuesField Values

class The class value is the name of the virtual processor class. The database server starts most virtual processors as needed.
Typically, you might set the VPCLASS configuration parameter for the CPU, AIO, JVP, and user-defined virtual processor
classes.
The virtual processor class name is not case-sensitive.

For a list of class names, see Virtual processor classes.

user_defined The user_defined value is the name of a virtual processor class that you create for user-defined routines.
Make sure the SINGLE_CPU_VP configuration parameter is set to 0.

autotune Specifies whether the database server adds virtual processors for the specified class as needed to improve performance, up to
the value of the max option, if it is included.

autotune=0 prevents the automatic addition of virtual processors
autotune=1 enables the automatic addition of virtual processors

If the class is cpu, any CPU virtual processors that are automatically added do not have affinity. The aff option is ignored.

cpu Specifies the CPU virtual processor class.

num The number_vps value sets the number of virtual processors of the specified class that the database server starts when the
database server starts. The default value is 1. The range of values for the cpu and aio virtual processor classes is 1 - 10000.
The range of values for all other virtual processor classes is 0 - 10000.
You can use the onmode -p command to add virtual processors for the class for the current session.

max The maximum value specifies the maximum number of virtual processors that the database server can start for the class. The
value can be any integer greater than 0. By default, the number is unlimited.

aff On multiprocessor computers that support processor affinity, the aff option specifies the CPUs to which the database server
binds CPU virtual processors. The operating system numbers the CPUs from 0 to one less than the number of CPUs. By default,
CPU virtual processors are assigned to available processors in round-robin fashion. The aff option takes one or more integers:

processor = The CPU number to which to bind the CPU virtual processors. The CPU numbers can be listed in any order.
start = The beginning of a range of CPU numbers.
end = The end of a range of CPU numbers.
increment = A factor that specifies which of the CPU numbers in a range are used. For example, aff=(1-5/2) specifies
to use CPU numbers 1, 3, and 5.

noage Disables priority aging for CPU virtual processors, if the operating system implements priority aging. By default, priority aging is
in effect.

noyield Specifies that a user-defined virtual processor class does not yield, which allows the C UDR to yield to other threads that need
access to the user-defined virtual processor class. By default, threads for user-defined virtual processors yield.
A nonyielding user-defined virtual processors class runs a user-defined routine in a way that gives the routine exclusive use of
the virtual processor class. User-defined routines that use a noyield virtual-processor class run serially and never yield the
virtual processors to another thread.

Specify only one virtual processor in a nonyielding user-defined virtual processor class, because the UDR runs on a single
virtual processor until it completes and any additional virtual processors would be idle.

The options can appear in any order, separated by commas.

Use the onmode -p command to dynamically add or remove virtual processors for the current database session. The onmode -p command does not update the onconfig
file.

CPU virtual processors
On a single-processor computer, allocate only one CPU virtual processor. On a multiprocessor computer, allocate a total number of CPU virtual processes plus user-
defined virtual processors up to the number of CPUs on the computer.

When the database server starts, the number of CPU virtual processors is automatically increased to half the number of CPU processors on the database server computer,
unless the SINGLE_CPU_VP configuration parameter is enabled.

If you include the autotune option, the database server adds CPU virtual processors as needed to improve performance, up to the number of CPUs on the computer.

The value of the num option of the VPCLASS configuration parameter for the CPU class is not updated when the database server automatically adds CPU virtual
processors.

You can configure processor affinity and whether to allow aging. For example, the following entry creates four CPU virtual processors that are bound to CPU numbers 7, 8,
9, and 10, and are not affected by priority aging:

VPCLASS CPU,num=4,aff=(7-10),noage

AIO virtual processors
Use a VPCLASS configuration parameter entry for the AIO virtual processor class to specify an exact number of AIO virtual processors or to enable the database server to
add AIO virtual processors as needed.

When no VPCLASS configuration parameter entry for the AIO virtual processor class is set, the number of AIO virtual processors is determined by the setting of the
AUTO_AIOVPS configuration parameter and is limited to 128:

If AUTO_AIOVPS is set to 1 (on), the number of AIO virtual processors that are initially started is equal to the number of AIO chunks.
If AUTO_AIOVPS is set to 0 (off), the number of AIO virtual processors that are started is equal to the greater of 6 or twice the number of AIO chunks.

524 Part VI: Administering

Java virtual processors
If you use Java™ user-defined routines or Java applications, create at least one Java virtual processor by adding a VPCLASS configuration parameter entry for the JVP
virtual processor class. If you set the number of JVPs to zero, or if there is no VPCLASS parameter for the JVP class, you cannot run Java UDRs.

Related reference:
 AUTO_AIOVPS configuration parameter

DS_MAX_QUERIES configuration parameter
DS_TOTAL_MEMORY configuration parameter
NETTYPE configuration parameter
The number of configured inline poll threads exceeds the number of CPU virtual processors.
Virtual processor limit exceeded.
onmode -p: Add or drop virtual processors
Related information:

 Tenant virtual processor class
Virtual processor classes
CPU virtual processors
User-defined classes of virtual processors
Java virtual processors
AIO virtual processors

Copyright© 2020 HCL Technologies Limited

VP_KAIO_PERCENT configuration parameter

VP_KAIO_PERCENT is the percentage of total KAIO event resources on the system that each CPU VP will allocate.

onconfig.std value
VP_KAIO_PERCENT 0

if not present
0 (off)

values
1-100

units
Percent

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
VP_KAIO_PERCENT is the percentage of total KAIO event resources on the system that each CPU VP will allocate.

If you set VP_KAIO_PERCENT to 10 and the total number of KAIO events configured in the OS kernel is 50000 then each CPU VP that starts will attempt to allocate 5000
events.

A value of 0 follows legacy algorithm for allocating KAIO resources to VPs.

Copyright© 2020 HCL Technologies Limited

WSTATS configuration parameter

Use the WSTATS configuration parameter to specify whether the onstat -g wst command displays wait statistics for threads within the system.

Attention: You should expect a small performance impact due to the cost of gathering statistical information. Enabling the WSTATS configuration parameter for production
systems is not recommended.

onconfig.std value
WSTATS 0

range of values
0 = Disable wait statistics
1 = Enable wait statistics

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

onstat -g wst command: Print wait statistics for threads

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 525

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The sysmaster database

These topics describe the sysmaster database and provide reference information for the system-monitoring interface (SMI).

These topics include:

A description of the sysmaster database
Information about how to use SMI tables
Descriptions of the SMI tables
A map of the documented SMI tables

For information about the ON-Bar tables, see the IBM® Informix® Backup and Restore Guide.

The sysmaster Database
 The System-Monitoring Interface

 The System-Monitoring Interface Tables
 The sysmaster database contains many tables that you can use to monitor your system.

Copyright© 2020 HCL Technologies Limited

The sysmaster Database

The database server creates and maintains the sysmaster database. It is analogous to the system catalog for databases, which is described in the IBM® Informix® Guide to
SQL: Reference. Just as a system catalog for every database managed by the database server keeps track of objects and privileges in the database, a sysmaster database
for every database server keeps track of information about the database server.

The sysmaster database contains the system-monitoring interface (SMI) tables. The SMI tables provide information about the state of the database server. You can query
these tables to identify processing bottlenecks, determine resource usage, track session or database server activity, and so on. This chapter describes these tables, which
are slightly different from ordinary tables.
Warning: The database server relies on information in the sysmaster database. Do not change any of the tables in sysmaster or any of the data within the tables. Such
changes could cause unpredictable and debilitating results.
The database server creates the sysmaster database when it initializes disk space. The database server creates the database with unbuffered logging. You cannot drop
the database or any of the tables in it, and you cannot turn logging off.

As user informix on UNIX or a member of the Informix-Admin group on Windows, you can create SPL routines in the sysmaster database. (You can also create triggers
on tables within sysmaster, but the database server never executes those triggers.)

Joins of multiple tables in sysmaster might return inconsistent results because the database server does not lock the tables during a join. You can join sysmaster tables
with tables in other databases. However, to join sysmaster tables with tables in a nonlogging database, first make the nonlogging database the current database.

The buildsmi Script
 The bldutil.sh Script

Copyright© 2020 HCL Technologies Limited

The buildsmi Script

When you bring the database server up for the first time, it runs a script called buildsmi, which is in the etc directory. This script builds the database and tables that
support SMI. The database server requires approximately 1750 free pages of logical-log space to build the sysmaster database.

If you receive an error message that directs you to run the buildsmi script, a problem probably occurred while the database server was building the SMI database, tables,
and views. When you use buildsmi, the existing sysmaster database is dropped and then re-created.

This script must be run as user informix on UNIX, or as a member of the Informix-Admin group on Windows, after ensuring that no connections to the sysmaster
database are made during the build of the database. For example, if a Scheduler task is running when the buildsmi script commences, the script fails when the Scheduler
attempts to access any of the sysmaster tables.

Errors issued while the buildsmi script runs are written (on UNIX) to the file /tmp/buildsmi.out, or on Windows to the file
%INFORMIXDIR%\etc\buildsmi_out.%INFORMIXSERVER%, where %INFORMIXSERVER% is the name of the Informix® instance.

Copyright© 2020 HCL Technologies Limited

The bldutil.sh Script

When you initialize the database server for the first time, it runs a script called bldutil.sh on UNIX or bldutil.bat on Windows. This script builds the sysutils database. If it
fails, the database server creates an output file in the tmp directory. The output file is bldutil.process_id on UNIX and bldutil.out on Windows. The messages in this
output file reflect errors that occurred during the script execution.

Copyright© 2020 HCL Technologies Limited

526 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The System-Monitoring Interface

This section describes the SMI tables and how you access them to monitor the database server operation.

Understanding the SMI Tables
 Accessing SMI tables

Copyright© 2020 HCL Technologies Limited

Understanding the SMI Tables

The SMI (system-monitoring interface) consists of tables and pseudo-tables that the database server maintains automatically. While the SMI tables appear to the user as
tables, they are not recorded on disk as normal tables are. Instead, the database server constructs the tables in memory, on demand, based on information in shared
memory at that instant. When you query an SMI table, the database server reads information from these shared-memory structures. Because the database server
continually updates the data in shared memory, the information that SMI provides lets you examine the current state of your database server.

The SMI tables provide information about the following topics:

Auditing
Checkpoints
Chunk I/O
Chunks
Database-logging status
Dbspaces
Disk usage
Environment variables
Extents
Locks
Networks
SQL statement cache statistics
SQL statements
System profiling
Tables
User profiling
Virtual-processor CPU usage

The data in the SMI tables changes dynamically as users access and modify databases that the database server manages.

Copyright© 2020 HCL Technologies Limited

Accessing SMI tables

Any user can use SQL SELECT statements to query an SMI table, but standard users cannot run statements other than the SELECT statement. Users who attempt to run
other statements result in permission errors. The administrator can run SQL statements other than SELECT, but the results of such statements are unpredictable.

Tip: For more predictable results, query the views that are associated with each table instead of querying the tables directly.
If you query the systabpaghdrs table directly, you must specify an appropriate value for the pg_partnum parameter. The value is pg_partnum > 1048576. However, if
you query the view that is associated with the systabpaghdrs table, you do not have to specify this value for the pg_partnum parameter.

Informix® includes the sysadtinfo and sysaudit tables. Only the user informix on UNIX or members of the Informix-Admin group on Windows can query the sysadtinfo
and sysaudit tables.

You cannot use the dbschema or dbexport utilities on any of the tables in the sysmaster database. If you do, the database server generates the following error message:

Database has pseudo tables - can't build schema

SELECT statements
 You can use SELECT statements on SMI tables wherever you can use SELECT against ordinary tables.

Triggers and Event Alarms
 SPL and SMI Tables

 Locking and SMI Tables

Copyright© 2020 HCL Technologies Limited

SELECT statements

You can use SELECT statements on SMI tables wherever you can use SELECT against ordinary tables.

For example, you can use SELECT statements ordinary tables from DB-Access, in an SPL routine, with Informix® ESQL/C, and so on.
Restriction: You cannot meaningfully reference rowid when you query SMI tables. SELECT statements that use rowid do not return an error, but the results are
unpredictable.

Part VI: Administering 527

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

All standard SQL syntax, including joins between tables, sorting of output, and so on, works with SMI tables. For example, if you want to join an SMI table with a non-SMI
table, name the SMI table with the following standard syntax:

sysmaster[@dbservername]:[owner.]tablename

Copyright© 2020 HCL Technologies Limited

Triggers and Event Alarms

Triggers based on changes to SMI tables never run. Although you can define triggers on SMI tables, triggers are activated only when an INSERT, UPDATE, or DELETE
statement occurs on a table. The updates to the SMI data occur within the database server, without the use of SQL, so a trigger on an SMI table is never activated, even
though the data returned by a SELECT statement indicates that it should be.

To create an event alarm, query for a particular condition at predefined intervals, and execute an SPL routine if the necessary conditions for the alarm are met.

Copyright© 2020 HCL Technologies Limited

SPL and SMI Tables

You can access SMI tables from within a SPL routine. When you reference SMI tables, use the same syntax that you use to reference a standard table.

Copyright© 2020 HCL Technologies Limited

Locking and SMI Tables

The information in the SMI tables changes based on the database server activity. However, the database server does not update the information using SQL statements.
When you use SMI tables with an isolation level that locks objects, it prevents other users from accessing the object, but it does not prevent the data from changing. In
this sense, all the SMI tables have a permanent Dirty Read isolation level.

Copyright© 2020 HCL Technologies Limited

The System-Monitoring Interface Tables

The sysmaster database contains many tables that you can use to monitor your system.

Tip: For each system-monitoring interface (SMI) table, there is a corresponding view with the same name. For the best results, query the views that are associated with
tables instead of querying the underlying tables directly.
Many other tables in the sysmaster database are part of the system-monitoring interface but are not documented. Their schemas and column content can change from
version to version. The flags_text table now contains more rows. To view the new rows, first drop and then re-create the sysmaster database.

The following table lists the SMI tables.

Table 1. SMI tables

Table Description Reference

sysadtinfo Auditing configuration information sysadtinfo

sysaudit Auditing event masks sysadtinfo

syscheckpoint Checkpoint information syscheckpoint

syschkio Chunk I/O statistics syschkio

syschunks Chunk information syschunks

syscluster High-availability cluster information syscluster

syscmsmsla Connection Manager information syscmsmsla

syscmsmtab Connection Manager information syscmsmtab

syscmsmunit Information for each Connection Manager unit in a Connection Manager configuration file syscmsmunit

syscompdicts_full Compression dictionary information syscompdicts_full

sysconfig Configuration information sysconfig

sysdatabases Database information sysdatabases

sysdbslocale Locale information sysdbslocale

sysdbspaces Dbspace information sysextents

sysdri Data-replication information sysdri

sysdual Is a single-row table sysdual

528 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Table Description Reference

sysenv Server startup environment sysenv

sysenvses Session-level environment variable sysenvses

sysextents Extent-allocation information sysextents

sysextspaces External spaces information sysextspaces

sysha_lagtime Secondary server lag-time statistics sysha_lagtime Table

sysha_type Information about connected servers sysha_type

sysha_workload Secondary server workload statistics sysha_workload

sysipl Index page logging information sysipl

syslocks Active locks information syslocks

syslogs Logical-log file information syslogs

syslogfil System log file information syslogfil table

sysmgminfo Memory Grant Manager and Parallel Data Query information sysmgminfo

sysnetclienttype Client type network activity sysnetclienttype

sysnetglobal Global network information sysnetglobal

sysnetworkio Network I/O sysnetworkio table

sysonlinelog Online log information sysonlinelog

sysprofile System-profile information sysprofile

sysproxyagents Information about all the proxy agent threads sysproxyagents

sysproxydistributors Proxy distributor information sysproxydistributors

sysproxysessions Information about sessions that use updatable secondary servers sysproxysessions table

sysproxytxnops Information about transactions that are run through each proxy distributor sysproxytxnops table

sysproxytxns Information about all of the current transactions that run through each proxy distributor sysproxytxns table

sysptprof Table information sysptprof table

sysrsslog RS secondary server information sysrsslog

sysscblst Memory by user sysscblst

syssesprof Counts of various user actions syssesprof

syssesappinfo Distributed Relational Database Architecture™ (DRDA) client-session information. syssesappinfo

syssessions Description of each user connected syssessions

syssessiontempspaceusage Contains information about each session's temp space usage. syssessiontempspaceusage

syssmx SMX (server multiplexer group) connection information syssmx

syssmxses SMX (server multiplexer group) session information syssmxses

syssqexplain SQL statement information that is enabled by the SET EXPLAIN statement syssqexplain table

syssqltrace SQL statement information syssqltrace

syssqltrace_hvar SQL statement tracing host variable information syssqltrace_hvar

syssqltrace_info SQL profile trace system information syssqltrace_info

syssqltrace_iter SQL statement iterators syssqltrace_iter

syssrcrss RS secondary server statistics syssrcrss

syssrcsds SD secondary server statistics syssrcsds

systabnames Database, owner, and table name for the tblspace tblspace systabnames

systabpaghdrs Page headers None

systhreads Wait statistics systhreads

systrgrss RS secondary server statistics systrgrss

systrgsds SD secondary server statistics systrgsds

sysvpprof User and system CPU used by each virtual processor sysvpprof

The sysutils Tables
 sysadtinfo

 sysaudit
 syschkio
 The syschkio system-monitoring interface table provides I/O statistics for individual chunks that the database server manages.

syscheckpoint
 syschunks

 The syschunks table contains a description of each of the chunks that the database server manages.
sysckptinfo

 The sysckptinfo system-monitoring interface table provides historical information about the previous twenty checkpoints.
syscluster

Part VI: Administering 529

syscmsm
syscmsmsla
syscmsmtab
syscmsmunit
syscompdicts_full
The syscompdicts_full table and the syscompdicts view provide information on all compression dictionaries. The only difference between the table and the view is
that, for security purposes, the view does not contain the dict_dictionary column.
sysconfig
sysdatabases
sysdbslocale
sysdbspaces
The sysdbspaces table contains a description of each of the storage spaces that the database server manages.
sysdri
sysdual
sysenv
sysenvses
sysextents
sysextspaces
sysfeatures
sysha_lagtime Table
The sysha_lagtime table provides a history of the amount of time that it took to apply a log record on any of the secondary nodes.
sysha_type
sysha_workload
sysipl
syslocks
syslogs
syslogfil table
The syslogfil table provides information about the logical log files.
sysmgminfo
sysnetclienttype
sysnetglobal
sysnetworkio table
The sysnetworkio table contains information about the system network.
sysonlinelog
sysprofile
sysproxyagents
sysproxydistributors
sysproxysessions table
The sysproxysessions table contains information about each of the sessions that are using redirected-write functionality. This table is only valid on the secondary
server.
sysproxytxnops table
The sysproxytxnops table contains information about each of the transactions that are running through each proxy distributor.
sysproxytxns table
The sysproxytxns table contains information about all of the current transactions that are running through each proxy distributor.
sysptnhdr
The sysptrhdr table contains information about partition headers.
sysptprof table
The sysptprof table lists information about a tblspace. Tblspaces correspond to tables.
sysrepevtreg table
Use the sysrepevtreg pseudo table to register for a pre-defined set of events from the Connection Manager.
sysrepstats table
Use the sysrepstats table to post events to Connection Manager.
sysrsslog
sysscblst
syssscelem
syssesappinfo
syssesprof
syssessions
syssessiontempspaceusage
The syssessiontempspaceusage table contains information about each session's temp space usage, includes both implicit and explicit temp tables.
syssmx
syssmxses
syssqexplain table
The syssqexplain pseudo table stores information about SQL queries.
syssqltrace
syssqltrace_hvar
The syssqltrace_hvar table describes information about the SQL tracing host variable.
syssqltrace_info
The syssqltrace_info table describes information about the SQL profile trace system.
syssqltrace_iter
syssrcrss
syssrcsds
The syssrcsds table provides SD secondary server related statistics at the primary server.
systabnames
systhreads
systrgrss
systrgsds
The systrgsds table provides SD secondary server related statistics at the SD secondary server.
sysvpprof
The SMI Tables Map

530 Part VI: Administering

Information from onstat in the SMI Tables

Copyright© 2020 HCL Technologies Limited

The sysutils Tables

ON-Bar uses the following tables in the sysutils database. For more information, see the IBM® Informix® Backup and Restore Guide.

Table
Description

bar_action
Lists all backup and restore actions that are attempted against an object, except during a cold restore. Use the information in this table to track backup and restore
history.

bar_instance
Writes a record to this table for each successful backup. ON-Bar might later use the information for a restore operation.

bar_object
Describes each backup object. This table provides a list of all storage spaces and logical logs from each database server for which at least one backup attempt was
made.

bar_server
Lists the database servers in an installation. This table is used to ensure that backup objects are returned to their proper places during a restore.

Copyright© 2020 HCL Technologies Limited

sysadtinfo

The sysadtinfo table contains information about the auditing configuration for the database server. For more information, see your IBM® Informix® Security Guide. You
must be user informix or user root on UNIX or a member of the Informix-Admin group on Windows to retrieve information from the sysadtinfo table.

Column Type Description

adtmode integer Controls the level of auditing.

adterr integer Specifies how the database server behaves when it encounters an error while it writes an audit
record.

adtsize integer Maximum size of an audit file

adtpath char(256) Directory where audit files are written

adtfile integer Number of the audit file

Copyright© 2020 HCL Technologies Limited

sysaudit

For each defined audit mask (that is, for each username), the sysaudit table contains flags that represent the database events that generate audit records. The success
and failure columns represent the bitmasks that compose the audit masks. If a bit is set in both the success the and failure columns, the corresponding event generates
an audit record whether or not the event succeeded.

You must be user informix or user root on UNIX or a member of the Informix-Admin group on Windows to retrieve information from the sysaudit table.

Use the onaudit utility to list or modify an audit mask. For information about onaudit and auditing, see your IBM® Informix® Security Guide.

Column Type Description

username char(32) Name of the mask

succ1 integer Bitmask of the audit mask for success

succ2 integer Bitmask of the audit mask for success

succ3 integer Bitmask of the audit mask for success

succ4 integer Bitmask of the audit mask for success

succ5 integer Bitmask of the audit mask for success

fail1 integer Bitmask of the audit mask for failure

fail2 integer Bitmask of the audit mask for failure

fail3 integer Bitmask of the audit mask for failure

fail4 integer Bitmask of the audit mask for failure

fail5 integer Bitmask of the audit mask for failure

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 531

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

syschkio

The syschkio system-monitoring interface table provides I/O statistics for individual chunks that the database server manages.

Column Type Description

chunknum smallint Chunk number

reads integer Number of physical reads

pagesread integer Number of pages read

writes integer Number of physical writes

pageswritten integer Number of pages written

mreads integer Number of physical reads (mirror)

mpagesread integer Number of pages read (mirror)

mwrites integer Number of physical writes (mirror)

mpageswritten integer Number of pages written (mirror)

Copyright© 2020 HCL Technologies Limited

syscheckpoint

The syscheckpoint table provides information and statistics about checkpoints.

Column Type Description

interval integer Number of checkpoints since the server was started

type char(12) Hard or Interval

caller char(10) Caller of the checkpoint

clock_time integer Time of day the checkpoint occurred

crit_time float Time spent waiting for the critical section to be released

flush_time float Time spent flushing pages to disk

cp_time float Duration from checkpoint pending until checkpoint done

n_dirty_buffs integer Number of dirty buffers

plogs_per_sec integer Number of physical log pages processed in a second

llogs_per_sec integer Number of logical log pages processed in a second

dskflush_per_sec integer Number of buffer pool pages flushed in a second

ckpt_logid integer Unique id of the logical log at the checkpoint

ckpt_logpos integer Position of the logical log at the checkpoint

physused integer Number of pages used in the physical log

logused integer Number of pages used in the logical log

n_crit_waits integer Number of users who had to wait to enter a critical section

tot_crit_wait float Duration spent waiting for all users waiting at the checkpoint critical section
block

longest_crit_wait float Longest critical section wait

block_time float Duration of the checkpoint that blocked the system

Copyright© 2020 HCL Technologies Limited

syschunks

The syschunks table contains a description of each of the chunks that the database server manages.

In the flags and mflags columns, each bit position represents a separate flag. Thus, it might be easier to read values in the flags and mflags columns if the values are
returned by the HEX function.

Table 1. The syschunks table

Column Type Description

chknum smallint Chunk number

dbsnum smallint Dbspace number

nxchknum smallint Number of the next chunk in this dbspace

532 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Column Type Description

chksize integer Number of pages in this chunk (in units of system default page size)

offset integer Page offset of the chunk in its device or path

pagesize integer Page size (in bytes)

nfree integer Number of free pages in the chunk
The amount of free space depends on the type of space:

dbspace = multiply the number of free pages by the system default page
size of either 2 KB or 4 KB.
blobspace = multiply the number of free pages by the blobpage size.
sbspace = multiply the number of free pages by the sbpage size (which is
the same as the system default page size).

is_offline integer 1 = chunk is offline
0 = chunk is online

is_recovering integer 1 = the chunk is being recovered
0 = the chunk is not being recovered

is_blobchunk integer 1 = the chunk is in a blobspace
0 = the chunk is not in a blobspace

is_sbchunk integer 1 = the chunk is an sbspace
0 = the chunk is not in an sbspace

is_inconsistent integer 1 = the chunk is undergoing logical restore
0 = the chunk is not being restored

is_extendable integer 1 = the chunk is extendable
0 = the chunk is not extendable

flags smallint The flags have the following numeric and hexadecimal values and meanings:

16 (0x0010) = Chunk is a mirrored chunk
32 (0x0020) = Chunk is in offline mode
64 (0x0040) = Chunk is in online mode
128 (0x0080) = Chunk is in recovery mode
256 (0x0100) = Chunk is mirrored
512 (0x0200) = Chunk is part of a blobspace
1024 (0x0400) = Chunk is being dropped
4096 (0x1000) = Chunk is inconsistent
8192 (0x2000) = Chunk is extendable
16384 (0x4000) = Chunk was added during roll forward
32768 (0x8000) = Chunk was renamed
65536 (0x10000) = Chunk uses big chunk page header
131072 (0x20000) = Chunk has a tblspace tblspace extent
262144 (0x40000) = No checkpoint was completed since this chunk was
initialized (primarily for internal use)

fname char(256) Path name for the file or device of this chunk

mdsize integer Size in pages of the metadata area of a chunk that belongs to an sbspace.
-1 = the chunk does not belong to an sbspace.

mfname char(256) Path name for the file or device of the mirrored chunk, if any

moffset integer Page offset of the mirrored chunk

mis_offline integer 1 = mirror is offline
0 = mirror is online

mis_recovering integer 1 = mirror is being recovered
0 = mirror is not being recovered

mflags smallint Mirrored chunk flags; values and meanings are the same as the flags column.

udfree integer Free space in pages within the user data area of a chunk that belongs to an
sbspace.
-1 = the chunk does not belong to an sbspace.

udsize integer Size in pages of the user data area of a chunk that belongs to an sbspace.
-1 = the chunk does not belong to an sbspace.

Copyright© 2020 HCL Technologies Limited

sysckptinfo

The sysckptinfo system-monitoring interface table provides historical information about the previous twenty checkpoints.

Column Type Description

Part VI: Administering 533

https://www.hcltech.com/

Column Type Description

ckpt_status int 0x0011 = A checkpoint was blocked because the physical log ran out of resources.
0x0021 = A checkpoint was blocked because the logical log ran out of resources.

0x0041 = A checkpoint was blocked because transactions were too long.

0x1000 = The physical log is too small.

0x2000 = The logical log space is too small.

0x4000 = The physical log is too small for RTO.

plogs_per_S int Average rate of physical logging activity.

llogs_per_S int Average rate of logical logging activity.

dskF_per_S int Average rate of pages flushed to disk.

longest_dskF int Longest duration of time to flush the buffer pool to the disk during checkpoint
processing.

dirty_pgs_S int Average rate of pages being modified.

sug_plog_sz int Suggested physical log size.

sug_llog_sz int Suggested logical log space size.

ras_plog_sp int Rate at which fast recovery can restore the physical log.

ras_llog_sp int Rate at which fast recovery can replay the logical log.

boottime int Time it takes for the server to boot shared memory and open chunks.

auto-ckpts int 1 = on, 0 = off.

auto_lru int 1 = on, 0 = off.

cur_intvl int Current® checkpoint interval id.

auto_aiovp int 1 = on, 0 = off.

Related reference:
 onstat -g ckp command: Print checkpoint history and configuration recommendations

Copyright© 2020 HCL Technologies Limited

syscluster

The syscluster system catalog table stores information about servers in a high-availability cluster. The syscluster table has the following columns.
Table 1. syscluster table information

Column Type Explanation

name CHAR(128) The name of the primary server.

role CHAR(1) Code to indicate whether the server is a primary server or secondary server.

syncmode CHAR(8) The synchronization mode between the primary server and the secondary server: sync or
async.

nodetype CHAR(8) The type of server: HDR, RSS, or SDS.

supports_updates CHAR(1) Indicates whether client applications can perform update, insert, and delete operations on the
secondary server (as specified by the UPDATABLE_SECONDARY configuration parameter).

server_status CHAR(32) Indicates the status of the secondary server.

connection_status CHAR(32) Indicates the connection status of the secondary server.

delayed_apply INTEGER Indicates whether the secondary server waits for a specified amount of time before applying
logs (as specified by the DELAY_APPLY configuration parameter).

stop_apply CHAR(24) Indicates whether the secondary server has stopped applying log files received from the
primary server (as specified by the STOP_APPLY configuration parameter).

logid_sent INTEGER Indicates the log ID of the most recent log page sent by the primary server to the secondary
server.

logpage_sent INTEGER Indicates the page number of the most recent log page sent by the primary server to the
secondary server.

logid_acked INTEGER Indicates the log ID of the most recent log page the secondary server acknowledged.

logpage_acked INTEGER Indicates the page number of the most recent log page the secondary server acknowledged.

ack_time DATETIME YEAR TO
SECOND

Indicates the date and time of the last acknowledged log.

sdscycle INTEGER Indicates the cycle number to which the primary server has advanced. Used internally by
support to monitor coordination of the primary server with the secondary server.

sdscycle_acked INTEGER Indicates the cycle number that the shared disk secondary server has acknowledged. Used
internally by support to monitor coordination of the primary server with the secondary server.

534 Part VI: Administering

https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

syscmsm

The syscmsm table is a view of the syscmsmtab and syscmsmsla tables. It contains Connection Manager service level agreement (SLA) information. The table is updated
one time every five seconds.

Table 1. syscmsm table information

Column Type Description

sid integer Connection Manager session ID

name char(128) Connection Manager name

host char(256) Host name

unit char(128) Unit name

type char(128) Unit type

servers char(1024) Unit servers

foc char(128) Failover configuration (FOC)

flag integer Arbitrator flag. A value of 1 indicates that the Connection Manager Arbitrator is active. A value of 0
indicates that the Arbitrator is inactive.

sla_name char(128) SLA name

sla_define char(128) SLA definition

connections integer Number of connections that are made through Connection Manager

Copyright© 2020 HCL Technologies Limited

syscmsmsla

The syscmsmsla table contains Connection Manager service level agreement (SLA) information. The table is updated one time every five seconds.
Table 1. syscmsmsla table information

Column Type Description

address int8 CMSLA internal address

sid integer Connection Manager session ID

sla_name char(128) SLA name

sla_define char(128) SLA define

connections integer Number of connections made through Connection Manager

Copyright© 2020 HCL Technologies Limited

syscmsmtab

The syscmsmtab table contains Connection Manager information.
Table 1. syscmsmtab table information

Column Type Description

address int8 Connection Manager internal address

sid integer Connection Manager session ID

name char(128) Connection Manager name

host char(256) Host name

flag integer Arbitrator flag. A value of 1 indicates that the Connection Manager Arbitrator is active. A value of 0
indicates that the Arbitrator is inactive.

Copyright© 2020 HCL Technologies Limited

syscmsmunit

The syscmsmunit table contains information for each Connection Manager unit in a Connection Manager configuration file.
Table 1. syscmsmunit table information

Column Type Description

Part VI: Administering 535

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Column Type Description

address int8 Connection Manager internal address

sid integer Connection Manager session ID

unit char(128) Unit name

type char(128) Unit type

servers char(1024) Unit servers

foc char(128) Failover configuration (FOC)

flag integer Arbitrator flag. A value of 1 indicates that the Connection Manager Arbitrator is active. A value of 0
indicates that the Arbitrator is inactive.

Copyright© 2020 HCL Technologies Limited

syscompdicts_full

The syscompdicts_full table and the syscompdicts view provide information on all compression dictionaries. The only difference between the table and the view is that,
for security purposes, the view does not contain the dict_dictionary column.

Only user informix can retrieve information from the syscompdicts_full table. The syscompdicts view is not restricted to user informix.

The following table shows the information that the syscompdicts_full table and the syscompdicts view provide for each compression dictionary.

Table 1. Compression Dictionary Information
Column Type Description

dict_partnum integer Partition number to which the compression dictionary applies

dict_code_version integer Version of the code that is creating the compression dictionary
1 is the first version.

dict_dbsnum integer Number of the dbspace that the dictionary resides in

dict_create_timestamp integer Timestamp that shows when the dictionary was created

dict_create_loguniqid integer Unique ID for the logical log that was active when the dictionary was
created

dict_create_logpos integer Position within the logical log when the dictionary was created

dict_drop_timestamp integer Timestamp that shows when the dictionary was dropped.

dict_drop_loguniqid integer Unique ID for the logical log that was created when the dictionary
was dropped.

dict_drop_logpos integer Position within the logical log when the dictionary was dropped.

dict_dictionary byte Compression dictionary binary object
This column is not included in the syscompdicts view.

Sample syscompdicts information
A row of information in the syscompdicts view could displays columns containing this information:

dict_partnum 1048939
dict_code_version 1
dict_dbsnum 1
dict_create_times+ 1231357656
dict_create_logun+ 11
dict_create_logpos 1695768
dict_drop_timesta+ 0
dict_drop_loguniq+ 0
dict_drop_logpos 0

You can use an UNLOAD statement to unload the compression dictionary to a compression dictionary file, as follows:

UNLOAD TO 'compression_dictionary_file'
 SELECT * FROM sysmaster:syscompdicts_full;

Copyright© 2020 HCL Technologies Limited

sysconfig

The sysconfig table describes the effective, original, and default values of the configuration parameters. For more information about the ONCONFIG file and the
configuration parameters, see Database configuration parameters.

Column Type Description

cf_id integer Unique numeric identifier

536 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Column Type Description

cf_name char(128) Configuration parameter name

cf_flags integer Reserved for future use

cf_original char(256) Value in the ONCONFIG file at boot time

cf_effective char(256) Value currently in use

cf_default char(256) Value provided by the database server if no value is specified in the ONCONFIG
file

Copyright© 2020 HCL Technologies Limited

sysdatabases

The sysdatabases view describes each database that the database server manages.
Table 1. sysdatabases view information

Column Type Description

name char(128) Database name

partnum integer The partition number (tblspace identifier) for the systables table for the database

owner char(32) User ID of the creator of the database

created date Date created

is_logging integer 1 If logging is active, 0 if not

is_buff_log integer 1 If buffered logging, 0 if not

is_ansi integer 1 If ANSI/ISO-compliant, 0 if not

is_nls integer 1 If GLS-enabled, 0 if not

is_case_insens integer 1 If case-insensitive for NCHAR and NVARCHAR columns, 0 if not

flags smallint Logging flags (hex values)

0 No logging

1 Unbuffered logging

2 Buffered logging

4 ANSI/ISO-compliant database

8 Read-only database

10 GLS database

20 Checking of the logging mode of syscdr database bypassed

100 Changed status to buffered logging

200 Changed status to unbuffered logging

400 Changed status to ANSI/ISO compliant

800 Database logging turned off

1000 Long ID support enabled

Copyright© 2020 HCL Technologies Limited

sysdbslocale

The sysdbslocale table lists the locale of each database that the database server manages.
Table 1. sysdbslocale table information

Column Type Description

dbs_dbsname char(128) Database name

dbs_collate char(32) The locale of the database

Copyright© 2020 HCL Technologies Limited

sysdbspaces

The sysdbspaces table contains a description of each of the storage spaces that the database server manages.

Table 1. sysdbspaces table information

Part VI: Administering 537

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Column Type DescriptionColumn Type Description

dbsnum smallint Space number

name char(128) Space name

owner char(32) User ID of owner of the space

fchunk smallint Number of the first chunk in the space

nchunks smallint Number of chunks in the space

create_size decimal The minimum size of a chunk that can be created for this space using the storage pool.

extend_size decimal The minimum size by which a chunk in this storage space can be extended, either manually or
automatically.

pagesize integer Page size

is_mirrored integer 1 = The space is mirrored
0 = The space is not mirrored

is_blobspace integer 1 = The space is a blobspace
0 = The space is not a blobspace

is_sbspace integer 1 = The space is an sbspace
0 = The space is not an sbspace

is_temp integer 1 = The space is a temporary dbspace
0 = The space is not a temporary dbspace

is_encrypted integer 1 = The space is encrypted
0 = The space is not encrypted

flags smallint Each bit position represents a separate flag. Thus, it might be easier to read values in this column if you
return the values with the HEX function.

1 (0x0001) = The space has no mirror
2 (0x0002) = The space uses mirroring
4 (0x0004) = Mirroring is disabled
8 (0x0008) = The space is newly mirrored
16 (0x0010) = The space is a blobspace
32 (0x0020) = The blobspace is on removable media
128 (0x0080) = The blobspace has been dropped
512 (0x0200) = The space is being recovered
1024 (0x0400) = The space has been physically recovered
2048 (0x0800) = The space is in logical recovery
32768 (0x8000) = The space is an sbspace

Related reference:
 DISK_ENCRYPTION configuration parameter

Copyright© 2020 HCL Technologies Limited

sysdri

The sysdri table provides information about the High-Availability Data-Replication status of the database server.

Column Type Description

type char(50) High-Availability Data Replication type Possible values:

primary
secondary
standard
not initialized

state char(50) State of High-Availability Data Replication Possible values:

off
on
connecting
failure
read-only

name char(128) The name of the other database server in the High-Availability Data-Replication
pair

intvl integer The High-Availability Data-Replication interval

timeout integer The High-Availability Data-Replication timeout value for this database server

lostfound char(256) The pathname to the lost-and-found file

Copyright© 2020 HCL Technologies Limited

538 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

sysdual

The sysdual table returns exactly one column and one row.

Column Type Description

dummy char(1) Dummy columns returning "X"

Copyright© 2020 HCL Technologies Limited

sysenv

The sysenv table displays the startup environment settings of the database server.

Column Type Description

env_id integer Identifier variable number

env_name char(128) Environment variable name

env_value char(512) Environment variable value

Copyright© 2020 HCL Technologies Limited

sysenvses

The sysenvses table displays the environment variable at the session level.

Column Type Description

envses_sid integer Session id

envses_id integer Identifier variable number

envses_name char(128) Session environment variable name

envses_value char(512) Session environment variable value

Copyright© 2020 HCL Technologies Limited

sysextents

The sysextents table provides information about extent allocation.

Column Type Description

dbsname char(128) Database name

tabname char(128) Table name

chunk integer Chunk number

offset integer Number of pages into the chunk where the extent begins

size integer Size of the extent, in pages

Copyright© 2020 HCL Technologies Limited

sysextspaces

The sysextspaces table provides information about external spaces. Indexes for the id column and the name column allow only unique values.

Column Type Description

id integer External space ID

name char(128) External space name

owner char(32) External space owner

flags integer External space flags (reserved for future use)

refcnt integer External space reference count.

locsize integer Size of external space location, in bytes

location char (256) Location of external space

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 539

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

sysfeatures

The sysfeatures view provides general information about various features of the Informix® database server instance. The sysfeatures view is created from an internal
table named syslicenseinfo, which is stored permanently on the disk. When the database server instances are initialized, the table is pre-allocated with a fixed size which
allows tracking of 260 weeks of data. The data wraps every five years.

Metrics are sampled every 15 minutes and only the highest values during the particular week are stored. Each row in the table contains data only for the specific week it
represents.

Column Type Description

week smallint The week that the information was recorded.

year smallint The year that the information was recorded.

version char(12) The Informix server version.

max_cpu_vps smallint The maximum number of CPU virtual processors.

max_vps smallint The maximum number of virtual processors.

max_conns integer The maximum number of concurrent physical connections on a standalone or high-availability cluster
primary server instance.

max_sec_conns integer The maximum number of concurrent physical connections on an HDR secondary or RS secondary server
instance.

max_sds_clones smallint The maximum number of SD secondary server instances connected to the primary server.

max_rss_clones smallint The maximum number of RS secondary server instances connected to the primary server.

total_size integer The maximum disk space allocated in all chunks (in megabytes).

total_size_used integer The maximum disk space used in all chunks (in megabytes).

max_memory integer The maximum memory allocated in all segments (in megabytes).

max_memory _used integer The maximum memory used in all segments (in megabytes).

is_primary integer Indicates whether the server was a primary server in a particular week; 1 = yes, 0 = no.

is_secondary integer Indicates whether the server was an HDR secondary server in a particular week; 1 = yes, 0 = no.

is_sds integer Indicates whether the server was an SD secondary server in a particular week; 1 = yes, 0 = no (not
implemented; always 0).

is_rss integer Indicates whether the server was an RS secondary server in a particular week; 1 = yes, 0 = no.

is_er integer Indicates whether the server was an enterprise replication server in a particular week; 1 = yes, 0 = no.

is_pdq integer Indicates whether the PDQ feature was used on the server instance in the particular week; 1 = yes, 0 =
no.

Copyright© 2020 HCL Technologies Limited

sysha_lagtime Table

The sysha_lagtime table provides a history of the amount of time that it took to apply a log record on any of the secondary nodes.

The sysha_lagtime table contains a history of the last 20 samplings performed for a particular secondary server.
Table 1. sysha_lagtime table information

Column Type Description

lt_secondary CHAR(128) Name of secondary server

lt_time_last_update INTEGER Time at which log record was last updated

lt_lagtime_1 FLOAT Amount of time required to apply log record for the most recent five-second interval

lt_lagtime_2 FLOAT Amount of time required to apply log record for the second most recent five-second interval

lt_lagtime_3 FLOAT Amount of time required to apply log record for the third most recent five-second interval

lt_lagtime_4 FLOAT Amount of time required to apply log record for the fourth most recent five-second interval

lt_lagtime_5 FLOAT Amount of time required to apply log record for the fifth most recent five-second interval

lt_lagtime_6 FLOAT Amount of time required to apply log record for the sixth most recent five-second interval

lt_lagtime_7 FLOAT Amount of time required to apply log record for the seventh most recent five-second interval

lt_lagtime_8 FLOAT Amount of time required to apply log record for the eighth most recent five-second interval

lt_lagtime_9 FLOAT Amount of time required to apply log record for the ninth most recent five-second interval

lt_lagtime_10 FLOAT Amount of time required to apply log record for the tenth most recent five-second interval

lt_lagtime_11 FLOAT Amount of time required to apply log record for the eleventh most recent five-second interval

lt_lagtime_12 FLOAT Amount of time required to apply log record for the twelfth most recent five-second interval

540 Part VI: Administering

https://www.hcltech.com/

Column Type Description

lt_lagtime_13 FLOAT Amount of time required to apply log record for the thirteenth most recent five-second interval

lt_lagtime_14 FLOAT Amount of time required to apply log record for the fourteenth most recent five-second interval

lt_lagtime_15 FLOAT Amount of time required to apply log record for the fifteenth most recent five-second interval

lt_lagtime_16 FLOAT Amount of time required to apply log record for the sixteenth most recent five-second interval

lt_lagtime_17 FLOAT Amount of time required to apply log record for the seventeenth most recent five-second interval

lt_lagtime_18 FLOAT Amount of time required to apply log record for the eighteenth most recent five-second interval

lt_lagtime_19 FLOAT Amount of time required to apply log record for the nineteenth most recent five-second interval

lt_lagtime_20 FLOAT Amount of time required to apply log record for the twentieth most recent five-second interval

Copyright© 2020 HCL Technologies Limited

sysha_type

The sysha_type table is a single row table that is used to describe the type of server that is connected.
Table 1. sysha_type table information

Column Type Description

ha_type integer Server type (see table below)

ha_primary char(128) Server name (see table below)

Table 2. Descriptions for the values in the sysha_type table. This table describes the values in the
sysha_type table.

Value of ha_type Value of ha_primary Description

0 NULL Not part of a high-availability
environment

1 <primary server name> Primary server

2 <primary server name> HDR secondary server

3 <primary server name> SD secondary server

4 <primary server name> RS secondary server

Copyright© 2020 HCL Technologies Limited

sysha_workload

The sysha_workload table contains workload statistics on each of the secondary servers.
Table 1. sysha_workload table information

Column Type Description

wl_secondary char(128) Name of secondary server

wl_time_last_update integer Time at which workload last updated

wl_type char(12) This row contains the ready queue size, user CPU time, and system CPU time

wl_workload_1 float Most recent workload activity

wl_workload_2 float Second most recent workload activity

wl_workload_3 float Third most recent workload activity

wl_workload_4 float Fourth most recent workload activity

wl_workload_5 float Fifth most recent workload activity

wl_workload_6 float Sixth most recent workload activity

wl_workload_7 float Seventh most recent workload activity

wl_workload_8 float Eighth most recent workload activity

wl_workload_9 float Ninth most recent workload activity

wl_workload_10 float Tenth most recent workload activity

wl_workload_11 float Eleventh most recent workload activity

wl_workload_12 float Twelfth most recent workload activity

wl_workload_13 float Thirteenth most recent workload activity

wl_workload_14 float Fourteenth most recent workload activity

wl_workload_15 float Fifteenth most recent workload activity

Part VI: Administering 541

https://www.hcltech.com/
https://www.hcltech.com/

Column Type Description

wl_workload_16 float Sixteenth most recent workload activity

wl_workload_17 float Seventeenth most recent workload activity

wl_workload_18 float Eighteenth most recent workload activity

wl_workload_19 float Nineteenth most recent workload activity

wl_workload_20 float Twentieth most recent workload activity

Copyright© 2020 HCL Technologies Limited

sysipl

The sysipl table provides information about the status of index page logging at the primary server.
Table 1. sysipl table information

Column Type Description

ipl_status integer Index page logging status

ipl_time integer Time at which index page logging was enabled

Copyright© 2020 HCL Technologies Limited

syslocks

The syslocks table provides information about all the currently active locks in the database server.
Table 1. syslocks table information

Column Type Description

dbsname char(128) Database name

tabname char(128) Table name

rowidlk integer Real rowid, if it is an index key lock

keynum smallint Key number of index key lock

type char(4) Type of lock

B Byte lock

IS Intent shared lock

S Shared lock

XS Shared key value held by a repeatable reader

U Update lock

IX Intent exclusive lock

SIX Shared intent exclusive lock

X Exclusive lock

XR Exclusive key value held by a repeatable reader

owner integer Session ID of the lock owner

waiter integer Session ID of the user waiting for the lock. If more than one user is waiting, only the first session ID appears.

Copyright© 2020 HCL Technologies Limited

syslogs

The syslogs table provides information about space use in logical-log files. In the flags column, each bit position represents a separate flag. For example, for a log file, the
flags column can have flags set for both current log file and temporary log file. Thus, it might be easier to read values in the flags column if the values are returned using
the HEX function.

Table 1. syslogs table information

Column Type Description

number smallint Logical-log file number

uniqid integer Log-file ID

size integer Number of pages in the log file

used integer Number of pages used in the log file

is_used integer 1 If file is used, 0 if not

542 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Column Type Description

is_current integer 1 If file is the current file, 0 if not

is_backed_up integer 1 If file has been backed up, 0 if not

is_new integer 1 If the log has been added since the last level-0 dbspace backup, 0 if not

is_archived integer 1 If file has been placed on the backup tape, 0 if not

is_temp integer 1 If the file is flagged as a temporary log file, 0 if not

flags smallint Flags Hexadecimal Meaning

1 0x01 Log file is in use

2 0x02 File is current log file

4 0x04 Log file has been backed up

8 0x08 File is newly added log file

16 0x10 Log file has been written to dbspace backup media

32 0x20 Log is a temporary log file

Copyright© 2020 HCL Technologies Limited

syslogfil table

The syslogfil table provides information about the logical log files.

Table 1. Information about the columns in the syslogfil table.

Column Type Description

address int8 Memory address of the logfile structure

number small integer Log file number

flags integer For a description of the values and their meanings, see the Flag values section below.

fillstamp integer Internal timestamp when the log file was filled

filltime integer UNIX time when the log file was filled

uniqid integer Unique ID for the log file

chunk integer Number of the chunk that contains the log file

offset integer Page offset in the chunk where log file begins

size integer Total number of pages in the log file

used integer Number of pages used in the log file

Flag values
The flag values correspond to many of the flag values for the onstat -l command.

Hexadecimal Onstat -l flag value Meaning

0x1 U Log file is in use

0x2 C File is current log file

0x4 B Log file has been backed up

0x8 A File is a newly added log file

0x20 None A temporary log file

0x40 D Log file will be dropped after the file is archived

0x4000 L Log file contains the last checkpoint written

Copyright© 2020 HCL Technologies Limited

sysmgminfo

The sysmgminfo table provides an overview of the Memory Grant Manager (MGM) and Parallel Data Query (PDQ) information.
Table 1. sysmgminfo table information

Column Type Description

max_query integer Maximum number of active queries allowed

total_mem integer Total MGM memory

avail_mem integer Free MGM memory

Part VI: Administering 543

https://www.hcltech.com/
https://www.hcltech.com/

Column Type Description

total_seq integer Total number of sequential scans

avail_seq integer Unused sequential scans

active integer Number of active MGM queries

ready integer Number of ready MGM queries

min_free_mem integer Minimum free MGM memory

avg_free_mem float Average free MGM memory

std_free_mem float Standard free MGM memory

min_free_seq integer Minimum free MGM sequential scans

avg_free_seq float Average free MGM sequential scans

std_free seq float Standard free MGM sequential scans

max_active integer Maximum active MGM SQL operations

cnt_active integer Number of active MGM SQL operations

avg_active float Average active MGM SQL operations

std_active float Standard active MGM SQL operations

max_ready integer Maximum ready MGM SQL operations

cnt_ready integer Number of ready MGM SQL operations

avg_ready float Average ready MGM SQL operations

std_ready float Standard ready MGM SQL operations

Copyright© 2020 HCL Technologies Limited

sysnetclienttype

The sysnetclienttype table provides an overview of the network activity for each client type.

Column Type Description

nc_cons_allowed integer Whether or not connections are allowed

nc_accepted integer Number of connections that were accepted

nc_rejected integer Number of network connections that were rejected

nc_reads int8 Number of network reads for this client type

nc_writes int8 Number of network writes for this client type

nc_name char(18) Name of the client type

Copyright© 2020 HCL Technologies Limited

sysnetglobal

The sysnetglobal table provides an overview of the system network.

Column Type Description

ng_reads int8 Number of network reads

ng_writes int8 Number of network writes

ng_connects int8 Number of network connections

ng_his_read_count int8 Number of network reads by users who have disconnected ng_his_read_bytes

ng_his_read_bytes int8 Data transferred to the server by users who have disconnected

ng_his_write_count int8 Number of network writes by users who have disconnected

ng_his_write_bytes int8 Data transferred to the client by users who have disconnected

ng_num_netscbs integer Number of network subscribers

ng_max_netscbs integer Maximum number of network subscribers

ng_free_thres integer Threshold for the maximum number of freed buffers in the buffer list

ng_free_cnt integer Number of times the ng_free_thres limit has been reached

ng_wait_thres integer Threshold for the maximum number of buffers that can be held in the buffer list for one
connection

ng_wait_cnt integer Number of times the ng_wait_thres limit has been reached

ng_pvt_thres integer Threshold for the maximum number of freed buffers in the private buffer queue

544 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Column Type Description

ng_netbuf_size integer Size of the transport network buffers

ng_buf_alloc integer Number of network buffers allocated

ng_buf_alloc_max integer Maximum value of allocated network buffers

ng_netscb_id integer Next netscb id

Copyright© 2020 HCL Technologies Limited

sysnetworkio table

The sysnetworkio table contains information about the system network.

Column Type Description

net_id integer Netscb id

sid integer Session id

net_netscb int8 Netscb prt

net_client_type integer Client type Int

net_client_name char(12) Client protocol name

net_read_cnt int8 Number of network reads

net_write_cnt int8 Number of network writes

net_open_time integer Time this session connected

net_last_read integer Time of the last read from the network

net_last_write integer Time of the last write from the network

net_stage integer Connect / Disconnect / Receive

net_options integer Options from sqlhosts

net_protocol integer Protocol

net_type char(10) Type of network protocol

net_server_fd integer Server fd

net_poll_thread integer Poll thread

Copyright© 2020 HCL Technologies Limited

sysonlinelog

The sysonlinelog table provides a view of the information stored in the online.log file.

Column Type Description

offset int8 File offset

next_offset int8 Offset to the next message

line char(4096) Single line of text from the file

Copyright© 2020 HCL Technologies Limited

sysprofile

The sysprofile table contains profile information about the database server.

Column Type Description

name char(13) Name of profiled event. (See table that follows for a list of possible events.)

value integer Value of profiled event. (See table that follows for a list of possible events.)

The following table lists the events that, together with a corresponding value, make up the rows of the sysprofile table.

Events Profiled in sysprofile Description

dskreads Number of actual reads from disk

bufreads Number of reads from shared memory

dskwrites Actual number of writes to disk

bufwrites Number of writes to shared memory

Part VI: Administering 545

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Events Profiled in sysprofile Description

isamtot Total number of calls

isopens isopen calls

isstarts isstart calls

isreads isread calls

iswrites iswrite calls

isrewrites isrewrite calls

isdeletes isdelete calls

iscommits iscommit calls

isrollbacks isrollback calls

ovlock Overflow lock table

ovuser Overflow user table

ovtrans Overflow transaction table

latchwts Latch request waits

bufwts Buffer waits

lockreqs Lock requests

lockwts Lock waits

ckptwts Checkpoint waits

deadlks Deadlocks

lktouts Deadlock time-outs

numckpts Number checkpoints

plgpagewrites Physical-log pages written

plgwrites Physical-log writes

llgrecs Logical-log records

llgpagewrites Logical-log writes

llgwrites Logical-log pages written

pagreads Page reads

pagwrites Page writes

flushes Buffer-pool flushes

compress Page compresses

fgwrites Foreground writes

lruwrites Least-recently used (LRU) writes

chunkwrites Writes during a checkpoint

btradata Read-ahead data pages read through index leaf node

btraidx Read-ahead data pages read through index branch or root node

dpra Data pages read into memory with read-ahead feature

rapgs_used Read-ahead data pages that user used

seqscans Sequential scans

totalsorts Total sorts

memsorts Sorts that fit in memory

disksorts Sorts that did not fit in memory

maxsortspace Maximum disk space used by a sort

Copyright© 2020 HCL Technologies Limited

sysproxyagents

The sysproxyagents table contains information about all proxy agent threads. Proxy agent threads run on the primary server and accept requests from secondary servers
to process DML operations. The primary server also contains a proxy distributor that handles secondary server updates. Secondary servers determine how many instances
of the proxy distributor to create based on the UPDATABLE_SECONDARY setting in the secondary server's ONCONFIG file.

Column Type Description

tid integer Transaction ID of the proxy agent thread running on the primary server. This ID is created by the
proxy distributor to handle work from the secondary server session.

flags integer Flags of the proxy agent thread.

546 Part VI: Administering

https://www.hcltech.com/

Column Type Description

proxy_id integer ID of the proxy distributor on behalf of the currently executing proxy agent thread (TID).

source_session_id integer ID of the user's session on the secondary server.

proxy_txn_id integer Number of the current transaction. These numbers are unique to the proxy distributor.

current_seq integer The sequence number of the current operation in the current transaction.

sqlerrno integer Error number of any SQL error (or 0 on success)

iserrno integer Error number of any ISAM/RSAM error (or 0 on success)

Copyright© 2020 HCL Technologies Limited

sysproxydistributors

The sysproxydistributors table contains information about the proxy distributors.

On the primary server, this table contains information about all of the proxy distributors in a high-availability cluster. On a secondary server, this table contains information
about only those proxy distributors that are assigned to process updates to the secondary server.

Column Type Description

node_name char Name of the secondary server as it is known by the primary server (for example, INFORMIXSERVER,
HA_ALIAS, and so on).

proxy_id integer ID of the proxy distributor. These IDs are unique within a high-availability cluster.

transaction_count integer Number of transactions currently being processed by the proxy distributor.

hot_row_total integer Total number of hot rows ever handled by the proxy distributor. A hot row is a row on a secondary
server that is updated multiple times by more than one client. When a row is updated multiple times,
the secondary server reads the before image from the primary server by placing an update lock on
the row if the most recent update operation from a different session is not replayed on the secondary
server.

Copyright© 2020 HCL Technologies Limited

sysproxysessions table

The sysproxysessions table contains information about each of the sessions that are using redirected-write functionality. This table is only valid on the secondary server.

The following table provides information about the columns in the sysproxysessions table:

Column Type Description

session_id integer ID of a user's session on the secondary server.

proxy_id integer ID of the proxy distributor on behalf of which the proxy agent thread (TID) is running

proxy_tid integer Transaction ID of the proxy agent thread running on the primary server. This ID is created by the proxy
distributor to handle work from the secondary server session.

proxy_txn_id integer Number of the current transaction. These numbers are unique to the proxy distributor.

current_seq integer The sequence number of the current operation in the current transaction.

pending_ops integer The number of operations buffered on the secondary server that have not yet been sent to the primary
server.

reference_count integer Indicates the number of threads (for example, sqlexec, sync reply, recovery, and so on) that are using
the information for this transaction. When reference_count equals 0, the transaction processing has
completed (either successfully or unsuccessfully).

Copyright© 2020 HCL Technologies Limited

sysproxytxnops table

The sysproxytxnops table contains information about each of the transactions that are running through each proxy distributor.

On the primary server, this table contains information about all of the proxy distributors in the high-availability cluster. On a secondary server, this table only contains
information about the proxy distributors used to process updates to the secondary server.

The following table provides information about the columns in the sysproxytxnops table:

Column Type Description

proxy_id integer ID of the proxy distributor. These IDs are unique within a high-availability cluster.

proxy_txn_id integer Number of the transaction. These numbers are unique to the proxy distributor.

sequence_number integer The number of the operation.

Part VI: Administering 547

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Column Type Description

operation_type char(10) The type of operation to be performed; Insert, Update, Delete, or Other.

rowidn integer The ID of the row on which to apply the operation.

table char The full table name, trimmed to fit a reasonable length. Format:
database:owner.tablename

sqlerrno integer Error number of any SQL error (or 0 on success)

Copyright© 2020 HCL Technologies Limited

sysproxytxns table

The sysproxytxns table contains information about all of the current transactions that are running through each proxy distributor.

On the primary server, this table contains information about each of the proxy distributors in the high-availability cluster. On a secondary server, this table only contains
information about the proxy distributors used to process updates to the secondary server.

The following table provides information about the columns in the sysproxytxns table:

Column Type Description

proxy_id integer ID of the proxy distributor. These IDs are unique within a high-availability cluster.

proxy_txn_id integer Number of the transaction. These numbers are unique to the proxy distributor.

reference_count integer Indicates the number of threads (for example, sqlexec, sync reply, recovery, and so on) that are using the
information for this transaction. When the count becomes 0 this indicates the transaction processing is
complete. (either successfully or unsuccessfully).

pending_ops integer On the primary server: the number of operations received from the secondary server that have not yet been
processed. On the secondary server, the number of operations buffered on the secondary server that have not
yet been sent to the primary server.

proxy_sid integer Proxy Session ID

Copyright© 2020 HCL Technologies Limited

sysptnhdr

The sysptrhdr table contains information about partition headers.

Column Type Description

partnum integer Partnum of the table

flags integer Partition flags

rowsize integer Row size (maximum for variable)

ncols smallint Number of VARCHAR or BLOB
columns

nkeys smallint Number of indexes

nextns smallint Number of extents

pagesize smallint Page size

created integer Date created

serialv integer Current SERIAL value

fextsiz integer First extent size, in pages

nextsiz integer Next extent size, in pages

nptotal integer Number of pages allocated

npused integer Number of pages used

npdata integer Number of data pages

octptnm integer Optical BLOB partnum

lockid integer Table lock ID

nrows bigint Number of data rows

ninserts bigint Number of insert operations

nupdates bigint Number of update operations

ndeletes bigint Number of delete operations

cur_serial8 int8 Current SERIAL8 value

cur_bigserial bigint Current BIGSERIAL value

548 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Column Type Description

dbsnum integer Number of partitions in the dbspace

pta_oldvers smallint In-place alter

pta_newvers smallint In-place alter

pta_bmpagenum integer In-place alter

pta_totpgs integer In-place alter

pta_opems_allocd integer In-place alter

pta_opems_filled integer In-place alter

glscollname char(32) In-place alter

flags2 integer Partition flags2

sid integer Temporary table session ID

You can run the following query to see the number of allocated pages for temporary tables:

SELECT i.sid, hex(i.flags) flags, hex(i.partnum) partition,
 trim(n.dbsname) || ":" || trim(n.owner) || ":" || trim(n.tabname) table,
 i.nptotal allocated_pages
 FROM sysmaster:systabnames n, sysmaster:sysptnhdr i
 WHERE (sysmaster:bitval(i.flags, "0x0020") = 1)
 AND i.partnum = n.partnum

For example, the query can return information similar to the following output:

session with query "select * from customer into temp good "
sid 60
flags 0x00000861
partition 0x00100249
table demo:informix:good
allocated_pages 8

session with temp table generated from query "select from <view>"
sid 64
flags 0x00008821
partition 0x00100249
table demo:informix:_temptable
allocated_pages 8

temp table from sorting
sid 33
flags 0x000048A0
partition 0x00200004
table SORTTEMP:informix:th_tmprun_0x4a1b2370
allocated_pages 128

temp table from hashing
sid 31
flags 0x000048A0
partition 0x00200003
table HASHTEMP:informix:th_overflow_0xffffffffffffffff
allocated_pages 16

Copyright© 2020 HCL Technologies Limited

sysptprof table

The sysptprof table lists information about a tblspace. Tblspaces correspond to tables.

Profile information for a table is available only when a table is open. When the last user who has a table open closes it, the tblspace in shared memory is freed, and any
profile statistics are lost.

The following table provides information about the columns in the sysptprof table:

Column Type Description

dbsname char(128) Database name

tabname char(128) Table name

partnum integer Partition (tblspace) number

lockreqs integer Number of lock requests

lockwts integer Number of lock waits

deadlks integer Number of deadlocks

lktouts integer Number of lock timeouts

isreads integer Number of isreads

iswrites integer Number of iswrites

isrewrites integer Number of isrewrites

isdeletes integer Number of isdeletes

Part VI: Administering 549

https://www.hcltech.com/

Column Type Description

bufreads integer Number of buffer reads

bufwrites integer Number of buffer writes

seqscans integer Number of sequential scans

pagreads integer Number of page reads

pagwrites integer Number of page writes

Copyright© 2020 HCL Technologies Limited

sysrepevtreg table

Use the sysrepevtreg pseudo table to register for a pre-defined set of events from the Connection Manager.

The following table provides information about the columns in the sysrepevtreg table:
Table 1. sysrepevtreg table information

Column Type Description

evt_bitmap integer Event ID bitmap

evt_timeout integer Maximum time in seconds that the client can wait for event data. Valid timeout values are:

0; no wait (default)
-1; wait forever
n (where n > 0) wait n seconds

evt_hwm integer Pending event list high-water mark

evt_info char(256) Event information (Not yet implemented)

Copyright© 2020 HCL Technologies Limited

sysrepstats table

Use the sysrepstats table to post events to Connection Manager.

The following table provides information about the columns in the sysrepstats table:
Table 1. sysrepstats table information

Column Type Description

repstats_type integer Event ID

repstats_subtype integer Sub event ID

repstats_time integer Time at which event was initiated

repstats_ver integer Version number of event data

repstats_desc lvarchar Event data

User Interface for sysrepstats and sysrepevtreg Tables
 Client applications can post events to Connection Manager or to other clients by inserting event information into the sysrepstats pseudo table. Client applications

can register events using the sysmaster pseudo table sysrepevtreg, and receive event data by issuing select or fetch statements against the sysrepstats pseudo
table.

Copyright© 2020 HCL Technologies Limited

User Interface for sysrepstats and sysrepevtreg Tables

Client applications can post events to Connection Manager or to other clients by inserting event information into the sysrepstats pseudo table. Client applications can
register events using the sysmaster pseudo table sysrepevtreg, and receive event data by issuing select or fetch statements against the sysrepstats pseudo table.

By posting events to the sysrepstats, you can issue control messages to Connection Manager without having to directly connect to Connection Manager itself.

When Connection Manager registers that it wishes to receive events, it passes a bitmap of the event types that it wants to receive. As events are received, they are posted
to the thread that placed the request.

Event Classes
The following table lists each event class, its bit value, and a description of the event class.

Table 1. Event Classes

550 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Event class name Bit value DescriptionEvent class name Bit value Description

REPEVT_CLUST_CHG 0x1 Event class for High-Availability cluster changes

REPEVT_CLUST_PERFSTAT 0x2 Event class for workload statistics for the server nodes in a High-Availability
cluster

REPEVT_CLUST_LATSTAT 0x4 Event class for replication latency information for server nodes in a High-
Availability cluster

REPEVT_CM_ADM 0x8 Connection Manager administration commands

REPEVT_SRV_ADM 0x10 Event class for server mode changes

REPEVT_ER_ADM 0x20 Event class for events related to Enterprise Replication (ER)

REPEVT_CLIENT 0x40 User-defined client event

Sub-events for the Event Class REPEVT_CLUST_CHG
The following table lists sub-events for the event class REPEVT_CLUST_CHG:

Table 2. Sub-events for the Event Class REPEVT_CLUST_CHG

Sub-event name Value Description Event available at:

REPEVT_SUB_CLUST_ADD 1 Adding new node to a High-Availability
cluster

Only at primary server in a High-
Availability cluster

REPEVT_SUB_CLUST_DROP 2 Dropping a node from a High-Availability
cluster

Only at primary server in a High-
Availability cluster

REPEVT_SUB_CLUST_CON 3 High-Availability secondary node
connected to primary server

Only at primary server in a High-
Availability cluster

REPEVT_SUB_CLUST_DIS 4 High-Availability secondary node
disconnected from primary server

Only at primary server in a High-
Availability cluster

REPEVT_SUB_CLUST_NEWPRIM 5 High-Availability primary node changed Only at secondary servers in a High-
Availability cluster

REPEVT_SUB_CLUST_DROFF 6 HDR secondary node disconnected from
primary server

HDR primary and secondary servers

REPEVT_SUB_CLUST_DRON 7 HDR secondary node connected to primary
server

HDR primary and secondary servers

Sub-events for the Event Class REPEVT_CLUST_PERFSTAT
The following table lists sub-events for the event class REPEVT_CLUST_PERFSTAT:

Table 3. Sub-events for the Event Class REPEVT_CLUST_PERFSTAT

Sub-event name Value Description Event available at:

REPEVT_ SUB_LOCAL_PERFSTAT 1 Work load statistics for local server All servers in a High-Availability cluster

REPEVT_ SUB_REMOTE_PERFSTAT 2 Work load statistics for High-Availability
secondary servers

Only at the primary server in a High-
Availability cluster

Sub-events for the Event Class REPEVT_CLUST_LATSTAT
The following table lists sub-events for the event class REPEVT_CLUST_LATSTAT:

Table 4. Sub-events for the Event Class REPEVT_CLUST_LATSTAT
Sub-event name Value Description Event available at:

REPEVT_SUB_LOCAL_LATSTAT 1 Replication latency statistics for secondary
servers in a High-Availability cluster

Only at the primary server in a High-
Availability cluster

Sub-events for the Event Class REPEVT_CM_ADM
The following table lists sub-events for the event class REPEVT_CM_ADM:

Table 5. Sub-events for the Event Class REPEVT_CM_ADM

Sub-event name Value Description Event available at:

REPEVT_SUB_CM_ADM_REQ 1 Command request All server instances

REPEVT_SUB_CM_ADM_ACK 2 Command response All server instances

REPEVT_SUB_CM_REG 3 Connection Manager registered with server All server instances

REPEVT_SUB_CM_DEREG 4 Connection Manager de-registered with
server

All server instances

REPEVT_SUB_CM_FATAL 5 Connection Manager terminated without
de-registering with server

All server instances

Part VI: Administering 551

Sub-events for the Event Class REPEVT_SRV_ADM
The following table lists sub-events for the event class REPEVT_SRV_ADM:

Table 6. Sub-events for the Event Class REPEVT_SRV_ADM

Sub-event name Value Description Event available at:

REPEVT_ SUB_SRV_BLK 1 Server blocked due to DDRBLOCK All server instances

REPEVT_ SUB_SRV_UBLK 2 Server unblocked; DDRBLOCK removed All server instances

Sub-events for the Event Class REPEVT_ER_ADM
The following table lists sub-events for the event class REPEVT_ER_ADM:

Table 7. Sub-events for the Event Class REPEVT_ER_ADM

Sub-event name Value Description Event available at:

REPEVT_SUB_ER_SPOOL_FULL 1 ER blocked while waiting for space to be
added in either the queue data sbspace or
dbspace, or in the grouper paging sbspace.

Enterprise Replication server nodes

Copyright© 2020 HCL Technologies Limited

sysrsslog

The sysrsslog table captures information about RS secondary servers at the primary server.
Table 1. sysrsslog table information

Column Type Description

server_name char(128) Server name

from_cache integer Total pages read from log buffer cache

from_disk integer Total pages read from disk

logpages_tossed integer Total number of log pages not written to log buffer cache

Copyright© 2020 HCL Technologies Limited

sysscblst

These columns of the sysscblst table provide information about session memory amounts.

Column Type Description

memtotal integer Total memory available

memused integer Total memory used

Copyright© 2020 HCL Technologies Limited

syssscelem

The syssscelem table provides information about Statement Cache Entries.

Column Type Description

uniqid integer Unique id of element

lru integer Index of lru queue

hash integer Hash value of cached entry

ref_cnt integer Num threads referencing the statement

hits integer Num times element used

flag integer Invalid 0x1
Fully Cached 0x2
Inserting 0x4

valid integer Valid 1, Invalid 0

locked integer Locked 1, Unlocked 0

heap_ptr bigint Address of memory heap for cache entry

database char(128) Database name

552 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Column Type Description

user char(32) User

stmtstring char(16000) Statement string

queryplan char(16000) Query plan

Copyright© 2020 HCL Technologies Limited

syssesappinfo

The syssesappinfo table in the sysmaster displays information on Distributed Relational Database Architecture™ (DRDA) client sessions. The syssesappinfo table has the
following columns.

Table 1. syssesappinfo table column information

Column Type Explanation

sesapp_sid INTEGER Client session ID

sesapp_name CHAR(128) Session application name

sesapp_value CHAR(512) Session value

Copyright© 2020 HCL Technologies Limited

syssesprof

The syssesprof table lists cumulative counts of the number of occurrences of user actions such as writes, deletes, or commits.

Column Type Description

sid integer Session ID

lockreqs integer Number of locks requested

locksheld integer Number of locks currently held

lockwts integer Number of times waited for a lock

deadlks integer Number of deadlocks detected

lktouts smallint Number of deadlock time-outs

logrecs integer Number of logical-log records written

isreads integer Number of reads

iswrites integer Number of writes

isrewrites integer Number of rewrites

isdeletes integer Number of deletes

iscommits integer Number of commits

isrollbacks integer Number of rollbacks

longtxs integer Number of long transactions

bufreads integer Number of buffer reads

bufwrites integer Number of buffer writes

seqscans integer Number of sequential scans

pagreads integer Number of page reads

pagwrites integer Number of page writes

total_sorts integer Number of total sorts

dsksorts integer Number of sorts that did not fit in memory

max_sortdiskspace integer Maximum space used by a sort

logspused integer Number of bytes of logical-log space used by current transaction of session

maxlogsp integer Maximum number of bytes of logical-log usage for any single transaction since the session
started

Copyright© 2020 HCL Technologies Limited

syssessions

Part VI: Administering 553

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The syssessions table provides general information on each user connected to the database server. In the state column, each bit position represents a separate flag.
Thus, it might be easier to read values in the state column if the values are returned using the HEX function.

Table 1. syssessions table information

Column Type Description

sid integer Session ID

username char(32) User ID

uid smallint User ID number

pid integer Process ID of the client

hostname char(256) Hostname of client

tty char(16) Name of the user's stderr file

connected integer Time that user connected to the database server

feprogram char(255)

pooladdr integer Session pool address

is_wlatch integer 1 if the primary thread for the session is waiting for a latch

is_wlock integer 1 if the primary thread for the session is waiting for a lock

is_wbuff integer 1 if the primary thread for the session is waiting for a buffer

is_wckpt integer 1 if the primary thread for the session is waiting for a checkpoint

is_wlogbuf integer 1 if the primary thread for the session is waiting for a log buffer

is_wtrans integer 1 if the primary thread for the session is waiting for a transaction

is_monitor integer 1 if the session is a special monitoring process

is_incrit integer 1 if the primary thread for the session is in a critical section

state integer Flags Hexadecimal Meaning

1 0x00000001 User structure in use

2 0x00000002 Waiting for a latch

4 0x00000004 Waiting for a lock

8 0x00000008 Waiting for a buffer

16 0x00000010 Waiting for a checkpoint

32 0x00000020 In a read call

64 0x00000040 Writing logical-log file to backup tape

256 0x00000100 In a critical section

512 0x00000200 Special daemon

1024 0x00000400 Archiving

2048 0x00000800 Clean up dead processes

4096 0x00001000 Waiting for write of log buffer

8192 0x00002000 Special buffer-flushing thread

16384 0x00004000 Remote database server

32768 0x00008000 Deadlock timeout used to set RS_timeout

65536 0x00010000 Regular lock timeout

262144 0x00040000 Waiting for a transaction

524288 0x00080000 Primary thread for a session

1048576 0x00100000 Thread for building indexes

2097152 0x00200000 B-tree cleaner thread

Copyright© 2020 HCL Technologies Limited

syssessiontempspaceusage

The syssessiontempspaceusage table contains information about each session's temp space usage, includes both implicit and explicit temp tables.

Column Type Description

sid integer ID of the session which allocated temp space

flags char(10) Partition flags of the temp space partition

partition char(10) Partition number of the temp space partition

table lvarchar(290) Table name of the temp space partition

554 Part VI: Administering

https://www.hcltech.com/

Column Type Description

allocated_pages integer Number of pages allocated by the temp space
partition

Example:

select * from syssessiontempspaceusage

sid 53
flags 0x00000861
partition 0x001001A4
table stores_demo:jmcmahon:foo
allocated_pages 8

Copyright© 2020 HCL Technologies Limited

syssmx

The syssmx table provides SMX (server multiplexer group) connection information.
Table 1. syssmx table column information

Column Type Description

address int8 SMX pipe address

name char(128) Target server name

encryption_status char(20) Enabled or disabled

buffers_sent integer Number of buffers sent

buffers_recv integer Number of buffers received

bytes_sent int8 Number of bytes sent

bytes_recv int8 Number of bytes received

reads integer Number of read calls

writes integer Number of write calls

retries integer Number of write call retries

Copyright© 2020 HCL Technologies Limited

syssmxses

The syssmxses table provides SMX (server multiplexer group) session information.
Table 1. syssmxses table column information

Column Type Description

name char(128) Target server name

address int8 SMX session address

client_type char(20) SMX client type

reads integer Number of read calls

writes integer Number of write calls

Copyright© 2020 HCL Technologies Limited

syssqexplain table

The syssqexplain pseudo table stores information about SQL queries.

The information stored includes the plan of the query optimizer, an estimate of the number of rows returned, and the relative cost of the query.

Table 1. The syssqexplain pseudo table

Column Type Description

sqx_sessionid INTEGER The session ID associated with the SQL statement.

sqx_sdbno INTEGER The position of the query in the array of session IDs.

sqx_iscurrent CHAR Whether the query is the current SQL statement.

sqx_executions INTEGER The total number of executions of the query.

sqx_cumtime FLOAT The cumulative time to run the query.
Important: If SQL tracing is disabled a zero is shown.

Part VI: Administering 555

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Column Type Description

sqx_bufreads INTEGER The number of buffer reads performed while running the query.

Important: If SQL tracing is disabled a zero is shown.

sqx_pagereads INTEGER The number of page reads performed while running the query.
Important: If SQL tracing is disabled a zero is shown.

sqx_bufwrites INTEGER The number of buffer writes performed while running the query.
Important: If SQL tracing is disabled a zero is shown.

sqx_pagewrites INTEGER The number of page writes performed while running the query.
Important: If SQL tracing is disabled a zero is shown.

sqx_totsorts INTEGER The total number of sorts performed while running the query.
Important: If SQL tracing is disabled a zero is shown.

sqx_dsksorts INTEGER The number of disk sorts performed while running the query.
Important: If SQL tracing is disabled a zero is shown.

sqx_sortspmax INTEGER The maximum disk space required by a sort.

sqx_conbno SMALLINT The position in the conblock list.

sqx_ismain CHAR Whether the query is in the main block for the statement.

sqx_selflag VARCHAR(200,0) The type of SQL statement, for example: SELECT, UPDATE,
DELETE.

sqx_estcost INTEGER The estimated cost of the query.

sqx_estrows INTEGER The estimated number of rows returned by the query.

sqx_seqscan SMALLINT The number of sequential scans used by the query.

sqx_srtscan SMALLINT The number of sort scans used by the query.

sqx_autoindex SMALLINT The number of autoindex scans used by the query.

sqx_index SMALLINT The number of index paths used by the query.

sqx_remsql SMALLINT The number of remote paths used by the query.

sqx_mrgjoin SMALLINT The number of sort-merge joins used by the query.

sqx_dynhashjoin SMALLINT The number of dynamic hash joins used by the query.

sqx_keyonly SMALLINT The number of key-only scans used by the query.

sqx_tempfile SMALLINT The number of temporary files used by the query.

sqx_tempview SMALLINT The number of temporary tables for views created by the query.

sqx_secthreads SMALLINT The number of secondary threads used by the query.

sqx_sqlstatement CHAR The SQL query that was run.

Copyright© 2020 HCL Technologies Limited

syssqltrace

The syssqltrace table provides detailed information about a single SQL statement.

Column Type Description

sql_id int8 Unique SQL execution ID

sql_address int8 Address of the statement in the code block

sql_sid int Database session ID of the user running the SQL statement

sql_uid int User ID of the statement running the SQL

sql_stmttype int Statement type

sql_stmtname char(40) Statement type displayed as a word

sql_finishtime int Time this statement completed (UNIX)

sql_begintxtime int Time this transaction started

sql_runtime float Statement execution time

sql_pgreads int Number of disk reads for this SQL statement

sql_bfreads int Number of buffer reads for this SQL statement

sql_rdcache float Percentage of time the page was read from the buffer pool

sql_bfidxreads int Number of index page buffer reads

sql_pgwrites int Number of pages written to disk

sql_bfwrites int Number of pages modified and returned to the buffer pool

sql_wrcache float Percentage of time a page was written to the buffer pool but not to disk

556 Part VI: Administering

https://www.hcltech.com/

Column Type Description

sql_lockreq int Total number of locks required by this SQL statement

sql_lockwaits int Number of times the SQL statement waited on locks

sql_lockwttime float Time the system waited for locks during SQL statement

sql_logspace int Amount of space the SQL statement used in the logical log

sql_sorttotal int Number of sorts that ran for the statement

sql_sortdisk int Number of sorts that ran on disk

sql_sortmem int Number of sorts that ran in memory

sql_executions int Number of times the SQL statement ran

sql_totaltime float Total amount of time spent running the statement

sql_avgtime float Average amount of time spent running the statement

sql_maxtime float Maximum amount of time spent executing the SQL statement

sql_numiowaits int Number of times an I/O operation had to wait

sql_avgiowaits float Average amount of time that the SQL statement had to wait

sql_totaliowaits float Total amount of time that the SQL statement had to wait for I/O. This excludes any asynchronous I/O.

sql_rowspersec float Average number of rows (per second) produced

sql_estcost int Cost associated with the SQL statement

sql_estrows int Estimated number of rows returned for the SQL statement as predicted by the optimizer

sql_actualrows int Number of rows returned for the SQL statement

sql_sqlerror int SQL error number

sql_isamerror int RSAM/ISAM error number

sql_isollevel int Isolation level of the SQL statement.

sql_sqlmemory int Number of bytes needed to execute the SQL statement

sql_numiterators int Number of iterators used by the statement

sql_database char(128) Database name

sql_numtables int Number of tables used in executing the SQL statement

sql_tablelist char(4096) List of table names directly referenced in the SQL statement. If the SQL statement fires triggers that
execute statements against other tables, the other tables are not listed.

sql_statement char(1600) SQL statement that ran

Copyright© 2020 HCL Technologies Limited

syssqltrace_hvar

The syssqltrace_hvar table describes information about the SQL tracing host variable.

Column Type Description

sql_id int8 SQL execution ID

sql_address int8 Address of the SQL statement block

sql_hvar_id int ID of the SQL host variable

sql_hvar_flags int Flags for the host variable

sql_hvar_typeid int Type ID of the host variable

sql_hvar_xtypeid int xtype ID of the host variable

sql_hvar_ind int Index of the host variable

sql_hvar_type char(128) Type of host variable

sql_hvar_data char(8192) Value of host variable

Copyright© 2020 HCL Technologies Limited

syssqltrace_info

The syssqltrace_info table describes information about the SQL profile trace system.

Column Type Description

flags integer SQL trace flags

Part VI: Administering 557

https://www.hcltech.com/
https://www.hcltech.com/

Column Type Description

ntraces integer Number of items to trace

tracesize integer Size of the text to store for each SQL trace item

duration integer Trace buffer (in seconds)

sqlseen int8 Number of SQL items traced since start or resizing

starttime integer Time tracing was enabled

memoryused int8 Number of bytes of memory used by SQL tracing

Copyright© 2020 HCL Technologies Limited

syssqltrace_iter

The syssqltrace_iter table lists the SQL statement iterators.

Column Type Description

sql_id int8 SQL execution ID

sql_address int8 Address of the SQL statement block

sql_itr_address int8 Address of the iterator

sql_itr_id int Iterator ID

sql_itr_left int Iterator ID to the left

sql_itr_right int Iterator ID to the right

sql_itr_cost int Iterator cost

sql_itr_estrows int Iterator estimated rows

sql_itr_numrows int Iterator actual rows processed

sql_itr_type int Iterator type

sql_itr_misc int Iterator miscellaneous flags

sql_it_info char(256) Iterator miscellaneous flags displayed as text

Copyright© 2020 HCL Technologies Limited

syssrcrss

The syssrcrss table provides RS secondary server related statistics at the primary server.
Table 1. syssrcrss table column information

Column Type Description

address int8 RS secondary server control block address

server_name char(128) Database server name

server_status char(20) Quiescent, active, or inactive

connection_status char(20) Connected or disconnected

log_transmission_status char(20) Active or blocked

next_page_tosend_log_uniq integer Unique log ID of next page to send

next_page_tosend_log_page integer Page number of next page to send

seq_tosend integer Sequence ID of last buffer sent

last_seq_acked integer Sequence ID of last buffer acknowledged

Copyright© 2020 HCL Technologies Limited

syssrcsds

The syssrcsds table provides SD secondary server related statistics at the primary server.

The syssrcsds table contains the columns that are shown in the following table.

Column Type Description

address int8 SD secondary server control block address

source_server char(128) Primary database server name

558 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Column Type Description

connection_status char(20) Connected or disconnected

last_received_log_uniq integer Unique log ID of last log page received

last_received_log_page integer Page number of last log page received

next_lpgtoread_log_uniq integer Unique log ID of next log page to read

next_lpgtoread_log_page integer Page number of next log page to read

last_acked_lsn_uniq integer Unique log ID of last LSN acknowledged

last_acked_lsn_pos integer Log position of last LSN acknowledged

last_seq_received integer Sequence ID of last buffer received

last_seq_acked integer Sequence ID of last buffer acknowledged

cur_pagingfile char(640) Current® paging file name

cur_pagingfile_size int8 Current paging file size

old_pagingfile char(640) Old paging file name

old_pagingfile_size int8 Old paging file size

Copyright© 2020 HCL Technologies Limited

systabnames

The systabnames table describes each table that the database server manages.

Column Type Description

partnum integer tblspace identifier

dbsname char(128) Database name

owner char(32) User ID of owner

tabname char(128) Table name

collate char(32) Collation associated with a database that supports GLS

Copyright© 2020 HCL Technologies Limited

systhreads

The systhreads table provides information about each thread.

Column Type Description

th_id INTEGER The numeric identifier of the thread.

th_addr INTEGER The memory address of the thread control block.

th_joinlist INTEGER If a list of the threads are waiting for this thread to exit, the th_joinlist column shows the address of the first thread
in the list.

th_joinnext INTEGER If a list of the threads are waiting for this thread to exit, the th_joinnext column shows the address of the next
thread in the join list.

th_joinee INTEGER The address of the thread whose exit this thread is waiting for.

th_name CHAR(12) The name of the thread.

th_state INTEGER The status code of the thread.

th_priority INTEGER The priority of the thread.

th_class INTEGER The code for the class of virtual processor that thread will run on.

th_vpid INTEGER The ID of the virtual processor that the thread was last scheduled to run on.

th_mtxwait INTEGER The address of the mutex that this thread is waiting for.

th_conwait INTEGER The address of the condition that this thread is waiting for.

th_waketime INTEGER The time of the expiration of the last sleep. The time is calculated by an internal clock. A value of -1 means that the
time value is indeterminate.

th_startwait INTEGER The time when the last wait began. The time is calculated by an internal clock.

th_startrun INTEGER The time when the last execution began. The time is calculated by an internal clock.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 559

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

systrgrss

The systrgrss table provides RS secondary server related statistics at the RS secondary server.

Column Type Description

address int8 RS secondary server control block address

source_server char(128) Source server serving the RS secondary server

connection_status char(20) Connected or disconnected

last_received_log_uniq integer Unique log ID of last log page received

last_received_log_page integer Page number of last log page received

last_seq_received integer Sequence ID of last buffer received

last_seq_acked integer Sequence ID of last buffer acknowledged

Copyright© 2020 HCL Technologies Limited

systrgsds

The systrgsds table provides SD secondary server related statistics at the SD secondary server.

The systrgsds table contains these columns:

Column Type Description

address int8 SD secondary server control block address

source_server char(128) Source server serving the SD secondary server

connection_status char(20) Connected or disconnected

last_received_log_uniq integer Unique log ID of last log page received

last_received_log_page integer Page number of last log page received

next_lptoread_log_uniq integer Unique log ID of next log page to read

next_lptoread_log_page integer Page number of next log page to read

last_acked_lsn_uniq integer Unique log ID of last LSN acknowledged

last_acked_lsn_pos integer Log position of last LSN acknowledged

last_seq_received integer Sequence ID of last buffer received

last_seq_acked integer Sequence ID of last buffer acknowledged

cur_pagingfile char(640) Current® paging file name

cur_pagingfile_size int8 Current paging file size

old_pagingfile char(640) Old paging file name

old_pagingfile_size int8 Old paging file size

Copyright© 2020 HCL Technologies Limited

sysvpprof

The sysvpprof table lists user and system CPU time for each virtual processor.

Column Type Description

vpid integer Virtual processor ID

char(50) Type of virtual processor:

cpu
adm
lio
pio
aio
tli
soc
str
shm
opt
msc
adt

usercpu float Number of microseconds of user time

560 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Column Type Description

syscpu float Number of microseconds of system time

Copyright© 2020 HCL Technologies Limited

The SMI Tables Map

Figure 1 displays the columns in some of the SMI tables.
Figure 1. Columns in the SMI tables

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 561

https://www.hcltech.com/
https://www.hcltech.com/

Information from onstat in the SMI Tables

To obtain information provided by the onstat utility, you can use SQL to query appropriate SMI tables. The following table indicates which SMI tables to query to obtain the
information provided by a given onstat option. For descriptions of the onstat options, see Monitor the database server status.

onstat Option SMI Tables to Query onstat Fields Not in SMI Tables

-d sysdbspaces syschunks address bpages

-D sysdbspaces syschkio

-F sysprofile address flusher snoozer state data

-g ath systhreads

-g dri sysdri Last DR CKPT (id/pg)

-g glo sysvpprof Listing of virtual processors by

-g ipl sysipl

-g rss sysrsslog systrgrss syssrcrss

-g his syssqltracing

-g sds syssrcsds systrgsds

-g smx syssmx

-g smx ses syssmxses

-k syslocks address lklist tblsnum

-l syslogs sysprofile All physical-log fields (except numpages and numwrits) All logical-log buffer fields
(except numrecs, numpages, and numwrits) address begin % used

-p sysprofile

-u syssessions syssesprof address wait nreads nwrites

Copyright© 2020 HCL Technologies Limited

The sysadmin Database

The sysadmin database contains the tables that contain and organize the Scheduler tasks and sensors, store data collected by sensors, and record the results of
Scheduler jobs and SQL administration API functions.

By default, only user informix is granted access to the sysadmin database; other users can be granted access to the sysadmin database.

Do not drop or alter the sysadmin database because it is used by several important database server components. You can, however, move the sysadmin database from its
default root dbspace location if the root dbspace does not have enough space for storing task properties and command history information. To move the sysadmin
database, use the SQL administration API admin() or task() function with the reset sysadmin argument.

Important: Moving the sysadmin database resets the database back to the original state when it was first created; all data, command history, and results tables are lost.
Only built-in tasks, sensor, and thresholds remain in the sysadmin tables.

The Scheduler tables
 The Scheduler stores information about tasks and sensors in five tables in the sysadmin database: ph_task, ph_run, ph_group, ph_alert, and ph_threshold.

The results tables
 The results tables contain historical data about sensors that are run by the Scheduler.

The command_history table
 The command_history table contains the list and results of all the SQL administration API functions that were run in the previous 30 days.

The storagepool table
 The storagepool table in sysadmin database contains information about all of the entries in the storage pool in an Informix® instance. Each entry represents free

space that the server can use when automatically expanding a storage space.
The tenant table

 The tenant table in the sysadmin database contains information about the tenant databases.

Related reference:
 reset sysadmin argument: Move the sysadmin database (SQL administration API)

Copyright© 2020 HCL Technologies Limited

The Scheduler tables

The Scheduler stores information about tasks and sensors in five tables in the sysadmin database: ph_task, ph_run, ph_group, ph_alert, and ph_threshold.

The Scheduler is an administrative tool that enables the database server to execute database functions and procedures at predefined times or as determined internally by
the server. The five tables used by the Scheduler contain built-in tasks and sensors that run automatically. You can also add your own tasks and sensors by inserting rows
into these tables. These tables have relationships between their columns that are described in the following illustration.

Figure 1. Relationships between the Scheduler tables

562 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

For detailed information about using the Scheduler, see the IBM® Informix® Administrator's Guide.

The ph_task Table
 The ph_task table contains information about Scheduler tasks and sensors. The ph_task table contains built-in tasks and sensors that are scheduled to run

automatically.
The ph_run Table

 The ph_run table contains information about how and when each Scheduler task or sensor ran.
The ph_group Table
The ph_group table contains information about the Scheduler group names. The ph_group table contains several groups that are used to categorize built-in tasks
and sensors, as well as the default group MISC.
The ph_alert Table

 The ph_alert table contains information about event alarms generated by the database server or alerts generated by the Scheduler. Alerts that are associated with
built-in tasks and sensors are automatically added to the ph_alert table.
The ph_threshold Table

 The ph_threshold table contains information about thresholds for Scheduler tasks.

Related information:
 Scheduler tables

Copyright© 2020 HCL Technologies Limited

The ph_task Table

The ph_task table contains information about Scheduler tasks and sensors. The ph_task table contains built-in tasks and sensors that are scheduled to run automatically.

Table 1. The ph_task table
Column Type Description

tk_id serial Sequential job ID.
System updated; do not modify.

Referenced in the alert_task_id column in the ph_alert table and in the run_task_id
column in the ph_run table.

tk_name char(36) Job name. A unique index on this column ensures that no two names are the same.
Referenced in the task_name column of the ph_threshold table.

tk_description lvarchar Description about what the task or sensor does.

tk_type char(18) Type of job:

TASK: Invokes an action at a specific time and frequency
SENSOR: (Default) A task that collects, stores, and purges data to or from a result
table
STARTUP TASK: A task that runs only when the server starts
STARTUP SENSOR: A sensor that runs only when the server starts

tk_sequence integer Current® data collection number.
System updated; do not modify.

Referenced in the alert_task_id column of the ph_alert table and the run_task_seq
column of the ph_run table.

tk_result_table varchar Results table name for storing data collected by a sensor. The table is created by the
CREATE TABLE statement in the tk_create column.

tk_create lvarchar The CREATE TABLE statement used to create the results table to store data collected by
a sensor.
One of the columns in the table must be named ID and hold the tk_sequence value. This
value indicates the age of the row and can be used for purging the row.

tk_dbs varchar(250) The database in which the task is run.
Default is sysadmin.

tk_execute lvarchar The SQL statement to execute.
The length of the command is limited to 2048 bytes.

tk_delete interval day(2) to second Data older than this interval is deleted from the result table.
Default is 1:00:00 (one day).

tk_start_time datetime hour to second Time when the task or sensor starts.
Default is 08:00:00.

Part VI: Administering 563

https://www.hcltech.com/

Column Type Description

tk_stop_time datetime hour to second Time of day after which the task or sensor cannot be scheduled to be run. The database
server schedules the next execution on the next valid day.
Default is 19:00:00. Can be NULL, indicating no stop time.

tk_frequency interval day(2) to second How often this task or sensor runs.
Default is 1 (once a day).

tk_next_execution datetime year to second Next time this task or sensor will be run.
After a startup task or sensor has run, this value is NULL. When a task or a sensor is
enabled, the database server calculates this time from the values of tk_start_time,
tk_stop_time, and tk_frequency columns, and the days of the week the task or sensor
is enabled, according to the values of tk_monday, tk_tuesday, tk_wednesday,
tk_thursday, tk_friday, tk_saturday, tk_sunday columns. For example,
new_next_execution_time = current_next_execution_time +
tk_frequency, where the new_next_execution_time is greater than the
current_next_execution_time. If tk_frequency is not present, the task is run once.

tk_total_executions integer The number of times that the task or sensor was run.
System updated; do not modify.

Default is 0.

tk_total_time float Total time spent executing this task or sensor.
System updated; do not modify

Default is 0.0 seconds.

tk_monday boolean Whether the task or sensor is run on Monday.
Default is T (true).

tk_tuesday boolean Whether the task or sensor is run on Tuesday.
Default is T (true).

tk_wednesday boolean Whether the task or sensor is run on Wednesday.
Default is T (true).

tk_thursday boolean Whether the task or sensor is run on Thursday.
Default is T (true).

tk_friday boolean Whether the task or sensor is run on Friday.
Default is T (true).

tk_saturday boolean Whether the task or sensor is run on Saturday.
Default is T (true).

tk_sunday boolean Whether the task or sensor is run on Sunday.
Default is T (true).

tk_attributes integer Flags
System updated; do not modify.

tk_group varchar(128) Group name.
Must be the same as a value in the group_name column in the ph_group table.

Default is MISC.

tk_enable boolean Whether the task or sensor is enabled.
Default is T (the task is enabled).

tk_priority integer Job priority, on a scale of 0- 5, with higher numbers indicating higher priority. If there are
several jobs to execute simultaneously, the job with the highest priority executes first.
Default is 0 (low priority).

Copyright© 2020 HCL Technologies Limited

The ph_run Table

The ph_run table contains information about how and when each Scheduler task or sensor ran.

Table 1. The ph_run table

Column Type Description

run_id serial Sequential ID generated during execution.
System updated; do not modify.

run_task_id integer The job ID.
Referenced from the tk_id column of the ph_task table.

run_task_seq integer Unique sequence number of the task or sensor.
Referenced from the tk_sequence column of the ph_task table.

run_retcode integer The return code from a stored procedure function or a user-defined routine, or the
SQLCode from SQL statements.

run_time datetime year to second When this task or sensor was run.

564 Part VI: Administering

https://www.hcltech.com/

Column Type Description

run_duration float The time that it took to run this task or sensor (in seconds).

run_ztime integer The time when the server statistics (the onstat -z command) were last run.

run_btime integer The time when the server was started.

run_mttime integer Internal counter of the server.

Copyright© 2020 HCL Technologies Limited

The ph_group Table

The ph_group table contains information about the Scheduler group names. The ph_group table contains several groups that are used to categorize built-in tasks and
sensors, as well as the default group MISC.

Table 1. The ph_group table

Column Type Description

group_id serial Group ID.
System updated; do not modify.

group_name varchar(128) Unique name of the group.
Referenced in the tk_group column of the ph_task
table.

group_description lvarchar Description of the group.

Copyright© 2020 HCL Technologies Limited

The ph_alert Table

The ph_alert table contains information about event alarms generated by the database server or alerts generated by the Scheduler. Alerts that are associated with built-in
tasks and sensors are automatically added to the ph_alert table.

Table 1. The ph_alert table

Column Type Description

id serial The alert ID.
System generated; do not modify.

alert_task_id serial The task or sensor ID.
Must be the same as a value in the tk_id column in the ph_task table.

The task ID for event alarms is 15.

alert_task_seq integer Identifies which invocation of a task created the alert.
System generated; do not modify.

Referenced from the tk_sequence column in the ph_task table.

alert_type char(8) The type of alert:

INFO (Default)
WARNING
ERROR

The severity of an alert or event alarm is indicated by the combination of the alert type
and the alert color. See Table 2.

alert_color char(15) The color of the alert:

GREEN (Default)
YELLOW
RED

The severity of an alert or event alarm is indicated by the combination of the alert type
and the alert color. See Table 2.

alert_time datetime year to second The time when the alert was generated.
System updated; do not modify.

Part VI: Administering 565

https://www.hcltech.com/
https://www.hcltech.com/

Column Type Description

alert_state char(15) Indicates which state the object is in:

NEW
(Default) The alert was added and no other action has occurred on this alert.

IGNORED
The alert was acknowledged by the DBA and no action was taken.

ACKNOWLEDGED
The alert was acknowledged by the DBA.

ADDRESSED
The alert was addressed by the DBA.

alert_state_changed datetime year to second The last time that the state was changed.
System updated; do not modify.

alert_object_type char(15) The type of object that the alert is for:

ALARM
CHUNK
DATABASE
DBSPACE
INDEX
MISC (Default)
SERVER
SQL_STATEMENT
TABLE
USER

alert_object_name varchar(255) The name of the object that the alert is for or the event alarm class ID.

alert_message lvarchar The detailed message describing the alert or event alarm.

alert_action_dbs lvarchar(256) The name of the database to use for the corrective action.
Default is sysadmin.

alert_action lvarchar The corrective action.
An SQL script to invoke to correct the problem. This script must comply with all multi-
statement prepare rules.

Can be NULL if no action is available.

alert_object_info bigint For alerts of type ALARM, the event ID of the event alarm.

The following table defines the alert colors for the three types of messages and event alarms.
Table 2. Alert types and colors

Message Type Green Yellow Red

Informative A status message indicating
a component's operation
status.
An event alarm of severity 1
(not noteworthy).

An important status message.
An event alarm of severity 2
(information).

A status message that requires action.

Warning A warning from the database
that was automatically
addressed.

A future event that needs to be
addressed.
An event alarm of severity 3
(attention).

A predicted failure is imminent. Immediate action is required.

Error A failure in a component
corrected itself.

A failure in a component
corrected itself but might need
DBA action.

A failure in a component requires DBA action.
An event alarm of severity 4 (emergency) or 5 (fatal).

The ph_alerts view shows alert information and associated task or sensor information.

Related concepts:
 Events in the ph_alert Table

Copyright© 2020 HCL Technologies Limited

The ph_threshold Table

The ph_threshold table contains information about thresholds for Scheduler tasks.

The ph_threshold table contains built-in thresholds that are associated with built-in tasks and sensors. For example, a threshold named COMMAND HISTORY RETENTION
determines the length of time rows should remain in the command_history table.

Table 1. The ph_threshold table

Column Type Description

id integer Threshold ID.

name char The name of the threshold.

566 Part VI: Administering

https://www.hcltech.com/

Column Type Description

task_name varchar Scheduler task name associated with the threshold.
Must be the same as a value in the tk_name column in the ph_task
table.

value lvarchar The value of the threshold.

value_type char The data type of the value column:

STRING
NUMERIC
NUMERIC(p,s)

description lvarchar A long description of the threshold.

Copyright© 2020 HCL Technologies Limited

The results tables

The results tables contain historical data about sensors that are run by the Scheduler.

Most sensors create a new table to store their results. The name of the table is listed in the tk_result_table column in the ph_task table. The structure of the table is
defined by the CREATE TABLE statement in the tk_create column of the ph_task table.

The built-in sensors automatically create results tables when they run that start with the prefix mon_.

Table 1. Results tables

Column Type Description

ID integer The iteration sequence number of the sensor. Must be set to $DATA_SEQ_ID.
Referenced from the run_task_seq column of the ph_run table.

user columns any You can specify any types of columns to hold the information returned by a
sensor.

Copyright© 2020 HCL Technologies Limited

The command_history table

The command_history table contains the list and results of all the SQL administration API functions that were run in the previous 30 days.

The command_history table shows each SQL administration API function that was run and displays information about the user who ran the function, the time the function
was run, the primary arguments of the function, and the message returned when the database server completed running the function.

Table 1. The command_history table
Column Data Type Description

cmd_number serial The unique ID for each row.

cmd_exec_time datetime year-to-second The time that the function started.

cmd_user varchar The user who ran the function.

cmd_hostname varchar The name of the host computer from which the function was
run.

cmd_executed varchar The primary argument of the function that was run.

cmd_ret_status integer Return code.

cmd_ret_msg lvarchar Return message.

The following table shows sample arguments and the associated results messages in a command_history table.

Table 2. Example information in a command_history table
Argument (cmd_executed) Message Returned (cmd_ret_msg)

set sql tracing on SQL tracing on with 1000 buffers of 2024 bytes.

create dbspace Space 'space12' added.

checkpoint Checkpoint completed.

add log Added 3 logical logs to dbspace logdbs.

To display the command history, run the following SQL statement from the sysadmin database:

SELECT * FROM command_history;

The size of the command_history table

Part VI: Administering 567

https://www.hcltech.com/
https://www.hcltech.com/

Depending on how many SQL administration API functions are run, the command_history table can grow quite large. You can change the amount of time that information
is retained in the command_history table by updating the value field of the COMMAND HISTORY RETENTION row in the ph_threshold table.

You can also use SQL statements like DELETE or TRUNCATE TABLE to manually remove the data from this table.

Related information:
 Viewing SQL administration API history

Copyright© 2020 HCL Technologies Limited

The storagepool table

The storagepool table in sysadmin database contains information about all of the entries in the storage pool in an Informix® instance. Each entry represents free space
that the server can use when automatically expanding a storage space.

Table 1. The storagepool table
Column Type Description

entry_id SERIAL The ID of the storage pool entry.

path VARCHAR (255) The path for the file, directory, or device that the server can use when
additional storage space is required.

beg_offset BIGINT The initial offset in kilobytes into the device at which the server can begin
allocating space.
If the storage pool information is for a directory, the end offset value is 0.

end_offset BIGINT The initial offset in kilobytes into the device at which the server must stop
allocating space.
If the storage pool information is for a directory, the offset value is 0.

chunk_size BIGINT The initial size of a chunk allocated from this entry.

status VARCHAR (255) The status of the storage pool entry. Status values are:

Active = A functional storage pool entry. The server can allocate
chunks from this entry.
Full = There is no more free space in the storage pool entry. The
server cannot allocate any more chunks from this entry.
Error = The storage pool entry generated an error when the server
tried to allocate a chunk from the entry.

priority INT The priority of the directory, file, or device when the server searches
through the storage pool for space. The server allocates space from a high-
priority entry before it allocates space from a lower priority entry.

1 = High priority
2 = Medium priority
3 = Low priority

last_alloc DATETIME (year to second) The date and time of the last allocation from this entry.

logid INT The ID of the log that was current at the time this entry was last used. The
server uses this flag with the logused value when choosing between
entries of identical priorities.

logused INT The position within the log that was current at the time this entry was last
used. The server uses this flag with the logid value when choosing
between entries of identical priorities.

Copyright© 2020 HCL Technologies Limited

The tenant table

The tenant table in the sysadmin database contains information about the tenant databases.

Table 1. The tenant table

Column Type Description

tenant_id int The unique ID of the tenant database.

tenant_dbsname varchar(128) The name of the tenant database.

tenant_resources bson The properties of the tenant database and the state of the tenant.
Cast this column to JSON to view the information.

tenant_last_updated datetime year to second The time stamp of the last configuration change to the tenant
database.

tenant_comment lvarchar(2048) Comments about the tenant database.

568 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Disk Structures and Storage

In This Chapter
The database server achieves its high performance by managing its own I/O. The database server manages storage, search, and retrieval. As the database server stores
data, it creates the structures it needs to search for and retrieve the data later. The database server disk structures also store and track control information needed to
manage logging and backups. Database server structures contain all the information needed to ensure data consistency, both physical and logical.

Before you read this chapter, familiarize yourself with the disk-space terms and definitions in the chapter on where data is stored in the IBM® Informix® Administrator's
Guide.

This chapter discusses the following topics related to disk data structures:

Dbspace structure and storage
Storage of simple large objects
Sbspace structure
Time stamps
Database and table creation: what happens on disk

Dbspace Structure and Storage
 Storage of Simple Large Objects
 Sbspace Structure

 An sbspace is similar to a blobspace except that it holds smart large objects.
Time Stamps

 Database and Table Creation: What Happens on Disk

Copyright© 2020 HCL Technologies Limited

Dbspace Structure and Storage

This section explores the disk structures and storage techniques that the database server uses to store data in a dbspace.

Structure of the Root Dbspace
 As part of disk-space initialization, the database server initializes specific structures in the initial chunk of the root dbspace.

Reserved Pages
 Structure of a Regular Dbspace

 Structure of the Chunk Free-List Page
 Structure of the Tblspace Tblspace

 Structure of the Database Tblspace
 Structure and Allocation of an Extent

 Structure and Storage of a Dbspace Page
 Structure of Fragmented Tables

 Structure of B-Tree Index Pages
 Structure of R-Tree Index Pages

Related information:
 Forest of trees indexes

Copyright© 2020 HCL Technologies Limited

Structure of the Root Dbspace

As part of disk-space initialization, the database server initializes specific structures in the initial chunk of the root dbspace.

The following structures are initialized:

Twelve reserved pages
The first chunk free-list page
The tblspace tblspace
The physical log
The logical-log files
The database tblspace

The ROOTNAME, ROOTOFFSET, ROOTPATH, and ROOTSIZE configuration parameters specify the size and location of the initial chunk of the root dbspace. If the root
dbspace is mirrored, the MIRROROFFSET and MIRRORPATH configuration parameters specify the mirror-chunk location. For more information about these parameters,
see Database configuration parameters.

To see the structure of the root chunk use the oncheck -pe command. For more information, see oncheck -ce, -pe: Check the chunk-free list.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 569

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Reserved Pages

The first 12 pages of the initial chunk of the root dbspace are reserved pages. Each reserved page contains specific control and tracking information used by the database
server.

To obtain a listing of the contents of your reserved pages, execute the command oncheck -pr. To also list information about the physical-log and logical-log pages,
including the active physical-log pages, run the oncheck -pR command.

The following example shows sample oncheck -pr output for interval checkpoints:

 Time of checkpoint 10/25/2005 17:05:20
 Checkpoint Interval 1234

The database server also stores current configuration information in a reserved page called PAGE_CONFIG. If you change the configuration parameters from the command
line and run the oncheck -pr command without shutting down and restarting the database server, the configuration values in the command output do not match the
current values in the reserved pages. The oncheck utility returns a warning message.

The following example shows sample output of the contents of a PAGE_CONFIG reserved page.

...

Validating Informix database server reserved pages - PAGE_CONFIG
 ROOTNAME rootdbs
 ROOTPATH /home/dyn_srv/root_chunk
 ROOTOFFSET 4
 ROOTSIZE 8000
 MIRROR 0
 MIRRORPATH
 MIRROROFFSET 0
 PHYSFILE 1000
 LOGFILES 5
 LOGSIZE 500
 MSGPATH /home/dyn_srv/online.log
 CONSOLE /dev/ttyp5
... ...

Related reference:
 oncheck -pr and pR: Display reserved-page information

Copyright© 2020 HCL Technologies Limited

Structure of a Regular Dbspace

After disk-space initialization, you can add new dbspaces. When you create a dbspace, you assign at least one chunk (either raw or cooked disk space) to the dbspace.
This chunk is referred to as the initial chunk of the dbspace. Figure 1 illustrates the structure of the initial chunk of a regular (nonroot) dbspace.

When the dbspace is first created, it contains the following structures:

Two reserved pages
The first chunk free-list page in the chunk
The tblspace tblspace for this dbspace
Unused pages
Figure 1. Initial Chunk of Regular Dbspace

Structure of an Additional Dbspace Chunk
 Structure of a Mirror Chunk

Copyright© 2020 HCL Technologies Limited

Structure of an Additional Dbspace Chunk

You can create a dbspace that contains more than one chunk. The initial chunk in a dbspace contains the tblspace tblspace for the dbspace. Additional chunks do not.
When an additional chunk is first created, it contains the following structures:

Two reserved pages
The first chunk free-list page
Unused pages

570 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Figure 1 illustrates the structure of all additional chunks in a dbspace. (The structure also applies to additional chunks in the root dbspace.)
Figure 1. Additional Dbspace Chunk

Copyright© 2020 HCL Technologies Limited

Structure of a Mirror Chunk

Each mirror chunk must be the same size as its primary chunk. When a mirror chunk is created, the database server writes the contents of the primary chunk to the mirror
chunk immediately.

The mirror chunk contains the same control structures as the primary chunk. Mirrors of blobspace, sbspace, or dbspace chunks contain the same physical contents as
their primary counterpart after the database server brings them online.

Figure 1 illustrates the mirror-chunk structure as it appears after the chunk is created.
Figure 1. Mirror-Chunk Structure

The mirror-chunk structure always shows no free space because all of its space is reserved for mirroring. For more information, see the chapter on what is mirroring in the
IBM® Informix® Administrator's Guide.

Copyright© 2020 HCL Technologies Limited

Structure of the Chunk Free-List Page

In every chunk, the page that follows the last reserved page is the first of one or more chunk free-list pages that tracks available space in the chunk. For a non-root chunk,
the initial length of the free space is equal to the size of the chunk minus three pages. If an additional chunk free-list page is needed to accommodate new entries, a new
chunk free-list page is created in one of the free pages in the chunk. Figure 1 illustrates the location of the free-list page.

Use oncheck -pe to obtain the physical layout of pages in the chunk. For more information, see oncheck -ce, -pe: Check the chunk-free list.
Figure 1. Free-List Page

Copyright© 2020 HCL Technologies Limited

Structure of the Tblspace Tblspace

Each dbspace contains a tblspace called the tblspace tblspace that describes all tblspaces in the dbspace. When the database server creates a tblspace, it places an entry
in the tblspace tblspace that describes the characteristics of the newly created tblspace. You cannot drop or move a chunk containing a tblspace tblspace.

A dbspace can have a maximum number of 2**20 tblspaces.

The default size of the first and next extents depends on whether the dbspace is the root dbspace or not, as shown in the following table.
Table 1. Default sizes for each extent and type of dbspace

Type of dbspace Default Size of First Extent Default Size of Next Extents

Root 500 KB for a 2 kilobyte page system
1000 KB for a 4 kilobyte page system

100 KB for a 2 kilobyte page system
200 KB for a 4 kilobyte page system

Non-root 100 KB for a 2 kilobyte page system
200 KB for a 4 kilobyte page system

100 KB for a 2 kilobyte page system
200 KB for a 4 kilobyte page system

Part VI: Administering 571

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

You can specify a non-default size for the first and next extents for a tblspace tblspace in the following ways:

For the root dbspace, set the TBLTBLFIRST and TBLTBLNEXT configuration parameters.
For non-root dbspaces, use the onspaces utility -ef and -en options when you create a dbspace.

Tblspace tblspace entries
 The tblspace tblspace describes the characteristics of tblspaces.

Tblspace Numbers

Copyright© 2020 HCL Technologies Limited

Tblspace tblspace entries

The tblspace tblspace describes the characteristics of tblspaces.

To display information on a tblspace, use the oncheck -pt command.
Table 1. tblspace tblspace entries

Component Description

Page header 24 bytes, standard page-header information

Page-ending time stamp 4 bytes

Tblspace header 136 bytes, general tblspace information

Tblspace name database.owner.tablename or database.owner.indexname
Typically 30-40 bytes long but can be longer, depending on the length of the name.

Column information 8 bytes for each special column
A special column is defined as a VARCHAR, BYTE, TEXT, or user-defined data type.

Index information For attached indexes, each index in the partition has a 20-byte header that contains general information about
the index, followed by a 4-byte entry for each column in the index.
For detached indexes, a 4-byte entry for each column in the index.

Extent information A 10-byte entry plus 10 bytes of information for each extent that is allocated to the tblspace.
During the defragmentation of the tblspace, more bytes might be used.

Related reference:
 oncheck -pt and -pT: Display tblspaces for a Table or Fragment

Copyright© 2020 HCL Technologies Limited

Tblspace Numbers

Each tblspace that is described in the tblspace tblspace receives a tblspace number. This tblspace number is the same value that is stored as the partnum field in the
systables system catalog table and as the partn field in the sysfragments system catalog table.

The following SQL query retrieves the partnum for every table in the database (these can be located in several different dbspaces) and displays it with the table name and
the hexadecimal representation of partnum:

SELECT tabname, tabid, partnum, HEX(partnum) hex_tblspace_name FROM systables

If the output includes a row with a table name but a partnum of 0, this table consists of two or more table fragments, each located in its own tblspace. For example, Figure
1 shows a table called account that has partnum 0.
Figure 1. Output from systables Query with partnum Values

tabname tabid partnum hex_tblspace_name

sysfragments 25 1048611 0x00100023
branch 100 1048612 0x00100024
teller 101 1048613 0x00100025
account 102 0 0x00000000
history 103 1048615 0x00100027
results 104 1048616 0x00100028

To obtain the actual tblspace numbers for the fragments that make up the table, you must query the sysfragments table for the same database. Figure 2 shows that the
account table from Figure 1 has three table fragments and three index fragments.
Figure 2. Output from sysfragments Table with partn Values

tabid fragtype partn hex_tblspace_name

 102 T 1048614 0x00100026
 102 T 2097154 0x00200002
 102 T 3145730 0x00300002
 102 I 1048617 0x00100029
 102 I 2097155 0x00200003
 102 I 3145731 0x00300003

Tblspace Number Elements

572 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

The first page in a tblspace is logical page 0. (Physical page numbers refer to the address of the page in the chunk.) The root space tblspace tblspace is always contained
in the first dbspace and on logical page 1 within the tblspace tblspace. (The bitmap page is page 0.)

Tblspace Tblspace Size
These tblspace tblspace pages are allocated as an extent when the dbspace is initialized. If the database server attempts to create a table, but the tblspace tblspace is
full, the database server allocates a next extent to the tblspace.

When a table is removed from the dbspace, its corresponding entry in the tblspace tblspace is deleted.

Tblspace Tblspace Bitmap Page
The first page of the tblspace tblspace, like the first page of any initial extent, is a bitmap that describes the page fullness of the following pages. Each page that follows
has an entry on the bitmap page. If needed, additional bitmap pages are located throughout the contiguous space allocated for the tblspace, arranged so that each bitmap
describes only the pages that follow it, until the next bitmap or the end of the dbspace. Bitmap pages fall at distinct intervals within tblspaces pages. Each bitmap page
describes a fixed number of pages that follow it.

Copyright© 2020 HCL Technologies Limited

Structure of the Database Tblspace

The database tblspace appears only in the initial chunk of the root dbspace. The database tblspace contains one entry for each database managed by the database server.
Figure 1 illustrates the location of the database tblspace.
Figure 1. Database Tblspace Location in Initial Chunk of Root Dbspace

Database Tblspace Number
The tblspace number of the database tblspace is always 0x100002. This tblspace number appears in an onstat -t listing if the database tblspace is active.

Database Tblspace Entries

Copyright© 2020 HCL Technologies Limited

Database Tblspace Entries

Each database tblspace entry includes the following five components:

Database name
Database owner
Date and time that the database was created
The tblspace number of the systables system catalog table for this database
Flags that indicate logging mode

The database tblspace includes a unique index on the database name to ensure that every database is uniquely named. For any database, the systables table describes
each permanent table in the database. Therefore, the database tblspace only points to the detailed database information located elsewhere.

When the root dbspace is initialized, the database tblspace first extent is allocated. The initial-extent size and the next-extent size for the database tblspace are four
pages. You cannot modify these values.

Copyright© 2020 HCL Technologies Limited

Structure and Allocation of an Extent

This section covers the following topics:

Extent structure
Next-extent allocation

Part VI: Administering 573

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Extent Structure
Next-Extent Allocation

Copyright© 2020 HCL Technologies Limited

Extent Structure

An extent is a collection of contiguous pages within a dbspace. Every permanent database table has two extent sizes associated with it. The initial-extent size is the
number of kilobytes allocated to the table when it is first created. The next-extent size is the number of kilobytes allocated to the table when the initial extent, and every
extent thereafter, becomes full.

Blobspaces do not use extents.

For specific instructions on how to specify and calculate the size of an extent, see your IBM® Informix® Performance Guide.

Extent size
 The default size for first and next extents is 16 kilobytes. If this transforms to fewer than 4 pages in a particular dbspace, the database server uses the minimum

extent size of 4 pages. If a dbspace has a size of 8 kilobytes, which transforms to 2 pages, the database server increases the extent size to 32 kilobytes.
Page Types Within a Table Extent
Page Types Within an Index Extent

Copyright© 2020 HCL Technologies Limited

Extent size

The default size for first and next extents is 16 kilobytes. If this transforms to fewer than 4 pages in a particular dbspace, the database server uses the minimum extent
size of 4 pages. If a dbspace has a size of 8 kilobytes, which transforms to 2 pages, the database server increases the extent size to 32 kilobytes.

The maximum size of an extent is 2**31 pages, equivalent to the maximum chunk size.

If the chunk is smaller than the maximum size, the maximum extent size depends on the contiguous space available in the chunk.

Tblspaces that hold index fragments follow different rules for extent size. The database server bases the extent size for these tblspaces on the extent size for the
corresponding table fragment. The database server uses the ratio of the row size to index key size to assign an appropriate extent size for the index tblspace (see the
sections on estimating index page size and fragmenting table indexes in the IBM® Informix® Performance Guide).

The maximum number of extents for a partition is 32767.

Copyright© 2020 HCL Technologies Limited

Page Types Within a Table Extent

Within the extent, individual pages contain different types of data. Extent pages for a table can be separated into the following categories:

Data pages
Data pages contain the data rows for the table.

Bitmap pages
Bitmap pages contain control information that monitors the fullness of every page in the extent.

Blobpages
Blobpages contain TEXT and BYTE data that is stored with the data rows in the dbspace. TEXT and BYTE data that resides in a blobspace is stored in blobpages, a
structure that is completely different than the structure of a dbspace blobpage.

Free pages
Free pages are pages in the extent that are allocated for tblspace use, but whose function has not yet been defined. Free pages can be used to store any kind of
information: data, including TEXT or BYTE data types; index; or bitmap.

Figure 1 illustrates the possible structure of a nonfragmented table with an initial-extent size of 8 pages and a next-extent size of 16 pages.
Figure 1. Extent Structure of a Table

574 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Page Types Within an Index Extent

The database server stores index pages into different tblspaces than the table with which it is associated. Within the extent, individual index pages contain different types
of data. Index pages can be separated into the following categories:

Index pages (root, branch, and leaf pages)
Index pages contain the index information for the table.

Bitmap pages
Bitmap pages contain control information that monitors the fullness of every page in the extent.

Free pages
Free pages are pages in the extent that are allocated for tblspace use, but whose function has not yet been defined. Free pages can be used to store any kind of
information: data, index, TEXT or BYTE data, or bitmap.

All indexes are detached unless you explicitly specify attached indexes.
Important: An extent that is allocated for a table fragment does not contain index pages. Index pages for a fragmented table always reside in a separate tblspace. For
more information, see fragmenting table indexes in the chapter on table fragmentation and PDQ in the IBM® Informix® Administrator's Guide.
Figure 1 illustrates the extent structure of an index.
Figure 1. Extent Structure of an Index

Part VI: Administering 575

https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Next-Extent Allocation

After the initial extent fills, the database server attempts to allocate another extent of contiguous disk space. The procedure that the database server follows is referred to
as next-extent allocation.

Extents for a tblspace are tracked as one component of the tblspace tblspace information for the table. The maximum number of extents allocated for any tblspace is
application and machine dependent because it varies with the amount of space available on the tblspace tblspace entry.

Next-Extent Size
 Extent size doubling

 Lack of Contiguous Space
 Merge of Extents for the Same Table

Copyright© 2020 HCL Technologies Limited

Next-Extent Size

The number of kilobytes that the database server allocates for a next extent is, in general, equal to the size of a next extent, as specified in the SQL statement CREATE
TABLE. However, the actual size of the next-extent allocation might deviate from the specified size because the allocation procedure takes into account the following three
factors:

Number of existing extents for this tblspace
Availability of contiguous space in the chunk and dbspace
Location of existing tblspace extents

The effect of each of these factors on next-extent allocation is explained in the paragraphs that follow and in Figure 1.

Copyright© 2020 HCL Technologies Limited

Extent size doubling

For permanent tables or user-defined temporary tables, the size of the next extent for every allocation is automatically doubled. The size doubles up to 128 kilobytes (KB).
For example, if you create a table with the NEXT SIZE equal to 15 KB, the database server allocates the first extent at a size of 15 KB. The next extent is allocated at 30
KB, and the extent after that is allocated at 60 KB. When the extent size reaches 128 KB, the size is doubled only when the remaining space in the table is less than 10%
of the total allocated space in the table.

For system-created temporary tables, the next-extent size begins to double after 4 extents have been added.

Copyright© 2020 HCL Technologies Limited

576 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Lack of Contiguous Space

If the database server cannot find available contiguous space in the first chunk equal to the size specified for the next extent, it extends the search to the next chunk in the
dbspace. Extents are not allowed to span chunks.

If the database server cannot find adequate contiguous space anywhere in the dbspace, it allocates to the table the largest available amount of contiguous space. (The
minimum allocation is four pages. The default value is eight pages.) No error message is returned if an allocation is possible, even when the amount of space allocated is
less than the requested amount.

Copyright© 2020 HCL Technologies Limited

Merge of Extents for the Same Table

If the disk space allocated for a next extent is physically contiguous with disk space already allocated to the same table, the database server allocates the disk space but
does not consider the new allocation as a separate extent. Instead, the database server extends the size of the existing contiguous extent. Thereafter, all disk-space
reports reflect the allocation as an extension of the existing extent. That is, the number of extents reported is always the number of physically distinct extents, not the
number of times a next extent has been allocated plus one (the initial extent). Figure 1 illustrates extent-allocation strategies.
Figure 1. Next-Extent Allocation Strategies

After disk space is allocated to a tblspace as part of an extent, the space remains dedicated to that tblspace even if the data contained in it is deleted. For alternative
methods of reclaiming this empty disk space, see your IBM® Informix® Performance Guide.

Copyright© 2020 HCL Technologies Limited

Structure and Storage of a Dbspace Page

The basic unit of database server I/O is a page. Page size might vary among computers.

In Informix®, the page size depends on the operating system.

Rows in Nonfragmented Tables
 Rows in Fragmented Tables

 Recommendations on Use of Rowid
 Data-Row Format and Storage

Copyright© 2020 HCL Technologies Limited

Rows in Nonfragmented Tables

The database server can store rows that are longer than a page. The database server also supports the VARCHAR data type, which results in rows of varying length. As a
result, rows do not conform to a single format.

Part VI: Administering 577

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Rows within a table are not necessarily the same length if the table contains one or more columns of type VARCHAR. In addition, the length of a row in such a table might
change when an end user modifies data contained in the VARCHAR column.

The length of a row can be greater than a page.

TEXT and BYTE data is not stored within the data row. Instead, the data row contains a 56-byte descriptor that points to the location of the data. The descriptor can point
to a dbspace page.

The descriptor can point to a blobspace blobpage.

For instructions about how to estimate the length of fixed-length and variable-length data rows, see your IBM® Informix® Performance Guide.

Definition of Rowid
 Use of Rowids

Copyright© 2020 HCL Technologies Limited

Definition of Rowid

Informix® uses two different types of rowids to identify data in tables:

Serial rowid
These rowids are fields in a table and are assigned to tables created with the WITH ROWID option.

Internal rowid
The database server identifies each data row in a table with a unique internal rowid. This rowid identifies the location of the row within the dbspace.

To obtain the internal rowids for a table, use the oncheck -pD option. For more information, see oncheck -cd and oncheck -cD commands: Check pages.

In a nonfragmented table, the term rowid refers to a unique 4-byte integer that defines the physical location of the row in the table. The page that contains the first byte of
the data row is the page that is specified by the rowid. This page is called the data row home page.

Fragmented tables can also have rowids, but they are implemented in a different way. For more information on this topic, see Rows in Fragmented Tables.

Copyright© 2020 HCL Technologies Limited

Use of Rowids

Every data row in a nonfragmented table is uniquely identified by an unchanging rowid. When you create an index for a nonfragmented table, the rowid is stored in the
index pages associated with the table to which the data row belongs. When the database server requires a data row, it searches the index to find the key value and uses
the corresponding rowid to locate the requested row. If the table is not indexed, the database server might sequentially read all the rows in the table.

Eventually, a row might outgrow its original storage location. If this occurs, a forward pointer to the new location of the data row is left at the position defined by the rowid.
The forward pointer is itself a rowid that defines the page and the location on the page where the data row is now stored.

Copyright© 2020 HCL Technologies Limited

Rows in Fragmented Tables

Unlike rows in a nonfragmented table, the database server does not assign a rowid to rows in fragmented tables. If you want to access data by rowid, you must explicitly
create a rowid column as described in your IBM® Informix® Performance Guide. If user applications attempt to reference a rowid in a fragmented table that does not
contain a rowid that you explicitly created, the database server returns an appropriate error code to the application.

Access to Data in Fragmented Tables with Rowid

Copyright© 2020 HCL Technologies Limited

Access to Data in Fragmented Tables with Rowid

From the viewpoint of an application, the functionality of a rowid column in a fragmented table is identical to the rowid of a nonfragmented table. However, unlike the
rowid of a nonfragmented table, the database server uses an index to map the rowid to a physical location.

When the database server accesses a row in a fragmented table using the rowid column, it uses this index to look up the physical address of the row before it attempts to
access the row. For a nonfragmented table, the database server uses direct physical access without an index lookup. As a consequence, accessing a row in a fragmented
table using rowid takes slightly longer than accessing a row using rowid in a nonfragmented table. You should also expect a small performance impact on the processing of
inserts and deletes due to the cost of maintaining the rowid index for fragmented tables.

Primary-key access can lead to significantly improved performance in many situations, particularly when access is in parallel.

Copyright© 2020 HCL Technologies Limited

578 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Recommendations on Use of Rowid

It is recommended that application developers use primary keys as a method of access rather than rowids. Because primary keys are defined in the ANSI specification of
SQL, using them to access data makes your applications more portable.

For a complete description on how to define and use primary keys to access data, see the IBM® Informix® Guide to SQL: Reference and the IBM Informix Guide to SQL:
Tutorial.

Copyright© 2020 HCL Technologies Limited

Data-Row Format and Storage

The variable length of a data row has the following consequences for row storage:

A page might contain one or more whole rows.
A page might contain portions of one or more rows.
A page might contain a combination of whole rows and partial rows.
An updated row might increase in size and become too long to return to its original storage location in a row.

The following paragraphs describe the guidelines that the database server follows during data storage.

Storage of Row
 Location of Rows

 Page Compression

Copyright© 2020 HCL Technologies Limited

Storage of Row

To minimize retrieval time, rows are not broken across page boundaries unnecessarily. Rows that are shorter than a page are always stored as whole rows. A page is
considered full when the count of free bytes is less than the number of bytes needed to store a row of maximum size.

Copyright© 2020 HCL Technologies Limited

Location of Rows

When the database server receives a row that is longer than a page, the row is stored in as many whole pages as required. The database server then stores the trailing
portion in less than a full page.

The page that contains the first byte of the row is the row home page. The number of the home page becomes the logical page number contained in the rowid. Each full
page that follows the home page is referred to as a big-remainder page. If the trailing portion of the row is less than a full page, it is stored on a remainder page.

After the database server creates a remainder page to accommodate a long row, it can use the remaining space in this page to store other rows.

Figure 1 illustrates the concepts of home page, big-remainder page, and remainder page.
Figure 1. Remainder Pages

Copyright© 2020 HCL Technologies Limited

Page Compression

Over time, the free space on a page can become fragmented. When the database server attempts to store data, it first checks row length against the number of free bytes
on a page to determine if the row fits. If adequate space is available, the database server checks if the page contains adequate contiguous free space to hold the row (or
row portion). If the free space is not contiguous, the database server calls for page compression.

Part VI: Administering 579

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Structure of Fragmented Tables

Although table fragmentation is transparent to applications, as database server administrator you should be aware of how the database server allocates disk space for
table fragments and how the database server identifies rows in those fragments.

Each table fragment has its own tblspace with a unique tblspace_id or fragment_id. Figure 1 shows the disk allocation for a fragmented table that resides in named
fragments of the same dbspace.
Figure 1. Disk Structures for a Fragmented Table

Attached Indexes
With an attached index, the index and data are fragmented in the same way. You can decide whether to store the index pages with the corresponding data pages in the
same dbspace or store them in separate dbspaces. For information on choosing a fragmentation strategy, see the IBM® Informix® Performance Guide.

Detached Indexes
For detached indexes, the table fragment and index fragment are stored in tblspaces in separate dbspaces.

Copyright© 2020 HCL Technologies Limited

Structure of B-Tree Index Pages

This section provides general information about the structure of B-tree index pages. It is designed as an overview for the interested reader. For more information on B-tree
indexes, see your IBM® Informix® Performance Guide.

Definition of B-tree terms
 The database server uses a B-tree structure to organize index information.

Logical Storage of Indexes
 Functional Indexes

Related reference:

 FILLFACTOR configuration parameter

Copyright© 2020 HCL Technologies Limited

Definition of B-tree terms

The database server uses a B-tree structure to organize index information.

Figure 1 shows that a fully developed B-tree index is composed of the following three different types of index pages or nodes:

One root node
A root node contains node pointers to branch nodes.

Two or more branch nodes
A branch node contains pointers to leaf nodes or other branch nodes.

Many leaf nodes
A leaf node contains index items and horizontal pointers to other leaf nodes.

Each node serves a different function. The following sections describe each node and the role that it plays in indexing.
Figure 1. Full B-Tree Structure

580 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Index items
The fundamental unit of an index is the index item. An index item contains a key value that represents the value of the indexed column for a particular row. An index item
also contains rowid information that the database server uses to locate the row in a data page.

Index nodes
A node is an index page that stores a group of index items.

Forest of trees indexes as alternatives to traditional B-Tree indexes
Unlike a traditional B-tree index, a forest of trees index is a large B-tree index that is divided into smaller subtrees with multiple root nodes and fewer levels. You can
create a forest of trees index as an alternative to a B-tree index when you want to alleviate root node contention and allow more concurrent users to access the index
without waiting.

Related information:
 Forest of trees indexes

Copyright© 2020 HCL Technologies Limited

Logical Storage of Indexes

This section presents an overview of how the database server creates and fills an index.

Creation of Root and Leaf Nodes
Creation of branch nodes
Duplicate Key Values
Key-Value Locking
Adjacent Key Locking
Freed Index Pages
Filling Indexes
Calculating the Length of Index Items

Copyright© 2020 HCL Technologies Limited

Creation of Root and Leaf Nodes

When you create an index for an empty table, the database server allocates a single index page. This page represents the root node and remains empty until you insert
data in the table.

At first, the root node functions in the same way as a leaf node. For each row that you insert into the table, the database server creates and inserts an index item in the
root node. Figure 1 illustrates how a root node appears before it fills.
Figure 1. Root Node

When the root node becomes full of index items, the database server splits the root node by performing the following steps:

Creates two leaf nodes
Moves approximately half of the root-node entries to each of the newly created leaf nodes
Puts pointers to leaf nodes in the root node

As you add new rows to a table, the database server adds index items to the leaf nodes. When a leaf node fills, the database server creates a new leaf node, moves part of
the contents of the full index node to the new node, and adds a node pointer to the new leaf node in the root node.

Part VI: Administering 581

https://www.hcltech.com/
https://www.hcltech.com/

For example, suppose that leaf node 3 in Figure 2 becomes full. When this situation occurs, the database server adds yet another leaf node. The database server moves
part of the records from leaf node 3 to the new leaf node, as Figure 2 shows.
Figure 2. Leaf Node 4 Created After Leaf Node 3 Fills

Copyright© 2020 HCL Technologies Limited

Creation of branch nodes

Eventually, as you add rows to the table, the database server fills the root node with node pointers to all the existing leaf nodes. When the database server splits yet
another leaf node, and the root node has no room for an additional node pointer, the following process occurs.

The database server splits the root node and divides its contents among two newly created branch nodes. As index items are added, more and more leaf nodes are split,
causing the database server to add more branch nodes. Eventually, the root node fills with pointers to these branch nodes. When this situation occurs, the database server
splits the root node again. The database server then creates yet another branch level between the root node and the lower branch level. This process results in a four-level
tree, with one root node, two branch levels, and one leaf level. The B-tree structure can continue to grow in this way to a maximum of 20 levels.

Branch nodes can point either to other branch nodes below them (for large indexes of four levels or more) or to leaf nodes. In Figure 1, the branch node points to leaf
nodes only. The first item in the left branch node contains the same key value as the largest item in the leftmost leaf node and a node pointer to it. The second item
contains the largest item in the next leaf node and a node pointer to it. The third item in the branch node contains only a pointer to the next higher leaf node. Depending on
the index growth, this third item can contain the actual key value in addition to the pointer at a later point during the life span of the index.
Figure 1. Typical Contents of a Branch Node

Copyright© 2020 HCL Technologies Limited

Duplicate Key Values

Duplicate key values occur when the value of an indexed column is identical for multiple rows. For example, suppose that the third and fourth leaf nodes of a B-tree
structure contain the key value Smith. Suppose further that this value is duplicated six times, as Figure 1 illustrates.
Figure 1. Leaf Nodes 3 and 4

The first item on the third leaf page contains the duplicate key value, Smith, and the rowid information for the first physical row in the table that contains the duplicate key
value. To conserve space, the second item does not repeat the key value Smith but instead contains just the rowid information. This process continues throughout the
page; no other key values are on the leaf, only rowid information.

The first item on the fourth leaf page again contains the duplicated key value and rowid information. Subsequent items contain only rowid information.

Now consider the branch node. The third item in the branch node contains the same key value and rowid as the largest item in the third leaf node and a node pointer to it.
The fourth item would contain only a node pointer to the fourth leaf node, thus saving the space of an additional duplicate key value.

Copyright© 2020 HCL Technologies Limited

582 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Key-Value Locking

To increase concurrency, the database server supports key-value locking in the B-tree index. Key-value locking locks only the value of the key instead of the physical
location in the B-tree index.

One of the most important uses for key-value locking is to assure that a unique key remains unique through the end of the transaction that deleted it. Without this
protection mechanism, user A might delete a unique key within a transaction, and user B might insert a row with the same key before the transaction commits. This
scenario makes rollback by user A impossible. Key-value locking prevents user B from inserting the row until the end of user A's transaction.

Copyright© 2020 HCL Technologies Limited

Adjacent Key Locking

With Repeatable Read isolation level, the database server is required to protect the read set. The read set consists of the rows that meet the filters in the WHERE clause of
the query. To guarantee that the rows do not change, the database server obtains a lock on the index item that is adjacent to the right-most item of the read set.

Copyright© 2020 HCL Technologies Limited

Freed Index Pages

When the database server physically removes an index item from a node and frees an index page, the freed page is reused.

Copyright© 2020 HCL Technologies Limited

Filling Indexes

When you create an index, you can specify how densely or sparsely filled you want the index. The index fill factor is a percentage of each index page that will be filled
during the index build. Use the FILLFACTOR option of the CREATE INDEX statement or the FILLFACTOR configuration parameter to set the fill factor. This option is
particularly useful for indexes that you do not expect to grow after they are built. For additional information about the FILLFACTOR option of the CREATE INDEX statement,
see the IBM® Informix® Guide to SQL: Syntax.

Copyright© 2020 HCL Technologies Limited

Calculating the Length of Index Items

For data types other than VARCHAR, the length of an index item is calculated by adding the length of the key value plus 5 bytes for each rowid information associated with
the key value.

The key values in an index are typically of fixed length. If an index holds the value of one or more columns of the VARCHAR data type, the length of the key value is at least
the sum of the length-plus-one of each VARCHAR value in the key.

In Informix®, the maximum length of a key value is 390 bytes. The combined size of VARCHAR columns that make up a key must be less than 390, minus an additional
byte for each VARCHAR column. For example, the key length of the index that the database server builds for the following statements equals 390, or ((255+1) +
(133+1)):

CREATE TABLE T1 (c1 varchar(255, 10), c2 varchar(133, 10));
CREATE INDEX I1 on T1(c1, c2);

Copyright© 2020 HCL Technologies Limited

Functional Indexes

A functional index is one in which all keys derive from the results of a function. If you have a column of pictures, for example, and a function to identify the predominant
color, you can create an index on the result of the function. Such an index would enable you to quickly retrieve all pictures having the same predominant color, without re-
executing the function.

A functional index uses the same B-tree structure as any other B-tree index. The only difference is that the determining function is applied during an insert or an update
whenever the column that is the argument to the function changes. For more information on the nature of functional indexes, refer to your IBM® Informix® Performance
Guide.

To create a functional index, use the CREATE FUNCTION and CREATE INDEX statements. For more information on these statements, refer to the IBM Informix Guide to
SQL: Syntax.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 583

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Structure of R-Tree Index Pages

An index structure that relies on one-dimensional ordering of key values does not work for spatial data; for example, two dimensional geometric shapes such as circles,
squares, and triangles. Efficient retrieval of spatial data, such as the data used in geographic information systems (GIS) and computer-aided design (CAD) applications,
requires an access method that handles multidimensional data. The database server implements an R-tree index to access spatial data efficiently. For information about
the structure of index pages, refer to the IBM® Informix® R-Tree Index User's Guide.

Copyright© 2020 HCL Technologies Limited

Storage of Simple Large Objects

This section explains the structures and storage techniques that the database server uses to store simple large objects (TEXT or BYTE data).

Structure of a Blobspace
 Structure of a Dbspace Blobpage

 Simple-Large-Object Storage and the Descriptor
 Blobspace Page Types

 Structure of a Blobspace Blobpage

Copyright© 2020 HCL Technologies Limited

Structure of a Blobspace

When you create a blobspace, you can specify the effective size of the data pages, which are called blobpages. The blobpage size for the blobspace is specified when the
blobspace is created. Blobpage size must be a multiple of page size. (For information on determining database server page size, see the chapter on managing disk space in
the IBM® Informix® Administrator's Guide.) All blobpages within a blobspace are the same size, but the size of the blobpage can vary between blobspaces. Blobpage size
can be greater than the page size because data stored in a blobspace is never written to the page-sized buffers in shared memory.

The advantage of customizing the blobpage size is storage efficiency. Within a blobspace, TEXT and BYTE data is stored in one or more blobpages, but simple large objects
do not share blobpages. Storage is most efficient when the TEXT or BYTE data is equal to or slightly smaller than the blobpage size.

The blobspace free-map pages and bitmap pages are the size specified as a database server page, which enables them to be read into shared memory and to be logged.

When the blobspace is first created, it contains the following structures:

Blobspace free-map pages
The blobspace bitmap that tracks the free-map pages
Unused blobpages

Copyright© 2020 HCL Technologies Limited

Structure of a Dbspace Blobpage

TEXT or BYTE data that is stored in the dbspace is stored in a blobpage. The structure of a dbspace blobpage is similar to the structure of a dbspace data page. The only
difference is an extra 12 bytes that can be stored along with the TEXT or BYTE data in the data area.

Simple large objects can share dbspace blobpages if more than one simple large object can fit on a single page, or if more than one trailing portion of a simple large object
can fit on a single page.

For a discussion of how to estimate the number of dbspace blobpages needed for a specific table, see your IBM® Informix® Performance Guide.

Each segment of TEXT or BYTE data stored in a dbspace page might be preceded by up to 12 bytes of information that does not appear on any other dbspace page. These
extra bytes are overhead.

Copyright© 2020 HCL Technologies Limited

Simple-Large-Object Storage and the Descriptor

Data rows that include TEXT or BYTE data do not include the data in the row itself. Instead, the data row contains a 56-byte descriptor with a forward pointer (rowid) to
the location where the first segment of data is stored.

The descriptor can point to one of the following items:

A page (if the data is stored in a dbspace)
A blobpage (if the data is stored in a blobspace)

Creation of Simple Large Objects
 Deletion or Insertion of Simple Large Objects

 Size Limits for Simple Large Objects

584 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Creation of Simple Large Objects

When a row that contains TEXT or BYTE data is to be inserted, the simple large objects are created first. After the simple large objects are written to disk, the row is
updated with the descriptor and inserted.

Copyright© 2020 HCL Technologies Limited

Deletion or Insertion of Simple Large Objects

The database server cannot modify simple large objects. It can only insert or delete them. Deleting a simple large object means that the database server frees the space
consumed by the deleted object for reuse.

When TEXT or BYTE data is updated, a new simple large object is created, and the data row is updated with the new blob descriptor. The old image of the row contains the
descriptor that points to the obsolete value for the simple large object. The space consumed by the obsolete simple large object is freed for reuse after the update is
committed. Simple large objects are automatically deleted if the rows that contain their blob descriptors are deleted. (Blobpages that stored a deleted simple large object
are not available for reuse until the logical log that contains the original INSERT record for the deleted simple large object is backed up. For more information, see backing
up logical-log files to free blobpages in the chapter on what is the logical log in the IBM® Informix® Administrator's Guide.)

Copyright© 2020 HCL Technologies Limited

Size Limits for Simple Large Objects

The largest simple large object that the blob descriptor can accommodate is (231 - 1), or about 2 gigabytes.

Copyright© 2020 HCL Technologies Limited

Blobspace Page Types

Every blobspace chunk contains three types of pages:

A blobspace free-map page
A bitmap page
Blobpages

Blobspace Free-Map Page
The blobspace free-map page identifies unused blobpages so that the database server can allocate them as part of simple-large-object creation. When a blobpage is
allocated, the free-map entry for that page is updated. All entries for a single simple large object are linked.

A blobspace free-map page is the size of one database server page. Each entry on a free-map page is 8 bytes, stored as two 32-bit words, as follows:

The first bit in the first word specifies whether the blobpage is free or used.
The next 31 bits in the first word identify the logical-log file that was current when this blobpage was written. (This information is needed for logging TEXT or BYTE
data.)
The second word contains the tblspace number associated with the simple large object stored on this page.

The number of entries that can fit on a free-map page depends on the page size of your computer. The number of free-map pages in a blobspace chunk depends on the
number of blobpages in the chunk.

Blobspace Bitmap Page
The blobspace bitmap page tracks the fullness and number of blobspace free-map pages in the chunk. Each blobspace bitmap page is capable of tracking a quantity of
free-map pages. The size of the blobspace bitmap page depends on the size of the system page. If the system page is 2K, the blobspace bitmap page can track 2,032,128
blobpages. If the system page is 4K, the blobspace bitmap page can track 8,258,048 blobpages.

Blobpage
The blobpage contains the TEXT or BYTE data. Blobpage size is specified by the database server administrator who creates the blobspace. Blobpage size is specified as a
multiple of the page size.

Copyright© 2020 HCL Technologies Limited

Structure of a Blobspace Blobpage
Part VI: Administering 585

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The storage strategy used to store simple large objects in a blobspace differs from the dbspace storage strategy. The database server does not combine whole simple
large objects or portions of a simple large object on a single blobspace blobpage. For example, if blobspace blobpages are 24 kilobytes each, a simple large object that is
26 kilobytes is stored on two 24-kilobyte pages. The extra 22 kilobytes of space remains unused.

The structure of a blobpage includes a blobpage header, the TEXT or BYTE data, and a page-ending time stamp. The blobpage header includes, among other information,
the page-header time stamp and the blob time stamp associated with the forward pointer in the data row. If a simple large object is stored on more than one blobpage, a
forward pointer to the next blobpage and another blob time stamp are also included in the blobpage header.

Copyright© 2020 HCL Technologies Limited

Sbspace Structure

An sbspace is similar to a blobspace except that it holds smart large objects.

When an sbspace is created in a database, it contains an sbspace descriptor. Each sbspace chunk contains the following structures:

Sbspace chunk descriptors
Chunk free-page list
An sbspace metadata area (up to one for each chunk)
Reserved data areas (up to two for each chunk)
User-data areas (up to two for each chunk)

For best performance, it is recommended that the metadata area be located in the middle of the sbspace. The database server automatically places the metadata area in
the correct location. However, to specify the location of the metadata area, specify the -Mo flag in the onspaces command.

If you do not specify the size of the metadata area in the -Ms flag of the onspaces command, the database server uses the value of AVG_LO_SIZE (defaults to 8 kilobytes)
to calculate the size of the metadata area. For more information, see Creating an Sbspace with the -Df option.

Normally, you can let the system calculate the metadata size for you. If you want to estimate the size of the metadata area, see the chapter on table performance
considerations in the IBM® Informix® Performance Guide.

Figure 1 illustrates the chunk structure of an sbspace as it appears immediately after the sbspace is created. Each reserved area can be allocated to either the user-data
or metadata area. Reserved areas are always within the user-data area of the chunk.
Figure 1. A Single Sbspace Chunk

Because the chunk in Figure 1 is the first in the sbspace, it contains an sbspace descriptor. The chunk descriptor tblspace in chunk one contains information about chunk
one and all chunks added to the sbspace thereafter.

Structure of the metadata area
 An sbspace contains a metadata area for each chunk in the sbspace.

Sbpage Structure

Related reference:
 SBSPACENAME configuration parameter

SYSSBSPACENAME configuration parameter

Copyright© 2020 HCL Technologies Limited

Structure of the metadata area

An sbspace contains a metadata area for each chunk in the sbspace.

As with the chunk header pages, four areas are exclusive to the first chunk in a sbspace: the sbspace descriptor tblspace, the chunk adjunct tblspace, and the level-1 and
level-2 archive tblspaces. The tblspace header section contains a tblspace header for each of these tblspaces (notably excluding the tblspace tblspace). Figure 1 shows
the layout of the metadata in the single-chunk sbspace.
Figure 1. Structure of the metadata area for a single-chunk sbspace

586 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

When you specify the sbspace name in the oncheck -ps option, you can display the number of pages allocated and used for each tblspace in the metadata area.

The following items describe how the metadata area grows:

The sbspace descriptor tblspace does not grow.
The chunk adjunct tblspace grows as chunks are added.
The LO header tblspace grows as large objects are added to the chunk.
The tblspace for user-data free list grows if free spaces in the chunk are heavily fragmented.

Copyright© 2020 HCL Technologies Limited

Sbpage Structure

Each sbpage is composed of three elements: an sbpage header, the actual user data itself, and an sbpage trailer. Figure 1 shows the structure of an sbpage. The sbpage
header consists of the standard page header. The sbpage trailer is used to detect an incomplete write on the page and to detect page corruption.
Figure 1. Sbpage Structure

Copyright© 2020 HCL Technologies Limited

Time Stamps

The database server uses a time stamp to identify a time when an event occurred relative to other events of the same kind. The time stamp is not a literal time that refers
to a specific hour, minute, or second. It is a 4-byte integer that the database server assigns sequentially.

Copyright© 2020 HCL Technologies Limited

Database and Table Creation: What Happens on Disk

This section explains how the database server stores data related to the creation of a database or table and allocates the disk structures that are necessary to store your
data.

Database Creation
 Table Creation

Copyright© 2020 HCL Technologies Limited

Database Creation

After the root dbspace exists, users can create a database. The paragraphs that follow describe the major events that occur on disk when the database server adds a new
database.

Disk-Space Allocation for System Catalog Tables
 Tracking of System Catalog Tables

Part VI: Administering 587

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Disk-Space Allocation for System Catalog Tables

The database server searches the chunk free-list pages in the dbspace, looking for free space in which to create the system catalog tables. For each system catalog table,
in turn, the database server allocates eight contiguous pages, the size of the initial extent of each system catalog table. The tables are created individually and do not
necessarily reside next to each other in the dbspace. They can be located in different chunks. As adequate space is found for the initial extent of each table, the pages are
allocated, and the associated chunk free-list page is updated.

Copyright© 2020 HCL Technologies Limited

Tracking of System Catalog Tables

The database server tracks newly created databases in the database tblspace, which resides in the root dbspace. An entry describing the database is added to the
database tblspace in the root dbspace. (See Structure of the Database Tblspace.) For each system catalog table, the database server adds a one-page entry to the
tblspace tblspace in the dbspace where the database was built. (See Structure of the Tblspace Tblspace.) Figure 1 illustrates the relationship between the database
tblspace entry and the location of the systables system catalog table for the database.
Figure 1. New Databases

For instructions on how to list your databases after you create them, see monitoring databases in the chapter on managing database-logging status in the IBM® Informix®
Administrator's Guide.

Copyright© 2020 HCL Technologies Limited

Table Creation

After the root dbspace exists, and a database has been created, users with the necessary SQL privileges can create a database table. When users create a table, the
database server allocates disk space for the table in units called extents (see what is an extent in the chapter on where data is stored in the IBM® Informix® Administrator's
Guide). The paragraphs that follow describe the major events that occur when the database server creates a table and allocates the initial extent of disk space.

Disk-Space Allocation
 Entry in the Tblspace Tblspace

 Entries in the System Catalog Tables
 Creation of a Temporary Table

Copyright© 2020 HCL Technologies Limited

Disk-Space Allocation

The database server searches the chunk free-list pages in the dbspace for contiguous free space equal to the initial extent size for the table. When adequate space is
found, the pages are allocated, and the associated chunk free-list page is updated.

If the database server cannot find adequate contiguous space anywhere in the dbspace, it allocates to the table the largest available amount of contiguous space. No error
message is returned if an allocation is possible, even when the amount of space allocated is less than the requested amount. If the minimum extent size cannot be
allocated, an error is returned. (Extents cannot span two chunks.)

Copyright© 2020 HCL Technologies Limited

Entry in the Tblspace Tblspace

The database server adds a one-page entry for this table to the tblspace tblspace in this dbspace. The tblspace number assigned to this table is derived from the logical
page number in the tblspace tblspace where the table is described. See Tblspace Numbers.

The tblspace number indicates the dbspace where the tblspace is located. Tblspace extents can be located in any of the dbspace chunks.

If you must know exactly where the tblspace extents are located, execute the oncheck -pe command for a listing of the dbspace layout by chunk.

588 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Entries in the System Catalog Tables

The table itself is fully described in entries stored in the system catalog tables for the database. Each table is assigned a table identification number or tabid. The tabid
value of the first user-defined table object in a database is always 100. (The object whose tabid = 100 might also be a view, synonym, or a sequence.) For a complete
discussion of the system catalog, see the IBM® Informix® Guide to SQL: Reference.

A table can be located in a dbspace that is different than the dbspace that contains the database. The tblspace itself is the sum of allocated extents, not a single,
contiguous allocation of space. The database server tracks tblspaces independently of the database.

Copyright© 2020 HCL Technologies Limited

Creation of a Temporary Table

The tasks involved in creating temporary tables are similar to the tasks that the database server performs when it adds a new permanent table. The key difference is that
temporary tables do not receive an entry in the system catalog for the database. For more information, see the section defining a temporary table, in the chapter on where
data is stored in the IBM® Informix® Administrator's Guide.

Copyright© 2020 HCL Technologies Limited

Interpreting Logical-Log Records

In This Chapter
To display the logical-log records that the logical-log files contain, use the onlog utility.

This chapter provides the following information:

Brief guidance on reading logical-log records
A listing of the different logical-log record types

In general, you do not need to read and interpret your logical-log files. However, onlog output is useful in debugging situations. For example, you might want to use onlog
to track a specific transaction or to see what changes the database server made to a specific tblspace. You can also use onlog to investigate the cause of an error that
occurs during a rollforward. For more information, see onlog: Display Logical-Log Contents.

About Logical-Log Records
 Logical-Log Record Structure

Copyright© 2020 HCL Technologies Limited

About Logical-Log Records

Most SQL statements generate multiple logical-log records. Interpreting logical-log records is more complicated when the database server records the following events in
the logical log:

A transaction that drops a table or index
A transaction that rolls back
A checkpoint in which transactions are still active
A distributed transaction

The following sections discuss the logical-log records for these events.

Transactions That Drop a Table or Index
 Transactions That Are Rolled Back

 Checkpoints with Active Transactions
 Distributed Transactions

Copyright© 2020 HCL Technologies Limited

Transactions That Drop a Table or Index

Once the database server drops a table or index from a database, it cannot roll back that drop operation. If a transaction contains a DROP TABLE or DROP INDEX
statement, the database server handles this transaction as follows:

1. The database server completes all the other parts of the transaction and writes the relevant logical-log records.
2. The database server writes a BEGCOM record to the logical log and the records associated with the DROP TABLE or DROP INDEX (DINDEX, for example).

Part VI: Administering 589

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

3. The database server writes a COMMIT record.

If the transaction is terminated unexpectedly after the database server writes the BEGCOM record to the logical log, the database server rolls forward this transaction
during recovery because it cannot roll back the drop operation.

Copyright© 2020 HCL Technologies Limited

Transactions That Are Rolled Back

When a rollback occurs, the database server generates a compensation-log record (CLR) for each record in the logical log that is rolled back. The database server uses the
CLRs if a system failure takes place during a rollback. The CLRs provide the database server with information on how far the rollback progressed before the failure
occurred. In other words, the database server uses the CLRs to log the rollback.

If a CLR contains the phrase includes next record, the next log record that is printed is included within the CLR log record as the compensating operation. Otherwise,
you must assume that the compensating operation is the logical undo of the log record to which the link field of the CLR points.

Copyright© 2020 HCL Technologies Limited

Checkpoints with Active Transactions

If any transactions are active at the time of a checkpoint, checkpoint records include subentries that describe each of the active transactions using the following columns:

Log begin (decimal format)
Transaction ID (decimal format)
Unique log number (decimal format)
Log position (hexadecimal format)
User name

Copyright© 2020 HCL Technologies Limited

Distributed Transactions

When distributed transactions (transactions that span multiple database servers) generate log records, they are slightly different than nondistributed transactions. You
might need to read and interpret them to determine the state of the transaction on both database servers if a failure occurs as a transaction was committing.

The following log records are involved in distributed transactions:

BEGPREP
ENDTRANS
HEURTX
PREPARE
TABLOCKS

For more information about this type of logical-log record, see the material on two-phase commit and logical-log records in the IBM® Informix® Administrator's Guide.

If you are performing distributed transactions with TP/XA, the database server uses an XAPREPARE record instead of a PREPARE record.

Copyright© 2020 HCL Technologies Limited

Logical-Log Record Structure

Each logical-log record has header information. Depending on the record type, additional columns of information also appear in the output, as explained in Logical-log
record types and additional columns.

Logical-Log Record Header
 Logical-log record types and additional columns

 In addition to the six header columns that display for every record, some record types display additional columns of information. The information that appears
varies, depending on record type.
Log Record Types for Smart Large Objects

Copyright© 2020 HCL Technologies Limited

Logical-Log Record Header

Table 1 contains sample output to illustrate the header columns that display for a logical-log record.
Table 1. Sample Output from onlog

590 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

addr len type xid id linkaddr len type xid id link

2c018 32 BEGIN 6 3 0

2c038 140 HDELETE 6 0 2c018

2c0c4 64 DELITEM 6 0 2c038

2c104 40 DELITEM 6 0 2c0c4

2c12c 72 HDELETE 6 0 2c104

2c174 44 DELITEM 6 0 2c12c

2c1a0 72 HDELETE 6 0 2c174

2c1e8 44 DELITEM 6 0 2c1a0

2c214 64 HDELETE 6 0 2c1e8

2c254 56 DELITEM 6 0 2c214

2c28c 48 DELITEM 6 0 2c254

2c2bc 24 PERASE 6 0 2c28c

2c2d4 20 BEGCOM 6 0 2c2bc

2c2e8 24 ERASE 6 0 2c2d4

2c300 28 CHFREE 6 0 2c2e8

2c31c 24 COMMIT 6 0 2c300

Table 2 defines the contents of each header column.
Table 2. Definition of onlog Header Columns

Header Field Contents Format

addr Log-record address (log position) Hexadecimal

len Record length in bytes Decimal

type Record-type name ASCII

xid Transaction number Decimal

id Logical-log number Decimal

link Link to the previous record in the transaction Hexadecimal

Copyright© 2020 HCL Technologies Limited

Logical-log record types and additional columns

In addition to the six header columns that display for every record, some record types display additional columns of information. The information that appears varies,
depending on record type.

The following table lists all the record types and their additional columns.

The Action column indicates the type of database server action that generated the log entry. The Additional Columns and Format columns describe what information
appears for each record type in addition to the header described in Logical-Log Record Header.

Table 1. Logical-Log Record Types

Record Type Action Additional Columns and Format

ADDCHK Add chunk. chunk number - Decimal
chunk name - ASCII

ADDDBS Add dbspace. dbspace name - ASCII

ADDITEM Add item to index. tblspace ID - Hexadecimal
rowid - Hexadecimal
logical page - Decimal
key number - Decimal
key length - Decimal

ADDLOG Add log. log number - Decimal
log size (pages) - Decimal
pageno - Hexadecimal

Part VI: Administering 591

https://www.hcltech.com/

Record Type Action Additional Columns and Format

ALLOCGENPG Allocate a generic page. tblspace ID - Decimal
rowid - Decimal
slot flags and length - Decimal
page version if delete - Decimal
flags, vimage record - Decimal
rowid for previous - Decimal
data - ASCII

ALTERDONE Alter of fragment complete. tblspace ID - Hexadecimal
physical page number previous page - Hexadecimal
logical page number - Decimal
version of alter - Decimal

ALTSPCOLSNEW Changed columns in an alter table. number of columns - Decimal
special column list - array

ALTSPCOLSOLD Changed columns in an alter table. number of columns - Decimal
special column list - array

BADIDX Bad index tblspace ID - Hexadecimal

BEGCOM Begin commit. (None) - (None)

BEGIN Begin work. date - Decimal
time - Decimal
SID - Decimal
user - ASCII

BEGPREP Written by the coordinator database server to
record the start of the two-phase commit
protocol.

flags - Decimal (Value is 0 in a distributed transaction.)
number of participants - Decimal

BEGWORK Begin a transaction. begin transaction time - Decimal
user ID - Decimal
process ID - Decimal

BFRMAP Simple-large-object free-map change. tblspace ID - Hexadecimal
bpageno - Hexadecimal
status USED/FREE log ID - Decimal
prev page - Hexadecimal

BLDCL Build tblspace. tblspace ID - Hexadecimal
fextsize - Decimal
nextsize - Decimal
row size - Decimal
ncolumns - Decimal
table name - ASCII

BMAPFULL Bitmap modified to prepare for alter. tblspace ID - Hexadecimal
bitmap page num - Decimal

BMAP2TO4 2-bit bitmap altered to two 4-bit bitmaps. tblspace ID - Hexadecimal
2-bit bitmap page number - Decimal
flags - Decimal

BSPADD Add blobspace. blobspace name - ASCII

BTCPYBCK Copy back child key to parent. tblspace ID - Hexadecimal
parent logical page - Decimal
child logical page - Decimal
slot - Decimal
rowoff - Decimal
key number - Decimal

BTMERGE Merge B-tree nodes. tblspace ID - Hexadecimal
parent logical page - Decimal
left logical page - Decimal
right logical page - Decimal
left slot - Decimal
left rowoff - Decimal
right slot - Decimal
right rowoff - Decimal
key number - Decimal

592 Part VI: Administering

Record Type Action Additional Columns and Format

BTSHUFFL Shuffle B-tree nodes. tblspace ID - Hexadecimal
parent logical page - Decimal
left logical page - Decimal
right logical page - Decimal
left slot - Decimal
left rowoff - Decimal
key number - Decimal
flags - Hexadecimal

BTSPLIT Split B-tree node. tblspace ID - Hexadecimal
rowid - Hexadecimal
parent logical page - Decimal
left logical page - Decimal
right logical page - Decimal
infinity logical page - Decimal
rootleft logical page - Decimal
midsplit - Decimal
key number - Decimal
key length - Decimal

CDINDEX Create detached index. database name - ASCII
owner - ASCII
table name - ASCII
index name - ASCII

CDR Captures the set of table columns modified by
an update statement such as a bitvector. This
log record allows Enterprise Replication to
capture only the changed data to avoid
transmitting the unchanged columns to a
target site.
In the example, the first six columns of the
table are unchanged (6 leftmost bits in the
bitvector are 0), the seventh and eighth
columns have been updated (seventh and
eighth bits are 1), and so on. The onlog output
displays as many bits of bitvector as fit in a
single line of the output. To see the entire
bitvector displayed in hexadecimal, use the
onlog -l command.

name of CDR record - ASCII
partition number - Hexadecimal
bitvector - Binary

Sample onlog output for CDR log record:

 adr len type xid id link
 40 36 CDR 14 0 18

name partno bitvector
UPDCOLS 10009a 000000110100110100

CHALLOC Chunk extent allocation. pageno - Hexadecimal
size - Hexadecimal

CHCOMBINE Chunk extent combine. pageno - Hexadecimal

CHFREE Chunk extent free. pageno - Hexadecimal
size - Hexadecimal

CHKADJUP Update chunk adjunct on disk. The database
server writes this record when it moves space
from the reserved area to the metadata or
user-data area or when the user adds an
sbspace chunk.

chunk number - Integer
ud1_start_page - Integer
ud1_size - Integer
md_start_page - Integer
md_size - Integer
ud2_start_page - Integer
ud2_size - Integer
flags - Hexadecimal

CHPHYLOG Change physical-log location. pageno - Hexadecimal
size in kilobytes - Hexadecimal
dbspace name - ASCII

CHRESERV Reserve extent for metadata stealing. This
record is written when you add an sbspace
chunk.

chunk number - Integer
page number - Integer
length - Integer

CHSPLIT Chunk extent split. pageno - Hexadecimal

CINDEX Create index. tblspace ID - Hexadecimal
low rowid - Decimal
high rowid - Decimal
index descriptor - ASCII

Part VI: Administering 593

Record Type Action Additional Columns and Format

COARSELOCK Coarse-grain locking tblspace ID - Hexadecimal
old coarse-locking flag value - Decimal
new coarse-locking flag value - Decimal

CKPOINT Checkpoint. max users - Decimal
number of active transactions - Decimal

CLR Compensation-log record; created during a
rollback.

(None) - (None)

CLUSIDX Create clustered index. tblspace ID - Hexadecimal
key number - Decimal

COLREPAI Adjust BYTE, TEXT, or VARCHAR column. tblspace ID - Hexadecimal
number of columns adjusted - Decimal

COMMIT Commit work. date - Decimal
time - Decimal

COMTAB Compact slot table on a page. logical page number - Decimal
number slots moved - Decimal
compressed slot pairs - ASCII

COMWORK End a transaction and commit work. end transaction time - Decimal
begin transaction time - Decimal

DELETE Delete before-image. tblspace ID - Hexadecimal
rowid - Hexadecimal

DELITEM Delete item from index. tblspace ID - Hexadecimal
rowid - Hexadecimal
logical page - Decimal
key number - Decimal
key length - Decimal

DERASE Drop tblspace in down dbspace. tblspace number - Hexadecimal
table lock number - Decimal

DFADDEXT New extent is added. partnum - Hexadecimal
offset of extent entry in list - Hexadecimal
extent size in pages - Decimal
physical address of extent - Offset and chunk no-hex

DFDRPEXT Drop the original extent. partnum - Hexadecimal
offset of extent entry in list - Hexadecimal
original size of this extent - Decimal
physical address - offset and chunk no-hex

DFEND End of defragment operation. partnum - Hexadecimal

DFMVPG Move page from old extent to new extent. partnum - Hexadecimal
offset of new extent - Hexadecimal
logical page number of source - Hexadecimal
physical address of destination - Offset and chunk no-
hex
physical address of source - Offset and chunk no-hex

DFREMDUM Remove the dummy entries. partnum - Hexadecimal

DFSTART Start of defragment operation. partnum - Hexadecimal

DINDEX Drop index. tblspace ID - Hexadecimal
key number - Decimal

DRPBSP Drop blobspace. blobspace name - ASCII

DRPCHK Drop chunk. chunk number - Decimal
chunk name - ASCII

DRPDBS Drop dbspace. dbspace name ASCII

594 Part VI: Administering

Record Type Action Additional Columns and Format

DRPLOG Drop log. log number - Decimal
log size (pages) - Decimal
pageno - Hexadecimal

ENDTRANS Written by both the coordinator and
participant database servers to record the end
of the transaction. ENDTRANS instructs the
database server to remove the transaction
entry from its shared-memory transaction
table and close the transaction.
In the coordinator logical log, each BEGPREP
that results in a committed transaction is
paired with an ENDTRANS record. If the final
decision of the coordinator is to roll back the
transaction, no ENDTRANS record is written.

In the participant logical log, each ENDTRANS
record is paired with a corresponding HEURTX
record.

(None) - (None)

ERASE Drop tblspace. tblspace ID -Hexadecimal

FREE_RE Allocate extent from reserve extent to
metadata or user-data area of an sbspace
chunk.

chunk number - Integer
page number - Integer
length - Integer
flag - Hexadecimal

HDELETE Delete home row. tblspace ID - Hexadecimal
rowid - Hexadecimal
slotlen - Decimal

HEURTX Written by a participant database server to
record a heuristic decision to roll back the
transaction. It should be associated with a
standard ROLLBACK record indicating that the
transaction was rolled back.

flag - Hexadecimal (Value is always 1.)

HINSERT Home row insert. tblspace ID - Hexadecimal
rowid - Hexadecimal
slotlen - Decimal

HUPAFT Home row update, after-image. tblspace ID - Hexadecimal
rowid - Hexadecimal
slotlen - Decimal

HUPBEF Home row update, before-image.
In addition, the flag field of the HUPBEF
header may include the following values:

LM_PREVLSN
Confirms that an LSN exists.

LM_FIRSTUPD
Confirms that this is the first update for
this rowID by this transaction.

tblspace ID - Hexadecimal
rowid - Hexadecimal
slotlen - Decimal
LSN (optional) - Decimal

HUPDATE If the home row update before-images and
after-images can both fit into a single page,
the database server writes a single HUPDATE
record.
In addition, the flag field of the HUPDATE log
may include the following values:

LM_PREVLSN
Confirms that an LSN exists.

LM_FIRSTUPD
Confirms that this is the first update for
this rowID by this transaction.

tblspace ID - Hexadecimal
rowid - Hexadecimal
forward ptr rowid - Hexadecimal
old slotlen - Decimal
new slotlen - Decimal
number of pieces - Decimal
LSN (optional) - Decimal

IDXFLAGS Index flags. tblspace ID - Hexadecimal
key number - Hexadecimal

INSERT Insert after-image. tblspace ID - Hexadecimal
rowid - Hexadecimal

ISOSPCOMMIT Log an isolated save-point commit. end transaction time - Decimal
begin transaction time - Decimal

Part VI: Administering 595

Record Type Action Additional Columns and Format

LCKLVL Locking mode (page or row). tblspace ID - Hexadecimal
old lockmode - Hexadecimal
new lockmode - Hexadecimal

LG_ADDBPOOL Add a buffer pool online. page size in bytes - Decimal
number of buffers in the pool - Decimal
number of lru queues - Decimal
percent of lru_max_dirty - Decimal
percent of lru_min_dirty - Decimal

PTRUNCATE Identifies an intention to truncate a table. The
partitions are marked to be dropped or
reused, according to the specified command
option.

tblspace ID - Hexadecimal

TRUNCATE TRUNCATE has freed the extents and the
transaction will be committed.

tblspace ID - Hexadecimal

MVIDXND Index node moved to allow for 2-bit to 4-bit
bitmap conversion.

tblspace ID - Hexadecimal
old page number - Decimal
new page number - Decimal
parent page number - Decimal
parent slot number - Decimal
parent slot offset - Decimal
key number - Decimal

PBDELETE Delete tblspace blobpage. bpageno - Hexadecimal
status USED/FREE unique ID - Decimal

PBINSERT Insert tblspace blobpage. bpageno - Hexadecimal
tblspace ID - Hexadecimal
rowid - Hexadecimal
slotlen - Decimal
pbrowid - Hexadecimal

PDINDEX Predrop index. tblspace ID - Hexadecimal

PGALTER Page altered in place. tblspace ID - Hexadecimal
physical page number - Hexadecimal

PGMODE Page mode modified in bitmap. tblspace ID - Hexadecimal
logical page number - Decimal
old mode - Hexadecimal
new mode - Hexadecimal

PERASE Preerase old file. Mark a table that is to be
dropped. The database server frees the space
on the commit.

tblspace ID - Hexadecimal

PNGPALIGN8 Use the pages in this tblspace as generic
pages.

None

PNLOCKID Change tblspaces lockid. tblspace ID - Hexadecimal
old lock ID - Hexadecimal
new lock ID - Hexadecimal

PNSIZES Set tblspace extent sizes. tblspace ID - Hexadecimal
fextsize - Decimal
nextsize - Decimal

PREPARE Written by a participant database server to
record the ability of the participant to commit
the transaction, if so instructed.

DBSERVERNAME of coordinator - ASCII

PTADESC Add alter description information. tblspace ID - Hexadecimal
physical page number of previous page - Hexadecimal
logical page number - Decimal
number of columns added - Decimal

PTALTER Alter of fragment begun. tblspace ID - Hexadecimal
physical page number previous page - Hexadecimal
logical page number - Decimal
alter desc page number - Decimal
num columns added - Decimal
version of alter - Decimal
added rowsize - Decimal

596 Part VI: Administering

Record Type Action Additional Columns and Format

PTALTNEWKEYD Update key descriptors in a tblspace header
after an alter table command.

bytes in key descriptor - Decimal
data in key descriptor - ASCII

PTALTOLDKEYD Update key descriptors after an alter table
command.

bytes in key descriptor - Decimal
data in key descriptor - ASCII

PTCOLUMN Add special columns to fragment. tblspace ID - Hexadecimal
number of columns - Decimal

PTEXTEND Tblspace extend. tblspace ID - Hexadecimal
last logical page - Decimal
first physical page - Hexadecimal

PTRENAME Rename table. tblspace ID - Hexadecimal
old table name - ASCII
new table name - ASCII

RDELETE Remainder page delete. tblspace ID - Hexadecimal
rowid - Hexadecimal
slotlen - Decimal
hrowid (optional) - Decimal
poffset (optional) - Decimal

RENDBS Rename dbspace. new dbspace name - ASCII

REVERT Logs the reversion of a database space to a
database space of an earlier version.

type of reversion event - Decimal
arg1 - Decimal
arg2 - Decimal
arg3 - Decimal

RINSERT Remainder page insert. tblspace ID - Hexadecimal
rowid - Hexadecimal
slotlen - Decimal
hrowid (optional) - Decimal
poffset (optional) - Decimal

ROLLBACK Rollback work. date - Decimal
time - Decimal

ROLWORK End a transaction and roll back work. end transaction time - Decimal
begin transaction time - Decimal

RSVEXTEND Logs the extension to the reserved pages. number of pages - Decimal
physical page number of extent - Hexadecimal

RTREE Logs inserts and deletions for R-tree index
pages. (Other operations on R-tree indexes
are physically logged.) The record subtypes
are:

LEAFINS - insert item in a leaf page
LEAFDEL - delete item from leaf page

record subtype - ASCII
index page rowid - Hexadecimal
tuple length - Decimal
base table rowid - Decimal
base table fragid - Decimal
delete flag - Decimal

RUPAFT Remainder page update, after-image. tblspace ID - Hexadecimal
rowid - Hexadecimal
slotlen - Decimal

RUPBEF Remainder page update, before-image. tblspace ID - Hexadecimal
rowid - Hexadecimal
slotlen - Decimal
hrowid (optional) - Decimal
poffset (optional) - Decimal

RUPDATE If the remainder page update before-images
and after-images can both fit into a single
page, the database server writes a single
RUPDATE record.

tblspace ID - Hexadecimal
rowid - Hexadecimal
forward ptr rowid - Hexadecimal
old slotlen - Decimal
new slotlen - Decimal
number of pieces - Decimal
hrowid (optional) - Decimal
poffset (optional) - Decimal

Part VI: Administering 597

Record Type Action Additional Columns and Format

SBLOB Indicates a subsystem log record for a smart
large object.
The various record subtypes are:

CHALLOC
CHCOMBINE
CHFREE
CHSPLIT
CREATE
DELETES
EXTEND
HDRUPD
PDELETE
PTRUNC
REFCOUNT
UDINSERT
UDINSERT_LT
UDUPAFT
UDUPAFT_LT
UDUPAFT
UDUPAFT_LT
UDWRITE
UDWRITE_LT

Varies
For more information, see Log Record Types for Smart
Large Objects.

Varies

SYNC Written to a logical-log file if that log file is
empty and administrator instructs the
database server to switch to next log file.

(None) - (None)

TABLOCKS Written by either a coordinator or a participant
database server. It is associated with either a
BEGPREP or a PREPARE record and contains a
list of the locked tblspaces (by tblspace
number) held by the transaction. (In a
distributed transaction, transactions are
shown as the owners of locks.)

number of locks - Decimal
tblspace number - Hexadecimal

UDINSERT Append new user data. number of locks - Decimal
tblspace number - Hexadecimal

UDUPAFT Update user data after-image if a UDWRITE is
too expensive.

chunk - Decimal
page within chunk - Hexadecimal
offset within page - Hexadecimal
data length - Hexadecimal

UDUPBEF Update user-data before-image if a UDWRITE
is too expensive.

chunk - Decimal
page within chunk- Hexadecimal
offset within page - Hexadecimal
data length - Hexadecimal

UDWRITE Update user data (difference image). chunk - Decimal
page within chunk - Hexadecimal
offset within chunk - Hexadecimal
length before write - Hexadecimal
length after write - Hexadecimal

UNDO Header record to a series of transactions to be
rolled back.

count - Decimal

UNDOBLDC This record is written if a CREATE TABLE
statement should be rolled back but cannot
be because the relevant chunk is down. When
the log file is replayed, the table will be
dropped.

tblspace number - Hexadecimal

UNIQID Logged when a new SERIAL value is assigned
to a row.

tblspace ID - Hexadecimal
unique ID - Decimal

UNIQ8ID Logged when a new SERIAL8 value is assigned
to a row.

tblspace ID - Hexadecimal
unique ID - Decimal

UPDAFT Update after-image. tblspace ID - Hexadecimal
rowid - Hexadecimal

UPDBEF Update before-image. tblspace ID - Hexadecimal
rowid - Hexadecimal

598 Part VI: Administering

Record Type Action Additional Columns and Format

XAPREPARE Participant can commit this XA transaction. (None) - (None)

Copyright© 2020 HCL Technologies Limited

Log Record Types for Smart Large Objects

All smart-large-object log records are the SBLOB type. Each smart-large-object log record contains six header columns, described in Logical-Log Record Header; the
record subtype; and additional information. The information that appears varies, depending on record subtype.

Table 1 lists all the smart-large-object record types. The Subtype column describes the smart-large-object record type. The Action column indicates the type of database
server action that generated the log entry. The Additional Columns and Format columns describe what information appears for each record type.

Table 1. Record Subtypes for Smart Large Objects

Record Subtype Action Additional Columns Format

CHALLOC Allocate chunk extent. extent [chk, page, len] Decimal

flags Hexadecimal

CHCOMBINE Combine two pages in the user-data extent list. chunk number Decimal

first page Decimal

second page Decimal

CHFREE Frees chunk extent. extent [chk, page, len] Decimal

CHSPLIT Split a page in the user-data extent list. chunk number Decimal

UDFET page to split Decimal

CREATE Create smart large object. smart-large-object ID [sbs, chk, page, oid] Decimal

number of extents in lomaphdr Decimal

DELETE Delete a smart large object at commit. smart-large-object ID [sbs, chk, page, oid] Decimal

EXTEND Add extent to an extent list of a smart large object. smart-large-object ID [sbs, chk, page, oid] Decimal

extent [chk, page, len] Decimal

lomap overflow page number Decimal

HDRUPD Update smart-large-object header page. smart-large-object ID [sbs, chk, page, oid] Decimal

old EOF offset String

new EOF offset String

old times Decimal

new times Decimal

PDELETE Queue a smart large object for deletion at commit. smart-large-object ID [sbs, chk, page, oid] Decimal

PTRUNC Queue a smart large object for truncation at commit. smart-large-object ID [sbs, chk, page, oid] Decimal

old offset String

new offset String

REFCOUNT Increment or decrement the reference count of a smart
large object.

smart-large-object ID [sbs, chk, page, oid] Decimal

1 if increment; 0 if decrement Decimal

UDINSERT, Append new user data. chunk Decimal

UDINSERT_LT page within chunk Decimal

offset within page Decimal

data length Decimal

UDUPAFT, Update user-data after-image if a UDWRITE is too
expensive.

chunk Decimal

UDUPAFT_LT page within chunk Decimal

offset within page Decimal

data length Decimal

UDUPBEF, Update user-data beforeimage if a UDWRITE is too
expensive.

chunk Decimal

UDUPBEF_LT page within chunk Decimal

offset within page Decimal

data length Decimal

UDWRITE, Update user data (difference image). chunk Decimal

UDWRITE_LT page within chunk Decimal

offset within page Decimal

Part VI: Administering 599

https://www.hcltech.com/

Record Subtype Action Additional Columns Format

length before write Decimal

length after write Decimal

number of different image pieces Decimal

For an example of smart-large-object records in onlog output, see smart-large-object log records in the chapter on what is the logical log in the IBM® Informix®
Administrator's Guide.

Figure 1 shows an example of smart-large-object records in onlog output. The first two records show that an extent was freed. The next group of records, flanked by
BEGIN and COMMIT, shows the allocation of storage and creation of the smart large objects.
Figure 1. Smart-Large-Object Records in onlog Output

addr len type xid id link subtype specific-info

4e8428 40 SBLOB 8 0 4e7400 CHFREE (2,53,421)
4e8450 40 SBLOB 8 0 4e8428 CHFREE (2,579,421)

c8018 40 BEGIN 8 3 0 07/13/98 10:23:04 34 informix
c8040 264 SBLOB 8 0 c8018 CREATE [2,2,1,900350517] 10
c8148 44 SBLOB 8 0 c8040 CHALLOC (2,53,8) 0x1
c8174 68 SBLOB 8 0 c8148 EXTEND [2,2,1,900350517] (2,53,8) -1
c81b8 264 SBLOB 8 0 c8174 CREATE [2,2,2,900350518] 10
c82c0 44 SBLOB 8 0 c81b8 CHALLOC (2,61,1) 0x1
c82ec 68 SBLOB 8 0 c82c0 EXTEND [2,2,2,900350518] (2,61,1) -1
c8330 56 SBLOB 8 0 c82ec REFCOUNT [2,2,1,900350517] 1
c8368 56 SBLOB 8 0 c8330 REFCOUNT [2,2,2,900350518] 1
c83a0 36 COMMIT 8 0 c8368 07/13/98 10:23:05

c83c4 40 BEGIN 8 3 0 07/13/98 10:23:05 34 informix
c83ec 264 SBLOB 8 0 c83c4 CREATE [2,2,3,900350519] 10
c84f4 44 SBLOB 8 0 c83ec CHALLOC (2,62,1) 0x1
c8520 68 SBLOB 8 0 c84f4 EXTEND [2,2,3,900350519] (2,62,1) -1
c8564 56 SBLOB 8 0 c8520 REFCOUNT [2,2,3,900350519] 1
c859c 36 COMMIT 8 0 c8564 07/13/98 10:23:05

Copyright© 2020 HCL Technologies Limited

Administrative Utilities

Overview of Utilities
 The Informix database server utilities allow you to perform administrative tasks directly from the command line.

The finderr utility
 Use the finderr utility to view additional information on Informix error messages. On UNIX and Linux platforms, the information appears on the command line. On

Windows platforms, the information appears in the Error Messages program.
The genoncfg Utility
Use the genoncfg utility to expedite the process of customizing the default Informix configuration file (onconfig.std) to the host environment and your planned
usage of a database server instance.
The oncheck Utility

 Use the oncheck utility to check specified disk structures for inconsistencies, repair inconsistent index structures, and display information about disk structures.
The onclean utility

 Use the onclean utility to force a shut down of the database server when normal shut down with the onmode utility fails or when you cannot restart the server. The
onclean utility attempts to clean up shared memory, semaphores, and stops database server virtual processes.
The oncmsm utility

 Use the oncmsm utility to start or shut down a Connection Manager, load a new configuration file into a Connection Manager to modify the Connection Manager's
settings, or update the format of a configuration file.
The onconfig_diff utility

 Use the onconfig_diff utility to compare two onconfig files.
The ondblog utility

 Use the ondblog utility to change the logging mode for one or more databases.
The oninit utility

 The oninit utility starts the database server.
The onkstash Utility

 Use the onkstash utility to create a password stash file for an existing PKCS#12 keystore.
The onkstore Utility

 The onlog utility
 The onlog utility displays the contents of a logical-log file, either on disk or on backup.

The onmode utility
 Use the onmode utility to change the database server operating mode and perform various other operations on shared memory, sessions, transactions, parameters,

and segments.
The onparams Utility

 Use the onparams utility to add or drop a logical-log file, change physical-log parameters, and add a new buffer pool.
The onpassword utility

 Use the onpassword utility to encrypt and decrypt a password file. Connection Manager and Enterprise Replication utilities require a password file to connect to
database servers over an untrusted network.
The ifxclone utility

 You use the ifxclone utility to create a server clone from a snapshot of an existing database server.
The onspaces utility

 Use the onspaces utility to manage the storage spaces in your database.
The onstat utility

 The onstat utility reads shared-memory structures and provides statistics about the database server at the time that the command runs.

600 Part VI: Administering

https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Overview of Utilities

The Informix® database server utilities allow you to perform administrative tasks directly from the command line.

For a complete list of server utilities, see Informix administrative utilities and applications.

The database server utilities support multibyte command-line arguments. For a complete list of the utilities that support multibyte command-line arguments, see the
Locale-specific support for utilities.

The database server must be online before you execute a utility, with the following exceptions:

oninit
Some onlog options
Some oncheck options

Note: When using utilities, do not use the UNIX command CTRL-C to send an interrupt signal to a process because it might produce an error.

Obtaining utility version information
 Use the -V and -version options of many Informix command-line utilities to obtain version, primarily for debugging.

Setting local environment variables for utilities
 On UNIX operating systems, you can start certain utilities without setting local environment variables in your shell environment. You can set local environment

variables in the onconfig file. When you run the command to start the utility, use the -FILE option to point to the onconfig file.

Copyright© 2020 HCL Technologies Limited

Obtaining utility version information

Use the -V and -version options of many Informix® command-line utilities to obtain version, primarily for debugging.

The -V option displays the software version number and the serial number.

The -version option extends the -V option to display additional information about the build operation system, build number, and build date.

>>-utility--+-utility specific options-+-----------------------><
 +- -V----------------------+
 '- -version----------------'

The -V and -version options cannot be used with any other utility options. For example, the onstat -version command might display the following output.

onstat -version

 Program: onstat
 Build Version: 11.70.FC1
 Build Host: connla
 Build OS: SunOS 5.6
 Build Number: 009
 Build Date: Sat Nov 20 03:38:27 CDT 2011
 GLS Version: glslib-4.50.xC2

The onstat -V command might display the following information:

IBM Informix Version 11.70.FC1 Software Serial Number
 RDS#N000000

Copyright© 2020 HCL Technologies Limited

Setting local environment variables for utilities

On UNIX operating systems, you can start certain utilities without setting local environment variables in your shell environment. You can set local environment variables in
the onconfig file. When you run the command to start the utility, use the -FILE option to point to the onconfig file.

Before you begin, ensure that these prerequisites are met:

The path to the executable program for the utility is part of the existing shell environment.
If you want to run commands on a remote computer, a remote shell utility such as SSH is configured.

1. Add values for one or more environment variables to the onconfig file. Use the following format for each directive: #$variable_name value
2. When you run the command to start the utility, use the -FILE option to specify the full or relative path to the onconfig file. Review the syntax, usage, and examples

in the reference information for the -FILE option.

The utility reads and sets the environment variables that are specified in the onconfig file, and those values take precedence over values that are set in the local shell
environment.
Related concepts:

 onconfig file

Part VI: Administering 601

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Related reference:
Database server files
The -FILE option

Copyright© 2020 HCL Technologies Limited

The finderr utility

Use the finderr utility to view additional information on Informix® error messages. On UNIX and Linux platforms, the information appears on the command line. On
Windows platforms, the information appears in the Error Messages program.

Syntax

 .- - .
>>-finderr--+----+--error_number-------------------------------><
 '- + '

Table 1. finderr element

Element Purpose Key Considerations

error_number The error message
number for which to
provide additional
information

On UNIX or Linux: If you do not include a minus sign (-) or plus sign (+) and both a positive and a negative version of the
error message exists, the negative version of the message is displayed. To display the information about an error message
number that is positive, preface the error number with a plus sign.
On Windows: If you do not include a minus sign or plus sign and both a positive and a negative version of the error
message exists, you must choose which message you want to view in the Error Messages program.

Usage
Error messages that are printed in the message log include a message number and a short message description. Use the message number with the finderr command to
look up a more detailed description of the cause of the error and possible user actions to correct or prevent the error.

On Windows, you can open the Error Messages program directly by choosing Error Messages from the database server program group.

Examples
The following command on a UNIX or Linux platform displays information about the error message -201:

finderr 201

-201 A syntax error has occurred.

This general error message indicates mistakes in the form of an SQL
statement. Look for missing or extra punctuation (such as missing or
extra commas, omission of parentheses around a subquery, and so on),
keywords misspelled (such as VALEUS for VALUES), keywords misused (such
as SET in an INSERT statement or INTO in a subquery), keywords out of
sequence (such as a condition of "value IS NOT" instead of "NOT value
IS"), or a reserved word used as an identifier.

Database servers that provide full NIST compliance do not reserve any
words; queries that work with these database servers might fail and
return error -201 when they are used with earlier versions of IBM Informix
database servers.

The cause of this error might be an attempt to use round-robin syntax with
CREATE INDEX or ALTER FRAGMENT INIT on an index. You cannot use round-robin
indexes.

The error may also occur if an SQL statement uses double quotation marks
around input strings and the environment variable DELIMIDENT is set.
If DELIMIDENT is set, strings that are surrounded by double quotation
marks are regarded as SQL identifiers rather than string literals. For
more information on the usage of DELIMIDENT, see the IBM Informix Guide to
SQL: Reference.

The following command displays information about the error message 100, which corresponds to the SQLCODE value of 100:

finderr +100

100 No matching records found.

The database server did not find any more data. This message is an ANSI-
standard SQLCODE value. If you attempted to select or fetch data, you
encountered the end of the data, or no data matched the criteria in the
WHERE clause. Check for an empty table. Use this SQLCODE value to determine
when a statement reaches the end of the data. For more information, see the
discussion of SQLCODE in the IBM Informix ESQL/C Programmer's Manual. The
database server can return this SQLCODE value to a running program.
For the High-Performance Loader (HPL), this message can indicate that the
map might be from a project other than the default project. Use the -p option
in the onpload command line to provide a project name for mappings.

602 Part VI: Administering

https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

The genoncfg Utility

Use the genoncfg utility to expedite the process of customizing the default Informix® configuration file (onconfig.std) to the host environment and your planned usage of a
database server instance.

Syntax

>>-genoncfg--+-input_file--+-------------+-+-------------------><
 | '-informixdir-' |
 +- -h-------------------------+
 +- -V-------------------------+
 '- -version-------------------'

Element Purpose Key Considerations

input_file Name of the input file containing your parameter
settings.

informixdir Path to the Informix installation that you want to
configure.

You can omit the installation path if the INFORMIXDIR environment variable is set. If the
INFORMIXDIR variable is already set and you enter an installation path on the command
line, the utility runs with the command-line path.

-h Help information about the genoncfg utility.

-V Displays short version information and exits the
command-line utility.

-version Displays extended version information and exits
the command-line utility.

Usage
Log in to the host computer as root or user informix before you run this utility.

You must set parameters that are valid for your host environment in an input file before you can successfully run the genoncfg utility. For all environments, the parameter
disk is required in the input file. You can also enter directives in the input file. The directives are not required to run the utility, but they can be helpful in some
circumstances.

The utility does not read or modify any existing configuration file. If you have a pre-existing ONCONFIG file in the host environment, none of its parameter values are
changed when you run the utility. Therefore, you can review the recommended configuration settings before you put them in effect on a database server instance.

To use the genoncfg utility:

1. Create the input file containing your values for the parameters that the genoncfg utility processes with a text editor.
2. Run the utility with your input file. The configuration file (named onconfig) is generated and saved in the working directory.
3. Optional: Rename the generated configuration file.
4. If you want to run a database server instance with the generated configuration file, copy the file to $INFORMIXDIR/etc and update the ONCONFIG environment

variable accordingly.

Input File for the genoncfg Utility
Use the input file to specify the following information about the database server instance:

number of anticipated online transaction processing (OLTP) connections
number of anticipated decision-support systems (DSS) connections
disk space
CPU utilization
network connection settings
recovery time

The input file is an ASCII text file. There is no required order for the parameters. The following is an example of an input file:

cpus 1
memory 1024 m
connection name demo_on onsoctcp 9088
servernum 1
oltp_connections 10
dss_connections 2
disk /opt/IBM/informix/demo/server/online_root 0 k 300 m
directive one_crit
directive debug

Table 1. Parameters of the Input File for the genoncfg Utility

Parameter Description

Part VI: Administering 603

https://www.hcltech.com/

Parameter Description

connection Server connection parameters:

name or alias, depending on whether the connection functions with a specific server name (the DBSERVERNAME parameter of the
configuration file) or with an alternative server name (using the DBSERVERALIASES parameter of the configuration file)

name for the connection
type of server connection (equivalent to NETTYPE in the configuration file)
port number for the service

Example: connection name demo_on onsoctcp 9088

cpus Number of central processing units (CPUs) to allocate the instance. Example: cpus 1

directive Directives that can be used with the genoncfg utility.

one_crit: Configures the database server to store physical logs, logical logs, and data in the root dbspace only.
debug: Displays information in real time about the host environment and actions done on the configuration file.

Example: directive one_crit

This information can be helpful in troubleshooting problems with database server configuration. One scenario is that the debug directive can result in
saving time. In this scenario, you read the displayed information and notice that the utility is creating an onconfig file that you do not want or that will
not function. You stop the utility while it is still running, adjust the input file settings, and then rerun the utility with the modified input file.

disk Disk storage space settings for the instance:

location of the root dbspace
size of offset, in megabytes (m) or kilobytes (k)
size of root dbspace, in megabytes (m) or kilobytes (k)

Example:

UNIX: /opt/IBM/dbspace/rootdbs

Windows: d:\INFXDATA\rootdbs

Important: If you enter a path location that is the root dbspace of a working instance, the instance is overwritten and made unusable.

dss_connections Estimated number of decision-support systems (DSS) connections to the instance. For example, a query client or other application that obtains result
sets for business intelligence can be a DSS connection. Example: dss_connections 2

memory Amount of memory, in megabytes (m), for the instance. Example: memory 1024 m

oltp_connection
s

Estimated number of online transaction processing (OLTP) connections to the instance. Typically, an application that modifies the state of databases in
the instance is an OLTP connection. Example: oltp_connections 10

rto_server_resta
rt

Specifies the amount of time, in seconds, that the database server has to recover from a problem after you restart Informix and bring it into online or
quiescent mode. The value can be set either to 0 to disable the configuration parameter or to a value between 60 and 1800 to enable the parameter
and indicate the number of seconds. Example: rto_server_restart 100 specifies the recovery time objective as 100 seconds.

servernum Unique ID of the database server instance. Example: servernum 1

Related tasks:
 Modifying the onconfig file

Copyright© 2020 HCL Technologies Limited

The oncheck Utility

Use the oncheck utility to check specified disk structures for inconsistencies, repair inconsistent index structures, and display information about disk structures.

The oncheck utility requires sort space when examining an index. The amount of sort space required is the same as that needed to build the index. For information about
calculating the amount of temporary space needed, see Estimating temporary space for index builds. If you receive the error "no free disk space for sort," you
must estimate the amount of temporary space needed and make that space available.

You can use SQL administration API commands that are equivalent to some oncheck commands.

oncheck Check-and-Repair
 The oncheck utility repairs disk structures.

oncheck utility syntax
 The oncheck utility checks specified disk structures for inconsistencies, repairs inconsistent index structures, and displays information about disk structures.

oncheck -cc and-pc: Check system catalog tables
 The -cc option checks system catalog tables for information about database tables, columns, indexes, views, constraints, stored procedures, and privileges.

oncheck -cd and oncheck -cD commands: Check pages
 Use the oncheck -cd and oncheck -cD commands to check each page for consistency. Use the oncheck -cd -y or oncheck -cD -y command to repair

inconsistencies.
oncheck -ce, -pe: Check the chunk-free list

 oncheck -ci and -cI: Check index node links
 Use the oncheck -ci and oncheck -cI commands to check the ordering of key values and the consistency of horizontal and vertical node links for all indexes

associated with the specified table.
oncheck -cr and -cR: Check reserved pages

 oncheck -cs, -cS, -ps, -pS: Check and display sbspaces
 oncheck -pB: Display blobspace statistics

604 Part VI: Administering

https://www.hcltech.com/

oncheck -pd and pD: Display rows in hexadecimal format
oncheck -pk, -pK, -pl, -pL: Display index information
oncheck -pp and -pP: Display the contents of a logical page
oncheck -pr and pR: Display reserved-page information
The -pr option performs the same checks as oncheck -cr command and displays the reserved-page information.
oncheck -pt and -pT: Display tblspaces for a Table or Fragment
The oncheck -pt and oncheck -pT options print a tblspace report for a specific table or fragment. The only difference between these options is that oncheck -pT
prints more information, including some index-specific information.
Turn On Locking with -x
Send Special Arguments to the Access Method with -u
Return Codes on Exit

Copyright© 2020 HCL Technologies Limited

oncheck Check-and-Repair

The oncheck utility repairs disk structures.

The oncheck utility can repair the following types of disk structures:

Partition page statistics
Bitmap pages
Partition blobpages
Blobspace blobpages
Indexes
Sbspace pages
Metadata partitions for sbspaces

If oncheck detects inconsistencies in other structures, messages alert you to these inconsistencies, but oncheck cannot resolve the problem. For more information, see
the chapter on consistency checking in the IBM® Informix® Administrator's Guide and Disk Structures and Storage.

What Does Each Option Do?
 The oncheck options fall into three categories: check, repair, and display.

Using the -y Option to Perform Repairs
 Use the -y option to instruct oncheck to perform repairs automatically.

Repairing Indexes in Sbspaces and External Spaces
 The oncheck utility can repair an index in an sbspace or external space if the index is created using an access method that supports the oncheck -y option.

Locking and oncheck
 The oncheck utility places a shared lock on a table, so no other users can perform updates, inserts, or deletes until the check has completed.

Copyright© 2020 HCL Technologies Limited

What Does Each Option Do?

The oncheck options fall into three categories: check, repair, and display.

The display or print options (those prefixed with the letter p) are identical in function to the -c options, except that the -p options display additional information about the
data that is being checked as the oncheck utility executes. You cannot combine oncheck option flags except as the following paragraphs describe.

In general, the -c options check for consistency and display a message on the screen only if they find an error or inconsistency.

Any user can execute the check options. On UNIX platforms, you must be user informix or root to display database data or initiate repair options. On Windows, you must
be a member of the Informix-Admin group to display database data or initiate repair options.

Table 1 associates oncheck options with their function. It also shows the SQL administration API command strings that are equivalent to the oncheck -c options.

Table 1. oncheck Options and Their Function
Object Check SQL administration API

command string
Repair Display

Blobspace simple large objects -pB

System catalog tables -cc -pc

Data rows, no simple large objects or smart large objects -cd -pd

Data rows, simple large objects but no smart large objects -cD -pD

Table with a user-defined access method -cd, -cD CHECK DATA

Chunks and extents -ce CHECK EXTENTS -pe

Index (key values) -ci, -cix -ci -y -pk -y, -pkx -y -pk

Index (keys plus rowids) -cI, -cIx -cI -y -pK -y, -pKx -y -pK

Index with a user-defined access method -ci, -cI

Index (leaf key values) -pl -y, -plx -y -pl

Index (leaf keys plus rowids) -pL -y, -pLx -y -pL

Part VI: Administering 605

https://www.hcltech.com/
https://www.hcltech.com/

Object Check SQL administration API
command string

Repair Display

Pages (by table or fragment) -pp

Pages (by chunk) -pP

Root reserved pages -cr, -cR -pr, -pR

Metadata for smart large objects -cs, -cS -ps, -pS

Space usage (by table or fragment) CHECK PARTITION
PRINT PARTITION

 -pt

Space usage (by table, with indexes) -pT

Copyright© 2020 HCL Technologies Limited

Using the -y Option to Perform Repairs

Use the -y option to instruct oncheck to perform repairs automatically.

If you do not use the -y option, oncheck prompts you when it encounters an inconsistency and allows you to request a repair. If you specify option -n, oncheck does not
prompt you because this option instructs oncheck to not perform repairs.

The following examples show automatic repair commands for the oncheck utility:

oncheck -cd -y
oncheck -cD -y
oncheck -ci -y
oncheck -cI -y

Copyright© 2020 HCL Technologies Limited

Repairing Indexes in Sbspaces and External Spaces

The oncheck utility can repair an index in an sbspace or external space if the index is created using an access method that supports the oncheck -y option.

Although the oncheck utility does not repair fragmented indexes, user-defined access methods can repair them. For more information about the oncheck options that
access methods support, see the IBM® Informix® DataBlade API Programmer's Guide or the IBM Informix Virtual-Index Interface Programmer's Guide.

Copyright© 2020 HCL Technologies Limited

Locking and oncheck

The oncheck utility places a shared lock on a table, so no other users can perform updates, inserts, or deletes until the check has completed.

The oncheck utility places a shared lock on a table during the following operations:

When it checks data
When it checks indexes (with -ci, -cI, -pk, -pK, -pl, or -pL) and the table uses page locking
When you specify the -x option with -ci, -cI, -pk, -pK, -pl, or -pL and the table uses row locking

If the table does not use page locking, the database server does not place a shared lock on the table when you check an index with the oncheck -ci, -cI, -pk, -pK, -pl, or -
pL options. When no shared lock is on the table during an index check, other users can update rows during the check.

By not placing a shared lock on tables using row locks during index checks, the oncheck utility cannot be as accurate in the index check. For absolute assurance of a
complete index check, you can execute oncheck with the -x option. With the -x option, oncheck places a shared lock on the table, and no other users can perform
updates, inserts, or deletes until the check has completed.

The oncheck utility returns unreliable results when run on secondary servers in a high-availability cluster.

For more information about the -x option, refer to Turn On Locking with -x. For information on shared locks and intent shared locks, see the IBM® Informix® Performance
Guide.

The oncheck utility places a shared lock on system catalog tables when they are checked. It places an exclusive lock on a table when it executes repair options.

Copyright© 2020 HCL Technologies Limited

oncheck utility syntax

The oncheck utility checks specified disk structures for inconsistencies, repairs inconsistent index structures, and displays information about disk structures.

>>-oncheck--+-------------------------+------------------------->

606 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

 | (1) |
 '-| -FILE option |-----'

>--+-+- -ce-+---+-->
 | +- -pe-+ |
 | +- -cr-+ |
 | +- -pr-+ |
 | +- -cR-+ |
 | '- -pR-' |
 +-+- -ci-+--+-----+--database--+---------------------------------------+-----+
 | +- -cl-+ '- -x-' '-:--+--------+--table--+-------------+-' |
 | +- -pk-+ '-owner.-' '-#index_name-' |
 | +- -pK-+ |
 | +- -pl-+ |
 | '- -pL-' |
 +-+- -cd-+--database--+--------------------------------------+---------------+
 | '- -cD-' '-:--+--------+--table--+------------+-' |
 | '-owner.-' +-,frag_dbs--+ |
 | '-%frag_part-' |
 +-+- -cc-+--+----------+---+
 | '- -pc-' '-database-' |
 +-+- -pB-+--database--+-------------------------------------+----------------+
 | +- -pt-+ '-:--+--------+--table--+-----------+-' |
 | '- -pT-' '-owner.-' '-,frag_dbs-' |
 +-+- -pd-+--+-database--+--+-+-+
 | '- -pD-' | '-:--+--------+--table--+-----------+--+-------+-' | |
 | | '-owner.-' '-,frag_dbs-' '-rowid-' | |
 | '-tblspacenum--+-----------------+-----------------------------' |
 | '-logical pagenum-' |
 +- -pp--+-database--:--+--------+--table--+-----------+--rowid-+-------------+
 | | '-owner.-' '-,frag_dbs-' | |
 | '-tblspacenum--logical pagenum-------------------------' |
 +- -pP--chunknum--logical pagenum--+
 +-+- -cs-+--+---------+--+
 | '- -cS-' '-sbspace-' |
 +-+- -ps-+--+---------------------------+------------------------------------+
 | '- -pS-' '-sbspace--partnum--pagenum-' |
 +- -u--option--+------------------+--+
 | '-(--arg_string--)-' |
 '-+-----------+--'
 +- -V-------+
 '- -version-'

>--+-----+--+-----+--><
 +- -n-+ '- -q-'
 '- -y-'

Notes:

1. See The -FILE option.

Element Purpose Key Considerations

-cc Checks system catalog tables for the specified database See oncheck -cc and-pc: Check system catalog tables.

-cd Reads all pages except simple large objects from the
tblspace for the specified database, table, or fragment
and checks each page for consistency
Also checks tables that use a user-defined access
method

Does not check simple or smart large objects.
See oncheck -cd and oncheck -cD commands: Check pages.

-cD Same as -cd but also reads the header of each blobpage
and checks it for consistency

Checks simple large objects but not smart large objects.
See oncheck -cd and oncheck -cD commands: Check pages

.

-ce Checks each chunk-free list and corresponding free
space and each tblspace extent. Also checks smart-
large-object extents and sbspace metadata

The oncheck process verifies that the extents on disk correspond to the current
control information that describes them.
See oncheck -ce, -pe: Check the chunk-free list. For background information, see
Next-Extent Allocation.

-ci Checks the ordering of key values and the consistency of
horizontal and vertical node links for all indexes
associated with the specified table
Also checks indexes that use a user-defined access
method

See oncheck -ci and -cI: Check index node links.

-cI Same as -ci but also checks that the key value tied to a
rowid in an index is the same as the key value in the row

See oncheck -ci and -cI: Check index node links.

-cr Checks each of the root dbspace reserved pages for
several conditions

See oncheck -cr and -cR: Check reserved pages.

-cR Checks the root dbspace reserved pages, physical-log
pages, and logical-log pages

See oncheck -cr and -cR: Check reserved pages

-cs Checks smart large object and sbspace metadata for an
sbspace

See oncheck -cs, -cS, -ps, -pS: Check and display sbspaces.

-cS Checks smart large object and sbspace metadata for an
sbspace as well as extents

See oncheck -cs, -cS, -ps, -pS: Check and display sbspaces.

Part VI: Administering 607

Element Purpose Key Considerations

sbspace Indicates optional sbspace name
If not supplied, all sbspaces are checked.

None.

-n Indicates that no index repair should be performed,
even if errors are detected

Use with the index repair options (-ci, -cI, -pk, -pK, -pl, and -pL).

-pB Displays statistics that describe the average fullness of
blobspace blobpages in a specified table

These statistics provide a measure of storage efficiency for individual simple large
objects in a database or table. If a table or fragment is not specified, statistics are
displayed for the entire database.
See oncheck -pB: Display blobspace statistics. For information about optimizing
blobspace blobpage size, see the chapter on managing disk space in the IBM
Informix Administrator's Guide.

-pc Same as -cc but also displays the system catalog
information as it checks the system catalog tables,
including extent use for each table

None.

-pd Displays rows in hexadecimal format See oncheck -pd and pD: Display rows in hexadecimal format.

-pD Displays rows in hexadecimal format and simple-large-
object values stored in the tblspace or header
information for smart large objects stored in an sbspace
sbpage and simple large objects stored in a blobspace
blobpage

See oncheck -pd and pD: Display rows in hexadecimal format.

-pe Same as -ce but also displays the chunk and tblspace
extent information as it checks the chunk free list, the
corresponding free space, and each tblspace extent

See oncheck -ce, -pe: Check the chunk-free list.

-pk Same as -ci but also displays the key values for all
indexes on the specified table as it checks them

See oncheck -pk, -pK, -pl, -pL: Display index information.

-pK Same as -cI but also displays the key values and rowids
as it checks them

See oncheck -pk, -pK, -pl, -pL: Display index information.

-pl Same as -ci but also displays the key values. Only leaf-
node index pages are checked

See oncheck -pk, -pK, -pl, -pL: Display index information.

-pL Same as -cI but also displays the key values and rowids
for leaf-node index pages only

See oncheck -pk, -pK, -pl, -pL: Display index information.

-pp Displays contents of a logical page See oncheck -pp and -pP: Display the contents of a logical page.

-pP Same as -pp but requires a chunk number and logical
page number or internal rowid as input

See oncheck -pp and -pP: Display the contents of a logical page.

-pr Same as -cr but also displays the reserved-page
information as it checks the reserved pages

See oncheck -pr and pR: Display reserved-page information.

-pR Same as -cR but also displays the information for the
reserved pages, physical-log pages, and logical-log
pages

See oncheck -pr and pR: Display reserved-page information.

-ps Checks and displays smart-large-object and sbspace
metadata for an sbspace

See oncheck -cs, -cS, -ps, -pS: Check and display sbspaces.

-pS Checks and displays smart-large-object and sbspace
metadata. Lists extents and header information for
individual smart large objects

See oncheck -cs, -cS, -ps, -pS: Check and display sbspaces.

-pt Displays tblspace information for a table or fragment See oncheck -pt and -pT: Display tblspaces for a Table or Fragment.

-pT Same as -pt but also displays index-specific information
and page-allocation information by page type (for
dbspaces)

See oncheck -pt and -pT: Display tblspaces for a Table or Fragment.

-q Suppresses all checking and validation message None.

-x Places a shared lock on the table when you check and
print an index

Use with the -ci, -cI, -pk, -pK, -pl, or -pL options. For complete information, see
Turn On Locking with -x.

-y Repairs indexes when errors are detected None.

-V Displays the software version number and the serial
number

See Obtaining utility version information.

-version Displays the build version, host, OS, number and date, as
well as the GLS version

See Obtaining utility version information.

chunknum Specifies a decimal value that you use to indicate a
particular chunk

Value must be an unsigned integer greater than 0. Chunk must exist.
Execute the -pe option to learn which chunk numbers are associated with specific
dbspaces, blobspaces or sbspaces.

database Specifies the name of a database that you want to check
for consistency

Syntax must conform to the Identifier segment; see IBM Informix Guide to SQL:
Syntax.

db1 Specifies the local database that contains a data type
that you want to check

Optionally specify the local database server name using the format db1@server1.

db2 Specifies the remote database that contains a data type
that you want to check

Optionally specify the remote database server name using the format
db2@server2.

608 Part VI: Administering

Element Purpose Key Considerations

frag_dbs Specifies the name of a dbspace that contains a
fragment you want to check for consistency

Dbspace must exist and contain the fragment that you want to check for
consistency. Syntax must conform to the Identifier segment; see IBM Informix
Guide to SQL: Syntax.

index_name Specifies the name of the index that you want to check
for consistency

Index must exist on table and in database specified.
Syntax must conform to the Identifier segment; see IBM Informix Guide to SQL:
Syntax.

logical pagenum Specifies an integer value that you use to indicate a
particular page in a tblspace

Value must be an unsigned integer between 0 and 16,777,215, inclusive. Value
can be expressed as an unsigned integer or hexadecimal that begins with 0x
identifier.

object Specifies the name of the DataBlade, cast, operator ,
user-defined data type, or UDR that you want to check

If you do not specify an object name, the database server compares all objects of
the same type with the same name and owner.

owner Specifies the owner of a table You must specify the current owner of the table.
Syntax must conform to the Owner Name segment; for more information, see IBM
Informix Guide to SQL: Syntax.

pagenum Indicates the page number of the sbspace metadata
portion to check and display

None.

partnum Identifies the sbspace metadata partition to check and
display

None.

rowid Identifies the rowid of the row whose contents you want
to display. The rowid is displayed as part of oncheck -pD
output

Value must be an unsigned integer between 0 and 4,277,659,295, inclusive. Value
can be expressed as an unsigned integer or hexadecimal that begins with 0x
identifier.

sbspace Specifies the name of the sbspace that you want to
check for consistency

None.

server Specifies the database server name If you omit the database server name, oncheck uses the name that
INFORMIXSERVER specifies.

table Specifies the name of the table that you want to check
for consistency

Table exists when you execute the utility. Syntax must conform to the Table Name
segment; for more information, see IBM Informix Guide to SQL: Syntax.

tblspacenum Identifies the tblspace whose contents you want to
display

Value must be an unsigned integer between 0 and 208,666,624, inclusive. Value
can be expressed as an unsigned integer or hexadecimal that begins with 0x
identifier.

Copyright© 2020 HCL Technologies Limited

oncheck -cc and-pc: Check system catalog tables

The -cc option checks system catalog tables for information about database tables, columns, indexes, views, constraints, stored procedures, and privileges.

Syntax:

>>-oncheck----+- -cc-+--database-------------------------------><
 '- -pc-'

The oncheck -cc command checks the following tables:

systables
syscolumns
sysindices
systabauth
syscolauth
sysdepend
syssyntable
sysviews
sysconstraints
sysams

If you do not specify a database name in the oncheck -cc, the command checks the listed system catalog tables for all databases.

The -pc option performs the same checks on system catalog tables and also displays the system catalog information, including the physical address, type of locking used,
row size, number of keys, extent use, the number of pages allocated and used, tblspace partnum, and index use for each table.

Before you execute oncheck -cc or oncheck -pc, execute the SQL statement UPDATE STATISTICS to ensure that an accurate check occurs. To check a table, oncheck
compares each system catalog table to its corresponding entry in the tblspace.

Copyright© 2020 HCL Technologies Limited

oncheck -cd and oncheck -cD commands: Check pages

Part VI: Administering 609

https://www.hcltech.com/
https://www.hcltech.com/

Use the oncheck -cd and oncheck -cD commands to check each page for consistency. Use the oncheck -cd -y or oncheck -cD -y command to repair inconsistencies.

Syntax:

>>-oncheck-->

>----+- -cd-+--+-----+--database--+--------------------------------------+---><
 '- -cD-' '- -y-' '-:--+--------+--table--+------------+-'
 '-owner.-' +-,frag_dbs--+
 '-%frag_part-'

The oncheck -cd command reads all pages, except for blobpages and sbpages, from the tblspace for the specified database, table, fragment, or multiple fragments
(fragparts), and checks each page for consistency. This command compares entries in the bitmap page to the pages to verify mapping.

The oncheck -cD command performs the same checks as the oncheck -cd command, and also checks the header of each blobpage for consistency. The oncheck -cD
command does not compare the beginning time stamps stored in the header with the ending time stamps stored at the end of a blobpage. Use the oncheck -cD -y
command to clean up orphaned simple large objects in blobspaces, which can occur after a rollback across several log files.

If the database contains fragmented tables, but no fragment is specified, the oncheck -cd command checks all fragments in the table. If you do not specify a table, the
command checks all of the tables in the database. By comparison, the oncheck -pd command displays a hexadecimal dump of specified pages but does not check for
consistency.

For both the oncheck -cd and oncheck -cD commands, the oncheck utility locks each table as it checks the indexes for the table. To repair the pages, use oncheck -cd -y
or oncheck -cD -y.

If tables are fragmented on multiple partitions in the same dbspace, the oncheck -cd and oncheck -cD commands show the partition names. The following example
shows typical output for a table that has fragments in multiple partitions in the same dbspace:

TBLspace data check for multipart:informix.t1
 Table fragment partition part_1 in DBspace dbs1
 Table fragment partition part_2 in DBspace dbs1
 Table fragment partition part_3 in DBspace dbs1
 Table fragment partition part_4 in DBspace dbs1
 Table fragment partition part_5 in DBspace dbs1

When you use the oncheck -cd or oncheck -cD command, you can specify either the frag_dbs or the %frag_dbs option but not both:

When you use the frag_dbs option, the utility checks all fragments in the dbspace frag_dbs.
When you use the %frag_dbs option, the utility checks only the fragment named frag_part, if the PARTITION syntax was used when the fragment or table was
created.

While it is possible to fragment an index with the PARTITION syntax, it is not possible to limit an index check to just one fragment or partition. For example, you can
specify oncheck -cDI my_db:my_tab,data_dbs1 or oncheck -cDI my_db:my_tab%part1. The D (data) portion of the check is limited according to the specification,
however the I (index) check is not limited.

Examples
The following example checks the data rows, including simple large objects and smart large objects, in the catalog table:

oncheck -cD superstores_demo:catalog

If you specify a single fragment, the oncheck utility displays a single header for that fragment. For fragmented tables, one header is displayed for each fragment:

TBLspace data check for stores_demo:informix.tab1
 Table fragment in DBspace db1

Messages
If the oncheck utility finds no inconsistencies, a header displays for each table that the utility. For example:

TBLSPACE data check for stores_demo:informix.customer

If the oncheck utility finds an inconsistency, a message displays. For example:

BAD PAGE 2:28: pg_addr 2:28 != bp-> bf_pagenum 2:69

The physical address 2:28 represents page 28 of chunk number 2.

If an index that uses an access method provided by a DataBlade module cannot find the access method, you receive the following message:

-9845 Access method access_method_name does not exist in database.
Ensure that the DataBlade installation was successful.

Reference
To monitor blobspace blobpages, see oncheck -pB: Display blobspace statistics.

Related reference:
 check data argument: Check data consistency (SQL administration API)

Copyright© 2020 HCL Technologies Limited

oncheck -ce, -pe: Check the chunk-free list

610 Part VI: Administering

https://www.hcltech.com/

Syntax:

>>-oncheck----+- -ce-+---><
 '- -pe-'

The -ce option checks each chunk-free list and corresponding free space and each tblspace extent. For more information, refer to Next-Extent Allocation and Structure of
the Chunk Free-List Page, respectively. The oncheck process verifies that the extents on disk correspond to the current control information that describes them.

The -pe option performs the same checks and also displays the chunk and tblspace extent information during the check. The -ce and -pe options also check blobspaces,
smart-large-object extents, and user-data and metadata information in sbspace chunks.

For information about using oncheck -ce and -pe, see managing disk space in the IBM® Informix® Administrator's Guide.

Use CHECK EXTENTS as the SQL administration API command string for oncheck -ce.

Related reference:
 check extents argument: Check extent consistency (SQL administration API)

Copyright© 2020 HCL Technologies Limited

oncheck -ci and -cI: Check index node links

Use the oncheck -ci and oncheck -cI commands to check the ordering of key values and the consistency of horizontal and vertical node links for all indexes associated
with the specified table.

The oncheck -cI command also checks that the key value tied to a rowid in an index is the same as the key value in the row. The -cI option does not cross-check data on a
functional index.

Syntax:

>>-oncheck-->

>----+- -ci +--database--+------------------------------------+---><
 '- -cI ' '-:--+--------+--table--+----------+-'
 '-owner.-' '- #index -'

If you do not specify an index, the option checks all indexes. If you do not specify a table, the option checks all tables in the database.

The same -ci repair options are available with -cI. If oncheck -ci or oncheck -cI detects inconsistencies, it prompts you for confirmation to repair the problem index. If
you specify the -y (yes) option, indexes are automatically repaired. If you specify the -n (no) option, the problem is reported but not repaired; no prompting occurs.

If oncheck does not find inconsistencies, the following message appears:

validating indexes......

The message displays the names of the indexes that oncheck is checking.

Note: Using oncheck to rebuild indexes can be time consuming. Processing is usually faster if you use the SQL statements DROP INDEX and CREATE INDEX to drop and
re-create the index.
The following example checks all indexes on the customer table:

oncheck -cI -n stores_demo:customer

The following example checks the index zip_ix on the customer table:

oncheck -cI -n stores_demo:customer#zip_ix

If indexes are fragmented on multiple partitions in the same dbspace, the oncheck -ci and oncheck -cI commands show the partition names. The following example show
typical output for an index that has fragments in multiple partitions in the same dbspace:

Validating indexes for multipart:informix.t1...
 Index idx_t1
 Index fragment partition part_1 in DBspace dbs1
 Index fragment partition part_2 in DBspace dbs1
 Index fragment partition part_3 in DBspace dbs1
 Index fragment partition part_4 in DBspace dbs1
 Index fragment partition part_5 in DBspace dbs1

By default, the database server does not place a shared lock on the table when you check an index with the oncheck -ci or oncheck -cI commands unless the table uses
page locking. For absolute assurance of a complete index check, you can execute oncheck -cior oncheck -cI with the -x option. With the -x option, oncheck places a
shared lock on the table, and no other users can perform updates, inserts, or deletes until the check has completed. For more information about using oncheck -ci and
oncheck -cI with the -x option, Turn On Locking with -x.

When you execute oncheck on an external index, the user-defined access method is responsible for checking and repairing an index. If an index that employs a user-
defined access method cannot find the access method, the database server reports an error. The oncheck utility does not repair inconsistencies in external indexes. You
should not use oncheck -cI on a table that contains more than one type of index.

The oncheck utility requires sort space when examining an index. The amount of sort space required is the same as that needed to build the index. For information about
calculating the amount of temporary space needed, see Estimating temporary space for index builds. If you receive the error "no free disk space for sort," you
must estimate the amount of temporary space needed and make that space available.

For more information about indexes, see Structure of B-Tree Index Pages.

Part VI: Administering 611

https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

oncheck -cr and -cR: Check reserved pages

Syntax:

>>-oncheck----+- -cr-+---><
 '- -cR-'

The -cr option checks each of the root dbspace reserved pages as follows:

It validates the contents of the ONCONFIG file with the PAGE_CONFIG reserved page.
It ensures that all chunks can be opened, that chunks do not overlap, and that chunk sizes are correct.

The -cR option performs the same checking and validation, and also checks all logical-log and physical-log pages for consistency. The -cr option is considerably faster
because it does not check the log-file pages.

If you have changed the value of a configuration parameter (either through onparams, onmonitor, onspaces, or by editing the configuration file), but you have not yet
reinitialized shared memory, oncheck -cr and oncheck -cR detect the inconsistency and return an error message.

If oncheck -cr does not display any error messages after you execute it, you can assume that all three items in the preceding list were checked successfully.

For more information on reserved pages, see Reserved Pages.

Related reference:
 oncheck -pr and pR: Display reserved-page information

Copyright© 2020 HCL Technologies Limited

oncheck -cs, -cS, -ps, -pS: Check and display sbspaces

Syntax:

>>-oncheck--+-+- -cs-+--+---------+-------------------+--------><
 | '- -cS-' '-sbspace-' |
 '-+- -ps-+--+---------------------------+-'
 '- -pS-' '-sbspace--partnum--pagenum-'

The -cs option checks sbspaces. The -ps option checks sbspaces and extents.

The -cS option validates and displays metadata for an sbspace.

The -ps option checks sbspaces and extents. If you do not specify the sbspace name, these options check all sbspaces.

The -pS option validates and displays metadata for an sbspace and also lists extents and header information for smart large objects.

If you do not specify the sbspace name, all sbspaces will be checked. The following example checks and displays metadata for test_sbspace:

oncheck -ps test_sbspace

If you specify rootdbs as the sbspace name with the -cs or -ps options, oncheck checks the root dbspace.

For more information about using the -cs, -cS, -ps, and-pS options, see the IBM® Informix® Administrator's Guide.

Copyright© 2020 HCL Technologies Limited

oncheck -pB: Display blobspace statistics

Syntax:

>>-oncheck---- -pB----database--+-------------------------------------+-><
 '-:--+--------+--table--+-----------+-'
 '-owner.-' '-,frag_dbs-'

The -pB option displays statistics that describe the average fullness of blobspace blobpages in a specified table. These statistics provide a measure of storage efficiency
for individual simple large objects in a database or table. If you do not specify a table or fragment, the option displays statistics for the entire database. For more
information, see optimizing blobspace blobpage size in the chapter on managing disk space in the IBM® Informix® Administrator's Guide.

Copyright© 2020 HCL Technologies Limited

oncheck -pd and pD: Display rows in hexadecimal format

612 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Syntax:

>>-oncheck-->

>----+- -pd-+--+-database--+--+-+---><
 '- -pD-' | '-:--+--------+--table--+-----------+--+------------+--+-------+-' |
 | '-owner.-' '-,frag_dbs-' '-,frag_part-' '-rowid-' |
 '-tblspacenum--+-----------------+---'
 '-logical pagenum-'

The -pd option takes a database, a table, a fragment, a fragment partition (fragpart), and a specific rowid or tblspace number and logical page number as input. In every
case, -pd prints page-header information and displays the specified rows for the database object (database, table, fragment, internal rowid, or page number) that you
specify in hexadecimal and ASCII format. No checks for consistency are performed.

Element Purpose Key Considerations

database Specifies the name of a database that you want to check
for consistency

Syntax must conform to the Identifier segment; see IBM® Informix® Guide to SQL:
Syntax.

frag_dbs Specifies the name of a dbspace that contains a
fragment you want to check for consistency

Dbspace must exist and contain the fragment that you want to check for
consistency.
Syntax must conform to the Identifier segment; see IBM Informix Guide to SQL:
Syntax.

frag_part Specifies the fragment partition For fragmented tables or an index that use expression-based or round-robin
distribution schemes, you can create multiple partitions, which are collections of
pages for a table or index, within a single dbspace. This partition is referred to as a
fragment partition or fragpart.

logical pagenum Specifies an integer value that you use to indicate a
particular page in a tblspace

Value can be expressed as an unsigned integer or hexadecimal that begins with 0x
identifier.

Value must be an unsigned integer between 0 and 16,777,215, inclusive.

owner Specifies the owner of a table You must specify the current owner of the table.
Syntax must conform to the Owner Name segment; see IBM Informix Guide to SQL:
Syntax.

rowid Identifies the rowid of the row whose contents you want
to display. The rowid is displayed as part of oncheck -pD
output

Value must be an unsigned integer between 0 and 4,277,659,295, inclusive.
Value can be expressed as an unsigned integer or hexadecimal that begins with 0x
identifier.

table Specifies the name of the table that you want to check
for consistency

Table exists when you execute the utility.
Syntax must conform to the Table Name segment; see IBM Informix Guide to SQL:
Syntax.

tblspacenum Identifies the tblspace whose contents you want to
display

Value must be an unsigned integer between 0 and 208,666,624, inclusive.
Value can be expressed as an unsigned integer or hexadecimal that begins with 0x
identifier.

If you specify an internal rowid (expressed as a hexadecimal value), the rowid maps to a particular page, and all rows from that page are printed.

If you specify a logical page number (expressed as a decimal), all the rows of the tblspace number with the logical page number are printed.

If you specify a fragment, all the rows in the fragment are printed, with their rowids, forward pointers, and page type.

If you specify a table, all the rows in the table are printed, with their rowids, forward pointers, and page type.

If you specify a database, all the rows in all the tables in the database are printed. TEXT and BYTE column descriptors stored in the data row are printed, but TEXT and
BYTE data itself is not.

The -pD option prints the same information as -pd. In addition, -pD prints TEXT and BYTE values stored in the tblspace or header information for simple large objects
stored in a blobspace blobpage. The following example show different options for the oncheck -pd and oncheck -pD commands:

oncheck -pd stores_demo:customer,frgmnt1
oncheck -pd stores_demo:customer
oncheck -pD stores_demo:customer 0x101

The following example shows a partial output of an oncheck -pD command:

oncheck -pD multipart:t1 :

TBLspace data check for multipart:informix.t1
 Table fragment partition part_1 in DBspace dbs1
page_type rowid length fwd_ptr
HOME 101 24 0
 0: 0 0 0 a 47 48 49 20 20 20 20 20 20 20 20 20 GHI
 16: 20 20 20 20 20 20 20 20

Copyright© 2020 HCL Technologies Limited

oncheck -pk, -pK, -pl, -pL: Display index information

Syntax:

Part VI: Administering 613

https://www.hcltech.com/

>>-oncheck-->

>----+- -pk-+--+---+--database--+---------------------------------------+---><
 +- -pK-+ '-x-' '-:--+--------+--table--+-------------+-'
 +- -pl-+ '-owner.-' '-#index_name-'
 '- -pL-'

The -pk option performs the same checks as the -ci option and in addition, displays the key values for all indexes on the specified table as it checks them.

The -pK option performs the same checks as the -cI option and in addition, displays the key values and rowids as it checks them.

The -pl option performs the same checks as the -ci option and displays the key values, but checks only leaf-node index pages. It ignores the root and branch-node pages.

The -pL option performs the same checks as the -cI option and displays the key values and rowids, but checks only leaf-node index pages. It ignores the root and branch-
node pages.

Element Purpose Key Considerations

database Specifies the name of a database that you want to check
for consistency

Syntax must conform to the Identifier segment; see IBM® Informix® Guide to SQL:
Syntax.

index_name Specifies the name of the index that you want to check
for consistency

Index must exist on table and in database specified.
Syntax must conform to the Identifier segment; see IBM Informix Guide to SQL:
Syntax.

owner Specifies the owner of a table You must specify the current owner of the table.
Syntax must conform to the Owner Name segment; see IBM Informix Guide to SQL:
Syntax.

table Specifies the name of the table that you want to check
for consistency

Table exists when you execute the utility.
Syntax must conform to the Table Name segment; see IBM Informix Guide to SQL:
Syntax.

-x Places a shared lock on the table when you check and
print an index

For complete information, see Turn On Locking with -x.

If any of the oncheck options detect inconsistencies, you are prompted for confirmation to repair the problem index. If you specify the -y (yes) option, indexes are
automatically repaired. If you specify the -n (no) option, the problem is reported but not repaired; no prompting occurs.

The following example displays information about all indexes on the customer table:

oncheck -pl -n stores_demo:customer

The following example displays information about the index zip_ix, which was created on the customer table:

oncheck -pl -n stores_demo:customer#zip_ix

By default, the database server does not place a shared lock on the table when you check an index with the oncheck -pk, -pK, -pl, or -pL options unless the table uses
page locking. For absolute assurance of a complete index check, you can execute oncheck –pk, oncheck -pK , oncheck -pl , or oncheck -pL with the -x option. With the -
x option, oncheck places a shared lock on the table, and no other users can perform updates, inserts, or deletes until the check has completed. For more information on
using the -x option, Turn On Locking with -x.

For more information on oncheck -ci, see oncheck -ci and -cI: Check index node links. For more information index pages, see Structure of B-Tree Index Pages.

Copyright© 2020 HCL Technologies Limited

oncheck -pp and -pP: Display the contents of a logical page

>>-oncheck----------------------+----------------------+------->
 '- -pw-+------------+--'
 '--filename--'
>--+- -pp--+-database--:--+--------+--table--+--------------+--rowid-+-+-><
 | | '-owner.-' +-,--frag_dbs--+ | |
 | | '-%--frag_part-' | |
 | '-tblspacenum--logical pagenum----------------------------' |
 '- -pP--chunknum--logical pagenum-----------------------------------'

Element Purpose Key Considerations

database Specifies the name of a database that you want to check
for consistency

Syntax must conform to the Identifier segment; see IBM® Informix Guide to SQL:
Syntax.

chunknum Specifies a decimal value that you use to indicate a
particular chunk

Value must be an unsigned integer greater than 0. Chunk must exist.

frag_dbs Specifies the name of a dbspace that contains a
fragment you want to check for consistency

Dbspace must exist and contain the fragment that you want to check for
consistency.
Syntax must conform to the Identifier segment; see IBM Informix Guide to SQL:
Syntax.

frag_part Specifies the partition name of the fragment to be
checked. This is useful in cases where more than one
fragment of a table was created in the same dbspace.

For fragmented tables or an index that use expression-based or round-robin
distribution schemes, you can create multiple partitions, which are collections of
pages for a table or index, within a single dbspace. This partition is referred to as a
fragment partition or fragpart.

614 Part VI: Administering

https://www.hcltech.com/

Element Purpose Key Considerations

logical pagenum Specifies an integer value that you use to indicate a
particular page in a tblspace

Value can be expressed as an unsigned integer or hexadecimal that begins with 0x
identifier.

Value must be an unsigned integer between 0 and 16,777,215, inclusive.

owner Specifies the owner of a table You must specify the current owner of the table.
Syntax must conform to the Owner Name segment; see IBM Informix Guide to SQL:
Syntax.

rowid Identifies the rowid of the row whose contents you want
to display. The rowid is displayed as part of oncheck -pD
output

Value must be an unsigned integer between 0 and 4,277,659,295, inclusive.
Value can be expressed as an unsigned integer or hexadecimal that begins with 0x
identifier.

table Specifies the name of the table that you want to check
for consistency

Table exists when you execute the utility.
Syntax must conform to the Table Name segment; see IBM Informix Guide to SQL:
Syntax.

tblspacenum Identifies the tblspace whose contents you want to
display

Value must be an unsigned integer between 0 and 208,666,624, inclusive.
Value can be expressed as an unsigned integer or hexadecimal that begins with 0x
identifier.

The -pp option has the following syntax variations:

Invocation Explanation

oncheck -pp tblspc lpn <pages> Displays the contents of a logical page using a tblspace number and logical page number. You can also
specify an optional parameter specifying the number of pages to be printed.

oncheck -pp tblspc lpn -h Displays only the header of a logical page using a tblspace number and logical page number.

oncheck -pp database:table rowid Displays the contents of a logical page using a database name, table name, and the Informix® internal
rowid. You can obtain this internal rowid with the oncheck -pD command. This internal rowid is not
the serial rowid that is assigned in tables created with the CREATE TABLE tabname WITH ROWIDS
statement. For more information, see Definition of Rowid

The page contents appear in ASCII format. The display also includes the number of slot-table entries on the page. The following example shows different invocations of
the oncheck -pp command:

oncheck -pp stores_demo:orders 0x211 # database:owner.table, # fragment rowid
oncheck -pp stores_demo:informix.customer,frag_dbspce1 0x211
oncheck -pp 0x100000a 25 # specify the tblspace number and # logical page number

The -pP option provides the following syntax variations:

Invocation Explanation

oncheck -pP chunk# offset pages Displays the contents of a logical page using a chunk number and an offset. You can also
specify an optional parameter specifying the number of pages to be printed.

oncheck -pP chunk# offset -h Displays only the header of a logical page using a chunk number and an offset.

Note: The output for chunk page displays both the start and the length fields in decimal format.
Note:
The -pw option is required only when the Storage space encryption feature is enabled and no stash file is in use. Supply an optional path to a file containing the keystore
password, otherwise oncheck will prompt for a password before displaying the requested page(s).

The following example shows typical output using the onstat -pP command:

oncheck -pP 1 5 2
addr stamp nslots flag type frptr frcnt next prev
stamp 100005 250181 2 1000 ROOTRSV 320 1716 0
0 250181 slot ptr len flg
...
addr stamp nslots flag type frptr frcnt next prev
stamp 100005 6 250182 2 1000 ROOTRSV 128 1908 0 0
250182 slot ptr len flg 1 24 56 0
2 80 48 0

Copyright© 2020 HCL Technologies Limited

oncheck -pr and pR: Display reserved-page information

The -pr option performs the same checks as oncheck -cr command and displays the reserved-page information.

>>-oncheck----+- -pr-+---+----------------------+------------><
 '- -pR-' '- -pw-+------------+--'
 '--filename--'

The -pR option performs the same checks as the oncheck -cR command, displays the reserved-page information, and displays detailed information about logical-log and
physical-log pages, including marking the start and end of the active physical-log pages.

The following example show output of the oncheck -pr command:

Validating IBM Informix Dynamic Server reserved pages

 Validating PAGE_PZERO...

 Identity IBM Informix Dynamic Ser
 ver Copyright 2001, 2016

Part VI: Administering 615

https://www.hcltech.com/

 IBM Corporation
 Database system state 0
 Database system flags 0xc039
 64-bit server
 BigChunk page flags are not in use
 Encryption-at-rest is enabled using cipher 'aes192'
 The ROOT Dbspace is encrypted
 Page Size 2048 (b)
 Date/Time created 05/12/2016 18:01:09
 Version number of creator 28
 UID of rootdbs creator 200
 Index Page Logging OFF
 HA Disk Owner <null>

If you have changed the value of a configuration parameter, but you have not yet reinitialized shared memory, the oncheck -pr and oncheck -pR commands detect the
inconsistency and return an error message.

Note:
The -pw option is required only when the Storage space encryption feature is enabled and no stash file is in use. Supply an optional path to a file containing the keystore
password, otherwise oncheck will prompt for a password before displaying the requested page(s).

Related concepts:
 Reserved Pages

Related reference:
 oncheck -cr and -cR: Check reserved pages

DISK_ENCRYPTION configuration parameter

Copyright© 2020 HCL Technologies Limited

oncheck -pt and -pT: Display tblspaces for a Table or Fragment

The oncheck -pt and oncheck -pT options print a tblspace report for a specific table or fragment. The only difference between these options is that oncheck -pT prints
more information, including some index-specific information.

Syntax

>>-oncheck-->

>----+- -pt-+--database--+-------------------------------------+---><
 '- -pT-' '-:--+--------+--table--+-----------+-'
 '-owner.-' '-,frag_dbs-'

Table 1. Options of the oncheck -pt and oncheck -pT commands

Element Purpose Key Considerations

database Specifies the name of a database that you want to check
for consistency

Syntax must conform to the Identifier segment; see Identifier.

frag_dbs Specifies the name of a dbspace that contains a
fragment you want to check for consistency

The dbspace must exist and contain the fragment that you want to check for
consistency.
Syntax must conform to the Identifier segment; see Identifier.

owner Specifies the owner of a table You must specify the current owner of the table.
Syntax must conform to the Owner Name segment; see Owner name.

table Specifies the name of the table that you want to check
for consistency

The table must exist.
Syntax must conform to the Identifier segment; see Identifier.

The -pt option prints a tblspace report for the table or fragment with the specified name and database. If you do not specify a table, the option displays this information for
all tables in the database. The report contains general allocation information, including the maximum row size, the number of keys, the number of extents, their sizes, the
pages allocated and used per extent, the current serial value, and the date that the table was created. The -pt output prints the page size of the tblspace, the number of
pages (allocated, used, and data) in terms of logical pages.

The TBLspace Flags field shows information about the tblspace configuration, including whether the tblspace is used for Enterprise Replication or time series data.

The Extents fields list the physical address for the tblspace tblspace entry for the table and the address of the first page of the first extent. The extent list shows the
number of logical and physical pages in every extent.

The -pT option prints the same information as the -pt option. In addition, the -pT option displays:

Index-specific information
Page-allocation information by page type (for dbspaces)
The number of any compressed rows in a table or table fragment and the percentage of table or table-fragment rows that are compressed
If table or fragment rows are not compressed, the "Compressed Data Summary" section does not appear in the output.

Plan when you want to run the -pT option, because it forces a complete scan of partitions.

Output for both -pt and -pT contains listings for Number of pages used. The value shown in the output for this field is never decremented because the disk space
allocated to a tblspace as part of an extent remains dedicated to that extent even after you free space by deleting rows. For an accurate count of the number of pages
currently used, see the detailed information about tblspace use (organized by page type) that the -pT option provides.

Example of oncheck -pt Output

616 Part VI: Administering

https://www.hcltech.com/

The following example shows output of the oncheck -pt command:

TBLspace Report for testdb:tab1

Physical Address 2:10
Creation date 10/07/2004 17:01:16
TBLspace Flags 801 Page Locking
 TBLspace use 4 bit bit-maps
Maximum row size 14
Number of special columns 0
Number of keys 0
Number of extents 1
Current serial value 1
Pagesize (k) 4
First extent size 4
Next extent size 4
Number of pages allocated 340
Number of pages used 337
Number of data pages 336
Number of rows 75806
Partition partnum 2097154
Partition lockid 2097154

Extents
 Logical Page Physical Page Size Physical Pages
 0 2:106 340 680

Example of oncheck -pT Output
The following example shows output of the oncheck -pT command:

TBLspace Report for database_a:nilesh.table_1a

 Table fragment partition dbspace1 in DBspace dbspace1

 Physical Address 3:5
 Creation date 03/21/2009 15:35:47
 TBLspace Flags 8000901 Page Locking
 TBLspace contains VARCHARS
 TBLspace use 4 bit bit-maps
 TBLspace is compressed
 Maximum row size 80
 Number of special columns 1
 Number of keys 0
 Number of extents 1
 Current serial value 100001
 Current SERIAL8 value 1
 Current BIGSERIAL value 1
 Current REFID value 1
 Pagesize (k) 2
 First extent size 8
 Next extent size 8
 Number of pages allocated 24
 Number of pages used 22
 Number of data pages 14
 Number of rows 500
 Partition partnum 3145730
 Partition lockid 3145730

 Extents
 Logical Page Physical Page Size Physical Pages
 0 3:16053 24 24

Type Pages Empty Semi-Full Full Very-Full
 ---------------- ---------- ---------- ---------- ---------- ----------
 Free 9
 Bit-Map 1
 Index 0
 Data (Home) 14
 Data (Remainder) 0 0 0 0 0

 Total Pages 24

 Unused Space Summary

 Unused data bytes in Home pages 1177
 Unused data bytes in Remainder pages 0

 Home Data Page Version Summary

 Version Count

 0 (current) 14

 Compressed Data Summary

 Number of compressed rows and percentage of compressed rows 500 100.00

Note: oncheck -p[tT] now indicates the last time each index fragment was used for a query. This access time is stored on the partition page on disk, it will survive an
instance restart.
Related reference:

 TBLTBLFIRST configuration parameter
check partition argument: Check partition consistency (SQL administration API)

Part VI: Administering 617

print partition argument: Print partition information (SQL administration API)
Tblspace tblspace entries
Related information:
Performance of in-place alters for DDL operations
Resolve outstanding in-place alter operations
Monitor simple large objects in a dbspace with oncheck -pT

Copyright© 2020 HCL Technologies Limited

Turn On Locking with -x

The -x option can be appended to the -ci, -cI, -pk, -pK, -pl, and -pL options to place a shared lock on affected tables. While the table is locked, no other users can perform
inserts, updates, and deletions while oncheck checks or prints the index. Without the -x option for tables with row locking, oncheck only places an IS (intent shared) lock
on the table, which prevents actions such as dropping the table or the indexes during the check.

For example, the following sample command instructs oncheck to lock indexes for the customer table while it validates the order of key values, validates horizontal links,
and ensures that no node appears twice in the index:

oncheck -cix stores_demo:customer

When you specify option -x, oncheck locks indexes for tables that use row locking. If oncheck detects page-lock mode, it displays a warning message and places a shared
lock on the table regardless.

Copyright© 2020 HCL Technologies Limited

Send Special Arguments to the Access Method with -u

You can use the -u option to send special arguments to the access method. The possible arguments depend on the access method. For example, the R-tree access
method supports the display option, as the following example shows:

oncheck -pl -u "display"

Use commas to separate multiple arguments in the argument string.

For information on valid arguments for your access method, refer to the user manual for your access method.

Copyright© 2020 HCL Technologies Limited

Return Codes on Exit

The oncheck utility returns the following codes on exit.

GLS failures:-1
Invalid srial/key:2
Onconfig access error:2
Invalid onconfig settings:2
Invalid arguments to oncheck:2
Error connecting database server:1
Warning reported by oncheck:1
error detected by oncheck:2
no errors detected by oncheck:0

Windows only:

Not properly installed:1
Authentication error:2

Copyright© 2020 HCL Technologies Limited

The onclean utility

Use the onclean utility to force a shut down of the database server when normal shut down with the onmode utility fails or when you cannot restart the server. The
onclean utility attempts to clean up shared memory, semaphores, and stops database server virtual processes.

Syntax
On UNIX and Linux, you must be user root or informix to run the onclean command. On Windows, you must be in the Informix-Admin group to run the command.

>>-onclean--+-------------------------+------------------------><
 | (1) |
 +-| -FILE option |-----+
 +-+-----+--+-----+--------+

618 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

 | '- -k-' '- -y-' |
 '-+-----------+-----------'
 +- -V-------+
 '- -version-'

Notes:

1. See The -FILE option.

Table 1. Syntax Elements of the onclean Command

Element Purpose

-k Shuts down a server that is online by stopping database server virtual processes and attempting to clean up the
remaining semaphores and shared-memory segments, even if they are still running.

-V Displays short version information.

-version Displays full version information.

-y Does not prompt for confirmation.

Usage
Use the onclean utility to stop the database server only if the onmode utility is unable to shut it down or you cannot restart the server. Perhaps the database server shut
down in an uncontrolled way and cannot recover, or it is hung. If the database server fails to restart, the previous instance of the database server is still attached to the
shared-memory segments. Check the message log to see if the database server shut down abnormally. The onclean utility stops all oninit processes and attempts to
remove all shared-memory segments and semaphores that are recorded in the $INFORMIXDIR/etc/.conf.$INFORMIXSERVER file.

Attention: Use the onclean utility with caution. When you run onclean, any pending transactions and processes fail to complete, and user sessions are disconnected
abruptly. However, the database server rolls back transactions when it restarts.
The INFORMIXDIR, INFORMIXSERVER, INFORMIXSQLHOSTS, and ONCONFIG environment variables must be set with valid values to run this utility.

The onclean command that you use depends on the situation:

If you are not sure whether the database server is offline, use the onclean command without options. If the database server is still online, a message appears
directing you to run the onclean -k command.
If the database server is offline, use the onclean command.
If the database server is online and you are sure that you want to force it to shut down, use the onclean -k command.

You can use the onclean utility only to shut down the local database server; you cannot use it to shut down a remote database server. The onclean utility should not be
used to shut down an entire high-availability cluster or a remote database server.

The onclean utility might not be able to clean up shared memory segments that were in use by the database server in every situation. The onclean utility attempts to
terminate only oninit processes. The onclean utility does not succeed in the following situations:

If a non-database server process is attached to the shared memory segment before running the onclean command, the onclean utility does not stop this process to
remove the shared memory segment.
The onclean might not be able to guarantee a clean server startup is when an application or database server utility is connected to a network port. If the user tries
to initialize a database server instance on the same network port, then the database server cannot start the listener thread and fails to start. The onclean utility
does not stop the application to free the network port.

You can automate shutting down the database server with the onshutdown script, which calls the onclean -ky command if necessary.

Return Codes
0

Successful
1

Failure because of one of the following problems:

Incorrect environment variable settings
Incorrect privileges to run the onclean command
Incorrect command syntax
Corrupted information
Running the onclean command without the -k option on a server that is still online

2
Failure because one or more OS system calls used by onclean returned an error.

The onshutdown script
 Use the onshutdown script to automate shutting down the database server. The script attempts to shut down the server normally. If the server has not shut down

after a specified time, the script forces the server to shut down.

Related reference:
 Taking the Database Server to Offline Mode with the -k Option

Copyright© 2020 HCL Technologies Limited

The onshutdown script

Part VI: Administering 619

https://www.hcltech.com/

Use the onshutdown script to automate shutting down the database server. The script attempts to shut down the server normally. If the server has not shut down after a
specified time, the script forces the server to shut down.

Syntax
The onshutdown script first runs the onmode -ky command. After a specified wait time, the script runs the onclean -ky command.
On UNIX and Linux, you must be user root or informix to run the onshutdown script. On Windows, you must be in the Informix-Admin group to run the onshutdown
script.

 (1)
>>-+-onshutdown.sh------+--+---------+-------------------------><
 | (2) | '-timeout-'
 '-onshutdown.bat-----'

Notes:

1. UNIX
2. Windows

Table 1. Syntax Elements of the onshutdown Script

Element Purpose

timeout The number of seconds after the onmode -ky command has been run before running the onclean -ky
command.
Must be a positive integer from 10 to 60. The default value is 30 seconds.

Usage
Use the onshutdown script only when forcing the database server to shut down would be appropriate.

Attention: Use the onshutdown script with caution. If the script needs to run the onclean -ky command, any pending transactions and processes fail to complete, and
user sessions are disconnected abruptly. However, the database server rolls back transactions when it restarts.
The INFORMIXDIR, INFORMIXSERVER, INFORMIXSQLHOSTS, and ONCONFIG environment variables must be set with valid values to run this utility.

You can only use the onshutdown script to shut down the local database server; you cannot use it to shut down a remote database server. The onshutdown script should
not be used to shut down an entire high-availability cluster or a remote database server instance.

The onshutdown script has a 10 second time period during which it can be aborted.

Related reference:
 Taking the Database Server to Offline Mode with the -k Option

Copyright© 2020 HCL Technologies Limited

The oncmsm utility

Use the oncmsm utility to start or shut down a Connection Manager, load a new configuration file into a Connection Manager to modify the Connection Manager's settings,
or update the format of a configuration file.

Syntax

UNIX syntax diagram:

>>-oncmsm--->

>--+-+--------------------------+--+------------------------------+-+-><
 | '- -c --configuration_file-' '- -n --new_configuration_file-' |
 '-+- -r -+--connection_manager_name------------------------------'
 '- -k -'

Windows syntax diagram:

>>-oncmsm--->

>----+- -i -- -c --configuration_file-----------------------------+---><
 +-+--------------------------+-- -n --new_configuration_file-+
 | '- -c --configuration_file-' |
 +-+- -r -+--connection_manager_name--------------------------+
 | +- -k -+ |
 | '- -u -' |
 '-connection_manager_name------------------------------------'

Element Purpose Key considerations

620 Part VI: Administering

https://www.hcltech.com/

Element Purpose Key considerations

-c Starts the Connection Manager or converts a
configuration file to the current Connection
Manager format.

connection_manager_name Specifies the name of a Connection Manager
instance.

-i Installs the Connection Manager as a Windows
service.

This option is valid for Windows platforms only.

-k Shuts down a specific instance of the Connection
Manager.

-n Specifies the name of a converted configuration
file.

new_configuration_file The name of file that is output to the
$INFORMIXDIR/etc directory as part of the
format-conversion process.

configuration_file The name of the configuration file located in the
$INFORMIXDIR/etc directory.

If the configuration file is not specified, the Connection Manager attempts to
load $INFORMIXDIR/etc/cmsm.cfg.

-r Reloads the Connection Manager settings without
stopping and restarting the Connection Manager.

-u Uninstall the Connection Manager Windows
service.

This option is valid for Windows platforms only.

Usage
Run the oncmsm utility from the command line to initialize the Connection Manager. You can add, change, or delete Service Level Agreements (SLAs) while the Connection
Manager is running and then reload the configuration file.

The Connection Manager configuration file in versions of IBM® Informix® Client Software Development Kit (Client SDK) prior to version 3.70.xC3 are incompatible with the
current version of the Connection Manager. You must convert configuration files from versions prior to 3.70.xC3. You must have read permission on the configuration file
you want to convert and write permission on the configuration file you want to create.

UNIX Only: The following users can run the oncmsm utility:

User informix
User root, if the user has privileges to connect to the sysadmin database
A member of the DBSA group, if the user has privileges to connect to the sysadmin database

Windows Only: The following users can run the oncmsm utility:

A member of the Informix-Admin group
User administrator, if the user has privileges to connect to the sysadmin database
A member of the DBSA group, if the user has privileges to connect to the sysadmin database

You must install the oncmsm utility as a service before you can start it.

The oncmsm utility can be started two ways:

Run an oncmsm command.
Click Start > Control Panel > Administrative Tools > Services and then start oncmsm.

If you are using multiple Connection Managers, you can run onstat -g cmsm to display the names of Connection Manager instances.

Example 1: Starting a Connection Manager (UNIX)
For the following example the Connection Manager's configuration_file_1 exists in the $INFORMIXDIR/etc directory. To start the Connection Manager, run the following
command on the computer that the Connection Manager is installed on:

oncmsm -c configuration_file_1

The Connection Manager starts.

Example 2: Starting a Connection Manager (Windows)
For the following example the Connection Manager's configuration_file_1 exists in the $INFORMIXDIR/etc directory. To start the Connection Manager, run the following
commands on the computer that the Connection Manager is installed on:

oncmsm -i -c configuration_file_2
oncmsm connection_manager_2

The Connection Manager named connection_manager_2 starts.

Example 3: Stopping a Connection Manager
To stop the Connection Manager, run the following command on the computer that the Connection Manager is installed on:

oncmsm -k connection_manager_3

Part VI: Administering 621

The Connection Manager named connection_manager_3 stops.

Example 4: Reloading Connection Manager settings
For the following example, $INFORMIXDIR\etc\configuration_file_4 for a Connection Manager named connection_manager_4 has changed. To update the Connection
Manager's settings, run the following command on the computer that connection_manager_4 is installed on:

oncmsm -r connection_manager_4

Example 5: Converting a Connection Manager configuration file to a current format
For the following example the Connection Manager's configuration file that is named cmsm.cfg exists in the $INFORMIXDIR/etc directory. To start the Connection
Manager, run the following command on the computer that the Connection Manager is installed on:

oncmsm -n configuration_file_5

The oncmsm utility converts cmsm.cfg to the current configuration file format, and then outputs a file named configuration_file_5 into $INFORMIXDIR/etc/.

Example 6: Converting a specific Connection Manager configuration file to a current format
For the following example the Connection Manager's configuration file that is named configuration_file_4 exists in the $INFORMIXDIR/etc directory. To start the
Connection Manager, run the following command on the computer that the Connection Manager is installed on:

oncmsm -c configuration_file_6 -n configuration_file_7

The oncmsm utility converts configuration_file_6 to the current configuration file format and then outputs a file named configuration_file_7 into $INFORMIXDIR/etc/.

Example 7: Uninstalling a Connection Manager (Windows)
For the following example, you have installed a Connection Manager named connection_manager_4 as a Windows service. To unistall the Connection Manager, run the
following command on the computer that the Connection Manager is installed on:

oncmsm -u connection_manager_4

The oncmsm utility uninstalls the Connection Manager.
Related information:

 CMCONFIG environment variable
Connection management through the Connection Manager
Starting Connection Managers on UNIX and Linux
Starting Connection Managers on Windows

Copyright© 2020 HCL Technologies Limited

The onconfig_diff utility

Use the onconfig_diff utility to compare two onconfig files.

Syntax

>>-onconfig_diff--+- -d-----------------------------------+----><
 '- -c-- -f--filepath_1-- -s--filepath_2-'

Element Description

-d Compares the current onconfig settings to the default settings.

-c Compares one onconfig file to another.

-f filepath_1 Specifies the first file name to compare. Provide the path to the file unless the file is in the
$INFORMIXDIR/bin directory.

-s filepath_2 Specifies the second file name to compare. Provide the path to the file unless the file is in the
$INFORMIXDIR/bin directory.

Usage
Run the onconfig_diff utility to compare two different onconfig files. The onconfig_diff utility is in $INFORMIXDIR/bin.

The two files that you want to compare must be in the same directory.

Here are some ways that you can use the utility:

Compare your current onconfig with the onconfig.std of same version.
Compare your current onconfig with the onconfig.std of a newer version.
Compare two onconfig files from different servers.

622 Part VI: Administering

https://www.hcltech.com/

Example
In this example, the onconfig.std file is compared against the onconfig.production file:

$ onconfig_diff -c -f onconfig.std -s onconfig.production

Here is the output from this command:

==
File 1: onconfig.std
File 2: onconfig.production
==
Parameters Found in File 1, not in File 2
==

FULL_DISK_INIT 0

NETTYPE ipcshm,1,50,CPU

NUMFDSERVERS 4
...
==
Parameters Found in File 2, not in File 1
==

JVPJAVAHOME $INFORMIXDIR/extend/krakatoa/jre

...
==
Parameters Found in both files, but different
==
ROOTPATH

File 1: $INFORMIXDIR/tmp/demo_on.rootdbs
File 2: /usr2/support/grantf/g1150fc8/rootdbs

LOGFILES

File 1: 6
File 2: 10

LOGSIZE

File 1: 10000
File 2: 3000
...

Related tasks:
 Modifying the onconfig file

Copyright© 2020 HCL Technologies Limited

The ondblog utility

Use the ondblog utility to change the logging mode for one or more databases.

>>-ondblog--+-buf-------+--+-------------+---------------------><
 +-unbuf-----+ | .-,-------. |
 +-nolog-----+ | V | |
 +-ansi------+ +---db_list-+-+
 +-cancel----+ '- -f--dbfile-'
 +- -V-------+
 '- -version-'

Element Purpose Key Considerations

buf Sets the logging mode so that transaction information is written to a buffer
before it is written to a logical log

None.

unbuf Sets the logging mode so that data is not written to a buffer before it is
written to a logical log

None.

nolog Sets the logging mode so that no database transactions are logged None.

ansi Changes database logging to be ANSI compliant Once you create or convert a database to ANSI mode, you cannot
change it back to any of the other logging modes.

cancel Cancels the logging-mode change request before the next level-0 backup
occurs

None.

-f dbfile Changes the logging status of the databases that are listed (one per line) in
the text file whose pathname is given by dbfile

This command is useful if the list of databases is long or used often.

db_list Names a space-delimited list of databases whose logging status is to be
changed

If you do not specify anything, all databases that the database
server manages are modified.

Part VI: Administering 623

https://www.hcltech.com/

Usage
If you turn on transaction logging for a database, you must create a level-0 backup of all of the storage spaces that contain data in the database before the change takes
effect.

For more information and examples of logging modes, see Modify the database-logging mode with ondblog.

Alternatively, you can change the logging mode by using an SQL administration API command with the alter logmode argument.

You cannot use the ondblog utility on High-Availability Data Replication (HDR) secondary servers, remote standalone (RS) secondary servers, or shared disk (SD)
secondary servers.

Return codes
The ondblog utility logs messages in the BAR_ACT_LOG file.

For many of the return codes, you can check the ON-Bar logs to find the source of the problem:

1. Check the BAR_ACT_LOG file for accompanying messages.
2. Set the BAR_DEBUG configuration parameter to a positive integer and retry the operation.
3. Check the ON-Bar debug log file.

Table 1. Return codes for the ondblog utility

Return code Description User action

1 An error reading the onconfig file. Check that the onconfig file is in the
$INFORMIXDIR/etc/$ONCONFIG directory. If the
BAR_ACT_LOG and BAR_DEBUG_LOG configuration
parameters are set, make sure that the files are valid.

2 A linked list error. See the accompanying message.

3 The user is not authorized to run the command. Run the ondblog commands as the root user, user
informix, as a Windows administrator, or as the owner
of the database server.

4 Failed to set the INFORMIXSHMBASE environment
variable to -1.

Contact Software Support.

5 The database server is not online. Start the database server.

6 The command option is invalid. Correct the spelling of the option.

7 Failed to communicate with the backup utility. Check that the database server is online and that ON-
Bar is configured.

9 Failed to allocate memory. Check the ON-Bar logs for more information. You might
need to ask your System Administrator to either
increase your swap space or to install more memory in
your system.

16 Failed to open the file. Check the ON-Bar logs for more information.

17 Cannot change to the specified logging mode. Check the ON-Bar logs for more information.

18 Failed to change the logging mode. Check the ON-Bar logs for more information.

19 An SQL error occurred. Check the ON-Bar logs for more information.

20 An empty list problem occurred. Check the ON-Bar logs for more information.

Copyright© 2020 HCL Technologies Limited

The oninit utility

The oninit utility starts the database server.

On UNIX, Linux, and Mac OS X, you must be logged in as user root, user informix, or the non-root database server owner to run the oninit utility. User informix should be
the only member of the group informix. Run the oninit command from the command line. You can allow users who belong to the DBSA group to run the oninit command.
See Allow DBSA group users to run the oninit command (UNIX).

On Windows, IBM® Informix® runs as a Windows service. Any user who has appropriate permissions to start a Windows service is able to start the IBM Informix service.
The Services control application runs the oninit utility with any options that you supply.

Syntax

>>-oninit--+-------------------------+-------------------------->
 | (1) |
 '-| -FILE option |-----'

>--+---+---------------><
 +-| Other options for starting the server |-+
 +-| Initialize disk space |-----------------+

624 Part VI: Administering

https://www.hcltech.com/

 '- -PHY-------------------------------------'

Other options for starting the server

|--+-+-----+--+--------------------------+-+--+-------------+--->
 | '- -j-' | .-600-------------. | | +- -SDS=alias-+
 | '- -w--+-+-------------+-+-' | '- -D---------'
 | '-max_seconds-' |
 '-+- -s-+-------------------------------'
 '- -S-'

>--+-----------------------+--+-----+--+-----+--+-----+---------|
 | .-,--------. | '- -p-' '- -y-' '- -v-'
 | V | |
 '- -U--+---username-+-+-'
 '-" "----------'

Initialize disk space

|-- -i--+-----+--+-----+--+-----+------------------------------->
 +- -j-+ '- -y-' '- -v-'
 '- -s-'

>--+--------------------------+--+-----------------------+------|
 | .-600-------------. | | .-,--------. |
 '- -w--+-+-------------+-+-' | V | |
 '-max_seconds-' '- -U--+---username-+-+-'
 '-" "----------'

Notes:

1. See The -FILE option.

Table 1. oninit command elements

Element Purpose Key Considerations

-D Starts the database server with Enterprise
Replication and high-availability cluster
replication disabled.

-i Initializes disk space for the root dbspace so that
it can be used by the database server and starts
the database server.

Disk space needs to be initialized only once to prepare data storage for the server.
By default, to prevent data loss, you cannot reinitialize disk space. To reinitialize disk
space for an existing root dbspace, you must set the FULL_DISK_INIT configuration
parameter to 1 and then run the oninit -i command.

See Initialize disk space for the root dbspace.

-j Starts the server in administration mode. See Start the server in administration mode.

-p Starts the database server without deleting
temporary tables.

If you use this option, the database server starts more rapidly, but space used by
temporary tables left on disk is not reclaimed.

-PHY Starts the server as of most current checkpoint.
The -PHY option is used to tell the server to do
only physical recovery without logical recovery.

This option is normally used to start a secondary server. You must run one of the
following commands to connect the secondary server to the primary server:

onmode -d secondary
onmode -d RSS

The connection of the secondary server to the primary server fails if the most recent
checkpoint on the primary server was not performed on the secondary server.

-s Starts the server in quiescent mode. The database server must be shut down when you use this option.
When the database server is in quiescent mode, only the user informix can access the
database server.

-S Starts database server in quiescent mode as a
standard server with high-availability data
replication disabled.

When the database server is in quiescent mode, only the user informix can access the
database server.

-SDS=alias For shared disk servers, starts the current server
and specifies the primary server with the alias
name.

When both the primary server and all of the SDS servers are down, use the -SDS=alias
option to start the designated SDS server as the primary server. The -SDS=alias flag
cannot be combined with the -i flag.

-U username Specifies which users can access the server in
administration mode for the current session.

The informix user and members of the DBSA group are always administration mode
users.
See Start the server in administration mode.

-v Displays verbose informational messages while
the server is starting.

-w max_seconds Starts the database server and waits to indicate
success or failure until the server is completely
started in online mode or the number of seconds
specified by max_seconds elapses.

The default number of seconds to wait is 600.
This option is not valid on secondary servers in a high-availability cluster.

See Start the server with a script.

-y Prevents verification prompts. The -y option automatically answers yes to all the verification prompts.

Usage

Part VI: Administering 625

By default, the oninit utility shows verification prompts during server startup. You can suppress verification prompts by including the -y option. You can view verbose
informational messages by including the -v option. On UNIX, Linux, and Mac OS X, oninit output is shown to standard output. On Windows, you can view oninit output by
setting the ONINIT_STOUT environment variable to save the output to a file.

You can start the server in different operating modes. By default, if you run the oninit command without options, the server starts in online mode. When the database
server is in online mode, all authorized users can access the server.

If you run an oninit -FILE command, you do not need to set local environment variables before you start the database server. The database server automatically uses the
environment variables that are set as values in the onconfig file.

Start the server in administration mode
Administration mode is an administrator-only mode you can use to perform maintenance operations including those that require running SQL or DDL commands. When in
administration mode, the database server only accepts connection requests from the following users:

The informix user
Members of the DBSA group
Users specified by the oninit -U command or the onmode -j -U command, for the current session. The -U option overrides any users listed by the
ADMIN_MODE_USERS configuration parameter in the onconfig file.
Users specified by the ADMIN_MODE_USERS configuration parameter

Use the -U option with a list of comma-separated user names to add administration mode users, such as: Karin,Sarah,Andrew.

Use the -U " " option to remove all administration mode users except the informix user and members of the DBSA group: oninit -U " ".

Initialize disk space for the root dbspace
The first time you install IBM Informix on your system, disk space for the root dbspace for the database server needs to be initialized. The root dbspace is specified by the
ROOTPATH configuration parameter.

If you performed a typical installation and chose to create a database server or you performed a customer installation, disk space was automatically initialized. Otherwise,
you must initialize disk space by running the oninit -i command.

If the DISK_ENCRYPTION configuration parameter is set when you initialize the root dbspace, the root dbspace is encrypted.

If necessary, you can reinitialize disk space. Reinitializing disk space destroys all existing data managed by the database server. The database server must be offline when
you reinitialize.

By default, you cannot reinitialize a root dbspace that is being used by the database server. Disk initialization fails if a page zero exists at the root path location (at the first
page of the first chunk location). You can allow disk reinitialization of an existing root dbspace by setting the FULL_DISK_INIT configuration parameter to 1.

Start the server with a script
You can use the oninit -w command in customized startup scripts and to automate startup. The -w option forces the server to wait until startup is completely successfully
before indicating that the server is in online mode by returning to the shell prompt with a return code of 0. If the server is not in online mode within the timeout period, the
server returns a return code of 1 to the shell prompt and writes a warning message in the online log.

The default timeout is 600 seconds (10 minutes), which you can modify to any integer value.

After running the following command, if the server fails to start within 60 seconds, a code of 1 is returned to the prompt:

oninit -w 60

To determine the reason for the server failing to start, check the online log. You might need to increase the timeout value. When you use the oninit -w command in a
script, you can check whether the server is online with the onstat - (Print output header) command.

Allow DBSA group users to run the oninit command (UNIX)
To allow users who belong to the DBSA group, other than the user informix, to run the oninit command, log in as the user root and change the permissions on the oninit
utility in the $INFORMIXDIR/bin directory from 6754 to 6755.

The -FILE option
 On UNIX, you can use the -FILE option to run certain IBM Informix utilities with the local environment variables that you set in your onconfig file. You do not have to

set local environment variables before you run the command to start the utilities.
Return codes for the oninit utility

 If a oninit command encounters an error, the database server returns an error message and a return code value.

Related reference:
 ADMIN_MODE_USERS configuration parameter

FULL_DISK_INIT configuration parameter
Database server files
SDS_ALTERNATE configuration parameter
DISK_ENCRYPTION configuration parameter
Related information:

 Initialization process
Database server operating modes

Copyright© 2020 HCL Technologies Limited

626 Part VI: Administering

https://www.hcltech.com/

The -FILE option

On UNIX, you can use the -FILE option to run certain IBM® Informix® utilities with the local environment variables that you set in your onconfig file. You do not have to set
local environment variables before you run the command to start the utilities.

You can use the -FILE option when you start the following utilities: oninit, oncheck, onclean, onload, onunload, onlog, onmode, onparams, onspaces, onstat, and
ontape.

Syntax

-FILE option

|--+---------+--+-----------+-----------------------------------|
 '- -FILE=-' '-file_name-'

Table 1. -FILE option
Element Purpose Key Considerations

-FILE=file_name Specifies the full path or relative path to
the onconfig file that contains the
environment information.

The -FILE=file_name option must be the first argument in the command.

Usage
Before you run a command with the -FILE option, you must add directives to your onconfig file in the following format:

#$variable_name value

Any environment variables that are set in the onconfig file take precedence over the same environment variables that are set in the system or shell.

When you start a utility with the -FILE option, specify the full path or the relative path to the onconfig file. For example, both of the following examples start the database
server with the environment information in the onconfig.serv1 file:

Full path

oninit -FILE=/opt/IBM/inf/etc/onconfig.serv1

Relative path

oninit -FILE=etc/onconfig.serv1

If the INFORMIXDIR environment variable is not set in the user system, the shell, or in the onconfig file, the value of INFORMIXDIR is set to the PATH of the executable
program, with the assumption that the executable program is in a subdirectory of INFORMIXDIR. For example, you can run the oninit -FILE=etc/onconfig.myserv
command when the oninit utility is in the /opt/IBM/informix/bin directory. If the INFORMIXDIR environment variable is not set in the shell or in the onconfig.myserv file,
the value of INFORMIXDIR is set to /opt/IBM/informix.

If you use a form of remote execution, such as ssh, use the -FILE option to specify the path to the onconfig file on the remote computer.

Example
Suppose that you specified values for the INFORMIXSERVER, DBDATE, and SERVER_LOCALE environment variables in the onconfig file for the js_3 instance:

 #onconfig.js_3
 #
 # *** Start environment settings for js_3
 #
 #$INFORMIXSERVER server3
 #$DBDATE MDY4/
 #$SERVER_LOCALE en_us.utf8
 #
 # *** End environment settings for js_3

The other important environment variables (INFORMIXDIR, INFORMIXSQLHOSTS, ONCONFIG) for running the utility are specified in the user environment. The path to
the oninit executable program is part of the user environment and the onconfig file is in the current directory.

You can run the oninit -FILE=onconfig.js_3 command from the current directory to start the database server, and automatically set the values for the
INFORMIXSERVER, DBDATE, and SERVER_LOCALE environment variables.

Related tasks:
 Setting local environment variables for utilities

Copyright© 2020 HCL Technologies Limited

Return codes for the oninit utility

If a oninit command encounters an error, the database server returns an error message and a return code value.

The following table contains the return codes, message text, and user actions for the oninit utility.

Part VI: Administering 627

https://www.hcltech.com/

Table 1. Return codes for the oninit utility

Return Code Message Text User Action

0 The database server was initialized successfully. The database server started.

1 Server initialized has failed. Look at any error messages written
to stderr or the online message log.

Take the appropriate action based on the error messages written to stderr or the
online message log.

87 The database server has detected security violations or certain
prerequisites are missing or incorrect.

(UNIX and Mac OS only) Check if user and group informix exists. Check if the server
configuration file (onconfig) and sqlhosts file exists and has the correct permissions.
Check if the environment variables INFORMIXDIR, ONCONFIG, and SQLHOSTS have
a valid value and their length does not exceed 255 characters. Check if the
environment variable INFORMIXDIR specifies an absolute path and does not have
any spaces, tab, new lines, or other incorrect characters. Check if role separation-
related subdirectories under the $INFORMIXDIR directory, such as aaodir and
dbssodir, have the correct ownership. Run the onsecurity utility to diagnose and fix
any issues.

170 The database server failed to initialize the dataskip structure. Free some physical memory on the system and try to start the database server
again.

172 The database server failed to initialize the listener threads. Free some system resources, check the configuration parameter values for the
number of listener threads to start when the database server starts up, and try to
start the database server again.

173 The database server failed to initialize data replication. Free some physical memory in the system and try to start the database server
again.

174 The database server failed to start fast recovery threads. Free some physical memory in the system and try to start the database server
again.

175 The database server failed to initialize the root dbspace. Check the root dbspace related parameters in server configuration file (onconfig) to
make sure that the path for the root dbspace is valid.

176 Shared disk secondary server initialization failed. Check the entries in sqlhosts file (UNIX) or SQLHOSTS registry key (Windows) to
make sure that you are using the value of the DBSERVERNAME configuration for the
primary server correctly. Check if the value for the SDS_PAGING configuration
parameter in the server configuration file (onconfig) is correct. Free some system
resources and try to start the database server again.

177 The database server failed to start the main_loop thread. Free some physical memory on the system and try to start the database server
again.

178 The database server failed to initialize the memory required for
page conversion.

Free some physical memory on the system and try to start the database server
again.

179 The database server was unable to start CPU VPs. Free some physical memory on the system and try to start the database server
again.

180 The database server was unable to start the ADM VP. Free some physical memory on the system and try to start the database server
again.

181 The database server failed to initialize kernel AIO. Free some physical memory on the system and try to start the database server
again.

182 The database server was unable to start IO VPs. Free some physical memory on the system and try to start the database server
again.

183 The database server failed to initialize the memory required for
asynchronous I/O operations.

Free some physical memory on the system and try to start the database server
again.

184 The database server failed to initialize memory required for
parallel database queries. (PDQ)

Free some physical memory on the system and try to start the database server
again.

185 The database server failed to initialize various SQL caches. Free some physical memory on the system and try to start the database server
again.

186 The database server failed to initialize the Global Language
Support (GLS) component.

Free some physical memory on the system and try to start the database server
again.

187 The database server failed to initialize the Associated Service
Facility (ASF) components.

Check the entries in sqlhosts file.

188 The database server was unable to start the CRYPTO VP. Free some physical memory on the system and try to start the database server
again.

189 The database server was unable to initialize the alarm program. Free some physical memory on the system and try to start the database server
again.

190 The database server failed to initialize the auditing component. Free some physical memory on the system and try to start the database server
again.

192 The database server failed to restore the Window station and
desktop.

(Windows only) Try to shut down the database server after freeing some system
resources.

193 The database server failed to create daemon processes. (UNIX and Mac OS only) Free some system resources and try to startup the
database server once again.

194 The database server failed to redirect the file descriptors
properly.

(UNIX and Mac OS only) Check the availability of the /dev/null device and try to start
the database server again.

628 Part VI: Administering

Return Code Message Text User Action

195 The database server failed to initialize the current directory for
use.

Check the validity of the current working directory from where the database server
is being initialized.

196 The database server failed to initialize the /dev/null device. (AIX® only) Check the validity of the /dev/null device.

197 The database server failed to find the password information for
the user trying to initialize the database server.

Verify that the user password is valid.

198 The database server failed to set the resource limits. (UNIX and Mac OS only) Verify, and if required, increase the resource limits for
processes on the host computer.

200 The database server did not have enough memory to allocate
structures during initialization.

Free some physical memory on the system and try to start the database server
again.

206 The database server could not allocate the first resident
segment.

Check the values of the BUFFERPOOL and LOCKS configuration parameters in the
server configuration file (onconfig) to make sure that they can be accommodated
with the available memory on the host computer.

207 The database server failed to initialize shared memory and disk
space.

Free some physical memory in the system, check the validity of all the chunks in the
database server, and try to start the database server again.

208 The database server failed to allocate structures from shared
memory.

Free some system resources and try to start the database server again.

209 The database server encountered a fatal error during the
creation of shared memory.

Free some physical memory in the system and try to start the database server
again.

210 The database server requested memory for the resident
segment that exceeded the maximum allowed.

Reduce the size of the resident segment by lowering the values of the BUFFERPOOL
and LOCKS configuration parameters.

220 The database server failed to read the audit configuration file. Check that the audit configuration file (adtcfg) exists and is valid.

221 The database server could not detect the default directory for
DUMPDIR. Usually it is the $INFORMIXDIR/tmp directory.

Create the $INFORMIXDIR/tmp directory if it is not present.

222 The database server detected an error in the value of the
DBSERVERALIASES configuration parameter in the server's
configuration file.

Verify that the values for the DBSERVERALIASES configuration parameter are valid
and they have corresponding entries in the sqlhosts file (UNIX) or SQLHOSTS
registry key (Windows).

223 The database server detected an error with the value of the
DBSERVERNAME configuration parameter in the server's
configuration file.

Verify that the value of the DBSERVERNAME configuration parameter is valid and it
has a corresponding entry in the sqlhosts file (UNIX) or SQLHOSTS registry key
(Windows).

224 The database server detected an error with the value of the
HA_ALIAS configuration parameter in the server's configuration
file.

Correct the value of the HA_ALIAS configuration parameter in the server
configuration file (onconfig).

225 The database server detected too many entries for the NETTYPE
configuration parameter or the DBSERVERALIASES configuration
parameter in the server's configuration file.

Reduce the number of instances of the NETTYPE or DBSERVERALIASES
configuration parameters in server configuration file (onconfig) and try to start the
database server again.

226 The database server could not find an entry for the
DBSERVERNAME configuration parameter in the sqlhosts file or
the contents of the sqlhosts file are not valid.

Check the entries in the sqlhosts file.

227 Incorrect serial number. Reinstall the database server.

228 The user does not have the necessary DBSA privileges to invoke
the executable.

The user must have DBSA privileges or be a part of the Informix®-Admin group
(Windows).

229 The database server could not initialize the security sub-system. (Windows only) The user does not the necessary user rights on the host or is not
part of the Informix-Admin group.

230 The database server, if started as a process on Windows
platform , timed out while trying to build the required system
databases during initialization. (Windows only)

Check the event log on the host to determine why the service could not be opened
or could not be started. The database server might have timed out while trying to
build the system databases. Free some system resources and try to start the
database server again.

231 Informix service startup failed when the “oninit -w” command
was run as a process on the command line.

(Windows only) Check the event log on the host to determine why the service start
has failed.

233 The database server failed to initialize the Pluggable
Authentication Module (PAM).

Check the configuration for the PAM library on the system.

235 The database server detected errors for certain configuration
parameter values in the server's configuration file.

Inspect the server configuration file (onconfig) for any errors.

236 The database server detected an error while trying to restrict the
allowable values for the Informix edition in use.

Check if the SDS_ENABLE configuration parameter is set to 1 in the server
configuration file (onconfig). Check if the server name specified with the oninit -
SDS command matches the value of the HA_ALIAS or DBSERVERNAME
configuration parameter. Check if the shared disk used is part of an existing shared
disk cluster.

237 The database server could not find the server configuration file. Ensure that the server configuration file exists and is valid.

238 The database server detected an incorrect value for the
INFORMIXSERVER environment variable or the value did not
match the value of the DBSERVERNAME configuration parameter
in the server's configuration file.

(Windows only) Check the value of the INFORMIXSERVER environment variable and
the corresponding entry in the registry.

Part VI: Administering 629

Return Code Message Text User Action

239 The database server detected an incorrect or non-existent value
for the INFORMIXDIR environment variable.

(Windows only) Check the value of the INFORMIXDIR environment variable.

240 Incorrect command-line options were issued to the database
server.

Correct the command-line options issued to the database server at startup.

248 The database server failed to create the Informix loader domain
file.

(AIX only) Check if the /var/adm/ifx_loader_domain file is present.

249 The database server failed to dynamically load the PAM library. The PAM library is not available for the database server. Install the PAM libraries.

250 The database server failed to dynamically load the ELF library. The ELF library is not available to the database server. Install the libelf packages.

255 There was an internal error during server initialization. Look at
any error messages written to stderr or to the online message
log.

Take the appropriate action based on the error messages written to stderr or the
online message log.

Copyright© 2020 HCL Technologies Limited

The onkstash Utility

Use the onkstash utility to create a password stash file for an existing PKCS#12 keystore.

A password stash file allows database clients or the database server itself access to their respective keystore without the inconvenience for the user to supply the
password every time.

The onkstash utility accepts the file name of a PKCS#12 keystore (ending with extension ".p12") and the password for this keystore. It writes the password in an
encrypted format to the password stash file. The name of this stash file is same as the keystore filename, but with the extension ".stl".

If the password for a keystore gets changed, the new password must be stashed again using the onkstash utility. If a password stash file exist with the old keystore
password, then it is overwritten with the new password in an encrypted format.

Syntax
onkstash <keystore file> <password>

where <keystore file> is the name of the PKCS#12 keystore file, and <password> is the current password for the keystore.

Usage
The onkstash utility determines the file name for the password stash file from the name of the keystore file. It checks if the given password is correct and then writes it in
an encrypted format to the stash file.

If the password stash file gets created by onkstash, the file access permissions are set to 600. If the password stash file already exists, the permissions are not changed.
It is recommended to check the permissions for the keystore file as well as for the password stash file, and correct them if deemed necessary.

In addition to stashing the keystore password, the onkstash utility can also provide the version of the encryption library used. Run the command "onkstash -version" to
determine, whether GSKit or OpenSSL is used as encryption library and the version of that library.

Copyright© 2020 HCL Technologies Limited

The onkstore Utility

Use the onkstore utility to create and manage password stash files for use with storage space encryption and the integrated backup encryption features.

The onkstore utility will create a password stash file in the $INFORMIXDIR/etc directory by default, but this file may be created and used from any location accessible by
the database server as long as that directory has secure permissions.

With its informix/informix ownership and 600 permissions, the password stash file can be read only by users root or informix in UNIX/Linux and the creator of the keystore
in Windows. In addition, the file is itself encrypted using a password. The admin must specify this keystore password when creating the keystore. By default that password
will be stored (as an obfuscated value) in a stash file along side the keystore file. Do not remove the stash file or allow it to be separated from the keystore file. If you do
not want the password to be stashed, use the option "-nostash" when creating the keystore. In that case the password may be supplied interactively to oninit and utilities
such as oncheck, onlog, ontape, or onbar.

The onkstore utility can create different types of keystores. A keystore can contain either:

1. A Master Encryption Key (MEK) that is used as a “seed” by the server to encrypt storage spaces when using the Storage Space Encryption feature.
2. A set of credentials to access a Remote Key Server that stores the Master Encryption Key for the Storage Space Encryption (DISK_ENCRYPTION) or a set of

credentials to access a Remote Key Server that stores the Remote Master Encryption Key used by the Integrated Backup Encryption feature (BAR_ENCRYPTION).

The onkstore utility has the following usage:

Table 1. onkstore usage

-file <fn> name of keystore to create/list/convert.

-type type of keystore to create: local, AWS-EAR, AWS-BAR, KMIP, AZURE-EAR, AZURE-BAR

630 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

-create create a new keystore. By default stash the password in a stash file. Use option "-nostash" if this is not desired.

-pw <fn> file with cleartext keystore password. If not provided and the password is not stashed already, it is prompted for interactively.

-list list the contents of the file.

-cipher cipher the server will use: aes128, aes192, aes256

-credential <fn> file that contains credentials in json format.

-verify verify the keystore.

-convert convert keystore from one type to another.

-changepw [<fn>] change the password for the keystore. <fn> is the file containing the new cleartext keystore password.

-nostash upon creation of a keystore do not stash the password.

-help print this message.

Note: -pw is not needed if your password is stashed.
Use the onkstore utility to perform the following tasks:

Create a Keystore with onkstore
 Creating an AWS type keystore

 Creating an Azure type keystore
 Creating a KMIP type keystore

 Verifying a Keystore File
 Changing the Password for a Keystore File

 Converting a Keystore File
 List the contents of a Keystore File

Copyright© 2020 HCL Technologies Limited

Create a Keystore with onkstore

A keystore file is required by any instance that has the storage space encryption feature enabled. This keystore file has a “.p12” extension. It may also have an associated
password stash file whose extension is “.sth”.

When referring to a keystore file with onkstore or in the value of the DISK_ENCRYPTION configuration parameter, always omit the “.p12” extension.

A keystore file that contains your instance’s encryption key is called a local keystore file. The simplest way to create a local keystore file is as follows:

onkstore -create -file my_keystore -type local -cipher aes128

The result of that command is a file located in the $INFORMIXDIR/etc directory called my_keystore.p12, which contains a 128-bit (16 byte) encryption key. That p12 file is
encrypted using a password, which must be provided interactively when prompted for. By default, the password is stored in a stash file. The path to the stash file is
$INFORMIXDIR/etc/my_keystore.sth.

To provide the new password on the command line when creating a new keystore, use these commands instead:

 echo "sample_password" > pw_file
 onkstore -file my_keystore -type local -cipher aes128 -pw pw_file
 rm pw_file

The password must be at least 8 characters long. In this case “sample_passwd” would also be stashed encrypted in $INFORMIXDIR/etc/my_keystore.sth.

As the encryption password is known, the admin has the option of removing the stash file and supplying the password to oninit manually each time the server is booted:

oninit -pw
Please enter current encryption password: sample_password

Instead of supplying the password interactively, it may be passed to oninit using a file:

touch /tmp/mypassword
chmod 660 /tmp/mypassword
echo “sample_password” > /tmp/mypassword
oninit -pw /tmp/mypassword
rm /tmp/mypassword

The keystore file will be located in $INFORMIXDIR/etc by default, but you can also move or create it elsewhere by specifying a full path (minus the .p12 extension):

onkstore -create -file /work/KEYSTORES/my_keystore -type local -cipher aes128

If your keystore file is not located in $INFORMIXDIR/etc you must use the full path in your DISK_ENCRYPTION setting:

DISK_ENCRYPTION keystore=/work/KEYSTORES/my_keystore

Like $INFORMIXDIR/etc, the directory containing your keystore file must have ownerships of informix/informix.

When creating a keystore file with onkstore you must specify which of the three supported ciphers you wish to use: aes128, aes192, and aes256. By default the server
assumes you are using aes128, but if not, the admin must specify the cipher in the DISK_ENCRYPTION setting:

DISK_ENCRYPTION keystore=my_keystore,cipher=aes256

The DISK_ENCRYPTION setting consists of comma-separated attributes and may contain no quotes or spaces.

A keystore file that contains AWS (Amazon Web Services) credentials instead of an encryption key is called a remote keystore file. Run the following command to create a
remote keystore file interactively:

Part VI: Administering 631

https://www.hcltech.com/

onkstore -create -file my_aws_keystore -type AWS_EAR -cipher aes192

onkstore will then prompt you for AWS credentials and other information that will identify the key you want to either create or use. For example:

 $ onkstore -create -file my_aws_keystore -type AWS_EAR -cipher aes192
Creating AWS EAR Keystore
AWS Key Id
>AKCAIPP520LF4AJBOTXA
AWS Key Secret
>TCEmlasjdflkjbasNHFAI6BHOwj4XHe50ic7LCt9
AWS Region
>us-east-1
AWS CMK Id
>16fd15d9-db8b-4cb7-9d99-d3070df97b58
SSM Key Location
>/informix/keys/aes192/key1

This is not your actual encryption key. They are merely pieces of information that when put together allow the server to access a particular encryption key stored in AWS. If
the terms “CMK Id” and “AWS Region” are not familiar to you, it is because you do not yet have an AWS account set up. Familiarity with an AWS account you are able to
manage is a prerequisite for creating a remote keystore file using onkstore.

Rather than providing these details to onkstore interactively you have the option of feeding a json file to the utility instead:

onkstore -create -file my_ks -cipher aes192 -credential /tmp/my_creds.json

In this case the /tmp/my_creds.json file would contain something like this:

{
"Credentials" :
{
"Type" : "aws-ear",
"AWS Key Id" : "AKCAIPP520LF4AJBOTXA",
"AWS Key Secret" : "TCEmlasjdflkjbasNHFAI6BHOwj4XHe50ic7LCt9",
"AWS Region" : "us-east-1",
"AWS CMK Id" : "16fd15d9-db8b-4cb7-9d99-d3070df97b58",
"SSM Key Location" : "/informix/keys/aes192/key1"
}
}

If this command is run and the master encryption key does not exist in AWS at the specified location (/informix/keys/aes192/key1), onkstore will attempt to generate one
and store it there. If the credentials point to an existing key, onkstore will create the keystore file and leave the key as-is.

The -pw argument works the same way with remote keystore file creation as it does with local keystore creation.

Do not use the AWS-BAR type when creating a keystore for use with the storage space encryption feature. This type of keystore is used with the Integrated Backup
Encryption feature.

Copyright© 2020 HCL Technologies Limited

Creating an AWS type keystore

If your remote key server is Amazon Web Services Key Management Service (AWS-KMS), you can create two types of keystore : “AWS-EAR” to be used by the Storage
Space Encryption feature, or “AWS-BAR” to be used by the Integrated Backup Encryption feature.

The only difference between these credentials is that the AWS-EAR requires, also, access to the AWS Secrets Manager (AWS-SSM) where the IDS Master Encryption Key is
stored.

When asked to create an AWS keystore, the following information must be readily available to the operator:

AWS Key Id, this is not an encryption key, this is the AWS access key (the equivalent of a username) to get access to the AWS infrastructure. You can generate a
“AWS Key Id”/”AWS Key Secret” pair (AWS Services -> IAM -> Users -> “User Name” -> Security Credentials -> Access Keys).
AWS Key Secret, this is not an encryption key, this is the AWS secret key (the equivalent of a password) to get access to the AWS infrastructure. You can generate a
“AWS Key Id”/”AWS Key Secret” pair (AWS Services -> IAM -> Users -> “User Name” -> Security Credentials -> Access Keys).
AWS Region, this is the AWS region, all keys and CMKs are region bound, you must provide the region where you have your keys (ie us-east-1).
AWS CMK Id, this is the id (or name) of the AWS Customer Master Key (Remote Master Encryption Key). This key never leaves the AWS infrastructure and it is used
by onkstore to generate the master encryption key used by IDS with the Storage Spaces Encryption feature or the Backup Encryption Keys used by the Integrated
Backup Encryption feature.
SSM Key Location, this is needed only for AWS-EAR types of keystores. This is the hierarchical path where the IDS Master Encryption Key will be stored after being
generated by onkstore. The MEK is encrypted using the CMK before being stored here.

To use a JSON file as input for onkstore, create a file with the following structure:

 {
 "Credentials" :
 {
 "Type" : "..." ,
 "AWS Key Id" : "...",
 "AWS Key Secret" : "...",
 "AWS Region" : "...",
 "AWS CMK Id" : "...",
 "SSM Key Location" : "..."
 }
 }
 where the value for "Type" is either "aws-ear" or "aws-bar".

Copyright© 2020 HCL Technologies Limited

632 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Creating an Azure type keystore

If your remote key server is Microsoft Azure Key Vault you can create two types of keystore : “AZURE-EAR” to be used by the Storage Space Encryption feature, or
“AZURE-BAR” to be used by the Integrated Backup Encryption feature.

The only difference between these credentials is that the AZURE-EAR requires, also, access to the Azure Secrets inside the Key Vault, where the IDS Master Encryption
Key is stored.

When asked to create an AZURE keystore, the following information must be readily available to the operator:

Azure Vault Url, this is the URL to access your key vault. This value is generated by the Azure system when a new keyvault is created (Home -> All resources ->
“Key Vault Name” -> Overview -> DNS Name).
Azure Client Id, the usage of this feature requires access to the Active directory infrastructure in Azure,for that you need to create a Web Application under your
username and provide the “Application Id” (Active Directory -> Users -> All User -> “User Id” -> Applications -> “Application Name” -> Application Id).
Azure Client Secret, When the Web Application is created, you will be provided with both the Application Id and the Application Secret. The application secret
cannot be recovered after the application was created.
Azure Directory Id, Your KeyVault is created under an Active Directory, you need to provide the Directory Id (Home -> All resources -> “Key Vault Name” ->
Overview -> Directory ID).
Azure Key Name, this is the name or full id of the Azure Key (Remote Master Encryption Key). This Key never leaves the Azure infrastructure and it is used by
onkstore to encrypt the locally generated Master Encryption Key used by the IDS Storage Space Encryption feature. It is also used by the On-Bar/ontape utilities to
encrypt the Backup Encryption Keys used by the Integrated Backup Encryption Feature. In Azure, you can provide a simple name for this key (ie “MY_IDS_MEK”) in
which case we will use the LATEST key available (Each time the key is rotated a newer Id is available), or, you can specify the Id of the key you want to use (ie “
MY_IDS_MEK/wsdd6405fb584cf9a3c63f6926d2e92e”) in which case we will keep using the same key even if it is rotated.
Azure Encrypt Algorithm, when you create the RMEK in Azure Key Vault, it allows you to select among several types of keys and depending on the type of key, you
can select different algorithms to encrypt data with it. Select here a valid algorithm name for the type of RMEK you created.
Azure Secret Name, The name of the secret where we will store the IDS MEK. This is used only if you create a AZURE-EAR type keystore. If you provide a simple
name (ie “ INFORMIX-256BIT”) a new MEK will be generated and stored, the ID of the newly stored key will recorded. If you provide a full ID for the secret (“
INFORMIX-256BIT/ 284ded569a8b40be8e4de2254ddeedd7”), then we will try to retrieve the secret, if not present we will return an error.

To use a JSON file as input for onkstore, create a file with the following structure:

 {
 "Credentials" :
 {
 "Type" : "...",
 "Azure Vault Url" : "...",
 "Azure Client Id" : "...",
 "Azure Client Secret" : "...",
 "Azure Directory Id" : "...",
 "Azure Key Name" : "...",
 "Azure Encrypt Algorithm" : "...",
 "Azure Secret Name" : "..."
 }
 }

 where the value for "Type" is either "azure-ear" or "azure-bar".

Copyright© 2020 HCL Technologies Limited

Creating a KMIP type keystore

If your remote key server is located in a server/cluster supporting the KMIP standard you can create a single type of keystore (KMIP). At this moment, the same keystore
type can be used by both the Storage Space Encryption and Integrated Backup Encryption features.

For Integrated Backup Encryption, this type of keystore works similarly with Azure and AWS: We provide the Key name of a RMEK that is used to encrypt the Backup
Encryption Keys.

For Storage Space Encryption, the Key Name provided is the IDS MEK.

When asked to create a KMIP type keystore, following information must be readily available to the operator:

KMIP Server, the IP address or hostname where the KMIP server is listening for request. If the port where the server listens is different from the default (5696), the
port must be specified (ie “myserver.hcl.com:2356).
KMIP Username, username to access the KMIP server. This is optional since in most cases, the access to the server is done by using SSL certificates.
KMIP Password, password for the given username. This is also optional.
KMIP Client Certificate File, a file containing the certificate for the client, The file must also contain the Private Key matching the certificate. The private key is
expected to be a PKCS#8 key. The certificate is expected to have Authentication extensions.
KMIP CA Certificate File, a file containing the root CA used to sign both the KMIP Client Certificate File and the KMIP Server Certificate File.
KMIP Key Name, The name of the KMIP Key used as MEK by the Storage Spaces Encryption feature or as RMEK by the Integrated backup Encryption Feature. It is
optional. If not present, onkstore will generate a new key and report its Id to the operator.

To use a JSON file as input for onkstore, create a file with the following structure:

{
 "Credentials" :
 {
 "Type" : "..." ,
 "KMIP Server" : "...",
 "KMIP Username" : "...",
 "KMIP Password" : "...",
 "KMIP Client Certificate File" : "...",

Part VI: Administering 633

https://www.hcltech.com/

 "KMIP CA Certificate File" : "...",
 "KMIP Key Name" : "..."
 }
 }

 where the value for "Type" is "kmip".

Copyright© 2020 HCL Technologies Limited

Verifying a Keystore File

After creating a network keystore file and before deploying it, it is important to verify that its credentials work correctly. To do this, run the following command:

onkstore -file my_keystore -verify

onkstore will use the credentials contained in your keystore file to communicate with AWS and report success or failure:

$ onkstore -file my_keystore -verify
Keystore Verify Successful.
Key exists in AWS SSM /informix/keys/aes192/key1 for cipher aes192.

Copyright© 2020 HCL Technologies Limited

Changing the Password for a Keystore File

At any time using onkstore the admin may change the password of a keystore:

onkstore -file my_keystore -pw /tmp/old_password -changepw /tmp/new_password

If your current password is stashed (contained in the keystore’s associated .sth file), then you do not need to pass it to onkstore via the -pw argument, but if you have
removed the stash file you must provide the current password to onkstore before it can be changed to a new one.

You can also perform this same function using the “master_key reset” sysadmin command:

dbaccess sysadmin -<<END
execute function task(“master_key reset”,”new_sample_pw”);
END

This method has the advantage of not requiring the current password in order to change to a new one. The current password was provided to the server at boot time.

Copyright© 2020 HCL Technologies Limited

Converting a Keystore File

The convert feature is currently used only for EAR types of keystores. It supports to download the Master Encryption Key contained in the Remote Key Server (ie a KMIP
server) to the local keystore. The old keystore containing the credentials to the RKS will be renamed and will be replaced with a new one of type “local”.

Since the Integrated backup encryption feature does not store a Master Encryption Key at the RKS and does not support keystore of type “local”, this option is not
needed/supported for credentials of type AWS-BAR and AZURE-BAR.

$ onkstore -file my_keystore -convert
Which type of keystore would you like to create:
1 - Local Keystore
2 - AWS EAR Keystore
3 - AWS BAR Keystore
4 - KMIP EAR Keystore
5 - AZURE EAR Keystore
6 – AZURE BAR Keystore

Conversion complete for /vobs/tristarp/sqldist/etc/my_keystore.p12

Currently, only option 1 (converting to a local keystore file) is supported. The original keystore file is copied to a backup file (my_keystore.p12.bak#) before being
overwritten during the conversion.

Note: By downloading your MEK to a local machine, you are increasing the chances of exposing that key, which is the reason to use a RKS in the first place.

Copyright© 2020 HCL Technologies Limited

List the contents of a Keystore File

This command will not display your encryption key or your AWS credentials. It displays the kinds of objects stored in the file. For example:

$ onkstore -file /work3/keystores/test_keystore -list
List the contents of keystore /work3/keystores/test_keystore.p12
KeystoreType
AWS Key Id

634 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

AWS Key Secret
AWS Region
AWS CMK Id
SSM Key Location

An admin may list the basic contents of a file as a sort of sanity check.

Copyright© 2020 HCL Technologies Limited

The onlog utility

The onlog utility displays the contents of a logical-log file, either on disk or on backup.

onlog: Display Logical-Log Contents
The onlog output is useful in debugging situations when you want to track a specific transaction or see what changes have been made to a specific tblspace. (For
information about interpreting the logical-log file contents, see Interpreting Logical-Log Records.)

Any user can run all of the onlog options except the -l option. Only user informix on UNIX or a member of the Informix-Admin group on Windows can run the -l option.

If the database server is in offline mode when you execute onlog, only the files on disk are read. If the database server is in quiescent or online mode, onlog also reads the
logical-log records stored in the logical-log buffers in shared memory (after all records on disk have been read).

When the database server reads a logical-log file with status U from disk while in online mode, the database server denies all access to the logical-log files, effectively
stopping database activity for all sessions. (For more information, see onstat -l command: Print physical and logical log information.) For this reason, it is recommended
that you wait until the files have been backed up and then read the contents of the logical-log files from backup.

The onlog utility does not have a functionally equivalent SQL administration API command string.

onlog Syntax
>>-onlog--+-------------------------+--+----------------------+-->
 | (1) | '- -pw-+------------+--'
 '-| -FILE option |-----' '--filename--'

 (2) 3)
>--| Log-Record Read Filters |-----| Log-Record Display Filters |------>

>--+-----+--+-----------+--------------------------------------><
 '- -q-' +- -V-------+
 '- -version-'

Note: The -pw option is required only when the Storage space encryption feature is enabled, stash file is in use, and the server is off-line. Supply an optional path to a file
containing the keystore password, otherwise onlog will prompt for a password before displaying the requested log(s).

Element Purpose Key Considerations

-q Suppresses the initial header and the one-line
header that appears every 18 records by default

None.

-V Displays the software version number and the
serial number

See Obtaining utility version information.

-version Displays the build version, host, OS, number and
date, as well as the GLS version

See Obtaining utility version information.

You direct onlog to read the following portions of the logical log as it searches for records to display:

Records stored on disk
Records stored on backup media
Records from the specified logical-log file

By default, onlog displays the logical-log record header, which describes the transaction number and the record type. The record type identifies the type of operation
performed.

In addition to the header, you can use the read filters to direct onlog to display the following information:

Logical-log record header and data (including copies of simple large objects stored in a dbspace or tblspace)
Copies of blobpages from blobspaces
They are copied from the logical-log backup only. They are not available from disk.

You can display every logical-log record header, or you can specify output based on the following criteria:

Records associated with a specific table
Records initiated by a specific user
Records associated with a specific transaction

If onlog detects an error in the log file, such as an unrecognizable log type, it displays the entire log page in hexadecimal format and terminates.

Log-Record Read Filters
The onlog utility uses the pathnames that are stored in the root dbspace reserved pages to locate the logical-log files. If you use ON-Bar to back up the logical logs, onlog
asks the storage manager to retrieve the appropriate logical-log records from the backup media.

Part VI: Administering 635

https://www.hcltech.com/

Syntax

|--+----------------------+------------------------------------->
 '- -d--device--+-----+-'
 '- -b-'

 .---.
 V |
>----+---------------------------------------+-+----------------|
 '- -n--starting_uniqid - ending_uniquid-'

Element Purpose Key Considerations

-b Displays logical-log records associated with blobspace
blobpages

The database server stores these records on the logical-log
backup media as part of blobspace logging.

-d device Names the pathname of the storage device where the
desired logical-log backup is mounted

If you use ontape, the device that you name must be the same as
the pathname of the device assigned to the configuration
parameter LTAPEDEV. If the -d option is not used, onlog reads
the logical-log files stored on disk, starting with the logical-log file
with the lowest logid.
If you use ON-Bar to back up logical logs, use the onbar -P
command to view the contents of a logical-log file. See the IBM®
Informix Backup and Restore Guide.

For pathname syntax, see your operating-system documentation.

-n starting_uniqid-ending_uniqid Directs onlog to read all the logical-log records
contained in the log file that you specified from starting
uniqid to the ending uniqid.

The starting_uniqid and the ending_uniqid are the unique ID
numbers of the logical log. To determine the uniqid of a particular
logical-log file, use the onstat -l command.

If you do not use the -n option, onlog reads all the logical-log
files that are available (either on disk or on tape).

For information about the onstat utility, see Monitor the database
server status.

Log-Record Display Filters

Syntax

 .--.
 V |
|----+--------------------------------------+-+-----------------|
 | (1) |
 +- -l----------------------------------+
 | (1) |
 +- -t--tblspace_num--------------------+
 | (1) |
 +- -u--username------------------------+
 | (1) |
 +- -x--transaction_id------------------+
 | (1) |
 '- -c--compression_dictionary_file-----'

Notes:

1. Only one occurrence of this item allowed

Element Purpose Key Considerations

-l Displays the long listing of the logical-log
record.

The long listing of a log record includes a complex hexadecimal and ASCII dump of the entire
log record. The listing is not intended for casual use.

-ttblspace_num Displays records associated with the
tblspace that you specify.

Unsigned integer. Number, greater than 0, must be in the partnum column of the systables
system catalog table.
Specify this value as either an integer or hexadecimal value. (If you do not use a 0x prefix, the
value is interpreted as an integer.) To determine the tblspace number of a particular tblspace,
query the systables system catalog table as described in Tblspace Numbers.

-u username Displays records for a specific user. User name must be an existing login name. User name must conform to operating-system-
specific rules for login name.

-x transaction_id Displays only records associated with
the transaction that you specify.

Value must be an unsigned integer between 0 and TRANSACTIONS - 1, inclusive.
You should need to use the -x option only in the unlikely case that an error is generated during
a rollforward. When this situation occurs, the database server sends a message to the message
log that includes the transaction ID of the offending transaction. You can use this transaction ID
with the -x option of onlog to investigate the cause of the error.

636 Part VI: Administering

Element Purpose Key Considerations

-c
compression_

 dictionary_file

Uses the compression dictionary to
expand compressed data and display
uncompressed data.

If the onlog command contains the -l option and the -c option and there are compressed
images in the log records, the onlog utility uses the compression dictionary to expand all
expandable images in the log records.
A compressed image is expandable only if there is a valid compression dictionary for that log
record in the compression dictionary file. If -c is not specified or the compression dictionary file
does not contain a valid compression dictionary for the compressed image, the onlog utility will
display the row image in its compressed format.

If you do not have a compression dictionary file, you can use an UNLOAD statement to unload the compression dictionary, which is contained in the syscompdicts_full
table in the sysmaster database, to a compression dictionary file, as follows:

UNLOAD TO 'compression_dictionary_file'
 SELECT * FROM sysmaster:syscompdicts_full;

If you do not specify any options, onlog displays a short listing of all the records in the log. You can combine options with any other options to produce more selective
filters. For example, if you use both the -u and -x options, onlog displays only the activities that the specified user initiated during the specified transaction. If you use both
the -u and -t options, onlog displays only the activities initiated by the specified user and associated with the specified tblspace.

Related reference:
 alter logmode argument: Change the database logging mode (SQL administration API)

Copyright© 2020 HCL Technologies Limited

The onmode utility

Use the onmode utility to change the database server operating mode and perform various other operations on shared memory, sessions, transactions, parameters, and
segments.

These topics show how to use the onmode options. If you do not use any options, the database server returns a usage statement.

On UNIX, you must be user root or user informix to run the onmode utility.

On Windows, you must be a member of the Informix-Admin group or the Administrators group to run the onmode utility.

For information on the onmode -b command, which is only used if you upgraded to a new version of Informix® and need to revert your databases to the previous version of
the server, see Syntax of the onmode -b command in the IBM® Informix Migration Guide.

All onmode command options have equivalent SQL administration API command strings, except onmode -b, onmode -BC, and onmode -R.

onmode command syntax
 Use onmode utility commands to perform various database server operations.

onmode -a: Add a shared-memory segment
 onmode -BC: Allow large chunk mode

 onmode -c: Force a checkpoint
 onmode -C: Control the B-tree scanner

 Use the onmode -C command to control the B-tree scanner and specify information about B-tree scanner threads.
onmode -cache surrogates: Cache the allowed.surrogates file

 onmode -d: Set data-replication types
 onmode -d: Set High Availability server characteristics

 onmode -d command: Replicate an index with data-replication
 onmode -D, -M, -Q, -S: Change decision-support parameters

 onmode -e: Change usage of the SQL statement cache
onmode -F: Free unused memory segments

 Use the onmode -F command to free shared-memory segments that are unavailable or no longer needed for a process
onmode -h: Update sqlhosts caches

 onmode -I: Control diagnostics collection
 Use the onmode -I option to start and stop diagnostics collection.

onmode -k, -m, -s, -u, -j: Change database server mode
 onmode -l: Switch the logical-log file

 onmode -n, -r: Change shared-memory residency
 onmode -O: Override ONDBSPACEDOWN WAIT mode

 onmode -p: Add or drop virtual processors
 Use the onmode -p command to dynamically add or drop virtual processors for the database server instance. The onmode -p command does not update the

onconfig file.
onmode -P: Start, stop, or restart a listen thread dynamically

 Use the onmode -P command to start, stop, or restart an existing listen thread for a SOCTCP or TLITCP network protocol without interrupting existing connections.
onmode -R: Regenerate .infos.dbservername File

 onmode -W: Change settings for the SQL statement cache
 onmode -we: Export a file that contains current configuration parameters

 Use the onmode -we command to create and export a configuration file that is a snapshot of your current configuration parameters.
onmode -wf, -wm: Dynamically change certain configuration parameters

 Use the onmode -wf or onmode -wm command to dynamically change specific configuration parameters.
onmode -wi: Import a configuration parameter file

 Use the onmode -wi command to import a file that contains new values for multiple configuration parameters. If the parameters are tunable, which means they can
be updated individually with an onmode -wm command, the database server applies the new values.
onmode -Y: Dynamically change SET EXPLAIN

 onmode -z: Kill a database server session
 onmode -Z: Kill a distributed transaction

Part VI: Administering 637

https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

onmode command syntax

Use onmode utility commands to perform various database server operations.

The following syntax diagram shows all of the options that you can use with the onmode command. The syntax diagram does not show all of the elements that you use
with each command option. For the complete syntax of each command, see the topic on that command.

Syntax
>>-onmode--+-------------------------+-------------------------->
 | (1) |
 '-| -FILE option |-----'

>--+- -a----------------+--+-----------+--+-----+--------------><
 | (2) | +- -V-------+ '- -y-'
 +- -b----------------+ '- -version-'
 +- -BC---------------+
 +- -C----------------+
 +- -c----------------+
 +- -cache surrogates-+
 +- -e----------------+
 +- -d----------------+
 +-+- -D-+------------+
 | +- -M-+ |
 | +- -Q-+ |
 | '- -S-' |
 +- -F----------------+
 +- -h-+---------+----+
 | '- force -' |
 +- -I----------------+
 +-+- -j-+------------+
 | +- -k-+ |
 | +- -m-+ |
 | +- -s-+ |
 | '- -u-' |
 +- -l----------------+
 +-+- -n-+------------+
 | '- -r-' |
 +- -O----------------+
 +- -P----------------+
 +- -p----------------+
 +- -R----------------+
 +- -W----------------+
 +-+- -wf-+-----------+
 | '- -wm-' |
 +-+- -we-+-----------+
 | '- -wi-' |
 +- -Y----------------+
 +- -Z----------------+
 '- -z----------------'

Element Purpose Key Considerations

-y Causes the database server to automatically respond yes to all prompts None.

-V Displays the software version number and the serial number See Obtaining utility version information.

-version Displays the build version, host, OS, number and date, as well as the GLS version See Obtaining utility version information.

Copyright© 2020 HCL Technologies Limited

onmode -a: Add a shared-memory segment

Syntax

>>-onmode-- -a--seg_size---------------------------------------><

Element Purpose Key considerations

-a seg_size Allows you to add a new virtual shared-memory
segment. Size is specified in kilobytes

Restriction: The value of seg_size must be a positive integer. It must not exceed the
operating system limit on the size of shared-memory segments.

Ordinarily, you do not need to add segments to the virtual portion of shared memory because the database server automatically adds segments as they are needed.
However, as segments are added, the database server might reach the operating-system limit for the maximum number of segments before it acquires the memory that it
needs. This situation typically occurs when the SHMADD configuration parameter is set so small that the database server exhausts the number of available segments
before it acquires the memory that it needs for some operation.

You can use this command to add a segment that is larger than the size specified by the SHMADD configuration parameter. By using this command to add a segment, you
can adhere to the operating system limit for segments while meeting the need that the database server has for additional memory.

638 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

This command has an equivalent SQL administration API function.

Related reference:
 add memory argument: Increase shared memory (SQL administration API)

onmode and a arguments: Add a shared-memory segment (SQL administration API)

Copyright© 2020 HCL Technologies Limited

onmode -BC: Allow large chunk mode

Syntax:

>>-onmode--+- -BC 1-+--><
 '- -BC 2-'

Element Purpose Key Considerations

-BC 1 Enables support of large chunks, large offsets that are
greater than 2 GB, and allows up to 32,768 chunks per
instance.

This option allows large chunks to be created. Reversion without dropping the dbspace is
possible if no chunks are larger than 2 GB. Dbspaces and blobspaces without chunks
greater than 2 GB remain in the old format. After a chunk larger than 2 GB is added to a
dbspace or blobspace then all chunks added or altered in that dbspace or blobspace are in
the new format.
See your IBM® Informix Administrator's Guide.

-BC 2 Allows large-chunk-only mode for all dbspaces. Reversion is not possible. Enables the 9.4 large chunk feature for all dbspaces and
blobspaces, Any chunk or offset added or modified has the new format. Existing chunks
that you do not alter remain in the old format.
See your IBM Informix Administrator's Guide

The onmode -BC (backward-compatible) commands are useful if you have converted from Informix® 9.40 (small chunk mode) to Informix 10.0 or later. When Informix
10.0 or later is first initialized (with the oninit -iyv command), by default it comes online with large chunk mode already fully enabled. Reversion is not possible. In the
case of a newly initialized instance of Informix 10.0 or later, the onmode -BC commands will return an error.

Note: After executing the onmode -BC command, perform a complete system level-0 backup.

Copyright© 2020 HCL Technologies Limited

onmode -c: Force a checkpoint

Syntax:

>>-onmode-- -c--+--------------------+-------------------------><
 | .- 15 ----. |
 +-block--+---------+-+
 | '-timeout-' |
 '-unblock------------'

Element Purpose Key considerations

-c Forces a checkpoint that flushes the buffers to
disk.

You can use the -c option to force a sync checkpoint if the most recent checkpoint record in
the logical log was preventing the logical-log file from being freed (status U-B-L).

block Blocks the database server from any
transactions.

While the database server is blocked, users can access it in read-only mode. Use this option
to perform an external backup on IBM® Informix®.
For more information, see the IBM Informix Backup and Restore Guide.

timeout Specifies the number of seconds to wait for
checkpoints to clear before returning to the
command prompt.

The timeout option applies only if the DELAY_APPLY configuration parameter is configured
(see DELAY_APPLY Configuration Parameter. If the DELAY_APPLY configuration parameter is
enabled, the checkpoint requested by the primary server might not arrive at the secondary
server for an extended period of time. It is also possible that no other checkpoints are staged
in the staging directory. The default timeout value is 15 seconds and the maximum timeout
allowed is 10 minutes (600 seconds). See IBM Informix Backup and Restore Guide.

unblock Unblocks the database server. When the database server is unblocked, data transactions and normal database server
operations can resume. Use this option after you complete an external backup on IBM
Informix.
For more information, see the IBM Informix Backup and Restore Guide.

This command has an equivalent SQL administration API function.

Related reference:
 checkpoint argument: Force a checkpoint (SQL administration API)

onmode and c arguments: Force a checkpoint (SQL administration API)

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 639

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

onmode -C: Control the B-tree scanner

Use the onmode -C command to control the B-tree scanner and specify information about B-tree scanner threads.

Syntax:

>>-onmode-- -C--+-(yielding syntax)--+-------------------------><
 +-start--------------+
 +-count--------------+
 +-stop--count--------+
 +-kill -count-----+
 +-threshold--size----+
 +-duration--num------+
 +-rangesize--size----+
 +-alice--mode--------+
 '-compression--value-'

Element Purpose Key considerations

-C Controls the B-tree scanner for cleaning
indexes of deleted items

There is no limit to the number of threads that can run at one time. However, there is a limit of
128 threads that can be started at one time. If, for example, you wanted 150 threads to run, you
could execute two commands: onmode -C 100 and onmode -C 50.

start count Starts additional B-tree scanner threads. If count is not specified, a count of 1 is assumed. There is no limit on the number of scanner
threads that can be specified.

stop count
 kill count

Stops B-tree scanner threads. If count is not specified, a count of 1 is assumed. Stopping all index scanners prevents all index
cleaning.
Either of these commands stop the B-tree scanner.

threshold sizecount Sets the minimum number of deleted items
an index must encounter before an index is
placed on the hot list.

Once all indexes above the threshold have been cleaned and there is no other work for the B-tree
scanner to do, the indexes below the threshold are added to the hot list.

duration num The number of seconds that the hot list is
valid.

After this number of seconds expires, the hot list will be rebuilt by the next available B-tree
scanner thread, even if unprocessed items are on the list. Scanners currently processing requests
are not interrupted.

rangesize size Determines the size of an index before
index range cleaning is enabled.

A size of -1 can be used to disable range scanning.

alice num Sets the system's alice mode. Valid num values range from 0 (OFF) to 12.

compression value For a database server instance, modifies the
level at which two partially used index
pages are merged. The pages are merged if
the data on those pages totals a set level.

Valid values for the level are low, med (medium), high, and default. The system default value is
med.

The B-tree scanner has statistical information which tracks index efficiency and how much extra work the index currently places on the server. Based on the amount of
extra work the index has accomplished because of committed deleted index items, the B-tree scanner develops an ordered list of indexes that have caused the server to
do extra work. This list is called the hot list. The index causing the highest amount of extra work is cleaned first and the rest of the indexes are cleaned in descending
order. The DBA can allocate cleaning threads dynamically, thus allowing for configurable workloads.

This command has an equivalent SQL administration API function.

Related reference:
 onmode and C arguments: Control the B-tree scanner (SQL administration API)

set index compression argument: Change index page compression (SQL administration API)
BTSCANNER Configuration Parameter

Copyright© 2020 HCL Technologies Limited

onmode -cache surrogates: Cache the allowed.surrogates file

Syntax:

>>-onmode-- -cache surrogates----------------------------------><

Element Purpose Key considerations

-cache surrogates Reads the
/etc/informix/allowed.surrogates file
and stores the user IDs and group IDs
values in shared memory cache. The
user names and group names specified
in allowed.surrogates file have to be
valid operating system users and
groups. The names are converted to
corresponding UIDs and GIDs.

You can use onmode -cache surrogates during a session to load the allowed.surrogates file. The
allowed.surrogates file is used specify users and groups who can act as surrogates for mapped users.
The allowed.surrogates file will be automatically checked before a new connection is made to the
database server or when users are created or altered.

If the cache-refresh fails, the existing surrogate cache is cleared, effectively disabling mapped users.
Existing connections on the server will be unaffected by changes in shared-memory cache. Changes in
shared memory cache affect new sessions.

Related information:

640 Part VI: Administering

https://www.hcltech.com/

Mapped user surrogates in the allowed.surrogates file (UNIX, Linux)
Specifying surrogates for mapped users (UNIX, Linux)
Surrogate user properties (UNIX, Linux)

Copyright© 2020 HCL Technologies Limited

onmode -d: Set data-replication types

Syntax:

>>-onmode-- -d--+-standard----------------+--------------------><
 '-+-primary---+--ha_alias-'
 '-secondary-'

Element Purpose Key Considerations

-d Used to set a server's data-replication type. You can use the -d standard option when the database server is in quiescent, online,
or read-only mode.

ha_alias Identifies the high-availability alias of the primary or
secondary database server.

The high-availability alias is the server's HA_ALIAS configuration parameter value.
The ha_alias argument of the other database server in the data-replication pair and
the database server's type (standard, primary, or secondary) is preserved after
reinitialization of shared memory.

Using the -d standard option
The -d standard option drops the connection between database servers in a data replication pair (if one exists) and sets the database server type of the current database
server to standard. This option does not change the mode or type of the other database server in the pair.

Use the onmode -d standard command only to disconnect a primary server from an HDR secondary server. Running the command converts the HDR secondary server to a
standalone server. You should not run the onmode -d standard command to disconnect a primary server from an RS secondary server. To disconnect a primary server
from an RS secondary server run the following commands:

On the RS secondary server:

onmode -d standard

On the primary server:

onmode -d delete RSS rss_ha_alias

Using the -d primary option
The -d primary option sets the database server type to primary and attempts to connect with the database server that dbservername specifies. If the connection is
successful, data replication is turned on. The primary database server goes into online mode, and the secondary database server goes into read-only mode. If the
connection is not successful, the database server is in online mode, but data replication is not turned on.

Using the -d secondary option
The -d secondary option sets the database server type to secondary and attempts to connect with the database server that ha_alias specifies. If the connection is
successful, data replication is turned on. If the primary database server goes online, and the secondary database server goes into read-only mode. If the connection is not
successful, the database server is in read-only mode, but data replication is not turned on.

This command has an equivalent SQL administration API function.

Related reference:
 ha set primary argument: Define an HDR primary server (SQL administration API)

ha set secondary argument: Define an HDR secondary server (SQL administration API)
ha set standard argument: Convert an HDR server into a standard server (SQL administration API)
onmode and d arguments: Set data-replication types (SQL administration API)
HA_ALIAS configuration parameter
DBSERVERALIASES configuration parameter
DBSERVERNAME configuration parameter
onmode -d: Set High Availability server characteristics
onmode -d command: Replicate an index with data-replication
Related information:

 Connection information set in the HA_ALIAS configuration parameter

Copyright© 2020 HCL Technologies Limited

onmode -d: Set High Availability server characteristics

Syntax:

Part VI: Administering 641

https://www.hcltech.com/
https://www.hcltech.com/

 (1)
>>-onmode -d--+-make primary--ha_alias------+-------+-+--------><
 | '-force-' |
 +-| RS Secondary server commands |------+
 '-| SD Secondary server commands |------'

RS Secondary server commands

 (2)
|--+-+-add RSS--rss_ha_alias-----+--+----------+-+--------------|
 | | (1) | '-password-' |
 | '-RSS--primary_ha_alias-----' |
 | (2) |
 '-+-change RSS--rss_ha_alias--password-----+--'
 | (2) |
 '-delete RSS--rss_ha_alias---------------'

SD Secondary server commands

 (3)
|--+-set SDS primary--ha_alias------+-------+-+-----------------|
 | '-force-' |
 | (2) |
 '-clear SDS primary--primary_ha_alias------'

Notes:

1. Run on secondary server only.
2. Run on primary server only.
3. Run on primary server or secondary server.

Element Purpose Key Considerations

-d Used to create, modify, or delete secondary servers
in high-availability configurations

add RSS Adds an RS secondary server This command should be run on the primary database server.

rss_ha_alias Identifies the RS secondary database server's high-
availability alias.

The value can be an HA_ALIAS value or an ER group name.

password Specifies the secondary server password The password is used only during the first connection attempt. After the primary and
secondary server have connected, the password cannot be changed.

RSS Sets an RS secondary server type This command should be run on the secondary database server.

pri_ha_alias Identifies the name of the primary server

change RSS Change an RS secondary server This command should be run on the primary database server.

delete RSS Removes an RS secondary server definition This command should be run on the primary database server.

set SDS primary Defines the server as a shared disk primary server

ha_alias The high-availability alias of the database server When used with set SDS or make primary, this is the name of the server whose role is
changing.

force Used to force a change If the force option is specified, the operation is performed without requiring that the
secondary server be connected to the current primary server. If the force option is not
specified, the operation must be coordinated with the current primary server. The
force option should be used only when the DBA is certain that the current primary
server is not active; otherwise, the shared disk subsystem can become corrupted.

clear SDS primary Disables the shared disk environment. The server
name specified no longer acts as an SD primary
server

make primary Creates a primary server The make primary command can be issued on any type of secondary server, including
HDR secondary, RS secondary, and SD secondary servers. If make primary is run on:

HDR Secondary: The current primary server is shut down and the secondary is
made the primary.
RS secondary: The server is changed to a standard server.
SD secondary: The server is made the new primary server.

You can also set data replication characteristics can with SQL administration API command equivalents. For more information see SQL Administration API Overview and
the IBM® Informix® Administrator's Guide.

For other onmode -d information, see onmode -d: Set data-replication types and onmode -d command: Replicate an index with data-replication.

Related reference:
 ha make primary argument: Change the mode of a secondary server (SQL administration API)

ha rss argument: Create an RS secondary server (SQL administration API)
ha rss add argument: Add an RS secondary server to a primary server (SQL administration API)
ha rss change argument: Change the password of an RS secondary server (SQL administration API)
ha rss delete argument: Delete an RS secondary server (SQL administration API)
ha sds clear argument: Stop shared-disk replication (SQL administration API)
ha sds set argument: Create a shared-disk primary server (SQL administration API)
ha sds primary argument: Convert an SD secondary server to a primary server (SQL administration API)
onmode -d: Set data-replication types

642 Part VI: Administering

DBSERVERALIASES configuration parameter
DBSERVERNAME configuration parameter
HA_ALIAS configuration parameter
onmode -d command: Replicate an index with data-replication

Copyright© 2020 HCL Technologies Limited

onmode -d command: Replicate an index with data-replication

Syntax:

>>-onmode-- -d--+-idxauto--+-on--+------------------------+----><
 | '-off-' |
 '-index--database:-+--------+-table#index-'
 '-owner.-'

Element Purpose Key considerations

-d Specifies how indexes are replicated to a High-
Availability Data-Replication (HDR) secondary server
when an index on the secondary server becomes
corrupt

You can use the onmode -d idxauto and onmode -d index commands while the server
is in online mode.

idxauto Enables automatic index replication when an index
on a secondary server becomes corrupt

Use the onmode -d idxauto command to overwrite the value of the DRIDXAUTO
configuration parameter within a session.

index Replicates an index from a primary to a secondary
server

If you detect a corrupt index on a secondary server, use the onmode -d index
command to start replication of the index from the primary to the secondary server.

database Specifies the database containing the index to
replicate

Syntax must conform to the Identifier segment; see the IBM® Informix® Administrator's
Guide.

index Specifies the name of the index to replicate Index must exist on table and in database specified.
Syntax must conform to the Identifier segment; see the IBM Informix Administrator's
Guide.

owner Specifies the owner of a table You must specify the current owner of the table.
Syntax must conform to the Table Name segment; see the IBM Informix
Administrator's Guide.

table Specifies the name of the table on which the index is
based

Syntax must conform to the Table Name segment; see the IBM Informix
Administrator's Guide.

The onmode -d idxauto and the onmode -d index commands provide methods to replicate an index to a secondary server containing a corrupted index. The base table
will be locked during the transfer of an index. The alternative to using these options is to drop and rebuild the corrupt index on the primary server.

In the case of a fragmented index with one corrupt fragment, the onmode -d idxauto command only transfers the single affected fragment, whereas the onmode -d index
command transfers the whole index.

Related reference:
 DRIDXAUTO configuration parameter

ha set idxauto argument: Replicate indexes to secondary servers (SQL administration API)
onmode -d: Set data-replication types
onmode -d: Set High Availability server characteristics
DBSERVERALIASES configuration parameter
DBSERVERNAME configuration parameter
HA_ALIAS configuration parameter

Copyright© 2020 HCL Technologies Limited

onmode -D, -M, -Q, -S: Change decision-support parameters

Syntax:

>>-onmode--+- -D--max_priority-+-------------------------------><
 +- -M--kilobytes----+
 +- -Q--queries------+
 '- -S--scans--------'

Element Purpose Key considerations

-D max_priority Changes the value of
MAX_PDQPRIORITY

This value must be an unsigned integer between 0 and 100.
Specify max_priority as a factor to temper user requests for PDQ resources.

For information on parameters used for controlling PDQ, see MAX_PDQPRIORITY
configuration parameter and the IBM® Informix Performance Guide.

Part VI: Administering 643

https://www.hcltech.com/
https://www.hcltech.com/

Element Purpose Key considerations

-M kilobytes Changes the value of
DS_TOTAL_MEMORY

This value has a platform-dependent upper limit. If you enter a very large value and that value
is too large for your platform, you will receive a message that gives you the range of values for
your platform.
Specify kilobytes for the maximum amount of memory available for parallel queries.

For more information, see DS_TOTAL_MEMORY configuration parameter and the IBM Informix
Performance Guide.

-Q queries Changes the value of
DS_MAX_QUERIES

This value must be an unsigned integer between 1 and 8,388,608.
Specify queries for the maximum number of concurrently executing parallel queries.

For information on parameters used for controlling PDQ, see DS_MAX_QUERIES configuration
parameter and the IBM Informix Performance Guide.

-S scans Changes the value of DS_MAX_SCANS This value must be an unsigned integer between 10 and 1,048,576.
Specify scans for the maximum number of concurrently executing parallel scans.

For information on parameters used for controlling PDQ, see DS_MAX_SCANS configuration
parameter and the IBM Informix Performance Guide.

These options allow you to change configuration parameters while the database server is online. The new values affect only the current instance of the database server;
the values are not recorded in the ONCONFIG file. If you shut down and restart the database server, the values of the parameters revert to the values in the ONCONFIG
file. For more information about these configuration parameters, see Database configuration parameters.

To check the current values for the MAX_PDQPRIORITY, DS_TOTAL_MEMORY, DS_MAX_SCANS, DS_MAX_QUERIES, and the DS_NONPDQ_QUERY_MEM configuration
parameters, use onstat -g mgm. See onstat -g mgm command: Print MGM resource information.

This command has an equivalent SQL administration API function.

Related reference:
 DS_MAX_QUERIES configuration parameter

DS_MAX_SCANS configuration parameter
MAX_PDQPRIORITY configuration parameter
DS_TOTAL_MEMORY configuration parameter
onmode and D arguments: Set PDQ priority (SQL administration API)
onmode and M arguments: Temporarily change decision-support memory (SQL administration API)
onmode and Q arguments: Set maximum number for decision-support queries (SQL administration API)
onmode and S arguments: Set maximum number of decision-support scans (SQL administration API)

Copyright© 2020 HCL Technologies Limited

onmode -e: Change usage of the SQL statement cache

Syntax:

>>-onmode-- -e--mode---><

Element Purpose Key considerations

onmode -e ENABLE Enables the SQL statement cache. For more
information, see the material on improving query
performance in the IBM® Informix® Performance
Guide.

User sessions use the cache only when they perform either of the
following actions:

Set the environment variable STMT_CACHE to 1
Execute the SQL statement SET STATEMENT CACHE ON

onmode -e FLUSH Flushes the statements that are not in use from
the SQL statement cache

The onstat -g ssc ref_cnt field shows 0.

onmode -e OFF Turns off the SQL statement cache No statements are cached.

onmode -e ON Turns on the SQL statement cache All statements are cached unless the user turns it off with one of
the following actions:

Set the environment variable STMT_CACHE to 0
Execute the SQL statement SET STATEMENT CACHE OFF

The onmode -e changes are in effect for the current database server session only. When you restart the database server, it uses the default STMT_CACHE parameter value
in the ONCONFIG file.

This command has an equivalent SQL administration API function.

Related reference:
 STMT_CACHE configuration parameter

onmode and e arguments: Change usage of the SQL statement cache (SQL administration API)

Copyright© 2020 HCL Technologies Limited

onmode -F: Free unused memory segments
644 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Use the onmode -F command to free shared-memory segments that are unavailable or no longer needed for a process

Syntax:

>>-onmode-- -F---><

Element Purpose Key considerations

-F Frees unused memory segments None.

When you execute onmode -F, the memory manager examines each memory pool for unused memory. When the memory manager locates blocks of unused memory, it
immediately frees the memory. After the memory manager checks each memory pool, it begins checking memory segments and frees any that the database server no
longer needs.

It is recommended that you run onmode -F from an operating-system scheduling facility regularly and after the database server performs any function that creates
additional memory segments, including large index builds, sorts, or backups.

Running onmode -F causes a significant degradation of performance for any users that are active when you execute the utility. Although the execution time is brief (1 to 2
seconds), degradation for a single-user database server can reach 100 percent. Systems with multiple CPU virtual processors experience proportionately less
degradation.

To confirm that onmode freed unused memory, check your message log. If the memory manager frees one or more segments, it displays a message that indicates how
many segments and bytes of memory were freed.

This command has an equivalent SQL administration API function.

Related reference:
 onmode and F arguments: Free unused memory segments (SQL administration API)

Copyright© 2020 HCL Technologies Limited

onmode -h: Update sqlhosts caches

Syntax
>>-onmode-- -h--+-------+---><
 +-force-+

Element Purpose Key considerations

-h Allows you to update sqlhosts caches. The database server maintains a hierarchy of sqlhosts caches. There is a cache of sqlhosts
entries for each session.

In addition, there exists a global cache of the sqlhosts entries which can be enabled and
disabled by the use of the sqlhosts argument of the NS_CACHE configuration parameter.

The global sqlhosts cache entries will be reloaded when this cache is enabled and the last
modification time of the sqlhosts file is newer than the cache read time of the entry.

-force This optional argument allows you to trigger the
sqlhosts caches unconditionally.

The sqlhosts caches will be reloaded unconditionally.

This command has an equivalent SQL administration API function. For more information, see onmode and h arguments: Update sqlhosts caches (SQL administration API)

Copyright© 2020 HCL Technologies Limited

onmode -I: Control diagnostics collection

Use the onmode -I option to start and stop diagnostics collection.

When you encounter an error, you can specify the onmode -I iserrno option to start collecting diagnostics information. You can also specify the session ID to collect
information for only specific session.

To stop the diagnostics collection, use the onmode -I option without any other parameters.

>>-onmode-- -I--+----------------------+-----------------------><
 | .-,-------. |
 | V | |
 '-iserrno----+-----+-+-'
 '-sid-'

Element Purpose Key Considerations

iserrno Message number of the error that you want to collect diagnostic information for. None.

sid Session ID of the session that you want to collect diagnostic information for. None.

The diagnostics collection procedures are described in the IBM® Informix® Administrator's Guide.

Part VI: Administering 645

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

onmode -k, -m, -s, -u, -j: Change database server mode

Syntax:

>>-onmode--+- -k-+---><
 +- -m-+
 +- -s-+
 +- -u-+
 '- -j-'

Element Purpose Key Considerations

-k Takes the database server to offline mode and removes
shared memory

To reinitialize shared memory, shut down and restart the database server.
Taking the Database Server to Offline Mode with the -k Option.

-m Takes the database server from quiescent or
administration mode to online mode

See Bringing the Database Server Online with the -m Option.

-s Shuts down the database server gracefully Users who are using the database server are allowed to finish before the database server
comes to quiescent mode, but no new connections are allowed. When all processing is
finished, -s takes the database server to quiescent mode. The -s option leaves shared
memory intact.
See Shutting Down the Database Server Gracefully with the -s Option.

-u Shuts down the database server immediately This option brings the database server to quiescent mode without waiting for users to finish
their sessions. Their current transactions are rolled back, and their sessions are
terminated.
See Shutting Down the Database Server Immediately with the -u Option.

-j Puts the database server into administration mode This option brings the database server to administration mode, allowing the informix user
all functions including the issuance of SQL and DDL commands. The -j -U option enables
the DBSA to designate specific users (in addition to the informix user) to access the
database server.
See your IBM® Informix® Administrator's Guide.

The following sections describe the options that take the database server from one mode to another.

Taking the Database Server to Offline Mode with the -k Option
 The onmode -k option takes the database server to offline mode and removes database server shared memory.

Bringing the Database Server Online with the -m Option
 Shutting Down the Database Server Gracefully with the -s Option

 Shutting Down the Database Server Immediately with the -u Option
 Changing the Database Server to Administration Mode with the -j Option

Related reference:

 onmode and j arguments: Switch the database server to administration mode (SQL administration API)
onmode and m arguments: Switch to multi-user mode (SQL administration API)

Copyright© 2020 HCL Technologies Limited

Taking the Database Server to Offline Mode with the -k Option

The onmode -k option takes the database server to offline mode and removes database server shared memory.

A prompt asks for confirmation. Another prompt asks for confirmation to kill user threads before the database server comes offline. If you want to eliminate these
prompts, execute the -y option with the -s option.

This option does not kill all client sessions. Use the -u option to avoid hanging client sessions or virtual server processes.
Important: When you use the onmode -k command to shut down the database server, utilities that are waiting for a user response might not terminate. For example,
ontape might be waiting for another tape, onstat -i might be waiting for a user response, or onspaces might be waiting for y or n to continue. If this problem occurs, use
onmode -uk or -uky instead to roll back work before removing shared memory. For more information, see the descriptions of other options on this page.
Related reference:

 The onclean utility
The onshutdown script

Copyright© 2020 HCL Technologies Limited

Bringing the Database Server Online with the -m Option

The -m option brings the database server online from quiescent mode.

Copyright© 2020 HCL Technologies Limited

646 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Shutting Down the Database Server Gracefully with the -s Option

The -s option causes a graceful shutdown. Users who are using the database server are allowed to finish before the database server comes to quiescent mode, but no new
connections are allowed. When all processing is finished, -s takes the database server to quiescent mode. The -s option leaves shared memory intact.

A prompt asks for confirmation. If you want to eliminate this prompt, execute the -y option with the -s option.

Copyright© 2020 HCL Technologies Limited

Shutting Down the Database Server Immediately with the -u Option

The -u option causes immediate shutdown. This option brings the database server to quiescent mode without waiting for users to finish their sessions. Their current
transactions are rolled back, and their sessions are terminated.

A prompt asks for confirmation. Another prompt asks for confirmation to kill user threads before the database server comes to quiescent mode. If you want to eliminate
these prompts, execute the -y option with the -s option.

Copyright© 2020 HCL Technologies Limited

Changing the Database Server to Administration Mode with the -j Option

The -j option puts the database server into the administration mode and allows only the DBSA group and the user informix to connect to the server. The -j option allows a
DBSA to have the server in a fully functional mode to perform maintenance.

The -j -U option enables the DBSA to grant individual users access to the database server in administration mode. Once connected, these individual users can execute any
SQL or DDL command. When the server is changed to administration mode, all sessions for users other than user informix, the DBSA group users, and those identified in
the onmode -j -U command lose their database server connection.

The following example enables three individual users to connect to the database server and have database server access until the database server mode changes to
offline, quiescent or online mode:

onmode -j -U karin,sarah,andrew

Access for individual users can also be removed by executing onmode -j -U and removing their name from the new list of names in the command. For example, in the
following commands, the first command grants only Karin access, the second command grants Karin and Sarah access, and the third command grants only Sarah access
(and removes access from Karin).

onmode -j -U karin
onmode -j -U karin,sarah
onmode -j -U sarah

To allow user informix and the DBSA group user to retain their database server access in administration mode and remove all single users from accessing the database
server, use the following command:

onmode -j -U ' '

For information on designating single users in administration mode using a configuration parameter, see ADMIN_MODE_USERS configuration parameter

Related reference:
 ADMIN_MODE_USERS configuration parameter

Copyright© 2020 HCL Technologies Limited

onmode -l: Switch the logical-log file

Syntax:

>>-onmode-- -l---><

Element Purpose Key considerations

-l Switches the current logical-log file to
the next logical-log file

You must use onmode to switch to the next logical-log file.
For information on switching to the next logical-log file, see the chapter on managing logical-log files in
the IBM® Informix® Administrator's Guide.

This command has an equivalent SQL administration API function.

Related reference:
 onmode and l arguments: Switch to the next logical log (SQL administration API)

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 647

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

onmode -n, -r: Change shared-memory residency

Syntax:

>>-onmode--+- -n-+---><
 '- -r-'

Element Purpose Key considerations

-n Ends forced residency of the resident portion of
shared memory

This command does not affect the value of RESIDENT, the forced-residency parameter in the
ONCONFIG file.

-r Starts forced residency of the resident portion of
shared memory

This command does not affect the value of RESIDENT, the forced-memory parameter in the
ONCONFIG file.

Important: Set the RESIDENT parameter to 1 before you use the onmode -r or -n options.
For information on using the forced-residency parameter to turn residency on or off for the next time that you restart the database server, see the chapter on managing
shared memory in the IBM® Informix® Administrator's Guide.

This command has an equivalent SQL administration API function.

Related reference:
 RESIDENT configuration parameter

onmode and n arguments: Unlock resident memory (SQL administration API)
onmode and r arguments: Force residency of shared memory (SQL administration API)

Copyright© 2020 HCL Technologies Limited

onmode -O: Override ONDBSPACEDOWN WAIT mode

Syntax:

>>-onmode-- -O---><

Element Purpose Key considerations

-O Overrides the WAIT mode of the ONDBSPACEDOWN configuration parameter None.

Use the onmode -O option only in the following circumstances:

ONDBSPACEDOWN is set to WAIT.
A disabling I/O error occurs that causes the database server to block all updating threads.
You cannot or do not want to correct the problem that caused the disabling I/O error.
You want the database server to mark the disabled dbspace as down and continue processing.

When you execute this option, the database server marks the dbspace responsible for the disabling I/O error as down, completes a checkpoint, and releases blocked
threads. Then onmode prompts you with the following message:

This will render any dbspaces which have incurred disabling I/O errors unusable
and require them to be restored from an archive.
Do you wish to continue?(y/n)

If onmode does not find any disabling I/O errors on noncritical dbspaces when you run the -O option, it notifies you with the following message:

There have been no disabling I/O errors on any noncritical dbspaces.

This command has an equivalent SQL administration API function.

Related reference:
 ONDBSPACEDOWN configuration parameter

onmode and O arguments: Mark a disabled dbspace as down (SQL administration API)

Copyright© 2020 HCL Technologies Limited

onmode -p: Add or drop virtual processors

Use the onmode -p command to dynamically add or drop virtual processors for the database server instance. The onmode -p command does not update the onconfig file.

Syntax:

>>-onmode-- -p--+-+----+--number--+-ADT-----+-+----------------><
 | '- +-' +-AIO-----+ |
 | +-BTS-----+ |
 | +-CPU-----+ |
 | +-DWAVP---+ |
 | +-ENCRYPT-+ |
 | +-JVP-----+ |

648 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

 | +-LIO-----+ |
 | +-MSC-----+ |
 | +-PIO-----+ |
 | +-SOC-----+ |
 | +-STR-----+ |
 | '-vpclass-' |
 '- - -number--+-BTS-----+-----'
 +-CPU-----+
 +-ENCRYPT-+
 +-JVP-----+
 '-vpclass-'

Element Purpose Key Considerations

-p number Adds or drops virtual processors. The number
argument indicates the number of virtual
processors to add or drop
If this value is a negative integer, processors are
dropped. If this value is a positive integer,
processors are added.

You can use the -p option only when the database server is in online mode, and you can add
to only one class of virtual processors at a time.
For more details, see Rules for adding and dropping virtual processors.

If you are dropping virtual processors, the maximum cannot exceed the actual number of
processors of the specified type. If you are adding virtual processors, the maximum number
depends on the operating system.

For more information, see the chapter on using virtual processors in the IBM® Informix
Administrator's Guide.

ADT Runs auditing processes The database server starts one virtual processor in the audit class when you turn on audit
mode by setting the ADTMODE parameter in the ONCONFIG file.

AIO Performs nonlogging disk I/O to cooked disk
spaces

Also performs nonlogging I/O to raw disk spaces if kernel asynchronous I/O (KAIO) is not
used.

BTS Run basic text search index operations and
queries.

BTS virtual processors are non-yielding. Specify more BTS virtual processors if you want
multiple basic text search queries to be run simultaneously. Use the VPCLASS parameter in
the onconfig file to create at least one permanent BTS virtual processor.
For more information on basic text search queries, see the IBM Informix Database
Extensions User's Guide.

CPU Runs all session threads and some system threads It is recommended that the number of CPU VPs not be greater than the number of physical
processors. If KAIO is used, performs I/O to raw disk spaces, including I/O to physical and
logical logs. Runs thread for KAIO where available or a single poll thread. The database
server uses the number of CPU VPs to allocate resources for parallel database queries
(PDQ). If you drop CPU VPs, your queries will run significantly slower. The Reinit field of the
onstat -g mgm output displays information on the number of queries that are waiting for
running queries to complete after an onmode -p command. Also see the IBM Informix
Performance Guide.

DWAVP Runs the administrative functions and procedures
for Informix® Warehouse Accelerator on a
database server that is connected to Informix
Warehouse Accelerator

A single DWAVP can process most Informix Warehouse Accelerator operations without
delay. However, in systems with significant activity, you can define a maximum of two
DWAVP virtual processors to avoid the delay of other administrative commands while data
marts are loading.

ENCRYPT Executes column-level encryption and decryption
routines

Specify more ENCRYPT virtual processors if you have multiple encrypted columns.

JVP Executes Java™ user-defined routines in the Java
Virtual Machine (JVM)

Specify more JVPs if you are running many Java UDRs.

LIO Writes to the logical-log files if they are in cooked
disk space

Use two LIO virtual processors only if the logical logs are in mirrored dbspaces. The
database server allows a maximum of two LIO virtual processors.

MSC Manages requests for system calls that require a
large stack

Used for miscellaneous internal tasks.

PIO Writes to the physical log if it is in cooked disk
space

Use two PIO virtual processors only if the physical log is in a mirrored dbspace. The
database server allows a maximum of two PIO virtual processors.

SOC Uses sockets to perform network communications You can use the SOC virtual processor only if the database server is configured for network
connections through sockets.

STR Performs stream pipe connections

vpclass Names a user-defined virtual processor class Use the VPCLASS parameter in the onconfig to define the user-defined virtual-processor
class. Specify more user-defined virtual processors if you are running many UDRs.
On Windows, you can have only one user-defined virtual processor class at a time. Omit the
number parameter in the onmode -p vpclass command.

For more information on extension classes, see VPCLASS configuration parameter.

Rules for adding and dropping virtual processors
 You can add or drop virtual processors.

Monitoring poll threads with the onstat utility

Related reference:
 onmode and p arguments: Add or remove virtual processors (SQL administration API)

VPCLASS configuration parameter

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 649

https://www.hcltech.com/

Rules for adding and dropping virtual processors

You can add or drop virtual processors.

The following rules apply:

You cannot drop the final virtual processor. At least one virtual processor must remain.
You cannot add or drop ADM or OPT.
Windows Only: You can add a supported virtual processor of any class, but you cannot drop virtual processors.

These are the virtual processors that you can add or drop:

Virtual processor name Add Drop

ADT Yes No

AIO Yes No

BTS Yes Yes

CPU Yes Yes

ENCRYPT Yes Yes

JVP Yes Yes

LIO Yes1 No

MSC Yes No

PIO Yes1 No

SOC Yes No

STR Yes No

vpclass Yes Yes

Table note:

1. You can add one more virtual processor.

Copyright© 2020 HCL Technologies Limited

Monitoring poll threads with the onstat utility

While the database server is online, you cannot drop a CPU virtual processor that is running a poll thread. To identify poll threads that run on CPU virtual processors, use
the following command:

onstat -g ath | grep 'cpu.*poll'

The following onstat -g ath output shows two CPU virtual processors with poll threads. In this situation, you cannot drop to fewer than two CPU virtual processors.

tid tcb rstcb prty status vp-class name

8 a362b90 0 2 running 1cpu tlitcppoll
9 a36e8e0 0 2 cond wait arrived 3cpu

The status field contains information, such as running, cond wait, IO Idle, IO Idle, sleeping secs: number_of_seconds, or sleeping forever. To
improve performance, you can remove or reduce the number of threads that are identified as sleeping forever.

For more information on the types of virtual processors, see the chapter on virtual processors and threads in the IBM® Informix® Administrator's Guide.

This command has an equivalent SQL administration API function.

Copyright© 2020 HCL Technologies Limited

onmode -P: Start, stop, or restart a listen thread dynamically

Use the onmode -P command to start, stop, or restart an existing listen thread for a SOCTCP or TLITCP network protocol without interrupting existing connections.

Syntax:

>>-onmode-- -P--+-start---+--server_name-----------------------><
 +-stop----+
 '-restart-'

Element Purpose Key Considerations

start Start a new listen thread for a SOCTCP or TLITCP
network protocol without interrupting existing
connections.

The definition of the listen thread must exist in the sqlhosts file for the server. If the
definition of the listen thread does not exist in the sqlhosts file, you must add it before you
can start the listen thread dynamically.

650 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Element Purpose Key Considerations

stop Stop an existing listen thread for a SOCTCP or
TLITCP network protocol without interrupting
existing connections.

The definition of the listen thread must exist in the sqlhosts file for the server.

restart Stop and start an existing listen thread for a
SOCTCP or TLITCP network protocol without
interrupting existing connections.

The definition of the listen thread must exist in the sqlhosts file for the server.

server_name The name of the database server on which you
want to start, stop, or restart a listen thread.

These commands do not update the sqlhosts file.

These commands are equivalent to the SQL administration API functions that have start listen, stop listen, or restart listen arguments.

Example
The following command stops and then starts a listen thread for a server named ids_serv1:

onmode -P restart ids_serv1

Related reference:
 start listen argument: Start a listen thread dynamically (SQL administration API)

stop listen argument: Stop a listen thread dynamically (SQL administration API)
restart listen argument: Stop and start a listen thread dynamically (SQL administration API)

Copyright© 2020 HCL Technologies Limited

onmode -R: Regenerate .infos.dbservername File

The database server creates the .infos.dbservername file when you initialize shared memory and removes the file when you take the database server offline. This file is in
the $INFORMIXDIR/etc or %INFORMIXDIR%\etc directory. The name of this file is derived from the DBSERVERNAME parameter in the ONCONFIG configuration file.

The database server uses information from the .infos.dbservername file when it accesses utilities. If the file is accidentally deleted, you must either re-create the file or
shut down and restart the database server.

Syntax:

>>-onmode-- -R---><

Element Purpose Key Considerations

-R Re-creates the .infos.dbservername file Before you use the -R option, set the INFORMIXSERVER environment variable to match the
DBSERVERNAME parameter from the ONCONFIG file. Do not use the -R option if the
INFORMIXSERVER environment variable is set to one of the DBSERVERALIASES names.

Copyright© 2020 HCL Technologies Limited

onmode -W: Change settings for the SQL statement cache

Syntax:

>>-onmode-- -W--+-STMT_CACHE_HITS--hits-----+------------------><
 '-STMT_CACHE_NOLIMIT--value-'

Element Purpose Key Considerations

STMT_CACHE_HITS hits Specifies the number of hits (references)
to a statement before it is fully inserted
in the SQL statement cache Set hits to 1
or more to exclude ad hoc queries from
entering the cache.

You can only increase or reset the value of STMT_CACHE_HITS.
The new value displays in the #hits field of the onstat -g ssc
output. If hits = 0, the database server inserts all qualified
statements and its memory structures in the cache. If hits > 0
and the number of times the SQL statement has been executed
is less than STMT_CACHE_HITS, the database server inserts key-
only entries in the cache. It inserts qualified statements in the
cache after the specified number of hits have been made to the
statement. ONCONFIG Parameter: STMT_CACHE_HITS

STMT_CACHE_NOLIMIT value Controls whether statements are
inserted in the SQL statement cache.

If value = 0, the database server inserts no statements in the
cache. If value = 1, the database server always inserts
statements in the cache. If none of the queries are shared, turn
off STMT_CACHE_NOLIMIT to prevent the database server from
allocating a large amount of memory for the cache.ONCONFIG
Parameter: STMT_CACHE_NOLIMIT

Part VI: Administering 651

https://www.hcltech.com/
https://www.hcltech.com/

SQL statement cache examples

Related reference:
 STMT_CACHE_HITS configuration parameter

STMT_CACHE_NOLIMIT configuration parameter
onmode and W arguments: Reset statement cache attributes (SQL administration API)

Copyright© 2020 HCL Technologies Limited

SQL statement cache examples

The following are examples of onmode -W commands for changing SQL statement cache (SSC) settings. The changes are in effect for the current database server session
only and do not change the ONCONFIG values. When you restart the database server, it uses the default SSC settings, if not specified in the ONCONFIG file, or the
ONCONFIG settings. To make the changes permanent, set the appropriate configuration parameter.

onmode -W STMT_CACHE_HITS 2 # number of hits before statement is
 # inserted into SSC
onmode -W STMT_CACHE_NOLIMIT 1 # always insert statements into
 # the cache

This command has an equivalent SQL administration API function.

Copyright© 2020 HCL Technologies Limited

onmode -we: Export a file that contains current configuration parameters

Use the onmode -we command to create and export a configuration file that is a snapshot of your current configuration parameters.

Syntax:

>>-onmode-- -we--path_name-------------------------------------><

Element Description Key Considerations

path_name The full or relative path name of the configuration
file.

Do not add an extension.

Usage
The onmode -we command automatically creates an ASCII file, assigning it the name that you specified in the command. The format of the file is the same as the format
of the onconfig.std file.

If you changed any values dynamically during the current session, the exported file contains the changed values instead of the values that are permanently saved in the
onconfig file.

After you export the configuration file, you can import it and use it as your configuration file.

If run the onmode -we command and specify a file that was previously exported, the command exports the new version of the file, overwriting the previous exported file.

The onmode -we command is equivalent to the SQL administration API function that has the onmode and export arguments.

Examples
The following command exports all configuration parameters and their current values to the onconfig3 file in the /tmp directory:

onmode -we /tmp/onconfig3

Related tasks:
 Modifying the onconfig file

Related reference:
 onmode -wi: Import a configuration parameter file

export config argument: Export configuration parameter values (SQL administration API)

Copyright© 2020 HCL Technologies Limited

onmode -wf, -wm: Dynamically change certain configuration parameters

Use the onmode -wf or onmode -wm command to dynamically change specific configuration parameters.

Syntax:

>>-onmode--+- -wf--config_param=value-+------------------------><

652 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

 '- -wm--config_param=value-'

Element Purpose Key considerations

-wf Updates the value of the specified configuration parameter in the onconfig file. The DBA user must have write
permission for the directory that
contains the onconfig file.

-wm Dynamically sets the value of the specified configuration parameter in memory. The specified value is not
preserved when the server is
restarted.

config_param=value Specifies the configuration parameter and its new value. See Database configuration
parameters.

To see a list of configuration parameters that you can tune dynamically with an onmode -wm or -wf command, run the onstat -g cfg tunable command.

The onmode -wf and onmode -wm commands have equivalent SQL administration API functions.

onmode -wm: Change LRU tuning status
 You can use the onmode -wm option to change the LRU tuning status without updating the onconfig file.

Related tasks:
 Modifying the onconfig file

Related reference:
 onstat -g cfg command: Print the current values of configuration parameters

onmode and wf arguments: Permanently update a configuration parameter (SQL administration API)
onmode and wm arguments: Temporarily update a configuration parameter (SQL administration API)
set onconfig memory argument: Temporarily change a configuration parameter (SQL administration API)
set onconfig permanent argument: Permanently change a configuration parameter (SQL administration API)

Copyright© 2020 HCL Technologies Limited

onmode -wm: Change LRU tuning status

You can use the onmode -wm option to change the LRU tuning status without updating the onconfig file.

Syntax:

>>-onmode-- -wm--AUTO_LRU_TUNING----+-0-+----------------------><
 '-1-'

Element Purpose Key considerations

-wm Dynamically sets the value of the specified
configuration parameter for the current session.

None.

0 Turns off automatic LRU tuning for the current
session.

None.

1 Turns on automatic LRU tuning for the current
session.

None.

This command has an equivalent SQL administration API function.

Related reference:
 onmode, wm, and AUTO_LRU_TUNING arguments: Change LRU tuning status (SQL administration API)

Copyright© 2020 HCL Technologies Limited

onmode -wi: Import a configuration parameter file

Use the onmode -wi command to import a file that contains new values for multiple configuration parameters. If the parameters are tunable, which means they can be
updated individually with an onmode -wm command, the database server applies the new values.

Syntax:

>>-onmode-- -wi--path_name-------------------------------------><

Element Purpose Key Considerations

path_name The full or relative path name of the previously
exported configuration file.

Usage

Part VI: Administering 653

https://www.hcltech.com/
https://www.hcltech.com/

Importing a configuration file with onmode -wi is often faster and more convenient than running individual onmode -wm commands on multiple tunable configuration
parameters.

The import operation ignores the configuration parameters in the file that are not tunable. The operation also ignores new parameter values that match the values that are
currently used by the instance.

After you import the file, you can modify the values of the imported configuration parameters.

An import operation changes only the values of configuration parameters that are in memory. The operation does not affect the values in the
$INFORMIXDIR/etc/$ONCONFIG file.

The onmode -wi command is equivalent to the SQL administration API functions that have onmode and wi arguments or the import argument.

Example
The following command imports the configuration parameters that are in a file named onconfig3 in the /tmp directory:

onmode -wi /tmp/onconfig3

Related tasks:
 Modifying the onconfig file

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

onmode -we: Export a file that contains current configuration parameters
import config argument: Import configuration parameter values (SQL administration API)

Copyright© 2020 HCL Technologies Limited

onmode -Y: Dynamically change SET EXPLAIN

Syntax:

>>-onmode-- -Y--session_id--+-0--------------------+-----------><
 '-+-2-+--+-----------+-'
 '-1-' '-file_name-'

Element Purpose Key considerations

file_name The explain output file name. If the file's absolute path is not included, the example
output file is created in the default example output file
location. If the file exists, explain output is appended to it.
If a file exists from the SET EXPLAIN statement, that file
is not used until dynamic explain is turned off.

session_id Identifies the specific session. None.

-Y Dynamically change the value of the SET EXPLAIN statement. None.

You can use the SET EXPLAIN statement to display the query plan of the optimizer, an estimate of the number of rows returned, and the relative cost of the query. When
you use the onmode -Y command to turn on SET EXPLAIN, the output is displayed in the explain output file.

The onmode -Y command dynamically changes the value of the SET EXPLAIN statement for an individual session. The following invocations are valid with this command:

Invocation Explanation

onmode -Y session_id 2 Turns SET EXPLAIN on for session_id

onmode -Y session_id 1 Turns SET EXPLAIN on for session_id and displays the query statistics section in the explain output file

onmode -Y session_id 1 /tmp/myexplain.out Turns SET EXPLAIN on for session_id and writes explain output to /tmp/myexplain.out.

onmode -Y session_id 0 Turns SET EXPLAIN off for session_id

This command has an equivalent SQL administration API function.

Related reference:
 EXPLAIN_STAT configuration parameter

onmode and Y arguments: Change query plan measurements for a session (SQL administration API)
Related information:

 SET EXPLAIN statement
Using the FILE TO option
Default name and location of the explain output file on UNIX
Default name and location of the output file on Windows
Report that shows the query plan chosen by the optimizer
The explain output file
Query statistics section provides performance debugging information

Copyright© 2020 HCL Technologies Limited

onmode -z: Kill a database server session

654 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Syntax:

>>-onmode-- -z--sid--><

Element Purpose Key considerations

-z sid Kills the session that you specify in sid This value must be an unsigned integer greater than 0 and must be the session identification number of
a currently running session.

To use the -z option, first obtain the session identification (sessid) with onstat -u, then execute onmode -z, substituting the session identification number for sid.

When you use onmode -z, the database server attempts to kill the specified session. If the database server is successful, it frees any resources that the session holds. If
the database server cannot free the resources, it does not kill the session.

If the session does not exit the section or release the latch, the database server administrator can take the database server offline, as described in Taking the Database
Server to Offline Mode with the -k Option, to close all sessions.

This command has an equivalent SQL administration API function.

Related reference:
 onmode and z arguments: Terminate a user session (SQL administration API)

Copyright© 2020 HCL Technologies Limited

onmode -Z: Kill a distributed transaction

Syntax:

>>-onmode-- -Z--address--><

Element Purpose Key considerations

-Z address Kills a distributed transaction associated with the
shared-memory address address

This argument must be the address of an ongoing distributed transaction that has exceeded
the amount of time that TXTIMEOUT specifies. The address must conform to the operating-
system-specific rules for addressing shared-memory. (The address is available from onstat -x
output.)
This option is not valid until the amount of time that the ONCONFIG parameter TXTIMEOUT
specifies has been exceeded. The -Z option should rarely be used and only by an
administrator of a database server involved in distributed transactions.

For information on initiating independent actions in a two-phase commit protocol, see the
chapter on multiphase commit protocols in the IBM® Informix® Administrator's Guide.

Distributed transactions provide the ability to query data on different database servers.

Attention: If applications are performing distributed transactions, killing one of the distributed transactions can leave your client/server database system in an
inconsistent state. Try to avoid this situation.
This command has an equivalent SQL administration API function.

Related reference:
 onmode and Z arguments: Terminate a distributed transaction (SQL administration API)

Copyright© 2020 HCL Technologies Limited

The onparams Utility

Use the onparams utility to add or drop a logical-log file, change physical-log parameters, and add a new buffer pool.

In This Chapter
This chapter shows you how to use the following onparams options:

onparams -a -d dbspace: Add a logical-log file
onparams -d -l lognum: Drop a logical-log file
onparams -p: Change physical-log parameters
onparams -b: Add a buffer pool

Any onparams command fails if a storage-space backup is in progress. If you do not use any options, onparams returns a usage statement.

You cannot use the onparams utility on High-Availability Data Replication (HDR) secondary servers, remote standalone (RS) secondary servers, or shared disk (SD)
secondary servers.

You can also use SQL administration API commands that are equivalent to onparams commands to add or drop a logical-log file, change physical-log parameters, and add
a new buffer pool.

On UNIX, you must be logged in as user root or user informix to execute onparams. Only user informix is allowed to execute the SQL administration API command
strings.

Part VI: Administering 655

https://www.hcltech.com/
https://www.hcltech.com/

On Windows, you must be a member of the Informix-Admin group to execute onparams.

onparams syntax
 Use the onparams utility to modify the configuration of logical logs or physical logs.

onparams -a -d dbspace: Add a logical-log file
 onparams -d -l lognum: Drop a logical-log file

 onparams -p: Change physical-log parameters
 onparams -b: Add a buffer pool

 Use the onparams -b command to create a buffer pool that corresponds to the page size of the dbspace.
Examples of onparams Commands

Related reference:

 LOGFILES configuration parameter
RTO_SERVER_RESTART configuration parameter

Copyright© 2020 HCL Technologies Limited

onparams syntax

Use the onparams utility to modify the configuration of logical logs or physical logs.

>>-onparams--+-------------------------+--+-----------------+--><
 | (1) | +- -a -d--dbspace-+
 '-| -FILE option |-----' +- -d -l--lognum--+
 +- -p-------------+
 +- -b-------------+
 +- -V-------------+
 '- -version-------'

Notes:

1. See The -FILE option.

Element Purpose Key Considerations

-V Displays the software version number and the serial number See Obtaining utility version information.

-version Displays the build version, host, OS, number and date, as well as the GLS version See Obtaining utility version information.

Copyright© 2020 HCL Technologies Limited

onparams -a -d dbspace: Add a logical-log file

Syntax:

>>-onparams-- -a-- -d--dbspace--+-----------+--+-----+---------><
 '- -s--size-' '- -i-'

Element Purpose Key considerations

-a -d dbspace Adds a logical-log file to the end of the
log-file list to the specified dbspace

You can add a log file to a dbspace only if the database server has adequate contiguous space. The
newly added log files have a status of A and are immediately available for use. You can add a log file
during a backup. You can have a maximum of 32,767 logical-log files. Use onstat -l to view the status
of your logical-log files. It is recommended that you take a level-0 backup of the root dbspace and the
dbspace that contains the log file as soon as possible.
You cannot add a log file to a blobspace or sbspace.

Syntax must conform to the Identifier segment; see IBM® Informix® Guide to SQL: Syntax.

-i Inserts the logical-log file after the
current log file

Use this option when the Log File Required alarm prompts you to add a logical-log file.

-s size Specifies a size in kilobytes for the new
logical-log file

This value must be an unsigned integer greater than or equal to 200 kilobytes
If you do not specify a size with the -s option, the size of the log file is taken from the value of the
LOGSIZE parameter in the ONCONFIG file when database server disk space was initialized.

For information on changing LOGSIZE, see the chapter on managing logical-log files in the IBM
Informix Administrator's Guide.

This command has an equivalent SQL administration API function.

Related reference:
 DYNAMIC_LOGS configuration parameter

add log argument: Add a new logical log (SQL administration API)

Copyright© 2020 HCL Technologies Limited

656 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

onparams -d -l lognum: Drop a logical-log file

Syntax:

>>-onparams-- -d-- -l--lognum--+-----+-------------------------><
 '- -y-'

Element Purpose Key considerations

-d -l lognum Allows you to drop a logical-log file
specified by the log file number

Restrictions: The lognum value must be an unsigned integer greater than or equal to 0.
You can obtain the lognum from the number field of onstat -l. The sequence of lognum might be out
of order.

-y Causes the database server to
automatically respond yes to all prompts

None.

Usage
You can only drop one log files at a time.

The database server requires a minimum of three logical-log files at all times. You cannot drop a log if your logical log is composed of only three log files.

Important: Before you can drop any of the first three logical-log files, you must add new logical-log files and run a backup of the logical-log files. The backup must be run
using either the ontape -a command or the ontape -c command. After you add the new logical-log files and run a backup, you can then use onparams -d -llognum to
delete the first three logical-log files.
The status of the log file determines if the log file can be dropped, and the actions taken by the database server when the log file is dropped:

If you drop a log file that has never been written to, status is newly Added (A), the database server deletes the log file and frees the space immediately.
If you drop a used log file that has a status of User (U) or Free (F), the database server marks the log file as Deleted (D). After you take a level-0 backup of the
dbspaces that contain the log files and the root dbspace, the database server deletes the log file and frees the space.
You cannot drop a log file that is currently in use (C) or contains the last checkpoint record (L).

This command has an equivalent SQL administration API function.

When you move logical-log files to another dbspace, use the onparams commands to add and drop logical-log files. See moving a logical-log file, in the section on
managing logical-log files in the IBM® Informix® Administrator's Guide.

Related reference:
 drop log argument: Drop a logical log (SQL administration API)

Copyright© 2020 HCL Technologies Limited

onparams -p: Change physical-log parameters

Syntax:

>>-onparams-- -p-- -s--size--+--------------+--+-----+---------><
 '- -d--dbspace-' '- -y-'

Element Purpose Key Considerations

-p Changes the physical log Whenever you use the onparams -p command, you must include the -s parameter.
Additionally, you can specify the -d and -y parameters. The database server must be in
either administration, online, or quiescent mode to specify the -p parameter. The database
server does not need to be restarted for the changes take effect.

-s size Changes the size (in kilobytes) of the physical log This value must be an unsigned integer greater than or equal to 200 kilobytes.
Attention: If you move the log to a dbspace without adequate contiguous space or increase
the log size beyond the available contiguous space, the operation will fail and the physical
log will not change.

-d dbspace Changes the location of the physical log to the
specified dbspace

The space allocated for the physical log must be contiguous.
Syntax must conform to the Identifier segment; see the IBM® Informix® Guide to SQL:
Syntax.

-y Causes the database server to automatically
respond yes to all prompts

None.

Backing Up After You Change the Physical-Log Size or Location
 Changing the Size of the Physical Log and Using Non-Default Page Sizes

Related reference:

 PHYSFILE configuration parameter
alter plog argument: Change the physical log (SQL administration API)
LOGSIZE configuration parameter

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 657

https://www.hcltech.com/
https://www.hcltech.com/

Backing Up After You Change the Physical-Log Size or Location

The database server must be in either the online or quiescent mode when you change the physical log. The database server does not need to be restarted for the changes
to take effect.

Create a level-0 backup of the root dbspace immediately after you change the physical-log size or location. This backup is critical for proper recovery of the database
server.

Copyright© 2020 HCL Technologies Limited

Changing the Size of the Physical Log and Using Non-Default Page Sizes

If you use non-default page sizes, you might need to increase the size of your physical log. If you perform many updates to non-default pages you might need a 150 to 200
percent increase of the physical log size. Some experimentation might be needed to tune the physical log. You can adjust the size of the physical log as necessary
according to how frequently the filling of the physical log triggers checkpoints.

Copyright© 2020 HCL Technologies Limited

onparams -b: Add a buffer pool

Use the onparams -b command to create a buffer pool that corresponds to the page size of the dbspace.

Syntax

>>-onparams-- -b-- -g--size------------------------------------><

Element Purpose Key considerations

-b Creates a buffer pool You can add a buffer pool while the database server is running.

-g size Specifies the size in KB of the buffer
pages to create

The size of the buffer pages must be 2 - 16 KB and a multiple of the default page size.

All other characteristics of the buffer pool that you create are set to the values of the fields in the default line of the BUFFERPOOL configuration parameter.

Each dbspace that you create with a non-default page size must have a corresponding buffer pool with the corresponding page size. If you create a dbspace with a page
size that has no buffer pool, the system automatically creates a buffer pool based the fields in the default line of the BUFFERPOOL parameter.

When you add a buffer pool, a new entry for the BUFFERPOOL configuration parameter is added in the onconfig file.

This command has an equivalent SQL administration API function.

Related reference:
 add bufferpool argument: Add a buffer pool (SQL administration API)

BUFFERPOOL configuration parameter

Copyright© 2020 HCL Technologies Limited

Examples of onparams Commands

The following are examples of onparams commands:

onparams -a -d rootdbs -s 1000 # adds a 1000-KB log file to rootdbs

onparams -a -d rootdbs -i # inserts the log file after the current log

onparams -d -l 7 # drops log 7

onparams -p -d dbspace1 -s 3000 # resizes and moves physical-log to dbspace1

onparams -b -g 6 -n 3000 -r 2 -x 2.0 -m 1.0 # adds 3000 buffers of size
6K bytes each with 2 LRUS with maximum dirty of 2% and minimum dirty of 1%

Copyright© 2020 HCL Technologies Limited

The onpassword utility

Use the onpassword utility to encrypt and decrypt a password file. Connection Manager and Enterprise Replication utilities require a password file to connect to database
servers over an untrusted network.

658 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Syntax

>>-onpassword-- -k --encryption_key----------------------------->

>--+- -e --text_file--------+----------------------------------><
 '- -d --output_file_name-'

Element Purpose Key Considerations

-k Specifies the password key.

-e Encrypts an ASCII text file The password information is encrypted to $INFORMIXDIR/etc/passwd_file

-d Decrypts the specified encrypted password file. The passwd_file is decrypted to $INFORMIXDIR/etc/output_file_name.

output_file_name The name of the file that is output by the
decryption process.

An encrypted password file that is created on one type of platform is not supported on a
different type of platform. You must run the onpassword utility on each type of platform,
and use the same text file and encryption key.

encryption_key The encryption key used to encrypt and decrypt
password information.

The encryption key can be any sequence of numbers or letters up to 24 bytes in length.
To use an encryption key that includes spaces, enclose the encryption key in quotation
marks. For example:

"my secret encryption key"

text_file The ASCII text file that contains user password
information.

The onpassword utility uses the following default location:

UNIX: $INFORMIXDIR/tmp
Windows: %INFORMIXDIR%\etc

Usage
Only users logged in as user informix have permission to run the onpassword utility.

Example 1: Encrypting a password file
To encrypt tmp/my_passwords.txt with my_secret_encryption_key, run the following command:

onpassword -k my_secret_encryption_key -e my_passwords.txt

The password information is encrypted into $INFORMIXDIR/etc/passwd_file.

Example 2: Decrypting an encrypted password file
To decrypt $INFORMIXDIR/etc/passwd_file with my_secret_encryption_key, run the following command:

onpassword -k my_secret_encryption_key -d my_passwords.txt

The password information is decrypted to $INFORMIXDIR/etc/my_passwords.txt.
Related information:

 Creating a password file for connecting to database servers on untrusted networks
Modifying encrypted password information

Copyright© 2020 HCL Technologies Limited

The ifxclone utility

You use the ifxclone utility to create a server clone from a snapshot of an existing database server.

Syntax

>>-ifxclone--+-| Mandatory parameters |--+-------------------------+-+-><
 | '-| Optional parameters |-' |
 '- help --'

Mandatory parameters

|-- --source=source_name --sourceIP=source_IP --sourcePort=source_port-->

>-- --target=target_name --targetIP=target_IP --targetPort=target_port--|

Optional parameters

 .----------------------------------.
 V |
|----+------------------------------+-+--+-------------+-------->
 '- --configparmparameter=value-' '- --autoconf-'

>--+-------------------------+--+-------------+----------------->

Part VI: Administering 659

https://www.hcltech.com/

 '- --disposition=-+-ER--+-' '- --useLocal-'
 +-HDR-+
 +-RSS-+
 '-SDS-'

>--+--------------+--+------------+--+--------------------+-----|
 '- --size=size-' '- --trusted-' '- --createchunkfile-'

Element Purpose Key Considerations

disposition Specifies the final disposition of the new server
instance.

If the --disposition (-d) parameter is not specified, a standard server is
created.

ER Specifies that the new server instance is created
as a replication server.

HDR Specifies that the new server instance is created
as an HDR secondary server.

parameter=value Specifies an optional configuration parameter
and value to set on the target server.

Certain configuration parameters on the source server must match those on
the target server. See Prerequisites for cloning an RS secondary server.

RSS Specifies that the new server instance is created
as an remote stand-alone secondary server.

SDS Specifies that the new server instance is created
as a shared-disk secondary server.

The ifxclone utility sets the target server's SDS_PAGING, and SDS_TEMPDBS
configuration parameters, but full configuration is outside the scope of the
ifxclone utility.
If --disposition=SDS is specified in the command, but --useLocal is not, you
must set the SD secondary server's ROOTPATH configuration parameter to the
same value as the ROOTPATH configuration parameter on the primary server.

size Specifies the size of the target server. Valid
values are tiny, small, medium, and large.

If the size parameter is not specified, the size parameters from the source
instance are used.

source_name Specifies the name of the source instance. The source server must be a primary server and cannot be a secondary server.

source_IP Specifies the source server instance TCP/IP
address.

source_port Specifies the TCP/IP port address of the source
server instance, or the name of a service
associated with the port.

target_name Specifies the name of the target server instance.

target_IP Specifies the target server instance TCP/IP
address.

target_port Specifies the TCP/IP port address of the target
server instance, or the name of a service
associated with the port.

The following table describes the options of the ifxclone utility.

Long Form Short Form Meaning

--autoconf -a Autoconfigures connectivity information between a newly cloned server and the other
servers of a high-availability cluster or Enterprise Replication domain. If this option is
used to create a replication server, the --autoconf option can autoconfigure replication.
The --autoconf option has the following requirements:

The CDR_AUTO_DISCOVER configuration parameter must be set to 1 on the target
server, the source server, and all other cluster or replication servers.
REMOTE_SERVER_CFG must be set on all cluster or replication servers.
The target server's host information must be in the source server's trusted-host
file.
If used with the --disposition=ER option, and the primary server is part of an
Enterprise Replication, all other replication servers in the domain must be active.

--configParm -c Specifies the name and value of a configuration parameter to set on the target server.

--createchunkfile -k Automatically creates the same cooked chunk files on the target server as exist on the
source server.
This option does not create raw chunks. However, if you have raw chunks on the source
server and you do not create matching raw chunks on the target server before using this
option, the ifxclone utility creates cooked chunks on the target server that match the raw
chunks on the source server.

--disposition -d Specifies the disposition of the new server instance.

--help -h Displays usage information.

--size -s Specifies the size of the target instance.

--source -S Specifies the name of the source server instance.

--sourceIP -I Specifies the TCP/IP address of the source server instance.

--sourcePort -P Specifies the TCP/IP port address of the source server instance, or the name of a service
associated with the port.

660 Part VI: Administering

Long Form Short Form Meaning

--target -t Specifies the name of the target server instance.

--targetIP -i Specifies the TCP/IP address of the target server instance.

--targetPort -p Specifies the TCP/IP port address of the target server instance, or the name of a service
associated with the port.

--trusted -T Specifies that the server is trusted and that it is not necessary to obtain a userid and
password to access the server.

--useLocal -L Specifies that the configuration information contained in the source server onconfig file
should be merged with the target server onconfig file.
Certain configuration parameters on the source server must match those on the target
server. See Prerequisites for all servers.

Usage
Use the ifxclone utility to clone a server with minimum setup or configuration, or to quickly add a new node to an existing ER replication domain. When the ifxclone utility
is run, the majority of the setup information is obtained from the server node that is being cloned. Successfully cloning a server might still require some post-configuration
steps to achieve a better running system.

The source server is the server that contains the data you wish to clone. The target server is the server that is to be loaded with data from the source server. You must run
the ifxclone utility from the target server.

To run the ifxclone utility on a UNIX computer, you must run the command on the target server as user root, user informix, or as a member of the informix group. You
must also be a DBSA on the source server.

To run the ifxclone utility on a Windows computer, you must run the command on the target server as a member of the local administrators group. You must also be a
DBSA on the source server and you must belong to the Informix-Admin group on the source server.

The ifxclone utility uses the onconfig and sqlhosts configuration files from the source server to configure the target server. The ifxclone utility also configures some
additional configuration settings, but only those required to configure the clone server. The --autoconf option provides the additional ability to configure sqlhosts file
records, and then propagate sqlhosts and trusted-host file information to the servers of a high-availability cluster or Enterprise Replication domain. The --createchunkfile
options creates the same cooked chunks and cooked mirror chunks on the target system that are on the source server. The ifxclone utility is not meant to configure all of
the possible configuration options, but rather to provide enough configuration to clone the source server.

The number of CPU VPs and buffers on the target server can be configured using the size parameter. Table 1 lists the number of CPU VPs and buffer pools created on the
target server for each size option. Additional refinement of the generated configuration should be performed after the target system is created. If the size configuration is
omitted, the parameter configured on the source server is used.

Table 1. List of size parameter values
Size Number of CPU VPs Number of buffers

tiny 1 50,000

small 2 100,000

medium 4 250,000

large 8 500,000

You can use the -c option to specify a configuration parameter and its value on the target server. You can also use an existing configuration file. If the target server contains
a configuration file that is different than the source server configuration file, the ifxclone utility does not overwrite the file but modifies those parameters that must match
the source server during the cloning process.

The --useLocal parameter is required if the target server is located on the same host machine as the source server.

If the --useLocal parameter is specified, the ifxclone utility merges the source server onconfig file with the target server onconfig file. The configuration parameters listed
in Prerequisites for all servers are overwritten by the ifxclone utility and the rest of the parameters are not affected.

If the --useLocal parameter is not specified as an input parameter, the ifxclone utility uses the source server's onconfig file as the target's onconfig file and uses the
server name from the input parameters of the ifxclone utility.

If the --useLocal parameter is not specified, the ifxclone utility updates the sqlhosts file on the host server with the target server entry and copies both entries to the
target's sqlhosts file.

The order of precedence of options for the ifxclone parameters is as follows:

The --configParm parameter takes precedence over the configuration file on the source server.
The --size parameter takes precedence over merged configuration parameters or the settings in the local configuration file.
The --configParm parameter takes precedence over the --size parameter.
Parameters that must be the same on each server take precedence over all other options.

Prerequisites for all servers
Perform the following prerequisites before cloning a server:

Hardware and software requirements for the servers are generally the same as those for HDR secondary servers (refer to the machine notes for specific supported
platforms).
Both the source and target servers must be part of a trusted network environment. See Network security files for information about configuring a trusted
environment.
If the disposition of the target server is specified as ER or RSS then you must provide users with connection permission to the sysadmin database on the source
server. By default, connection permission to the sysadmin database is limited to user informix.
Only one server clone process can occur at a time. Do not start cloning a second server until the first clone process has completed running.

Part VI: Administering 661

The source server must have the ENABLE_SNAPSHOT_COPY configuration parameter set to 1 in the onconfig file.
The target server must not have any old ROOTPATH pages. If the target server has old ROOTPATH pages, create a zero-length ROOTPATH file or set the
FULL_DISK_INIT configuration parameter to 1 in the target server's onconfig file.
The target server must not have any existing storage space encryption keystore or stash files. If you receive an error message that the command failed because of
existing keystore and stash files, follow the instructions in the message and rerun the ifxclone command.

Archive operations, such as ontape and ON-Bar commands, are not allowed while cloning a server. Perform your data archive activities before starting to clone a server.

The following environment variables must be set on the target server before cloning a server:

INFORMIXDIR
INFORMIXSERVER
INFORMIXSQLHOSTS
ONCONFIG

The following configuration parameter values must be identical on both the source and target servers:

DISK_ENCRYPTION (if the target server is an SD secondary server)
DRAUTO
DRINTERVAL
DRTIMEOUT
LOGBUFF
LOGFILES
LOGSIZE
LTAPEBLK
LTAPESIZE
ROOTNAME
ROOTSIZE
PHYSBUFF
PHYSFILE
STACKSIZE
TAPEBLK
TAPESIZE

If the MIRROR configuration parameter is enabled on the target server, the following configuration parameters also must match between the source and target servers:

MIRRORPATH
MIRROROFFSET

The following table shows the valid combinations of the MIRROR configuration parameter on the source and target servers.

Table 2. Valid settings of the MIRROR configuration parameter on source and target servers

MIRROR configuration parameter set on
the source server

MIRROR configuration parameter set on
the target server Permitted or not permitted

No No Permitted

Yes Yes Permitted

Yes No Permitted

No Yes Not permitted. If this setting is configured, the server issues a warning and
disables the MIRROR parameter in the target server onconfig file.

Prerequisites for cloning an RS secondary server
1. Set the following environment variables on the target server:

INFORMIXDIR
INFORMIXSERVER
ONCONFIG
INFORMIXSQLHOSTS

2. On the target server, create all of the chunks and mirror chunks that exist on the source server. If the target server is using mirroring, the mirror chunk paths must
match those of the source server and the chunks must exist. You can use the --createchunkfile option (-k) to automatically create cooked chunks on the target
server. Follow these steps to create the chunks and (if necessary) mirror chunks for the target server:

a. On the source server, run the onstat -d command to display a list of chunks and mirror chunks:

onstat -d

b. On the target server, log in as user informix and use the touch, chown, and chmod commands to create the set of chunks and mirror chunks reported by the
onstat -d command. For example, to create a chunk named /usr/informix/chunks/rootdbs.chunk, follow these steps:

$ su informix
Password:
$ touch /usr/informix/chunks/rootdbs.chunk
$ chown informix:informix /usr/informix/chunks/rootdbs.chunk
$ chmod 660 /usr/informix/chunks/rootdbs.chunk

c. Repeat all of the commands in the previous step for each chunk reported by the onstat -d command.
3. Run the ifxclone utility with the appropriate parameters on the target system.
4. Optionally, create onconfig and sqlhosts files on the target server.

Example 1, Cloning an RS secondary server using the source server configuration
This example shows how to clone a server by using the onconfig and sqlhosts configuration files from the source server.

662 Part VI: Administering

In this example, omitting the -L option causes the ifxclone utility to retrieve the necessary configuration information from the source server. The configuration files are
used as a template to create the target server configuration. Having the ifxclone utility create the configuration files for you saves time and reduces the chance of
introducing errors into the configuration files.

The -k option creates the necessary cooked chunks on the target server.

For this example, assume that the source server (Amsterdam) has an sqlhosts file configured as follows:

#Server Protocol HostName Service Group
Amsterdam onsoctcp 192.168.0.1 123 -

You also need the name, IP address, and port number of the target server. The following values are used for this example:

Source server name: Amsterdam
Source IP address: 192.168.0.1
Source port: 123
Target server name: Berlin
Target IP address: 192.168.0.2
Target port: 456

1. On the target server, create all of the chunks that exist on the source server. You can use the --createchunkfile option (-k) to automatically create cooked chunks
on the target server. Log-in as user informix and use the commands touch, chown, and chmod to create the chunks.

2. On the target server, run the ifxclone utility:

ifxclone -T -S Amsterdam -I 192.168.0.1 -P 123 -t Berlin
 -i 192.168.0.2 -p 456 -d RSS -k

The ifxclone utility modifies the sqlhosts file on the source server and creates a copy of the file on the new target server. The sqlhosts file on the target server is the
same as the source server:

#Server Protocol HostName Service Group
Amsterdam onsoctcp 192.168.0.1 123 -
Berlin onsoctcp 192.168.0.2 456

Example 2, Cloning an RS secondary server by merging the source server configuration
Use the --useLocal option to create a clone of a server on a remote host computer: The --useLocal option is used to merge the source onconfig file configuration
information with the target onconfig file. This option also copies the source sqlhosts file to the target server. The following values are used for this example:

Source server name: Amsterdam
Source IP address: 192.168.0.1
Source port: 123
Target server name: Berlin
Target IP address: 192.168.0.2
Target port: 456

1. Create the onconfig and sqlhosts files and set the environment variables on the target computer.
2. On the target server, create all of the chunks that exist on the source server. You can use the --createchunkfile option (-k) to automatically create cooked chunks

on the target server.Log-in as user informix and use the commands touch, chown, and chmod to create the chunks.
3. On the target server, run the ifxclone utility:

ifxclone -T -L -S Amsterdam -I 192.168.0.1 -P 123 -t Berlin
 -i 192.168.0.2 -p 456 -d RSS -k

Example 3, Adding an RS secondary server to a cluster
This example shows how to add an RS secondary server to the existing Informix® high-availability cluster. The following values are used for this example:

Source server name: Amsterdam
Source IP address: 192.168.0.1
Source port: 123
Target server name: Berlin
Target IP address: 192.168.0.2
Target port: 456

1. Create the onconfig and sqlhosts files and set the environment variables on the target computer.
2. On the target server, create all of the chunks that exist on the source server. You can use the --createchunkfile option (-k) to automatically create cooked chunks

on the target server.Log-in as user informix and use the commands touch, chown, and chmod to create the chunks.
3. On the target server, run the ifxclone utility:

ifxclone -T -L -S Amsterdam -I 192.168.0.1 -P 123 -t Berlin
 -i 192.168.0.2 -p 456 -s medium -d RSS -k

Prerequisites for cloning an ER server
Complete the following prerequisites before attempting to clone an ER server.

1. The source server (that is, the server that is being cloned) must have ER configured and active.
2. For configuration parameters that specify directory names, the directory names must exist on the target server. For example, if the CDR_LOG_STAGING_DIR

configuration parameter is set to a directory name on the source server then the directory must also exist on the target server.
3. If ATS or RIS is enabled on the source server then the appropriate ATS or RIS directories must exist on the target server. See Enabling ATS and RIS File Generation

and Creating ATS and RIS directories. If the directories do not exist then ATS/RIS spooling will fail.
4. If the source server has the CDR_SERIAL configuration parameter set then you must set the value for CDR_SERIAL to a different value on the server to be cloned.

The value of CDR_SERIAL must be different on all replication servers. You can specify a unique value for the CDR_SERIAL configuration parameter by using the --

Part VI: Administering 663

configParm (-c) parameter in the ifxclone command line.
5. The clock on the new ER clone must be appropriately synchronized. See Time synchronization.
6. The source server (that is, the server being cloned) must not have any stopped or suspended replicates, nor can it have any shadow replicates defined.

Avoid performing ER administrative tasks that change the set of replicates on which the target server participates while the ifxclone utility is running.

Example: Creating a clone of an ER server
Suppose you have five ER servers named S1, S2, S3, S4, and S5 currently configured as root servers in an ER domain. You would like to add a new server, S6, on a new
computer named machine6, and you want it to have the same data as server S3.

1. Install and configure Informix database software on machine6. You can use the deployment utility to deploy a pre-configured database server instance.
2. Copy the sqlhosts file from server S3 to server S6 and modify it to add entries for the new server. For example, assuming the ER group name for the new server is

g_S6 and the ID is 60, the sqlhosts file lines would look like the following.

g_S6 group - - i=60
S6 onsoctcp machine6 service6 g=g_S6

3. Add the two lines from the previous step in the sqlhosts files on all of the other five servers (S1 through S5).
4. Copy the onconfig file from server S3 to server S6 and change the DBSERVERNAME configuration parameter to S6. Do not modify any storage or chunk parameters

except for path information.
5. On server S6 (machine6) provision chunk paths and other storage to the same sizes as server S3. Ensure that S6 has adequate memory and disk space resources.

You can use the --createchunkfile option (-k) to automatically create cooked chunks on the target server.
6. Run the following command as user informix:

ifxclone -L -S S3 -I machine3 -P service3 -t S6 -i machine6 -p service6 -d ER -k

When prompted, enter the user name informix and then enter the password for user informix.

7. Monitor the server logs of servers S6 and S3. When the cloning process is complete you can check the status of servers by running the following command on
servers S3 and S6:

cdr list server

You should see the new ER server g_S6 connected to all of the other five servers. In addition, ER node g_S6 will now participate in all replicates in which ER node g_S3
participates.
Related reference:

 ENABLE_SNAPSHOT_COPY configuration parameter
DISK_ENCRYPTION configuration parameter
Related information:

 CDR_AUTO_DISCOVER configuration parameter

Copyright© 2020 HCL Technologies Limited

The onspaces utility

Use the onspaces utility to manage the storage spaces in your database.

onspaces syntax
 Run onspaces utility commands to manage your storage spaces.

onspaces -a: Add a chunk to a dbspace or blobspace
 onspaces -a: Add a chunk to an sbspace

 onspaces -c -b: Create a blobspace
 onspaces -c -d: Create a dbspace

 Use the onspaces -c -d command to create a dbspace or a temporary dbspace.
onspaces -c -P: Create a plogspace

 Use the onspaces -c -P command to create a plogspace in which to store the physical log.
onspaces -c -S: Create an sbspace

 Use the onspaces -c -S option to create a sbspace or a temporary sbspace.
onspaces -c -x: Create an extspace

 Use the onspaces -c -x option to create an extspace.
onspaces -ch: Change sbspace default specifications

 Use the onspaces -ch option to change the default specifications of a sbspace.
onspaces -cl: Clean up stray smart large objects in sbspaces

 Use the onspaces -cl option to clean up stray smart large objects in sbspaces.
onspaces -d: Drop a chunk in a dbspace, blobspace, or sbspace

 Use the onspaces -d option to drop a chunk in a dbspace, blobspace, or sbspace.
onspaces -d: Drop a space

 Use the onspaces -d option to drop a dbspace, blobspace, plogspace, sbspace, or extspace.
onspaces -f: Specify DATASKIP parameter

 Use the onspaces -f option to specify the value of the DATASKIP configuration parameter on a dbspace level or across all dbspaces.
onspaces -m: Start mirroring

 Use the onspaces -m option to start mirroring for a dbspace, blobspace, or sbspace.
onspaces -r: Stop mirroring

 Use the onspaces -r option to end mirroring for a dbspace, blobspace, or sbspace.
onspaces -ren: Rename a dbspace, blobspace, sbspace, or extspace

 Use the onspaces -ren option to rename a dbspace, blobspace, sbspace, or extspace.
onspaces -s: Change status of a mirrored chunk

 Use the onspaces -s option to change the status of a mirrored chunk in a dbspace, a non-primary chunk within a noncritical dbspace, a blobspace, or an sbspace.
Avoid overwriting a chunk

664 Part VI: Administering

https://www.hcltech.com/

Related reference:
TBLTBLFIRST configuration parameter

Copyright© 2020 HCL Technologies Limited

onspaces syntax

Run onspaces utility commands to manage your storage spaces.

>>-onspaces--+-------------------------+--+- -a-------+--------><
 | (1) | +- -c -b----+
 '-| -FILE option |-----' +- -c -d----+
 +- -c -P----+
 +- -c -S----+
 +- -c -x----+
 +- -ch------+
 +- -cl------+
 +- -d-------+
 +- -f-------+
 +- -m-------+
 +- -r-------+
 +- -ren-----+
 +- -s-------+
 +- -V-------+
 '- -version-'

Notes:

1. See The -FILE option.

Element Purpose Key Considerations

-V Shows the software version number and the serial number See Obtaining utility version information

-version Shows the build version, host, OS, build number, date, and the GLS version See Obtaining utility version information

Copyright© 2020 HCL Technologies Limited

onspaces -a: Add a chunk to a dbspace or blobspace

Syntax:

>>-onspaces -a--+-dbspace---+--+- -p--pathname--------------+--->
 '-blobspace-' | (1) |
 '- -p--\--\--.--\--drive-----'

>-- -o--offset-- -s--size--------------------------------------->

>--+- -m--pathname offset--------------+-----------------------><
 | (1) |
 '- -m--\--\--.--\--drive offset-----'

Notes:

1. Windows only

Use onspaces -a to add a chunk to a dbspace or blobspace.

Element Purpose Key considerations

-a Indicates that a chunk is to be added You can have up to 32766 chunks in an instance. You can put all those chunks in one
storage space, or spread them among multiple storage spaces.

drive Specifies the Windows drive to allocate as
unbuffered disk space The format can be either
\\.\<drive>, where drive is the drive letter
assigned to a disk partition, or
\\.\PhysicalDrive<number>, where PhysicalDrive
is a constant value and number is the physical
drive number.

For more information, see Allocating raw disk space on Windows.
Example: \\.\F:

For path name syntax, see your operating-system documentation.

-m pathname offset Specifies an optional path name and offset to the
chunk that mirrors the new chunk Also see the
entries for pathname and offset in this table.

For more information, see Adding a chunk to a dbspace or blobspace.

-o offset After the -a option, offset indicates, in kilobytes,
the offset into the disk partition or into the device
to reach the initial chunk of the new blobspace or
dbspace

Unsigned integer. The starting offset must be equal to or greater than 0. The starting offset
plus the chunk size cannot exceed the maximum chunk size. The maximum offset is 4
terabytes.
For more information, see Allocating raw disk space on UNIX.

Part VI: Administering 665

https://www.hcltech.com/
https://www.hcltech.com/

Element Purpose Key considerations

-p pathname Indicates the disk partition or unbuffered device of
the initial chunk of the blobspace or dbspace that
you are adding
The chunk must be an existing unbuffered device
or buffered file.

The chunk path name can be up to 256 bytes. When you specify a path name, you can use
either a full path name or a relative path name. However, if you use a relative path name, it
must be relative to the directory that was the current directory when you initialized the
database server.
UNIX example (unbuffered device): /dev/rdsk/c0t3d0s4 UNIX example (buffered device):
/ix/ids9.2/db1chunk

Windows example: c:\Ifmxdata\ol_icecream\mychunk1.dat

For path name syntax, see your operating-system documentation.

-s size Indicates, in kilobytes, the size of the new
blobspace or dbspace chunk

Unsigned integer. The size must be equal to or greater than 1000 kilobytes and a multiple of
the page size. The starting offset plus the chunk size cannot exceed the maximum chunk
size. The maximum offset is 4 terabytes.

blobspace Names the blobspace to which you are adding a
chunk

See Adding a chunk to a dbspace or blobspace.
Syntax must conform to the Identifier.

dbspace Names the dbspace to which you are adding a
chunk

See Adding a chunk to a dbspace or blobspace.
Syntax must conform to the Identifier.

This command has an equivalent SQL administration API function.

Related reference:
 Avoid overwriting a chunk

add chunk argument: Add a new chunk (SQL administration API)
create chunk argument: Create a chunk (SQL administration API)

Copyright© 2020 HCL Technologies Limited

onspaces -a: Add a chunk to an sbspace

Syntax:

>>-onspaces -a--sbspace-- -p--pathname-- -o--offset------------->

>-- -s--size--+----------------------+--+--------------+-------->
 '- -m--pathname offset-' '- -Ms--mdsize-'

>--+----------------+--+-----+---------------------------------><
 '- -Mo--mdoffset-' '- -U-'

Use onspaces -a to add a chunk to an sbspace.

Element Purpose Key considerations

-a Indicates that a chunk is to be added You can have up to 32766 chunks in an instance. You can put all those chunks in
one storage space, or spread them among multiple storage spaces.

-m pathname offset Specifies an optional path name and offset to the
chunk that mirrors the new chunk Also see the
entries for pathname and offset in this table.

For background information, see adding a chunk to an sbspace, in the chapter on
managing disk space in the IBM® Informix® Administrator's Guide.

-Mo mdoffset Indicates, in kilobytes, the offset into the disk
partition or into the device where metadata should
be stored

Value can be an integer between 0 and the chunk size. You cannot specify an
offset that causes the end of the metadata space to be past the end of the chunk.
For background information, see sizing sbspace metadata, in the chapter on
managing disk space in the IBM Informix Administrator's Guide.

-Ms mdsize Specifies the size, in kilobytes, of the metadata
area allocated in the initial chunk. The remainder is
user-data space

Value can be an integer between 0 and the chunk size.
For background information, see sizing sbspace metadata, in the chapter on
managing disk space in the IBM Informix Administrator's Guide.

-o offset After the -a option, offset indicates, in kilobytes, the
offset into the disk partition or into the unbuffered
device to reach the initial chunk of the new
blobspace or dbspace.

Unsigned integer. The starting offset must be equal to or greater than 0. The
starting offset plus the chunk size cannot exceed the maximum chunk size. The
maximum offset is 2 or 4 terabytes, depending on the platform.
For more information, see allocating raw disk space on UNIX, in the chapter on
managing disk space in the IBM Informix Administrator's Guide.

-p pathname Indicates the disk partition or unbuffered device of
the initial chunk of the sbspace that you are
creating
The chunk must be an existing unbuffered device or
buffered file.

The chunk path name can be up to 256 bytes. When you specify a path name, you
can use either a full path name or a relative path name. However, if you use a
relative path name, it must be relative to the directory that was the current
directory when you initialized the database server.
For path name syntax, see your operating-system documentation.

-U Specifies that the entire chunk should be used to
store user data

The -M and -U options are mutually exclusive.
For background information, see adding a chunk to an sbspace, in the chapter on
managing disk space in the IBM Informix Administrator's Guide.

-s size Indicates, in kilobytes, the size of the new sbspace
chunk

Unsigned integer. The size must be equal to or greater than 1000 kilobytes and a
multiple of the page size. The starting offset plus the chunk size cannot exceed the
maximum chunk size.
The maximum offset is 4 terabytes

666 Part VI: Administering

https://www.hcltech.com/

Element Purpose Key considerations

sbspace Names the sbspace to which you are adding a
chunk

See adding a chunk to an sbspace in the chapter on managing disk space in the
IBM Informix Administrator's Guide.
Syntax must conform to the Identifier segment; see the IBM Informix Guide to SQL:
Syntax.

This command has an equivalent SQL administration API function.

Related reference:
 Avoid overwriting a chunk

add chunk argument: Add a new chunk (SQL administration API)
create chunk argument: Create a chunk (SQL administration API)

Copyright© 2020 HCL Technologies Limited

onspaces -c -b: Create a blobspace

Syntax:

>>-onspaces -c---- -b--blobspace-- -g--pageunit----------------->

>--+- -p--pathname--------------+-- -o--offset-- -s--size------->
 | (1) |
 '- -p--\--\--.--\--drive-----'

>--+-----------------------------------+--+-----+--------------><
 +- -m--pathname offset--------------+ '- -u-'
 | (1) |
 '- -m--\--\--.--\--drive offset-----'

Notes:

1. Windows Only

Use onspaces -c -b to create a blobspace.

Element Purpose Key considerations

-b blobspace Names the blobspace to be created The blobspace name must be unique and cannot exceed 128 bytes. It must begin
with a letter or underscore and must contain only letters, numbers, underscores,
or the $ character.
For more information, see creating a blobspace, in the chapter on managing disk
space in the IBM® Informix® Administrator's Guide. The syntax must conform to the
Identifier segment. For more information, see the IBM Informix Guide to SQL:
Syntax.

-c Creates a dbspace, blobspace, sbspace, or
extspace
You can create up to 2047 storage spaces of any
type.

After you create a storage space, you must back up both this storage space and
the root dbspace. If you create a storage space with the same name as a deleted
storage space, perform another level-0 backup to ensure that future restores do
not confuse the new storage space with the old one.
For more information, see creating a dbspace, blobspace, or extspace, in the
chapter on managing disk space in the IBM Informix Administrator's Guide.

drive Specifies the Windows drive to allocate as
unbuffered disk space
The format can be either \\.\<drive>, where drive is
the drive letter assigned to a disk partition, or
\\.\PhysicalDrive<number>, where PhysicalDrive is
a constant value and number is the physical drive
number.

For information on allocating unbuffered disk space, see allocating unbuffered
disk space on Windows in the chapter on managing disk space in the IBM Informix
Administrator's Guide. Examples:

\\.\F:
\\.\PhysicalDrive2

For path name syntax, see your operating-system documentation.

-g pageunit Specifies the blobspace blobpage size in terms of
page_unit, the number of the base page size of the
instance (either 2K or 4K)

Unsigned integer. Value must be greater than 0.
The maximum number of pages that a blobspace can contain is 2147483647.
Therefore, the size of the blobspace is limited to the blobpage size x 2147483647.
This includes blobpages in all chunks that make up the blobspace.

For more information, see blobpage size considerations, in the chapter on I/O
Activity in the IBM Informix Performance Guide.

-m pathname offset Specifies an optional path name and offset to the
chunk that mirrors the initial chunk of the new
blobspace or dbspace
Also see the entries for -p pathname and -o offset
in this table.

For more information, see creating a dbspace or a blobspace in the chapter on
managing disk space in the IBM Informix Administrator's Guide.

-o offset Indicates, in kilobytes, the offset into the disk
partition or into the device to reach the initial chunk
of the new blobspace, dbspace, or sbspace

Unsigned integer. The starting offset must be equal to or greater than 0. The
starting offset plus the chunk size cannot exceed the maximum chunk size. The
maximum offset is 2 or 4 terabytes, depending on the platform.

For more information, see allocating raw disk space, in the chapter on managing
disk space in the IBM Informix Administrator's Guide.

Part VI: Administering 667

https://www.hcltech.com/

Element Purpose Key considerations

-p pathname Indicates the disk partition or device of the initial
chunk of the blobspace or dbspace that you are
creating

The chunk must be an existing unbuffered device or buffered file. When you
specify a path name, you can use either a full path name or a relative path name.
However, if you use a relative path name, it must be relative to the directory that
was the current directory when you initialized the database server. UNIX example
(unbuffered device): /dev/rdsk/c0t3d0s4 UNIX example (buffered device):
/ix/ids9.2/db1chunk Windows example:c:\Ifmxdata\ol_icecream\mychunk1.dat
For path name syntax, see your operating-system documentation.

-s size Indicates, in kilobytes, the size of the initial chunk
of the new blobspace or dbspace

Unsigned integer. The size must be equal to or greater than 1000 kilobytes and a
multiple of the page size. The starting offset plus the chunk size cannot exceed the
maximum chunk size.
The maximum chunk size is 2 or 4 terabytes, depending on the platform.

-u Specifies to create an unencrypted space Use this option to create an unencrypted storage space when encryption is
enabled by the DISK_ENCRYPTION configuration parameter.

This command has an equivalent SQL administration API function.

Related reference:
 Avoid overwriting a chunk

create blobspace argument: Create a blobspace (SQL administration API)
DISK_ENCRYPTION configuration parameter

Copyright© 2020 HCL Technologies Limited

onspaces -c -d: Create a dbspace

Use the onspaces -c -d command to create a dbspace or a temporary dbspace.

Syntax

>>-onspaces -c---- -d--dbspace----+- -p--pathname----------+---->
 '- -p--\--\--.--\--drive-'

>-- -o--offset-- -s--size--------------------------------------->

>--+------------------------------------+----------------------->
 +- -ef--extentsize-- -en--extentsize-+
 '- -t--------------------------------'

>--+-----------------------------------+--+---------------+----->
 +- -m--pathname offset--------------+ '- -k--pagesize-'
 | (1) |
 '- -m--\--\--.--\--drive offset-----'

>--+-----+---><
 '- -u-'

Notes:

1. Windows Only

Element Purpose Key considerations

-c Creates a dbspace
You can create up to 2047 storage spaces of any
type.

After you create a storage space, you must back up both this storage space and
the root dbspace. If you create a storage space with the same name as a deleted
storage space, perform another level-0 backup to ensure that future restores do
not confuse the new storage space with the old one.
For more information, see Manage dbspaces.

drive Specifies the Windows drive to allocate as
unbuffered disk space
The format can be either \\.\drive, where drive is
the drive letter that is assigned to a disk partition,
or \\.\PhysicalDrivenumber, where PhysicalDrive is
a constant value and number is the physical drive
number.

For information on allocating unbuffered disk space, see Allocating raw disk space
on Windows.
Examples:

\\.\F:
\\.\PhysicalDrive2

For path name syntax, see your operating-system documentation.

-d dbspace Names the dbspace to be created The dbspace name must be unique and cannot exceed 128 bytes. It must begin
with a letter or underscore and must contain only letters, numbers, underscores,
or the $ character.
For more information, see Manage dbspaces. The syntax must conform to the
Identifier segment. For more information, see Identifier.

668 Part VI: Administering

https://www.hcltech.com/

Element Purpose Key considerations

-ef extentsize Indicates, in KB, the size of the first extent for the
tblspace tblspace

The minimum, and default, size of the first extent for the tblspace tblspace of a
non-root dbspace is equivalent to 50 dbspace pages, which are specified in KB.
For example: 100 KB for a 2 KB page size dbspace, 200 KB for a 4 KB page size
dbspace, 400 KB for an 8 KB page size dbspace.
The maximum size of a tblspace tblspace extent is 1048575 pages minus the
space that is needed for any system objects. On a 2 KB page size system, the
maximum size is approximately 2 GB.

For more information, see Specifying the first and next extent sizes for the
tblspace tblspace.

-en extentsize Indicates, in KB, the size of the next extents in the
tblspace tblspace

The minimum size of the next extents for the tblspace tblspace of a non-root
dbspace is equivalent to 4 dbspace pages, which are specified in KB. For example:
8 KB for a 2 KB page size dbspace, 16 KB for a 4 KB page size dbspace, 32 KB for
an 8 KB page size dbspace.
The default size for a next extent is 50 dbspace pages.

The maximum size of a tblspace tblspace extent is 1048572 pages. On a 2 KB
page size system, the maximum size is approximately 2 GB.

If there is not enough space for a next extent in the primary chunk, the extent is
allocated from another chunk. If the specified space is not available, the closest
available space is allocated.

For more information, see Specifying the first and next extent sizes for the
tblspace tblspace.

-k pagesize Indicates in KB, the non-default page size for the
new dbspace.
For systems with sufficient storage, performance
advantages of a larger page size can include the
following:

Reduced depth of B-tree indexes, even for
smaller index keys
You can group on the same page long rows
that currently span multiple pages of the
default page size
Checkpoint time is typically reduced with
larger pages
You can define a different page size for
temporary tables so that they have a
separate buffer pool.

The page size must be between 2 KB and 16 KB and must be a multiple of the
default page size. For example, if the default page size is 2 KB, then pagesize can
be 2, 4, 6, 8, 10, 12, 14, or 16. If the default page size is 4 KB (Windows), then
pagesize can be 4, 8, 12, or 16.
For more information, see Creating a dbspace with a non-default page size.

-m pathname offset Specifies an optional path name and offset to the
chunk that mirrors the initial chunk of the new
dbspace
Also see the entries for -p pathname and -o offset
in this table.

For more information, see Manage dbspaces.

-o offset Indicates, in KB, the offset into the disk partition or
into the device to reach the initial chunk of the new
dbspace

Unsigned integer. The starting offset must be equal to or greater than 0. The
starting offset plus the chunk size cannot exceed the maximum chunk size. The
offset must be a multiple of the page size. The maximum offset is 2 or 4 TB,
depending on the platform.

For more information, see Allocating raw disk space on Windows.

-p pathname Indicates the disk partition or device of the initial
chunk of the dbspace that you are creating

The chunk must be an existing unbuffered device or buffered file. When you
specify a path name, you can use either a full path name or a relative path name.
However, if you use a relative path name, it must be relative to the directory that
was the current directory when you initialized the database server. UNIX example
(unbuffered device): /dev/rdsk/c0t3d0s4 UNIX example (buffered device):
/ix/ids9.2/db1chunk Windows example:c:\Ifmxdata\ol_icecream\mychunk1.dat
For path name syntax, see your operating-system documentation.

-s size Indicates, in KB, the size of the initial chunk of the
new dbspace

Unsigned integer. The size must be equal to or greater than 1000 KB and a
multiple of the page size. The starting offset plus the chunk size cannot exceed the
maximum chunk size.
The maximum chunk size is 2 or 4 TB, depending on the platform.

-t Creates a temporary dbspace for storage of
temporary tables

You cannot mirror a temporary dbspace. You cannot specify the first and next
extent sizes for the tblspace tblspace of a temporary dbspace.
For more information, see Temporary dbspaces.

-u Specifies to create an unencrypted space Use this option to create an unencrypted storage space when encryption is
enabled by the DISK_ENCRYPTION configuration parameter.

The maximum size of a dbspace is equal to the maximum number of chunks multiplied by the maximum size of a chunk. (The maximum number of chunks is 32766 per
instance. The maximum size of a chunk is equal to 2147483647 pages multiplied by the page size.)

This command has an equivalent SQL administration API function.

Part VI: Administering 669

You cannot change the page size of a dbspace after you create it.

You cannot store logical or physical logs in a dbspace that is not the default platform page size.

If a dbspace is created when a buffer pool with that page size does not exist, Informix® creates a buffer pool using the values of the fields of the default line of the
BUFFERPOOL parameter.

Temporary dbspaces
When you create a temporary dbspace with onspaces, the database server uses the newly created temporary dbspace, after you add the name of the new temporary
dbspace to your list of temporary dbspaces in the DBSPACETEMP configuration parameter, the DBSPACETEMP environment variable, or both and restart the server.

You cannot specify the first and next extent of a temporary dbspace. The extent size for temporary dbspaces is 100 KB for a 2 KB page system or 200 KB for a 4 KB page
system.

You can specify the first and next space of the tblspace tblspace in the root dbspace if you do not want the database server to automatically manage the size. To specify
the first and next extent sizes of a root tblspace tblspace, use the TBLTBLFIRST and TBLTBLNEXT configuration parameters before you create the root dbspace the first
time that you start the database server.

Related reference:
 DBSPACETEMP configuration parameter

Avoid overwriting a chunk
TBLTBLFIRST configuration parameter
TBLTBLNEXT configuration parameter
create dbspace argument: Create a dbspace (SQL administration API)
create tempdbspace argument: Create a temporary dbspace (SQL administration API)
DISK_ENCRYPTION configuration parameter
Related information:

 Specifying the first and next extent sizes for the tblspace tblspace

Copyright© 2020 HCL Technologies Limited

onspaces -c -P: Create a plogspace

Use the onspaces -c -P command to create a plogspace in which to store the physical log.

Syntax

>>-onspaces -c---- -P--plogspace-------------------------------->

>--+- -p--pathname----------+-- -o--offset-- -s--size----------->
 '- -p--\--\--.--\--drive-'

>--+-----------------------------------+--+-----+--------------><
 +- -m--pathname --offset------------+ '- -u-'
 | (1) |
 '- -m--\--\--.--\--drive offset-----'

Notes:

1. Windows Only

Element Purpose Key considerations

-c Creates a plogspace. An instance can have only one plogspace. If a plogspace exists, creating a new one
moves the physical log to the new space and drops the old plogspace.

-m pathname offset Specifies an optional path name and offset to the
chunk that mirrors the chunk of the new plogspace.
See -p pathname and -o offset in this table.

If you mirror the plogspace, the plogspace chunk cannot be extendable.

-m \\.\drive Specifies the Windows drive for the chunk that
mirrors the chunk of the new plogspace.
The drive is the drive letter that is assigned to a disk
partition or a constant value and the physical drive
number.

Examples:

\\.\F:
\\.\PhysicalDrive2

For drive name syntax, see your operating-system documentation.

-o offset Indicates, in KB, the offset into the disk partition or
into the device to reach the chunk of the new
plogspace.

Unsigned integer. The starting offset must be equal to or greater than 0. The
starting offset plus the chunk size cannot exceed the maximum chunk size.
The offset must be a multiple of the page size. The maximum offset is 2 or 4 TB,
depending on the platform.

-P plogspace Names the plogspace to be created. The plogspace name must be unique and cannot exceed 128 bytes. It must begin
with a letter or underscore and must contain only letters, numbers, underscores,
or the $ character.
The syntax must conform to the Identifier segment. For more information, see
Identifier.

670 Part VI: Administering

https://www.hcltech.com/

Element Purpose Key considerations

-p pathname Indicates the disk partition or device of the chunk
of the plogspace that you are creating.

The chunk must be an existing unbuffered device or buffered file. When you
specify a path name, you can use either a full path name or a relative path name.
However, if you use a relative path name, it must be relative to the directory that
was the current directory when you initialized the database server.
UNIX example (unbuffered device):

/dev/rdsk/c0t3d0s4

UNIX example (buffered device):

/ix/ifmx/db1chunk

Windows example:

c:\Ifmxdata\ol_icecream\mychunk1.dat

-p \\.\drive Specifies the Windows drive to allocate as
unbuffered disk space for the plogspace.
The drive is the drive letter that is assigned to a disk
partition or a constant value and the physical drive
number.

Examples:

\\.\F:
\\.\PhysicalDrive2

For drive name syntax, see your operating-system documentation.

-s size Indicates, in KB, the size of the chunk of the new
plogspace.

Unsigned integer. The size must be equal to or greater than 1000 KB and a
multiple of the page size. The starting offset plus the chunk size cannot exceed the
maximum chunk size.
The maximum chunk size is 2 or 4 TB, depending on the platform.

-u Specifies to create an unencrypted space Use this option to create an unencrypted storage space when encryption is
enabled by the DISK_ENCRYPTION configuration parameter.

The physical log must be stored on a single chunk. By default the chunk for the plogspace is extendable and the database server expands the plogspace as needed to
improve performance.

Examples
The following example creates a plogspace that is called plogdbs that has a size of 40000 KB and an offset of 0:

onspaces -c -P plogdbs -p /dev/chk1 -o 0 -s 40000

The following example creates a mirrored plogspace that is called pdbs1 that has a size of 60000 KB and an offset of 500 KB:

onspaces -c -P pdbs1 -p /dev/pchk1 -o 500 -s 60000 -m /dev/mchk1 0

Related reference:
 create plogspace: Create a plogspace (SQL administration API)

DISK_ENCRYPTION configuration parameter
Related information:

 Plogspace
Manage the plogspace

Copyright© 2020 HCL Technologies Limited

onspaces -c -S: Create an sbspace

Use the onspaces -c -S option to create a sbspace or a temporary sbspace.

Syntax:

>>-onspaces -c-- -S--sbspace--+-----+-- -p--pathname------------>
 '- -t-'

>-- -o--offset-- -s--size--+----------------------+------------->
 '- -m--pathname offset-'

>--+--------------+--+----------------+------------------------->
 '- -Ms--mdsize-' '- -Mo--mdoffset-'

>--+--------------------+--+-----+-----------------------------><
 '- -Df--default list-' '- -u-'

Element Purpose Key Considerations

-Ssbspace Names the sbspace to be created The sbspace name must be unique and must not exceed 128 bytes. It must begin
with a letter or underscore and must contain only letters, numbers, underscores,
or the $ character.
Syntax must conform to the Identifier segment; see the IBM® Informix® Guide to
SQL: Syntax.

-c Creates an sbspace
You can create up to 32767 storage spaces of any
type.

None.

Part VI: Administering 671

https://www.hcltech.com/

Element Purpose Key Considerations

-Df default list Lists default specifications for smart large objects
stored in the sbspace

Restrictions: Tags are separated by commas. If a tag is not present, system
defaults take precedence. The list must be enclosed in double quotation marks (“)
on the command line.
References: For a list of tags and their parameters, see Table 1.

-m pathname offset Specifies an optional pathname and offset to the
chunk that mirrors the initial chunk of the new
sbspace Also see the entries for -p pathname and -
o offset in this table.

For more information, see sbspaces in the chapter on data storage, and creating
an sbspace, in the chapter on managing disk space in the IBM Informix
Administrator's Guide.

-Mo mdoffset Indicates, in kilobytes, the offset into the disk
partition or into the device where metadata will be
stored.

Restrictions: Value can be an integer between 0 and the chunk size. You cannot
specify an offset that causes the end of the metadata space to be past the end of
the chunk.
References: For more information, see sizing sbspace metadata, in the chapter on
managing disk space in the IBM Informix Administrator's Guide.

-Ms mdsize Specifies the size, in kilobytes, of the metadata
area allocated in the initial chunk
The remainder is user-data space.

Restrictions: Value can be an integer between 0 and the chunk size.

-o offset Indicates, in kilobytes, the offset into the disk
partition or into the device to reach the initial chunk
of the sbspace

Restrictions: Unsigned integer. The starting offset must be equal to or greater than
0. The starting offset plus the chunk size cannot exceed the maximum chunk size.
The maximum chunk size is 4 terabytes for systems with a two-kilobyte page size
and 8 terabytes for systems with a four-kilobyte page size.
References: For more information, see allocating raw disk space on UNIX, in the
chapter on managing disk space in the IBM Informix Administrator's Guide.

-p pathname Indicates the disk partition or unbuffered device of
the initial chunk of the sbspace

The chunk must be an existing unbuffered device or buffered file. When you
specify a pathname, you can use either a full pathname or a relative pathname.
However, if you use a relative pathname, it must be relative to the directory that
was the current directory when you initialized the database server.
References: For pathname syntax, see your operating-system documentation.

-s size Indicates, in kilobytes, the size of the initial chunk
of the new sbspace

Restrictions: Unsigned integer. The size must be equal to or greater than 1000
kilobytes and a multiple of the page size. The starting offset plus the chunk size
cannot exceed the maximum chunk size.
The maximum chunk size is 2 or 4 terabytes, depending on the platform.

-t Creates a temporary sbspace for storage of
temporary smart large objects. You can specify the
size and offset of the metadata area

Restrictions: You cannot mirror a temporary sbspace. You can specify any -Df
option, except the LOGGING=ON option, which has no effect.
References: For more information, see Creating a Temporary Sbspace with the -t
Option.

-u Specifies to create an unencrypted space Use this option to create an unencrypted storage space when encryption is
enabled by the DISK_ENCRYPTION configuration parameter.

Creating a Temporary Sbspace with the -t Option
 Creating an Sbspace with the -Df option

 Changing the -Df Settings
 Using the onspaces -g option

Related reference:

 SBSPACENAME configuration parameter
SBSPACETEMP configuration parameter
SYSSBSPACENAME configuration parameter
Avoid overwriting a chunk
create sbspace argument: Create an sbspace (SQL administration API)
create tempsbspace argument: Create a temporary sbspace (SQL administration API)
create sbspace with log argument: Create an sbspace with transaction logging (SQL administration API)
DISK_ENCRYPTION configuration parameter

Copyright© 2020 HCL Technologies Limited

Creating a Temporary Sbspace with the -t Option

This example creates a temporary sbspace of 1000 kilobytes:

onspaces -c -S tempsbsp -t -p ./tempsbsp -o 0 -s 1000

You can optionally specify the name of the temporary sbspace in the SBSPACETEMP configuration parameter. Restart the database server so that it can use the temporary
sbspace.

Copyright© 2020 HCL Technologies Limited

Creating an Sbspace with the -Df option

672 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

When you create an sbspace with the optional -Df option, you can specify several default specifications that affect the behavior of the smart large objects stored in the
sbspace. The default specifications must be expressed as a list separated by commas. The list need not contain all of the tags. The list of tags must be enclosed in double
quotation marks (“). The table in Table 1 describes the tags and their default values.

The four levels of inheritance for sbspace characteristics are system, sbspace, column, and smart large objects. For more information, see smart large objects in the
chapter on where data is stored in the IBM® Informix Administrator's Guide.

Table 1. -Df Default Specifications
Tag Values Default Description

ACCESSTIME ON or OFF OFF When set to ON, the database server tracks the time of access to all smart large objects
stored in the sbspace.
For information about altering storage characteristics of smart large objects, see the IBM
Informix DataBlade API Programmer's Guide.

AVG_LO_SIZE Windows: 4 to 2**31
UNIX: 2 to 2**31

8 Specifies the average size, in kilobytes, of the smart large object stored in the sbspace
The database server uses this value to calculate the size of the metadata area. Do not
specify AVG_LO_SIZE and -Ms together. You can specify AVG_LO_SIZE and the metadata
offset (-Mo) together.

If the size of the smart large object exceeds 2**31, specify 2**31. If the size of the smart
large object is less than 2 on UNIX or less than 4 in Windows, specify 2 or 4.

Error 131 is returned if you run out of space in the metadata and reserved areas in the
sbspace. To allocate additional chunks to the sbspace that consist of metadata area only,
use the -Ms option instead.

For more information, see creating smart large objects, in the chapter on managing data on
disk in the IBM Informix Administrator's Guide.

BUFFERING ON or OFF ON Specifies the buffering mode of smart large objects stored in the sbspace
If set to ON, the database server uses the buffer pool in the resident portion of shared
memory for smart-large-object I/O operations. If set to OFF, the database server uses light
I/O buffers in the virtual portion of shared memory (lightweight I/O operations).

BUFFERING = OFF is incompatible with LOCK_MODE = RANGE and creates a conflict

For more information, see lightweight I/O, in the chapter on configuration effects on
memory in the IBM Informix Performance Guide.

LOCK_MODE RANGE or BLOB BLOB Specifies the locking mode of smart large objects stored in the sbspace
If set to RANGE, only a range of bytes in the smart large object is locked. If set to BLOB, the
entire smart large object is locked.

LOCK_MODE = RANGE is incompatible with BUFFERING = OFF and creates a conflict.

For more information, see smart large objects, in the chapter on locking in the IBM Informix
Performance Guide.

LOGGING ON or OFF OFF Specifies the logging status of smart large objects stored in the sbspace
If set to ON, the database server logs changes to the user data area of the sbspace. When
you turn on logging for an sbspace, take a level-0 backup of the sbspace.

When you turn off logging, the following message displays: You are turning off smart large
object logging.

For more information, see smart large objects, in the chapters on data storage and logging
in the IBM Informix Administrator's Guide. For information about onspaces -ch messages,
see Messages in the database server log.

EXTENT_SIZE 4 to 2**31 None Specifies the size, in kilobytes, of the first allocation of disk space for smart large objects
stored in the sbspace when you create the table
Let the system select the EXTENT_SIZE value. To reduce the number of extents in a smart
large object, use mi_lo_specset_estbytes (DataBlade API) or ifx_lo_specset_estbytes
(Informix® ESQL/C) to hint to the system the total size of the smart large object. The system
attempts to allocate a single extent for the smart large object.

For more information, see smart large objects, in the chapter on where data is stored in the
IBM Informix Administrator's Guide. For information about altering storage characteristics of
smart large objects, see the IBM Informix DataBlade API Programmer's Guide or the IBM
Informix ESQL/C Programmer's Manual.

MIN_EXT_SIZE 2 to 2**31 Windows: 4UNIX: 2 Specifies the minimum amount of space, in kilobytes, to allocate for each smart large object
The following message displays: Changing the sbspace minimum extent size: old value
value1 new value value2.

For information about tuning this value, see smart large objects, in the chapter on
configuration effects on I/O utilization in the IBM Informix Performance Guide. For
information about onspaces -ch messages, see Messages in the database server log.

Part VI: Administering 673

Tag Values Default Description

NEXT_SIZE 4 to 2**31 None Specifies the extent size, in kilobytes, of the next allocation of disk space for smart large
objects when the initial extent in the sbspace becomes full. Let the system select the
NEXT_SIZE value. To reduce the number of extents in a smart large object, use
mi_lo_specset_estbytes or ifx_lo_specset_estbytes to hint to the system the total size of
the smart large object. The system attempts to allocate a single extent for the smart large
object.
For more information, see smart large objects, in the chapter on where data is stored in the
IBM Informix Administrator's Guide. For information about obtaining the size of smart large
objects, see the IBM Informix DataBlade API Programmer's Guide or the IBM Informix
ESQL/C Programmer's Manual.

This example creates a 20-megabyte mirrored sbspace, eg_sbsp, with the following specifications:

An offset of 500 kilobytes for the primary and mirror chunks
An offset of 200 kilobytes for the metadata area
An average expected smart-large-object size of 32 kilobytes
Log changes to the smart large objects in the user-data area of the sbspace

UNIX Only:

% onspaces -c -S eg_sbsp -p /dev/raw_dev1 -o 500 -s 20000
 -m /dev/raw_dev2 500 -Mo 200 -Df "AVG_LO_SIZE=32,LOGGING=ON"

Copyright© 2020 HCL Technologies Limited

Changing the -Df Settings

As the database server administrator, you can override or change the -Df default settings in one of the following ways:

To change the default settings for an sbspace, use the onspaces -ch option. For more information, refer to onspaces -ch: Change sbspace default specifications.
To override the following -Df default settings for a specific table, use the SQL statements CREATE TABLE or ALTER TABLE:

LOGGING
ACCESSTIME
EXTENT_SIZE
NEXT_SIZE

For more information on the ALTER TABLE and CREATE TABLE statements, see the IBM® Informix Guide to SQL: Syntax.

The programmer can override these -Df default settings with DataBlade API and Informix® ESQL/C functions. For information about altering storage characteristics of
smart large objects, see the IBM Informix DataBlade API Programmer's Guide and the IBM Informix ESQL/C Programmer's Manual.

Copyright© 2020 HCL Technologies Limited

Using the onspaces -g option

The onspaces -g option is not used for sbspaces. The database server uses a different method to determine the number of pages to transfer in an I/O operation for
sbspaces than for blobspaces. The database server can automatically determine the block size to transfer in an I/O operation for smart large objects. For more
information, see sbspace extent sizes in the chapter on I/O activity in your IBM® Informix® Performance Guide.

This command has an equivalent SQL administration API function.

Copyright© 2020 HCL Technologies Limited

onspaces -c -x: Create an extspace

Use the onspaces -c -x option to create an extspace.

Syntax:

>>-onspaces -c-- -x--extspace-- -l--location-- -o--offset------->

>-- -s--size---><

Element Purpose Key Considerations

-c Creates a dbspace, blobspace, sbspace, or
extspace
You can create up to 2047 storage spaces of any
type.

After you create a storage space, you must back up both this storage space and
the root dbspace. If you create a storage space with the same name as a deleted
storage space, perform another level-0 backup to ensure that future restores do
not confuse the new storage space with the old one.
For more information, see creating a dbspace, blobspace, or extspace, in the
chapter on managing disk space in the IBM® Informix® Administrator's Guide.

674 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Element Purpose Key Considerations

-l location Specifies the location of the extspace
The access method determines the format of this
string.

Restrictions: String. Value must not be longer than 255 bytes.
For more information, see creating an extspace, in the chapter on managing disk
space in the IBM Informix Administrator's Guide.

-o offset Indicates, in kilobytes, the offset into the disk
partition or into the device to reach the initial chunk
of the new blobspace, dbspace, or sbspace

Restrictions: Unsigned integer. The starting offset must be equal to or greater
than 0. The starting offset plus the chunk size cannot exceed the maximum chunk
size. The maximum offset is 2 or 4 terabytes, depending on the platform.

For more information, see allocating raw disk space, in the chapter on managing
disk space in the IBM Informix Administrator's Guide.

-ssize Indicates, in kilobytes, the size of the initial chunk
of the new blobspace or dbspace

Restrictions: Unsigned integer. The size must be equal to or greater than 1000
kilobytes and a multiple of the page size. The starting offset plus the chunk size
cannot exceed the maximum chunk size.
The maximum chunk size is 2 or 4 terabytes, depending on the platform.

-x extspace Names the extspace to be created Restrictions: Extspace names can be up to 128 bytes. They must be unique, begin
with a letter or underscore, and contain only letters, digits, underscores, or $
characters.
For more information, see extspaces, in the chapter on managing disk space in the
IBM Informix Administrator's Guide.

Related reference:
 DISK_ENCRYPTION configuration parameter

Copyright© 2020 HCL Technologies Limited

onspaces -ch: Change sbspace default specifications

Use the onspaces -ch option to change the default specifications of a sbspace.

Syntax:

>>-onspaces -ch--sbspace-- -Df--default list-------------------><

Element Purpose Key Considerations

-ch Indicates that one or more sbspace default
specifications are to be changed

None.

sbspace Names the sbspace for which to change the default
specifications

Syntax must conform to the Identifier segment; see the IBM® Informix® Guide to
SQL: Syntax. For background information, see changing default specifications of an
sbspace with onspaces in the IBM Informix Performance Guide.

-Df default list Lists new default specifications for smart large
objects stored in the sbspace

Tags are separated by commas. If a tag is not present, system defaults take
precedence. The list must be enclosed in double quotation marks (“) on the
command line.
For a list of tags and their parameters, see Table 1.

You can change any of the -Df tags with the onspaces -ch option. The database server applies the change to each smart large object that was created prior to changing
the default specification.

For example, to turn off logging for the sbspace that you created in Creating an Sbspace with the -Df option, use the following command:

onspaces -ch eg_sbsp -Df "LOGGING=OFF"

Note: After you turn on logging for an sbspace, take a level-0 backup of the sbspace to create a point from which to recover.
Related reference:

 set sbspace accesstime argument: Control access time tracking (SQL administration API)
set sbspace avg_lo_size argument: Set the average size of smart large objects (SQL administration API)
set sbspace logging argument: Change the logging of an sbspace (SQL administration API)

Copyright© 2020 HCL Technologies Limited

onspaces -cl: Clean up stray smart large objects in sbspaces

Use the onspaces -cl option to clean up stray smart large objects in sbspaces.

Syntax:

>>-onspaces -cl--sbspace---------------------------------------><

Element Purpose Key Considerations

-cl Cleans up stray smart large objects in an sbspace To find any stray smart large objects, use the oncheck -pS command when no
users are connected to the database server. The smart large objects with a
reference count of 0 are stray objects.

Part VI: Administering 675

https://www.hcltech.com/
https://www.hcltech.com/

Element Purpose Key Considerations

sbspace Names the sbspace to be cleaned up Syntax must conform to the Identifier segment; see the IBM® Informix® Guide to
SQL: Syntax.

During normal operation, no unreferenced (stray) smart large objects should exist. When you delete a smart large object, the space is released. If the database server fails
or runs out of system memory while you are deleting a smart large object, the smart large object might remain as a stray object.

The following is an example of the onspaces -cl command:

onspaces -cl myspace

The best way to find the reference count for a smart large object is to call the mi_lo_stat or ifx_lo_stat functions from a C program. Although the mi_lo_increfcount and
mi_lo_decrefcount functions return the reference count, they increment or decrement the reference count. For more information on these functions, see the IBM Informix
DataBlade API Function Reference.

This command has an equivalent SQL administration API function.

Related reference:
 clean sbspace argument: Release unreferenced smart large objects (SQL administration API)

Copyright© 2020 HCL Technologies Limited

onspaces -d: Drop a chunk in a dbspace, blobspace, or sbspace

Use the onspaces -d option to drop a chunk in a dbspace, blobspace, or sbspace.

Syntax:

>>-onspaces -d--+-dbspace----------+-- -p--pathname------------->
 +-blobspace--------+
 '-+-----+--sbspace-'
 '- -f-'

>-- -o--offset--+-----+--><
 '- -y-'

This command has an equivalent SQL administration API function.

Element Purpose Key considerations

-d Drops a chunk You can drop a chunk from a dbspace, temporary dbspace, or sbspace when the database
server is online or quiescent. For more information, see the chapter on managing disk space
in the IBM® Informix® Administrator's Guide.
You can drop a chunk from a blobspace only when the database server is in quiescent
mode.

-f Drops an sbspace chunk that contains user data
but no metadata If the chunk contains metadata
for the sbspace, you must drop the entire sbspace.

Use the -f option with sbspaces only. If you omit the -f option, you cannot drop an sbspace
that contains data.
For more information, see dropping a chunk from an sbspace with onspaces, in the chapter
on managing disk space in the IBM Informix Administrator's Guide.

-o offset Indicates, in kilobytes, the offset into the disk
partition or into the unbuffered device to reach the
initial chunk of the dbspace, blobspace, or sbspace
that you are dropping

Restrictions: Unsigned integer. The starting offset must be equal to or greater than 0. The
starting offset plus the chunk size cannot exceed the maximum chunk size.
The maximum offset is 4 terabytes.

For more information, see allocating raw disk space on UNIX, in the chapter on managing
disk space in the IBM Informix Administrator's Guide.

-p pathname Indicates the disk partition or unbuffered device of
the initial chunk of the dbspace, blobspace, or
sbspace that you are dropping

The chunk must be an existing unbuffered device or buffered file. When you specify a path
name, you can use either a full path name or a relative path name. However, if you use a
relative path name, it must be relative to the directory that was the current directory when
you initialized the database server.
For path name syntax, see your operating-system documentation.

-y Causes the database server to automatically
respond yes to all prompts

None.

blobspace Names the blobspace from which the chunk is
dropped

Syntax must conform to the Identifier segment; see the IBM Informix Guide to SQL: Syntax.
For more information, see dropping a chunk from a blobspace, in the chapter on managing
disk space in the IBM Informix Administrator's Guide.

dbspace Names the dbspace from which the chunk is
dropped

Syntax must conform to the Identifier segment; see the IBM Informix Guide to SQL: Syntax.
For more information, see dropping a chunk from a dbspace with onspaces, in the chapter
on managing disk space in the IBM Informix Administrator's Guide.

sbspace Names the sbspace from which the chunk is
dropped

Syntax must conform to the Identifier segment; see the IBM Informix Guide to SQL: Syntax.
For background information, see dropping a chunk from a dbspace with onspaces, in the
chapter on managing disk space in the IBM Informix Administrator's Guide.

Important: You must specify a path name to indicate to the database server that you are dropping a chunk.
Related reference:

 drop chunk argument: Drop a chunk (SQL administration API)
drop plogspace: Drop the plogspace (SQL administration API)

676 Part VI: Administering

https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

onspaces -d: Drop a space

Use the onspaces -d option to drop a dbspace, blobspace, plogspace, sbspace, or extspace.

Syntax:

>>-onspaces -d--+-dbspace----------+--+-----+------------------><
 +-blobspace--------+ '- -y-'
 +-plogspace--------+
 +-+-----+--sbspace-+
 | '- -f-' |
 '-extspace---------'

Element Purpose Key considerations

-d Indicates that a storage space is to be dropped You can drop a dbspace, blobspace, plogspace, sbspace, or extspace while the database
server is online or in quiescent mode. After you drop a storage space, you must back it up to
ensure that the sysutils database and the reserved pages are up-to-date.
Run oncheck -pe to verify that no table is storing data in the dbspace, blobspace, or sbspace.

-y Causes the database server to automatically
respond yes to all prompts

None.

-f Drops an sbspace that contains user data and
metadata

You must use the -f (force) option to drop an sbspace that contains data.
Restriction: Use the -f option with sbspaces only.
Warning: If you use the -f option, the tables in the database server might have dead pointers
to the smart large objects that were deleted with this option.

blobspace Names the blobspace to be dropped Before you drop a blobspace, drop all tables that include a TEXT or BYTE column that
references the blobspace.

dbspace Names the dbspace to be dropped Before you drop a dbspace, drop all databases and tables that you previously created in the
dbspace.

extspace Names the extspace to be dropped You cannot drop an extspace if it is associated with an existing table or index.

plogspace Names the plogspace to be dropped The plogspace must be empty to be dropped.

sbspace Names the sbspace to be dropped Before you drop an sbspace, drop all tables that include a BLOB or CLOB column that
references the sbspace.

Important: Do not specify a path name when you drop these storage spaces.
This command has an equivalent SQL administration API function.

Related reference:
 drop blobspace argument: Drop a blobspace (SQL administration API)

drop dbspace argument: Drop a dbspace (SQL administration API)
drop sbspace argument: Drop an sbspace (SQL administration API)
drop tempdbspace argument: Drop a temporary dbspace (SQL administration API)

Copyright© 2020 HCL Technologies Limited

onspaces -f: Specify DATASKIP parameter

Use the onspaces -f option to specify the value of the DATASKIP configuration parameter on a dbspace level or across all dbspaces.

Syntax:

>>-onspaces -f--+-OFF-+--+--------------+--+-----+-------------><
 '-ON--' '-dbspace-list-' '- -y-'

This command has an equivalent SQL administration API function.

Element Purpose Key considerations

-f Indicates to the database server that you
want to change the DATASKIP default for
specified dbspaces or all dbspaces

All changes in the DATASKIP status are recorded in the message log.

-y Causes the database server to automatically
respond yes to all prompts

None.

dbspace-list Specifies the name of one or more dbspaces
for which DATASKIP will be turned ON or OFF

Syntax must conform to the Identifier segment; see the IBM® Informix® Guide to SQL: Syntax. For
more information, see DATASKIP Configuration Parameter and the IBM Informix Performance
Guide.

OFF Turns off DATASKIP If you use OFF without dbspace-list, DATASKIP is turned off for all fragments. If you use OFF with
dbspace-list, only the specified fragments are set with DATASKIP off.

Part VI: Administering 677

https://www.hcltech.com/
https://www.hcltech.com/

Element Purpose Key considerations

ON Turns on DATASKIP If you use ON without dbspace-list, DATASKIP is turned on for all fragments. If you use ON with
dbspace-list, only the specified fragments are set with DATASKIP on.

Related reference:
 set dataskip argument: Start or stop skipping a dbspace (SQL administration API)

DATASKIP Configuration Parameter

Copyright© 2020 HCL Technologies Limited

onspaces -m: Start mirroring

Use the onspaces -m option to start mirroring for a dbspace, blobspace, or sbspace.

Syntax:

>>-onspaces -m--+-dbspace---+----------------------------------->
 +-blobspace-+
 '-sbspace---'

 .-,---.
 V |
>----+- -p--pathname-- -o--offset-- -m--pathname--offset-+-+---->
 '- -f--filename-------------------------------------'

>--+-----+---><
 '- -y-'

This command has an equivalent SQL administration API function.

Element Purpose Key considerations

-f filename Indicates that chunk-location information is in a file
named filename

The file must be a buffered file that already exists. The path name must conform to
the operating-system-specific rules for path names.
For more information, see Using a File to Specify Chunk-Location Information with
the -f Option.

-m Adds mirroring for an existing dbspace, blobspace,
or sbspace

User-data chunks in a mirrored sbspace need not be mirrored.
The mirrored chunks should be on a different disk. You must mirror all the chunks
at the same time.

-m pathname offset The second time that pathname occurs in the
syntax diagram, it indicates the disk partition or
unbuffered device of the initial chunk of the
dbspace, blobspace, or sbspace that performs the
mirroring.
The second time offset appears in the syntax
diagram, it indicates the offset to reach the
mirrored chunk of the newly mirrored dbspace,
blobspace, or sbspace. Also see the entries for
pathname and offset in this table.

None.

-o offset The first time that offset occurs in the syntax
diagram, it indicates, in kilobytes, the offset into the
disk partition or into the unbuffered device to reach
the initial chunk of the newly mirrored dbspace,
blobspace, or sbspace.

Restrictions: Unsigned integer. The starting offset must be equal to or greater
than 0. The starting offset plus the chunk size cannot exceed the maximum chunk
size.
The maximum offset is 4 terabytes.

For more information, see allocating raw disk space on UNIX, in the chapter on
managing disk space in the IBM® Informix® Administrator's Guide.

-p pathname The first time pathname occurs in the syntax
diagram, it indicates the disk partition or
unbuffered device of the initial chunk of the
dbspace, blobspace, or sbspace that you want to
mirror.

The chunk must be an existing unbuffered device or buffered file. When you
specify a path name, you can use either a full path name or a relative path name.
However, if you use a relative path name, it must be relative to the directory that
was the current directory when you initialized the database server.
For path name syntax, see your operating-system documentation.

-y Causes the database server to automatically
respond yes to all prompts

None.

blobspace Names the blobspace that you want to mirror Syntax must conform to the Identifier segment; see IBM Informix Guide to SQL:
Syntax. For more information, see the chapter on using mirroring in the IBM
Informix Administrator's Guide.

dbspace Names the dbspace that you want to mirror Syntax must conform to the Identifier segment; see IBM Informix Guide to SQL:
Syntax. For background information, see the chapter on using mirroring in the IBM
Informix Administrator's Guide.

sbspace Names the sbspace that you want to mirror Syntax must conform to the Identifier segment; see IBM Informix Guide to SQL:
Syntax. For background information, see the chapter on using mirroring in the IBM
Informix Administrator's Guide.

Using a File to Specify Chunk-Location Information with the -f Option

678 Part VI: Administering

https://www.hcltech.com/

Related reference:
add mirror argument: Add a mirror chunk (SQL administration API)
start mirroring argument: Starts storage space mirroring (SQL administration API)

Copyright© 2020 HCL Technologies Limited

Using a File to Specify Chunk-Location Information with the -f Option

You can create a file that contains the chunk-location information. Then, when you execute onspaces, use the -f option to indicate to the database server that this
information is in a file whose name you specify in filename.

The contents of the file should conform to the following format, with options separated by spaces and each set of primary and mirror chunks on separate lines:

primary_chunk_path offset mirror_chunk_path offset

If the dbspace that you are mirroring contains multiple chunks, you must specify a mirror chunk for each of the primary chunks in the dbspace that you want to mirror. For
an example that enables mirroring for a multichunk dbspace, see starting mirroring for unmirrored dbspaces with onspaces in the chapter on using mirroring in the IBM®
Informix® Administrator's Guide.

Copyright© 2020 HCL Technologies Limited

onspaces -r: Stop mirroring

Use the onspaces -r option to end mirroring for a dbspace, blobspace, or sbspace.

Syntax:

>>-onspaces -r--+-dbspace---+--+-----+-------------------------><
 +-blobspace-+ '- -y-'
 '-sbspace---'

This command has an equivalent SQL administration API function.

Element Purpose Key considerations

-r Indicates to the database server that mirroring
should be ended for an existing dbspace, blobspace,
or sbspace

For background information, see the chapter on using mirroring in the IBM® Informix®
Administrator's Guide.

-y Causes the database server to respond yes to all
prompts automatically

None.

blobspace Names the blobspace for which you want to end
mirroring.

Syntax must conform to the Identifier segment; see the IBM Informix Guide to SQL:
Syntax. For more information, see the chapter on using mirroring in the IBM Informix
Administrator's Guide.

dbspace Names the dbspace for which you want to end
mirroring.

Syntax must conform to the Identifier segment; see the IBM Informix Guide to SQL:
Syntax. For more information, see the chapter on using mirroring in the IBM Informix
Administrator's Guide.

sbspace Names the sbspace for which you want to end
mirroring

Syntax must conform to the Identifier segment; see the IBM Informix Guide to SQL:
Syntax. For background information, see the chapter on using mirroring in the IBM
Informix Administrator's Guide.

Related reference:
 stop mirroring argument: Stops storage space mirroring (SQL administration API)

Copyright© 2020 HCL Technologies Limited

onspaces -ren: Rename a dbspace, blobspace, sbspace, or extspace

Use the onspaces -ren option to rename a dbspace, blobspace, sbspace, or extspace.

Syntax:

>>-onspaces -ren--+-dbspace---+-- -n--name---------------------><
 +-blobspace-+
 +-sbspace---+
 '-extspace--'

This command has an equivalent SQL administration API function.

Element Purpose Key considerations

Part VI: Administering 679

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Element Purpose Key considerations

-ren Causes the database server to rename the
specified blobspace, dbspace, extspace, or
sbspace

Restrictions: You can rename a blobspace, dbspace, extspace, or sbspace when the
database server is in quiescent mode. For more information, see the chapter on managing
disk space in the IBM® Informix® Administrator's Guide.

-n name Specifies the new name for the blobspace,
dbspace, extspace, or sbspace

Restrictions: The blobspace, dbspace, external space, or sbspace name must be unique
and cannot exceed 128 bytes. It must begin with a letter or underscore and must contain
only letters, numbers, underscores, or the $ character.
For more information, see the chapter on managing disk space in the IBM Informix
Administrator's Guide. The syntax must conform to the Identifier segment. For more
information, see the IBM Informix Guide to SQL: Syntax.

blobspace Names the blobspace to be renamed Syntax must conform to the Identifier segment; see the IBM Informix Guide to SQL: Syntax.
For more information, see renaming spaces, in the chapter on managing disk space in the
IBM Informix Administrator's Guide.

dbspace Names the dbspace to be renamed Restrictions: You cannot rename a critical dbspace, such as the root dbspace or a dbspace
that contains physical logs.
Additional Information: If you rename dbspaces that are included in the DATASKIP list,
update the DATASKIP configuration parameter with the new names using the onspaces -f
command.

Syntax must conform to the Identifier segment; see the IBM Informix Guide to SQL: Syntax.
For more information, see renaming spaces, in the chapter on managing disk space in the
IBM Informix Administrator's Guide.

extspace Names the extspace to be renamed Syntax must conform to the Identifier segment; see the IBM Informix Guide to SQL: Syntax.
For more information, see renaming spaces, in the chapter on managing disk space in the
IBM Informix Administrator's Guide.

sbspace Names the sbspace to be renamed Syntax must conform to the Identifier segment; see the IBM Informix Guide to SQL: Syntax.
For more information, see renaming spaces, in the chapter on managing disk space in the
IBM Informix Administrator's Guide.

Renaming a dbspace, blobspace, sbspace, or extspace when Enterprise Replication is active
 You can rename a space (dbspace, blobspace, sbspace, or extspace) when Enterprise Replication is active.

Performing an Archive after Renaming a Space

Related reference:
 rename space argument: Rename a storage space (SQL administration API)

Copyright© 2020 HCL Technologies Limited

Renaming a dbspace, blobspace, sbspace, or extspace when Enterprise Replication
is active

You can rename a space (dbspace, blobspace, sbspace, or extspace) when Enterprise Replication is active.

When you put the database server into quiescent mode to rename the space, Enterprise Replication will be disconnected. You can then rename the space. The servers will
resynchronize after you put the database server into online mode.

If you want to rename the same space on another server, you must put that server into quiescent mode and rename the space separately. No enforced relationship is
propagated between renamed spaces on different ER servers; the same tables can be in different spaces.

If the Enterprise Replication server also participates in High-Availability Data Replication (HDR), you can rename the dbspace on the primary server and it will be
automatically propagate to the secondary server. (The secondary server cannot participate in Enterprise Replication.)

Copyright© 2020 HCL Technologies Limited

Performing an Archive after Renaming a Space

After renaming any space (except extspaces or temporary spaces), perform a level-0 archive of the renamed space and the root dbspace. This will ensure that you can
restore the spaces to a state including or following the rename dbspace operation. It is also necessary prior to performing any other type of archive.

Copyright© 2020 HCL Technologies Limited

onspaces -s: Change status of a mirrored chunk

Use the onspaces -s option to change the status of a mirrored chunk in a dbspace, a non-primary chunk within a noncritical dbspace, a blobspace, or an sbspace.

Syntax:

>>-onspaces -s--+-dbspace---+-- -p--pathname-- -o--offset------->

680 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

 +-blobspace-+
 '-sbspace---'

>--+- -D-+--+-----+--><
 '- -O-' '- -y-'

This command has an equivalent SQL administration API function.

Element Purpose Key considerations

-D Indicates that you want to take the chunk down None.

-o offset Indicates, in kilobytes, the offset into the disk
partition or unbuffered device to reach the chunk

Restrictions: Unsigned integer. The starting offset must be equal to or greater than 0. The
starting offset plus the chunk size cannot exceed the maximum chunk size.The offset must
be a multiple of the page size.
The maximum offset is 4 terabytes.

For more information, see allocating raw disk space on UNIX, in the chapter on managing
disk space in the IBM® Informix® Administrator's Guide.

-O Indicates that you want to restore the chunk and
bring it online

None.

-p pathname Indicates the disk partition or unbuffered device of
the chunk

The chunk can be an unbuffered device or a buffered file. When you specify a path name,
you can use either a full path name or a relative path name. However, if you use a relative
path name, it must be relative to the directory that was the current directory when you
initialized the database server.
For path name syntax, see your operating-system documentation.

-s Indicates that you want to change the status of a
chunk

Restrictions: You can only change the status of a chunk in a mirrored pair or a non-primary
chunk within a noncritical dbspace.
For more information, see changing the mirror status in the IBM Informix Administrator's
Guide.

-y Causes the database server to respond yes to all
prompts automatically

None.

blobspace Names the blobspace whose status you want to
change

Syntax must conform to the Identifier segment; see the IBM Informix Guide to SQL: Syntax.
For more information, see changing the mirror status in the IBM Informix Administrator's
Guide.

dbspace Names the dbspace whose status you want to
change

Syntax must conform to the Identifier segment; see the IBM Informix Guide to SQL: Syntax.
For more information, see changing the mirror status in the IBM Informix Administrator's
Guide.

sbspace Names the sbspace whose status you want to
change

Syntax must conform to the Identifier segment; see the IBM Informix Guide to SQL: Syntax.
For background information, see changing the mirror status in the IBM Informix
Administrator's Guide.

Related reference:
 alter chunk argument: Change chunk status to online or offline (SQL administration API)

set chunk argument: Change the status of a chunk (SQL administration API)

Copyright© 2020 HCL Technologies Limited

Avoid overwriting a chunk

The chunks associated with each Informix® instance are not known to other Informix instances. It is possible to inadvertently create a chunk on a file or device that is
allocated as a chunk to another Informix instance, which results in data corruption.

If you attempt to initialize an instance, where the ROOTPATH configuration parameter specifies a file or device that is the root chunk of another instance, the command
fails with the following message in the online.log:

DISK INITIALIZATION ABORTED: potential instance overwrite detected.

To disable this initialization check, set the FULL_DISK_INIT configuration parameter to 1 in your configuration file and try to initialize the instance again. However, this
initialization check is restricted to the root chunk. Adding dbspaces or chunks succeeds even when the file or device is allocated to another instance.

Related reference:
 onspaces -a: Add a chunk to a dbspace or blobspace

onspaces -a: Add a chunk to an sbspace
onspaces -c -b: Create a blobspace
onspaces -c -d: Create a dbspace
onspaces -c -S: Create an sbspace
create blobspace argument: Create a blobspace (SQL administration API)
create chunk argument: Create a chunk (SQL administration API)
create dbspace argument: Create a dbspace (SQL administration API)
create sbspace argument: Create an sbspace (SQL administration API)

Copyright© 2020 HCL Technologies Limited

The onstat utility

Part VI: Administering 681

https://www.hcltech.com/
https://www.hcltech.com/

The onstat utility reads shared-memory structures and provides statistics about the database server at the time that the command runs.

You can combine multiple onstat option flags in a single command. The contents of shared memory might change as the onstat output displays. The onstat utility does
not place any locks on shared memory, so running the utility does not affect performance.

You use SQL administration API commands that are equivalent to onstat commands.

onstat Portal: onstat Utility Commands Sorted by Functional Category
 The information in this topic lists onstat commands that are sorted by functional category.

Monitor the database server status
 To monitor the database server status, view the heading of the onstat command.

onstat command syntax
 The complete syntax for the onstat command, including information about the interactive mode and how to have options to execute repeatedly.

onstat command: Equivalent to the onstat -pu command
 If you invoke onstat without any options, the command is interpreted as onstat -pu (the -p option and the -u option).

onstat - command: Print output header
 All onstat output includes a header. The onstat - command displays only the output header and the value that is returned from this command indicates the

database server mode.
onstat -- command: Print onstat options and functions

 Use the onstat -- command to display a listing of all of the onstat options and their functions. You cannot combine this option with any other flag.
Running onstat Commands on a Shared Memory Dump File

 You can run onstat commands against a shared memory dump file. The shared memory dump file can be produced explicitly by using the onstat -o command. If
the DUMPSHMEM configuration parameter is set to 1 or set to 2, the dump file is created automatically at the time of an assertion failure.
onstat -a command: Print overall status of the database server

 Use the onstat -a command to display information about the status of the database server. This command does not display information about all of the onstat
options, only about those onstat options used for initial troubleshooting.
onstat -b command: Print buffer information for buffers in use

 Use the onstat -b option to display information about the buffers that are currently in use, including the total number of resident pages in the buffer pool.
onstat -B command: Prints information about used buffers

 Use the onstat -B option to display information about buffers that are not on the free-list.
onstat -c command: Print ONCONFIG file contents

 Use the onstat -c command to display the contents of the ONCONFIG file.
onstat -C command: Print B-tree scanner information

 Use the -C command to display information about the B-tree scanner subsystem and each B-tree scanner thread.
onstat -d command: Print chunk information

 Use the onstat -d command to show information about chunks in each storage space.
onstat -D command: Print page-read and page-write information

 Use the onstat -D command to display page-read and page-write information for the first 50 chunks in each space.
onstat -f command: Print dbspace information affected by dataskip

 Use the -f command to list the dbspaces that the dataskip feature currently affects.
onstat -F command: Print counts

 Use the onstat -F command to display a count for each type of write that flushes pages to disk.
onstat -g monitoring options

 The options that you can use with onstat -g command are used for support and debugging only. You can include only one of these options in the onstat -g
command.
onstat -G command: Print TP/XA transaction information

 Use the onstat -G command to display information about global transactions generated through the TP/XA library.
onstat -h command: Print buffer header hash chain information

 Use the onstat -h command to display information about the buffer header hash chains (sometimes called "hash buckets") that are used to access pages in each
buffer pool.
onstat -i command: Initiate interactive mode

 Use the onstat -i command to put the onstat utility in the interactive mode.
onstat -j command: Provide onpload status information

 Use the onstat -j command to provide information about the status of an onpload job.
onstat -k command: Print active lock information

 Use the onstat -k command to print information about active locks, including the address of the lock in the lock table.
onstat -l command: Print physical and logical log information

 Use the onstat -l command to display information about the physical logs, logical logs, and temporary logical logs.
onstat -L command: Print the number of free locks

 Use the onstat -L command to print the number of free locks on a lock-free list.
onstat -m command: Print recent system message log information

 Use the onstat -m command to display the 20 most recent lines of the system message log.
onstat -o command: Output shared memory contents to a file

 Use the onstat -o command to write the contents of shared memory to a specified file for later analysis. If you do not specify an output file, a file named onstat.out
is created in the current directory.
onstat -p command: Print profile counts

 Use the onstat -p command to display information about profile counts either since you started the database server or since you ran the onstat -z command.
onstat -P command: Print partition information

 Use the onstat -P command to display the partition number and the pages in the buffer pool for all of the partitions.
onstat -r command: Repeatedly print selected statistics

 Use the onstat -r command to repeatedly print the statistics for other options specified in the command at specified intervals.
onstat -R command: Print LRU, FLRU, and MLRU queue information

 Use the onstat -R command to display detailed information about the LRU queues, FLRU queues, and MLRU queues. For each queue, the onstat -R command
displays the number of buffers in the queue and the number and percentage of buffers that have been modified.
onstat -s command: Print latch information

 Use the onstat -s command to display general latch information, including the resource that the latch controls.
onstat -t and onstat -T commands: Print tblspace information

 Use the onstat -t command to display tblspace information for active tblspaces. Use the onstat -T command to display tblspace information for all tblspaces.
onstat -u command: Print user activity profile

 Use the onstat -u command to display a profile of user activity.

682 Part VI: Administering

onstat -x command: Print database server transaction information
Use the onstat -x command to display transaction information on the database server.
onstat -X command: Print thread information
Use the onstat -X command to obtain precise information about the threads that are waiting for buffers.
onstat -z command: Clear statistics
Use the onstat -z command to clear database server statistics, including statistics that relate to Enterprise Replication, and set the profile counts to 0.
Return codes on exiting the onstat utility
The onstat utility displays a set of return codes when you exit the utility.

Related reference:
 onstat argument: Monitor the database server (SQL administration API)

Copyright© 2020 HCL Technologies Limited

onstat Portal: onstat Utility Commands Sorted by Functional Category

The information in this topic lists onstat commands that are sorted by functional category.

Each category represents a different IBM® Informix® feature for which onstat commands are useful for providing troubleshooting and performance enhancement
information. Commands that appear in bold typeface are especially useful for providing troubleshooting information. Certain onstat commands are specific to one
category, while others provide more general information and are listed in more than one category.

Category List
Determine the appropriate category from the following list, then follow the link to the onstat options for that category.

onstat Utility Archive Information Options
onstat Utility Cache Information Options
onstat Utility Compression Options
onstat Utility Debugging Options
onstat Utility Enterprise Replication Options
onstat Utility High-Availability Replication Options
onstat Utility Informix Warehouse Accelerator Options
onstat Utility I/O Options
onstat Utility Locks and Latches Options
onstat Utility Logs Options
onstat Utility Memory Options
onstat Utility Network Options
onstat Utility Performance Checks (First Tier)
onstat Utility Performance Checks (Second Tier)
onstat Utility Table Options
onstat Utility Thread Options
onstat Utility User/Session Options
onstat Utility Virtual Processor Options
onstat Utility Waiting Options
Other Useful onstat Utility Options

onstat Utility Archive Information Options
Use the following onstat options to display information about archives and restores.

Table 1. onstat Utility Archive Information Options

Commands Reference

onstat -D Prints chunk I/O activity. Prints dbspace read/write activity for monitoring restore
progress.

onstat -D command: Print page-read and page-write information

onstat -g arc Prints the last committed and any ongoing backups for each dbspace.

onstat -g arc command: Print archive status

onstat Utility Cache Information Options
Use the following onstat options to display information about caches and cached data, including buffer pools.

Table 2. onstat Utility Cache Information Options

Commands Reference

onstat -b Prints buffer pages in use.

onstat -b command: Print buffer information for buffers in use

onstat -B Prints information about used buffers.

onstat -B command: Prints information about used buffers

Part VI: Administering 683

https://www.hcltech.com/

Commands Reference

onstat -F Prints state of buffer queue cleaners and I/O.

onstat -F command: Print counts

onstat -g cac Prints summary and detailed information about all memory caches or about the specified cache.

onstat -g cac command: Print information about caches

onstat -g dic Prints data dictionary cache, containing system catalog data for tables. Prints one line of information for each table that is
cached in the shared-memory dictionary.

For more information, see your IBM Informix Performance Guide.

onstat -g dic command: Print table information

onstat -g dsc Prints table distribution statistics for the optimizer.

onstat -g dsc command: Print distribution cache information.

onstat -g prc Prints the stored procedure (SPL) routine cache. Prints information about SPL routine cache.

onstat -g prc command: Print sessions using UDR or SPL routines

onstat -g ssc Prints the number of times that the database server reads the SQL statement in the cache. Displays the same output as
onstat -g cac.

For more information, see improving query performance in the IBM Informix Performance Guide.

onstat -g ssc command: Print SQL statement occurrences

onstat -g vpcache Prints CPU virtual processor memory cache.

onstat -g vpcache command: Print CPU virtual processor and tenant virtual processor private memory cache statistics

onstat -h Prints buffer hash chain information.

onstat -h command: Print buffer header hash chain information

onstat -p Prints global (server) information regarding the effectiveness of buffer pool caching.

onstat -p command: Print profile counts

onstat -X Prints threads that are waiting for buffers.

onstat -X command: Print thread information

onstat Utility Compression Options
Use the following onstat options to print compression information.

Table 3. onstat Utility Compression Options

Commands Reference

onstat -g dsk Prints progress of currently running compression operations.

onstat -g dsk command: Print the progress of the currently running compression
operation

onstat -g ppd Prints partition compression dictionary information.

onstat -g ppd command: Print partition compression dictionary information

onstat Utility Debugging Options
Use the following onstat options to display information that is useful for debugging problems with the server.

Table 4. onstat Utility Debugging Options

Commands Reference

onstat -g dmp Prints raw memory at a specified address for a number of given bytes.

onstat -g dmp command: Print raw memory

onstat -g src Searches for patterns in shared memory. Note that memory is byte-swapped on Intel
platforms.

onstat -g src command: Patterns in shared memory

onstat -o Prints shared memory contents to a file.

onstat -o command: Output shared memory contents to a file.

onstat Utility Enterprise Replication Options
Use the following onstat options to track Enterprise Replication statistics and to provide troubleshooting information. For additional information about Enterprise
Replication see the cdr view and cdr view profile commands that are described in the .

684 Part VI: Administering

Table 5. onstat Utility Enterprise Replication Options

Commands Reference

onstat -g cat Prints information from the Enterprise Replication global catalog. The global catalog contains a summary of information
about the defined servers, replicates, and replicate sets on each of the servers within the enterprise.

onstat -g cat: Print ER global catalog information

onstat -g cdr Prints the output for all of the Enterprise Replication statistics commands.

onstat -g cdr: Print ER statistics

onstat -g cdr config Prints Enterprise Replication configuration parameters and environment variables.

onstat -g cdr config: Print ER settings

onstat -g ddr Prints status of Enterprise Replication components that read and process log records.

onstat -g ddr: Print status of ER log reader

onstat -g dss Prints activity of individual data sync (transaction processing) threads.

onstat -g dss: Print statistics for data sync threads

onstat -g dtc Prints delete table cleaner activity. Deleted or updated rows that are placed in the delete table are purged at intervals.

onstat -g dtc: Print statistics about delete table cleaner

onstat -g grp Prints Enterprise Replication grouper statistics. The grouper evaluates the log records, rebuilds the individual log records
into the original transaction, packages the transaction, and queues the transaction for transmission.

onstat -g grp: Print grouper statistics

onstat -g nif Prints network interface statistics. Shows the state of the network interface, servers, and data transfer among servers.

onstat -g nif: Print statistics about the network interface

onstat -g que Prints statistics for the high-level queue interface (which is common to all of the queues of the Enterprise Replication
Queue Manager).

onstat -g que: Print statistics for all ER queues

onstat -g rcv Prints receive manager statistics.

onstat -g rcv: Print statistics about the receive manager

onstat -g rep Prints events that are in the queue for the schedule manager.

onstat -g rep: Prints the schedule manager queue

onstat -g rqm Prints statistics and contents of the low-level queues (send queue, receive queue, ack send queue, sync send queue, and
control send queue) managed by the Reliable Queue Manager (RQM).

onstat -g rqm: Prints statistics for RQM queues

onstat -g sync Prints synchronization status.

onstat -g sync: Print statistics about synchronization

onstat Utility High-Availability Replication Options
Use the following onstat options to monitor high-availability cluster environments and the Connection Manager.

Table 6. onstat Utility High-Availability Replication Options

Commands Reference

onstat -g cluster Prints high-availability cluster information.

onstat -g cluster command: Print high-availability cluster information

onstat -g cmsm Prints Connection Manager information.

onstat -g cmsm command: Print Connection Manager information

onstat -g dri Prints data-replication information.

See Monitoring High-Availability Data-Replication status in the IBM Informix Administrator's Guide.

onstat -g dri command: Print high-availability data replication information.

onstat -g ipl Prints index page logging status.

onstat -g ipl command: Print index page logging status information

onstat -g laq Prints information about log recovery apply queues.

onstat -g laq command: Print log apply queues

onstat -g proxy Prints proxy distributors for high-availability.

onstat -g proxy command: Print proxy distributor information

Part VI: Administering 685

Commands Reference

onstat -g rss Prints remote stand-alone server (RSS) information.

onstat -g rss command: Print RS secondary server information

onstat -g sds Prints shared disk secondary (SDS) server information.

onstat -g sds command: Print SD secondary server information

onstat -g smx Prints Server Multiplexer Group (SMX) connections in high-availability environments. Prints data transfer statistics and
encryption status.

onstat -g smx command: Print multiplexer group information

onstat Utility Informix Warehouse Accelerator Options
Use the following onstat options to display information that is exchanged between the database server and the Informix Warehouse Accelerator.

Table 7. onstat Utility Informix Warehouse Accelerator options

Commands Reference

onstat -g aqt Prints information about the data marts and the associated accelerated query tables (AQTs).
onstat -g aqt command: Print data mart and accelerated query table information.

onstat Utility I/O Options
Use the following onstat options to track input and output (read and write) activity.

Table 8. onstat Utility I/O Options

Commands Reference

onstat -D Prints chunk I/O activity.

onstat -D command: Print page-read and page-write information

onstat -g cpu Prints runtime statistics for each thread.

onstat -g cpu: Print runtime statistics

onstat -g ioa Prints combined information from onstat -g ioq (queues), onstat -g iov (virtual processors), and onstat -g iob (big buffer).

onstat -g ioa command: Print combined onstat -g information

onstat -g iob Prints the big buffer usage summary.

onstat -g iob command: Print big buffer use summary

onstat -g iof Prints I/O statistics by file or chunk. This option is similar to the onstat -D option, but also displays information about non-
chunk, temporary, and sort-work files.

onstat -g iof command: Print asynchronous I/O statistics

onstat -g iog Prints AIO global information.

onstat -g iog command: Print AIO global information

onstat -g ioq Prints queue read/write statistics and queue length.

onstat -g ioq command: Print I/O queue information. Also see the IBM Informix Performance Guide.

onstat -g iov Prints asynchronous I/O statistics by virtual processor.

onstat -g iov command: Print AIO VP statistics

onstat -p Prints global disk activity, including sequential scans.

onstat -p command: Print profile counts

onstat Utility Locks and Latches Options
Use the following onstat options to display information about locks.

Table 9. onstat Utility Locks and Latches Options

Commands Reference

onstat -k Prints information about active locks.

onstat -k command: Print active lock information

onstat -L Prints the number of locks on a lock free list.
onstat -L command: Print the number of free locks

686 Part VI: Administering

Commands Reference

onstat -p Prints global statistics on lock requests, lock waits, and latch
waits.

onstat -p command: Print profile counts

onstat -s Prints latch (mutex) information.

onstat -s command: Print latch information

onstat Utility Logs Options
Use the following onstat options to monitor logical and physical logs.

Table 10. onstat Utility Logs Options

Commands Reference

onstat -g ipl Prints index page logging information in high-availability
environments.

onstat -g ipl command: Print index page logging status information

onstat -l Prints status of physical and logical logs, and log buffering.

onstat -l command: Print physical and logical log information

onstat Utility Memory Options
Use the following onstat options to monitor the various aspects of server memory allocation and use.

Table 11. onstat Utility Memory Options

Commands Reference

onstat -g afr Prints allocated memory fragments for a specified session or shared-memory pool. To obtain the pool name, see the onstat
-g mem option.

onstat -g afr command: Print allocated memory fragments

onstat -g ffr (pool name session ID) Prints free fragments for a session or shared memory pool.

onstat -g ffr command: Print free fragments

onstat -g lmm Prints information about automatic low memory management settings and recent activity: onstat -g lmm command: Print
low memory management information

onstat -g mem Prints session or pool virtual shared memory statistics.

onstat -g mem command: Print pool memory statistics

onstat -g mgm Prints Memory Grant Manager (parallel and sort operations) resource information.

onstat -g mgm command: Print MGM resource information. Also see the IBM Informix Performance Guide.

onstat -g nbm Prints block map for non-resident segments.

onstat -g nbm command: Print a block bit map

onstat -g rbm Prints block map for resident segment.

onstat -g rbm command: Print a block map of shared memory

onstat -g seg Prints memory segment statistics.

onstat -g seg command: Print shared memory segment statistics. Also see the IBM Informix Administrator's Guide.

onstat -g ses Prints session information, including memory breakdown. For detailed information, use: onstat -g ses session_id

onstat -g ses command: Print session-related information Also see the IBM Informix Performance Guide

onstat -g stm Prints SQL statement memory use.

onstat -g stm command: Print SQL statement memory usage

onstat -g stq Prints stream queue buffers.

onstat -g stq command: Print queue information

onstat -g ufr Prints memory pool fragments for a session or shared memory pool in use.

onstat -g ufr command: Print memory pool fragments

onstat -R Prints buffer pool queues and their status.

onstat -R command: Print LRU, FLRU, and MLRU queue information

onstat Utility Network Options
Use the following onstat options to monitor shared memory and network connection services.

Part VI: Administering 687

Table 12. onstat Utility Network Options

Commands Reference

onstat -g imc Prints information about Informix MaxConnect instances that are connected to the database server. If Informix MaxConnect
is not connected to the database server, this command displays No MaxConnect servers are connected.

onstat -g nsc Prints shared-memory status by client id. If client id is omitted, all client status areas are displayed. This command prints
the same status data as the nss command.

onstat -g nsc command: Print current shared memory connection information

onstat -g nsd Prints network shared-memory data for poll threads.

onstat -g nsd command: Print poll threads shared-memory data

onstat -g nss Prints network shared-memory status by session id. If session id is omitted, all session status areas are displayed. This
command prints the same status data as the onstat -g nsc command.

onstat -g nss command: Print shared memory network connections status

onstat -g nta Prints combined network statistics from onstat -g ntd, onstat -g ntm, onstat -g ntt, and onstat -g ntu. If Informix
MaxConnect is installed, this command prints statistics that you can use to tune Informix MaxConnect performance.

onstat -g ntd Prints network statistics by service.

onstat -g ntd command: Print network statistics

onstat -g ntm Prints network mail statistics.

onstat -g ntm command: Print network mail statistics

onstat -g ntt Prints network user times.

onstat -g ntt command: Print network user times

onstat -g ntu Prints network user statistics.

onstat -g ntu command: Print network user statistics

onstat Utility Performance Checks (First Tier)
Use the following onstat options to monitor performance and to check for performance impediments. Use the second-tier onstat options (and other onstat commands) to
further narrow the problem.

Table 13. onstat Utility Performance Checks (First Tier)

Commands Reference

onstat -c Prints server configuration.

onstat -c command: Print ONCONFIG file contents

onstat -D Prints chunk I/O.

onstat -D command: Print page-read and page-write information

onstat -g ath Prints status and statistics for all threads. The sqlexec thread is a client session thread. The rstcb value corresponds to the
user field of the onstat -u command.

onstat -g ath command: Print information about all threads. For information about using onstat -g ath to print Enterprise
Replication threads, see the .

onstat -g ckp Prints checkpoint history and display configuration recommendations.

onstat -g ckp command: Print checkpoint history and configuration recommendations

onstat -g cpu Prints runtime statistics for each thread.

onstat -g cpu: Print runtime statistics

onstat -g ioq Prints pending I/O operations for the queue name.

onstat -g ioq command: Print I/O queue information

onstat -p Prints global server performance profile.

onstat -p command: Print profile counts

onstat -u Prints status and statistics for user threads. If a thread is waiting for a resource, this command identifies the type (flags
field) and address (wait field) of the resource.

onstat -u command: Print user activity profile

onstat Utility Performance Checks (Second Tier)
Use the following onstat options to identify performance impediments.

Table 14. onstat Utility Performance Checks (Second Tier)

Commands Reference

688 Part VI: Administering

Commands Reference

onstat -b Prints active buffers.

onstat -b command: Print buffer information for buffers in use

onstat -g act Prints active threads.

onstat -g act command: Print active threads

onstat -g glo Prints virtual processors and their operating system processes (oninit processes). Prints virtual processor CPU use. On
Windows, the virtual processors are operating system threads, and the values in the pid field are thread IDs.

onstat -g glo command: Print global multithreading information

onstat -g mgm Prints Memory Grant Manager resource information.

onstat -g mgm command: Print MGM resource information

onstat -g rah Prints read-ahead request information

onstat -g rah command: Print read-ahead request statistics

onstat -g rea Prints threads in the ready queue that are waiting for CPU resources.

onstat -g rea command: Print ready threads

onstat -g seg Prints shared-memory-segment statistics. This option shows the number and size of shared-memory segments that are
allocated to the database server.

onstat -g seg command: Print shared memory segment statistics.

onstat -g wai Prints waiting threads; all threads that are waiting for mutex or condition, or yielding.

onstat -g wai command: Print wait queue thread list

onstat -k Prints active locks.

onstat -k command: Print active lock information

onstat Utility Table Options
Use the following onstat options to display information about table status and table statistics.

Table 15. onstat Utility Table Options

Commands Reference

onstat -g buf Prints buffer pool profile information.

onstat -g buf command: Print buffer pool profile information

onstat -g lap Prints information about the status of currently active light appends (writes bypassing the buffer pool).

onstat -g lap command: Print light appends status information

onstat -g opn Prints open partitions (tables).

onstat -g opn command: Print open partitions

onstat -g ppf Prints partition profile (activity data) for the specified partition number or prints profiles for all partitions.

onstat -g ppf command: Print partition profiles

onstat -g scn Prints information about the progress of a scan, based on rows scanned on compressed tables, tables with rows that are
larger than a page, and tables with VARCHAR, LVARCHAR, and NVARCHAR data, and identifies whether a scan is a light or
bufferpool scan.

onstat -g scn command: Print scan information

onstat -P Prints table and B-tree pages in the buffer pool, listed by partition (table).

onstat -P command: Print partition information

onstat -t
onstat -T

Prints basic tblspace (partition) information for active (t) or all (T) tblspaces.

onstat -t and onstat -T commands: Print tblspace information

onstat Utility Thread Options
Use the following onstat options to display the status and activity of threads.

Table 16. onstat Utility Thread Options

Commands Reference

onstat -g act Prints active threads. This output is included in onstat -g ath output.

onstat -g act command: Print active threads

Part VI: Administering 689

Commands Reference

onstat -g ath Prints all threads.

onstat -g ath command: Print information about all threads. For information about using onstat -g ath to print Enterprise
Replication threads, see the .

onstat -g bth Displays the dependencies between blocking and waiting threads.
onstat -g bth and -g BTH: Print blocked and waiting threads

onstat -g BTH Displays session and stack information for the blocking threads.
onstat -g bth and -g BTH: Print blocked and waiting threads

onstat -g cpu Prints runtime statistics for each thread.

onstat -g cpu: Print runtime statistics

onstat -g rea Prints ready threads (threads that are waiting for CPU resources). This output is included in the onstat -g ath output.

onstat -g rea command: Print ready threads.

onstat -g sle Prints information about threads that are sleeping for a specified time. Does not include threads that are sleeping forever.

onstat -g sle command: Print all sleeping threads

onstat -g stk Prints the stack of a specified thread or prints stacks for all threads.

onstat -g stk command: Print thread stack

onstat -g sts Prints maximum and current stack use per thread.

onstat -g sts command: Print stack usage for each thread

onstat -g tpf Prints thread activity statistics.

onstat -g tpf command: Print thread profiles

onstat -g wai Prints waiting (idle, sleeping, and waiting) threads. Included in onstat -g ath output.

onstat -g wai command: Print wait queue thread list

onstat -g wst Prints wait statistics for threads.

onstat -g wst command: Print wait statistics for threads

onstat Utility User/Session Options
Use the following onstat options to display information about the user environment and active sessions.

Table 17. onstat Utility User/Session Options
Commands Reference

onstat -g env Prints the values of environment variables the database server is using.

onstat -g env command: Print environment variable values

onstat -g his Prints SQL tracing information.

onstat -g his command: Print SQL trace information

onstat -g pqs Prints operators that are used in currently running SQL queries.

onstat -g pqs command: Print operators for all SQL queries

onstat -g ses Prints summary information for all active sessions or detailed information for individual
sessions.

onstat -g ses command: Print session-related information

onstat -g spf Prints prepared statement profiles for all active sessions.

onstat -g spf: Print prepared statement profiles

onstat -g sql Prints SQL information for all active sessions or detailed SQL information for individual sessions.

onstat -g sql command: Print SQL-related session information

onstat -G Prints global transactions.

onstat -G command: Print TP/XA transaction information

onstat -u Prints status of user threads and their global read/write statistics.

onstat -u command: Print user activity profile

onstat -x Prints information about transactions.

onstat -x command: Print database server transaction information

onstat Utility Virtual Processor Options
Use the following onstat options to display information and statistics for virtual processors.

690 Part VI: Administering

Table 18. onstat Utility Virtual Processor Options

Commands Reference

onstat -g glo Prints global multithreading information and global statistics for virtual processor classes and individual virtual processors.
On Windows, the virtual processors are operating system threads, and the values in the pid field are thread IDs.

onstat -g glo command: Print global multithreading information

onstat -g sch Prints the number of semaphore operations, spins, and busy waits for each virtual processor. On Windows, the virtual
processors are operating system threads, and the values in the pid field are thread IDs.

onstat -g sch command: Print VP information

onstat Utility Waiting Options
Use the following onstat options to display information about wait conditions for threads.

Table 19. onstat Utility Waiting Options

Commands Reference

onstat -g con Prints IDs of threads that are waiting for conditions.

onstat -g ath to print thread information. See onstat -g con command: Print condition and thread
information

onstat -g lmx Prints all locked mutexes.

onstat -g lmx command: Print all locked mutexes

onstat -g qst Prints queue-wait statistics for mutex and condition queues.

onstat -g qst command: Print wait options for mutex and condition queues

onstat -g rwm Prints read/write mutexes.

onstat -g rwm command: Print read and write mutexes

onstat -g spi Prints spin locks with long spins and spin lock statistics.

onstat -g spi command: Print spin locks with long spins

onstat -g wai Prints waiting threads; all threads that are waiting for mutex or condition, or yielding.

onstat -g wai command: Print wait queue thread list

onstat -g wmx Prints all mutexes with waiters.

onstat -g wmx command: Print all mutexes with waiters

Other Useful onstat Utility Options
Table 20. Other Useful onstat Utility Options

Commands Reference

onstat - Prints onstat header; includes engine version, status (online, Quiescent, and so on), elapsed time since initialization, and
memory footprint.

onstat - command: Print output header

onstat – Prints onstat usage options.

onstat -- command: Print onstat options and functions

onstat options infile Print onstat output using a shared memory dump (infile) as input.

Running onstat Commands on a Shared Memory Dump File

onstat -a Prints collective onstat outputs.

onstat -a command: Print overall status of the database server

onstat -c Prints the server configuration file.

onstat -c command: Print ONCONFIG file contents

onstat -C Prints B-tree index scanner information (shows statistics about index cleaning).

onstat -C command: Print B-tree scanner information

onstat -d Prints chunk information.

onstat -d command: Print chunk information

onstat -f Prints dbspaces configured for dataskip.

onstat -f command: Print dbspace information affected by dataskip

onstat -g all Prints diagnostic information.

onstat -g all command: Print diagnostic information

Part VI: Administering 691

Commands Reference

onstat -g cfg Prints a list of configuration parameters with their current values.

onstat -g cfg command: Print the current values of configuration parameters

onstat -g dbc Prints statistics about dbScheduler and dbWorker threads.

onstat -g dbc command: Print dbScheduler and dbWorker thread statistics

onstat -g dis Prints a list of database servers, their status, directory location, configuration information, and host name.

onstat -g dis command: Print database server information

onstat -g dll Prints a list of dynamic libraries that are loaded.

onstat -g dll command: Print dynamic link library file list

onstat -g osi Prints information about operating system resources and parameters.

onstat -g osi: Print operating system information

onstat -g pos Prints values from $INFORMIXDIR/etc/.infos.servernum file, which are used by clients such as onmode for shared memory
connections to the server. onmode -R rebuilds the $INFORMIXDIR/etc/.infos.servernum file.

onstat -g pos command: Print file values

onstat -g smb Prints detailed information about sbspaces.

onstat -g smb command: Print sbspaces information

onstat -g sym Prints symbol table information for the oninit utility.

onstat -g sym command: Print symbol table information for the oninit utility

onstat -i Changes onstat mode to interactive.

onstat -i command: Initiate interactive mode

onstat -j Prints information about the status of an onpload job.

onstat -j command: Provide onpload status information

onstat -m Prints message log contents.

onstat -m command: Print recent system message log information

onstat -r Prints repetitive onstat execution.

onstat -r command: Repeatedly print selected statistics

onstat -z Resets the accumulated statistics to zero.

onstat -z command: Clear statistics

Copyright© 2020 HCL Technologies Limited

Monitor the database server status

To monitor the database server status, view the heading of the onstat command.

Whenever the database server is blocked, onstat displays the following line after the banner line:

Blocked: reason

The variable reason can be one or more of the following values.

Reason Description

ADMINISTRATION Database is in administration mode

ARCHIVE Ongoing storage-space backup

ARCHIVE_EBR Blocked for External Backup and Recovery.

CHG_PLOG Blocked while physical log is being changed.

CKPT Checkpoint

CKPT INP Interval checkpoint in progress

DBS_DROP Dropping a dbspace

DDR Discrete data replication

DYNAMIC_LOG Log file is being added dynamically

DYNAMIC_LOG_FOR_ER Log file is being added dynamically in ER setup

FREE_LOG Log file is being freed

HA_CONV_STD Blocked while High Availability server is being converted to standard server.

HA_FAILOVER Blocked while High Availability server failover being processed.

692 Part VI: Administering

https://www.hcltech.com/

HANG_SYSTEM Database server failure

LAST_LOG_RESERVED4BACKUP Waiting for last available log to be backed up

LBU Logs full high-watermark

LOG_DROP Log file is being dropped

LONGTX Long transaction

MEDIA_FAILURE Media failure

OVERRIDE_DOWN_SPACE Waiting to override down dbspace setting because the ONDBSPACEDOWN onconfig parameter is set to WAIT

In this table, the value CHKP INP does not indicate that the database server is blocked, but that a nonblocking interval checkpoint is in progress while the buffer pool is
being flushed. This CHKP INP value appears in the status line of onstat output until all pages in the shared-memory buffer pool have been written to disk. For information
about setting interval checkpoints to flush the buffer pool, see the CKPTINTVL configuration parameter.

Copyright© 2020 HCL Technologies Limited

onstat command syntax

The complete syntax for the onstat command, including information about the interactive mode and how to have options to execute repeatedly.

 .- -pu-.
>>-onstat--+-------------------------+--+------+---------------->
 | (1) |
 '-| -FILE option |-----'

 .---------------------------------------.
 V | (2)
>--+---+-----------------------------------+-+--+--------+-----+-><
 | +- -a-------------------------------+ '-infile-' |
 | +- -b-------------------------------+ |
 | +- -B-------------------------------+ |
 | +- -c-------------------------------+ |
 | +- -C-------------------------------+ |
 | +- -d-------------------------------+ |
 | +- -D-------------------------------+ |
 | +- -f-------------------------------+ |
 | +- -F-------------------------------+ |
 | +- -g--monitoring_option------------+ |
 | +- -G-------------------------------+ |
 | +- -h-------------------------------+ |
 | +- -i-------------------------------+ |
 | +- -j-------------------------------+ |
 | +- -k-------------------------------+ |
 | +- -l-------------------------------+ |
 | +- -m-------------------------------+ |
 | +- -o--+---------+----+---------+---+ |
 | | +-nobuffs-+ '-outfile-' | |
 | | '-full----' | |
 | +- -O-------------------------------+ |
 | +- -p-------------------------------+ |
 | +- -P-------------------------------+ |
 | +- -r--+---------+------------------+ |
 | | '-seconds-' | |
 | +- -R-------------------------------+ |
 | +- -s-------------------------------+ |
 | +- -t-------------------------------+ |
 | +- -T-------------------------------+ |
 | +- -u-------------------------------+ |
 | +- -x-------------------------------+ |
 | +- -X-------------------------------+ |
 | '- -z-------------------------------' |
 +- - ---+
 +- -- --+
 +- -V---+
 '- -version---'

Notes:

1. See The -FILE option.
2. Only one occurrence of each item is allowed. More than one option can be specified on a single onstat command invocation.

Element Purpose Key Considerations

- Displays the output header only. See onstat - command: Print output header.

-- Displays a listing of all onstat options and their functions See onstat -- command: Print onstat options and functions.

This option cannot be combined with any other onstat option.

-a Interpreted as onstat -cuskbtdlp. Displays output in that
order.

See onstat -a command: Print overall status of the database server.

-b Displays information about buffers currently in use,
including number of resident pages in the buffer pool

See onstat -b command: Print buffer information for buffers in use.

Part VI: Administering 693

https://www.hcltech.com/

Element Purpose Key Considerations

-B Obtains information about all database server buffers, not
just buffers currently in use.

See onstat -B command: Prints information about used buffers.

-c Displays the ONCONFIG file:

$INFORMIXDIR/etc/$ONCONFIG for UNIX
%INFORMIXDIR%\etc\ %ONCONFIG% for Windows

See onstat -c command: Print ONCONFIG file contents.

-C Prints B-tree scanner information See onstat -C command: Print B-tree scanner information.

-d Displays information for chunks in each storage space See onstat -d command: Print chunk information.

-D Displays page-read and page-write information for the first
50 chunks in each dbspace

See onstat -D command: Print page-read and page-write information.

-f Lists the dbspaces currently affected by the DATASKIP
feature

See onstat -f command: Print dbspace information affected by dataskip.

-F Displays a count for each type of write that flushes pages to
disk

See onstat -F command: Print counts.

-g option Prints monitoring option See onstat -g monitoring options.

-G Prints global transaction IDs See onstat -G command: Print TP/XA transaction information.

-h Provides information on the buffer header hash chains See onstat -h command: Print buffer header hash chain information.

-i Puts the onstat utility into interactive mode See onstat -i command: Initiate interactive mode.

-j Prints the interactive status of the active onpload process See onstat -j command: Provide onpload status information.

-k Displays information about active locks See onstat -k command: Print active lock information.

-l Displays information about physical and logical logs,
including page addresses

See onstat -l command: Print physical and logical log information.

-m Displays the 20 most recent lines of the database server
message log

Output from this option lists the full pathname of the message-log file and the
20 file entries. A date-and-time header separates the entries for each day. A
time stamp prefaces single entries within each day. The name of the message
log is specified as MSGPATH in the ONCONFIG file.
See onstat -m command: Print recent system message log information.

-o Saves a copy of the shared-memory segments to outfile See onstat -o command: Output shared memory contents to a file.

-p Displays profile counts. See onstat -p command: Print profile counts.

-P Displays for all partitions the partition number and the
break-up of the buffer-pool pages that belong to the
partition

See onstat -P command: Print partition information.

-pu If you invoke onstat without any options, the command is
interpreted as onstat -pu (-p option and -u option).
Displays profile counts and prints a profile of user activity

See onstat -p command: Print profile counts and onstat -u command: Print
user activity profile.

-r seconds Repeats the accompanying onstat options after a wait time
specified in seconds between each execution

See onstat -r command: Repeatedly print selected statistics.

-R Displays detailed information about the LRU queues, FLRU
queues, and MLRU queues

See onstat -R command: Print LRU, FLRU, and MLRU queue information.

-s Displays general latch information See onstat -s command: Print latch information.

-t Displays tblspace information, including residency state, for
active tblspaces

See onstat -t and onstat -T commands: Print tblspace information.

-T Displays tblspace information for all tblspaces See onstat -t and onstat -T commands: Print tblspace information.

-u Prints a profile of user activity See onstat -u command: Print user activity profile.

-V Displays the software version number and the serial
number. This option cannot be combined with any other
onstat option.

See Obtaining utility version information.

-version Displays the build version, host, OS, number and date, as
well as the GLS version. This option cannot be combined
with any other onstat option.

See Obtaining utility version information.

-x Displays information about transactions See onstat -x command: Print database server transaction information.

-X Obtains precise information about the threads that are
sharing and waiting for buffers

See onstat -X command: Print thread information.

-z Sets the profile counts to 0 See onstat -z command: Clear statistics.

infile Specifies a source file for the onstat command This file must include a previously stored shared-memory segment that you
created with the onstat -o command.
For instructions on how to create the infile with onstat -o, see onstat -o
command: Output shared memory contents to a file.

For information about running onstat on the source file, see Running onstat
Commands on a Shared Memory Dump File.

694 Part VI: Administering

Interactive execution
To put the onstat utility in interactive mode, use the -i option. Interactive mode allows you to enter multiple options, one after the other, without exiting the program. For
information on using interactive mode, see onstat -i command: Initiate interactive mode.

Continuous onstat command execution
Use the onstat -r option combined with other onstat options to cause the other options to execute repeatedly at a specified interval. For information, see onstat -r
command: Repeatedly print selected statistics.

Copyright© 2020 HCL Technologies Limited

onstat command: Equivalent to the onstat -pu command

If you invoke onstat without any options, the command is interpreted as onstat -pu (the -p option and the -u option).

Syntax:

>>-onstat--><

Copyright© 2020 HCL Technologies Limited

onstat - command: Print output header

All onstat output includes a header. The onstat - command displays only the output header and the value that is returned from this command indicates the database
server mode.

Syntax:

>>-onstat-- - ---><

The header takes the following form:

Version--Mode (Type)--(Checkpnt)--Up Uptime--Sh_mem Kbytes

Version
Is the product name and version number

Mode
Is the current operating mode.

(Type)
If the database server uses High-Availability Data Replication, indicates whether the type is primary or secondary
If the database server is not involved in data replication, this field does not appear. If the type is primary, the value P appears. If the type is secondary, the value S
appears.

(Checkpnt)
Is a checkpoint flag
If it is set, the header might display two other fields after the mode if the timing is appropriate:

(CKPT REQ)
Indicates that a user thread has requested a checkpoint

(CKPT INP)
Indicates that a checkpoint is in progress. During the checkpoint, access is limited to read only. The database server cannot write or update data until the
checkpoint ends

Uptime
Indicates how long the database server has been running
If the system time is manually changed to the past and the server startup time is later than the current system time, the uptime is not available. In this situation, the
header displays the text Uptime Unavailable.

Sh_mem
Is the size of database server shared memory, expressed in kilobytes

The following is a sample header for the database server:

Informix Version 14.10.UC1--On-Line--Up 15:11:41--9216 Kbytes

From xC5 onwards, the header also includes a datetime stamp in the format: <year>-<month>-<day> <hour>:<minute>:<second>

IBM Informix Dynamic Server Version 14.10.FC5 -- On-Line -- Up 00:00:22 -- 54180 Kbytes
2020-12-17 19:15:15

If the database server is blocked, the onstat header output includes an extra line. For information about status codes in that line, see Monitor the database server status.

Return codes

Part VI: Administering 695

https://www.hcltech.com/
https://www.hcltech.com/

When you exit the onstat utility, there are several useful codes that are displayed. See Return codes on exiting the onstat utility.

Copyright© 2020 HCL Technologies Limited

onstat -- command: Print onstat options and functions

Use the onstat -- command to display a listing of all of the onstat options and their functions. You cannot combine this option with any other flag.

Syntax:

>>-onstat-- ---><

Copyright© 2020 HCL Technologies Limited

Running onstat Commands on a Shared Memory Dump File

You can run onstat commands against a shared memory dump file. The shared memory dump file can be produced explicitly by using the onstat -o command. If the
DUMPSHMEM configuration parameter is set to 1 or set to 2, the dump file is created automatically at the time of an assertion failure.

Syntax:

>>-onstat--options--infile-------------------------------------><

When using the command line, enter the source file as the final argument. The following example prints information about all threads for the shared memory dump
contained in the file named onstat.out, rather than attempting to attach to the shared memory of a running server.

onstat -g ath onstat.out

For instructions on how to create the memory dump file with onstat -o, see onstat -o command: Output shared memory contents to a file.

Running onstat Commands on a Shared Memory Dump File Interactively
Use onstat -i (interactive mode) to run more than one onstat command against a dump file. Interactive mode can save time because the file is read only once. In
command-line mode, each command reads the file.

The following example reads the shared memory dump file and enters interactive mode. Other onstat commands can be executed against the dump file in the normal
interactive fashion.

onstat -i source_file

For information about interactive mode, see onstat -i command: Initiate interactive mode.

Running onstat Commands on a Shared Memory Dump File Created Without a Buffer Pool
Certain onstat commands have different output when you run them on a dump file created without the buffer pool (created with onstat -o nobuffs or with the
DUMPSHMEM configuration parameter set to 2):

If you run onstat -B on a dump file created without the buffer pool, the output will display 0 in the memaddr, nslots, and pgflgs columns.
If you run onstat -g seg on a dump file created without the buffer pool, the output will show both the original and nobuffs resident segment size.
If you run onstat -P on a shared-memory dump file that does not have the buffer pool, the output is:

Nobuffs dumpfile -- this information is not available

Related reference:
 DUMPSHMEM configuration parameter (UNIX)

onstat -g seg command: Print shared memory segment statistics

Copyright© 2020 HCL Technologies Limited

onstat -a command: Print overall status of the database server

Use the onstat -a command to display information about the status of the database server. This command does not display information about all of the onstat options,
only about those onstat options used for initial troubleshooting.

Syntax:

>>-onstat-- -a---><

Copyright© 2020 HCL Technologies Limited

696 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

onstat -b command: Print buffer information for buffers in use

Use the onstat -b option to display information about the buffers that are currently in use, including the total number of resident pages in the buffer pool.

Syntax:

>>-onstat-- -b---><

The maximum number of buffers available is specified in the buffers field in the BUFFERPOOL configuration parameter in the ONCONFIG file.

The onstat -b command also provides summary information about the number of modified buffers, the total number of resident pages in the buffer pool, the total number
of buffers available, the number of hash buckets available, and the size of the buffer in bytes (the page size).

123 modified, 23 resident, 2000 total, 2048 hash buckets, 2048 buffer size.

For information about displaying information about all buffers, use onstat -B command: Prints information about used buffers.

Example output
Following is sample output from the onstat -b command. For a description of the output, see onstat -B command: Prints information about used buffers.

Figure 1. onstat -b command output

Buffer pool page size: 4096

address userthread flgs pagenum memaddr nslots pgflgs xflgs owner waitlist
70000001097e9e8 0 c07 1:47841 7000000118e0000 10 1 0 0 0
700000010982188 0 807 1:47827 700000011939000 225 90 10 0 0
2011 modified, 50000 total, 65536 hash buckets, 4096 buffer size

Copyright© 2020 HCL Technologies Limited

onstat -B command: Prints information about used buffers

Use the onstat -B option to display information about buffers that are not on the free-list.

Syntax:

>>-onstat-- -B---><

Both onstat -B and onstat -b display the similar information, except that the onstat -b command only displays buffers that are currently being accessed by a user thread.
The onstat -B command displays information for all the buffers that are not on the free-list.

For information about running the onstat -B command on a dump file created without the buffer pool, see Running onstat Commands on a Shared Memory Dump File.

Example output

Output description
Buffer pool page size

the size of the buffer pool pages in bytes
address

the address of the buffer header in the buffer table
userthread

the address of the most recent user thread to access the buffer table. Many user threads might be reading the same buffer concurrently.
flgs

Uses the following flag bits to describe the buffer:

0x01
Modified data

0x02
Data

0x04
LRU

0x08
Error

pagenum
the physical page number on the disk

memaddr
the buffer memory address

nslots
the number of slot-table entries in the page
This field indicates the number of rows (or portions of a row) that are stored on the page.

Part VI: Administering 697

https://www.hcltech.com/

pgflgs
Uses the following values, alone or in combination, to describe the page type:

1
Data page

2
Tblspace page

4
Free-list page

8
Chunk free-list page

9
Remainder data page

b
Partition resident blobpage

c
Blobspace resident blobpage

d
Blob chunk free-list bit page

e
Blob chunk blob map page

10
B-tree node page

20
B-tree root-node page

40
B-tree branch-node page

80
B-tree leaf-node page

100
Logical-log page

200
Last page of logical log

400
Sync page of logical log

800
Physical log

1000
Reserved root page

2000
No physical log required

8000
B-tree leaf with default flags

xflgs
Uses the following flag bits to describe buffer access:

0x10
share lock

0x80
exclusive lock

owner
the user thread that set the xflgs buffer flag

waitlist
the address of the first user thread that is waiting for access to this buffer
For a complete list of all threads waiting for the buffer, refer to onstat -X command: Print thread information.

Copyright© 2020 HCL Technologies Limited

onstat -c command: Print ONCONFIG file contents

Use the onstat -c command to display the contents of the ONCONFIG file.

Syntax:

>>-onstat-- -c---><

The database server first checks if you have assigned a value to the environment variable ONCONFIG. You can use the onstat -c option with the database server in any
mode, including offline.

UNIX Only:
On UNIX, if you have set ONCONFIG, onstat -c displays the contents of the $INFORMIXDIR/etc/$ONCONFIG file. If not, by default, onstat -c displays the contents of
$INFORMIXDIR/etc/onconfig.

Windows Only:
On Windows, if you have set ONCONFIG, onstat -c displays the contents of the %INFORMIXDIR%\etc\%ONCONFIG% file. If not, by default, onstat -c displays the
contents of %INFORMIXDIR%\etc\onconfig.

698 Part VI: Administering

https://www.hcltech.com/

Related tasks:
Displaying the settings in the onconfig file
Related reference:
onstat -g cfg command: Print the current values of configuration parameters
Database server files

Copyright© 2020 HCL Technologies Limited

onstat -C command: Print B-tree scanner information

Use the -C command to display information about the B-tree scanner subsystem and each B-tree scanner thread.

Syntax:

>>-onstat-- -C--+-prof--+--------------------------------------><
 +-hot---+
 +-part--+
 +-clean-+
 +-range-+
 +-map---+
 +-alice-+
 '-all---'

The following options are available with the onstat -C command and can be combined:

prof
Prints the profile information for the system and each B-tree scanner thread. This is the default option.

hot
Prints the hot list index key in the order to be cleaned

part
Prints all partitions with index statistics

clean
Prints information about all the partitions that were cleaned or need to be cleaned

range
Prints the savings in pages processed by using index range scanning

map
Displays the current bitmaps for each index being cleaned by the alice cleaning method

alice
Displays the efficiency of the alice cleaning method option

all
Prints all onstat -C options

Example output using the prof option
Figure 1. onstat -C command output with the prof option

Btree Cleaner Info
BT scanner profile Information
==============================
Active Threads 1
Global Commands 2000000 Building hot list
Number of partition scans 11003
Main Block 0xc000000003c9dc68
BTC Admin 0xc0000000024bc208

BTS info id Prio Partnum Key Cmd
0xc000000003c9dee8 0 High 0x00000000 0 40 Yield N
 Number of leaves pages scanned 77
 Number of leaves with deleted items 6
 Time spent cleaning (sec) 0
 Number of index compresses 0
 Number of deleted items 113
 Number of index range scans 0
 Number of index leaf scans 0
 Number of index alice scans 2

Output description using the prof option
Id

BTSCANNER ID
Prio

Current priority of BTSCANNER
Partnum

The partition number for the index this thread is currently working on
Cmd

Command this thread is processing currently

Example output using the hot option

Part VI: Administering 699

https://www.hcltech.com/

Figure 2. onstat -C command output with the hot option

Btree Cleaner Info

Index Hot List
==============
 Current Item 5 List Created 15:29:47
 List Size 4 List expires in 0 sec
 Hit Threshold 500 Range Scan Threshold -1

Partnum Key Hits
0x00100191 1 14 *
0x00A00022 1 13 *
0x00100191 2 8 *
0x00100150 2 7 *

Output description using the hot option
Partnum

The partition number for an index
Key

Index Key
Hits

The current value of the Hit counter

*
Indicates that this partition has been cleaned during this hot list duration

Example output using the part option
Figure 3. onstat -C command output with the part option

Btree Cleaner Info

Index Statistics
================
 Partnum Key Positions Compress Split
0x00100002 1 146 0 0
0x00100004 1 4 0 0
0x00100004 2 13 0 0
0x00100005 1 1 0 0
0x00100005 2 0 0 0
0x00100006 1 1 0 0
0x00100006 2 0 0 0
0x00100007 2 1 0 0
0x00100008 2 1 0 0
0x0010000a 1 0 0 0
0x0010000e 3 1 0 0
0x00100011 1 1 0 0
0x00100013 2 2 0 0

Output description using the part option
Partnum

The partition number for an index
Key

Index Key
Positions

Number of times index has been read
Compress

Number of pages which have been compressed
Split

Number of splits that have occurred

C
Indicates partition is busy being cleaned

N
Index partition no longer eligible for cleaning

Example output using the clean option
Figure 4. onstat -C command output with the clean option

Btree Cleaner Info

Index Cleaned Statistics
=========================
 Partnum Key Dirty Hits Clean Time Pg Examined Items Del Pages/Sec
0x00100013 2 2 0 0 0 0.00
0x0010008b 3 1 0 0 0 0.00
0x001000c7 1 2 0 0 0 0.00
0x00100150 2 7 0 0 0 0.00
0x0010016f 2 2 0 0 0 0.00
0x00100191 1 14 0 0 0 0.00

700 Part VI: Administering

0x00100191 2 8 0 0 0 0.00
0x00a00011 2 6 0 0 0 0.00
0x00a00013 1 0 0 24 0 24.00
0x00a00019 1 0 0 470 225 470.00
0x00a00022 1 13 0 0 0 0.00
0x00a00022 2 5 0 0 0 0.00

Output description using the clean option
Partnum

The partition number for an index
Key

Index Key
Dirty Hits

Number of times a dirty page has been scanned
Clean Time

Total time spent, in seconds
Pg Examined

Number of pages examined by btscanner thread
Items Del

Number of items removed form this index
Pages/Sec

Number of pages examined per second

C
Indicates partition is busy being cleaned

N
index partition is no longer eligible for cleaning

Example Output
Figure 5. onstat -C range

Btree Cleaner Info

Cleaning Range Statistics
=========================
 Partnum Key Low High Size Saving
0x001001bc 2 36 69 96 65.6 %
0x001001be 1 16 20 48 91.7 %
0x001001cd 1 8 21 32 59.4 %
0x001001cd 2 24 25 32 96.9 %

Output Description
Partnum

The partition number
Key

Index Key
Low

Low boundary for range scan
High

High boundary for index scan
Size

Size of index in pages
Saving

Percentage of time saved versus a full scan

C
Indicates partition is busy being cleaned

N
Index partition is no longer eligible for cleaning

Example Output
Figure 6. onstat -C map

Btree Cleaner Info

ALICE Bitmap of Deleted Index Items
===================================
Partnum Key Map
0x00100013 2 0000: 80000000 00000000
0x0010008b 3 0000: 80000000 00000000
0x001000c7 1 0000: 80000000 00000000
0x00100150 2 0000: 80000000 00000000
0x0010016f 2 0000: 80000000 00000000
0x00100191 1 0000: 80000000 00000000
0x00100191 2 0000: 80000000 00000000
0x00a00011 2 0000: 80000000 00000000
0x00a00013 1 0000: 00000000 00000000
0x00a00019 1 0000: 00000000 00000000

Part VI: Administering 701

0x00a00022 1 0000: 80000000 00000000
0x00a00022 2 0000: 80000000 00000000

Output Description
Partnum

The partition number
Key

Index Key
Map

Alice bitmap

Example Output
Figure 7. onstat -C alice

Btree Cleaner Info

ALICE Cleaning Statistics
=========================

System ALICE Info: Mode = 6, Eff = 30 %, Adj = 5

Partnum Mode BM_Sz Used_Pg Examined Dirty_Pg # I/O Found Eff Adj
0x00100013 6 64 97 0 0 0 0 0.0 % 0
0x0010008b 6 64 5 0 0 0 0 0.0 % 0
0x001000c7 6 64 2 0 0 0 0 0.0 % 0
0x00100150 6 64 91 0 0 0 0 0.0 % 0
0x0010016f 6 64 91 0 0 0 0 0.0 % 0
0x00100191 6 64 26 0 0 0 0 0.0 % 0
0x00100191 6 64 26 0 0 0 0 0.0 % 0
0x001001bc 0 0 91 0 0 0 0 0.0 % 0
0x001001cd 0 0 26 0 0 0 0 0.0 % 0
0x001001cd 0 0 26 0 0 0 0 0.0 % 0
0x00a00011 6 64 91 0 0 0 0 0.0 % 0
0x00a00013 6 64 25 24 3 3 1 33.3 % 1
0x00a00019 6 64 470 470 3 3 2 66.7 % 1
0x00a00022 6 64 26 0 0 0 0 0.0 % 0
0x00a00022 6 64 26 0 0 0 0 0.0 % 0

Output Description
Partnum

The partition number for an index
Mode

The alice mode for the current partition
BM_Sz

The size allocated for the bitmap
Used_Pg

The size of the index in pages (used)
Dirty_Pg

Number of dirty pages
I/O

Number of pages read
Found

Number of dirty pages found in reads
Eff

How efficient was the bitmap
Adj

Number of times the alice efficiency level for the partition was insufficient and was adjusted

Copyright© 2020 HCL Technologies Limited

onstat -d command: Print chunk information

Use the onstat -d command to show information about chunks in each storage space.

Syntax:

>>-onstat-- -d--+--------+-------------------------------------><
 '-update-'

The update option updates shared memory to obtain accurate counts of free pages.

Using onstat -d with sbspaces

702 Part VI: Administering

https://www.hcltech.com/

For information about using onstat -d to determine the size of sbspaces, user-data areas, and metadata areas, see Monitor sbspaces.

Using onstat -d with blobspaces
If you run the onstat -d command on a server that has blobspace chunks, the database server displays the following message:

NOTE: For BLOB chunks, the number of free pages shown is out of date.
 Run ‘onstat -d update' for current stats.

To obtain the current statistics for blobspace chunks, run the onstat -d update command. The onstat utility updates shared memory with an accurate count of free pages
for each blobspace chunk. The database server shows the following message:

Waiting for server to update BLOB chunk statistics ...

Example output
Figure 1. onstat -d command output

BM Informix Dynamic Server Version 14.10.F -- On-Line -- Up 00:01:27 -- 133540 Kbytes

Dbspaces
address number flags fchunk nchunks pgsize flags owner name
4484a028 1 0x10020001 1 1 2048 N BAE informix rootdbs
45ed5b30 2 0x20001 2 1 2048 N BA informix space1
 2 active, 2047 maximum

Chunks
address chunk/dbs offset size free bpages flags pathname
4484a268 1 1 0 100000 65632 PO-B-- /work3/AB/rootchunk
45f1f028 2 2 0 5000 4947 PO-B-- /work3/AB/chunk5
 2 active, 32766 maximum

NOTE: The values in the "size" and "free" columns for DBspace chunks are
 displayed in terms of "pgsize" of the DBspace to which they belong.

Expanded chunk capacity mode: always

Output description for dbspaces
The first section of the output describes the storage spaces:

address
Is the address of the storage space in the shared-memory space table

number
Is the unique ID number of the storage space that is assigned at when it is created

flags
Uses hexadecimal values to describe each storage space. The individual flag values can be summed to show cumulative properties of the dbspace. The following
table describes each hexadecimal value:

Table 1. Descriptions for each hexadecimal value

Flag Value Description

0x0001 Mirror is allowed and dbspace is unmirrored.

0x0002 Mirror is allowed and dbspace is mirrored.

0x0004 The dbspace contains disabled mirror chunks.

0x0008 Newly mirrored

0x0010 Blobspace

0x0200 Space is being recovered.

0x0400 Space is physically recovered.

0x0800 Logical log is being recovered.

0x2000 Temporary dbspace

0x4000 Blobspace is being backed up.

0x8000 Sbspace

0x10000 Physical or logical log changed.

0x20000 Dbspace or chunk tables changed.

0x040000 Blobspace contains large chunks.

0x080000 Chunk in this dbspace was renamed.

0x00100000 Temporary dbspace that is used by only by shared disk secondary server. It is one of the dbspaces listed
in the SDS_TEMPDBS configuration parameter on the SD secondary server.

0x00200000 Temporary dbspace for the SD secondary server. Listed in the DBSPACETEMP configuration parameter
on the shared disk secondary server.

0x00400000 The dbspace was externally backed up.

0x00800000 Dbspace is being defragmented.

Part VI: Administering 703

Flag Value Description

0x01000000 Plogspace

0x10000000 The space is encrypted.

fchunk
The ID number of the first chunk

nchunks
The number of chunks in the storage space

pgsize
The size of the dbspace pages in bytes

flags
Uses the following letter codes to describe each storage space:
Position 1:
Flag Description

M Mirrored

N Not mirrored

Position 2:
Flag Description

X Newly mirrored

P Physically recovered, waiting for logical recovery

L Being logically recovered

R Being recovered

D Down

Position 3:
Flag Description

B Blobspace

P Plogspace

S Sbspace

T Temporary dbspace

U Temporary sbspace

W Temporary dbspace on primary server (This flag is shown on SD secondary servers only.)

Position 4:
Flag Description

B The dbspace can have large chunks that are greater than 2 GB.

Position 5:
Flag Description

A The dbspace is auto-expandable because the SP_AUTOEXPAND configuration parameter is enabled and the dbspace is configured with a create
size or extend size that is not zero.

Position 6:
Flag Description

E The storage space is encrypted.

owner
The owner of the storage space

name
The name of the storage space

In the line immediately following the storage-space list, active refers to the current number of storage spaces in the database server instance, including the root dbspace
and maximum refers to total allowable spaces for this database server instance.

Output description - Chunks
The second section of the onstat -d command output describes the chunks:

address
The address of the chunk

chk/dbs
The chunk number and the associated space number

offset
The offset into the file or raw device in base page size

size
The size of the chunk in terms of the page size of the dbspace to which it belongs.

free
The number of unallocated pages in the chunk in units of the page size of the associated dbspace. A value of 0 indicates that all the space in the chunk is allocated
to tables, but does not indicate how much space is free inside the tables. For example, suppose you create a dbspace with one chunk of 200 MB and create one
table with an extent size of 200 MB. The value of the free field is 0, indicating that the chunk has no free space, however, the new empty table has 200 MB of free
space.
For a blobspace, a tilde indicates an approximate number of unallocated blobpages.

704 Part VI: Administering

For an sbspace, indicates the number of unallocated pages of user data space and total user data space.

Note: The "onstat -d" output adds footnotes for each of the down chunks that are empty, and a special foot note for the first chunk of a down space that is empty.
Example Output for onstat -d with down space (due to first chunk out of 4), where 2 of the 4 chunks are empty and can be dropped:

Chunks
address chunk/dbs offset size free bpages flags pathname
44be2268 1 1 0 150000 83059 PO-B-- /spaces/rootchunk
45c2b028 2 2 0 512 0 PD-BE- /spaces/dbspace2_p_1
45c2c028 3 2 0 500 * PD-BE- /spaces/dbspace2_p_2
45c2d028 4 2 0 500 * PD-BE- /spaces/dbspace2_p_3
45c2e028 5 2 0 5000 0 PD-BE- /spaces/dbspace2_p_4
5 active, 32766 maximum

NOTE: The values in the "size" and "free" columns for DBspace chunks are
 displayed in terms of "pgsize" of the DBspace to which they belong.

* Down chunk is empty, and may be safely dropped.

Example Output for onstat -d when all chunks in down space are empty and can be dropped:

Chunks
address chunk/dbs offset size free bpages flags pathname
44be2268 1 1 0 150000 83059 PO-B-- /spaces/rootchunk
45c2b028 2 2 0 512 ** PD-BE- /spaces/dbspace2_p_1
45c2c028 3 2 0 500 * PD-BE- /spaces/dbspace2_p_2
45c2d028 4 2 0 500 * PD-BE- /spaces/dbspace2_p_3
45c2e028 5 2 0 5000 * PD-BE- /spaces/dbspace2_p_4
5 active, 32766 maximum

NOTE: The values in the "size" and "free" columns for DBspace chunks are
 displayed in terms of "pgsize" of the DBspace to which they belong.

* Down chunk is empty, and may be safely dropped.
** Down space is empty, and may be safely dropped.

bpages
Is the size of the chunk in blobpages
Blobpages can be larger than disk pages; therefore, the bpages value can be less than the size value.

For an sbspace, is the size of the chunk in sbpages.

flags
Provides the chunk status information as follows:
Position 1:
Flag Description

P Primary

M Mirror

Position 2:
Flag Description

N Renamed and either Down or Inconsistent

O Online

D Down

X Newly mirrored

I Inconsistent

Position 3:
Flag Description

- Dbspace

B Blobspace

S Sbspace

Position 4:
Flag Description

B The dbspace can have large chunks that are greater than 2 GB.

Position 5:
Flag Description

E Identifies the chunk as extendable

- Identifies the chunk as not extendable

Position 6:
Flag Description

- The direct I/O or concurrent I/O option is not enabled for this cooked file chunk

C On AIX®, the concurrent I/O option is enabled for this cooked file chunk

D The direct I/O option is enabled for this cooked file chunk

pathname
The path name of the physical device

Part VI: Administering 705

In the line immediately following the chunk list, active shows the number of active chunks (including the root chunk) and maximum shows the total number of chunks.

For information about page reads and page writes, run the onstat -D command.

Related reference:
 DBSPACETEMP configuration parameter

onstat -D command: Print page-read and page-write information
DIRECT_IO configuration parameter (UNIX)
MIRROR configuration parameter
modify chunk extend argument: Extend the size of a chunk (SQL administration API)
DISK_ENCRYPTION configuration parameter

Copyright© 2020 HCL Technologies Limited

onstat -D command: Print page-read and page-write information

Use the onstat -D command to display page-read and page-write information for the first 50 chunks in each space.

Syntax:

>>-onstat-- -D---><

Example output
Figure 1. onstat -D command output

Dbspaces
address number flags fchunk nchunks pgsize flags owner name
a40d7d8 1 0x1 1 1 2048 N informix rootdbs
 1 active, 2047 maximum

Chunks
address chunk/dbs offset page Rd page Wr pathname
a40d928 1 1 0 0 0 /work/11.1/dbspaces/stardbs3
 1 active, 2047 maximum

Expanded chunk capacity mode: disabled

Output description
The output of onstat -D is almost identical to the output of onstat -d. The following columns are unique to onstat -D. For information on the other output columns see
onstat -d command: Print chunk information.

page Rd
Is the number of pages read

page Wr
Is the number of pages written

Related reference:
 onstat -d command: Print chunk information

Copyright© 2020 HCL Technologies Limited

onstat -f command: Print dbspace information affected by dataskip

Use the -f command to list the dbspaces that the dataskip feature currently affects.

Syntax:

>>-onstat-- -f---><

The -f option lists both the dbspaces that were set with the DATASKIP configuration parameter and the -f option of onspaces. When you execute onstat -f, the database
server displays one of the following three outputs:

Dataskip is OFF for all dbspaces.
Dataskip is ON for all dbspaces.
Dataskip is ON for the following dbspaces:

dbspace1 dbspace2...

Related reference:
 DATASKIP Configuration Parameter

Copyright© 2020 HCL Technologies Limited

706 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

onstat -F command: Print counts

Use the onstat -F command to display a count for each type of write that flushes pages to disk.

Syntax:

>>-onstat-- -F---><

Example output
Figure 1. onstat -F command output

Fg Writes LRU Writes Chunk Writes
0 330 7631

address flusher state data # LRU Chunk Wakeups Idle Time
c7c8850 0 I 0 9 29 16116 16093.557
 states: Exit Idle Chunk Lru

Output description
You can interpret output from this option as follows:

Fg Writes
Is the number of times that a foreground write occurred

LRU Writes
Is the number of times that an LRU write occurred

Chunk Writes
Is the number of times that a chunk write occurred

address
Is the address of the user structure assigned to this page-cleaner thread

flusher
Is the page-cleaner number

state
Uses the following codes to indicate the current page-cleaner activity:

C
Chunk write

E
Exit

I
Cleaner is idle

L
LRU queue

The exit code indicates either that the database server is performing a shutdown or that a page cleaner did not return from its write in a specific amount of time.
When an operation fails to complete within the allotted time, this situation is known as a time-out condition. The database server does not know what happened to
the cleaner, so it is marked as exit. In either case, the cleaner thread eventually exits.

data
Provides additional information in concert with the state field
If state is C, data is the chunk number to which the page cleaner is writing buffers. If state is L, data is the LRU queue from which the page cleaner is writing. The
data value is displayed as a decimal, followed by an equal sign, and repeated as a hexadecimal.

#LRU
Corresponds to the onstat -g ath thread ID output

Chunk
Number of chunks cleaned

Wakeups
Number of times the flusher thread was awoken

Idle Time
Time in seconds the flusher thread has been idle

Related reference:
 CLEANERS configuration parameter

Copyright© 2020 HCL Technologies Limited

onstat -g monitoring options

The options that you can use with onstat -g command are used for support and debugging only. You can include only one of these options in the onstat -g command.

The onstat -g imc command prints information about Informix® MaxConnect instances that are connected to the database server. If Informix MaxConnect is not
connected to the database server, this command displays No MaxConnect servers are connected.

Part VI: Administering 707

https://www.hcltech.com/

The onstat -g nta command prints combined network statistics from the -g ntd, -g ntm, -g ntt, and -g ntu commands. If Informix MaxConnect is installed, this command
prints statistics that you can use to tune Informix MaxConnect performance.

onstat -g act command: Print active threads
 Use the onstat -g act command to display information about the active threads.

onstat -g afr command: Print allocated memory fragments
 Use the onstat -g afr command to display information about the allocated memory fragments for a specified session or shared-memory pool. Each session is

allocated a pool of shared memory.
onstat -g all command: Print diagnostic information

 Use the onstat -g all command to gather diagnostic information if advised to do so by Support. For normal administrative purposes, use the onstat -g command
with individual options.
onstat -g aqt command: Print data mart and accelerated query table information

 Use the onstat -g aqt command to display information about the data marts and the associated accelerated query tables (AQTs).
onstat -g arc command: Print archive status

 Use the onstat -g arc command to display information about the last committed archive for each dbspace and also information about any current ongoing archives.
onstat -g ath command: Print information about all threads

 Use the onstat -g ath command to display information about all threads.
onstat -g bth and -g BTH: Print blocked and waiting threads

 Use the onstat -g bth command to display the dependencies between blocking and waiting threads. Use the onstat -g BTH command to display session and stack
information for the blocking threads.
onstat -g buf command: Print buffer pool profile information

 Use the onstat -g buf command to show profile information for each buffer pool.
onstat -g cac command: Print information about caches

 Use the onstat -g cac command to see summary and detailed information about all caches or about a single cache.
onstat -g ckp command: Print checkpoint history and configuration recommendations

 Use the onstat -g ckp command to print checkpoint history and show configuration recommendations if a suboptimal configuration is detected.
onstat -g cfg command: Print the current values of configuration parameters

 Use the onstat -g cfg command to print a list of configuration parameters with their current values. You can use more command options to print more information
about the configuration parameters.
onstat -g cluster command: Print high-availability cluster information

 Use the onstat -g cluster command to display information about the servers in a high-availability cluster environment.
onstat -g cmsm command: Print Connection Manager information

 Use the onstat -g cmsm command to display information about a specific Connection Manager, or all of the Connection Managers that are attached to the database
server the command is run on.
onstat -g con command: Print condition and thread information

 Use the onstat -g con command to display information about conditions and the threads that are waiting for the conditions.
onstat -g cpu: Print runtime statistics

 Use the onstat -g cpu command to display information about runtime statistics for each thread that is running in the server.
onstat -g dbc command: Print dbScheduler and dbWorker thread statistics

 Use the onstat -g dbc command to display statistics about the Scheduler tasks that are currently running, which are handled by dbWorker threads, or scheduled to
be run, which are handled by the dbScheduler thread.
onstat -g defragment command: Print defragment partition extents

 Use the onstat -g defragment command to display information about the active requests to defragment partition extents.
onstat -g dic command: Print table information

 Use the onstat -g dic command to display a line of information about each table that is cached in the shared-memory dictionary. If you specify a table name, this
command prints internal SQL information about that particular table.
onstat -g dis command: Print database server information

 Use the onstat -g dis command to display a list of database servers, the status of each server, and information about each server, including the location of the
INFORMIXDIR directory, sqlhosts file, and ONCONFIG file. You can use this command in any database server mode, including offline.
onstat -g dll command: Print dynamic link library file list

 Use the onstat -g dll command to display a list of and the status of dynamic link library (DLL) files that were loaded.
onstat -g dmp command: Print raw memory

 Use the onstat -g dmp command to display information about raw memory at a given address for a number of given bytes.
onstat -g dri command: Print high-availability data replication information

 Use the onstat -g dri command, either alone or with the ckpt or que options, to print information about high-availability data replication statistics on the current
server.
onstat -g dsc command: Print distribution cache information

 Use the onstat -g dsc command to display information about the distribution cache.
onstat -g dsk command: Print the progress of the currently running compression operation

 Use the onstat -g dsk command to print information that shows the progress of currently running compression operations, such as compress, repack, and shrink.
onstat -g env command: Print environment variable values

 Use the onstat -g env command to display the values of the environment variables that the database server currently uses.
onstat -g ffr command: Print free fragments

 Use the onstat -g ffr command to display information about the free memory fragments for a specified session or shared-memory pool.
onstat -g glo command: Print global multithreading information

 Use the onstat -g glo command to display global information about multithreading, information about each virtual processor that is running, and cumulative
statistics for each virtual-processor class. This information includes CPU use information about the virtual processors, the total number of sessions, and other
multithreading global counters.
onstat -g his command: Print SQL trace information

 Use the onstat -g his command to display SQL trace information from the collection of syssqltrace tables (syssqltrace, syssqltrace_info, syssqltrace_hvar and
syssqltrace_itr) in the sysmaster database.
onstat -g ioa command: Print combined onstat -g information

 Use the onstat -g ioa command to display combined information from the onstat -g iob, onstat -g iof, onstat -g ioq, and onstat -g iov commands.
onstat -g iob command: Print big buffer use summary

 Use the onstat -g iob command to display a summary of big buffer use.
onstat -g iof command: Print asynchronous I/O statistics

 Use the onstat -g iof command to display the asynchronous I/O statistics by chunk or file.
onstat -g iog command: Print AIO global information

 Use the onstat -g iog command to display global information about AIO.

708 Part VI: Administering

onstat -g ioq command: Print I/O queue information
Use the onstat -g ioq command to display statistics about the number and types of operations performed by I/O queues.
onstat -g ipl command: Print index page logging status information
Use the onstat -g ipl command to display information about the status of index page logging.
onstat -g iov command: Print AIO VP statistics
Use the onstat -g iov command to display asynchronous I/O statistics for each virtual processor.
onstat -g lap command: Print light appends status information
Use the onstat -g lap command to display information about the status of light appends occurring in the system.
onstat -g laq command: Print log apply queues
Use the onstat -g laq command to print information about log recovery apply queues.
onstat -g lmm command: Print low memory management information
Use the onstat -g lmm command to display information about automatic low memory management settings and recent activity.
onstat -g lmx command: Print all locked mutexes
Use the onstat -g lmx command to display information about all locked mutexes.
onstat -g lsc command: Print active light scan status (deprecated)
The onstat -g lsc command has been superseded by the onstat -g scn command.
onstat -g mem command: Print pool memory statistics
Use the onstat -g mem command to display the memory statistics for a pool.
onstat -g mgm command: Print MGM resource information
Use the onstat -g mgm command to show resource information about Memory Grant Manager (MGM).
onstat -g nbm command: Print a block bit map
Use the onstat -g nbm command to display the block bit map for the nonresident segments.
onstat -g nsc command: Print current shared memory connection information
Use the onstat -g nsc command to display information about shared memory connections either for all of the current connections or for a specified connection ID.
onstat -g nsd command: Print poll threads shared-memory data
Use the onstat -g nsd command to display information about shared-memory data for poll threads.
onstat -g nss command: Print shared memory network connections status
Use the onstat -g nss sessionid command to display information about the status of the shared memory network connections.
onstat -g ntd command: Print network statistics
Use the onstat -g ntd command to display network statistics by service.
onstat -g ntm command: Print network mail statistics
Use the onstat -g ntm command to display statistics about network mail.
onstat -g ntt command: Print network user times
Use the onstat -g ntt command to display information about network user times.
onstat -g ntu command: Print network user statistics
Use the onstat -g ntu command to display information about network user statistics.
onstat -g opn command: Print open partitions
Use the onstat -g opn command to display a list of the partitions (tables and indexes), by thread ID, that are currently open in the system.
onstat -g osi: Print operating system information
Use the onstat -g osi command to display information on your operating system resources and parameters, including shared memory and semaphore parameters,
the amount of memory currently configured on the computer, and the amount of memory that is unused.
onstat -g pd command: Print push data session-related information
Use the onstat -g pd command to display information about the push data session.
onstat -g pd event command: Print push data event-related information
Use the onstat -g pd event command to display information about the push data event.
onstat -g pfsc command: Print partition free space cache information
Use the onstat -g pfsc command to display information about all partition free space caches.
onstat -g pos command: Print file values
Use the onstat -g pos command to display the values in the $INFORMIXDIR/etc/.infos.DBSERVERNAME file.
onstat -g ppd command: Print partition compression dictionary information
Use the onstat –g ppd command to display information about the active compression dictionaries that were created for compressed tables and table fragments or
compressed B-tree indexes. You can choose to print information for a particular numbered partition or for all open partitions.
onstat -g ppf command: Print partition profiles
Use the onstat -g ppf partition_number command to display the partition profile for the specified partition number.
onstat -g pqs command: Print operators for all SQL queries
Use the onstat –g pqs command to display information about the operators used in all of the SQL queries that are currently running.
onstat -g prc command: Print sessions using UDR or SPL routines
Use the onstat -g prc command to display the number of sessions that are currently using the UDR or SPL routine.
onstat -g proxy command: Print proxy distributor information
Use the onstat -g proxy command to display information about proxy distributors. The output of the onstat -g proxy command differs slightly depending on
whether the command is run on a primary server or on a secondary server.
onstat -g qst command: Print wait options for mutex and condition queues
Use the onstat -g qst command to display the wait statistics for mutex queues and condition queues (queues of waiters for a mutex or a condition).
onstat -g rah command: Print read-ahead request statistics
Use the onstat -g rah command to display information about read-ahead requests.
onstat -g rbm command: Print a block map of shared memory
Use the onstat -g rbm command to display a hexadecimal bitmap of the free and used blocks within the resident segment of shared memory.
onstat -g rea command: Print ready threads
Use the onstat -g rea command to display information about the virtual processor threads whose current status is ready.
onstat -g rss command: Print RS secondary server information
Use the onstat -g rss commands to display information about remote standalone secondary servers.
onstat -g rwm command: Print read and write mutexes
Use the onstat -g rwm command to display information about read, write, and waiting mutex threads, and to list the addresses of the tickets that these threads
have acquired.
onstat -g sch command: Print VP information
Use the onstat -g sch command to display information about thread migration and the number of semaphore operations, spins, and busy waits for each virtual
processor.
onstat -g scn command: Print scan information
Use the onstat -g scn command to display the status of a current scan and information about the scan.

Part VI: Administering 709

onstat -g sds command: Print SD secondary server information
Use the onstat -g sds command to display information about shared-disk secondary servers.
onstat -g seg command: Print shared memory segment statistics
Use the onstat -g seg command to show the statistics for shared memory segments.
onstat -g ses command: Print session-related information
Use the onstat -g ses command to display information about the session.
onstat -g shard command: Print information about the shard definition
Use the onstat -g shard command to display information about the sharding definition.
onstat -g sle command: Print all sleeping threads
Use the onstat -g sle command to print all sleeping threads.
onstat -g smb command: Print sbspaces information
Use the onstat -g smb command to display detailed information about sbspaces.
onstat -g smx command: Print multiplexer group information
Use the onstat -g smx command to display information about the server multiplexer group for servers using SMX.
onstat -g spi command: Print spin locks with long spins
Use the onstat -g spi command to display information about spin locks with long spins.
onstat -g sql command: Print SQL-related session information
Use the onstat -g sql command to display SQL-related information about a session.
onstat -g spf: Print prepared statement profiles
Use the onstat -g spf command to display current statistics about SQL queries.
onstat -g src command: Patterns in shared memory
Use the onstat -g src command to search for patterns in shared memory.
onstat -g ssc command: Print SQL statement occurrences
Use the onstat -g ssc command to monitor the number of times that the database server reads the SQL statement in the cache.
onstat -g stk command: Print thread stack
Use the onstat -g stk tid command to display the stack of the thread specified by thread ID.
onstat -g stm command: Print SQL statement memory usage
Use the onstat -g stm command to display the memory that each prepared SQL statement uses.
onstat -g stq command: Print queue information
Use the onstat -g stq command to display information about the queue.
onstat -g sts command: Print stack usage for each thread
Use the onstat -g sts command to display information about the maximum and current stack use for each thread.
onstat -g sym command: Print symbol table information for the oninit utility
Use the onstat -g sym command to display symbol table information for the oninit utility.
onstat -g top command: Print top consumers of resources
Use the onstat -g top command to display information about top consumers of various resources such as CPU time, I/O operations, and memory growth.
onstat -g tpf command: Print thread profiles
Use the onstat -g tpf command to display thread profiles.
onstat -g ufr command: Print memory pool fragments
Use the onstat -g ufr command to display a list of the fragments that are currently in use in the specified memory pool.
onstat -g vpcache command: Print CPU virtual processor and tenant virtual processor private memory cache statistics
Run the onstat -g vpcache command to display statistics about CPU virtual processor and tenant virtual processor private memory caches.
onstat -g wai command: Print wait queue thread list
Use the onstat -g wai command to display a list of the threads in the system that are currently in the wait queue and not currently executing. The output is sorted
by thread ID.
onstat -g wmx command: Print all mutexes with waiters
Use the onstat -g wmx command to display all of the mutexes with waiters.
onstat -g wst command: Print wait statistics for threads
Use the onstat -g wst command to show the wait statistics for the threads within the system.

Related information:
 onstat -g commands for Enterprise Replication

Copyright© 2020 HCL Technologies Limited

onstat -g act command: Print active threads

Use the onstat -g act command to display information about the active threads.

Syntax:

>>-onstat-- -g--act--><

Following is sample output from the onstat -g act command. For a description of the output, see onstat -g ath command: Print information about all threads.

Example output
Figure 1. onstat -g act command output

Running threads:
tid tcb rstcb prty status vp-class name
2 b3132d8 0 1 running *2adm adminthd
40 c5384d0 0 1 running *1cpu tlitcppoll

Copyright© 2020 HCL Technologies Limited

710 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

onstat -g afr command: Print allocated memory fragments

Use the onstat -g afr command to display information about the allocated memory fragments for a specified session or shared-memory pool. Each session is allocated a
pool of shared memory.

Syntax:

>>-onstat-- -g--afr--+-pool_name----+--------------------------><
 +-sessionid----+
 '-pool_address-'

This command requires an additional argument to specify either a pool name, a session ID, or a pool address. Each session is allocated a memory pool with the same
name as the session ID.

The pool_name is the name of the shared-memory pool. Run the onstat -g mem command to identify the pool name.

The sessionid is the session ID. Run the onstat -g ses command to identify the session ID.

The pool_address is the address of the shared-memory pool. Run the onstat -g mem command or the onstat -g ses command to identify the pool address.

Example output
Figure 1. onstat -g afr command output

Allocations for pool name global:
addr size memid fileid location
4b231000 3288 overhead 306 mtshpool.c:617
4b231cd8 72 mcbmsg 1637 rldmsg.c:92
4b231d20 160 mcbmsg 1637 rldmsg.c:92
4b231dc0 64 osenv 2909 osenv.c:1164
4b231e00 64 osenv 2909 osenv.c:1971
4b231e40 64 osenv 2909 osenv.c:1164
4b231e80 64 osenv 2909 osenv.c:1971

Output description
addr (hexadecimal)

Memory address of the pool fragment.
size (decimal)

Size, in bytes, of the pool fragment.
memid (string)

Memory ID of the pool fragment.
fileid (decimal)

Internal use only. Code file identifier for the allocation.
location (string)

Internal use only. Line number in the code for the allocation.

Copyright© 2020 HCL Technologies Limited

onstat -g all command: Print diagnostic information

Use the onstat -g all command to gather diagnostic information if advised to do so by Support. For normal administrative purposes, use the onstat -g command with
individual options.

Syntax:

>>-onstat-- -g--all--><

Copyright© 2020 HCL Technologies Limited

onstat -g aqt command: Print data mart and accelerated query table information

Use the onstat -g aqt command to display information about the data marts and the associated accelerated query tables (AQTs).

Syntax:

>>-onstat-- -g--aqt--+----------+------------------------------><
 '-aqt_name-'

Example output

Part VI: Administering 711

https://www.hcltech.com/
https://www.hcltech.com/

Figure 1. onstat -g aqt command output

AQT Dictionary Cache for database school:

mart: school
accelerator: DWAFINAL
last load: 2011/07/29 07:00:39

AQT name FactTab #tab #matched address
--
aqt4d11b552-7d41-4b0c-824b-7714b6cb580a 103 1 328 0x4d187e08
aqt61498fab-3617-4c8c-ab40-fd8af4253998 103 2 42 0x4d84a448
aqtbc2da77c-bca8-4ce7-9191-8180a860da34 103 2 768 0x4d187f60
aqt88757e9d-81ee-43b4-87b2-0bf48c98fa55 103 3 15 0x4d84a190
aqta786d0dc-8e95-4de0-a1bd-773aa03a52db 103 3 1475 0x4d84a650
aqt8dd61c80-2c1c-4f0e-8f0c-91babe789f41 103 4 632 0x4d84a908

mart: school2
accelerator: DWAFINAL
last load: 2011/07/29 07:01:04

AQT name FactTab #tab #matched address
--
aqt56d5aea7-32f4-44e6-8d98-02a7af37630f 103 1 845 0x4d84ac70
aqt03ec4c20-7ba8-4c3a-ae56-4134b005269d 103 2 27 0x4d95c298
aqt4ae7c2fd-5b94-423d-bc49-9ca3f5f38799 103 2 3912 0x4d84adc8
aqt5ed69a75-15e3-45cc-9892-4f5386257895 103 3 83 0x4d95c4a0
aqtdf314aa6-177d-4443-9f6d-f14ba766995a 103 3 37 0x4d95c028
aqt7e36b1f2-4646-4075-ac0b-5fdee475cd7e 103 4 518 0x4d95c758

mart: school3
accelerator: DWAFINAL
last load: 2011/07/29 07:01:50

AQT name FactTab #tab #matched address
--
aqt92b36a8a-1567-4146-833c-385cd103f5d4 103 1 678 0x4d95cac0
aqt3189bec1-b6c9-417d-b969-92c687ef2e44 103 2 59 0x4d95cc18
aqt8d3b3dc8-59b6-4e34-822b-75b06b99c900 103 2 4487 0x4d90c0d8
aqt5f9c2a05-9131-4738-a929-036fcf77f65c 103 3 71 0x4d90c2e0
aqtee08ed16-6a5c-4478-ac57-fc4f99539c74 103 3 795 0x4d95ce20
aqt04d1c96a-022b-4ed7-938d-caf765bc9926 103 4 367 0x4d90c598

18 entries

If you use the AQT name for the optional aqt_name parameter, the command prints information about the specific AQT.

Figure 2. onstat -g aqt aqt_name command output

AQT: aqt6de1afdd-f10a-45b0-93e9-0c208405fefd
database: iwadb
AQT tabid: 125
Fact table: 111
Number of times matched: 8947

Join structure: alias(tabid)[colno,...] = alias(tabid)[colno,...] {u:unique}
0(111)[1] = 1(110)[1] u
 1(110)[2] = 2(109)[1] u
 2(109)[5] = 3(101)[1] u
 3(101)[3] = 4(100)[1] u
0(111)[2] = 5(106)[1] u
 5(106)[2] = 6(103)[1] u
 5(106)[3] = 7(104)[1] u
 5(106)[4] = 8(105)[1] u
 8(105)[3] = 9(101)[1] u
 9(101)[3] = 10(100)[1] u
 5(106)[5] = 11(102)[1] u
0(111)[2,3] = 15(108)[1,2] u
 15(108)[1] = 16(106)[1] u
 16(106)[2] = 17(103)[1] u
 16(106)[3] = 18(104)[1] u
 16(106)[4] = 19(105)[1] u
 19(105)[3] = 20(101)[1] u
 20(101)[3] = 21(100)[1] u
 16(106)[5] = 22(102)[1] u
 15(108)[2] = 23(107)[1] u
 23(107)[2] = 24(101)[1] u
 24(101)[3] = 25(100)[1] u
0(111)[3] = 12(107)[1] u
 12(107)[2] = 13(101)[1] u
 13(101)[3] = 14(100)[1] u

Output description
The AQTs are grouped by the data mart that they belong to. The groups are sorted by accelerator name, and then by data mart name. Within the data mart groups, the
AQTs are sorted in the following order: Fact table tabid (FactTab), number of tables (#tab), and AQT name.

The output comes from the entries in the dictionary cache that refer to the AQTs of the data marts. The output is shown only if the AQTs have been loaded into the
dictionary cache, which normally occurs when a query is being matched against the AQTs.

Before the server attempts to match a query against the AQTs, the AQTs do not have any entries in the dictionary cache. The onstat -g aqt command will not show any
entries in the output. When the dictionary cache is initialized during the database server startup, the columns #matched and address get new values.

712 Part VI: Administering

The onstat -g aqt command prints the following information:

mart
The name of the data mart

accelerator
The name of the accelerator instance

last load
The time stamp for when the data mart was last loaded

AQT name
The unique system-generated name of the AQT

FactTab
The tabid of the fact table for the AQT

#tab
The number of tables that are part of the AQT

#matched
The counter for query matches that have occurred for the AQT

address
The internal database server memory address for the AQT

The onstat -g aqt aqt_name command prints the following information:

AQT
The unique system-generated name of the AQT

database
The name of the database to which the AQT belongs

AQT tabid
The tabid for the entry that constitutes the AQT in the systables system catalog table of the database server.

Fact table
The tabid of the fact table of the AQT

Number of times matched
The counter for query matches that have occurred for the AQT

The information about the AQT is followed by a textual representation of the star schema of the data mart. The textual representation shows how the columns of the
tables are related to each other in the star join.

For information about the Informix® Warehouse Accelerator, see the IBM® Informix Warehouse Accelerator Administration Guide.

Copyright© 2020 HCL Technologies Limited

onstat -g arc command: Print archive status

Use the onstat -g arc command to display information about the last committed archive for each dbspace and also information about any current ongoing archives.

Syntax:

>>-onstat-- -g--arc--><

Example output
Figure 1. onstat -g arc command output

Dbspaces - Ongoing archives
number name Q Size Q Len buffer partnum size Current-page
1 rootdbs 100 3 100 0x1001c9 0 1:128
3 datadbs01 0 0
4 datadbs02 0 0

Dbspaces - Archive Status
name number level date log log-position
rootdbs 1 0 07/30/2009.09:59 28 0x320018
datadbs01 3 0 07/30/2009.09:59 28 0x320018
datadbs02 4 0 07/30/2009.09:59 28 0x320018

Output description - Ongoing archives
This output section represents current information about the archives. If no archives are active in the system, this section is not displayed.

Column Description

Number The number of the dbspace

Name The name of the dbspace

Q Size The before-image queue list size. This information is primarily for support.

Q Len The before-image queue length. This information is primarily for support.

Buffer The number of pages used in the before-image buffer

Partnum The partition number of the before-image bin

Size The number of pages in the before-image bin

Part VI: Administering 713

https://www.hcltech.com/

Current-page The current page that is being archived

Note: The before-image bin is a temporary table created in a temporary dbspace, or in the root dbspace if you do not have any temporary dbspaces. If the before-image
bin becomes too small, it can extend to additional partitions, in which case the output will display see multiple Partnum and Size fields for the same dbspace.

Output description - Archive status
This output section contains information about the last backup that has occurred for each dbspace.

Column Description

Name The name of the dbspace

Number The dbspace number

Level The archive level

Date The date and time of the last archive

Log The unique ID (UNIQID) of the checkpoint that was used to start the archive

Log-position The log position (LOGPOS) of the checkpoint that was used to start the archive

Copyright© 2020 HCL Technologies Limited

onstat -g ath command: Print information about all threads

Use the onstat -g ath command to display information about all threads.

Syntax:

>>-onstat-- -g--ath--><

Example output
Figure 1. onstat -g ath command output

Threads:
 tid tcb rstcb prty status vp-class name
 2 10bbf36a8 0 1 IO Idle 3lio lio vp 0
 3 10bc12218 0 1 IO Idle 4pio pio vp 0
 4 10bc31218 0 1 running 5aio aio vp 0
 5 10bc50218 0 1 IO Idle 6msc msc vp 0
 6 10bc7f218 0 1 running 7aio aio vp 1
 7 10bc9e540 10b231028 1 sleeping secs: 1 1cpu main_loop()
 8 10bc12548 0 1 running 1cpu tlitcppoll
 9 10bc317f0 0 1 sleeping forever 1cpu tlitcplst
 10 10bc50438 10b231780 1 IO Wait 1cpu flush_sub(0)
 11 10bc7f740 0 1 IO Idle 8aio aio vp 2
 12 10bc7fa00 0 1 IO Idle 9aio aio vp 3
 13 10bd56218 0 1 IO Idle 10aio aio vp 4
 14 10bd75218 0 1 IO Idle 11aio aio vp 5
 15 10bd94548 10b231ed8 1 sleeping forever 1cpu aslogflush
 16 10bc7fd00 10b232630 1 sleeping secs: 34 1cpu btscanner 0
 32 10c738ad8 10b233c38 1 sleeping secs: 1 1cpu onmode_mon
 50 10c0db710 10b232d88 1 IO Wait 1cpu sqlexec

Output description
tid

Thread ID
tcb

Thread control block access
rstcb

RSAM thread control block access
prty

Thread priority
status

Thread status
vp-class

Virtual processor class
name

Thread name. For threads that are participating in parallel storage optimization operations, the name of the operation and the thread number.

compress.number = The thread is compressing data
repack.number = The thread is repacking data
uncompress.number = The thread is uncompressing data
update_ipa.number = The thread is removing outstanding in-place alter operations

Related reference:
 onstat -g wst command: Print wait statistics for threads

NUMFDSERVERS configuration parameter

714 Part VI: Administering

https://www.hcltech.com/

table or fragment arguments: Compress data and optimize storage (SQL administration API)
Related information:
Threads shown by the onstat -g ath command

Copyright© 2020 HCL Technologies Limited

onstat -g bth and -g BTH: Print blocked and waiting threads

Use the onstat -g bth command to display the dependencies between blocking and waiting threads. Use the onstat -g BTH command to display session and stack
information for the blocking threads.

Syntax:

>>-onstat-- -g--+-bth-+--><
 '-BTH-'

Example output for onstat -g bth
Figure 1. onstat -g bth command output

This command attempts to identify any blocking threads.

Highest level blocker(s)
 tid name session
 48 sqlexec 26

Threads waiting on resources
 tid name blocking resource blocker
 49 sqlexec MGM 48
 13 readahead_0 Condition (ReadAhead) -
 50 sqlexec Lock (0x4411e578) 49
 51 sqlexec Lock (0x4411e578) 49
 52 sqlexec Lock (0x4411e578) 49
 53 sqlexec Lock (0x4411e578) 49
 57 bf_priosweep() Condition (bp_cond) -
 58 scan_1.0 Condition (await_MC1) -
 59 scan_1.0 Condition (await_MC1) -

Run 'onstat -g BTH' for more info on blockers.

Ouput description for onstat -g bth
tid

Thread ID
name

Thread name
session

Session ID
blocking resource

Type of resource for which the listed thread is waiting
blocker

ID of the thread that is blocking the listed thread

Example output for onstat -g BTH
Stack for thread: 48 sqlexec
 base: 0x00000000461a3000
 len: 69632
 pc: 0x00000000017b32c3
 tos: 0x00000000461b2e30
state: ready
 vp: 1

0x00000000017b32c3 (oninit) yield_processor_svp
0x00000000017bca6c (oninit) mt_wait
0x00000000019d4e5c (oninit) net_buf_get
0x00000000019585bf (oninit) recvsocket
0x00000000019d1759 (oninit) tlRecv
0x00000000019ce62d (oninit) slSQIrecv
0x00000000019c43ed (oninit) pfRecv
0x00000000019b2580 (oninit) asfRecv
0x000000000193db2a (oninit) ASF_Call
0x0000000000c855dd (oninit) asf_recv
0x0000000000c8573c (oninit) _iread
0x0000000000c835cc (oninit) _igetint
0x0000000000c72a9e (oninit) sqmain
0x000000000194bb38 (oninit) listen_verify
0x000000000194ab8a (oninit) spawn_thread
0x0000000001817de3 (oninit) th_init_initgls
0x00000000017d3135 (oninit) startup

Part VI: Administering 715

https://www.hcltech.com/

This command attempts to identify any blocking threads.

Highest level blocker(s)
 tid name session
 48 sqlexec 26

session effective #RSAM total used dynamic
id user user tty pid hostname threads memory memory explain
26 informix - 45 31041 mors 2 212992 186568 off

Program :
/work3/JC/VIEWS/jc_dct_phase2.view/.s/00055/80003fd351f804d3dbaccess

tid name rstcb flags curstk status
48 sqlexec 448bc5e8 ---P--- 4560 ready-
58 scan_1.0 448bb478 Y------ 896 cond wait await_MC1 -

Memory pools count 2
name class addr totalsize freesize #allocfrag #freefrag
26 V 45fcc040 208896 25616 189 16
26*O0 V 462ad040 4096 808 1 1

name free used name free used
overhead 0 6576 mtmisc 0 72
resident 0 72 scb 0 240
opentable 0 7608 filetable 0 1376
log 0 33072 temprec 0 17744
blob 0 856 keys 0 176
ralloc 0 55344 gentcb 0 2240
ostcb 0 2992 sqscb 0 21280
sql 0 11880 xchg_desc 0 1528
xchg_port 0 1144 xchg_packet 0 440
xchg_group 0 104 xchg_priv 0 336
hashfiletab 0 1144 osenv 0 2520
sqtcb 0 15872 fragman 0 1024
shmblklist 0 416 sqlj 0 72
rsam_seqscan 0 368

sqscb info
scb sqscb optofc pdqpriority optcompind directives
4499c1c0 461c1028 0 100 2 1

Sess SQL Current Iso Lock SQL ISAM F.E.
Id Stmt type Database Lvl Mode ERR ERR Vers Explain
26 SELECT jc CR Not Wait 0 0 9.24 Off

Current statement name : unlcur

Current SQL statement (5) :
 select * from systables,syscolumns,sysfragments

Last parsed SQL statement :
 select * from systables,syscolumns,sysfragments

Ouput description for onstat -g BTH
tid

Thread ID
name

Thread name
session

Session ID

The session information section contains the same information that is output from the onstat -g ses command. See onstat -g ses command: Print session-related
information.

The remainder of the information displays the stack information for the thread.

Related information:
 Monitor blocking threads with the onstat -g bth and onstat -g BTH commands

Copyright© 2020 HCL Technologies Limited

onstat -g buf command: Print buffer pool profile information

Use the onstat -g buf command to show profile information for each buffer pool.

Syntax:

>>-onstat-- -g--buf--><

Example output

716 Part VI: Administering

https://www.hcltech.com/

The output of the onstat -g buf command varies slightly depending on whether the BUFFERPOOL configuration parameter setting contains the memory field or the
buffers field. The output for the memory setting is shown. The output for the buffers setting contains the max extends and next buffers fields instead of the max
memory and next memory fields.

Figure 1. onstat -g buf output for the memory setting

Profile

Buffer pool page size: 2048
dskreads pagreads bufreads %cached dskwrits pagwrits bufwrits %cached
1190 1773 661359 99.82 16863 83049 185805 90.92
bufwrits_sinceckpt bufwaits ovbuff flushes
11243 115 0 42

Fg Writes LRU Writes Avg. LRU Time Chunk Writes Total Mem
0 0 nan 10883 32Mb

 cache
extends max memory next memory hit ratio last
0 128Mb 32Mb 90 11:31:17

Bufferpool Segments
id segment size # buffs
0 0x449f0000 32Mb 13025

Buffer pool page size: 8192
dskreads pagreads bufreads %cached dskwrits pagwrits bufwrits %cached
0 0 11 100.00 4 16 4 0.00
bufwrits_sinceckpt bufwaits ovbuff flushes
0 0 0 1

Fg Writes LRU Writes Avg. LRU Time Chunk Writes Total Mem
0 0 nan 4 128Mb

 cache
extends max memory next memory hit ratio last
0 1280Mb 128Mb 90 11:31:41

Bufferpool Segments
id segment size # buffs
0 0x4928e000 128Mb 14988

Fast Cache Stats
gets hits %hits puts
246854 244407 99.01 111147

Output description
Buffer pool page size

The number of bytes in a page in the buffer pool
dskreads

The number of disk read operations that are performed to bring pages into this buffer pool. Each read operation reads one or more pages.
pagreads

The number of pages that are read from disk to this buffer pool.
bufreads

The number of times a memory image for a page was read from this buffer pool.
%cached

The percentage of page reads for this buffer pool that were satisfied by a cached page image (rather than having to perform a disk read). Computed as (bufreads
- dskreads) / bufreads x 100. Higher percentages indicate better caching performance.

dskwrits
The number of disk write operations that are performed to write changed pages from this buffer pool back to disk. Each write operation writes one or more pages.

pagwrits
The number of pages that are written to disk from this buffer pool.

bufwrits
The number of times a memory image of a page was written to in this buffer pool.

%cached
The percentage of page writes for this buffer pool that were satisfied by a cached page image (rather than having to perform a disk write). Computed as (bufwrits
- dskwrits) / bufwrits x 100.

bufwrits_sinceckpt
The number of times a memory image of a page was written to in this buffer pool since the last checkpoint.

bufwaits
The number of times a thread had to wait for a lock on a buffer in this buffer pool. Higher numbers indicate more contention among multiple threads for mutually
incompatible locks on the same pages.

ovbuff
The number of times a changed buffer from this buffer pool was written to disk specifically to create a free buffer to read another requested page. If the ovbuff
value is high, the buffer pool might not be large enough to hold the working set of pages that are needed by applications. An insufficient buffer pool can lead to
performance degradation.

flushes
The number of times the server flushed all dirty buffers at once in the buffer pool. Mass flushing can occur for various reasons, including as part of checkpoint
processing or if the buffer pool is running out of clean buffers despite normal LRU cleaning activity.

Fg Writes
Number of changed buffers from this buffer pool that were written to disk by a non-I/O flusher thread that was accessing the buffer. This number is a superset of
the value of the ovbuff field. In addition to the writes to service page faults that are counted in the ovbuff field, this value also includes foreground writes to

Part VI: Administering 717

maintain the consistency of database logs and reserved pages to ensure a correct recovery.
LRU Writes

The number of changed buffers from this buffer pool that were written to disk by an LRU cleaner thread. LRU cleaners are activated if the buffer pool exceeds the
value that is specified in the lru_max_dirty field of the BUFFERPOOL configuration parameter or if foreground writes occur due to buffer pool overflows.

Avg. LRU Time
The average amount of time that is taken by an LRU cleaner thread to clean a single LRU chain.

Chunk Writes
The number of changed buffers that were written to disk by a chunk cleaning operation. Chunk cleaning writes out all changed buffers of a chunk that are in the
buffer pool. Chunk cleaning is done to clean many buffers quickly, such as during checkpoint processing and fast recovery.

Total Mem
The size of the buffer pool.

extends
The number of times that the buffer pool was extended.

max memory (memory setting)
The target maximum size of the buffer pool. The actual size of the buffer pool can exceed this value, but not more than the size of one segment.

max extends (buffers setting)
The maximum number of times that the buffer pool can be extended. (This field is not shown in the example output.)

next memory (memory setting)
The size of the next extension of the buffer pool.

next buffers (buffers setting)
The number of buffers for the next extension of the buffer pool. (This field is not shown in the example output.)

cache hit ratio
The read cache hit ratio below which the buffer pool is extended.

last
The time of the last extension of the buffer pool.

id
The ID of the buffer pool segment.

segment
The internal address of the buffer pool segment.

size
The size of the buffer pool segment.

buffs
The number of buffers in the buffer pool segment.

Fast Cache Stats
Statistics for the fast cache, which is a type of cache that reduces the time that is needed for accessing the buffer pool.

gets
The number of times the server looked for a buffer in the fast cache.

hits
The number of times that the server found the buffer it was searching for in the fast cache.

%hits
The percentage of hits, which is hits*100/gets.

puts
The number of times that the server inserted buffers inserted into the fast cache.

Related reference:
 BUFFERPOOL configuration parameter

Related information:
 Monitor buffers

Copyright© 2020 HCL Technologies Limited

onstat -g cac command: Print information about caches

Use the onstat -g cac command to see summary and detailed information about all caches or about a single cache.

Syntax:

>>-onstat-- -g--cac--+-----------------------+-----------------><
 +-agg-------------------+
 +-aqt-------------------+
 +-am--+---------------+-+
 | '-access_method-' |
 +-cast------------------+
 +-dic-------------------+
 +-dsc-------------------+
 +-ed--------------------+
 +-lbacplcy--------------+
 +-lbacusrc--------------+
 +-poci------------------+
 +-prc-------------------+
 +-prn-------------------+
 +-rr--------------------+
 +-ssc-------------------+
 +-ttype-----------------+
 +-typei--+---------+----+
 | '-type_id-' |
 '-typen--+-----------+--'
 '-type_name-'

Use the onstat -g cac command without any options to see information about all caches.

718 Part VI: Administering

https://www.hcltech.com/

Use the following options to see information about a specific cache:

agg
Prints information about the aggregate cache.

aqt
Prints information about the AQT dictionary cache. Prints the same output as the onstat -g aqt command. See onstat -g aqt command: Print data mart and
accelerated query table information.

am
Prints information about the access method cache. To see information for a specific access method, include the access method name.

cast
Prints information about the cast cache.

dic
Prints information about the data dictionary cache. Prints the same output as the onstat -g dic command. See onstat -g dic command: Print table information.

dsc
Prints information about the data distribution cache. Prints the same output as the onstat -g dsc command. See onstat -g dsc command: Print distribution cache
information.

ed
Prints information about the external directives cache.

lbacplcy
Prints information about the LBAC security policy information cache.

lbacusrc
Prints information about the LBAC credential memory cache.

opci
Prints information about the operator class instance cache.

prc
Prints information about the UDR cache. Prints the same output as the onstat -g prc command. See onstat -g prc command: Print sessions using UDR or SPL
routines.

prn
Prints information about the procedure name cache.

rr
Prints information about the routine resolution cache.

ssc
Prints information about the SQL statement cache. Prints the same output as the onstat -g ssc command. See onstat -g ssc command: Print SQL statement
occurrences.

ttype
Prints information about the secondary transient cache.

typei
Prints information about the extended type by ID cache. To see information for a specific extended type, include the extended type ID.

typen
Prints information about the extended type by name cache. To see information for a specific extended type, include the extended type name.

Example output
The output of most onstat -g cac commands contains similar format and information.

The following output is an example of the onstat -g cac lbacplcy command:

Security Policy Info Cache Entries:

list id ref drop hits last_access heap_ptr item
--

9 2 0 0 0 2020-05-12 10:36:34 65f1b8d0 test@informix: : secpolicyid 2

15 1 0 0 0 2020-05-12 10:36:34 65f1b4d0 test@informix: : secpolicyid 1

 Total number of entries : 2
 Number of entries in use : 0

Output description
The output of most onstat -g cac commands contains the following fields:

Number of lists
Number of lists in the distribution cache

configuration parameter name
Number of entries that can be cached at one time

list
Distribution cache hash chain ID

id
The unique ID assigned to the cache entry

ref
Number of statements that reference a cache entry

drop
Whether this entry was dropped after it was added to the cache

hits
The number of times the cache entry is accessed

last_access
The time at which the cache entry was last accessed.

Part VI: Administering 719

heap_ptr
Heap address that is used to store this entry

item name
The name of the item in the cache

Total number of entries
Number of entries in the cache

Number of entries in use
Number of entries that are being used

Related information:
 Configure and monitor memory caches

Copyright© 2020 HCL Technologies Limited

onstat -g ckp command: Print checkpoint history and configuration
recommendations

Use the onstat -g ckp command to print checkpoint history and show configuration recommendations if a suboptimal configuration is detected.

Syntax:

>>-onstat-- -g--ckp--><

Example output
Figure 1. onstat -g ckp command output

Auto Checkpoints=On RTO_SERVER_RESTART=60 seconds Estimated recovery time 7 seconds

 Critical Sections
 Clock Total Flush Block # Ckpt Wait Long #Dirty
Interval Time Trigger LSN Time Time Time Waits Time Time Time Buffers
1 18:41:36 Startup 1:f8 0.0 0.0 0.0 0 0.0 0.0 0.0 4
2 18:41:49 Admin 1:11c12cc 0.3 0.2 0.0 1 0.0 0.0 0.0 2884
3 18:42:21 Llog 8:188 2.3 2.0 2.0 1 0.0 2.0 2.0 14438
4 18:42:44*User 10:19c018 0.0 0.0 0.0 1 0.0 0.0 0.0 39
5 18:46:21 RTO 13:188 54.8 54.2 0.0 30 0.6 0.4 0.6 68232

 Physical Log Logical Log
 Dskflu Total Avg Total Avg
 /Sec Pages /Sec Pages /Sec
 4 3 0 1 0
 2884 1966 163 4549 379
 7388 318 10 65442 2181
 39 536 21 20412 816
 1259 210757 1033 150118 735

Max Plog Max Llog Max Dskflush Avg Dskflush Avg Dirty Blocked
pages/sec pages/sec Time pages/sec pages/sec Time
8796 6581 54 43975 2314 0

Output description
Auto Checkpoints

Indicates if the AUTO_CKPTS configuration parameter is on or off
RTO_SERVER_RESTART

Displays the RTO time in seconds. Zero (0) means that RTO is off.
Estimated recovery time ## seconds

Indicates the estimated recovery time if the data server stops responding. This value appears only if RTO_SERVER_RESTART is active.
Interval

Checkpoint interval ID
Clock Time

Clock time when checkpoint occurred.
Trigger

Event that triggered the checkpoint. An asterisk (*) indicates that the checkpoint that was requested was a transaction-blocking checkpoint.

Trigger name Description

Admin Administrator-related tasks. For example:

Create, drop, or rename a dbspace
Add or drop a chunk
Add or drop a log file
Change physical log size or location
After "shrink" operation on partition
Turn on or off mirroring

Backup Back up related operations. For example:

720 Part VI: Administering

https://www.hcltech.com/

Fake backup
Start of an archive
After the completion of a physical restore

CDR ER subsystem is started for the first time, or is restarted after all of the replication participants were removed.

CKPTINTVL When the checkpoint interval expires. The checkpoint interval is the value that is specified for the CKPTINTVL parameter in the onconfig file.

Conv/Rev Conversion reversion checkpoint. After the check phase of convert and before the actual conversion of disk structures. After the reversion is
completed also triggers a checkpoint.

HA High availability. For example:

A new RSS or SDS node is added to a High Availability cluster
A secondary server is promoted to a primary server
The physical log file is low on a secondary server

HDR High-Availability Data Replication. For example:

The mode of the server is changed
The start of the first transfer after HDR is set up
There is the potential for a physical log overflow on primary or secondary servers

IPL Trigger checkpoint to reduce physical log usage on the secondary server. Index page logging can cause foreground writes and heavy physical
log usage on secondary servers.

Lightscan Before the look aside is turned off on partitions.

Llog Running out of logical log resources.

LongTX Long Transaction. If a long transaction was found but not stopped, a checkpoint is initiated to stop the transaction. During rollback, a
checkpoint is initiated in the rollback phase if a checkpoint has not already happened after long transaction was aborted.

Misc Miscellaneous events. For example:

A dbspace or chunk is being brought down because of I/O errors
During rollback when the addition of the chunk is being undone: for example, when removing the chunk.

Pload When the High-Performance Loader starts in the Express mode.

Plog Physical log has one of the following conditions:

Physical log is 75% full
The amount of physical log used plus the number of dirty partitions is more than 90% of physical log size

Restore Pt Restore Point. Checkpoints at the start and end of a restore point. The restore point is (used by conversion guard) CONVERSION_GUARD
configuration parameter is enabled and a temporary directory is specified in the RESTORE_POINT_DIR configuration parameter.

Recovery During a restore, at the start of a fast recovery.

Reorg At the start of online index build.

RTO Maintaining the Recovery Time Objective (RTO) policy. During normal operations, when the restart time after a crash might exceed the value
that is set for the RTO_SERVER_RESTART configuration parameter.

Stamp Wrap Checkpoint timestamp. If the new checkpoint timestamp appears to be before the last written checkpoint, then the timestamp is advanced out
of interval between checkpoints. Another checkpoint is triggered.

Startup At the startup of the database server.

Uncompress Uncompress commands that are issued on a table or partition. This applies only for checkpoints on tables or databases that are not logged.

User A checkpoint request is submitted by the user.

LSN
Logical log position where checkpoint is recorded

Total Time
Total checkpoint duration, in seconds, from request time to checkpoint completion

Flush Time
Time, in seconds, to flush buffer pools

Block Time
Time a transaction was blocked, in seconds, by a checkpoint that was triggered by a scarcity of some needed resource. For example, running out of physical log, or
wrap-around of the logical log.

Waits
Number of transactions that are blocked waiting for checkpoint

Ckpt Time
Time, in seconds, for all transactions to recognize a requested checkpoint

Wait Time
Average time, in seconds, that transactions waited for checkpoint

Long Time
Longest amount of time, in seconds, a transaction waited for checkpoint

Dirty Buffers
Number of dirty buffers that are flushed to disk during checkpoint

Dskflu/sec
Number of buffers that are flushed per second

Physical Log Total Pages
Total number of pages that are physically logged during checkpoint interval

Part VI: Administering 721

Physical Log Avg/Sec
Average rate of physical log activity during checkpoint interval

Logical Log Total Pages
Total number of pages that are logically logged during checkpoint interval

Logical Log Avg/Sec
Average rate of logical log activity during checkpoint interval

Max Plog pages/sec
Maximum rate of physical log activity during checkpoint interval

Max Llog pages/sec
Maximum rate of logical log activity during checkpoint interval

Max Dskflush Time
Maximum time, in seconds, to flush buffer pools to disk

Avg Dskflush pages/sec
Average rate buffer pools are flushed to disk

Avg Dirty pages/sec
Average rate of dirty pages between checkpoints

Blocked Time
Longest blocked time, in seconds, since the database server was last started

Performance advisory messages
If the data server detects a configuration that is less than optimal, a performance advisory message with tuning recommendations appears below the checkpoint history.
This performance advisory message also appears in the message log. Following are examples of performance advisory messages:

Physical log is too small for bufferpool size. System performance may be
less than optimal.
Increase physical log size to at least %ldKb

Physical log is too small for optimal performance.
Increase the physical log size to at least $ldKb.

Logical log space is too small for optimal performance.
Increase the total size of the logial log space to at least %ld Kb.

Transaction blocking has taken place. The physical log is too small.
Please increase the size of the physical log to %ldKb

Transaction blocking has taken place. The logical log space is too small.
Please increase the size of the logical log space to %ldKb

Related reference:
 sysckptinfo

Copyright© 2020 HCL Technologies Limited

onstat -g cfg command: Print the current values of configuration parameters

Use the onstat -g cfg command to print a list of configuration parameters with their current values. You can use more command options to print more information about
the configuration parameters.

Syntax:

>>-onstat-- -g--cfg--+---------+--+-----------------------+----><
 +-full----+ '-config_parameter_name-'
 +-diff----+
 +-tunable-+
 '-msg-----'

This onstat -g cfg command has the following formats:

Command Description

onstat -g cfg Displays a list of configuration parameters and their current values.

onstat -g cfg
config_parameter_name

Displays only the current value of the specified configuration parameter.

onstat -g cfg full Displays all of the information about each configuration parameter, including the current value, the default value, the onconfig file
value, and a description of the parameter.

onstat -g cfg full
config_parameter_name

Displays all of the information about the specified parameter.

onstat -g cfg diff Displays information about the configuration parameters with current values that are different from the permanent values that are in
the onconfig file.

onstat -g cfg tunable Displays the default, original, and current values for all tunable parameters. An asterisk indicates that you can tune a configuration
parameter dynamically.

onstat -g cfg msg Displays any messages, such as warnings or adjustments, that are associated with configuration parameters.

Example output

722 Part VI: Administering

https://www.hcltech.com/

The following portion of sample output of the onstat -g cfg command shows that the value of the DEADLOCK_TIMEOUT configuration parameter was dynamically changed
to 90 seconds after the database server started:

id name type units rsvd tunable
26 DEADLOCK_TIMEOUT INT4 Seconds *

 min/max : 0,2147483647
 default : 60
 onconfig:
 current : 90

 Description:
 Use the DEADLOCK_TIMEOUT configuration parameter to specify the
 maximum number of seconds that a database server thread can wait
 to acquire a lock.

ROOTNAME rootdbs

The following portion of sample output of the onstat -g cfg diff command shows the default, current, and onconfig file values of the TBLTBLFIRST and TBLTBLNEXT
configuration parameters:

id name type units rsvd tunable
53 TBLTBLFIRST INT4 KB *

 default : 500
 onconfig: 0
 current : 250

id name type units rsvd tunable
54 TBLTBLNEXT INT4 KB *

 default : 100
 onconfig: 0
 current : 150

The following portion of sample output shows information for the MSGPATH configuration parameter. Here, there is no default value that is built into the configuration
parameter and the onconfig file and current values are the same.

id name type units rsvd tunable
10 MSGPATH CHAR * *

 default :
 onconfig: /work2/JC/online.log
 current : /work2/JC/online.log

The following portion of sample output of the onstat -g cfg msg command shows messages that identify configuration parameters with changed values:

Configuration Parameters With Messages

name message
TBLTBLFIRST Parameter's user-configured value was adjusted.
TBLTBLNEXT Parameter's user-configured value was adjusted.
BUFFERPOOL Parameter's user-configured value was adjusted.
STACKSIZE Parameter's user-configured value was adjusted.
VPCLASS Parameter's user-configured value was adjusted.

Output description
name

Name of the configuration parameter

type
Data type for the value

units
Units in which the value is expressed

rsvd
Indicates (with an asterisk) that the configuration parameter and its value are stored on the configuration reserved page
If an asterisk is not present, the configuration parameter and its value are not stored on the configuration reserved page.

tunable
Indicates (with an asterisk) that the configuration parameter can be tuned dynamically, for example, with an onmode -wm or -wf command
If an asterisk is not present, the configuration parameter cannot be tuned dynamically.

min/max
Minimum and maximum values for the configuration parameter

default
Default value that is built into the server for the configuration parameter

onconfig
Value of the configuration parameter, if any, that is in the onconfig.std file

current
Current® value of the configuration parameter
A current value is different if it was modified dynamically, for example, with an onmode -wm command.

Description
Description of the configuration parameter

message

Part VI: Administering 723

Message that identifies a changed configuration parameter value

Related tasks:
 Displaying the settings in the onconfig file

Related reference:
 onstat -c command: Print ONCONFIG file contents

onmode -wf, -wm: Dynamically change certain configuration parameters
Database server files

Copyright© 2020 HCL Technologies Limited

onstat -g cluster command: Print high-availability cluster information

Use the onstat -g cluster command to display information about the servers in a high-availability cluster environment.

Syntax:

>>-onstat-- -g--cluster--+---------+---------------------------><
 '-verbose-'

The onstat -g cluster command combines the functionality of onstat -g dri, onstat -g sds, and onstat -g rss. The output of the onstat -g cluster command differs slightly
depending on whether the command is run on the primary server or on one of the secondary servers.

Example output (primary server)
Following is sample output from the onstat -g cluster command. The sample shows output when the command is run on the primary server.

Figure 1. onstat -g cluster command output (run on the primary server)

 Primary Server:serv1
 Current Log Page:16,476
 Index page logging status: Enabled
 Index page logging was enabled at: 2013/12/11 14:05:17

 Server ACKed Log Applied Log Supports Status
 (log, page) (log, page) Updates
 serv2 16,476 16,476 Yes SYNC(SDS),Connected,Active
 serv3 16,476 16,476 Yes ASYNC(HDR),Connected,On
 serv4 16,476 16,476 Yes ASYNC(RSS),Connected,Active

Output description (primary server)
Primary server

The name assigned to the primary server.
Current® log page

The log ID and page number of the current log page.
Index page logging status

Indicates whether index page logging is enabled or disabled.
Index page logging was enabled at

The date and time that index page logging was enabled.
Server

The name of the secondary server.
ACKed Log (log, page)

The log ID and page number of the last acknowledged log transmission.
Applied Log (log, page)

The log ID and page number of the last applied log transmission.
Supports Updates

Displays whether client applications can perform update, insert, and delete operations on the secondary server (as specified by the UPDATABLE_SECONDARY
configuration parameter).

Status
Displays the connection status of the secondary server

Example output (primary server, verbose output)
Figure 2. onstat -g cluster verbose command output (run on the primary server)
Following is sample output from the onstat -g cluster verbose command. The sample shows output when the command is run on the primary server with the verbose
option.

Primary Server:serv1
 Current Log Page:16,479
 Index page logging status: Enabled
 Index page logging was enabled at: 2013/12/11 14:05:17

 server name: serv3

724 Part VI: Administering

https://www.hcltech.com/

 type: ASYNC (HDR)
 control block: 0x4b673018
 server status: On
 connection status: Connected
 Last log page sent (log id, page): 16,479
 Last log page acked (log id, page); 16,479
 Last log page applied (log id, page); 16,479
 Approximate log page backlog: 0
 SDS cycle not used
 Delayed Apply Not Used
 Stop Apply Not Used
 Time of last ack: 2013/12/11 14:09:12
 Supports Updates: Yes

 server name: serv2
 type: SYNC (SDS)
 control block: 0x4c2de0b8
 server status: Active
 connection status: Connected
 Last log page sent (log id, page): 16,479
 Last log page acked (log id, page); 16,479
 Last log page applied (log id, page); 16,479
 Approximate log page backlog: 0
 SDS cycle current: 20 ACKed: 20
 Delayed Apply Not Used
 Stop Apply Not Used
 Time of last ack: 2013/12/11 14:09:13
 Supports Updates: Yes

Output description (primary server, verbose output)
Primary server

The name of the primary server
Current log page

The log ID and page number of the current log page.
Index page logging status

Indicates whether index page logging is enabled or disabled.
Index page logging was enabled at

The date and time that index page logging was enabled.
Server name

The name of the secondary server.
type

Displays whether the secondary server is connected synchronously (SYNC) or asynchronously (ASYNC). Also displays the type of secondary server: HDR, SDS, or
RSS.

control block
The in-memory address of the thread control block.

server status
Displays the current status of the secondary server.

connection status
Displays the current network connection status of the secondary server.

Last log page sent (log id, page)
The log ID and page number of the most recent log page sent by the primary server to the secondary server.

Last log page acked (log id, page)
The log ID and page number of the most recent log page the secondary server acknowledged.

Last log page applied (log id, page)
The log ID and page number of the most recent log page the secondary server applied.

Approximate log page backlog
Indicates the approximate number of log pages that have yet to be processed by the secondary server.

SDS cycle
Indicates the cycle number to which the primary server has advanced and which the shared disk secondary server has acknowledged. Used internally by support to
monitor coordination of the primary server with the secondary server.

Delayed Apply
Indicates whether the secondary server waits for a specified amount of time before applying logs (as specified by the DELAY_APPLY configuration parameter).

Stop Apply
Indicates whether the secondary server has stopped applying log files received from the primary server (as specified by the STOP_APPLY configuration parameter).

Time of last ack
The date and time of the last acknowledged log.

Supports Updates
Displays whether client applications can perform update, insert, and delete operations on the secondary server (as specified by the UPDATABLE_SECONDARY
configuration parameter).

Example output (secondary server)
Following is sample output from the onstat -g cluster command. The sample shows output when the command is run on a secondary server.

Figure 3. onstat -g cluster command output (run on the secondary server)

Primary Server:serv1
 Index page logging status: Enabled
 Index page logging was enabled at: 2010/01/11 14:05:17

Part VI: Administering 725

 Server ACKed Log Applied Log Supports Status
 (log, page) (log, page) Updates
 serv2 16,479 16,479 Yes SYNC(SDS),Connected,Active

Output description (secondary server)
Primary server

The name of the primary server
Index page logging status

Indicates whether index page logging is enabled or disabled.
Index page logging was enabled at

The date and time that index page logging was enabled.
Server

The name of the secondary server.
ACKed Log (log, page)

The log ID and page number of the last acknowledged log.
Applied Log (log, page)

The log ID and page number of the last applied log transmission.
Supports Updates

Displays whether client applications can perform update, insert, and delete operations on the secondary server (as specified by the UPDATABLE_SECONDARY
configuration parameter).

Status
Displays the connection status of the secondary server.

Related reference:
 DELAY_APPLY Configuration Parameter

STOP_APPLY configuration parameter
UPDATABLE_SECONDARY configuration parameter

Copyright© 2020 HCL Technologies Limited

onstat -g cmsm command: Print Connection Manager information

Use the onstat -g cmsm command to display information about a specific Connection Manager, or all of the Connection Managers that are attached to the database server
the command is run on.

Syntax:

>>-onstat-- -g--cmsm--+-------------------------+--------------><
 '-connection_manager_name-'

Usage
onstat -g cmsm displays information about connection units the Connection Manager connects to, the number of connections each Connection Manager service-level-
agreement (SLA) has processed, SLA definitions, failover-order rules, failover arbitration, and primary server status.

Use connection_manager_name to display information for a specific Connection Manager instance. If connection_manager_name is not specified, onstat -g cmsm
displays information about all Connection Manager instances that are connected to the database server.

Example output 1: Output for a specific Connection Manager
In the following example, onstat -g cmsm connection_manager_1 is run on the primary server of my_cluster_1.

Unified Connection Manager: connection_manager_1 Hostname: my_host_1

CLUSTER my_cluster_1 LOCAL
 SLA Connections Service/Protocol Rule
 oltp_1 35 19910/onsoctcp DBSERVERS=primary
 report_1 33 19810/onsoctcp DBSERVERS=(HDR,SDS,RSS)

 Failover Arbitrator: Active Arbitrator, Primary is up
 ORDER=SDS,HDR,RSS PRIORITY=1

The command displays output for connection_manager_1. connection_manager_1 manages a CLUSTER connection unit, and is the active failover arbiter.

Example output 2: Output for a high-availability cluster
In the following example, onstat -g cmsm is run on the primary server of my_cluster_2.

Unified Connection Manager: connection_manager_2 Hostname: my_host_2

CLUSTER my_cluster_2 LOCAL
 SLA Connections Service/Protocol Rule
 sla_1 1535 19910/onsoctcp DBSERVERS=primary
 sla_2 2133 19810/onsoctcp DBSERVERS=(HDR,SDS,RSS)

 Failover Arbitrator: Active Arbitrator, Primary is up
 ORDER=SDS,HDR,RSS PRIORITY=1

726 Part VI: Administering

https://www.hcltech.com/

CLUSTER my_cluster_3
 SLA Connections Service/Protocol Rule
 sla_3 730 19930/onsoctcp DBSERVERS=primary
 sla_4 901 19830/onsoctcp DBSERVERS=(HDR,SDS,RSS)

 Failover Arbitrator: Active Arbitrator, Primary is up
 ORDER=SDS,HDR,RSS PRIORITY=1

Unified Connection Manager: connection_manager_3 Hostname: my_host_3

CLUSTER my_cluster_2 LOCAL
 SLA Connections Service/Protocol Rule
 sla_5 614 19920/onsoctcp DBSERVERS=primary
 sla_6 483 19820/onsoctcp DBSERVERS=(HDR,SDS,RSS)

 Failover Arbitrator: Failover is enabled
 ORDER=SDS,HDR,RSS PRIORITY=2

CLUSTER my_cluster_3
 SLA Connections Service/Protocol Rule
 sla_7 678 19940/onsoctcp DBSERVERS=primary
 sla_8 270 19840/onsoctcp DBSERVERS=(HDR,SDS,RSS)

 Failover Arbitrator: Failover is enabled
 ORDER=SDS,HDR,RSS PRIORITY=2

The command displays output for the two Connection Managers that connect to the primary server of the cluster. connection_manager_2 and connection_manager_3
are installed on separate hosts, and together they manage two CLUSTER connection units. connection_manager_2 is the active failover arbiter for both CLUSTER
connection units.

Example 3: Output for a replicate set
In the following example, onstat -g cmsm is run on a replicate server in my_replicate_set_1.

Unified Connection Manager: connection_manager_4 Hostname: my_host_4

REPLSET my_replicate_set_1
 SLA Connections Service/Protocol Rule
 sla_1 160 19810/onsoctcp DBSERVERS=ANY

Unified Connection Manager: connection_manager_5 Hostname: my_host_5

REPLSET my_replicate_set_1
 SLA Connections Service/Protocol Rule
 sla_2 240 19820/onsoctcp DBSERVERS=ANY

The command displays output for the two Connection Managers that connect to the replicate server. connection_manager_4 and connection_manager_5 are installed on
separate hosts, and together they manage the replication servers.

Example 4: Output for a grid
In the following example, onstat -g cmsm is run on a node of my_grid_1.

Unified Connection Manager: connection_manager_6 Hostname: my_host_6

GRID my_grid_1
 SLA Connections Service/Protocol Rule
 sla_1 456 19830/onsoctcp DBSERVERS=(group_name_1,group_name_2) POLICY=FAILURE

Unified Connection Manager: connection_manager_7 Hostname: my_host_7

GRID my_grid_1
 SLA Connections Service/Protocol Rule
 sla_2 785 19840/onsoctcp DBSERVERS=(group_name_1,group_name_2) POLICY=FAILURE

The command displays output for the two Connection Managers that connect to the grid. The command displays output for the two Connection Managers that connect to
the node. connection_manager_6 and connection_manager_7 are installed on separate hosts, and together they manage the grid.

Example 5: Output for a server set
In the following example, onstat -g cmsm is run on a stand-alone server in the server set.

Unified Connection Manager: connection_manager_8 Hostname: my_host_8

SERVERSET server_1,server_2
 SLA Connections Service/Protocol Rule
 sla_1 63 19810/onsoctcp DBSERVERS=(server_1,server_2) POLICY=ROUNDROBIN

Unified Connection Manager: connection_manager_9 Hostname: my_host_9

SERVERSET server_1,server_2
 SLA Connections Service/Protocol Rule
 sla_2 63 19810/onsoctcp DBSERVERS=(server_1,server_2) POLICY=ROUNDROBIN

The command displays output for the two Connection Managers that connect to the server set. connection_manager_8 and connection_manager_9 are installed on
separate hosts, and together they manage the server set.

Output description

Part VI: Administering 727

The output of the onstat -g cmsm command contains sections for each Connection Manager. Each section displays the Connection Manager instance name and host
name, followed by subsections that contain information on each connection unit the Connection Manager connects to.

Unified Connection Manager
The name of the Connection Manager instance.

Hostname
The name of the Connection Manager's host.

SLA
The names of service level agreements, as defined in the Connection Manager's configuration file.

Connections
The numbers of connections each SLA processed since the Connection Manager started.

Service/Protocol
The port number or service name that is associated with the SLA, followed by the connection protocol type.

Rule
The SLA definition.

Failover Arbitrator:
Specifies whether the Connection Manager is the active failover arbiter, if the primary server is active, and if failover is enabled. Displays only for CLUSTER
connection units.

ORDER
Specifies the failover order for a cluster. Displays only for CLUSTER connection units.

PRIORITY
Specifies the priority of the connection between the Connection Manager and the primary server of a cluster. Displays only for CLUSTER connection units.

Related information:
 Connection management through the Connection Manager

Monitoring and troubleshooting connection management

Copyright© 2020 HCL Technologies Limited

onstat -g con command: Print condition and thread information

Use the onstat -g con command to display information about conditions and the threads that are waiting for the conditions.

Syntax:

>>-onstat-- -g--con--><

Example output
Figure 1. onstat -g con command output

Conditions with waiters:
cid addr name waiter waittime
271 c63d930 netnorm 1511 6550

Output description
cid

Condition identifier
addr

Condition control block address
name

Name of condition the thread is waiting on
waiter

ID of thread waiting on condition
waittime

Time, in seconds, thread has been waiting on this condition

Copyright© 2020 HCL Technologies Limited

onstat -g cpu: Print runtime statistics

Use the onstat -g cpu command to display information about runtime statistics for each thread that is running in the server.

Syntax:

>>-onstat-- -g--cpu--><

Example output
Figure 1. onstat -g cpu command output

728 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

onstat -g cpu

Thread CPU Info:
tid name vp Last Run CPU Time #scheds status
2 lio vp 0 3lio* 07/18 08:35:35 0.0000 1 IO Idle
3 pio vp 0 4pio* 07/18 08:35:36 0.0102 2 IO Idle
4 aio vp 0 5aio* 07/18 08:35:47 0.6876 68 IO Idle
5 msc vp 0 6msc* 07/18 11:47:24 0.0935 14 IO Idle
6 main_loop() 1cpu* 07/18 15:02:43 2.9365 23350 sleeping secs: 1
7 soctcppoll 7soc* 07/18 08:35:40 0.1150 1 running
8 soctcpio 8soc* 07/18 08:35:40 0.0037 1 running
9 soctcplst 1cpu* 07/18 11:47:24 0.1106 10 sleeping forever
10 soctcplst 1cpu* 07/18 08:35:40 0.0103 6 sleeping forever
11 flush_sub(0) 1cpu* 07/18 15:02:43 0.0403 23252 sleeping secs: 1
12 flush_sub(1) 1cpu* 07/18 15:02:43 0.0423 23169 sleeping secs: 1
13 flush_sub(2) 1cpu* 07/18 15:02:43 0.0470 23169 sleeping secs: 1
14 flush_sub(3) 1cpu* 07/18 15:02:43 0.0407 23169 sleeping secs: 1
15 flush_sub(4) 1cpu* 07/18 15:02:43 0.0307 23169 sleeping secs: 1
16 flush_sub(5) 1cpu* 07/18 15:02:43 0.0323 23169 sleeping secs: 1
17 flush_sub(6) 1cpu* 07/18 15:02:43 0.0299 23169 sleeping secs: 1
18 flush_sub(7) 1cpu* 07/18 15:02:43 0.0314 23169 sleeping secs: 1
19 kaio 1cpu* 07/18 14:56:42 1.4560 2375587 IO Idle
20 aslogflush 1cpu* 07/18 15:02:43 0.0657 23166 sleeping secs: 1
21 btscanner_0 1cpu* 07/18 15:00:53 0.0484 784 sleeping secs: 61
37 onmode_mon 1cpu* 07/18 15:02:43 0.3467 23165 sleeping secs: 1
43 dbScheduler 1cpu* 07/18 14:58:14 1.6613 320 sleeping secs: 31
44 dbWorker1 1cpu* 07/18 13:48:10 0.4264 399 sleeping forever
45 dbWorker2 1cpu* 07/18 14:48:11 1.9346 2936 sleeping forever
94 bf_priosweep() 1cpu* 07/18 15:01:42 0.0431 77 cond wait bp_cond

Output description
tid

The ID of the thread
name

The name of the thread
vp

The ID of the virtual processor in which the thread is running
Last Run

The timestamp when the thread last ran
CPU Time

The time taken until now by the thread
#scheds

The number of times the thread was scheduled to run
status

The status of the thread. Possible status values are:

cond wait
IO Idle
join wait
mutex wait
ready
sleeping
terminated
running
yield

Copyright© 2020 HCL Technologies Limited

onstat -g dbc command: Print dbScheduler and dbWorker thread statistics

Use the onstat -g dbc command to display statistics about the Scheduler tasks that are currently running, which are handled by dbWorker threads, or scheduled to be run,
which are handled by the dbScheduler thread.

Syntax:

>>-onstat-- -g--dbc--><

Example output
Figure 1. onstat -g dbc command output

Worker Thread(0) 46fa6f10
=====================================
Task: 47430c18
Task Name: mon_config_startup
Task ID: 3
Task Type: STARTUP SENSOR
Last Error
 Number -310
 Message Table (informix.mon_onconfig) already exists in database.

Part VI: Administering 729

https://www.hcltech.com/

 Time 09/11/2007 11:41
 Task Name mon_config_startup

Task Execution: onconfig_save_diffs

WORKER PROFILE
 Total Jobs Executed 10
 Sensors Executed 8
 Tasks Executed 2
 Purge Requests 8
 Rows Purged 0

Worker Thread(1) 46fa6f80
=====================================
Task: 4729fc18
Task Name: mon_sysenv
Task ID: 4
Task Type: STARTUP SENSOR
Task Execution: insert into mon_sysenv select 1, env_name, env_value FROM
 sysmaster:sysenv

WORKER PROFILE
 Total Jobs Executed 3
 Sensors Executed 2
 Tasks Executed 1
 Purge Requests 2
 Rows Purged 0

Scheduler Thread 46fa6f80
=====================================
Run Queue
 Empty
Run Queue Size 0
Next Task 7
Next Task Waittime 57

Output description
Worker Thread

Address of the worker thread in shared memory
Task

Name of the last executed task
Task ID

The task ID from the tk_id column in the sysadmin:ph_task table for this task
Task Type

Type of the task
Last Error

Error number, error message, time (in seconds), and task name from the last error the dbWorker thread encountered. It could be from the previously executed task
or from a task executed days ago.

Task Execution
SQL statement or SPL procedure or routine executed as part of the task

WORKER PROFILE
The dbWorker thread profile data shows the total jobs executed, number of sensors executed, number of tasks executed, number of purge requests, and the
number of rows purged from the result tables for all sensors executed by this dbWorker thread.

Scheduler Thread
Address of the scheduler thread in shared memory

Run Queue
The task ID for the next scheduled task. If no task is scheduled, the value is Empty.

Run Queue Size
The number of tasks that are waiting to be executed by the dbWorker thread

Next Task
The task ID of the next task that will be scheduled to be executed

Next Task Waittime
The number of seconds before the Next Task will be scheduled for execution

Related reference:
 scheduler argument: Stop or start the scheduler (SQL administration API)

Related information:
 Monitor the scheduler

Copyright© 2020 HCL Technologies Limited

onstat -g defragment command: Print defragment partition extents

Use the onstat -g defragment command to display information about the active requests to defragment partition extents.

Syntax:

>>-onstat-- -g--defragment-------------------------------------><

730 Part VI: Administering

https://www.hcltech.com/

Example output
Figure 1. onstat -g defragment command output

Defrag info
id table name tid dbsnum partnum status substatus errnum
15 stores_demo:informix.stdtab2 49 2 2097155 SEARCHING_FOR_EXTENT 0 0

Note: This command displays information about defragment requests that are active. If there are no active defragment requests, only the column headings are returned.

Output description
id

The ID of the defragment request.
table name

The fully-qualified name of the table that is being defragmented.
tid

The thread ID.
dbsnum

The dbspace number that is being defragmented.
partnum

The partition number that is being defragmented.
status

SEARCHING_FOR_EXTENT
MERGING_EXTENTS
DEFRAG_COMPLETED
DEFRAG_FAILED

substatus
The detailed status number, if any.

errnum
The last error number returned from the defragmentation request.

Copyright© 2020 HCL Technologies Limited

onstat -g dic command: Print table information

Use the onstat -g dic command to display a line of information about each table that is cached in the shared-memory dictionary. If you specify a table name, this
command prints internal SQL information about that particular table.

Syntax:

>>-onstat-- -g--dic--><

Example output
Figure 1. onstat -g dic command output

Dictionary Cache: Number of lists: 31, Maximum list size: 10
list# size refcnt dirty? heapptr table name
--
 1 3 1 no 14b5d890 wbe@oninit_shm:informix.t0010url
 1 no 14cbb820 wbe@oninit_shm:informix.t9051themeval
 0 no 14b63c20 wbe@oninit_shm:informix.t0060hits

 2 2 0 no 14b97420 wbe@oninit_shm:informix.t0120import
 1 no 14b6c820 wbe@oninit_shm:informix.t9110domain

 3 3 0 no 14bce020 wbe@oninit_shm:informix.t0150url
 0 no 14d3d820 contact@oninit_shm:informix.wbtags
 0 no 14c87420 wbe@oninit_shm:informix.wbtags

 4 1 0 no 14b7a420 drug@oninit_shm:abcdef.product ..
Total number of dictionary entries: 36

Output description
list#

Data dictionary hash chain ID
size

Number of entries in this hash
refcnt

Number of SQL statements currently referencing one of the cache entries.
dirty?

Whether the entry has been modified since last written to disk.
heapptr

Address for the heap used to store this table

Part VI: Administering 731

https://www.hcltech.com/

table name
Name of table in cache

Copyright© 2020 HCL Technologies Limited

onstat -g dis command: Print database server information

Use the onstat -g dis command to display a list of database servers, the status of each server, and information about each server, including the location of the
INFORMIXDIR directory, sqlhosts file, and ONCONFIG file. You can use this command in any database server mode, including offline.

Syntax:

>>-onstat-- -g--dis--><

Example output
Figure 1. onstat -g dis command output

There are 2 servers found
Server : ol_tuxedo
Server Number : 53
Server Type : IDS
Server Status : Up
Server Version: IBM Informix Version 11.50.UC1
Shared Memory : 0xa000000
INFORMIXDIR : /local1/engines/ol_tuxedo/dist
ONCONFIG : /local1/engines/ol_tuxedo/dist/etc/onconfig.ol_tuxedo
SQLHOSTS : /local1/engines/ol_tuxedo/dist/etc/sqlhosts
Host : avocet

Server : ol_9next
Server Number : 0
Server Type : IDS
Server Status : Down
Server Version:
Shared Memory : 0
INFORMIXDIR : /local1/engines/ol_9next/dist
ONCONFIG :
SQLHOSTS :
Host :

Output description
Server

Server name
Server Number

Number of the server.
Server Type

Type of server
Server Status

Up means that the server is online, Down means that the server is offline
Server Version

Version of the server
Shared Memory

Location of the shared memory address
INFORMIXDIR

Location of the $INFORMIXDIR/ directory on UNIX and in the %INFORMIXDIR%\ directory on Windows.
ONCONFIG

Location of the ONCONFIG file
SQLHOSTS

Location of the sqlhosts file
Host

Host name of the server

Copyright© 2020 HCL Technologies Limited

onstat -g dll command: Print dynamic link library file list

Use the onstat -g dll command to display a list of and the status of dynamic link library (DLL) files that were loaded.

Syntax:

>>-onstat-- -g--dll--><

732 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Example output
The output displays the names of the library files only one time each process group. The flags indicate if the library was loaded when the server was started.
Figure 1. onstat -g dll command output

addr slot vp baseaddr flags filename
0x4af55310 15 1 0x2a985e3000 PM /finance/jeffzhang/mylib.udr
0x4b6f2310 2 0x2a985e3000
0x4b71b310 3 0x2a985e3000
0x4c09f310 16 1 0x2a985e3000 M /deptxyz/udrs/geodetic.bld
0x4c0c0310 2 0x2a985e3000
0x4c0f1310 3 0x2a985e3000
0x4c112310 17 1 0x7a138e9000 /home/informix/extend/blade.so
0x4c133310 2 0x3a421e1000
0x4c133310 3 0x3a421e1000

Output description
addr

Address of the DLL file
slot

Slot number entry in the library table
vp

ID of the virtual processor
baseaddr

Base address of the shared library
flags

M indicates that the thread calling the UDR can migrate from one CPU virtual processor to another CPU virtual processor.
P indicates that the shared library was loaded when the database server was started.

filename
Name of the DLL file

Related reference:
 PRELOAD_DLL_FILE configuration parameter

Copyright© 2020 HCL Technologies Limited

onstat -g dmp command: Print raw memory

Use the onstat -g dmp command to display information about raw memory at a given address for a number of given bytes.

Syntax:

>>-onstat-- -g--dmp--address--length---------------------------><

Each address and length must be within the allocated memory shown from onstat -g seg output. The address specified can be in decimal or hexadecimal format.
Hexadecimal addresses must begin with 0x. You can specify the address in decimal, but doing so requires converting the memory shown from onstat -g seg to decimal
before using it as a command line argument.

Example output
Figure 1. onstat -g dmp command output

%onstat -g dmp 0x700000011a19d48 100

address bytes in mem
0700000011a19d48: 07000000 118e0fa8 07000000 11942b40+@
0700000011a19d58: 07000000 10137120 00000000 00000000q
0700000011a19d68: 00000000 00000000 00000000 00000000
0700000011a19d78: 07000000 11a19d48 07000000 11a19d48HH
0700000011a19d88: 00000000 00000000 00000000 00000000
0700000011a19d98 *
0700000011a19da8: 00000000

Output description
address

Memory address of the raw memory.
bytes in mem

Hexadecimal and ASCII representations of the memory contents.

Output from the command is divided into three columns: memory address, hexadecimal values for the bytes in memory, and the ASCII representation of the bytes in
memory. The bytes in memory (middle) section displays the first 16 bytes of memory starting at the address specified on the command line. The third column shows the
ASCII representation of the hexadecimal data. Periods are displayed for all hexadecimal values that do not have an ASCII character equivalent. ASCII values are shown in
order to make searching for plain text easier.
In the example output shown, the fifth line of data displays zeros and the sixth line contains an asterisk. The asterisk indicates an unknown number of repetitions of the
previous line, which means that there is no more data after the fourth line.

Part VI: Administering 733

https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

onstat -g dri command: Print high-availability data replication information

Use the onstat -g dri command, either alone or with the ckpt or que options, to print information about high-availability data replication statistics on the current server.

Use the onstat -g dri command to print information about HDR server states and HDR-related configuration parameters.

Syntax:

>>-onstat-- -g--dri--+------+----------------------------------><
 +-ckpt-+
 '-que--'

Example output and output description for onstat -g dri
Figure 1. onstat -g dri command output

Data Replication at 0x4d676028:
 Type State Paired server Last DR CKPT (id/pg) Supports Proxy Writes
 primary on my_server 4 / 5 NA

 DRINTERVAL 5
 DRTIMEOUT 30
 DRAUTO 3
 DRLOSTFOUND /etc/dr.lostfound
 DRIDXAUTO 0
 ENCRYPT_HDR 0 Backlog 0
 Last Send 2013/12/11 16:39:48
 Last Receive 2013/12/11 16:39:48
 Last Ping 2013/12/11 16:39:44
 Last log page applied(log id,page): 4,6

Type
Current® type of server: primary, secondary, or standard

State
on or off

Paired server
Name of the primary or secondary server that this server is paired with

Last DR CKPT
Last checkpoint ID and page

Supports Proxy Writes
Displays whether the server is configured to allow secondary server updates. Y = supports secondary server updates, N = does not support secondary server
updates.

DRINTERVAL
The value of the configuration parameter in the onconfig file.

DRTIMEOUT
The value of the configuration parameter in the onconfig file.

DRAUTO
The value of the configuration parameter in the onconfig file.

DRLOSTFOUND
The value of the configuration parameter in the onconfig file.

DRIDXAUTO
The value of the configuration parameter in the onconfig file.

ENCRYPT_HDR
The value of the configuration parameter in the onconfig file.

Backlog
Number of log pages in the HDR data replication buffer that are not yet sent to the HDR secondary server

Last Send
The time that the last message was sent to the peer node

Last Receive
The time that the last message was received from the peer node

Last Ping
The time of the last ping

Last log page applied(log id,page)
The log ID and page number of the last applied log

Example output and output description for onstat -g dri ckpt
Use the onstat -g dri ckpt command to print information about nonblocking checkpoints in HDR servers.

Figure 2. onstat -g dri ckpt command output

Data Replication:
 Type State Paired server Last DR CKPT (id/pg) Supports Proxy Writes
 primary on BB_1 554 / 558 Y

 DRINTERVAL 30
 DRTIMEOUT 30

734 Part VI: Administering

https://www.hcltech.com/

 DRAUTO 0
 DRLOSTFOUND /vobs/tristarm/sqldist/etc/dr.lostfound
 DRIDXAUTO 0
 ENCRYPT_HDR 0
DR Checkpoint processing:
 Save State N
 Pages Saved 0
 Save Area none
 Received log id, page 17,68
 Saved log id, page 0,0
 Drain log id, page 0,0
 Processed log id, page 17,68
 Pending checkpoints 0

Save State
B (buffering) when the server is adding logs to the staging area
D (draining) when the server is removing logs from the staging area
N (normal) when the server is operating normally, meaning that no logs are saved

Pages Saved
Displays the number of log pages saved in the staging area that have yet to be applied.

Save Area
Displays the location of the staged log files.

Received log id, page
Displays the last log ID and page that were received from the primary server.

Processed log id, page
Displays the last log ID and page that are queued to the recovery pipeline.

Saved log id, page
Displays the last log ID and page that was stored in the staging area (if stage state is either B or D).

Drain log id, page
Displays the last log ID and page that were removed from the staging area.

Pending checkpoints
Displays the number of checkpoints that are staged but not yet applied.

Pending ckpt log id, page
Displays the position of any pending checkpoint records.

Example output and output description for onstat -g dri que
Use the onstat -g dri que command to print information that is related to nearly synchronous HDR replication.

Figure 3. onstat -g dri que command output

 Pending Msg to Send 1
 ACK QUEUE 5199:1256fff
 thread 0x893de6c8 (85) 5199:1258018
 thread 0x893a16b8 (83) 5199:1258048
 thread 0x89229968 (72) 5199:1258078
 thread 0x89381508 (82) 5199:12580a8
 thread 0x87e81658 (69) 5199:12580d8
 thread 0x89215968 (71) 5199:1259018
 thread 0x89336bc8 (80) 5199:1259048
 thread 0x89370018 (81) 5199:12590f8
 thread 0x892eb018 (77) 5199:125a018
 thread 0x89308018 (78) 5199:125b018
 thread 0x89290138 (75) 5199:125b048
 thread 0x893c1658 (84) 5199:125c018
 thread 0x891fe8e8 (70) 5199:125c048
 thread 0x89325018 (79) 5199:125d018
 thread 0x893ff738 (86) 5199:125d048
 thread 0x894207a8 (87) 5199:125d078

 Applied QUEUE 5199:1251018

Pending message to send
The number of unprocessed data replication buffers queued to the drprsend thread.

ACK QUEUE
The log unique value, the page number, and the value 0xfff for the most recently paged log.

thread
The pointer to the thread-control block (TCB), the thread id in parentheses, and the log sequence number (LSN) of the commit that was performed by that thread

Applied QUEUE
The LSNs of commits that are waiting for acknowledgement of being received on the HDR secondary.

Related reference:
 DRAUTO configuration parameter

DRIDXAUTO configuration parameter
DRINTERVAL configuration parameter
DRLOSTFOUND configuration parameter
DRTIMEOUT configuration parameter
Related information:

 Fully synchronous mode for HDR replication
Asynchronous mode for HDR replication
Nearly synchronous mode for HDR replication
Replication of primary-server data to secondary servers
HDR_TXN_SCOPE session environment option

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 735

https://www.hcltech.com/

onstat -g dsc command: Print distribution cache information

Use the onstat -g dsc command to display information about the distribution cache.

Syntax

>>-onstat-- -g--dsc--><

Example output
Figure 1. onstat -g dsc command output

Data Distribution Cache:
 Number of lists : 31
 DS_POOLSIZE : 127

Distribution Cache Entries:
list id ref drop hits last_access heap_ptr distribution name
--

3 0 0 0 42 2020-05-12 10:36:36 4d6b7838 sysadmin:informix.aus_work_info.aus_info_tabid
3 0 0 0 192 2020-05-12 10:36:36 45c264d8 sysadmin:informix.aus_work_dist.aus_dist_tabid

6 0 0 0 204 2020-05-12 10:36:36 45c268d8 sysadmin:informix.aus_work_icols.aus_icols_tabid

Total number of distribution entries: 58
 Number of entries in use : 0

Output description
Number of lists

Number of lists in the distribution cache
DS_POOLSIZE

Number of entries that can be cached at one time
list

Distribution cache hash chain ID
id

Number of hash entries
ref

Number of statements that reference a cache entry
drop

Whether this entry was dropped after it was added to the cache
hits

The number of times the cache entry is accessed.
last_access

The time at which the cache entry was last accessed.

heap_ptr
Heap address that is used to store this entry

distribution name
The name of the distribution in the cache

Total number of distribution entries
Number of entries in the distribution cache

Number of entries in use
Number of entries that are being used

Related reference:
 DS_HASHSIZE configuration parameter

DS_POOLSIZE configuration parameter

Copyright© 2020 HCL Technologies Limited

onstat -g dsk command: Print the progress of the currently running compression
operation

Use the onstat -g dsk command to print information that shows the progress of currently running compression operations, such as compress, repack, and shrink.

Syntax:

>>-onstat-- -g -dsk--><

Example output

736 Part VI: Administering

https://www.hcltech.com/

Figure 1. onstat -g dsk command output for a compress operation

 Processed Remaining Duration Remaining
Partnum OP Rows Blobs Rows Time(s) Time(s) Table Name
400002 Compress 6325 1752 1497 00:00:00 00:00:00 db:sl:t1

Figure 2. onstat -g dsk command output for a repack operation

 Processed Remaining Duration Remaining
Partnum OP Pass Rows Blobs Rows Time(s) Time(s) Table Name
400002 Repack 1 6325 1752 1497 00:00:00 00:00:00 db:sl:t1

Output description
partnum

Partition number of the table or fragment
OP

Compression operation, such as compress, repack, or shrink.
Pass

For repack operations, 1 indicates the first pass of reading the rows, and 2 indicates the second pass.
Processed Rows

Number of rows that are processed so far for the specified operation
Blobs

The number of simple large objects that were operated on
Remaining Rows

The number of remaining rows to process. For repack operations, the number of rows that remain in the current pass.
Duration Time(s)

The amount of time since the beginning of the operation
Remaining Time(s)

Approximate amount of remaining time for the operation. For repack operations, the amount of time that remains for the current pass.

Copyright© 2020 HCL Technologies Limited

onstat -g env command: Print environment variable values

Use the onstat -g env command to display the values of the environment variables that the database server currently uses.

Syntax:

>>-onstat-- -g--env--+-------------------------+---------------><
 +-all---------------------+
 +-variable----------------+
 '-sessionid--+----------+-'
 '-variable-'

You can specify one of the following invocations.

Invocation Explanation

onstat -g env Displays the settings of environment variables when the database server was started
Does not display environment variables that have not been set explicitly.

onstat -g env all Displays the settings used by all sessions
This display is the same as the output of onstat -g env and onstat -g envsessionid iteratively on all
current sessions.

onstat -g env variable Displays the default value of the specified environment variable
This variable argument eliminates the need to pipe the output to grep (or some other utility) to locate
an environment variable among many that might be set.

onstat -g env sessionid Displays the settings that a specific session uses. This display includes the following values:

Set in the environment of the session
Assigned by the database server, as onstat -g env displays

onstat -g env sessionid variable Displays the value of the specified environment variable that the specified session uses
The sessionid and variable arguments eliminate the need to pipe the output to grep (or some other
utility) to locate an environment variable among many that might be set.

The onstat -g env command displays the current setting of an environment variable and the complete list of values each time the variable was set in the environment. For
example, if PDQPRIORITY is set to 10 in the .informix.rc file and set to 55 in the shell environment, onstat -g env command displays both values.

However, if you change the PDQPRIORITY with the onmode -q pdqpriority sessionid command, the onstat -g env command does not display the new value for the
session. The onstat -g env command displays only the values of environment variables set in the environment. It does not display values modified while the session is
running.

You might want to display the values of environment variables in the following situations:

The database server instance has been up for months, and you cannot remember the setting of an environment variable (such as the server locale setting
SERVER_LOCALE).
You want to display the complete list of values for an environment variable to identify when an environment variable has been set in multiple places.
Environment files on disk might have changed or been lost in the interim.

Part VI: Administering 737

https://www.hcltech.com/

A support engineer wants to know settings of specific environment variables.

Example output
The following figure shows the output for the onstat -g env command.
Figure 1. onstat -g env command output

Variable Value [values-list]
DBDATE DMY4/
DBDELIMITER |
DBPATH .
DBPRINT lp -s
DBTEMP /tmp
INFORMIXDIR /build2/11.50/tristarm/sqldist
 [/build2/11.50/tristarm/sqldist]
 [/usr/informix]
INFORMIXSERVER parata1150
INFORMIXTERM termcap
LANG C
LC_COLLATE C
LC_CTYPE C
LC_MONETARY C
LC_NUMERIC C
LC_TIME C
LD_LIBRARY_PATH /usr/openwin/lib:/lib:/usr/lib
LKNOTIFY yes
LOCKDOWN no
NODEFDAC no
NON_M6_ATTRS_OK 1
PATH /build2/11.50/tristarm/sqldist/bin:.:
 /root/bin:/opt/SUNWspro/bin:/usr/ccs/bin:
 /usr/openwin/bin:/usr/sbin:/usr/bin:/usr
 /local/bin
SERVER_LOCALE en_US.819
SHELL /bin/ksh
SINGLELEVEL no
SUBQCACHESZ 10
TBCONFIG onconfig
TERM xterm
 [xterm]
 [dumb]
TERMCAP /etc/termcap
TZ GB

Copyright© 2020 HCL Technologies Limited

onstat -g ffr command: Print free fragments

Use the onstat -g ffr command to display information about the free memory fragments for a specified session or shared-memory pool.

This command requires an additional argument to specify either a pool name or session ID whose memory pool information is to be displayed. Each session is allocated a
memory pool with the same name as the session ID. Use the onstat -g mem command to identify the pool name and the onstat -g ses command to identify the session
ID.

Syntax:

>>-onstat-- -g--ffr--+-pool name-+-----------------------------><
 '-sessionid-'

Example output
Figure 1. onstat -g ffr aio command output

Free lists for pool name aio:
addr size idx
165dcfa0 96 10
1659cf68 152 17
165b2f20 224 26
165c7f20 224 26
1666ec38 968 79
149f2ba0 1120 84

Output description
addr (hexadecimal)

Memory address of the pool fragment.
size (decimal)

Size, in bytes, of the pool fragment.
idx (decimal)

For internal use. Index in the array of free list pointers.

Copyright© 2020 HCL Technologies Limited

738 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

onstat -g glo command: Print global multithreading information

Use the onstat -g glo command to display global information about multithreading, information about each virtual processor that is running, and cumulative statistics for
each virtual-processor class. This information includes CPU use information about the virtual processors, the total number of sessions, and other multithreading global
counters.

Syntax:

>>-onstat-- -g--glo--><

Example output
Figure 1. onstat -g glo command output

MT global info:
sessions threads vps lngspins time
0 23 14 0 142

 sched calls thread switches yield 0 yield n yield forever
total: 85240 70451 16956 868 37319
per sec: 0 0 0 0 0

Virtual processor summary:
 class vps usercpu syscpu total
 cpu 1 92.12 0.59 92.71
 aio 1 0.05 0.08 0.13
 lio 1 0.00 0.00 0.00
 pio 1 0.00 0.00 0.00
 adm 1 0.00 0.01 0.01
 soc 4 0.01 0.01 0.02
 msc 1 0.00 0.00 0.00
 jvp 1 0.00 0.00 0.00
 fifo 1 0.00 0.00 0.00
 nyevp 1 0.00 0.00 0.00
 yevp 1 0.00 0.00 0.00
 total 14 92.18 0.69 92.87

Individual virtual processors:
 vp pid class usercpu syscpu total Thread Eff
 1 26328 cpu 92.12 0.59 92.71 122.65 75%
 2 26330 adm 0.00 0.01 0.01 0.00 0%
 3 26331 lio 0.00 0.00 0.00 0.00 0%
 4 26332 pio 0.00 0.00 0.00 0.00 0%
 5 26333 aio 0.05 0.08 0.13 0.28 45%
 6 26334 msc 0.00 0.00 0.00 0.19 0%
 7 26335 fifo 0.00 0.00 0.00 0.00 0%
 8 26336 nyevp 0.00 0.00 0.00 0.00 0%
 9 26337 yevp 0.00 0.00 0.00 0.00 0%
 10 26338 jvp 0.00 0.00 0.00 0.00 0%
 11 26339 soc 0.00 0.00 0.00 NA NA
 12 26340 soc 0.00 0.00 0.00 NA NA
 13 26341 soc 0.01 0.01 0.02 NA NA
 14 26342 soc 0.00 0.00 0.00 NA NA
 tot 92.18 0.69 92.87

Output description
The following table explains each column in the global information section of the example output.

Table 1. Description of the columns in the virtual processor summary

Column name Description

sessions The number of sessions

threads The total number of threads

vps The total number of virtual processors

lngspins The number of times a thread had to spin more than 10,000 times to acquire a latch on a resource

time The number of seconds over which the statistics were gathered. Statistics start when the server starts or the statistics are reset by running the onstat
-z command.

sched calls The total number of scheduled calls.

thread switches The total number of switches from one thread to another.

yield Statistics on thread yields, which occur when a thread can no longer continue its task until some condition occurs

The following table explains each column in the virtual processor summary section of the example output.
Table 2. Description of the columns in the virtual processor summary

Column name Description

class The type of virtual processor.

vps The number of instances of the class of virtual processor.

usercpu The total user time, in seconds, that the class of virtual processor spent running on the CPU.

Part VI: Administering 739

Column name Description

syscpu The total system time, in seconds, the class of virtual processor spent running on the CPU.

total The total CPU time for the virtual processor class, as the sum of the user time plus the system time.

The following table explains each column in the individual virtual processors section of the example output.
Table 3. Description of the columns for the individual virtual processors

Column name Description

vp The virtual processor number. On Windows, the values are thread IDs.

pid The Process ID of the oninit process.

class The type of virtual processor.

usercpu The total user time, in seconds, that the virtual processor spent running on the CPU.

syscpu The total system time, in seconds, that the virtual processor spent running on the CPU.

total The total CPU time for the virtual processor, as the sum of the user time plus the system time.

Thread The total time the threads ran on the virtual processor.

Eff Efficiency. The ratio of the total CPU time to the total time the threads ran on the virtual processor.

Copyright© 2020 HCL Technologies Limited

onstat -g his command: Print SQL trace information

Use the onstat -g his command to display SQL trace information from the collection of syssqltrace tables (syssqltrace, syssqltrace_info, syssqltrace_hvar and
syssqltrace_itr) in the sysmaster database.

The level setting of the SQLTRACE configuration parameter affects what SQL trace information is stored and displayed by the set of syssqltrace tables, and what
information onstat -g his displays. Each row of the syssqltrace table describes a previously executed SQL statement. By default, only the DBSA can view the syssqltrace
information from the onstat -g his command. However, when the UNSECURE_ONSTAT configuration parameter is set to 1, all users can view this information.

Syntax:

>>-onstat-- -g--his--><

Example output
The content of the output depends on the trace settings.

The Statement history section in the output provides information about the current settings for tracing.

Statement history:

Trace Level Low
Trace Mode Global
Number of traces 1000
Current Stmt ID 2
Trace Buffer size 2008
Duration of buffer 293 Seconds
Trace Flags 0x00001611
Control Block 0x4c2f0028

The following table describes this output:

Information Description

Trace Level Amount of information traced. Valid values are LOW, MED, HIGH, and OFF.

Trace Mode Type of tracing performed. Global refers to all users on the system User refers to only those users who have tracing enabled by an SQL administration
API function.

Number of
traces

The number of SQL statements that are being traced. This is the value set in your onconfig file unless the ntraces parameter is changed dynamically
through SQL Administration API functions. The range is 500 to 2147483647. If you have 100,000 trace buffers and your organization runs 1000 SQL
statements a second, and are tracing all of the statements, then the buffers would last for 100 seconds before they would begin being overwritten.

Current® Stmt
ID

The ID for the current SQL statement. Each statement being traced gets a unique ID.

Trace Buffer size The amount of data each trace buffer will capture, in bytes. If you set the size to 2KB, but have an SQL statement that is 12KB, the statement is
truncated by at least 10KB. More data might be truncated, depending on what else is being traced.

Duration of
buffer

The amount of time, in seconds, that the trace data in the current trace buffer spans. This is not how long the sqltrace feature has been running. In the
above example Duration of buffer is 293 seconds which indicates the number of seconds between the first and last SQL statement that are traced.

Trace Flags The current SQL trace flags that are set.

Control Block The memory address of the SQL trace control block.

The information displayed below is repeated one time for each time a statement was run. In this example there are two variables being called.

Statement # 2: @ 0x4c2f3028

Database: sysmaster

740 Part VI: Administering

https://www.hcltech.com/

 Statement text:
 select count(*) from systables,syscolumns where systables.tabid > ? and
 systables.nrows < ?

 SELECT using tables [systables syscolumns]

The following table describes this output:

Information Description

Database The name of the database or part number of the systables entry for the database.

Statement text The statement text for this SQL statement. If the statement is a stored procedure, then the statement text would display the procedure stack trace.
The statement text might be truncated if the statement and the numeric statistics are larger than the trace buffer.

 Iterator/Explain
 ================
 ID Left Right Est Cost Est Rows Num Rows Partnum Type
 3 0 0 17 42 146 1048579 Index Scan
 4 0 0 5249 2366 2366 1048580 Seq Scan
 2 3 4 5266 99372 345436 0 Nested Join
 1 2 0 1 1 1 0 Group

The following table describes this output:

Information Description

ID SQL iterator ID

Left ID of the left input to the iterator

Right ID of the right input to the iterator

Est Cost Estimated cost of this iterator

Est Rows Estimated rows for this iterator

Num Rows Actual number of rows for this iterator

Partnum The table or index partition number.

Type Type of operation

If the SQL statement contains one or more variables, and you are tracing host variables, the Host Variables section is included in the output.

 Host Variables
 ==============
 1 integer 100
 2 float 1000.0000000000000000

The following table describes this output:

Information Description

Column 1 The position of the variable in the statement.

Column 2 The data type of the variable.

Column 3 The value of the variable.

Statement information:
 Sess_id User_id Stmt Type Finish Time Run Time TX Stamp PDQ
 5 2053 SELECT 01:08:48 0.4247 340a6e9 0

The following table describes this output:

Information Description

Sess_id The session ID

User_id The operating system user ID

Stmt Type The type of SQL statement

Finish Time The time of day that the SQL statement finished

Run Time The total amount of time consumed by the virtual processors or threads used to process the statement. For example, if the Finish Time is 1:15:00 and
the Run Time is 9 minutes and the start time is not necessarily 1:06:00. There might be multiple virtual processors or threads involved in processing
parts of the statement in parallel.

TX Stamp The time the BEGIN WORK statement was logged in this transaction

PDQ The SQL statement PDQ level

The Statement Statistics section in the output provides specific information about the statement.

 Statement Statistics:
 Page Buffer Read Buffer Page Buffer Write
 Read Read % Cache IDX Read Write Write % Cache
 1285 19444 93.39 0 810 17046 95.25

 Lock Lock LK Wait Log Num Disk Memory
 Requests Waits Time (S) Space Sorts Sorts Sorts
 10603 0 0.0000 60.4 KB 0 0 0

 Total Total Avg Max Avg I/O Wait Avg Rows
 Executions Time (S) Time (S) Time (S) IO Wait Time (S) Per Sec
 1 30.8660 30.8660 30.8660 0.0141 29.2329 169.8959

 Estimated Estimated Actual SQL ISAM Isolation SQL

Part VI: Administering 741

 Cost Rows Rows Error Error Level Memory
 102 1376 5244 0 0 CR 32608

Information Description

Page Read Number of pages that have been read from disk for this SQL statement

Buffer Read Number of times a page has been read from the buffer pool and not read from disk for this SQL statement

Read % Cache Percentage of times the page was read from the buffer pool

Buffer IDX Read This Currently not implemented

Page Write Number of pages written to disk

Buffer Write Number of pages modified and sent back to the buffer pool

Write % Cache Percentage of time that a page was written to the buffer pool but not to disk

Lock Requests Total number of locks required by this statement

Lock Waits Number of times this SQL statement waited on locks

LK Wait Time (S) Amount of time the statement waited for application locks, in seconds

Log Space Amount of storage space that the SQL statement used in the logical log

Num Sorts Total number of sorts used to execute the statement

Disk Sorts Number of sorts which required disk space to execute the sort for this SQL statement

Memory Sorts Number of sorts executed which executed entirely in memory for this SQL statement

Total Executions Total number of times this prepared statement has been executed, or the number of times this cursor has been re-used

Total Time (S) Total time this prepared statement ran, in seconds

Avg Time (S) Average time this prepared statement required to execute, in seconds

Max Time (S) Total time to run the prepared SQL statement, in seconds, excluding any time taken by the application. If you prepare a query then run the query 5
times, each time the query is run a trace is added to the trace buffer. The Max Time is the maximum time any one execution took.

Avg IO Wait Average amount of time the statement waited for I/O, excluding any asynchronous I/O

I/O Wait Time
(S)

Amount of time the statement waited for I/O, excluding any asynchronous I/O, in seconds

Avg Rows Per
Sec

Average number of rows a second produced by this statement

Estimated Cost The query optimizer cost associated with the SQL statement

Estimated Rows Number of rows returned by the statement, as estimated by the query optimizer

Actual Rows Number of rows returned for this statement

SQL Error The SQL error number

ISAM Error The RSAM or ISAM error number

Isolation Level Isolation level this statement was run with

SQL Memory Number of bytes this SQL statement required

For the complete schema of the syssqltrace System Monitoring Interface table, see syssqltrace.

For details of setting the SQLTRACE configuration parameter, see SQLTRACE configuration parameter.

Related reference:
 SQLTRACE configuration parameter

Copyright© 2020 HCL Technologies Limited

onstat -g ioa command: Print combined onstat -g information

Use the onstat -g ioa command to display combined information from the onstat -g iob, onstat -g iof, onstat -g ioq, and onstat -g iov commands.

Syntax

>>-onstat-- -g--ioa--><

Example output
AIO global info:
 9 aio classes
 9 open files
 64 max global files

AIO I/O queues:
q name/id len maxlen totalops dskread dskwrite dskcopy
 fifo 0 0 0 0 0 0 0
drda_dbg 0 0 0 0 0 0 0
sqli_dbg 0 0 0 0 0 0 0

742 Part VI: Administering

https://www.hcltech.com/

 adt 0 0 0 0 0 0 0
 msc 0 0 1 231 0 0 0
 aio 0 0 5 13069 10895 0 0
 pio 0 0 1 1580 0 1580 0
 lio 0 0 1 37900 0 37900 0
 gfd 3 0 87 42115 15806 26309 0
 gfd 4 0 4 5 1 4 0
 gfd 5 0 12 35 22 13 0
 gfd 6 0 11 33 21 12 0
 gfd 7 0 1 4 3 1 0
 gfd 8 0 1 4 3 1 0

AIO I/O vps:
class/vp/id s io/s totalops dskread dskwrite dskcopy wakeups io/wup errors tempops
 fifo 7 0 i 0.0 0 0 0 0 1 0.0 0 0
 msc 6 0 i 0.0 231 0 0 0 221 1.0 0 231
 aio 5 0 i 0.0 39285 26358 10793 0 37531 1.0 0 5
 aio 9 1 i 0.0 5770 3795 1944 0 5926 1.0 0 0
 aio 10 2 i 0.0 2308 717 1585 0 1953 1.2 0 0
 aio 11 3 i 0.0 1463 166 1295 0 1166 1.3 0 0
 aio 12 4 i 0.0 1219 46 1172 0 943 1.3 0 0
 aio 13 5 i 0.0 1041 34 1007 0 805 1.3 0 0
 aio 15 6 i 0.0 425 2 423 0 438 1.0 0 0
 aio 16 7 i 0.0 342 5 337 0 395 0.9 0 0
 pio 4 0 i 0.0 1580 0 1580 0 1581 1.0 0 1580
 lio 3 0 i 0.0 37900 0 37900 0 29940 1.3 0 37900

AIO global files:
gfd pathname bytes read page reads bytes write page writes io/s
3 ./rootdbs 85456896 41727 207394816 101267 572.9
 op type count avg. time
 seeks 0 N/A
 reads 13975 0.0015
 writes 51815 0.0018
 kaio_reads 0 N/A
 kaio_writes 0 N/A

4 tempsbs.chunk 2048 1 8192 4 113.6
 op type count avg. time
 seeks 0 N/A
 reads 1 0.0131
 writes 3 0.0074
 kaio_reads 0 N/A
 kaio_writes 0 N/A

5 sbs1.chunk 45056 22 26624 13 173.4
 op type count avg. time
 seeks 0 N/A
 reads 22 0.0063
 writes 6 0.0038
 kaio_reads 0 N/A
 kaio_writes 0 N/A

6 sbs2.chunk 43008 21 24576 12 76.1
 op type count avg. time
 seeks 0 N/A
 reads 21 0.0148
 writes 6 0.0072
 kaio_reads 0 N/A
 kaio_writes 0 N/A

7 qhdr.chunk 6144 3 2048 1 550.5
 op type count avg. time
 seeks 0 N/A
 reads 3 0.0019
 writes 1 0.0016
 kaio_reads 0 N/A
 kaio_writes 0 N/A

8 ./dbs1 6144 3 2048 1 403.0
 op type count avg. time
 seeks 0 N/A
 reads 3 0.0027
 writes 1 0.0018
 kaio_reads 0 N/A
 kaio_writes 0 N/A

AIO big buffer usage summary:
class reads writes
 pages ops pgs/op holes hl-ops hls/op pages ops pgs/op
fifo 0 0 0.00 0 0 0.00 0 0 0.00
drda_dbg 0 0 0.00 0 0 0.00 0 0 0.00
sqli_dbg 0 0 0.00 0 0 0.00 0 0 0.00
 kio 0 0 0.00 0 0 0.00 0 0 0.00
 adt 0 0 0.00 0 0 0.00 0 0 0.00
 msc 0 0 0.00 0 0 0.00 0 0 0.00
 aio 228709 20228 11.31 1005 203 4.95 213272 18556 11.49
 pio 0 0 0.00 0 0 0.00 19672 1580 12.45
 lio 0 0 0.00 0 0 0.00 55287 37900 1.46

Output description

Part VI: Administering 743

For a description of each output column, see the individual onstat -g iob command: Print big buffer use summary, onstat -g ioq command: Print I/O queue information, and
onstat -g iov command: Print AIO VP statistics commands.

Copyright© 2020 HCL Technologies Limited

onstat -g iob command: Print big buffer use summary

Use the onstat -g iob command to display a summary of big buffer use.

Syntax:

>>-onstat-- -g--iob--><

Example output
Figure 1. onstat -g iob command output

AIO big buffer usage summary:
 reads writes
 pages ops pgs/op holes hl-ops hls/op pages ops pgs/op
fifo 0 0 0.00 0 0 0.00 0 0 0.00
 kio 0 0 0.00 0 0 0.00 0 0 0.00
 adt 0 0 0.00 0 0 0.00 0 0 0.00
 msc 0 0 0.00 0 0 0.00 0 0 0.00
 aio 0 0 0.00 0 0 0.00 607 607 1.00
 pio 0 0 0.00 0 0 0.00 0 0 0.00
 lio 0 0 0.00 0 0 0.00 0 0 0.00

Copyright© 2020 HCL Technologies Limited

onstat -g iof command: Print asynchronous I/O statistics

Use the onstat -g iof command to display the asynchronous I/O statistics by chunk or file.

This command is similar to the onstat -D command, except that onstat -g iof also displays information on nonchunk files. It includes information about temporary files
and sort-work files.

Syntax:

>>-onstat-- -g--iof--><

Example output
Figure 1. onstat -g iof command output

AIO global files:
gfd pathname bytes read page reads bytes write page writes io/s
3 rootdbs 1918976 937 145061888 70831 36.5

 op type count avg. time
 seeks 0 N/A
 reads 937 0.0010
 writes 4088 0.0335
 kaio_reads 0 N/A
 kaio_writes 0 N/A

Output description
gfd

Global file descriptor number for this chunk or file.
pathname

The pathname of the chunk or file.
bytes read

Number of byte reads that have occurred against the chunk or file.
page reads

Number of page reads that have occurred against the chunk or file.
bytes write

Number of byte writes that have occurred against the chunk or file.
page writes

Number of page writes that have occurred against the chunk or file.
io/s

Number of I/O operations that can be performed per second. This value represents the I/O performance of the chunk or file.
op type

Type of operation.

744 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

count
Number of times the operation occurred.

avg time
Average time the operation took to complete.

Copyright© 2020 HCL Technologies Limited

onstat -g iog command: Print AIO global information

Use the onstat -g iog command to display global information about AIO.

Syntax:

>>-onstat-- -g--iog--><

Example output
Figure 1. onstat -g iog command output

AIO global info:
 8 aio es
 5 open files
 64 max global files

Copyright© 2020 HCL Technologies Limited

onstat -g ioq command: Print I/O queue information

Use the onstat -g ioq command to display statistics about the number and types of operations performed by I/O queues.

Syntax:

>>-onstat-- -g--ioq--+------------+----------------------------><
 '-queue_name-'

If a queue_name is given then only queues with that name are shown. If no queue_name is given then information is given for all queues.

Example output
Figure 1. onstat -g ioq command output

AIO I/O queues:
q name/id len maxlen totalops dskread dskwrite dskcopy
sqli_dbg 0 0 0 0 0 0 0
 fifo 0 0 0 0 0 0 0
 adt 0 0 0 0 0 0 0
 msc 0 0 1 537 0 0 0
 aio 0 0 3 6537 238 5777 0
 pio 0 0 2 1103 0 1102 0
 lio 0 0 2 11795 0 11794 0
 gfd 3 0 17 17489 1526 15963 0
 gfd 4 0 17 18347 2384 15963 0
 gfd 5 0 16 220 41 179 0
 gfd 6 0 4 4 0 4 0
 gfd 7 0 4 4 0 4 0
 gfd 8 0 4 4 0 4 0
 gfd 9 0 9 54 24 30 0
 gfd 10 0 16 149 40 109 0
 gfd 11 0 16 621 128 493 0
 gfd 12 0 16 1953 1146 807 0
 gfd 13 0 16 409 71 338 0
 gfd 14 0 16 378 60 318 0

Output description
q name/id

The name and number of the I/O queue. The name indicates what type of queue it is. The number is used to tell queues of the same name apart.
Here is a list of the possible queue names and what each type of queue handles:

sqli_dbg
Handles I/O for Technical Support's SQL Interface Debugging feature

fifo
Handles I/O for FIFO VPs

adt
Handles auditing I/O

Part VI: Administering 745

https://www.hcltech.com/
https://www.hcltech.com/

msc
Handles miscellaneous I/O

aio
Handles IBM® Informix® asynchronous I/O

kio
Handles kernel AIO

pio
Handles physical logging I/O

lio
Handles logical logging I/O

gfd
Global File Descriptor - Each primary and mirror chunk is given a separate global file descriptor. Individual gfd queues are used depending on whether kaio is
on and the associated chunk is cooked or raw.

len
The number of pending I/O requests in the queue

maxlen
The largest number of I/O requests that have been in the queue at the same time

totalops
The total number of I/O operations that have been completed for the queue

dskread
Total number of completed read operations for the queue

dskwrite
Total number of completed write operations for the queue

dskcopy
Total number of completed copy operations for the queue

Copyright© 2020 HCL Technologies Limited

onstat -g ipl command: Print index page logging status information

Use the onstat -g ipl command to display information about the status of index page logging.

Syntax:

>>-onstat-- -g--ipl--><

Example output
Figure 1. onstat -g ipl command output

Index page logging status: Enabled
Index page logging was enabled at: 2008/12/20 16:01:02

Output description
Index page logging status

Status of index page logging: Enabled or Disabled.
Index page logging was enabled at

The date and time at which index page logging was enabled.

Copyright© 2020 HCL Technologies Limited

onstat -g iov command: Print AIO VP statistics

Use the onstat -g iov command to display asynchronous I/O statistics for each virtual processor.

Syntax:

>>-onstat-- -g--iov--><

Example output
Figure 1. onstat -g iov command output

AIO I/O vps:
class/vp/id s io/s totalops dskread dskwrite dskcopy wakeups io/wup errors tempops
fifo 7 0 i 0.0 0 0 0 0 1 0.0 0 0
msc 6 0 i 0.1 9988 0 0 0 7833 1.3 0 9988
aio 5 0 i 0.0 4894 3341 1426 0 4393 1.1 0 0
aio 9 1 i 0.0 41 0 41 0 33 1.2 0 0

746 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

pio 4 0 i 0.0 199 0 199 0 200 1.0 0 199
lio 3 0 i 0.0 6344 0 6344 0 6344 1.0 0 6344

Output description
class

The class of the virtual processor.
vp

The ID number of the virtual processor within its class.
s

Current® status of the AIO virtual processor

f
Fork

i
Idle

s
Search

b
Busy

o
Open

c
Close

io/s
The average I/O speed (measured in operations per second) for the virtual processor since the time the database server started or since the onstat -z command
was last run, whichever happened last.

totalops
Total number of I/O operations performed by this virtual processor since the time the database server started or since the onstat -z command was last run,
whichever happened last.

dskread
Total number of read operations performed by this virtual processor since the time the database server started or since the onstat -z command was last run,
whichever happened last.

dskwrite
Total number of write operations performed by this virtual processor since the time the database server started or since the onstat -z command was last run,
whichever happened last.

dskcopy
Total number of copy operations performed by this virtual processor since the time the database server started or since the onstat -z command was last run,
whichever happened last.

wakeups
For AIO VPs, the number of times the virtual processor has gone idle since the time the database server started or since the onstat -z command was last run,
whichever happened last.

io/wup
For AIO VPs, the average number of I/O operations performed per wake-up by this virtual processor since the time the database server started or since the onstat -
z command was last run, whichever happened last.

errors
Total number of KAIO out of resource errors.

tempops (decimal)
For internal use only. This is I/O operation counter that is maintained to determine when a new AIO VP should be added. It is applicable only when the
AUTO_AIOVPS configuration parameter is enabled.

Copyright© 2020 HCL Technologies Limited

onstat -g lap command: Print light appends status information

Use the onstat -g lap command to display information about the status of light appends occurring in the system.

Syntax:

>>-onstat-- -g--lap--><

Example output
Figure 1. onstat -g lap command output

Light Append Info
session id address cur_ppage la_npused la_ndata la_nrows bufcnt
31 b60a5e8 ffbff494 2938 2937 93990 4

Output description
Session id (decimal)

Session ID performing the light append operation
address (hexadecimal)

Part VI: Administering 747

https://www.hcltech.com/

Address of the light append buffer
cur_ppage (hexadecimal)

Current® physical page address
la_npused (decimal)

Number of pages allocated
la_ndata (decimal)

Number of data pages appended
la_nrows (decimal)

Number of rows appended
bufcnt (decimal)

Number of light append buffers

Copyright© 2020 HCL Technologies Limited

onstat -g laq command: Print log apply queues

Use the onstat -g laq command to print information about log recovery apply queues.

Use the onstat -g laq command to print information about log recovery apply queues. This includes logical log recovery on secondary servers as well as logical restore or
logical recovery part of fast recovery. Log records from logical logs are assigned to replay worker threads according to the tablespace ID (partnum) associated with them; a
subset of log records will be applied by the replay master thread.

For instance, in a high-availability cluster, the primary server sends log records to one or more secondary servers over the network. Each secondary server continuously
replays the transaction logs from the primary server to ensure that data is replicated on the secondary server. Each tblspace on the primary server is assigned a queue on
the secondary server in which to receive log records. A replay thread applies the log records stored in the queue to the secondary server. The log records are applied in the
order in which they were received.

You use the onstat -g laq command to monitor the performance of the log apply queues, on a secondary server or during any other form of log recovery. Use this
command if you suspect that the primary server performance is slowed because logs are not replaying quickly enough on the secondary server, or to monitor the progress
made during logical restore. The Avg Depth (average depth) column indicates the average number of log records in the queue(Queue Size) incurred whenever putting a
new log record on a queue. The Current/Last LSN column specifies the log record a replay thread currently is active on, or the last one it was replaying, with the Partval
column typically specifying the tablespace ID this log record refers to. Transaction pointer and ID shown for a replay thread indicate a log record currently being applied.

When used in repeat mode, using -r [<seconds>][.<fraction>] option, an overall log record apply rate is calculated and shown.

On a secondary server, the transaction latency measured, in full seconds, with each end-of-transaction(COMMIT, ROLLBACK) log record as difference between local apply
time and primary server's EoT time, is shown.

The onstat -g laq command is valid only when some form of logical log recovery is going on, otherwise only an onstat header is printed.

Syntax:

>>-onstat-- -g-- laq --><

Example output
Figure 1. onstat -g laq -r .3 command output from a remote standalone secondary server

IBM Informix Dynamic Server Version 14.10.FC6AEE -- Read-Only (RSS) -- Up 20:41:04 -- 116724 Kbytes
2021-05-20 18:24:22
Log Apply Info:
Thread Queue Total Avg
 Size Queued Depth Current/Last LSN Partval Txp (Txid)
wreplay_1 1 938310 19.66 14087,0x482ec 100540 0x450a8c28 (29)
wreplay_2 0 782865 12.91 14087,0x48184
wreplay_3 3 937766 19.86 14087,0x45598 100542 0x450a8c28 (29)
wreplay_4 2 529755 14.43 14087,0x483bc 100543 0x450a8c28 (29)
wreplay_5 6 389432 10.93 14087,0x46500 10054e 0x450a8c28 (29)
wreplay_6 0 789238 10.90 14087,0x4318c
wreplay_7 0 1317820 20.26 14087,0x440b0
wreplay_8 0 991836 12.29 14086,0xb3d8
wreplay_9 0 851854 19.60 14086,0xb52c
wreplay_10 1 913434 9.42 14087,0x4849c 1d 0x450a8c28 (29)
mreplay 689544 14087,0x4849c
Total: 13 9131854 150.26 Avg: 15.03

Secondary Apply Queue: Total Buffers:12 Size:1024K Free Buffers:11
Log Recovery Queue: Total Buffers:12 Size:16K Free Buffers:10
Log Page Queue: Total Buffers:512 Size:2K Free Buffers:512
Log Record Queue: Total Buffers:50 Size:16K Free Buffers:42

Transaction Latency: 1 seconds
Apply rate: 30213.33 recs/sec - 9064 new recs in 300ms

Output description
Thread

The name of the apply thread for a given log record queue.
Queue Size

The number of log records queued for a given apply thread.
Total Queued

The total number of queued log records for a given apply thread.

748 Part VI: Administering

https://www.hcltech.com/

Avg Depth
The average number of logs in the queue at the time a queue insert operation occurred.

Secondary Apply Queue
The secondary apply queue receives log buffers from the primary server. The values displayed represent the total number of buffers allocated to receiving log buffer
records(SEC_DR_BUFS), the size of the buffers(LOGBUFF), and the number of currently unused buffers.

Log Recovery Queue
The log recovery queue receives output from the secondary apply queue. The log buffers are converted to a format compatible with the ontape utility. The values
displayed represent the total number of stream buffers in the recovery queue, the size of the stream buffers(LTAPEBLK), and the number of unused buffers.

Log Page Queue
The log page queue receives output from the log recovery queue. The ontape formatting is removed and the data is divided into individual log pages. The values
displayed represent the total number of log pages in the queue, the size of the queue, and the number of unused buffers.

Log Record Queue
The log record queue receives output from the log page queue. The log pages are divided into individual log records. The values displayed represent the total
number of log records in the recovery queue, the size of the queue, and the number of unused buffers.

Transaction Latency
Time difference between last replayed transaction commit time at primary server and local server. For this to be accurate, operating system time must match
between primary and secondary servers.

Apply rate
Number of log records replayed per second. Apply rate is only shown with -r option.

Copyright© 2020 HCL Technologies Limited

onstat -g lmm command: Print low memory management information

Use the onstat -g lmm command to display information about automatic low memory management settings and recent activity.

Syntax:

>>-onstat-- -g lmm---><

Example output
Figure 1. onstat -g lmm command output

Low Memory Manager

Control Block 0x4cfca220
Memory Limit 300000 KB
Used 149952 KB
Start Threshold 10240 KB
Stop Threshold 10 MB
Idle Time 300 Sec
Internal Task Yes
Task Name ‘Low Memory Manager’
Low Mem TID 0x4cfd7178
Extra Segments 0

Low Memory Manager Tasks

Task Count Last Run
Kill User Sessions 267 04/04/2011.16:57
Kill All Sessions 1 04/04/2011.16:58
Reconfig(reduce) 1 04/04/2011.16:59
Reconfig(restore) 1 04/04/2011.17:59

Last 20 Sessions Killed

Ses ID Username Hostname PID Time
194 sfisher host01 13433 04/04/2011.16:57
201 sfisher host01 13394 04/04/2011.16:57
198 sfisher host01 13419 04/04/2011.16:57
190 sfisher host01 13402 04/04/2011.16:57
199 sfisher host01 13431 04/04/2011.16:57

Total Killed 177

Output description
Control Block

Address of the internal control structure for automatic low memory management
Memory Limit

Amount of memory to which the server is attempting to adhere
Used

Amount of memory currently used by the server
Start Threshold

Value for the automatic low memory management start threshold
Stop Threshold

Value for the automatic low memory management stop threshold
Idle Time

Part VI: Administering 749

https://www.hcltech.com/

The amount of time after which automatic low memory management considers a session idle
Internal Task

Yes = using Informix® procedures
No = using user-defined procedures

Task Name
Name of user-defined procedure

Low Mem TID
Address of the automatic low memory management thread

Task
Kill = Automatic processes ran and terminated sessions.
Reconfig(reduce) = Automatic processes ran and freed blocks of unused memory.
Reconfig(restore) = Automatic processes ran and restored services and configuration.

Count
Number of times that the task ran

Last Run
Date and time when the last task ran

Ses ID
ID of session that was terminated (with an onmode –z command)

Username
User name of the owner of the session

Hostname
Name of the host where the session originated

PID
Process ID

Time
Date and time when the session was terminated

You use the LOW_MEMORY_MGR configuration parameter to enable the automatic low memory management.

Related reference:
 scheduler lmm enable argument: Specify automatic low memory management settings (SQL administration API)

scheduler lmm disable argument: Stop automatic low memory management (SQL administration API)
LOW_MEMORY_MGR configuration parameter
Related information:

 Reserve memory for critical activities

Copyright© 2020 HCL Technologies Limited

onstat -g lmx command: Print all locked mutexes

Use the onstat -g lmx command to display information about all locked mutexes.

Syntax:

>>-onstat-- -g--lmx--><

Example output
Figure 1. onstat -g lmx command output

Locked mutexes:
mid addr name holder lkcnt waiter waittime
119006 7000001e684b928 td_mutex 298 0
134825 7000002043a9148 free_lock 11009 0 200 22921
 11010 22918
587817 70000022ddb3268 sync_lock1 200 0
593614 700000239ce7b68 SB_LTH_LATCH 875 0

Number of mutexes on VP free lists: 49

Output description
mid

Internal mutex identifier
addr

Address of locked mutex
name

Name of the mutex
holder

Thread ID of the thread that is holding the mutex
0 = The read/write mutex is held in shared mode

lkcnt
For a read/write mutex, the current number of threads that are locking the mutex in shared mode. For a relockable mutex, the number of times the mutex was
locked or relocked by the thread that is holding the mutex.

waiter
List of IDs of the threads that are waiting for this mutex

waittime

750 Part VI: Administering

https://www.hcltech.com/

Amount of time in seconds that the thread is waiting

Copyright© 2020 HCL Technologies Limited

onstat -g lsc command: Print active light scan status (deprecated)

The onstat -g lsc command has been superseded by the onstat -g scn command.

Syntax:

>>-onstat-- -g--lsc--><

Example output
Figure 1. onstat -g lsc command output

Light Scan Info
descriptor address next_lpage next_ppage ppage_left bufcnt look_aside
3 474b74b0 4a0 7e2c80 416 1 N

Output description
descriptor (decimal)

Light scan ID
address (hex)

Memory address of the light scan descriptor
next_lpage (hex)

Next logical page address to scan
next_ppage (hex)

Next physical page address to scan
ppage_left (decimal)

Number of physical pages left to scan in the current extent
#bufcnt (decimal)

Number of light scan buffers used for this light scan
#look_aside (char)

Whether look aside is needed for this light scan (Y = yes, N = no). Look asides occur when a thread needs to examine the buffer pool for existing pages to obtain the
latest image of a page being light scanned.

Use the onstat -g scn command to display the status of a current scan, based on rows scanned on compressed tables, tables with rows that are larger than a page, and
tables with VARCHAR, LVARCHAR, and NVARCHAR data. For more information, see onstat -g scn command: Print scan information.

Copyright© 2020 HCL Technologies Limited

onstat -g mem command: Print pool memory statistics

Use the onstat -g mem command to display the memory statistics for a pool.

If you run an SQL query that allocates memory from the PER_STMT_EXEC and PER_STMT_PREP memory duration pools, the onstat -g mem command displays
information about the PRP.sessionid.threadid pool and the EXE.sessionid.threadid pool.

Syntax:

>>-onstat-- -g--mem--+-----------------------+-----------------><
 '-pool name--session id-'

Session pools are named with the session number. If no argument is provided, information about all pools is displayed.

Example output
Figure 1. onstat -g mem command output

Pool Summary:
name addr totalsize freesize #allocfrag #freefrag
resident R 10a001028 2420736 7960 2 2
res-buff R 10a250028 8269824 7960 2 2
global V 10aac0028 9351168 32648 650 11
...
...
...
onmode_mon V 10b983028 20480 2752 108 1
13 V 10bd5d028 16384 5200 12 2
Blkpool Summary:
name addr size #blks pre-hint szavail|

Part VI: Administering 751

https://www.hcltech.com/
https://www.hcltech.com/

global V 10aac8920 0 0 0 0
xmf_msc_pl V 10ac84ca0 954368 73 0 0

Output description
Pool Summary
name

Pool name
Shared memory segment type where the pool is created

addr
Pool memory address

totalsize
Pool size, in bytes

freesize
Free memory in pool

#allocfrag
Allocated fragments in pool

#freefrag
Free fragments in pool

Blkpool Summary
name

Pool name
Shared memory segment type where pool is created

addr
Pool memory address

size
Pool size, in bytes

#blks
Number of blocks in pool

Related information:
 The PER_STMT_EXEC memory duration

The PER_STMT_PREP memory duration

Copyright© 2020 HCL Technologies Limited

onstat -g mgm command: Print MGM resource information

Use the onstat -g mgm command to show resource information about Memory Grant Manager (MGM).

You can use the onstat -g mgm command to monitor how MGM coordinates memory use and scan threads. This command reads shared-memory structures and provides
statistics that are accurate at the instant that the command runs.

Syntax:

>>-onstat-- -g--mgm--><

The onstat -g mgm output shows a unit of memory that is called a quantum. The memory quantum represents a unit of memory, as follows:

memory quantum = DS_TOTAL_MEMORY / DS_MAX_QUERIES

The following calculation shows the memory quantum for the values that the onstat -g mgm output shows:

memory quantum = 4000 kilobytes / 31
 = 129 kilobytes

The database server adjusts the value of a quantum as needed when it grants memory. Therefore, the value of the quantum as shown by the onstat -g mgm command is
not always accurate.

The scan thread quantum is always equal to 1.

Example output
Figure 1. onstat -g mgm command output

Memory Grant Manager (MGM)

MAX_PDQPRIORITY: 100
DS_MAX_QUERIES: 31
DS_MAX_SCANS: 1048576
DS_NONPDQ_QUERY_MEM: 128 KB
DS_TOTAL_MEMORY: 4000 KB

Queries: Active Ready Maximum
 0 0 31
Memory: Total Free Quantum
(KB) 4000 4000 128

Scans: Total Free Quantum
 1048576 1048576 1

752 Part VI: Administering

https://www.hcltech.com/

Load Control: (Memory) (Scans) (Priority) (Max Queries) (Reinit)
 Gate 1 Gate 2 Gate 3 Gate 4 Gate 5
(Queue Length) 0 0 0 0 0

Active Queries: None
Ready Queries: None
Free Resource Average # Minimum #
-------------- --------------- ---------
Memory 0.0 +- 0.0 500
Scans 0.0 +- 0.0 1048576

Queries Average # Maximum # Total #
-------------- --------------- --------- -------
Active 0.0 +- 0.0 0 0
Ready 0.0 +- 0.0 0 0

Resource/Lock Cycle Prevention count: 0

Output description
The first portion of the output shows the values of the PDQ configuration parameters.

The second portion of the output describes MGM internal control information. It includes four groups of information. The first group is Queries:

Active
Number of PDQ queries that are currently running

Ready
Number of user queries ready to run but whose execution the database server deferred for load-control reason

Maximum
Maximum number of queries that the database server allows to be active. Reflects current value of the DS_MAX_QUERIES configuration parameter

The next group is Memory:

Total
KB of memory available for use by PDQ queries (DS_TOTAL_MEMORY specifies this value.)

Free
KB of memory for PDQ queries not currently in use

Quantum
Approximate number of KB of memory in a memory quantum

The next group is Scans:

Total
The total number of scan threads as specified by the DS_MAX_SCANS configuration parameter

Free
Number of scan threads currently available for decision-support queries

Quantum
The number of scan threads in a scan-thread quantum

The last group in this portion of the output describes MGM Load Control:

Memory
Number of queries that are waiting for memory

Scans
Number of queries that are waiting for scans

Priority
Number of queries that are waiting for queries with higher PDQ priority to run

Max Queries
Number of queries that are waiting for a query slot

Reinit
Number of queries that are waiting for running queries to complete after an onmode -M or -Q command

The next portion of the output, Active Queries, describes the MGM active and ready queues. This portion of the output shows the number of queries that are waiting at
each gate:

Session
The session ID for the session that initiated the query

Query
Address of the internal control block that is associated with the query

Priority
PDQ priority that is assigned to the query

Thread
Thread that registered the query with MGM

Memory
Memory that is currently granted to the query or memory that is reserved for the query (Unit is MGM pages, which is 8 KB.)

Scans
Number of scan threads currently used by the query or number of scan threads that are allocated to the query

Gate
Gate number at which query is waiting

The next portion of the output, Free Resource, provides statistics for MGM free resources. The numbers in this portion and in the final portion reflect statistics since
system initialization or the last onmode -Q, -M, or -S command. This portion of the output contains the following information:

Average

Part VI: Administering 753

Average amount of memory and number of scans
Minimum

Minimum available memory and number of scans

The next portion of the output, Queries, provides statistics about MGM queries:

Average
Average active and ready queue length

Maximum
Maximum active and ready queue length

Total
Total active and ready queue length

Resource/Lock Cycle Prevention count
Number of times the system immediately activated a query to avoid a potential deadlock. (The database server can detect when some of the queries in its queue
might create a deadlock situation if the queries are not run immediately.)

Related reference:
 DS_MAX_QUERIES configuration parameter

DS_MAX_SCANS configuration parameter
MAX_PDQPRIORITY configuration parameter
DS_NONPDQ_QUERY_MEM configuration parameter
DS_TOTAL_MEMORY configuration parameter

Copyright© 2020 HCL Technologies Limited

onstat -g nbm command: Print a block bit map

Use the onstat -g nbm command to display the block bit map for the nonresident segments.

Each bit of the bitmap represents a 4 KB block. If the block is used, then the bit is set to 1. If the block is free, the bit is set to 0. The bitmap is shown as a series of
hexadecimal numbers. The bits, and therefore the blocks, are numbered starting at 0 so the first block is block 0, the second is block 1, and so on.

Syntax:

>>-onstat-- -g--nbm--><

Example output
This example shows the bitmap for the segment of virtual memory at 0x10CC00000. The bitmap itself is at 0x10CC00290. All 1792 blocks of the segment are free except
for block 0 and block 1023.
Figure 1. onstat -g nbm command output

Block bitmap for virtual segment address 0x10cc00000:
 address = 0x10cc00290, size(bits) = 1792
 used = 1, largest_free = -1
 0:8000000000000000 0000000000000000 0000000000000000 0000000000000000
 256:0000000000000000 0000000000000000 0000000000000000 0000000000000000
 512:0000000000000000 0000000000000000 0000000000000000 0000000000000000
 768:0000000000000000 0000000000000000 0000000000000000 0000000000000001
 1024:0000000000000000 0000000000000000 0000000000000000 0000000000000000
 1280:0000000000000000 0000000000000000 0000000000000000 0000000000000000
 1536:0000000000000000 0000000000000000 0000000000000000 0000000000000000

Output description
address

The starting address of the bitmap.
size

The number of bits in the bitmap. This is also the number of 4 KB blocks in the memory segment.
used

The total number of bits in the bitmap that are set to 1. This is also the number of 4 KB blocks that are in use in the memory segment.
largest free

If this is a value other than -1 it is the largest number of consecutive bits that are free, which is also the number of 4 KB blocks in the largest contiguous set of
blocks in the memory segment.
A value of -1 means that the largest free space has not been calculated. The database server only calculates the largest free space if it tries to allocate a set of
blocks starting at the lastalloc block but there is not enough free space. The value is set to -1 again as soon as another block is allocated in the segment.

Copyright© 2020 HCL Technologies Limited

onstat -g nsc command: Print current shared memory connection information

Use the onstat -g nsc command to display information about shared memory connections either for all of the current connections or for a specified connection ID.

Syntax:

754 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

>>-onstat-- -g--nsc--+-----------+-----------------------------><
 '-client_id-'

If no client_id is provided, information about all current shared memory connections to the database server is given. If a client_id is provided then this command gives
more detailed information about the shared memory connection with that ID.

Example output
This is output of onstat -g nsc with no client_id. It shows that there is only one user currently connecting to the database server through shared memory. That connection
has an ID of 0.

Figure 1. onstat -g nsc command output

 clientid clientPID state #serverbufs #clientbufs #rdwrts
 0 6031 Connected 4 4 12

This example shows output from running the command using a client_id of 0.

Figure 2. onstat -g nsc command with client id output

Network Shared Memory Status for Client: 0

 clientid clientPID state #serverbufs #clientbufs #rdwrts
 0 18949 Connected 4 4 447048

 needbuf segid semid semnum be_semid be_semnum
 0 1303 851969 0 851969 10

 be_curread be_curwrite fe_curread fe_curwrite
 -1 1 0 2

 be_nextread be_nextwrite fe_nextread fe_nextwrite
 2 2 4 3

readyqueue
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

 Server Buffers Client Buffers
 i: bufid status offset fe_addr bufid status offset fe_addr
 0: 4 inuse 4474 804474 0 avail 3424 803424
 1: 5 inuse 4888 804888 1 avail 3838 803838
 2: 6 avail 4c9c 804c9c 2 inuse 3c4c 803c4c
 3: 7 avail 50b0 8050b0 3 avail 4060 804060
 4: -1 free 0 0 -1 free 0 0
 5: -1 free 0 0 -1 free 0 0

Output description
clientid

Server assigned ID
clientPID

Client process ID
state

State of connection

Connected
The client has established a connection with the server.

Con1
The server has successfully set up a connection with the client, but the client has not yet been notified of it.

Waiting
The server is in the process of setting up a connection with the client.

Reject
Client connection has been rejected by the server, normally because the server is shutting down or not yet in on-line mode.

Closed
Server has closed the connection with the client. Client might not be aware of the fact yet.

Not connected
Server is initializing internal structures for the connection.

Unknown
Connection has been closed and the client is aware of the fact. Server is cleaning up internal structures.

#serverbufs
Database server buffers currently allocated

#clientbufs
Client buffers currently allocated

#rdwrts
The total number of reads and writes performed through this connection since it was created.

The following items are only in the output if you run the onstat -g nsc command with a client_id:

needbuf
Indicates if server is waiting for a buffer to be freed

0

Part VI: Administering 755

False
1

True

segid
Shared memory segment ID

semid
Semaphore ID

semnum
Semaphore number in the semaphore ID

be_semid
Backend semaphore ID

be_semnum
Backend semaphore number in the semaphore ID

be_curread
ID of backend buffer being read

be_curwrite
ID of backend buffer being written

fe_curread
ID of frontend buffer being read

fe_currwrite
ID of frontend buffer being written

be_nextread
ID of next backend buffer to be read

be_nextwrite
ID of next backend buffer to be written

fe_nextread
ID of next frontend buffer to be read

fe_nextwrite
ID of next frontend buffer to be written

readyqueue
Queue of the shared memory buffer ids

Buffers
i

Internal location key of message buffer
bufid

Message buffer ID
status

Status of message buffer
offset

Offset of memory buffer in shared memory segments
fe_addr

Frontend address of message buffer

Related reference:
 NETTYPE configuration parameter

Copyright© 2020 HCL Technologies Limited

onstat -g nsd command: Print poll threads shared-memory data

Use the onstat -g nsd command to display information about shared-memory data for poll threads.

Syntax:

>>-onstat-- -g--nsd--><

Example output
Figure 1. onstat -g nsd command output

Network Shared Memory Data for Poll Thread: 0
Free Message Buffer Bitmap
(bitmap address = 10b9eef80, bitmap size 480)
000000010b9eef80:ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
000000010b9eefa0:ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
Free Message Buffer Status Bitmap
(bitmap address = 10ca0a9b0, bitmap size 50)
000000010ca0a9b0:ffffffff ffffff
Message Buffer Table
bufid clientid addr
Message Buffer Status Table
clientid netscb addr addr offset

Related reference:
 NETTYPE configuration parameter

Copyright© 2020 HCL Technologies Limited

756 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

onstat -g nss command: Print shared memory network connections status

Use the onstat -g nss sessionid command to display information about the status of the shared memory network connections.

Syntax:

>>-onstat-- -g--nss--+-----------+-----------------------------><
 '-sessionid-'

If no sessionid is provided, a one-line summary for each shared memory connection is listed.

Example output
Figure 1. onstat -g nss command output

 clientid clientPID state #serverbufs #clientbufs #rdwrts
 1 14018 Connected 4 4 331
 0 12398 Connected 4 4 294
 2 14036 Connected 4 4 59

Output description
clientid (decimal)

Server assigned value for lookups
clientPID (decimal)

Client process ID
state (string)

Current® state of the connection.

Connected
Con1
Waiting
Reject
Bedcover
Closed
Not connected
Unknown

#serverbufs (dec)
Number of database server buffers currently allocated

#clientbufs (dec)
Number of client buffers currently allocated

#rdwrts (dec)
Total number of buffers in use

Related reference:
 NETTYPE configuration parameter

Copyright© 2020 HCL Technologies Limited

onstat -g ntd command: Print network statistics

Use the onstat -g ntd command to display network statistics by service.

Syntax:

>>-onstat-- -g--ntd--><

Example output
Figure 1. onstat -g ntd command output

global network information:
 #netscb connects read write q-limits q-exceed alloc/max
 4/ 5 11 0 3546 3549/ 10 10/ 0 0/ 0

Client Type Calls Accepted Rejected Read Write
sqlexec yes 11 0 3531 3540
srvinfx yes 0 0 0 0
onspace yes 0 0 4 9
onlog yes 0 0 0 0
onparam yes 0 0 0 0
oncheck yes 0 0 0 0
onload yes 0 0 0 0
onunload yes 0 0 0 0
onmonitor yes 0 0 0 0

Part VI: Administering 757

https://www.hcltech.com/

dr_accept yes 0 0 0 0
cdraccept no 0 0 0 0
ontape yes 0 0 0 0
srvstat yes 0 0 0 0
asfecho yes 0 0 0 0
listener yes 0 0 11 0
crsamexec yes 0 0 0 0
onutil yes 0 0 0 0
drdaexec yes 0 0 0 0
smx yes 0 0 0 0
safe yes 0 0 0 0
Totals 11 0 3546 3549

Copyright© 2020 HCL Technologies Limited

onstat -g ntm command: Print network mail statistics

Use the onstat -g ntm command to display statistics about network mail.

Syntax:

>>-onstat-- -g--ntm--><

Example output
Figure 1. onstat -g ntm command output

global network information:
 #netscb connects read write q-limits q-exceed alloc/max
 4/ 5 11 0 3546 3549/ 10 10/ 0 0/ 0

Network mailbox information:
 box netscb thread name max received in box max in box full signal
 5 f07e8b0 soctcppoll 10 24 0 1 0 yes
 6 f0b6ad8 soctcplst 10 0 0 0 0 no
 7 f0e8b18 soctcplst 10 0 0 0 0 no

Copyright© 2020 HCL Technologies Limited

onstat -g ntt command: Print network user times

Use the onstat -g ntt command to display information about network user times.

Syntax:

>>-onstat-- -g--ntt--><

Example output
Figure 1. onstat -g ntt command output

global network information:
 #netscb connects read write q-limits q-exceed alloc/max
 3/ 3 0 0 0 135/ 10 0/ 0 2/ 0
Individual thread network information (times):
 netscb thread name sid open read write address
c76ea28 ontape 61 14:34:48 14:34:50 14:34:50
c63e548 tlitcplst 4 14:30:43 14:34:48 server.ibm.com|5006|tlitcp
c631028 tlitcppoll 3 14:32:32

Copyright© 2020 HCL Technologies Limited

onstat -g ntu command: Print network user statistics

Use the onstat -g ntu command to display information about network user statistics.

Syntax:

>>-onstat-- -g--ntu--><

Example output

758 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Figure 1. onstat -g ntu command output

global network information:
 #netscb connects read write q-free q-limits q-exceed alloc/max
 2/ 3 16 2611 2603 1/ 1 135/ 10 0/ 0 1/ 1

Individual thread network information (basic):
 netscb type thread name sid fd poll reads writes q-nrm q-pvt q-exp
 d1769f0 soctcp soctcplst 3 1 5 16 0 0/ 0 0/ 0 0/ 0
 d1199f0 soctcp soctcppoll 2 0 5 2595 0 0/ 0 0/ 0 0/ 0

Copyright© 2020 HCL Technologies Limited

onstat -g opn command: Print open partitions

Use the onstat -g opn command to display a list of the partitions (tables and indexes), by thread ID, that are currently open in the system.

Use the thread_id option to restrict the list to a specified ID.

Syntax:

>>-onstat-- -g--opn--+-----------+-----------------------------><
 '-thread_id-'

Output description
This information is used by Software Support. The output might change over time and depends on your product version or fix pack.

Copyright© 2020 HCL Technologies Limited

onstat -g osi: Print operating system information

Use the onstat -g osi command to display information on your operating system resources and parameters, including shared memory and semaphore parameters, the
amount of memory currently configured on the computer, and the amount of memory that is unused.

Example Output
The onstat -g osi command also displays statistics on the hardware processors on your computer.

Use this command when the server is not online.

Figure 1. onstat -g osi Command Output

Machine Configuration....
OS Name Linux
OS Release 2.6.9-34.ELsmp
OS Node Name idas
OS Version #1 SMP
OS Machine x86_64
Number of processors 4
Number of online processors 4
System memory page size 4096 bytes
System memory 7970 MB
System free memory 1536 MB
Number of open files per process 1024
shmmax 33554432
shmmin 1
shmids 4096
shmNumSegs 2097152
semmap << UnSupported >>
semids 128
semnum 32000
semundo << UnSupported >>
semNumPerID 250
semops 32
semUndoPerProc << UnSupported >>
semUndoSize 20
semMaxValue 32767

Copyright© 2020 HCL Technologies Limited

onstat -g pd command: Print push data session-related information

Use the onstat -g pd command to display information about the push data session.

Part VI: Administering 759

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Syntax:

>>-onstat-- -g--pd--+------------+-----------------------------><
 '-session_id-'

You can specify one of the following invocations.

onstat -g pd
Displays a one-line summary for each session

onstat -g pd session_id
Displays information for a specific session

Example output for all sessions
Figure 1. onstat -g pd command output

push-data subsystem structure at 0x4eebb028
push-data session structure at 0x4eecc028
push-data sql session id: 0 0x0
Marked as detachable session, session unique id: 2
Smartblob file descriptor: 39
Number of event conditions: 0
Number of pending event operations: 0
Number of discarded event operations: 0
Total event operations returned to client:

Example output for a specific session
Figure 2. onstat -g pd 98 command output

 push-data subsystem structure at 0x4eebb028
push-data session structure at 0x4eecc028
push-data sql session id: 98 0x62
Marked as detachable session, session unique id: 2
Smartblob file descriptor: 39
Number of event conditions: 1
Number of pending event operations: 0
Number of discarded event operations: 0
Total event operations returned to client: 0

Copyright© 2020 HCL Technologies Limited

onstat -g pd event command: Print push data event-related information

Use the onstat -g pd event command to display information about the push data event.

Syntax:

>>-onstat-- -g--pd--+------------+-- event---------------------><
 '-session_id-'

You can specify one of the following invocations.

onstat -g pd event
Displays a one-line summary for each event

onstat -g pd session_id event
Displays information of an event for a specific session

Example output for all events
Figure 1. onstat -g pd event command output

IBM Informix Dynamic Server Version 14.10.F -- On-Line -- Up 00:20:13 -- 185676 Kbytes
push-data subsystem structure at 0x4eebb028
push-data session structure at 0x4eecc028
push-data sql session id: 98 0x62
Marked as detachable session, session unique id: 2
Number of event conditions: 1
 Push-data event structure at 0x4ece0028
 Full Table Name: test:informix.t1
User data:
Replicate name: pushrepl_98_1497908205_1628814989

Note:

Events can only be registered on tables with logging enabled.
Events require a primary key, a unique index, or ER key to register events on a table.
Events cannot be registered on sysmaster pseudo tables.
Events cannot be registered on timeseries VTI tables.
Event condition SELECT statements cannot include large objects such as byte, text, blob, clob, or collection datatypes.

760 Part VI: Administering

https://www.hcltech.com/

WHERE clauses of event condition SELECT statements cannot refer to other tables or contain sub-queries.
A read call always returns completed event documents.
The following message is returned upon timeout from the read API:

{ifx_isTimeout:”true”}

The following message is returned if event documents are discarded from exceeding the max_pending_ops attribute threshold. The document contains the
cumulative count of the total number of discarded event documents.

{ifx_warn_total_skipcount:10}

The following error message is returned with the ifx_error attribute if the input buffer size is too small, or when other fatal error conditions arise:

{ifx_error:” Smartblob read API buffer size ## is too small, expected
size should be atleast ##”}

Event data will not be staged if push-data client is disconnected from the server.
The client cannot read events for the past time. The commit_logid, commit_logpos and commit_time values in the input document cannot be set for the past time.
The smartblob read API always returns data in JSON document format. This includes event data, warning messages, and error conditions.
The input buffer value that is passed to the smartblob read API should be at least 1KB in size.
When the maxrecs attribute for the session is set to more than one record, then the smartblob read API can return data for multiple events in one read call. The
format of the output document format is as follows:

{ [{document1}, {document2}]}

When the server is restarted, the push-data client might receive duplicates of event data. Therefore, it is recommended to discard duplicate event data by saving
the last read event commit_logid, and commit_logpos records, and use this commit log position to register push-data event conditions with the server.
While registering new push-data event conditions, an internal transient cascade replicate definition is created. The replicate definition gets deleted when a session
disconnects from the server. Cascading logic are added to capture changes applied by ER apply threads.
Detached sessions will be marked as detachable session, session unique id: 2

Copyright© 2020 HCL Technologies Limited

onstat -g pfsc command: Print partition free space cache information

Use the onstat -g pfsc command to display information about all partition free space caches.

Syntax:
>>onstat -g pfsc [full] [<partnum>]

Example output
Figure 1. onstat -g pfsc command output

Partition Free Space Cache
tblnum flg npages avgfr nsearch nmiss pgsrch pgskp pgbusy mvbin
100004 L- 1 80 409 19 390 0 0 1
100005 L- 1 322 5039 75 4964 0 0 2
100006 L- 7 187 301 30 271 0 0 1
10000c L- 0 0 0 0 0 0 0 0

Output description
tblnum

The partition number
flg

First position: 'L' = "Lite", 'B' = "Boosted"

Second position: 'I' = "Boosted cache creation in progress"

npages
Number of pages described by cache

avgfr
Average free bytes per page in cache

nsearch
Number of times a bin in the cache has been searched by inserts

nmiss
Number of times a search has turned up empty

pgsrch
Number of cached pages searched

mvbin
Pages moved from one bin to another

For more information, see Partition Free Space Cache (PFSC) code.

Copyright© 2020 HCL Technologies Limited

onstat -g pos command: Print file values

Part VI: Administering 761

https://www.hcltech.com/
https://www.hcltech.com/

Use the onstat -g pos command to display the values in the $INFORMIXDIR/etc/.infos.DBSERVERNAME file.

Syntax:

>>-onstat-- -g--pos--><

Example output
Figure 1. onstat -g pos command output

 1 7 0 infos ver/size 3 264
 2 1 0 snum 0 52564801 44000000 4139 demo_on
 3 4 0 onconfig path /opt/IBM/informix/etc/onconfig.demo_on
 4 5 0 host informixva
 5 6 0 oninit ver IBM Informix Dynamic Server Version 11.70.UC2DE
 6 8 0 sqlhosts path /data/IBM/informix/etc/sqlhosts.demos
 7 3 -32767 sema 32769
 8 2 -32768 shm 32768 52564801 44000000 114176000 R
 9 2 1 shm 1 52564802 4ace3000 67108864 V

Copyright© 2020 HCL Technologies Limited

onstat -g ppd command: Print partition compression dictionary information

Use the onstat –g ppd command to display information about the active compression dictionaries that were created for compressed tables and table fragments or
compressed B-tree indexes. You can choose to print information for a particular numbered partition or for all open partitions.

The onstat –g ppd command prints the same information that the syscompdicts_full table and the syscompdicts view in the sysmaster database display. The only
difference is that the syscompdicts_full table and the syscompdicts view display information about all compression dictionaries, not just the active dictionaries.

Syntax:

>>-onstat-- -g--ppd--+------------------+----------------------><
 +-partition number-+
 '- 0---------------'

If you specify a partition number, onstat -g ppd prints the partition profile for that partition. If you specify 0, this option prints profiles for all partitions.

Example output
Figure 1. onstat –g ppd Output

partnum ColOffset DbsNum CrTS CrLogID CrLogPos DrTS DrLogID DrLogPos
0x1001d5 -1 1 1393371661 4 16339024 0 0 0
0x1001d5 4 1 1393371661 4 16355408 0 0 0

Output description
partnum

Partition number to which the compression dictionary applies
ColOffset

The byte offset for a compressed partition blob column. -1 means that only the row is compressed
DbsNum

Number of the dbspace that the dictionary resides in
CrTS

Timestamp that shows when the dictionary was created
CrLogID

Unique ID for the logical log that was created when the dictionary was created
CrLogPos

Position within the logical log when the dictionary was created
DrTS

Timestamp that shows when the dictionary was purged
DrLogID

Unique ID for the logical log that was created when the dictionary was purged
DrLogPos

Position within the logical log when the dictionary was purged

Copyright© 2020 HCL Technologies Limited

onstat -g ppf command: Print partition profiles

Use the onstat -g ppf partition_number command to display the partition profile for the specified partition number.

762 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Use the onstat -g ppf or the onstat -g ppf 0 command to display the profiles for all partitions. If the TBLSPACE_STATS configuration parameter is set to 0, then the onstat
-g ppf command displays: Partition profiles disabled.

For more information on the onstat -g ppf command, see the IBM® Informix® Performance Guide.

Syntax:

>>-onstat-- -g--ppf--+-partition_number-+----------------------><
 '-0----------------'

Example output
Figure 1. onstat -g ppf command output

Partition profiles
partnum lkrqs lkwts dlks touts isrd iswrt isrwt isdel bfrd bfwrt seqsc rhitratio
0x100001 0 0 0 0 0 0 0 0 0 0 0 0
0x100002 1506 0 0 0 416 4 0 4 1282 20 0 97
0x100003 15 0 0 0 5 0 0 0 20 0 0 75
0x1000a5 0 0 0 0 0 0 0 0 12 0 0 67
0x1000e3 4 0 0 0 1 0 0 0 4 0 0 25
0x200001 0 0 0 0 0 0 0 0 0 0 0 0
0x300001 0 0 0 0 0 0 0 0 0 0 0 0
0x400001 0 0 0 0 0 0 0 0 0 0 0 0

Output description
partnum (hex)

The partition number
lkrqs (decimal)

The number of lock requests for a partition
lkwts (decimal)

The number of lock waits for a partition
dlks (decimal)

The number of deadlocks for a partition
touts(decimal)

The number of remote deadlock timeouts for a partition
isrd (decimal)

The number of read operations for a partition
iswrt (decimal)

The number of write operations for a partition
isrwt (decimal)

The number of rewrite or update operations for a partition
isdel (decimal)

The number of delete operations for a partition
bfrd (decimal)

The number of buffer read operations, in pages
bfwrt (decimal)

The number of buffer write operations, in pages
seqsc (decimal)

The number of sequential scans for a partition
rhitratio (percentage)

The ratio of disk read operations to buffer read operations

Related reference:
 TBLSPACE_STATS configuration parameter

Copyright© 2020 HCL Technologies Limited

onstat -g pqs command: Print operators for all SQL queries

Use the onstat –g pqs command to display information about the operators used in all of the SQL queries that are currently running.

You can use this command to troubleshoot an application, to find which operators are running for the query and for how long, and how many rows each operator returns.
While the EXPLAIN file contains information that will give you a general sense of the query plan, the onstat –g pqs command displays the runtime operator information for
the query and the query plan.

Syntax:

>>-onstat-- -g--pqs--+-----------+-----------------------------><
 '-sessionid-'

You can specify one of the following invocations:

Table 1. Descriptions of each onstat -g pqs command invocation

Invocation Explanation

Part VI: Administering 763

https://www.hcltech.com/

Invocation Explanation

onstat -g pqs Displays a one-line summary for each session.

onstat -g pqs sessionid Displays information for the session that you specify.

Example output
The following example shows the results when three separate SQL statements are run in different sessions. The statements are:

select * from syscolumns;
select * from systables a, systables b;
update t1 set rowsize = rowsize +100;

Figure 1. onstat –g pqs command output

Query Operators:
addr ses-id opname phase rows time in1 in2 stmt-type
ae50b3a 23 scan open 0 00:00.00 0 0 SELECT
af269d0 5 nljoin next 224717 00:01.82 af26a90 aeb4478 SELECT
af26a90 5 scan next 472 00:00.20 0 0 SELECT
aeb4478 5 scan next 50 00:01.63 0 0 SELECT
ad3c530 26 scan open 0 00:00.00 0 0 UPDATE (all)

Output description
addr

The address of the operator in memory. You can use this address to track which SCAN operator belongs to each JOIN operator.
ses-id

The session ID in which the SQL statement was run.
opname

The name of the operator.
phase

The phase in which the operator was used. For example OPEN, NEXT, CLOSE.
rows

The number of rows that are processed by the operator.
time

The amount of time to process the operator. The time is displayed to the millisecond. A time of 01:20.10 is 1 minute, 20 seconds, and 10 milliseconds.
in1

The first (outer) operator in the join.
in2

The second (inner) operator in the join.
stmt-type

The type of SQL statement, such as SELECT, UPDATE, DELETE.

Copyright© 2020 HCL Technologies Limited

onstat -g prc command: Print sessions using UDR or SPL routines

Use the onstat -g prc command to display the number of sessions that are currently using the UDR or SPL routine.

Syntax:

>>-onstat-- -g--prc--><

Example output
Figure 1. onstat -g prc command output

UDR Cache:
 Number of lists : 31
 PC_POOLSIZE : 127

UDR Cache Entries:

list id ref drop hits last_access heap_ptr udr_name
--

0 79 0 0 1 2020-05-12 10:36:34 464a1c38 stores_demo@myserver:.proc1
0 46 0 0 10 2020-05-12 10:36:34 4dcba038 stores_demo@myserver:.proc2
0 376 0 0 1 2020-05-12 10:36:32 46303038 stores_demo@myserver:.proc3
0 363 0 0 1 2020-05-12 10:36:32 462f2c38 stores_demo@myserver:.proc4

 Total number of udr entries : 254
 Number of entries in use : 9

Output description
Number of lists

764 Part VI: Administering

https://www.hcltech.com/

Number of lists in the UDR cache
PC_POOLSIZE

Number of entries that can be cached at one time
list

UDR cache hash chain ID (bucket number)
id

Unique ID of the routine
ref

Number of sessions that are currently accessing the UDR or SPL routine from the cache
drop

Whether the routine is marked to be dropped
hits

The number of times the cache entry is accessed.
last_access

The time at which the cache entry was last accessed.

heap_ptr
Heap address that is used to store this entry

udr_name
The name of the UDR or SPL routine in the cache

Total number of udr entries
Number of entries in the cache

Number of entries in use
Number of entries that are being used

Copyright© 2020 HCL Technologies Limited

onstat -g proxy command: Print proxy distributor information

Use the onstat -g proxy command to display information about proxy distributors. The output of the onstat -g proxy command differs slightly depending on whether the
command is run on a primary server or on a secondary server.

Syntax:

>>-onstat-- -g--proxy--+-all---+-><
 '-proxy_id--+---+-'
 '-proxy_transaction_id--+-----------------+-'
 '-sequence_number-'

Invocation Explanation

onstat -g proxy Displays proxy distributor information

onstat -g proxy all When run on the primary server, displays information about proxy distributors and proxy agent
threads. When run on the secondary server, displays information about all sessions currently
performing updates to secondary servers.

onstat -g proxy proxy_id proxy_transaction_id
sequence_number

This option is valid only on secondary servers. Displays detailed information about the current work
bring performed by a given proxy distributor. The proxy_transaction_id and sequence_number are
optional parameters. When supplied, the first number is considered the proxy_transaction_id, and the
second is interpreted as the sequence_number. If the supplied proxy_transaction_id or
sequence_number do not exist, the command output is the same as the output for onstat -

Example output using the onstat -g proxy command on a primary server
Figure 1. onstat -g proxy command output (run from primary server)

Secondary Proxy Reference Transaction Hot Row
Node ID Count Count Total
nagpur_sdc1 2619 0 2 0
nagpur_c2 2632 0 1 0
nagpur_sec 2633 0 1 0 I

Output description
Secondary Node

Name of the secondary server as it is known by the primary server.
Proxy ID

ID of the proxy distributor. Proxy IDs are unique within a high-availability cluster.
Reference Count

Indicates the number of threads that are using the information for the current transaction. When the count becomes 0, the transaction processing is complete
(either successfully or unsuccessfully).

Transaction Count
The number of transactions currently being processed by the proxy distributor.

Hot Row Total
Total number of hot rows ever handled by the proxy distributor.

Part VI: Administering 765

https://www.hcltech.com/

Example output using the onstat -g proxy command on a secondary server
Figure 2. onstat -g proxy command output (run from secondary server)

Primary Proxy Reference Transaction Hot Row
Node ID Count Count Total
nagpur 2619 5 2 0

Output description
Primary Node

Name of the primary server.
Proxy ID

ID of the proxy distributor. Proxy IDs are unique within a high-availability cluster.
Reference Count

Indicates the number of threads that are using the information for the current transaction. When the count becomes 0, the transaction processing is complete
(either successfully or unsuccessfully).

Transaction Count
The number of transactions currently being processed by the proxy distributor.

Hot Row Total
Total number of hot rows ever handled by the proxy distributor.

Example output using the onstat -g proxy all command on a primary server
Figure 3. onstat -g proxy all command output (run from primary server)

Secondary Proxy Reference Transaction Hot Row
Node ID Count Count Total
nagpur_sdc1 2619 0 2 0
nagpur_c2 2632 0 1 0
nagpur_sec 2633 0 1 0

TID Flags Proxy Source Proxy Current sqlerrno iserrno
 ID SessID TxnID Seq
94 0x00000224 2619 21 1 29 0 0
95 0x00000224 2619 22 2 68 0 0
93 0x00000224 2632 21 2 2 0 0
91 0x00000224 2633 25 1 6 0 0

Output description
Secondary Node

Name of the secondary server as it is known by the primary server.
Proxy ID

ID of the proxy distributor. Proxy IDs are unique within a high-availability cluster.
Reference Count

Indicates the number of threads that are using the information for the current transaction. When the count becomes 0, the transaction processing is complete
(either successfully or unsuccessfully).

Transaction Count
The number of transactions currently being processed by the proxy distributor.

Hot Row Total
Total number of hot rows ever handled by the proxy distributor.

TID
ID of the proxy agent thread running on the primary server. This ID is created by the proxy distributor to handle work from the session on the secondary server.

Flags
Flags of the proxy agent thread.

Proxy ID
The ID of the proxy distributor on behalf of which the proxy agent thread (TID) is running.

Source SessID
The ID of the user's session on the secondary server.

Proxy TxnID
The number of the current transaction. These numbers are unique to the proxy distributor.

Current® Seq
The sequence number of the current operation in the current transaction.

sqlerrno
The error number of any SQL error (or 0 if no errors).

iserrno
The error number of any ISAM or RSAM error (or 0 if no errors).

Example output using the onstat -g proxy all command on a secondary server
Figure 4. onstat -g proxy all command output (run from secondary server)

Primary Proxy Reference Transaction Hot Row
Node ID Count Count Total
nagpur 2619 5 2 0

Session Session Proxy Proxy Proxy Current Pending Reference
 Ref Proxy_id TID TxnID Seq Ops Count
21 2 2619 94 1 29 1 1
22 2 2619 95 2 68 1 1

766 Part VI: Administering

Output description
Primary Node

Name of the primary server.
Proxy ID

ID of the proxy distributor. Proxy IDs are unique within a high-availability cluster.
Reference Count

Indicates the number of threads that are using the information for the current transaction. When the count becomes 0, the transaction processing is complete
(either successfully or unsuccessfully).

Transaction Count
The number of transactions currently being processed by the proxy distributor.

Hot Row Total
Total number of hot rows ever handled by the proxy distributor. A hot row is a row on a secondary server that is updated multiple times by more than one client.
When a row is updated multiple times, the secondary server reads the before image from the primary server by placing an update lock on the row if the most recent
update operation from a different session is not replayed on the secondary server.

Session
The session ID

Proxy ID
The ID of the proxy distributor on behalf of which the proxy agent thread (TID) is running.

Proxy TID
Transaction ID of the proxy agent thread running on the primary server. This ID is created by the proxy distributor to handle work from the secondary server
session.

Proxy TxnID
The number of the current transaction. These numbers are unique to the proxy distributor.

Current Seq
The sequence number of the current operation in the current transaction.

Pending Ops
The number of operations buffered on the secondary server that have not yet been sent to the primary server.

Reference Count
Indicates the number of threads that are using the information for the current transaction. When the count becomes 0, the transaction processing is complete
(either successfully or unsuccessfully).

Example output using the proxy_id option on a secondary server
This command returns information only on a secondary server.

Figure 5. onstat -g proxy proxy_id command output (run from secondary server)

Proxy Reference Pending ProxySID
TxnID Count Ops
1 1 1 3
2 1 1 4

Output description
Proxy TxnID

The number of the current transaction. These numbers are unique to the proxy distributor.
Reference Count

Indicates the number of threads that are using the information for the current transaction. When the count becomes 0, the transaction processing is complete
(either successfully or unsuccessfully).

Pending Ops
The number of operations buffered on the secondary server that have not yet been sent to the primary server.

Proxy SID
Proxy session ID.

Example output using the proxy_id proxy_transaction_id options on a secondary server
This command returns information only on a secondary server.

Figure 6. onstat -g proxy_id proxy_transaction_id command output (run from secondary server)

Sequence Operation rowid Table sqlerrno
Number Type Name
28 *Update 526 stores_demo:nilesho.customer 0

Output description
Sequence Number

The number of the operation.
Operation Type

The type of operation to be performed. One of: Insert, Update, Delete, Other.
rowid

The row ID of the row in which to apply the operation.
Table Name

The full table name, trimmed to fit a reasonable length. Format: database.owner.tablename
sqlerrno

The error number of any SQL error (or 0 if no errors).

Part VI: Administering 767

Example output using the proxy_id proxy_transaction_id sequence_number options on a
secondary server

This command returns information only on a secondary server.

The output fields are the same as the output fields displayed for the onstat -g proxy_id proxy_transaction_id command. While the onstat -g proxy_id
proxy_transaction_id command displays details for a transaction, the onstat -g proxy_id proxy_transaction_id sequence_number displays details for all transaction
operations.

Figure 7. onstat -g proxy_id proxy_transaction_id sequence_number command output (run from secondary server)

s
Proxy Reference Pending ProxySID
TxnID Count Ops
61 0 3 22

onstat -g proxy 2788 61

Sequence Operation rowid Table sqlerrno
Number Type Name
960 Update 264 stores_demo:nilesho.customer 0
961 Update 265 stores_demo:nilesho.orders 0
962 Update 266 stores_demo:nilesho.items 0

onstat -g proxy 2788 61 962

Sequence Operation rowid Table sqlerrno
Number Type Name
962 Update 266 stores_demo:nilesho.items 0

Copyright© 2020 HCL Technologies Limited

onstat -g qst command: Print wait options for mutex and condition queues

Use the onstat -g qst command to display the wait statistics for mutex queues and condition queues (queues of waiters for a mutex or a condition).

The QSTATS configuration parameter must be set to 1 to enable the collection of statistics. For more information, see QSTATS configuration parameter.

Syntax:

>>-onstat-- -g--qst--><

Example output
Figure 1. onstat -g qst command output

Mutex Queue Statistics
name nwaits avg_time max_time avgq maxq nservs avg_time

ddh chai 1 1354863 1354863 1 1 56 1690

Condition Queue Statistics
name nwaits avg_time max_time avgq maxq nservs avg_time

arrived 1 110008 110008 1 1 0 0
logbf0 21 642 4431 1 2 0 0
logbf1 15 475 2519 1 2 0 0
logbf2 19 596 3274 1 2 0 0
bp_cond 1 0 0 1 1 0 0

Output description
name (string)

Name of the mutex or condition resource being waited for
nwaits (decimal)

Number of times this resource was waited for
avg_time (decimal)

Average time spent waiting (in microseconds)
max_time (decimal)

Maximum time spent waiting (in microseconds)
avgq (decimal)

Average length of the queue
maxq (decimal)

Maximum length of the queue
nservs (decimal)

Number of times this resource was acquired
avg_time (decimal, microsecond)

Average time the resource was held per acquisition (in microseconds)

768 Part VI: Administering

https://www.hcltech.com/

Related reference:
QSTATS configuration parameter

Copyright© 2020 HCL Technologies Limited

onstat -g rah command: Print read-ahead request statistics

Use the onstat -g rah command to display information about read-ahead requests.

Syntax:

>>-onstat-- -g--rah--><

Example output
Figure 1. onstat -g rah command output

Read Ahead

Qs 1
threads 2
Requests 58690
Continued 0
Memory Failures 0
Last Thread Add 04/06/2013.14:34
Way behind 0

Partition ReadAhead Statistics

 Buffer Disk Hit Data Index Idx/Dat Log/PageList Last Committed
Partnum Reads Reads Ratio # Reqs Eff # Reqs Eff # Reqs Eff # Pages Eff # Reqs Eff # Resch
0x200003 4312677 110 99 0 0 0 0 0 0 0 0 12906 100 0
0x300002 23740584 1427 99 0 0 0 0 0 0 0 0 6681 100 7
0x400002 17818942 966 99 0 0 0 0 0 0 0 0 25849 100 57

Output description
Qs

Number of queues for read-ahead requests
threads

Number of read-ahead threads
Requests

Number of read-ahead requests
Continued

Number of times a read-ahead request continued to occur
Memory Failures

Number of failed requests because of insufficient memory
Last Thread Add

Date and time when the last read-ahead thread was added
Way behind

How many page list requests were dropped because the read-ahead daemon is too far behind
Partnum

Partition number
Buffer reads

Number of bufferpool and disk pages that were read
Disk Reads

Number of pages that were read from disk
Hit Ratio

Cache hit ratio for the partition
Reqs

Number of read ahead requests. (There are 5 instances of this output field: for data, the index, index data, log pages, and last committed rows.)
Eff

Efficiency of the read-ahead requests. This is the ratio been the number of pages requested by read-ahead operations to the number of pages that were already
cached and for which a read-ahead operations was not needed. Values are between 0 and 100. A higher number means that read ahead is beneficial. (There are 5
instances of this output field: for data, the index, index data, log pages, and last committed rows.)

Resch
The number of requests for last committed rows that are rescheduled because the updates to a multi-piece row are not complete.

Copyright© 2020 HCL Technologies Limited

onstat -g rbm command: Print a block map of shared memory

Use the onstat -g rbm command to display a hexadecimal bitmap of the free and used blocks within the resident segment of shared memory.

Syntax:

Part VI: Administering 769

https://www.hcltech.com/
https://www.hcltech.com/

>>-onstat-- -g--rbm--><

Example output
Figure 1. onstat -g rbm command output

Block bitmap for resident segment address 0x44000000:
 address = 0x440003bc, size(bits) = 3035
 used = 3031, largest_free = 4

 0:ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
 256:ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
 512:ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
 768:ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
 1024:ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
 1280:ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
 1536:ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
 1792:ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
 2048:ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
 2304:ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
 2560:ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
 2816:ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffe00

Output description
Header
address (hex)

In-memory starting address of the used/free blocks in the segment
size (bits)

Number of bits in the block bitmap; each bit represents one block
used (blocks)

Used blocks in the bitmap
largest_free (blocks)

Largest run of free blocks

Data
Bit number (decimal): data (hex)

Bit number followed by 32 bytes of data (hex)

Copyright© 2020 HCL Technologies Limited

onstat -g rea command: Print ready threads

Use the onstat -g rea command to display information about the virtual processor threads whose current status is ready.

Syntax:

>>-onstat-- -g--rea--><

Example output
Following is sample output from the onstat -g rea command. For a description of the output, see onstat -g ath command: Print information about all threads.

Figure 1. onstat -g rea command output

Ready threads:
tid tcb rstcb prty status vp-class name
6 536a38 406464 4 ready 3cpu main_loop()
28 60cfe8 40a124 4 ready 1cpu onmode_mon
33 672a20 409dc4 2 ready 3cpu sqlexec

Copyright© 2020 HCL Technologies Limited

onstat -g rss command: Print RS secondary server information

Use the onstat -g rss commands to display information about remote standalone secondary servers.

Syntax:

>>-onstat-- -g--rss--+-------------+---------------------------><
 +-verbose-----+
 +-log---------+
 '-server_name-'

770 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

The output of the onstat -g rss command differs slightly depending on whether the command is run on the primary server or on the RS secondary server.

Invocation Explanation

onstat -g rss Displays brief RS secondary server information

onstat -g rss verbose Displays detailed RS secondary server information

onstat -g rss log Displays log information. This command is only applicable when run on the primary server.

onstat -g rss server_name Displays information about a specific RS secondary server. This command is only applicable when run
on the primary server.

Example output (primary server)
Figure 1. onstat -g rss verbose command output, when the command is run on the primary server.

Local server type: Primary
Index page logging status: Enabled
Index page logging was enabled at: 2020/05/23 06:12:06
Number of RSS servers: 2

RSS Server information:

RSS Server control block: 0x64f64758
RSS server name: rahulb_3
RSS server status: Active
RSS connection status: Connected
RSS flow control:384/352
Log transmission status: Active
Next log page to send(log id,page): 6,36
Last log page acked(log id,page): 6,35
Last log page applied(log id,page): 6,35
Time of Last Acknowledgement: 2020-05-23.06:13:29
Pending Log Pages to be ACKed: 0
Approximate Log Page Backlog:0
Sequence number of next buffer to send: 231
Sequence number of last buffer acked: 230
Supports Proxy Writes: N
Total number of delay(s): 8
Time of last delay: 2020-05-23.06:13:02

Output description (primary server)
Local server type

Primary or RSS (remote standalone secondary) server type
Index page logging status

Displays whether index page logging is enabled or disabled between primary server and secondary server
Index page logging was enabled at

Date and time that index page logging was enabled
Number of RSS servers

Number of RS secondary servers connected to the primary server
RSS Server control block

RS secondary server control block
RSS Server name

Name of RS secondary server
RSS Server status

Displays whether RS secondary server is active or not
RSS flow control

Values, in number of logical log pages, determining when flow control is enabled or disabled, respectively.
RSS Connection status

Connection status of RS secondary server
Log transmission status

Displays whether log transmission is active or inactive
Next log page to send (log id, page)

The log ID and page number of the next log page that will be sent
Last log page acked (log id, page)

The log ID and page number of the last acknowledged log
Last log page applied (log id, page)

The log ID and page number of the last applied log
Time of Last Acknowledgment

The time at which the last log was acknowledged
Pending Log pages to be ACKed

The number of logs sent but not yet acknowledged
Approximate Log Page Backlog

The difference between the number of logs that were sent and the end of the logical log
Sequence number of next buffer to send

The sequence number of the next buffer to be sent
Sequence number of last buffer acked

The sequence number of the last acknowledged buffer
Supports Proxy Writes

Displays whether the server is currently configured to allow updates to secondary servers. Y = supports updates to secondary servers, N = does not support
updates to secondary servers.

Total number of delay(s)

Part VI: Administering 771

The total number of times the flow delay occurred.
Time of last delay

The time of last delay in flow control.

Example output with log option (primary server)
Figure 2. onstat -g rss log command output, when the command is run on the primary server.

Log Pages Snooped:
RSS Srv From From Tossed
name Cache Disk (LBC full)

cdr_ol_nag_1_c1 1368 1331 0
cdr_ol_nag_1_c2 1357 1342 0
cdr_ol_nag_1_c3 1356 1343 0

Output description with log option (primary server)
Log Pages Snooped

Statistics for each RS secondary server
RSS Srv name

RS secondary server name
From Cache

From cache number
From Disk

Log from disk
Tossed (LBC full)

Number of log pages that were discarded as a result of the LBC becoming full

Example output (RS secondary server)
Figure 3. onstat -g rss command output, when the command is run on the RS secondary server.

Local server type: RSS
Server Status: Active
Source server name: cdr_ol_nag_1
Connection status: Connected
Last log page received(log id,page): 7,877

Output description (RS secondary server)
Local server type

Primary or RSS (remote standalone secondary) server type
Server Status

Displays whether RS secondary server is active
Source server name

Name of the primary server
Connection status

Connection status of RS secondary server
Last log page received (log id,page)

Most recent log ID and page received

Example output with verbose option (RS secondary server)
Figure 4. onstat -g rss verbose command output, when the command is run on the RS secondary server.

RSS Server control block: 0x45a3fe58
Local server type: RSS
Server Status: Active
Source server name: my_server
Connection status: Connected
Last log page received(log id,page): 10,1364
Sequence number of last buffer received: 489
Sequence number of last buffer acked: 489
Delay Apply: Configured (3)
Stop Apply: Not configured.
Delay or Stop Apply control block: 0x45a40ba8
 Pending pages: 7
 Last page written: (10:1372).
 Next page to read: (10:1366).
 Delay or Stop Apply thread: Running.

Output description with verbose option (RS secondary server)
RSS Server control block

The server control block.
Local server type

The local server's type.
Server Status

The status of the RS secondary server.

772 Part VI: Administering

Source server name
The name of the primary server in the RS secondary server's high-availability cluster.

Connection status
The status of the connection between the RS secondary server and the cluster's primary server.

Last log page received (log id,page)
The log ID and page number of the last log acknowledged by the RS secondary server.

Sequence number of last buffer received
The sequence number of the last buffer that was received by the RS secondary server.

Sequence number of last buffer acked
The sequence number of the last buffer acknowledged by the RS secondary server.

Delay Apply
Whether delay apply is configured or not. The delay value, in seconds, is included in parentheses.

Stop Apply
Whether stop apply is configured or not. The stop value, which is enclosed in parentheses, is either 1 or a Unix time.

Delay or Stop Apply control block
The control block of the delay or the stop apply.

Pending pages
The number of pages that are waiting to be written to the log-staging directory.

Last page written
The log id and page number of the log that was most recently written to the log-staging directory.

Next page to read
The log id and page number of the next log to write to the log-staging directory.

Delay or Stop Apply thread
The status of the delay-apply or stop-apply thread.

Copyright© 2020 HCL Technologies Limited

onstat -g rwm command: Print read and write mutexes

Use the onstat -g rwm command to display information about read, write, and waiting mutex threads, and to list the addresses of the tickets that these threads have
acquired.

Syntax:

>>-onstat-- -g--rwm--><

Example output
Figure 1. onstat -g rwm command output

MUTEX NAME write/read/wait tcb list
<address> <name> first mutex
 Writer ticket = <ticket address> tcb=<thread address> <thread name>
 Readers ticket = <ticket address> tcb=<thread address> <thread name>
 Waiters ticket = <ticket address> tcb=<thread address> <thread name>
<address> <name> second mutex
 Writer ticket = <ticket address> tcb=<thread address> <thread name>
 Readers ticket = <ticket address> tcb=<thread address> <thread name>
 Waiters ticket = <ticket address> tcb=<thread address> <thread name>
....
....
....
<address> <name> last mutex
 Writer ticket = <ticket address> tcb=<thread address> <thread name>
 Readers ticket = <ticket address> tcb=<thread address> <thread name>
 Waiters ticket = <ticket address> tcb=<thread address> <thread name>

Output description
tcb

List of thread addresses
Writer

List of write threads
Readers

List of read threads
Waiters

List of waiting threads
ticket

Address of ticket acquired by the thread

Copyright© 2020 HCL Technologies Limited

onstat -g sch command: Print VP information

Part VI: Administering 773

https://www.hcltech.com/
https://www.hcltech.com/

Use the onstat -g sch command to display information about thread migration and the number of semaphore operations, spins, and busy waits for each virtual processor.

Syntax:

>>-onstat-- -g--sch--><

Example Output
Figure 1. onstat -g sch command output

VP Scheduler Statistics:
 vp pid class semops busy waits spins/wait
 1 3284 cpu 23997 0 0
 2 1340 adm 0 0 0
 3 4624 lio 2 0 0
 4 3320 pio 2 0 0
 5 6076 aio 7710 0 0
 6 4580 msc 46 0 0
 7 3428 soc 7 0 0
 8 2308 soc 1 0 0

Thread Migration Statistics:
 vp pid class steal-at steal-sc idlvp-at idlvp-sc inl-polls Q-ln
 1 3284 cpu 0 0 0 0 0 0
 2 1340 adm 0 0 0 0 0 0
 3 4624 lio 0 0 0 0 0 0
 4 3320 pio 0 0 0 0 0 0
 5 6076 aio 0 0 0 0 0 0
 6 4580 msc 0 0 0 0 0 0
 7 3428 soc 0 0 0 0 0 0
 8 2308 soc 0 0 0 0 0 0

Copyright© 2020 HCL Technologies Limited

onstat -g scn command: Print scan information

Use the onstat -g scn command to display the status of a current scan and information about the scan.

If you have a long-running scan, you might want to use this command to check the progress of the scan, to determine how long the scan will take before it completes, and
to view information about the scan. For tables, the onstat -g scn command output identifies whether a scan is a light or bufferpool scan.

Syntax:

>>-onstat-- -g -scn--><

Example Output
Figure 1. onstat -g scn output showing table information

Light Scan Info
descriptor address next_lpage next_ppage ppage_left bufcnt look_aside

RSAM batch sequential scan info

SesID Thread Partnum Rowid Rows Scan'd Scan Type Lock Mode Notes
48 68 10016e 12bb09 43146 Light Table Look aside,
40 47 100106 101 0 Buffpool +Test Must copy

Information about an index scan is valid when a scan is running.

Figure 2. onstat -g scn output showing index scan information

RSAM batch index scan info

SesID Thread Partnum Scan Type Lock Mode Notes
136 156 100197 SLock+Test
 Start Key GT :-2147483648:
 Stop Key EQ :1500:
 Current key :170:
 Current position: buffp 0x10a4bc0c8 pagenum 2 slot 17 rowoff 4 flags 0

Output Description
descriptor (decimal)

Light scan ID
address (hex)

Memory address of the light scan descriptor
next_lpage (hex)

Next logical page address to scan
next_ppage (hex)

Next physical page address to scan

774 Part VI: Administering

https://www.hcltech.com/

ppage_left (decimal)
Number of physical pages left to scan in the current extent

bufcnt
Number of light scan buffers used for this light scan

look_aside
Whether look aside is needed for this light scan (Y = yes, N = no). Look asides occur when a thread needs to examine the buffer pool for existing pages to obtain the
latest image of a page being light scanned.

SesID
Session ID

Thread
Thread ID

Partnum
Partition number

Rowid
Current® row ID

Rows Scan'd
Number of rows that have been scanned

Scan Type
For tables, either:

Bufferpool
Light (light scan)

For indexes, either:

key only
No value if the scan is not a key-only scan

Lock Mode
The type of acquired lock or no lock:

Table (table-level lock acquired)
Slock (share locks acquired)
Ulock (update locks acquired)
blank (no locks acquired)

This column can also show one of the following values:

+Test (The scan tested for a conflict with the specified lock type; the lock was not acquired.)
+Keep (The acquired locks will be held until end of session instead of the end of the transaction.)

Notes
This column can show one of the following values:

Look aside
The light scan is performing look aside.

The light scan reads blocks of pages directly from disk into large buffers, rather than getting each page from the buffer manager. In some cases, this process
requires the light scan to check the buffer pool for the presence of each data page that it processes from one of its large buffers; this process is called look
aside. If the page is currently in the buffer pool, the light scan will use that copy instead of the one in the light scan large buffer. If the page is not in the buffer
pool, the light scan will use the copy that the light scan read from disk into its large buffer. If the light scan is performing look aside, the performance of the
scan is slightly reduced.

In many cases, the light scan can detect that it is impossible for the buffer pool to have a newer version of the page. In these situations, the light scan will not
check the buffer pool, and the look aside note will be absent.

Forward row lookup
The server is performing a light scan on a table that has rows that span pages. The light scan must access and use the buffer pool to get the remainder pieces
of any rows that are not completely on the home page.

Start key
Start key of the scan

Stop key
End key of the scan

Current key
The current key in the scan

Current position
The current location of the scan in the index, for example, the page, slot, and offset

Copyright© 2020 HCL Technologies Limited

onstat -g sds command: Print SD secondary server information

Use the onstat -g sds command to display information about shared-disk secondary servers.

Syntax:

>>-onstat-- -g -sds -+-----------------+-----------------------><
 '-+-server_name-+-'

Part VI: Administering 775

https://www.hcltech.com/

 '-verbose-----'

The output of the onstat -g sds command differs slightly depending on whether the command is issued on the primary server or on the SD secondary server.

Invocation Explanation

onstat -g sds Displays brief SD secondary server information

onstat -g sds verbose Displays detailed SD secondary server information

onstat -g sds server_name Displays information about a specific SD secondary server. When server_name is specified, the
command must be issued from the primary server.

Example output (primary server)
Figure 1. onstat -g sds command output when you run the command from primary server.

Local server type: Primary
Number of SDS servers:1

SDS server information

SDS srv SDS srv Connection Last LPG sent Supports
name status status (log id,page) Proxy Writes
C_151162 Active Connected 554,4998 Y

Output description (primary server)
Local server type

Primary or SDS (shared disk secondary) server type
Number of SDS servers

Number of SD secondary servers connected to the primary server
SDS Srv name

Name of SD secondary server
SDS Srv status

Displays whether SD secondary server is active
Connection status

Displays whether SD secondary server is connected
Last LPG sent (log id, page)

Most recent LPG log ID and page
Supports Proxy Writes

Displays whether the server is currently configured to allow updates to secondary servers. Y = supports updates to secondary servers, N = does not support
updates to secondary servers.

Example output with verbose option (primary server)
Figure 2. onstat -g sds server_name command output when you run the command from primary server.

Number of SDS servers:2
Updater node alias name :server_1

SDS server control block: 0x46217640
server name: rahulb_4
server type: SDS
server status: Active
connection status: Connected
Last log page sent(log id,page):6,44
Last log page flushed(log id,page):6,44
Last log page acked (log id, page):6,44
Last LSN acked (log id,pos):6,180664
Last log page applied(log id,page): 6,44
Approximate Log Page Backlog:0
Current SDS Cycle:19
Acked SDS Cycle:19
Sequence number of next buffer to send: 447
Sequence number of last buffer acked: 444
Time of last ack:2020/05/23 06:16:28
Supports Proxy Writes: N
Time of last received message: 2020/05/23 06:16:49
Time of last alternate write: N/A
Time of last alternate read : N/A
Total number of delay(s): 11
Time of last delay: 2020/05/23 06:13:04

Output description with verbose option (primary server)
Number of SDS servers

The number of SD secondary servers that share disk space with the primary server
Updater node alias name

The name of the primary server
SDS server control block

SD secondary server control block
server name

The name of the server

776 Part VI: Administering

server type
The type of server

server status
Displays whether the server is active or inactive

connection status
Status of connection between primary and secondary server

Last log page sent (log id, page)
Log ID and page of most recent log page sent

Last log page flushed (log id, page)
Log ID and page of the most recent log page flushed

Last log page acked (log id, pos))
Most recent log page acknowledged

Last LSN acked (log id, pos)
Most recent log sequence number that was acknowledged

Last log page applied(log id,page)
The log ID and page number of the last applied log

Approximate Log Page Backlog
The number of logs waiting to be sent

Current® SDS Cycle
Used internally by support to monitor coordination of the primary server with the SDS server

Acked SDS Cycle
Used internally by support to monitor coordination of the primary server with the SDS server

Sequence number of next buffer to send
Sequence number of next buffer to send

Sequence number of last buffer acked
Sequence number of next buffer acknowledged

Time of last ack
Date and time of last log acknowledgment

Supports Proxy Writes
Displays whether the server is currently configured to allow updates to secondary servers. Y = supports updates to secondary servers, N = does not support
updates to secondary servers.

Time of last received message:
The timestamp of the current server's most recently received from another server.

Time of last alternate write
The timestamp of the current server's most recent write to the blobspace specified by the SDS_ALTERNATE configuration parameter.

Time of last alternate read
The timestamp of the current server's most recent read from the blobspace specified by the SDS_ALTERNATE configuration parameter.

Total number of delay(s)
The total number of times the flow delay occurred.

Time of last delay
The time of last delay in flow control.

Example output with verbose option (SD secondary server)
Figure 3. onstat -g sds verbose command output when you run the command from the SD secondary server.

SDS server control block: 0xb299880
Local server type: SDS
Server Status : Active
Source server name: my_source_server
Connection status: Connected
Last log page received(log id,page): 7,884
Next log page to read(log id,page):7,885
Last LSN acked (log id,pos):7,3621272
Sequence number of last buffer received: 0
Sequence number of last buffer acked: 0
Current paging file:/dbspaces/page_my_source_server_sdc1_
Current paging file size:2048
Old paging file:/dbspaces/page_my_source_server_sdc1_
Old paging file size:10240

Output description with verbose option (SD secondary server)
SDS server control block

SD secondary server control block
Local server type

Primary or SDS (shared disk secondary) server type
Server status

Displays whether SD secondary server is active
Source server name

Displays name of primary server
Connection status

Displays whether SD secondary server is connected
Last log page received (log id, page)

Most recent log page received
Next log page to read (log id,page)

Next log page in sequence to read
Last LSN acked (log id,pos)

Most recent LSN acknowledged
Sequence number of last buffer received

Sequence number of last buffer received

Part VI: Administering 777

Sequence number of last buffer acked
Sequence number of last buffer acknowledged

Current paging file
Name of current paging file

Current paging file size
Size of current paging file

Old paging file
Name of previous paging file

Old paging file size
Size of previous paging file

Copyright© 2020 HCL Technologies Limited

onstat -g seg command: Print shared memory segment statistics

Use the onstat -g seg command to show the statistics for shared memory segments.

This command shows how many segments are attached and their sizes. You can run the onstat -g seg command on a dump file that was created without the buffer pool.

Syntax:

>>-onstat-- -g--seg--><

Example output
Figure 1. onstat -g seg command output

Segment Summary:
id key addr size ovhd class blkused blkfree
720914 52e44801 44000000 4390912 248812 R 1072 0
753683 52e44802 44430000 131072000 769136 V 22573 9427
819221 52e44803 4c130000 66027520 1 B 16120 0
851990 52e44804 50028000 83648512 1 B 20422 0
Total: - - 285138944 - - 60187 9427
Virtual segment low memory reserve (bytes):4194304
Low memory reserve used 0 times and used maximum block size 0 bytes

Output description
id

The ID of the shared memory segment
key

The shared memory key that is associated with the shared memory segment ID
addr

The address of the shared memory segment
size

The size of the shared memory segment in bytes
ovhd

The size of the shared memory segment control information (overhead) in bytes
class

The class of the shared memory segment (B is for Buffferpool, R is for Resident, V is for Virtual, VX is for Virtual Extended, and M is for Message.)
blkused

The number of blocks of used memory
blkfree

The number of blocks of free memory
Virtual segment low memory reserve (bytes)

The size of reserved memory for use when critical activities are needed and the server has limited free memory, specified in bytes (You specify reserved memory in
the LOW_MEMORY_RESERVE configuration parameter.)

Low memory reserve used 0 times and used maximum block size 0 bytes)
The number times that the server used the reserved memory and the maximum memory needed

Related reference:
 SHMADD configuration parameter

SHMBASE configuration parameter
SHMVIRTSIZE configuration parameter
LOW_MEMORY_RESERVE configuration parameter
EXTSHMADD configuration parameter
Running onstat Commands on a Shared Memory Dump File

Copyright© 2020 HCL Technologies Limited

onstat -g ses command: Print session-related information

Use the onstat -g ses command to display information about the session.

778 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

By default, only the DBSA can view onstat -g ses information. However, when the UNSECURE_ONSTAT configuration parameter is set to 1, all users can view this
information.

Syntax:

>>-onstat-- -g--ses--+------------+----------------------------><
 '-session_id-'

You can specify one of the following invocations.

onstat -g ses
Displays a one-line summary for each session

onstat -g ses session_id
Displays information for a specific session

Example output for all sessions
Figure 1. onstat -g ses command output

session #RSAM total used dynamic
id user tty pid hostname threads memory memory explain
24 informix - 0 - 0 12288 7936 off
23 informix - 17602 carson 1 57344 48968 off
3 informix - 0 - 0 12288 9168 off
2 informix - 0 - 0 12288 7936 off

Last 20 Sessions Terminated

Ses ID Username Hostname PID Time Reason
46 user_1 host_1 21220 01/19/2015.15:20 session limit txn time (60s)
43 user_1 host_1 21340 01/19/2015.15:14 session limit memory (5124 KB)
61 user_1 host_1 21404 01/19/2015.15:04 session limit logspace (10242 KB)
64 user_1 host_1 21458 01/19/2015.15:02 session limit txn time (39548 KB)

Output description: session section
Session id

The session ID
user

The user who started the session
tty

The tty that is associated with the front end for this session
pid

The process ID associated with the front end for this session
hostname

The hostname from which this session connected
#RSAM threads

The number of RSAM thread that is allocated for this session
total memory

The amount of memory that is allocated for this session
used memory

The amount of memory that is actually used by this session
dynamic explain

Generate explain output of the SQL statements of the session (on or off)

Output description: Last 20 Sessions Terminated section
Ses ID

The session ID
Username

The user who started the session
Hostname

The hostname from which this session connected
PID

The process ID associated with the front end for this session
Time

The time at which the session was terminated.
Reason

The limit that was exceeded, followed by the limit value in parentheses.

Example output for a specific session
Figure 2. onstat -g ses session_id command output for a completed SQL statement

session effective #RSAM total used dynamic
id user user tty pid hostname threads memory memory explain
53 informix - 36 18638 apollo11 1 73728 63048 off

Program :
/usr/informix/bin/dbaccess

Part VI: Administering 779

tid name rstcb flags curstk status
77 sqlexec 4636ba20 Y--P--- 4240 cond wait sm_read -

Memory pools count 1
name class addr totalsize freesize #allocfrag #freefrag
53 V 4841d040 73728 10680 84 6

name free used name free used
overhead 0 3288 scb 0 144
opentable 0 2904 filetable 0 592
log 0 16536 temprec 0 2208
gentcb 0 1656 ostcb 0 2920
sqscb 0 21296 sql 0 72
hashfiletab 0 552 osenv 0 2848
sqtcb 0 7640 fragman 0 392

sqscb info
scb sqscb optofc pdqpriority optcompind directives
481b70a0 483e2028 0 0 0 1

Sess SQL Current Iso Lock SQL ISAM F.E.
Id Stmt type Database Lvl Mode ERR ERR Vers Explain
53 - sysmaster CR Not Wait 0 0 9.24 Off

Last parsed SQL statement :
 Database 'sysmaster@lx1'

Xadatasources participated in this session :
Xadatasource name RMID Active
xabasicdb@atmol10:sitaramv.xads_t3_i1 6 YES
xabasicdb@atmol10:sitaramv.xads_t2_i1 4 YES
xabasicdb@atmol10:sitaramv.xads_t1_i3 3 YES
xabasicdb@atmol10:sitaramv.xads_t1_i2 2 YES
xabasicdb@atmol10:sitaramv.xads_t1_i1 1 YES
xabasicdb@atmol10:sitaramv.xads_t2_i2 5 NO

DRDA client info
 Userid:
 Wrkstnname: nemea
 Applname: db2jcc_application
 Acctng: JCC03510nemea
 Programid:
 Autocommit:
 Packagepath:

Session Limits
 Limit Current
Locks 10000 1
Memory(KB) 5120 72
Temp Space(KB) 30720 0
Log Space(KB) 10240 0
Txn Time(s) 120 0

Output description: program section
Displays the full path of the client program that is used in your session. Use the client program information to monitor or stop access to the database.

Output description: threads section
Although this section has no title, the following output displays information about threads.

tid
The thread ID

name
The name of the thread

rstcb
RSAM control block

flags
Describes the status of the thread using the following codes:
Position 1

B
Waiting on a buffer

C
Waiting on a checkpoint

G
Waiting on a logical-log buffer write

L
Waiting on a lock

S
Waiting on a mutex

T
Waiting on a transaction

X
Waiting on a transaction cleanup

Y
Waiting on a condition

780 Part VI: Administering

Position 2

*
An asterisk in this position means that the thread encountered an I/O failure in the middle of a transaction

Position 3

A
Archive thread

B
Begin work

P
Begin Prepare or Prepared work

X
XA prepared

C
Committing or committed

R
Aborting or aborted

H
Heuristically aborted or heuristically rolling back

Position 4

P
Primary thread

Position 5

R
Reading

X
Critical section

Position 6

R
Recovery thread

Position 7

M
Monitor thread

D
Daemon thread

C
Cleaner

F
Flusher

B
B-tree scanner

curstk
Current® stack size

status
Current thread status

Output description: memory pools header section
The information is repeated for each session pool.

name
Name of pool

class
Class of the memory where the pool is allocated from. R is for Resident, V is for Virtual, and M is for Message

addr
Address of the pool structure

totalsize
Total size of the memory that is acquired by the pool (in bytes)

freesize
Number of bytes free in the pool

#allocfrag
Number of allocated memory fragments in the pool

#freefrag
Number of free fragments in the pool

Output description: Memory pools section
name

Name of a component which allocated memory from the pool
free

Number of bytes freed

Part VI: Administering 781

used
Number of bytes allocated

Output description: sqscb info section
scb

The session control block. This is the address of the main session structure in shared memory
sqscb

SQL level control block of the session
optofc

The current value of the OPTOFC environment variable or ONCONFIG configuration file setting
pdqpriority

The current value of the PDQPRIORITY environment variable or ONCONFIG configuration file setting
optcompind

The current value of the OPTCOMPIND environment variable or ONCONFIG configuration file setting
directives

The current value of the DIRECTIVES environment variable or ONCONFIG configuration file setting

Output description: SQL section
Displays SQL information for the specified session. This section contains the same information that is output from the onstat -g sql command. See onstat -g sql command:
Print SQL-related session information.

Output description: Last parsed SQL statement section
The Last parsed SQL statement section contains the same information that is output from the onstat -g sql command. See onstat -g sql command: Print SQL-related
session information.

Output description: Xadatasources participated in this session section
The Xadatasources participated in this session section shows information about the XA data sources that are available during the session, their resource manager
identifiers, and whether they are currently active.

Xdatasource name
The XA data source that participated in the session

RMID
The identifier of the resource manager for the corresponding XA data source

Active
Whether the XA data source is still active

Output description: DRDA client info section
The DRDA client info section shows information about Distributed Relational Database Architecture™ (DRDA) connections to clients.

Userid
User ID of the client user

Wrkstnname
Name of the client workstation

Applname
Name of the client application, for example db2jcc_application

Acctng
Accounting string from the client, for example JCC03510nemea

Programid
Client program identifier (not used by Informix®)

Autocommit
Default transaction autocommit mode for Informix data sources

Packagepath
Client package path (not used by Informix)

Output description: Session limits section
Locks

The session's number of locks.
Memory(KB)

The session's memory.
Temp Space(KB)

The session's temporary table space.
Log Space(KB)

Log space for single transactions.
Txn Time(s)

Duration of single transactions.

782 Part VI: Administering

Figure 3. onstat -g ses session_id command output for a running SQL statement

session effective #RSAM total used dynamic
id user user tty pid hostname threads memory memory explain
37 informix - 9 13965 apollo8 1 327680 308200 off

Program :
/usr/informix/bin/dbaccess

tid name rstcb flags curstk status
44 sqlexec 44e5b350 ---P--- 4320 running-

Memory pools count 2
name class addr totalsize freesize #allocfrag #freefrag
37 V 8c64c040 323584 18736 199 21
37*O0 V 8c756040 4096 744 1 1

name free used name free used
overhead 0 6704 scb 0 144
opentable 0 5968 filetable 0 768
log 0 16536 temprec 0 22688
keys 0 216 ralloc 0 194672
gentcb 0 1592 ostcb 0 2992
sqscb 0 27880 sql 0 13384
hashfiletab 0 552 osenv 0 2672
sqtcb 0 9664 fragman 0 728
sapi 0 240 udr 0 272
rsam_seqscan 0 528

sqscb info
scb sqscb optofc pdqpriority optcompind directives
44ef4200 8ac90028 0 0 2 1
Sess SQL Current Iso Lock SQL ISAM F.E.
Id Stmt type Database Lvl Mode ERR ERR Vers Explain
37 SELECT sysadmin CR Not Wait 0 0 9.24 Off

Current statement name : unlcur

Current SQL statement (3) :
 select * from systables, sysindexes, syscolumns

 QUERY_TIMEOUT setting: 00:00:25
 Clock time elapsed : 00:00:13

Last parsed SQL statement :
 select * from systables, sysindexes, syscolumns

The QUERY_TIMEOUT setting and clock time are displayed only for running queries, not for DML or DDL statements or administration operations.

Related reference:
 tenant create argument: Create a tenant database (SQL Administration API)

tenant update argument: Modify tenant database properties (SQL Administration API)

Copyright© 2020 HCL Technologies Limited

onstat -g shard command: Print information about the shard definition

Use the onstat -g shard command to display information about the sharding definition.

Syntax:

>>-onstat-- -g--shard--><

Output description
The output of the onstat -g shard command shows the following information without field labels.

Sharding definition name
The name of the sharding definition.

Database name
The name of the database that contains the table or collection that is distributed across multiple shards.

Table owner name
The owner of the table or collection that is distributed across multiple shards.

Table name
The name of the table or collection that is distributed across multiple shards.

Shard key
The shard key that is used for distributing rows or documents. Value can be a table column, document field, or an expression.

Sharding strategy
The method for determining which database server a new row or document is applied on. Values can be HASH (hash algorithm), CONSISTENT HASH (consistent
hash algorithm), or EXPRESSION (expression).

Sharding type
Specifies source-server action after a row or document is replicated to a target server. Values can be DELETE, KEEP, or INFORMATIONAL.

Shard optimization
Specifies if queries can skip shard servers that do not contain relevant data. Values can be ENABLED or NOT ENABLED.

Part VI: Administering 783

https://www.hcltech.com/

Version column
Specifies the column or key that is used when Enterprise Replication attempts to verify that a source row or document was not updated. The value is a column or
document field.

Sharding rule
The rule for replicating data to a specific database server.

Example: Output for a sharding definition that uses consistent hash-based sharding
For this example, you have a sharding definition that was created by the following command:

cdr define shardCollection collection_1 database_1:john.customers_1
 --type=delete --key=b --strategy=chash --partitions=3 --versionCol=column_3
 g_shard_server_1
 g_shard_server_2
 g_shard_server_3

The following example shows output when the onstat -g shard command is run on g_shard_server_1, g_shard_server_2, or g_shard_server_3.

Figure 1. onstat -g shard command output for a sharding definition that uses a consistent hash algorithm to distribute data across multiple shard servers.

collection_1 database_1:john.customers_1 key:b CONSISTENT HASH:DELETE SHARD OPTIMIZATION:NOT ENABLED
Matching for delete:column_3
 g_shard_server_1 (65542) (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 4019 and 5469)
 or (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 5719 and 6123)
 or (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 2113 and 2652)
 g_shard_server_2 (65543) (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 6124 and 7415)
 or (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 5470 and 5718)
 or (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 7416 and 7873)
 g_shard_server_3 (65544) (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 2653 and 3950)
 or mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) >= 7874
 or mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) < 2113
 or (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 3951 and 4018)

Each shard server has three hashing partitions.

Example: Output for a sharding definition that uses hash-based sharding
For this example, you have a sharding definition that was created by the following command:

cdr define shardCollection collection_1 database_1:josh.customers_1
 --type=delete --key=column_2 --strategy=hash --versionCol=column_3
 g_shard_server_A
 g_shard_server_B
 g_shard_server_C
 g_shard_server_D

The following example shows output when the onstat -g shard command is run on g_shard_server_A, g_shard_server_B, g_shard_server_C, or g_shard_server_D.

Figure 2. onstat -g shard command output for a sharding definition that uses a hash algorithm to distribute data across multiple shard servers.

collection_1 database_1:josh.customers_1 key:column_2 HASH:DELETE SHARD OPTIMIZATION:ENABLED
Matching for delete:column_3
g_shard_server_A (65545) mod(ifx_checksum(column_2::LVARCHAR, 0), 4) = 0
g_shard_server_B (65546) mod(ifx_checksum(column_2::LVARCHAR, 0), 4) in (1, -1)
g_shard_server_C (65547) mod(ifx_checksum(column_2::LVARCHAR, 0), 4) in (2, -2)
g_shard_server_D (65548) mod(ifx_checksum(column_2::LVARCHAR, 0), 4) in (3, -3)

Example: Output for a sharding definition that uses expression-based sharding
For this example, you have a sharding definition that was created by the following command:

cdr define shardCollection collection_2 database_2:john.customers_2
 --type=keep --key=state --strategy=expression --versionCol=version_column
 g_shard_server_F "IN ('AL','MS','GA')"
 g_shard_server_G "IN ('TX','OK','NM')"
 g_shard_server_H "IN ('NY','NJ')"
 g_shard_server_I REMAINDER

The following example shows output when the onstat -g shard command is run on g_shard_server_F, g_shard_server_G, g_shard_server_H, or g_shard_server_I.

Figure 3. onstat -g shard command output for a sharding definition that uses an expression to distribute data across multiple database servers.

collection_2 database_2:john.customers_2 key:state EXPRESSION:KEEP SHARD OPTIMIZATION:ENABLED
Matching for delete:version_column
g_shard_server_F (65564) state IN ('AL','MS','GA')
g_shard_server_G (65565) state IN ('TX','OK','NM')
g_shard_server_H (65566) state IN ('NY','NJ')
g_shard_server_I (65567) not ((state IN ('AL','MS','GA')) or (state IN('TX','OK','NM'))
or (state IN ('NY','NJ')))

Example: Output for a sharding definition that uses a BSON shard key and expression-based
sharding

For this example, you have a sharding definition that was created by the following command:

cdr define shardCollection collection_3 database_3:susan.customers_3
 -t delete -k bson_value_lvarchar(data,'age') -s expression -v version

784 Part VI: Administering

 g_shard_server_J "BETWEEN 0 and 20"
 g_shard_server_K "BETWEEN 21 and 62"
 g_shard_server_L "BETWEEN 63 and 100"
 g_shard_server_M REMAINDER

The following example shows output when the onstat -g shard command is run on shard_server_J, shard_server_K, shard_server_L, or shard_server_M.

Figure 4. onstat -g shard command output for a sharding definition that uses a BSON shard key and an expression to distribute data across multiple database servers.

collection_3 database_3:susan.customers_3 key:bson_value_lvarchar(data,'age')
EXPRESSION:DELETE SHARD OPTIMIZATION:ENABLED
Matching for delete:version
g_shard_server_J (65568) bson_value_lvarchar(data,'age') BETWEEN 0 and 20"
g_shard_server_K (65569) bson_value_lvarchar(data,'age') BETWEEN 21 and 62"
g_shard_server_L (65570) bson_value_lvarchar(data,'age')BETWEEN 63 and 100"
g_shard_server_M (65571) not((bson_value_lvarchar(data,'age') BETWEEN 0 and 20)
or (bson_value_lvarchar(data,'age') BETWEEN 21 and 62) or (bson_value_lvarchar
(data,'age') BETWEEN 63 and 100))

Related information:
 cdr define shardCollection

cdr change shardCollection
cdr delete shardCollection
cdr list shardCollection
CDR_AUTO_DISCOVER configuration parameter

Copyright© 2020 HCL Technologies Limited

onstat -g sle command: Print all sleeping threads

Use the onstat -g sle command to print all sleeping threads.

Syntax:

>>-onstat-- -g--sle--><

Example output
Figure 1. onstat -g sle command output

Current Admin VP sleep period: 10 millisecs
Sleeping threads with timeouts: 21 threads
 tid v_proc rstcb name time
 49 1 b3b13a8 onmode_mon 0.02
 5 1 0 Cosvr Avail Mgr 0.05
 42 1 b3ad028 main_loop() 0.08
 9 3 b3ad6e8 xtm_svcc 0.64
 14 5 0 mgmt_thd_5 0.65
 13 4 0 mgmt_thd_4 0.65
 4 1 0 mgmt_thd_1 0.65
 6 3 0 dfm_svc 0.98
 33 13 0 mgmt_thd_13 1.54
 27 10 0 mgmt_thd_10 1.54
 21 7 0 mgmt_thd_7 1.54
 12 3 0 mgmt_thd_3 1.76
 29 11 0 mgmt_thd_11 1.76
 23 8 0 mgmt_thd_8 2.08
 31 12 0 mgmt_thd_12 2.08
 35 14 0 mgmt_thd_14 2.98
 19 6 0 mgmt_thd_6 3.00
 25 9 0 mgmt_thd_9 3.00
 37 3 0 sch_rgm 3.48
 44 5 b3af8a8 btscanner 0 7.31
 46 3 b3b0628 bum_sched 41.26

Copyright© 2020 HCL Technologies Limited

onstat -g smb command: Print sbspaces information

Use the onstat -g smb command to display detailed information about sbspaces.

Syntax:

>>-onstat-- -g--smb--+------------+----------------------------><
 +-c----------+
 +-fdd--------+
 +-lod--------+
 +-s----------+
 +-e----------+
 '-h--+-----+-'
 +-cad-+

Part VI: Administering 785

https://www.hcltech.com/
https://www.hcltech.com/

 +-fdd-+
 '-lod-'

Command Explanation

onstat -g smb c Lists all the chunks in the sbspace.

onstat -g smb e Lists the entries of all smart-large-object table types.

onstat -g smb e cad Lists the entries for the smart-large-object chunk adjunct table.

onstat -g smb e fdd Lists the entries for the smart-large-object file descriptor table.

onstat -g smb e lod Lists the entries in the smart-large-object header table.

onstat -g smb fdd Lists the smart-large-object file descriptors.

onstat -g smb h Lists the headers of all smart-large-object table types.

onstat -g smb h cad Lists the header for the smart-large-object chunk adjunct table.

onstat -g smb h fdd Lists the header for the smart-large-object file descriptor table.

onstat -g smb h lod Lists the header for the smart-large-object header table.

onstat -g smb lod Lists the header and entries in the smart-large-object header table.

onstat -g smb s Lists the sbspace attributes (owner, name, page size, -Df flag settings). Fields with a value of 0 or -1
were not initialized during sbspace creation.

Example output for the onstat -g smb c command
Use the onstat -g smb c command to monitor the amount of free space in each sbspace chunk, and the size in pages of the user data and metadata. The onstat -g smb c
command displays the following information for each sbspace chunk:

Chunk number and sbspace name
Chunk size and pathname
Total user data pages and free user data pages
Location and number of pages in each user-data and metadata areas

In the following example, chunk 2 of sbspace1 has 2253 original free pages (orig fr), 2253 user pages (usr pgs), and 2245 free pages (free pg). For the first user-
data area (Ud1), the starting page offset is 53 and the number of pages is 1126. For the metadata area (Md), the starting page offset is 1179 and the number of pages is
194. For the second user data area (Ud2), the starting page offset is 1373 and the number of pages is 1127.

Chunk Summary:

sbnum 2 chunk 2
chunk: address flags offset size orig fr usr pgs free pg
 303cf2a8 F------- 0 2500 2253 2253 2245
 path: /usr11/myname/sbspace1

 start pg npages
Ud1 : 53 1126
Md : 1179 194
Ud2 : 1373 1127

Output for the onstat -g smb s command
The onstat -g smb s command displays the storage attributes for all sbspaces in the system:

sbspace name, flags, owner
logging status
average smart-large-object size
first extent size, next extent size, and minimum extent size
maximum I/O access time
lock mode

For more information on the onstat -g smb command, see the IBM® Informix® Performance Guide.

Copyright© 2020 HCL Technologies Limited

onstat -g smx command: Print multiplexer group information

Use the onstat -g smx command to display information about the server multiplexer group for servers using SMX.

Syntax:

>>-onstat-- -g--smx--+-----+-----------------------------------><
 '-ses-'

Command Explanation

786 Part VI: Administering

https://www.hcltech.com/

Command Explanation

onstat -g smx Displays SMX connection
statistics

onstat -g smx ses Displays SMX session statistics

Example output
Figure 1. onstat -g smx command output

SMX connection statistics:
SMX control block: 0x47d5e028

 Peer server name: lx1
 SMX connection address: 0x47d60d10
 Encryption status: Disabled Total bytes sent: 27055
 Total bytes received: 2006989
 Total buffers sent: 782
 Total buffers received: 7090
 Total write calls: 782
 Total read calls: 7090
 Total retries for write call: 0
 Data compression level: 1
 Data sent: compressed 40760 bytes by 33%
 Data received: compressed 12579324 bytes by 84%

Output description
SMX control block

SMX control block
Peer server name

Displays the name of the peer server
SMX connection address

Displays the address of the SMX connection
Encryption status

Displays whether encryption is enabled or disabled
Total bytes sent

Displays the total number of bytes sent
Total bytes received

Displays the total number of bytes received
Total buffers sent

Displays the total number of buffers sent
Total buffers received

Displays the total number of buffers received
Total write calls

Displays the total number of write calls
Total read calls

Displays the total number of read calls
Total retries for write call

Displays the total number of retries for write call
Data compression level

Displays the SMX compression level as set by the SMX_COMPRESS configuration parameter
Data sent: compressed x bytes by y%

Displays the uncompressed number of bytes and the compression ratio of the data sent
Data received: compressed x bytes by y%

Displays the uncompressed number of bytes and the compression ratio of the data received

Example Output
Figure 2. onstat -g smx ses Output

SMX session statistics:
SMX control block: 0x17c69028

Peer SMX session client reads writes
name address type
delhi_sec 19022050 smx Clone Send 6 183

Output Description
SMX control block

SMX control block
Peer name

Displays the name of the peer server
SMX session address

SMX session address
Client type

Displays type of secondary server
reads

Displays the total number of session reads

Part VI: Administering 787

writes
Displays the total number of session writes

Copyright© 2020 HCL Technologies Limited

onstat -g spi command: Print spin locks with long spins

Use the onstat -g spi command to display information about spin locks with long spins.

Syntax:

>>-onstat-- -g--spi--><

Many resources in the server are accessed by two or more threads. In some of these accesses (such as updating a shared value), the server must guarantee that only one
thread is accessing the resource at a time. A spin lock is the mechanism used to provide this mutually exclusive access for some resources. With this type of lock, a thread
that did not succeed in acquiring the lock on the first try (because another thread was holding it) repeatedly attempts to acquire the lock until it succeeds.

The overhead cost of a spin lock is small, and spin locks are normally used for resources that require mutual exclusion for short periods of time. However, if a spin lock
becomes highly contended, the loop-and-retry mechanism can become expensive.

The onstat -g spi command is helpful for identifying performance bottlenecks that are caused by highly contended spin locks. This option lists spin locks with waits, those
spin locks for which a thread was not successful in acquiring the lock on its first attempt and thus had to loop and re-attempt.

Example output
Figure 1. onstat -g spi command output

Spin locks with waits:

Num Waits Num Loops Avg Loop/Wait Name
114 117675 1032.24 lockfr3
 87 256461 2947.83 fast mutex, lockhash[832]
 1 11 11.00 fast mutex, 1:bhash[16668]
 4 51831 12957.75 fast mutex, 1:lru-4
 1 490 490.00 fast mutex, 1:bf[994850] 0xe00002 0x14eb32000

Output description
Num Waits (decimal)

Total number of times a thread waited for this spin lock.
Num Loops (decimal)

Total number of attempts before a thread successfully acquired the spin lock.
Avg Loop/Wait (floating point)

Average number of attempts needed to acquire the spin lock. Computed as Num Loops / Num Waits.
Name (string)

Uses the following codes to name the spin lock

lockfr
The lock free list. The number after lockfr is the index into the lock free list array.

lockhash[]
The lock hash bucket. The field inside the brackets is the index into the lock hash bucket array.

:bhash []
The buffer hash bucket. The field before the colon is the buffer pool index; the field inside the brackets after bhash is the index into the buffer hash bucket
array.

:lru-
The LRU latch. The field before the colon is the buffer pool index; the field after lru- identifies the buffer chain pairs that are being used.

:bf[]
The buffer latch. The field before the colon is the buffer pool index; the field inside the brackets after bf is the position of buffer in the buffer array. The next
two fields are the partition number and the page header address in memory for the buffer in hex form.

Copyright© 2020 HCL Technologies Limited

onstat -g sql command: Print SQL-related session information

Use the onstat -g sql command to display SQL-related information about a session.

By default, only the DBSA can view onstat -g sql syssqltrace information. However, when the UNSECURE_ONSTAT configuration parameter is set to 1, all users can view
this information.

Syntax:

788 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

>>-onstat-- -g--sql--sessionid---------------------------------><

You can specify one of the following invocations.

Invocation
Explanation

onstat -g sql
Displays a one line summary for each session

onstat -g sql sessionid
Displays SQL information for a specific session

Note: Encrypted passwords and password hint parameters in encryption functions are not shown. The following figure displays an encrypted password in the Last
parsed SQL statement field.
Figure 1. onstat -g sql command output for a completed SQL statement

onstat -g sql 22

Sess SQL Current Iso Lock SQL ISAM F.E. Current
Id Stmt type Database Lvl Mode ERR ERR Vers Explain Role
22 - test CR Not Wait 0 0 9.03 Off hr
Last parsed SQL statement :
 select id, name, decrypt_char(ssn, 'XXXXXXXXXX') from emp

Output description
Sess id

The session identifier
SQL Stmt type

The type of SQL statement
Current® Database

Name of the current database of the session
ISO Lvl

Isolation level

DR
Dirty Read

CR
Committed Read

CS
Cursor Stability

DRU
Dirty Read, Retain Update Locks

CRU
Committed Read, Retain Update Locks

CSU
Cursor Stability, Retain Update Locks

LC
Committed Read, Last Committed

LCU
Committed Read Last Committed with Retain Update Locks

RR
Repeatable Read

NL
Database Without Transactions

Lock mode
Lock mode of the current session

SQL Error
SQL error number encountered by the current statement

ISAM Error
ISAM error number encountered by the current statement

F.E. Version
The version of the SQLI protocol used by the client program

Explain
SET EXPLAIN setting

Current Role
Role of the current user

Figure 2. onstat -g sql command output for a running SQL statement

onstat -g sql 28

Sess SQL Current Iso Lock SQL ISAM F.E.
Id Stmt type Database Lvl Mode ERR ERR Vers Explain
28 SELECT sysmaster CR Not Wait 0 0 9.24 Off

Current statement name : unlcur

Current SQL statement (8) :
 select * from systables, syscolumns, sysindexes

 QUERY_TIMEOUT setting: 0 (No Timeout)
 Clock time elapsed : 00:00:12

Part VI: Administering 789

Last parsed SQL statement :
 select * from systables, syscolumns, sysindexes

The QUERY_TIMEOUT setting and clock time are displayed only for running queries, not for DML or DDL statements or administration operations.

Copyright© 2020 HCL Technologies Limited

onstat -g spf: Print prepared statement profiles

Use the onstat -g spf command to display current statistics about SQL queries.

You can use the statistics to determine the cost of each statement.

Syntax:

>>-onstat-- -g--spf--><

If SQL tracing is enabled, the information that is shown is a snapshot of the work that is completed by the statement and might change as the statement continues to run.
For example, to monitor the growth rate of buffer reads or writes in an active statement, you can issue three onstat -g spf runs at 2-second intervals.

If SQL tracing is disabled, a warning message is issued: "Statistics disabled".

Example output
Figure 1. onstat -g spf command output

Statement profiles
sid sdb tottm execs runtm pdq scans sorts bfrd pgrd bfwrt pgwrt lkrqs lkwts
35 4de84028 0.01 0 0.01 0 0 0 301 352 0 512 2998 0
25 4dc0b028 0.00 0 0.00 0 0 0 0 0 0 0 0 0
...

Output description
sid

The session ID.
sdb

The last 8 digits of the statement pointer.
tottm

The current total run time, in seconds, of all statements.
execs

The current number of completed statement runs. This value does not include statements that are running.
runtm

The current run time of the statement, in seconds.
pdq

The current parallel database queries (PDQ) priority level. The PDQ priority value can be any integer from 0 through 100. For more information, see Managing PDQ
queries.

scans
The current number of PDQ scans that are allocated.

sorts
The current number of completed sorts.

bfrd
The current number of buffer reads.

pgrd
The current number of page reads.

bfwrt
The current number of buffer writes.

pgwrt
The current number of page writes.

lkrqs
The current number of lock requests.

lkwts
The current number of lock waits.

Related reference:
 set sql tracing argument: Set global SQL tracing (SQL administration API)

Copyright© 2020 HCL Technologies Limited

onstat -g src command: Patterns in shared memory

Use the onstat -g src command to search for patterns in shared memory.

790 Part VI: Administering

https://www.hcltech.com/
http://www-01.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.perf.doc/ids_prf_607.htm
https://www.hcltech.com/

Syntax:

>>-onstat-- -g--src--pattern--mask-----------------------------><

Example output
The following example shows output for the onstat -g srcpattern mask command where pattern = 0x123 and mask = 0xffff.
Figure 1. onstat -g src command output

Search Summary:
addr contents
000000000ad17a50: 01090000 00000000 00000000 00000123 #
000000000ad7dec0: 00000001 014e3a0c 00000000 0ade0123 N:.#

Output description
addr (hexadecimal)

Address in shared memory where search pattern is found
contents (hexadecimal)

Contents of memory at given address

Copyright© 2020 HCL Technologies Limited

onstat -g ssc command: Print SQL statement occurrences

Use the onstat -g ssc command to monitor the number of times that the database server reads the SQL statement in the cache.

By default, only the DBSA can view onstat -g ssc syssqltrace information. However, when the UNSECURE_ONSTAT configuration parameter is set to 1, all users can view
this information.

Syntax:

>>-onstat-- -g--ssc--+----------+------------------------------><
 '-+-all--+-'
 '-pool-'

The all option reports the key-only cache entries as well as the fully cached statements. If the value in the hits column is less than the STMT_CACHE_HITS value, that
entry is a key-only cache entry. For more information, see memory utilization in the IBM® Informix® Performance Guide.

The pool option reports usage of all memory pools for the SQL statement cache. The output displays information on the name, class, address, and total size of the memory
pools. For more information, see improving query performance in the IBM Informix Performance Guide.

Example output
Figure 1. onstat -g ssc command output

Statement Cache Summary:
#lrus currsize maxsize Poolsize #hits nolimit
4 117640 524288 139264 0 1
Statement Cache Entries:
lru hash ref_cnt hits flag heap_ptr database user
--
 0 262 0 7 -F aad8038 sscsi007 admin
 INSERT INTO ssc1 (t1_char , t1_short , t1_key , t1_float , t1_smallfloat
 , t1_decimal , t1_serial) VALUES (? , ? , ? , ? , ? , ? , ?)
 0 127 0 9 -F b321438 sscsi007 admin
 INSERT INTO ssc2 (t2_char , t2_key , t2_short) VALUES (? , ? , ?)
 1 134 0 15 -F aae0c38 sscsi007 admin
 SELECT t1_char , t1_short , t1_key , t1_float , t1_smallfloat ,
 t1_decimal , t1_serial FROM ssc1 WHERE t1_key = ?
 1 143 0 3 -F b322c38 sscsi007 admin
 INSERT INTO ssc1 (t1_char , t1_key , t1_short) SELECT t2_char , t2_key
 + ? , t2_short FROM ssc2
 2 93 0 7 -F aae9838 sscsi007 admin
 DELETE FROM ssc1 WHERE t1_key = ?
 2 276 0 7 -F aaefc38 sscsi007 admin
 SELECT count (*) FROM ssc1
 2 240 1 7 -F b332838 sscsi007 admin
 SELECT COUNT (*) FROM ssc1 WHERE t1_char = ? AND t1_key = ? AND
 t1_short = ?
 3 31 0 7 -F aaec038 sscsi007 admin
 SELECT count (*) FROM ssc1 WHERE t1_key = ?
 3 45 0 1 -F b31e438 sscsi007 admin
 DELETE FROM ssc1
 3 116 0 0 -F b362038 sscsi007 admin
 SELECT COUNT (*) FROM ssc1
 Total number of entries: 10.

Output description - Statement Cache Summary section

Part VI: Administering 791

https://www.hcltech.com/

#lrus
Number of least recently used queues (LRUS)

currsize
Current® cache size

maxsize
Limit on total cache memory

Poolsize
Total pool size

#hits
The number of hits before insertion. This number equals the value of the STMT_CACHE_HITS configuration parameter

nolimit
The value of the STMT_CACHE_NOLIMIT configuration parameter

Output description - Statement Cache Entries section
The Statement Cache Entries section shows the entries that are fully inserted into the cache.

lru
The index of lru queue to which the cache entry belongs

hash
Hash values of cached entry

ref_count
Number of threads referencing the statement

hits
Number of times a statement matches a statement in the cache. The match can be for a key-only or fully cached entry.

flag
Cache entry flag -D indicates that the statement is dropped, -F indicates that the statement is fully cached, and -I indicates that the statement is in the process of
being moved to a fully cached state

heap_ptr
Address of memory heap for cache entry

Related reference:
 STMT_CACHE_HITS configuration parameter

STMT_CACHE_NOLIMIT configuration parameter
STMT_CACHE_NUMPOOL configuration parameter

Copyright© 2020 HCL Technologies Limited

onstat -g stk command: Print thread stack

Use the onstat -g stk tid command to display the stack of the thread specified by thread ID.

This option is not supported on all platforms and is not always accurate.

Syntax:

>>-onstat-- -g--stk -tid---------------------------------------><

Example output
Figure 1. onstat -g stk tid command output

Stack for thread: 2 adminthd
 base: 0x000000010aad5028
 len: 33280
 pc: 0x00000001002821e8
 tos: 0x000000010aadc621
state: running
 vp: 2

0x1002821e8 oninit :: yield_processor + 0x260 sp=0x10aadce20(0x10ac834d0, 0x0, 0x1,
 0x100000000, 0xc8a000, 0x100c8a000)
0x100274e38 oninit :: wake_periodic + 0xdc sp=0x10aadced0 delta_sp=176(0x41b0, 0xc7a024bc,
 0x0, 0x41c4, 0x10aacf598, 0x90)
0x100274fcc oninit :: admin_thread + 0x108 sp=0x10aadcf80 delta_sp=176(0x0, 0x2328,
 0xd26c00, 0x5, 0xc8a000, 0x156c)
0x1002484ec oninit :: startup + 0xd8 sp=0x10aadd050 delta_sp=208(0xa, 0x10aad47d0,
 0x10aad47d0, 0x100db1988, 0xd1dc00, 0x1)

Copyright© 2020 HCL Technologies Limited

onstat -g stm command: Print SQL statement memory usage

Use the onstat -g stm command to display the memory that each prepared SQL statement uses.

792 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

By default, only the DBSA can view onstat -g stm syssqltrace information. However, when the UNSECURE_ONSTAT configuration parameter is set to 1, all users can view
this information.

Syntax:

>>-onstat-- -g--stm--><

To display the memory for only one session, specify the session ID in the onstat -g stm command.

Example output
Figure 1. onstat -g stm command output

session 65 --
 sdblock heapsz statement ('*' = Open cursor)
 aad8028 16544 SELECT COUNT (*) FROM ssc1 WHERE t1_char = ?
 AND t1_key = ? AND t1_short = ?

Output description
sdblock

Address of the statement descriptor block
heapsz

Size of the statement memory heap
statement

Query text

Copyright© 2020 HCL Technologies Limited

onstat -g stq command: Print queue information

Use the onstat -g stq command to display information about the queue.

Syntax:

>>-onstat-- -g--stq--session-----------------------------------><

To view queue information for a particular session specify the session option. Omit the session option to view queue information for all sessions.

Example output
Figure 1. onstat -g stq command output

Stream Queue: (session 25 cnt 4) 0:db12400 1:db18400 2:dcf0400 3:dcf6400
 Full Queue: (cnt 2 waiters 0) 0:0 1:db12400
 Empty Queue: (cnt 0 waiters 0)

Output description
session

Session id
cnt

Number of stream queue buffers
waiters

Number of threads waiting for the stream queue buffer

Copyright© 2020 HCL Technologies Limited

onstat -g sts command: Print stack usage for each thread

Use the onstat -g sts command to display information about the maximum and current stack use for each thread.

Syntax:

>>-onstat-- -g--sts--><

Example output
Figure 1. onstat -g sts command output

Part VI: Administering 793

https://www.hcltech.com/
https://www.hcltech.com/

Stack usage:

TID Total Max Current Thread Name
 bytes % bytes %
2 32768 3124 9 3079 9 adminthd
3 32768 2870 8 2871 8 childthd
5 32768 14871 45 2871 8 Cosvr Avail Mgr
6 32768 2870 8 2871 8 dfm_svc
7 131072 3190 2 3191 2 xmf_svc
9 32768 3126 9 3127 9 xtm_svcc
10 32768 3580 10 3335 10 xtm_svcp
11 32768 3238 9 3239 9 cfgmgr_svc
12 32768 6484 19 2871 8 lio vp 0
14 32768 6484 19 2871 8 pio vp 0
16 32768 6484 19 2871 8 aio vp 0
18 131072 10391 7 2871 2 msc vp 0
20 32768 4964 15 2871 8 fifo vp 0
22 32768 4964 15 2871 8 fifo vp 1
24 32768 6028 18 2871 8 aio vp 1
26 32768 5444 16 2951 9 dfmxpl_svc
27 32768 2886 8 2887 8 sch_svc
28 32768 7812 23 5015 15 rqm_svc
29 32768 7140 21 3079 9 sm_poll
30 32768 11828 36 6439 19 sm_listen
31 32768 2870 8 2871 8 sm_discon
32 32768 14487 44 4055 12 main_loop()
33 32768 4272 13 2903 8 flush_sub(0)
34 32768 2902 8 2903 8 flush_sub(1)
35 32768 2870 8 2871 8 btscanner 0
36 32768 3238 9 3239 9 aslogflush
37 32768 3055 9 2887 8 bum_local
38 32768 3238 9 3239 9 bum_rcv
39 32768 4902 14 4903 14 onmode_mon
42 32768 4964 15 2871 8 lio vp 1
44 32768 5136 15 2871 8 pio vp 1

Copyright© 2020 HCL Technologies Limited

onstat -g sym command: Print symbol table information for the oninit utility

Use the onstat -g sym command to display symbol table information for the oninit utility.

Syntax:

>>-onstat-- -g--sym--><

Example output
Figure 1. onstat -g sym command output
The following example shows the first few lines from the output:

Table for oninit has 23378 entries
 Initial value for -base-: 0x0
 0x3451e0 _start
 0x345300 .ld_int
 0x345348 .ld_llong
 0x3453dc .ld_float
 0x345428 .ld_double
 0x3454c4 .st_int
 0x3454fc .st_llong
 0x34556c .st_float
 0x3455c0 .st_double
 0x34565c .st_float_foreff
 0x345694 .st_double_foreff
 0x345718 main
 0x34c2ac get_cfgfile
 0x34c2fc is_server_alias

Output description
The onstat -g sym command displays the relative in-memory address and name of symbols (functions and variables) in the oninit utility.

Copyright© 2020 HCL Technologies Limited

onstat -g top command: Print top consumers of resources

Use the onstat -g top command to display information about top consumers of various resources such as CPU time, I/O operations, and memory growth.

You can specify the maximum number of consumers to display, along with the sample time interval. The onstat -g top command may be followed by three optional
numeric arguments:

794 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Syntax:

>>onstat -g top [<keyword pair>] [<max consumers> [<interval> [<repeats>]]]

Onstat -g top can take an optional pair of keyword arguments:

Top Threads
onstat -g top thread cpu: Threads currently using the most CPU time.
onstat -g top thread drd: Threads currently performing the most disk reads.
onstat -g top thread bfr: Threads currently performing the most buffer reads.
onstat -g top thread bfw: Threads currently performing the most buffer writes.
onstat -g top thread plg: Threads currently performing the most physical logging.
onstat -g top thread llg: Threads currently performing the most logical logging.

Top Sessions
onstat -g top session cpu: Sessions currently using the most CPU time.
onstat -g top session drd: Sessions currently performing the most disk reads.
onstat -g top session bfr: Sessions currently performing the most buffer reads.
onstat -g top session bfw: : Sessions currently performing the most buffer writes.
onstat -g top session plg: Sessions currently performing the most physical logging.
onstat -g top session llg: Sessions currently performing the most logical logging.

Top Chunks
onstat -g top chunk ios: Chunks currently performing the most reads and writes.
onstat -g top chunk art: Chunks with the highest average read time.
onstat -g top chunk awt: Chunks with the highest average write time.

Top Spaces
onstat -g top space ios: Spaces currently performing the most reads and writes.
onstat -g top space art: Spaces with the highest average read time.
onstat -g top space awt: Spaces with the highest average write time.

Top Virtual Memory Pools
onstat -g top mempool gro: Memory pools currently growing the fastest.

Top Session Memory
onstat -g top sessmem gro: Sessions currently allocating the most memory.

Top Partitions
onstat -g top partition drd: Partitions currently performing the most disk reads.

Top Tables
onstat -g top table drd: Tables currently performing the most disk reads.

Example
Figure 1. onstat -g top command examples

Top 3 spaces for average write times
onstat -g top space awt 3
top 10 tables for disk reads over a 1 minute interval
onstat -g top partition drd 10 60
Top 15 threads for CPU time, sampling every 20 seconds, and repeating 5 times
 onstat -g top thread cpu 15 20 5
Memory pools that are growing, updating every 30 seconds, repeating indefinitely
onstat -g top mempool gro 0 30 0
The least active session in terms of buffer reads, repeating 10 times, with 5 seconds between each update
onstat -g top session BFR 1 5 10

Note: To reverse the order of the consumer list, capitalize the second keyword. For example, the following command will display the top least active chunks:

onstat -g top chunk IOS

Copyright© 2020 HCL Technologies Limited

onstat -g tpf command: Print thread profiles

Use the onstat -g tpf command to display thread profiles.

Syntax:

>>-onstat-- -g--tpf--tid---------------------------------------><

Specify the tid thread ID to print the profile for a specific thread. Set tid to 0 to display the profiles for all of the threads.

Example output
Figure 1. onstat -g tpf command output

onstat -g tpf 945

Thread profiles
tid lkreqs lkw dl to lgrs isrd iswr isrw isdl isct isrb lx bfr bfw lsus lsmx seq
945 1969 0 0 0 6181 1782 2069 13 0 0 0 0 16183 7348 743580 0 6

Output description
Part VI: Administering 795

https://www.hcltech.com/

tid
Thread ID

lkreqs
Lock requests

lkw
Lock waits

dl
Deadlocks

to
Remote deadlock timeout

lgrs
Log records

isrd
Number of reads

iswr
Number of writes

isrw
Number of rewrites

isdl
Number of deletes

isct
Number of commits

isrb
Number of rollbacks

lx
Long transactions

bfr
Buffer reads

bfw
Buffer writes

lsus
Log space currently used

lsmx
Max log space used

seq
Sequence scans

Copyright© 2020 HCL Technologies Limited

onstat -g ufr command: Print memory pool fragments

Use the onstat -g ufr command to display a list of the fragments that are currently in use in the specified memory pool.

This command requires an additional argument to specify either a pool name or session ID whose memory pool information is to be displayed. Each session is allocated a
memory pool with the same name as the session ID. Use the onstat -g mem command to identify the pool name and the onstat -g ses command to identify the session
ID.

Syntax:

>>-onstat-- -g--ufr--+-pool name-+-----------------------------><
 '-sessionid-'

Memory pools are broken into fragments for various uses. With the onstat -g ufr command it is possible to see a list of these fragments showing their respective sizes in
bytes and the type of information they contain. The information provided is generally used by Technical Support to assist in the analysis of a reported problem.

Example output for a specified pool name
Figure 1. onstat -g ufr global command output for a specified pool name

Memory usage for pool name global:
size memid
1736 overhead
23544 mcbmsg
72 messages
33112 osenv
25432 rsam
88 shmblklist
5170664 net

Example output for a specified session ID
The following example shows the output for session ID 6.

Figure 2. onstat -g ufr command output for a specified session ID

Memory usage for pool name 6:
size memid
3256 overhead

796 Part VI: Administering

https://www.hcltech.com/

144 scb
2968 ostcb
18896 sqscb
3312 opentable
72 sql
808 filetable
352 fragman
552 hashfiletab
1584 gentcb
12096 log
2960 sqtcb
2928 osenv
720 keys
224 rdahead
16248 temprec

Output description
size (decimal)

Size, in bytes, of the pool fragment.
memid (string)

Name of the pool fragment.

Copyright© 2020 HCL Technologies Limited

onstat -g vpcache command: Print CPU virtual processor and tenant virtual
processor private memory cache statistics

Run the onstat -g vpcache command to display statistics about CPU virtual processor and tenant virtual processor private memory caches.

Syntax:

>>-onstat-- -g--vpcache--><

Example output
The output for each CPU or tenant virtual processor has the same format. The following example shows the output for one CPU virtual processor.
Figure 1. onstat -g vpcache command output

CPU virtual processor memory block cache statistics - 4096 byte blocks

Number of 4096 byte memory blocks requested for each CPU virtual processor:262144
CPU virtual processor memory block cache mode : Dynamic

vpid pid Blocks held Hit percentage Free cache
1 2557540 4667202 99.2 % 100.0 %

Current total virtual processor allocations from cache: 59466799, Total frees: 60209953

 size cur blks tgt blks alloc miss free drain draintime
 1 1662023 9661 49167485 0 49816526 0 Thu Apr 11 09:43:35 2013
 2 130 52428 7609556 297043 7609612 0 Thu Jan 1 00:00:00 1970
 3 329160 9 905094 0 943256 0 Thu Apr 11 09:43:36 2013
 4 424 9 306637 16192 306506 0 Thu Apr 11 09:43:33 2013
 5 10 9 119313 122607 119315 0 Thu Apr 11 09:43:36 2013
 6 20790 9 55305 0 57700 0 Thu Apr 11 09:43:23 2013
 7 9877 9 31164 0 31942 0 Thu Apr 11 09:43:14 2013
 8 2816 5242 6500 0 6537 0 Thu Jan 1 00:00:00 1970
 9 234 9 606575 8323 605525 0 Thu Apr 11 09:43:36 2013
 10 1130 9 5597 0 5679 0 Thu Apr 11 09:43:18 2013
 11 231 5242 1808 0 1753 0 Thu Jan 1 00:00:00 1970
 12 1068 9 5667 0 5666 0 Thu Apr 11 09:43:28 2013
 13 65 5242 7114 175 7110 0 Thu Jan 1 00:00:00 1970
 14 28 5242 26200 172 26185 0 Thu Jan 1 00:00:00 1970
 15 30 5242 13562 553 13547 0 Thu Jan 1 00:00:00 1970
 16 2627136 34 349124 0 408425 0 Thu Apr 11 09:43:35 2013
 17 1309 9 59 0 107 0 Thu Apr 11 09:27:33 2013
 18 198 5242 7 0 6 0 Thu Jan 1 00:00:00 1970
 19 190 5242 5 0 1 0 Thu Jan 1 00:00:00 1970
 20 60 5242 30 19 19 0 Thu Jan 1 00:00:00 1970
 21 462 5242 38 0 43 0 Thu Jan 1 00:00:00 1970
 22 22 5242 3 0 1 0 Thu Jan 1 00:00:00 1970
 23 69 5242 141 15 135 0 Thu Jan 1 00:00:00 1970
 24 4944 35 189509 2078 185347 0 Thu Apr 11 09:43:35 2013
 25 75 5242 1 0 1 0 Thu Jan 1 00:00:00 1970
 26 0 9 364 220 361 0 Thu Apr 11 09:39:17 2013
 27 27 5242 1 0 2 0 Thu Jan 1 00:00:00 1970
 28 56 5242 415 33 410 0 Thu Jan 1 00:00:00 1970
 29 319 5242 7101 735 7088 0 Thu Jan 1 00:00:00 1970
 30 3240 5242 174 0 223 0 Thu Jan 1 00:00:00 1970
 31 279 11 51994 2515 50682 0 Thu Apr 11 09:43:36 2013
 32 800 5242 256 0 243 0 Thu Jan 1 00:00:00 1970

Part VI: Administering 797

https://www.hcltech.com/

Output description
vpid

The ID of the virtual processor
pid

The process ID for the virtual processor that is assigned by the operating system
Blocks held

The number of 4096 byte blocks that are available in the private memory cache
Hit percentage

The percentage of time that a block was available when requested
Free cache

The percentage of time that blocks were freed for reuse without being drained
Current VP total allocations from cache

The number of times a block or group of blocks was taken from the cache
Total frees

The number of times a block or group of blocks was added to the cache
size

The size of the memory blocks, in 4096-byte blocks
cur blks

The current number of 4096-byte blocks that are allocated (a multiple of size)
tgt blks

The target number of blocks for the cache entry before the cache is drained
alloc

The number of times a requestor received a block of this size
miss

The number of times a block was requested but none were available
free

The number of times a memory block was placed into the cache
drain

The number of times an aged block was forced out to make room for another block
draintime

The last time the bin of memory blocks was drained

Related reference:
 VP_MEMORY_CACHE_KB configuration parameter

Related information:
 Private memory caches

Copyright© 2020 HCL Technologies Limited

onstat -g wai command: Print wait queue thread list

Use the onstat -g wai command to display a list of the threads in the system that are currently in the wait queue and not currently executing. The output is sorted by
thread ID.

Syntax:

>>-onstat-- -g--wai--><

Example output
Figure 1. onstat -g wai command output

Waiting threads:
 tid tcb rstcb prty status vp- name
 2 46b1ea40 0 1 IO Idle 5lio lio vp 0
 3 46b3dc58 0 1 IO Idle 6pio pio vp 0
 4 46b5dc58 0 1 IO Idle 7aio aio vp 0
 5 46b7cc58 0 1 IO Idle 8msc msc vp 0
 6 46b1ed10 460f5028 1 sleeping secs: 1 3cpu main_loop()
 9 46d0d6e0 0 1 sleeping forever 1cpu soctcplst
 10 46d70b48 0 1 sleeping forever 3cpu sm_listen
 11 46e5d9a0 0 1 sleeping secs: 1 3cpu sm_discon
 12 46e5dc70 460f5820 1 sleeping secs: 1 3cpu flush_sub(0)
 13 46e8a5a8 460f6018 1 sleeping secs: 1 3cpu aslogflush
 14 46fe8148 460f6810 1 sleeping secs: 41 3cpu btscanner_0
 15 46fe84a8 0 1 IO Idle 10aio aio vp 1
 16 46fe8778 460f7008 1 sleeping secs: 1 1cpu onmode_mon
 36 47531960 460f7ff8 1 sleeping secs: 253 3cpu dbScheduler
 37 47531c30 460f87f0 1 sleeping forever 4cpu dbWorker1
 38 47491028 460f7800 1 sleeping forever 4cpu dbWorker2

Output description
tid (decimal)

Thread ID
tcb (hex)

In-memory address of the thread control block

798 Part VI: Administering

https://www.hcltech.com/

rstcb (hex)
In-memory address of the RSAM thread control block

prty (decimal)
Thread priority. Higher numbers represent higher priorities

status (string)
Current® status of the thread

vp- (decimal and string)
Virtual processor integer ID of the VP on which the thread last ran, concatenated with the name of the VP upon which the thread runs

name (string)
Name of the thread

Copyright© 2020 HCL Technologies Limited

onstat -g wmx command: Print all mutexes with waiters

Use the onstat -g wmx command to display all of the mutexes with waiters.

Syntax:

>>-onstat-- -g--wmx--><

Example output
Figure 1. onstat -g wmx command output

Mutexes with waiters:
mid addr name holder lkcnt waiter waittime
134825 7000002043a9148 free_lock 11009 0 200 22921
 11010 22918

Output description
mid

Internal mutex identifier
addr

Address of locked mutex
name

Name of the mutex
holder

Thread ID of the thread that is holding the mutex
0 = The read/write mutex is held in shared mode

lkcnt
For a read/write mutex, the current number of threads that are locking the mutex in shared mode. For a relockable mutex, the number of times the mutex was
locked or relocked by the thread that is holding the mutex.

waiter
List of IDs of the threads that are waiting for this mutex

waittime
Amount of time in seconds that the thread is waiting

Copyright© 2020 HCL Technologies Limited

onstat -g wst command: Print wait statistics for threads

Use the onstat -g wst command to show the wait statistics for the threads within the system.

The WSTATS configuration parameter must be set to 1 to enable wait statistics collection. For more information, see WSTATS configuration parameter .

Syntax:

>>-onstat-- -g--wst--><

Example output
Version 11.70.F -- On-Line -- Up 18:52:59 -- 78856 Kbytes
name tid state n avg(us) max(us)
msc vp 0 5 ready 6 9 17
msc vp 0 5 run 6 1107 2215
msc vp 0 5 IO Idle 5 2985.9s 1496.1s

main_loo 7 IO Wait 55 6496 16725
main_loo 7 yield time 44929 1.2s 343.1s
main_loo 7 ready 44998 206085 343.1s
main_loo 7 run 44985 5 436

Part VI: Administering 799

https://www.hcltech.com/
https://www.hcltech.com/

...

sqlexec 63 IO Wait 2 1118 2165
sqlexec 63 other cond 6 34237 204142
sqlexec 63 ready 9 7 16
sqlexec 63 run 7 1.1s 7.7s

Output description
name (string)

Thread name
tid (decimal)

Thread ID
state (string)

State the thread waited in for this line of output. A single thread can have multiple lines of output if it waited in more than one state. Values that can appear in the
state field include:

chkpt cond: The thread waited for a checkpoint condition.
cp mutex: The thread waited for checkpoint mutex to become available.
deadlock mutex: The thread waited for a deadlock mutex to become available.
empty Q: The thread waited for an empty buffer on a queue.
fork: The thread waited for a child thread to run.
full Q: The thread waited for a full buffer on a queue.
IO Idle: The I/O thread was idle.
IO Wait: The thread yielded while it waited for I/O completion.
join wait: The thread waited for another thread to exit.
lock mutex: The thread waited for lock mutex to become available.
lockfree mutex: The thread waited for a lock-free mutex to become available.
logflush: Logical log flushing occurred.
log mutex: The thread waited for logical log mutex to become available.
logcopy cond: The thread waited for logical log copy condition.
logio cond: The thread waited for a logical log condition.
lrus mutex: The thread waited for a buffer LRU mutex to become available.
misc: The thread waited for a miscellaneous reason.
other cond: The thread waited for an internal condition.
other mutex: The thread waited for an internal system mutex to become available.
other yield: The thread yielded for an internal reason.
OS read: The thread waited for an operating system read call to complete.
OS write: The thread waited for an operating system write call to complete.
ready: The thread was ready to run.
run: The thread ran.
sort io: The thread waited for sort I/O completion.
vp mem sync: The thread waited for synchronization of virtual processor memory.
yield bufwait: The thread yielded while it waited for a buffer to become available.
yield 0: The thread yielded with an immediate timeout.
yield time: The thread yielded with a timeout.
yield forever: The thread yielded and stays that way until it wakes up.

n (decimal)
Number of times the thread waited in this state

avg(us) (floating point)
Average user time the thread spent waiting in this state per wait occurrence. Time is in microseconds; an s after the value indicates user time in seconds.

max(us) (floating point)
Maximum user time the thread spent waiting in this state for a single wait occurrence. Time is in microseconds; an s after the value indicates user time in seconds.

Related reference:
 onstat -g ath command: Print information about all threads

Related information:
 WSTATS configuration parameter

Copyright© 2020 HCL Technologies Limited

onstat -G command: Print TP/XA transaction information

Use the onstat -G command to display information about global transactions generated through the TP/XA library.

Syntax:

>>-onstat-- -G---><

Example output
Figure 1. onstat -G command output

Global Transaction Identifiers
address flags isol timeout fID gtl bql data dbpartnum

800 Part VI: Administering

https://www.hcltech.com/

45cb0318 -LH-G COMMIT 0 4478019 2 2 30323032 100163

For a tightly coupled transaction, all branches share the same transaction address shown in the address column.

Output description
address

Transaction address
flags

Flag codes for position 1 (current transaction state):

A
User thread attached to the transaction

S
TP/XA suspended transaction

C
TP/XA waiting for rollback

Flag codes for position 2 (transaction mode):

T
Tightly-coupled mode (MTS)

L
Loosely-coupled mode (default mode)

Flag codes for position 3 (transaction stage):

B
Begin work

P
Distributed query prepared for commit

X
TP/XA prepared for commit

C
Committing or committed

R
Rolling back or rolled back

H
Heuristically rolling back or rolled back

Flag code for position 4:

X
XA data source global transaction

Flag codes for position 5 (type of transaction):

G
Global transaction

C
Distributed query coordinator

S
Distributed query subordinate

B
Both distributed query coordinator and subordinate

M
Redirected global transaction

isol
Transaction isolation level

timeout
Transaction lock timeout

fID
Format ID

gtl
Global transaction ID length

bql
Branch qualifier length

data
Transaction-specific data

dbpartnum
Database identifier of where the transaction starts

Related reference:
 IFX_XA_UNIQUEXID_IN_DATABASE configuration parameter

Copyright© 2020 HCL Technologies Limited

onstat -h command: Print buffer header hash chain information

Part VI: Administering 801

https://www.hcltech.com/

Use the onstat -h command to display information about the buffer header hash chains (sometimes called "hash buckets") that are used to access pages in each buffer
pool.

Syntax:

>>-onstat-- -h---><

Example output
The output is displayed in the form of a numeric histogram of chain lengths, with summary information for each buffer pool. All numeric values in the output are decimal.
Shorter hash chains enable requested buffers to be located more quickly by the server, because on average it will need to check fewer buffer headers on a target chain to
find the target buffer.

The page size of the buffer pool in bytes is shown as a header to the output for each buffer pool. The histogram and summary information are then presented for that
buffer pool.

Figure 1. onstat -h command output

Buffer pool page size: 2048

buffer hash chain length histogram
 # of chains of len
 3423 0
 4546 1
 223 2
 8192 total chains
 4992 hashed buffs
 5000 total buffs

Buffer pool page size: 4096

buffer hash chain length histogram
 # of chains of len
 707 0
 315 1
 2 2
 1024 total chains
 319 hashed buffs
 1000 total buffs

Output description
Histogram Information on Hash Chains

The histogram information has a row for each buffer hash chain length that presently exists in the system. Each row has two columns:

of chains
Number of hash chains of the given length

of len
Length of these chains

Summary Information Per Buffer Pool

total chains
Number of hash chains that exist for this buffer pool

hashed buffs
Number of buffer headers currently hashed into the hash chains for this buffer pool

total buffs
Total number of buffers in this buffer pool

Copyright© 2020 HCL Technologies Limited

onstat -i command: Initiate interactive mode

Use the onstat -i command to put the onstat utility in the interactive mode.

Syntax:

>>-onstat-- -i--+-------------+--------------------------------><
 +-r--seconds--+
 '-rz--seconds-'

In interactive mode, you can enter multiple onstat options per session, but only one at a time. An onstat prompt appears and allows you to enter an option.

Important: In interactive mode, do not precede the option with a dash.

Additional options

802 Part VI: Administering

https://www.hcltech.com/

Two additional options, onstat r seconds and onstat rz seconds, are available in interactive mode. The onstat r seconds option is similar to the current onstat -r seconds
option, which repeatedly generates a display. If an administrator executes onstat r seconds at the interactive-mode prompt, the prompt changes to reflect the specified
interval in seconds and reappears, waiting for the next command. In the following example, the display generated by the next command repeats every three seconds:

onstat> r 3
onstat[3]>

The onstat rz seconds option enables you to repeat the next command as specified and set all profile counters to 0 between each execution.

Terminating interactive mode or repeating sequence
To terminate the interactive mode, press CTRL-d.

To terminate a repeating sequence, press CTRL-c.

Copyright© 2020 HCL Technologies Limited

onstat -j command: Provide onpload status information

Use the onstat -j command to provide information about the status of an onpload job.

The onstat -j command provides an interactive mode that is analogous to the onstat -i command.

Syntax:

>>-onstat-- -j---><

When onpload starts, it writes a series of messages to stdout or to a log file. The following lines show a typical onpload log file:

Mon Jul 23 16:11:30 2010

SHMBASE 0x4400000
CLIENTNUM 0x49010000
Session ID 1

Load Database -> cnv001
Load Table -> cnv001a
Load File -> testrec.dat
Record Mapping -> cnv001a

Database Load Completed -- Processed 50 Records
Records Inserted-> 50
Detected Errors--> 0
Engine Rejected--> 0

Mon Jul 23 16:11:37 2010

Output description
The two lines that start with SHMBASE and CLIENTNUM provide the information that you need to locate shared memory for an instance of onpload. The oninit process
has similar values stored in the $ONCONFIG file. When you use the onstat utility to gather information about the oninit process, the onstat utility uses information from
$INFORMIXDIR/etc/$ONCONFIG file to locate shared memory. When you use onstat to gather information about onpload, you must give the onstat utility the name of a
file that contains SHMBASE and CLIENTNUM information.

Typically the file that contains the SHMBASE and CLIENTNUM information is the log file. For example, if the onpload log file is /tmp/cnv001a.log, you can enter the
following command:

onstat -j /tmp/cnv001a.log

The previous command causes the onstat utility to attach to onpload shared memory and to enter interactive mode. You can then enter a question mark (?) or any other
pseudo request to see a usage message displayed. An example follows:

onstat> ?
Interactive Mode: One command per line, and - are optional.
 -rz repeat option every n seconds (default: 5) and
 zero profile counts
 MT COMMANDS:
 all Print all MT information
 ath Print all threads
 wai Print waiting threads
 act Print active threads
 rea Print ready threads
 sle Print all sleeping threads
 spi print spin locks with long spins
 sch print VP scheduler statistics
 lmx Print all locked mutexes
 wmx Print all mutexes with waiters
 con Print conditions with waiters
 stk <tid> Dump the stack of a specified thread
 glo Print MT global information
 mem <pool name|session id> print pool statistics.
 seg Print memory segment statistics.
 rbm print block map for resident segment
 nbm print block map for non-resident segments

Part VI: Administering 803

https://www.hcltech.com/

 afr <pool name|session id> Print allocated poolfragments.
 ffr <pool name|session id> Print free pool fragments.
 ufr <pool name|session id> Print pool usage breakdown
 iov Print disk IO statistics by vp
 iof Print disk IO statistics by chunk/file
 ioq Print disk IO statistics by queue
 iog Print AIO global information
 iob Print big buffer usage by IO VP
 sts Print max and current stack sizes
 qst print queue statistics
 wst print thread wait statistics
 jal Print all Pload information
 jct Print Pload control table
 jpa Print Pload program arguments
 jta Print Pload thread array
 jmq Print Pload message queues, jms for summary only
onstat>

Most of the options are the same as those that you use to gather information about Informix®, with the following exceptions:

jal Print all Pload information
jct Print Pload control table
jpa Print Pload program arguments
jta Print Pload thread array
jmq Print Pload message queues, jms for summary only

These options apply only to onpload. You can use the onstat -j command to check the status of a thread, locate the VP and its PID, and then attach a debugger to a
particular thread. The options for the onstat utility that do not apply to onpload are not available (for example, onstat -g ses).

Copyright© 2020 HCL Technologies Limited

onstat -k command: Print active lock information

Use the onstat -k command to print information about active locks, including the address of the lock in the lock table.

Syntax:

>>-onstat-- -k---><

Example output
The maximum number of locks available is specified by the value of the LOCKS configuration parameter in the onconfig file.

Figure 1. onstat -k command output

Locks
address wtlist owner lklist type tblsnum rowid key#/bsiz
a095f78 0 a4d9e68 0 HDR+S 100002 203 0
 1 active, 2000 total, 2048 hash buckets, 0 lock table overflows

In the following output, the number 2 in the last row shows an Enterprise Replication pseudo lock:

Locks
address wtlist owner lklist type tblsnum rowid key#/bsiz
a1993e8 0 5c2f03d0 a19be30 S 2 1c05a 0

Output description
address

Is the address of the lock in the lock table
If a user thread is waiting for this lock, the address of the lock shows in the wait field of the onstat -u (users) output.

wtlist
Is the first entry in the list of user threads that is waiting for the lock, if there is one

owner
Is the shared-memory address of the thread that is holding the lock
This address corresponds to the address in the address field of onstat -u (users) output. When the owner value is displayed in parentheses, it represents the
shared memory address of a transaction structure. This scenario is possible only when a lock is allocated for a global transaction. This address corresponds to the
address field of the output for onstat -G.

lklist
Is the next lock in a linked list of locks that are held by the owner listed

type
Uses the following codes to indicate the type of lock:

HDR
Header

B
Bytes

S
Shared

X

804 Part VI: Administering

https://www.hcltech.com/

Exclusive
I

Intent
U

Update
IX

Intent-exclusive
IS

Intent-shared
SIX

Shared, intent-exclusive

tblsnum
Is the tblspace number of the locked resource. If the number is less than 10000, it indicates Enterprise Replication pseudo locks.

rowid
Is the row identification number
The rowid provides the following lock information:

If the rowid equals zero, the lock is a table lock.
If the rowid ends in two zeros, the lock is a page lock.
If the rowid is six digits or fewer and does not end in zero, the lock is probably a row lock.
If the rowid is more than six digits, the lock is probably an index key-value lock.

key#/bsiz
Is the index key number, or the number of bytes locked for a VARCHAR lock
If this field contains 'K-' followed by a value, it is a key lock. The value identifies which index is being locked. For example, K-1 indicates a lock on the first index that
is defined for the table.

Related reference:
 LOCKS configuration parameter

Copyright© 2020 HCL Technologies Limited

onstat -l command: Print physical and logical log information

Use the onstat -l command to display information about the physical logs, logical logs, and temporary logical logs.

Syntax:

>>-onstat-- -l---><

Example Output
Figure 1. onstat -l command output

Physical Logging
Buffer bufused bufsize numpages numwrits pages/io
 P-1 0 16 716 55 13.02
 phybegin physize phypos phyused %used
 1:263 500 270 0 0.00

Logical Logging
Buffer bufused bufsize numrecs numpages numwrits recs/pages pages/io
 L-3 0 16 42169 2872 1043 14.7 2.8
 Subsystem numrecs Log Space used
 OLDRSAM 42169 4436496

address number flags uniqid begin size used %used
a517f70 1 U-B---- 1 1:763 500 500 100.00
a517fb0 2 U-B---- 2 1:1263 500 500 100.00
a40daf0 3 U-B---- 3 1:1763 500 500 100.00
a40db30 4 U-B---- 4 1:2263 500 500 100.00
a40db70 5 U-B---- 5 1:2763 500 500 100.00
a40dbb0 6 U---C-L 6 1:3263 500 372 74.40
a40dbf0 7 A------ 0 1:3763 500 0 0.00
a40dc30 8 A------ 0 1:4263 500 0 0.00
 8 active, 8 total

Output description for the physical log files
The first section of the display describes the physical-log configuration:

buffer
Is the number of the physical-log buffer

bufused
Is the number of pages of the physical-log buffer that are used

bufsize
Is the size of each physical-log buffer in pages

numpages
Is the number of pages written to the physical log

Part VI: Administering 805

https://www.hcltech.com/

numwrits
Is the number of writes to disk

pages/io
Is calculated as numpages/numwrits
This value indicates how effectively physical-log writes are being buffered.

phybegin
Is the physical page number of the beginning of the log

physize
Is the size of the physical log in pages

phypos
Is the current position in the log where the next log-record write is to occur

phyused
Is the number of pages used in the log

%used
Is the percent of pages used

The second section of the onstat -l command output describes the logical-log configuration:

buffer
Is the number of the logical-log buffer

bufused
Is the number of pages used in the logical-log buffer

bufsize
Is the size of each logical-log buffer in pages

numrecs
Is the number of records written

numpages
Is the number of pages written

numwrits
Is the number of writes to the logical log

recs/pages
Is calculated as numrecs/numpages
You cannot affect this value. Different types of operations generate different types (and sizes) of records.

pages/io
is calculated as numpages/numwrits
You can affect this value by changing the size of the logical-log buffer (specified as LOGBUFF in the ONCONFIG file) or by changing the logging mode of the
database (from buffered to unbuffered, or vice versa).

The following fields are repeated for each logical-log file:

address
Is the address of the log-file descriptor

number
Is logid number for the logical-log file
The logid numbers might be out of sequence because either the database server or administrator can insert a log file in-line.

flags
Provides the status of each log as follows:

A
Newly added (and ready to use)

B
Backed up

C
Current® logical-log file

D
Marked for deletion
To drop the log file and free its space for reuse, you must perform a level-0 backup of all storage spaces

F
Free, available for use

L
The most recent checkpoint record

U
Used

uniqid
Is the unique ID number of the log

begin
Is the beginning page of the log file

size
Is the size of the log in pages

used
Is the number of pages used

%used
Is the percent of pages used

active
Is the number of active logical logs

total
Is the total number of logical logs

806 Part VI: Administering

Output description for temporary logical log files
The database server uses temporary logical logs during a warm restore because the permanent logs are not available then. The following fields are repeated for each
temporary logical-log file:

address
Is the address of the log-file descriptor

number
Is logid number for the logical-log file

flags
Provides the status of each log as follows:

B
Backed up

C
Current logical-log file

F
Free, available for use

U
Used

uniqid
Is the unique ID number of the log

begin
Is the beginning page of the log file

size
Is the size of the log in pages

used
Is the number of pages used

%used
Is the percent of pages used

active
Is the number of active temporary logical logs

Related reference:
 LOGBUFF configuration parameter

PHYSBUFF configuration parameter

Copyright© 2020 HCL Technologies Limited

onstat -L command: Print the number of free locks

Use the onstat -L command to print the number of free locks on a lock-free list.

Syntax:

>>-onstat-- -L---><

Example output
Figure 1. onstat -L output

num list head available locks
0 10a143b70 19996
1 101010101 200
3 020202020 300

Output description
num

The list number
list head

The starting address of the list
available locks

The number of locks on this list

Copyright© 2020 HCL Technologies Limited

onstat -m command: Print recent system message log information

Use the onstat -m command to display the 20 most recent lines of the system message log.

You can use the onstat -m command option with the database server in any mode, including offline.

Part VI: Administering 807

https://www.hcltech.com/
https://www.hcltech.com/

Syntax:

>>-onstat-- -m---><

Example output
Output from this command lists the full pathname of the message log file and the 20 file entries. A date-and-time header separates the entries for each day. A time stamp
prefaces single entries within each day. The name of the message log is specified as MSGPATH in the ONCONFIG file.

Figure 1. onstat -m command output

Message Log File: /work/11.50/dbspaces/star3.log
11:26:33 Checkpoint Completed: duration was 0 seconds.
11:26:33 Checkpoint loguniq 1, logpos 0x23c408, timestamp: 0x2cc2 Interval: 9

Copyright© 2020 HCL Technologies Limited

onstat -o command: Output shared memory contents to a file

Use the onstat -o command to write the contents of shared memory to a specified file for later analysis. If you do not specify an output file, a file named onstat.out is
created in the current directory.

Syntax:

>>-onstat-- -o--+---------+----+---------+---------------------><
 +-nobuffs-+ '-outfile-'
 '-full----'

Use the nobuffs option to exclude the buffer pool in the resident segment of shared memory from the output file. This results in a smaller output file.

Use the full option to create an output file that is the same size as the shared memory segments for the IBM® Informix® instance. You must have enough room in the file
system to handle the output.

If you do not specify either the nobuffs or the full option, the output is controlled by the database server DUMPSHMEM configuration parameter setting:

If DUMPSHMEM is set to 0 or to 1, onstat -o command writes a full shared-memory dump file.
If DUMPSHMEM is set to 2, onstat -o command writes a nobuffs shared-memory dump file that excludes the buffer pool in the resident segment.

By running additional onstat commands against the file, you can gather information from a previously saved shared memory dump. The outfile that you create with the
onstat -o command is the infile that you can use as a source file to run the additional onstat commands. For more information, see Running onstat Commands on a Shared
Memory Dump File.

Related reference:
 DUMPSHMEM configuration parameter (UNIX)

Copyright© 2020 HCL Technologies Limited

onstat -p command: Print profile counts

Use the onstat -p command to display information about profile counts either since you started the database server or since you ran the onstat -z command.

Syntax:

>>-onstat-- -p---><

Example output
Figure 1. onstat -p command output

Profile
dskreads pagreads bufreads %cached dskwrits pagwrits bufwrits %cached
16934 47321 203600361 99.99 103113 158697 950932 89.16

isamtot open start read write rewrite delete commit rollbk
139214865 9195777 12257208 94191268 362691 55696 38134 128294 24

gp_read gp_write gp_rewrt gp_del gp_alloc gp_free gp_curs
39 2 27 51 0 0 16

ovlock ovuserthread ovbuff usercpu syscpu numckpts flushes
0 0 0 1551.59 144.82 1822 1822

bufwaits lokwaits lockreqs deadlks dltouts ckpwaits compress seqscans
176 1 195872383 0 0 1 39331 1259170

808 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

ixda-RA idx-RA da-RA logrec-RA RA-pgsused lchwaits
0 7594 2124 0 2002 18848

Output description
The first portion of the output describes reads and writes.

Reads and writes are tabulated in three categories: from disk, from buffers, and number of pages (read or written).

The first %cached field is a measure of the number of reads from buffers compared to reads from disk. The second %cached field is a measure of the number of writes to
buffers compared to writes to disk.

The database server buffers the information and writes the information to the disk in pages. For this reason, the number of disk writes displayed as dskwrits is usually
less than the number of writes that an individual user runs:

dskreads
The number of actual reads from disk

pagreads
The number of pages read

bufreads
Is the number of reads from shared memory

%cached
The percent of reads cached in the buffer pool.
If bufreads exceeds the maximum integer (or long) value, its internal representation becomes a negative number, but the value appears as 0.0.

dskwrits
The actual number of physical writes to disk
This number includes the writes for the physical and logical logs reported in onstat -l .

pagwrits
The number of pages written

bufwrits
The number of writes to shared memory

%cached
The percent of writes cached in the buffer pool.

The next portion of the -p display tabulates the number of times different ISAM calls were executed. The calls occur at the lowest level of operation and do not necessarily
correspond one-to-one with SQL statement execution. A single query might generate multiple ISAM calls. These statistics are gathered across the database server and
cannot be used to monitor activity on a single database unless only one database is active or only one database exists:

isamtot
The total number of calls

open
Increments when a tblspace is opened

start
Increments the pointer within an index

read
Increments when the read function is called

write
Increments with each write call

rewrite
Increments when an update occurs

delete
Increments when a row is deleted

commit
Increments each time that an iscommit() call is made
No one-to-one correspondence exists between this value and the number of explicit COMMIT WORK statements that are executed.

rollbk
Increments when a transaction is rolled back

The next portion of the onstat -p command output displays information about generic pages. The Generic Page Manager provides an API for Informix® to manage
nonstandard pages in the database server buffer pool. The following table describes the Generic Page Manager fields in the onstat -p command output.

gp_read
The number of generic page reads

gp_write
The number of generic page writes

gp_rewrt
The number of generic page updates

gp_del
The number of generic page deletes

gp_alloc
The number of generic page allocations

gp_free
The number of generic pages freed and returned to tblspaces

gp_curs
The number of cursors used against generic pages

The next portion of the onstat -p command output displays the number of times that a resource was requested when none was available:

ovlock
Number of times that sessions attempted to exceed the maximum number of locks

Part VI: Administering 809

For more information, see “LOCKS” on page 1-56.

ovuserthread
The number of times that a user attempted to exceed the maximum number of user threads

ovbuff
The number of times that the database server did not find a free shared-memory buffer
When no buffers are free, the database server writes a dirty buffer to disk and then tries to find a free buffer.

usercpu
Is the total user CPU time that all user threads use, expressed in seconds
This entry is updated every 15 seconds.

syscpu
The total system CPU time that all user threads use, expressed in seconds
This entry is updated every 15 seconds.

numckpts
The number of checkpoints since the boot time

flushes
The number of times that the buffer pool wasflushed to the disk

The next portion of the onstat -p command output contains miscellaneous information, as follows:

bufwaits
Increments each time that a user thread must wait for a buffer

lokwaits
Increments each time that a user thread must wait for a lock

lockreqs
Increments each time that a lock is requested

deadlks
Increments each time that a potential deadlock is detected and prevented

dltouts
Increments each time that the distributed deadlock time-out value is exceeded while a user thread is waiting for a lock

ckpwaits
Is the number of checkpoint waits

compress
Increments each time that a data page is compressed

seqscans
Increments for each sequential scan

*
The last portion of the onstat -p command output contains the following information:

ixda-RA
The count of read-aheads that go from index leaves to data pages

idx-RA
The count of read-aheads that traverse index leaves

da-RA
The count of data-path-only scans

logrec-RA
The log records that the database server read ahead

RA-pgsused
The number of pages used that the database server read ahead

lchwaits
Stores the number of times that a thread was required to wait for a shared-memory latch
Many latch waits typically results from a high volume of processing activity in which the database server is logging most of the transactions.

Related reference:
 DEADLOCK_TIMEOUT configuration parameter

Copyright© 2020 HCL Technologies Limited

onstat -P command: Print partition information

Use the onstat -P command to display the partition number and the pages in the buffer pool for all of the partitions.

Syntax:

>>-onstat-- -P---><

For information about running onstat -P on a dump file created without the buffer pool, see Running onstat Commands on a Shared Memory Dump File.

Example output
Figure 1. onstat -P command output

Buffer pool page size: 2048
partnum total btree data other dirty
0 36 1 8 27 0

810 Part VI: Administering

https://www.hcltech.com/

1048577 2 0 0 2 0
1048578 4 1 1 2 0
1048579 23 10 12 1 0
1048580 68 31 36 1 0
4194309 3 0 1 2 0

Totals: 3000 786 1779 435 0
Percentages:
Data 59.30
Btree 26.20
Other 14.50

Buffer pool page size: 8192
partnum total btree data other dirty
0 999 0 0 999 0
5242881 1 0 0 1 0

Totals: 1000 0 0 1000 0
Percentages:
Data 0.00
Btree 0.00
Other 100.00

Output description
Buffer pool page size

The size, in bytes, of the buffer pool pages.
partnum

The partition number.
total

The total number of partitions.
btree

The number of B-tree pages in the partition.
data

The number of data pages in the partition.
other

The number of other pages in the partition.
dirty

The number of dirty pages in the partition.

Copyright© 2020 HCL Technologies Limited

onstat -r command: Repeatedly print selected statistics

Use the onstat -r command to repeatedly print the statistics for other options specified in the command at specified intervals.

Syntax:

>>-onstat-- -r--+------------------------+---------------------><
 +-seconds--other_options-+
 '-other_options----------'

Use the onstat -r seconds other_options command to specify the seconds to repeat the other option.

Use onstat -r other_options command to have the option repeat every five seconds, which allows the other options to be concatenated with the -r option, as in this
example: onstat -rFh.

The onstat -r command can be used in both command mode and interactive mode, and can be useful for repeating command output to monitor system resource
utilization.

Example output running the onstat -r command every five seconds
Figure 1. command output

onstat -r

IBM Informix Dynamic Server Version 11.70.F -- On-Line -- Up 20:05:25 -- 1067288 Kbytes

IBM Informix Dynamic Server Version 11.70.F -- On-Line -- Up 20:05:30 -- 1067288 Kbytes

IBM Informix Dynamic Server Version 11.70.F -- On-Line -- Up 20:05:35 -- 1067288 Kbytes

Example output running the onstat -r command every ten seconds
Figure 2. command output

onstat -r 10

IBM Informix Dynamic Server Version 11.50.F -- On-Line -- Up 20:06:58 -- 1067288 Kbytes

Part VI: Administering 811

https://www.hcltech.com/

IBM Informix Dynamic Server Version 11.50.F -- On-Line -- Up 20:07:08 -- 1067288 Kbytes

IBM Informix Dynamic Server Version 11.50.F -- On-Line -- Up 20:07:18 -- 1067288 Kbytes

Example output running the onstat -r every one second, with the -h option
Figure 3. onstat -r 1 -h command output

onstat -r 1 -h

Buffer pool page size: 2048

buffer hash chain length histogram
 # of chains of len
 3841 0
 3767 1
 522 2
 62 3
 8192 total chains
 4351 hashed buffs
 5000 total buffs

Buffer pool page size: 2048

buffer hash chain length histogram
 # of chains of len
 4020 0
 3392 1
 735 2
 43 3
 2 4
 8192 total chains
 4172 hashed buffs
 5000 total buffs

Example output running the onstat -r command every five seconds, with the -Fh options
Figure 4. onstat -rFh command output

onstat -rFh

Fg Writes LRU Writes Chunk Writes
0 0 21

address flusher state data # LRU Chunk Wakeups Idle Tim
460e6820 0 I 0 0 2 5 9.820
 states: Exit Idle Chunk Lru

Buffer pool page size: 2048

buffer hash chain length histogram
 # of chains of len
 6342 0
 1850 1
 8192 total chains
 1850 hashed buffs
 5000 total buffs

Fg Writes LRU Writes Chunk Writes
0 0 21

address flusher state data # LRU Chunk Wakeups Idle Tim
460e6820 0 I 0 0 2 10 22.755
 states: Exit Idle Chunk Lru

Buffer pool page size: 2048

buffer hash chain length histogram
 # of chains of len
 4396 0
 3796 1
 8192 total chains
 3796 hashed buffs
 5000 total buffs

Copyright© 2020 HCL Technologies Limited

onstat -R command: Print LRU, FLRU, and MLRU queue information

Use the onstat -R command to display detailed information about the LRU queues, FLRU queues, and MLRU queues. For each queue, the onstat -R command displays the
number of buffers in the queue and the number and percentage of buffers that have been modified.

812 Part VI: Administering

https://www.hcltech.com/

For an in-depth discussion of the three types of queues, see LRU queues in the shared-memory chapter of the IBM® Informix® Administrator's Guide.

Syntax:

>>-onstat-- -R---><

Example output
Figure 1. onstat -R command output

 Buffer pool page size: 2048
 8 buffer LRU queue pairs priority levels
 # f/m pair total % of length LOW HIGH
 0 f 375 100.0% 375 375 0
 1 m 0.0% 0 0 0
 2 f 375 100.0% 375 375 0
 3 m 0.0% 0 0 0
 4 f 375 100.0% 375 375 0
 5 m 0.0% 0 0 0
 6 F 375 100.0% 375 375 0
 7 m 0.0% 0 0 0
 8 f 375 100.0% 375 375 0
 9 m 0.0% 0 0 0
 10 f 375 100.0% 375 375 0
 11 m 0.0% 0 0 0
 12 f 375 100.0% 375 375 0
 13 m 0.0% 0 0 0
 14 f 375 100.0% 375 375 0
 15 m 0.0% 0 0 0
 0 dirty, 3000 queued, 3000 total, 4096 hash buckets, 2048 buffer size
 start clean at 60.000% (of pair total) dirty, or 226 buffs dirty, stop at
 50.000%
 Buffer pool page size: 8192
 4 buffer LRU queue pairs priority levels
 # f/m pair total % of length LOW HIGH
 0 F 250 100.0% 250 250 0
 1 m 0.0% 0 0 0
 2 f 250 100.0% 250 250 0
 3 m 0.0% 0 0 0
 4 f 250 100.0% 250 250 0
 5 m 0.0% 0 0 0
 6 f 250 100.0% 250 250 0
 7 m 0.0% 0 0 0
 0 dirty, 1000 queued, 1000 total, 1024 hash buckets, 8192 buffer size
 start clean at 60.000% (of pair total) dirty, or 150 buffs dirty, stop at
 50.000%

Output description
Buffer pool page size

Is the page size of the buffer pool in bytes
#

Shows the queue number
Each LRU queue is composed of two subqueues: an FLRU queue and a MLRU queue. (For a definition of FLRU and MLRU queues, see LRU queues in the shared-
memory chapter of the IBM Informix Administrator's Guide.) Thus, queues 0 and 1 belong to the first LRU queue, queues 2 and 3 belong to the second LRU queue,
and so on.

f/m
Identifies queue type
This field has four possible values:

f
Free LRU queue
In this context, free means not modified. Although nearly all the buffers in an LRU queue are available for use, the database server attempts to use buffers
from the FLRU queue rather than the MLRU queue. (A modified buffer must be written to disk before the database server can use the buffer.)

F
Free LRU with fewest elements
The database server uses this estimate to determine where to put unmodified (free) buffers next.

m
MLRU queue

M
MLRU queue that a flusher is cleaning

length
Tracks the length of the queue measured in buffers

% of
Shows the percent of LRU queue that this subqueue composes
For example, suppose that an LRU queue has 50 buffers, with 30 of those buffers in the MLRU queue and 20 in the FLRU queue. The % of column would list
percents of 60.00 and 40.00, respectively.

pair total
Provides the total number of buffers in this LRU queue

priority levels

Part VI: Administering 813

Displays the priority levels: LOW, MED_LOW, MED_HIGH, HIGH

The onstat -R command also lists the priority levels.

Summary information follows the individual LRU queue information. You can interpret the summary information as follows:

dirty
Is the total number of buffers that have been modified in all LRU queues

queued
Is the total number of buffers in LRU queues

total
Is the total number of buffers

hash buckets
Is the number of hash buckets

buffer size
Is the size of each buffer

start clean
Is the value specified in the lru_max_dirty field of the BUFFERPOOL configuration parameter

stop at
Is the value specified in the lru_min_dirty field of the BUFFERPOOL configuration parameter

priority downgrades
Is the number of LRU queues downgraded to a lower priority.

priority upgrades
Is the number of LRU queues upgraded to a higher priority.

Copyright© 2020 HCL Technologies Limited

onstat -s command: Print latch information

Use the onstat -s command to display general latch information, including the resource that the latch controls.

Syntax:

>>-onstat-- -s---><

Example output
Figure 1. onstat -s command output

IBM Informix Dynamic Server Version 14.10.F -- On-Line (CKPT REQ)
-- Up 00:19:21 -- 167608 Kbytes
Blocked:CKPT

Latches with lock or userthread set
name address lock wait userthread
physlog 4410d5a8 0 0 45a616b8

Output description
name

Identifies the resource that the latch controls with the following abbreviations:

archive
Storage-space backup

bf
Buffers

bh
Hash buffers

chunks
Chunk table

ckpt
Checkpoints

dbspace
Dbspace table

flushctl
Page-flusher control

flushr
Page cleaners

locks
Lock table

loglog
Logical log

LRU
LRU queues

physb1
First physical-log buffer

physb2

814 Part VI: Administering

https://www.hcltech.com/

Second physical-log buffer
physlog

Physical log
pt

Tblspace tblspace
tblsps

Tblspace table
users

User table

address
Is the address of the latch
This address appears in the onstat -u (users) command output wait field if a thread is waiting for the latch.

lock
Indicates if the latch is locked and set
The codes that indicate the lock status (1 or 0) are computer dependent.

wait
Is the shared-memory address of the user thread that is waiting for a latch, or is blank when no user threads are waiting

userthread
Is the shared-memory address of the user thread that holds the latch
This address corresponds to the value in the tcb column of the onstat -g ath output. You can compare this address with the user addresses in the onstat -u output
to obtain the user-process identification number.

Copyright© 2020 HCL Technologies Limited

onstat -t and onstat -T commands: Print tblspace information

Use the onstat -t command to display tblspace information for active tblspaces. Use the onstat -T command to display tblspace information for all tblspaces.

The onstat -t command also lists the number of active tblspaces and the total number of tblspaces.

Syntax:

>>-onstat--+- -t-+---><
 '- -T-'

Example output
Figure 1. onstat -t command output

Tblspaces
 n address flgs ucnt tblnum physaddr npages nused npdata nrows nextns
62 a40dc70 0 1 100001 1:14 250 250 0 0 1
195 ac843e0 0 1 1000df 1:236 16 9 4 53 2
 2 active, 221 total

Output description
n

Is a counter of open tblspaces
address

Is the address of the tblspace in the shared-memory tblspace table
flgs

Uses the following flag bits to describe the flag:

0x00000002
Flush the partition info at the next checkpoint.

0x00000004
Drop partition is in progress.

0x00000008
Partition is a pseudo partition (sysmaster).

0x00000020
ALTER TABLE is in progress.

0x00000040
Partition has been dropped.

0x00000800
Partition is the system temp table.

0x00001000
Partition is the user temp table.

0x00008000
Online index create or drop in progress.

0x00400000
A single user access to the partition is requested.

0x00800000
Drop partition is completed.

Part VI: Administering 815

https://www.hcltech.com/

0x40000000
Flush the partition info. The partition flush can be delayed until later in the checkpoint process.

ucnt
Is the usage count, which indicates the number of user threads currently accessing the tblspace

tblnum
Is the tblspace number expressed as a hexadecimal value
The integer equivalent appears as the partnum value in the systables system catalog table.

physaddr
Is the physical address (on disk) of the tblspace

npages
Is the number of pages allocated to the tblspace

nused
Is the number of used pages in the tblspace

npdata
Is the number of data pages used

nrows
Is the number of data rows used

nextns
Is the number of noncontiguous extents allocated
This number is not the same as the number of times that a next extent has been allocated.

Copyright© 2020 HCL Technologies Limited

onstat -u command: Print user activity profile

Use the onstat -u command to display a profile of user activity.

Syntax:

>>-onstat-- -u---><

Example output
Figure 1. onstat -u command output

Userthreads
address flags sessid user tty wait tout locks nreads nwrites
a4d8018 ---P--D 1 informix - 0 0 0 58 4595
a4d8628 ---P--F 0 informix - 0 0 0 0 2734
a4d8c38 ---P--- 5 informix - 0 0 0 0 1
a4d9248 ---P--B 6 informix - 0 0 0 40 0
a4d9858 ---P--D 7 informix - 0 0 0 0 0
a4d9e68 Y--P--- 21 niraj - a65e5a8 0 1 0 0
 6 active, 128 total, 7 maximum concurrent

Output description
The -u option displays the following output for each user thread.

address
The shared-memory address of the user thread in the user table.
Compare this address with the addresses displayed in the output from the -s option (latches); the output from the -b, -B, and -X options (buffers); and the output
from the -k option (locks) to learn what resources this thread is holding or waiting for.

flags
Provides the status of the session.
The flag codes for position 1:

B
Waiting for a buffer

C
Waiting for a checkpoint

G
Waiting for a write of the logical-log buffer

L
Waiting for a lock

S
Waiting for mutex

T
Waiting for a transaction

Y
Waiting for condition

X
Waiting for a transaction cleanup (rollback)

DEFUNCT
The thread has incurred a serious assertion failure, and has been suspended to allow other threads to continue their work.

816 Part VI: Administering

https://www.hcltech.com/

The flag code for position 2:

*
Transaction active during an I/O failure

The flag code for position 3:

A
A dbspace backup thread

For other values that appear here, see the third position of flag codes for the -x option.

The flag code for position 4:

P
Primary thread for a session

The flag codes for position 5:

R
Reading

X
Thread in critical section

The flag codes for position 6:

R
Thread used in recovery (for example, physical or logical recovery)

-
Thread not used in recovery

The flag codes for position 7:

B
A B-tree cleaner thread

C
Terminated user thread waiting for cleanup

D
A daemon thread

F
A page-cleaner thread

sessid
The session identification number.
During operations such as parallel sorting and parallel index building, a session might have many user threads associated with it. For this reason, the session ID
identifies each unique session.

user
The user login name, which is derived from the operating system

tty
The name of the standard error (stderr) file that the user is using, which is derived from the operating system.
This field is blank on Windows.

wait
If the user thread is waiting for a specific latch, lock, mutex, or condition, this field displays the address of the resource. Use this address to map to information
provided in the output from the -s (latch) option or the -k (lock) option. If the wait is for a persistent condition, run a grep for the address in the output from the
onstat -a command.

tout
The number of seconds left in the current wait
If the value is 0, the user thread is not waiting for a latch or lock. If the value is -1, the user thread is in an indefinite wait.

locks
The number of locks that the user thread is holding
The -k output should include a listing for each lock held.)

nreads
The number of disk reads that the user thread has executed

nwrites
The number of write calls that the user thread has executed
All write calls are writes to the shared-memory buffer cache.

The last line of the onstat -u command output displays the maximum number of concurrent user threads that were allocated since you initialized the database server. For
example, the last line of a sample onstat -u command output is as follows:

4 active, 128 total, 17 maximum concurrent

The last part of the line, 17 maximum concurrent, indicates that the maximum number of user threads that were running concurrently since you initialized the database
server is 17.

The output also indicates the number of active users and the maximum number of users allowed.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 817

https://www.hcltech.com/

onstat -x command: Print database server transaction information

Use the onstat -x command to display transaction information on the database server.

Syntax:

>>-onstat-- -x---><

The transaction information is required only in the following situations:

X/Open environment
Database server participation in distributed queries
Database server uses the Microsoft Transaction Server (MTS) transaction manager

Example output
Figure 1. onstat -x command output

Transactions

address flags userthread locks begin current isol est. retrys coord
 logpos logpos rb_time
a6d8028 A---- a695028 0 - - COMMIT - 0
a6d8348 A---- a695878 0 - - COMMIT - 0
a6d8668 A---- a6960c8 0 - - COMMIT - 0
a6d8988 A---- a696918 0 - - COMMIT - 0
a6d8fc8 A---- a698208 0 - - COMMIT - 0
a6d92e8 A---- a6979b8 0 - - COMMIT - 0
a6d9608 A---- a698a58 0 - - COMMIT - 0
a6d9928 A---- a6992a8 1 - - DIRTY - 0
a6d9c48 A---- a6992a8 0 - - NOTRANS - 0
a6d9f68 A---- a69a348 0 - - COMMIT - 0
a6da288 A---- a69ab98 0 - - COMMIT - 0
a6da5a8 A---- a69b3e8 0 - - COMMIT - 0
a6da8c8 A---- a69bc38 0 - - COMMIT - 0
a6dabe8 A---- a69c488 0 - - COMMIT - 0
a6daf08 A---- a699af8 0 - - COMMIT - 0
a6db228 A---- a6992a8 0 - - COMMIT - 0
a6db548 A---- a69ccd8 1 - - DIRTY - 0
a6db868 A---- a69d528 1 - - DIRTY - 0
a6dbb88 A---- a69ccd8 0 - - COMMIT - 0
a6dbea8 A---- a69dd78 0 - - COMMIT - 0
a6dc1c8 A---- a69e5c8 0 - - COMMIT - 0
a6dc4e8 A-B-- a69ee18 502 33:0x25018 34:0x486fc COMMIT 0:07 0
 22 active, 128 total, 23 maximum concurrent

Output description
You can interpret output from the onstat -x command as follows:

address
The shared-memory address of the transaction structure

flags
The flag codes for position 1 (current transaction state):

A
User thread attached to the transaction

S
TP/XA suspended transaction

C
TP/XA waiting for rollback

The flag codes for position 2 (transaction mode):

T
Tightly-coupled mode (MTS)

L
Loosely-coupled mode (default mode)

The flag codes for position 3 (transaction stage):

B
Begin work

P
Distributed query prepared for commit

X
TP/XA prepared for commit

C
Committing or committed

R
Rolling back or rolled back

H

818 Part VI: Administering

Heuristically rolling back or rolled back

The flag code for position 4:

X
XA transaction

The flag codes for position 5 (type of transaction):

G
Global transaction

C
Distributed query coordinator

S
Distributed query subordinate

B
Both distributed query coordinator and subordinate

M
Redirected global transaction

userthread
The thread that owns the transaction (rstcb address)

locks
The number of locks that the transaction holds

begin logpos
The position within the log when the BEGIN WORK record was logged.

current logpos
The current log position of the most recent record that the transaction is wrote too (As a transaction rolls back, the current log position will actually wind back until
it gets to the beginning log position. When the beginning log position is reached, the rollback is complete.)

isol
The isolation level.

est. rb time
The estimated time the server needs to rollback the transaction. As a transaction goes forward, this time increases. If a transaction rolls back, the time decreases
as the transaction unwinds.

retrys
Are the attempts to start a recovery thread for the distributed query

coord
The name of the transaction coordinator when the subordinate is executing the transaction
This field tells you which database server is coordinating the two-phase commit.

The last line of the onstat -x command output indicates that 8 is the maximum number of concurrent transactions since you initialized the database server.

8 active, 128 total, 8 maximum concurrent

Determine the position of a logical-log record
 Use the onstat -x command to determine the position of a logical-log record.

Determine the mode of a global transaction
 The onstat -x command is useful for determining whether a global transaction is executing in loosely-coupled or tightly-coupled mode.

Copyright© 2020 HCL Technologies Limited

Determine the position of a logical-log record

Use the onstat -x command to determine the position of a logical-log record.

The curlog and logposit fields provide the exact position of a logical-log record. If a transaction is not rolling back, curlog and logposit describe the position of the most
recently written log record. When a transaction is rolling back, these fields describe the position of the most recently “undone” log record. As the transaction rolls back,
the curlog and logposit values decrease. In a long transaction, the rate at which the logposit and beginlg values converge can help you estimate how much longer the
rollback is going to take.

For an onstat -x command example, see monitoring a global transaction in the chapter on multiphase commit protocols in the IBM® Informix® Administrator's Guide.

Copyright© 2020 HCL Technologies Limited

Determine the mode of a global transaction

The onstat -x command is useful for determining whether a global transaction is executing in loosely-coupled or tightly-coupled mode.

The second position of the flags column in the output from the onstat -x command displays the flags for global transactions. The T flag indicates tightly-coupled mode and
the L flag indicates loosely-coupled mode.

Loosely-coupled mode means that the different database servers coordinate transactions but do not share locks. Each branch in a global transaction has a separate
transaction XID. The records from all branches display as separate transactions in the logical log.
Tightly-coupled mode means that the different database servers coordinate transactions and share resources such as locking and logging. In a global transaction,
all branches that access the same database share the same transaction XID. Log records for branches with the same XID appear under the same session ID. MTS
uses tightly-coupled mode.

Part VI: Administering 819

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

onstat -X command: Print thread information

Use the onstat -X command to obtain precise information about the threads that are waiting for buffers.

For each buffer in use, the onstat -X command displays general buffer information that is also available with either the onstat -b or onstat -B commands. For more
information, refer to the onstat -b command in onstat -b command: Print buffer information for buffers in use.

Syntax:

>>-onstat-- -X---><

Example output
Figure 1. onstat -X command output

 Buffers (Access)
 address owner flags pagenum memaddr nslots pgflgs scount waiter
 Buffer pool page size: 2048
 0 modified, 3000 total, 4096 hash buckets, 2048 buffer size
 Buffer pool page size: 8192
 0 modified, 1000 total, 1024 hash buckets, 8192 buffer size

Output description
The onstat -X command has a waiter field to list all user threads that are waiting for the buffer, whereas the onstat -b and onstat -B commands contain a waitlist field
that displays the address of the first user thread that is waiting for the buffer. The maximum number of shared buffers is specified in the buffers field in the BUFFERPOOL
configuration parameter in the ONCONFIG file.

Buffer pool page size
The size of the buffer pool pages in bytes

address
The address of the buffer header in the buffer table

flags
Flags identifying the current status of the buffer page:

0x01
Modified Data

0x02
Data

0x04
LRU

0x08
Error

0x10
Shared lock

0x20
LRU AIO write in progress

0x40
Chunk write in progress

0x80
Exclusive lock

0x100
Cleaner assigned to LRU

0x200
Buffer should avoid bf_check calls

0x400
Do log flush before writing page

0x800
Buffer has been 'buff' -checked

0x8000
Buffer has been pinned

pagenum
The physical page number on the disk

memaddr
The buffer memory address

nslots
The number of slot-table entries in the page
This field indicates the number of rows (or portions of a row) that are stored on the page.

pgflgs
Uses the following values, alone or in combination, to describe the page type:

1
Data page

2

820 Part VI: Administering

https://www.hcltech.com/

Tblspace page
4

Free-list page
8

Chunk free-list page
9

Remainder data page
b

Partition resident blobpage
c

Blobspace resident blobpage
d

Blob chunk free-list bit page
e

Blob chunk blob map page
10

B-tree node page
20

B-tree root-node page
40

B-tree branch-node page
80

B-tree leaf-node page
100

Logical-log page
200

Last page of logical log
400

Sync page of logical log
800

Physical log
1000

Reserved root page
2000

No physical log required
8000

B-tree leaf with default flags

scount
Displays the number of threads that are waiting for the buffer

waiter
Lists the addresses of all user threads that are waiting for the buffer

Copyright© 2020 HCL Technologies Limited

onstat -z command: Clear statistics

Use the onstat -z command to clear database server statistics, including statistics that relate to Enterprise Replication, and set the profile counts to 0.

If you use the onstat -z command to reset and monitor the count of some fields, be aware that profile counts are incremented for all activity that occurs in any database
that the database server manages. Any user can reset the profile counts and thus interfere with monitoring that another user is conducting.

Syntax:

>>-onstat-- -z---><

Copyright© 2020 HCL Technologies Limited

Return codes on exiting the onstat utility

The onstat utility displays a set of return codes when you exit the utility.

Example
The following lines are an example of the messages and return codes that are displayed when you exit the onstat utility:

GLS failures: -1
Failed to attach shared memory: -1
Failed to attach shared memory when running 'onstat -': 255
All other errors detected by onstat: 1
No errors detected by onstat: 0
Administration mode: 7

Part VI: Administering 821

https://www.hcltech.com/
https://www.hcltech.com/

Return code values
The following table lists the database server mode that corresponds to the return codes that are displayed when you exit the onstat utility.

Value Explanation

-1 GLS locale initialization failed or failed to attach to shared memory

0 Initialization mode

1 Quiescent mode

2 Recovery mode

3 Backup mode

4 Shutdown mode

5 Online mode

6 Abort mode

7 User mode

255 Off-Line mode

Copyright© 2020 HCL Technologies Limited

SQL Administration API

SQL Administration API Functions
 These topics describe the SQL administration API admin() and task() functions.

Copyright© 2020 HCL Technologies Limited

SQL Administration API Functions

These topics describe the SQL administration API admin() and task() functions.

SQL Administration API Overview
 Use the SQL administration API to remotely administer through SQL statements.

SQL administration API portal: Arguments by privilege groups
 You can view a list of admin() and task() function arguments, which are sorted by privilege groups, with links to information about the arguments.

add bufferpool argument: Add a buffer pool (SQL administration API)
 Use the add bufferpool argument with the admin() or task() function to create a buffer pool.

add chunk argument: Add a new chunk (SQL administration API)
 Use the add chunk argument with the admin() or task() function to add a chunk to a dbspace or blobspace.

add log argument: Add a new logical log (SQL administration API)
 Use the add log argument with the admin() or task() function to add a logical log to a dbspace.

add memory argument: Increase shared memory (SQL administration API)
 Use the add memory argument with the admin() or task() function to add to the virtual portion of shared memory.

add mirror argument: Add a mirror chunk (SQL administration API)
 Use the add mirror argument with the admin() or task() function to add a mirror chunk to a dbspace.

alter chunk argument: Change chunk status to online or offline (SQL administration API)
 Use the alter chunk argument with the admin() or task() function to bring a chunk online or take a chunk offline in a dbspace, blobspace, or sbspace.

alter logmode argument: Change the database logging mode (SQL administration API)
 Use the alter logmode argument with the admin() or task() function to change the database logging mode to ANSI, buffered, non-logging, or unbuffered.

alter plog argument: Change the physical log (SQL administration API)
 Use the alter plog argument with the admin() or task() function to change the location and size of the physical log.

archive fake argument: Perform an unrecorded backup (SQL administration API)
 Use the archive fake argument with the admin() or task() function to perform a backup operation to clone the data in a server without creating a persistent backup

that could be used to perform a restore.
autolocate database add argument: Add a dbspace to the dbspace list (SQL administration API)

 Use the autolocate database add argument with the admin() or task() function to add a dbspace to the list of available dbspaces for the automatic location and
fragmentation of tables for the specified database.
autolocate database anywhere argument: Add all dbspaces to the dbspace list (SQL administration API)

 Use the autolocate database anywhere argument with the admin() or task() function to specify that the database server can use any non-critical dbspace for the
automatic location and fragmentation of tables for the specified database.
autolocate database argument: Specify dbspaces for automatic location and fragmentation (SQL administration API)

 Use the autolocate database argument with the admin() or task() function to specify the list of available dbspaces for the automatic location and fragmentation of
tables for the specified database.
autolocate database off argument: Disable automatic fragmentation for a database (SQL administration API)

 Use the autolocate database off argument with the admin() or task() function to disable the automatic location and fragmentation of tables for a specified
database.
autolocate database remove argument: Remove a dbspace from the dbspace list (SQL administration API)

 Use the autolocate database remove argument with the admin() or task() function to remove a dbspace from the list of available dbspaces into which the database
server can automatically locate and fragment tables for the specified database.
cdr argument: Administer Enterprise Replication (SQL administration API)

 Use the cdr argument with the admin() or task() function to administer Enterprise Replication.

822 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

cdr add trustedhost argument: Add trusted hosts (SQL administration API)
Use the cdr add trustedhost argument with the admin() or task() function to add trusted-host relationships for database servers in a high-availability cluster or
Enterprise Replication domain. For a database to participate in a high-availability cluster or Enterprise Replication domain, its host must be listed in the trusted-
host files of the other high-availability or replication servers.
cdr autoconfig serv argument: Autoconfigure connectivity and replication (SQL administration API)
The cdr autoconfig serv argument with the admin() or task() function can autoconfigure connectivity for servers in a high-availability cluster or Enterprise
Replication domain, and can autoconfigure replication.
cdr list trustedhost argument: List trusted hosts (SQL administration API)
Use the cdr list trustedhost argument with the admin() or task() function to list trusted-host information from the file that is specified by the database server's
REMOTE_SERVER_CFG configuration parameter.
cdr remove trustedhost argument: Remove trusted hosts (SQL administration API)
Use the cdr remove trustedhost argument with the admin() or task() function to remove entries from a database server's trusted-host file.
check data argument: Check data consistency (SQL administration API)
Use the check data argument with the admin() or task() function to check or repair all pages in the specified partition for consistency.
check extents argument: Check extent consistency (SQL administration API)
Use the check extents argument with the admin() or task() function to verify that the extents on disk correspond to the current control information.
check partition argument: Check partition consistency (SQL administration API)
Use the check partition argument with the admin() or task() function to print tblspace information for a table or fragment.
checkpoint argument: Force a checkpoint (SQL administration API)
Use the checkpoint argument with the admin() or task() function to force a checkpoint.
clean sbspace argument: Release unreferenced smart large objects (SQL administration API)
Use the clean sbspace argument with the admin() or task() function to release any unreferenced BLOB or CLOB objects from the sbspace.
create blobspace argument: Create a blobspace (SQL administration API)
Use the create blobspace argument with the admin() or task() function to create a blobspace.
create blobspace from storagepool argument: Create a blobspace from the storage pool (SQL administration API)
Use the create blobspace from storagepool argument with the admin() or task() function to create a blobspace from an entry from the storage pool.
create chunk argument: Create a chunk (SQL administration API)
Use the create chunk argument with the admin() or task() function to create a chunk in a dbspace or in a blobspace.
create chunk from storagepool argument: Create a chunk from the storage pool (SQL administration API)
Use the create chunk from storagepool argument with the admin() or task() function to manually create a chunk from an entry in the storage pool.
create database argument: Create a database (SQL administration API)
Use the create database argument with the admin() or task() function to create a database.
create dbaccessdemo argument: Create the demonstration database (SQL administration API)
Use the create dbaccessdemo argument with the admin() or task() function to create the stores_demo demonstration database.
create dbspace argument: Create a dbspace (SQL administration API)
Use the create dbspace argument with the admin() or task() function to create a dbspace.
create dbspace from storagepool argument: Create a dbspace from the storage pool (SQL administration API)
Use the create dbspace from storagepool argument with the admin() or task() function to create a permanent dbspace from an entry in the storage pool.
create plogspace: Create a plogspace (SQL administration API)
Use the create plogspace argument with the admin() or task() function to create a plogspace in which to store the physical log.
create sbspace argument: Create an sbspace (SQL administration API)
Use the create sbspace argument with the admin() or task() function to create an sbspace.
create sbspace from storagepool argument: Create an sbspace from the storage pool (SQL administration API)
Use the create sbspace from storagepool argument with the admin() or task() function to create an sbspace from an entry from the storage pool.
create sbspace with accesstime argument: Create an sbspace that tracks access time (SQL administration API)
Use the create sbspace with accesstime argument with the admin() or task() function to create an sbspace that tracks the time of access for all smart large objects
stored in the sbspace.
create sbspace with log argument: Create an sbspace with transaction logging (SQL administration API)
Use the create sbspace with log argument with the admin() or task() function to create an sbspace with transaction logging turned on.
create tempdbspace argument: Create a temporary dbspace (SQL administration API)
Use the create tempdbspace argument with the admin() or task() function to create a temporary dbspace.
create tempdbspace from storagepool argument: Create a temporary dbspace from the storage pool (SQL administration API)
Use the create tempdbspace from storagepool argument with the admin() or task() function to create a temporary dbspace from an entry from the storage pool.
create tempsbspace argument: Create a temporary sbspace (SQL administration API)
Use the create sbspace argument with the admin() or task() function to create an sbspace.
create tempsbspace from storagepool argument: Create a temporary sbspace from the storage pool (SQL administration API)
Use the create tempsbspace from storagepool argument with the admin() or task() function to create a temporary sbspace from an entry from the storage pool.
defragment argument: Dynamically defragment partition extents (SQL administration API)
Use the defragment argument with the admin() or task() function to defragment tables or indexes to merge non-contiguous extents.
drop blobspace argument: Drop a blobspace (SQL administration API)
Use the drop blobspace argument with the admin() or task() function to drop the specified blobspace.
drop blobspace to storagepool argument: Return space from an empty blobspace to the storage pool (SQL administration API)
Use the drop blobspace to storagepool argument with the admin() or task() function to return the space from an empty blobspace to the storage pool.
drop chunk argument: Drop a chunk (SQL administration API)
Use the drop chunk argument with the admin() or task() function to drop the specified chunk from a dbspace, blobspace, or sbspace.
drop chunk to storagepool argument: Return space from an empty chunk to the storage pool (SQL administration API)
Use the drop chunk to storagepool argument with the admin() or task() function to return the space from an empty chunk to the storage pool.
drop database argument: Drop a database (SQL administration API)
Use the drop database argument with the admin() or task() function to drop a database.
drop dbspace argument: Drop a dbspace (SQL administration API)
Use the drop dbspace argument with the admin() or task() function to drop the specified dbspace.
drop dbspace to storagepool argument: Return space from an empty dbspace to the storage pool (SQL administration API)
Use the drop dbspace to storagepool argument with the admin() or task() function to return the space from an empty dbspace to the storage pool.
drop log argument: Drop a logical log (SQL administration API)
Use the drop log argument with the admin() or task() function to drop the specified logical log.
drop plogspace: Drop the plogspace (SQL administration API)
Use the drop plogspace argument with the admin() or task() function to drop the plogspace.
drop sbspace argument: Drop an sbspace (SQL administration API)
Use the drop sbspace argument with the admin() or task() function to drop the specified sbspace.

Part VI: Administering 823

drop sbspace to storagepool argument: Return space from an empty sbspace to the storage pool (SQL administration API)
Use the drop sbspace to storagepool argument with the admin() or task() function to return the space from an empty sbspace to the storage pool.
drop tempdbspace argument: Drop a temporary dbspace (SQL administration API)
Use the drop tempdbspace argument with the admin() or task() function to drop the specified temporary dbspace.
drop tempdbspace to storagepool argument: Return space from an empty temporary dbspace to the storage pool (SQL administration API)
Use the drop tempdbspace to storagepool argument with the admin() or task() function to return the space from an empty temporary dbspace to the storage pool.
drop tempsbspace to storagepool argument: Return space from an empty temporary sbspace to the storage pool (SQL administration API)
Use the drop tempsbspace to storagepool argument with the admin() or task() function to return the space from an empty temporary sbspace to the storage pool.
export config argument: Export configuration parameter values (SQL administration API)
Use the export config argument with the admin() or task() function to export a file that contains all configuration parameters and their current values.
file status argument: Display the status of a message log file (SQL administration API)
Use the file status argument with the admin() or task() function to specify the status of an online, ON-Bar activity, or ON-Bar debug message log file.
grant admin argument: Grant privileges to run SQL administration API commands
Use the grant admin argument with the admin() or task() function to grant privileges to run SQL administration API commands.
ha make primary argument: Change the mode of a secondary server (SQL administration API)
Use the ha make primary argument with the admin() or task() function to change the specified secondary server to a primary or standard server.
ha rss argument: Create an RS secondary server (SQL administration API)
Use the ha rss argument with the admin() or task() function to create a remote standalone (RS) secondary server.
ha rss add argument: Add an RS secondary server to a primary server (SQL administration API)
Use the ha rss add argument with the admin() or task() function to associate a primary server with a remote standalone (RS) secondary server.
ha rss change argument: Change the password of an RS secondary server (SQL administration API)
Use the ha rss change argument with the admin() or task() function to change the connection password for the specified RS secondary server.
ha rss delete argument: Delete an RS secondary server (SQL administration API)
Use the ha rss delete argument with the admin() or task() function to stop replication and delete the RS secondary server.
ha sds clear argument: Stop shared-disk replication (SQL administration API)
Use the ha sds clear argument with the admin() or task() function to stop replication to shared disk (SD) secondary servers and convert the primary server to a
standard server.
ha sds primary argument: Convert an SD secondary server to a primary server (SQL administration API)
Use the ha sds primary argument with the admin() or task() function to change a shared disk (SD) secondary server to a primary server.
ha sds set argument: Create a shared-disk primary server (SQL administration API)
Use the ha sds set argument with the admin() or task() function to define a primary server to replicate to shared disk (SD) secondary servers.
ha set idxauto argument: Replicate indexes to secondary servers (SQL administration API)
Use the ha set idxauto argument with the admin() or task() function to control whether indexes are automatically replicated to secondary servers.
ha set ipl argument: Log index builds on the primary server (SQL administration API)
Use the ha set ipl argument with the admin() or task() function to control whether to log index builds on the primary server.
ha set primary argument: Define an HDR primary server (SQL administration API)
Use the ha set primary argument with the admin() or task() function to define a High-Availability Data Replication (HDR) primary server and specify the secondary
server.
ha set secondary argument: Define an HDR secondary server (SQL administration API)
Use the ha set secondary argument with the admin() or task() function to define a High-Availability Data Replication (HDR) secondary server and specify the
primary server.
ha set standard argument: Convert an HDR server into a standard server (SQL administration API)
Use the ha set standard argument with the admin() or task() function to convert a High-Availability Data Replication (HDR) primary or secondary server to a
standard server.
ha set timeout argument: Change SD secondary server timeout (SQL administration API)
Use the ha set timeout argument with the admin() or task() function to change the amount of time in seconds that the primary server waits for acknowledgments
from shared disk (SD) secondary servers.
import config argument: Import configuration parameter values (SQL administration API)
Use the import config argument with the admin() or task() function to import a file that contains one or more dynamically updatable configuration parameters and
apply the new values.
index compress repack shrink arguments: Optimize the storage of B-tree indexes (SQL administration API)
Use the index compress repack shrink argument with the admin() or task() function to compress detached B-tree indexes, consolidate free space (repack), and
return free space (shrink) in partitions.
index estimate_compression argument: Estimate index compression (SQL administration API)
Use the index estimate_compression argument with the admin() or task() function to estimate if you can save disk space by compressing a B-tree index.
master_key reset argument: Change the keystore password (SQL administration API)
Use the master_key reset argument with the admin() or task() function to change the password for the storage space encryption keystore. The password is used to
encrypt the keystore for storage space encryption.
message log delete argument: Delete a message log file (SQL administration API)
Use the message log delete argument or file delete argument with the admin() or task() function to specify the particular online, ON-Bar activity, or ON-Bar debug
message log to delete.
message log rotate argument: Rotate the message log file (SQL administration API)
Use the message log rotate argument or the file rotate argument with the admin() or task() function to specify the particular online, ON-Bar activity, or ON-Bar
debug message log file to rotate, and to indicate the maximum number of message logs to rotate.
message log truncate argument: Delete the contents of a message log file (SQL administration API)
Use the message log truncate argument or file truncate argument with the admin() or task() function to specify the particular online, ON-Bar activity, or ON-Bar
debug message log file to truncate. When the database server truncates a message log file, it deletes the messages in the log file, but keeps the log file.
modify chunk extend argument: Extend the size of a chunk (SQL administration API)
Use the modify chunk extend argument with the admin() or task() function to extend the size of the chunk by a specified minimum amount. The chunk must be
marked as extendable.
modify chunk extendable argument: Mark a chunk as extendable (SQL administration API)
Use the modify chunk extendable argument with the admin() or task() function to specify that a particular chunk in an unmirrored dbspace or temporary dbspace
can be extended..
modify chunk extendable off argument: Mark a chunk as not extendable (SQL administration API)
Use the modify chunk extendable off argument with the admin() or task() function to specify that a particular chunk cannot be extended.
modify chunk swap_mirror argument: Switch primary and mirror chunk files without any downtime(SQL administration API)
Use the modify chunk swap_mirror argument with the admin() or task() function to easily migrate data from old disk drives to new ones without downtime.
modify space swap_mirror argument: Switch all primary and mirror chunk files for a space without any downtime (SQL administration API)
Use the modify space swap_mirrors argument with the admin() or task() function to easily migrate data from old disk drives to new ones without downtime.

824 Part VI: Administering

modify config arguments: Modify configuration parameters (SQL administration API)
Use the modify config argument with the admin() or task() function to change the value of a configuration parameter in memory until you restart the database
server. Use the modify config persistent argument to change the value of a configuration parameter in memory and preserve the value in the onconfig file after you
restart the server.
modify space expand argument: Expand the size of a space (SQL administration API)
Use the modify space expand argument with the admin() or task() function to immediately expand the size of a space, when you do not want to wait for Informix®
to automatically expand the space.
modify space sp_sizes argument: Modify sizes of an extendable storage space (SQL administration API)
Use the modify space sp_sizes argument with the admin() or task() function to modify the create, extend, and maximum sizes that are associated with expanding a
storage space. Modify the sizes to control how Informix uses storage pool entries for a particular storage space.
onbar argument: Backup the storage spaces (SQL administration API)
Use the onbar argument with the admin() or task() function to backup the storage spaces.
onmode and a arguments: Add a shared-memory segment (SQL administration API)
Use the onmode and a arguments with the admin() or task() function to add a shared-memory segment.
onmode and c arguments: Force a checkpoint (SQL administration API)
Use the onmode and c arguments with the admin() or task() function to force a checkpoint.
onmode and C arguments: Control the B-tree scanner (SQL administration API)
Use the onmode and C arguments with the admin() or task() function to control the B-tree scanner for cleaning indexes of deleted items.
onmode and d arguments: Set data-replication types (SQL administration API)
Use the onmode and d arguments with the admin() or task() function to change the mode of a server participating in high-availability data replication (HDR).
onmode and D arguments: Set PDQ priority (SQL administration API)
Use the onmode and D arguments with the admin() or task() function to temporarily reset the PDQ resources that the database server can allocate to any one
decision-support query.
onmode and e arguments: Change usage of the SQL statement cache (SQL administration API)
Use the onmode and e arguments with the admin() or task() function to temporarily change the mode of the SQL statement cache.
onmode and F arguments: Free unused memory segments (SQL administration API)
Use the onmode and F arguments with the admin() or task() function to free unused memory segments.
onmode and h arguments: Update sqlhosts caches (SQL administration API)
Use the onmode and h arguments with the admin() or task() function to Update sqlhosts caches.
onmode and j arguments: Switch the database server to administration mode (SQL administration API)
Use the onmode and j arguments with the admin() or task() function to change the database server to administration mode.
onmode and l arguments: Switch to the next logical log (SQL administration API)
Use the onmode and l arguments with the admin() or task() function to switch the current logical-log file to the next logical-log file.
onmode and m arguments: Switch to multi-user mode (SQL administration API)
Use the onmode and m arguments with the admin() or task() function to change the database server to multi-user mode.
onmode and M arguments: Temporarily change decision-support memory (SQL administration API)
Use the onmode and M arguments with the admin() or task() function to temporarily change the size of memory available for parallel queries.
onmode and n arguments: Unlock resident memory (SQL administration API)
Use the onmode and n arguments with the admin() or task() function to end forced residency of the resident portion of shared memory.
onmode and O arguments: Mark a disabled dbspace as down (SQL administration API)
Use the onmode and O arguments with the admin() or task() function to mark a disabled dbspace as down so that the checkpoint that is being blocked by the
disabled dbspace can continue and any blocked threads are released.
onmode and p arguments: Add or remove virtual processors (SQL administration API)
Use the onmode and p arguments with the admin() or task() function to dynamically add or remove virtual processors for the current database server session. This
function does not update the onconfig file.
onmode and Q arguments: Set maximum number for decision-support queries (SQL administration API)
Use the onmode and Q arguments with the admin() or task() function to change the maximum number of concurrently executing decision-support queries.
onmode and r arguments: Force residency of shared memory (SQL administration API)
Use the onmode and r arguments with the admin() or task() function to start forced residency of the resident portion of shared memory.
onmode and S arguments: Set maximum number of decision-support scans (SQL administration API)
Use the onmode and S arguments with the admin() or task() function to change the maximum number of concurrently executing decision-support scans for the
current session.
onmode and W arguments: Reset statement cache attributes (SQL administration API)
Use the onmode and W arguments with the admin() or task() function to change whether and when a statement can be inserted into the SQL cache.
onmode and wf arguments: Permanently update a configuration parameter (SQL administration API)
Use the onmode and wf arguments with the admin() or task() function to dynamically update the value of a configuration parameter in the onconfig file.
onmode and wm arguments: Temporarily update a configuration parameter (SQL administration API)
Use the onmode and wm arguments with the admin() or task() function to dynamically update the value of a configuration parameter in memory.
onmode, wm, and AUTO_LRU_TUNING arguments: Change LRU tuning status (SQL administration API)
Use the onmode, wm, and AUTO_LRU_TUNING arguments with the admin() or task() function to change the LRU tuning status without updating the onconfig file. .
onmode and Y arguments: Change query plan measurements for a session (SQL administration API)
Use the onmode and Y arguments with the admin() or task() function to change the output of query plan measurements for an individual session.
onmode and z arguments: Terminate a user session (SQL administration API)
Use the onmode and z arguments with the admin() or task() function to terminate the specified user session.
onmode and Z arguments: Terminate a distributed transaction (SQL administration API)
Use the onmode and Z arguments with the admin() or task() function to terminate the specified distributed transaction. Use this function only if communication
between the participating database servers has been lost. If applications are performing distributed transactions, terminating one of the distributed transactions
can leave your client/server database system in an inconsistent state.
onsmsync argument: Synchronize with the storage manager catalog (SQL administration API)
Use the onsmsync argument with the admin() or task() function to synchronize the sysutils database and emergency boot file with the storage manager catalog.
onstat argument: Monitor the database server (SQL administration API)
Use the onstat argument with the admin() or task() function to monitor the database server.
ontape archive argument: Backup the data on your database (SQL administration API)
Use the ontape archive argument with the admin() or task() function to create a backup of your database data.
print error argument: Print an error message (SQL administration API)
Use the print error argument with the admin() or task() function to print the message associated with the specified error number.
print file info argument: Display directory or file information (SQL administration API)
Use the print file info argument with the admin() or task() function to display information about a directory or a file
print partition argument: Print partition information (SQL administration API)
Use the print partition argument with the admin() or task() function to print the headers of a specified partition.

Part VI: Administering 825

rename space argument: Rename a storage space (SQL administration API)
Use the rename space argument with the admin() or task() function to rename a dbspace, blobspace, sbspace, or extspace.
reset config argument: Revert configuration parameter value (SQL administration API)
Use the reset config argument with the admin() or task() function to revert the value of a dynamically updatable configuration parameter to its value in the onconfig
file. Dynamically updatable configuration parameters are those parameters that you can change for a session with an onmode or SQL administration API command.
reset config all argument: Revert all dynamically updatable configuration parameter values (SQL administration API)
Use the reset config all argument with the admin() or task() function to revert the values of all dynamically updatable configuration parameter to their values in the
onconfig file. Dynamically updatable configuration parameters are those parameters that you can change for a session with an onmode or SQL administration API
command.
reset sysadmin argument: Move the sysadmin database (SQL administration API)
Use the reset sysadmin argument with the admin() or task() function to move the sysadmin database to the specified dbspace. Moving the sysadmin database
resets the database back to the original state when it was first created; all data, command history, and results tables are lost. Only built-in tasks, sensors, and
thresholds remain in the sysadmin tables.
restart listen argument: Stop and start a listen thread dynamically (SQL administration API)
Use the restart listen argument with the admin() or task() function to stop and then start an existing listen thread for a SOCTCP or TLITCP network protocol without
interrupting existing connections.
revoke admin argument: Revoke privileges to run SQL administration API commands
Use the revoke admin argument with the admin() or task() function to revoke privileges to run SQL administration API commands.
scheduler argument: Stop or start the scheduler (SQL administration API)
Use the scheduler argument with the admin() or task() function to start or stop the scheduler.
scheduler lmm enable argument: Specify automatic low memory management settings (SQL administration API)
Use the scheduler lmm enable argument with the admin() or task() function to start automatic low memory management and to update low memory threshold
settings.
scheduler lmm disable argument: Stop automatic low memory management (SQL administration API)
Use the scheduler lmm disable argument with the admin() or task() function to stop the current and subsequent invocations of automatic low memory
management.
set chunk argument: Change the status of a chunk (SQL administration API)
Use the set chunk argument with the admin() or task() function to change the status of a blobspace, dbspace, or sbspace to online or offline.
set dataskip argument: Start or stop skipping a dbspace (SQL administration API)
Use the set dataskip argument with the admin() or task() function to specify whether the database server skips a dbspace that is unavailable during the processing
of a transaction.
set index compression argument: Change index page compression (SQL administration API)
Use the set index compression argument with the admin() or task() function to modify the level at which two partially used index pages are merged.
set onconfig memory argument: Temporarily change a configuration parameter (SQL administration API)
Use the set onconfig memory argument with the admin() or task() function to dynamically update the value of a configuration parameter in memory.
set onconfig permanent argument: Permanently change a configuration parameter (SQL administration API)
Use the set onconfig permanent argument with the admin() or task() function to dynamically update the value of a configuration parameter in the onconfig file.
set sbspace accesstime argument: Control access time tracking (SQL administration API)
Use the set sbspace accesstime argument with the admin() or task() function to start or stop tracking the time of access for all smart large objects stored in the
sbspace.
set sbspace avg_lo_size argument: Set the average size of smart large objects (SQL administration API)
Use the set sbspace avg_lo_size argument with the admin() or task() function to specify an expected average size of the smart large objects in the specified
sbspace so that the database server can calculate the size of the metadata area.
set sbspace logging argument: Change the logging of an sbspace (SQL administration API)
Use the set sbspace logging argument with the admin() or task() function to specify whether the database server logs changes to the user data area of the sbspace.
set sql tracing argument: Set global SQL tracing (SQL administration API)
Use the set sql tracing argument with the admin() or task() function to set global SQL tracing.
set sql tracing database argument: Change database tracing (SQL administration API)
Use the set sql tracing database argument with the admin() or task() function to start or stop tracing for a database, or list which databases are being traced.
set sql tracing session argument: Control tracing for a session (SQL administration API)
Use the set sql tracing session argument with the admin() or task() function to change SQL tracing for the current session.
set sql tracing user argument: Control tracing for users (SQL administration API)
Use the set sql tracing user argument with the admin() or task() function to change SQL tracing for users.
set sql user tracing argument: Set global SQL tracing for a user session (SQL administration API)
Use the set sql user tracing argument with the admin() or task() function to set the mode of global SQL tracing for a specified user session.
start json listener argument: Start the MongoDB API wire listener (deprecated)
Use the start json listener argument with the admin() or task() function to start the MongoDB API wire listener.
start listen argument: Start a listen thread dynamically (SQL administration API)
Use the start listen argument with the admin() or task() function to start an existing listen thread for a SOCTCP or TLITCP network protocol without interrupting
existing connections.
start mirroring argument: Starts storage space mirroring (SQL administration API)
Use the start mirroring argument with the admin() or task() function to start mirroring for a specified dbspace, blobspace, or sbspace.
statement cache enable argument: Enable the SQL statement cache (SQL administration API)
Use the statement cache enable argument with the admin() or task() function to enable the statement cache.
statement cache flush argument: Flush the SQL statement cache (SQL administration API)
Use the statement cache flush argument with the admin() or task() function to flush the statement cache.
statement cache hits argument: Specify the number of hits in the SQL statement cache (SQL administration API)
Use the statement cache hits argument with the admin() or task() function to specify the number of hits in the SQL statement cache.
statement cache nolimit argument: Control whether to insert qualified statements into the SQL statement cache (SQL administration API)
Use the statement cache nolimit argument with the admin() or task() function to control whether to insert statements into the SQL statement cache after its size is
greater than the STMT_CACHE_SIZE value.
statement cache off argument: Disable the SQL statement cache (SQL administration API)
Use the statement cache off argument with the admin() or task() function to turn off the SQL statement cache.
statement cache save argument: Save the SQL statement cache (SQL administration API)
Use the statement cache save argument with the admin() or task() function to save the statement cache.
statement cache restore argument: Restore the SQL statement cache (SQL administration API)
Use the statement cache restore argument with the admin() or task() function to restore the statement cache.
stop json listener: Stop the wire listener (deprecated)
Use the stop json listener argument with the admin() or task() function to stop the wire listener.

826 Part VI: Administering

stop listen argument: Stop a listen thread dynamically (SQL administration API)
Use the stop listen argument with the admin() or task() function to stop an existing listen thread for a SOCTCP or TLITCP network protocol without interrupting
existing connections.
stop mirroring argument: Stops storage space mirroring (SQL administration API)
Use the stop mirroring argument with the admin() or task() function to stop mirroring for a specified dbspace, blobspace, or sbspace.
storagepool add argument: Add a storage pool entry (SQL administration API)
Use the storagepool add argument with the admin() or task() function to add an entry to the storage pool (a collection of available raw devices, cooked files, or
directories that Informix can use to automatically add space to an existing storage space).
storagepool delete argument: Delete one storage pool entry (SQL administration API)
Use the storagepool delete argument with the admin() or task() function to delete an entry from the storage pool.
storagepool modify argument: Modify a storage pool entry (SQL administration API)
Use the storagepool modify argument with the admin() or task() function to modify an entry for a directory, cooked file, or raw device that Informix can use when
additional storage space is required.
storagepool purge argument: Delete storage pool entries (SQL administration API)
Use the storagepool purge argument with the admin() or task() function to delete all storage pool entries, storage pool entries that have a status of Full, or storage
pool entries that have a status of Error.
Table and fragment pfsc_boost argument: Enable or disable a boosted partition free space cache (PFSC)
You can enable and disable a boosted partition free space cache for a table or fragment using SQL administration API admin() or task() functions and arguments.
Table and fragment compress and uncompress operations (SQL administration API)
You can compress and uncompress the data in a table or in table fragments with SQL administration API admin() or task() functions and arguments. Compression
operations apply only to the contents of data rows and the images of those data rows that appear in logical log records.
tenant create argument: Create a tenant database (SQL Administration API)
Use the tenant create argument with the admin() or task() function to create a tenant database.
tenant drop argument: Drop a tenant database (SQL Administration API)
Use the tenant drop argument with the admin() or task() function to drop a tenant database.
tenant update argument: Modify tenant database properties (SQL Administration API)
Use the tenant update argument with the admin() or task() function to modify the properties of a tenant database.

Copyright© 2020 HCL Technologies Limited

SQL Administration API Overview

Use the SQL administration API to remotely administer through SQL statements.

The SQL administration API consists of two functions: admin() and task(). These functions perform the same operations, but return results in different formats. These
functions take one or more arguments that define the operation. Many of the operations are ones that you can also complete with command line utilities. The advantage of
using the SQL administration API functions is that you can run them remotely from other database servers; whereas you must be directly connected to the database
server on which to run command line utility commands.

You can invoke the admin() and task() functions within SQL statements that can include an expression, or you can use the EXECUTE FUNCTION statement to call them.
Run the admin() or task() function within a transaction that does not include any other statements.
Note: When connected to a secondary node, the admin() function is disabled and will always return a value of -1. In addition, the task() function will return an error for
commands that involve modifying disk structures, since these administrative actions are meant to be executed only on primary or standalone nodes.
The SQL administration API functions are defined in the sysadmin database. You must be connected to the sysadmin database, either directly or remotely, to run these
functions.

The SQL administration API functions can be run only by the following users:

The user informix
The root user, if Connect privilege on the sysadmin database is granted to the user
The DBSA group members, if Connect privilege on the sysadmin database is granted to the role
Users granted privileges to SQL administration API commands by the admin() and task() functions with grant admin argument.

You can generate SQL administration API commands for reproducing the storage spaces, chunks, and logs that exist in a file. To do this, run the dbschema utility with the -
c option.

admin() and task() Function Syntax Behavior
 The admin() and task() functions take one or more arguments as quoted strings separated by commas.

admin() and task() Argument Size Specifications
 By default, the units for arguments specifying sizes in admin() and task() functions are kilobytes. You can specify other units.

admin() and task() Function Return Codes
 The admin() and task() functions perform equivalent tasks but produce different types of return codes. Use the admin() function if you want an integer return code,

or the task() function if you want a textual return code.

Related information:
 Storage space, chunk, and log creation

Copyright© 2020 HCL Technologies Limited

admin() and task() Function Syntax Behavior

The admin() and task() functions take one or more arguments as quoted strings separated by commas.

The syntax for the admin() and task() functions includes the following rules:

Each argument must be delimited by a pair of single (') quotation marks or double (") quotation marks.

Part VI: Administering 827

https://www.hcltech.com/
https://www.hcltech.com/

Arguments must be separated by a comma.
The maximum number of arguments is 28.
Most arguments are not case-sensitive, with the following exceptions:

The argument that immediately follows the initial onmode argument is case-sensitive.
For example:

EXECUTE FUNCTION task("onmode","D","50");

The arguments included with the cdr argument are case-sensitive.
For example:

EXECUTE FUNCTION task("cdr define server",
 "-c=g_amsterdam","--init g_amsterdam");

If you are not directly connected to the sysadmin database, you must include the sysadmin database name and the server name, according to the standard
Database Object Name syntax. For example, if your server name is ids_server, you could run the following statement:

EXECUTE FUNCTION sysadmin@ids_server:admin("add bufferpool","2",
"50000","8","60.0","50.0");

For more information on the Database Object Name syntax, see the IBM® Informix® Guide to SQL: Syntax.

Copyright© 2020 HCL Technologies Limited

admin() and task() Argument Size Specifications

By default, the units for arguments specifying sizes in admin() and task() functions are kilobytes. You can specify other units.

You can use the following units in size arguments to the admin() and task() functions:

Notation
Corresponding Units

B
Bytes

K
Kilobytes (Default)

M
Megabytes

G
Gigabytes

T
Terabytes

P
Petabytes

The letter case of these characters is ignored.

Any white space that separates the size specification and the units abbreviation in the same argument is ignored. For example, the specifications "128M" and "128 m"
are both interpreted as 128 megabytes.

When a size argument is omitted, the default size for that object applies, based either on the setting of a configuration parameter, or on the system default if no parameter
is set. Storage spaces, for example, have a default size of 100 megabytes.

Copyright© 2020 HCL Technologies Limited

admin() and task() Function Return Codes

The admin() and task() functions perform equivalent tasks but produce different types of return codes. Use the admin() function if you want an integer return code, or the
task() function if you want a textual return code.

When you run the admin() or task() function, it:

Performs the specified operation.
Returns a value that signifies whether the function succeeded or failed.
Inserts a row into the command_history table of the sysadmin database.

The return codes for the admin() and task() functions indicate whether the function succeeded or failed in different formats:

The task() function returns a textual message. The message is also inserted into the cmd_ret_msg column in the new row that the task() function inserts into the
command_history table.
The admin() function returns an integer. This number is also inserted into the cmd_number column in the new row that the admin() function inserts into the
command_history table.

If this value is greater than zero, the function succeeded, and a new row was inserted into the command_history table.
If this value is zero, the function succeeded, but could not insert a new row into the command_history table.
If this value is less than zero, the function failed, but a new row was inserted into the command_history table.

The operation that the admin() or task() function specifies occurs in a separate transaction from the insertion of the new row into the command_history table. If the
command executes successfully, but the insertion into the command_history table fails, the command takes effect, but an online.log error entry indicates the problem.

828 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

If the command_history.cmd_number serial counter is 200 when this function is called, and the command succeeds, then Informix® executes the command and returns
the integer 201. If the command fails, this example returns the value -201.

Suppose the task() function had executed the same command:

EXECUTE FUNCTION task("check extents");

This command instructs the database server to check the extents, and returns a message indicating whether the command succeeded or failed.
If the command_history.cmd_number serial counter is 201 when this function is called, and the command fails, then the returned value is -202. Suppose that the next
SQL administration API function that the DBSA invokes is this:

EXECUTE FUNCTION admin('create dbspace',
 'dbspace2', '/work/CHUNKS/dbspace2', ”20M”);

If in this case the command succeeds, the returned value is 203. The DBSA can use the following query to examine the two rows of the command_history table that these
calls to the admin() function inserted:

SELECT * FROM command_history WHERE cmd_number IN (202,203);

This query returns two rows:

cmd_number 202
cmd_exec_time 2009-04-17 16:26:14
cmd_user informix
cmd_hostname olympia
cmd_executed create dbspace
cmd_ret_status -1
cmd_ret_msg Unable to create file /work/dbspace2

cmd_number 203
cmd_exec_time 2009-04-17 16:26:15
cmd_user informix
cmd_hostname olympia
cmd_executed create dbspace
cmd_ret_status 0
cmd_ret_msg created dbspace number 2 named dbspace2

Note: When connected to a secondary node, the admin() function is disabled and will always return a value of -1. In addition, the task() function will return an error for
commands that involve modifying disk structures, since these administrative actions are meant to be executed only on primary or standalone nodes.

Copyright© 2020 HCL Technologies Limited

SQL administration API portal: Arguments by privilege groups

You can view a list of admin() and task() function arguments, which are sorted by privilege groups, with links to information about the arguments.

Privilege groups identify what SQL administration API commands a user can run. Some function arguments are in multiple privilege groups. Privilege groups are granted to
users so that they can run the commands that they need for their jobs. By default, only user informix or the DBSA can run SQL administration API commands.

Use the grant admin argument to grant privileges and the revoke admin argument to revoke privileges.

ADMIN: The user can run all SQL administration API functions.
BAR privilege group: The user can run backup and restore functions.
FILE privilege group: The user can manage the message log and display file information.
GRANT privilege group: The user has the privilege to grant and revoke privileges.
HA privilege group: The user can run high-availability functions.
MISC privilege group: The user can administer the database server.
MONITOR privilege group: The user can run all SQL administration API functions that only display information.
OPERATOR: The user can run all SQL administration API functions except functions in the GRANT privilege group.
REPLICATION privilege group: The user can run Enterprise Replication cdr utility functions.
SQL privilege group: The user can run functions that are related to SQL statements for managing databases.
SQLTRACE privilege group: The user can run SQL tracing functions.
STORAGE privilege group: The user can run space-related functions.
TENANT privilege group: The user can run tenant database functions.
WAREHOUSE: The user can run Informix® Warehouse Accelerator administration tools. See Permissions for administering Informix Warehouse Accelerator.

BAR privilege group
The BAR privilege group includes SQL administration API function arguments to back up your databases.

Table 1. admin() and task() Function Arguments for backup and restore

Argument Version

archive fake argument: Perform an unrecorded backup (SQL administration API) 11.50.xC1

ontape archive argument: Backup the data on your database (SQL administration API) 11.70.xC2

onbar argument: Backup the storage spaces (SQL administration API) 11.70.xC2

onsmsync argument: Synchronize with the storage manager catalog (SQL administration API) 11.70.xC2

FILE privilege group

Part VI: Administering 829

https://www.hcltech.com/

The FILE privilege group includes SQL administration API function arguments to manage message logs and display file information.

Table 2. admin() and task() Function Arguments for Message Log Commands

Argument Version

file status argument: Display the status of a message log file (SQL administration API) 11.10.xC3

message log rotate argument: Rotate the message log file (SQL administration API) 11.10.xC3

message log delete argument: Delete a message log file (SQL administration API) 11.10.xC3

message log truncate argument: Delete the contents of a message log file (SQL administration API) 11.10.xC3

print file info argument: Display directory or file information (SQL administration API) 11.70.xC2

GRANT privilege group
The GRANT privilege group includes SQL administration API function arguments to grant or revoke privileges for running SQL administration API commands to other users.

Table 3. admin() and task() Function Arguments for granting and revoking privileges

Argument Version

grant admin argument: Grant privileges to run SQL administration API commands 12.10.xC1

revoke admin argument: Revoke privileges to run SQL administration API commands 12.10.xC1

HA privilege group
The HA privilege group includes SQL administration API function arguments to manage high-availability clusters.

Table 4. admin() and task() Function Arguments for high-availability cluster Commands

Argument Version

ha make primary argument: Change the mode of a secondary server (SQL administration API) 11.50.xC1

ha rss argument: Create an RS secondary server (SQL administration API) 11.50.xC1

ha rss add argument: Add an RS secondary server to a primary server (SQL administration API) 11.50.xC1

ha rss change argument: Change the password of an RS secondary server (SQL administration API) 11.50.xC1

ha rss delete argument: Delete an RS secondary server (SQL administration API) 11.50.xC1

ha sds clear argument: Stop shared-disk replication (SQL administration API) 11.50.xC1

ha sds primary argument: Convert an SD secondary server to a primary server (SQL administration API) 11.50.xC1

ha sds set argument: Create a shared-disk primary server (SQL administration API) 11.50.xC1

ha set idxauto argument: Replicate indexes to secondary servers (SQL administration API) 11.50.xC1

ha set ipl argument: Log index builds on the primary server (SQL administration API) 11.50.xC1

ha set primary argument: Define an HDR primary server (SQL administration API) 11.50.xC1

ha set secondary argument: Define an HDR secondary server (SQL administration API) 11.50.xC1

ha set standard argument: Convert an HDR server into a standard server (SQL administration API) 11.50.xC1

ha set timeout argument: Change SD secondary server timeout (SQL administration API) 11.50.xC1

onmode and d arguments: Set data-replication types (SQL administration API) 11.50.xC1

MISC privilege group
The MISC privilege group includes SQL administration function arguments to administer the database server:

onstat
Configuration parameters
Data, partitions, and extents
Listen threads
Message log
Memory
PDQ
Server mode
SQL statement cache
Other administrative tasks

onstat
SQL administration API function arguments to monitor the database server by running onstat commands.

Table 5. admin() and task() Function Arguments for onstat Commands
Argument Version

onstat argument: Monitor the database server (SQL administration API) 12.10.xC1

830 Part VI: Administering

Configuration parameters
SQL administration API function arguments to update configuration parameters.

Table 6. admin() and task() Function Arguments for Configuration Parameter Commands

Argument Version

export config argument: Export configuration parameter values (SQL administration API) 12.10xC1

import config argument: Import configuration parameter values (SQL administration API) 12.10xC1

modify config arguments: Modify configuration parameters (SQL administration API) 12.10xC1

onmode and wf arguments: Permanently update a configuration parameter (SQL administration API) 11.10.xC1

onmode and wm arguments: Temporarily update a configuration parameter (SQL administration API) 11.10.xC1

onmode, wm, and AUTO_LRU_TUNING arguments: Change LRU tuning status (SQL administration API) 11.10.xC1

reset config argument: Revert configuration parameter value (SQL administration API) 12.10xC1

reset config all argument: Revert all dynamically updatable configuration parameter values (SQL administration API) 12.10xC1

set onconfig memory argument: Temporarily change a configuration parameter (SQL administration API) 11.50.xC3

set onconfig permanent argument: Permanently change a configuration parameter (SQL administration API) 11.50.xC3

Data, partitions, and extents
SQL administration API function arguments to manage data, partitions, and extents.

Table 7. admin() and task() Function Arguments for Data, Partition, and Extent Commands

Argument Version

check data argument: Check data consistency (SQL administration API) 11.10.xC1

check extents argument: Check extent consistency (SQL administration API) 11.10.xC1

check partition argument: Check partition consistency (SQL administration API) 11.10.xC1

checkpoint argument: Force a checkpoint (SQL administration API) 11.10.xC1

create dbaccessdemo argument: Create the demonstration database (SQL administration API) 12.10.xC1

onmode and C arguments: Control the B-tree scanner (SQL administration API) 11.10.xC1

onmode and c arguments: Force a checkpoint (SQL administration API) 11.10.xC1

print partition argument: Print partition information (SQL administration API) 11.10.xC1

set dataskip argument: Start or stop skipping a dbspace (SQL administration API) 11.10.xC1

set index compression argument: Change index page compression (SQL administration API) 11.50.xC2

Listen threads
SQL administration API function arguments to control listen threads for a SOCTCP or TLITCP network protocol without interrupting existing connections.

Table 8. admin() and task() Function Arguments for Listen Thread Commands

Argument Version

restart listen argument: Stop and start a listen thread dynamically (SQL administration API) 11.50.xC6

start listen argument: Start a listen thread dynamically (SQL administration API) 11.50.xC6

stop listen argument: Stop a listen thread dynamically (SQL administration API) 11.50.xC6

Message log
SQL administration API function arguments to manage message logs.

Table 9. admin() and task() Function Arguments for Message Log Commands

Argument Version

file status argument: Display the status of a message log file (SQL administration API) 11.10.xC3

message log rotate argument: Rotate the message log file (SQL administration API) 11.10.xC3

message log delete argument: Delete a message log file (SQL administration API) 11.10.xC3

message log truncate argument: Delete the contents of a message log file (SQL administration API) 11.10.xC3

Memory
SQL administration API function arguments to manage memory.

Table 10. admin() and task() Function Arguments for Memory Commands

Part VI: Administering 831

Argument VersionArgument Version

add bufferpool argument: Add a buffer pool (SQL administration API) 11.10.xC1

add memory argument: Increase shared memory (SQL administration API) 11.10.xC1

onmode and a arguments: Add a shared-memory segment (SQL administration API) 11.10.xC1

onmode and F arguments: Free unused memory segments (SQL administration API) 11.10.xC1

onmode and n arguments: Unlock resident memory (SQL administration API) 11.10.xC1

onmode and r arguments: Force residency of shared memory (SQL administration API) 11.10.xC1

scheduler lmm enable argument: Specify automatic low memory management settings (SQL administration API) 11.70.xC3
11.50xC9

scheduler lmm disable argument: Stop automatic low memory management (SQL administration API) 11.70.xC3
11.50xC9

PDQ
SQL administration API function arguments to manage PDQ.

Table 11. admin() and task() Function Arguments for PDQ Commands

Argument Version

onmode and D arguments: Set PDQ priority (SQL administration API) 11.10.xC1

onmode and M arguments: Temporarily change decision-support memory (SQL administration API) 11.10.xC1

onmode and Q arguments: Set maximum number for decision-support queries (SQL administration API) 11.10.xC1

onmode and S arguments: Set maximum number of decision-support scans (SQL administration API) 11.10.xC1

Server mode
SQL administration API function arguments to change the server mode.

Table 12. admin() and task() Function Arguments for Server Mode Commands
Argument Version

onmode and j arguments: Switch the database server to administration mode (SQL administration API) 11.10.xC1

onmode and m arguments: Switch to multi-user mode (SQL administration API) 11.10.xC1

SQL statement cache
SQL administration API function arguments to manage the SQL statement cache.

Table 13. admin() and task() Function Arguments for SQL Statement Cache Commands
Argument Version

onmode and e arguments: Change usage of the SQL statement cache (SQL administration API) 11.10.xC1

onmode and W arguments: Reset statement cache attributes (SQL administration API) 11.10.xC1

Other administrative tasks
SQL administration API function arguments to manage other administrative tasks.

Table 14. admin() and task() Function Arguments for other administrative task Commands
Argument Version

alter logmode argument: Change the database logging mode (SQL administration API) 11.10.xC1

create dbaccessdemo argument: Create the demonstration database (SQL administration API) 12.10.xC1

onmode and e arguments: Change usage of the SQL statement cache (SQL administration API) 11.10.xC1

onmode and l arguments: Switch to the next logical log (SQL administration API) 11.10.xC1

onmode and p arguments: Add or remove virtual processors (SQL administration API) 11.10.xC1

onmode and Y arguments: Change query plan measurements for a session (SQL administration API) 11.10.xC1

onmode and z arguments: Terminate a user session (SQL administration API) 11.10.xC1

onmode and Z arguments: Terminate a distributed transaction (SQL administration API) 11.10.xC1

print error argument: Print an error message (SQL administration API) 11.10.xC1

reset sysadmin argument: Move the sysadmin database (SQL administration API) 11.10.xC1

scheduler argument: Stop or start the scheduler (SQL administration API) 11.10.xC1

832 Part VI: Administering

MONITOR privilege group
The MONITOR privilege group includes SQL administration function arguments to monitor the message log, Enterprise Replication, and compression estimates.

Table 15. admin() and task() Function Arguments for monitoring the message log, Enterprise Replication, or compression estimates

Argument Version

cdr error, cdr finderr, cdr list repair, cdr list replicate, cdr list replicateset, cdr list server, cdr list template, cdr
stats recv, and cdr stats rqm arguments
cdr argument: Administer Enterprise Replication (SQL administration API)

12.10.xC1

file status argument: Display the status of a message log file (SQL administration API) 11.10.xC3

index estimate_compression argument: Estimate index compression (SQL administration API) 12.10.xC1

print error argument: Print an error message (SQL administration API) 11.10.xC1

onstat argument: Monitor the database server (SQL administration API) 12.10.xC1

table estimate_compression and fragment estimate_compression arguments
table or fragment arguments: Compress data and optimize storage (SQL administration API)

11.50.xC4

REPLICATION privilege group
The REPLICATION privilege group includes SQL administration API function arguments to manage Enterprise Replication.

Table 16. admin() and task() Function Arguments for Enterprise Replication Commands

Argument Version

cdr argument: Administer Enterprise Replication (SQL administration API) 11.50.xC3

SQL privilege group
The SQL privilege group includes SQL administration API function arguments to create and drop databases and view error messages.

Table 17. admin() and task() Function arguments for databases and error messages

Argument Version

create database argument: Create a database (SQL administration API) 11.70.xC2

create dbaccessdemo argument: Create the demonstration database (SQL administration API) 12.10.xC1

drop database argument: Drop a database (SQL administration API) 11.70.xC2

print error argument: Print an error message (SQL administration API) 11.10.xC1

SQLTRACE privilege group
The SQLTRACE privilege group includes SQL administration API function arguments to manage SQL tracing.

Table 18. admin() and task() Function Arguments for SQL Tracing Commands

Argument Version

set sql tracing argument: Set global SQL tracing (SQL administration API) 11.10.xC1

set sql tracing database argument: Change database tracing (SQL administration API) 11.50.xC3

set sql tracing session argument: Control tracing for a session (SQL administration API) 11.50.xC3

set sql tracing user argument: Control tracing for users (SQL administration API) 11.10.xC1

set sql user tracing argument: Set global SQL tracing for a user session (SQL administration API) 11.50.xC3

STORAGE privilege group
The STORAGE privilege group includes SQL administration API function arguments for managing the following aspects of storage:

Storage space encryption argument
Automatic table storage location arguments
Compression
Logical and physical logs
Mirroring
Storage spaces
Storage provisioning

Storage space encryption argument
SQL administration API function argument to change the master encryption key for storage space encryption.

Table 19. admin() and task() Function Arguments for storage space encryption command
Argument Version

Part VI: Administering 833

Argument Version

master_key reset argument: Change the keystore password (SQL administration API) 12.10.xC8

Automatic table storage location arguments
SQL administration API function arguments to manage the list of dbspaces that store automatically allocated fragments.

Table 20. admin() and task() Function Arguments for table storage commands

Argument Version

autolocate database add argument: Add a dbspace to the dbspace list (SQL administration API) 12.10.xC3

autolocate database anywhere argument: Add all dbspaces to the dbspace list (SQL administration API) 12.10.xC3

autolocate database argument: Specify dbspaces for automatic location and fragmentation (SQL administration
API)

12.10.xC3

autolocate database off argument: Disable automatic fragmentation for a database (SQL administration API) 12.10.xC3

autolocate database remove argument: Remove a dbspace from the dbspace list (SQL administration API) 12.10.xC3

Compression
SQL administration API function arguments to manage the compression of data and to optimize storage.

Table 21. admin() and task() Function Arguments for Compression Commands

Argument Version

index compress repack shrink arguments: Optimize the storage of B-tree indexes (SQL administration API) 12.10.xC1

index estimate_compression argument: Estimate index compression (SQL administration API) 12.10.xC1

table or fragment arguments: Compress data and optimize storage (SQL administration API) 11.50.xC4

purge compression dictionary arguments: Remove compression dictionaries (SQL administration API) 11.50.xC4

For an overview of compression and storage optimization commands, see Table and fragment compress and uncompress operations (SQL administration API).

Logical and physical logs
SQL administration API function arguments to manage logical and physical logs.

Table 22. admin() and task() Function Arguments for Log Commands

Argument Version

add log argument: Add a new logical log (SQL administration API) 11.10.xC1

alter logmode argument: Change the database logging mode (SQL administration API) 11.10.xC1

alter plog argument: Change the physical log (SQL administration API) 11.10.xC1

drop log argument: Drop a logical log (SQL administration API) 11.10.xC1

Mirroring
SQL administration API function arguments to manage mirroring.

Table 23. admin() and task() Function Arguments for Mirror Commands

Argument Version

add mirror argument: Add a mirror chunk (SQL administration API) 11.10.xC1

start mirroring argument: Starts storage space mirroring (SQL administration API) 11.10.xC1

stop mirroring argument: Stops storage space mirroring (SQL administration API) 11.10.xC1

Storage spaces
SQL administration API function arguments to manage chunks, blobspaces, dbspaces, and sbspaces.

Table 24. admin() and task() Function Arguments for Space Commands

Argument Version

add chunk argument: Add a new chunk (SQL administration API) 11.10.xC1

alter chunk argument: Change chunk status to online or offline (SQL administration API) 11.10.xC1

clean sbspace argument: Release unreferenced smart large objects (SQL administration API) 11.10.xC1

create blobspace argument: Create a blobspace (SQL administration API) 11.10.xC1

create chunk argument: Create a chunk (SQL administration API) 11.10.xC1

create dbaccessdemo argument: Create the demonstration database (SQL administration API) 12.10.xC1

834 Part VI: Administering

Argument Version

create dbspace argument: Create a dbspace (SQL administration API) 11.10.xC1

create sbspace argument: Create an sbspace (SQL administration API) 11.10.xC1

create sbspace with accesstime argument: Create an sbspace that tracks access time (SQL administration API) 11.70.xC4

create sbspace with log argument: Create an sbspace with transaction logging (SQL administration API) 11.70.xC4

create tempdbspace argument: Create a temporary dbspace (SQL administration API) 11.10.xC1

create tempsbspace argument: Create a temporary sbspace (SQL administration API) 11.70.xC4

drop blobspace argument: Drop a blobspace (SQL administration API) 11.10.xC1

drop chunk argument: Drop a chunk (SQL administration API) 11.10.xC1

drop dbspace argument: Drop a dbspace (SQL administration API) 11.10.xC1

drop sbspace argument: Drop an sbspace (SQL administration API) 11.10.xC1

drop tempdbspace argument: Drop a temporary dbspace (SQL administration API) 11.10.xC1

onmode and O arguments: Mark a disabled dbspace as down (SQL administration API) 11.10.xC1

print error argument: Print an error message (SQL administration API) 11.10.xC1

rename space argument: Rename a storage space (SQL administration API) 11.10.xC1

set chunk argument: Change the status of a chunk (SQL administration API) 11.10.xC1

set sbspace accesstime argument: Control access time tracking (SQL administration API) 11.10.xC1

set sbspace avg_lo_size argument: Set the average size of smart large objects (SQL administration API) 11.10.xC1

set sbspace logging argument: Change the logging of an sbspace (SQL administration API) 11.10.xC1

Storage provisioning
SQL administration API function arguments to manage chunks, blobspaces, dbspaces, and sbspaces from storage pools.

Table 25. admin() and task() Function Arguments for Storage Provisioning Space Commands

Argument Version

create blobspace from storagepool argument: Create a blobspace from the storage pool (SQL administration API) 11.70.xC1

create chunk from storagepool argument: Create a chunk from the storage pool (SQL administration API) 11.70.xC1

create dbspace from storagepool argument: Create a dbspace from the storage pool (SQL administration API) 11.70.xC1

create plogspace: Create a plogspace (SQL administration API) 12.10.xC3

create sbspace from storagepool argument: Create an sbspace from the storage pool (SQL administration API) 11.70.xC1

create tempdbspace argument: Create a temporary dbspace (SQL administration API) 11.70.xC1

create tempsbspace from storagepool argument: Create a temporary sbspace from the storage pool (SQL
administration API)

11.10.xC1

create tempdbspace from storagepool argument: Create a temporary dbspace from the storage pool (SQL
administration API)

11.70.xC1

drop blobspace to storagepool argument: Return space from an empty blobspace to the storage pool (SQL
administration API)

11.70.xC1

drop chunk to storagepool argument: Return space from an empty chunk to the storage pool (SQL administration
API)

11.70.xC1

drop dbspace to storagepool argument: Return space from an empty dbspace to the storage pool (SQL
administration API)

11.70.xC1

drop plogspace: Drop the plogspace (SQL administration API) 12.10.xC3

drop sbspace to storagepool argument: Return space from an empty sbspace to the storage pool (SQL
administration API)

11.70.xC1

drop tempdbspace to storagepool argument: Return space from an empty temporary dbspace to the storage pool
(SQL administration API)

11.70.xC1

drop tempsbspace to storagepool argument: Return space from an empty temporary sbspace to the storage pool
(SQL administration API)

11.70.xC1

modify chunk extend argument: Extend the size of a chunk (SQL administration API) 11.70.xC1

modify chunk extendable off argument: Mark a chunk as not extendable (SQL administration API) 11.70.xC1

modify chunk extendable argument: Mark a chunk as extendable (SQL administration API) 11.70.xC1

modify space expand argument: Expand the size of a space (SQL administration API) 11.70.xC1

modify space sp_sizes argument: Modify sizes of an extendable storage space (SQL administration API) 11.70.xC1

storagepool add argument: Add a storage pool entry (SQL administration API) 11.70.xC1

storagepool modify argument: Modify a storage pool entry (SQL administration API) 11.70.xC1

storagepool delete argument: Delete one storage pool entry (SQL administration API) 11.70.xC1

Part VI: Administering 835

Argument Version

storagepool purge argument: Delete storage pool entries (SQL administration API) 11.70.xC1

TENANT privilege group
The TENANT privilege group includes SQL administration API function arguments to manage tenant databases.

Table 26. admin() and task() Function Arguments for Tenant Database Commands

Argument Version

tenant create argument: Create a tenant database (SQL Administration API) 12.10.xC4

tenant drop argument: Drop a tenant database (SQL Administration API) 12.10.xC4

tenant update argument: Modify tenant database properties (SQL Administration API) 12.10.xC4

Copyright© 2020 HCL Technologies Limited

add bufferpool argument: Add a buffer pool (SQL administration API)

Use the add bufferpool argument with the admin() or task() function to create a buffer pool.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"add bufferpool"--,--"page_size"--)--;----------------------><

Element Description Key Considerations

page_size The page size in
KB.

The page size must be an integral multiple of the default page size, and cannot be greater than 16 KB. On Windows, the page size is
always 4 KB.

Usage
Use add bufferpool argument to create a buffer pool for a page size that does not already have a buffer pool. All other characteristics of the buffer pool that you create are
set to the values of the fields in the default line of the BUFFERPOOL configuration parameter.

This function is equivalent to the onparams -b -g command and the BUFFERPOOL configuration parameter.

Example
The following example adds a buffer pool with a page size of 8 KB:

EXECUTE FUNCTION task("add bufferpool","8");

Related reference:
 onparams -b: Add a buffer pool

BUFFERPOOL configuration parameter

Copyright© 2020 HCL Technologies Limited

add chunk argument: Add a new chunk (SQL administration API)

Use the add chunk argument with the admin() or task() function to add a chunk to a dbspace or blobspace.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"add chunk"--,--"space_name"--,--"path_name"----------------->

>--+---+-->
 '-,--"disk_size"--+---+-'
 '-,--"offset"--+--+-'
 '-,--"mirror_path"--+--------------------+-'
 '-,--"mirror_offset"-'

>--)--;--><

836 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Element Description Key ConsiderationsElement Description Key Considerations

disk_size The amount of disk space to add in kilobytes. See admin() and task() Argument Size Specifications.

mirror_offset The location of the mirror chunk.

mirror_path The path to the mirror chunk. If you are adding a chunk to a mirrored storage space, you must also add a
mirror chunk.

offset The location of the new chunk.

path_name The path of the added disk space.

space_name The name of the dbspace, blobspace, or sbspace to which you are
adding disk space.

Usage
The size of the chunk must be equal to or greater than 1000 KB and a multiple of the page size. The starting offset plus the chunk size cannot exceed the maximum chunk
size. The maximum offset is 4 TB.

This function is equivalent to the onspaces -a command.

Example
The following example adds a 5 MB chunk of raw disk space, at an offset of 5200 kilobytes, to a dbspace named dbspc3:

EXECUTE FUNCTION task("add chunk", "dbspc3","\\.\e:","5120","5200");

The following example adds a 10 MB mirror chunk to a blobspace named blobsp3 with an offset of 200 kilobytes for both the primary and mirror chunks:

EXECUTE FUNCTION task("add chunk","blobsp3","/dev/raw_dev1","10240",
"200","/dev/raw_dev2","200");

Related reference:
 onspaces -a: Add a chunk to a dbspace or blobspace

onspaces -a: Add a chunk to an sbspace

Copyright© 2020 HCL Technologies Limited

add log argument: Add a new logical log (SQL administration API)

Use the add log argument with the admin() or task() function to add a logical log to a dbspace.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"add log"--,--"dbspace"------>
 '-task--'

>--+--+-->
 '-,--"size"--+---+-'
 | .-1-------. |
 '-,--+-"count"-+--+-----------------------+-'
 '-,--after_current_flag-'

>--)--;--><

Element Description Key Considerations

after_current_fla
g

Whether to add the new log after the current log or after the last logical log
(default).

Possible values are:

1 = Add the new log after the current log.
0 = Add the new log after the last log.

count The number of log files to create. The default is 1. The number must not cause the total number of logical-log files
to exceed 32,767.

dbspace The name of the dbspace in which to insert a logical-log file. You can add a log file to a dbspace only if the database server has
adequate contiguous space.
You can add a log file during a backup.

You cannot add a log file to a blobspace or sbspace.

size The size in kilobytes of the new logical-log file. The default is the size specified by
the LOGSIZE configuration parameter.

This value must be an unsigned integer greater than or equal to
200 KB.
Also see admin() and task() Argument Size Specifications.

Usage

Part VI: Administering 837

https://www.hcltech.com/

The newly added log files have a status of A and are immediately available for use. Use onstat -l to view the status of your logical-log files. It is recommended that you
take a level-0 backup of the root dbspace and the dbspace that contains the log file as soon as possible after running this function.

By default, the new log file is added after the last logical log. Include 1 as the fifth argument to insert the logical-log file after the current log file.

This function resembles the onparams -a -d command, which can add a single logical-log file. You can add multiple logical-log files to the specified dbspace, however,
with a single invocation of this function.

Example
The command in the following example adds three logical logs after the current log, each with a size of 5 MB:

EXECUTE FUNCTION task ("add log","logdbs","5M",3,1);

Related reference:
 onparams -a -d dbspace: Add a logical-log file

Copyright© 2020 HCL Technologies Limited

add memory argument: Increase shared memory (SQL administration API)

Use the add memory argument with the admin() or task() function to add to the virtual portion of shared memory.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"add memory"--,--"memory_size"--)--;------------------------><

Element Description Key Considerations

memory_size The size, in kilobytes, of the new virtual shared-memory
segment.

This value must not exceed the operating system limit for
the size of shared-memory segments.
Also see admin() and task() Argument Size Specifications.

Usage
This size defaults to the SHMADD configuration parameter.

This function is equivalent to the onmode -a command.

Example
The following example adds 500 KB of virtual shared-memory:

EXECUTE FUNCTION task("add memory","500");

Related reference:
 onmode -a: Add a shared-memory segment

Copyright© 2020 HCL Technologies Limited

add mirror argument: Add a mirror chunk (SQL administration API)

Use the add mirror argument with the admin() or task() function to add a mirror chunk to a dbspace.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"add mirror"--,--"space_name"--,--"path_name"--,------------->

>--"offset"--,--"mirror_path"--,--"mirror_offset"--)--;--------><

Element Description Key Considerations

mirror_path The disk partition or unbuffered device of the initial chunk of the dbspace, blobspace, or sbspace that performs
the mirroring.

mirror_offset The offset to reach the mirrored chunk of the newly mirrored dbspace, blobspace, or sbspace. See admin() and task() Argument Size
Specifications.

838 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Element Description Key Considerations

offset The offset into the disk partition or into the unbuffered device in kilobytes to reach the initial chunk of the
newly mirrored dbspace, blobspace, or sbspace.

See admin() and task() Argument Size
Specifications.

path_name The disk partition or unbuffered device of the initial chunk of the dbspace, blobspace, or sbspace that you want
to mirror.

space_name The name of a dbspace, blobspace, or sbspace to mirror.

Usage
This function is equivalent to the onspaces -m command.

Example
The following example adds a mirror chunk to a blobspace named blobsp3:

EXECUTE FUNCTION task("add mirror","blobsp3","/dev/raw_dev1",
"10240","/dev/raw_dev2","200");

Related reference:
 onspaces -m: Start mirroring

Copyright© 2020 HCL Technologies Limited

alter chunk argument: Change chunk status to online or offline (SQL administration
API)

Use the alter chunk argument with the admin() or task() function to bring a chunk online or take a chunk offline in a dbspace, blobspace, or sbspace.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--+-"alter chunk offline"-+---->
 '-task--' '-"alter chunk online"--'

>--,--"space_name"--,--"path_ name"--,--"offset"--)--;---------><

Element Description Key Considerations

space_name The name of the blobspace, dbspace, or sbspace.

path_name The disk partition or unbuffered device of the chunk.

offset The offset (in kilobytes) into the disk partition or unbuffered device to reach the chunk. The default
is 0.

See admin() and task() Argument Size
Specifications.

Usage
The chunk must be in a mirrored pair, or a non-primary chunk within a noncritical dbspace.

Use the alter chunk online argument to change the chunk status to online.

Use the alter chunk offline argument to change the chunk status to offline.

This function is equivalent to the onspaces -s command.

Example
The following example brings a chunk in a space named dbspace4 online:

EXECUTE FUNCTION task("alter chunk online","dbspace4","/dev/raw_dev1","0");

Related reference:
 onspaces -s: Change status of a mirrored chunk

Copyright© 2020 HCL Technologies Limited

alter logmode argument: Change the database logging mode (SQL administration
API)

Use the alter logmode argument with the admin() or task() function to change the database logging mode to ANSI, buffered, non-logging, or unbuffered.

Part VI: Administering 839

https://www.hcltech.com/
https://www.hcltech.com/

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"alter logmode"--,--"database_name"--,--+-"a"-+--)--;-------><
 +-"b"-+
 +-"n"-+
 '-"u"-'

Element Description Key Considerations

database_name The name of the database with the logging mode that you want to alter.

Usage
Unlike when you change the database logging mode with the ondblog or ontape utilities, when you use this function, the database remains accessible, and a level-0
backup is not always required. Ensure that no other session is active before running this function or it will fail.

Use the "a" argument to change the database logging to be ANSI compliant. After you create or convert a database to ANSI mode, you cannot change it back to any of the
other logging modes.

Use the "b" argument to change the database logging to be buffered, so that transaction information is written to a buffer before it is written to a logical log.

Use the "n" argument to change the database logging to be non-logging, so that no database transactions are logged. You must perform a level-0 backup prior to using this
argument.

Use the "u" argument to change the database logging to be unbuffered, so that data is not written to a buffer before it is written to a logical log.

Example
The following example changes the logging mode of a database named employee to unbuffered logging:

EXECUTE FUNCTION task("alter logmode","employee","u");

Related concepts:
 The onlog utility

Copyright© 2020 HCL Technologies Limited

alter plog argument: Change the physical log (SQL administration API)

Use the alter plog argument with the admin() or task() function to change the location and size of the physical log.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"alter plog"--,--"dbspace"--+--------------------+--)--;----><
 '-,--"phys_log_size"-'

Element Description Key Considerations

dbspace The location of the physical log. The space allocated for the physical log must be contiguous.

phys_log_size The size, specified in kilobytes, of the physical log. See admin() and task() Argument Size Specifications.

Usage
To change only the size, specify the current dbspace of the physical log.

This function is equivalent to the onparams -p command.

Example
The following example moves the physical log to a dbspace called phsdbs:

EXECUTE FUNCTION task ("alter plog","physdbs","49 M");

Related reference:
 onparams -p: Change physical-log parameters

Copyright© 2020 HCL Technologies Limited

840 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

archive fake argument: Perform an unrecorded backup (SQL administration API)

Use the archive fake argument with the admin() or task() function to perform a backup operation to clone the data in a server without creating a persistent backup that
could be used to perform a restore.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"archive fake"--)--;--------><
 '-task--'

Usage
Use this function to populate the secondary server in a High-Availability Data Replication pair.

This function is equivalent to running the ontape command with the -F option.

Example
The following example starts an unrecorded backup:

EXECUTE FUNCTION task("archive fake");

Copyright© 2020 HCL Technologies Limited

autolocate database add argument: Add a dbspace to the dbspace list (SQL
administration API)

Use the autolocate database add argument with the admin() or task() function to add a dbspace to the list of available dbspaces for the automatic location and
fragmentation of tables for the specified database.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"autolocate database add"--,--"database_name"--,--"dbspace"-->

>--)--;--><

Element Description Key Considerations

database_name Name of the database

dbspace Name of a dbspace to add to the list of names of the dbspaces in which the database server can automatically create
fragments.

The dbspace must
exist.

Usage
The AUTOLOCATE configuration parameter or session environment variable must be set to a positive integer.

The list of available dbspaces is stored in the sysautolocate system catalog table.

Example
The following command adds the dbspace dbspace9 to the list of available dbspaces for automatic location and fragmentation for tables in the customer database.

EXECUTE FUNCTION task("autolocate database add", "customer", "dbspace9");

Related reference:
 AUTOLOCATE configuration parameter

autolocate database argument: Specify dbspaces for automatic location and fragmentation (SQL administration API)
autolocate database remove argument: Remove a dbspace from the dbspace list (SQL administration API)
autolocate database anywhere argument: Add all dbspaces to the dbspace list (SQL administration API)
autolocate database off argument: Disable automatic fragmentation for a database (SQL administration API)

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 841

https://www.hcltech.com/
https://www.hcltech.com/

autolocate database anywhere argument: Add all dbspaces to the dbspace list (SQL
administration API)

Use the autolocate database anywhere argument with the admin() or task() function to specify that the database server can use any non-critical dbspace for the
automatic location and fragmentation of tables for the specified database.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"autolocate database anywhere"--,--"database_name"--)--;----><

Element Description Key Considerations

database_name Name of the database Cannot be the name of a tenant database.

Usage
This command replaces any previous list of dbspaces with a list of all available dbspaces. Dbspaces that are dedicated to tenant database are not available. The list of
available dbspaces is stored in the sysautolocate system catalog table.

The AUTOLOCATE configuration parameter or session environment variable must be set to a positive integer.

Example
The following command adds all non-critical dbspaces to the list of available dbspaces for automatic location and fragmentation for tables in the potential_cust database:

EXECUTE FUNCTION task("autolocate database anywhere", "potential_cust");

Related reference:
 AUTOLOCATE configuration parameter

autolocate database argument: Specify dbspaces for automatic location and fragmentation (SQL administration API)
autolocate database add argument: Add a dbspace to the dbspace list (SQL administration API)
autolocate database remove argument: Remove a dbspace from the dbspace list (SQL administration API)
autolocate database off argument: Disable automatic fragmentation for a database (SQL administration API)

Copyright© 2020 HCL Technologies Limited

autolocate database argument: Specify dbspaces for automatic location and
fragmentation (SQL administration API)

Use the autolocate database argument with the admin() or task() function to specify the list of available dbspaces for the automatic location and fragmentation of tables
for the specified database.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"autolocate database"--,--"database_name"--,--"dbspace_list"-->

>--)--;--><

Element Description Key Considerations

database_name Name of the database Cannot be the name of a tenant database.

dbspace_list A comma-separated list of names of the dbspaces in which the database server can
automatically create fragments.

The dbspaces must exist. The dbspaces cannot be dedicated
to a tenant database.

Usage
The AUTOLOCATE configuration parameter or session environment variable must be set to a positive integer.

By default, all dbspaces are available. The list of available dbspaces is stored in the sysautolocate system catalog table.

Example
The following command limits the list of available dbspaces for automatic location and fragmentation for tables in the customer database:

842 Part VI: Administering

https://www.hcltech.com/

EXECUTE FUNCTION task("autolocate database", "customer",
 "dbspace1,dbspace2,dbspace4,dbspace8");

Related reference:
 AUTOLOCATE configuration parameter

autolocate database add argument: Add a dbspace to the dbspace list (SQL administration API)
autolocate database remove argument: Remove a dbspace from the dbspace list (SQL administration API)
autolocate database anywhere argument: Add all dbspaces to the dbspace list (SQL administration API)
autolocate database off argument: Disable automatic fragmentation for a database (SQL administration API)

Copyright© 2020 HCL Technologies Limited

autolocate database off argument: Disable automatic fragmentation for a database
(SQL administration API)

Use the autolocate database off argument with the admin() or task() function to disable the automatic location and fragmentation of tables for a specified database.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"autolocate database off"--,--"database_name"--)--;---------><

Element Description Key Considerations

database_name Name of the database

Usage
New tables that you create in the specified database are stored in the same dbspace as the database and are not fragmented. Existing tables that were automatically
fragmented are not allocated new fragments as the table grows.

Example
The following command disables automatic location and fragmentation of tables in the customer_old database:

EXECUTE FUNCTION task("autolocate database off", "customer_old");

Related reference:
 AUTOLOCATE configuration parameter

autolocate database argument: Specify dbspaces for automatic location and fragmentation (SQL administration API)
autolocate database add argument: Add a dbspace to the dbspace list (SQL administration API)
autolocate database remove argument: Remove a dbspace from the dbspace list (SQL administration API)
autolocate database anywhere argument: Add all dbspaces to the dbspace list (SQL administration API)

Copyright© 2020 HCL Technologies Limited

autolocate database remove argument: Remove a dbspace from the dbspace list
(SQL administration API)

Use the autolocate database remove argument with the admin() or task() function to remove a dbspace from the list of available dbspaces into which the database server
can automatically locate and fragment tables for the specified database.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"autolocate database remove"--,--"database_name"--,--"dbspace"-->

>--)--;--><

Element Description Key Considerations

database_name Name of the database

dbspace Name of the dbspace to remove from the list of names of dbspaces in which the database server can automatically create
fragments.

The dbspace must
exist.

Part VI: Administering 843

https://www.hcltech.com/
https://www.hcltech.com/

Usage
The AUTOLOCATE configuration parameter or session environment variable must be set to a positive integer.

The list of available dbspaces is stored in the sysautolocate system catalog table.

Example
The following command removes dbspace1 from the list of available dbspaces for the customer database.

EXECUTE FUNCTION task("autolocate database remove", "customer", "dbspace1");

Related reference:
 AUTOLOCATE configuration parameter

autolocate database argument: Specify dbspaces for automatic location and fragmentation (SQL administration API)
autolocate database add argument: Add a dbspace to the dbspace list (SQL administration API)
autolocate database anywhere argument: Add all dbspaces to the dbspace list (SQL administration API)
autolocate database off argument: Disable automatic fragmentation for a database (SQL administration API)

Copyright© 2020 HCL Technologies Limited

cdr argument: Administer Enterprise Replication (SQL administration API)

Use the cdr argument with the admin() or task() function to administer Enterprise Replication.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--'cdr--command_name'--+--------------------------+--)-- ;-><
 '-task--' | .----------------------. |
 | V (1) | |
 '---,------'option_name'-+-'

Notes:

1. Maximum of six option arguments.

Element Description Key Considerations

command_name The name of a cdr command. You cannot include any hyphens, flags, or other constraining options
to command_name that the cdr command-line utility requires. You
cannot use abbreviations.

option_name One or more elements of the cdr command-line options to the
command_name.

The elements must be delimited by quotation marks. Also, include (in
the correct order) any hyphens, flags, or other elements of cdr
command-line options that the command_name requires. You can
use abbreviations.

Usage
Use these functions to produce the same effect as with the cdr command-line utility to manage Enterprise Replication.

The SQL administration API supports cdr commands used to administer Enterprise Replication. The following commands for monitoring Enterprise Replication are not
supported:

cdr list grid
cdr list replicate
cdr list replicateset
cdr list server
cdr list template
cdr stats recv
cdr stats rqm
cdr –V
cdr view

The first argument must include only the cdr command names exactly as specified in the appendix for the cdr utility in the , such as cdr define server. Command names
are case-sensitive and abbreviations (such as cdr sto replset instead of cdr stop replicateset) are not supported. The SQL administration API does not perform any
validation before passing the parameters to the cdr utility.

The second and any following arguments include the command options. The options can be specified in one or up to six arguments.

The following example illustrates the use of the SQL administration API to define an Enterprise Replication server:

EXECUTE FUNCTION task ('cdr define server', '--connect=g_amsterdam
 --ats=/local0/er/ats --ris=/local0/er/ris --init g_amsterdam');

The following example shows how the options can be spread over several arguments; the above statement can also be written as:

844 Part VI: Administering

https://www.hcltech.com/

EXECUTE FUNCTION task('cdr define server',
 '--connect=g_amsterdam',
 '--ats=/local0/er/ats',
 '--ris=/local0/er/ris',
 '--init g_amsterdam');

The following example shows double quoted strings within an argument:

EXECUTE FUNCTION task('cdr change replicate',
'-d repl_1 -"db1@server1:antonio.table1" "db2@server2:carlo.table2"');

Copyright© 2020 HCL Technologies Limited

cdr add trustedhost argument: Add trusted hosts (SQL administration API)

Use the cdr add trustedhost argument with the admin() or task() function to add trusted-host relationships for database servers in a high-availability cluster or Enterprise
Replication domain. For a database to participate in a high-availability cluster or Enterprise Replication domain, its host must be listed in the trusted-host files of the other
high-availability or replication servers.

Syntax

>>-EXECUTE FUNCTION--+-admin-+---------------------------------->
 '-task--'

>--(--"--cdr add trustedhost--","------------------------------->

 .-,--.
 V |
>----+-localhost_name--+-------------+--------------+-+--"------>
 | '- -user_name-' |
 '-fully_qualified_domain_name--+-------------+-'
 '- -user_name-'

>--)--;--><

Element Description Key Considerations

localhost_name The localhost name for a database server.

fully_qualified_domain_name The full domain name for a database server.

user_name A user account with authority over the database-server
instance at the specified host.

Usage
The cdr add trustedhost argument with the admin() or task() function adds values to the file that is specified by a database server's REMOTE_SERVER_CFG configuration
parameter. If a database server is part of a high-availability cluster, trusted-host information also propagates to the trusted-host files of the other cluster servers. The
trusted-host values specify the localhost names or fully qualified domain names for the other database servers in a shard cluster. For added security, you can specify user
names that are associated with specific hosts.

If the REMOTE_SERVER_CFG configuration parameter is not set, and you run the SQL administration API task() or admin() function with the cdr add trustedhost
argument, the database server performs the following actions:

1. The REMOTE_SERVER_CFG configuration parameter is set to authfile.DBSERVER.
2. The authfile.DBSERVER file is created in $INFORMIXDIR/etc.
3. The specified trusted-host information is added to $INFORMIXDIR/etc/authfile.DBSERVER.

If you run cdr add trustedhost argument with the admin() or task() function on a server in a high-availability cluster, the trusted-host information is added to the trusted-
host files of all database servers in the cluster.

You must be a Database Server Administrator (DBSA) to run the admin() or task() function with the cdr add trustedhost argument.

To see the entries in the trusted host file, run the admin() or task() function with the cdr list trustedhost argument.

Example 1: Adding trusted host values to a trusted-host file
The following command adds six trusted-host values to the file specified by database server's REMOTE_SERVER_CFG configuration parameter:

EXECUTE FUNCTION task("cdr add trustedhost","myhost1, myhost1.ibm.com,
 myhost2, myhost2.ibm.com, myhost3, myhost3.ibm.com");

The task specifies localhost names and fully qualified domain names for three database servers.

Example 2: Adding trusted host and trusted user values to a trusted-host file
The following command adds four trusted host and user combinations to the file specified by database server's REMOTE_SERVER_CFG configuration parameter:

EXECUTE FUNCTION task("cdr add trustedhost", "myhost1 informix,
 myhost1.ibm.com informix, myhost2 user_1, myhost2.ibm.com user_1");

Part VI: Administering 845

https://www.hcltech.com/

The task specifies localhost names, fully qualified domain names, and user names for two database servers.

Related reference:
 REMOTE_SERVER_CFG configuration parameter

Related information:
 Enabling sharding for JSON or relational data

Copyright© 2020 HCL Technologies Limited

cdr autoconfig serv argument: Autoconfigure connectivity and replication (SQL
administration API)

The cdr autoconfig serv argument with the admin() or task() function can autoconfigure connectivity for servers in a high-availability cluster or Enterprise Replication
domain, and can autoconfigure replication.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--'--cdr autoconfig serv--'---->
 '-task--'

>--+---+-->
 '-,'--+---------------------+--+-| Source options |---------------------+-'
 '-| Connect Option |-' +-| Target options |---------------------+
 '-| Source options |--| Target options |-'

>--)--;--><

Connect option

|--+- -c -server-------------+----------------------------------|
 +- --connect=server-------+
 +- -c -server_group-------+
 '- --connect=server_group-'

Source options

|-- --sourcehost--host-- --sourceport--port---------------------|

Target options

|-- --targethost--host-- --targetport--port---------------------|

Element Purpose Restrictions

host The name of a database server host.

port The port number that is used for communication

server Name of the database server to connect to The name must be the name of a database server or server
connection.

server_group Name of the database server group that includes the database
server to connect to

The name must be the name of an existing database server group.

The following table describes the options to cdr autoconfig serv.

Long Form Short Form Meaning

--sourcehost -H The host of the database server that is sending autoconfiguration information. If --
sourcehost and --sourceport are not specified, the database server where the function
is run is considered the source database server.

--sourceport -P The port that is used by the database server that is sending autoconfiguration
information.

--targethost -h The host of the database server that is receiving autoconfiguration information.

--targetport -p The port that is used by the database server that is receiving autoconfiguration
information.

Usage
Run the admin() or task() function with the cdr autoconfig serv argument can autoconfigure connectivity for servers in a high-availability cluster or Enterprise Replication
domain, and can autoconfigure replication if you are adding database servers to an Enterprise Replication domain. The CDR_AUTO_DISCOVER configuration parameter
must be set to 1 on all database servers that are participating in an Enterprise Replication domain, before you can run the admin() or task() function with the cdr
autoconfig serv argument. A newly installed database server that is added to an Enterprise Replication domain through the cdr autoconfig serv argument must have a
configured storage pool.

If the source server is already configured for Enterprise Replication, the function performs the following actions:

1. The source server propagates its trusted-host file to target server.
2. The target server adds entries for itself and all other replication servers to its sqlhosts file.
3. The source server updates its sqlhost file with entries for the target server.
4. Each replication server updates its sqlhost file and trusted-host file with entries for the target server.

846 Part VI: Administering

https://www.hcltech.com/

5. The target server sets its CDR_DBSPACE configuration parameter and creates the dbspace that is required for Enterprise Replication.
6. The target server sets its CDR_QDATA_SBSPACE configuration parameter and creates the sbspace that is required for Enterprise Replication.
7. The aborted transactions spooling (ATS) file directory $INFORMIXDIR/tmp/ats_dbservername is created on the target server.
8. The row information spooling (RIS) file directory $INFORMIXDIR/tmp/ris_dbservername is created on the target server.
9. Replication to the target server starts.

If the source server is not configured for Enterprise Replication, the function performs the additional actions:

1. The source server adds entries for itself to its sqlhosts file.
2. The source server sets its CDR_DBSPACE configuration parameter and creates the dbspace that is required for Enterprise Replication.
3. The source server sets its CDR_QDATA_SBSPACE configuration parameter and creates the sbspace that is required for Enterprise Replication.
4. The aborted transactions spooling (ATS) file directory $INFORMIXDIR/tmp/ats_dbservername is created on the source server.
5. The row information spooling (RIS) file directory $INFORMIXDIR/tmp/ris_dbservername is created on the source server.
6. Replication on the source server begins before replication on the target server begins.

The following restrictions apply to the admin() or task() function with the cdr autoconfig serv argument:

All replication servers must be active, or the function fails.
Do not run the admin() or task() function with the cdr autoconfig serv argument if you have configured trusted-host information, manually, rather than through
running the admin() or task() function with the cdr add trustedhost argument.
Do not run the admin() or task() function with the cdr autoconfig serv argument if your replication servers have secure ports that are configured.
The admin() or task() function with the cdr autoconfig serv argument does not copy hosts.equiv information to the trusted-host file that is set by the
REMOTE_SERVER_CFG configuration parameter. Run the admin() or task() function with the cdr add trustedhost argument if you must add information from the
hosts.equiv file to the trusted-host file that is set by the REMOTE_SERVER_CFG configuration parameter.

Database servers are configured serially. Parallel configuration is not supported.

You can run this function as a cdr utility command.

Example 1: Configure Enterprise Replication on the local server
For this example, you have a local database server that is not configured for Enterprise Replication:

The following task function is run on the local server:

EXECUTE FUNCTION task('cdr autoconfig server');

The task function configures Enterprise Replication on the local server.

Example 2: Configure connectivity and ER between two stand-alone servers by using source
syntax

For this example, you have two database servers:

server_1 on host_1 is configured for Enterprise Replication
server_2 on host_2 is not configured for Enterprise Replication

EXECUTE FUNCTION task('cdr autoconfig server', '--connect server_2
 --sourcehost host_1 --sourceport 9020');

The task function performs the following actions:

1. The command connects to server_2.
2. Enterprise Replication is defined on server_2.
3. server_1 replicates its data to server_2

Example 3: Configure connectivity and ER between two stand-alone servers by using target
syntax

The following command

EXECUTE FUNCTION task('cdr autoconfig server', '--connect server_1
 -–targethost host_2 --targetport 9030');

The task function performs the following actions:

1. The command connects to server_1.
2. Enterprise Replication is defined on server_2.
3. server_1 replicates its data to server_2

Related information:
 cdr autoconfig serv

CDR_AUTO_DISCOVER configuration parameter

Copyright© 2020 HCL Technologies Limited

cdr list trustedhost argument: List trusted hosts (SQL administration API)

Part VI: Administering 847

https://www.hcltech.com/

Use the cdr list trustedhost argument with the admin() or task() function to list trusted-host information from the file that is specified by the database server's
REMOTE_SERVER_CFG configuration parameter.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--("--cdr list trustedhost--");--><
 '-task--'

Usage
You must be a Database Server Administrator (DBSA) to run this function.

Example
The following command lists the trusted-host entries from the database server's trusted-host file:

EXECUTE FUNCTION task("cdr list trustedhost");

The following example output shows a potential result of using the cdr list trustedhost argument.

myhost1 user_1
myhost1.example.com user_1
myhost2 user_2
myhost2.example.com user_2

Related reference:
 REMOTE_SERVER_CFG configuration parameter

Related information:
 Enabling sharding for JSON or relational data

Copyright© 2020 HCL Technologies Limited

cdr remove trustedhost argument: Remove trusted hosts (SQL administration API)

Use the cdr remove trustedhost argument with the admin() or task() function to remove entries from a database server's trusted-host file.

Syntax

>>-EXECUTE FUNCTION--+-admin-+---------------------------------->
 '-task--'

>--("--cdr remove trustedhost--","------------------------------>

 .-,--.
 V |
>----+-localhost_name---------------------------+-+--"--)--;---><
 +-fully_qualified_domain_name--------------+
 +-localhost_name-- -user_name--------------+
 '-fully_qualified_domain_name-- -user_name-'

Element Description Key Considerations

localhost_name The localhost name for a database server. If you do not specify a user_name in the command, all
entries that include the specified host name are removed.

fully_qualified_domain_name The full domain name for a database server. If you do not specify a user_name in the command, all
entries that include the specified fully qualified domain
name are removed.

user_name The user account with authority over the database-server
instance at the specified host.

Usage
The cdr remove trustedhost argument removes trusted-host entries from the trusted-host file that is specified by a database server's REMOTE_SERVER_CFG configuration
parameter. For a database to participate in a high-availability cluster or Enterprise Replication domain, its host must be listed in the trusted-host files of the other high-
availability or replication servers. When you run the admin() or task() function with the cdr remove trustedhost argument on a server in a high-availability cluster, the
trusted-host entries are removed from the trusted host files of all cluster servers.

To see the entries in the trusted host file, run the admin() or task() function with the cdr list trustedhost argument.

You must be a Database Server Administrator (DBSA) to run the cdr remove trustedhost argument with the admin() or task() function.

Example 1: Removing host entries from a trusted-host file

848 Part VI: Administering

https://www.hcltech.com/

The following command removes a localhost name value and a fully qualified domain name value from the trusted-host file that is specified by the database server's
REMOTE_SERVER_CFG configuration parameter:

EXECUTE FUNCTION task("cdr remove trustedhost","myhost1, myhost1.ibm.com");

The myhost1 and myhost1.ibm.com entries from the database server's trusted-host file are removed.

Example 2: Removing host and user entries from a trusted-host file
The following command removes localhost name values, fully qualified domain name values, and user name values from the trusted-host file that is specified by the
database server's REMOTE_SERVER_CFG configuration parameter:

EXECUTE FUNCTION task("cdr remove trustedhost",
 "myhost2 john,myhost2.ibm.com john,myhost3 informix,myhost3.ibm.com informix");

The myhost2 with user john, myhost2.ibm.com with user john,myhost3 with user informix, and myhost3.ibm.com with user informix entries from the database server's
trusted-host file are removed.

Related reference:
 REMOTE_SERVER_CFG configuration parameter

Related information:
 Enabling sharding for JSON or relational data

Copyright© 2020 HCL Technologies Limited

check data argument: Check data consistency (SQL administration API)

Use the check data argument with the admin() or task() function to check or repair all pages in the specified partition for consistency.

Syntax

>>-EXECUTE FUNCTION--+-admin-+---------------------------------->
 '-task--'

>--(--+-"check data"--------+--,--"partition_number"--)--;-----><
 +-"check data only"---+
 '-"check data repair"-'

Element Description Key Considerations

partition_number The partition number in which to check the data. Find the partition numbers in the partnum column of the systables system catalog table.

Usage
Use the check data argument to read all pages, except for sbpages, and check each page for consistency. This argument is equivalent to the oncheck -cD command.

Use the check data only argument to read all pages, except for blobpages and sbpages, and check each page for consistency. This argument is equivalent to the oncheck
-cd command.

Use the check data repair argument to repair inconsistent pages. This argument is equivalent to the oncheck -cD -y command.

Example
The following example checks the consistency of all pages in the partition 1048611:

EXECUTE FUNCTION task("check data","1048611");

Related reference:
 oncheck -cd and oncheck -cD commands: Check pages

Copyright© 2020 HCL Technologies Limited

check extents argument: Check extent consistency (SQL administration API)

Use the check extents argument with the admin() or task() function to verify that the extents on disk correspond to the current control information.

Syntax

>>-EXECUTE FUNCTION--+-admin-+---------------------------------->
 '-task--'

>--(--"check extents"--+-------------------+--)--;-------------><
 '-,--dbspace_number-'

Part VI: Administering 849

https://www.hcltech.com/
https://www.hcltech.com/

Element Description Key Considerations

dbspace_number The number of the dbspace to check.

Usage
Run this function to check each chunk-free list and corresponding free space and each tblspace extent. If you do not specify a dbspace number, all dbspaces are checked.
The function checks dbspaces, blobspaces, smart-large-object extents, and user-data and metadata information in sbspace chunks.

This function is equivalent to the oncheck -ce command.

Example
The following example checks the extents in the dbspace with the number 2:

EXECUTE FUNCTION task("check extents",2);

Related reference:
 oncheck -ce, -pe: Check the chunk-free list

Copyright© 2020 HCL Technologies Limited

check partition argument: Check partition consistency (SQL administration API)

Use the check partition argument with the admin() or task() function to print tblspace information for a table or fragment.

Syntax

>>-EXECUTE FUNCTION--+-admin-+---------------------------------->
 '-task--'

>--(--"check partition"--,--"partition_number"--)--;-----------><

Element Description Key Considerations

partition_numbe
r

The number of the partition that you want to check for
consistency.

Find the partition numbers in the partnum column of the systables system catalog
table.

Usage
The check partition argument with the task() function returns information that is equivalent to output of the oncheck -pt command. The output contains general
information such as the maximum row size, the number of keys, the number and size of extents, the pages allocated and used per extent, the current serial value, and the
date that the table was created.

The admin() function returns an integer that you can use to find information in the command_history table in the sysadmin database.

Example
The following example prints information for partition 1048611:

EXECUTE FUNCTION task("check partition","1048611");

Related reference:
 oncheck -pt and -pT: Display tblspaces for a Table or Fragment

Copyright© 2020 HCL Technologies Limited

checkpoint argument: Force a checkpoint (SQL administration API)

Use the checkpoint argument with the admin() or task() function to force a checkpoint.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"checkpoint"--,-------------->
 '-task--'

 .-"hard"----.
>--+-"block"---+--)--;---><
 +-"norm"----+
 '-"unblock"-'

850 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Usage
This function forces a checkpoint that flushes the buffers to disk. You can use this function to force a checkpoint if the most recent checkpoint record in the logical log was
preventing the logical-log file from being freed (status U-B-L).
Use the block argument to prevent the database server from processing any transactions. Use this option to perform an external backup on Informix®. While the database
server is blocked, users cannot access it, except in read-only mode. No transactions can complete until the database server is unblocked.

Use the hard argument to force a blocking checkpoint. This is the default.

Use the norm argument to force a nonblocking checkpoint.

Use the unblock argument to unblock the database server. When the database server is unblocked, data transactions and normal database server operations can resume.
Use this option after you complete an external backup on Informix.

This function is equivalent to the onmode -c command.

Example
The following example starts a blocking checkpoint:

EXECUTE FUNCTION task("checkpoint","block");

Related reference:
 onmode -c: Force a checkpoint

Copyright© 2020 HCL Technologies Limited

clean sbspace argument: Release unreferenced smart large objects (SQL
administration API)

Use the clean sbspace argument with the admin() or task() function to release any unreferenced BLOB or CLOB objects from the sbspace.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"clean sbspace"--,--"sbspace"--)--;-------------------------><

Element Description Key Considerations

sbspace The name of the sbspace to clean.

Usage
This function is equivalent to the onspaces -cl command.

Example
The following example cleans an sbspace named sbsp1:

EXECUTE FUNCTION task("clean sbspace","sbsp1");

Related reference:
 onspaces -cl: Clean up stray smart large objects in sbspaces

Copyright© 2020 HCL Technologies Limited

create blobspace argument: Create a blobspace (SQL administration API)

Use the create blobspace argument with the admin() or task() function to create a blobspace.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"create--+-------------+--+------------+--blobspace"--,--"blobspace"--,--"path_name"-->
 '-unencrypted-' '-with_check-'

>--+--+-->
 '-,--"initial_chunk_size"--+---------------------------------+-'

Part VI: Administering 851

https://www.hcltech.com/
https://www.hcltech.com/

 '-,--"offset"--+----------------+-'
 '-,--"page_size"-'

>--)--;--><

Element Description Key Considerations

blobspace The name of the blobspace to be created.

initial_chunk_siz
e

The size, in kilobytes, of the initial chunk of the new blobspace. See admin() and task() Argument Size Specifications.

offset The offset, in kilobytes, into the disk partition or into the device to reach the
initial chunk of the new blobspace.

See admin() and task() Argument Size Specifications.

page_size The blobspace blobpage size. You specify the size of a blobpage in multiples of the default Informix®
page size for your operating system.

For more information, see blobpage size considerations in the IBM®
Informix Performance Guide.

path_name The disk partition or device of the initial chunk of the blobspace that you
are creating.

Usage
Use the create with_check blobspace argument to check the specified path name and return an error if it does not exist.

Use the create unencrypted blobspace argument to create an unencrypted blobspace when encryption is enabled by the DISK_ENCRYPTION configuration parameter.

This function is equivalent to the onspaces -c -b command.

Example
The following example creates a blobspace that has a size of 20 MB with an offset of 0 and page size of 2. The blob pages are 2*base page size = 8 K on Windows (4 K
base page size).

EXECUTE FUNCTION task ("create with_check blobspace","blobs3",
"$INFORMIXDIR/WORK/blobs3","20 M","0","2");

Related reference:
 onspaces -c -b: Create a blobspace

Avoid overwriting a chunk

Copyright© 2020 HCL Technologies Limited

create blobspace from storagepool argument: Create a blobspace from the storage
pool (SQL administration API)

Use the create blobspace from storagepool argument with the admin() or task() function to create a blobspace from an entry from the storage pool.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"--create -+-------------+--blobspace from storagepool--"---->
 '-unencrypted-'

>--,--"blobspace"--,--"initial_chunk_size"--,--+---+-->
 '-,--"blobpage_size"--+---------------------+-'
 '-,--"mirroring_flag"-'

>--)--;--><

Element Description Key Considerations

blobspace The name of the blobspace. The blobspace name must be unique and cannot exceed
128 bytes. It must begin with a letter or underscore and
must contain only letters, numbers, underscores, or the $
character.

blobpage_size The blobpage size, specified in terms of page_unit, the
number of disk pages per blobpage

The page size is optional. However if you specify 1 for
mirroring, you must also specify a page size.

initial_chunk_size The size, in kilobytes, of the initial chunk of the new
blobspace.

See admin() and task() Argument Size Specifications.

852 Part VI: Administering

https://www.hcltech.com/

Element Description Key Considerations

mirroring_flag Either:

1 = mirroring

0 = no mirroring

The mirroring flag is optional.

Use the create unencrypted blobspace from storagepool argument to create an unencrypted blobspace when encryption is enabled by the DISK_ENCRYPTION
configuration parameter.

Examples
The following command creates a mirrored blobspace named blobspace1. The new blobspace has a size of 100 gigabytes and a blobpage size of 100 pages.

EXECUTE FUNCTION task("create blobspace from storagepool", "blobspace1", "100 GB",
 "100", "1");

The following command creates an unmirrored blobspace named blobspace2 with the default blobpage size, so a blobpage size is not specified:

EXECUTE FUNCTION task("create blobspace from storagepool", "blobspace2", "5000");

Copyright© 2020 HCL Technologies Limited

create chunk argument: Create a chunk (SQL administration API)

Use the create chunk argument with the admin() or task() function to create a chunk in a dbspace or in a blobspace.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"create--+------------+--chunk"--,--"space_name"--,--"path_name"-->
 '-with_check-'

>--+---+-->
 '-,--"disk_size"--+---+-'
 '-,--"offset"--+--+-'
 '-,--"mirror_path"--+--------------------+-'
 '-,--"mirror_offset"-'

>--)--;--><

Element Description Key Considerations

disk_size The amount of disk space to add in kilobytes. See admin() and task() Argument Size
Specifications.

mirror_offset The location of the mirror chunk.

mirror_path The path to the mirror chunk. If you are adding a chunk to a mirrored storage space, you must also add
a mirror chunk.

offset The location of the new chunk.

path_name The path of the added disk space.

space_name The name of the dbspace, blobspace, or sbspace to which you are adding disk space.

Usage
Use the create with_check chunk argument to check the specified path name and return an error if it does not exist.

This function is equivalent to the onspaces -a command.

Example
The following example adds a 5 MB chunk of raw disk space, at an offset of 5200 kilobytes, to a dbspace named dbspc3:

EXECUTE FUNCTION task("create chunk", "dbspc3","\\.\e:","5120","5200");

The following example adds a 10 MB mirror chunk to a blobspace named blobsp3 with an offset of 200 kilobytes for both the primary and mirror chunks:

EXECUTE FUNCTION task("create with_check chunk","blobsp3","/dev/raw_dev1","10240",
"200","/dev/raw_dev2","200");

Related reference:
 onspaces -a: Add a chunk to a dbspace or blobspace

Avoid overwriting a chunk
onspaces -a: Add a chunk to an sbspace

Part VI: Administering 853

https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

create chunk from storagepool argument: Create a chunk from the storage pool (SQL
administration API)

Use the create chunk from storagepool argument with the admin() or task() function to manually create a chunk from an entry in the storage pool.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"--create chunk from storagepool--"-------------------------->

>--,--"space_name"--,--"initial_chunk_size"--)--;--------------><

Element Description Key Considerations

space_name The name of the storage space to which you are adding the
chunk.

initial_chunk_size The size, in kilobytes, of the initial chunk. See admin() and task() Argument Size Specifications.

Usage
You can also use an SQL administration API command with the modify space expand argument to manually create a chunk from the storage pool and add the chunk to the
specified storage space. However, if the space has extendable chunks, Informix® might extend a chunk instead of creating a new one. Unlike the modify space expand
argument, the create chunk from storagepool argument forces Informix to add a chunk.

Example
The following command adds a chunk to the dbspace named logdbs. The new chunk has a size of 200 megabytes.

EXECUTE FUNCTION task("create chunk from storagepool", "logdbs", "200 MB");

Related reference:
modify space expand argument: Expand the size of a space (SQL administration API)

Copyright© 2020 HCL Technologies Limited

create database argument: Create a database (SQL administration API)

Use the create database argument with the admin() or task() function to create a database.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"create database------------->
 '-task--'

>--+-------------------------+--+-------------------------+----->
 '-with--+-log-----------+-' '-+-nlscase insensitive-+-'
 +-buffered log--+ '-nlscase sensitive---'
 '-log mode ansi-'

>--"--,--"database_name"--+-------------------------------+----->
 '-,--"dbspace"--+-------------+-'
 '-,--"locale"-'

>--)--;--><

Element Description Key Considerations

database_name The name of the database.

dbspace The name of the dbspace to store the data for this database.
The default is the root dbspace.

The dbspace must already exist on the database server.

locale The locale associated with the database. The values for locale are the same as the values for the DB_LOCALE environment
variable.
If you omit this property, the locale is set by the value of the DB_LOCALE environment
variable. The default locale is US English.

854 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Usage
This function is equivalent to the CREATE DATABASE statement.

You cannot use this function to create a tenant database. You create a tenant database with the tenant create argument.

Examples
The following example creates the database named demodbs with unbuffered logging:

EXECUTE FUNCTION task("create database with log","demodbs");

The following example creates a database that is not case-sensitive named demodbs2 with ANSI compliant logging in the dbspace named dataspace1:

EXECUTE FUNCTION task("create database with log mode ansi nlscase insensitive",
"demodbs2","dataspace1");

The following example creates a database named demodbs3 with a French-Canadian locale in the dbspace name dataspace1:

EXECUTE FUNCTION task("create database","demodbs3","dataspace1","fr_ca.8859-1");

Related reference:
 tenant create argument: Create a tenant database (SQL Administration API)

Related information:
 CREATE DATABASE statement

DB_LOCALE environment variable

Copyright© 2020 HCL Technologies Limited

create dbaccessdemo argument: Create the demonstration database (SQL
administration API)

Use the create dbaccessdemo argument with the admin() or task() function to create the stores_demo demonstration database.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"--create dbaccessdemo--"---->
 '-task--'

>--+---+-->
 '-,--"--database_name--"--+---+-'
 '-,--"--dbspace--"--+----------------+--+-----------------+-'
 '-,--"-- -log--"-' '-,--"-- -nots--"-'

>--)--;--><

Element Purpose Key considerations

database_name The name of the database to create. Default database name is stores_demo.

dbspace The name of the dbspace in which to create
the database.

Default dbspace is the root dbspace.

Usage
Run this function to create the stores_demo database.

Use the -log option to enable transaction logging for the demonstration database.

Use the -nots option to prevent the creation of the tables with time series data in the demonstration database.

Examples
The following command creates the stores_demo database in the root dbspace:

EXECUTE FUNCTION task("create dbaccessdemo");

The following command creates the demonstration database named demo2, in a dbspace named dbs1:

EXECUTE FUNCTION task("create dbaccessdemo","demo2","dbs1");

The following command creates the stores_demo database in a dbspace named dbs1 with transaction logging:

EXECUTE FUNCTION task("create dbaccessdemo","stores_demo","dbs1","-log");

Related information:

Part VI: Administering 855

https://www.hcltech.com/

The stores_demo Database Map

Copyright© 2020 HCL Technologies Limited

create dbspace argument: Create a dbspace (SQL administration API)

Use the create dbspace argument with the admin() or task() function to create a dbspace.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"create--+-+-------------+-+--dbspace"--,--"dbspace"--,--"path_name"-->
 | '-unencrypted-' |
 '-+------------+--'
 '-with_check-'

>--+--+-->
 '-,--"initial_chunk_size"--+---+-'
 '-,--"offset"--+--+-'
 '-,--"page_size"--+------------------------------+-'
 '-| Extents and mirror chunk |-'

>--)--;--><

Extents and mirror chunk

|--+---+--|
 '-,--"first_extsize"--+---+-'
 '-,--"next_extsize"--+--+-'
 '-,--"mirror_path"--+--------------------+-'
 '-,--"mirror_offset"-'

Element Description Key Considerations

dbspace The name of the dbspace to be created.

first_extsize The size, in KB, of the first extent for the tblspace
tblspace.

See admin() and task() Argument Size Specifications.

initial_chunk_size The size, in KB, of the initial chunk of the new dbspace.
The size is rounded to a multiple of the page size.

See admin() and task() Argument Size Specifications.

mirror_offset The offset, in KB, of the mirror chunk.

mirror_path The path name to the chunk that mirrors the initial
chunk of the dbspace.

next_extsize The size, in KB, of the next extents in the tblspace
tblspace.

See admin() and task() Argument Size Specifications.

offset The offset, in KB, into the disk partition or into the
device to reach the initial chunk of the new dbspace.

page_size The non-default page size, in KB, for the new dbspace. See admin() and task() Argument Size Specifications.

path_name The disk partition or device of the initial chunk of the
dbspace that you are creating.

Valid page sizes depend on the default page size for
the computer:

2 KB default page size: 2, 4, 6, 8, 10, 12, or 16
KB
4 KB default page size: 4, 8, 12, or 16 KB

Usage
Use the create with_check dbspace argument to check the specified path name and return an error if it does not exist.

Use the create unencrypted dbspace argument to create an unencrypted dbspace when encryption is enabled by the DISK_ENCRYPTION configuration parameter.

This function is equivalent to the onspaces -c -d command.

Example
The following example creates a dbspace that has a size of 20 MB with an offset of 0.

EXECUTE FUNCTION task ("create dbspace", "dbspace3",
"$INFORMIXDIR/WORK/dbspace3", "20 M", "0");

Related reference:
 onspaces -c -d: Create a dbspace

Avoid overwriting a chunk

856 Part VI: Administering

https://www.hcltech.com/

DISK_ENCRYPTION configuration parameter

Copyright© 2020 HCL Technologies Limited

create dbspace from storagepool argument: Create a dbspace from the storage pool
(SQL administration API)

Use the create dbspace from storagepool argument with the admin() or task() function to create a permanent dbspace from an entry in the storage pool.

Syntax

>>-EXECUTE FUNCTION--+-admin-+---------------------------------->
 '-task--'

>--"--create -+-------------+--dbspace from storagepool--"------>
 '-unencrypted-'

>--,--"dbspace"--,--"initial_chunk_size"--,--------------------->

>--+--+-->
 '-,--"page_size"--+--+-'
 '-,--"mirroring_flag"--+---+-'
 '-,--"first_extent"--+------------------+-'
 '-,--"next_extent"-'

>--)--;--><

Element Description Key Considerations

dbspace Name of the dbspace to be created. Must be unique among dbspace names, and cannot exceed
128 bytes. It must begin with a letter or underscore, and
can include only letters, digits, underscore (_) symbols, or
the $ character.

first_extent Size, in kilobytes, of the first extent for the tblspace
tblspace.

See admin() and task() Argument Size Specifications.

initial_chunk_size Size of the initial chunk of the new dbspace. See admin() and task() Argument Size Specifications.

mirroring_flag Either:

1 = mirroring
0 = no mirroring

The mirroring flag is optional. If none is specified, the
default is an unmirrored dbspace.

next_extent Size, in kilobytes, of the next extents in the tblspace
tblspace

See admin() and task() Argument Size Specifications.

page_size Nondefault page size, in kilobytes, for the new dbspace. The page size is optional. If you specify 1 for mirroring,
however, you must also specify a page size. Valid page sizes
depend on the default page size for the computer:

2 KiB default page size: 2, 4, 6, 8, 10, 12, or 16 KiB
4 KiB default page size: 4, 8, 12, or 16 KiB

Use the create unencrypted dbspace from storagepool argument to create an unencrypted dbspace when encryption is enabled by the DISK_ENCRYPTION
configuration parameter.

For the admin() or task() syntax for creating a temporary dbspace, see create tempdbspace argument: Create a temporary dbspace (SQL administration API).

Examples
The following command creates a mirrored dbspace named dbspace3. The new dbspace has a size of 1 gigabyte, a page size of 6 kilobytes, a tblspace tblspace first
extent size of 200 kilobytes, and a next extent size of 400 kilobytes.

EXECUTE FUNCTION task("create dbspace from storagepool",
 "dbspace3", "1 GB", "6", "1", "200", "400");

The following command creates an unmirrored dbspace named dbspace8. The size of the new dbspace is 50 megabytes. Because no page size is specified, the new
dbspace has the default page size.

EXECUTE FUNCTION task("create dbspace from storagepool",
 "dbspace8", "50000");

Related reference:
 DISK_ENCRYPTION configuration parameter

Copyright© 2020 HCL Technologies Limited

create plogspace: Create a plogspace (SQL administration API)
Part VI: Administering 857

https://www.hcltech.com/
https://www.hcltech.com/

Use the create plogspace argument with the admin() or task() function to create a plogspace in which to store the physical log.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"create--+-------------+--plogspace"--,--"plogspace"--,--"path_name"-->
 '-unencrypted-'

>--,--"chunk_size"--+---+-->
 '-,--"offset"--+--+-'
 '-,--"mirror_path"--+--------------------+-'
 '-,--"mirror_offset"-'

>--)--;--><

Element Description Key Considerations

chunk_size The size, in KB, of the chunk of the new plogspace. The
size is rounded to a multiple of the page size.

See admin() and task() Argument Size Specifications.

mirror_offset The offset, in KB, of the mirror chunk. Unsigned integer. The size must be equal to or greater
than 1000 KB and a multiple of the page size. The
starting offset plus the chunk size cannot exceed the
maximum chunk size.
The maximum chunk size is 2 or 4 TB, depending on
the platform.

mirror_path The path name to the chunk that mirrors the chunk of
the plogspace.

If you mirror the plogspace, the plogspace chunk
cannot be extendable.

offset The offset, in KB, into the disk partition or into the
device to reach the chunk of the new plogspace.

Unsigned integer. The size must be equal to or greater
than 1000 KB and a multiple of the page size. The
starting offset plus the chunk size cannot exceed the
maximum chunk size.
The maximum chunk size is 2 or 4 TB, depending on
the platform.

path_name The disk partition or device of the chunk of the
plogspace that you are creating.

The chunk must be an existing unbuffered device or
buffered file. When you specify a path name, you can
use either a full path name or a relative path name.
However, if you use a relative path name, it must be
relative to the directory that was the current directory
when you initialized the database server.
UNIX example (unbuffered device):

/dev/rdsk/c0t3d0s4

UNIX example (buffered device):

/ix/ifmx/db1chunk

Windows example:

c:\Ifmxdata\ol_icecream\mychunk1.dat

plogspace The name of the plogspace to be created. The plogspace name must be unique and cannot
exceed 128 bytes. It must begin with a letter or
underscore and must contain only letters, numbers,
underscores, or the $ character.
The syntax must conform to the Identifier segment.
For more information, see Identifier.

Usage
Use the create unencrypted plogspace argument to create an unencrypted plogspace when encryption is enabled by the DISK_ENCRYPTION configuration parameter.

This function is equivalent to the onspaces -c -P command.

An instance can have only one plogspace. If a plogspace exists, when you create a new plogspace, the physical log is moved to the new space and the old plogspace is
dropped.

The physical log must be stored on a single chunk. The chunk is marked as extendable by default so that the database server can expand the plogspace if necessary to
expand the physical log. If you mirror the plogspace, the space cannot expand because a mirror chunk cannot be extendable.

Examples
The following example creates a plogspace that has a size of 30000 KB with an offset of 0.

EXECUTE FUNCTION task ("create plogspace", "plogdbs",
"/dev/chk1", 30000, 0);

The following example creates a mirrored plogspace that has a size of 30000 KB with an offset of 0.

858 Part VI: Administering

EXECUTE FUNCTION task ("create plogspace", "plogdbs",
"/dev/chk1", 30000, 0, "/dev/mchk1", 0);

Related reference:
 onspaces -c -P: Create a plogspace

DISK_ENCRYPTION configuration parameter
Related information:

 Plogspace
Manage the plogspace

Copyright© 2020 HCL Technologies Limited

create sbspace argument: Create an sbspace (SQL administration API)

Use the create sbspace argument with the admin() or task() function to create an sbspace.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"create--+-+-------------+-+--sbspace"--,--"sbspace"--,--"path_name"-->
 | '-unencrypted-' |
 '-+------------+--'
 '-with_check-'

>--+--+--)--;----------><
 '-,--"initial_chunk_size"--+-------------+-'
 '-,--"offset"-'

Element Description Key Considerations

initial_chunk_siz
e

The size, in kilobytes, of the initial chunk of the new sbspace. See admin() and task() Argument Size
Specifications.

offset The offset, in kilobytes, into the disk partition or into the device to reach the initial chunk of the new
sbspace.

path_name The disk partition or unbuffered device of the initial chunk of the sbspace.

sbspace The name of the sbspace to be created.

Usage
Use the create with_check sbspace argument to check the specified path name and return an error if it does not exist.

Use the create unencrypted sbspace argument to create an unencrypted sbspace when encryption is enabled by the DISK_ENCRYPTION configuration parameter.

This function is equivalent to the onspaces -c -S command.

Example
The following example creates a new sbspace that has a size of 20 MB with an offset of 0:

EXECUTE FUNCTION task ("create sbspace","sbspace2",
"$INFORMIXDIR/WORK/sbspace2","20 M","0");

Related reference:
 onspaces -c -S: Create an sbspace

Avoid overwriting a chunk
create tempsbspace argument: Create a temporary sbspace (SQL administration API)
DISK_ENCRYPTION configuration parameter

Copyright© 2020 HCL Technologies Limited

create sbspace from storagepool argument: Create an sbspace from the storage pool
(SQL administration API)

Use the create sbspace from storagepool argument with the admin() or task() function to create an sbspace from an entry from the storage pool.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

Part VI: Administering 859

https://www.hcltech.com/
https://www.hcltech.com/

>--"--create -+-------------+--sbspace from storagepool--"------>
 '-unencrypted-'

>--,--"sbspace"--,--"initial_chunk_size"--+--+-->
 '-,--"logging_flag"--+---------------------+-'
 '-,--"mirroring_flag"-'

>--)--;--><

Element Description Key Considerations

sbspace The name of the sbspace. The sbspace name must be unique and cannot exceed 128
bytes. It must begin with a letter or underscore and must
contain only letters, numbers, underscores, or the $
character.

initial_chunk_size The size, in kilobytes, of the initial chunk of the new
sbspace.

See admin() and task() Argument Size Specifications.

logging_flag Either:

1 = logging
0 = no logging

The logging flag is optional. However if you specify 1 for
mirroring, you must also specify a logging flag.

mirroring_flag Either:

1 = mirroring
0 = no mirroring

The mirroring flag is optional.

Use the create unencrypted sbspace from storagepool argument to create an unencrypted sbspace when encryption is enabled by the DISK_ENCRYPTION configuration
parameter.

Examples
The following command creates a mirrored and logged sbspace named sbspace1. The new sbspace has a size of 240 megabytes.

EXECUTE FUNCTION task("create sbspace from storagepool", "sbspace1",
 "240 MB", "1", "1");

The following command creates an unmirrored and unlogged sbspace named sbspace2. This sbspace has a size of 5 gigabytes.

EXECUTE FUNCTION task("create sbspace from storagepool", "sbspace2", "5 GB");

Related reference:
 DISK_ENCRYPTION configuration parameter

Copyright© 2020 HCL Technologies Limited

create sbspace with accesstime argument: Create an sbspace that tracks access
time (SQL administration API)

Use the create sbspace with accesstime argument with the admin() or task() function to create an sbspace that tracks the time of access for all smart large objects stored
in the sbspace.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"create--+-------------+--+------------+--sbspace with accesstime"--,--"sbspace"--,--"path_name"-->
 '-unencrypted-' '-with_check-'

>--+--+--)--;----------><
 '-,--"initial_chunk_size"--+-------------+-'
 '-,--"offset"-'

Element Description Key Considerations

initial_chunk_siz
e

The size, in kilobytes, of the initial chunk of the new sbspace. See admin() and task() Argument Size
Specifications.

offset The offset, in kilobytes, into the disk partition or into the device to reach the initial chunk of the new
sbspace.

path_name The disk partition or unbuffered device of the initial chunk of the sbspace.

sbspace The name of the sbspace to be created.

860 Part VI: Administering

https://www.hcltech.com/

Usage
Use the create with_check sbspace with accesstime argument to check the specified path name and return an error if it does not exist.

Use the create unencrypted sbspace with accesstime argument to create an unencrypted sbspace when encryption is enabled by the DISK_ENCRYPTION configuration
parameter.

This function is equivalent to the onspaces -c -S command for creating an sbspace and using the set sbspace accesstime argument with the admin() or task() function to
start tracking the time of access for all smart large objects stored in the sbspace.

Example
The following example creates a new sbspace that tracks access time. This sbspace has a size of 20 MB with an offset of 0:

EXECUTE FUNCTION task ("create sbspace with accesstime","sbspace4",
"$INFORMIXDIR/WORK/sbspace4","20 M","0");

Related reference:
 set sbspace accesstime argument: Control access time tracking (SQL administration API)

DISK_ENCRYPTION configuration parameter

Copyright© 2020 HCL Technologies Limited

create sbspace with log argument: Create an sbspace with transaction logging (SQL
administration API)

Use the create sbspace with log argument with the admin() or task() function to create an sbspace with transaction logging turned on.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"create--+-------------+--+------------+--sbspace with log"--,--"sbspace"--,--"path_name"-->
 '-unencrypted-' '-with_check-'

>--+--+--)--;----------><
 '-,--"initial_chunk_size"--+-------------+-'
 '-,--"offset"-'

Element Description Key Considerations

initial_chunk_siz
e

The size, in kilobytes, of the initial chunk of the new sbspace. See admin() and task() Argument Size
Specifications.

offset The offset, in kilobytes, into the disk partition or into the device to reach the initial chunk of the new
sbspace.

path_name The disk partition or unbuffered device of the initial chunk of the sbspace.

sbspace The name of the sbspace to be created.

Usage
Use the create with_check sbspace with log argument to check the specified path name and return an error if it does not exist.

Use the create unencrypted sbspace with log argument to create an unencrypted sbspace when encryption is enabled by the DISK_ENCRYPTION configuration
parameter.

This function is equivalent to the onspaces -c -S command to create an sbspace with the option for turning logging on.

Example
The following example creates a new sbspace with transaction logging turned on. This sbspace has a size of 20 MB with an offset of 0:

EXECUTE FUNCTION task ("create sbspace with log","sbspace2",
"$INFORMIXDIR/WORK/sbspace2","20 M","0");

Related reference:
 onspaces -c -S: Create an sbspace

DISK_ENCRYPTION configuration parameter
Related information:

 Sbspace logging

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 861

https://www.hcltech.com/
https://www.hcltech.com/

create tempdbspace argument: Create a temporary dbspace (SQL administration
API)

Use the create tempdbspace argument with the admin() or task() function to create a temporary dbspace.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"create--+-+-------------+-+--tempdbspace"--,--"tempdbspace"--,--"path_name"-->
 | '-unencrypted-' |
 '-+------------+--'
 '-with_check-'

>--+--+-->
 '-,--"initial_chunk_size"--+---+-'
 '-,--"offset"--+--+-'
 '-,--"page"--+---------------------------+-'
 '-,--"first"--+-----------+-'
 '-,--"next"-'

>--)--;--><

Element Description Key Considerations

first Size, in kilobytes, of the first extent for the tblspace tblspace. See admin() and task() Argument Size Specifications.

initial_chunk_siz
e

Size, in kilobytes, of the initial chunk of the new temporary
dbspace.

See admin() and task() Argument Size Specifications.

next Size, in kilobytes, of the next extents in the tblspace tblspace. See admin() and task() Argument Size Specifications.

offset Offset, in kilobytes, into the disk partition or into the device to
reach the initial chunk of the new temporary dbspace.

See admin() and task() Argument Size Specifications

page Non-default page size, in kilobytes, for the new temporary
dbspace.

Valid page sizes depend on the default page size for the computer:

2 KiB default page size: 2, 4, 6, 8, 10, 12, or 16 KiB
4 KiB default page size: 4, 8, 12, or 16 KiB

path_name Path to the disk partition or device of the initial chunk of the
temporary dbspace that you are creating.

tempdbspace Name of the temporary dbspace to be created. Cannot exceed 128 bytes. It must begin with a letter or underscore, and can
include only letters, digits, underscore (_) symbols, or the $ character.

Usage
Use the create with_check tempdbspace argument to check the specified path name and return an error if the path does not exist.

Use the create unencrypted tempdbspace argument to create an unencrypted temporary dbspace when encryption is enabled by the DISK_ENCRYPTION configuration
parameter.

This function is equivalent to the onspaces -c -d -t command.

Example
The following example creates a temporary dbspace that has a size of 20 MiB with an offset of 0:

EXECUTE FUNCTION task("create tempdbspace","tempdbspace3",
"$INFORMIXDIR/WORK/tempdbspace3","20 M","0");

For the admin() or task() syntax to create a permanent dbspace from the storage pool, see create dbspace from storagepool argument: Create a dbspace from the storage
pool (SQL administration API).

Related reference:
 onspaces -c -d: Create a dbspace

DISK_ENCRYPTION configuration parameter

Copyright© 2020 HCL Technologies Limited

create tempdbspace from storagepool argument: Create a temporary dbspace from
the storage pool (SQL administration API)

Use the create tempdbspace from storagepool argument with the admin() or task() function to create a temporary dbspace from an entry from the storage pool.

862 Part VI: Administering

https://www.hcltech.com/

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"--create--+-------------+--tempdbspace from storagepool--"-->
 '-unencrypted-'

>--,--"tempdbspace"--,--"initial_chunk_size"--,--+-------------+-->
 '-"page_size"-'

>--)--;--><

Element Description Key Considerations

initial_chunk_size The size, in kilobytes, of the initial chunk of the new
temporary dbspace.

See admin() and task() Argument Size Specifications.

page_size The non-default page size, in kilobytes, for the new
temporary dbspace.

The page size is optional.

tempdbspace The name of the temporary dbspace.

Use the create unencrypted tempdbspace from storagepool argument to create an unencrypted temporary dbspace when encryption is enabled by the
DISK_ENCRYPTION configuration parameter.

Example
The following command creates a temporary dbspace named tempdbspace1. The new dbspace has a size of 1 gigabyte and a page size of 12 kilobytes.

EXECUTE FUNCTION task("create tempdbspace from storagepool", "tempdbspace1",
 "1 GB", "12");

Related reference:
 DISK_ENCRYPTION configuration parameter

Copyright© 2020 HCL Technologies Limited

create tempsbspace argument: Create a temporary sbspace (SQL administration
API)

Use the create sbspace argument with the admin() or task() function to create an sbspace.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"create--+-+-------------+-+--tempsbspace"--,--"tempsbspace"--,--"path_name"-->
 | '-unencrypted-' |
 '-+------------+--'
 '-with_check-'

>--+--+--)--;----------><
 '-,--"initial_chunk_size"--+-------------+-'
 '-,--"offset"-'

Element Description Key Considerations

initial_chunk_siz
e

The size, in kilobytes, of the initial chunk of the new temporary sbspace. See admin() and task() Argument Size
Specifications.

offset The offset, in kilobytes, into the disk partition or into the device to reach the initial chunk of the new
temporary sbspace.

path_name The disk partition or unbuffered device of the initial chunk of the temporary sbspace.

tempsbspace The name of the temporary sbspace to be created.

Usage
Use the create with_check tempsbspace argument to check the specified path name and return an error if it does not exist.

Use the create unencrypted tempsbspace argument to create an unencrypted temporary sbspace when encryption is enabled by the DISK_ENCRYPTION configuration
parameter.

This function is equivalent to the onspaces -c -S command with the -t option for creating a temporary sbspace.

Part VI: Administering 863

https://www.hcltech.com/

Example
The following example creates a temporary sbspace that has a size of 20 MB with an offset of 0:

EXECUTE FUNCTION task ("create tempsbspace","tempsbspace3",
"$INFORMIXDIR/WORK/tempsbspace3","20 M","0");

Related reference:
 create sbspace argument: Create an sbspace (SQL administration API)

onspaces -c -S: Create an sbspace
DISK_ENCRYPTION configuration parameter
Related information:

 Temporary sbspaces

Copyright© 2020 HCL Technologies Limited

create tempsbspace from storagepool argument: Create a temporary sbspace from
the storage pool (SQL administration API)

Use the create tempsbspace from storagepool argument with the admin() or task() function to create a temporary sbspace from an entry from the storage pool.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"--create--+-------------+--tempsbspace from storagepool--"-->
 '-unencrypted-'

>--,--"tempsbspace"--,--"initial_chunk_size"--)--;-------------><

Element Description Key Considerations

initial_chunk_size The size, in kilobytes, of the initial chunk of the new
sbspace.

See admin() and task() Argument Size Specifications.

tempsbspace The name of the temporary sbspace. The temporary sbspace name must be unique and cannot
exceed 128 bytes. It must begin with a letter or underscore
and must contain only letters, numbers, underscores, or the
$ character.

Use the create unencrypted tempsbspace from storagepool argument to create an unencrypted temporary sbspace when encryption is enabled by the
DISK_ENCRYPTION configuration parameter.

Example
The following command creates a temporary sbspace named tempsbspace5. The temporary sbspace has a size of 240 megabytes.

EXECUTE FUNCTION task("create tempsbspace from storagepool",
 "tempsbspace5", "240 MB");

Related reference:
 DISK_ENCRYPTION configuration parameter

Copyright© 2020 HCL Technologies Limited

defragment argument: Dynamically defragment partition extents (SQL
administration API)

Use the defragment argument with the admin() or task() function to defragment tables or indexes to merge non-contiguous extents.

Defragmenting a table brings data rows closer together to avoid partition header page overflow problems, and can improve performance.

Before you defragment a partition you should review the Partition defragmentation.

Syntax
You can specify either the defragment argument or defragment partnum argument using the following syntax:

>>-EXECUTE FUNCTION--+-admin-+---------------------------------->
 '-task--'

>--(--"--defragment--"--,----"--database--:--owner--.--table--"----)--;-><

864 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

>>-EXECUTE FUNCTION--+-admin-+---------------------------------->
 '-task--'

 .-,-------------------.
 V |
>--(--"--defragment partnum--"--,----partition_number--"-+--)--;-><

Element Description Key considerations

database Name of the database that includes the table or index that you want to
defragment.

owner User ID of the owner of the table.

table Name of the table to defragment.

partition_numbe
r

One or more partition numbers to defragment. Use a comma-separated list of partition numbers to specify more than one
partition.

Usage
Use the defragment argument to defragment specific tables. Use the defragment partnum argument to defragment one or more specific disk partitions.

Information about defragmentation is stored in shared memory. Use the oncheck -pt and -pT: Display tblspaces for a Table or Fragment command to display information
about the number of extents for a specific table or fragment. Use the onstat -g defragment command: Print defragment partition extents.

If the defragment request reduces the number of extents by at least 1 extent, the request returns 0 (success), even if there are many extents in the partition.

If a partition has a single extent, the defragment request returns 0 to indicate that the request was a success, even though no extents were merged.

Examples
To defragment the customer table in the stores_demo database, use either of the following functions:

EXECUTE FUNCTION task(“defragment”,“stores_demo:informix.customer");

EXECUTE FUNCTION admin(“defragment”,“stores_demo:informix.customer");

To defragment an index, you must specify the partition number for the index, as in these two function examples:

EXECUTE FUNCTION task(“defragment partnum”,“2097154”);

EXECUTE FUNCTION admin(“defragment partnum”,“2097154”);

To defragment a list of partitions, use either of the following functions:

EXECUTE FUNCTION task(“defragment partnum”, “16777217,28477346");

EXECUTE FUNCTION admin(“defragment partnum”, “16777217,28477346");

Copyright© 2020 HCL Technologies Limited

drop blobspace argument: Drop a blobspace (SQL administration API)

Use the drop blobspace argument with the admin() or task() function to drop the specified blobspace.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"drop blobspace"------------->
 '-task--'

>--,--"blobspace"--)--;--><

Element Description Key Considerations

blobspace The name of the blobspace to drop. Must be an existing blobspace.
Before you drop a blobspace, drop all tables that include a TEXT or BYTE column that references the blobspace.

Usage
This function is equivalent to the onspaces -d command.

Example
The following example drops the blobspace named blobspace3:

EXECUTE FUNCTION task("drop blobspace","blobspace3");

Part VI: Administering 865

https://www.hcltech.com/

Related reference:
onspaces -d: Drop a space

Copyright© 2020 HCL Technologies Limited

drop blobspace to storagepool argument: Return space from an empty blobspace to
the storage pool (SQL administration API)

Use the drop blobspace to storagepool argument with the admin() or task() function to return the space from an empty blobspace to the storage pool.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"--drop blobspace to storagepool--"--,--"blobspace"--)--;---><

Element Description Key Considerations

blobspace The name of the empty blobspace.

Example
The following command drops an empty blobspace named blob2 and adds all of the freed space to the storage pool.

EXECUTE FUNCTION task("drop blobspace to storagepool", "blob2");

Copyright© 2020 HCL Technologies Limited

drop chunk argument: Drop a chunk (SQL administration API)

Use the drop chunk argument with the admin() or task() function to drop the specified chunk from a dbspace, blobspace, or sbspace.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"drop chunk"----------------->
 '-task--'

>--,--"space_name"--+---------------------------------+--)--;--><
 '-,--"path_name"--,--+----------+-'
 '-"offset"-'

Element Description Key Considerations

offset The offset, in kilobytes, into the disk partition or
into the unbuffered device to reach the initial
chunk of the dbspace, blobspace, or sbspace that
you are dropping.

The starting offset, an unsigned integer, must be equal to or greater than 0. The starting offset
plus the chunk size cannot exceed the maximum chunk size. The maximum offset is 4 TB.
Also see admin() and task() Argument Size Specifications.

path_name The disk partition or unbuffered device of the initial
chunk of the dbspace, blobspace, or sbspace that
you are dropping.

The chunk must be an existing unbuffered device or buffered file. When you specify a path name,
you can use either a full path name or a relative path name. However, if you use a relative path
name, it must be relative to the directory that was the current directory when you initialized the
database server.

space_name The name of the dbspace, sbspace, or blobspace
from which to drop a chunk.

You can drop a chunk from a dbspace, temporary dbspace, or sbspace when the database server
is online or quiescent.
You can drop a chunk from a blobspace only when the database server is in quiescent mode.

Usage
This function is equivalent to the onspaces -d command.

Example
The following example drops a chunk at an offset of 5200 kilobytes from a dbspace named dbspc3:

EXECUTE FUNCTION task("drop chunk", "dbspc3","\\.\e:","5200");

Related reference:
 onspaces -d: Drop a chunk in a dbspace, blobspace, or sbspace

866 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

drop chunk to storagepool argument: Return space from an empty chunk to the
storage pool (SQL administration API)

Use the drop chunk to storagepool argument with the admin() or task() function to return the space from an empty chunk to the storage pool.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"--drop chunk to storagepool--"------------------------------>

>--,--"space_name"--,--"path_name"--,--"offset"--)--;----------><

Element Description Key Considerations

space_name The name of the storage space in which the chunk resides.

path_name The path of the chunk.

offset The offset, in kilobytes, of the chunk.

Example
The following command drops an empty chunk in a dbspace named bigdbs and adds all of the freed space to the storage pool.

EXECUTE FUNCTION task("drop chunk to storagepool", "bigdbs", "/dev/rawdisk23",
 "100 KB");

Copyright© 2020 HCL Technologies Limited

drop database argument: Drop a database (SQL administration API)

Use the drop database argument with the admin() or task() function to drop a database.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"drop database"-------------->
 '-task--'

>--,--"database_name"--)--;------------------------------------><

Element Description Key Considerations

database_name The name of the database.

Usage
This function is equivalent to the DROP DATABASE statement. This function deletes the entire database, including all of the system catalog tables, objects, and data.

Example
The following example drops the database named demodbs:

EXECUTE FUNCTION task("drop database","demodbs");

Related information:
 DROP DATABASE statement

Copyright© 2020 HCL Technologies Limited

drop dbspace argument: Drop a dbspace (SQL administration API)

Use the drop dbspace argument with the admin() or task() function to drop the specified dbspace.

Part VI: Administering 867

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"drop dbspace"--------------->
 '-task--'

>--,--"dbspace"--)--;--><

Element Description Key Considerations

dbspace The name of the dbspace to drop. The dbspace must exist.
Before you drop a dbspace, drop all databases and tables that you previously created in the dbspace.

Usage
This function is equivalent to the onspaces -d command.

Example
The following example drops the dbspace named dbspace4:

EXECUTE FUNCTION task("drop dbspace","dbspace4");

Related reference:
 onspaces -d: Drop a space

Copyright© 2020 HCL Technologies Limited

drop dbspace to storagepool argument: Return space from an empty dbspace to the
storage pool (SQL administration API)

Use the drop dbspace to storagepool argument with the admin() or task() function to return the space from an empty dbspace to the storage pool.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"--drop dbspace to storagepool--"--,--"dbspace"--)--;-------><

Element Description Key Considerations

dbspace The name of the empty dbspace.

Example
The following command drops an empty dbspace named dbs5 and adds all of the freed space to the storage pool.

EXECUTE FUNCTION task("drop dbspace to storagepool", "dbs5");

Copyright© 2020 HCL Technologies Limited

drop log argument: Drop a logical log (SQL administration API)

Use the drop log argument with the admin() or task() function to drop the specified logical log.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"drop log"------------------->
 '-task--'

>--,--"log_number"--)--;---------------------------------------><

Element Description Key Considerations

log_number The logical log file number. The number must be an unsigned integer greater than or equal to 0.

Usage

868 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Use this function to drop a single logical log file.

The database server requires a minimum of three logical-log files at all times. You cannot drop a log file if the database server has only three logical-log files.

Important: Before you can drop any of the first three logical-log files, you must add new logical-log files and run a backup of the logical-log files. The backup must be run
using either the ontape -a command or the ontape -c command. After you add the new logical-log files and run a backup, you can then use onparams -d -llognum to
delete the first three logical-log files.
The status of the log file determines if the log file can be dropped, and the actions taken by the database server when the log file is dropped:

If you drop a log file that has never been written to, status is newly Added (A), the database server deletes the log file and frees the space immediately.
If you drop a used log file that has a status of User (U) or Free (F), the database server marks the log file as Deleted (D). After you take a level-0 backup of the
dbspaces that contain the log files and the root dbspace, the database server deletes the log file and frees the space.
You cannot drop a log file that is currently in use (C) or contains the last checkpoint record (L).

You can obtain the log number from the number field of the onstat -l command. The sequence of log numbers might be out of order.

This function is equivalent to the onparams -d -l lognum command.

Example
The following example drops the logical log with a file number of 2:

EXECUTE FUNCTION task("drop log","2");

The following example drops the log for a specific chunk by looking up the log number based on the chunk number:

SELECT task("drop log", number) FROM sysmaster:syslogfil WHERE chunk = 1;

Related reference:
 onparams -d -l lognum: Drop a logical-log file

Copyright© 2020 HCL Technologies Limited

drop plogspace: Drop the plogspace (SQL administration API)

Use the drop plogspace argument with the admin() or task() function to drop the plogspace.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"drop plogspace"--)--;------><
 '-task--'

Usage
The plogspace must be empty to be dropped. For example, if you move the physical log out of the plogspace and into a dbspace by running the onparams -p command,
you can drop the plogspace. Alternatively, you can move the plogspace to a different chunk by creating a new plogspace. The old plogspace is removed automatically.

This function is equivalent to the onspaces -d command.

Example
The following example drops the plogspace:

EXECUTE FUNCTION task("drop plogspace");

Related reference:
 onspaces -d: Drop a chunk in a dbspace, blobspace, or sbspace

Copyright© 2020 HCL Technologies Limited

drop sbspace argument: Drop an sbspace (SQL administration API)

Use the drop sbspace argument with the admin() or task() function to drop the specified sbspace.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"drop sbspace"--------------->
 '-task--'

>--,--"sbspace"--)--;--><

Element Description Key Considerations

Part VI: Administering 869

https://www.hcltech.com/
https://www.hcltech.com/

Element Description Key Considerations

sbspace The name of the sbspace to drop. The sbspace must exist.
Before you drop an sbspace, drop all tables that include a BLOB or CLOB column that references the sbspace.

Usage
This function is equivalent to the onspaces -d command.

Example
The following example drops the sbspace named sbspace3:

EXECUTE FUNCTION task("drop dbspace","sbspace3");

Related reference:
 onspaces -d: Drop a space

Copyright© 2020 HCL Technologies Limited

drop sbspace to storagepool argument: Return space from an empty sbspace to the
storage pool (SQL administration API)

Use the drop sbspace to storagepool argument with the admin() or task() function to return the space from an empty sbspace to the storage pool.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--,--"--drop sbspace to storagepool--"--"sbspace"--)--;-------><

Element Description Key Considerations

sbspace The name of the empty sbspace.

Example
The following command drops an empty sbspace named sbspace8 and adds all of the freed space to the storage pool.

EXECUTE FUNCTION task("drop sbspace to storagepool", "sbspace8");

Copyright© 2020 HCL Technologies Limited

drop tempdbspace argument: Drop a temporary dbspace (SQL administration API)

Use the drop tempdbspace argument with the admin() or task() function to drop the specified temporary dbspace.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"drop tempdbspace"----------->
 '-task--'

>--,--"tempdbspace"--)--;--------------------------------------><

Element Description Key Considerations

tempdbspace The name of the temporary dbspace to
drop.

The temporary dbspace must exist.
Before you drop a temporary dbspace, drop all databases and tables that you previously created in the
temporary dbspace.

Usage
This function is equivalent to the onspaces -d command.

Example
The following example drops the temporary dbspace named tdbspace2:

870 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

EXECUTE FUNCTION task("drop tempdbspace","tdbspace2");

Related reference:
 onspaces -d: Drop a space

Copyright© 2020 HCL Technologies Limited

drop tempdbspace to storagepool argument: Return space from an empty temporary
dbspace to the storage pool (SQL administration API)

Use the drop tempdbspace to storagepool argument with the admin() or task() function to return the space from an empty temporary dbspace to the storage pool.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"--drop tempdbspace to storagepool--"--,--"tempdbspace"------>

>--)--;--><

Element Description Key Considerations

tempdbspace The name of the empty temporary dbspace.

Example
The following command drops an empty temporary dbspace named tempdbs1 and adds all of the freed space to the storage pool.

EXECUTE FUNCTION task("drop tempdbspace to storagepool", "tempdbs1");

Copyright© 2020 HCL Technologies Limited

drop tempsbspace to storagepool argument: Return space from an empty temporary
sbspace to the storage pool (SQL administration API)

Use the drop tempsbspace to storagepool argument with the admin() or task() function to return the space from an empty temporary sbspace to the storage pool.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"--drop tempsbspace to storagepool--"--,--"tempsbspace"------>

>--)--;--><

Element Description Key Considerations

tempsbspace The name of the empty temporary sbspace.

Example
The following command drops an empty temporary sbspace named tempsbspace3 and adds all of the freed space to the storage pool.

EXECUTE FUNCTION task("drop tempsbspace to storagepool", "tempsbspace3");

Copyright© 2020 HCL Technologies Limited

export config argument: Export configuration parameter values (SQL administration
API)

Use the export config argument with the admin() or task() function to export a file that contains all configuration parameters and their current values.

Syntax

Part VI: Administering 871

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

>>-EXECUTE FUNCTION--+-admin-+--(--"--export config--"---------->
 '-task--'

>--,--"file_path"--)--;--><

Table 1. export config command elements

Element Description Key Considerations

file_path Full path name for the file Do not add an extension.

Usage
The SQL administration API export command automatically creates an ASCII file, assigning it the name that you specified in the command. The format of the file is the
same as the format of the onconfig.std file.

You must specify the full path name. You cannot specify a relative path.

This command is the equivalent of the onmode –we commend.

Example
The following command exports all configuration parameters and their current values to a file named cfg_12 in the /tmp directory:

EXECUTE FUNCTION task("export config", "/tmp/cfg_12");

Related tasks:
 Modifying the onconfig file

Related reference:
 import config argument: Import configuration parameter values (SQL administration API)

onmode -we: Export a file that contains current configuration parameters

Copyright© 2020 HCL Technologies Limited

file status argument: Display the status of a message log file (SQL administration
API)

Use the file status argument with the admin() or task() function to specify the status of an online, ON-Bar activity, or ON-Bar debug message log file.

Syntax

>>-EXECUTE FUNCTION--+-admin-+---------------------------------->
 '-task--'

>--(--"file status"--,--"--file_path--"--)--;------------------><

Element Purpose Key considerations

file_path Full path name for the online, ON-Bar activity, or ON-Bar
debug message log file.

Example
The following example shows the argument that you can use to display the status of the /usr/informix/online.log file:

execute function task("file status", "/usr/informix/online.log");

The server then displays information such as:

(expression) File name = /tmp/x
 Is File = 1
 Is Directory = 0
 Is Raw Device = 0
 Is Block Device = 0
 Is Pipe = 0
 File Size = 554
 Last Access Time = 11/29/2010 21:55:02
 Last Modified Time = 11/29/2010 21:51:45
 Status Change Time = 11/29/2010 21:51:45
 User Id = 200
 Group id = 102
 File Flags = 33206

Related reference:
 message log rotate argument: Rotate the message log file (SQL administration API)

message log truncate argument: Delete the contents of a message log file (SQL administration API)
message log delete argument: Delete a message log file (SQL administration API)

872 Part VI: Administering

https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

grant admin argument: Grant privileges to run SQL administration API commands

Use the grant admin argument with the admin() or task() function to grant privileges to run SQL administration API commands.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"--grant admin--"------------>
 '-task--'

>--,--"--user_name--"--,--"--privilege_group--"--)--;----------><

Element Description Key Considerations

user_name The name of the user for which privileges are granted.

privilege_group The name of the privilege group. See SQL administration API portal: Arguments by privilege
groups for a list of privilege groups.

Usage
Individual users can be granted privileges to administer their database servers by running SQL administration API commands. Users with these privileges can connect to a
database server with their user name and run SQL administration API commands, by connecting directly.

Only user informix, or a user with ADMIN or GRANT privilege for SQL administration API commands, can use the grant admin argument.

Example
The following command grants the privilege for running backup and restore SQL administration commands to the user Bob:

EXECUTE FUNCTION task("grant admin", "Bob", "BAR");

Related reference:
 DBCREATE_PERMISSION configuration parameter

Copyright© 2020 HCL Technologies Limited

ha make primary argument: Change the mode of a secondary server (SQL
administration API)

Use the ha make primary argument with the admin() or task() function to change the specified secondary server to a primary or standard server.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--+-"ha make primary"-------+--,--"database_server"--)--;-----><
 '-"ha make primary force"-'

Element Description Key Considerations

database_server The name of the database server. The name must be defined in the DBSERVERNAME or
DBSERVERALIASES configuration parameter, or as an
Enterprise Replication group name.

Usage
This function has different results depending on the type of secondary server:

HDR Secondary: The current primary server is shut down and the HDR secondary server is made the primary server.
RS secondary: The RS secondary server is changed to a standard server.
SD secondary: The SD secondary server is made the new primary server.

Use the ha make primary argument to change an inactive secondary server to a primary server when there is an active connection between them.

Use the ha make primary force argument to change an inactive secondary server to a primary server, whether or not a secondary server is connected to it. If the
connection is active, the function succeeds, however, if you run the function with the force argument on an SD secondary server, the shared disk subsystem can become
corrupted.

Part VI: Administering 873

https://www.hcltech.com/
https://www.hcltech.com/

This function is equivalent to the onmode -d make primary command.

Example
The following example converts an HDR secondary server named ids_stores2 into a primary server:

EXECUTE FUNCTION task("ha make primary","ids_stores2");

Related reference:
 onmode -d: Set High Availability server characteristics

Copyright© 2020 HCL Technologies Limited

ha rss argument: Create an RS secondary server (SQL administration API)

Use the ha rss argument with the admin() or task() function to create a remote standalone (RS) secondary server.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"ha rss"-- , -"primary_server"--+---------------+--)--;-----><
 '-,--"password"-'

Element Description Key Considerations

password A password to set or to change. The password is used only during the first connection
attempt. After the primary and secondary server have
connected, the password cannot be changed.

primary_server The name of the primary database server. The name must be defined in the DBSERVERNAME or
DBSERVERALIASES configuration parameter, or as an
Enterprise Replication group name.

Usage
Run this function on a standard server or a quiescent HDR secondary server to convert it an RS secondary server.

This function is equivalent to the onmode -d RSS command.

Example
The following example converts a standard server into an RS secondary server with a primary server named ids_stores:

EXECUTE FUNCTION task("ha rss","ids_stores");

Related reference:
 onmode -d: Set High Availability server characteristics

Copyright© 2020 HCL Technologies Limited

ha rss add argument: Add an RS secondary server to a primary server (SQL
administration API)

Use the ha rss add argument with the admin() or task() function to associate a primary server with a remote standalone (RS) secondary server.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"ha rss add"-- , -"ha_alias"--+---------------+--)--;-------><
 '-,--"password"-'

Element Description Key Considerations

password The password to set or to change. The password is used only during the first connection
attempt. After the primary and secondary server have
connected, the password cannot be changed.

874 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Element Description Key Considerations

ha_alias The high-availability alias of the database server to convert
to an RS secondary server.

The name must be defined in the HA_ALIAS configuration
parameter, or as an Enterprise Replication group name.

Usage
Run this function from an established primary server to create an RS secondary server and register the RS secondary server name in the sysha database.

This function is equivalent to the onmode -d add RSS command.

Example
The following example associates a server with a high-availability alias of ids_stores2 as an RS secondary server to the primary server:

EXECUTE FUNCTION task("ha rss add","ids_stores2");

Related reference:
 onmode -d: Set High Availability server characteristics

Copyright© 2020 HCL Technologies Limited

ha rss change argument: Change the password of an RS secondary server (SQL
administration API)

Use the ha rss change argument with the admin() or task() function to change the connection password for the specified RS secondary server.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"ha rss change"--,--"secondary_server"-- , -"password"------->

>--)--;--><

Element Description Key Considerations

password The password to set or to change. The password is used only during the first connection
attempt. After the primary and secondary server have
connected, the password cannot be changed.

secondary_server The name of the database server to convert to an RS
secondary server.

The name must be defined in the DBSERVERNAME or
DBSERVERALIASES configuration parameter, or as an
Enterprise Replication group name.

Usage
Run this function on an established primary server to change the password for the connection between the primary and secondary server.

This function is equivalent to the onmode -d change RSS command.

Example
The following example changes the password for the RS secondary server to secure:

EXECUTE FUNCTION task("ha rss change","ids_stores2","secure");

Related reference:
 onmode -d: Set High Availability server characteristics

Copyright© 2020 HCL Technologies Limited

ha rss delete argument: Delete an RS secondary server (SQL administration API)

Use the ha rss delete argument with the admin() or task() function to stop replication and delete the RS secondary server.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

Part VI: Administering 875

https://www.hcltech.com/
https://www.hcltech.com/

>--"ha rss delete"--,--"secondary_server"--)--;----------------><

Element Description Key Considerations

secondary_server The name of the database server to convert to an RS
secondary server.

The name must be defined in the DBSERVERNAME or
DBSERVERALIASES configuration parameter, or as an
Enterprise Replication group name.

Usage
Run this function from an established primary server to convert the RS secondary server to a standard server and delete the RS secondary server.

This function is equivalent to the onmode -d delete RSS command.

Example
The following example deletes the RS secondary server named ids_stores2:

EXECUTE FUNCTION task("ha rss delete","ids_stores2");

Related reference:
 onmode -d: Set High Availability server characteristics

Copyright© 2020 HCL Technologies Limited

ha sds clear argument: Stop shared-disk replication (SQL administration API)

Use the ha sds clear argument with the admin() or task() function to stop replication to shared disk (SD) secondary servers and convert the primary server to a standard
server.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"ha sds clear"--,--"primary_server"--)--;-------------------><

Element Description Key Considerations

primary_server The name of the primary server to convert to a standard
server.

The name must be defined in the DBSERVERNAME or
DBSERVERALIASES configuration parameter, or as an
Enterprise Replication group name.

Usage
Run this function on an established primary server to stop replication to the SD secondary servers.

This function is equivalent to the onmode -d clear SDS primary command.

Example
The following example stops replication from the primary server named ids_stores to SD secondary servers:

EXECUTE FUNCTION task("ha sds clear","ids_stores");

Related reference:
 onmode -d: Set High Availability server characteristics

Copyright© 2020 HCL Technologies Limited

ha sds primary argument: Convert an SD secondary server to a primary server (SQL
administration API)

Use the ha sds primary argument with the admin() or task() function to change a shared disk (SD) secondary server to a primary server.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--+-"ha sds primary"-------+--->
 '-task--' '-"ha sds primary force"-'

876 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

>--,--"secondary_server"--)--;---------------------------------><

Element Description Key Considerations

secondary_server The name of the SD secondary server to set as a primary
server.

The name must be defined in the DBSERVERNAME or
DBSERVERALIASES configuration parameter, or as an
Enterprise Replication group name.

Usage
Run this function on an established SD secondary server to convert it to the primary server.

Use the ha sds primary argument to convert an inactive SD secondary server to a primary server, if the SD secondary servers are connected to it.

Use the ha sds primary force argument to convert an inactive SD secondary server to a primary server, whether or not any SD secondary servers are connected to it. If
sessions are active, the call succeeds, but the shared disk subsystem can become corrupted.

This function is equivalent to the onmode -d make primary command.

Example
The following example converts an SD secondary server named ids_stores3 to the primary server:

EXECUTE FUNCTION task("ha sds primary","ids_stores3");

Related reference:
 onmode -d: Set High Availability server characteristics

Copyright© 2020 HCL Technologies Limited

ha sds set argument: Create a shared-disk primary server (SQL administration API)

Use the ha sds set argument with the admin() or task() function to define a primary server to replicate to shared disk (SD) secondary servers.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--+-"ha sds set"-------+------->
 '-task--' '-"ha sds set force"-'

>--,--"primary_server"--)--;-----------------------------------><

Element Description Key Considerations

primary_server The name of the database server to set as a primary server. The name must be defined in the DBSERVERNAME or
DBSERVERALIASES configuration parameter, or as an
Enterprise Replication group name.

Usage
Run this function on a standard server to define it as a primary server for SD secondary servers.

Use the ha sds set argument to define an inactive standard server as a primary server, if the SD secondary servers are connected to it.

Use the ha sds set force argument to define an inactive standard server as a primary server, whether or not any SD secondary servers are connected to it. If sessions are
active, the call succeeds, but the shared disk subsystem can become corrupted.

This function is equivalent to the onmode -d set SDS primary command.

Example
The following example converts a standard server named ids_stores to a primary server:

EXECUTE FUNCTION task("ha sds set","ids_stores");

Related reference:
 onmode -d: Set High Availability server characteristics

Copyright© 2020 HCL Technologies Limited

ha set idxauto argument: Replicate indexes to secondary servers (SQL administration
API)

Part VI: Administering 877

https://www.hcltech.com/
https://www.hcltech.com/

Use the ha set idxauto argument with the admin() or task() function to control whether indexes are automatically replicated to secondary servers.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--+-"ha set idxauto off"-+----->
 '-task--' '-"ha set idxauto on"--'

>--)--;--><

Usage
Run this function on an established primary server to enable or disable automatic index replication to secondary servers.

You can run this function on any type of primary server.

This function is equivalent to the onmode -d idxauto command.

Example
The following example enables automatic index replication:

EXECUTE FUNCTION task("ha set idxauto on");

Related reference:
 onmode -d command: Replicate an index with data-replication

Copyright© 2020 HCL Technologies Limited

ha set ipl argument: Log index builds on the primary server (SQL administration API)

Use the ha set ipl argument with the admin() or task() function to control whether to log index builds on the primary server.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--+-"ha set ipl off"-+--)--;--><
 '-task--' '-"ha set ipl on"--'

Usage
Run this function on an established primary server to enable or disable the logging of index builds. This function resets the value of the LOG_INDEX_BUILDS configuration
parameter in the ONCONFIG file.

You can run this function on any type of primary server.

This function is equivalent to the onmode -wf LOG_INDEX_BUILDS command.

Example
The following example enables the logging of index builds:

EXECUTE FUNCTION task("ha set ipl on");

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Copyright© 2020 HCL Technologies Limited

ha set primary argument: Define an HDR primary server (SQL administration API)

Use the ha set primary argument with the admin() or task() function to define a High-Availability Data Replication (HDR) primary server and specify the secondary server.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"ha set primary"--,--"secondary_server"--)--;---------------><

Element Description Key Considerations

878 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Element Description Key Considerations

secondary_server The name of the HDR secondary server to connect to. The name must be defined in the DBSERVERNAME or
DBSERVERALIASES configuration parameter, or as an
Enterprise Replication group name.

Usage
Run this function on a standard server to convert it to an HDR primary server and connect to the specified HDR secondary server. If the connection is successful,
replication begins.

This function is equivalent to the onmode -d primary command.

Example
The following example converts a standard server named ids_stores to an HDR primary server:

EXECUTE FUNCTION task("ha set primary","ids_stores");

Related reference:
 onmode -d: Set data-replication types

Copyright© 2020 HCL Technologies Limited

ha set secondary argument: Define an HDR secondary server (SQL administration
API)

Use the ha set secondary argument with the admin() or task() function to define a High-Availability Data Replication (HDR) secondary server and specify the primary
server.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"ha set secondary"--,--"primary_server"--)--;---------------><

Element Description Key Considerations

primary_server The name of the HDR primary server to connect to. The name must be defined in the DBSERVERNAME or
DBSERVERALIASES configuration parameter, or as an
Enterprise Replication group name.

Usage
Run this function on a standard database server to convert it to an HDR secondary server, and connect to the specified primary server. If the connection is successful,
replication begins.

This function is equivalent to the onmode -d secondary command.

Example
The following example converts a standard server to an HDR secondary server, with a primary server named ids_stores:

EXECUTE FUNCTION task("ha set secondary","ids_stores");

Related reference:
 onmode -d: Set data-replication types

Copyright© 2020 HCL Technologies Limited

ha set standard argument: Convert an HDR server into a standard server (SQL
administration API)

Use the ha set standard argument with the admin() or task() function to convert a High-Availability Data Replication (HDR) primary or secondary server to a standard
server.

Syntax

Part VI: Administering 879

https://www.hcltech.com/
https://www.hcltech.com/

>>-EXECUTE FUNCTION--+-admin-+--(--"ha set standard"--)--;-----><
 '-task--'

Usage
Run this function on a HDR primary or secondary server to convert it to a standard server. The connection between the primary and secondary servers is dropped and
replication stops. The mode of the other server in the HDR pair is not changed.

This function is equivalent to the onmode -d standard command.

Example
The following example converts an HDR secondary server to a standard server:

EXECUTE FUNCTION task("ha set standard");

Related reference:
 onmode -d: Set data-replication types

Copyright© 2020 HCL Technologies Limited

ha set timeout argument: Change SD secondary server timeout (SQL administration
API)

Use the ha set timeout argument with the admin() or task() function to change the amount of time in seconds that the primary server waits for acknowledgments from
shared disk (SD) secondary servers.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"ha set timeout"--,--"seconds"--)--;------------------------><

Element Description Key Considerations

seconds The number of seconds the primary server waits before
disconnecting the SD secondary server.

The value must be a positive integer in the range:

from 2
to 2 147 483 647

Usage
Run this function on an established shared disk primary server to specify the amount of time in seconds that the primary server waits for a log position acknowledgment to
be sent from an SD secondary server. If there is no log position acknowledgment received from the SD secondary server in the specified amount of time, the primary
server disconnects from the SD secondary server and continues. After waiting for the specified number of seconds, the primary server starts removing SD secondary
servers if page flushing has timed out while waiting for an SD secondary server.

This function resets the value of the SDS_TIMEOUT configuration parameter in the ONCONFIG file.

This function is equivalent to the onmode -wf SDS_TIMEOUT command.

Example
The following example sets the timeout period to 5 seconds:

EXECUTE FUNCTION task("ha set timeout","5");

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Copyright© 2020 HCL Technologies Limited

import config argument: Import configuration parameter values (SQL administration
API)

Use the import config argument with the admin() or task() function to import a file that contains one or more dynamically updatable configuration parameters and apply
the new values.

880 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"--import config--"---------->
 '-task--'

>--,--"file_path"--)--;--><

Table 1. import config command elements

Element Description Key
Considerations

file_path The full path name of the previously exported file that contains the names and values of one or more dynamically updatable
configuration parameters

Usage
Dynamically updatable configuration parameters are those parameters that you can change for a session with an onmode -wf or onmode -wm command.

You must specify the full path name. You cannot specify a relative path.

This command is the equivalent of the onmode –wi commend.

Example
The following command imports a file named cfg_12 in the /tmp directory:

EXECUTE FUNCTION task("import config", "/tmp/cfg_12");

Related tasks:
 Modifying the onconfig file

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

export config argument: Export configuration parameter values (SQL administration API)
onmode -wi: Import a configuration parameter file

Copyright© 2020 HCL Technologies Limited

index compress repack shrink arguments: Optimize the storage of B-tree indexes
(SQL administration API)

Use the index compress repack shrink argument with the admin() or task() function to compress detached B-tree indexes, consolidate free space (repack), and return free
space (shrink) in partitions.

Syntax: Index compression command arguments

>>-EXECUTE FUNCTION--+-admin-+--(--"--index--------------------->
 '-task--'

>--+-compress--+--------+--+--------+--+----------+-+--"-------->
 | '-repack-' '-shrink-' '-parallel-' |
 +-repack--+--------+--+----------+---------------+
 | '-shrink-' '-parallel-' |
 '-shrink---'

>--,--"index_name"--,--"database_name"--,--"owner"--)--;-------><

Command arguments
The following table contains a brief explanation of each argument.

Table 1. Arguments for index compression operations

Argument Description

compress Compresses the index.

parallel Runs the compress or repack operation in parallel. A thread is started for each fragment of the table or fragment
list and the operation is run in parallel across those fragments.

repack Consolidates free space by moving data to the front of the index.

shrink Returns free space at the end of the index to the dbspace, thus reducing the total size of the index.

Command elements
The following table shows the elements that you can use to compress, repack, and shrink indexes.

Part VI: Administering 881

https://www.hcltech.com/

Table 2. Index compress command elements

Element Description Key Considerations

index_name The name of the index that you want to compress. Required.
You must use the same uppercase or lowercase letters that are in system catalog
tables.

database_name The name of the database that contains the index that you want
to compress.

Optional.
If you do not specify a database, the database server uses the current database.

If you enter a database name, you must use the same uppercase or lowercase
letters that are in system catalog tables.

owner The name of the owner of the database that contains the index
that you want to compress.

Optional.
If you do not specify an owner, the database server uses the current owner.

If you enter an owner name, you must use the same uppercase or lowercase letters
that are in system catalog tables.

Usage
You can compress a detached B-tree index that is on a fragmented or non-fragmented table. You cannot compress an attached index.

To be compressed, an index must have at least 2000 keys. If a fragment within the index does not have at least 2000 keys, the database server does not compress the
index or fragment when it creates the index. The index remains uncompressed even if new keys are added to it. If you want to compress the index, run another SQL Admin
API task() or admin() function with the index compress argument.

To determine if an index contains the minimum number of keys, run the oncheck -pT command and view information in the Number of keys field.

Typically you perform a repack operation after a compress operation and the shrink after a repack operation.

The compression operation compresses only the leaves (bottom level) of the index.

You can cancel a command, for example, by typing CTRL-C in DB-Access.

You cannot uncompress an index. If you want an uncompressed index, you can drop the compressed index and recreate it.

Example
The following command compresses, repacks, and shrinks an index in parallel.

EXECUTE FUNCTION task("index compress repack shrink parallel",
"ind5", "customer", "jayson");

Copyright© 2020 HCL Technologies Limited

index estimate_compression argument: Estimate index compression (SQL
administration API)

Use the index estimate_compression argument with the admin() or task() function to estimate if you can save disk space by compressing a B-tree index.

Syntax: index estimate_compression command argument

>>-EXECUTE FUNCTION--+-admin-+---------------------------------->
 '-task--'

>--(--"--index estimate_compression--"-------------------------->

>--,--"index_name"--,--"database_name"--,--"owner"--)--;-------><

Command elements
The following table shows the elements that you can use to estimate index compression.

Table 1. Index estimate_compression command elements

Element Description Key Considerations

index_name The name of the index for which you want to estimate
compression benefits.

Required.
You must use the same uppercase or lowercase letters that are in system catalog tables.

database_name The name of the database that contains the index. Optional.
If you do not specify a database, the database server uses the current database.

If you enter a database name, you must use the same uppercase or lowercase letters that
are in system catalog tables.

882 Part VI: Administering

https://www.hcltech.com/

Element Description Key Considerations

owner The name of the owner of the database that contains the
index.

Optional for an index.
If you do not specify an owner, the database server uses the current owner.

If you enter an owner name, you must use the same uppercase or lowercase letters that
are in system catalog tables.

Usage
You can estimate compression only for a detached B-tree index on a fragmented or non-fragmented table.

The estimate compression operation displays the name of the index, the estimated compression ratio that can be achieved, the current compression ratio, and an
estimate of the percentage gain or loss. The current ratio is 0.0 percent if the index is not compressed.

Example
The following command estimates compression benefits for an index named ind4 in the customer database for which anjul is the owner.

EXECUTE FUNCTION task("index estimate_compression","ind4",
"customer","anjul");

Related reference:
 Output of the estimate compression operation (SQL administration API)

Copyright© 2020 HCL Technologies Limited

master_key reset argument: Change the keystore password (SQL administration API)

Use the master_key reset argument with the admin() or task() function to change the password for the storage space encryption keystore. The password is used to
encrypt the keystore for storage space encryption.

Syntax
 >>-EXECUTE FUNCTION--+-admin-+--(-+-"master_key reset"-------+--->
 '-task--' '-"master_key reset stash"-'

 >----,--"--password--"--)-;------------------------------------><

Element Purpose Key considerations

password A password that you supply for the storage space
encryption keystore.

The maximum length is 32 bytes and the
minimum length is 8 bytes.

Usage
You must be logged in as user informix or the root user to run this command.

The password protects the storage space encryption keystore. You can run the admin() or task() function with the master_key reset argument at any time to change the
password. The keystore gets encrypted with the new password. The optional keyword "stash" enforces the stashing of the new password even if the old password was not
stashed before.

Example
The following example shows how to change the password:

 execute function task("master_key reset", "This is my new password");

Copyright© 2020 HCL Technologies Limited

message log delete argument: Delete a message log file (SQL administration API)

Use the message log delete argument or file delete argument with the admin() or task() function to specify the particular online, ON-Bar activity, or ON-Bar debug
message log to delete.

Syntax

>>-EXECUTE FUNCTION--+-admin-+---------------------------------->
 '-task--'

>--(--+-"message log delete"-+--,--"--file_path--"--)--;-------><
 '-"file delete"--------'

Part VI: Administering 883

https://www.hcltech.com/
https://www.hcltech.com/

Element Purpose Key considerationsElement Purpose Key considerations

file_path Full path name for the particular online, ON-Bar activity, or
ON-Bar debug message log file.

Examples
The following examples show the arguments that you can use to delete the /usr/informix/online.log file:

execute function task("message log delete", "/usr/informix/online.log");

execute function task("file delete", "/usr/informix/online.log");

Related reference:
 message log rotate argument: Rotate the message log file (SQL administration API)

message log truncate argument: Delete the contents of a message log file (SQL administration API)
file status argument: Display the status of a message log file (SQL administration API)

Copyright© 2020 HCL Technologies Limited

message log rotate argument: Rotate the message log file (SQL administration API)

Use the message log rotate argument or the file rotate argument with the admin() or task() function to specify the particular online, ON-Bar activity, or ON-Bar debug
message log file to rotate, and to indicate the maximum number of message logs to rotate.

When the message log file rotates, the database server switches to a new online message log file and increments the ID numbers for the previous log files by one. When
the maximum number of log files is reached, the log file with the highest ID is deleted.

Syntax

>>-EXECUTE FUNCTION--+-admin-+---------------------------------->
 '-task--'

>--(--+-"message log rotate"-+--,--"--file_path--"-------------->
 '-"file rotate"--------'

>--+-----------------+--)--;-----------------------------------><
 '-maximum_version-'

Element Purpose Key considerations

file_path Full path name of the online, ON-Bar activity, or ON-Bar debug
message log file that the server will rotate, for example,
/usr/informix/online.log.

maximum_version The log file with the highest ID. This is the maximum message
log version that the server will rotate.

Examples
The following examples show the arguments that you can use to rotate a maximum of 52 /usr/informix/online.log files:

execute function task("message log rotate", "/usr/informix/online.log",52);

execute function task("file rotate", "/usr/informix/online.log",52);

When the database server rotates these files, the server deletes version 52 of the file. Version 51 becomes version 52, version 50 becomes version 51, and so on. The new
online log becomes version 1.

Related reference:
 message log truncate argument: Delete the contents of a message log file (SQL administration API)

message log delete argument: Delete a message log file (SQL administration API)
file status argument: Display the status of a message log file (SQL administration API)

Copyright© 2020 HCL Technologies Limited

message log truncate argument: Delete the contents of a message log file (SQL
administration API)

Use the message log truncate argument or file truncate argument with the admin() or task() function to specify the particular online, ON-Bar activity, or ON-Bar debug
message log file to truncate. When the database server truncates a message log file, it deletes the messages in the log file, but keeps the log file.

Syntax

884 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

>>-EXECUTE FUNCTION--+-admin-+---------------------------------->
 '-task--'

>--(--+-"message log truncate"-+--,--"--file_path--"--)--;-----><
 '-"file truncate"--------'

Element Purpose Key considerations

file_path Full path name for the online, ON-Bar activity, or ON-Bar
debug message log file.

Examples
The following examples show the arguments that you can use to truncate the /usr/informix/online.log file:

execute function task("message log truncate", "/usr/informix/online.log");

execute function task("file truncate", "/usr/informix/online.log");

Related reference:
 message log rotate argument: Rotate the message log file (SQL administration API)

message log delete argument: Delete a message log file (SQL administration API)
file status argument: Display the status of a message log file (SQL administration API)

Copyright© 2020 HCL Technologies Limited

modify chunk extend argument: Extend the size of a chunk (SQL administration API)

Use the modify chunk extend argument with the admin() or task() function to extend the size of the chunk by a specified minimum amount. The chunk must be marked as
extendable.

>>-EXECUTE FUNCTION--+-admin-+---------------------------------->
 '-task--'

>--(--"--modify chunk extend--"--,--"chunk_number"--,--"extend_amount"--)-- ;-><

Element Description Key Considerations

chunk_number The number of the chunk.

extend_amount The minimum amount of space in kilobytes to add to the
chunk.

See admin() and task() Argument Size Specifications.

Usage
You must mark a chunk as extendable before the chunk can be extended, either manually or automatically. Use the modify chunk extendable argument with the admin()
or task() function to mark a chunk as extendable.

The modify chunk extend SQL administration API command is an alternative to the adm_add_storage task that the server can run to automatically extend the size of a
chunk when the space containing the chunk runs low or out of free pages.

You cannot extend a chunk in a mirrored space, and you will receive an error if you provide the number of a mirror chunk when you run a modify chunk extend SQL
administration API command.

To identify primary and mirror chunks in a mirrored space, look for the P (primary) or M (mirror) in position 1 of the flags field in onstat -d command output.

The server might round up the requested size, depending on the page size and the configured create size and extend size of the space.

Examples
Suppose that your onstat -d command output shows that chunk number 3 is a mirror chunk and chunk number 4 is a not a mirror chunk. You cannot extend the size of
chunk number 3. However, you can modify chunk number 4. The following command extends the size of chunk number 4 by 10000 kilobytes:

EXECUTE FUNCTION task("modify chunk extend", "4", "10000");

Related reference:
 modify chunk extendable argument: Mark a chunk as extendable (SQL administration API)

modify chunk extend argument: Extend the size of a chunk (SQL administration API)
modify space sp_sizes argument: Modify sizes of an extendable storage space (SQL administration API)
modify space expand argument: Expand the size of a space (SQL administration API)
onstat -d command: Print chunk information

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 885

https://www.hcltech.com/
https://www.hcltech.com/

modify chunk extendable argument: Mark a chunk as extendable (SQL
administration API)

Use the modify chunk extendable argument with the admin() or task() function to specify that a particular chunk in an unmirrored dbspace or temporary dbspace can be
extended..

>>-EXECUTE FUNCTION--+-admin-+---------------------------------->
 '-task--'

>--(--"--modify chunk extendable--"--,--"--chunk_number--"--)-- ;-><

Element Description Key Considerations

chunk_number The number of the chunk.

Usage
If a chunk is marked as extendable, either:

The server can automatically extend the chunk when the unmirrored dbspace or temporary dbspace containing the chunk runs low or out of free pages.
You can use the modify chunk extend argument with the admin() or task() function to extend the size of the chunk.

However, if the extend size for the dbspace or temporary dbspace is set to 0, the server cannot automatically extend an extendable chunk in that space. In this situation,
you can still manually extend the chunk.

The server will automatically mark chunks that are allocated from extendable storage pool entries as extendable. Therefore, you do not need to mark these chunks as
extendable. For information on extendable storage pool entries, see storagepool add argument: Add a storage pool entry (SQL administration API).

Chunks in mirrored spaces cannot be extended. If you try to make a mirror chunk extendable, you will receive an error.

To identify primary and mirror chunks in a mirrored space, look for the P (primary) or M (mirror) in position 1 of the flags field in onstat -d command output.

Example
The following snippet of onstat -d output shows that chunk number 3 is a mirror chunk:

Chunks
address chunk/dbs offset size free bpages flags pathname
451191c8 1 1 0 225000 101572 PO-B-- /reg1/rootchunk
451197d0 2 2 0 1250 1149 PO-B-- /reg1/dbs1
451199d0 3 3 0 1250 1149 PO-B-- /reg1/dbs2
46a36638 3 3 0 1250 0 MO-B-- /reg1/chunk2
45119bd0 4 4 0 1250 1149 PO-B-- /reg1/dbs3

Thus, you cannot extend the size of chunk number 3. However, you can specify that chunk number 4 is extendable, as follows:

EXECUTE FUNCTION sysadmin:task("modify chunk extendable", "4");

Related reference:
 modify chunk extendable off argument: Mark a chunk as not extendable (SQL administration API)

modify space sp_sizes argument: Modify sizes of an extendable storage space (SQL administration API)
modify chunk extend argument: Extend the size of a chunk (SQL administration API)
modify space expand argument: Expand the size of a space (SQL administration API)

Copyright© 2020 HCL Technologies Limited

modify chunk extendable off argument: Mark a chunk as not extendable (SQL
administration API)

Use the modify chunk extendable off argument with the admin() or task() function to specify that a particular chunk cannot be extended.

>>-EXECUTE FUNCTION--+-admin-+---------------------------------->
 '-task--'

>--(--"--modify chunk extendable off--"--,--"--chunk_number--"--)-- ;-><

Element Description Key Considerations

chunk_number The number of the chunk.

Usage
The default status for chunks is not extendable. If you previously marked a chunk as extendable, you can change the status to not extendable.

886 Part VI: Administering

https://www.hcltech.com/

If a chunk is marked as not extendable:

The server cannot automatically extend the chunk when the space containing the chunk runs low or out of free pages.
You cannot manually extend the size of the chunk.

If the storage pool contains entries, the server can extend a storage space by adding another chunk to the storage space.

Example
The following example specifies that the you or the server cannot extend chunk 9:

EXECUTE FUNCTION task("modify chunk extendable off", "9");

Related reference:
 modify chunk extendable argument: Mark a chunk as extendable (SQL administration API)

Copyright© 2020 HCL Technologies Limited

modify chunk swap_mirror argument: Switch primary and mirror chunk files without
any downtime(SQL administration API)

Use the modify chunk swap_mirror argument with the admin() or task() function to easily migrate data from old disk drives to new ones without downtime.

>>-EXECUTE FUNCTION--+-admin-+---------------------------------->
 '-task--'

>--(--"--modify chunk swap_mirror--"--,--"--chunk_number--"--)-- ;-><

Element Description Key Considerations

chunk_number The number of the chunk. The chunk must be mirrored. Both the primary and the
mirror chunk must be on-line.

Usage
To migrate data in a chunk from one disk drive to another on the fly, do the following:

1. Add a mirror chunk to the original, primary chunk, placing the mirror on the new disk drive.
Note: All chunks in a mirrored space must be mirrored.
For more information see, onspaces -m or add mirror SQL administration API command.

2. Swap the primary chunk and the mirror using the modify chunk swap_mirror command.
3. Drop the mirror chunk (the original primary) by turning off mirroring for the space. For more information see, onspaces -r or stop mirroring SQL administration API

command.

Example
EXECUTE FUNCTION sysadmin:task("create dbspace","newdbs","/prod1/IFX_CHUNKS/chunk5",10000,0);
EXECUTE FUNCTION sysadmin:task("add mirror","newdbs","/prod1/IFX_CHUNKS/chunk5",0,"/prod8/IFX_CHUNKS/chunk1",0);
select chknum from sysmaster:syschunks where fname = "/prod1/IFX_CHUNKS/chunk5";
EXECUTE FUNCTION sysadmin:task("modify chunk swap_mirror", "12");
EXECUTE FUNCTION sysadmin:task("stop mirroring","newdbs");

Copyright© 2020 HCL Technologies Limited

modify space swap_mirror argument: Switch all primary and mirror chunk files for a
space without any downtime (SQL administration API)

Use the modify space swap_mirrors argument with the admin() or task() function to easily migrate data from old disk drives to new ones without downtime.

>>-EXECUTE FUNCTION--+-admin-+---------------------------------->
 '-task--'

>--(--"--modify space swap_mirrors--"--,--"--space_name--"--)-- ;-><

Element Description Key Considerations

space_name The name of the storage space The space must be mirrored. All primary and mirror chunks
in the space must be on-line.

Usage

Part VI: Administering 887

https://www.hcltech.com/
https://www.hcltech.com/

To migrate data in a chunk from one disk drive to another without any downtime, do the following:

1. Add mirror chunks to the original, primary chunks using the onspaces -m command, placing the mirrors on the new disk drive.
Note: All chunks in a mirrored space must be mirrored.

2. Swap the primary chunks and the mirrors using the modify space swap_mirrors command.
3. Drop the mirror chunks (the original primary) by turning off mirroring for the space. For more information see, onspaces -r or stop mirroring SQL administration API

command.

Example
EXECUTE FUNCTION sysadmin:task("create dbspace","newdbs","/prod1/IFX_CHUNKS/chunk5",10000,0);
EXECUTE FUNCTION sysadmin:task("add chunk","newdbs","/prod1/IFX_CHUNKS/chunk6",10000,0);
onspaces -m newdbs -p /prod1/IFX_CHUNKS/chunk5 -o 0 -m /prod8/IFX_CHUNKS/chunk1 0 -p /prod1/IFX_CHUNKS/chunk6 -o 0 -m
/prod8/IFX_CHUNKS/chunk2 0 -y
EXECUTE FUNCTION sysadmin:task("modify space swap_mirrors", "newdbs");
EXECUTE FUNCTION sysadmin:task("stop mirroring","newdbs");

Copyright© 2020 HCL Technologies Limited

modify config arguments: Modify configuration parameters (SQL administration API)

Use the modify config argument with the admin() or task() function to change the value of a configuration parameter in memory until you restart the database server. Use
the modify config persistent argument to change the value of a configuration parameter in memory and preserve the value in the onconfig file after you restart the server.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--+-"--modify config--"------------+--------------------------->
 '-"--modify config persistent--"-'

>--,--"configuration_parameter_name"--,--"new_value"--)--;-----><

Table 1. modify config command elements
Element Description Key Considerations

configuration_parameter
_name

The name of the configuration parameter that you
want to modify.

new_value The new value of the configuration parameter. For information about the valid values for a configuration parameter, see Database
configuration parameters.

Usage
This SQL administration API command is equivalent to using an onmode -wm or -wf command to change the value of a configuration parameter.

Examples
The following command changes the value of the DYNAMIC_LOGS configuration parameter to 2 in memory for current use:

EXECUTE FUNCTION task("modify config","DYNAMIC_LOGS",
"2");

The following command changes the value of the DYNAMIC_LOGS configuration parameter for current use. The changed value remains in the onconfig file after you restart
the server.

EXECUTE FUNCTION task("modify config persistent","DYNAMIC_LOGS",
"2");

Related tasks:
 Modifying the onconfig file

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Copyright© 2020 HCL Technologies Limited

modify space expand argument: Expand the size of a space (SQL administration API)

Use the modify space expand argument with the admin() or task() function to immediately expand the size of a space, when you do not want to wait for Informix® to
automatically expand the space.

>>-EXECUTE FUNCTION--+-admin-+--(--"--modify space expand--"---->
 '-task--'

888 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

>--,--"space_name"--,--"minimum_size"--)--;--------------------><

Element Description Key Considerations

space_name The name of the storage space.

minimum_size The minimum size by which you want to expand the space. See admin() and task() Argument Size Specifications.

Usage
The modify space expand SQL administration API command expands a storage space immediately, either by extending an extendable chunk in the space or by adding a
new chunk. The create size and extend size settings for the space do not affect this operation.

The actual number of kilobytes added to the space might exceed your requested size, depending on factors such as the page size of the space and the chunk size settings
for available entries in the storage pool.

The storage pool must contain entries (such as raw devices, cooked files, or directories) that the server can use to expand the space.

After you run a modify space expand SQL administration API command, Informix first attempts to expand the space by extending an extendable chunk in the space. If the
space does not contain any extendable chunks, the server uses entries in the storage pool to expand the space.

You cannot expand a mirrored storage space.

Examples
The following command expands dbspace5 by 10 megabytes:

EXECUTE FUNCTION task("modify space expand", "dbspace5", "10 MB");

Related reference:
 modify chunk extendable argument: Mark a chunk as extendable (SQL administration API)

modify chunk extend argument: Extend the size of a chunk (SQL administration API)
modify space sp_sizes argument: Modify sizes of an extendable storage space (SQL administration API)
create chunk from storagepool argument: Create a chunk from the storage pool (SQL administration API)

Copyright© 2020 HCL Technologies Limited

modify space sp_sizes argument: Modify sizes of an extendable storage space (SQL
administration API)

Use the modify space sp_sizes argument with the admin() or task() function to modify the create, extend, and maximum sizes that are associated with expanding a
storage space. Modify the sizes to control how Informix® uses storage pool entries for a particular storage space.

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"--modify space sp_sizes--"--,--"--space_name--"------------->

>--,--"--new_create_size--"--,--"--new_extend_size--"----------->

>--+-------------------+--)--;---------------------------------><
 '-,--"--max_size--"-'

Element Description Key Considerations

space_name The name of the storage space.

max_size The maximum size of the storage space, in KB. The default maximum size is 0, which indicates unlimited
size.

new_create_size The minimum size of a new chunk that the server can create
when automatically expanding this space using the storage
pool. You can define the size as a number of KB or as a
percentage of the total space.

The default create size is set to 10 percent of the total size
of the space.
The size that you specify affects chunks the server creates
automatically. It does not affect any manual chunks that
you might create for the associated space.

new_extend_size The minimum size that the server can use when
automatically extending a chunk in an unmirrored dbspace
or temporary dbspace. The size can be a specified number
of KB or a percentage of the total space.

The default extend size is 10 MB.
The size that you specify affects chunks the server extends
automatically. It does not affect any manual chunk
extensions that you might initiate for the associated space.

Usage
If the create or extend size value is 100 or a lower value, Informix interprets the value as a percentage (for example, 10 = 10 percent and 2.84 = 2.84 percent). If the value
is 1000 or higher, the server interprets the value as a specific number of KB. Values 100 - 1000 are not valid.

If you set the create size and the extend size to 0, Informix does not automatically expand the space, even when the space becomes full. Additionally, if you set the extend
size to 0, you also remove the “Extendable” flag from all chunks in that space. This is an easy way to mark all chunks in a space as not extendable, using one operation.

Part VI: Administering 889

https://www.hcltech.com/

The create and extend size values are minimum sizes. The actual size by which a space is expanded might be larger, depending on the chunk size of the storage pool entry
that the server is using or the amount of space that the server needs at that particular time.

For example, suppose you created a storage pool entry to expand storage space when necessary. Then suppose that a dbspace named logdbs is out of free pages and
requires an extra 500 MB for a new log. If none of the chunks in logdbs can be extended, Informix adds a chunk that has the minimum size that is specified by the create
size value for the logdbs dbspace. If the create size for the logdbs dbspace is less than or equal to 500 MB, the server attempts to find a minimum of 500 MB of space. If
the create size for logdbs is 1 GB, the server ignores the requested size and adds a 1 GB chunk.

If the server is unable to find the minimum amount of space that is required, the server returns an out-of-space error and the log creation fails.

If you set the maximum size of the storage space to a value other than 0, the storage space cannot exceed the maximum size, regardless of the new extend size. When the
amount of expansion space that is left before the maximum size is less than the new extend size, the extend size is truncated and the space is extended to the maximum
size. The event alarm 86001 is triggered when the space reaches the maximum size. When the amount of expansion space left is less than the minimum chunk size for the
storage pool, the space is not expanded and an error is returned.

Examples
The following command sets the minimum create size to 60 MB, the minimum extend size to 10 MB, and the maximum size to 100 MB for a dbspace that is named
dbspace3:

EXECUTE FUNCTION task("modify space sp_sizes", "dbspace3", "60000",
 "10000", "100000");

The following command sets the minimum create size to 20 percent and the minimum extend size 1.5 percent for a dbspace that is named dbspace8:

EXECUTE FUNCTION task("modify space sp_sizes", "dbspace8", "20", "1.5");

Related reference:
 modify chunk extendable argument: Mark a chunk as extendable (SQL administration API)

modify chunk extend argument: Extend the size of a chunk (SQL administration API)
modify space expand argument: Expand the size of a space (SQL administration API)

Copyright© 2020 HCL Technologies Limited

onbar argument: Backup the storage spaces (SQL administration API)

Use the onbar argument with the admin() or task() function to backup the storage spaces.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"onbar backup---------------->
 '-task--'

>--+-+--------------+--+--------------+-+--"--)--;-------------><
 | '-whole system-' '-level--level-' |
 '-logs-------------------------------'

Element Purpose Key considerations

onbar backup Performs a complete backup of the storage spaces If you do not specify a level, a level 0 backup is performed.

whole system Performs a whole-system backup This is equivalent of issuing the onbar command with the -w option from the
command line. If you do not specify a level, a level 0 backup is performed.

level level Specifies the level of backup to perform on storage
spaces:

0 for a complete backup. This is the default.
1 for changes since the last level-0 backup
2 for changes since the last level-1 backup

If you request an incremental backup and a level backup has not been performed for
a particular storage space, this function backs up that storage space at the previous
level.
For example, if you request a level-1 backup, and the function finds no level-0
backup, a level-0 backup is made instead.

This is equivalent of issuing the onbar command with the -L level option from the
command line.

logs Performs a back of the logical-log files This is equivalent of issuing the onbar command with the -l option from the
command line.

Usage
This function is equivalent to invoking specific options of the onbar command to create backups of the storage spaces and logical-log files.

Examples
The following example creates a level 0 backup of the storage spaces:

EXECUTE FUNCTION task("onbar backup");

The following example creates a level 1 backup of the storage spaces:

890 Part VI: Administering

https://www.hcltech.com/

EXECUTE FUNCTION task("onbar backup level 1");

The following example creates a level 1 backup of the logical-log files:

EXECUTE FUNCTION task("onbar backup logs");

The following example creates a whole system level 0 backup of the storage spaces:

EXECUTE FUNCTION task("onbar backup whole system");

The following example creates a whole system level 2 backup of the storage spaces:

EXECUTE FUNCTION task("onbar backup whole system level 2");

Related information:
 Back up with ON-Bar

onbar -b syntax: Backing up

Copyright© 2020 HCL Technologies Limited

onmode and a arguments: Add a shared-memory segment (SQL administration API)

Use the onmode and a arguments with the admin() or task() function to add a shared-memory segment.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"onmode"--,--"a"-- , -"memory_size"--)--;-------------------><

Element Description Key Considerations

memory_size The size, in kilobytes, of a new virtual shared-
memory segment.

The value of size must be a positive integer that does not exceed the operating-system
limit on the size of shared-memory segments.

Usage
Ordinarily, you do not need to add segments to the virtual portion of shared memory because the database server automatically adds segments as they are needed.
However, as segments are added, the database server might reach the operating-system limit for the maximum number of segments before it acquires the memory that it
needs. This situation typically occurs when the SHMADD configuration parameter is set so small that the database server exhausts the number of available segments
before it acquires the memory that it needs for some operation.

You can use this function to add a segment that is larger than the size specified by the SHMADD configuration parameter. By using this function to add a segment, you can
adhere to the operating system limit for segments while meeting the need that the database server has for more memory.

This function is equivalent to the onmode -a command.

Example
The following example adds 500 KB of virtual shared-memory:

EXECUTE FUNCTION task("onmode","a","500");

Related reference:
 onmode -a: Add a shared-memory segment

Copyright© 2020 HCL Technologies Limited

onmode and c arguments: Force a checkpoint (SQL administration API)

Use the onmode and c arguments with the admin() or task() function to force a checkpoint.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"onmode"--,--"c"-- ,--------->
 '-task--'

 .-"hard"----.
>--+-----------+--)--;---><
 +-"block"---+
 +-"norm"----+

Part VI: Administering 891

https://www.hcltech.com/
https://www.hcltech.com/

 '-"unblock"-'

Usage
This function forces a checkpoint that flushes the buffers to disk. You can use the c option to force a checkpoint if the most recent checkpoint record in the logical log was
preventing the logical-log file from being freed (status U-B-L).

Use the block argument to prevent the database server from processing any transactions. Use this option to perform an external backup on Informix®. While the database
server is blocked, users cannot access it, except in read-only mode. No transactions can complete until the database server is unblocked.

Use the hard argument to force a blocking checkpoint. This is the default.

Use the norm argument to force a nonblocking checkpoint.

Use the unblock argument to unblock the database server. When the database server is unblocked, data transactions and normal database server operations can resume.
Use this option after you complete an external backup on Informix.

This function is equivalent to the onmode -c command.

Example
The following example starts a blocking checkpoint:

EXECUTE FUNCTION task("onmode","c","hard");

Related reference:
 onmode -c: Force a checkpoint

Copyright© 2020 HCL Technologies Limited

onmode and C arguments: Control the B-tree scanner (SQL administration API)

Use the onmode and C arguments with the admin() or task() function to control the B-tree scanner for cleaning indexes of deleted items.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"onmode"--,--"C"--,---------->
 '-task--'

 .-"1"---------------.
>--+-"start"--,--+-+---------------+-+-----+--)--;-------------><
 | '-"start_count"-' |
 | .-"1"--------------. |
 +-"stop"--,--+-+--------------+-+-------+
 | '-"stop_count"-' |
 +-"threshold"--,--"thresh_size"---------+
 +-"duration"--,--"dur_num"--------------+
 +-"rangesize"--,--"range_size"----------+
 +-"alice"--,--"alice_mode"--------------+
 '-"compression"--,--"compression_level"-'

Element Description Key Considerations

alice_mode The alice mode for the system. Valid integer values range from 0 (OFF) to 12.

compression_level For a database server instance, the level at
which two partially used index pages are
merged. The pages are merged if the data
on those pages totals a set level.

Valid values for the level are low, med (medium), high, and default. The system
default value is med.

dur_num The number of seconds that the hot list is
valid.

After this number of seconds expires, the hot list will be rebuilt by the next available
B-tree scanner thread, even if unprocessed items are on the list. Scanners that are
processing requests are not interrupted.

range_size The size of an index before index range
cleaning is enabled.

A size of -1 can be used to disable range scanning.

start_count The number of B-tree scanner threads to
start.

If start_count is not specified, 1 more thread is started. A maximum of 32 threads
can be started at one time. But, there is no limit on the number of scanner threads
run simultaneously.

stop_count The number of B-tree scanner threads to
stop.

If stop_count is not specified, a single thread is stopped. Stopping all index scanners
prevents all index cleaning.
If you specify a larger stop_count value than the number of threads than are running,
no error is issued, but all scanner threads are stopped.

thresh_size The minimum number of deleted items an
index must encounter before an index is
placed on the hot list.

After all indexes above the threshold have been cleaned and there is no other work
for the B-tree scanner to do, the indexes below the threshold are added to the hot
list.

892 Part VI: Administering

https://www.hcltech.com/

Usage
The B-tree scanner has statistical information that tracks index efficiency and how much extra work the index places on the server. Based on the amount of extra work the
index has accomplished because of committed deleted index items, the B-tree scanner develops an ordered list of indexes that have caused the server to do extra work,
called the hot list. The index causing the highest amount of extra work is cleaned first and the rest of the indexes are cleaned in descending order. The DBA can allocate
cleaning threads dynamically to configure workloads.

This function is equivalent to the onmode -C command.

Example
The following commands start 60 B-tree scanner threads:

EXECUTE FUNCTION admin("onmode","C","start","30");
EXECUTE FUNCTION admin("onmode","C","start","30");

The following command stops all of these threads:

EXECUTE FUNCTION admin("onmode","C","stop","30000");

No error is issued when the stop_count value is greater than the number of running threads.
Related reference:

 onmode -C: Control the B-tree scanner
BTSCANNER Configuration Parameter

Copyright© 2020 HCL Technologies Limited

onmode and d arguments: Set data-replication types (SQL administration API)

Use the onmode and d arguments with the admin() or task() function to change the mode of a server participating in high-availability data replication (HDR).

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"onmode"--,--"d"--,---------->
 '-task--'

>--+-"standard"-----------------+--)--;------------------------><
 +-"primary"--,--"ha_alias"---+
 '-"secondary"--,--"ha_alias"-'

Element Description Key Considerations

ha_alias The high-availability alias of the primary or
secondary database server.

ha_alias must correspond to the HA_ALIAS configuration parameter in the ONCONFIG
file of the intended secondary database server.

Usage
Use this function to set the High-Availability Data Replication type as standard, primary, or secondary. You can use the standard argument when the database server is in
quiescent, online, or read-only mode.

The ha_alias argument of the other database server in the data-replication pair and the type of a database server (standard, primary, or secondary) is preserved after
reinitialization of shared memory.

The standard argument drops the connection between database servers in a data replication pair (if one exists) and sets the database server type of the current database
server to standard. This option does not change the mode or type of the other database server in the pair.

The primary and ha_alias arguments set the database server type to primary and attempt to connect with the database server that ha_alias specifies. If the connection is
successful, data replication is turned on. The primary database server goes into online mode, and the secondary database server goes into read-only mode. If the
connection is not successful, the database server comes to online mode, but data replication is not turned on.

The secondary and ha_alias arguments set the database server type to secondary and attempt to connect with the database server that ha_alias specifies. If the
connection is successful, data replication is turned on. The primary database server goes online, and the secondary database server goes into read-only mode. If the
connection is not successful, the database server comes to read-only mode, but data replication is not turned on.

This function is equivalent to the onmode -d command.

Example
The following example sets a server named ids_stores as an HDR primary server:

EXECUTE FUNCTION task("onmode","d","primary","ids_stores");

Related reference:
 onmode -d: Set data-replication types

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 893

https://www.hcltech.com/
https://www.hcltech.com/

onmode and D arguments: Set PDQ priority (SQL administration API)

Use the onmode and D arguments with the admin() or task() function to temporarily reset the PDQ resources that the database server can allocate to any one decision-
support query.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"onmode"-- , -"D"--,--"max_priority"--)--;------------------><

Element Description Key Considerations

max_priority The percentage of the user-requested
PDQ resources actually allocated to
the query.

The value must be an unsigned integer from 0 to 100.

Usage
Use this function to override the limit set by the MAX_PDQPRIORITY configuration parameter while the database server is online. The new values affect only the current
instance of the database server; the values are not recorded in the onconfig file. If you shut down and restart the database server, the values of the parameter reverts to
the values in the onconfig file.

This function is equivalent to the onmode -D command.

Example
The following example sets the percentage of PDQ resources that can be allocated to a query to 50 percent:

EXECUTE FUNCTION task("onmode","D","50");

Related reference:
 onmode -D, -M, -Q, -S: Change decision-support parameters

Copyright© 2020 HCL Technologies Limited

onmode and e arguments: Change usage of the SQL statement cache (SQL
administration API)

Use the onmode and e arguments with the admin() or task() function to temporarily change the mode of the SQL statement cache.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"onmode"--,--"e"--,---------->
 '-task--'

>--+-"enable"-+--)--;--><
 +-"flush"--+
 +-"off"----+
 '-"on"-----'

Usage
Use the enable argument to enable the SQL statement cache if it is disabled. Individual user sessions can use the statement cache only after they perform either of the
following actions:

Set the environment variable STMT_CACHE to 1.
Execute the SQL statement SET STATEMENT CACHE ON.

Use the flush argument to flush the statements that are not in use from the SQL statement cache, which remains enabled. After the cache is flushed, the onstat -g ssc
ref_cnt field shows 0.

Use the off argument to turn off the SQL statement cache, so that no statements are cached.

Use the on argument to cache all statements except those a user turns off by one of the following actions:

Use this command to specify the OFF mode.
Set the environment variable STMT_CACHE to 0.
Execute the SQL statement SET STATEMENT CACHE OFF statement.

894 Part VI: Administering

https://www.hcltech.com/

This function cannot modify the STMT_CACHE configuration parameter setting in the ONCONFIG file, but the last argument overrides that setting (or the default value, if
STMT_CACHE is not set). Any changes to the statement cache behavior that you make with this command are in effect for the current database server session only. When
you restart the database server, it uses the setting of the STMT_CACHE parameter in the ONCONFIG file. If the STMT_CACHE configuration parameter is not defined in the
ONCONFIG file, the server does not use a statement cache.

This function is equivalent to the onmode -e command.

Example
The following example enables the SQL statement cache:

EXECUTE FUNCTION task("onmode","e","enable");

Related reference:
 onmode -e: Change usage of the SQL statement cache

Copyright© 2020 HCL Technologies Limited

onmode and F arguments: Free unused memory segments (SQL administration API)

Use the onmode and F arguments with the admin() or task() function to free unused memory segments.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"onmode"--,--"F"--)--;------><
 '-task--'

Usage
When you execute this function, the memory manager examines each memory pool for unused memory. The memory manager immediately frees unused blocks of
memory that it locates. After the memory manager checks each memory pool, it begins checking memory segments and frees any that the database server no longer
needs.

Running this command causes a significant degradation of performance for any users that are active when you execute the utility. Although the execution time is brief (1 to
2 seconds), degradation for a single-user database server can reach 100 percent. Systems with multiple CPU virtual processors experience proportionately less
degradation.

To confirm that the unused memory was freed, check the message log. If the memory manager frees one or more segments, it displays a message that indicates how
many segments and bytes of memory were freed.

Tip: Run this command from an operating-system scheduling facility regularly and after the database server performs any function that creates more memory segments,
including large index builds, sorts, or backups.
This function is equivalent to the onmode -F command.

Example
The following example frees unused memory blocks:

EXECUTE FUNCTION task("onmode","F");

Related reference:
 onmode -F: Free unused memory segments

Copyright© 2020 HCL Technologies Limited

onmode and h arguments: Update sqlhosts caches (SQL administration API)

Use the onmode and h arguments with the admin() or task() function to Update sqlhosts caches.

Syntax
>>-EXECUTE FUNCTION--+-admin-+--(--"onmode"--, -"h"--+----------+--)--;---><
 +-task--+ +-,"force"-+

Usage (UNIX only)
You can use this function only when the database server is in online mode.

This function is equivalent to the onmode -h command.

Example

Part VI: Administering 895

https://www.hcltech.com/
https://www.hcltech.com/

The following example triggers an unconditional reload of the sqlhosts caches:

EXECUTE FUNCTION task("onmode", "h", "force");

Copyright© 2020 HCL Technologies Limited

onmode and j arguments: Switch the database server to administration mode (SQL
administration API)

Use the onmode and j arguments with the admin() or task() function to change the database server to administration mode.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"onmode"--,--"j"--)--;------><
 '-task--'

Usage
When the server is changed to administration mode, all sessions lose their connection to the database server except for sessions of the following users:

User informix
Users in the DBSA group
Users who are identified in ADMIN_MODE_USERS settings

This function is equivalent to the onmode -j command.

Example
The following example changes the server to administration mode:

EXECUTE FUNCTION task("onmode","j");

Related reference:
 onmode -k, -m, -s, -u, -j: Change database server mode

Copyright© 2020 HCL Technologies Limited

onmode and l arguments: Switch to the next logical log (SQL administration API)

Use the onmode and l arguments with the admin() or task() function to switch the current logical-log file to the next logical-log file.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"onmode"--,--"l"--)--;------><
 '-task--'

Usage
This function is equivalent to the onmode -l command.

For information on switching to the next logical-log file, see the section on managing logical-log files in the IBM® Informix® Administrator's Guide.

Example
The following example moves the logical log out of the root chunk

SELECT task("onmode", "l") FROM sysmaster:syslogfil
 WHERE chunk = 1 AND sysmaster:bitval(flags,"0x02")>0;

Related reference:
 onmode -l: Switch the logical-log file

Copyright© 2020 HCL Technologies Limited

onmode and m arguments: Switch to multi-user mode (SQL administration API)

Use the onmode and m arguments with the admin() or task() function to change the database server to multi-user mode.

896 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"onmode"--,--"m"--)--;------><
 '-task--'

Usage
Use this function to bring the database server online from quiescent mode or from administration mode.

This function is equivalent to the onmode -m command.

Example
The following example changes the server to multi-user mode:

EXECUTE FUNCTION task("onmode","m");

Related reference:
 onmode -k, -m, -s, -u, -j: Change database server mode

Copyright© 2020 HCL Technologies Limited

onmode and M arguments: Temporarily change decision-support memory (SQL
administration API)

Use the onmode and M arguments with the admin() or task() function to temporarily change the size of memory available for parallel queries.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"onmode"--,--"M"--,--"memory_size"--)--;--------------------><

Element Description Key Considerations

memory_size The new size limit (in kilobytes) of the maximum amount of memory available for parallel
queries.

The maximum value for 32-bit platform is 2
gigabytes.
The maximum value for 64-bit platform is 4
gigabytes.

Usage
Use this function to override the limit set by the DS_TOTAL_MEMORY configuration parameter while the database server is online. The new values affect only the current
instance of the database server; the values are not recorded in the ONCONFIG file. If you shut down and restart the database server, the values of the parameter revert to
the values in the ONCONFIG file.

This function is equivalent to the onmode -M command.

Example
The following example sets the size limit for parallel queries to 50 MB:

EXECUTE FUNCTION task("onmode","M","50000");

Related reference:
 onmode -D, -M, -Q, -S: Change decision-support parameters

Copyright© 2020 HCL Technologies Limited

onmode and n arguments: Unlock resident memory (SQL administration API)

Use the onmode and n arguments with the admin() or task() function to end forced residency of the resident portion of shared memory.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"onmode"--,--"n"--)--;------><
 '-task--'

Part VI: Administering 897

https://www.hcltech.com/
https://www.hcltech.com/

Usage
The RESIDENT configuration parameter must be set to 1 in the ONCONFIG file before you can run this function.

This function does not affect the value of the RESIDENT configuration parameter, the forced-residency parameter in the ONCONFIG file.

This function is equivalent to the onmode -n command.

Example
The following example unlocks resident memory:

EXECUTE FUNCTION task("onmode","n");

Related reference:
 onmode -n, -r: Change shared-memory residency

Copyright© 2020 HCL Technologies Limited

onmode and O arguments: Mark a disabled dbspace as down (SQL administration
API)

Use the onmode and O arguments with the admin() or task() function to mark a disabled dbspace as down so that the checkpoint that is being blocked by the disabled
dbspace can continue and any blocked threads are released.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"onmode"--,--"O"--)--;------><
 '-task--'

Usage
This function overrides the WAIT mode of the ONDBSPACEDOWN configuration parameter. Use this command only in the following circumstances:

ONDBSPACEDOWN is set to WAIT.
A disabling I/O error occurs that causes the database server to block all updating threads.
You cannot or do not want to correct the problem that caused the disabling I/O error.
You want the database server to mark the disabled dbspace as down and continue processing.

This function is equivalent to the onmode -O command.

Example
The following example marks disabled dbspaces as down:

EXECUTE FUNCTION task("onmode","O");

Related reference:
 onmode -O: Override ONDBSPACEDOWN WAIT mode

Copyright© 2020 HCL Technologies Limited

onmode and p arguments: Add or remove virtual processors (SQL administration
API)

Use the onmode and p arguments with the admin() or task() function to dynamically add or remove virtual processors for the current database server session. This
function does not update the onconfig file.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"onmode"-- , -"p"--,--------->
 '-task--'

>--+-"number"--,--+-"aio"-----+--------+--)--;-----------------><
 | +-"bts"-----+ |
 | +-"cpu"-----+ |
 | +-"encrypt"-+ |
 | +-"jvp"-----+ |
 | +-"lio"-----+ |
 | +-"po"------+ |
 | +-"shm"-----+ |

898 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

 | +-"soc"-----+ |
 | +-"tli"-----+ |
 | '-"vpclass"-' |
 | (1) |
 '-------"-number"--,--+-"bts"-----+-'
 +-"cpu"-----+
 +-"encrypt"-+
 +-"jvp"-----+
 '-"vpclass"-'

Notes:

1. UNIX only

Element Description Key Considerations

number The number of virtual processors to
add or to remove.

A positive number adds virtual processors. The maximum number of virtual processors you
can add depends on the operating system.
UNIX: A negative number removes virtual processors. The number of virtual processors to
drop cannot exceed the actual number of processors of the specified type.

vpclass The name of a user-defined virtual
processor class.

Windows: The number argument must be set to 1 because you can only create one instance
of a user-defined virtual processor.

Usage
You can use this function only when the database server is in online mode.

The number of CPU VPs should not exceed the number of physical processors on your system, but no error is issued if they do. The database server uses the number of
CPU VPs to allocate resources for parallel database queries (PDQ). If you drop CPU VPs, your queries might run significantly slower. After you change the number of CPU
VPs, the Reinit field in the output from the onstat -g mgm command shows how many queries are waiting for other queries to complete.

See the IBM® Informix® Performance Guide for more information about performance implications of the CPU VP class.

For a description of each virtual processor class, see the IBM Informix Administrator's Guide.

This function is equivalent to the onmode -p command.

Example
The following example adds one CPU virtual processor:

EXECUTE FUNCTION task("onmode","p","1","cpu");

The following example removes one Java™ virtual processor:

EXECUTE FUNCTION task("onmode","p","-1","jvp");

Related reference:
 onmode -p: Add or drop virtual processors

Copyright© 2020 HCL Technologies Limited

onmode and Q arguments: Set maximum number for decision-support queries (SQL
administration API)

Use the onmode and Q arguments with the admin() or task() function to change the maximum number of concurrently executing decision-support queries.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"onmode"--,--"Q"--,--"queries"--)--;------------------------><

Element Description Key Considerations

queries The maximum number of concurrently
executing parallel queries.

The number must be an unsigned integer from 1 to 8,388,608.

Usage
Use this function to override the limit set by the DS_MAX_QUERIES configuration parameter while the database server is online. The new values affect only the current
instance of the database server; the values are not recorded in the ONCONFIG file. If you shut down and restart the database server, the values of the parameter revert to
the values in the ONCONFIG file.

For information on parameters used for controlling PDQ, see the IBM® Informix® Performance Guide.

Part VI: Administering 899

https://www.hcltech.com/

This function is equivalent to the onmode -Q command.

Example
The following example sets the maximum number of concurrently executing parallel queries to 8:

EXECUTE FUNCTION task("onmode","Q","8");

Related reference:
 onmode -D, -M, -Q, -S: Change decision-support parameters

Copyright© 2020 HCL Technologies Limited

onmode and r arguments: Force residency of shared memory (SQL administration
API)

Use the onmode and r arguments with the admin() or task() function to start forced residency of the resident portion of shared memory.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"onmode"--,--"r"--)--;------><
 '-task--'

Usage
The RESIDENT configuration parameter must be set to 1 in the ONCONFIG file before you can run this function.

This function does not affect the value of the RESIDENT configuration parameter, the forced-memory parameter in the ONCONFIG file.

This function is equivalent to the onmode -r command.

Example
The following example starts forced residency of shared memory:

EXECUTE FUNCTION task("onmode","r");

Related reference:
 onmode -n, -r: Change shared-memory residency

Copyright© 2020 HCL Technologies Limited

onmode and S arguments: Set maximum number of decision-support scans (SQL
administration API)

Use the onmode and S arguments with the admin() or task() function to change the maximum number of concurrently executing decision-support scans for the current
session.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"onmode"--,--"S"--,--"scans"--)--;--------------------------><

Element Description Key Considerations

scans The maximum number of concurrently
executing parallel scans.

The number must be an unsigned integer from 10 to 1 048 576.

Usage
Use this function to override the limit set by the DS_MAX_SCANS configuration parameter while the database server is online. The new value affects only the current
instance of the database server; the values are not recorded in the ONCONFIG file. If you shut down and restart the database server, the value of the parameter reverts to
the value in the ONCONFIG file.

For information on parameters used for controlling PDQ, see the IBM® Informix® Performance Guide.

This function is equivalent to the onmode -S command.

900 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Example
The following example sets the maximum number of concurrently executing parallel scans to 2000:

EXECUTE FUNCTION task("onmode","S","2000");

Related reference:
 onmode -D, -M, -Q, -S: Change decision-support parameters

Copyright© 2020 HCL Technologies Limited

onmode and W arguments: Reset statement cache attributes (SQL administration
API)

Use the onmode and W arguments with the admin() or task() function to change whether and when a statement can be inserted into the SQL cache.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"onmode"--,--"W"--,---------->
 '-task--'

>--+-"STMT_CACHE_HITS"--,--"hits"-----+--)--;------------------><
 '-"STMT_CACHE_NOLIMIT"--,--"value"-'

Element Description Key Considerations

hits The number of hits (references) to a statement before it
is fully inserted in the SQL statement cache.

Possible values are:

0 = Insert all qualified statements and their memory structures in the cache.
1 or more = Exclude ad hoc queries from entering the cache.

value Whether statements are inserted in the SQL statement
cache.

Possible values are:

0 = The database server does not insert statements into the cache.
1 = The database server always inserts statements in the cache.

Usage
Use this function to reset the value of the STMT_CACHE_HITS or STMT_CACHE_NOLIMIT configuration parameter while the database server is online. The new value
affects only the current instance of the database server; the value is not recorded in the ONCONFIG file. If you shut down and restart the database server, the value of the
parameter reverts to the value in the ONCONFIG file.

If you set the value of STMT_CACHE_HITS equal to 0, the database server inserts all qualified statements and their memory structures in the cache. If the value is greater
than 0 and the number of times the SQL statement has been executed is less than the value of STMT_CACHE_HITS, the database server inserts key-only entries in the
cache. The database server inserts qualified statements in the cache after the specified number of hits has occurred for the statement. The new value of
STMT_CACHE_HITS displays in the #hits field of the onstat -g ssc output.

If none of the queries are shared, set STMT_CACHE_NOLIMIT to 0 to prevent the database server from allocating a large amount of memory for the statement cache.

This function is equivalent to the onmode -W command.

Example
The following example prevents ad hoc queries from entering the SQL statement cache:

EXECUTE FUNCTION task("onmode","W","STMT_CACHE_HITS","1");

Related reference:
 onmode -W: Change settings for the SQL statement cache

Copyright© 2020 HCL Technologies Limited

onmode and wf arguments: Permanently update a configuration parameter (SQL
administration API)

Use the onmode and wf arguments with the admin() or task() function to dynamically update the value of a configuration parameter in the onconfig file.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->

Part VI: Administering 901

https://www.hcltech.com/
https://www.hcltech.com/

 '-task--'

>--"onmode"--,--"wf"--,--"configuration_parameter_name=new_value"--)--;-><

Element Description Key Considerations

configuration_parameter
_name

The name of a configuration parameter. The configuration parameter must be one that you can update dynamically.
The list of configuration parameters that you can update dynamically is the same as for the
onmode -wf command.

new_value The new value or values for the configuration
parameter.

The value must be valid for the configuration parameter.
The format of the new value must conform exactly to the syntax for that configuration
parameter.

Usage
Use this function to permanently update the value of a configuration parameter. The new value takes effect immediately and persists in the ONCONFIG file after the server
restarts.

This function is equivalent to the onmode -wf command.

Example
The following example sets the value of the DYNAMIC_LOGS configuration parameter to 2 in the onconfig file:

EXECUTE FUNCTION task("onmode","wf","DYNAMIC_LOGS=2");

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Copyright© 2020 HCL Technologies Limited

onmode and wm arguments: Temporarily update a configuration parameter (SQL
administration API)

Use the onmode and wm arguments with the admin() or task() function to dynamically update the value of a configuration parameter in memory.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"onmode"--,--"wm"--,--"configuration_parameter_name=new_value"--)--;-><

Element Description Key Considerations

configuration_parameter
_name

The name of a configuration parameter. The configuration parameter that you specify must be one that you can update dynamically.
The list of configuration parameters that you can update dynamically is the same as for the
onmode -wf command.

new_value The new value or values for the configuration
parameter.

The value must be valid for the configuration parameter.
The format of the new value must conform exactly to the syntax for that configuration
parameter.

Usage
Use this function to temporarily update the value of a configuration parameter that can be dynamically updated. The new value takes effect immediately. The new value is
not written to the ONCONFIG file and is lost when the database server is restarted.

This function is equivalent to the onmode -wm command.

Example
The following example sets the value of the DYNAMIC_LOGS configuration parameter to 2 for the current session:

EXECUTE FUNCTION task("onmode","wm","DYNAMIC_LOGS=2");

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Copyright© 2020 HCL Technologies Limited

902 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

onmode, wm, and AUTO_LRU_TUNING arguments: Change LRU tuning status (SQL
administration API)

Use the onmode, wm, and AUTO_LRU_TUNING arguments with the admin() or task() function to change the LRU tuning status without updating the onconfig file. .

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"onmode"--,--"wm"--,--------->
 '-task--'

>--+-"AUTO_LRU_TUNING=0-+--"--)--;-----------------------------><
 '-"AUTO_LRU_TUNING=1-'

Usage
Use the AUTO_LRU_TUNING =1 argument to enable automatic LRU tuning.

Use the AUTO_LRU_TUNING=0 argument to disable automatic LRU tuning .

This function is equivalent to the onmode -wm AUTO_LRU_TUNING command.

Example
The following example enables automatic LRU tuning:

EXECUTE FUNCTION task("onmode","wm","AUTO_LRU_TUNING=1");

Related reference:
 onmode -wm: Change LRU tuning status

Copyright© 2020 HCL Technologies Limited

onmode and Y arguments: Change query plan measurements for a session (SQL
administration API)

Use the onmode and Y arguments with the admin() or task() function to change the output of query plan measurements for an individual session.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"onmode"--,--"Y"--"session_id"--,---------------------------->

>--+-0-----------------------+--)--;---------------------------><
 '-+-2-+--+--------------+-'
 '-1-' '-,--file_name-'

Element Description Key Considerations

file_name The explain output file name. If the file's absolute path is not included, the example
output file is created in the default example output file
location. If the file already exists, explain output is
appended to it. If a file already exists from the SET
EXPLAIN statement, that file is not used until dynamic
explain is turned off.

session_id Identifies the specific session. None.

-Y Dynamically change the value of the SET EXPLAIN statement. None.

Usage
You can use this function to emulate the SET EXPLAIN statement.

The last argument determines if record query measurements, including the plan of the query optimizer, an estimate of the number of rows returned, and the relative cost
of the query.

Use the 2 argument to enable the database server to send the query plan to the explain output file.

Use the 1 argument to enable the database server to send the query plan and statistics, to the explain output file. This setting is equivalent to the SET EXPLAIN ON
statement for a specific session.

Part VI: Administering 903

https://www.hcltech.com/

Use the 0 argument to disable the output of query measurements to the explain output file for the current session. This setting is equivalent to the SET EXPLAIN OFF
statement.

This function is equivalent to the onmode -Y command.

Example
The following example disables the output of query measurements for user session with an ID of 32:

EXECUTE FUNCTION task("onmode","Y","32","0");

Related reference:
 onmode -Y: Dynamically change SET EXPLAIN

Related information:
 SET EXPLAIN statement

Using the FILE TO option
Default name and location of the explain output file on UNIX
Default name and location of the output file on Windows
Report that shows the query plan chosen by the optimizer
The explain output file
Query statistics section provides performance debugging information

Copyright© 2020 HCL Technologies Limited

onmode and z arguments: Terminate a user session (SQL administration API)

Use the onmode and z arguments with the admin() or task() function to terminate the specified user session.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"onmode"--,--"z"--,--"session_id"--)--;---------------------><

Element Description Key Considerations

session_id The session ID. The value must be an unsigned integer greater than 0, and must be the session identification number of
a currently running session.

Usage
This function is equivalent to the onmode -z command.

Example
The following example terminates the user session with an ID of 14:

EXECUTE FUNCTION task("onmode","z","14");

Related reference:
 onmode -z: Kill a database server session

Copyright© 2020 HCL Technologies Limited

onmode and Z arguments: Terminate a distributed transaction (SQL administration
API)

Use the onmode and Z arguments with the admin() or task() function to terminate the specified distributed transaction. Use this function only if communication between
the participating database servers has been lost. If applications are performing distributed transactions, terminating one of the distributed transactions can leave your
client/server database system in an inconsistent state.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"onmode"--,--"Z"--,--"address"--)--;------------------------><

Element Description Key Considerations

904 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Element Description Key Considerations

address The shared-memory address associated with a
distributed transaction.

This must be the address of an ongoing distributed transaction that has exceeded the amount
of time that the TXTIMEOUT configuration parameter specifies.
The address must conform to the operating-system-specific rules for addressing shared-
memory. This address is available from onstat -x output.

Usage
This function succeeds only if the distributed transaction has exceeded the amount of time that the TXTIMEOUT configuration parameter specifies.

This function is equivalent to the onmode -Z command.

Example
The following example terminates a distributed transaction with an address of 0xa509018:

EXECUTE FUNCTION task("onmode","Z","0xa509018");

Related reference:
 onmode -Z: Kill a distributed transaction

Copyright© 2020 HCL Technologies Limited

onsmsync argument: Synchronize with the storage manager catalog (SQL
administration API)

Use the onsmsync argument with the admin() or task() function to synchronize the sysutils database and emergency boot file with the storage manager catalog.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"onsmsync"------------------->
 '-task--'

>--+---+-->
 '-,--"--+-+-----------------------------+--+------+--+------+--+-----------------+-+--"-'
 | +- -g --number_of_generations-+ '- -s -' '- -O -' +- -f --file_name-+ |
 | +- -t --date_time-------------+ | .---------. | |
 | '- -i --interval--------------' | V | | |
 | '---dbspace-+-----' |
 '- -b ---'

>--)--;--><

Element Purpose Key considerations

no options Synchronizes the sysutils database and
emergency boot file with the storage-
manager catalog

None.

-b Regenerates both the emergency boot file
(ixbar.servernum) and the sysutils
database from each other.

If the ixbar file is empty or does not exist, onsmsync -b recreates the ixbar file and
populates it from the syutils tables.
If the ixbar is not empty and contains object data, onsmsync -b updates the sysutils
database and the ixbar file so that they are in sync.

If the ixbar file has entries and the sysutils database has been rebuilt, but is empty because
it does not contain data, the onsmsync -b option recreates the sysutils data from the ixbar
file.

The -b element is not used with the other onsmsync options. Additionally, it does not
synchronize with the storage manager.

dbspace Specifies the storage space or storage
spaces to expire

If you enter more than one storage space, use a space to separate the names.

-f file_name Specifies the path name of a file that
contains a list of storage spaces to expire

Use this option to avoid entering a long list of storage spaces. The file name can be any valid
UNIX or Windows file name.

-g number_of_generations Retains a certain number of versions of
each level-0 backup

The latest generation of backups are retained and all earlier ones are expired.

-i interval Expires all backups older than some
period of time

Retains backups younger than this interval. Backups older than interval are not expired if
they are needed to restore from other backups after that interval. Use the ANSI or GLS
format for the interval: YYYY-MM or DD HH:MM:SS

-s Skips backups that the storage manager
has expired

Use this option to skip synchronizing objects that are already expired from the storage
manager. The object expiration will be based on other arguments if the -s option is provided.

Part VI: Administering 905

https://www.hcltech.com/

Element Purpose Key considerations

-O Enforces expiration policy strictly If used with the -t, -g, or -i option, expires all levels of a backup, even if some of them are
needed to restore from a backup that occurred after the expiration date. The -O option does
not affect logical-log expiration. See Expire all backups.

-t date_time Expires all backups before a particular
date and time

Retains backups younger than this datetime. Backups older than datetime are not expired if
they are needed to restore from other backups after that datetime. Use the ANSI or
GLS_DATETIME format for datetime.

Usage
This function invokes the onsmsync utility to synchronize the sysutils database and emergency boot file with the storage manager catalog.

Example
The following example invokes the onsmsync utility and specifies that number of backups retained is 1 and all earlier backup versions are expired:

EXECUTE FUNCTION task("onsmsync", "-g 1");

Related information:
 The onsmsync utility

Copyright© 2020 HCL Technologies Limited

onstat argument: Monitor the database server (SQL administration API)

Use the onstat argument with the admin() or task() function to monitor the database server.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"onstat"--,--"--option_name--"--)-- ;-><
 '-task--'

Element Description Key Considerations

option_name The onstat command option. The option must include a hyphen and conform to onstat option
syntax. For onstat options, see The onstat utility.

Usage
Use these commands to display the same information about the database server as running the onstat utility commands.

Example
The following example runs the onstat -g ses command:

EXECUTE FUNCTION task("onstat","-g ses");

Related reference:
 The onstat utility

Copyright© 2020 HCL Technologies Limited

ontape archive argument: Backup the data on your database (SQL administration
API)

Use the ontape archive argument with the admin() or task() function to create a backup of your database data.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"ontape archive-------------->
 '-task--'

 .-file------.
>--+-----------+--+-------------+--"--,--"location"------------->
 +-directory-+ | .-0-. |
 '-tape------' '-level-+-1-+-'
 '-2-'

906 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

>--+---------------+--)--;-------------------------------------><
 '-,"block_size"-'

Element Description Key Considerations

location The path to the file or directory or tape device.

block_size The block size, in KB, of the device to which ontape writes during a storage-space backup. The default block size is 512 KB.

Usage
This function invokes the ontape utility to create a backup.

There are three devices that you can choose from for the location of the backup:

file
An existing file. This is the default value.

directory or dir
An existing directory path specified by location.

tape
An existing tape device.

Examples
This function creates a level 0 archive in the directory path /local/informix/backup/:

EXECUTE FUNCTION task("ontape archive","/local/informix/backup/");

This function creates a level 0 archive in the directory path /local/informix/backup/ with a block size of 256 KB:

EXECUTE FUNCTION task("ontape archive directory level 0",
"/local/informix/backup/","256");

Related information:
 Back up with ontape

Copyright© 2020 HCL Technologies Limited

print error argument: Print an error message (SQL administration API)

Use the print error argument with the admin() or task() function to print the message associated with the specified error number.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"print error"--,--"error_number"--)--;----------------------><

Element Description Key Considerations

error_number The error number, without a minus sign. The error_number must be an existing error number.

Usage
This function is equivalent to the finderr utility.

Example
The following example prints the message text for the error number -105:

EXECUTE FUNCTION task("print error","105");
(expression) ISAM error: bad isam file format.

Copyright© 2020 HCL Technologies Limited

print file info argument: Display directory or file information (SQL administration
API)

Use the print file info argument with the admin() or task() function to display information about a directory or a file

Part VI: Administering 907

https://www.hcltech.com/
https://www.hcltech.com/

Syntax

>>-EXECUTE FUNCTION--+-admin-+---------------------------------->
 '-task--'

>--(--"print file info"--,--"--file_path--"--)--;--------------><

Element Purpose Key considerations

file_path The path to the directory or file

Example: File information
The following example shows the argument you would use to print information about the x file that is in the /tmp directory:

execute function task("print file info","/tmp/x"):

The following information is returned:

(expression) File name = /tmp/x
 Is File = 1
 Is Directory = 0
 Is Raw Device = 0
 Is Block Device = 0
 Is Pipe = 0
 File Size = 554
 Last Access Time = 11/29/2010 21:55:02
 Last Modified Time = 11/29/2010 21:51:45
 Status Change Time = 11/29/2010 21:51:45
 User Id = 200
 Group id = 102
 File Flags = 33206

Example: Directory information
The following example shows the argument that you would use to print information about the /tmp directory:

execute function task("print file info","/tmp"):

The following information is returned:

(expression) File name = /tmp
 Is File = 0
 Is Directory = 1
 Is Raw Device = 0
 Is Block Device = 0
 Is Pipe = 0
 File Size = 32768
 Last Access Time = 12/06/2010 11:53:00
 Last Modified Time = 12/06/2010 12:05:53
 Status Change Time = 12/06/2010 12:05:53
 User Id = 0
 Group id = 0
 File Flags = 17407

Copyright© 2020 HCL Technologies Limited

print partition argument: Print partition information (SQL administration API)

Use the print partition argument with the admin() or task() function to print the headers of a specified partition.

Syntax

>>-EXECUTE FUNCTION--+-admin-+---------------------------------->
 '-task--'

>--(--+-"print partition"------+--,--"partition_number"--)--;--><
 '-"print partition full"-'

Element Description Key Considerations

partition_number The partition number. Find the partition numbers in the partnum column of the systables system catalog table.

Usage
Use this function to print a tblspace report for the specified partition.

Run this function with the full argument to include index-specific information and page-allocation information by page type for dbspaces.

908 Part VI: Administering

https://www.hcltech.com/

This function with the print partition argument is equivalent to the oncheck -pt command.

This function with the print partition full argument is equivalent to the oncheck -pT command.

Example
The following example prints the headers for a partition with a number of 1048611:

EXECUTE FUNCTION task("print partition","1048611");

Related reference:
 oncheck -pt and -pT: Display tblspaces for a Table or Fragment

Copyright© 2020 HCL Technologies Limited

rename space argument: Rename a storage space (SQL administration API)

Use the rename space argument with the admin() or task() function to rename a dbspace, blobspace, sbspace, or extspace.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"rename space"--,--"space_name"--,--"new_name"--)--;--------><

Element Description Key Considerations

new_name The new name of the space.

space_name The name of the dbspace, blobspace, sbspace, or extspace that you want to rename.

Usage
This function is equivalent to the onspaces -ren command.

Example
The following example renames a dbspace named dbsp1 to dbsp2:

EXECUTE FUNCTION task("rename space","dbsp1","dbsp2");

Related reference:
 onspaces -ren: Rename a dbspace, blobspace, sbspace, or extspace

Copyright© 2020 HCL Technologies Limited

reset config argument: Revert configuration parameter value (SQL administration
API)

Use the reset config argument with the admin() or task() function to revert the value of a dynamically updatable configuration parameter to its value in the onconfig file.
Dynamically updatable configuration parameters are those parameters that you can change for a session with an onmode or SQL administration API command.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"--reset config--"----------->
 '-task--'

>--,--"configuration_parameter_name"--)--;---------------------><

Table 1. reset config command elements

Element Description Key Considerations

configuration_parameter_name The name of the configuration parameter with the value that you want to revert.

Usage
The reset config argument reverts the value of the configuration parameter to the last saved value in the onconfig file, even if the value was changed after the database
server started.

Part VI: Administering 909

https://www.hcltech.com/
https://www.hcltech.com/

Example
The following command reverts the value of the DYNAMIC_LOGS configuration parameter to the value in the onconfig file.

EXECUTE FUNCTION task("reset config","DYNAMIC_LOGS");

Related tasks:
 Modifying the onconfig file

Related reference:
 reset config all argument: Revert all dynamically updatable configuration parameter values (SQL administration API)

Copyright© 2020 HCL Technologies Limited

reset config all argument: Revert all dynamically updatable configuration parameter
values (SQL administration API)

Use the reset config all argument with the admin() or task() function to revert the values of all dynamically updatable configuration parameter to their values in the
onconfig file. Dynamically updatable configuration parameters are those parameters that you can change for a session with an onmode or SQL administration API
command.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"--reset config all--"------->
 '-task--'

>--)--;--><

Usage
The reset config all argument reverts the values of all dynamically updatable configuration parameters to the last saved values in the onconfig file, even if the values were
changed after the database server started.

Example
The following command reverts the value of all dynamically tunable configuration parameters.

EXECUTE FUNCTION task("reset config all");

Related tasks:
 Modifying the onconfig file

Related reference:
 reset config argument: Revert configuration parameter value (SQL administration API)

Copyright© 2020 HCL Technologies Limited

reset sysadmin argument: Move the sysadmin database (SQL administration API)

Use the reset sysadmin argument with the admin() or task() function to move the sysadmin database to the specified dbspace. Moving the sysadmin database resets the
database back to the original state when it was first created; all data, command history, and results tables are lost. Only built-in tasks, sensors, and thresholds remain in
the sysadmin tables.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"reset sysadmin"--+--------------+--)--;--------------------><
 '-,--"dbspace"-'

Element Description Key Considerations

dbspace The name of the dbspace.

Usage
This function has no equivalent utility command.

If you specify no dbspace as the last argument, this command drops the sysadmin database, and then re-creates it in the rootdbs. All ph_* table and command_history
rows are deleted, and all results tables are dropped.

910 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Examples
The following example drops the existing sysadmin database and creates a new sysadmin database in a dbspace named dbsp1:

EXECUTE FUNCTION task("reset sysadmin","dbs1");

The next example drops the sysadmin database, and then re-creates it in the rootdbs.

EXECUTE FUNCTION admin("reset sysadmin");

Except for the built-in tasks, sensors, and thresholds, all data rows are deleted from the ph_ tables and all results tables are dropped from sysadmin by this function call.
The command_history table has no rows after the function completes execution.

Related concepts:
 The sysadmin Database

Copyright© 2020 HCL Technologies Limited

restart listen argument: Stop and start a listen thread dynamically (SQL
administration API)

Use the restart listen argument with the admin() or task() function to stop and then start an existing listen thread for a SOCTCP or TLITCP network protocol without
interrupting existing connections.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"restart listen"--,--"server_name"--)--;--------------------><

Element Description Key Considerations

server_name The name of the database server for which you want to stop
and restart a listen thread.

Usage
The definition of the listen thread must exist in the sqlhosts file.

If necessary, before you restart a listen thread, revise the sqlhosts entry. For example, if a running listen thread is bound to port 7777, you can change the port in the
sqlhosts file, and then restart the thread.

This function is equivalent to the onmode -P restart server_name command.

This function does not update the sqlhosts file.

Example
The following command stops and then starts a listen thread for a server named ids_serv1:

EXECUTE FUNCTION task("restart listen","ids_serv1");

Related reference:
 onmode -P: Start, stop, or restart a listen thread dynamically

start listen argument: Start a listen thread dynamically (SQL administration API)
stop listen argument: Stop a listen thread dynamically (SQL administration API)

Copyright© 2020 HCL Technologies Limited

revoke admin argument: Revoke privileges to run SQL administration API commands

Use the revoke admin argument with the admin() or task() function to revoke privileges to run SQL administration API commands.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"--revoke admin--"----------->
 '-task--'

>--,--"--user_name--"--+--------------------------+--)--;------><
 '-,--"--privilege_group--"-'

Part VI: Administering 911

https://www.hcltech.com/
https://www.hcltech.com/

Element Description Key ConsiderationsElement Description Key Considerations

user_name The name of the user from which to revoke privileges.

privilege_group The name of the privilege group. See SQL administration API portal: Arguments by privilege
groups for a list of privilege groups.

Usage
Only user informix, or a user with ADMIN or GRANT permissions for SQL administration API commands, can use the revoke admin argument.

Use the revoke admin argument to revoke the privilege to run SQL administration API commands from individual users. You can revoke the privilege for a specific privilege
group or revoke all privileges.

Examples
The following command revokes the privilege for running backup and restore SQL administration commands from the user Bob:

EXECUTE FUNCTION task("revoke admin", "Bob", "BAR");

The following command revokes all privileges for running any SQL administration commands from the user Bob:

EXECUTE FUNCTION task("revoke admin", "Bob");

Copyright© 2020 HCL Technologies Limited

scheduler argument: Stop or start the scheduler (SQL administration API)

Use the scheduler argument with the admin() or task() function to start or stop the scheduler.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--+-"scheduler shutdown"-+----->
 '-task--' '-"scheduler start"----'

>--)--;--><

Usage
Use the scheduler shutdown argument to stop the scheduler and deallocate its resources.

Use the scheduler start argument to start the scheduler.

This function has no equivalent utility command.

You can view the status of the scheduler threads with the onstat -g dbc command.

Example
The following example starts the scheduler after it has been shut down:

EXECUTE FUNCTION task("scheduler start");

Related reference:
 onstat -g dbc command: Print dbScheduler and dbWorker thread statistics

Copyright© 2020 HCL Technologies Limited

scheduler lmm enable argument: Specify automatic low memory management
settings (SQL administration API)

Use the scheduler lmm enable argument with the admin() or task() function to start automatic low memory management and to update low memory threshold settings.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"scheduler lmm enable"--,---->
 '-task--'

>--+---+-------->
 '-LMM START THRESHOLD--,--"start_threshold_size"--,-'

>--+---+---------->

912 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

 '-LMM STOP THRESHOLD--,--"stop_threshold_size"--,-'

>--+---+--)--;-----><
 '-LMM IDLE TIME--,--"minimum_amount_of_time"--,-'

Element Description Key Considerations

start_threshold_size The amount of free memory that you want the
database server to maintain. If the amount of
memory falls below the start_threshold_size, the
server automatically frees memory and terminates
applications.

The value can be expressed as either a percentage
of the value of the SHMTOTAL configuration
parameter or as a specific amount. If the value is
less than 50, it is considered a percentage. The
resulting value of the input parameter must be
more than 5 MB and less than 95 MB.
The default value is 5 MB.

There must be a minimum 5 MB difference between
the LMM START THRESHOLD and LMM STOP
THRESHOLD values

stop_threshold_size The amount of free memory that you want the
database server to have, before the server stops
automatically freeing memory and terminating
applications.

The value can be expressed as either a percentage
of the value of the SHMTOTAL configuration
parameter or as a specific amount. If the value is
less than 50, it is considered a percentage. The
resulting value of the input parameter must be
more than 10 MB and less than 100 MB. The value
must also be at least 5 MB more than the LMM
START THRESHOLD.
The default value is 10 MB.

minimum_amount_of_time The amount of time in seconds that defines a
session as idle

The value must be between 1 and 86400.
The default value is 300 seconds.

Usage
You use the scheduler lmm disable argument with the admin() or task() function to stop the current and subsequent low memory management processes in a primary or
standard database server. When low memory management is triggered, the database server performs these tasks, in order:

1. The database server terminates sessions starting one at a time from the session with largest amount of idle time and continuing as necessary to the session with
smallest amount of idle time that exceeds the amount specified in the LMM IDLE TIME setting. The server stops terminating sessions when the LMM STOP
THRESHOLD is reached.

2. The database server terminates sessions starting with the session using the most memory and continuing as necessary to the session using the smallest amount of
memory until the LMM STOP THRESHOLD is reached.

3. The database server performs memory reconfiguration by setting the VP_MEMORY_CACHE configuration parameter to 0 and running the onmode -F command to
free unused shared memory segments.

When the low memory management operations are complete, the low memory manager returns to monitoring mode and restores the memory configuration of the
database server by setting the VP_MEMORY_CACHE configuration parameter back to its original value.

The database server stores automatic low memory management settings in the ph_threshold table.

You can view low memory management settings and recent activity with the onstat -g lmm command.

Attention: If you enable automatic low memory management and configure the database server to use a percentage of the value specified in the SHMTOTAL configuration
parameter for the start and stop thresholds, use caution when changing the value of the SHMTOTAL configuration parameter. Changing the value of the SHMTOTAL
configuration parameter value can cause the configuration of automatic low memory management to become invalid, forcing Informix® to use the default settings.

Example of setting low memory management threshold settings
The following example specifies that when the database server has 10 MB or less of free memory, the server will start automatic low memory management to stop
applications and to free memory. The example also specifies that a session is considered idle if it has not run for 300 seconds, and the example specifies that the server
will stop automatic low memory management when the server has 20 MB or more of free memory.

EXECUTE FUNCTION task("scheduler lmm enable",
 "LMM START THRESHOLD", "10MB",
 "LMM STOP THRESHOLD", "20MB",
 "LMM IDLE TIME", "300");

Example of the SHMTOTAL configuration parameter impacting low memory management
threshold settings

Suppose you set the SHMTOTAL configuration parameter to 1000000 (1000 MB or 1 GB), the LMM START THRESHOLD to 2, and the LMM STOP THRESHOLD to 3. Because
any value that is less than 50 is a percentage of the value of SHMTOTAL, the actual LMM START THRESHOLD is 20000 (20 MB) and the actual LMM STOP THRESHOLD is
30000 (30 MB).

The database server begins managing low memory when the remaining free memory is 20 MB or less and stop managing memory when the amount of free memory is 30
MB or greater.

Suppose you decide to change the value of the SHMTOTAL configuration parameter because you know now that you don't need as much memory and you want memory to
be available to the operating system. You set the value of SHMTOTAL to 250000 (250 MB). This changes the actual LMM START THRESHOLD to 5000 (5 MB) and the LMM
STOP THRESHOLD to 7500 (7.5 MB). The LMM STOP THRESHOLD is now invalid because there must be a minimum 5 MB difference between the LMM START THRESHOLD
and LMM STOP THRESHOLD values. The LMM STOP THRESHOLD value must also be at least 10 MB.

Part VI: Administering 913

You might have decided that a 10 MB difference is the right amount for your system. But at 5 MB, the database server could spend too much time spent on low memory
management processes and this could cause performance problems.

Related reference:
 scheduler lmm disable argument: Stop automatic low memory management (SQL administration API)

onstat -g lmm command: Print low memory management information
LOW_MEMORY_MGR configuration parameter
SHMTOTAL configuration parameter
VP_MEMORY_CACHE_KB configuration parameter
Related information:

 Configure the server response when memory is critically low

Copyright© 2020 HCL Technologies Limited

scheduler lmm disable argument: Stop automatic low memory management (SQL
administration API)

Use the scheduler lmm disable argument with the admin() or task() function to stop the current and subsequent invocations of automatic low memory management.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--"scheduler lmm disable"--,--->
 '-task--'

>--)--;--><

Usage
If automatic low memory management is enabled, you can disable it by specifying:

EXECUTE FUNCTION task("scheduler lmm disable");

You use the scheduler lmm enable argument with the admin() or task() function to start automatic low memory management and update threshold settings.

You can view information about automatic low memory management settings and recent activity with the onstat -g lmm command.

Related reference:
 scheduler lmm enable argument: Specify automatic low memory management settings (SQL administration API)

onstat -g lmm command: Print low memory management information
LOW_MEMORY_MGR configuration parameter

Copyright© 2020 HCL Technologies Limited

set chunk argument: Change the status of a chunk (SQL administration API)

Use the set chunk argument with the admin() or task() function to change the status of a blobspace, dbspace, or sbspace to online or offline.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--+-"set chunk offline"-+------>
 '-task--' '-"set chunk online"--'

>--,--"space_name"--,--"path_name"--,--"offset"--)--;----------><

Element Description Key Considerations

space_name The name of the blobspace, dbspace, or sbspace.

path_name The disk partition or unbuffered device of the chunk.

offset The offset, in kilobytes, into the disk partition or unbuffered device to reach the chunk. See admin() and task() Argument Size Specifications.

Usage
The chunk must be in a mirrored pair, or a non-primary chunk within a noncritical dbspace.

Use the set chunk offline argument to change the status of the chunk to offline.

Use the set chunk online argument to change the status of the chunk to online.

This function is equivalent to the onspaces -s command.

914 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Example
The following example changes the status of a chunk to online:

EXECUTE FUNCTION task("set chunk online","dbs1","/dev/raw_dev1","0");
 Database selected.

(expression) Chunk status successfully changed.
 Chunk number 2 "/dev/raw_dev1" -- Online

1 row(s) retrieved.

Related reference:
 onspaces -s: Change status of a mirrored chunk

Copyright© 2020 HCL Technologies Limited

set dataskip argument: Start or stop skipping a dbspace (SQL administration API)

Use the set dataskip argument with the admin() or task() function to specify whether the database server skips a dbspace that is unavailable during the processing of a
transaction.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(--+-"set dataskip on"--+------->
 '-task--' '-"set dataskip off"-'

>--,--"dbspace"--)--;--><

Element Description Key Considerations

dbspace The name of the dbspace to begin or to stop skipping.

Usage
Run this function to update the value of the DATASKIP configuration parameter, which specifies whether the database server skips a dbspace that is unavailable (for
example, due to a media failure) in the course of processing a transaction.

Use the set dataskip on argument to begin skipping the specified dbspace when it is down.

Use the set dataskip off argument to stop skipping the specified dbspace.

This function is equivalent to the onspaces -f command.

Example
The following example skips the dbspace named dbsp1 if it is down:

EXECUTE FUNCTION task("set dataskip on","dbsp1");

Related reference:
 onspaces -f: Specify DATASKIP parameter

DATASKIP Configuration Parameter

Copyright© 2020 HCL Technologies Limited

set index compression argument: Change index page compression (SQL
administration API)

Use the set index compression argument with the admin() or task() function to modify the level at which two partially used index pages are merged.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

 .-"med"-----.
>--"set index compression"--,--"partition_number"--,--+-----------+--)--;-><
 +-"default"-+
 +-"high"----+
 '-"low"-----'

Part VI: Administering 915

https://www.hcltech.com/
https://www.hcltech.com/

Element Description Key ConsiderationsElement Description Key Considerations

partition_number The partition number. Find the partition numbers in the partnum column of the systables system catalog table.

Usage
Use this function to adjust index page compression. The pages are merged if the data on those pages totals a set level. To optimize space and transaction processing, you
can lower the compression level if your indexes grow quickly. You can increase the level if your indexes have few delete and insert operations or if batch updates are
performed.

Use the low argument if you expect an index to grow quickly with frequent splits.

Use the med or default argument if an index has moderate growth or changes.

Use the high argument if an index is 90 percent or more read-only or does not have many changes.

This function is equivalent to the onmode -C command and the compression option of the BTSCANNER configuration parameter.

Example
The following example sets index compression for a partition to high:

EXECUTE FUNCTION task("set index compression","1048611","high");

Related reference:
 onmode -C: Control the B-tree scanner

Copyright© 2020 HCL Technologies Limited

set onconfig memory argument: Temporarily change a configuration parameter (SQL
administration API)

Use the set onconfig memory argument with the admin() or task() function to dynamically update the value of a configuration parameter in memory.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"set onconfig memory"--,--"configuration_parameter_name"--,--"new_value"--)--;-><

Element Description Key Considerations

configuration_parameter
_name

The name of a configuration parameter. The configuration parameter must be one that you can update dynamically.
The list of configuration parameters that you can update dynamically is the same as for the
onmode -wf command.

new_value The new value or values for the configuration
parameter.

The new value or values must be valid for the configuration parameter.
The format of the new value must conform exactly to the syntax for that configuration
parameter.

Usage
Use this function to temporarily update the value of a configuration parameter that can be dynamically updated. The new value takes affect immediately. The new value is
not written to the onconfig file and is lost when the database server is restarted.

This function is equivalent to the onmode -wm command.

Example
The following example sets the value of the DYNAMIC_LOGS configuration parameter to 2 for the current session:

EXECUTE FUNCTION task("set onconfig memory","DYNAMIC_LOGS","2");

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Copyright© 2020 HCL Technologies Limited

set onconfig permanent argument: Permanently change a configuration parameter
(SQL administration API)

916 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Use the set onconfig permanent argument with the admin() or task() function to dynamically update the value of a configuration parameter in the onconfig file.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"set onconfig permanent"--,--"configuration_parameter_name"--,--"new_value"--)--;-><

Element Description Key Considerations

configuration_parameter
_name

The name of a configuration parameter. The configuration parameter must be one that you can update dynamically.
The list of configuration parameters that you can update dynamically is the same as for the
onmode -wf command.

new_value The new value or values for the configuration
parameter.

The new value or values must be valid for the configuration parameter.
The format of the new value must conform exactly to the syntax for that configuration
parameter.

Usage
Use this function to permanently update the value of a configuration parameter. The new value takes affect immediately and persists in the onconfig file after the server
restarts.

This function is equivalent to the onmode -wf command.

Example
The following example sets the value of the DYNAMIC_LOGS configuration parameter to 2 in the onconfig file:

EXECUTE FUNCTION task("set onconfig permanent","DYNAMIC_LOGS","2");

Related reference:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Copyright© 2020 HCL Technologies Limited

set sbspace accesstime argument: Control access time tracking (SQL administration
API)

Use the set sbspace accesstime argument with the admin() or task() function to start or stop tracking the time of access for all smart large objects stored in the sbspace.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--+-"set sbspace accesstime off"-+--,--"sbspace"--)--;--------><
 '-"set sbspace accesstime on"--'

Element Description Key Considerations

sbspace The name of the sbspace.

Usage
Use the set sbspace accesstime off argument to turn off tracking of access times.

Use the set sbspace accesstime on argument to turn on tracking of access times for all smart large objects stored in the sbspace.

This function is equivalent to the onspaces -ch command.

Example
The following example turns off tracking of access times for the sbspace named sbsp1:

EXECUTE FUNCTION task("set sbspace accesstime off","sbsp1");

Related reference:
 onspaces -ch: Change sbspace default specifications

create sbspace with accesstime argument: Create an sbspace that tracks access time (SQL administration API)

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 917

https://www.hcltech.com/
https://www.hcltech.com/

set sbspace avg_lo_size argument: Set the average size of smart large objects (SQL
administration API)

Use the set sbspace avg_lo_size argument with the admin() or task() function to specify an expected average size of the smart large objects in the specified sbspace so
that the database server can calculate the size of the metadata area.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"set sbspace avg_lo_size"--,--"sbspace"--,--"average_size"--->

>--)--;--><

Element Description Key Considerations

sbspace The name of the sbspace.

average_size The average size, in kilobytes, of the smart large object stored in the sbspace. Windows: 4 to 2**31
UNIX: 2 to 2**31

Usage
This function is equivalent to the onspaces -ch command.

Example
The following example sets the expected average size of smart large objects in the sbspace named sbsp1 to 8 KB:

EXECUTE FUNCTION task("set sbspace avg_lo_size","sbsp1","8");

Related reference:
 onspaces -ch: Change sbspace default specifications

Copyright© 2020 HCL Technologies Limited

set sbspace logging argument: Change the logging of an sbspace (SQL administration
API)

Use the set sbspace logging argument with the admin() or task() function to specify whether the database server logs changes to the user data area of the sbspace.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--+-"set sbspace logging on"--+--,--"sbspace"--)--;-----------><
 '-"set sbspace logging off"-'

Element Description Key Considerations

sbspace The name of the sbspace.

Usage
Use the set sbspace logging on argument to log changes to the user data area of the sbspace.

Use the set sbspace logging off argument to not log changes to the user data area of the sbspace.

This function is equivalent to the onspaces -ch command.

Example
The following example starts sbspace logging for an sbspace named sbsp1:

EXECUTE FUNCTION task("set sbspace logging on","sbsp1");

Related reference:
onspaces -ch: Change sbspace default specifications

918 Part VI: Administering

https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

set sql tracing argument: Set global SQL tracing (SQL administration API)

Use the set sql tracing argument with the admin() or task() function to set global SQL tracing.

Syntax

>>-EXECUTE FUNCTION--+-admin-+---------------------------------->
 '-task--'

>--(--+-"set sql tracing info"---+-->
 +-"set sql tracing off"--+
 +-"set sql tracing on"--,--"number_traces"--+--+-+
 | '-,--"trace_size"--+---------------------------+-' |
 | '-,--"level"--+-----------+-' |
 | '-,--"mode"-' |
 +-"set sql tracing resume"---+
 '-"set sql tracing suspend"--'

>--)--;--><

Element Description Key
Considerations

level The tracing level. The default is low. Possible values
are:

low
med
high

mode Whether all or selected users are traced. Possible modes
are:

global
user

number_traces The number of SQL statements to trace. The default value is 1000.

trace_size The number of KB for the size of the trace buffer. If this buffer size is exceeded, the database server discards saved data. The
default size is 2 KB.

Usage
Use this function to reset the value of the SQLTRACE configuration parameter.

Use the set sql tracing info argument to display the state of global SQL tracing.

Use the set sql tracing off argument to turn off global SQL tracing.

Use the set sql tracing on argument to turn on global SQL tracing. Optionally specify the tracing level and mode or change the size of the trace buffer.

Use the low argument to capture statement statistics, statement text, and statement iterators.
Use the med argument to capture all of the information included in low-level tracing, plus table names, the database name, and stored procedure stacks.
Use the high argument to capture all of the information included in medium-level tracing, plus host variables.
Use the global argument to enable tracing for all users.
Use the user argument to enable tracing for those users who have tracing enabled by the set sql tracing user argument.

Use the set sql tracing resume argument to restart SQL tracing when it is suspended.

Use the set sql tracing suspend argument to pause SQL tracing without deallocating any resources.

Example
The following example starts a high level of global tracing for 1500 SQL statements into a 4 KB trace buffer:

EXECUTE FUNCTION task("set sql tracing on","1500","4","high","global");

The following example pauses SQL tracing:

EXECUTE FUNCTION task("set sql tracing suspend");

Related reference:
 SQLTRACE configuration parameter

onstat -g spf: Print prepared statement profiles

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 919

https://www.hcltech.com/
https://www.hcltech.com/

set sql tracing database argument: Change database tracing (SQL administration
API)

Use the set sql tracing database argument with the admin() or task() function to start or stop tracing for a database, or list which databases are being traced.

Syntax

>>-EXECUTE FUNCTION--+-admin-+---------------------------------->
 '-task--'

 .------------------------.
 V |
>--(--+-"set sql tracing database add"----+--------------------+-+-+-->
 | '-,--"database_name"-' |
 +-"set sql tracing database clear"---------------------------+
 +-"set sql tracing database list"----------------------------+
 '-"set sql tracing database remove"--,--"database_name"------'

>--)--;--><

Element Description Key Considerations

database_name The name of the database. Specify one database name.

Usage
Use the set sql tracing database add argument to specify tracing for one or more databases, rather than for all databases. The default is all databases. Specify up to six
arguments in a single admin() or task() function. The maximum number of database names that can be set is 16.

Use the set sql tracing database clear argument to clear all databases from the list of databases being traced. Returns tracing back to the default of all databases.

Use the set sql tracing database list argument to list the databases that are being traced.

Use the set sql tracing database remove argument to remove a single database from the list of databases being traced.

When you use the set sql tracing database argument, you can specify only the name of one database. While you can have a maximum of 16 database names, you must
specify each additional database name in separate function calls. Each time you call the function, the function adds another database to the list, until the list contains 16
databases.

Example
The following example sets SQL tracing for three databases with the names db1, db2 and db3:

EXECUTE FUNCTION task("set sql tracing database add","db1");
EXECUTE FUNCTION task("set sql tracing database add","db2");
EXECUTE FUNCTION task("set sql tracing database add","db3");

Copyright© 2020 HCL Technologies Limited

set sql tracing session argument: Control tracing for a session (SQL administration
API)

Use the set sql tracing session argument with the admin() or task() function to change SQL tracing for the current session.

Syntax

>>-EXECUTE FUNCTION--+-admin-+---------------------------------->
 '-task--'

 .-,"current_session_id"-.
>--(--"set sql tracing session"--,--+-"clear"-+--+-----------------------+-->
 +-"off"---+ '-,--"session_id"-------'
 '-"on"----'

>--)--;--><

Element Description Key Considerations

current_session_id The ID of the current session. This is the default session ID.

session_id The ID of the session to which this command applies.

920 Part VI: Administering

https://www.hcltech.com/

Usage
Use the clear argument to clear any global tracing overrides. The session will conform to the global tracing policy.

Use the off argument to turn off tracing for the session, even if the global tracing policy is set to enable tracing.

Use the on argument to turn on tracing for the session, even if the global tracing policy is set to disable tracing.

Example
The following example stops tracing for the current session:

EXECUTE FUNCTION task("set sql tracing session","off");

Copyright© 2020 HCL Technologies Limited

set sql tracing user argument: Control tracing for users (SQL administration API)

Use the set sql tracing user argument with the admin() or task() function to change SQL tracing for users.

Syntax

>>-EXECUTE FUNCTION--+-admin-+---------------------------------->
 '-task--'

>--(--+-"set sql tracing user add"--,--"user_name"----+--)--;--><
 +-"set sql tracing user clear"------------------+
 +-"set sql tracing user list"-------------------+
 '-"set sql tracing user remove"--,--"user_name"-'

Element Description Key Considerations

user_name The name of the user.

Usage
Use the set sql tracing user add argument to specify tracing for a specific user.

Use the set sql tracing user clear argument to remove all users from the tracing list.

Use the set sql tracing user list argument to list the users that are being traced.

Use the set sql tracing user remove argument to remove a single user from the list of users being traced.

Example
The following example stops tracing SQL statements for the user named fred:

EXECUTE FUNCTION task("set sql tracing user remove","fred");

Copyright© 2020 HCL Technologies Limited

set sql user tracing argument: Set global SQL tracing for a user session (SQL
administration API)

Use the set sql user tracing argument with the admin() or task() function to set the mode of global SQL tracing for a specified user session.

Syntax

>>-EXECUTE FUNCTION--+-admin-+---------------------------------->
 '-task--'

>--(--+-"set sql user tracing clear"-+--,--"session_id"--)--;--><
 +-"set sql user tracing off"---+
 '-"set sql user tracing on"----'

Element Description Key Considerations

session_id The ID for the session.

Part VI: Administering 921

https://www.hcltech.com/
https://www.hcltech.com/

Usage
Use the set sql user tracing clear to clear user tracing flags for the specified user session so that it adheres to the global tracing policy.

Use the set sql user tracing off to disable SQL tracing for a user session even if the global mode is ON.

Use the set sql user tracing on to enable user SQL tracing for a user session. Even if the global tracing mode is OFF, SQL statements for this user session are traced.

Example
The following example starts tracing for the session with the ID of 18:

EXECUTE FUNCTION task("set sql user tracing on","18");

Copyright© 2020 HCL Technologies Limited

start json listener argument: Start the MongoDB API wire listener (deprecated)

Use the start json listener argument with the admin() or task() function to start the MongoDB API wire listener.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"start json listener"--,"--+---+--"-->
 '-,--"property_file"--+-------------------------+-'
 '-,--"listener_arguments"-'

>--)--;--><

Element Description Key Considerations

property_file The name of the wire listener configuration file to use
instead of the default.

The property_file is optional. The default wire listener
configuration file is in
$INFORMIXDIR/etc/jsonListener.properties.

listener_arguments The command line argument to pass to the wire listener.

Usage
The start json listener argument starts the MongoDB API wire listener.

Example
In this example, the MongoDB API wire listener is started by using the mycustom.properties file instead of the default jsonListener.properties file:

EXECUTE FUNCTION task("start json listener", "mycustom.properties");

In this example, the MongoDB API wire listener is started by using mycustom.properties file instead of the default jsonListener.properties, the port is specified as 27018,
and the logging level is set as debug:

EXECUTE FUNCTION task("start json listener", "mycustom.properties",
 "-port 27018 -loglevel debug");

Related information:
 Starting the wire listener

Wire listener command line options

Copyright© 2020 HCL Technologies Limited

start listen argument: Start a listen thread dynamically (SQL administration API)

Use the start listen argument with the admin() or task() function to start an existing listen thread for a SOCTCP or TLITCP network protocol without interrupting existing
connections.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"start listen"--,--"server_name"--)--;----------------------><

922 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Element Description Key Considerations

server_name The name of the database server for which you want to start
a listen thread.

Usage
The definition of the listen thread must exist in the sqlhosts file for the server. If the definition of the listen thread does not exist in the sqlhosts file, you must add it before
you can start the listen thread dynamically. For information on adding listen threads, see the IBM® Informix® Administrator's Guide.

This function does not update the sqlhosts file.

This function is equivalent to the onmode -P start server_name command.

Example
The following command starts a new listen thread for a server named ids_serv2:

EXECUTE FUNCTION task("start listen","ids_serv2");

Related reference:
 onmode -P: Start, stop, or restart a listen thread dynamically

stop listen argument: Stop a listen thread dynamically (SQL administration API)
restart listen argument: Stop and start a listen thread dynamically (SQL administration API)

Copyright© 2020 HCL Technologies Limited

start mirroring argument: Starts storage space mirroring (SQL administration API)

Use the start mirroring argument with the admin() or task() function to start mirroring for a specified dbspace, blobspace, or sbspace.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"start mirroring"--,--"space_name"--)--;--------------------><

Element Description Key Considerations

space_name The name of the blobspace, dbspace, or sbspace.

Usage
This function is equivalent to the onspaces -m command.

Example
The following example starts mirroring for the dbspace named dbsp1:

EXECUTE FUNCTION task("start mirroring","dbsp1");

Related reference:
 onspaces -m: Start mirroring

Copyright© 2020 HCL Technologies Limited

statement cache enable argument: Enable the SQL statement cache (SQL
administration API)

Use the statement cache enable argument with the admin() or task() function to enable the statement cache.

Syntax
>>-EXECUTE FUNCTION--+-admin-+--(--+-"statement cache enable"-+----->
 '-task--'
>--)--;--><

Usage
This function is equivalent to the onmode -e enable command.

Part VI: Administering 923

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

statement cache flush argument: Flush the SQL statement cache (SQL administration
API)

Use the statement cache flush argument with the admin() or task() function to flush the statement cache.

Syntax
>>-EXECUTE FUNCTION--+-admin-+--(--+-"statement cache flush"-+----->
 '-task--'
>--)--;---><

Usage
This function is equivalent to the onmode -e flush command.

Copyright© 2020 HCL Technologies Limited

statement cache hits argument: Specify the number of hits in the SQL statement
cache (SQL administration API)

Use the statement cache hits argument with the admin() or task() function to specify the number of hits in the SQL statement cache.

Syntax
>>-EXECUTE FUNCTION--+-admin-+--(--+-"statement cache hits", "<numhits>"-+----->
 '-task--'
>--)--;---><

Usage
This function is equivalent to the onmode -W STMT_CACHE_HITS command.

Copyright© 2020 HCL Technologies Limited

statement cache nolimit argument: Control whether to insert qualified statements
into the SQL statement cache (SQL administration API)

Use the statement cache nolimit argument with the admin() or task() function to control whether to insert statements into the SQL statement cache after its size is greater
than the STMT_CACHE_SIZE value.

Syntax
>>-EXECUTE FUNCTION--+-admin-+--(--+-"statement cache nolimit <0/1>"-+----->
 '-task--'
>--)--;---><

Usage
This function is equivalent to the onmode -W STMT_CACHE_NOLIMIT {0|1} command.

Copyright© 2020 HCL Technologies Limited

statement cache off argument: Disable the SQL statement cache (SQL administration
API)

Use the statement cache off argument with the admin() or task() function to turn off the SQL statement cache.

Syntax

924 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

>>-EXECUTE FUNCTION--+-admin-+--(--+-"statement cache off"-+----->
 '-task--'
>--)--;---><

Usage
This function is equivalent to the onmode -e off command.

Copyright© 2020 HCL Technologies Limited

statement cache save argument: Save the SQL statement cache (SQL administration
API)

Use the statement cache save argument with the admin() or task() function to save the statement cache.

Syntax
>>-EXECUTE FUNCTION--+-admin-+--(--+-"statement cache save"-+----->
 '-task--'
>--)--;--><

Usage
statement cache save is used to:

Lock the Statement Cache
Drop sysadmin:statement_cache table if it exists
Create new sysadmin:statement_cache table
Copy each entry from the Statement Cache and insert into the sysadmin:statement_cache table
Note: If cache entry is Locked, the query plan will be preserved so that it can persist as-is when being restored.
Note: If cache entry is Locked and has STMT_CACHE_QUERY_PLAN enabled, the current query plan will be stored in text form so it can persist as-is when being
restored.
Unlock the Statement Cache

Copyright© 2020 HCL Technologies Limited

statement cache restore argument: Restore the SQL statement cache (SQL
administration API)

Use the statement cache restore argument with the admin() or task() function to restore the statement cache.

Syntax
>>-EXECUTE FUNCTION--+-admin-+--(--+-"statement cache restore"-+----->
 '-task--'
>--)--;---><

Usage
statement cache restore is used to:

Lock the Statement Cache
Read each row from sysadmin: statement_cache table
Prepare the statement for the saved row so that statement will be inserted into the cache
Note: If cache entry is Locked and has STMT_CACHE_QUERY_PLAN enabled, then it will be revived in its saved form.
Note: If cache entry was Locked and had STMT_CACHE_QUERY_PLAN enabled when it was saved, then the text form of the query plan will be restored.
Unlock the Statement Cache

Copyright© 2020 HCL Technologies Limited

stop json listener: Stop the wire listener (deprecated)

Use the stop json listener argument with the admin() or task() function to stop the wire listener.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->

Part VI: Administering 925

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

 '-task--'

>--"stop json listener"--,"--+---+--"-->
 '-,--"property_file"--+-------------------------+-'
 '-,--"listener_arguments"-'

>--)--;--><

Element Description Key Considerations

property_file The name of the wire listener configuration file to use
instead of the default.

The property_file is optional. The default wire listener
configuration file is in
$INFORMIXDIR/etc/jsonListener.properties.

listener_arguments The command line argument to pass to the wire listener.

Usage
The stop json listener argument stops the wire listener.

Example
In the following example, the wire listener is stopped by using the mycustom.properties file instead of the default jsonListener.properties file:

EXECUTE FUNCTION task("stop json listener", "mycustom.properties");

In this example, the wire listener is stopped by using mycustom.properties file instead of the default jsonListener.properties, and a command line argument is passed to
the wire listener:

EXECUTE FUNCTION task("stop json listener", "mycustom.properties", "-port 27018");

Related information:
 Wire listener command line options

Stopping the wire listener

Copyright© 2020 HCL Technologies Limited

stop listen argument: Stop a listen thread dynamically (SQL administration API)

Use the stop listen argument with the admin() or task() function to stop an existing listen thread for a SOCTCP or TLITCP network protocol without interrupting existing
connections.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"stop listen"--,--"server_name"--)--;-----------------------><

Element Description Key Considerations

server_name The name of the database server for which you want to stop
a listen thread.

Usage
The definition of the listen thread must exist in the sqlhosts file.

This function does not update the sqlhosts file.

This function is equivalent to the onmode -P stop server_name command.

Example
The following command stops a listen thread for a server named ids_serv3:

EXECUTE FUNCTION task("stop listen","ids_serv3");

Related reference:
 onmode -P: Start, stop, or restart a listen thread dynamically

start listen argument: Start a listen thread dynamically (SQL administration API)
restart listen argument: Stop and start a listen thread dynamically (SQL administration API)

Copyright© 2020 HCL Technologies Limited

926 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

stop mirroring argument: Stops storage space mirroring (SQL administration API)

Use the stop mirroring argument with the admin() or task() function to stop mirroring for a specified dbspace, blobspace, or sbspace.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"stop mirroring"--,--"space_name"--)--;---------------------><

Element Description Key Considerations

space_name The name of the blobspace, dbspace, or sbspace.

Usage
This function is equivalent to the onspaces -r command.

Example
The following example stops mirroring for the dbspace with the name of dbsp1:

EXECUTE FUNCTION task("stop mirroring","dbsp1");

Related reference:
 onspaces -r: Stop mirroring

Copyright© 2020 HCL Technologies Limited

storagepool add argument: Add a storage pool entry (SQL administration API)

Use the storagepool add argument with the admin() or task() function to add an entry to the storage pool (a collection of available raw devices, cooked files, or directories
that Informix® can use to automatically add space to an existing storage space).

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"--storagepool add--"--,--"path_name"------------------------>

>--,--"begin_offset"--,--"total_size"--,--"chunk_size"--,--"priority"-->

>--)--;--><

Element Description Key Considerations

path_name The path for the file, directory, or device that the server can
use when additional storage space is required.

You do not need to add a final slash (“/”) to a directory
name.
You can use an environment variable in the path if the
variable is in your environment when the oninit command
runs.

begin_offset The offset in kilobytes into the device where Informix can
begin allocating space.

If you specified a path to a directory, you must specify 0 as
the offset.

total_size The total space available to Informix in this entry. The
server can allocate multiple chunks from this amount of
space.

Be sure to specify 0 for the total size of a directory. If you
specify a value that is not zero for a directory, the SQL
administration API command returns an error.
If you specify 0 for a file or device, the server will allocate
one extendable chunk from the entry.

chunk_size The minimum size of a chunk that can be allocated from the
device, file, or directory.

The smallest chunk that you can create is 1000 K.
Therefore, the minimum chunk size that you can specify is
1000 K.
See admin() and task() Argument Size Specifications.

priority The priority of the directory, file, or device when the server
searches through the storage pool for space.

1 = High priority
2 = Medium priority
3 = Low priority

The server tries to allocate space from a high-priority entry
before it allocates space from a lower priority entry.

Part VI: Administering 927

https://www.hcltech.com/

Usage
The server uses entries in the storage pool if necessary to add a new chunk to a storage space.

When you add an entry to the storage pool, you might want some control over how that entry is used. For example, to reduce the number of chunks in an instance, you
might want only large chunks of space to be allocated from a particular raw device, and might not want the chunks to be extendable. In this case, configure the chunk size
for that storage pool entry to be large.

You can add the following types of entries to the storage pool:

A fixed-length raw device
A fixed-length cooked file
An extendable raw device (for extending the size of a chunk)
An extendable cooked file (for extending the size of a chunk)
A directory

A storage pool entry that is a directory is always categorized as extendable, because it does not have a total size. If new chunks are automatically created in the directory,
the server marks those chunks as extendable. When you add a storage pool entry that is a directory, you might want a small chunk size, because the server can extend any
chunk created in the directory and smaller chunk sizes can reduce the amount of wasted space in the instance.

If a storage pool entry is on a High-Availability Data Replication (HDR) primary server, the same path in the entry must be available on all secondary servers in the HDR
cluster.

The default units for sizes and offsets are kilobytes. However, you can specify information in any of the ways shown in the following examples:

"100000"
"100000 K"
"100 MB"
"100 GB"
"100 TB"

Example: Adding a storage pool entry for a directory
The following command adds a directory named /region2/dbspaces with a beginning offset of 0, a total size of 0, an initial chunk size of 20 megabytes, and a high priority:

DATABASE sysadmin;
EXECUTE FUNCTION task("storagepool add", "/region2/dbspaces", "0", "0",
"20000", "1");

Example: Adding a storage pool entry for a fixed-length raw device
The following command adds a fixed-length raw device with the path name /dev/raw/device1 and a total of 500 megabytes of space to the storage pool. The command
specifies a beginning offset of 50 megabytes, a total size of 10 gigabytes, a minimum of 100 megabytes to allocate to a chunk, and a low priority.

EXECUTE FUNCTION task("storagepool add", "/dev/rawdevice1", "50 MB",
 "10 GB", "100 MB", "3");

Example: Adding a storage pool entry for a fixed-length cooked file
The following command adds a fixed-length cooked file and 1 gigabyte of space to the storage pool. The command specifies a beginning offset of 0, a total size of
1000000 kilobytes, a minimum of 50000 kilobytes to allocate to a chunk, and a medium priority:

EXECUTE FUNCTION task("storagepool add", "/ifmx_filesystem/storage/cooked7",
 "0", "1000000", "50000", "2");

When adding this entry, the server tries to increase the size of the cooked7 file to 1 gigabyte. If the server cannot increase the size because the file system is full, the
server returns an error message and does not add the entry to the storage pool.

Informix uses part of the cooked file initially, but can use more of the device as necessary as spaces fill.

Example: Adding a storage pool entry for an extendable cooked file
The following command adds a cooked file with the path name /ifmx/CHUNKFILES/cooked2. If the server uses this entry, the server creates one chunk with an initial size
of 1 GB, and the server automatically marks the chunk as extendable.

EXECUTE FUNCTION task("storagepool add", "/ifmx/CHUNKFILES/cooked2",
 "0", "0", "1 GB", "2");

Example: Adding a storage pool entry with an environment variable in the path
The following example includes an environment variable in the path. The variable was present in the server environment when the oninit command ran.

EXECUTE FUNCTION task("storagepool add", "$DBSDIR/chunk1",
 "0", "100000", "20000", "2");

Related reference:
 storagepool modify argument: Modify a storage pool entry (SQL administration API)

storagepool delete argument: Delete one storage pool entry (SQL administration API)
storagepool purge argument: Delete storage pool entries (SQL administration API)
Related information:

 Automatic space management

928 Part VI: Administering

Copyright© 2020 HCL Technologies Limited

storagepool delete argument: Delete one storage pool entry (SQL administration API)

Use the storagepool delete argument with the admin() or task() function to delete an entry from the storage pool.

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"--storagepool delete--"--,--"--entry_id--"--)--;-----------><

Element Description Key Considerations

entry_id The ID of the storage pool entry. The storagepool table in the sysadmin database contains a
column that shows the ID of each entry in the storage pool.

Usage
Delete a storage pool entry if you do not want the server to continue to use the entry when expanding a storage space.

To delete all storage pool entries, storage pool entries that have a status of Full, or storage pool entries that have a status of Error, use the SQL administration API
storagepool purge command. (The storagepool table in the sysadmin database contains a column that shows the status of each entry in the storage pool.)

Example
The following command deletes the storage pool entry with an entry id of 13:

EXECUTE FUNCTION task("storagepool delete", "13");

Related reference:
 storagepool add argument: Add a storage pool entry (SQL administration API)

storagepool modify argument: Modify a storage pool entry (SQL administration API)
storagepool purge argument: Delete storage pool entries (SQL administration API)
Related information:

 Automatic space management

Copyright© 2020 HCL Technologies Limited

storagepool modify argument: Modify a storage pool entry (SQL administration API)

Use the storagepool modify argument with the admin() or task() function to modify an entry for a directory, cooked file, or raw device that Informix® can use when
additional storage space is required.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--"--storagepool modify--"--,--"--entry_id--"--,--------------->

>--"new_total_size"--,--"new_chunk_size"--,--"new_priority"----->

>--)--;--><

Element Description Key Considerations

entry_id The ID of the storage pool entry. The storagepool table in the sysadmin database contains a
column that shows the ID of each entry in the storage pool.

new_total_size The new amount of total space available to Informix in this
entry. The server can allocate multiple chunks from this
amount of space.

Be sure to specify 0 for the total size of a directory. If you
specify a value that is not zero for a directory, the SQL
administration API command returns an error.
If you specify 0 for a file or device, the server allocates one
extendable chunk from the entry.

new_chunk_size The minimum size of a chunk that can be allocated from the
device, file, or directory.

The smallest chunk that you can create is 1000 K.
Therefore, the minimum chunk size that you can specify is
1000 K.
See admin() and task() Argument Size Specifications.

Part VI: Administering 929

https://www.hcltech.com/
https://www.hcltech.com/

Element Description Key Considerations

new_priority The priority of the directory, file, or device when the server
searches through the storage pool for space.

1 = High priority
2 = Medium priority
3 = Low priority

The server attempts to allocate space from a high-priority
entry before it allocates space from a lower priority entry.

Usage
Sometimes you might want to change a storage pool entry. For example, you might want to increase the total size of the storage pool when it runs out of space, or you
might want to change the chunk size or the priority. When you change the entry, include the total size, chunk size, and priority even if you do not want to change all of these
values.

You cannot modify the path or the beginning offset of a storage pool entry. If you want to change either of those values, you must delete the storage pool entry and add an
entry with the new path or beginning offset.

If a storage pool entry is on a High-Availability Data Replication (HDR) primary server, the same path in the entry must be available on all secondary servers in the HDR
cluster.

The default units for storage pool sizes and offsets are kilobytes. However, you can specify information in any of the ways shown in the following examples:

"100000"
"100000 K"
"100 MB"
"100 GB"
"100 TB"

Examples
The following command changes the total size, chunk size, and priority of the storage pool entry that has an ID of 4 to 10 gigabytes, 10 megabytes, and a medium priority.

EXECUTE FUNCTION task("storagepool modify", "4", "10 GB", "10000", "2");

Suppose that you add an entry to the storage pool and the entry has a path of (/dev/IDS/chunk2), an offset of 0, a total size of 100 megabytes, a minimum chunk size of
100 megabytes, and a priority of 2. Before Informix allocates any space from this entry, you use onspaces to manually add a 50 megabyte chunk with the same path
(/dev/IDS/chunk2), and an offset of 50 megabytes. The server only detects the overlap when it attempts to use this entry to automatically create a chunk. At that time, the
server marks the entry with an "Error" status and attempts to use another entry to create the chunk.

You can correct the problem by changing the total size of the storage pool entry (for example, for entry 2), to 50 megabytes and by changing the minimum chunk size of
the entry to 50 megabytes, as follows:

EXECUTE FUNCTION task("storagepool modify", "2", "50 MB", "50 MB", "2");

Related reference:
 storagepool add argument: Add a storage pool entry (SQL administration API)

storagepool delete argument: Delete one storage pool entry (SQL administration API)
storagepool purge argument: Delete storage pool entries (SQL administration API)
Related information:

 Automatic space management

Copyright© 2020 HCL Technologies Limited

storagepool purge argument: Delete storage pool entries (SQL administration API)

Use the storagepool purge argument with the admin() or task() function to delete all storage pool entries, storage pool entries that have a status of Full, or storage pool
entries that have a status of Error.

>>-EXECUTE FUNCTION--+-admin-+---------------------------------->
 '-task--'

>--(--+-"storagepool purge all"----+---------------------------><
 +-"storagepool purge full"---+
 +-"storagepool purge errors"-+
 '-)--;-----------------------'

Usage
Use the storagepool purge all argument to delete all entries in the storage pool.

Use the storagepool purge full argument to delete all storage pool entries that have a status of Full.

Use the storagepool purge errors argument to delete all storage pool entries that have a status of Error.

The storagepool table in the sysadmin database contains a column that shows the status of each entry in the storage pool.

930 Part VI: Administering

https://www.hcltech.com/

Example
The following command deletes all storage pool entries that have a status of Full:

EXECUTE FUNCTION task("storagepool purge full");

Related reference:
 storagepool add argument: Add a storage pool entry (SQL administration API)

storagepool modify argument: Modify a storage pool entry (SQL administration API)
storagepool delete argument: Delete one storage pool entry (SQL administration API)
Related information:

 Automatic space management

Copyright© 2020 HCL Technologies Limited

Table and fragment pfsc_boost argument: Enable or disable a boosted partition free
space cache (PFSC)

You can enable and disable a boosted partition free space cache for a table or fragment using SQL administration API admin() or task() functions and arguments.

The built-in SQL administration API admin() or task() functions are defined in the sysadmin database of each Informix® instance. By default, only user informix can
invoke these functions. If Connect privilege on the sysadmin database is granted to user root or to DBSA group members, they too can invoke the SQL administration API
admin() or task() functions when they are connected directly or remotely to the sysadmin database.

The SQL administration API admin() or task() command arguments that you can use to enable or disable boosted PFSCs in tables and table fragments are:

table pfsc_boost enable: Use the "table pfsc_boost enable" sysadmin task() or admin() command to create a boosted PFSC for a table. For example:

execute function task("table pfsc_boost enable", "<table name>", "<database name>");

fragment pfsc_boost enable: Use the "fragment pfsc_boost enable" sysadmin task() or admin() command to create a boosted PFSC for a specific fragment. For
example:

execute function task("fragment pfsc_boost enable", "<partnum>");

table pfsc_boost disable: Use the "table pfsc_boost disable" sysadmin task() or admin() command to disable a boosted PFSC for a table. For example:

execute function task("table pfsc_boost disable", "<table name>", "<database name>");

fragment pfsc_boost disable: Use the "fragment pfsc_boost disable" sysadmin task() or admin() command to disable a boosted PFSC for a specific fragment. For
example:

execute function task("fragment pfsc_boost disable", "<partnum>");

Note: Boosted partition free space caches are re-created automatically in shared memory on server restart.
For more information, see Boosted Partition Free Space Caches (PFSC).

Copyright© 2020 HCL Technologies Limited

Table and fragment compress and uncompress operations (SQL administration API)

You can compress and uncompress the data in a table or in table fragments with SQL administration API admin() or task() functions and arguments. Compression
operations apply only to the contents of data rows and the images of those data rows that appear in logical log records.

The built-in SQL administration API admin() or task() functions are defined in the sysadmin database of each Informix® instance. By default, only user informix can
invoke these functions. If Connect privilege on the sysadmin database is granted to user root or to DBSA group members, they too can invoke the SQL administration API
admin() or task() functions when they are connected directly or remotely to the sysadmin database.

The SQL administration API admin() or task() command arguments that you can use for compress and uncompress operations in tables and table fragments are:

table compression parameters
Performs various compression operations to all fragments of a specified table. For more information, see table or fragment arguments: Compress data and optimize
storage (SQL administration API).

fragment compression parameters
Performs various compression operations to a single fragment or a specified set of fragments that belong to a specific table. For more information, see table or
fragment arguments: Compress data and optimize storage (SQL administration API).

compression purge_dictionary
Deletes all inactive compression dictionaries or all inactive compression dictionaries that were created before a date that you specify. For more information, see
purge compression dictionary arguments: Remove compression dictionaries (SQL administration API).

Table and fragment compression operations include creating compression dictionaries, estimating compression ratios, compressing data in tables and table fragments,
consolidating free space (repacking), returning free space to a dbspace (shrinking), uncompressing data, and deleting individual table and fragment compression
dictionaries.

When you run SQL administration API compression and uncompression commands, you compress and uncompress both row data and simple large objects in dbspaces.
You can also specify whether to compress or uncompress only row data or only simple large objects in dbspaces.

Part VI: Administering 931

https://www.hcltech.com/
https://www.hcltech.com/

An admin() command returns an integer; a task() command returns a string.

For information on the types of data that you can compress, compression ratios, compression estimates, and compression dictionaries, as well as procedures for using
compression command parameters, see Compression in the IBM® Informix Administrator's Guide. For information on utilities and the sysmaster table and view that
display compression information, see syscompdicts_full.

You can also compress, optimize storage, and estimate compression benefits for B-tree indexes. See index compress repack shrink arguments: Optimize the storage of B-
tree indexes (SQL administration API) and index estimate_compression argument: Estimate index compression (SQL administration API).

table or fragment arguments: Compress data and optimize storage (SQL administration API)
 Use SQL administration API functions with table or fragment arguments to create compression dictionaries, to estimate compression ratios, to compress data in

tables and table fragments, to consolidate free space (repack), to return free space to a dbspace (shrink), to uncompress data, and to delete compression
dictionaries.
Output of the estimate compression operation (SQL administration API)

 After you run the command for estimating compression ratios, the database server displays information that shows the estimate of the compression ratio that can
be achieved, along with the currently achieved compression ratio (if it exists).
purge compression dictionary arguments: Remove compression dictionaries (SQL administration API)

 Call the admin() or task() function with the compression purge_dictionary initial command to delete all inactive compression dictionaries or all inactive
compression dictionaries that were created for a compressed table or fragment before a specified date. You must uncompress tables and fragments, which makes
the dictionaries inactive, before you delete any compression dictionaries that were created for the tables and fragments.

Copyright© 2020 HCL Technologies Limited

table or fragment arguments: Compress data and optimize storage (SQL
administration API)

Use SQL administration API functions with table or fragment arguments to create compression dictionaries, to estimate compression ratios, to compress data in tables
and table fragments, to consolidate free space (repack), to return free space to a dbspace (shrink), to uncompress data, and to delete compression dictionaries.

When you run SQL administration API compression and uncompression commands, you compress and uncompress row data and simple large objects in dbspaces. You
can also specify whether to compress or uncompress only row data or only simple large objects in dbspaces.

Syntax: table data compression command arguments

>>-EXECUTE FUNCTION--+-admin-+---------------------------------->
 '-task--'

>--(--"--table--| command arguments |--"------------------------>

>--,--"table_name"--+------------------------------------+------>
 '-,--"database_name"--+------------+-'
 '-,--"owner"-'

>--)--;--><

Syntax: fragment data compression command arguments

>>-EXECUTE FUNCTION--+-admin-+---------------------------------->
 '-task--'

>--(--"--fragment--| command arguments |--"--------------------->

>--,--"partition_number"--)--;---------------------------------><

Table and fragment command arguments

|--+-create_dictionary---+--|
 +-compress--+-----------+--+--------+--+--------+--+----------+-+
 | '-+-rows--+-' '-repack-' '-shrink-' '-parallel-' |
 | '-blobs-' |
 +-repack--+--------+--+----------+------------------------------+
 | '-shrink-' '-parallel-' |
 +-shrink--+
 +-estimate_compression--+
 +-repack_offline--+
 +-uncompress--+-----------+--+----------+-----------------------+
 | '-+-rows--+-' '-parallel-' |
 | '-blobs-' |
 +-uncompress_offline--+
 +-purge_dictionary--+
 '-update_ipa--+----------+--------------------------------------'
 '-parallel-'

Command arguments
The following table describes each argument.

Table 1. Arguments for Compress and Uncompress Operations

932 Part VI: Administering

https://www.hcltech.com/

Argument DescriptionArgument Description

blobs Specifies that you want to compress or uncompress only simple large objects in dbspaces and not row data.

compress Compresses all existing rows in-place, without moving them (without repacking the table).
This option automatically compresses row data and simple large objects in dbspaces. To compress only row
data or only simple large objects in dbspaces, also use the rows or blobs element.

If a compression dictionary for the target table or fragment does not exist, the compress operation also creates
the dictionary.

create_dictionary Builds a compression dictionary, which is a library of frequently occurring patterns and the symbol numbers
that replace them in compressed rows.
After a dictionary is created, any newly inserted or updated rows will be compressed if they are compressible.
Existing rows are not compressed.

estimate_compression Estimates both a new compression ratio and a current ratio. The current ratio is 0.0 percent if the table is not
compressed.

parallel Runs the compress, repack, update_ipa, or uncompress operation in parallel. A thread is started for each
fragment of the table or fragment list and the operation is run in parallel across those fragments.

purge_dictionary Deletes an inactive compression dictionary after you uncompress a table or fragment.

repack Consolidates free space by moving data to the front of the fragment or table.
Because the repack operation moves rows while the fragment is online, other queries that access the fragment
that are using an isolation level below Repeatable Read might occasionally find the same row twice or miss
finding a row. To avoid this possibility, use the Repeatable Read isolation level for concurrent queries; or,
instead of using the repack argument, use the repack_offline argument.

repack_offline Consolidates free space by moving data to the front of the table or fragment, while holding an exclusive lock on
the table or fragment. This operation prevents all other access to data until the operation is completed.

rows Specifies that you want to compress or uncompress only row data and not simple large objects in dbspaces.

shrink Returns free space at the end of a fragment or table to the dbspace, thus reducing the total size of the fragment
or table.

uncompress Deactivates compression for new INSERT and UPDATE operations, uncompresses all compressed rows, and
deactivates the compression dictionary. This operation also allocates new pages for a fragment and moves
uncompressed rows that no longer fit on their original pages to the new pages.
Because this operation moves rows while the fragment is online, other queries that access the fragment that
are using an isolation level below the Repeatable Read isolation level might occasionally find the same row
twice or miss finding a row. To avoid this possibility, use the Repeatable Read isolation level for concurrent
queries, or instead of using the uncompress argument, use the uncompress_offline argument.

This option automatically uncompresses row data and simple large objects in dbspaces. To compress only row
data or only simple large objects in dbspaces, also use the rows or blobs element.

uncompress_offline Deactivates compression for new INSERT and UPDATE operations, uncompresses all compressed rows, and
deactivates the compression dictionary, while holding an exclusive lock on the fragment. This prevents all other
access to the fragment data until the operation is completed.
This operation also allocates new pages for a fragment and moves uncompressed rows that no longer fit on
their original pages to the new pages.

update_ipa Removes outstanding in-place alter operations for the specified table or fragments.

Command elements
The following tables show the elements that you can use in commands.

Table 2. Table compression and storage optimization command elements
Element Description Key Considerations

database_name The name of the database that contains the specified table. Optional.
If you do not specify a database, Informix® uses the current database.

If you enter a database name, you must use the same uppercase or lowercase letters
that are in system catalog tables.

owner The authorization identifier of the owner of the database that
contains the specified table.

Optional.
If you do not specify an owner, Informix uses the current owner.

If you enter an owner name, you must use the same uppercase or lowercase letters
that are in system catalog tables.

table_name The name of the table that contains the data. You must use the same uppercase or lowercase letters that are in system catalog
tables.

Table 3. Fragment compression and storage optimization command elements

Element Description Key Considerations

partition_number A space-separated list of partition numbers that belong to the same table.

Usage
Informix uses the compression dictionary to compress data.

Part VI: Administering 933

After you run a compress command on a table or fragment, Informix automatically compresses any new rows that you add to the table or fragment. If the table or
fragment contains more than 2000 rows when you run the compress command, a compression dictionary is built and all the rows are compressed. If the table or fragment
contains fewer than 2000 rows when you run the compression command, the table or fragment is enabled for automatic compression. After 2000 rows are inserted, a
compression dictionary is created and all rows after the initial 2000 rows are compressed. To compress the initial 2000 rows, run the compress command again.

If your data changes significantly, the compression dictionary might not be effective. In this situation, uncompress and then compress again.

You can cancel a command with a compress or uncompress argument, for example, by typing CTRL-C in DB-Access. You can reissue commands with repack,
repack_offline, uncompress, and uncompress_offline arguments after a prior interrupted command.

You cannot perform a compress, repack, repack_offline, shrink, uncompress, or uncompress_offline operation on a table or fragment while any of these operations is
already occurring on the table or fragment.

When you specify multiple operations in a single command, the server performs the operations in this order:

create_dictionary
compress
repack
shrink

Compress, repack, repack_offline, uncompress, and uncompress_offline operations can consume large amounts of log files. Configure your logs to be larger if any
workload that you expect to run, including but not limited to these compression operations, consumes log files faster than one every 30 seconds.

Compress, repack, and uncompress operations are logged, but run in small portions.

If you change the fragmentation strategy for a table after you perform a compression operation, the table loses its compression status and will need to be recompressed.

Dropping or disabling indexes before you complete a repack_offline or uncompress_offline operation can decrease the amount of time that it takes the server to complete
the operation. Afterward, you can re-create or re-enable the indexes, preferably taking advantage of PDQ. Dropping or disabling the indexes and then creating or enabling
them again can be faster than completing a repack_offline or uncompress_offline operation without doing this.

Do not drop a dbspace that Change Data Capture (CDC) API is using, if the dbspace ever contained compressed tables, because this might delete compression dictionaries
that CDC still needs.

Repack
The compress operation normally creates a quantity of free space on individual data and remainder pages, but the space is not consolidated at the end of the table or
fragment. Instead, the space can be used to hold newly inserted rows, with the table not growing any larger until this space is filled.

A compress operation, which only occurs online, compresses rows of a table in-place. The repack operation moves the rows. You can perform a repack operation online or
offline. An online operation allows concurrent activity to occur on a table. However, this can result in phantom rows. (Phantom rows are rows that are initially modified or
inserted during a transaction that is later rolled back.)

To avoid phantom rows, you might want to repack offline, when you can afford to keep other users from accessing a table or fragment. For example, you could perform a
compress operation with concurrent activity during the day, and then perform a repack_offline operation at night, when no concurrent activity is expected on the table.

You cannot perform an offline operation with an online operation. For example, while you can perform a combined compress repack operation, you cannot perform a
combined compress repack_offline operation. If you want to repack offline, you must do this in two steps:

1. Perform a compress operation.
2. Perform a repack_offline operation.

Similarly you cannot perform a repack_offline shrink operation.

If light appends (unbuffered, unlogged insert operations) occur in a table or fragment while a repack operation is occurring, the repack operation does not complete the
consolidation of space at the end of a table or fragment. The repack operation does not complete because the new extents are added in the location where the repack
operation already occurred, so space cannot be returned to the dbspace. To complete the repack process, you must run a second repack operation after light append
activity completes. This second repack operation builds on the work of the first repack operation.

Shrink
The shrink operation is typically performed after a repack operation.

You can safely shrink the entire table without compromising the allocation strategy of the table. For example, if you have a fragmented table with one fragment for each
day of the week and many fragments pre-allocated for future use, you can shrink the table without compromising this allocation strategy. If the table is empty, Informix
shrinks the table to the initial extent size that was specified when the table was created.

When you initiate a shrink operation, Informix shortens extents as follows:

It shortens all extents except the first extent to as small a size as possible.
If the table is entirely in the first extent (for example, because the table is an empty table), Informix does not shrink the first extent to a size that was smaller than
the extent size that was specified when the table was created with the CREATE TABLE statement.

You can use the MODIFY EXTENT SIZE clause of the ALTER TABLE statement to reduce the current extent size. After you do this, you can rerun the shrink operation to
shrink the first extent to the new extent size.

Uncompress
The uncompress operation has no effect on any table or fragment it is applied to that is not compressed.

After you uncompress a table or fragment, you can perform a purge_dictionary operation to delete the dictionary for that table or fragment.

934 Part VI: Administering

Purge
Before you perform a purge_dictionary operation for tables and fragments, you must:

Uncompress the tables and fragments.
When you uncompress a table or fragment, Informix marks the dictionary for the table or fragment as inactive.

Be sure that Enterprise Replication functions do not need the compression dictionaries for older logs.
Archive any dbspace that contains a table or fragment with a compression dictionary, even if you have uncompressed data in the table or fragment and the
dictionary is no longer active.

You can also delete all compression dictionaries or all compression dictionaries that were created before and on a specified date. For information, see purge compression
dictionary arguments: Remove compression dictionaries (SQL administration API).

Examples
The following command compresses, repacks, and shrinks both row data in a table that is named auto in the insurance database of which tjones is the owner and simple
large objects in the dbspace.

EXECUTE FUNCTION task("table compress repack shrink","auto",
"insurance","tjones");

The following command compresses only row data in a table named dental in parallel.

EXECUTE FUNCTION task("table compress rows parallel","dental");

The following command uncompresses the fragment with the partition number 14680071.

EXECUTE FUNCTION task("fragment uncompress","14680071");

The following command uncompresses only row data in the fragment with the partition number 14680071 in parallel.

EXECUTE FUNCTION task("fragment uncompress rows parallel","14680071");

The following command estimates the benefit of compressing a table that is named home in the insurance database of which fgomez is the owner.

EXECUTE FUNCTION task("table estimate_compression","home",
"insurance","fgomez");

The following command removes pending in-place alter operations on a table that is named auto in parallel.

EXECUTE FUNCTION task("table update_ipa parallel","auto");

After you run the command, the database server displays an estimate of the compression ratio that can be achieved, along with the currently achieved compression ratio
(if it exists). For information about the output of the command, see Output of the estimate compression operation (SQL administration API).

Related reference:
 Output of the estimate compression operation (SQL administration API)

onstat -g ath command: Print information about all threads
Related information:

 Compression

Copyright© 2020 HCL Technologies Limited

Output of the estimate compression operation (SQL administration API)

After you run the command for estimating compression ratios, the database server displays information that shows the estimate of the compression ratio that can be
achieved, along with the currently achieved compression ratio (if it exists).

Table 1. Information that an estimate_compression command displays

Column Information Displayed

est This is the estimate of the compression ratio that can be achieved with a new compression dictionary. The estimate is a
percentage of space saved compared to no compression.

curr This is the estimate of the currently achieved compression ratio. This estimate is a percentage of space saved compared to no
compression. 0.0% will always appear for non-compressed fragments or tables.

change This is the estimate of the percentage point gain (or possibly loss, although that should be rare) in the compression ratio that you
could achieve by switching to a new compression dictionary. This is just the difference between est and curr.
If the table or fragment is not compressed, you can create a compression dictionary with the compress parameter. If the
fragment is compressed, you must perform an uncompress or uncompress_offline operation, before you can compress.

partnum This is the partition number of the fragment.

coloff This value defines whether the estimate is for in-row data or simple large objects in the dbspace, as follows:

-1 indicates that the estimate for in-row data
A positive numeric value indicates that the estimate is for a partition simple large object at the offset identified by the
value. The offset is the column offset in the table in bytes.

table This is the full name of the table to which the fragment belongs, in format database:owner.tablename
If you are estimating compression benefits for an index, the full name of the index appears in this column.

Part VI: Administering 935

https://www.hcltech.com/

Example
The following output shows that a .4 percent increase in saved space can occur if you recompress the first fragment. A 75.7 percent increase can occur if you compress
the second fragment, which is not compressed. The value -1 in the coloff column indicates that in-row data is compressed.

 est curr change partnum coloff table
 ----- ----- ------ ------------- -----------------------------
 75.7% 75.3% +0.4 0x00200003 -1 insurance:bwilson.auto
 75.7% 0.0% +75.7 0x00300002 -1 insurance:pchang.home

The following output shows compression estimates for in-row data (in the first row) and simple large objects at offsets 4 and 60 (in the second and third rows):

 est curr change partnum coloff table
 ----- ----- ------ ------------- --------------------
 75.4% 71.5% +3.9 0x00200002 -1 test:mah.table1
 5.0% 75.0% +0.0 0x00200002 4 test:mah.table1
 75.0% 75.0% +0.0 0x00200002 60 test:mah.table1

Output from compression estimates for tables and fragments look the same, except that the output for a table always shows all fragments in the table, while the output for
a fragment only shows information for the specified fragments.

Related reference:
 index estimate_compression argument: Estimate index compression (SQL administration API)

table or fragment arguments: Compress data and optimize storage (SQL administration API)

Copyright© 2020 HCL Technologies Limited

purge compression dictionary arguments: Remove compression dictionaries (SQL
administration API)

Call the admin() or task() function with the compression purge_dictionary initial command to delete all inactive compression dictionaries or all inactive compression
dictionaries that were created for a compressed table or fragment before a specified date. You must uncompress tables and fragments, which makes the dictionaries
inactive, before you delete any compression dictionaries that were created for the tables and fragments.

Syntax: Compression Purge_Dictionary

>>-EXECUTE FUNCTION--+-admin-+--(--"--compression purge_dictionary--"--,--"--date--"--)-- ;-><
 '-task--'

Usage
Before you perform a purge_dictionary operation for tables and fragments, you must:

Uncompress the tables and fragments.
When you uncompress a table or fragment, Informix® marks the dictionary for the table or fragment as inactive.

Be sure that Enterprise Replication functions do not need the compression dictionaries.
Archive any dbspace that contains a table or fragment with a compression dictionary, even if you have uncompressed data in the table or fragment and the
dictionary is no longer active.

The compression purge_dictionary command deletes all compression dictionaries.

The compression purge_dictionary command with a date as the second argument deletes all compression dictionaries that were created before and on a specified date.
You can use any date in a format that can be converted to a DATE data type based on your locale and environment. For example, you can specify 03/29/2009, 03/29/09,
or Mar 29, 2009.

You can also delete a specific compression dictionary by calling the admin() or task() function with table or fragment as the initial command and purge_dictionary as the
next argument.

You cannot delete compression dictionaries that were created for indexes. The database server removes these compression dictionaries when the indexes are dropped.

The following command tells Informix to remove all dictionaries that were created before and on July 8, 2009:

EXECUTE FUNCTION task(“compression purge_dictionary”, "07/08/2009");

The following command tells Informix to remove the inactive dictionary for a table named auto in the insurance database of which tjones is the owner.

EXECUTE FUNCTION task(“table purge_dictionary",
“auto”, “insurance”, “tjones”);

Copyright© 2020 HCL Technologies Limited

tenant create argument: Create a tenant database (SQL Administration API)

Use the tenant create argument with the admin() or task() function to create a tenant database.

936 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--'tenant create'--,--'database_name'--,--'-------------------->

 .-,----.
 V |
>--{dbspace:"---name-+-"-->

 .---.
 V |
>----+---+-+------------>
 | .-,----. |
 | V | |
 +-,blobspace:"---name-+-"-------------------+
 | .-SENSITIVE---. |
 +-,case:"-+-INSENSITIVE-+-"-----------------+
 +-,catalogs:"name"--------------------------+
 | .-,----. |
 | V | |
 +-,dbspacetemp:"---name-+-"-----------------+
 | .-UNBUFFERED-. |
 +-,logmode:"-+-ANSI-------+-"---------------+
 | +-BUFFERED---+ |
 | '-NONE-------' |
 +-,locale:"definition"----------------------+
 | .-,----. |
 | V | |
 +-,sbspace:"---name-+-"---------------------+
 | .-,----. |
 | V | |
 +-,sbspacetemp:"---name-+-"-----------------+
 +-,session_limit_locks:"number"-------------+
 | .-KB-. |
 +-,session_limit_logspace:"number-+----+-"--+
 | +-MB-+ |
 | '-GB-' |
 | .-KB-. |
 +-,session_limit_memory:"number-+----+-"----+
 | +-MB-+ |
 | '-GB-' |
 | .-KB-. |
 +-,session_limit_tempspace:"number-+----+-"-+
 | +-MB-+ |
 | '-GB-' |
 +-,session_limit_txn_time:"number"----------+
 | .-KB-. |
 +-,tenant_limit_space:"number-+----+-"------+
 | +-MB-+ |
 | +-GB-+ |
 | '-TB-' |
 | .-KB-. |
 +-,tenant_limit_memory:"number-+----+-"-----+
 | +-MB-+ |
 | +-GB-+ |
 | '-TB-' |
 +-,tenant_limit_connections:"number"--------+
 '-,vpclass:"-name--+-------------------+--"-'
 '-,--num--=--number-'

>--}--'--)--;--><

Element Description Key Considerations

blobspace A comma-separated list of one or more
blobspaces that are assigned to the
tenant database.

At least one blobspace is required if the tenant database contains simple large
objects.
blobspaces must be empty to be assigned to a tenant database.

blobspaces must exist before being assigned to a tenant database.

Simple large objects that are created outside of a tenant database cannot be stored
in the tenant database's blobspaces.

case Database sensitivity to uppercase and
lowercase letters:

INSENSITIVE
Case insensitive.

SENSITIVE
Case sensitive. This is the default
value.

If you omit this property, the database is case sensitive.

catalogs A dbspace to store the tenant database
catalogs.

The dbspace must be listed in the dbspace property.
If you omit this property, the dbspace that is listed as the first value of the dbspace
property contains the tenant database catalogs.

Part VI: Administering 937

Element Description Key Considerations

database_name The name of the tenant database. The database name must be on the database server.
An existing non-tenant database cannot become a tenant database.

dbspace A comma-separated list of one or more
dbspaces that are assigned to the tenant
database.

dbspaces must be empty to be assigned to a tenant database.
dbspaces must exist before being assigned to a tenant database.

Objects that are created outside of a tenant database cannot be stored in the
tenant database's dbspaces.

dbspacetemp A comma-separated list of one or more
temporary dbspaces that are assigned to
a tenant database.

You can override the dbspacetemp property for a session by setting the
DBSPACETEMP environment variable to a subset of the dbspaces that are specified
by the dbspacetemp property.

If the dbspacetemp property is omitted, temporary tables are stored in the
temporary dbspaces that are specified by the DBSPACETEMP configuration
parameter or environment variable.

locale The locale of the database. The values for locale are the same as the values for the DB_LOCALE environment
variable.
The default locale is en_US.819.

logmode The log mode definition:

UNBUFFERED
Unbuffered database logging. This
is the default.

ANSI
ANSI-compliant database logging.

BUFFERED
Buffered database logging.

NONE
No database logging.

If you omit this property, the logging mode is unbuffered.

sbspace A comma-separated list of one or more
sbspaces that are assigned to the tenant
database.

At least one sbspace is required if the tenant database contains smart large
objects. Smart large objects can include BLOB or CLOB data, and data and table
statistics that are too large to fit in a row.
sbspaces must be empty to be assigned to a tenant database.

sbspaces must exist before being assigned to a tenant database.

Smart large objects that are created outside of a tenant database cannot be stored
in the tenant database's sbspaces.

Some features, such as Enterprise Replication, spatial data, and basic text
searching, require sbspaces.

num The number of virtual processors to run. If you do not include the num property, 1 virtual processor is started.

sbspacetemp A comma-separated list of one or more
temporary sbspaces that are assigned to
the tenant database.

If you omit this property, temporary smart large objects are stored in the temporary
sbspaces that are specified by the SBSPACETEMP configuration parameter.

session_limit_locks The maximum number of locks available
to a session.

The value must be 500 - 2147483648.
This limit does not apply to a user who holds administrative privileges, such as user
informix or a DBSA user.

The value of the session_limit_locks property takes precedent over the value of
the SESSION_LIMIT_LOCKS configuration parameter. If you omit this property, the
number of locks are set by the SESSION_LIMIT_LOCKS configuration parameter. If
the SESSION_LIMIT_LOCKS configuration parameter is also not set, the maximum
number of locks for a session is 2147483648.

You can override the session_limit_locks property for a session by setting the
IFX_SESSION_LIMIT_LOCKS environment option to a lower value than the
session_limit_locks property value.

session_limit_logspace The maximum amount of log space that
a session can use for individual
transactions.

The value must be 5120 - 2147483648 KB. Values are specified in KB, MB, or GB.
This limit does not apply to a user who holds administrative privileges, such as user
informix or a DBSA user.

The value of the session_limit_logspace property takes precedent over the value
of the SESSION_LIMIT_LOGSPACE configuration parameter. If you omit this
property, the amount of logspace is set by the SESSION_LIMIT_LOGSPACE
configuration parameter. If the SESSION_LIMIT_LOGSPACE configuration
parameter is also not set, the maximum amount of log space that a session can use
for individual transactions is 2147483648 KB.

938 Part VI: Administering

Element Description Key Considerations

session_limit_memory The maximum amount of memory that a
session can allocate.

The value must be 20480 - 2147483648 KB. Values are specified in KB, MB, or GB.
This limit does not apply to a user who holds administrative privileges, such as user
informix or a DBSA user.

The value of the session_limit_memory property takes precedent over the value of
the SESSION_LIMIT_MEMORY configuration parameter. If you omit this property,
the amount of memory is set by the SESSION_LIMIT_MEMORY configuration
parameter. If the SESSION_LIMIT_MEMORY configuration parameter is also not
set, the maximum amount of memory that a session can allocate is 2147483648
KB.

session_limit_tempspace The maximum amount of temporary
table space that a session can allocate.

The value must be 20480 - 2147483648 KB. Values are specified in KB, MB, or GB.
This limit does not apply to a user who holds administrative privileges, such as user
informix or a DBSA user.

The value of the session_limit_tempspace property takes precedent over the
value of the SESSION_LIMIT_TEMPSPACE configuration parameter. If you omit this
property, the amount of temporary table space is set by the
SESSION_LIMIT_TEMPSPACE configuration parameter. If the
SESSION_LIMIT_TEMPSPACE configuration parameter is also not set, the
maximum amount of temporary table space that a session can allocate is
2147483648 KB.

session_limit_txn_time The maximum amount of time that a
transaction can run in a session.

The value must be 60 - 20000000000. Values are in seconds.
This limit does not apply to a user who holds administrative privileges, such as user
informix or a DBSA user.

The value of the session_limit_txn_time property takes precedent over the value
of the SESSION_LIMIT_TXN_TIME configuration parameter. If you omit this
property, the amount of time is set by the SESSION_LIMIT_TXN_TIME configuration
parameter. If the SESSION_LIMIT_TXN_TIME configuration parameter is also not
set, the maximum amount of time that a transaction can run in a session is
20000000000 seconds.

tenant_limit_space The maximum amount of storage space
on disk to a tenant database. When the
limit is reached, subsequent operations
that require more disk space are
rejected.

The value must be 1048576 - 1717986918400 KB (1 GB - 200 TB). Values are
specified in KB, MB, GB, or TB.
The value of the tenant_limit_space property takes precedent over the value of the
TENANT_LIMIT_SPACE configuration parameter. If you omit this property, the
amount of space is set by the TENANT_LIMIT_SPACE configuration parameter. If
the TENANT_LIMIT_SPACE configuration parameter is also not set, the maximum
amount of storage space available to a tenant user is 1717986918400 KB.

tenant_limit_memory The maximum amount of shared
memory for all sessions that are
connected to the tenant database. When
the limit is exceeded, the session that is
using the most shared memory is
terminated.

The value must be 102400 - 2147483648 KB (100 MB - 2 TB). Values are specified
in KB, MB, GB, or TB.
The value of the tenant_limit_memory property takes precedent over the value of
the TENANT_LIMIT_MEMORY configuration parameter. If you omit this property,
the amount of memory is set by the TENANT_LIMIT_MEMORY configuration
parameter. If the TENANT_LIMIT_MEMORY configuration parameter is also not set,
the maximum amount of memory available to a tenant session is 2147483648 KB.

tenant_limit_connections The maximum number of connections to
a tenant database. When the limit is
reached, subsequent connection
requests are rejected.

The value must be 1 - 65536.
The value of the tenant_limit_connections property takes precedent over the
value of the TENANT_LIMIT_CONNECTIONS configuration parameter. If you omit
this property, the number of connections is set by the
TENANT_LIMIT_CONNECTIONS configuration parameter. If the
TENANT_LIMIT_CONNECTIONS configuration parameter is also not set, the
maximum number of connections for a tenant database is 65536.

vpclass The name of the virtual processor class
for running tenant-database session
threads.

If you omit this property, session threads are run on CPU virtual processors.
Values must be 8 characters or fewer. A maximum of 200 tenant virtual processor
classes can be created.

If the virtual processor class name is unique, you create a new tenant virtual
processor class. If the virtual processor class name exists, the tenant database
shares the class with other tenant databases.

When a tenant virtual processor is dropped, the virtual processor class ID
resources are not freed until the database server is restarted.

Usage
You must have DBA privileges or been granted the TENANT privilege to run this command. Only the first occurrence of each property is valid.

Run the tenant create argument with the admin() or task() to create a tenant database. The user that creates the database is granted DBA privileges. You can view the
tenant database properties in the sysadmin database's tenant table.

The following statement creates a tenant database that is named company_A:

EXECUTE FUNCTION task('tenant create', 'company_A',
 '{dbspace:"company_A_dbs1,company_A_dbs2,company_A_dbs3",
 sbspace:"company_A_sbs",
 vpclass:"tvp_A,num=6",
 dbspacetemp:"company_A_tdbs",

Part VI: Administering 939

 session_limit_locks:"1000",
 session_limit_memory:"100MB",
 session_limit_tempspace:"25MB",
 session_limit_logspace:"30MB",
 session_limit_txn_time:"120",
 tenant_limit_space:"2TB",
 tenant_limit_memory:"1GB",
 tenant_limit_connections:"1000",
 logmode:"ansi",
 locale:"fr_ca.8859-1",
 case:"insensitive",}'
);

The tenant database has the following attributes:

Three dedicated dbspaces
A dedicated sbspace
Six tenant virtual processors
A dedicated temporary dbspace
A limit of 1000 locks per session
A memory allocation limit of 100 MB per session
A 25 MB limit for temporary table space per session
A 30 MB limit for log space per session
A 120 second limit on transaction times
A limit of 2 TB on the total amount of storage space the tenant database can use
A limit of 1 GB on the total amount of shared memory for all sessions that are connected to the tenant database
A limit of 1000 connections
ANSI logging mode
French locale
Case insensitivity
Temporary smart large objects are stored in the sbspace that is specified by the database server's SBSPACETEMP configuration parameter.
No blobspaces

Related reference:
 create database argument: Create a database (SQL administration API)

TENANT_LIMIT_SPACE configuration parameter
tenant update argument: Modify tenant database properties (SQL Administration API)
tenant drop argument: Drop a tenant database (SQL Administration API)
SESSION_LIMIT_LOCKS configuration parameter
SESSION_LIMIT_MEMORY configuration parameter
SESSION_LIMIT_TEMPSPACE configuration parameter
SESSION_LIMIT_LOGSPACE configuration parameter
SESSION_LIMIT_TXN_TIME configuration parameter
TENANT_LIMIT_MEMORY configuration parameter
TENANT_LIMIT_CONNECTIONS configuration parameter
onstat -g ses command: Print session-related information
Related information:

 Multitenancy
DB_LOCALE environment variable

Copyright© 2020 HCL Technologies Limited

tenant drop argument: Drop a tenant database (SQL Administration API)

Use the tenant drop argument with the admin() or task() function to drop a tenant database.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--'tenant drop'--,--'database_name'--'--)--;------------------><

Element Description Key Considerations

database_name The name of the tenant database. Must be an existing tenant database.

Usage
You must have DBA privileges or been granted the TENANT privilege to run this command. No other connections to the database can be open.

The tables and data in the database are deleted. The storage spaces that are dedicated to the tenant database are freed. The database tenant properties are removed
from the tenant table in the sysadmin database. The associated tenant virtual processor class is dropped if it is not associated with any other tenant database.

The following statement drops the companyA tenant database:

EXECUTE FUNCTION task('tenant drop', 'companyA');

Related reference:

940 Part VI: Administering

https://www.hcltech.com/

tenant create argument: Create a tenant database (SQL Administration API)
tenant update argument: Modify tenant database properties (SQL Administration API)
Related information:
Multitenancy

Copyright© 2020 HCL Technologies Limited

tenant update argument: Modify tenant database properties (SQL Administration
API)

Use the tenant update argument with the admin() or task() function to modify the properties of a tenant database.

Syntax

>>-EXECUTE FUNCTION--+-admin-+--(------------------------------->
 '-task--'

>--'tenant update'--,--'database_name'--,--'-------------------->

 .---.
 V |
>--{----+---+-+--}------>
 | .-,----. |
 | V | |
 +-,blobspace:"---name-+-"-------------------+
 | .-,----. |
 | V | |
 +-dbspace:"---name-+-"----------------------+
 | .-,----. |
 | V | |
 +-,dbspacetemp:"---name-+-"-----------------+
 | .-,----. |
 | V | |
 +-,sbspace:"---name-+-"---------------------+
 | .-,----. |
 | V | |
 +-,sbspacetemp:"---name-+-"-----------------+
 +-,session_limit_locks:"number"-------------+
 | .-KB-. |
 +-,session_limit_logspace:"number-+----+-"--+
 | +-MB-+ |
 | '-GB-' |
 | .-KB-. |
 +-,session_limit_memory:"number-+----+-"----+
 | +-MB-+ |
 | '-GB-' |
 | .-KB-. |
 +-,session_limit_tempspace:"number-+----+-"-+
 | +-MB-+ |
 | '-GB-' |
 +-,session_limit_txn_time:"number"----------+
 | .-KB-. |
 +-+----+-"----------------------------------+
 | +-MB-+ |
 | +-GB-+ |
 | '-TB-' |
 | .-KB-. |
 +-,tenant_limit_memory:"number-+----+-"-----+
 | +-MB-+ |
 | +-GB-+ |
 | '-TB-' |
 +-,tenant_limit_connections:"number"--------+
 '-,vpclass:"-name--+-------------------+--"-'
 '-,--num--=--number-'

>--)--;--><

Element Description Key Considerations

blobspace A comma-separated list of one or
more blobspaces that are assigned to
the tenant database.

Specified blobspaces are appended to the tenant database's existing list of
blobspaces.
blobspaces must be empty to be assigned to a tenant database.

blobspaces must exist before being assigned to a tenant database.

database_name The name of the tenant database. The database name must be on the database server.

dbspace A comma-separated list of one or
more dbspaces that are assigned to
the tenant database.

Specified dbspaces are appended to the tenant database's existing list of
dbspaces.
dbspaces must be empty to be assigned to a tenant database.

dbspaces must exist before being assigned to a tenant database.

Part VI: Administering 941

https://www.hcltech.com/

Element Description Key Considerations

dbspacetemp A comma-separated list of one or
more temporary dbspaces that are
assigned to a tenant database.

The existing dbspacetemp property value is replaced.
You can override the dbspacetemp property for a session by setting the
DBSPACETEMP environment variable to a subset of the dbspaces that are specified
by the dbspacetemp property.

If the dbspacetemp property is omitted, temporary tables are stored in the
temporary dbspaces that are specified by the DBSPACETEMP configuration
parameter or environment variable.

sbspace A comma-separated list of one or
more sbspaces that are assigned to
the tenant database.

Specified sbspaces are appended to the tenant database's existing list of sbspaces.
sbspaces must be empty to be assigned to a tenant database.

sbspaces must exist before being assigned to a tenant database.

num The number of virtual processors to
run.

If you do not include the num property, 1 virtual processor is started.

sbspacetemp A comma-separated list of one or
more temporary sbspaces that are
assigned to the tenant database.

The existing sbspacetemp property value is replaced.

session_limit_locks The maximum number of locks for a
session for users who do not have
DBA privileges.

The existing session_limit_locks property value is replaced.
The value must be 500 - 2147483648.

This limit does not apply to a user who holds administrative privileges, such as user
informix or a DBSA user.

If this property is not set, the number of locks are set by the
SESSION_LIMIT_LOCKS configuration parameter. If the SESSION_LIMIT_LOCKS
configuration parameter is also not set, the maximum number of locks for a session
is 2147483648.

You can override the session_limit_locks property for a session by setting the
IFX_SESSION_LIMIT_LOCKS environment option to a lower value than the
session_limit_locks property value.

session_limit_logspace The maximum amount of log space
that a session can use for individual
transactions.

The existing session_limit_logspace property value is replaced.
The value must be 5120 - 2147483648 KB. Values are specified in KB, MB, or GB.

This limit does not apply to a user who holds administrative privileges, such as user
informix or a DBSA user.

The value of the session_limit_logspace property takes precedent over the value
of the SESSION_LIMIT_LOGSPACE configuration parameter. If you omit this
property, the amount of logspace is set by the SESSION_LIMIT_LOGSPACE
configuration parameter. If the SESSION_LIMIT_LOGSPACE configuration
parameter is also not set, the maximum amount of log space that a session can use
for individual transactions is 2147483648 KB.

session_limit_memory The maximum amount of memory
that a session can allocate.

The existing session_limit_memory property value is replaced.
The value must be 20480 - 2147483648 KB. Values are specified in KB, MB, or GB.

This limit does not apply to a user who holds administrative privileges, such as user
informix or a DBSA user.

The value of the session_limit_memory property takes precedent over the value of
the SESSION_LIMIT_MEMORY configuration parameter. If this property is not set,
the amount of memory is set by the SESSION_LIMIT_MEMORY configuration
parameter. If the SESSION_LIMIT_MEMORY configuration parameter is also not
set, the maximum amount of memory that a session can allocate is 2147483648
KB.

session_limit_tempspace The maximum amount of temporary
table space that a session can
allocate.

The existing session_limit_tempspace property value is replaced.
The value must be 20480 - 2147483648 KB. Values are specified in KB, MB, or GB.

This limit does not apply to a user who holds administrative privileges, such as user
informix or a DBSA user.

The value of the session_limit_tempspace property takes precedent over the
value of the SESSION_LIMIT_TEMPSPACE configuration parameter. If this property
is not set, the amount of temporary table space is set by the
SESSION_LIMIT_TEMPSPACE configuration parameter. If the
SESSION_LIMIT_TEMPSPACE configuration parameter is also not set, the
maximum amount of temporary table space that a session can allocate is
2147483648 KB.

942 Part VI: Administering

Element Description Key Considerations

session_limit_txn_time The maximum amount of time that a
transaction can run in a session.

The existing session_limit_txn_time property value is replaced.
The value must be 60 - 20000000000. Values are in seconds.

This limit does not apply to a user who holds administrative privileges, such as user
informix or a DBSA user.

The value of the session_limit_txn_time property takes precedent over the value
of the SESSION_LIMIT_TXN_TIME configuration parameter. If you omit this
property, the amount of time is set by the SESSION_LIMIT_TXN_TIME
configuration parameter. If the SESSION_LIMIT_TXN_TIME configuration
parameter is also not set, the maximum amount of time that a transaction can run
in a session is 20000000000 seconds.

tenant_limit_space The maximum amount of storage
space on disk to a tenant database.
When the limit is reached,
subsequent operations that require
more disk space are rejected.

The existing tenant_limit_space property value is replaced.
The value must be 1048576 - 1717986918400 KB (1 GB - 200 TB). Values are
specified in KB, MB, GB, or TB.

The value of the tenant_limit_space property takes precedent over the value of
the TENANT_LIMIT_SPACE configuration parameter. If you omit this property, the
amount of space is set by the TENANT_LIMIT_SPACE configuration parameter. If
the TENANT_LIMIT_SPACE configuration parameter is also not set, the maximum
amount of storage space available to a tenant user is 1717986918400 KB.

tenant_limit_memory The maximum amount of shared
memory for all sessions that are
connected to the tenant database.
When the limit is exceeded, the
session that is using the most shared
memory is terminated.

The existing tenant_limit_memory property value is replaced.
The value must be 102400 - 2147483648 KB (100 MB - 2 TB). Values are specified
in KB, MB, GB, or TB.

The value of the tenant_limit_memory property takes precedent over the value of
the TENANT_LIMIT_MEMORY configuration parameter. If you omit this property,
the amount of memory is set by the TENANT_LIMIT_MEMORY configuration
parameter. If the TENANT_LIMIT_MEMORY configuration parameter is also not set,
the maximum amount of memory available to a tenant session is 2147483648 KB.

tenant_limit_connections The maximum number of
connections to a tenant database.
When the limit is reached,
subsequent connection requests are
rejected.

The existing tenant_limit_connections property value is replaced.
The value must be 1 - 65536.

The value of the tenant_limit_connections property takes precedent over the
value of the TENANT_LIMIT_CONNECTIONS configuration parameter. If you omit
this property, the number of connections is set by the
TENANT_LIMIT_CONNECTIONS configuration parameter. If the
TENANT_LIMIT_CONNECTIONS configuration parameter is also not set, the
maximum number of connections for a tenant database is 65536.

vpclass The name of the virtual processor
class for running tenant-database
session threads.

The vpclass property value is replaced.
If you omit this property, session threads are run on CPU virtual processors.

Values must be 8 characters or fewer. A maximum of 200 tenant virtual processor
classes can be created.

If the virtual processor class name is unique, you create a new tenant virtual
processor class. If the virtual processor class name exists, the tenant database
shares the class with other tenant databases.

When a tenant virtual processor is dropped, the virtual processor class ID
resources are not freed until the database server is restarted.

Usage
You must be user informix or a DBSA user, or you must have the TENANT privilege to run this command.

The changes to the database properties take effect for new sessions.

The following statement updates the properties of the tenant database that is named company_A:

EXECUTE FUNCTION task('tenant update', 'company_A',
 '{dbspace:"company_A_dbs4,company_A_dbs5",
 sbspace:"company_A_sbs3",
 vpclass:"tvp_B",
 session_limit_txn_time:"120"}’
);

The tenant database gains two dbspaces and an sbspace, the virtual processor class is changed, and the time limit on transactions becomes 120 seconds.

Related reference:
 TENANT_LIMIT_SPACE configuration parameter

tenant create argument: Create a tenant database (SQL Administration API)
tenant drop argument: Drop a tenant database (SQL Administration API)
SESSION_LIMIT_LOCKS configuration parameter
SESSION_LIMIT_MEMORY configuration parameter
SESSION_LIMIT_TEMPSPACE configuration parameter
SESSION_LIMIT_LOGSPACE configuration parameter
SESSION_LIMIT_TXN_TIME configuration parameter
TENANT_LIMIT_CONNECTIONS configuration parameter

Part VI: Administering 943

onstat -g ses command: Print session-related information
Related information:
Multitenancy
DB_LOCALE environment variable

Copyright© 2020 HCL Technologies Limited

Appendixes

Database server files
 Database server files are created in default directories, or in a directory that the relevant configuration parameter specifies. A database administrator might need to

edit or examine the content of files that are used by the database server.
Troubleshooting errors

 Occasionally, a series of events causes the database server to return unexpected error codes.
Event Alarms

 The database server provides a mechanism for automatically triggering administrative actions based on an event that occurs in the database server environment.
This mechanism is the event-alarm feature.
Messages in the database server log

 Unnumbered messages are printed in the database server message log (online.log). The error messages include corrective actions.
Limits in Informix

 This topic lists the system-level and table-level parameter limits, the system defaults, and the access capabilities of Informix.

Copyright© 2020 HCL Technologies Limited

Database server files

Database server files are created in default directories, or in a directory that the relevant configuration parameter specifies. A database administrator might need to edit or
examine the content of files that are used by the database server.

Table 1 lists database server files that you might need to look at, copy, edit, move, or delete (except where noted).
Table 2 lists database server files that are for internal use only. You must not edit, move, or delete these files.

Table 1. Database server files that you can use. This table lists the files that you might refer to or use when you configure and use the
database server.

File name Directory Purpose Created

af.xxx
xxx identifies a specific assertion
failure

$INFORMIXDIR/tmp (UNIX)
%INFORMIXDIR%\tmp (Windows)

Specified by DUMPDIR configuration
parameter

Assertion-failure information By the database server

ac_msg.log /tmp (UNIX)
%INFORMIXDIR%\etc (Windows)

The message log for the archecker utility By the database server

ac_config.std $INFORMIXDIR/etc (UNIX)
%INFORMIXDIR%\etc (Windows)

Template for archeckerparameter values By the database server

bar_act.log /tmp (UNIX)
%INFORMIXDIR%\etc (Windows)

Specified by the BAR_ACT_LOG
configuration parameter

ON-Bar activity log By ON-Bar

bar_dbug.log /usr/informix/ (UNIX)
\usr\informix\ (Windows)

Specified by the BAR_DEBUG_LOG
configuration parameter

ON-Bar debug log By ON-Bar

bldutil.process_id (UNIX)
bldutil.out (Windows)

/tmp (UNIX)
\tmp (Windows)

Error messages about building the sysutils
database

By the database server

buildsmi.out (UNIX)
buildsmi_out.%INFORMIXSERVER
% (Windows)

/tmp (UNIX)
%INFORMIXDIR%\etc (Windows)

Error messages about building the sysmaster
database

By the database server

concdr.sh $INFORMIXDIR /etc/conv (UNIX)
%INFORMIXDIR% \etc\conv (Windows)

Converts the syscdr database during an
upgrade

By the database server

core (UNIX) Directory from which the database server
was started

Core dump By the database server

gcore.xxx (UNIX) $INFORMIXDIR/tmp (UNIX)
%INFORMIXDIR%\tmp (Windows)

Specified by DUMPDIR configuration
parameter

Assertion failure information By the database server

.informix (UNIX) User's home directory Set personal environment variables By the user

944 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

File name Directory Purpose Created

informix.rc (UNIX) $INFORMIXDIR/etc Set default environment variables for all users By the database administrator

InstallServer.log (Windows) C:\temp Database server installation log By the database server

ixbar.servernum $INFORMIXDIR/etc (UNIX)
%INFORMIXDIR%\etc (Windows)

Emergency boot file that is used in a cold
restore

By ON-Bar

jvp.log /urs/informix
Specified by JVPLOGFILE configuration
parameter

Messages from the Java™ virtual processor By the database server

.jvpprops urs/informix/extend/krakatoa
Specified by JVPPROPFILE configuration
parameter

Template for Java VP properties During installation

oncfg_ servername.servernum $INFORMIXDIR/etc (UNIX)
%INFORMIXDIR%\etc (Windows)

Configuration information for whole-system
restores by ON-Bar

By the database server

online.log $INFORMIXDIR/tmp (UNIX)
%INFORMIXDIR% (Windows)

Specified by the MSGPATH configuration
parameter

Database server message log, which contains
error messages and status information

By the database server

onconfig $INFORMIXDIR/etc (UNIX)
%INFORMIXDIR%\etc (Windows)

Configuration information By the database administrator or the
database server administrator

onconfig.std $INFORMIXDIR/etc (UNIX) Template for configuration parameter values
Important: Do not move, modify, or delete the
onconfig.std file unless instructed to do so by
Software Support. However, you may make a
copy of the onconfig.std file to create a
customized configuration file, and then move
the copy to another location.

During installation

onsnmp.servername /tmp (UNIX)
\tmp (Windows)

Log file that the onsnmp subagent uses By the onsnmp utility

onsrvapd.log /tmp (UNIX)
\tmp (Windows)

Log file for the database server daemon
onsrvapd

By the onsnmp utility

psm_act.log /tmp (UNIX)
%INFORMIXDIR%\etc (Windows)

Specified by the PSM_ACT_LOG
configuration parameter

Log file for Informix® Primary Storage Manager By ON-Bar

pua.map $INFORMIXDIR/gls/etc (UNIX)
%INFORMIXDIR%\gls\etc\(Windows)

Mapping file for displaying characters in
Unicode Private-Use Area (PUA) ranges.

By the user

revcdr.sh (UNIX)
revcdr.bat (Windows)

$INFORMIXDIR/etc/conv (UNIX)
%INFORMIXDIR%\etc\conv(Windows)

Reverts the syscdr database to an earlier
format

By the database server

shmem.xxx $INFORMIXDIR/tmp (UNIX)
%INFORMIXDIR%\tmp (Windows)

Specified by DUMPDIR configuration
parameter

Assertion-failure information By the database server

sm_versions.std $INFORMIXDIR/etc (UNIX)
%INFORMIXDIR%\etc (Windows)

Identifies storage manager in use During installation

snmpd.log /tmp (UNIX)
\tmp (Windows)

Log file for the SNMP master agent, snmpdm By onsnmp

sqlhosts.servername $INFORMIXDIR/etc
%INFORMIXDIR%\etc (Windows)

Connection information During installation; modified by the
database server administrator
The file extension is the server name
(the default extension is
ol_informixversion)

sqlhosts.std $INFORMIXDIR/etc (UNIX)
%INFORMIXDIR%\etc (Windows)

Template for connection information During installation

Table 2. Database server files that are for internal use only. This table lists the files that are required by the database server.
Important: Do not move, modify, or delete these files unless instructed to do so by Software Support.

File name Directory Purpose Created

.conf.dbservername $INFORMIXDIR/etc (UNIX)
%INFORMIXDIR%\etc (Windows)

The onsnmp utility uses this file to obtain the
database server configuration

By the database server

illlsrra.xx $INFORMIXDIR/lib (UNIX)
%INFORMIXDIR%\lib (Windows)

Shared libraries for the database server and
some utilities

By installation procedure

INFORMIXTMP /INFORMIXTMP (UNIX)
\%INFORMIXDIR% (Windows)

Temporary directory for internal files By the database server

.inf.servicename /INFORMIXTMP (UNIX)
drive:\INFORMIXTMP (Windows)

Connection information By the database server

Part VI: Administering 945

File name Directory Purpose Created

.infos.dbservername $INFORMIXDIR/etc (UNIX)
%INFORMIXDIR%\etc (Windows)

Connection information By the database server

.infxdirs /INFORMIXTMP (UNIX)
drive:\INFORMIXTMP (Windows)

Database server discovery file that onsnmp
uses

By the database server

JVM_vpid Specified by JVPLOG configuration
parameter

Messages that the Java virtual machine
generates

By the Java virtual machine

servicename.exp /INFORMIXTMP (UNIX)
drive:\INFORMIXTMP (Windows)

Connection information By the database server

servicename.str /INFORMIXTMP (UNIX)
drive:\INFORMIXTMP (Windows)

Connection information By the database server

VP.servername.nnx /INFORMIXTMP (UNIX)
drive:\INFORMIXTMP (Windows)

Connection information By the database server

Related tasks:
 Setting local environment variables for utilities

Related reference:
 onstat -c command: Print ONCONFIG file contents

onstat -g cfg command: Print the current values of configuration parameters
onconfig Portal: Configuration parameters by functional category
The oninit utility
Related information:

 Database server configuration

Copyright© 2020 HCL Technologies Limited

Troubleshooting errors

Occasionally, a series of events causes the database server to return unexpected error codes.

You can use the following diagnostic tools to gather information for troubleshooting errors:

onmode -I
tracepoints
The ifxcollect tool

Collecting Diagnostics using onmode -I
 Creating Tracepoints

 Collecting data with the ifxcollect tool
 You can use the ifxcollect tool to collect diagnostic data if necessary for troubleshooting a specific problem, such as an assertion failure. You can also specify

options for transmitting the collected data via the File Transfer Protocol (FTP). .

Copyright© 2020 HCL Technologies Limited

Collecting Diagnostics using onmode -I

To help collect additional diagnostics, you can use onmode -I to instruct the database server to perform the diagnostics collection procedures that the IBM® Informix®
Administrator's Guide describes. To use onmode -I when you encounter an error number, supply the iserrno and an optional session ID. For more information about
onmode, see The onmode utility.

Related reference:
 Creating Tracepoints

Collecting data with the ifxcollect tool

Copyright© 2020 HCL Technologies Limited

Creating Tracepoints

Tracepoints are useful in debugging user-defined routines written in C. You can create a user-defined tracepoint to send special information about the current execution
state of a user-defined routine.

Each tracepoint has the following parts:

A trace groups related tracepoints together so that they can be turned on or off at the same time.
You can either use the built-in trace called _myErrors or create your own. To create your own trace, you insert rows into the systracees system catalog table.

A trace message is the text that the database server sends to the tracing-output file.
You can store internationalized trace messages in the systracemsgs system catalog table.

A tracepoint threshold determines when the tracepoint executes.

946 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

By default, the database server puts all trace messages in the trace-output file in the tmp directory with the following filename:

session_num.trc

For more information on tracing user-defined routines, see the IBM® Informix® DataBlade API Programmer's Guide.

Related concepts:
 Collecting Diagnostics using onmode -I

Related reference:
 Collecting data with the ifxcollect tool

Copyright© 2020 HCL Technologies Limited

Collecting data with the ifxcollect tool

You can use the ifxcollect tool to collect diagnostic data if necessary for troubleshooting a specific problem, such as an assertion failure. You can also specify options for
transmitting the collected data via the File Transfer Protocol (FTP). .

The ifxcollect tool is in the $INFORMIXDIR/bin directory. Output files that ifxcollect commands generate are in the $INFORMIXDIR/isa/data directory.

The type of data that is collected per category and subcategory is in predefined XML files in the $INFORMIXDIR/isa/ directory. These XML files can be modified to add or
remove specific commands.

Important: The XML files can contain commands that override the options that are specified for data collection. For example, an XML file might contain sleep commands
that override the -d option with a shorter number of seconds; or an XML file might contain a call to onstat -z.

Syntax

>>-ifxcollect-- -c - category -- -s - subcategory -------------->

>--+------------------------+--+----------------+--+-----+------>
 '- -r - number_of_times -' '- -d - seconds -' '- -y '

>--+-----------+--+-----+--------------------------------------><
 +- -V-------+ +- -f-+
 '- -version-' +- -e-+
 +- -p-+
 +- -m-+
 +- -l-+
 +- -u-+
 '- -w-'

Table 1. Options for data collection

Element Description Key Considerations

-c category Tells the server to collect data in the specified category. You must specify the category of data to collect.

-s category Tells the server to collect data in the specified subcategory. You must specify the subcategory of data to collect.

-r number of times Specifies the number of times to repeat data collection. Optional. The default value is 1.

-d number of seconds Specifies the number of times to pause between collection
operations.

Optional. The default value is 0.

-y Causes the database server to automatically respond yes to
all prompts.

Optional.

-V Displays the software version number and the serial
number.

Optional.
See Obtaining utility version information

-version Displays the build version, host, operating system, number
and date, and the GLS version.

Optional.
See Obtaining utility version information

Table 2. FTP options if you also transmitting data

Element Description Key Considerations

-f FTP the entire collection Required for the transmission of
data.

-e email address Email address Required for the transmission of
data.

-p the PMR number PMR number Required for the transmission of
data.

-m machine name Machine to connect to Required for the transmission of
data.

-l directory Directory that contains the data Required for the transmission of
data.

-u user name User name for the FTP Required for the transmission of
data.

Part VI: Administering 947

https://www.hcltech.com/

Element Description Key Considerations

-w password Password for the FTP Required for the transmission of
data.

Usage
The following table shows the combination of categories and subcategories that you can use in your commands.

Table 3. Category and subcategory combinations

Category and subcategory Explanation

-c ids -s general Collects general data for issues that are related to all Informix products

-c af -s general Collects general data for assertion failures

-c er -s general Collects general data for Enterprise Replication

-c er -s init Collects general data for Enterprise Replication initialization issues

-c performance -s general Collects data for performance issues

-c performance -s cpu Collects data for CPU utilization issues

-c onbar -s archive_failure Collects data for onbar archive failures

-c onbar -s restore_failure Collects data for onbar restore failures

-c ontape -s archive_failure Collects data for ontape archive failures

-c ontape -s restore_failure Collects data for ontape restore failures

-c connection -s failure Collects data for connection failures

-c connection -s hang Collects data for connection hangs

-c cust -s prof Collects customer profile information

To view all ifxcollect utility command options, type ifxcollect at the command prompt.

Examples
To collect information for a general assertion failure, run this command:

ifxcollect –c af –s general

To collect information for a performance problem that is related to CPU utilization, run this command:

ifxcollect –c performance –s cpu

To include FTP information, specify the additional information as shown in this example:

-f -e user_name@company_name.org -p 9999.999.999
-f -m machine -l /tmp -u user_name -w password

Related concepts:
 Collecting Diagnostics using onmode -I

Related reference:
 Creating Tracepoints

Copyright© 2020 HCL Technologies Limited

Event Alarms

The database server provides a mechanism for automatically triggering administrative actions based on an event that occurs in the database server environment. This
mechanism is the event-alarm feature.

Events can be informative (for example, Backup Complete) or can indicate an error condition that requires your attention (for example, Unable to Allocate Memory).

Using ALARMPROGRAM to Capture Events
 Events in the ph_alert Table

 All event alarms that are generated are inserted in the ph_alert table in the sysadmin database.
Event Alarm Parameters

 Event alarms have five parameters that describe each event.
Event alarm IDs

 The class ID for event alarms indicates the type of event. The event ID indicates the specific event.
Connection Manager event alarm IDs

 The class ID for event alarms indicates the type of event. The event ID indicates the specific event.

Related reference:
 ALARMPROGRAM configuration parameter

ALRM_ALL_EVENTS configuration parameter

Copyright© 2020 HCL Technologies Limited

948 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Using ALARMPROGRAM to Capture Events

On UNIX, use the alarmprogram.sh and on Windows, use the alarmprogram.bat shell script, for handling event alarms and starting automatic log backups. For the setup
instructions, see ALARMPROGRAM configuration parameter.

To automate logical-log backups only, two ready-made scripts are provided: log_full.[sh|bat] and no_log.[sh|bat]. Set ALARMPROGRAM to the full path name of the
script. For information, see ALARMPROGRAM configuration parameter.

Setting ALRM_ALL_EVENTS
 Writing Your Own Alarm Script

 Customizing the ALARMPROGRAM Scripts
 You can customize the ALARMPROGRAM scripts based on your environment.

Precautions for Foreground Operations in Alarm Scripts
 To ensure continuous server availability, do not run certain foreground operations in an alarm script.

Interpreting event alarm messages
Some of the events that the database server reports to the message log trigger the alarm program. The class messages indicate the events that the database server
reports.

Copyright© 2020 HCL Technologies Limited

Setting ALRM_ALL_EVENTS

You can set ALRM_ALL_EVENTS to specify whether ALARMPROGRAM runs for all events that are logged in the MSGPATH or only specified noteworthy events (events
greater than severity 1).

Copyright© 2020 HCL Technologies Limited

Writing Your Own Alarm Script

Alternatively, you can write your own shell script, batch file, or binary program that contains the event-alarm parameters. When an event occurs, the database server
invokes this executable file and passes it the event-alarm parameters (see Table 1). For example, your script can use the _id and _msg parameters to take administrative
action when a table failure occurs. Set ALARMPROGRAM to the full pathname of this executable file.

Related reference:
 ALARMPROGRAM configuration parameter

Copyright© 2020 HCL Technologies Limited

Customizing the ALARMPROGRAM Scripts

You can customize the ALARMPROGRAM scripts based on your environment.

The mail utility must already be present.

Follow these steps to customize the alarmprogram.[sh|bat] script. You can use alarmprogram.[sh|bat] instead of log_full.[sh|bat] to automate log backups.

To customize the ALARMPROGRAM scripts:

1. Change the value of ADMINMAIL to the email address of the database server administrator.
2. Change the value of PAGERMAIL to the pager service email address.
3. Set the value of the parameter MAILUTILITY.

UNIX: /usr/bin/mail
Windows: $INFORMIXDIR/bin/ntmail.exe
Linux: /usr/lib/sendmail -t

4. To automatically back up logical logs as they fill, change BACKUP to yes. To stop automatic log backups, change BACKUP to any value other than yes.
5. In the ONCONFIG file, set ALARMPROGRAM to the full pathname of alarmprogram.[sh|bat].
6. Restart the database server.

Alarms with a severity of 1 or 2 do not write any messages to the message log nor send email. Alarms with severity of 3 or greater send email to the database
administrator. Alarms with severity of 4 and 5 also notify a pager via email.

Related reference:
 ALARMPROGRAM configuration parameter

Copyright© 2020 HCL Technologies Limited

Precautions for Foreground Operations in Alarm Scripts

To ensure continuous server availability, do not run certain foreground operations in an alarm script.

Part VI: Administering 949

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

When the server invokes an alarm script, the server sometimes waits for the script to complete before proceeding. For example:

When an alarm is invoked because of a fatal error, the server waits for the script to finish writing information to the error log. In certain situations, alarm events 5
and 6 are run in the foreground.
Some Enterprise Replication event alarms run in the foreground, such as event alarms 31, 34, 37, and 39.

Because the server might need to wait for the alarm program script to finish, do not run the following operations in the foreground in an alarm script:

An onmode command that forces user connections off the server such as onmode -u or onmode -yuk. These kinds of onmode commands can cause a deadlock
between the server and the alarm script because the server might wait for the alarm script to complete while the alarm script that executed the onmode command
waits for the user sessions to shut down, and one of those sessions is running the alarm script itself.
Operations that might take a long time to complete or that have a highly variable run time. Operations that take a long time to complete can cause the server to
appear as if it is not responding while the operation is running.

If you need to run the above operations in an alarm script, run them in the background using one of the following operating system utilities:

On UNIX: Use the nohup utility. For example, nohup onmode -yuk & instructs nohup to continue running the command even if its parent terminates and the ampersand,
&, runs the command in the background so it will not block execution of the alarm program script itself.

On Windows: Use the start utility with the /B flag. For example, start /B onmode -yuk.

Copyright© 2020 HCL Technologies Limited

Interpreting event alarm messages

Some of the events that the database server reports to the message log trigger the alarm program. The class messages indicate the events that the database server
reports.

The database server reports a nonzero exit code in the message log. In the alarm program, set the EXIT_STATUS variable to 0 for successful completion and to another
number for a failure.

For example, if a thread attempts to acquire a lock, but the maximum number of locks are already in use, the database server writes the following message to the message
log:

10:37:22 Checkpoint Completed: duration was 0 seconds.
10:51:08 Lock table overflow - user id 30032, rstcb 10132264
10:51:10 Lock table overflow - user id 30032, rstcb 10132264
10:51:12 Checkpoint Completed: duration was 1 seconds.

When the database server runs the alarmprogram.sh or alarmprogram.bat program, or your alarm program, the database server generates a message that describes the
severity and class of the event. If the severity is greater than 2, the message takes the following format:

Action Message

A reasonably severe server event Severity: 3
Class ID: 21
Class msg: Database server resource
 overflow: 'Locks'.
Specific msg: Lock table overflow -
 user id 30032, rstcb 10132264
See Also: # optional message
Event ID: 21005

The message that appears at the end of each e-mailed message This e-mail was generated by the server
ALARMPROGRAM script on servername
because something untoward just happened
to eventname.

Copyright© 2020 HCL Technologies Limited

Events in the ph_alert Table

All event alarms that are generated are inserted in the ph_alert table in the sysadmin database.

You can query the ph_alert table on local or remote server to view the recent event alarms for that server. You can write SQL scripts based on the ph_alert table to handle
event alarms instead of using the scripts controlled by the ALARMPROGRAM configuration parameter.

By default, alerts remain in the ph_alert table for 15 days before being purged.

Example
The following example shows an event alarm in the ph_alert table:

SELECT * FROM ph_alerts WHERE alert_object_type=ALARM;

id 34
alert_task_id 18
alert_task_seq 10
alert_type INFO
alert_color YELLOW
alert_time 2010-03-08 12:05:48
alert_state NEW

950 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

alert_state_chang+ 2010-03-08 12:05:48
alert_object_type ALARM
alert_object_name 23
alert_message Logical Log 12 Complete, timestamp: 0x8e6a1.
alert_action_dbs sysadmin
alert_action
alert_object_info 23001

Related reference:
 The ph_alert Table

Event Alarm Parameters

Copyright© 2020 HCL Technologies Limited

Event Alarm Parameters

Event alarms have five parameters that describe each event.

The following table lists the parameters that are part of event alarm.
Table 1. Event Alarm Parameters

Parameter Description Data Type

severity The severity of the event. integer

class_id A numeric identifier that classifies the type of event that has occurred. integer

class_msg A brief messages that describes the classification of the event. string

specific_msg Specific messages that describes the event that occurred. string

see_also A reference to a file that contains additional information about the event. string

uniqueid A unique event identifier for the specific message. bigint

Event Severity
An event severity code is a numeric indication of the seriousness of an event. Every event that is included in the message log contains a severity code. The event severity
code is the first parameter that is sent to the alarm program. In the ph_alert table, the event severity is reflected by a combination of the alert color and the alert type. The
event severity codes are listed in the following table.

Table 2. Event Severity Codes

Severity Description

1 Not noteworthy. The event (for example, date change in the message log) is not reported to the alarm program unless ALRM_ALL_EVENTS
configuration parameter is enabled.
In the ph_alert table, the alert color is GREEN and the alert type is INFO.

2 Information. No error has occurred, but some routine event completed successfully (for example, checkpoint or log backup completed).
In the ph_alert table, the alert color is YELLOW and the alert type is INFO.

3 Attention. This event does not compromise data or prevent the use of the system; however, the event warrants your attention. For example, one
chunk of a mirrored pair goes down. An email is sent to the system administrator.
In the ph_alert table, the alert color is YELLOW and the alert type is WARNING.

4 Emergency. Something unexpected occurred that might compromise data or access to data. For example an assertion failure, or oncheck reports
data corrupt. Take action immediately. The system administrator is paged when this event severity occurs.
In the ph_alert table, the alert color is RED and the alert type is ERROR.

5 Fatal. Something unexpected occurred and caused the database server to fail. The system administrator is paged when this event severity occurs.
In the ph_alert table, the alert color is RED and the alert type is ERROR.

Class ID
The class ID is an integer that identifies the event that causes the database server to run your alarm program. The class ID is the second parameter that the database
server displays in your alarm program.

The class ID is stored in the alert_object_name column in the ph_alert table.

Class Message
The class message is a text message briefly describes, or classifies, the event that causes the database server to run your alarm program. The class messages is the third
parameter that the database server displays in your alarm program.

Specific Message
The specific message is a text messages the describes in more detail the event that causes the database server to run your alarm program. The specific message is the
fourth parameter that the database server displays in your alarm program. For many alarms, the text of this message is the same as the message that is written to the
message log for the event.

The specific message is stored in the alert_message column in the ph_alert table.

Part VI: Administering 951

https://www.hcltech.com/

See Also Paths
For some events, the database server writes additional information to a file when the event occurs. The path name in this context refers to the path name of the file where
the database server writes the additional information.

Event ID
The event ID is a unique number for each specific message. You can use the event ID in custom alarm handling scripts to create responses to specific events.

The event ID is stored in the alert_object_info column in the ph_alert table.

Related concepts:
 Events in the ph_alert Table

Related reference:
 STORAGE_FULL_ALARM configuration parameter

SHMVIRT_ALLOCSEG configuration parameter

Copyright© 2020 HCL Technologies Limited

Event alarm IDs

The class ID for event alarms indicates the type of event. The event ID indicates the specific event.

The following table lists event alarm IDs and messages or where to find more information. Many alarms have additional explanations and user actions. Many of the issues
that trigger event alarms also result in messages in the online message log. The location of the message log is specified by the MSGPATH configuration parameter.

Table 1. Event Alarms
ID Severity Messages Explanation

Class ID:

1

Event ID:

1001

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

Page allocation error on 'object'

The database server detected an inconsistency during the
allocation of pages to a table or index.
Online log: Assertion Failure or Assertion Warning with problem
details.

Server state: Dependent upon the nature of the problem found.

User action: Review the online.log file for appropriate action.
You will need to run the oncheck utility on the
'dbname:"owner".tabname' identified in the message.
Occasionally, the database server automatically resolves the
problem, and this resolution is identified in the online.log file.

Class ID:

1

Event ID:

1002

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

Row allocation error on 'object'

The database server detected an inconsistency during the
allocation of a row to a table or index.
Online log: Assertion Failure or Assertion Warning with problem
details.

Server state: Dependent upon the nature of the problem found.

User action: Review the online.log file for appropriate action.
You will need to run the oncheck utility on the
'dbname:"owner".tabname' identified in the message.
Occasionally, the database server automatically resolves the
problem, and this resolution is identified in the online.log file.

Class ID:

1

Event ID:

1003

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

Slot allocation error for 'object'

The database server detected an inconsistency during row
processing.
Online log: Assertion Failure or Assertion Warning with problem
details.

Server state: Dependent upon the nature of the problem found.

User action: Review the online.log file for appropriate action.
You will need to run the oncheck utility on the
'dbname:"owner".tabname' identified in the message.
Occasionally, the database server automatically resolves the
problem, and this resolution is identified in the online.log file.

Class ID:

1

Event ID:

1004

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error prevented the database server to find the next
possible data page in this tblspace.

The database server detected an inconsistency in a bitmap page
during the allocation of a row to a table or index.
Online log: Assertion Failure or Assertion Warning with problem
details.

Server state: Dependent upon the nature of the problem found.

User action: Review the online.log file for appropriate action.
Run the oncheck utility on the 'dbname:"owner".tabname'
identified in the message.

952 Part VI: Administering

https://www.hcltech.com/

ID Severity Messages Explanation

Class ID:

1

Event ID:

1005

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

Dropping wrong TBLSpace, requested tblspace_name != actual
tblspace_name

The database server detected a mismatch between the
requested and existing tables while attempting to drop a table.
No table was dropped.
Online log: Assertion Failure or Assertion Warning with problem
details.

Server state: Online

User action: Review the online.log file for appropriate action.
Run the oncheck utility on the 'dbname:"owner".tabname'
identified in the message.

Class ID:

1

Event ID:

1006

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error which may have been caused due to data
corruption prevented the database server from altering the
bitmap pages for this partition.

The database server encountered a possible data corruption
error during a table or index operation to alter bitmap pages.
Online log: Assertion Failure or Assertion Warning with problem
details.

Server state: Online

User action: Review the online.log file for appropriate action.
Run the oncheck utility on the 'dbname:"owner".tabname'
identified in the message.

Class ID:

1

Event ID:

1007

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

[3] An internal error which may have been caused due to
corrupted bitmap pages as the database server is still in the
process of converting them.

The database server encountered an incomplete modification of
internal bitmap pages during a table or index operation to alter
bitmap pages.
Online log: Assertion Failure or Assertion Warning with problem
details.

Server state: Online

User action: Note all circumstances and contact Software
Support.

Class ID:

1

Event ID:

1008

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error which may have been caused due to
unconverted bitmap pages.

The database server encountered a situation where the
modification of the internal bitmap pages has not yet completed.
during a table or index operation to alter bitmap pages.
Online log: Assertion Failure or Assertion Warning with problem
details.

Server state: Online.

User action: Note all circumstances and contact Software
Support.

Class ID:

1

Event ID:

1009

4 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

Page Check Error in object

The database server detected inconsistencies while checking a
page that was being read into internal buffers.
Online log: Assertion failure or assertion warning with a
description of the problem.

Server state: Online or offline, depending on how serious the
problem is.

User action: Follow the suggestions in the online log. Typically,
run the oncheck -cD command on the table mentioned in the
class message or on the database.

Class ID:

1

Event ID:

1010

4 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

Bad rowid rowid

The database server detected an invalid row ID.
Online log: Assertion warning with a description of where the
problem was found.

Server state: Online.

User action: Repair the index by running the oncheck -cI
command on the table mentioned in the class message or on the
database.

Class ID:

1

Event ID:

1011

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

Closing TBLSpace tblspace_name

The database server determined that the table or index is closed.
Online log: Assertion Failure or Assertion Warning with problem
details.

Server state: Online.

User action: None. The database server will correct the problem
automatically.

Class ID:

1

Event ID:

1012

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

Cannot recreate index index_name for partnum
partition_number, iserrno = error_number

The database server encountered an error that prevents
recreating an index.
Online log: Assertion Failure or Assertion Warning with problem
details.

Server state: Online.

User action: Review the online.log file for the index information,
and then drop and recreate the index manually.

Part VI: Administering 953

ID Severity Messages Explanation

Class ID:

1

Event ID:

1013

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error occurred while the database server was trying
to initialize the type of set read operation.

The database server was unable to initialize internal data
structures for a set read operation.
Online log: Assertion Warning with database and table details.

Server state: Online.

User action: Review the online.log file for ISAM error codes, and
table and database information. Try the operation again. If the
operation fails again, note all circumstances and contact
Software Support.

Class ID:

1

Event ID:

1014

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error occurred while the database server was trying
to read records from the tblspace's pages

The database server encountered an internal error when reading
records from a table or index.
Online log: Assertion Warning with database and table details.

Server state: Online.

User action: Review the online.log file for table and database
information. Try the operation again. If the operation fails again,
note all circumstances and contact Software Support.

Class ID:

1

Event ID:

1015

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error occurred while the database server was trying
to read the current record.

The database server encountered an internal error when reading
records from a table or index.
Online log: Assertion Warning with database and table details.

Server state: Online.

User action: Review the online.log file for table and database
information. Try the operation again. If the operation fails again,
note all circumstances and contact Software Support.

Class ID:

1

Event ID:

1016

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error occurred while the database server was trying
to initialize the set read buffer.

An internal error was triggered when the database server
attempted to initialize a set read buffer.
Online log: Assertion Warning with database and table details.

Server state: Online.

User action: Review the online.log file for table and database
information. Try the operation again. If the operation fails again,
note all circumstances and contact Software Support.

Class ID:

1

Event ID:

1017

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error occurred while the database server was trying
to set the new mode on the bitmap page.

An internal error occurred during the conversion of a bitmap
page from an earlier version of the database server.
Online log: Assertion Warning with problem details.

Server state: Online.

User action: None.

Class ID:

1

Event ID:

1018

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error occurred while the database server was
attempting to convert bitmap pages to the correct format.

The database server was unable to correct an error which
occurred during a bitmap page conversion.
Online log: Assertion Warning with problem details.

Server state: Online.

User action: Note all circumstances, review the online.log file for
additional information, and contact Software Support.

Class ID:

1

Event ID:

1019

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error occurred while the database server was trying
to modify the bitmap pages during light append operation.

The database server encountered an internal error during a light
append operation and could not locate the required bitmap page.
Online log: Assertion Warning with problem details.

Server state: Online.

User action: Try the operation again. If the operation fails again,
note all circumstances and contact Software Support.

Class ID:

1

Event ID:

1020

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error occurred while the database server was trying
to perform light scan operation.

The database server encountered an internal error while
performing a light scan operation.
Online log: Assertion Warning with problem details.

Server state: Online.

User action: Try the operation again. If the operation fails again,
note all circumstances and contact Software Support.

Class ID:

1

Event ID:

1021

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error occurred while the database server was trying
to perform light scan I/O operation.

The database server encountered an internal error while
performing a light scan operation.
Online log: Assertion Warning with problem details.

Server state: Online.

User action: Try the operation again. If the operation fails again,
note all circumstances and contact Software Support.

954 Part VI: Administering

ID Severity Messages Explanation

Class ID:

1

Event ID:

1022

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error was reported by the database server when it
tried to validate light append buffer.

The database server encountered an internal error while
performing a light scan operation.
Online log: Assertion Warning with problem details.

Server state: Online.

User action: Try the operation again. If the operation fails again,
note all circumstances and contact Software Support.

Class ID:

1

Event ID:

1023

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error was reported by the database server when it
tried to write the next record to the page in the light append
buffer.

The database server encountered an internal error while
performing a light scan operation.
Online log: Assertion Warning with problem details.

Server state: Online.

User action: Try the operation again. If the operation fails again,
note all circumstances and contact Software Support.

Class ID:

1

Event ID:

1024

4 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error was reported by the database server when it
tried to open a light append for a tblspace.

The database server encountered an internal error during a light
append operation on a tblspace.
Online log: Assertion failure.

Server state: Online.

User action: Try the operation again. If the operation fails again,
note all circumstances and contact Software Support.

Class ID:

1

Event ID:

1025

4 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error was reported by the database server when it
tried to load the first bitmap page for a light append operation.

The database server encountered an internal error during a light
append operation.
Online log: Assertion Failure : Light
Append(Redo/Undo): Can't find bitmap page

Server state: Online.

User action: Try the operation again. If the operation fails again,
note all circumstances and contact Software Support.

Class ID:

1

Event ID:

1026

4 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error was reported by the database server when it
tried to write the cached bitmap pages for a light append
operation.

The database server encountered an internal error during a light
append operation.
Online log: Assertion failure.

Server state: Online.

User action: Try the operation again. If the operation fails again,
note all circumstances and contact Software Support.

Class ID:

1

Event ID:

1027

2 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal deadlock database condition was caught by the Lock
Manager in the database server.

The database server detected an internal deadlock database
condition.
Online log: Assertion warning identifying the databases and
tables involved in the deadlock.

Server state: Online.

User action: None.

Class ID:

1

Event ID:

1028

2 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal deadlock database condition was caught by the Lock
Manager in the database server.

The database server detected an internal deadlock database
condition.
Online log: Assertion warning identifying the databases and
tables involved in the deadlock.

Server state: Online.

User action: None.

Class ID:

1

Event ID:

1029

4 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error was reported by the database server when it
tried to map the logical page number in the tblspace to its
physical location in the chunk.

The database server could not access a table because of an
inconsistency between the physical page and its logical page
number.
Online log: Assertion failure with the page information.

Server state: Online.

User action: Run the oncheck -cDI command on the table
mentioned in the class message or on the database, fix any
issues reported, and then try the operation again. If the
operation fails again, note all circumstances and contact
Software Support.

Class ID:

1

Event ID:

1030

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error was reported by the database server when it
tried to allocate the alter information.

The database server encountered an internal error when
attempting to read an internal disk structure.
Online log: Assertion Warning with problem details and table
and database information.

Server state: Online.

User action: Try the operation again. If the operation fails again,
note all circumstances and contact Software Support.

Part VI: Administering 955

ID Severity Messages Explanation

Class ID:

1

Event ID:

1031

3 Class message:

Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error was reported by the database server when it
tried to prepare the list of operations to be performed on a
compressed row.

The database server encountered an internal error when it tried
to create an internal operations list to transform a compressed
version of a row to an uncompressed version of the latest row.
Online log: Assertion Warning with problem details and table
and database information.

Server state: Online.

User action: Try the operation again. If the operation fails again,
note all circumstances and contact Software Support.

Class ID:

1

Event ID:

1032

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error was reported by the database server when it
tried to insert an operation in the list of operations based on the
offset in the row where the new operation points to.

The database server encountered an internal error when it tried
to create an internal operations list to transform a compressed
version of a row to an uncompressed version of the latest row.
Online log: Assertion Warning with problem details and table
and database information.

Server state: Online.

User action: Try the operation again. If the operation fails again,
note all circumstances and contact Software Support.

Class ID:

1

Event ID:

1033

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error was reported by the database server when it
detected an inconsistency with the operation list.

The database server encountered an internal error when it tried
to create an internal operations list to transform a compressed
version of a row to an uncompressed version of the latest row.
Online log: Assertion Warning with problem details and table
and database information.

Server state: Online.

User action: Try the operation again. If the operation fails again,
note all circumstances and contact Software Support.

Class ID:

1

Event ID:

1034

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error was reported by the database server when it
tried to free the partition header page.

The database server encountered an internal error when
attempting to free the header page for a partition. The database
server did not free the header page.
Online log: Assertion Warning with problem details, table and
database information, and a specific oncheck command to run.

Server state: Online.

User action: Review the online.log file for information and run
the specified oncheck command.

Class ID:

1

Event ID:

1035

3 or 4 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error was reported by the database server when it
tried to validate the partition header page.

The database server cannot access a table because of a
validation error for the tblspace page.
Online log: Assertion with details about the table.

Server state: Online.

User action: Examine the online log for information about the
specified table. Run the oncheck -pt command on the table or on
the database and correct any errors found. Retry the original
operation. If the operation fails again, note all circumstances and
contact Software Support.

Class ID:

1

Event ID:

1036

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error was reported by the database server when it
tried to update the special columns list during an alter table
command processing.

The database server encountered an internal error when
processing the special columns list associated with a table while
the table was being altered.
Online log: Assertion Warning with problem details, table and
database information, and a specific oncheck command to run.

Server state: Online.

User action: Review the online.log file for information and run
the specified oncheck command.

Class ID:

1

Event ID:

1037

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error was reported by the database server when it
tried to log the completion of the alter and remove the
associated version information from the tblspace's header page.

The database server encountered an internal error when
attempting to alter a table.
Online log: Assertion Warning with problem details, table and
database information, and a specific oncheck command to run.

Server state: Online.

User action: Review the online.log file for information and run
the specified oncheck command.

956 Part VI: Administering

ID Severity Messages Explanation

Class ID:

1

Event ID:

1038

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error was reported by the database server when it
detected a buffer inconsistency.

The database server encountered an internal error during a
consistency check of the internal buffers it was manipulating.
Online log: Assertion Warning with problem details, table and
database information, and a specific oncheck command to run.

Server state: Online.

User action: Retry the original operation. If the operation fails
again, note all circumstances and contact Software Support.

Class ID:

1

Event ID:

1039

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error was reported by the database server when it
tried to construct a forwarded row into a single tuple.

The database server encountered an internal error when
processing rows.
Online log: Assertion Warning with problem details, and table
and database information.

Server state: Online.

User action: Review the online.log file for more information.
Retry the original operation. If the operation fails again, note all
circumstances and contact Software Support.

Class ID:

1

Event ID:

1040

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error was reported by the database server when it
tried to read the data from a partition into the set read buffer.

The database server encountered a corrupt record during the
process of reading data and was unable to retrieve the data.
Online log: Assertion Warning with details of the error
encountered and the database:table involved.

Server state: Online.

User Action: Review the online.log file. Some instances of this
error require the attention of Software Support.

Class ID:

1

Event ID:

1041

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error was reported by the database server when it
tried to read the data row for a given rowid.

The database server encountered a corrupt record during the
process of reading data from an index and was unable to retrieve
the data.
Online log: Assertion Warning with details of the error
encountered and the database:table involved.

Server state: Online.

User Action: Review the online.log file for information and run
the recommended oncheck command. Some instances of this
error require the attention of Software Support.

Class ID:

1

Event ID:

1042

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error was reported by the database server when it
tried to alter the row in memory to the latest schema.

The database server encountered an internal error while trying to
convert an old version of a record to the latest version of the
record in an altered table.
Online log: Assertion Warning with details of the error
encountered and the database:table involved.

Server state: Online.

User Action: Review the online.log file for more information.
Retry the original operation. If the operation fails again, note all
circumstances and contact Software Support.

Class ID:

1

Event ID:

1043

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error was reported by the database server when it
tried to undo the alter of a bitmap page.

The database server encountered an internal error while trying to
revert an operation that had altered an internal bitmap page.
Online log: Assertion Warning with details of the error
encountered and the database:table involved.

Server state: Online.

User Action: Review the online.log file for more information and
run the recommended oncheck command.

Class ID:

1

Event ID:

1044

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error was reported by the database server when it
tried to undo the addition of special column descriptors from the
tblspace's header page.

The database server encountered an internal error while trying to
revert an operation that had added information to the internal
structure that tracks tables.
Online log: Assertion Warning with details of the error
encountered and the database:table involved.

Server state: Online.

User Action: Review the online.log file for more information and
run the recommended oncheck command.

Part VI: Administering 957

ID Severity Messages Explanation

Class ID:

1

Event ID:

1045

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error was reported by the database server when it
tried to undo the addition of the new version to a partition.

The database server encountered an internal error while trying to
revert an operation that had added information to the internal
structure that tracks tables.
Online log: Assertion Warning with details of the error
encountered and the database:table involved.

Server state: Online.

User Action: Review the online.log file for more information and
run the recommended oncheck command.

Class ID:

1

Event ID:

1046

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error was reported by the database server when it
tried to allocate the file descriptor for a partition number.

The database server encountered an internal error while trying to
create a new file descriptor for a table or index.
Online log: Assertion Warning with details of the error
encountered and the database:table involved.

Server state: Online.

User Action: Review the online.log file for more information and
run the recommended oncheck command.

Class ID:

1

Event ID:

1047

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

An internal error was reported by the database server when it
tried to free the file descriptor for a partition number.

The database server encountered an internal error while trying to
release an internal data structure associated with a table or
index.
Online log: Assertion Warning with details of the error
encountered and the database:table involved.

Server state: Online.

User Action: None. The database server will internally correct
the issue.

Class ID:

1

Event ID:

1048

3 Class message:
Table failure: 'dbname:"owner".tabname'

Specific message:

Error updating table record.

The database server was unable to update a database record for
a table that has in-place alters. It was unable to write the new
version of the record.
Online log: Assertion Warning with details of the error
encountered and the database:table involved.

Server state: Online.

User Action: Review the online.log file for more information and
run the recommended oncheck command.

Class ID:

2

Event ID:

2001

3 or 4 Class message:
Index failure: 'dbname:"owner".tabname:idxname'

Specific message:

Fragid fragment_id, Rowid rowid not found for delete in partnum
partition_number

The database server did not delete a record because it could not
find it in the index.
Online log: Assertion indicating that a DELETE operation failed
and details of the table and index where the problem occurred.

Server state: Online.

User action: Run the oncheck -cI command on the specified
table and index, or on the database, and correct any errors
found. Retry the original operation. If the operation fails again,
note all circumstances and contact Software Support.

Class ID:

2

Event ID:

2002

3 Class message:
Index failure: 'dbname:"owner".tabname:idxname'

Specific message:

An internal error was raised due to an inconsistency in the index
which is preventing the database server to position on the first
record in that index.

The database server detected an inconsistent index and marked
it as unusable.
Online log: Assertion Warning with details of the error
encountered and the database:table:index involved.

Server state: Online.

User Action: Review the online.log file for more information and
run the recommended oncheck command.

Class ID:

2

Event ID:

2003

3 Class message:
Index failure: 'dbname:"owner".tabname:idxname'

Specific message:

An internal error was raised due to an inconsistency in the index
which is preventing the database server to read ahead pages in
that index.

The database server detected an inconsistent index and marked
it as unusable.
Online log: Assertion Warning with details of the error
encountered and the database:table:index involved.

Server state: Online.

User Action: Review the online.log file for more information and
run the recommended oncheck command.

Class ID:

2

Event ID:

2004

4 Class message:
Index failure: 'dbname:"owner".tabname-idxname'

Specific message:

Page Check Error in object

The database server detected inconsistencies with an index.
Online log: Various messages depending on where the issue was
detected. For example: Possible inconsistencies in a
DBSpace TBLSpace Run 'oncheck -cD' on all DBSpace
TBLSpaces

Server state: Online.

User action: Review the online.log file for more information and
run the recommended oncheck -cD command on the database.

958 Part VI: Administering

ID Severity Messages Explanation

Class ID:

2

Event ID:

2005

3 Class message:
Index failure: 'dbname:"owner".tabname:idxname'

Specific message:

An internal error occurred during batched index read because
the database server had an invalid index key item.

The database server detected an inconsistent index and marked
it as unusable.
Online log: Assertion Warning with details of the error
encountered and the database:table:index involved.

Server state: Online.

User Action: Review the online.log file for more information and
run the recommended oncheck command.

Class ID:

2

Event ID:

2006

3 Class message:
Index failure: 'dbname:"owner".tabname:idxname'

Specific message:

index_page log record too large to fit into the logical log buffer.
Recommended minimum value for LOGBUFF is number.

The server detected that a log record for an index page is too
large for the configured logical log buffer size.
Online log: Assertion Warning with details of the error
encountered and the database:table:index involved.

Server state: Online.

User Action: Review the online.log file for more information and
update the onconfig value for LOGBUFF to the recommended
value.

Class ID:

2

Event ID:

2007

3 Class message:
Index failure: 'dbname:"owner".tabname:idxname'

Specific message:

Comparison based on locale 'locale_name' failed

The database server detected an inconsistent index and marked
it as unusable.
Online log: Assertion Warning with details of the error
encountered and the database:table:index involved.

Server state: Online.

User Action: Review the online.log file for more information and
run the recommended oncheck command.

Class ID:

2

Event ID:

2008

3 Class message:
Index failure: 'dbname:"owner".tabname:idxname'

Specific message:

Comparison failed

The database server detected an inconsistent index and marked
it as unusable.
Online log: Assertion Warning with details of the error
encountered and the database:table:index involved.

Server state: Online.

User Action: Review the online.log file for more information and
run the recommended oncheck command.

Class ID:

2

Event ID:

2009

4 Class message:
Index failure: 'dbname:"owner".tabname:idxname'

Specific message:

An internal error occurred while the database server was trying
to add a new item to the index.

The database server could not insert a record into an index.
Online log: Assertion specifying the index and the recommended
oncheck command to run.

Server state: Online.

User action: Examine the online log file and run the
recommended oncheck command.

Class ID:

2

Event ID:

2010

4 Class message:
Index failure: 'dbname:"owner".tabname:idxname'

Specific message:

An internal error was raised due to an inconsistency in the index
which is preventing the database server to position at the correct
item in the index.

The database server could not retrieve the correct item in the
index because of an inconsistency in the index.
Online log: Assertion specifying the index and the recommended
oncheck command to run.

Server state: Online.

User action: Examine the online log file and run the
recommended oncheck command.

Class ID:

2

Event ID:

2011

3 Class message:
Index failure: 'dbname:"owner".tabname:idxname'

Specific message:

Cannot drop index index_name for partnum partition_number,
iserrno = error_number

The database server detected an inconsistent index and marked
it as unusable.
Online log: Assertion Warning with details of the error
encountered and the database:table:index involved.

Server state: Online.

User Action: Review the online.log file for more information and
run the recommended oncheck command. Retry the original
operation and if it fails again contact Software Support.

Class ID:

2

Event ID:

2012

3 Class message:
Index failure: 'dbname:"owner".tabname:idxname'

Specific message:

An internal error occurred while the database server was trying
to mark an index key descriptor as bad.

The database server detected an inconsistent index and marked
it as unusable.
Online log: Assertion Warning with details of the error
encountered and the database:table:index involved.

Server state: Online.

User Action: Review the online.log file for more information, run
the recommended oncheck command, fix any problems
detected, then re-enable the index.

Part VI: Administering 959

ID Severity Messages Explanation

Class ID:

2

Event ID:

2013

4 Class message:
Index failure: 'dbname:"owner".tabname:idxname'

Specific message:

An internal error occurred while the database server was trying
to delete an item from the index.

The database server could not delete a record from an index.
Online log: Assertion specifying the index and the recommended
oncheck command to run.

Server state: Online.

User action: Examine the online log file and run the
recommended oncheck command.

Class ID:

3

Event ID:

3001

3 Class message:
Blob failure: 'dbname:"owner".tabname'

Specific message:

tb_sockid in blob descriptor is corrupted. Current® table is
'dbname:"owner".tabname'

Class ID:

3

Event ID:

3002

3 Class message:
Blob failure: 'dbname:"owner".tabname'

Specific message:

Incorrect BLOB stamps.

Class ID:

3

Event ID:

3003

4 Class message:
Blob failure: 'dbname:"owner".tabname'

Specific message:

BLOB Page Check error at dbspace_name

The database server performed a check on pages that are
moving between disk and memory and the check failed.
Online log: Assertion describing the error.

Server state: Online.

User action: Try the operation again. If the operation fails again,
note all circumstances and contact Software Support.

Class ID:

3

Event ID:

3004

3 Class message:
Blob failure: 'dbname:"owner".tabname'

Specific message:

An internal error occurred while trying to read a blob from a
table.

Class ID:

3

Event ID:

3005

3 Class message:
Blob failure: 'dbname:"owner".tabname'

Specific message:

An internal error occurred while trying to copy a blob from a
table.

Class ID:

4

Event ID:

4001

4 Class message:
Chunk is offline, mirror is active: chunk_number

Specific message:

I/O error, error_number Chunk 'chunk_number' -- Offline

An error has occurred reading from or writing to a chunk. The
database server has taken the chunk offline and switched to
performing all I/O operations on the active mirrored chunk.
Online log: Assertion describing the error that occurred.

Server state: Online.

User action: Examine the online log for information and fix the
error. Run the onspaces -s command to recover the offline
chunk. Retry the original operation. If the operation fails again,
note all circumstances and contact Software Support.

Class ID:

4

Event ID:

4002

3 or 4 Class message:
Chunk is offline, mirror is active: chunk_number

Specific message:

An internal error occurred during physical I/O because the chunk
was not opened.

The database server cannot access a chunk and switched to
performing all I/O operations on the active mirrored chunk.
Online log: Assertion describing the error and information about
the chunk where the problem occurred.

Server state: Online.

User action: Examine the online log, fix any errors, and recover
the mirror by using the onspaces utility. If the operation fails
again, note all circumstances and contact Software Support.

Class ID:

4

Event ID:

4003

3 Class message:
Chunk is offline, mirror is active: chunk_number

Specific message:

I/O error, error_number Chunk 'chunk_number' -- Offline (sanity)

960 Part VI: Administering

ID Severity Messages Explanation

Class ID:

4

Event ID:

4004

3 Class message:
Chunk is offline, mirror is active: chunk_number

Specific message:

Chunk failed sanity check

Class ID:

4

Event ID:

4005

3 Class message:
Chunk is offline, mirror is active: chunk_number

Specific message:

Mirror Chunk chunk_number added to space 'space_number'.
Perform manual recovery.

Class ID:

5

Event ID:

5001

4 Class message:
Dbspace is offline: 'dbspace_name'

Specific message:

Chunk chunk_number is being taken OFFLINE.

The database server took a dbspace offline because of an error
in accessing a chunk.
Online log: Assertion failure if the dbspace was a critical
dbspace, such as the rootdbs. Assertion warning if the dbspace
is not critical. Both provide information about the chunk and
dbspace being taken offline.

Server state: Online if a non-critical media failure. Offline if a
critical media failure.

User action: Examine the online log file and fix the underlying
problem that caused the dbspace to be taken offline. You might
need to restore the dbspace.

Class ID:

5

Event ID:

5002

4 Class message:
Dbspace is offline: 'dbspace_name'

Specific message:

WARNING! Chunk chunk_number is being taken OFFLINE for
testing.

The database server has taken a dbspace offline as a result of an
onmode command.
Online log: Assertion warning indicating that the dbspace has
been taken offline.

Server state: Online.

User action: None.

Class ID:

6

Event ID:

6016

3 Class message:
Internal subsystem failure: 'message'

Specific message:

Pool not freed. pool name:pool_name, address:address

Class ID:

6

Event ID:

6017

4 Class message:
Internal subsystem failure: 'message'

Specific message:

CDR Grouper FanOut thread is aborting

A problem occurred with Enterprise Replication.
Online log: Assertion describing the problem.

Server state: Online.

User action: Follow the instructions in the online log.

Class ID:

6

Event ID:

6018

4 Class message:
Internal subsystem failure: 'message'

Specific message:

CDR Pager: Paging File full: Waiting for additional space in
CDR_QDATA_SBSPACE

The storage space of an Enterprise Replication queue is full.
Online log: Assertion describing the problem.

Server state: Online.

User action: Add a chunk to one or more of the sbspaces
specified by the CDR_QDATA_SBSPACE configuration parameter.

Class ID:

6

Event ID:

6021

3 Class message:
Internal subsystem failure: 'message'

Specific message:

An internal error was reported by the database server during
conversion when it found some indices in the old format.

Class ID:

6

Event ID:

6022

3 Class message:
Internal subsystem failure: 'message'

Specific message:

An internal error was reported by the database server when it
checks for any new in-place alter pending in the current server
during reversion.

Class ID:

6

Event ID:

6023

3 Class message:
Internal subsystem failure: 'message'

Specific message:

Cannot open index 'dbname:index_name', iserrno =
error_number

Part VI: Administering 961

ID Severity Messages Explanation

Class ID:

6

Event ID:

6024

3 Class message:
Internal subsystem failure: 'message'

Specific message:

Cannot drop index 'dbname:index_name', iserrno =
error_number

Class ID:

6

Event ID:

6025

3 Class message:
Internal subsystem failure: 'message'

Specific message:

Cannot open table 'dbname:table_name', iserrno = error_number

Class ID:

6

Event ID:

6026

3 Class message:
Internal subsystem failure: 'message'

Specific message:

Cannot drop table 'dbname:table_name', iserrno = error_number

Class ID:

6

Event ID:

6027

3 Class message:
Internal subsystem failure: 'message'

Specific message:

An error was reported by the database server when it tried to
drop the sysmaster database during reversion

Class ID:

6

Event ID:

6030

3 Class message:
Internal subsystem failure: 'message'

Specific message:

Invalid or missing name for Subsystem Staging BLOBspace

Class ID:

6

Event ID:

6033

5 Class message:
Internal subsystem failure: 'message'

Specific message:

Cache read error

The database server shut down after encountering an error while
reading an internal cache.
Online log: Assertion Failure.

Server State: Offline.

User action: Start the database server and try the operation
again. If the operation fails again, note all circumstances and
contact Software Support.

Class ID:

6

Event ID:

6034

3 Class message:
Internal subsystem failure: 'message'

Specific message:

Could not start remote server

Class ID:

6

Event ID:

6035

3 Class message:
Internal subsystem failure: 'message'

Specific message:

An error was reported by the database server during the
handling of audit trail files.

Class ID:

6

Event ID:

6036

3 Class message:
Internal subsystem failure: 'message'

Specific message:

Archive on dbspaces_list ABORTED

Class ID:

6

Event ID:

6037

3 Class message:
Internal subsystem failure: 'message'

Specific message:

Waiting on BLOBSpace to appear for Logical Recovery

Class ID:

6

Event ID:

6038

3 Class message:
Internal subsystem failure: 'message'

Specific message:

An internal error reported by the database server. Users may
need to look at the specific message which accompanies with
this id.

962 Part VI: Administering

ID Severity Messages Explanation

Class ID:

6

Event ID:

6039

3 Class message:

Internal subsystem failure: 'message'

Specific message:

Wrong page for cleaning deleted items

Class ID:

6

Event ID:

6040

3 Class message:
Internal subsystem failure: 'message'

Specific message:

Buffer in wrong state for cleaning deleted items

Class ID:

6

Event ID:

6041

5 or 3 Class message:
Internal subsystem failure: 'message'

Specific message:

An internal error was detected by the Buffer Manager in the
database server.

For severity 5, the database server buffer manager encountered
an internal error and either shut down or corrected the problem.
Online log: Assertion warning or an assertion failure with a
description of the operation being performed at the time of the
error. Typically, an assertion warning shows that the error was
internally corrected.

Server State: Offline if the error was unrecoverable. Online if the
error was corrected.

User action: If the error was unrecoverable, start the database
server and try the operation again. If the operation fails again,
note all circumstances and contact Software Support. No action
is required if the error was internally corrected by the database
server.

Class ID:

6

Event ID:

6042

5 or 2 Class message:
Internal subsystem failure: 'message'

Specific message:

An internal error was reported by the database server when it
detected an inconsistency with the internal buffer queues.

For severity 5, the database server detected an inconsistency
during the processing of internal buffer queues and either shut
down or corrected the problem.
Online log: Assertion warning or an assertion failure with a
description of the operation being performed at the time of the
error. Typically, an assertion warning shows that the error was
internally corrected.

Server State: Offline if the error was unrecoverable. Online if the
error was corrected.

User action: If the error was unrecoverable, start the database
server and try the operation again. If the operation fails again,
note all circumstances and contact Software Support. No action
is required if the error was internally corrected by the database
server.

Class ID:

6

Event ID:

6043

3 Class message:
Internal subsystem failure: 'message'

Specific message:

Internal file error

Class ID:

6

Event ID:

6044

3 Class message:
Internal subsystem failure: 'message'

Specific message:

An internal error was corrected automatically by the database
server when it tried to save the log buffer into a system log
buffer.

Class ID:

6

Event ID:

6045

5 Class message:
Internal subsystem failure: 'message'

Specific message:

Logical logging error for 'object' in 'space'

The database server shut down because of an error while
processing logical logs.
Online log: Assertion failure with a description of the operation
and logical log information.

Server State: Offline.

User action: Start the database server. If the operation fails
again, note all circumstances and contact Software Support.

Class ID:

6

Event ID:

6046

4 Class message:
Internal subsystem failure: 'message'

Specific message:

Page Check Error in object

The database server detected inconsistencies in the data.
Online log: Various outputs depending upon where the issue was
detected. For example: Possible inconsistencies in a
DBSpace TBLSpace Run 'oncheck -cD' on all DBSpace
TBLSpaces

Server state: Online.

User action: Examine the online log file and run the
recommended oncheck -cD command on the database.

Part VI: Administering 963

ID Severity Messages Explanation

Class ID:

6

Event ID:

6047

3 Class message:
Internal subsystem failure: 'message'

Specific message:

Errors occurred while recreating indexes

Class ID:

6

Event ID:

6049

5 Class message:
Internal subsystem failure: 'message'

Specific message:

Lock types lock_type and lock_type should never be merged

The database server shut down after attempting to merge
incompatible locks.
Online log: Assertion failure with the lock types that the
database server was attempting to merge.

Server State: Offline.

User action: Start the database server. If the operation fails
again, note all circumstances and contact Software Support.

Class ID:

6

Event ID:

6050

5 Class message:
Internal subsystem failure: 'message'

Specific message:

An internal error was reported by the database server when it
detected some corruption in the lock free list chain.

The database server shut down after detecting corruption of an
internal structure that manages an internal list of free locks.
Online log: Assertion failure.

Server State: Offline.

User action: Start the database server. If the operation fails
again, note all circumstances and contact Software Support.

Class ID:

6

Event ID:

6051

3 Class message:
Internal subsystem failure: 'message'

Specific message:

ERROR - NO 'waitfor' locks in Critical Section!!!

Class ID:

6

Event ID:

6052

3 Class message:
Internal subsystem failure: 'message'

Specific message:

Internal Tblspace error

Class ID:

6

Event ID:

6053

3 Class message:
Internal subsystem failure: 'message'

Specific message:

Session does not have exclusive access to partition
partition_name. Request to drop the partition ignored.

Class ID:

6

Event ID:

6054

3 Class message:
Internal subsystem failure: 'message'

Specific message:

Error building 'sysmaster' database.

Class ID:

6

Event ID:

6055

3 Class message:
Internal subsystem failure: 'message'

Specific message:

Setread error on SMI Table, partnum partition_number

Class ID:

6

Event ID:

6056

3 Class message:
Internal subsystem failure: 'message'

Specific message:

Comparison based on locale 'locale_name' failed

Class ID:

6

Event ID:

6057

2 Class message:
Internal subsystem failure: 'message'

Specific message:

DBSPACETEMP internal list not initialized, using default

The database server did not create the necessary structures for
holding the DBSPACETEMP information.
Online log: Message stating that the internal DBSPACETEMP list
was not initialized.

Server state: Online.

User action: None.

964 Part VI: Administering

ID Severity Messages Explanation

Class ID:

6

Event ID:

6058

3 Class message:
Internal subsystem failure: 'message'

Specific message:

A data source accessed using a gateway (gateway_name) might
be in an inconsistent state

Class ID:

6

Event ID:

6059

3 Class message:
Internal subsystem failure: 'message'

Specific message:

Prepared participant site site_name not responding

Class ID:

6

Event ID:

6060

5 Class message:
Internal subsystem failure: 'message'

Specific message:

Thread exited with number buffers held

The database server shut down after detecting that a thread is
holding one or more buffers.
Online log: Assertion failure with the number of buffers being
held by the thread.

Server State: Offline.

User action: Bring the database server online. If the operation
fails again, note all circumstances and contact Software Support.

Class ID:

6

Event ID:

6061

3 Class message:
Internal subsystem failure: 'message'

Specific message:

An internal error was automatically corrected by the database
server when it detected that the undo log for the transaction was
not applicable.

Class ID:

6

Event ID:

6062

3 Class message:
Internal subsystem failure: 'message'

Specific message:

Internal Error - Freeing transaction entry that still holds locks!

While freeing resources associated with a transaction, the
database server detected that the transaction is holding locks. In
most circumstances the database server can release these locks.
Online log: Assertion warning with the transaction and a
statement that the database server internally corrected the
problem.

Server State: Online.

User action: If the database server shut down, start the
database server.

Class ID:

6

Event ID:

6063

3 Class message:
Internal subsystem failure: 'message'

Specific message:

User thread not on TX wait list

Class ID:

6

Event ID:

6064

3 Class message:
Internal subsystem failure: 'message'

Specific message:

Due to a heuristic decision, the work done on behalf of the
specified transaction branch might have been heuristically
completed or committed or rolled back or partially committed
and partially rolled back.

Class ID:

6

Event ID:

6065

3 Class message:
Internal subsystem failure: 'message'

Specific message:

Errors occurred while recreating indexes

Class ID:

6

Event ID:

6066

3 Class message:
Internal subsystem failure: 'message'

Specific message:

An internal error is reported by the database server when it has
checked all sites to see if a heuristic rollback was the reason for
the failure.

Part VI: Administering 965

ID Severity Messages Explanation

Class ID:

6

Event ID:

6067

5 Class message:
Internal subsystem failure: 'message'

Specific message:

A fatal internal error (Recursive exception) has caused the
database server processes to terminate unexpectedly.

The database server detected recursive calls to exception
handling and immediately shut down to avoid an infinite loop.
Online log: Assertion failure.

Server State: Offline.

User action: Start the database server. If the operation fails
again, note all circumstances and contact Software Support.

Class ID:

6

Event ID:

6068

5 Class message:
Internal subsystem failure: 'message'

Specific message:

A fatal internal error (Internal exception) has caused the
database server processes to terminate unexpectedly.

The database server shut down due to an unrecoverable internal
error.
Online log: Assertion failure with information about the
exception that caused the problem.

Server State: Offline.

User action: Start the database server. Look at the exception
information in the assertion failure file. If the exception relates to
a user-defined routine, investigate and correct the user-defined
routine. If the operation fails again, note all circumstances and
contact Software Support.

Class ID:

6

Event ID:

6069

5 Class message:
Internal subsystem failure: 'message'

Specific message:

A fatal internal error (Master daemon died) has caused the
database server processes to terminate unexpectedly.

The master daemon oninit process stopped and the database
server shut down. This error can be caused by the termination of
operating system processes.
Online log: Assertion failure.

Server State: Offline.

User action: Start the database server. Be careful when
terminating operating system processes.

Class ID:

6

Event ID:

6070

5 Class message:
Internal subsystem failure: 'message'

Specific message:

A fatal internal error (VP died) has caused the database server
processes to terminate unexpectedly.

An oninit process stopped and the database server shut down.
This error can be caused by the termination of operating system
processes.
Online log: Assertion failure.

Server State: Offline.

User action: Start the database server. Be careful when
terminating operating system processes.

Class ID:

6

Event ID:

6071

5 Class message:
Internal subsystem failure: 'message'

Specific message:

ERROR: can not fork secondary Server thread (MACH11
Shutdown)

The secondary server shut down but was unable to create a
thread to shut down normally.
Online log: DR: Shutting down the server. ERROR: can
not fork secondary Server thread (MACH11
Shutdown) Can not run onmode -ky PANIC:
Attempting to bring system down.

Server State: Offline.

User action: None.

Class ID:

6

Event ID:

6072

3 Class message:
Internal subsystem failure: 'message'

Specific message:

Generic unique event id when the server failed to fork a new
thread.

Class ID:

6

Event ID:

6073

3 Class message:
Internal subsystem failure: 'message'

Specific message:

An error was reported by the database server when it could not
initialize GLS for starting a session.

Class ID:

6

Event ID:

6074

3 Class message:
Internal subsystem failure: 'message'

Specific message:

WARNING: mt_aio_wait: errno == EINVAL

Class ID:

6

Event ID:

6075

5 Class message:
Internal subsystem failure: 'message'

Specific message:

A fatal internal error (KAIO) has caused the database server
processes to terminate unexpectedly.

The database server shut down because of an error in the KAIO
subsystem.
Online log: Assertion failure with the specific operation that
failed.

Server State: Offline.

User action: Start the database server. If the operation fails
again, note all circumstances and contact Software Support.

966 Part VI: Administering

ID Severity Messages Explanation

Class ID:

6

Event ID:

6100

 Generic event for when the database server implicitly raises an
assert warning.

A generic internal error occurred.
Online log: Assertion warning with problem details.

Server State: Online.

User action: Look at the online log and take any recommended
corrective action. The database server might correct the problem
automatically. Try the operation again. If the operation fails
again, note all circumstances and contact Software Support.

Class ID:

6

Event ID:

6300

 Generic event for when the database server implicitly raises an
assert failure.

A generic internal error occurred.
Online log: Assertion failure with problem details.

Server State: Online.

User action: Look at the online log and take any recommended
corrective action. Try the operation again. If the operation fails
again, note all circumstances and contact Software Support.

Class ID:

6

Event ID:

6500

 Generic event for when the database server terminates
unexpectedly due to an internal error condition.

An internal error occurred and the database server shut down.
Online log: Assertion failure.

Server State: Offline.

User action: Start the database server. Examine the assertion
failure file for more information about what happened. If
possible, fix any problems identified and try the operation again.
If the operation fails again, note all circumstances and contact
Software Support.

Class ID:

7

Event ID:

7001

3 Class message:
Database server initialization failure

Specific message:

TABLOCKS log record too large to fit into the logical log buffer.
Recommended minimum value for LOGBUFF is size.

I-STAR(C) begins prepare log record too large to fit into the
logical log buffer. Recommended minimum value for LOGBUFF is
size.

Partition blob log record too large to fit into the logical log buffer.
Recommended minimum value for LOGBUFF is size.

Alter table special column desc log record too large to fit into the
logical log buffer. Recommended minimum value for LOGBUFF is
size.

Class ID:

7

Event ID:

7002

4 Class message:
Database server initialization failure

Specific message:

Unable to extend number reserved pages for checkpoint in ROOT
chunk.

Unable to extend number reserved pages for log in ROOT chunk.

The database server could not start because it could not allocate
more space for internal structures in the initial root chunk.
Online log: Assertion.

Server state: Offline.

User action: Try the operation again. If the operation fails again,
note all circumstances and contact Software Support.

Class ID:

7

Event ID:

7003

4 Class message:
Database server initialization failure

Specific message:

An internal error occurred during conversion. Users may need to
take a look at the specific messages for further action.

The database server could not start during an upgrade because
an internal error occurred during the conversion process.
Online log: Assertion describing the error.

Server state: Offline.

User action: Look at the online log and the specific message and
take the necessary corrective action. Try the operation again. If
the operation fails again, note all circumstances and contact
Software Support.

Class ID:

7

Event ID:

7004

4 Class message:
Database server initialization failure

Specific message:

An internal error occurred while trying to convert the database
tblspace.

The database server cannot start because of an internal error
when trying to convert the database tblspace, which holds
information about the databases in the instance.
Online log: Assertion describing the error.

Server state: Offline.

User action: Contact Software Support.

Class ID:

7

Event ID:

7005

4 Class message:
Database server initialization failure

Specific message:

An internal error occurred while trying to convert blob free map
pages.

The database server cannot start because of an internal error
when trying to convert blobspace free-map pages.
Online log: Assertion describing the error.

Server state: Offline.

User action: Contact Software Support.

Part VI: Administering 967

ID Severity Messages Explanation

Class ID:

7

Event ID:

7006

4 Class message:
Database server initialization failure

Specific message:

Cannot Open Logical Log.

The database server cannot start because it is still restoring
physical or logical logs. This situation can occur if the onmode -
m or onmode -s command is run before the restore is complete.
Online log: Assertion describing the error.

Server state: Recovering and starting.

User action: Run the onmode -m or onmode -s command after
the restore is complete.

Class ID:

7

Event ID:

7007

4 Class message:
Database server initialization failure

Specific message:

Logical Log File not found.

The database server cannot start because a logical log file is
missing.
Online log: Assertion describing the error.

Server state: Offline.

User action: Restore the database server from a backup.

Class ID:

7

Event ID:

7008

3 Class message:
Database server initialization failure

Specific message:

WARNING! LTXHWM is set to 100%. This long transaction high
water mark will never be reached. Transactions will not be
aborted automatically by the server, regardless of their length.

Class ID:

7

Event ID:

7009

4 Class message:
Database server initialization failure

Specific message:

A Physical or Logical Restore is active.

The database server cannot start because it is still restoring
physical or logical logs. This situation can occur if the onmode -
m or onmode -s command is run before the restore is complete.
Online log: Assertion describing the error.

Server state: Recovering and starting.

User action: Run the onmode -m or onmode -s command after
the restore is complete.

Class ID:

7

Event ID:

7010

4 Class message:
Database server initialization failure

Specific message:

root_dbspace has not been physically recovered.

The database server cannot start because the restore was
interrupted before the rootdbs was physically restored.
Online log: Assertion describing the error.

Server state: Offline.

User action: Restore the rootdbs.

Class ID:

7

Event ID:

7011

4 Class message:
Database server initialization failure

Specific message:

dbspace has not been physically recovered.

The database cannot start because a dbspace is not physically
restored. This situation can occur if the database server is
attempted to be started before a restore is complete.
Online log: Assertion describing the error.

Server state: Offline.

User action: Wait until the restore is complete before starting
the database server.

Class ID:

7

Event ID:

7012

4 Class message:
Database server initialization failure

Specific message:

dbspace not recovered from same archive backup as dbspace.

The database server cannot start because a dbspace was not
restored successfully.
Online log: Assertion describing the error.

Server state: Offline.

User action: Recover the dbspace from a backup and roll
forward the necessary logs to bring the dbspace to the correct
point in time.

Class ID:

7

Event ID:

7013

4 Class message:
Database server initialization failure

Specific message:

Log log_number not found.

The database server cannot start because a restore is not
complete.
Online log: Assertion describing the error.

Server state: Offline.

User action: Wait until the restore is complete before starting
the database server.

Class ID:

7

Event ID:

7014

4 Class message:
Database server initialization failure

Specific message:

Logical restore cannot be skipped. Perform a logical restore.

The database server cannot start because a logical restore is not
complete.
Online log: Assertion describing the error.

Server state: Offline.

User action: Perform a logical restore (for example, by using the
onbar -r -l command) and start the database server in quiescent
or online mode.

968 Part VI: Administering

ID Severity Messages Explanation

Class ID:

7

Event ID:

7015

4 Class message:
Database server initialization failure

Specific message:

Cannot change to On-Line or Quiescent mode.

The database server cannot start because of an error during fast
or full recovery.
Online log: Assertion describing the error.

Server state: Offline.

User action: Examine the online log for more information. Try the
operation again. If the operation fails again, note all
circumstances and contact Software Support.

Class ID:

7

Event ID:

7016

4 Class message:
Database server initialization failure

Specific message:

Cannot Open Primary Chunk 'chunk_number'.

The database server cannot start because it could not access a
primary chunk.
Online log: Assertion describing the error.

Server state: Offline.

User action: Examine the online log for more information. Try the
operation again. If the operation fails again, note all
circumstances and contact Software Support.

Class ID:

7

Event ID:

7017

4 Class message:
Database server initialization failure

Specific message:

The chunk 'chunk_number' must have owner-ID "owner_id" and
group-ID "group_id".

The database server cannot start because the owner and group
of a chunk path are not correct.
Online log: Assertion describing the problem.

Server state: Offline.

User action: Correct the permissions on the chunk path
mentioned in the specific message. Try the operation again. If
the operation fails again, note all circumstances and contact
Software Support.

Class ID:

7

Event ID:

7018

4 Class message:
Database server initialization failure

Specific message:

The chunk 'chunk_number' must have READ/WRITE permissions
for owner and group (660).

The database server cannot start because the permissions on a
chunk path are not correct.
Online log: Assertion describing the problem.

Server state: Offline.

User action: Correct the permissions on the chunk path
mentioned in the specific message. Try the operation again. If
the operation fails again, note all circumstances and contact
Software Support.

Class ID:

7

Event ID:

7019

4 Class message:
Database server initialization failure

Specific message:

Memory allocation error.

The database server cannot start because it failed to allocate
enough memory.
Online log:

Server state: Offline.

User action: Ensure that enough memory is available for the
configuration you have specified for the database server. Try the
operation again. If the operation fails again, note all
circumstances and contact Software Support.

Class ID:

7

Event ID:

7020

4 Class message:
Database server initialization failure

Specific message:

The chunk 'chunk_number' will not fit in the space specified.

The database server cannot start because there is insufficient
space to create the specified chunk.
Online log: Assertion describing the problem.

Server state: Offline.

User action: Specify a smaller size for the chunk or free
additional space for the chunk.

Class ID:

7

Event ID:

7021

4 Class message:
Database server initialization failure

Specific message:

device_name: write failed, file system is full.

The database server cannot start because the file system does
not have free space.
Online log: Assertion describing the problem.

Server state: Offline.

User action: Ensure the file system mentioned in the specific
message has enough space. Retry the original operation. If the
operation fails again, note all circumstances and contact
Software Support.

Class ID:

7

Event ID:

7022

3 Class message:
Database server initialization failure

Specific message:

An error occurred while the database server was creating the
SMI database.

Part VI: Administering 969

ID Severity Messages Explanation

Class ID:

7

Event ID:

7023

4 Class message:
Database server initialization failure

Specific message:

Unable to create boot strap config file - 'file_name'

The database server cannot start because it could not create a
configuration file.
Online log: Assertion describing the error.

Server state: Offline.

User action: Examine the online log for more information and fix
the problem. The problem might be incorrect permissions on a
directory. Retry the original operation. If the operation fails
again, note all circumstances and contact Software Support.

Class ID:

7

Event ID:

7024

3 Class message:
Database server initialization failure

Specific message:

'sysmaster' database will not be built/checked

Class ID:

7

Event ID:

7025

3 Class message:
Database server initialization failure

Specific message:

WARNING! Physical Log size size is too small. Physical Log
overflows may occur during peak activity. Recommended
minimum Physical Log size is number times maximum
concurrent user threads.

Class ID:

7

Event ID:

7026

3 Class message:
Database server initialization failure

Specific message:

WARNING! Logical log layout may cause __ISN__ to get into a
locked state. Recommended smallest logical log size is number
times maximum concurrent user threads.

Class ID:

7

Event ID:

7027

3 Class message:
Database server initialization failure

Specific message:

WARNING! Buffer pool size may cause __ISN__ to get into a
locked state. Recommended minimum buffer pool size is number
times maximum concurrent user threads.

Class ID:

7

Event ID:

7028

3 Class message:
Database server initialization failure

Specific message:

Checkpoint log record may not fit into the logical log buffer.
Recommended minimum value for LOGBUFF is size.

Class ID:

7

Event ID:

7029

3 Class message:
Database server initialization failure

Specific message:

Temp transaction not NULL.

Class ID:

9

Event ID:

9001

4 Class message:
Physical recovery failure

Specific message:

Physical log recovery error

The physical recovery of the database server failed.
Online log: Assertion failure with a description of the problem.

Server state: Online.

User action: Retry the operation or restore from a backup.

Class ID:

10

Event ID:

10001

3 or 4 Class message:
Logical recovery failure

Specific message:

Rollback error error_number

Logical recovery failed because the database server could not
roll back a transaction.
Online log: Assertion with details of the error and the log or log
record where the problem occurred.

Server state: Online or offline, depending on the error.

User action: Examine the online log file for more information and
run any recommended commands, such as an oncheck
command. Retry the original operation. If the operation fails
again, note all circumstances and contact Software Support.

970 Part VI: Administering

ID Severity Messages Explanation

Class ID:

10

Event ID:

10002

4 Class message:
Logical recovery failure

Specific message:

Logical Recovery ABORTED.

The logical recovery of the database server failed.
Online log: Assertion warning with information about the log
record. Assertion failure with information about the log record if
the failure is associated with a critical dbspace.

Server state: Online if the dbspace is not critical. Offline if the
dbspace is critical.

User action: Examine the online log to determine the
appropriate action, for example, you might need to restart the
warm restore.

Class ID:

10

Event ID:

10003

4 Class message:
Logical recovery failure

Specific message:

Log record (log_subsystem:log_type) in log log_number, offset
log_position was not rolled back

Logical recovery encountered an internal error while rolling back
a transaction.
Online log: Message describing the log record.

Server state: Online.

User action: Examine the online log and determine the
appropriate action, for example, resubmit the transaction.

Class ID:

10

Event ID:

10004

3 Class message:
Logical recovery failure

Specific message:

Logical Logging error for 'log_subsystem:log_type' in 'object'

Class ID:

10

Event ID:

10005

4 Class message:
Logical recovery failure

Specific message:

An internal error occurred while trying to apply the log records
during logical log recovery.

Logical recovery failed.
Online log: Assertion warning with information about the log
record.

Server state: Depends on the failure.

User action: Examine the online log and determine the
appropriate action, for example, restart the warm restore.

Class ID:

10

Event ID:

10006

3 or 4 Class message:
Logical recovery failure

Specific message:

An internal error occurred when the database server tried to find
the file descriptor for the tblspace.

Logical recovery failed because the database server could not
find an internal file descriptor for a partition.
Online log: Assertion indicating for which table the error
occurred and instructions to run the oncheck command.

Server state: Online.

User action: Run the oncheck -cDI command for the table
mentioned in the online log or for the database.

Class ID:

11

Event ID:

11001

3 Class message:
Cannot open chunk: 'pathname'

Specific message:

Cannot Open Mirror Chunk 'chunk_number', errno =
error_number

Class ID:

11

Event ID:

11002

3 Class message:
Cannot open chunk: 'pathname'

Specific message:

Cannot Open Primary Chunk 'chunk_number', errno =
error_number

Class ID:

12

Event ID:

12001

3 Class message:
Cannot open dbspace: 'dbspace_name'

Specific message:

ERROR: DBspace dbspace_name not found among table
table_name fragments.

Class ID:

13

Event ID:

13001

2 Class message:
Performance improvement possible

Specific message:

The number of configured CPU poll threads exceeds number of
CPU VPs specified in 'VPCLASS cpu'. NETTYPE 'protocol' poll
threads started on NET VPs.

The database server detected a configuration mismatch between
the number of CPU virtual processors and the number of
requested CPU poll threads during server initialization.
Online log: Performance warning about the configuration
mismatch. The database server uses NET virtual processors
instead.

Server state: Online.

User action: Check the configuration of the server.

Part VI: Administering 971

ID Severity Messages Explanation

Class ID:

13

Event ID:

13002

2 Class message:
Performance improvement possible

Specific message:

Transaction table overflow due to parallel recovery.

An internal structure is not large enough to process the logical
log. The database server will postpone the log processing until
more space exists within the structure.
Online log: Warning message indicating that the transaction
processing was delayed.

Server state: Online.

User action: None.

Class ID:

14

Event ID:

14001

3 Class message:
Database failure. 'dbname'

Specific message:

''dbname'' - Error error_number during logging mode change.

Class ID:

15

Event ID:

15001

3 Class message:
High-Availability Data-Replication failure

Specific message:

DR: Turned off on secondary server

Class ID:

15

Event ID:

15002

3 Class message:
High-Availability Data-Replication failure

Specific message:

DR: Turned off on primary server

Class ID:

15

Event ID:

15003

3 Class message:
High-Availability Data-Replication failure

Specific message:

DR: Cannot connect to secondary server

Class ID:

15

Event ID:

15004

3 Class message:
High-Availability Data-Replication failure

Specific message:

DR: Received connection request from remote server when DR is
not Off

[Local type: type, Current state: state]

[Remote type: type]

Class ID:

15

Event ID:

15005

3 Class message:
High-Availability Data-Replication failure

Specific message:

DR: Received connection request before physical recovery
completed.

Class ID:

15

Event ID:

15006

3 Class message:
High-Availability Data-Replication failure

Specific message:

DR: Local and Remote server type and/or last change (LC)
incompatible

[Local type: type, LC: type]

[Remote type: type, LC: type]

Class ID:

16

Event ID:

16001

2 Class message:
Backup completed: 'dbspace_list'

Specific message:

Archive on dbspace_list completed without being recorded.

An archive completed, but the server detected corrupted pages
during the archive.
Online log: Message indicating that the backup is complete but
that corrupted pages have been detected.

Server state: Online.

User action: Do not use this backup. Use an earlier backup to
immediately restore the bad chunks.

972 Part VI: Administering

ID Severity Messages Explanation

Class ID:

16

Event ID:

16002

2 Class message:
Backup completed: 'dbspace_list'

Specific message:

Archive on dbspace_list Completed with number corrupted
pages detected.

An archive completed, but the server detected corrupted pages
during the archive.
Online log: Message indicating that the backup is complete but
that corrupted pages have been detected.

Server state: Online.

User action: Do not use this backup. Use an earlier backup with
0 bad pages to immediately restore the bad chunks.

Class ID:

16

Event ID:

16003

2 Class message:
Backup completed: 'dbspace_list'

Specific message:

Archive on dbspace_list Completed

An archive completed for the dbspaces listed.
Online log: Message indicating that the backup is complete for
the dbspaces listed.

Server state: Online.

User action: None.

Class ID:

17

Event ID:

17001

4 Class message:
Backup aborted: 'dbspace_list'

Specific message:

Archive detects that page chunk_number:page_offset is corrupt.

The database server detected corruption and stopped the
backup.
Online log: Assertion describing the problem.

Server state: Online.

User action: Examine the online log for information about the
corruption. Try the operation again. If the operation fails again,
note all circumstances and contact Software Support.

Class ID:

17

Event ID:

17002

3 Class message:
Backup aborted: 'dbspace_list'

Specific message:

Page %d:%d of partition partition_number not archived.

Class ID:

18

Event ID:

18001

2 Class message:
Log backup completed: log_number

Specific message:

Logical Log log_number - Backup Completed

The logical log was backed up.
Online log: Message identifying the log number of the backed up
logical log.

Server state: Online.

User action: None.

Class ID:

19

Event ID:

19001

3 Class message:
Log backup aborted: log_number

Specific message:

Logical Log log_number - Backup Aborted message

Class ID:

20

Event ID:

20001

3 Class message:
Logical logs are full—backup is needed

Specific message:

Logical Log Files are Full -- Backup is Needed

Class ID:

20

Event ID:

20002

3 Class message:
Logical logs are full—backup is needed

Specific message:

Waiting for Next Logical Log File to be Freed

Class ID:

20

Event ID:

20003

3 Class message:
Logical logs are full—backup is needed

Specific message:

Logical Log Files are almost Full -- Backup is Needed.

In Data replication scenario, this could block failure-recovery of
the paired server.

Class ID:

21

Event ID:

21001

3 Class message:
Database server resource overflow: 'resource_name'

Specific message:

Archive arcbu_next_tbuf() – Buffer Overflow

Part VI: Administering 973

ID Severity Messages Explanation

Class ID:

21

Event ID:

21002

3 Class message:
Database server resource overflow: 'resource_name'

Specific message:

Archive tcp_logbu_hdr() – Buffer Overflow

Class ID:

21

Event ID:

21003

3 Class message:
Database server resource overflow: 'resource_name'

Specific message:

Archive tcp_logbu_trl() – Buffer Overflow

Class ID:

21

Event ID:

21004

2 or 5 Class message:
Database server resource overflow: 'resource_name'

Specific message:

Physical log file overflow

For severity 5, the physical log file is full and needs to overflow. If
this happens during recovery, the database server attempts to
extend the physical log.
Online log: Assertion failure if the database server is either not
in recovery or is unable to extend the physical log. Assertion
warning if the database server is in recovery and extends the
physical log.

Server State: Offline.

User action: None.

Class ID:

21

Event ID:

21005

3 Class message:
Database server resource overflow: 'resource_name'

Specific message:

Lock table overflow - user id %d, session id %d

Class ID:

21

Event ID:

21006

5 Class message:
Database server resource overflow: 'resource_name'

Specific message:

Logical log buffer overflow detected

The database server shut down because the logical log buffer is
full.
Online log: Assertion failure with the log record size and the
buffer size.

Server State: Offline.

User action: Increase the value of the LOGBUFF configuration
parameter in the onconfig file. Start the database server.

Class ID:

21

Event ID:

21007

3 Class message:
Database server resource overflow: 'resource_name'

Specific message:

Llog logbu_logfile() – Buffer Overflow

Class ID:

21

Event ID:

21008

3 Class message:
Database server resource overflow: 'resource_name'

Specific message:

Llog logbu_bpage() – Buffer Overflow

Class ID:

21

Event ID:

21009

3 Class message:
Database server resource overflow: 'resource_name'

Specific message:

Unable to allocate a user thread for user id user_ID

Class ID:

21

Event ID:

21010

3 Class message:
Database server resource overflow: 'resource_name'

Specific message:

Unable to allocate a transaction for user id user_ID, session id
session_ID

Class ID:

21

Event ID:

21014

3 Class message:
OnLine resource overflow: Locks;

Specific message:

SID='session id' User ID='uid' NAME='user name' PID='process
id'

The lock limit within this session is reached. The current
transaction is terminated.
Online log: Session session id has exceeded the session limit of
number locks.

Server state: Online

User action: Reduce your transaction size.

974 Part VI: Administering

ID Severity Messages Explanation

Class ID:

21

Event ID:

21016

3 Class message:
OnLine resource overflow: Memory;

Specific message:

Session info: 'session id username@hostname' pid 'pid'

The memory limit within this session is reached. The current
session is terminated.
Online log: Session session id has exceeded the session limit of
size of memory.

Server state: Online

User action: Reduce session memory consumption.

Class ID:

21

Event ID:

21017

3 Class message:
OnLine resource overflow: Tempspace;

Specific message:

Session info: 'session id username@hostname' pid 'pid'

The temporary space limit within this session is reached. The
current session is terminated.
Online log: Session session id has exceeded the session limit of
size of temporary space.

Server state: Online

User action: Reduce your data size.

Class ID:

21

Event ID:

21018

3 Class message:
OnLine resource overflow: Log Space;

Specific message:

Session info: 'session id username@hostname' pid 'pid'

The log space limit within this session is reached. The current
transaction is terminated.
Online log: Session session id has exceeded the session limit of
size of log space.

Server state: Online

User action: Reduce your transaction size.

Class ID:

21

Event ID:

21019

3 Class message:
OnLine resource overflow: Transaction Time;

Specific message:

Session info: 'session id username@hostname' pid 'pid'

The transaction time limit within this session is reached. The
current session is terminated.
Online log: Session session id has exceeded the session limit of
seconds of transaction time.

Server state: Online

User action: Reduce idle time for open transactions.

Class ID:

22

Event ID:

22001

3 Class message:
Long transaction detected

Specific message:

Blocking on XA transaction, tx transaction_number, till it is
cleaned up.

Class ID:

22

Event ID:

22002

3 Class message:
Long transaction detected

Specific message:

Continuing Long Transaction (for COMMIT): tx:

Class ID:

22

Event ID:

22003

3 Class message:
Long transaction detected

Specific message:

Aborting Long Transaction: tx:

Class ID:

23

Event ID:

23001

2 Class message:
Logical log 'number' complete

Specific message:

Logical Log log_number Complete, timestamp: timestamp.

The logical log is full, and no more transactions can be written to
it.
Online log: Message indicating that the logical log is full.

Server state: Online.

User action: None.

Class ID:

24

Event ID:

24001

3 Class message:
Unable to allocate memory

Specific message:

Generic unique event id when the server failed to allocate
memory for starting a new thread.

Class ID:

24

Event ID:

24002

3 Class message:
Unable to allocate memory

Specific message:

Warning: unable to allocate requested big buffer of size size

Part VI: Administering 975

ID Severity Messages Explanation

Class ID:

24

Event ID:

24003

3 Class message:
Unable to allocate memory

Specific message:

The database server tried to allocate a shared memory virtual
segment before it was actually needed, in accordance with the
setting of the SHMVIRT_ALLOCSEG configuration parameter -
but the segment could not be added. Next failure message will
be printed in 30 minutes.

Class ID:

24

Event ID:

24004

3 Class message:
Unable to allocate memory

Specific message:

out of message shared memory

Class ID:

24

Event ID:

24005

3 Class message:
Unable to allocate memory

Specific message:

out of message shared memory

Class ID:

24

Event ID:

24006

3 Class message:
Unable to allocate memory

Specific message:

out of virtual shared memory

Class ID:

24

Event ID:

24007

3 Class message:
Unable to allocate memory

Specific message:

No memory available for page cleaners

Class ID:

24

Event ID:

24008

3 Class message:
Unable to allocate memory

Specific message:

kysearch(): Memory allocation error

Class ID:

24

Event ID:

24009

3 Class message:
Unable to allocate memory

Specific message:

Lock table overflow - user id user_ID, session id session_ID

Class ID:

24

Event ID:

24010

3 Class message:
Unable to allocate memory

Specific message:

Unable to allocate a user thread for user id user_ID

Class ID:

24

Event ID:

24011

3 Class message:
Unable to allocate memory

Specific message:

Unable to allocate a transaction for user id user_ID, session id
session_ID

Class ID:

26

Event ID:

26001

3 Class message:
Dynamically added log file logid

Specific message:

Dynamically added log file logid to DBspace dbspace_name

976 Part VI: Administering

ID Severity Messages Explanation

Class ID:

27

Event ID:

27001

4 Class message:
Log file required

Specific message:

ALERT: The oldest logical log (log_number) contains records
from an open transaction (transaction_number). Logical logging
will remain blocked until a log file is added. Add the log file with
the onparams -a command, using the -i (insert) option, as in:

onparams -a -d dbspace -s size -i

Then complete the transaction as soon as possible.

The database server needs an additional log file to continue
processing.
Online log: ALERT: The oldest logical log
(log_number) contains records from an open
transaction (transaction_number). Logical logging
will remain blocked until a log file is added.
Add the log file with the onparams -a command,
using the -i (insert) option, as in: onparams -a
-d dbspace -s size -i Then complete the
transaction as soon as possible.

Server state: Online.

User action: Add a new logical log.

Class ID:

28

Event ID:

28001

4 Class message:
No space for log file

Specific message:

ALERT: Because the oldest logical log (log_number) contains
records from an open transaction (transaction_number), the
server is attempting to dynamically add a log file. But there is no
space available. Please add a DBspace or chunk. Then complete
the transaction as soon as possible.

The database server cannot dynamically add an additional logical
log file because not enough space is available.
Online log: Assertion warning indicating that there is not enough
space available for an additional logical log file.

Server state: Online.

User action: Add a new logical log file or additional space.

Class ID:

28

Event ID:

28002

4 Class message:
No space for log file

Specific message:

Warning - Enterprise Replication is attempting to dynamically
add a log file. But there is no space available. The replay position
may overrun.

The database server cannot dynamically add an additional logical
log file because not enough space is available.
Online log: Assertion warning indicating that there is not enough
space available for an additional logical log file.

Server state: Online.

User action: Add a new logical log file or additional space.

Class ID:

29

Event ID:

29001

2 Class message:
Internal subsystem: subsystem

Specific message:

Skipped existing audit trail files file_name to file_name.

The auditing subsystem needs to change to a new output file.
Online log: Message indicating that the audit file changed,
skipping over existing files.

Server state: Online.

User action: None.

Class ID:

30 - 39

2, 3, or 4 Enterprise Replication events. See Enterprise Replication Event
Alarms.

Class ID:

40

Event ID:

40001

3 Class message:
RSS alarm

Specific message:

RSS server_name added

Class ID:

40

Event ID:

40002

3 Class message:
RSS alarm

Specific message:

Password for RSS Source server_name changed

Class ID:

40

Event ID:

40003

3 Class message:
RSS alarm

Specific message:

RSS server_name deleted

Class ID:

40

Event ID:

40004

3 Class message:
RSS alarm

Specific message:

RSS server_name log replay position is falling too far behind RSS
Source

Class ID:

40

Event ID:

40005

3 Class message:
RSS alarm

Specific message:

RSS server_name is not acknowledging log transmission

Part VI: Administering 977

ID Severity Messages Explanation

Class ID:

40

Event ID:

40006

3 Class message:
RSS alarm

Specific message:

Error receiving a buffer from RSS server_name - shutting down

Class ID:

40

Event ID:

40007

3 Class message:
RSS alarm

Specific message:

Delay or Stop Apply: I/O write error: error_number
error_description.

Class ID:

40

Event ID:

40008

3 Class message:
RSS alarm

Specific message:

Delay or Stop Apply: Thread exiting due to error.

Class ID:

41

Event ID:

41001

3 Class message:
SDS alarm

Specific message:

ERROR: Removing SDS Node server_name has timed out -
removing

Class ID:

42

Event ID:

42001

1 Class message:
Event occurred

The database server encountered an error while validating the
tablespace page.
Online log: Assertion warning with details of the table.

Server state: Online.

User action: Examine the online log to determine which
database.owner.tablename the issue occurred on. Run the
oncheck -pt command on the table. Correct any errors identified
by the oncheck utility and retry the operation. If the operation
fails again, note all circumstances and contact Software Support.

Class ID:

43

Event ID:

43001

3 Class message:
Connection Manager alarm

Specific message:

CM:Session for Connection manager name terminated
abnormally

Class ID:

43

Event ID:

43002

3 Class message:
Connection Manager alarm

Specific message:

The FOC setting FOC_String for Connection Manager CM_Name
does not match the FOC setting for the other Connection
Managers that are configured to arbitrate failover for the cluster.
If this Connection Manager becomes the active arbitrator, its
FOC will not match the previous FOC policy.

Class ID:

44

Event ID:

44001

3 Class message:
DBSpace is full: dbspace_name

Specific message:

WARNING: dbspace_type dbspace_name is full

Class ID:

45

Event ID:

45001

3 Class message:
partition 'partition_name': no more extents

Specific message:

Partition 'partition_name': No more extents

Class ID:

46

Event ID:

46001

3 Class message:
partition 'partition_name': no more pages

Specific message:

Partition 'partition_name: No more pages

978 Part VI: Administering

ID Severity Messages Explanation

Class ID:

47 - 71

3 or 4 Enterprise Replication events. See Enterprise Replication Event
Alarms.

Class ID:

72

Event ID:

72001

2 Class message:
Audit trail is switched to a new file.

Specific message:

Audit trail switched to file_name

The auditing subsystem is switching to a new output file.
Online log: Message providing the file name of the new output
file.

Server state: Online.

User action: None.

Class ID:

73-77

3 or 4 Enterprise Replication events. See Enterprise Replication Event
Alarms.

Class ID:

78

Event ID:

78001

3 Class message:
The storage pool is empty.

Specific message:

Warning: The storage pool is out of space.

Class ID:

79

Event ID:

79001

3 Class message:
Dynamically added chunk chunk_name to space

Specific message:

Dynamically added chunk chunk_name to space 'space_name'

Path: path, offset offset_number kilobytes

Size: size kilobytes

Class ID:

80
80001

2 Class message:
A new fragment for table table_name has been added in
DBspace dbspace_name.

A new fragment was automatically added to a table because the
table grew larger than the size of its existing fragments.
Online log: Message providing the table name and dbspace
name.

Server state: Online.

User action: None.

Class ID:

81

Event ID:

81001

4 Class message:
Logical log file or dbspace corruption detected during backup.
Loguniq or Dbspace id: ID.

Specific message:

Log Backup detected a corrupted logical log file.

Expected loguniq:pagenum log_number:page_number

Actual loguniq:pagenum log_number:page_number

Log backup continuing but the log backup cannot be used to
restore a server.

You should run oncheck and take a level 0 archive.

A backup failed because the database server detected corruption
in the logical log file or dbspace.
Online log: Assertion warning.

Server state: Online.

User action: Perform a new level-0 backup.

Class ID:

82

Event ID:

82001

3 Class message:
session ID (thread) network write operation has been blocked
for at least 30 minutes, which might indicate an operating
system problem

Specific message:

session ID (thread) network write operation has been blocked
for at least 30 minutes, which might indicate an operating
system problem

Class ID:

83

Event ID:

83001

3 Class message:
SDS: Failover aborted - detected primary server is still active.

Specific message:

SDS: Failover aborted - detected primary server is still active.

Part VI: Administering 979

ID Severity Messages Explanation

Event ID: 84001 3 Class message:
Generic network failure alarm

Specific message:

Unable to bind to the port (port number or service name) on the
host (IP address or host name) for the server (dbservername).

The host name or IP address, the service name, or the port
number might be incorrect. The port might already be in use.
Server state: Online, during server startup.

Online log: Assertion warning.

User action: Check the host name or IP address, the service
name, and the port number entries in the sqlhosts file. Make that
sure that the port is not already in use. Make the necessary
changes and restart the server.

Event ID: 86001 3 Class message:
Space has reached its maximum configured size.

Specific msg:

Warning: Space space_name has reached its maximum
configured size (size MB).

The extendable storage space is at the configured maximum size
and cannot expand further.
Server state: Online

Online log:

User action: No action needed. If you want to increase the
maximum size of the storage space, run the admin() or task()
SQL administration API function with the modify space sp_sizes
argument and specify a new maximum size.

Event ID: 87001 3 Message:
ifxguard utility connected

The ifxguard agent connected to the database server.
Server state: Online

Online log: Message that identifies the agent name.

User action: No action needed.

Event ID: 87002 3 Message:
ifxguard utility disconnected

The ifxguard agent closed the connected to the database server.
Server state: Online

Online log: Message that identifies the agent name.

User action: No action needed. The user session that the agent
audited ended.

Event ID: 87003 3 Message:
ifxguard utility has not responded

The ifxguard agent did not connect to the database server during
the timeout period.
Server state: Depends on the action set by the IFXGUARD
configuration parameter.

Online log: Message that identifies the agent name.

User action: No action needed unless the database server shut
down. If the database server shut down, examine the ifxguard
log file to discover why the ifxguard agent failed to connect in
time.

Severity 5 event alarms
 Severity 5 event alarms indicate that the database server has failed.

Copyright© 2020 HCL Technologies Limited

Severity 5 event alarms

Severity 5 event alarms indicate that the database server has failed.

Table 1. Severity 5 event alarms

ID Messages Explanation

Class ID:

6

Event ID:

6033

Class message:
Internal subsystem failure: 'message'

Specific message:

Cache read error

The database server shut down after encountering an error while
reading an internal cache.
Online log: Assertion Failure.

Server State: Offline.

User action: Start the database server and try the operation again. If
the operation fails again, note all circumstances and contact Software
Support.

980 Part VI: Administering

https://www.hcltech.com/

ID Messages Explanation

Class ID:

6

Event ID:

6041

Class message:
Internal subsystem failure: 'message'

Specific message:

An internal error was detected by the Buffer Manager in the database
server.

The database server buffer manager encountered an internal error and
either shut down or corrected the problem.
Online log: Assertion warning or an assertion failure with a description
of the operation being performed at the time of the error. Typically, an
assertion warning shows that the error was internally corrected.

Server State: Offline if the error was unrecoverable. Online if the error
was corrected.

User action: If the error was unrecoverable, start the database server
and try the operation again. If the operation fails again, note all
circumstances and contact Software Support. No action is required if
the error was internally corrected by the database server.

Class ID:

6

Event ID:

6042

Class message:
Internal subsystem failure: 'message'

Specific message:

An internal error was reported by the database server when it detected
an inconsistency with the internal buffer queues.

The database server detected an inconsistency during the processing of
internal buffer queues and either shut down or corrected the problem.
Online log: Assertion warning or an assertion failure with a description
of the operation being performed at the time of the error. Typically, an
assertion warning shows that the error was internally corrected.

Server State: Offline if the error was unrecoverable. Online if the error
was corrected.

User action: If the error was unrecoverable, start the database server
and try the operation again. If the operation fails again, note all
circumstances and contact Software Support. No action is required if
the error was internally corrected by the database server.

Class ID:

6

Event ID:

6045

Class message:
Internal subsystem failure: 'message'

Specific message:

Logical logging error for 'object' in 'space'

The database server shut down because of an error while processing
logical logs.
Online log: Assertion failure with a description of the operation and
logical log information.

Server State: Offline.

User action: Start the database server. If the operation fails again, note
all circumstances and contact Software Support.

Class ID:

6

Event ID:

6049

Class message:
Internal subsystem failure: 'message'

Specific message:

Lock types lock_type and lock_type should never be merged

The database server shut down after attempting to merge incompatible
locks.
Online log: Assertion failure with the lock types that the database
server was attempting to merge.

Server State: Offline.

User action: Start the database server. If the operation fails again, note
all circumstances and contact Software Support.

Class ID:

6

Event ID:

6050

Class message:
Internal subsystem failure: 'message'

Specific message:

An internal error was reported by the database server when it detected
some corruption in the lock free list chain.

The database server shut down after detecting corruption of an internal
structure that manages an internal list of free locks.
Online log: Assertion failure.

Server State: Offline.

User action: Start the database server. If the operation fails again, note
all circumstances and contact Software Support.

Class ID:

6

Event ID:

6060

Class message:
Internal subsystem failure: 'message'

Specific message:

Thread exited with number buffers held

The database server shut down after detecting that a thread is holding
one or more buffers.
Online log: Assertion failure with the number of buffers being held by
the thread.

Server State: Offline.

User action: Bring the database server online. If the operation fails
again, note all circumstances and contact Software Support.

Class ID:

6

Event ID:

6067

Class message:
Internal subsystem failure: 'message'

Specific message:

A fatal internal error (Recursive exception) has caused the database
server processes to terminate unexpectedly.

The database server detected recursive calls to exception handling and
immediately shut down to avoid an infinite loop.
Online log: Assertion failure.

Server State: Offline.

User action: Start the database server. If the operation fails again, note
all circumstances and contact Software Support.

Part VI: Administering 981

ID Messages Explanation

Class ID:

6

Event ID:

6068

Class message:
Internal subsystem failure: 'message'

Specific message:

A fatal internal error (Internal exception) has caused the database
server processes to terminate unexpectedly.

The database server shut down due to an unrecoverable internal error.
Online log: Assertion failure with information about the exception that
caused the problem.

Server State: Offline.

User action: Start the database server. Look at the exception
information in the assertion failure file. If the exception relates to a
user-defined routine, investigate and correct the user-defined routine. If
the operation fails again, note all circumstances and contact Software
Support.

Class ID:

6

Event ID:

6069

Class message:
Internal subsystem failure: 'message'

Specific message:

A fatal internal error (Master daemon died) has caused the database
server processes to terminate unexpectedly.

The master daemon oninit process stopped and the database server
shut down. This error can be caused by the termination of operating
system processes.
Online log: Assertion failure.

Server State: Offline.

User action: Start the database server. Be careful when terminating
operating system processes.

Class ID:

6

Event ID:

6070

Class message:
Internal subsystem failure: 'message'

Specific message:

A fatal internal error (VP died) has caused the database server
processes to terminate unexpectedly.

An oninit process stopped and the database server shut down. This
error can be caused by the termination of operating system processes.
Online log: Assertion failure.

Server State: Offline.

User action: Start the database server. Be careful when terminating
operating system processes.

Class ID:

6

Event ID:

6071

Class message:
Internal subsystem failure: 'message'

Specific message:

ERROR: cannot fork secondary Server thread (MACH11 Shutdown)

The secondary server shut down but was unable to create a thread to
shut down normally.
Online log: DR: Shutting down the server. ERROR: can not
fork secondary Server thread (MACH11 Shutdown) Can not
run onmode -ky PANIC: Attempting to bring system down.

Server State: Offline.

User action: None.

Class ID:

6

Event ID:

6075

Class message:
Internal subsystem failure: 'message'

Specific message:

A fatal internal error (KAIO) has caused the database server processes
to terminate unexpectedly.

The database server shut down because of an error in the KAIO
subsystem.
Online log: Assertion failure with the specific operation that failed.

Server State: Offline.

User action: Start the database server. If the operation fails again, note
all circumstances and contact Software Support.

Class ID:

6

Event ID:

6500

Generic event for when the database server terminates unexpectedly
due to an internal error condition.

An internal error occurred and the database server shut down.
Online log: Assertion failure.

Server State: Offline.

User action: Start the database server. Examine the assertion failure file
for more information about what happened. If possible, fix any problems
identified and try the operation again. If the operation fails again, note
all circumstances and contact Software Support.

Class ID:

21

Event ID:

21004

Class message:
Database server resource overflow: 'resource_name'

Specific message:

Physical log file overflow

The physical log file is full and needs to overflow. If this happens during
recovery, the database server attempts to extend the physical log.
Online log: Assertion failure if the database server is either not in
recovery or is unable to extend the physical log. Assertion warning if the
database server is in recovery and extends the physical log.

Server State: Offline.

User action: None.

Class ID:

21

Event ID:

21006

Class message:
Database server resource overflow: 'resource_name'

Specific message:

Logical log buffer overflow detected

The database server shut down because the logical log buffer is full.
Online log: Assertion failure with the log record size and the buffer size.

Server State: Offline.

User action: Increase the value of the LOGBUFF configuration
parameter in the onconfig file. Start the database server.

Copyright© 2020 HCL Technologies Limited

Connection Manager event alarm IDs

The class ID for event alarms indicates the type of event. The event ID indicates the specific event.

982 Part VI: Administering

https://www.hcltech.com/

The following table lists event alarm IDs and messages for the Connection Manager.

You can set your alarm program script to capture the Connection Manager class ID and message and initiate corrective actions or notifications.

You can use the values set in the INFORMIXCMNAME and INFORMIXCMCONUNITNAME environment variables when writing an alarm handler for the Connection Manager.
If the Connection Manager raises an event alarm, the Connection Manager instance name is stored in the INFORMIXCMNAME environment variable, and the Connection
Manager connection unit name is stored in the INFORMIXCMCONUNITNAME environment variable.

Event alarm messages are written to the Connection Manager log file.

Table 1. Connection Manager event alarms

ID Severity Messages Explanation

Class ID:
1

Event ID:

1001

3 Class message:
Connection Manager generic alarm

Specific message:

Connection Manager stopped

The Connection Manager stopped running.
Online log message: Connection Manager shut down
successfully.

User action: Restart the Connection Manager, if necessary.

Class ID:
1

Event ID:

1002

3 Class message:
Connection Manager generic alarm

Specific message:

Connection Manager fatal error

The Connection Manager failed to initialize.
Online log message: Failed to switch to daemon mode,
Connection Manager stopped.

Error: Initialize failed, Connection Manager stopped.

Error: SLA listener failed, Connection Manager can not start.

User action: Check the message file for failure details. Correct
any errors and then restart the Connection Manager.

Class ID:
1

Event ID:

1003

3 Class message:
Connection Manager generic alarm

Specific message:

Connection Manager received signal

The Connection Manager stopped or crashed.
Online log message: Connection Manager process received
signal, shutting down

User action: If the Connection Manager was killed by signal 9, no
action is required. Otherwise, report the problem to the System
Administrator.

Class ID:
2

Event ID:

2001

3 Class message:
Failover Arbitrator alarm

Specific message:

Failover in progress

The Connection Manager Failover Arbitrator initiated a failover
event.
Online log message: Failover Arbitrator automated failover in
progress.

Class ID:
2

Event ID:

2002

3 Class message:
Failover Arbitrator alarm

Specific message:

Failover completed

The Connection Manager Failover Arbitrator has completed
failover.
Online log message: Failover Arbitrator automated failover
completed.

Class ID:
2

Event ID:

2003

3 Class message:
Failover Arbitrator alarm

Specific message:

Failover disabled

Automated failover for the Connection Manager is disabled.
Online log message: Failover Arbitrator automated failover is
disabled.

User action: N/A

Class ID:
2

Event ID:

2004

3 Class message:
Failover Arbitrator alarm

Specific message:

Failover Arbitrator aborting automated failover

Failover processing has failed.
Online log message: Failover Arbitrator aborting automated
failover.

User action: Check the message log file, and then manually start
the primary server or manually perform failover.

Class ID:
2

Event ID:

2005

3 Class message:
Failover Arbitrator alarm

Specific message:

Failover processing is in manual mode

Failover processing is not in automatic mode.
Online log message: Failover processing is in manual mode

Class ID:
3

Event ID:

3001

3 Class message:
Connection to the primary

Specific message:

Cannot connect to primary server

The Connection Manager cannot connect to the primary server.
Online log message: Unable to connect to Informix® server.

User action: Correct the setup problem. Connection Manager
can then connect to the server automatically.

Class ID:
3

Event ID:

3002

3 Class message:
Connection to the primary

Specific message:

Lost connection to primary server

The Connection Manager is disconnected from the primary
server.
Online log message: Detected lost connection to Informix
server.

User action: Correct the setup or network problem. The
Connection Manager can then connect to the primary server
automatically.

Part VI: Administering 983

ID Severity Messages Explanation

Class ID:
3

Event ID:

3003

4 Class message:
Connection to the primary

Specific message:

CM detected multiple primary servers in the cluster

Connection Manager is connected to multiple primary servers.
Online log message: Detected multiple primary servers in the
cluster.

User action: Correct the setup or network problem so that
Connection Manager is connected to only one primary server.

Class ID:
4

Event ID:

4001

3 Class message:
Connection to ER node

Specific message:

Cannot connect to ER node

The Connection Manager cannot connect to an Enterprise
Replication server.
User action: Correct the setup problem. The Connection
Manager can then connect to the Enterprise Replication server
automatically.

Class ID:
4

Event ID:

4002

3 Class message:
Connection to ER node

Specific message:

Lost connection to ER node

The Connection Manager has disconnected from an Enterprise
Replication server.
Online log message: Detected lost connection to Informix server

User action: Correct the setup or network problem. The
Connection Manager can then connect to the Enterprise
Replication server automatically.

Class ID:
5

Event ID:

5001

3 Class message:
Connection to generic server

Specific message:

Cannot connect to server

The Connection Manager cannot connect to a server in a high-
availability cluster.
Online log message: Unable to connect to Informix server.

User action: Correct the setup problem. Connection Manager
can then connect to the high-availability server automatically.

Class ID:
5

Event ID:

5002

3 Class message:
Connection to generic server

Specific message:

Lost connection to server

The Connection Manager is disconnected from a secondary
server.
Online log message: Detected lost connection to Informix
server.

User action: Correct the setup or network problem. Connection
Manager can then connect to the secondary server automatically.

Related information:
 INFORMIXCMNAME environment variable

INFORMIXCMCONUNITNAME environment variable

Copyright© 2020 HCL Technologies Limited

Messages in the database server log

Unnumbered messages are printed in the database server message log (online.log). The error messages include corrective actions.

For a description of an error message, use the finderr utility or go to Error messages.

Some of the messages might require you to contact Software Support.

How the Messages Are Ordered in This Chapter
 Messages: A-B

 Messages: C
 Messages: D-E-F

 Messages: G-H-I
 Messages: J-K-L-M

 Messages: N-O-P
 Messages: Q-R-S
 Messages: T-U-V
 Messages: W-X-Y-Z

 Messages: Symbols
 Conversion and reversion error messages

 If conversion or reversion is not successful, error messages are stored in the online.log file to help you identify what failed and what actions to take to fix the
problem.
Conversion and Reversion Messages for Enterprise Replication

 During conversion and reversion, specific messages are logged for Enterprise Replication by the concdr, revcdr, and revtestcdr scripts.
Dynamic Log Messages

 Sbspace Metadata Messages
 Truncate Table Messages

Related reference:

 MSGPATH configuration parameter
Related information:

 ON-Bar messages and return codes

Copyright© 2020 HCL Technologies Limited

How the Messages Are Ordered in This Chapter
984 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Database server message-log messages are arranged in this chapter in alphabetical order, sorted with the following additional rules:

The time stamp that precedes each message is ignored.
Letter case is ignored in alphabetization.
Spaces are ignored.
Quotation marks are ignored.
Leading ellipses are ignored.
The word the is ignored if it is the first word in the message.
Messages that begin with numbers or punctuation symbols appear toward the end of the list in a special section labeled Messages: Symbols.
Certain related messages are grouped together, as follows:

Conversion and reversion error messages
Conversion and Reversion Messages for Enterprise Replication
Dynamic Log Messages
Sbspace Metadata Messages
Truncate Table Messages

A cause and suggested corrective action for a message or group of messages follow the message text.

How to view these messages
 Message Categories

Copyright© 2020 HCL Technologies Limited

How to view these messages

Use one of the following methods to view these messages:

Online message log
To see the messages displayed as they occur, use the tail -f online.log command.

onstat -m command
For more information, see onstat -l command: Print physical and logical log information.

To see the error number associated with these unnumbered messages, view the logmessage table in the sysmaster database:

SELECT * FROM logmessage;

Copyright© 2020 HCL Technologies Limited

Message Categories

Four general categories of unnumbered messages exist, although some messages fall into more than one category:

Routine information
Assertion-failed messages
Administrative action needed
Unrecoverable error detected

Technical Support uses the assertion-failed messages to assist in troubleshooting and diagnostics. The information that they report often falls into the category of
unexpected events that might or might not develop into problems caught by other error codes. Moreover, the messages are terse and often extremely technical. They might
report on one or two isolated statistics without providing an overall picture of what is happening. This information can suggest to technical support possible research
paths.

Copyright© 2020 HCL Technologies Limited

Messages: A-B

Aborting Long Transaction: tx 0xn.
 Affinitied VP mm to phys proc nn.

 Affinity not enabled for this server.
 Assert Failed: Error from SBSpace cleanup thread.

 Assert Failed: Short description of what failed Who: Description of user/session/thread running at the time Result: State of the affected database server entity
Action: What action the database administrator should take See Also: DUMPDIR/af.uniqid containing more diagnostics.

 Begin re-creating indexes deferred during recovery.
 Building 'sysmaster' database requires ~mm pages of logical log. Currently there are nn pages available. Prepare to back up your logs soon.

 Building 'sysmaster' database...

Copyright© 2020 HCL Technologies Limited

Aborting Long Transaction: tx 0xn.

Part VI: Administering 985

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Cause
The transaction spans the log space specified by transaction high-watermark (LTXHWM), and the offending long transaction is rolling back.

Action
No additional action is needed. The address of the transaction structure in shared memory is displayed as a hexadecimal value.

Copyright© 2020 HCL Technologies Limited

Affinitied VP mm to phys proc nn.

Cause
The database server successfully bound a CPU virtual processor to a physical processor.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Affinity not enabled for this server.

Cause
You tried to bind your CPU virtual processors to physical processors, but the database server that you are running does not support process affinity.

Action
Remove the affinity setting from the VPCLASS configuration parameter.

Copyright© 2020 HCL Technologies Limited

Assert Failed: Error from SBSpace cleanup thread.

Cause
The sbspace cleanup thread encountered an error while cleaning up stray smart large objects.

Action
See the action suggested in the message log file.

Most of the time, running onspaces -cl sbspacename on the failed sbspace succeeds in cleaning up any stray smart large objects. If you encounter an unrecoverable
error, contact Technical Support.

Copyright© 2020 HCL Technologies Limited

Assert Failed: Short description of what failed Who: Description of
user/session/thread running at the time Result: State of the affected database
server entity Action: What action the database administrator should take See Also:
DUMPDIR/af.uniqid containing more diagnostics.

Cause
This message indicates an internal error.

Action

986 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The af.uniqid file in the directory specified by the ONCONFIG parameter DUMPDIR contains a copy of the assertion-failure message that was sent to the message log, as
well as the contents of the current, relevant structures and/or data buffers. The information included in this message is intended for Technical Support.

Copyright© 2020 HCL Technologies Limited

Begin re-creating indexes deferred during recovery.

Cause
During recovery, indexes to be created are deferred until after recovery completes. This message indicates that the database server deferred re-creating indexes and that
it is now creating the indexes. During the time that the database server re-creates the indexes, it locks the affected tables with a shared lock.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Building 'sysmaster' database requires ~mm pages of logical log. Currently there are
nn pages available. Prepare to back up your logs soon.

Cause
You do not currently have the approximate amount of free log space necessary to complete a build of the sysmaster database.

Action
Back up your logs.

Copyright© 2020 HCL Technologies Limited

Building 'sysmaster' database...

Cause
The database server is building the sysmaster database.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Messages: C

Cannot Allocate Physical-log File, mm wanted, nn available.
 Cannot alter a table which has associated violations table.

 Cannot change to mode.
 Cannot Commit Partially Complete Transactions.

 Cannot create a user-defined VP class with 'SINGLE_CPU_VP' non-zero.
 Cannot create violations/diagnostics table.

 Cannot insert from the violations table to the target table.
 Cannot modify/drop a violations/diagnostics table.

 Cannot Open Dbspace nnn.
 Cannot Open Logical Log.

 Cannot Open Mirror Chunk pathname, errorno = nn.
 Cannot Open Primary Chunk pathname, errorno = nnn.

 Cannot Open Primary Chunk chunkname.
 Cannot open sysams in database name, iserrno number.

 Cannot open sysdistrib in database name, iserrno number.
 Cannot open system_table in database name, iserrno number.

 Cannot open systrigbody in database name, iserrno number.
 Cannot open systriggers in database name, iserrno number.

 Cannot open sysxtdtypes in database name, iserrno number.

Part VI: Administering 987

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Cannot Perform Checkpoint, shut system down.
Cannot Restore to Checkpoint.
Cannot Rollback Incomplete Transactions.
Cannot update pagezero.
Cannot update syscasts in database name. Iserrno number.
Can’t affinity VP mm to phys proc nn.
Changing the sbspace minimum extent value: old value value1, new value value2.
Checkpoint blocked by down space, waiting for override or shutdown.
Checkpoint Completed: duration was n seconds.
Checkpoint Page Write Error.
Checkpoint Record Not Found in Logical Log.
Chunk chunkname added to space spacename.
Chunk chunkname dropped from space spacename.
Chunk number nn pathname -- Offline.
Chunk number nn pathname -- Online.
The chunk pathname must have READ/WRITE permissions for owner and group.
The chunk pathname must have owner-ID and group-ID set to informix.
The chunk pathname will not fit in the space specified.
Cleaning stray LOs in sbspace sbspacename.
Completed re-creating indexes.
Configuration has been grown to handle up to integer chunks.
Configuration has been grown to handle up to integer dbslices.
Configuration has been grown to handle up to integer dbspaces.
Continuing Long Transaction (for COMMIT): tx 0xn.
Could not disable priority aging: errno = number.
Could not fork a virtual processor: errno = number.
Create_vp: cannot allocate memory.

Copyright© 2020 HCL Technologies Limited

Cannot Allocate Physical-log File, mm wanted, nn available.

Cause
The database server attempted to increase the size of the physical log, but it needed more contiguous space than was available in the dbspace. The quantities of space
are expressed as kilobytes.

Action
You must either specify a smaller size for the physical log (use the PHYSFILE configuration parameter), or change the location of the physical log to a dbspace that
contains adequate contiguous space to accommodate the larger physical log.

Copyright© 2020 HCL Technologies Limited

Cannot alter a table which has associated violations table.

Cause
The user tried to add, drop, or modify a column in a table that has a violations table associated with it.

Action
Do not change the columns in the user table.

Copyright© 2020 HCL Technologies Limited

Cannot change to mode.

Cause
Some error during fast or full recovery has prevented the system from changing to online or quiescent mode.

Action
See previous messages in the log file for information.

Copyright© 2020 HCL Technologies Limited

988 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Cannot Commit Partially Complete Transactions.

Cause
Transactions that drop tables or indexes do not perform the drop until a COMMIT statement is processed (with a few exceptions). In these cases, a beginning commit log
record is written, followed by the usual commit log record. If the database server fails in between the two, the fast recovery process attempts to complete the commit the
next time that you initialize the database server.

If this completion of the commit fails, the database server generates the preceding message.

Action
To determine if you need to take action, examine the logical log as described in Interpreting Logical-Log Records.

Copyright© 2020 HCL Technologies Limited

Cannot create a user-defined VP class with 'SINGLE_CPU_VP' non-zero.

Cause
SINGLE_CPU_VP is set to nonzero, and onmode was used to create a user-defined VP class.

Action
If user-defined VP classes are necessary, stop the database server, change SINGLE_CPU_VP to zero, and restart the database server.

Copyright© 2020 HCL Technologies Limited

Cannot create violations/diagnostics table.

Cause
The user issued a START VIOLATIONS TABLE statement for a target table. The database server cannot create the violations table for this target table. Any of the following
situations might be the reason for this failure:

The target table already has a violations table.
You specified an invalid name for the violations table in the START VIOLATIONS TABLE statement. For example, if you omit the USING clause from the statement
and if the number of characters in the target table plus four characters is longer than the maximum identifier length, the generated names of the violations table
exceed the maximum identifier length.
You specified a name for the violations table in the START VIOLATIONS TABLE statement that match the names of existing tables in the database.
The target table contains columns with the names informix_tupleid, informix_optype, or informix_recowner. Because these column names duplicate the
informix_tupleid, informix_optype, or informix_recowner columns in the violations table, the database server cannot create the violations table.
The target table is a temporary table.
The target table is serving as a violations table for some other table.
The target table is a system catalog table.

Action
To resolve this error, perform one of the following actions:

If the violations table name was invalid, specify a unique name for the violations table in the USING clause of the START VIOLATIONS TABLE statement.
If the target table contains columns with the names informix_tupleid, informix_optype, or informix_recowner, rename them to something else.
Choose a permanent target table that is not a system catalog table or a violations table for some other table.

Copyright© 2020 HCL Technologies Limited

Cannot insert from the violations table to the target table.

Cause
The user has issued a statement that attempts to insert rows from the violations table into the target table. For example, the user enters the following invalid statement:

INSERT INTO mytable SELECT * FROM mytable_vio;

Also, if the target table has filtering-mode constraints, you receive this error.

Part VI: Administering 989

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Action
To recover from this error, perform the following actions:

Do not use filtering constraints.
Stop the violations table.
Insert rows from the violations table into a temporary table, and then insert rows from the temporary table into the target table.

Copyright© 2020 HCL Technologies Limited

Cannot modify/drop a violations/diagnostics table.

Cause
The user has tried to alter or drop a table that is serving as a violations table for another table.

Action
Do not alter or drop the violations table.

Copyright© 2020 HCL Technologies Limited

Cannot Open Dbspace nnn.

Cause
The database server is unable to access the specified dbspace. This message indicates a problem opening the tblspace or corruption in the initial chunk of the dbspace.

Action
Verify that the device or devices that make up the chunks of this dbspace are functioning properly and that you assigned them the correct operating-system permissions
(rw-rw----). You might be required to perform a data restore.

Copyright© 2020 HCL Technologies Limited

Cannot Open Logical Log.

Cause
The database server is unable to access the logical-log files. Because the database server cannot operate without access to the logical log, you must resolve this problem.

Action
Verify that the chunk device where the logical-log files reside is functioning and has the correct operating-system permissions (rw-rw----).

Copyright© 2020 HCL Technologies Limited

Cannot Open Mirror Chunk pathname, errorno = nn.

Cause
The database server cannot open the mirrored chunk of a mirrored pair. The chunk pathname and the operating-system error are returned.

Action
For more information about corrective actions, see your operating-system documentation.

Copyright© 2020 HCL Technologies Limited

Cannot Open Primary Chunk pathname, errorno = nnn.

990 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Cause
The primary chunk of a mirrored pair cannot be opened. The chunk pathname and the operating-system error are returned.

Action
For more information about corrective actions, see your operating-system documentation.

Copyright© 2020 HCL Technologies Limited

Cannot Open Primary Chunk chunkname.

Cause
The initial chunk of the dbspace cannot be opened.

Action
Verify that the chunk device is running properly and has the correct operating-system permissions (rw-rw----).

Copyright© 2020 HCL Technologies Limited

Cannot open sysams in database name, iserrno number.

Cause
An error occurred when the database server opened the sysams system table.

Action
Note the error number and contact Technical Support.

Copyright© 2020 HCL Technologies Limited

Cannot open sysdistrib in database name, iserrno number.

Cause
An error occurred when the database server accessed the sysdistrib system table.

Action
Note the error number and contact Technical Support.

Copyright© 2020 HCL Technologies Limited

Cannot open system_table in database name, iserrno number.

Cause
An error occurred when the database server opened the specified system table.

Action
Note the error number and contact Technical Support.

Copyright© 2020 HCL Technologies Limited

Cannot open systrigbody in database name, iserrno number.

Part VI: Administering 991

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Cause
An error occurred when the database server accessed the systrigbody system table.

Action
Note the error number and contact Technical Support.

Copyright© 2020 HCL Technologies Limited

Cannot open systriggers in database name, iserrno number.

Cause
An error occurred when the database server accessed the systriggers system table.

Action
Note the error number and contact Technical Support.

Copyright© 2020 HCL Technologies Limited

Cannot open sysxtdtypes in database name, iserrno number.

Cause
An error occurred while accessing the sysxtdtypes system table.

Action
Note the error number and contact Technical Support.

Copyright© 2020 HCL Technologies Limited

Cannot Perform Checkpoint, shut system down.

Cause
A thread that is attempting to restore a mirrored chunk has requested a checkpoint, but the checkpoint cannot be performed.

Action
Shut down the database server.

Copyright© 2020 HCL Technologies Limited

Cannot Restore to Checkpoint.

Cause
The database server is unable to recover the physical log and thus unable to perform fast recovery.

Action
If the database server does not come online, perform a data restore from dbspace backup.

Copyright© 2020 HCL Technologies Limited

Cannot Rollback Incomplete Transactions.

992 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Cause
Within the fast-recovery or data-restore procedure, the logical-log records are first rolled forward. Then, open transactions that have not committed are rolled back. An
open transaction could fail during the rollback, leaving some of the modifications from the open transaction in place. This error does not prevent the database server from
moving to quiescent or online mode, but it might indicate an inconsistent database.

Action
To determine if any action is needed, use the onlog utility to examine the logical log.

Copyright© 2020 HCL Technologies Limited

Cannot update pagezero.

Cause
A failure occurred while the database server was trying to rewrite a reserved page during the reversion process.

Action
See previous messages in the log file for information, or contact Technical Support.

Copyright© 2020 HCL Technologies Limited

Cannot update syscasts in database name. Iserrno number.

Cause
An internal error occurred while inserting data into the syscasts system table.

Action
Contact Technical Support..

Copyright© 2020 HCL Technologies Limited

Can’t affinity VP mm to phys proc nn.

Cause
The database server supports process affinity, but the system call to bind the virtual processor to a physical processor failed.

Action
See your operating-system documentation.

Copyright© 2020 HCL Technologies Limited

Changing the sbspace minimum extent value: old value value1, new value value2.

Cause
This informational message occurs when you issue the following command:

onspaces -ch sbspace -Df “MIN_EXT_SIZE=value1“ -y

Action
None. For more information, see onspaces -ch: Change sbspace default specifications.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 993

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Checkpoint blocked by down space, waiting for override or shutdown.

Cause
A dbspace has gone down during a checkpoint interval. The database server is configured to wait for an override when this situation occurs.

Action
Either shut down the database server or issue an onmode -O command to override the down dbspace. For more information on the onmode utility, see The onmode utility.

Copyright© 2020 HCL Technologies Limited

Checkpoint Completed: duration was n seconds.

Cause
A checkpoint completed successfully.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Checkpoint Page Write Error.

Cause
The database server detected an error in an attempt to write checkpoint information to disk.

Action
For additional assistance in resolving this situation, contact Technical Support.

Copyright© 2020 HCL Technologies Limited

Checkpoint Record Not Found in Logical Log.

Cause
The logical log or the chunk that contains the logical log is corrupted. The database server cannot initialize.

Action
Perform a data restore from dbspace backup.

Copyright© 2020 HCL Technologies Limited

Chunk chunkname added to space spacename.

Cause
The variables in this message have the following values:

chunkname
is the name of the chunk that the database server administrator is adding.

spacename
is the name of the storage space to which the database server administrator is adding the chunk.

Action

994 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

None required.

Copyright© 2020 HCL Technologies Limited

Chunk chunkname dropped from space spacename.

Cause
The database server administrator dropped chunk chunkname from space spacename.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Chunk number nn pathname -- Offline.

Cause
The indicated chunk in a mirrored pair has been marked with status D and taken offline. The other chunk in the mirrored pair is operating successfully.

Action
Take steps now to repair the chunk device and restore the chunk. The chunk number and chunk device pathname are displayed.

Copyright© 2020 HCL Technologies Limited

Chunk number nn pathname -- Online.

Cause
The indicated chunk in a mirrored pair has been recovered and is online (marked with status O). The chunk number and chunk device pathname are displayed.

Action
None required.

Copyright© 2020 HCL Technologies Limited

The chunk pathname must have READ/WRITE permissions for owner and group.

Cause
The chunk pathnamedoes not have the correct owner and group permissions.

Action
Make sure that you assigned the correct permissions (-rw-rw---) to the device on which the chunk is located.

Copyright© 2020 HCL Technologies Limited

The chunk pathname must have owner-ID and group-ID set to informix.

Cause
The chunk chunkname does not have the correct owner and group ID.

Action

Part VI: Administering 995

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Make sure the device on which the chunk is located has the ownership. On UNIX, both owner and group should be informix. On Windows, the owner must be a member of
the Informix-Admin group.

Copyright© 2020 HCL Technologies Limited

The chunk pathname will not fit in the space specified.

Cause
The chunk pathname does not fit in the space that you specified.

Action
Choose a smaller size for the chunk, or free space where the chunk is to be created.

Copyright© 2020 HCL Technologies Limited

Cleaning stray LOs in sbspace sbspacename.

Cause
The database server administrator is running onspaces -cl sbspacename.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Completed re-creating indexes.

Cause
The database server finished re-creating the deferred indexes.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Configuration has been grown to handle up to integer chunks.

Cause
The database server administrator increased the number of chunks to the specified value by changing CONFIGSIZE or setting MAX_CHUNKS to a higher value.

Action
None required. The change was successful.

Copyright© 2020 HCL Technologies Limited

Configuration has been grown to handle up to integer dbslices.

Cause
The database server administrator increased the number of dbslices to the specified value by changing CONFIGSIZE or setting MAX_DBSLICES to a higher value.

996 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Action
None required. The change was successful.

Copyright© 2020 HCL Technologies Limited

Configuration has been grown to handle up to integer dbspaces.

Cause
The database server administrator increased the number of dbspaces to the specified value by changing CONFIGSIZE or setting MAX_DBSPACES to a higher value.

Action
None required. The change was successful.

Copyright© 2020 HCL Technologies Limited

Continuing Long Transaction (for COMMIT): tx 0xn.

Cause
The logical log has filled beyond the long-transaction high-watermark (LTXHWM), but the offending long transaction is in the process of committing. In this case, the
transaction is permitted to continue writing to the logical log and is not rolled back. The address of the transaction structure in shared memory is displayed as
hexadecimal value tx 0xn.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Could not disable priority aging: errno = number.

Cause
An operating-system call failed while it was trying to disable priority aging for the CPU virtual processor. The system error number associated with the failure is returned.

Action
See your operating-system documentation.

Copyright© 2020 HCL Technologies Limited

Could not fork a virtual processor: errno = number.

Cause
The fork of a virtual processor failed. The database server returns the operating-system error number associated with the failure.

Action
For information on determining the maximum number of processes available per user and for the system as a whole, refer to your operating-system documentation.

Copyright© 2020 HCL Technologies Limited

Create_vp: cannot allocate memory.

Cause

Part VI: Administering 997

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The database server cannot allocate new shared memory.

Action
The database server administrator must make more shared memory available. This situation might require increasing SHMTOTAL or reconfiguring the operating system.
This message is usually accompanied by other messages that give additional information.

Copyright© 2020 HCL Technologies Limited

Messages: D-E-F

Dataskip is OFF for all dbspaces.
 Dataskip is ON for all dbspaces.

 Dataskip is ON for dbspaces: dbspacelist.
 Dataskip will be turned {ON|OFF} for dbspacename.

 DBSERVERALIASES exceeded the maximum limit of 32
 DBSPACETEMP internal list not initialized, using default.
 The DBspace/BLOBspace spacename is now mirrored.

 The DBspace/BLOBspace spacename is no longer mirrored.
 devname: write failed, file system is full.

 Dropping temporary tblspace 0xn, recovering nn pages.
 Dynamically allocated new shared memory segment (size nnnn).

 ERROR: NO "wait for" locks in Critical Section.
 Error building sysmaster database. See outfile.
 Error in dropping system defined type.

 Error in renaming systdist.
 Error removing sysdistrib row for tabid = tabid, colid = colid in database name. iserrno = number

 Error writing pathname errno = number.
 Error writing shmem to file filename (error). Unable to create output file filename errno=mm.Error writing filename errno=nn.

 Fail to extend physical log space.
 Fatal error initializing CWD string. Check permissions on current working directory. Group groupname must have at least execute permission on '.'.

 Fragments dbspacename1 dbspacename2 of table tablename set to non-resident.
 Forced-resident shared memory not available.

 Freed mm shared-memory segment(s) number bytes.

Copyright© 2020 HCL Technologies Limited

Dataskip is OFF for all dbspaces.

Cause
Informational.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Dataskip is ON for all dbspaces.

Cause
Informational.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Dataskip is ON for dbspaces: dbspacelist.

Cause

998 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Informational; DATASKIP is ON for the specified dbspaces.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Dataskip will be turned {ON|OFF} for dbspacename.

Cause
Informational; DATASKIP is ON or OFF for the specified dbspace.

Action
None required.

Copyright© 2020 HCL Technologies Limited

DBSERVERALIASES exceeded the maximum limit of 32

Cause
The limit of 32 aliases was reached.

Action
Nothing. Only the first 32 will be used.

Copyright© 2020 HCL Technologies Limited

DBSPACETEMP internal list not initialized, using default.

Cause
An error occurred while initializing a user-specified DBSPACETEMP list. Typically this condition is due to a memory-allocation failure.

Action
Check for accompanying error messages.

Copyright© 2020 HCL Technologies Limited

The DBspace/BLOBspace spacename is now mirrored.

Cause
You successfully added mirroring to the indicated storage space.

Action
None required.

Copyright© 2020 HCL Technologies Limited

The DBspace/BLOBspace spacename is no longer mirrored.

Cause

Part VI: Administering 999

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

You have ended mirroring for the indicated storage space.

Action
None required.

Copyright© 2020 HCL Technologies Limited

devname: write failed, file system is full.

Cause
Because the file system devname is full, the write failed.

Action
Free some space in devname.

Copyright© 2020 HCL Technologies Limited

Dropping temporary tblspace 0xn, recovering nn pages.

Cause
During shared-memory initialization, the database server routinely searches for temporary tables that are left without proper cleanup. If the database server finds a
temporary table, it drops the table and recovers the space. The database server located the specified temporary tblspace and dropped it. The value 0xn is the
hexadecimal representation of the tblspace number.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Dynamically allocated new shared memory segment (size nnnn).

Cause
This status message informs you that the database server successfully allocated a new shared-memory segment of size nnnn.

Action
None required.

Copyright© 2020 HCL Technologies Limited

ERROR: NO "wait for" locks in Critical Section.

Cause
The database server does not permit a thread to own locks that might have to wait while that thread is within a critical section. Any such lock request is denied, and an
ISAM error message is returned to the user.

Action
The error reported is an internal error. Contact IBM® Informix® Technical Support.

Copyright© 2020 HCL Technologies Limited

Error building sysmaster database. See outfile.

1000 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Cause
Errors were encountered in building the sysmaster database. The file outfile contains the result of running the script buildsmi.

Action
See the file outfile.

Copyright© 2020 HCL Technologies Limited

Error in dropping system defined type.

Cause
An internal error occurred while updating either the sysxtdtypes, sysctddesc, or sysxtdtypeauth system table.

Action
Contact Technical Support.

Copyright© 2020 HCL Technologies Limited

Error in renaming systdist.

Cause
An internal error occurred while trying to find and rename the Informix®.systdist SPL routine.

Action
Contact Technical Support.

Copyright© 2020 HCL Technologies Limited

Error removing sysdistrib row for tabid = tabid, colid = colid in database name.
iserrno = number

Cause
An error occurred while updating the sysdistrib system table.

Action
Note the error number and contact Technical Support.

Copyright© 2020 HCL Technologies Limited

Error writing pathname errno = number.

Cause
The operating system cannot write to pathname. Number is the number of the operating-system error that was returned.

Action
Investigate the cause of the operating-system error. Usually it means that no space is available for the file. It might also mean that the directory does not exist or that no
write permissions exist.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1001

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Error writing shmem to file filename (error). Unable to create output file filename
errno=mm.Error writing filename errno=nn.

Cause
The database server detected an error in an attempt to write shared memory to filename. The first message is followed by one of the next two. Either the attempt failed
because the output file could not be created or because the contents of shared memory could not be written. The error refers to the operating-system error that prompted
the attempted write of shared memory to a file. The value of nn is the operating-system error.

Action
See your operating-system documentation.

Copyright© 2020 HCL Technologies Limited

Fail to extend physical log space.

Cause
The attempt to extend the physical log space failed. Either the path does not exist or the permissions are incorrect.

Action
Use a path that exists. Check permissions on the current working directory. You or the system administrator must give your group execute permission on the current
working directory. After your group has been given permission, retry the operation that generated this message.

Copyright© 2020 HCL Technologies Limited

Fatal error initializing CWD string. Check permissions on current working directory.
Group groupname must have at least execute permission on '.'.

Cause
Group groupname does not have execute permission for the current working directory.

Action
Check permissions on the current working directory. You or the system administrator must give your group execute permission on the current working directory. After your
group has been given permission, retry the operation that generated this message.

Copyright© 2020 HCL Technologies Limited

Fragments dbspacename1 dbspacename2 of table tablename set to non-resident.

Cause
The specified fragments of tablename either have been set to nonresident by the SET TABLE statement.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Forced-resident shared memory not available.

Cause
The database server port for your computer does not support forced-resident shared memory.

1002 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Action
None required.

Copyright© 2020 HCL Technologies Limited

Freed mm shared-memory segment(s) number bytes.

Cause
The database server sends this message to the message log after you run the -F option of the onmode utility to free unused memory. The message informs you of the
number of segments and bytes that the database server successfully freed.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Messages: G-H-I

gcore pid; mv core.pid dir/core.pid.ABORT.
 I/O function chunk mm, pagenum nn, pagecnt aa --> errno = bb.

 I/O error, primary/mirror Chunk pathname -- Offline (sanity).
 Informix database_server Initialized - Complete Disk Initialized.

 Informix database_server Initialized - Shared Memory Initialized.
 Informix database_server Stopped.

 In-Place Alter Table. Perform EXECUTE FUNCTION sysadmin:task('table update_ipa', 'table_name','database');
 ERROR: Insufficient available disk in the root dbspace to increase the entire Configuration save area.

 Insufficient available disk in the root dbspace for the CM save area. Increase the size of the root dbspace in the ONCONFIG file and reinitialize the server.
Internal overflow of shmid's, increase system max shared memory segment size.

Copyright© 2020 HCL Technologies Limited

gcore pid; mv core.pid dir/core.pid.ABORT.

Cause
This status message during a database server failure provides the name and place of each core file associated with the virtual processors.

Action
None required.

Copyright© 2020 HCL Technologies Limited

I/O function chunk mm, pagenum nn, pagecnt aa --> errno = bb.

Cause
An operating-system error occurred during an attempt to access data from disk space. The operating-system function that failed is defined by function. The chunk number
and physical address of the page where the error occurred are displayed as integers. The pagecnt value refers to the number of pages that the thread was attempting to
read or write. If an errno value is displayed, it is the number of the operating-system error and might explain the failure. If function is specified as bad request, some
unexpected event caused the I/O attempt on an invalid chunk or page.

Action
If the chunk status changes to D, or down, restore the chunk from its mirror or repair the chunk. Otherwise, perform a data restore.

Copyright© 2020 HCL Technologies Limited

I/O error, primary/mirror Chunk pathname -- Offline (sanity).

Part VI: Administering 1003

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Cause
The database server detected an I/O error on a primary or mirror chunk with pathname. The chunk was taken offline.

Action
Check that the device on which the chunk was stored is functioning as intended.

Deleted Indexes idx1 and idx 2 error message

Copyright© 2020 HCL Technologies Limited

Informix® database_server Initialized - Complete Disk Initialized.

Cause
Disk space and shared memory have been initialized. Any databases that existed on the disk before the initialization are now inaccessible.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Informix® database_server Initialized - Shared Memory Initialized.

Cause
Shared memory has been initialized.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Informix® database_server Stopped.

Cause
The database server has moved from quiescent mode to offline mode. The database server is offline.

Action
None required.

Copyright© 2020 HCL Technologies Limited

In-Place Alter Table. Perform EXECUTE FUNCTION sysadmin:task('table update_ipa',
'table_name','database');

Cause
Reversion to a previous version of the database server was attempted while an in-place alter operation is in progress on a table. The previous versions of the database
server cannot handle tables that have multiple schemas of rows in them.

Action
Force any in-place alter operations to complete by updating the rows in the affected tables before you attempt to revert to a previous version of the database server. Run
the SQL administration API task() or admin() command with the table update_ipa argument to resolve all pending in-place alter operations on the table.

1004 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

ERROR: Insufficient available disk in the root dbspace to increase the entire
Configuration save area.

Cause
The user attempted to increase the number of storage objects to a specific value by changing CONFIGSIZE or setting MAX_DBSPACES, MAX_DBSLICES, or MAX_CHUNKS
to a higher value, but the database server did not have enough rootspace for the increased number of storage objects. A storage object might be a dbspace, dbslice, or
chunk.

Action
Increase the size of the root dbspace or reset CONFIGSIZE, MAX_DBSPACES, MAX_DBSLICES, or MAX_DBSLICES to a lower value and restart the database server. For
example, if you set MAX_CHUNKS to 32,768, but the root dbspace did not have enough space, set MAX_CHUNKS to a lower value.

Copyright© 2020 HCL Technologies Limited

Insufficient available disk in the root dbspace for the CM save area. Increase the size
of the root dbspace in the ONCONFIG file and reinitialize the server.

Cause
The cause might be one of the following:

The user attempted to increase the number of storage objects to a specific value by changing CONFIGSIZE or setting MAX_DBSPACES, MAX_DBSLICES, or
MAX_CHUNKS to a higher value, but the database server did not have enough rootspace for the increased number of storage objects. A storage object might be a
dbspace, dbslice, or chunk.
The user converted to a database server version that requires slightly more rootspace, but it is not available (this case is unlikely).

Action
Take one of the following actions:

Increase the size of the root dbspace or reset CONFIGSIZE, MAX_DBSPACES, MAX_DBSLICES, or MAX_DBSLICES to a lower value and restart the database server.
For example, if you set MAX_DBSPACES to 32,768 but the root dbspace did not have enough space, set MAX_DBSPACES to a lower value.
Increase the size of the root dbspace and reinitialize the database server.

Copyright© 2020 HCL Technologies Limited

Internal overflow of shmid's, increase system max shared memory segment size.

Cause
The database server was initializing shared memory when it ran out of internal storage for the shared-memory IDs associated with this segment.

Action
Increase the value of your maximum kernel shared-memory segment size, usually SHMMAX. For more information, see your operating-system documentation.

Copyright© 2020 HCL Technologies Limited

Messages: J-K-L-M

Listener-thread err = error_number: error_message.
Lock table overflow - user id mm session id nn.

 Logical-log File not found.
 Logical Log nn Complete.

 Logical logging vberror for type:subtype in (failed_system).
 Log Record: log = ll, pos = 0xn, type = type:subtype(snum), trans = xx

 Log record (type:subtype) at log nn, 0xn was not undone.
 Log record (type:subtype) failed, partnum pnum row rid iserrno num.

 Log record (type:subtype) in log nn, offset 0xn was not rolled back.
 Logical Recovery allocating nn worker threads thread_type.

Part VI: Administering 1005

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Logical Recovery Started.
Maximum server connections number.
Memory allocation error.
Mirror Chunk chunkname added to space spacename. Perform manual recovery.
Mixed transaction result. (pid=nn user=userid).
mt_shm_free_pool: pool 0xn has blocks still used (id nn).
mt_shm_init: can’t create resident/virtual segment.
mt_shm_remove: WARNING: may not have removed all/correct segments.

Copyright© 2020 HCL Technologies Limited

Listener-thread err = error_number: error_message.

Cause
A listener thread has encountered an error. This message displays the error number and message text.

Action
For a description of an error message, use the finderr utility or go to Error messages.

Copyright© 2020 HCL Technologies Limited

Lock table overflow - user id mm session id nn.

Cause
A thread attempted to acquire a lock when no locks were available. The user ID and session ID are displayed.

Action
Increase the LOCKS configuration parameter, and initialize shared memory.

Copyright© 2020 HCL Technologies Limited

Logical-log File not found.

Cause
The checkpoint record in the root dbspace reserved page is corrupted.

Action
Perform a data restore from dbspace backup.

Copyright© 2020 HCL Technologies Limited

Logical Log nn Complete.

Cause
The logical-log file identified by log-ID number nn is full. The database server automatically switches to the next logical-log file in the sequence.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Logical logging vberror for type:subtype in (failed_system).

1006 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Cause
Logging failed. The log record that caused the error is identified as follows:

type
Is the logical-log record type.

subtype
Is the logging subsystem.

failed_system
Is the name of an internal function that indicates what system failed to log.

Action
Contact Technical Support.

Copyright© 2020 HCL Technologies Limited

Log Record: log = ll, pos = 0xn, type = type:subtype(snum), trans = xx

Cause
The database server detected an error during the rollforward portion of fast recovery or logical-log restore.

The log record that caused the error is identified as follows:

ll
Is the logical-log ID where the record is stored.

0xn
Is the hexadecimal address position within the log.

type
Is the logical-log record type.

subtype
Is the logging subsystem.

snum
Is the subsystem number.

xx
Is the transaction number that appears in the logical log.

Action
Contact Technical Support.

Copyright© 2020 HCL Technologies Limited

Log record (type:subtype) at log nn, 0xn was not undone.

Cause
A log undo failed because a log is corrupt.

The log record that caused the error is identified as follows:

type
Is the logical-log record type.

subtype
Is the logging subsystem.

nn
Is the logical-log ID where the record is stored.

0xn
Is the hexadecimal address position within the log.

Action
To determine if any action is needed, use the onlog utility to examine the logical log. Contact Technical Support.

Copyright© 2020 HCL Technologies Limited

Log record (type:subtype) failed, partnum pnum row rid iserrno num.

Part VI: Administering 1007

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Cause
A logging failure occurred.

The log record that caused the error is identified as follows:

type
Is the logical-log record type.

subtype
Is the logging subsystem.

pnum
Is the part number.

rid
Is the row ID.

num
Is the iserror number.

Action
Contact Technical Support.

Copyright© 2020 HCL Technologies Limited

Log record (type:subtype) in log nn, offset 0xn was not rolled back.

Cause
A log undo failed because a log is corrupt.

The log record that caused the error is identified as follows:

type
Is the logical-log record type.

subtype
Is the logging subsystem.

log
Is the logical-log ID where the record is stored.

offset
Is the hexadecimal address position within the log.

Action
To determine if any action is needed, use the onlog utility to examine the logical log. Contact Technical Support.

Copyright© 2020 HCL Technologies Limited

Logical Recovery allocating nn worker threads thread_type.

Cause
The database server determined the number of worker threads that will be used for parallel recovery. The variable thread_type can assume the values
ON_RECVRY_THREADS or OFF_RECVRY_THREADS.

Action
This status message requires no action. If you want a different number of worker threads allocated for parallel recovery, change the value of the ONCONFIG configuration
parameter ON_RECVRY_THREADS or OFF_RECVRY_THREADS.

Copyright© 2020 HCL Technologies Limited

Logical Recovery Started.

Cause
Logical recovery began.

Action

1008 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

This status message requires no action.

Copyright© 2020 HCL Technologies Limited

Maximum server connections number.

Cause
Outputs with each checkpoint message to indicate the maximum number of concurrent connections to the database server since the last restart.

Action
This message helps the customer track license usage to determine when more licenses need to be purchased. For assistance, Contact Technical Support.

Copyright© 2020 HCL Technologies Limited

Memory allocation error.

Cause
The database server ran out of shared memory.

Action
Take one of the following actions:

1. Increase swap space on the computer.
2. Check kernel shared-memory parameters for limits on shared memory.
3. Decrease the size of the memory allocated, with the buffers field in the BUFFERPOOL configuration parameter.
4. Increase the virtual-memory size (SHMVIRTSIZE), the size of the added segments, (SHMADD), or your total shared-memory size (SHMTOTAL).

Copyright© 2020 HCL Technologies Limited

Mirror Chunk chunkname added to space spacename. Perform manual recovery.

Cause
Fast recovery, full recovery, or an HDR secondary has recovered the add of a mirror chunk. It does not perform automatic mirror recovery, however. The administrator must
do this.

Action
Use the onspaces utility to attempt to recover the mirror chunks.

Copyright© 2020 HCL Technologies Limited

Mixed transaction result. (pid=nn user=userid).

Cause
You receive this message only when more than one database server is involved in a transaction. This message indicates that a database server, after preparing a
transaction for commit, heuristically rolled back the transaction, and the global transaction completed inconsistently. The pid value is the user-process identification
number of the coordinator process. The value of user is the user ID associated with the coordinator process.

Action
See the information on recovering manually from failed two-phase commit in your IBM® Informix® Administrator's Guide.

Copyright© 2020 HCL Technologies Limited

mt_shm_free_pool: pool 0xn has blocks still used (id nn).

Part VI: Administering 1009

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Cause
An internal error occurred during a pool deallocation because blocks are still associated with the pool.

Action
Contact Technical Support.

Copyright© 2020 HCL Technologies Limited

mt_shm_init: can’t create resident/virtual segment.

Cause
The causes for the failure to create the resident or virtual segment are as follows: (1) the segment size is less than the minimum segment size; (2) the segment size is
larger than the maximum segment size; (3) allocating another segment would exceed the allowable total shared-memory size; or (4) a failure occurred while the database
server was trying to allocate the segment.

Action
If you suspect that this error was generated because of item 1 or 2 in the preceding paragraph, Contact Technical Support. To correct item 3, increase the SHMTOTAL
value in your ONCONFIG configuration file. For additional information about errors generated because of item 4, see your logical-log file.

Copyright© 2020 HCL Technologies Limited

mt_shm_remove: WARNING: may not have removed all/correct segments.

Cause
When the operating system tried to remove the shared-memory segments associated with the database server, the last segment did not equal the last segment registered
internally. This situation is probably due to the unexpected failure of the database server.

Action
Remove any segments that were not cleaned up.

Copyright© 2020 HCL Technologies Limited

Messages: N-O-P

Newly specified value of value for the pagesize in the configuration file does not match older value of value. Using the older value.
 Not enough main memory.

 Not enough logical-log files, Increase LOGFILES.
 The number of configured inline poll threads exceeds the number of CPU virtual processors.

onconfig parameter parameter modified from old_value to new_value.
 oninit: Cannot have SINGLE_CPU_VP non-zero and number of CPU VPs greater than 1.

 oninit: Cannot have SINGLE_CPU_VP non-zero and user-defined VP classes.
 oninit: Fatal error in initializing ASF with 'ASF_INIT_DATA' flags asfcode = '25507'.

 Cannot alter a table which has associated violations table.
 oninit: Too many VPCLASS parameters specified.

 oninit: VPCLASS classname bad affinity specification.
 oninit: VPCLASS classname duplicate class name.

 oninit: VPCLASS classname illegal option.
 oninit: VPCLASS classname maximum number of VPs is out of the range 0-10000.

 oninit: VPCLASS classname name is too long. Maximum length is maxlength.
 oninit: VPCLASS classname number of VPs is greater than the maximum specified.

 oninit: VPCLASS classname number of VPs is out of the range 0-10000.
 onmode: VPCLASS classname name is too long. Maximum length is maxlength.

 Online Mode.
 onspaces: unable to reset dataskip.

 Open transaction detected when changing log versions.
 Out of message shared memory.

 Out of resident shared memory.
 Out of virtual shared memory.

 PANIC: Attempting to bring system down.
 Participant site database_server heuristically rolled back.

 Physical recovery complete: number pages examined, number pages restored.

1010 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Physical recovery started at page (chunk:offset).
Portions of partition partnum of table tablename in database dbname were not logged. This partition cannot be rolled forward.
Possible mixed transaction result.
Prepared participant site server_name did not respond.
Prepared participant site server_name not responding.

Copyright© 2020 HCL Technologies Limited

Newly specified value of value for the pagesize in the configuration file does not
match older value of value. Using the older value.

Cause
This message displays upon database server restart. The PAGESIZE value changed in the ONCONFIG file after the database server was initialized.

Action
The database server uses the older PAGESIZE value.

Copyright© 2020 HCL Technologies Limited

Not enough main memory.

Cause
The database server detected an error in an attempt to acquire more memory space from the operating system.

Action
For more information about shared-memory configuration and management, refer to your operating-system documentation.

Copyright© 2020 HCL Technologies Limited

Not enough logical-log files, Increase LOGFILES.

Cause
During a data restore, the value of the LOGFILES configuration must always be greater than or equal to the total number of logical-log files. At some point during the
restore, the number of logical-log files exceeded the value of LOGFILES.

Action
Increase the value of LOGFILES in ONCONFIG.

Copyright© 2020 HCL Technologies Limited

The number of configured inline poll threads exceeds the number of CPU virtual
processors.

Cause
This message is generated when the number of inline poll threads specified by the NETTYPE configuration parameter exceeds the number of CPU virtual processors
configured by the VPCLASS configuration parameter. Poll threads that are configured to run on CPU virtual processors are referred to as inline poll threads.

Action
Either modify the VPCLASS configuration parameter to increase the number of CPU virtual processors, or modify the NETTYPE configuration parameter to decrease the
number of inline poll threads.

Related reference:
 NETTYPE configuration parameter

VPCLASS configuration parameter

Part VI: Administering 1011

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

onconfig parameter parameter modified from old_value to new_value.

Cause
When the database server shared memory is reinitialized, this message documents any changes that occurred since the last initialization.

Action
None required.

Copyright© 2020 HCL Technologies Limited

oninit: Cannot have SINGLE_CPU_VP non-zero and number of CPU VPs greater than
1.

Cause
The ONCONFIG file contains VPCLASS cpu with a num= value greater than 1 and a nonzero value for SINGLE_CPU_VP. SINGLE_CPU_VP must be 0 (or omitted) when there
are more than 1 CPU VPs.

Action
Correct the ONCONFIG file and restart the database server.

Copyright© 2020 HCL Technologies Limited

oninit: Cannot have SINGLE_CPU_VP non-zero and user-defined VP classes.

Cause
The ONCONFIG file contains a user-defined VPCLASS as well as a nonzero value for SINGLE_CPU_VP. SINGLE_CPU_VP must be 0 (or omitted) when the ONCONFIG file
contains a user-defined VPCLASS.

Action
Correct the ONCONFIG file and restart the database server.

Copyright© 2020 HCL Technologies Limited

oninit: Fatal error in initializing ASF with 'ASF_INIT_DATA' flags asfcode = '25507'.

Cause
The nettype value specified in the sqlhosts file or registry for the database server is invalid or unsupported, or the servicename specified in the sqlhosts file or registry
for the database server is invalid.

Action
Check the nettype and servicename values in the sqlhosts file or registry for each DBSERVERNAME and for the DBSERVERALIASES. Check the nettype value in each
NETTYPE parameter in the ONCONFIG file.

Copyright© 2020 HCL Technologies Limited

Cannot alter a table which has associated violations table.

Cause

1012 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The user tried to add, drop, or modify a column in a table that has a violations table associated with it.

Action
Do not change the columns in the user table.

Copyright© 2020 HCL Technologies Limited

oninit: Too many VPCLASS parameters specified.

Cause
Too many VPCLASS parameter lines have been specified in the ONCONFIG file.

Action
Reduce the number of VPCLASS lines, if possible. If not possible, contact Technical Support.

Copyright© 2020 HCL Technologies Limited

oninit: VPCLASS classname bad affinity specification.

Cause
The affinity specification for the VPCLASS line is incorrect. Affinity is specified as a range:

For m, use processor m.

For m to n, use processors in the range m to n inclusive, where m <=n, m >= 0, and n >= 0.

Action
Correct the VPCLASS parameter in the ONCONFIG file and restart the database server.

Copyright© 2020 HCL Technologies Limited

oninit: VPCLASS classname duplicate class name.

Cause
The VPCLASS classname in the ONCONFIG file has a duplicate name. VP class names must be unique.

Action
Correct the duplicate name and restart the database server.

Copyright© 2020 HCL Technologies Limited

oninit: VPCLASS classname illegal option.

Cause
One of the fields in the VPCLASS classname parameter is illegal.

Action
Correct the parameter in the ONCONFIG file and restart the database server.

Copyright© 2020 HCL Technologies Limited

oninit: VPCLASS classname maximum number of VPs is out of the range 0-10000.

Part VI: Administering 1013

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Cause
The maximum number of VPs specified by a VPCLASS parameter line must be in the range 1 to 10,000.

Action
Correct the value and restart the database server.

Copyright© 2020 HCL Technologies Limited

oninit: VPCLASS classname name is too long. Maximum length is maxlength.

Cause
The length of the name field in VPCLASS classname is too long.

Action
Choose a shorter class name, correct the ONCONFIG file, and restart the database server.

Copyright© 2020 HCL Technologies Limited

oninit: VPCLASS classname number of VPs is greater than the maximum specified.

Cause
The initial number of VPs specified by a VPCLASS parameter is greater than the maximum specified by the same VPCLASS parameter.

Action
Correct the VPCLASS parameter and restart the database server.

Copyright© 2020 HCL Technologies Limited

oninit: VPCLASS classname number of VPs is out of the range 0-10000.

Cause
The initial number of VPs specified by a VPCLASS parameter line must be in the range 1 to 10,000.

Action
Correct the value and restart the database server.

Copyright© 2020 HCL Technologies Limited

onmode: VPCLASS classname name is too long. Maximum length is maxlength.

Cause
The name of a dynamically added VP class that onmode -p specifies is too long.

Action
Choose a shorter name, and retry the onmode -p command.

Copyright© 2020 HCL Technologies Limited

Online Mode.

1014 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Cause
The database server is in online mode. Users can access all databases

Action
This status message requires no action.

Copyright© 2020 HCL Technologies Limited

onspaces: unable to reset dataskip.

Cause
This error message comes from the onspaces utility. For some reason, the utility cannot change the specification of DATASKIP (ON or OFF) across all dbspaces in the
database server instance.

Action
You are unlikely to receive this message. If the error persists after you restart the database server, Contact Technical Support.

Copyright© 2020 HCL Technologies Limited

Open transaction detected when changing log versions.

Cause
The database server detected an open transaction while it was trying to convert the data from a previous version of the database server.

Action
Conversion is not allowed unless the last record in the log is a checkpoint. You must restore the previous version of the database server, force a checkpoint, and then retry
conversion.

Copyright© 2020 HCL Technologies Limited

Out of message shared memory.

Cause
The database server could not allocate more memory for the specified segment.

Action
For additional information, see the log file.

Copyright© 2020 HCL Technologies Limited

Out of resident shared memory.

Cause
The database server could not allocate more memory for the specified segment.

Action
For additional information, see the log file.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1015

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Out of virtual shared memory.

Cause
The database server could not allocate more memory for the specified segment.

Action
For additional information, see the log file.

Copyright© 2020 HCL Technologies Limited

PANIC: Attempting to bring system down.

Cause
A fatal database server error occurred.

Action
See the error that caused the panic and attempt the corrective action suggested by the error message. For additional information that might explain the failure, refer also
to other messages in the message-log file.

Copyright© 2020 HCL Technologies Limited

Participant site database_server heuristically rolled back.

Cause
A remote site rolled back a transaction after it reached the prepared-for-commit phase.

Action
You might need to roll back the transaction on other sites and then restart it.

Copyright© 2020 HCL Technologies Limited

Physical recovery complete: number pages examined, number pages restored.

Cause
This message displays during fast recovery. The number of pages examined indicates the number of page images that exist in the physical log. The number of pages
restored indicates the actual number of pages that are restored from the physical log. The number of pages restored is always less than or equal to the number examined.

The database server might physically log a page image multiple times between checkpoints. Physical recovery restores only the first logged page image.

If a page stays in the memory buffer pool, the database server physically logs it once per checkpoint, and stores one page image in the physical log. If the buffer pool is
too small, a page that is being updated many times might get forced out of the buffer pool to disk and then brought back into memory for the next update. Each time the
page is brought into memory, it is physically logged again, resulting in duplicate page images in the physical log.

Action
If the number of pages examined is much larger than the number of pages restored, increase the size of the buffer pool to reduce the number of duplicate before-images.
For more information, see the IBM® Informix® Performance Guide.

Copyright© 2020 HCL Technologies Limited

Physical recovery started at page (chunk:offset).

Cause

1016 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

This message displays during fast recovery. Chunk is the number of the chunk that contains the physical log. Offset is the page offset of the start of the physical log entries.
Physical recovery begins restoring pages from that point.

Action
No action required. For information on fast recovery, see the IBM® Informix® Administrator's Guide.

Copyright© 2020 HCL Technologies Limited

Portions of partition partnum of table tablename in database dbname were not
logged. This partition cannot be rolled forward.

Cause
Light appends occurred to the operational table since the last backup.

Action
If you want full access to data in this table, you need to alter the table to raw and then to the desired table type. This alter operation removes inconsistencies in the table
that resulted from replaying non-logged operations such as light appends.

Copyright© 2020 HCL Technologies Limited

Possible mixed transaction result.

Cause
This message indicates that error -716 has been returned. Associated with this message is a list of the database servers where the result of a transaction is unknown.

Action
For information on determining if a transaction was implemented inconsistently, see the IBM® Informix® Administrator's Guide.

Copyright© 2020 HCL Technologies Limited

Prepared participant site server_name did not respond.

Cause
Too many attempts were made to contact remote site server_name. After several timeout intervals were met, the site was determined to be down.

Action
Verify that the remote site is online and that it is correctly configured for distributed transactions. Once the remote site is ready, reinitiate the transaction.

Copyright© 2020 HCL Technologies Limited

Prepared participant site server_name not responding.

Cause
The database server is attempting to contact remote site server_name. For some unknown reason, the database server cannot contact the remote site.

Action
Verify that the remote site is online and that it is correctly configured for distributed transactions.

Copyright© 2020 HCL Technologies Limited

Messages: Q-R-S
Part VI: Administering 1017

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Quiescent Mode.
Read failed. Table name, Database name, iserrno = number
Recovery Mode.
Recreating index: 'dbsname:"owner".tabname-idxname'.
Rollforward of log record failed, iserrno = nn.
Root chunk is full and no additional pages could be allocated to chunk descriptor page.
scan_logundo: subsys ss, type tt, iserrno ee.
Session completed abnormally. Committing tx id 0xm, flags 0xn.
Session completed abnormally. Rolling back tx id 0xm, flags 0xn.
semctl: errno = nn.
semget: errno = nn.
shmat: some_string os_errno: os_err_text.
shmctl: errno = nn.
shmdt: errno = nn.
shmem sent to filename.
shmget: some_str os_errno: key shmkey: some_string.
Shutdown (onmode -k) or override (onmode -O).
Shutdown Mode.
Space spacename added.
Space spacename dropped.
Space spacename -- Recovery Begins(addr).
Space spacename -- Recovery Complete(addr).
Space spacename -- Recovery Failed(addr).
sysmaster database built successfully.
Successfully extend physical log space

Copyright© 2020 HCL Technologies Limited

Quiescent Mode.

Cause
The database server has entered quiescent mode from some other state. On UNIX, only users logged in as informix or as root can interact with the database server. On
Windows, only members of the Informix-Admin group can interact with the database server. No user can access a database.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Read failed. Table name, Database name, iserrno = number

Cause
An error occurred reading the specified system table.

Action
Note the error number and contact Technical Support.

Copyright© 2020 HCL Technologies Limited

Recovery Mode.

Cause
The database server entered the recovery mode. No user can access a database until recovery is complete.

Action
None required.

Copyright© 2020 HCL Technologies Limited

1018 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Recreating index: 'dbsname:"owner".tabname-idxname'.

Cause
After DDL statements implicitly or explicitly create one or more new indexes, but the database server terminates abnormally before the next checkpoint, re-creation of the
new indexes is deferred until after logical recovery, instead of adding each index item row by row. After logical recovery ends, the server begins a parallel index build to re-
create them. This message indicates when re-creation commences for each deferred index. (But if an index was dropped before the abnormal shutdown, it will not be re-
created after logical recovery, and no message referencing that index will be printed.)

Action
None required.

Copyright© 2020 HCL Technologies Limited

Rollforward of log record failed, iserrno = nn.

Cause
The message appears if, during fast recovery or a data restore, the database server cannot roll forward a specific logical-log record. The database server might be able to
change to quiescent or online mode, but some inconsistency could result. For further information, see the message that immediately precedes this one. The iserrno value
is the error number.

Action
Contact IBM® Informix® Technical Support.

Copyright© 2020 HCL Technologies Limited

Root chunk is full and no additional pages could be allocated to chunk descriptor
page.

Cause
The root chunk is full.

Action
To free space in the root chunk, take one of the following actions:

Drop and re-create the sysmaster database.
Move user tables from the root dbspace to another dbspace.
Refragment tables.

Copyright© 2020 HCL Technologies Limited

scan_logundo: subsys ss, type tt, iserrno ee.

Cause
A log undo failed because log type tt is corrupt.

The variables in this message have the following values:

ss
Is the subsystem name.

tt
Is the logical-log record type.

ee
Is the iserror number.

Action
Examine the logical log with the onlog utility to determine if any action is needed. Contact Technical Support.

Part VI: Administering 1019

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Session completed abnormally. Committing tx id 0xm, flags 0xn.

Cause
Abnormal session completion occurs only when the database server is attempting to commit a transaction that has no current owner, and the transaction develops into a
long transaction. The database server forked a thread to complete the commit.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Session completed abnormally. Rolling back tx id 0xm, flags 0xn.

Cause
Abnormal session completion occurs only when the database server is attempting to commit a distributed transaction that has no current owner, and the transaction
develops into a long transaction. The database server forked a thread that rolled back the transaction.

Action
None required.

Copyright© 2020 HCL Technologies Limited

semctl: errno = nn.

Cause
When the database server initialized a semaphore, an error occurred. The operating-system error is returned.

Action
See your operating-system documentation.

Copyright© 2020 HCL Technologies Limited

semget: errno = nn.

Cause
An allocation of a semaphore set failed. The operating-system error is returned.

Action
See your operating-system documentation.

Copyright© 2020 HCL Technologies Limited

shmat: some_string os_errno: os_err_text.

Cause
An attempt to attach to a shared-memory segment failed. The system error number and the suggested corrective action are returned.

Action

1020 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Review the corrective action (if given), and determine if it is reasonable to try. For more information, refer to your operating-system documentation.

Copyright© 2020 HCL Technologies Limited

shmctl: errno = nn.

Cause
An error occurred while the database server tried to remove or lock a shared-memory segment. The operating-system error number is returned.

Action
See your operating-system documentation.

Copyright© 2020 HCL Technologies Limited

shmdt: errno = nn.

Cause
An error occurred while the database server was trying to detach from a shared-memory segment. The operating-system error number is returned.

Action
See your operating-system documentation.

Copyright© 2020 HCL Technologies Limited

shmem sent to filename.

Cause
The database server wrote a copy of shared memory to the specified file as a consequence of an assertion failure.

Action
None.

Copyright© 2020 HCL Technologies Limited

shmget: some_str os_errno: key shmkey: some_string.

Cause
Either the creation of a shared-memory segment failed, or an attempt to get the shared-memory ID associated with a certain key failed. The system error number and the
suggested corrective action are returned.

Action
Consult your operating-system documentation.

Copyright© 2020 HCL Technologies Limited

Shutdown (onmode -k) or override (onmode -O).

Cause
A dbspace has gone down during a checkpoint interval. The database server is configured to wait for an override when this situation occurs.

When the checkpoint actually happens, the following message appears: Checkpoint blocked by down space, waiting for override or shutdown.

Part VI: Administering 1021

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Action
Either shut down the database server or issue an onmode -O command to override the down dbspace. For more information on the onmode utility, see The onmode utility.

Copyright© 2020 HCL Technologies Limited

Shutdown Mode.

Cause
The database server is in the process of moving from online mode to quiescent mode.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Space spacename added.

Cause
The database server administrator added a new storage space spacename to the database server.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Space spacename dropped.

Cause
The database server administrator dropped a storage space spacename from the database server.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Space spacename -- Recovery Begins(addr).

Cause
This informational message indicates that the database server is attempting to recover the storage space.

The variables in this message have the following values:

spacename
Is the name of the storage space that the database server is recovering.

addr
Is the address of the control block.

Action
None required.

Copyright© 2020 HCL Technologies Limited

1022 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Space spacename -- Recovery Complete(addr).

Cause
This informational message indicates that the database server recovered the storage space.

The variables in this message have the following values:

spacename
Is the name of the storage space that the database server has recovered.

addr
Is the address of the control block.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Space spacename -- Recovery Failed(addr).

Cause
This informational message indicates that the database server was unable to recover the storage space.

The variables in this message have the following values:

spacename
Is the name of the storage space that the database server failed to recover.

addr
Is the address of the control block.

Action
None required.

Copyright© 2020 HCL Technologies Limited

sysmaster database built successfully.

Cause
The database server successfully built the sysmaster database.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Successfully extend physical log space

Cause
The physical log space was successfully extended to the file plog_extend.servernum under the designated path.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Messages: T-U-V

Part VI: Administering 1023

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

This ddl operation is not allowed due to deferred constraints pending on this table and dependent tables.
This type of space does not accept log files.
TIMER VP: Could not redirect I/O in initialization, errno = nn.
Too Many Active Transactions.
Too many violations.
Transaction Not Found.
Transaction heuristically rolled back.
Transaction table overflow - user id nn, process id nn.
Unable to create output file filename errno = nn.
Unable to extend nn reserved pages for purpose in root chunk.
Unable to start SQL engine.
Unable to open tblspace nn, iserrno = nn.
The value of pagesize pagesize specified in the config file is not a valid pagesize. Use 2048, 4096 or 8192 as the value for PAGESIZE in the onconfig file and restart
the server.
Violations table is not started for the target table.
Violations table reversion test completed successfully.
Violations table reversion test failed.
Violations table reversion test start.
Violations tables still exist.
Virtual processor limit exceeded.
VPCLASS classname name is too long. Maximum length is maxlength.
VPCLASS classname duplicate class name.
VPCLASS classname Not enough physical procs for affinity.

Copyright© 2020 HCL Technologies Limited

This ddl operation is not allowed due to deferred constraints pending on this table
and dependent tables.

Cause
This error is returned when you attempt to start a violations table and constraints are in deferred mode.

Note: No error is returned if you start a violations table and then later set the constraints to deferred. However, the violations get undone immediately rather than written
into the deferred constraint buffer. For more information, see the IBM® Informix® Guide to SQL: Syntax.

Action
If you would like to start a violations table, you must either change the constraint mode to immediate or commit the transaction.

Copyright© 2020 HCL Technologies Limited

This type of space does not accept log files.

Cause
Adding a logical-log file to a blobspace or sbspace is not allowed.

Action
Add the logical-log file to a dbspace. For more information, see onparams -a -d dbspace: Add a logical-log file.

Copyright© 2020 HCL Technologies Limited

TIMER VP: Could not redirect I/O in initialization, errno = nn.

Cause
The operating system could not open the null device or duplicate the file descriptor associated with the opening of that device. The system error number is returned.

Action
See your operating-system documentation.

Copyright© 2020 HCL Technologies Limited

1024 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Too Many Active Transactions.

Cause
During a data restore, there were too many active transactions. At some point during the restore, the number of active transactions exceeded 32 kilobytes.

Action
None.

Copyright© 2020 HCL Technologies Limited

Too many violations.

Cause
The number of violations in the diagnostics table exceeds the limit that is specified in the MAX VIOLATIONS clause of the START VIOLATIONS TABLE statement. When a
single statement on the target table (such as an INSERT or UPDATE statement) inserts more records into the violations table than the limit that is specified by the MAX
VIOLATIONS clause, this error is returned to the user who issued the statement on the target table.

Action
To resolve this error, perform one of the following actions:

Omit the MAX VIOLATIONS clause in the START VIOLATIONS TABLE statement when you start a violations table. Here, you are specifying no limit to the number of
rows in the violations table.
Set MAX VIOLATIONS to a high value.

Copyright© 2020 HCL Technologies Limited

Transaction Not Found.

Cause
The logical log is corrupt. This situation can occur when a new transaction is started, but the first logical-log record for the transaction is not a BEGWORK record.

Action
Contact Technical Support.

Copyright© 2020 HCL Technologies Limited

Transaction heuristically rolled back.

Cause
A heuristic decision occurred to roll back a transaction after it completed the first phase of a two-phase commit.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Transaction table overflow - user id nn, process id nn.

Cause
A thread attempted to allocate an entry in the transaction table when no entries in the shared-memory table were available. The user ID and process ID of the requesting
thread are displayed.

Part VI: Administering 1025

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Action
Try again later.

Copyright© 2020 HCL Technologies Limited

Unable to create output file filename errno = nn.

Cause
The operating system cannot create output file filename. The errno is the number of the operating-system error returned.

Action
Verify that the directory exists and has write permissions.

Copyright© 2020 HCL Technologies Limited

Unable to extend nn reserved pages for purpose in root chunk.

Cause
The operating system cannot extend to nn reserved pages for purpose in root chunk. (The value purpose can be either Checkpoint/Log, DBSpace, Chunk, or Mirror Chunk.)

Action
Reduce the ONCONFIG parameter for the resource cited; bring the database server up and free some space in the primary root chunk. Then reattempt the same operation.

Copyright© 2020 HCL Technologies Limited

Unable to start SQL engine.

Cause
The database server encountered an out-of-memory condition.

Action
No action is necessary.

Copyright© 2020 HCL Technologies Limited

Unable to open tblspace nn, iserrno = nn.

Cause
The database server cannot open the specified tblspace. (The value nn is the hexadecimal representation of the tblspace number.)

Action
See the ISAM error message number nn, which should explain why the tblspace cannot be accessed. The error message appears in IBM® Informix® Error Messages.

Copyright© 2020 HCL Technologies Limited

The value of pagesize pagesize specified in the config file is not a valid pagesize. Use
2048, 4096 or 8192 as the value for PAGESIZE in the onconfig file and restart the
server.

1026 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Cause
This message displays upon disk initialization. The value of PAGESIZE that was specified in the ONCONFIG file is not a valid value.

Action
Restart the database server with a valid PAGESIZE value.

Copyright© 2020 HCL Technologies Limited

Violations table is not started for the target table.

Cause
If you issue a STOP VIOLATIONS TABLE statement for which no violations table is started, you receive this message.

Action
To recover from this error, you must start a violations table for the target table.

Copyright© 2020 HCL Technologies Limited

Violations table reversion test completed successfully.

Cause
This message is recorded in the logmessage table in the sysmaster database when the revtestviolations.sh script has completed successfully (no open violations tables
were found).

Action
No action is necessary.

Copyright© 2020 HCL Technologies Limited

Violations table reversion test failed.

Cause
When the database server finds an open violations table, it reports errors 16992 and 16993 in the logmessage table in the sysmaster database and aborts the reversion
process.

Action
When this message appears, you must issue the STOP VIOLATIONS TABLE FOR table_name command for each open violations table. After you close all open violations
tables, you can restart the reversion process.

Copyright© 2020 HCL Technologies Limited

Violations table reversion test start.

Cause
This message is recorded in the logmessage table in the sysmaster database when the revtestviolations.sh script is executed.

Action
No action is necessary.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1027

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Violations tables still exist.

Cause
This message is recorded in the logmessage table in the sysmaster database when an open violations table is found.

Action
When this message appears, you must issue the STOP VIOLATIONS TABLE FOR table_name command for each open violations table. After you close all open violations
tables, you can restart the reversion process.

Copyright© 2020 HCL Technologies Limited

Virtual processor limit exceeded.

Cause
You configured the database server with more than the maximum number of virtual processors allowed (1000).

Action
Modify the value of the VPCLASS configuration parameter, the NETTYPE configuration parameter, or both.

Related reference:
 NETTYPE configuration parameter

VPCLASS configuration parameter

Copyright© 2020 HCL Technologies Limited

VPCLASS classname name is too long. Maximum length is maxlength.

Cause
This message indicates an internal error.

Action
Contact Technical Support.

Copyright© 2020 HCL Technologies Limited

VPCLASS classname duplicate class name.

Cause
This message indicates an internal error.

Action
Contact Technical Support.

Copyright© 2020 HCL Technologies Limited

VPCLASS classname Not enough physical procs for affinity.

Cause
The physical processors in the affinity specification for the VP class classname do not exist or are offline.

Action

1028 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Make sure the named processors are online. Correct the affinity specification for the named VP class. Restart the database server.

Copyright© 2020 HCL Technologies Limited

Messages: W-X-Y-Z

WARNING: aio_wait: errno = nn.
 WARNING: Buffer pool size may cause database server to get into a locked state. Recommended minimum buffer pool size is num times maximum concurrent user

threads.
 warning: Chunk time stamps are invalid.

 Warning: name_old is a deprecated onconfig parameter. Use name_new instead. See the release notes and the Informix Administrator's Reference for more
information.

 Warning: name_old is a deprecated onconfig parameter. Use name_new instead.
 Warning: Unable to allocate requested big buffer of size nn.

 You are turning off smart large object logging.

Copyright© 2020 HCL Technologies Limited

WARNING: aio_wait: errno = nn.

Cause
While the database server was waiting for an I/O request to complete, it generated error number nn on an operation that it was attempting to execute.

Action
Contact Technical Support for assistance.

Copyright© 2020 HCL Technologies Limited

WARNING: Buffer pool size may cause database server to get into a locked state.
Recommended minimum buffer pool size is num times maximum concurrent user
threads.

Cause
There are not enough buffers in the buffer pool. The database server could use all available buffers and cause a deadlock to occur.

Action
Change the buffers field in the BUFFERPOOL parameter in the ONCONFIG file to the number that this message recommends. For more information on the BUFFERPOOL
parameter, see BUFFERPOOL configuration parameter..

Copyright© 2020 HCL Technologies Limited

warning: Chunk time stamps are invalid.

Cause
A sanity check is performed on chunks when they are first opened at system initialization. The chunk specified did not pass the check and will be brought offline.

Action
Restore the chunk from a dbspace backup or its mirror.

Copyright© 2020 HCL Technologies Limited

Warning: name_old is a deprecated onconfig parameter. Use name_new instead. See
the release notes and the Informix® Administrator's Reference for more information.

Part VI: Administering 1029

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Cause
A deprecated ONCONFIG parameter was used. This message displays the first time that you use a deprecated parameter. The shorter form of the message displays
thereafter.

Action
Use the suggested alternative ONCONFIG parameter.

Copyright© 2020 HCL Technologies Limited

Warning: name_old is a deprecated onconfig parameter. Use name_new instead.

Cause
A deprecated ONCONFIG parameter was used.

Action
Use the suggested alternative ONCONFIG parameter.

Copyright© 2020 HCL Technologies Limited

Warning: Unable to allocate requested big buffer of size nn.

Cause
The internal memory allocation for a big buffer failed.

Action
Increase either virtual memory size (SHMVIRTSIZE), the size of the added segments (SHMADD), or your total shared-memory size (SHMTOTAL).

Copyright© 2020 HCL Technologies Limited

You are turning off smart large object logging.

Cause
These changes will become the new sbspace default values. Changes have been made to the sbspace. The onspaces utility will read and update 100 smart large objects at
a time and commit each block of 100 smart large objects as a single transaction. This utility might take a long time to complete.

Action
This informational message occurs when you issue the following command:

onspaces -ch sbspace -Df “LOGGING=OFF“ -y

For more information, see onspaces -ch: Change sbspace default specifications.

Copyright© 2020 HCL Technologies Limited

Messages: Symbols

HH:MM:SS Informix database server Version R.VV.PPPPP Software Serial Number RDS#XYYYYYY.
 argument: invalid argument.

 function_name: cannot allocate memory.

Copyright© 2020 HCL Technologies Limited

1030 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

HH:MM:SS Informix® database server Version R.VV.PPPPP Software Serial Number
RDS#XYYYYYY.

Cause
This message indicate the start-up of the database server, after the initialization of shared memory.

Action
No action is required.

Copyright© 2020 HCL Technologies Limited

argument: invalid argument.

Cause
This internal error indicates that an invalid argument was passed to an internal routine.

Action
Contact Technical Support.

Copyright© 2020 HCL Technologies Limited

function_name: cannot allocate memory.

Cause
The database server cannot allocate memory from internal shared-memory pool.

Action
Increase either virtual-memory size (SHMVIRTSIZE), the size of the added segments (SHMADD), or your total shared-memory size (SHMTOTAL).

Copyright© 2020 HCL Technologies Limited

Conversion and reversion error messages

If conversion or reversion is not successful, error messages are stored in the online.log file to help you identify what failed and what actions to take to fix the problem.

Cannot revert new fragment expression for index index, tabid id.
 Cannot revert new table fragment expression for table with id id.
 The conversion of the database name has failed.

 Database name is not revertible...
 Database name: Must drop trigger (id = id_number) before attempting reversion.

 The dummy updates failed while converting database name. This may imply data corruption in the database. If so, restore the original database with the tape
backup. For more information, see output_file.

 Error in slow altering a system table.
 Internal server error.

 Must drop long identifiers in table name in database name
 Must drop new database (name) before attempting reversion. Iserrno error_number

 Must drop new user defined statistics in database name, iserrno number
 The pload database contains load/unload jobs referring to long table names, column names, or database names. These jobs will not work as expected until they are

redefined.
 Reversion canceled.

 There is a semi-detached index in this table, which cannot be reverted.
 WARNING: Target server version must have a certified Storage Manager installed after conversion/reversion and before bringing up server.

Copyright© 2020 HCL Technologies Limited

Cannot revert new fragment expression for index index, tabid id.

Part VI: Administering 1031

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Cause
The index fragmentation was defined in a version more recent than the one to which you are reverting.

Action
Drop the problem index-fragmentation scheme and retry reversion.

Copyright© 2020 HCL Technologies Limited

Cannot revert new table fragment expression for table with id id.

Cause
The fragmentation of this table was defined in a version more recent than the one to which you are reverting.

Action
Drop the problem table fragmentation scheme and retry reversion.

Copyright© 2020 HCL Technologies Limited

The conversion of the database name has failed.

Cause
Indicates that the conversion of the specified database has failed.

Action
Connect to the database. This action triggers conversion of the database. If it fails, the relevant error message appears. Contact Technical Support.

Copyright© 2020 HCL Technologies Limited

Database name is not revertible...

Cause
The database has failed one of the reversion checks and is not revertible.

Action
Take action to correct the error displayed as a separate message.

Copyright© 2020 HCL Technologies Limited

Database name: Must drop trigger (id = id_number) before attempting reversion.

Cause
The database contains a trigger that was created in a version more recent than the one to which you are converting.

Action
Drop the trigger with the specified trigger identification number and then attempt reversion.

Copyright© 2020 HCL Technologies Limited

1032 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The dummy updates failed while converting database name. This may imply data
corruption in the database. If so, restore the original database with the tape backup.
For more information, see output_file.

Cause
During conversion of a database from a version earlier than version 9.2, dummy update statements are run against the system tables in the database being converted. This
message indicates failure in running one of these update statements.

Action
To retry the dummy updates, run the dummy update script for your old database server version. For instructions, refer to the IBM® Informix® Migration Guide.

If data corruption occurred, restore the original database with the tape backup. For more information, see the IBM Informix Backup and Restore Guide.

Copyright© 2020 HCL Technologies Limited

Error in slow altering a system table.

Cause
An internal error occurred while performing reversion.

Action
Contact Technical Support.

Copyright© 2020 HCL Technologies Limited

Internal server error.

Cause
An unexpected error occurred during database reversion.

Action
Contact Technical Support.

Copyright© 2020 HCL Technologies Limited

Must drop long identifiers in table name in database name

Cause
Identifiers greater than 18 bytes in length are not supported in the database server version to which you are reverting.

Action
Make sure that all long identifiers in the system are either dropped or renamed before you attempt reversion.

Copyright© 2020 HCL Technologies Limited

Must drop new database (name) before attempting reversion. Iserrno error_number

Cause
The system contains a database that was created in a more recent version of the database server.

Part VI: Administering 1033

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Action
Drop the new database and attempt reversion.

Copyright© 2020 HCL Technologies Limited

Must drop new user defined statistics in database name, iserrno number

Cause
Some distributions in the sysdistrib system table use user-defined statistics. This feature is not supported in the version to which you are reverting.

Action
Ensure that no user-defined statistics are present or used in the system and then attempt reversion.

Copyright© 2020 HCL Technologies Limited

The pload database contains load/unload jobs referring to long table names, column
names, or database names. These jobs will not work as expected until they are
redefined.

Cause
Printed during onpload reversion testing if the onpload database contains references to long table names, column names, or database names. But the reversion will
complete.

Action
Redefine the load and unload jobs in the onpload database that have references to long identifiers.

Copyright© 2020 HCL Technologies Limited

Reversion canceled.

Cause
The reversion process was canceled because of errors encountered.

Action
Correct the cause of the errors, and restart reversion.

Copyright© 2020 HCL Technologies Limited

There is a semi-detached index in this table, which cannot be reverted.

Cause
A semi-detached index on this table cannot be reverted.

Action
To see the list of all semi-detached indexes, refer to the database server message log. Drop all semi-detached indexes, and retry reversion. You might need to recreate
those indexes after reversion is complete.

Copyright© 2020 HCL Technologies Limited

1034 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

WARNING: Target server version must have a certified Storage Manager installed
after conversion/reversion and before bringing up server.

Cause
ON-Bar is being converted or reverted. The user must ensure that a storage manager, certified with the target database server version, is installed.

Action
None.

Copyright© 2020 HCL Technologies Limited

Conversion and Reversion Messages for Enterprise Replication

During conversion and reversion, specific messages are logged for Enterprise Replication by the concdr, revcdr, and revtestcdr scripts.

The scripts write the messages to standard output by default. The messages are stored in the concdr.out, revcdr.out, and revtestcdr.out files in $INFORMIXDIR/etc on
UNIX or %INFORMIXDIR%\etc on Windows.

CDR reversion test failed; for details look in $INFORMIXDIR/etc/revtestcdr.out.
 Enterprise Replication is not ready for conversion. The Control and TRG send queues should be empty for conversion/reversion to proceed.

 Enterprise Replication should be in a stopped state for conversion/reversion to proceed.
 ...‘syscdr’ reversion failed; for details look in $INFORMIXDIR/etc/revcdr.out.

 'syscdr' conversion failed. For details, look in $INFORMIXDIR/etc/concdr.out.
 Syscdr should NOT contain new replicate sets for reversion to succeed.

 Syscdr should not contain replicates defined with the --floatieee option for reversion to succeed.

Copyright© 2020 HCL Technologies Limited

CDR reversion test failed; for details look in $INFORMIXDIR/etc/revtestcdr.out.

Cause
Enterprise Replication is not revertible.

Action
For more information, look at the messages in revtestcdr.out. Fix the reported problem before you attempt reversion.

Prints the output of the revcdr.sh or revcdr.bat script to standard output.

Copyright© 2020 HCL Technologies Limited

Enterprise Replication is not ready for conversion. The Control and TRG send queues
should be empty for conversion/reversion to proceed.

Cause
There are elements in the control and Transaction Send Queue (also called TRG) send queues. The database server sends replicated data to the TRG queue before
sending it to the target system.

Action
Wait for these queues to empty before you attempt either conversion or reversion. For more information, see the .

Prints this message to concdr.out during conversion or to revcdr.out during reversion.

Copyright© 2020 HCL Technologies Limited

Enterprise Replication should be in a stopped state for conversion/reversion to
proceed.

Part VI: Administering 1035

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Cause
Enterprise Replication should be in a stopped state for conversion or reversion to proceed.

Action
Stop Enterprise Replication. For more information, see the .

Prints this message to concdr.out during conversion or to revcdr.out during reversion.

Copyright© 2020 HCL Technologies Limited

...‘syscdr’ reversion failed; for details look in $INFORMIXDIR/etc/revcdr.out.

Cause
The reversion of the syscdr database failed.

Action
Find the cause of failure in the revcdr.out file, then fix the problem before you attempt reversion.

Prints the output of the revcdr.sh or revcdr.bat script to standard output.

Copyright© 2020 HCL Technologies Limited

'syscdr' conversion failed. For details, look in $INFORMIXDIR/etc/concdr.out.

Cause
Conversion of the syscdr database failed.

Action
If conversion fails, resolve the problem reported in concdr.out. Restore the syscdr database from backup and reattempt conversion.

Prints the output of the concdr.sh or concdr.bat script to standard output.

Copyright© 2020 HCL Technologies Limited

Syscdr should NOT contain new replicate sets for reversion to succeed.

Cause
The new replicate sets in the syscdr database are not compatible with older versions.

Action
Use the cdr delete replicateset command to delete the replicate sets. Then rerun the revcdr.sh or revcdr.bat script to reattempt reversion.

Prints this message to revtestcdr.out.

Copyright© 2020 HCL Technologies Limited

Syscdr should not contain replicates defined with the --floatieee option for reversion
to succeed.

Cause
Replicates have been defined with the --floatieee option. You cannot revert these replicates to the older version.

Action

1036 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Use the cdr delete replicateset command to delete replicates defined with the --floatieee option, then reattempt reversion.

Prints this message to revtestcdr.out.

Copyright© 2020 HCL Technologies Limited

Dynamic Log Messages

Dynamically added log file logid to DBspace dbspace_number.
 Log file logid added to DBspace dbspace_number.

 Log file number logid has been dropped from DBspace dbspace_number.
 Log file logid has been pre-dropped.

 Pre-dropped log file number logid has been deleted from DBspace dbspace_number.
 ALERT: Because the oldest logical log (logid) contains records from an open transaction (transaction_address), the server is attempting to dynamically add a log file.

But there is no space available. Please add a DBspace or chunk. Then complete the transaction as soon as possible.
 ALERT: The oldest logical log (logid) contains records from an open transaction (transaction_address). Logical logging will remain blocked until a log file is added.

Add the log file with the onparams -a command, using the -i (insert) option, as in: onparams -a -d dbspace -s size -i. Then complete the transaction as soon as
possible.

 Log file logid has been pre-dropped. It will be deleted from the log list and its space can be reused once you take level-0 archives of all BLOBspaces, Smart
BLOBspaces and non-temporary DBspaces.

Copyright© 2020 HCL Technologies Limited

Dynamically added log file logid to DBspace dbspace_number.

Cause
The next active log file contains records of an open transaction. Whenever the database server adds a log dynamically, it logs this message. Example: Dynamically
added log file 38 to DBspace 5.

Action
Complete the transaction as soon as possible.

Copyright© 2020 HCL Technologies Limited

Log file logid added to DBspace dbspace_number.

Cause
Whenever the administrator adds a log file manually, the database server logs this message. Example: Log file 97 added to Dbspace 2.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Log file number logid has been dropped from DBspace dbspace_number.

Cause
When you drop a newly-added log file, the database server logs this message. Example: Log file number 204 has been dropped from DBspace 17.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Log file logid has been pre-dropped.

Part VI: Administering 1037

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Cause
When you drop a used log file, it is marked as deleted (status D) and cannot be used again. After you perform a level-0 backup, the database server drops this log file and
can reuse the space. Example: Log file 12 has been pre-dropped.

Action
To delete the log file, perform a level-0 backup of all storage spaces.

Copyright© 2020 HCL Technologies Limited

Pre-dropped log file number logid has been deleted from DBspace dbspace_number.

Cause
After a backup, the database server deletes a pre-dropped log file and logs this message. Example: Pre-dropped log file number 12 has been deleted from
DBspace 3.

Action
None required.

Copyright© 2020 HCL Technologies Limited

ALERT: Because the oldest logical log (logid) contains records from an open
transaction (transaction_address), the server is attempting to dynamically add a log
file. But there is no space available. Please add a DBspace or chunk. Then complete
the transaction as soon as possible.

Cause
If the database server is unable to dynamically add a log file because the instance is out of space, it logs this message.

Action
Add a dbspace or chunk to an existing dbspace. Then complete the transaction as soon as possible.

Copyright© 2020 HCL Technologies Limited

ALERT: The oldest logical log (logid) contains records from an open transaction
(transaction_address). Logical logging will remain blocked until a log file is added.
Add the log file with the onparams -a command, using the -i (insert) option, as in:
onparams -a -d dbspace -s size -i. Then complete the transaction as soon as possible.

Cause
If the DYNAMIC_LOGS parameter is set to 1, the database server prompts the administrator to add log files manually when they are needed.

Action
Use the onparams -a command with the -i option to add the log file after the current log file. Then complete the transaction as soon as possible.

Copyright© 2020 HCL Technologies Limited

Log file logid has been pre-dropped. It will be deleted from the log list and its space
can be reused once you take level-0 archives of all BLOBspaces, Smart BLOBspaces
and non-temporary DBspaces.

1038 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Cause
When you drop a used log file, it is marked as deleted (status D) and cannot be used again, and onparams prints this message.

Action
To delete the log file, perform a level-0 backup of all storage spaces.

Copyright© 2020 HCL Technologies Limited

Sbspace Metadata Messages

Allocated number pages to Metadata from chunk number.
 Allocated number pages to Userdata from chunk number.
 Freeing reserved space from chunk number to Metadata.

 Freeing reserved space from chunk number to Userdata.

Copyright© 2020 HCL Technologies Limited

Allocated number pages to Metadata from chunk number.

Cause
The database server freed the specified number of pages from the reserved area and moved them to the metadata area of chunk number.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Allocated number pages to Userdata from chunk number.

Cause
The database server freed the specified number of pages from the reserved area and moved them to the user-data area of chunk number.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Freeing reserved space from chunk number to Metadata.

Cause
The metadata area in chunk number is full. The database server is trying to free space from the reserved area to the metadata area.

Action
None required.

Copyright© 2020 HCL Technologies Limited

Freeing reserved space from chunk number to Userdata.

Cause
The user-data area in chunk number is full. The database server is trying to free space from the reserved area to the user-data area.

Part VI: Administering 1039

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Action
None required.

Copyright© 2020 HCL Technologies Limited

Truncate Table Messages

The table cannot be truncated if it has an open cursor or dirty readers.
 The table cannot be truncated. It has at least one non-empty child table with referential constraints.

Copyright© 2020 HCL Technologies Limited

The table cannot be truncated if it has an open cursor or dirty readers.

Cause
You must have exclusive access to the table.

Action
Wait for dirty readers to complete or close all the open cursors and reissue the TRUNCATE TABLE command.

Copyright© 2020 HCL Technologies Limited

The table cannot be truncated. It has at least one non-empty child table with
referential constraints.

Cause
You cannot truncate a table if it has child tables with referential constraints and at least one row.

Action
Empty the child tables before you truncate this table.

Copyright© 2020 HCL Technologies Limited

Limits in Informix

This topic lists the system-level and table-level parameter limits, the system defaults, and the access capabilities of Informix®.

System-Level Parameter Limits
Table-level parameter limits
Informix System Defaults
Access capabilities

System-Level Parameter Limits
Table 1. System-level parameter limits

System-Level Parameters Maximum Capacity per Computer System

IBM® Informix systems per computer (Dependent on available system resources) 255

Maximum number of accessible remote sites Machine specific

Maximum virtual shared memory segment (SHMVIRTSIZE) 2GB (32-bit platforms) or 4TB (64-bit platforms)

Maximum number of Informix shared memory segments 1024

1040 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

System-Level Parameters Maximum Capacity per Computer System

Maximum address space UNIX: Machine specific
Windows: 2.7 GB if 4-gigabyte tuning is enabled:

All Windows versions later than Windows 2003
Windows 2003 and earlier versions if the boot.ini file contains the /3GB
switch

1.7 GB for Windows 2003 and earlier versions if the boot.ini file does not contain
the /3GB switch

Table-level parameter limits
Table 2. Table-level parameter limits

Table-level parameters (2K page size unless otherwise stated) Maximum capacity per table

Data rows per page 255

Data rows per fragment 4,277,659,295

Data pages per fragment 16,775,134

Data bytes per fragment (excludes smart large objects (BLOB, CLOB) and simple
large objects (BYTE, TEXT) created in blobspaces

2K page size = 33,818,670,144
 4K page size = 68,174,144,576

 8K page size = 136,885,093,440
 12K page size = 205,596,042,304

 16K page size = 274,306,991,168

Binary large object BLOB/CLOB pages 4 TB

Binary large objects TEXT/BYTE bytes 4 TB

Row length 32,767

Number of columns 32K

Maximum number of pages per index fragment 2,147,483,647

Key parts per index 16

Columns per functional index 102 (for C UDRs) 341 (for SPL or Java™ UDRs)

Maximum bytes per index key: 2K page size = 387
 4K page size = 796
 8K page size = 1615
 12K page size = 2435

 16K page size = 3254

Maximum size of an SQL statement Limited only by available memory

Informix System Defaults
Table 3. System defaults

Database characteristic Informix system default

Table lock mode Page

Initial extent size 8 pages

Next extent size 8 pages

Read-only isolation level (with database transactions) Committed Read

Read-only isolation level (ANSI-compliant database) Repeatable Read

Access capabilities
Table 4. Access capabilities

Access Capabilities Maximum Capacity per System

Maximum databases per Informix system 21 million

Maximum tables per Informix system 477 102 080

Maximum active users per Informix (minus the minimum number of system threads) 32K user threads

Maximum active users per database and table (also limited by the number of available locks, a tunable
parameter)

32K user threads

Maximum number of open databases in a session UNIX: 32 databases
Windows: 8 databases

Maximum number of open tables per Informix system Dynamic allocation

Maximum number of open tables per user and join Dynamic allocation

Part VI: Administering 1041

Access Capabilities Maximum Capacity per System

Maximum number of open transactions per instance 32 767

Maximum locks per Informix system and database Dynamic allocation

Maximum number of page cleaners 128

Maximum number of partitions per dbspace 4K page size: 1048445, 2K page size: 1048314
(based on 4-bit bitmaps)

Maximum number of recursive synonym mappings 16

Maximum number of tables locked with LOCK TABLE per user 32

Maximum number of cursors per user Machine specific

Maximum Enterprise Replication transaction size 4 TB

Maximum dbspace size 131 PB

Maximum sbspace size 131 PB

Maximum chunk size 4 TB

Maximum number of chunks 32 766

Maximum number of 2K pages per chunk 2 billion

Maximum number of open Simple Large Objects (applies only to TEXT and BYTE data types) 20

Maximum number of B-tree levels 20

Maximum amount of decision support memory Machine specific

Utility support for large files 17 billion GB

Maximum number of storage spaces (dbspaces, blobspaces, sbspaces, or extspaces) 2047

Copyright© 2020 HCL Technologies Limited

DB-Access User's Guide

This publication describes how to use the DB-Access utility to access, modify, and retrieve information from IBM® Informix® database servers.

Important: Use DB-Access with the current version of the database server. If you use DB-Access with a database server from a different version, you might obtain
inconsistent results, such as when you use a version that does not support long identifiers with a version that does.
This publication is written for the following users:

Database users
Database administrators
Database-application programmers

This publication assumes that you have the following background:

A working knowledge of your computer, your operating system, and the utilities that your operating system provides
Some experience working with relational databases or exposure to database concepts
Some experience with computer programming

These topics are taken from IBM Informix DB-Access User's Guide.

Getting started with DB-Access
 DB-Access provides a menu-driven interface for entering, running, and debugging Structured Query Language (SQL) statements and Stored Procedure Language

(SPL) routines. You can also run DB-Access interactively from the command line.
The full-screen menu interface

 The DB-Access full-screen menu interface guides you through running SQL statements.
Appendixes

Getting started with DB-Access

DB-Access provides a menu-driven interface for entering, running, and debugging Structured Query Language (SQL) statements and Stored Procedure Language (SPL)
routines. You can also run DB-Access interactively from the command line.

You use SQL and SPL commands to perform data-definition tasks, such as specifying the number and type of data columns in a table, and data-management tasks, such
as storing, viewing, and changing table data.

You can use DB-Access for the following aspects of database processing:

Running ad hoc queries that you run infrequently
Connecting to one or more databases, transferring data between the database and external text files, and displaying information about a database
Displaying system catalog tables and the Information Schema of databases
Practicing the SQL and SPL statements and examples that are provided in the IBM Informix Guide to SQL: Tutorial or the IBM Informix Database Design and
Implementation Guide
Testing applications that you intend to store for use in a production environment
Creating demonstration databases

1042 Part VI: Administering

https://www.hcltech.com/

Important: DB-Access is not intended as an application-development environment. You cannot branch conditionally or loop through SQL statements when you run them
within DB-Access.
The DB-Access utility is included with the Informix® server and with the Informix Client Software Development Kit.

Requirements for the Informix server DB-Access utility
 Before you start DB-Access, prepare the Informix server environment.

Requirements for the Informix Client Software Development Kit DB-Access utility
 Before you start DB-Access on a client, set up the client environment.

Demonstration databases
 You can practice using DB-Access with a demonstration database.

Start DB-Access
 You start DB-Access by running the dbaccess command from the command line. You can choose whether to use the DB-Access menu interface or the command-

line interface.

Requirements for the Informix server DB-Access utility

Before you start DB-Access, prepare the Informix® server environment.

Do the following tasks before you start the DB-Access utility that is included with the Informix server:

Set environment variables
If you require globalization, set up the Global Language Support (GLS) locale
Start the database server

To secure DB-Access connections with IBM® Informix, you can use the Secure Sockets Layer (SSL) protocol.

Environment variables for DB-Access
 As part of the installation and setup process, the system or database administrator sets certain environment variables that enable IBM Informix products to work

within a particular operating-system environment.

Related information:
 Secure sockets layer protocol

Environment variables for DB-Access

As part of the installation and setup process, the system or database administrator sets certain environment variables that enable IBM® Informix® products to work within
a particular operating-system environment.

You must have $INFORMIXDIR/bin in your path if you use DB-Access on a UNIX operating system or %INFORMIXDIR%\bin in your path if you use DB-Access on a
Windows operating system. Your operating system uses the path to locate the initialization script and the dbaccess executable file.

In a UNIX environment, the database server must have the appropriate terminal that is set up from among the terminals that are listed by the INFORMIXTERM
environment variable.

DB-Access uses the terminal definitions in the terminfo directory unless the INFORMIXTERM environment variable is set to the termcap file. If DB-Access fails to initialize
the menus that are based on the INFORMIXTERM setting, DB-Access tries to use the other setting. For example, if DB-Access fails to initialize the menus using the
terminfo directory, DB-Access starts the menus using the termcap file.

You can set the following optional environment variables:

DBACCNOIGN
Rolls back an incomplete transaction if you run the LOAD command in menu mode.

DBCENTURY
Sets the appropriate expansion for DATE and DATETIME values that have only a two-digit year, such as 04/15/12.

DBDATE
Specifies the user formats of DATE values.

DBEDIT
Sets the default DB-Access text editor without changing the default text editor that is associated with the operating-system shell.
For more information about how DB-Access uses the text editor that you specify as default, see A system editor.

DBFLTMASK
Sets the default floating-point values of data types FLOAT, SMALLFLOAT, and DECIMAL within a 14-character buffer.
The effect of this variable is limited to the DB-Access display size for numbers.

DELIMIDENT
Causes the database server to interpret double quoted (“) text as identifiers rather than strings.

IFX_LONGID
Determines whether a client application can handle long identifiers.
If you use the IFX_LONGID environment variable to support SQL identifiers with up to 128 bytes, some error, warning, or other messages of DB-Access might
truncate database object names that include more than 18 bytes in their identifiers. You can avoid this truncation by not declaring names that have more than 18
bytes.

GL_DATETIME
Defines the end-user formats for data values in DATETIME columns. In databases where GL_DATETIME has a nondefault setting, you must also set the USE_DTENV
environment variable to 1 for user formats to be applied correctly in some load and unload operations.
Important:
The %F directive implies no default separator between the SECOND and FRACTION fields of DATETIME values. Defining no separator before the %F directive
concatenates SECOND and FRACTION values, as in the following example, where GL_DATETIME has this setting:

Part VI: Administering 1043

%Y-%m-%d %H:%M:%S%F

Below is the end-user display for a DATETIME YEAR TO FRACTION(2) value on August 23, 2013, at exactly 53 seconds after 1:15 PM:

2013-08-23 13:15:5300

Here 5300 represents 53 seconds, concatenated with the FRACTION precision of 2. To display a separator between the integer and fractional parts of the seconds
value, your GL_DATETIME setting must include a literal separator character immediately before the %F formatting directive.

Related information:
 Environment variables

Requirements for the Informix Client Software Development Kit DB-Access utility

Before you start DB-Access on a client, set up the client environment.

The DB-Access utility on a client can directly access Informix® databases with which Client SDK has a client/server connection.

Do the following tasks before you start DB-Access utility that is included with Client SDK:

Set the client/server connectivity information in the sqlhosts file.
If you renamed the file or moved it from the default location, set the INFORMIXSQLHOSTS environment variable to the full path name and file name of the
file that contains the connectivity information.
You can use the syncsqlhosts utility to convert connection information from the Windows registry format to the sqlhosts file format.

Set the INFORMIXDIR environment variable to the Client SDK installation directory.
Set the INFORMIXSERVER environment variable for a default server name.

Related reference:
 Start DB-Access

Related information:
 The sqlhosts file and the SQLHOSTS registry key

INFORMIXDIR environment variable
INFORMIXSERVER environment variable
INFORMIXSQLHOSTS environment variable
The syncsqlhosts utility

Demonstration databases

You can practice using DB-Access with a demonstration database.

If you use IBM® Informix® demonstration databases, you can add, delete, or change the provided data and scripts. You can restore the database to its original condition.

You can configure the following demonstration databases:

The stores_demo database illustrates a relational schema with tables about a fictitious wholesale sporting-goods distributor, as well as other tables that are used
in examples. Tables containing electricity usage and geographical location data illustrate time series and spatial information. Many examples in IBM Informix
manuals are based on the stores_demo database.
The superstores_demo database illustrates an object-relational schema. The superstores_demo database contains examples of extended data types, type and
table inheritance, and user-defined routines.

The scripts that you use to install the demonstration databases are in the $INFORMIXDIR/bin directory on UNIX and in the %INFORMIXDIR%\bin directory on Windows.

Some operating systems require that you have execute permissions to run SQL command files, read permissions to open these files or their contents in DB-Access, or
write permissions to save modified or new files. Use the UNIX chmod command to enable execution of the SQL files that the initialization script installed.

The demonstration scripts are designed for the default locale. If you use a non-default locale, such as en_us.utf8, some features, such as the SET COLLATION statement,
might not function correctly.

Creating a demonstration database
 You create demonstration databases by running the dbaccessdemo command.

dbaccessdemo command: Create demonstration databases
 Use the dbaccessdemo or dbaccessdemo_ud command to create the demonstration databases.

Related information:
 The stores_demo Database

The superstores_demo database

Creating a demonstration database

You create demonstration databases by running the dbaccessdemo command.

When you create a demonstration database, the script confirms that you want to copy sample SQL command files. Command files that the demonstration database
includes have a .sql extension and contain sample SQL statements that you can use.

To create a demonstration database:

1. Create a directory.

1044 Part VI: Administering

You must have UNIX read and execute permissions for each directory in the path name that you create.

2. Change directories to the new directory and run the dbaccessdemo or dbaccessdemo_ud command.
3. The initialization script displays a series of messages on the screen as the database is created. Press Y to copy the command files into the directory that you

created. The demonstration database is created. You are the owner and database administrator (DBA) of that database.

If you want to discard changes that you made to your database or to the command files, rerun the dbaccessdemo or dbaccessdemo_ud command and press Y to replace
the existing command files with the original versions.

dbaccessdemo command: Create demonstration databases

Use the dbaccessdemo or dbaccessdemo_ud command to create the demonstration databases.

Syntax for stores_demo

>>-dbaccessdemo--+-------+--+--------+-------------------------->
 '- -log-' '-dbname-'

>--+-------------------------+--+--------+---------------------><
 '- -dbspace--dbspace_name-' '- -nots-'

Syntax for superstores_demo

>>-dbaccessdemo_ud--+-------+--+--------+----------------------->
 '- -log-' '-dbname-'

>--+-------------------------+---------------------------------><
 '- -dbspace--dbspace_name-'

-log
Requests transaction logging for the demonstration database.

dbname
Substitutes for the default database name. Must follow Identifier naming guidelines.

-dbspace
Requests a particular dbspace location for the demonstration database.

dbspace_name
Houses the demonstration database. If you do not specify a dbspace name, by default, the data for the database is put in the root dbspace. To create a dbspace,
use the onspaces utility.

-nots
Prevents the creation of the time series tables in the stores_demo database.

Examples
The following command creates a database that is named stores_demo:

dbaccessdemo

The following example creates an instance of the stores_demo database named demo_db:

dbaccessdemo demo_db

The following command initializes the stores_demo database and also initiates log transactions:

dbaccessdemo -log

The following command creates an instance of the stores_demo database named demo_db in dbspace_2:

dbaccessdemo demo_db -dbspace dbspace_2

The following command creates a database that is named superstores_demo:

dbaccessdemo_ud

Related information:
 The stores_demo Database

The superstores_demo database
Identifier

Start DB-Access

You start DB-Access by running the dbaccess command from the command line. You can choose whether to use the DB-Access menu interface or the command-line
interface.

You can start and use DB-Access in the following ways:

Part VI: Administering 1045

Start DB-Access at the main menu.
Start DB-Access from a specific menu or screen.
Run a file that contains SQL statements without showing the DB-Access menus.
Start and run DB-Access interactively at the command line, without the menu interface.

On Windows, you can set up the DB-Access program icon to run any of the dbaccess commands.

If the TERM, TERMCAP, or TERMINFO environment variables on UNIX do not enable DB-Access to recognize the type of terminal you use, the main menu does not show.
Instead, a message similar to the following text is displayed:

Unknown terminal type.

If you use a window interface on a UNIX terminal, issue the dbaccess command from a nonscrolling console window.

If you use a Windows terminal to run DB-Access on a UNIX database server, the terminal-emulation window must emulate a terminal type that DB-Access can recognize,
or the database server shows an unknown terminal-type message in the terminal-emulation window.

Tip: If your operating system cannot find dbaccess, include the full path before the program name, as follows:

$INFORMIXDIR/bin/dbaccess

dbaccess command: Start DB-Access
 Use the dbaccess command to start DB-Access. Include options to specify the database, command files, or to go to a specific menu screen.

Run DB-Access in interactive mode without menus
 If you do not want to use the menus and do not have a prepared SQL file, use your keyboard or standard input device to enter SQL statements from the command

line.

Related concepts:
 Requirements for the Informix Client Software Development Kit DB-Access utility

Related information:
 Environment variables

dbaccess command: Start DB-Access

Use the dbaccess command to start DB-Access. Include options to specify the database, command files, or to go to a specific menu screen.

Syntax

>>-dbaccess--+--------+--+-----+-------------------------------->
 '- -ansi-' '- -X-'

>--+-database--+-----------+--+--+-+-->
 | '-@--server-' +- -q--+-------------------------------------+--+----------+-+ |
 | | | (1) | +-filename-+ | |
 | | '-| QUERY-LANGUAGE menu options |-----' '-table----' | |
 | '- -t--+----------------------------+--+-------+-------------' |
 | | (2) | '-table-' |
 | '-| TABLE menu options |-----' |
 +- -d--+-------------------------------+--+
 | | (3) | |
 | '-| DATABASE menu options |-----' |
 +- -c--+---------------------------------+--+
 | | (4) | |
 | '-| CONNECTION menu options |-----' |
 +- -s---+
 '-+-----+--+-database-+--filename---'
 +- -e-+ '- - ------'
 '- -m-'

 (5)
>--+-----+------+-----------+----------------------------------><
 '- -a-' +- -version-+
 +- -V-------+
 '- -history-'

Notes:

1. See QUERY-LANGUAGE menu options.
2. See TABLE menu options.
3. See DATABASE menu options.
4. See CONNECTION menu options.
5. Cannot be combined with any other option.

The dbaccess command without options starts the main menu with no database selected and no options activated. You select submenus from the main menu.

-ansi
Causes DB-Access to generate a warning whenever it encounters IBM® Informix® extension to ANSI-compliant syntax. For more information, see Example: Check
for ANSI compliance.

-a
Stops a process directly after the first error is encountered. Stopping a process from continuing after the first error can ensure greater database consistency.

-c
Starts with the CONNECTION menu as the top-level menu.

-d

1046 Part VI: Administering

Starts with the DATABASE menu as the top-level menu.
-e

Echoes each line from a command file designated by filename.
-history

Can be abbreviated to -his. Displays the previous commands that you ran from the dbaccess command line during the current session. Commands that you ran
from the menu interfaces are not shown. Each command is numbered. In the interactive mode without menus, you can rerun previous commands with the following
command:

run number

The number is the number of the command to run. For an example, see Run DB-Access in interactive mode without menus.
-m

Displays all error messages generated by multiple levels of the server that pertain to an SQL statement in command files.
-q

Starts at the query-language menu (SQL-menu) as the top-level menu.
-s

Connects you to the main DB-Access menu and displays information about the current session.
This information includes database server name, database server type, the host computer, server capabilities, and other settings.

-t
Starts at the TABLE menu as the top-level menu.

-V
Displays the version number and serial number for DB-Access without launching the application. You cannot use any other options with -V.

-version
Displays the version number and build information for DB-Access, including the GLS library version, without launching the application. You cannot use any other
options with -version.

-X
Activates the hexadecimal format for LOAD and UNLOAD statements.

database
Name of the database that you want DB-Access to connect to at the startup of your current session. A hyphen (-) indicates that the database is specified in a
DATABASE statement in a command file.

filename
Names a command file to load with the SQL menu.

server
Name of the database server.

table
Specifies a table in the database.

If you exit from a submenu or option that you specified from the command line, you will exit directly to the operating-system command line.

CONNECTION menu options
 The CONNECTION menu options for the dbaccess command represent short cut keys for the CONNECTION menu.

DATABASE menu options
 The DATABASE menu options for the dbaccess command represent short cut keys for the DATABASE menu.

QUERY-LANGUAGE menu options
 The QUERY-LANGUAGE menu options for the dbaccess command represent short cut keys for the QUERY-LANGUAGE menu.

TABLE menu options
 The TABLE menu options for the dbaccess command represent short cut keys for the TABLE menu.

Example: Start DB-Access for a database
 This example shows how to start DB-Access and specify a database to which to connect.

Example: Run a command file
 This example shows how to start DB-Access and run a command file that contains SQL statements.

Example: View the Information Schema
 This example shows how to start DB-Access and view the Information Schema for the specified database.

Example: Check for ANSI compliance
 This example shows how to start DB-Access and check whether a database is ANSI-compliant.

Example: Show nonprintable characters in hexadecimal
 This example starts DB-Access and activates the hexadecimal load and unload format (XLUF) so that the LOAD and UNLOAD SQL statements can format

nonprintable ASCII signs in hexadecimal format.

CONNECTION menu options

The CONNECTION menu options for the dbaccess command represent short cut keys for the CONNECTION menu.

-cc
Chooses the Connect option on the CONNECTION menu.

-cd
Chooses the Disconnect option on the CONNECTION menu.

DATABASE menu options

The DATABASE menu options for the dbaccess command represent short cut keys for the DATABASE menu.

-dc
Chooses the Create option on the DATABASE menu.

Part VI: Administering 1047

-dcl
Takes you to the LOG option on the CREATE DATABASE menu

-dd
Chooses the Drop option on the DATABASE menu.

-di
Chooses the Info option on the DATABASE menu. With this option, you can add another letter as follows to go to the next menu level and view:

-dib
The dbspaces information for the current database

-din
The NLS information for the current database

-dip
Stored procedures in the current database

If you do not include a database name before any -di option, you must choose a current database from the SELECT DATABASE screen.

-dl
Chooses the CLose option on the DATABASE menu.

-ds
Chooses the Select option on the DATABASE menu.

QUERY-LANGUAGE menu options

The QUERY-LANGUAGE menu options for the dbaccess command represent short cut keys for the QUERY-LANGUAGE menu.

-qc
Chooses the Choose option on the SQL menu.

-qd
Chooses the Drop option on the SQL menu.

-qi
Chooses the Info option on the SQL menu. With this option, you can add another letter as shown in the following list (and specify a table) to go to the next menu
level and view:

-qic
Columns in the table

-qif
Information about fragmentation strategy for the table

-qig
Information about triggers in the table

-qii
Indexes on the table

-qio
Table constraints

-qip
Access privileges on the table

-qir
Table-level references privilege on the table

-qis
Table status information

If you do not include a table name with the -qi option, you must choose one from the INFO FOR TABLE screen.

-qm
Chooses the Modify option on the SQL menu.

-qn
Chooses the New option on the SQL menu.

-qs
Chooses the Save option on the SQL menu.

-qu
Chooses the Use-editor option on the SQL menu.
If you do not include a database name before a -q option, you must choose a current database from the SELECT DATABASE screen.

When you select the Modify option on the QUERY-LANGUAGE menu, you must first select a command file to modify from the CHOOSE menu. The MODIFY screen is then
displayed and shows the text.
Restriction: You cannot go directly to the Run or Output option on the SQL menu. Trying to do so results in an error message.

TABLE menu options

The TABLE menu options for the dbaccess command represent short cut keys for the TABLE menu.

-ta
Chooses the Alter option on the TABLE menu.

-tc
Chooses the Create option on the TABLE menu.

-td
Chooses the Drop option on the TABLE menu.

1048 Part VI: Administering

-ti
Chooses the Info option on the TABLE menu. With this option, you can add another letter as shown in the following list (and specify a table) to go to the next menu
level and view:

-tic
Columns in the table

-tif
Information about fragmentation strategy for the table

-tig
Information about triggers in the table

-tii
Indexes on the table

-tio
Table constraints

-tip
Access privileges on the table

-tir
Table-level references privilege on the table

-tis
Table status information

If you do not include a table name with the -ti option, you must choose one from the INFO FOR TABLE screen.

If you do not include a database name before a -t option, you must choose a current database from the SELECT DATABASE screen.

Example: Start DB-Access for a database

This example shows how to start DB-Access and specify a database to which to connect.

Assume that the database server that you have online contains a database named mystores. To make the mystores database the current database, start DB-Access with
the following command:

dbaccess mystores

You can specify a database on a database server that is not online. For example, either of the following commands selects the newstores database on the xyz database
server:

dbaccess newstores@xyz
dbaccess //xyz/newstores

When DB-Access starts, the database and database server name that you specify are displayed on the dashed line, as the following figure shows.
Figure 1. The DB-Access main menu with database and database server name

DB-Access: Query-language Connection Database Table Session Exit

---------------- newstores@xyz ---------------------Press CTRL-W for Help ---

Example: Run a command file

This example shows how to start DB-Access and run a command file that contains SQL statements.

The following sample command runs the SQL statements in a file named sel_stock.sql on the mystores database:

dbaccess mystores sel_stock

The following sample command runs the SQL statements in the sel_all.sql file on the database that file specifies:

dbaccess - sel_all.sql

Some operating systems require that you have execute permissions to run SQL command files, read permissions to open these files or their contents in DB-Access, or
write permissions to save modified or new files.

Use the UNIX chmod command to enable execution of the SQL files that the initialization script installed.

Example: View the Information Schema

This example shows how to start DB-Access and view the Information Schema for the specified database.

The xpg4_is.sql file in the $INFORMIXDIR/etc directory creates the Information Schema and installs the views for a specified database. The following command creates
the Information Schema for database mystores:

dbaccess mystores $INFORMIXDIR/etc/xpg4_is.sql

The Information Schema adds to the database four information-only views that conform to X/Open XPG4 with IBM® Informix® extensions. After you run xpg4_is.sql, use
DB-Access to retrieve information about the tables and columns that you have access to in the specified database.
Tip: Do not install XPG4-compliant views on an ANSI database, because the format of XPG4-compliant views differs considerably from the format of the ANSI-compliant
Information Schema views that are defined by the SQL standards committee.

Part VI: Administering 1049

Related information:
Information Schema

Example: Check for ANSI compliance

This example shows how to start DB-Access and check whether a database is ANSI-compliant.

To check your SQL statements for compliance with ANSI standards, include the -ansi option or set the DBANSIWARN environment variable. Use the -ansi option with
other dbaccess options such as -dc (to create a database), -tc or -ta (to create or alter a table), or -qc filename (to choose a command file). The following command
checks for ANSI compliance while DB-Access creates the database research:

dbaccess -ansi -dc research

You do not need to specify the -ansi option on the command line if the DBANSIWARN environment variable is set.

DB-Access displays the SQLSTATE value with the warning under the following circumstances:

You include the -ansi option or set the DBANSIWARN environment variable.
You access or create an ANSI database.
You run DB-Access in command-line mode or specify a .sql input file.
Running an SQL statement generates a warning rather than an error.

Related information:
 DECIMAL(p) Floating Point

GET DIAGNOSTICS statement
DBANSIWARN environment variable
ANSI-Compliant Databases

Example: Show nonprintable characters in hexadecimal

This example starts DB-Access and activates the hexadecimal load and unload format (XLUF) so that the LOAD and UNLOAD SQL statements can format nonprintable
ASCII signs in hexadecimal format.

The following command activates the XLUF format for the mystores database:

dbaccess -X mystores

A .unl file that the UNLOAD statement produces contains the hexadecimal format changes.

Related information:
 The LOAD and UNLOAD statements

Run DB-Access in interactive mode without menus

If you do not want to use the menus and do not have a prepared SQL file, use your keyboard or standard input device to enter SQL statements from the command line.

When you start DB-Access without a menu argument and with a hyphen as the final argument, DB-Access processes commands from the standard input device (on UNIX)
or the keyboard (on Windows). DB-Access reads what you type until you indicate that the input is completed. Then DB-Access processes your input and writes the results
to the standard output device (on UNIX), or the command window (on Windows).

DB-Access reads and runs SQL statements from the terminal keyboard interactively. While DB-Access runs interactively, the greater than (>) prompt marks the line where
you type your next SQL statement.

When you type a semicolon (;) to end a single SQL statement, DB-Access processes that statement. When you press CTRL-D to end the interactive session, DB-Access
stops running. The following example shows user input and results in an interactive session:

dbaccess - -
>database stores_demo;

Database selected.

>select count(*) from systables;

(count(*))

 21

1 row(s) retrieved.

>^D

dbaccess - -
>database stores_demo;

Database selected.

>select count(*) from systables;

(count(*))

1050 Part VI: Administering

 21

1 row(s) retrieved.

>^D

Batch command input (UNIX)
You can use an inline shell script to supply one or more SQL statements. For example, you can use the UNIX C, Bourne, or Korn shell with inline standard input files:

dbaccess mystores- <<EOT!
select avg(customer_num) from customer
where fname matches '[A-G]*';
EOT!

You can use a pipe to supply SQL statements, as in this UNIX example:

echo 'select count(*) from systables' | dbaccess mystores

DB-Access interprets any line that begins with an exclamation mark (!) as a shell command. You can mix shell escape lines with SQL statements and put them in SQL
statements, as follows:

dbaccess mystores -
>select
!echo hello
>hello
count(*) from systables;
>
(count(*))

 21

1 row(s) retrieved.
>

View and rerun DB-Access commands
You can view and rerun DB-Access commands that you ran from the command line during the current session.

To view the previous commands, run the dbaccess -history command. In the following example, the command history shows three previous commands:

dbaccess -history - -
1> create database sales_demo;

Database created.

2> create table customer (
2> customer_code integer,
2> customer_name char(31),
2> company_name char(20));

Table created.

3> insert into customer values (102, "Carole Sadler", "Sports Spot");

1 row(s) inserted.

4> history;

1 create database sales_demo
2 create table customer (
 customer_code integer,
 customer_name char(31),
 company_name char(20))
3 insert into customer values (102, "Carole Sadler", "Sports Spot")

You can rerun the third command by running the run 3 command:

4> run 3;

1 row(s) inserted.

Connect to a database environment in interactive mode
 You can use the CONNECT . . . USER syntax in SQL statements that you issue in interactive mode. However, DB-Access does not support the USER clause of the

CONNECT statement when you connect to a default database server.

Connect to a database environment in interactive mode

You can use the CONNECT . . . USER syntax in SQL statements that you issue in interactive mode. However, DB-Access does not support the USER clause of the CONNECT
statement when you connect to a default database server.

When you include the USER ‘user identifier' clause in a CONNECT statement in interactive mode, DB-Access prompts you to enter a password.

The following two command examples show how to connect to a database server in interactive mode. The first example uses the CONNECT statement without specifying a
user identifier.

Part VI: Administering 1051

dbaccess -nohistory- -

> connect to '@starfish';

Connected.

If you include the USER clause in a CONNECT statement, as the second example shows, DB-Access uses echo suppression to prompt you for a password:

> connect to '@starfish' user 'marae';

ENTER PASSWORD:

Connected.

Restriction: For security reasons, do not enter the password on the screen where it can be seen. Also, do not include the USING password clause in a CONNECT statement
when you use DB-Access interactively. If you are in interactive mode and attempt to enter a password before the prompt, an error message is displayed.
You can run the USER clause of a CONNECT statement in a DB-Access file that includes the USER clause. The following example uses a command file that contains a
CONNECT statement with a USING clause to connect to a database server:

dbaccess - connfile.sql

Important: An SQL command file that contains the following statement is protected from access by anyone other than the user_id that the USER clause identifies:

CONNECT TO '@dbserver' USER 'user_id' USING password

For UNIX, the following example uses a shell file to connect to a database server. DB-Access prompts you for a password.

dbaccess - - <<\!
connect to '@starfish' user 'marae';
!

ENTER PASSWORD:

Here the delimiting quotation marks preserve letter case in the database server name and in the authorization identifier of the user.

The full-screen menu interface

The DB-Access full-screen menu interface guides you through running SQL statements.

The DB-Access user interface combines the following features:

A hierarchy of menus
Screens that prompt you for brief responses and choices from selection lists
Contextual HELP screens
The interactive Schema Editor that helps you structure tables
An SQL programmer environment, which includes the following features:

The built-in SQL editor where you enter and modify SQL and SPL statements
An option to use another editor of your choice
The database server syntax checker and runtime debugger
Storage, retrieval, and execution of SQL and SPL routines

A choice of output for database queries and reports

The Query-language option
 Use the Query-language option to enter, modify, save, retrieve, and run SQL statements. DB-Access retains the statements, if any, in the editor. These statements

are called the current statements.
The Database option

 Use the Database option to work with databases and transactions.
The Table option

 Use the Table option to work with tables.
The Connection and Session options

 Use the Connection option if you want to connect to a specific database server and database or explicitly disconnect from the current database environment. Use
the Session option to display information about the current DB-Access session.

The Query-language option

Use the Query-language option to enter, modify, save, retrieve, and run SQL statements. DB-Access retains the statements, if any, in the editor. These statements are
called the current statements.

Use the Query-language option to:

Learn SQL and SPL.
For example, use the Query-language option to practice the examples in the IBM® Informix® Guide to SQL: Tutorial.

Create and alter table structures as an alternative to the DB-Access Schema Editor.
Select, display, add, update, and delete data.

The SQL menu has the following options.

Option Purpose

New Clears current statements and positions cursor in SQL editor.

1052 Part VI: Administering

Option Purpose

Run Runs current SQL statements. A message is displayed or the data that is retrieved by a query is displayed with the number
of rows retrieved.

Modify Allows you to modify current SQL statements in SQL editor.

Use-editor Starts a system editor so that you can modify current statements or create new statements. Use-editor is interchangeable
with New and Modify.

Output Redirects Run-option output to a file, printer, or system pipe.

Choose Lists SQL command files so that you can choose a file to run or modify.

Save Saves current SQL statements in a file for later use.

Info Shows table information, such as columns, indexes, privileges, constraints, triggers, status, and fragmentation strategy.

Drop Deletes a specified SQL command file.

Exit Returns to main menu.

SQL editor
 When you choose the New of Modify option, you see the SQL editor. You can type as many lines of text as you need. You are not limited by the size of the screen,

although you might be limited by the memory constraints of your system. If you do not use the Save option to save your typed statements, they are deleted when
you select an option that clears the SQL editor (such as New or Choose).
A system editor

 When you want to enter or modify a long SQL statement or series of statements, you might prefer the flexibility and familiarity of a system editor to the SQL editor.
Select the Use-editor option from the SQL menu to use the system editor.
Statements that the Run option supports

 After you exit the editor screen, the SQL menu reopens with the Run option highlighted and the statement text is displayed in the bottom of the screen. You can run
most SQL statements with the Run option.
Redirect query results

 The output from a SELECT statement is normally displayed on the screen. You can use the Output option on the SQL menu to route query results to the printer, store
them in a system file, or pipe them to a program. The Output option has the same result as the OUTPUT statement of SQL.
Choose an existing SQL statement

 When you save SQL statements in a command file, you can retrieve the command file and run or edit the SQL statements at any time.
Save the current SQL statement

 You can save SQL statements in a file for later use, such as to run the statements from the command line or retrieve the saved statements with the Choose option
on the SQL menu.
Support for SPL Routines

 You can create and run routines that are written in SPL from the SQL menu.
What happens when errors occur

 If you make any syntax or typing mistakes in an SQL statement, DB-Access does not process the statement. Instead, it continues to display the text of the
statement with a message that describes the error.

SQL editor

When you choose the New of Modify option, you see the SQL editor. You can type as many lines of text as you need. You are not limited by the size of the screen, although
you might be limited by the memory constraints of your system. If you do not use the Save option to save your typed statements, they are deleted when you select an
option that clears the SQL editor (such as New or Choose).

The SQL editor does not display more than 80 characters on a line and does not wrap lines.

If you choose an existing command file in which the characters in a line extend beyond the 80th column, DB-Access displays a percent sign (%) in the 80th column
to indicate an overflow. You cannot see all the characters beyond the percent sign, but the statement runs correctly.
If you type characters in a new command file so that a line extends beyond the 80th column, DB-Access overwrites all the characters in the 80th column. You
cannot see the overflow, and the statement does not run correctly.

To make the full text show on the screen, press Enter at a logical place in the first 80 characters of each line.

If you must type a quoted character string that exceeds 80 characters, such as an insert into a long CHAR column, use a system editor instead of the SQL editor.

If you want to include comments in the text:

Use double minus signs for ANSI-compliant databases.
Preface each comment line with a double minus sign (--) comment indicator. The comment indicator spans the entire line.
Use braces ({ }) for databases that are not ANSI-compliant. Enclose the entire comment indicator between the braces.

A system editor

When you want to enter or modify a long SQL statement or series of statements, you might prefer the flexibility and familiarity of a system editor to the SQL editor. Select
the Use-editor option from the SQL menu to use the system editor.

If you have not set the DBEDIT environment variable, you must select a text editor to use for the session. If you select Use-editor, DB-Access prompts you to accept or
override the default system editor once each session.

The default editor that DB-Access displays depends on the preference that you establish for your operating system:

Common UNIX system editors are vi and ex.
If you use a text editor as the system default, you must save the .sql files as text.

Part VI: Administering 1053

Press RETURN to select the default editor you named after the USE-EDITOR prompt. To use a different editor, type the name of that editor and press RETURN.

Statements that the Run option supports

After you exit the editor screen, the SQL menu reopens with the Run option highlighted and the statement text is displayed in the bottom of the screen. You can run most
SQL statements with the Run option.

To run statements that are not listed, use the SQL menu options New (or Use-editor) and Save to enter and save them, and then run the saved file from the command line.

The following is a list of SQL statements that you can run with the Run option.

ALLOCATE COLLECTION
ALLOCATE DESCRIPTOR
ALLOCATE ROW
ALTER ACCESS_METHOD
ALTER FRAGMENT
ALTER FUNCTION
ALTER INDEX
ALTER PROCEDURE
ALTER ROUTINE
ALTER SECURITY LABEL COMPONENT
ALTER SEQUENCE
ALTER TABLE
BEGIN WORK
CLOSE
CLOSE DATABASE
COMMIT WORK
CONNECT
CREATE ACCESS_METHOD
CREATE AGGREGATE
CREATE CAST
CREATE DATABASE
CREATE DISTINCT TYPE
CREATE EXTERNAL TABLE
CREATE FUNCTION
CREATE FUNCTION FROM
CREATE INDEX
CREATE OPAQUE TYPE
CREATE OPCLASS
CREATE PROCEDURE
CREATE ROLE
CREATE ROUTINE FROM
CREATE ROW TYPE
CREATE SCHEMA
CREATE SECURITY LABEL COMPONENT
CREATE SECURITY LABEL
CREATE SECURITY POLICY
CREATE SEQUENCE
CREATE SYNONYM
CREATE TABLE
CREATE TRIGGER
CREATE VIEW
CREATE XADATASOURCE
CREATE XADATASOURCE TYPE
DATABASE
DEALLOCATE COLLECTION
DEALLOCATE DESCRIPTOR
DEALLOCATE ROW
DECLARE
DELETE
DESCRIBE
DESCRIBE INPUT
DISCONNECT
DROP ACCESS METHOD
DROP AGGREGATE
DROP CAST
DROP DATABASE
DROP FUNCTION
DROP INDEX
DROP OPAQUE TYPE
DROP OPCLASS
DROP PROCEDURE
DROP ROLE
DROP ROW TYPE
DROP SECURITY LABEL COMPONENT/POLICY/LABEL
DROP SEQUENCE
DROP SYNONYM
DROP TABLE

1054 Part VI: Administering

DROP TRIGGER
DROP TYPE
DROP VIEW
DROP XADATASOURCE
DROP XADATASOURCE TYPE
EXECUTE
EXECUTE FUNCTION
EXECUTE IMMEDIATE
EXECUTE PROCEDURE
FETCH
FLUSH
FREE
GET DESCRIPTOR
GET DIAGNOSTICS
GRANT
GRANT DBSECADM
GRANT DEFAULT ROLE
GRANT EXEMPTION
GRANT FRAGMENT
GRANT SECURITY LABEL
INFO
INSERT
LOAD
LOCK TABLE
MERGE
OPEN
OUTPUT
PREPARE
PUT
RENAME COLUMN
RENAME DATABASE
RENAME INDEX
RENAME SEQUENCE
RENAME TABLE
REVOKE
REVOKE DBSECADM
REVOKE DEFAULT ROLE
REVOKE EXEMPTION
REVOKE FRAGMENT
REVOKE SECURITY LABEL
ROLLBACK WORK
SAVE EXTERNAL DIRECTIVES
SELECT
SET AUTOFREE
SET COLLATION
SET CONNECTION
SET CONSTRAINTS
SET DATASKIP
SET DEBUG FILE TO
SET DEFERRED PREPARE
SET DESCRIPTOR
SET ENCRYPTION PASSWORD
SET ENVIRONMENT
SET EXPLAIN
SET ISOLATION
SET LOCK MODE
SET LOG
SET OPTIMIZATION
SET PDQPRIORITY
SET ROLE
SET SESSION AUTHORIZATION
SET STATEMENT CACHE
SET TRANSACTION
START VIOLATIONS TABLE
STOP VIOLATIONS TABLE
TRUNCATE
UNLOAD
UNLOCK TABLE
UPDATE
UPDATE STATISTICS
WHENEVER

Redirect query results

The output from a SELECT statement is normally displayed on the screen. You can use the Output option on the SQL menu to route query results to the printer, store them
in a system file, or pipe them to a program. The Output option has the same result as the OUTPUT statement of SQL.

Part VI: Administering 1055

The SELECT statement must be on the screen as the current statement. Select the Output option from the SQL menu, which displays the OUTPUT menu.

You have the following output options:

Send your query results directly to a printer. DB-Access sends the results to your default printer and displays a message on the bottom of the screen that indicates
how many rows were retrieved. The query results do not show on the screen. You can set the DBPRINT environment variable to specify a default printer.
Write query results to a new file or append the results to an existing file. If you do not specify a path when DB-Access prompts you for a file name, the file is stored
in the directory that you were in when you started DB-Access.
Send query results to a pipe. Specify a target program, such as more, through which to pipe output. DB-Access sends the results to that pipe.
On UNIX systems, you must have permission to run the target program.

On Windows systems, the cat utility can serve as a target program through which to pipe output.

Choose an existing SQL statement

When you save SQL statements in a command file, you can retrieve the command file and run or edit the SQL statements at any time.

Select the Choose option on the SQL menu to display the CHOOSE screen with a list of the command files that you can access. These files have the extension .sql,
although the extension is not shown. For example, the following figure lists the command files that are included in the demonstration database.
Figure 1. The CHOOSE screen listing current .sql files

CHOOSE >>
Choose a command file with the Arrow Keys, or enter a name, then press Return.

---------------- mystores@dbserver1 ----------- Press CTRL-W for Help -------

 alt_cat c_state d_trig sel_ojoin1

c_calls c_stock d_view sel_ojoin2

c_cat c_stores del_stock sel_ojoin3

c_custom c_table ins_table sel_ojoin4

c_index c_trig opt_disk sel_order

c_items c_type sel_agg sel_sub

c_manuf c_view1 sel_all sel_union

c_orders c_view2 sel_group upd_table

c_proc d_proc sel_join

If no current database exists, the list includes all the command files in the current directory and in any directories that the DBPATH environment variable specifies.
Important: This list includes only those file names that have the .sql extension. If you create an SQL file outside of DB-Access and save it without the .sql extension, the
files does not show in the list of files to choose.
DB-Access can only recognize files that are stored in the directory from which you started DB-Access. If the Choose command results in an empty list, and you know that
you have command files, exit DB-Access, change directories to the directory that contains your .sql files, and restart DB-Access.

Save the current SQL statement

You can save SQL statements in a file for later use, such as to run the statements from the command line or retrieve the saved statements with the Choose option on the
SQL menu.

To save the current SQL statement or statements in a file, select the Save option on the SQL menu. Enter a name for the command file:

Use 1 - 10 characters. Start with a letter, then use any combination of letters, numbers, and underscores (_). Press Enter to save the file.
UNIX: File names are case-sensitive. The file orders is not the same as Orders or ORDERS.

DB-Access appends the extension .sql to the file name. For example, if you name your file cust1, DB-Access stores the file with the name cust1.sql. The CHOOSE screen
still lists cust1, but the operating system identifies the same file as cust1.sql if you list the directory files from the command line.

Support for SPL Routines

You can create and run routines that are written in SPL from the SQL menu.

You can store the SPL routine in a separate command file and then call it from an application or run it as a stand-alone program. After you create the SPL routine, you can
run it within DB-Access with the appropriate SQL statement. The following example details the steps.

To create and run an SQL routine
1. To create the text of the routine, type directly in the NEW screen or the Use-editor screen. Enter the SPL and SQL statements for your routine in the statement block

of a CREATE PROCEDURE statement.
Use the CREATE FUNCTION statement if the routine returns values.

2. Use the Run option to create the routine and register it in the sysprocedures system catalog table.

1056 Part VI: Administering

3. Use the NEW screen to enter an EXECUTE PROCEDURE statement that names the routine that you want to run.
If you use IBM® Informix® and created your routine with the CREATE FUNCTION statement, enter an EXECUTE FUNCTION statement to run the function.

4. Use the Run option to run the routine and display the results.

For example, the c_proc.sql command file, which is supplied with the demonstration database, contains an SPL. Before you can run the routine, change the word
procedure in the c_proc.sql file to function because the routine returns a value. Then use the Choose option and select c_proc.

First you must register the routine in the database. Select the Run option, as the following figure shows.
Figure 1. Displaying the text of an SPL routine on the SQL menu

SQL: New Run Modify Use-editor Output Choose Save Info Drop Exit

Run the current SQL statements.

----------------------- mydata@mynewdb ------- Press CTRL-W for Help --------

create function read_address (lastname char(15))

 returning char(15), char(15), char(20), char(15),char(2), char(5);
 define p_fname, p_city char(15);
 define p_add char(20);
 define p_state char(2);
 define p_zip char(5);
 select fname, address1, city, state, zipcode
 into p_fname, p_add, p_city, p_state, p_zip
 from customer
 where lname = lastname;

 return p_fname, lastname, p_add, p_city, p_state, p_zip;

end procedure;

DB-Access displays a message to indicate that the database server created the routine. To run the routine, select New from the SQL menu and then enter the appropriate
EXECUTE statement. In the following example, the user requests the address of a customer whose surname is Pauli:

EXECUTE PROCEDURE read_address ("Pauli")

After you enter the EXECUTE PROCEDURE or EXECUTE FUNCTION statement on the NEW screen, press Esc to return to the SQL menu. Select Run from the SQL menu to
run the routine. The following figure shows the result of running the routine.
Figure 2. Result of running an SPL routine on the SQL menu

SQL: New Run Modify Use-editor Output Choose Save Info Drop Exit

Run the current SQL statements.

----------------------- mydata@mynewdb ------- Press CTRL-W for Help --------

Ludwig
Pauli
213 Erstwild Court
Sunnyvale
CA
94086

Tip: SPL routines are stored in the system catalog tables in executable format. Use the Routines option on the DATABASE INFO menu to display a list of the routines in the
current database or to display the text of a specified routine.

What happens when errors occur

If you make any syntax or typing mistakes in an SQL statement, DB-Access does not process the statement. Instead, it continues to display the text of the statement with
a message that describes the error.

If an execution or runtime error occurs, DB-Access continues to process the statement and returns an error message. For example, if you try to create a table that was
already created, the following message is displayed at the bottom of the screen:

310: Table (mavis.mystock) already exists in database.

If you try to run a statement that contains more than one SQL statement, you might not see an error message immediately. If, for example, the first statement is a SELECT
statement that runs correctly and the next statement contains a typing error, the data that the first statement retrieved shows on the screen before the error message is
displayed for the second statement.

When DB-Access detects an error, processing stops and the Modify option on the SQL menu is highlighted. Select one of the following methods to correct the statement:

Press Enter to choose Modify, which returns you to the SQL editor.
Select the Use-editor option to use the default editor of your choice.

The Database option

Use the Database option to work with databases and transactions.

Use the Database option to:

Create a database or select a database.

Part VI: Administering 1057

The database that you work with is called the current database.

Retrieve and display information about a database, such as available dbspaces and the text of routines.
Delete an existing database or close the current database.
Commit or rollback transactions.

You can access only databases that are on the current database server. To select a database server as current, you can specify a database server when you start DB-
Access, you can use the Connection menu, or you can run a CONNECT statement from the SQL menu. If you do not explicitly select a database server, DB-Access uses the
default database server that the $INFORMIXSERVER environment variable specifies as the current database.

If you select or create a database when another database is already open, DB-Access closes that database before it makes your selection the current or new database.

The DATABASE menu displays the following options.

Option Purpose

Select Makes a database the current database

Create Builds a new database and makes that database the current database

Info Displays information about the current database

Drop Removes a database from the system. You cannot delete the current
database.

cLose Closes the current database

Exit Exits the DATABASE menu and returns you to the main menu

List of available databases
 When you choose the Select option, the SELECT DATABASE screen opens. The first database in the list of available databases is highlighted, accompanied by the

names of database servers.
Retrieve nondefault locale information

 Globalization affects the order in which lists are displayed in DB-Access. Globalization enables the display and appropriate ordering of non-English-language data.
Informix® supports globalization with Global Language Support (GLS) locales. Earlier database server versions used Native Language Support (NLS) for this
purpose.
Close a database

 To close the current database, use the cLose option from the DATABASE menu.

List of available databases

When you choose the Select option, the SELECT DATABASE screen opens. The first database in the list of available databases is highlighted, accompanied by the names of
database servers.

The list is organized alphabetically by database server and then by database for each database server. You can display a maximum of 512 database names on the SELECT
DATABASE screen.

Important: In the SELECT DATABASE screen, the names of databases are limited to 18 characters. If a database name is longer than 18 characters, you see the first 17
characters of the name followed by a ‘+' sign. Enter a ‘+' sign to display the complete long name in vi. To exit from vi, press ESC ZZ.
The list of available databases that is displayed depends on two factors:

The settings of certain environment variables.
If you use one database server, DB-Access displays the names of all databases on the current database server and in your DBPATH setting.
If you use multiple database servers, the ONCONFIG environment variable determines the current database server.

The current connection. For example:
If no explicit connection exists, DB-Access displays the databases in the DBPATH setting.
If a current explicit connection exists, all databases in the DBPATH setting that pertain to the current database server are displayed.

Retrieve nondefault locale information

Globalization affects the order in which lists are displayed in DB-Access. Globalization enables the display and appropriate ordering of non-English-language data.
Informix® supports globalization with Global Language Support (GLS) locales. Earlier database server versions used Native Language Support (NLS) for this purpose.

If the current database supports globalization, you can select the Nls option on the DATABASE INFO menu to display information about collating sequence and C CType
(character classification type), as the following figure shows.
Figure 1. The DATABASE INFO menu with globalization information displayed

DATABASE INFO: dBspace Nls Routine Databases Exit
Display NLS information for a database.

-------------- - database_demo ------------ Press CTRL-W for Help --------

fr_fr.8859-1 Collating Sequence
CType

DB-Access does not provide an option on the DATABASE INFO menu for displaying the GLS collating sequence and character classification type. To obtain information
about the GLS locale that is enabled for your database server, enter the following query with the SQL editor:

SELECT tabname, site FROM systables
WHERE tabid = 90 OR tabid = 91

1058 Part VI: Administering

The row with tabid 90 stores the COLLATION category of the database locale. The row with tabid 91 stores the CTYPE category of the database locale. The following figure
shows the result of the preceding query for the default US English locale.
Figure 2. Retrieving GLS information

SQL: New Run Modify Use-editor Output Choose Save Info Drop Exit
Run the current SQL statements.

------- mydata@mynewdb ------ Press CTRL-W for Help ---

tabname GL_COLLATE
site en_US.819

tabname GL_CTYPE
site en_US.819

2 row(s) retrieved

For further information about the COLLATION and CTYPE categories in a GLS locale file, see the IBM® Informix GLS User's Guide.

Close a database

To close the current database, use the cLose option from the DATABASE menu.

If you begin a transaction but do not commit it or roll it back, and then you try to close a database with transactions, the TRANSACTION menu opens. The TRANSACTION
menu ensures that you either commit or roll back an active transaction before you close the current database.
Important: Select an option carefully. You might commit transactions that you do not want if you select Commit, and you do lose any new transactions if you select
Rollback.
The TRANSACTION menu also opens whenever you attempt to open a new database or try to leave the DB-Access menu system without first terminating a transaction.

Important: If you begin a transaction in an ANSI-compliant database but do not issue a COMMIT statement or ROLLBACK statement, then try to close the database using a
non-menu mode, DB-Access commits the transaction for you. If you do not want to commit the transaction, issue both a ROLLBACK statement and a CLOSE DATABASE
statement from the command line.

The Table option

Use the Table option to work with tables.

Use the Table option to perform any of the following table management tasks without SQL programming:

Create a new table
Define fragmentation strategy for a new or existing table
Alter, delete, or display information about an existing table

Use the TABLE menu options as the following table shows.

Option Purpose

Create Enables you to define the structure of a new table. The CREATE TABLE menu provides data type options for built-in data types. To define
a column with one of the extended data types, such as smart large objects, user-defined (opaque) data types, or a collection data type,
use the SQL menu to enter and run a CREATE TABLE statement. DB-Access can construct only a nonclustered, ascending B-tree column
index. If you want hash or hybrid fragmentation, use the SQL menu to enter and run the CREATE TABLE or ALTER TABLE statement.

Alter Enables you to alter the structure of an existing table, including columns, fragmentation, and constraints. You must have the Alter
privilege to successfully alter a table.
Note: If you use the UI to build the SQL statements to Alter a table without the Alter privilege, the table will be locked and the operation
will fail. Further, the lock will be held until you exit the alter menu.
To use the LOAD statement to insert data into a table, you must have both Insert and Select privileges for the table.

Info Displays information about the structure of a table

Drop Deletes a table from the database

Move Moves a table from the current database to another database.

Exit Returns to the DB-Access main menu

Both the CREATE TABLE and ALTER TABLE menus have the same options, which are described in the following table.

Option Purpose

Add Displays the Schema Editor, from which you can add a new column to the table

Modify Displays the columns that you defined with the Add option so that you can modify the column structure before
building the table

Drop Drops an existing column from the table

Screen Displays the next screen of column definitions in the Schema Editor

Table_options Enables you to display and select storage spaces for a new table. Displays choices from which to set a
fragmentation strategy for a new table. Enables you to set extent sizes and lock mode for a new table. Adds or
deletes rowids for an existing fragmented table.

Constraints Enables you to define primary-key, foreign-key, check, and unique constraints, and to set default column values

Part VI: Administering 1059

Option Purpose

Exit Builds, rebuilds, or discards the schema and structure that you specified with the other options, and then returns to
the TABLE menu

Important: You must use the SPACEBAR to move between menu options, because the arrow keys control cursor movement in the Schema Editor.

Display table information
 Use the Info option on the TABLE menu to display information about the structure of a table.

Display table information

Use the Info option on the TABLE menu to display information about the structure of a table.

Note the following items:

If you are not the table owner, the table name is prefixed by the owner name, as in june.clients.
If the list of tables does not fit on one screen, the last entry is an ellipsis (...). Use the arrow keys to highlight the ellipsis, and the next page of table names are
displayed.
If globalization is enabled, the list of table names is sorted according to the database collation rules defined when the database was created. Thus, different users
using different collating sequences for DB-Access see the table names in the database listed in the same order.

To request information about tables on a different database server, use the format database@server:table or database@server:owner.table at the prompt. The following
example requests information about the customer table that dba created in the accounts database on the database server topend:

INFO FOR TABLE >> accounts@topend:dba.customer

The INFO menu has the following options.

Option Purpose

Columns Lists data type by column name and indicates which columns can contain a null value

Indexes Describes each index that is defined for a specified table

Privileges Lists the users who have Select, Update, Insert, Delete, Index, or Alter privileges for the specified table

References Lists the users who have the table-level References privilege for the specified table and the names of the columns they
can reference

Status Lists the table name, owner, row size, number of rows and columns, and creation date of the current table

cOnstraints Displays the referential, primary, unique, and check constraints, and the default values for the columns in the specified
table

triGgers Displays header and body information for a specified trigger

Table Redisplays the INFO FOR TABLE menu so that you can select a different table for examination

Fragments Lists fragmented dbspaces assigned to the table and, for expression-based fragmentation, displays the expression that
is assigned to each dbspace

Exit Returns to the TABLE menu

Tip: From the CREATE TABLE menu, use Table-options to view extent and lock mode information, or issue a SELECT statement to list the table description in the systables
system catalog table.

The Connection and Session options

Use the Connection option if you want to connect to a specific database server and database or explicitly disconnect from the current database environment. Use the
Session option to display information about the current DB-Access session.

For the globalization considerations that apply to establishing a connection between a client application, such as DB-Access, and a database, see the IBM Informix GLS
User's Guide. The database server examines the client locale information passed by the client, verifies the database locale, and determines the server-processing locale
for transferring data between the client and the database.

You can use the Secure Sockets Layer (SSL) protocol, a communication protocol that ensures privacy and integrity of data that is transmitted over the network, for DB-
Access connections with IBM® Informix®. For information about the SSL protocol, see Secure sockets layer protocol.

On Windows, if you specify a user identifier but no domain name for a connection to a machine that expects both a domain name and a user name (domain\user), DB-
Access checks only the local machine and the primary domain for the user account. If you explicitly specify a domain name, that domain is used to search for the user
account. The attempted connection fails with error -951 if no matching domain\user account is found on the local machine.

The CONNECTION menu displays the following options.

Option Purpose

Connect Connects to a database environment. To access a specific database, you must have
permission.

Disconnect Disconnects from the current database environment

Exit Returns to the DB-Access main menu

When you use the Connect option, the SELECT DATABASE screen alphabetically lists all available databases on the specified database server. The database list on the
SELECT DATABASE screen depends on the current connection. For example:

1060 Part VI: Administering

If no current connection exists or the current connection is an implicit default connection, all the databases that are listed in the DBPATH environment variable
setting are displayed.
If a current explicit connection exists, all the databases in the DBPATH that pertain to the current server are displayed.

Implicit closures
DB-Access closes any open connections or databases when you connect to a new environment.

Implicit closures

DB-Access closes any open connections or databases when you connect to a new environment.

DB-Access closes any open connections or databases in the following situations:

When you connect to a new database environment without explicitly disconnecting from the current one, DB-Access performs an implicit disconnect and the
database closes.
When you connect to a database@server and then close the database, the database server remains connected.
When you connect to a database server, open a database, and then close the database, the database server remains connected.
If you open a database and then try to connect to a database server, DB-Access performs an implicit disconnect and closes the database.
Only one connection is allowed. You must disconnect from the database server associated with the open database or close the database before you can connect to
another database server.

If DB-Access must close a database that still has outstanding transactions, it prompts you to commit or roll back those transactions.

Appendixes

How to read online help for SQL statements
 Specific conventions are used to represent the syntax of SQL statements in DB-Access online help screens.

Demonstration SQL
Various command files that are available with DB-Access.

How to read online help for SQL statements

Specific conventions are used to represent the syntax of SQL statements in DB-Access online help screens.

You can request online help for SQL statements in either of the following ways:

Highlight the New, Modify, or Use-editor options on the SQL menu and press CTRL-W.
Press CTRL-W while you are on the NEW or MODIFY screens of the SQL menu.

The form of the syntax diagrams that shows when you request online Help for SQL statements in DB-Access is different from the syntax diagrams in the IBM® Informix®
Guide to SQL: Syntax.

The conventions and rules governing SQL statement syntax in DB-Access online help screens are described in the following list.

ABC
Any term in an SQL statement that is displayed in uppercase letters is a keyword. Type keywords exactly, disregarding case, as shown in the following example:

CREATE SYNONYM synonym-name

This syntax indicates you must type the keywords CREATE SYNONYM or create synonym without adding or deleting spaces or letters.

abc
Substitute a value for any term that is displayed in lowercase letters. In the previous example, substitute a value for synonym-name.

()
Type any parentheses as shown. They are part of the syntax of an SQL statement and are not special symbols.

[]
Do not type brackets as part of a statement. They surround any part of a statement that is optional. For example:

CREATE [TEMP] TABLE

This syntax indicates that you can type either CREATE TABLE or CREATE TEMP TABLE.

|
The vertical bar indicates a choice among several options. For example:

[VANILLA | CHOCOLATE [MINT] | STRAWBERRY]

This syntax indicates that you can enter either VANILLA, CHOCOLATE, or STRAWBERRY and that, if you enter CHOCOLATE, you can also enter MINT.

{ }
When you must choose only one of several options, the options are enclosed in braces and are separated by vertical bars. For example:

{GUAVA | MANGO | PASSIONFRUIT}

This syntax indicates that you must enter either GUAVA, MANGO, or PASSIONFRUIT, but you cannot enter more than one choice.

...
An ellipsis indicates that you can enter an indefinite number of additional items, such as the one immediately preceding the ellipsis. For example:

Part VI: Administering 1061

old-column-name
...

This syntax indicates that you can enter a series of existing column names after the first one.

The IBM Informix Guide to SQL: Syntax contains more detailed syntax diagrams and instructions for interpreting the diagram format that is used in the publication.

Demonstration SQL

Various command files that are available with DB-Access.

The command files all have the extension .sql when displayed from the command line but are displayed without the extension on the SQL CHOOSE menu.

Keywords in these command files are shown in uppercase letters to make the SQL statements easier to read. Keywords in the actual command files are lowercase.
Important: Although the command files are listed alphabetically in this appendix, you cannot run the command files that create tables in that order without causing errors.
The order in which the tables are created is important because of the referential constraints that link those tables.
When you select the Choose option on the SQL menu, the CHOOSE screen opens. The screen shows a list of the command files that you can access, similar to the display
that the following figure shows. These files are included with the stores_demo database. Other .sql files are described later in this appendix.

Figure 1. Command files listed on the CHOOSE screen

CHOOSE >>
Choose a command file with the Arrow Keys, or enter a name, then press Return.

----------------- stores_demo @dbserver1 -------------- Press CTRL-W for Help ------

alt_cat c_state d_trig sel_ojoin1

c_calls c_stock d_view sel_ojoin2

c_cat c_stores_demo del_stock sel_ojoin3

c_custom c_table ins_table sel_ojoin4

c_index c_trig opt_disk sel_order

c_items c_type sel_agg sel_sub

c_manuf c_view1 sel_all sel_union

c_orders c_view2 sel_group upd_table

c_proc d_proc sel_join

If you do not see the command files included with your demonstration database, check the following:

Did you copy the demonstration SQL command files to your current directory when you ran the demonstration database initialization script? If not, you can rerun
the initialization script to copy them.
Did you start DB-Access from the directory in which you installed the demonstration SQL command files? If not, exit DB-Access, change to the appropriate
directory, and start DB-Access again.

For instructions about running the initialization script, copying command files, and starting DB-Access, seedbaccess command: Start DB-Access.

Use these command files with DB-Access for practice with SQL and the demonstration database. You can rerun the demonstration database initialization script whenever
you want to refresh the database tables and SQL files.

SQL files for the relational database model
 You can run sample SQL command files on the stores_demo demonstration database.

SQL files for the Dimensional Database Model
 You can implement a dimensional database for data-warehousing applications by running scripts that create the sales_demo database.

User-defined routines for the object-relational database model
 You can run sample user-defined routines on the superstores_demo database.

SQL files for the relational database model

You can run sample SQL command files on the stores_demo demonstration database.

The alt_cat.sql command file
 The c_calls.sql command file
 The c_cat.sql command file

 The c_custom.sql command file
 The c_index.sql command file

 The c_items.sql command file
 The c_manuf.sql command file
 The c_orders.sql file

 The c_proc.sql command file
 The c_state command file

 The c_stock.sql command file
 The c_stores.sql command file
 The c_table.sql command file

 The c_trig.sql command file

1062 Part VI: Administering

The c_type.sql command file
The c_view1.sql command file
The c_view2.sql command file
The d_proc.sql command file
The d_trig.sql command file
The d_view.sql command file
The del_stock.sql command file
The ins_table.sql command file
The sel_agg.sql command file
The sel_all.sql command file
The sel_group.sql command file
The sel_join.sql command file
The sel_ojoin1.sql command file
The sel_ojoin2.sql command file
The sel_ojoin3.sql command file
The sel_ojoin4.sql command file
The sel_order.sql command file
The sel_sub.sql command file
The sel_union.sql command file
The upd_table.sql command file

Related information:
 The stores_demo Database

The alt_cat.sql command file

The following command file alters the catalog table. It drops the existing constraint aa on the catalog table and adds a new constraint, ab, which specifies cascading
deletes. You can use this command file and then the del_stock.sql command file for practice with cascading deletes on a database with logging.

ALTER TABLE catalog DROP CONSTRAINT aa;

ALTER TABLE catalog ADD CONSTRAINT
 (FOREIGN KEY (stock_num, manu_code) REFERENCES stock
 ON DELETE CASCADE CONSTRAINT ab);

The c_calls.sql command file

The following command file creates the cust_calls table:

CREATE TABLE cust_calls
 (
 customer_num INTEGER,
 call_dtime DATETIME YEAR TO MINUTE,
 user_id CHAR(18) DEFAULT USER,
 call_code CHAR(1),
 call_descr CHAR(240),
 res_dtime DATETIME YEAR TO MINUTE,
 res_descr CHAR(240),
 PRIMARY KEY (customer_num, call_dtime),
 FOREIGN KEY (customer_num) REFERENCES customer (customer_num),
 FOREIGN KEY (call_code) REFERENCES call_type (call_code)
);

The c_cat.sql command file

The following command file creates the catalog table. It contains a constraint, aa, which allows you to practice with cascading deletes by running the SQL statements in
the alt_cat.sql and del_stock.sql command files on a database with logging.

CREATE TABLE catalog
 (
 catalog_num SERIAL(10001),
 stock_num SMALLINT NOT NULL,
 manu_code CHAR(3) NOT NULL,
 cat_descr TEXT,
 cat_picture BYTE,
 cat_advert VARCHAR(255, 65),
 PRIMARY KEY (catalog_num),
 FOREIGN KEY (stock_num, manu_code) REFERENCES stock
 CONSTRAINT aa
);

The c_custom.sql command file

The following command file creates the customer table:

Part VI: Administering 1063

CREATE TABLE customer
 (
 customer_num SERIAL(101),
 fname CHAR(15),
 lname CHAR(15),
 company CHAR(20),
 address1 CHAR(20),
 address2 CHAR(20),
 city CHAR(15),
 state CHAR(2),
 zipcode CHAR(5),
 phone CHAR(18),
 PRIMARY KEY (customer_num)
);

The c_index.sql command file

The following command file creates an index on the zipcode column of the customer table:

CREATE INDEX zip_ix ON customer (zipcode);

The c_items.sql command file

The following command file creates the items table:

CREATE TABLE items
 (
 item_num SMALLINT,
 order_num INTEGER,
 stock_num SMALLINT NOT NULL,
 manu_code CHAR(3) NOT NULL,
 quantity SMALLINT CHECK (quantity >= 1),
 total_price MONEY(8),
 PRIMARY KEY (item_num, order_num),
 FOREIGN KEY (order_num) REFERENCES orders (order_num),
 FOREIGN KEY (stock_num, manu_code) REFERENCES stock
 (stock_num, manu_code)
);

The c_manuf.sql command file

The following command file creates the manufact table:

CREATE TABLE manufact
 (
 manu_code CHAR(3),
 manu_name CHAR(15),
 lead_time INTERVAL DAY(3) TO DAY,
 PRIMARY KEY (manu_code)
);

The c_orders.sql file

The following command file creates the orders table:

CREATE TABLE orders
 (
 order_num SERIAL(1001),
 order_date DATE,
 customer_num INTEGER NOT NULL,
 ship_instruct CHAR(40),
 backlog CHAR(1),
 po_num CHAR(10),
 ship_date DATE,
 ship_weight DECIMAL(8,2),
 ship_charge MONEY(6),
 paid_date DATE,
 PRIMARY KEY (order_num),
 FOREIGN KEY (customer_num) REFERENCES customer (customer_num)
);

The c_proc.sql command file

The following command file creates an SPL routine. It reads the full name and address of a customer and takes a last name as its only argument.

This routine shows the legacy use of CREATE PROCEDURE.

1064 Part VI: Administering

To conform with the SQL standard preferred with IBM® Informix®, define a function if you want to return values from a routine.

CREATE PROCEDURE read_address (lastname CHAR(15))
 RETURNING CHAR(15), CHAR(15), CHAR(20), CHAR(15), CHAR(2), CHAR(5);
 DEFINE p_fname, p_city CHAR(15);
 DEFINE p_add CHAR(20);
 DEFINE p_state CHAR(2);
 DEFINE p_zip CHAR(5);
 SELECT fname, address1, city, state, zipcode
 INTO p_fname, p_add, p_city, p_state, p_zip
 FROM customer
 WHERE lname = lastname;

 RETURN p_fname, lastname, p_add, p_city, p_state, p_zip;

END PROCEDURE;

The c_state command file

The following command file creates the state table:

CREATE TABLE state
 (
 code CHAR(2),
 sname CHAR(15),
 PRIMARY KEY (code)
);

The c_stock.sql command file

The following command file creates the stock table:

CREATE TABLE stock
 (
 stock_num SMALLINT,
 manu_code CHAR(3),
 description CHAR(15),
 unit_price MONEY(6),
 unit CHAR(4),
 unit_descr CHAR(15),
 PRIMARY KEY (stock_num, manu_code),
 FOREIGN KEY (manu_code) REFERENCES manufact
);

The c_stores.sql command file

The following command file creates the stores_demo database:

CREATE DATABASE stores_demo;

The c_table.sql command file

The following command file creates a database named restock and then creates a custom table named sports in that database:

CREATE DATABASE restock;

CREATE TABLE sports
 (
 catalog_no SERIAL UNIQUE,
 stock_no SMALLINT,
 mfg_code CHAR(5),
 mfg_name CHAR(20),
 phone CHAR(18),
 descript VARCHAR(255)
);

The c_trig.sql command file

The following command file creates a table named log_record and then creates a trigger named upqty_i, which updates it:

CREATE TABLE log_record
 (item_num SMALLINT,
 ord_num INTEGER,
 username CHARACTER(8),
 update_time DATETIME YEAR TO MINUTE,
 old_qty SMALLINT,

Part VI: Administering 1065

 new_qty SMALLINT);

CREATE TRIGGER upqty_i
UPDATE OF quantity ON items
REFERENCING OLD AS pre_upd
 NEW AS post_upd
FOR EACH ROW(INSERT INTO log_record
 VALUES (pre_upd.item_num, pre_upd.order_num, USER, CURRENT,
 pre_upd.quantity, post_upd.quantity));

The c_type.sql command file

The following command file creates the call_type table:

CREATE TABLE call_type
 (
 call_code CHAR(1),
 code_descr CHAR(30),
 PRIMARY KEY (call_code)
);

The c_view1.sql command file

The following command file creates a view called custview on a single table and grants privileges on the view to public. It includes the WITH CHECK OPTION keywords to
verify that any changes made to underlying tables through the view do not violate the definition of the view.

CREATE VIEW custview (firstname, lastname, company, city) AS
 SELECT fname, lname, company, city
 FROM customer
 WHERE city = 'Redwood City'
 WITH CHECK OPTION;

GRANT DELETE, INSERT, SELECT, UPDATE
 ON custview
 TO public;

The c_view2.sql command file

The following command file creates a view on the orders and items tables:

CREATE VIEW someorders (custnum,ocustnum,newprice) AS
 SELECT orders.order_num, items.order_num,
 items.total_price*1.5
 FROM orders, items
 WHERE orders.order_num = items.order_num
 AND items.total_price > 100.00;

The d_proc.sql command file

The following command file drops the SPL routine that the c_proc.sql command file created:

DROP PROCEDURE read_address;

The d_trig.sql command file

The following command file drops the trigger that the c_trig.sql command file created:

DROP TRIGGER upqty_i;

The d_view.sql command file

The following command file drops the view named custview that the c_view1.sql command file created:

DROP VIEW custview;

The del_stock.sql command file

1066 Part VI: Administering

The following command file deletes rows from the stock table where the stock number is 102. This delete will cascade to the catalog table (although the related
manufacturer codes will remain in the manufact table). The del_stock.sql command file can be used following the alt_cat.sql command file for practice with cascading
deletes on a database with logging.

DELETE FROM stock WHERE stock_num = 102;

After running the SQL statements in the alt_cat.sql and del_stock.sql command files, issue the following query on the catalog table to verify that the rows were deleted:

SELECT * FROM catalog WHERE stock_num = 102;

The stores_demo database has been changed. You might want to rerun the dbaccessdemo script to rebuild the original database.

The ins_table.sql command file

The following command file inserts one row into the sports table that the c_table.sql command file created:

INSERT INTO sports
 VALUES (0,18,'PARKR', 'Parker Products', '503-555-1212',
 'Heavy-weight cotton canvas gi, designed for aikido or
 judo but suitable for karate. Quilted top with side ties,
 drawstring waist on pants. White with white belt.
 Pre-washed for minimum shrinkage. Sizes 3-6.');

The sel_agg.sql command file

The SELECT statement in the following command file queries on table data using aggregate functions. It combines the aggregate functions MAX and MIN in a single
statement.

SELECT MAX (ship_charge), MIN (ship_charge)
 FROM orders;

The sel_all.sql command file

The following example command file contains all seven SELECT statement clauses that you can use in the IBM® Informix® implementation of interactive SQL. This SELECT
statement joins the orders and items tables. It also uses display labels, table aliases, and integers as column indicators; groups and orders the data; and puts the results
into a temporary table.

SELECT o.order_num, SUM (i.total_price) price,
 paid_date - order_date span
 FROM orders o, items i
 WHERE o.order_date > '01/01/90'
 AND o.customer_num > 110
 AND o.order_num = i.order_num
 GROUP BY 1, 3
 HAVING COUNT (*) < 5
 ORDER BY 3
 INTO TEMP temptab1;

The sel_group.sql command file

The following example command file includes the GROUP BY and HAVING clauses. The HAVING clause usually complements a GROUP BY clause by applying one or more
qualifying conditions to groups after they are formed, which is similar to the way the WHERE clause qualifies individual rows. (One advantage to using a HAVING clause is
that you can include aggregates in the search condition; you cannot include aggregates in the search condition of a WHERE clause.)

Each HAVING clause compares one column or aggregate expression of the group with another aggregate expression of the group or with a constant. You can use the
HAVING clause to place conditions on both column values and aggregate values in the group list.

SELECT order_num, COUNT(*) number, AVG (total_price) average
 FROM items
 GROUP BY order_num
 HAVING COUNT(*) > 2;

The sel_join.sql command file

The following example command file uses a simple join on the customer and cust_calls tables. This query returns only those rows that show the customer has made a call
to customer service.

SELECT c.customer_num, c.lname, c.company,
 c.phone, u.call_dtime, u.call_descr
 FROM customer c, cust_calls u
 WHERE c.customer_num = u.customer_num;

Part VI: Administering 1067

The sel_ojoin1.sql command file

The following example command file uses a simple outer join on two tables. The use of the keyword OUTER in front of the cust_calls table makes it the subservient table.
An outer join causes the query to return information about all customers, even if they do not make calls to customer service. All rows from the dominant customer table
are retrieved, and null values are assigned to corresponding rows from the subservient cust_calls table.

SELECT c.customer_num, c.lname, c.company,
 c.phone, u.call_dtime, u.call_descr
 FROM customer c, OUTER cust_calls u
 WHERE c.customer_num = u.customer_num;

The sel_ojoin2.sql command file

The following example command file creates an outer join, which is the result of a simple join to a third table. This second type of outer join is called a nested simple join.

This query first performs a simple join on the orders and items tables, retrieving information about all orders for items with a manu_code of KAR or SHM. It then performs
an outer join, which combines this information with data from the dominant customer table. An optional ORDER BY clause reorganizes the data.

SELECT c.customer_num, c.lname, o.order_num,
 i.stock_num, i.manu_code, i.quantity
 FROM customer c, OUTER (orders o, items i)
 WHERE c.customer_num = o.customer_num
 AND o.order_num = i.order_num
 AND manu_code IN ('KAR', 'SHM')
 ORDER BY lname;

The sel_ojoin3.sql command file

The following example SELECT statement is the third type of outer join, known as a nested outer join. It queries on table data by creating an outer join, which is the result
of an outer join to a third table.

This query first performs an outer join on the orders and items tables, retrieving information about all orders for items with a manu_code of KAR or SHM. It then performs
an outer join, which combines this information with data from the dominant customer table. This query preserves order numbers that the previous example eliminated,
returning rows for orders that do not contain items with either manufacturer code. An optional ORDER BY clause reorganizes the data.

SELECT c.customer_num, lname, o.order_num,
 stock_num, manu_code, quantity
 FROM customer c, OUTER (orders o, OUTER items i)
 WHERE c.customer_num = o.customer_num
 AND o.order_num = i.order_num
 AND manu_code IN ('KAR', 'SHM')
 ORDER BY lname;

The sel_ojoin4.sql command file

The following example queries on table data using the fourth type of outer join. This query shows an outer join, which is the result of an outer join of each of two tables to a
third table. In this type of outer join, join relationships are possible only between the dominant table and subservient tables.

This query individually joins the subservient tables orders and cust_calls to the dominant customer table but does not join the two subservient tables. (An INTO TEMP
clause selects the results into a temporary table.)

SELECT c.customer_num, lname, o.order_num,
 order_date, call_dtime
 FROM customer c, OUTER orders o, OUTER cust_calls x
 WHERE c.customer_num = o.customer_num
 AND c.customer_num = x.customer_num
 INTO temp service;

The sel_order.sql command file

The following example uses the ORDER BY and WHERE clauses to query. In this SELECT statement, the comparison 'bicycle%' (LIKE condition, or 'bicycle*' for a MATCHES
condition) specifies the letters bicycle followed by any sequence of zero or more characters. It narrows the search further by adding another comparison condition that
excludes a manu_code of PRC.

SELECT * FROM stock
 WHERE description LIKE 'bicycle%'
 AND manu_code NOT LIKE 'PRC'
 ORDER BY description, manu_code;

The sel_sub.sql command file

1068 Part VI: Administering

The following example uses a subquery to query. This self-join uses a correlated subquery to retrieve and list the 10 highest-priced items ordered.

SELECT order_num, total_price
 FROM items a
 WHERE 10 >
 (SELECT COUNT (*)
 FROM items b
 WHERE b.total_price < a.total_price)
 ORDER BY total_price;

The sel_union.sql command file

The following example uses the UNION clause to query on data in two tables. The compound query performs a union on the stock_num and manu_code columns in the
stock and items tables. The statement selects items that have a unit price of less than $25.00 or that have been ordered in quantities greater than three, and it lists their
stock_num and manu_code.

SELECT DISTINCT stock_num, manu_code
 FROM stock
 WHERE unit_price < 25.00

UNION

SELECT stock_num, manu_code
 FROM items
 WHERE quantity > 3;

The upd_table.sql command file

The following example updates the sports table that the c_table.sql command file created:

UPDATE sports
 SET phone = '808-555-1212'
 WHERE mfg_code = 'PARKR';

SQL files for the Dimensional Database Model

You can implement a dimensional database for data-warehousing applications by running scripts that create the sales_demo database.

The sales_demo database is based on the stores_demo schema and data.

To create the sales_demo database:

1. Create a stores_demo database with the following command:

dbaccessdemo -log

2. Make sure that the createdw.sql and loaddw.sql files are in the same directory as the files with extension .unl that the loaddw.sql uses.
3. Run the createdw.sql file.
4. Run the loaddw.sql file.

The createdw.sql file
 The loaddw.sql file

The createdw.sql file

This file creates the new sales_demo database with logging and then creates tables within that database. It contains the following statements:

create database sales_demo with log;

create table product (
 product_code integer,
 product_name char(31),
 vendor_code char(3),
 vendor_name char(15),
 product_line_code smallint,
 product_line_name char(15));

create table customer (
 customer_code integer,
 customer_name char(31),
 company_name char(20));

create table sales (
 customer_code integer,
 district_code smallint,
 time_code integer,
 product_code integer,

Part VI: Administering 1069

 units_sold smallint,
 revenue money (8,2),
 cost money (8,2),
 net_profit money(8,2));

create table time
 (
 time_code int,
 order_date date,
 month_code smallint,
 month_name char(10),
 quarter_code smallint,
 quarter_name char(10),
 year integer
);

create table geography (
 district_code serial,
 district_name char(15),
 state_code char(2),
 state_name char(18),
 region smallint);

The loaddw.sql file

This file contains the commands necessary to load data from two sources:

The files with the extension .unl in your demonstration directory
Data selected from the stores_demo database

These SQL statements in loaddw.sql accomplish these actions:

connect to "stores_demo ";
load from "add_orders.unl"
 insert into stores_demo :orders;
load from 'add_items.unl'
 insert into stores_demo :items;

connect to "sales_demo";
load from 'costs.unl'
 insert into cost;
load from 'time.unl'
 insert into time;

insert into geography(district_name, state_code, state_name)
 select distinct c.city, s.code, s.sname
from stores_demo :customer c, stores_demo :state s
 where c.state = s.code;
update geography -- converts state_code values to region values
 set region = 1
 where state_code = "CA";
update geography
 set region = 2
 where state_code <> "CA";

insert into customer (customer_code, customer_name, company_name)
 select c.customer_num, trim(c.fname) || " " || c.lname, c.company
 from stores_demo :customer c;

insert into product (product_code, product_name, vendor_code,
 vendor_name, product_line_code, product_line_name)
 select a.catalog_num,
 trim(m.manu_name) || " "|| s.description,
 m.manu_code, m.manu_name, s.stock_num, s.description
 from stores_demo :catalog a, stores_demo :manufact m,
 stores_demo :stock s
 where a.stock_num = s.stock_num and
 a.manu_code = s.manu_code and
 s.manu_code = m.manu_code;
insert into sales (customer_code, district_code,
 time_code, product_code,
 units_sold, revenue, cost, net_profit)
 select c.customer_num, g.district_code, t.time_code, p.product_code,
 SUM(i.quantity), SUM(i.total_price),
 SUM(i.quantity * x.cost),
 SUM(i.total_price) - SUM(i.quantity * x.cost)
 from stores_demo :customer c, geography g, time t,
 product p,
 stores_demo :items i, stores_demo :orders o, cost x
 where c.customer_num = o.customer_num and
 o.order_num = i.order_num and
 p.product_line_code = i.stock_num and
 p.vendor_code = i.manu_code and
 t.order_date = o.order_date and
 p.product_code = x.product_code and
 c.city = g.district_name
 GROUP BY 1,2,3,4;

connect to "stores_demo ";
load from 'add_orders.unl'
 insert into stores_demo :orders;

1070 Part VI: Administering

load from 'add_items.unl'
 insert into stores_demo :items;

connect to "sales_demo";
load from 'costs.unl'
 insert into cost;
load from 'time.unl'
 insert into time;

insert into geography(district_name, state_code, state_name)
 select distinct c.city, s.code, s.sname
from stores_demo :customer c, stores_demo :state s
 where c.state = s.code;
update geography -- converts state_code values to region values
 set region = 1
 where state_code = "CA";
update geography
 set region = 2
 where state_code <> "CA";

insert into customer (customer_code, customer_name, company_name)
 select c.customer_num, trim(c.fname) || " " || c.lname, c.company
 from stores_demo :customer c;

insert into product (product_code, product_name, vendor_code,
 vendor_name, product_line_code, product_line_name)
 select a.catalog_num,
 trim(m.manu_name) || " " || s.description,
 m.manu_code, m.manu_name, s.stock_num, s.description
 from stores_demo :catalog a, stores_demo :manufact m,
 stores_demo :stock s
 where a.stock_num = s.stock_num and
 a.manu_code = s.manu_code and
 s.manu_code = m.manu_code;

insert into sales (customer_code, district_code,
 time_code, product_code,
 units_sold, revenue, cost, net_profit)
 select c.customer_num, g.district_code, t.time_code, p.product_code,
 SUM(i.quantity), SUM(i.total_price),
 SUM(i.quantity * x.cost),
 SUM(i.total_price) - SUM(i.quantity * x.cost)
 from stores_demo :customer c, geography g, time t, product p,
 stores_demo :items i, stores_demo :orders o, cost x
 where c.customer_num = o.customer_num and
 o.order_num = i.order_num and
 p.product_line_code = i.stock_num and
 p.vendor_code = i.manu_code and
 t.order_date = o.order_date and
 p.product_code = x.product_code and
 c.city = g.district_name
 GROUP BY 1,2,3,4;

User-defined routines for the object-relational database model

You can run sample user-defined routines on the superstores_demo database.

The superstores_demo database does not replace the stores_demo database. Both databases are available. The superstores_demo database schema is not compatible
with earlier versions with stores_demo. In many cases, you cannot use test queries developed for stores_demo against the tables of superstores_demo because the
tables differ.

No SQL command files are associated specifically with superstores_demo. However, there are user-defined routines that you can run in the SQL editor or a system editor.

The superstores_demo database includes examples of the following features:

Collection types: SET, LIST
Named row types: location_t, loc_us_t, loc_non_us_t
Unnamed row types
Type and table inheritance
Built-in data types: BOOLEAN, SERIAL8, INT8
Distinct data type: percent
Smart large objects: BLOB and CLOB

The superstores_demo database has row types and tables to support the following table-inheritance hierarchies:

customer/retail_customer
customer/whlsale_customer
location/location_us
location/location_non_us

For more information about user-defined routines, see IBM® Informix® User-Defined Routines and Data Types Developer's Guide.

Related information:
 The superstores_demo database

High-Performance Loader User's Guide
Part VI: Administering 1071

These topics describe how to use the IBM® Informix® High-Performance Loader (HPL) to load and unload large quantities of data efficiently to or from databases.

These topics describe:

The architecture of HPL
The onpload utility that allows you to control HPL from a script.
The onpload database that maintains information about load and unload jobs that you have prepared.
The ipload graphical user interface (GUI).
The onpladm utility.

The ipload utility is a UNIX application that helps users prepare load and unload jobs for both UNIX and Windows. The onpladm utility is a command-line version of the
ipload utility that operates on both UNIX and Windows.

The first section introduces the HPL, provides a general overview of the tasks that the HPL performs, describes the architecture of the HPL, and includes two tutorial
examples that take you through the process of loading and unloading data.

The second section introduces the ipload utility, a graphical user interface that you can use to set the parameters for the HPL.

Subsequent sections give details about developing the onpload database by using the individual components of the ipload, onpload, and onpladm utilities.

These topics are written for the following users:

Database administrators
Database server administrators

These topics assume that you have the following background:

A working knowledge of your computer, your operating system, and the utilities that your operating system provides.
Some experience working with relational databases or exposure to database concepts.
Some experience with computer programming.
Some experience with database server administration, operating-system administration, or network administration.

For information about software compatibility, see the IBM Informix release notes.

These topics are taken from IBM Informix High-Performance Loader User's Guide.

High-Performance Loader overview
 Examples of loading and unloading jobs using the ipload utility

 This section shows how the components of the High-Performance Loader (HPL) fit together. The section includes a step-by-step tutorial with two examples (for a
load and an unload job) that use the ipload graphical user interface (GUI).
The ipload utility windows

 This section contains information about using the ipload utility.
Define HPL projects

 This section explains how to create a project and how projects are related. The individual components that you store in projects are described in later sections.
Configure the High-Performance Loader

 This section describes the process of configure the High-Performance Loader (HPL).
Define device arrays

 This section describes how to define and use device arrays with the High-Performance Loader (HPL).
Define formats

 This section describes the formats that the High-Performance Loader (HPL) provides and shows how to prepare and edit the format component.
Define queries

 This section describe how to define queries including how to create, edit, and export and import queries.
Define maps

 This section describes how to define maps with the High-Performance Loader (HPL). It also describes the options that are available for defining maps.
Define filters

 This section describes how to create, edit, and delete filters.
Unload data from a database

 This section describes the Unload Job window.
Load data to a database table

 This section describes the load process.
The Generate options of the ipload utility

 This section describes the Generate options for the ipload utility.
The HPL browsing options

 This section describes the browsing options that are available for the High-Performance Loader (HPL).
Manage the High-Performance Loader

 The onpload utility
 This section describes how to use the onpload utility.

The onpladm utility
 This section describes how to use the onpladm utility.

Appendixes
 This section contains additional reference information.

High-Performance Loader overview

Overview of HPL features
 The High-Performance Loader (HPL) is a database server tool that you can use to load and unload large quantities of data efficiently to or from a database.

The HPL data-load process
 The data-load process reads a source data file, converts the data to a different format, and inserts the converted data into a database table.

The HPL data-unload process

1072 Part VI: Administering

HPL loading modes
The High-Performance Loader (HPL) offers two load modes, deluxe mode and express mode. The express mode is faster, and the deluxe mode is more flexible.
HPL components
The HPL consists of the onpload utility, the ipload utility, the onpladm command-line utility, and the onpload database.
Environment variables needed for the HPL
The High-Performance Loader (HPL) is part of the database server, so you must start the database server before you use the HPL. Before you start the database
server and use HPL, you must set environment variables.
Architecture of the onpload utility
The ipload utility is the interface that allows you to prepare the parameters that the onpload utility uses. The onpload utility, which is a client application that
attaches to the database server, actually loads and unloads the data.

Overview of HPL features

The High-Performance Loader (HPL) is a database server tool that you can use to load and unload large quantities of data efficiently to or from a database.

The HPL lets you exchange data with tapes, data files, and programs, and converts data from these sources into a format compatible with IBM® Informix® databases. The
HPL also allows you to manipulate and filter the data as you perform load and unload operations.

The HPL includes the following components:

The ipload utility, which is a graphical user interface (GUI). This UNIX application helps you prepare load and unload jobs for both UNIX and Windows and includes
the following functionality:

The ipload utility provides a Generate option that lets you automatically generate the HPL components that are required for a load or unload job.
The database-load feature lets you update your databases with data from any of the supported file types, while allowing you to control the format and
selection of records from the input files. Data can be loaded from or unloaded to files, tapes, or application pipes (for UNIX), or to any combination of these
three device types.
The load and unload operations run in the background of your multitasking operating system. Once the operation begins, you can continue to use ipload to
perform other functions.
The ipload utility provides context-sensitive online help. The online help also includes a glossary.

The onpladm utility, which is a command-line version of the ipload utility.
The onpload utility, which allows you to control HPL from a script.

The onpload database, which maintains information about load and unload jobs that you have prepared.

You use the ipload utility to manage the onpload database on any database server on your network.

Any database server on your network can use the onpload database, which contains parameters and controls that the HPL uses. This accessibility allows centralized
management of your load and unload controls. These parameters and controls include the HPL components such as formats, maps, and projects.

The HPL:

Supports COBOL, ASCII, multibyte, delimited, or binary data.
Can load and unload data of a different GLS locale than that of the database server.
Provides synonym support for tables that are valid for the local database server. You can use synonyms for both the load and unload operations.
Provides support for unloading data with a query that accesses a view in its SELECT statement.
Supports loading of raw tables in express mode.

The HPL data-load process

The data-load process reads a source data file, converts the data to a different format, and inserts the converted data into a database table.

The source data can come from one or more of the following sources:

Files
Tapes
Pipes (application-generated data) (UNIX)

The High-Performance Loader (HPL) supports load and unload data greater than 2 GB to files and tapes.

During conversion, the source data is often manipulated so that the converted data displays different characteristics. Examples of this manipulation include:

Changing lowercase letters to uppercase letters
Loading default values, loading certain table columns, or replacing nulls
Masking the data to include only part of a value
Converting from one data type to another, such as conversion of a numeric string to a float
Converting from the code set of one locale to the code set of another locale

When you prepare to run a data load with the HPL, you describe the actions that the HPL must take by defining a set of metadata components. The components describe
different aspects of the load process. The HPL uses information from:

The device array to find the set of the source-data files
The format to define the data types and layout of the source data
The filter to select the records from the source data that should be written to the database table
The map to modify and reorganize the data

The ipload utility helps you prepare the components. Load data to a database table, addresses the process of loading a file to a database.

The following figure shows the data load process. The figure summarizes the data-load process by showing how data moves from data files to table entries.
Figure 1. The data-load process

Part VI: Administering 1073

The HPL data-unload process

The data-unload process is essentially the same as the load process, but in reverse. The data-unload process extracts the source data from one or more database tables;
converts the data to a new format; and writes the converted data to a file, tape, or on UNIX to a pipe (application). As in a load, you can manipulate the data from a
database table so that the converted data displays different characteristics.

The following figure shows how the components of the High-Performance Loader (HPL) affect the data as it moves from a database to data files during the unload process.
The HPL uses:

The query to select records from the database
The map to reorganize or modify the selected records
The format to prepare the records for writing out to the data files
The device array to find the location of the data files

Figure 1. The data-unload process

The HPL uses the same components for an unload job as for a load job, with one exception. For an unload job, ipload creates a Structured Query Language (SQL) query
that extracts selected data from the table. As with a load, unload components are grouped together into an unload job. Unload jobs can be saved, retrieved, and rerun as
many times as necessary. Unload jobs can be grouped together with load jobs in the same project.

Related reference:
 Unload data from a database

HPL loading modes

The High-Performance Loader (HPL) offers two load modes, deluxe mode and express mode. The express mode is faster, and the deluxe mode is more flexible.

The HPL express mode
The HPL express-mode loads are faster than deluxe-mode loads, but less flexible. In express mode, you cannot update the table or read the new data entries until the
load is complete. The express mode disables indexes, constraints, and triggers during the load. After the load, HPL rebuilds and re-enables indexes, evaluates and re-
enables constraints, if possible, and re-enables triggers. (HPL does not evaluate triggers with respect to the loaded data.)

You must perform a level-0 backup after an express-mode load.

The HPL deluxe mode
The HPL deluxe-mode loads are not as fast as express-mode loads, but are more flexible. In deluxe mode, you can access and update the table that is being loaded. The
deluxe mode updates indexes, performs constraint checking, and evaluates triggers as data is inserted into the table.

Related reference:
 Manage the High-Performance Loader

HPL components

The HPL consists of the onpload utility, the ipload utility, the onpladm command-line utility, and the onpload database.

The onpload utility
 The ipload utility

 The onpladm utility
 The onpladm utility is a command-line utility for both UNIX and Windows with the same functionality as ipload.

The onpload database
 Relationships among the parts of the HPL

The onpload utility

1074 Part VI: Administering

The onpload utility has the following features:

Converts, filters, and moves data between a database and a storage device
Uses information from the onpload database to run the load and unload jobs and to convert the data
Records information during a load about data records that do not meet the load criteria

The onpload utility can load or unload data from files that are larger than 2 GB and can generate .log, .rej and .flt files that are larger than 2 GB.

The onpload database must be accessible from the machine on which the onpload utility is run. It does not need to be on the same machine.

The database that the onpload loads or unloads must be in a database server instance on the machine that is running the onpload (or ipload or onpladm) utility.

You can start onpload by using ipload or from the command line.

When you start onpload from ipload, the onpload and ipload utilities communicate by using a socket connection. The onpload utility runs independently from ipload (see
the information to the right of the vertical line in Figure 1).

Related concepts:
 Architecture of the onpload utility

Related reference:
 The onpload utility

The ipload utility

The ipload utility is a UNIX-based graphical user interface that has the following features:

Creates and manages the onpload database
Creates and stores information for onpload
Lets you create, edit, and group the components of the load and unload jobs
Stores information about the load components in the database

You can use ipload to manage onpload databases on both UNIX and Windows. The ipload utility is not available on Mac OS X.

Related concepts:
 Start the ipload utility

Related reference:
 The ipload utility

Configure the ipload utility
Run load and unload jobs on a Windows computer

The onpladm utility

The onpladm utility is a command-line utility for both UNIX and Windows with the same functionality as ipload.

Related reference:
 The onpladm utility

The onpload database

The onpload database has the following features:

Contains information that the onpload utility requires to perform data loads and unloads
Must be accessible from the machine where the onpload utility is run. It does not need to be on the same machine.
However; the database that the utility loads or unloads must be in a database server instance on the machine where the onpload utility (and hence the ipload or
onpladm utility) is being run.

Relationships among the parts of the HPL

The following figure shows the relationships among the parts of the High-Performance Loader (HPL). The ipload utility or onpladm command-line utility connects to the
database server to populate the onpload database. The ipload utility or the onpladm utility controls the onpload utility, which uses multithreaded architecture to make
multiple connections to the database server and multiple I/O connections to tapes, files, or pipes.
Figure 1. Relationships among the parts of the HPL

Part VI: Administering 1075

The information to the right of the vertical line in Figure 1 shows onpload loading or unloading data with no interaction from ipload.

Environment variables needed for the HPL

The High-Performance Loader (HPL) is part of the database server, so you must start the database server before you use the HPL. Before you start the database server and
use HPL, you must set environment variables.

The following environment variable must be set:

INFORMIXDIR
ONCONFIG
INFORMIXSERVER
LD_LIBRARY_PATH

Some computers use the LD_LIBRARY_PATH environment variable for shared libraries. The name of this environment variable is platform-dependent. See your operating
system documentation for the name of the environment variable that specifies the search path for shared libraries. Then see the machine notes for information about
LD_LIBRARY_PATH.

You can use the IFX_ONPLOAD_AUTO_UPGRADE environment variable with the ipload or onpladm utilities to automatically upgrade the onpload database the first time
you run an HPL utility by using the ipload or onpladm command after you migrate to a new database server version. You cannot use the IFX_ONPLOAD_AUTO_UPGRADE
environment variable with the onpload utility.

In addition to the environment variables listed above, the following environment variables pertain to the HPL:

DBONPLOAD
PLCONFIG
PLOAD_SHMBASE
PLOAD_LO_PATH
PLOAD_SHMAT

Tip: To maximize available memory and scan resources, HPL automatically sets the PDQPRIORITY environment variable to 100, if it is not already set. If the PDQPRIORITY
environment variable is set, HPL uses that value. If the PDQPRIORITY environment variable is set to 0, then HPL cannot unload multiple devices.

Preparing multiple onpload databases
 Each database server can have only one active onpload database. In most cases, you can use the default onpload database, which is named onpload. If you choose

to prepare multiple databases to hold different types of control information, you must set the DBONPLOAD environment variable before you can run a load or
unload.
The PLCONFIG environment variable

 The PLOAD_SHMBASE environment variable
 The PLOAD_LO_PATH environment variable

 The PLOAD_LO_PATH environment variable allows you to specify the location of smart large object (CLOB or BLOB) output files. If this environment variable is not
set, the database server puts the output files in /tmp.
The PLOAD_SHMAT environment variable

 If the pload converter thread cannot attach to the passed address, you receive a message that asks you to set the PLOAD_SHMAT environment variable.

Related information:
 INFORMIXDIR environment variable

INFORMIXSERVER environment variable
ONCONFIG environment variable
PDQPRIORITY environment variable

Preparing multiple onpload databases

1076 Part VI: Administering

Each database server can have only one active onpload database. In most cases, you can use the default onpload database, which is named onpload. If you choose to
prepare multiple databases to hold different types of control information, you must set the DBONPLOAD environment variable before you can run a load or unload.

To prepare multiple onpload databases with ipload:

1. Set the DBONPLOAD environment variable to the name of the alternative onpload database.
2. Restart ipload.
3. Use ipload to prepare the alternative database.

During load and unload jobs, the ipload, onpload, and onpladm utilities use the value of the DBONPLOAD environment variable that is set in the client environment,
regardless of whether the DBONPLOAD environment variable is set on the server. The ipload, onpload, and onpladm utilities use the value of the DBONPLOAD
environment variable that is set on the server only if the DBONPLOAD environment variable is not set in the client environment.

Related concepts:
 Create the onpload database

Related information:
 DBONPLOAD environment variable

The PLCONFIG environment variable

The default configuration file for the onpload utility is plconfig.std. The configuration file is always in the $INFORMIXDIR/etc directory. To use an alternative configuration
file, you must set the PLCONFIG environment variable to the name of the alternative onpload configuration file. If you use plconfig.std, you do not need to set PLCONFIG.

Related reference:
 High-Performance Loader configuration file

Related information:
 PLCONFIG environment variable

The PLOAD_SHMBASE environment variable

The PLOAD_SHMBASE environment variable allows you to specify shared-memory address attachments specifically for onpload processes. You can set the
PLOAD_SHMBASE environment variable to avoid shared-memory collisions between onpload and the database server or allow the HPL to specify the attachments.
Tip: To use the PLOAD_SHMBASE environment variable, you must start onpload from the command line, not from within ipload.

Avoid shared-memory collision
 Set the PLOAD_SHMBASE environment variable

 To override the initial shared-memory allocation in a shared-memory collision between onpload and the database server, set the PLOAD_SHMBASE environment
variable to a value much higher or much lower than the value for the shared memory that the database server uses.

Related information:
 PLOAD_SHMBASE environment variable

Avoid shared-memory collision

Both the database server and onpload allocate shared memory. When onpload starts up, the database server allocates shared memory for buffers for onpload processes.
The onpload utility also allocates shared memory for its internal use. Because of the dynamic nature of shared-memory allocations, shared-memory collisions can occur
between onpload and the database server. If this collision occurs, the onpload job can also fail and error messages are sent to the onpload log file or the database server
log file.

To verify if a collision has occurred, use the onstat -g seg option. Check for overlap between the shared-memory segments that the database server is using and the
SHMBASE reported in the onpload log file.

Related information:
 onstat -g seg command: Print shared memory segment statistics

Set the PLOAD_SHMBASE environment variable

To override the initial shared-memory allocation in a shared-memory collision between onpload and the database server, set the PLOAD_SHMBASE environment variable
to a value much higher or much lower than the value for the shared memory that the database server uses.

The PLOAD_LO_PATH environment variable

The PLOAD_LO_PATH environment variable allows you to specify the location of smart large object (CLOB or BLOB) output files. If this environment variable is not set, the
database server puts the output files in /tmp.

Related information:
 PLOAD_LO_PATH environment variable

Part VI: Administering 1077

The PLOAD_SHMAT environment variable

If the pload converter thread cannot attach to the passed address, you receive a message that asks you to set the PLOAD_SHMAT environment variable.

When you set the PLOAD_SHMAT environment variable, the pload converter calculates the address by using a global attached segment list that is maintained across pload
virtual processors. The pload converter attaches at the next available address after the highest address on the list, ensuring that the converter always attaches to an
unused shared memory segment.

Architecture of the onpload utility

The ipload utility is the interface that allows you to prepare the parameters that the onpload utility uses. The onpload utility, which is a client application that attaches to
the database server, actually loads and unloads the data.

The onpload utility can take advantage of parallel processing to perform both I/O and data conversion as efficiently as possible because it uses the same multithreading
architecture that the database server uses.

The following sections describe how onpload uses multithreading for deluxe loads, express loads, and unloads.

The onpload utility deluxe-mode process
 The onpload utility uses specific threads during the deluxe-mode process.

The onpload utility express-mode load process
 The onpload utility behaves the same way during express-mode deluxe-mode loads. However, the database server behaves differently during an express load.

The onpload utility unload process

Related concepts:
 The onpload utility

Related information:
 Save memory and resources

The onpload utility deluxe-mode process

The onpload utility uses specific threads during the deluxe-mode process.

The following figure shows the threads that onpload uses in a deluxe-mode load process. In deluxe mode, data is subject to the same constraints as if it were loaded by
using SQL INSERT statements.
Figure 1. A deluxe-mode load

Threads that the onpload utility uses
 Threads that the database server uses

Related concepts:

 The HPL deluxe mode

Threads that the onpload utility uses

1078 Part VI: Administering

The onpload utility starts the following threads:
Table 1. Threads that the onpload utility starts

Thread Description

tape I/O
threads

The onpload utility starts one tape I/O thread for each tape device. It reads data from the tape device asynchronously.
The onpload utility starts a similar thread for piped output. (UNIX only)

If the disk file inputs, onpload uses the multithreading AIO subsystem instead of a dedicated I/O thread.

sdriver threads The worker threads control I/O from input files. They handle device abstraction for the different device types handled. The sdriver threads also are
responsible for passing out records from the input and passing records to the converters.

convert threads The onpload utility starts one or more convert threads for each device. These threads perform conversions on the input data such as uppercase to
lowercase conversion or code-set conversion.

worker threads The onpload utility starts one worker thread for each input device. These threads communicate with the database server. The main responsibility of
the worker thread is to pass data to the database server.

To see the status of the onpload threads, you must use the -j option of the onstat utility.

Related reference:
 The onstat -j option

Threads that the database server uses

The database server uses the following threads to insert the data into the database:
Table 1. Threads that insert data into the database

Thread Description

pl_wkr threads Each worker thread of the onpload utility is paired with a pl_wkr thread in the database server. These threads receive the data from onpload.
In a utility that shows the database server status, the pl_wkr threads are named pl_wkr_1, pl_wkr_2, pl_wkr_3, and so on.

cadiload
threads

The cadiload threads are the insert threads. The insert threads perform a normal insert into the database, like during an INSERT statement. The SQL
optimizer governs the method that is used for inserting the data.

The onpload utility express-mode load process

The onpload utility behaves the same way during express-mode deluxe-mode loads. However, the database server behaves differently during an express load.

During an express-mode load, the pl_wkr threads pass the data to stream threads (also called fragmenter threads) that decide where the data is to be stored. The
fragmenter threads pass the data to an exchange that distributes the data to setrw threads. The setrw threads write table rows to disk a page at a time, bypassing the
buffer cache.

The number of input devices can be different from the number of table fragments. The exchange operator handles multiplexing of data. The data is processed in parallel
with respect to the data read from the device array and also with respect to the data written out to table fragments on separate disks. Pipeline parallelism is also present
in the data flow from input devices to table fragments on disk. Parallelism is the main mechanism for achieving high performance.

During express-mode load, the database server writes the data to new extents on disk, but those extents are not yet part of the table. At the end of an express-mode load,
the database server adds the new extents to the table.

Important: After the express-mode load, you must perform a level-0 backup before you can write to the target database. If you try to write to the table before you
perform a level-0 backup, the database server issues ISAM error -197, as follows:

Partition recently appended to; can’t open for write or logging.

If your database is ANSI-compliant, all access (both read and write) is denied until you perform a level-0 backup. Because data is not logged in express mode, the level-0
backup is necessary to allow for recovery in case of media failure.

The following figure shows a single express-mode load process. In express mode, the data is inserted directly into an extent without any evaluation of objects such as
constraints, indexes, or triggers.
Figure 1. An express-mode load

Part VI: Administering 1079

Related concepts:
The HPL express mode

The onpload utility unload process

The following figure shows the onpload unload process. In the unload process, the behavior of onpload parallels the behavior described in Threads that the onpload utility
uses and Threads that the database server uses, except that the threads are unloading the data instead of loading it.
Figure 1. The unload procedure

The ulstrm (unload-stream) thread packages data for output to the onpload client from the query plan. The SQL optimizer creates the query plan. The query plan behaves
like a query plan running from any other client, such as DB-Acess. The exchange operator distributes the resulting data to the ulworker threads in a round-robin fashion,
and onpload unloads the data onto tapes or files.

Parallelism with respect to the output device, the source table fragments, and the flow of the data is evident in the preceding figure.

Examples of loading and unloading jobs using the ipload utility

1080 Part VI: Administering

This section shows how the components of the High-Performance Loader (HPL) fit together. The section includes a step-by-step tutorial with two examples (for a load and
an unload job) that use the ipload graphical user interface (GUI).

The illustrations in the first example use a database with only one table. The table contains three columns. The data to be loaded into the database is in a file that has only
four records. In a real production environment, you would probably use the INSERT statement, the dbimport utility, or the LOAD statement for such a simple operation.
However, by using a simple example, the illustrations can show what happens at each step.

The onpladm command-line interface is equivalent to the ipload utility.

Prepare to use the ipload utility
 The ipload utility is a part of UNIX database servers. Before you can use ipload, you must have installed the database server. If the database that you want to load

or unload is on the computer where you plan to run ipload, you must also start the database server.
Create a file of data

 Create a database
 The ipload utility

 The High-Performance Loader (HPL) uses information from the onpload database to control loading and unloading of data. Theoretically, you could create the
onpload database and use DB-Acess or some other database tool to populate it. However, it is recommended that you always use ipload to manage the onpload
database.
Load Job windows

 A load job is a collection of the specific pieces of information that you require to move data from a data file into a database. The Load Job window shows a flowchart
that includes all of the components of a load job.
Device-Array windows

 A device array is a collection of files, tape devices, and pipes that onpload uses for input and output. Pipes are only supported on UNIX. You can create a device
array and specify the location of the input data from the Device Array Selection and Device-Array Definition windows.
Format windows
The format specifies the organization of the input data.
Filter, Discard Records, and Logfile text boxes

 The Load Job window now has entries for a device and format. The next incomplete items in the Load Job window are the Filter text box, the Discard Records text
box, and the Logfile text box.
Map Views window

 From the Map Views window, you can create a map that specifies which data field from the input file (/work/mydata) is entered into which columns in the database
table.
Completing the Load Record Maps window

 The Load Record Maps window specifies the device array that holds the input data, the format that describes the input data, and the database and table where the
input data will be stored.
Map-Definition window

 Load Options window
 Running the ipload job
 You are now ready to perform the load.

Active Job window
 The ipload utility Generate options

 The ipload utility has Generate options that you can use to automatically create a format, map, query, and device. After the components are generated, you can
modify the components to meet your needs.

Related reference:
 The onpladm utility

Prepare to use the ipload utility

The ipload utility is a part of UNIX database servers. Before you can use ipload, you must have installed the database server. If the database that you want to load or
unload is on the computer where you plan to run ipload, you must also start the database server.

You can also use ipload to manage load and unload operations for a database server on a different computer. For example, you can use ipload on a UNIX computer to
manage the onpload database on a Windows computer.

Related reference:
 Run load and unload jobs on a Windows computer

Create a file of data

The illustrations in this section assume that the data to be loaded is in a file named /work/mydata. Create a file that contains the following data:

1|a|50
2|b|25
3|c|10
4|d|5

Create a database

The High-Performance Loader (HPL) loads data into an existing table in an existing database. The examples in this section load the information from the file /work/mydata
into a three-column table named tab1 in a database named testdb. You can use DB-Acess to prepare the database and table, as follows:

CREATE DATABASE testdb;
CREATE TABLE tab1
(

Part VI: Administering 1081

col1 INTEGER,
col2 CHAR(1),
col3 INTEGER
);
GRANT ALL ON tab1 TO PUBLIC;
GRANT CONNECT TO PUBLIC;

After you finish preparing the database for the examples, exit from DB-Acess.

The ipload utility

The High-Performance Loader (HPL) uses information from the onpload database to control loading and unloading of data. Theoretically, you could create the onpload
database and use DB-Acess or some other database tool to populate it. However, it is recommended that you always use ipload to manage the onpload database.

Start the ipload utility
 To start ipload, type the following at the system prompt ipload.

Choose a project
 You use the High-Performance Loader (HPL) by preparing load jobs that import data or unload jobs that export data. You can assign the load and unload jobs to

various projects to organize the jobs into functional groups.
Check the ipload utility default values

 The default values that ipload selects when it is first started specify machine type, character code set for character-type data, and other operating characteristics.
In most cases, the only default that you might need to change is the machine type.

Related concepts:
 The ipload utility

Start the ipload utility

To start ipload, type the following at the system prompt ipload.

A decorative splash screen appears and stays on the display while ipload finishes loading. If you do not want to see the splash screen, use the -n flag, ipload -n.

The first time you start ipload, it automatically creates the onpload database. The ipload utility also puts certain default values into the database.

When ipload starts, the High-Performance Loader (HPL) main window appears, as the following figure shows.
Figure 1. The HPL main window

Tip: To exit from ipload, choose Exit from the Jobs menu.
The onpladm command-line utility provides the same functionality as the ipload graphical user interface.

Related reference:
 The onpladm utility

The onpload database

Choose a project

You use the High-Performance Loader (HPL) by preparing load jobs that import data or unload jobs that export data. You can assign the load and unload jobs to various
projects to organize the jobs into functional groups.

The ipload utility automatically creates a project named <default>. If you choose not to organize your work into projects, you can put all of the load and unload jobs in the
default project.

For this example, you can use the default project. Click <default> on the HPL main window to choose the default project.

Related concepts:
 Define HPL projects

Check the ipload utility default values

The default values that ipload selects when it is first started specify machine type, character code set for character-type data, and other operating characteristics. In most
cases, the only default that you might need to change is the machine type.

1082 Part VI: Administering

Look at the Defaults window
Choose Configure > Defaults to see the current default values. After you check the defaults, you can click Cancel to exit from the Defaults window.
Look at the Machines window
Choose Configure > Machines to see the current default values. Make sure that the machine type displayed in the Machines window matches the current machine
type. Click the Machine > Type down arrow to select a machine type. Click Cancel to exit from the Machines window.

Related reference:
 Configure the High-Performance Loader

Look at the Defaults window

Choose Configure > Defaults to see the current default values. After you check the defaults, you can click Cancel to exit from the Defaults window.

Related concepts:
 Modify the onpload default values

Look at the Machines window

Choose Configure > Machines to see the current default values. Make sure that the machine type displayed in the Machines window matches the current machine type.
Click the Machine > Type down arrow to select a machine type. Click Cancel to exit from the Machines window.

Related concepts:
 Modify the machine description

Load Job windows

A load job is a collection of the specific pieces of information that you require to move data from a data file into a database. The Load Job window shows a flowchart that
includes all of the components of a load job.

The Load Job window is illustrated in Figure 2. After you become familiar with ipload, you can create or modify the individual components of a load or unload job with
direct menu choices from the HPL main window.

Load Job Select window
 The data-load example takes records from /work/mydata and loads them into tab1 of the testdb database. To perform the load, you need to create a load job.

Load Job window

Load Job Select window

The data-load example takes records from /work/mydata and loads them into tab1 of the testdb database. To perform the load, you need to create a load job.

To create a load job:

1. Choose Jobs > Load from the HPL window.
The Load Job Select window appears, as the following figure shows.
Figure 1. The Load Job Select window

Part VI: Administering 1083

2. Click Create in the Selection Type group.
3. Choose a name for the load job and type it in the Job Name text box. This example uses newjob.
4. Click OK.

The Load Job window appears, as the following figure shows.
Figure 2. The Load Job window

Load Job window

The thick arrows on the Load Job window indicate the steps that you take as you build a load job. The icons indicate the task at each step. The thin arrows indicate file
names for error recording. To create a load job, you need to complete the following tasks:

Task Click

Specify the source of the data Device

Describe the data Format

Tell ipload which data you want to discard (optional) Filter

Specify association between input fields and load-table columns Map

Specify options for the load job Options

Specify the database table to load Table

Record rejected data records (optional) Discard Records

Record information about the job (optional) Logfile

Device-Array windows

A device array is a collection of files, tape devices, and pipes that onpload uses for input and output. Pipes are only supported on UNIX. You can create a device array and
specify the location of the input data from the Device Array Selection and Device-Array Definition windows.

In this example, the input data is the /work/mydata file that you created in Create a file of data.

Device Array Selection window
 Device-Array Definition window

Device Array Selection window

To create a device array:

1. Click Device in the Load Job window.
The Device Array Selection window appears, as the following figure shows.
Figure 1. The Device Array Selection window

1084 Part VI: Administering

2. Click Create in the Selection Type group.
3. Select a name for the device array and type it in the Device Array text box. This example uses an_array.
4. Click OK.

The Device-Array Definition window appears, as Figure 1 shows.

Device-Array Definition window

The title bar of the Device-Array Definition window shows the array name that you typed in the Device Array text box.
Figure 1. The Device-Array Definition window with one array item

To add a device to the array:

1. Click Add in the Perform group (lower right).
2. Click File in the Array Item Type group (upper left).
3. Type the full path name of a device in the File Name text box. In this example, the device is /work/mydata.
4. Click Perform to add the /work/mydata file to the device array.

The ipload utility lists each item of the device array in the Array Items list box. Figure 1 shows the window after you add /work/mydata to the array.

5. Click OK.
The display returns to the Load Job window. The Device list box now displays the device array name that you chose.

Format windows

The format specifies the organization of the input data.

In this example, the input data is in the file /work/mydata, which you created in Create a file of data. Each record in the file has three fields.

Format Views window
 The Format Views window displays existing formats, so that you can choose the format to use in the load job.

Record Formats window
 Format-Definition window

 In the Format-Definition window, you must make an entry for each field of the data records in the input file. The input file for this example (/work/mydata) has three
fields of data in each record, so you must enter format information for three pieces of data.

Part VI: Administering 1085

Format Views window

The Format Views window displays existing formats, so that you can choose the format to use in the load job.

To open the Format Views window:

1. Click the Format in the Load Job window.
The Format Views window appears, as the following figure shows. When you first start ipload, no formats are defined, as the NONE FOUND icon illustrates.
Figure 1. The Format Views window

2. Click Create to open the Record Formats window.

Record Formats window

The following figure shows the Record Formats window. You can create a format or open an existing format from the Record Formats window.
Figure 1. The Record Formats window

To create a format:

1. Click Create in the Mode group.
2. Click Delimited in the Type group.

The input data file, /work/mydata, is in delimited format. Other formats are described in Define formats.

3. Choose a name for the format and type it in the Create Format text box. This example uses the name a_format.
4. Click OK.

The Format-Definition window appears. The following figure shows a partially completed Format-Definition window. The title bar of the Format-Definition window
shows the name that you chose for the new format.
Figure 2. The Format-Definition window

1086 Part VI: Administering

Format-Definition window

In the Format-Definition window, you must make an entry for each field of the data records in the input file. The input file for this example (/work/mydata) has three fields
of data in each record, so you must enter format information for three pieces of data.

To enter a format definition:

1. Click Add in the Operation group.
2. In the Field Name text box, type a descriptive name for the first field of the data record.

You can choose any descriptive name. This example uses input1, input2, and input3 for the three fields of /work/mydata.

3. In the Field Type text box, type the data type or click the down arrow for a list of selections.
Because the data in /work/mydata is simple ASCII data, the type is Chars. Other data types are discussed in Define formats.

4. Click Perform.
Figure 2 shows the partially completed Format-Definition window. The entry for the first item is complete. The Field Name and Field Type for the second item are
present and ready for you to click Perform.

5. Repeat steps 2 through 4 for each of the three input fields.
6. Click OK after you complete all of the input fields.

The display returns to the Format-Views window, which displays the new format in the Formats list box.

7. Click Cancel to return to the Load Job window.

The Load Job window now displays the name of the device and the name of the format, as the following figure shows.
Figure 1. Partially completed Load Job window

Filter, Discard Records, and Logfile text boxes

The Load Job window now has entries for a device and format. The next incomplete items in the Load Job window are the Filter text box, the Discard Records text box, and
the Logfile text box.

Part VI: Administering 1087

Filter text box
Use a filter to choose the records from the data file that should be inserted into the table. In this example, all of the records from the /work/mydata data file are inserted
into the database table. Therefore, you do not need to create a filter. For this example, you can leave the Filter text box blank.

Define filters, describes how to create and use a filter.

Discard Records text box
The Discard Records text box specifies a file that keeps information about records that were rejected because of incorrect format or invalid data. For this example, you can
leave the Discard Records text box blank.

Reviewing records that the conversion rejected describes how to view rejected records.

Logfile text box
The Logfile text box specifies a file where a record of the load or unload job is kept. For this example, you can leave the Logfile text box blank.

View the status of a load job or unload job describes how to view the log file.

Map Views window

From the Map Views window, you can create a map that specifies which data field from the input file (/work/mydata) is entered into which columns in the database table.

Creating a map by using Map Views window
 Use the Map Views window to create a map or edit an existing map. You need to create a map that shows how the input data that the record format a_format

describes is to be loaded into the table tab1.

Creating a map by using Map Views window

Use the Map Views window to create a map or edit an existing map. You need to create a map that shows how the input data that the record format a_format describes is
to be loaded into the table tab1.

To create a map:

1. Click the Map button in the Load Job window.
The Map Views window appears, as the following figure shows.
Figure 1. The Map Views window

The NONE FOUND icon in the Map column is appropriate. The Map Views window does not contain any information because you have not yet specified any
relationships.

2. Click Create.
The Load Record Maps window appears, as the following figure shows.
Figure 2. A partially completed Load Record Maps window with an open selection list

1088 Part VI: Administering

Completing the Load Record Maps window

The Load Record Maps window specifies the device array that holds the input data, the format that describes the input data, and the database and table where the input
data will be stored.

To complete the Load Record Maps window:

1. Click Create in the Selection Type group.
2. Select a name for the map and type it in the Map Name text box. This example uses a_map.
3. Type the name of your database (testdb) in the Database text box. Or, click the down arrow to select a database from the selection list.
4. Click the down arrow beside the Table text box to see a list of tables in the selected database.

Figure 2 shows the Load Record Maps window and the selection list.

5. Select a table from the list and click OK.
Because you already filled in the Format text box on the Load Jobs window, the Format text box is already complete.

6. Click OK to open the Map-Definition window.

Map-Definition window

You can associate an input item with a table column in the Map-Definition window. This example stores the data from /work/mydata as follows, by using the field names
assigned in step 1.

Data from input field Goes into table column

input1 col3

input2 col2

input3 col1

The following figure shows the Map-Definition window. The title bar of this window shows the map name that you chose.
Figure 1. The Map-Definition window

Part VI: Administering 1089

Associating each input item with a column of the database table

Associating each input item with a column of the database table

To associate each input item with a column of the database table:

1. Click the col1 icon and hold the mouse button down. A box appears around the icon and its name.
2. Drag the boxed icon to the input3 icon in the right pane.
3. Release the mouse button.

The associated items appear in the second column of each pane. The following figure shows the Map-Definition window with this step completed.
Figure 1. The Map-Definition window with one association completed

4. Connect col2 to input2.
5. Connect col3 to input1.

The following figure shows the window with all three connections completed.
Figure 2. The Map-Definition window with all associations completed

6. Click OK to return to the Map Views window.
7. Click Cancel to return to the Load Job window.

The Load Job window now has entries in all of the required areas, as the following figure shows. The ipload utility was able to enter the table name and the target
database name (upper right area) because you specified the database and table as you built the map.
Figure 3. The Load Job window with all required component boxes completed

1090 Part VI: Administering

You have finished all of the required parts of the Load Job window, but you might want to modify the options, as discussed in the next section.

Load Options window

The High-Performance Loader (HPL) has three modes of operation: express, deluxe with replication, and deluxe without replication. The express mode is optimized for
speed and the deluxe mode provides the full functionality of SQL inserts as data is loaded. For a detailed comparison of these modes, see Manage the High-Performance
Loader. This example uses the express mode.

To set the load-job options:

1. Click Options in the Load Job window.
The Load Options window appears, as the following figure shows.
Figure 1. The Load Options window

2. Select Express from the Load Mode list box.
3. Select Yes from the Generate Violations Records list box.
4. Make sure all of the other entries are 0.
5. Click OK to return to the Load Job window.

Running the ipload job

You are now ready to perform the load.

To finish this example:

1. Click Save to save the load job.
After you save the load job, the message line displays the following message:

Saved job successfully

You can now run the job, or you can return at a later time and run the job.

2. Click Run to run the load job.
The Active Job window appears, as Figure 1 shows.

Part VI: Administering 1091

Tip: The ipload utility generates an onpload command and then runs the command to run your job. To see the command that ipload generates, look at the Command Line
text box on the Load Job Select window. For more information, see The command-line information.

Active Job window

The Active Job window reports the progress of your job. The following figure shows the Active Job window after the load is complete.
Figure 1. The Active Job window

When the Active Job window reports that the load job is complete, click OK to return to the Load Job Select window.

Verify the transfer of data
You can use DB-Acess to verify that the data from /work/mydata was transferred into your database.

Perform a level-0 backup
The onpload utility does not log the data that it writes to a table during an express-mode load. For safety, onpload flags the dbspaces that are associated with the table as
read-only. To allow for data recovery in case of disk corruption, you must make a level-0 backup. A level-0 backup on the dbspaces affected by the express-mode load
saves the data and unsets the read-only flags.

If you do not care about data recovery, you can make a level-0 backup by using /dev/null as the backup device. This action unsets the read-only flag without backing up
data to any real device.

The ipload utility Generate options

The ipload utility has Generate options that you can use to automatically create a format, map, query, and device. After the components are generated, you can modify the
components to meet your needs.

This example uses the Generate button in the Unload Job window to create the components that are required for an unload job. After you create the components, you can
use the Run option to run the unload job.

Use the information you created with the ipload example
 Preparing the Unload Job window

 An unload job is a collection of the specific pieces of information that are required to move data from a database into a data file. The Unload Job window shows a
flowchart that includes all of the components of an unload job. You can use the Generate option to create the components of the unload job and to complete the
items on the Unload Job window.
Performing the unload job

 You are now ready to perform the unload job.

Related reference:
 The Generate options of the ipload utility

Use the information you created with the ipload example

1092 Part VI: Administering

If you completed the first example, your database server and ipload are ready for you to use. If you did not complete the example, you need to complete the following
tasks as the first example describes:

Start your database server (Prepare to use the ipload utility)
Start ipload (Start the ipload utility)
Check the defaults (Check the ipload utility default values)

Preparing the Unload Job window

An unload job is a collection of the specific pieces of information that are required to move data from a database into a data file. The Unload Job window shows a flowchart
that includes all of the components of an unload job. You can use the Generate option to create the components of the unload job and to complete the items on the Unload
Job window.

The generate example uses the Generate option to unload the contents of the items table of the stores_demo database into a file named /work/items_out. For
instructions on how to create the stores_demo database and other demonstration databases, see the IBM® Informix® DB-Access User's Guide.

To generate the unload job:

1. Choose Jobs > Unload from the HPL window.
The Unload Job Select window appears, as the following figure shows.
Figure 1. The Unload Job Select window

2. Click Create in the Selection Type group.
3. Choose a name for the unload job and type it in the Job Name text box. This example uses the name unld.
4. Click OK.

The Unload Job window appears, as the following figure shows. The information box in the upper right part of the display shows the name of the unload job, the
name of the database server where the onpload database is stored, and the name of the database server where ipload is running.
Figure 2. The Unload Job window

5. Click the Generate button.
The Autogenerate Unload Components window appears. Figure 3 shows the completed window.

6. Click Table.

Part VI: Administering 1093

You can unload an entire database table or only selected records from the table. Table indicates that you want to unload the entire table. Query indicates that you
want to unload selected records.

7. Type stores_demo in the Database text box.
For this step and steps 8 and 10, you can click the down arrow to the right of the text box and select the entry from a selection list. Figure 2 shows an example of a
selection list.

8. Type items in the Table text box.
Figure 3. The Autogenerate Unload Components window

9. Click File.
File indicates that you want to type the name of a file. If you choose Device Array, you must type the name of an existing device array.

10. Type the full path name of the file that will store the unloaded data. This file can be in any directory to which you have write access.
11. Click OK.

The Generate option creates the Query, Format, and Map components for the unload job and completes the Unload Job window. These components are all named unld.
The Generate option also creates a device array named unld and puts the file that you specified (/work/items_out) into that array.
Tip: After you finish this exercise, you can choose Components > Devices from the HPL window and examine the unld device array.
The following figure shows the Unload Job window as completed by the Generate option.
Figure 4. The Unload Job window

In addition to completing the main flow of the Unload Job window, the Generate option also enters the Source Database information in the upper right corner and creates
path names for the Discard Records file and the Logfile. The HPL browsing options, describes the rejected records file and the log file.

Performing the unload job

You are now ready to perform the unload job.

Tip: You might want to preview the records that the query will select. See Preview data-file records.
To finish this example:

1. Click Save to save the unload job.
After you save the unload job, the Message line displays the following message:

Saved job successfully

You can now run the job, or you can return at a later time and run the job.

2. Click Run to run the unload job.
The Active Job window appears. This window reports the progress of your unload job. The Active Job window for an unload job is similar to the Active Job window
for a load job, which Figure 1 shows.

3. When the Active Job window reports that the unload job is finished, click OK to return to the Unload Job window.
4. Click Cancel to return to the HPL main window.

1094 Part VI: Administering

5. You can create another job or choose Jobs > Exit to exit ipload.

The ipload utility windows

This section contains information about using the ipload utility.

The ipload utility GUI or the onpladm command-line interface
 The ipload utility is a graphical user interface (GUI) that contains windows, buttons, online help, and keyboard commands. The onpladm command-line interface is

equivalent to the ipload utility.
The ipload utility GUI

 The HPL ipload utility buttons
 After you move beyond the main window, every window has at least one button to help you move through the interface.

The HPL online help
 The Help menu on the High-Performance Loader (HPL) main window has Glossary and Contents choices.

The UNIX keyboard commands to move the cursor
 Instead of using the mouse to move from area to area in the High-Performance Loader (HPL) user interface, you can use UNIX keyboard commands to move the

cursor. As you move around, the currently selected item is highlighted with a box.

The ipload utility GUI or the onpladm command-line interface

The ipload utility is a graphical user interface (GUI) that contains windows, buttons, online help, and keyboard commands. The onpladm command-line interface is
equivalent to the ipload utility.

Start the ipload utility
 To start ipload, type ipload at the system prompt.

Related reference:
 The onpladm utility

Start the ipload utility

To start ipload, type ipload at the system prompt.

A splash screen appears and stays on the display while ipload finishes loading. If you do not want to see the splash screen, use the -n flag with your command, ipload -
n.

Related concepts:
 The ipload utility

The ipload utility GUI

The ipload utility has the following types of displays:

HPL main window
Component-Selection windows
Component-Definition windows
Load Job and Unload Job windows
Views windows
Selection-List windows
Message windows

Important: While the onpload and onpladm utilities include support for object names that contain up to 128 characters, the ipload utility does not. If you use long
database, table or column names and create jobs by using onpladm, you cannot run these jobs by using ipload. For ipload, database, table, and column names cannot
exceed 18 characters.

The HPL main window
 When you start ipload, the High-Performance Loader (HPL) main window appears. The HPL main window is the focus of the user interface. You return to the main

window after each task and choose a new option.
Component-Selection windows

 The windows for creating or modifying components often (but not always) come in pairs. In the first window, the Component-Selection window, you can create a
component or select an existing component to modify. You can also view notes and copy, delete, or print information about a component. In the second window, the
Component-Definition window, you can make changes.
Component-Definition windows

 After you select a component to create or modify and click OK in the Component-Selection window, you typically see the Component-Definition window. From the
Component-Definition window, you can enter, edit, or delete values or items that describe the component.
Load Job and Unload Job windows

 The Load Job and Unload Job windows provide a visual presentation of the basic components that you choose for each job.
Views windows

 A Views window shows a graphic representation of the relationships among various ipload components. From a Views window, you can search for specific
components, select an existing component for editing, or create a component.

Part VI: Administering 1095

Selection-List windows
A Selection-List window lists the possible values for a text box. A down arrow that follows a text box indicates that you can use a selection list to see and select
possible values for the text box. When you click the down arrow, the corresponding Selection-List window appears.
Message windows
A message window typically contains either a warning or an information update. A warning lets you verify or cancel the action that you have chosen. An update
informs you about the successful completion of an operation or explains why an operation failed.

The HPL main window

When you start ipload, the High-Performance Loader (HPL) main window appears. The HPL main window is the focus of the user interface. You return to the main window
after each task and choose a new option.

Figure 1. The HPL main window

Initial options on the HPL main window
 Options of the HPL main window

 After you select a project, you can choose options from any of the menus on the HPL main window.

Initial options on the HPL main window

When you first enter ipload, you can:

Select the default project in the Select Project list.
Choose Configure > Project to create a project.
Choose Configure > Server to select a database server and an onpload database server.
Choose Help to look at the online help.
Choose Jobs > Exit to exit from ipload.

Related concepts:
 Select a database server

Related tasks:
 Defining a new project

Options of the HPL main window

After you select a project, you can choose options from any of the menus on the HPL main window.

The following table shows the options of the main menu:
Table 1. HPL main menu and submenu options

Main menu option Submenu option Purpose See

Jobs Load Create a load job and use the Load Job window to load data into a database. Load data to a
database table

Jobs Unload Create an unload job and use the Unload Job window to unload data from a database to a
file.

Creating an unload job

Jobs Exit Exit from the user interface. The ipload utility

Browsers Record Review records in a specified format, search the list of available formats, or edit a format. Reviewing records that
the conversion rejected

Browsers Violations View records that passed the filter and conversion but were rejected by the database. Viewing the violations
table

Browsers Logfile View load status and see where any errors occurred. View the status of a
load job or unload job

Components Formats Create or modify data-file formats. Define formats

Components Maps Create or modify maps that show the relationship between data-file fields and database
columns.

Define maps

Components Query Build, modify, or retrieve SQL-based queries. HPL queries

1096 Part VI: Administering

Main menu option Submenu option Purpose See

Components Filter Create or modify filters that determine source data-file records for conversion and load. Define filters

Components Devices Specify a set of files, tapes, or pipes (UNIX only) that will be read simultaneously for
loading or unloading the database.

Define device arrays

Components Generate Job Automatically generate the components for load and unload jobs. The Generate options
of the ipload utility

Configure Server Select the database servers that hold the onpload database and the target database. Configure the High-
Performance Loader

Configure Project Create a project under which formats, filters, queries, maps, and load and unload jobs are
stored.

Define HPL projects

Configure Defaults Specify the default character sets for the data file and databases. Modify the onpload
default values

Configure Machines Specify the machine parameters that are used to convert binary data. Modify the machine
description

Help Glossary View definitions of terms that pertain to the HPL. The HPL online help

Help Contents View the main contents page that directs you to discussions of various HPL topics. The HPL online help

Component-Selection windows

The windows for creating or modifying components often (but not always) come in pairs. In the first window, the Component-Selection window, you can create a
component or select an existing component to modify. You can also view notes and copy, delete, or print information about a component. In the second window, the
Component-Definition window, you can make changes.

The details of a selection window vary depending on the operation that you are performing.

The following figure shows the Device Array Selection window to illustrate the standard features of Component-Selection windows.
Figure 1. The Device Array Selection window

Table 1. The Device Array Selection window options

Display option Description

Toolbar buttons The buttons across the top of the display represent actions that you can take after you select a component from the component list. For example, in
Figure 1, the toolbar buttons indicate that you can copy, delete, or print an array. The HPL ipload utility buttons explains how to use these buttons.

Selection type The selection type allows you to specify the action that you want to take. In most of the displays, you can either open an existing component or create
a component.

Component-
Name text box

If you click Create, you must type a name for the new component in the Device-Array text box. (In Figure 1, you must give a name for the new device
array.)

Device Array
text box

Before you can type a name in the Device Array text box, you must click inside that text box to activate it. When the text box is active, it has a narrow
black border. If you type a character that is not valid, the interface beeps at you, displays a message on the message line, and refuses to display the
invalid character.

Component list
box

The component list box lists the components that currently exist in this project. If you click Open in the selection group, you must select a component
from this list.

Notes area The notes area displays stored comments about the selected component. This area is not an active area. To store a comment about a component, you
must select a component and use the Notes button. For more information about notes, see The Notes button.

Message Line The message line primarily gives instructions for the next logical action. The message line also gives an error message when an action fails or a
completion message when a process is finished.

Buttons The buttons across the bottom of the display let you indicate your next action. For a more complete discussion, see The HPL ipload utility buttons.

Part VI: Administering 1097

Component-Definition windows

After you select a component to create or modify and click OK in the Component-Selection window, you typically see the Component-Definition window. From the
Component-Definition window, you can enter, edit, or delete values or items that describe the component.

The following figure shows an example of a Component-Definition window: the Device-Array Definition window.
Figure 1. The Device-Array Definition window

Table 1. The Device-Array Definition window options

Display option Description

Toolbar buttons The buttons across the top of the display represent actions that you can take after you select a component from the component list box. For example,
in Figure 1 (the Device-Array Definition window), the toolbar buttons indicate that you can print or make a note about an item. The HPL ipload utility
buttons explains how to use these buttons.

Item-selection
group

The item-selection group lets you specify the type of item that you want to edit or the type of action that you want to take. After you specify a choice in
the item-selection group, other options become active. In the Device-Array Definition window, the item-selection group is labeled Array Item Type.
After you select Tape, File, or Pipe (only on UNIX), other options become active.

Item-name text
box

The item-name text box lets you specify the name or description of one of the items that makes up the component. For example, in the Device-Array
Definition window, you type the full path name of a device in the item-name text box.
In the Device-Array Definition window, the item-name text box is labeled Tape Name, File Name, or Pipe Name (only on UNIX), depending on the type
of component that you select from the Array Item Type group.

Special-
parameters
group

When a Component-Definition window first appears, some of the choices are inactive (shown in gray letters). In general, the inactive choices are not
meaningful until you specify some other characteristic of the component that you are editing.
The special-parameters group in the Device-Array Definition window is the Tape Parameters group. The items in the special-parameters group are
meaningful only for tapes. The choices in the Tape Parameters group become active only if you select Tape from the Array Item Type group. The
choices in Figure 1 are gray because File is selected in the Array Item Type group.

Item list box The item list box shows items that you already created to define the component. In the Device-Array Definition window, this list is labeled Array Items
and shows the tapes, files, and pipes (UNIX only) that are already part of the current device array.

Perform group The Perform group lets you specify the action that you want to take. After you select an item and an action, you must click Perform to complete the
action. For example, to add a new device in the Device-Array Definition window, you must specify the name or description of the device and then click
Perform to add it to the Array List.
Important: Remember to click Perform to complete the action that you designated in the Perform group.

Message line The message line primarily gives instructions for the next logical action. The message line also returns an error message when an action fails or a
completion message when a process is finished.

Buttons The buttons across the bottom of the display let you indicate your next action. For a more complete discussion, see The HPL ipload utility buttons.

Load Job and Unload Job windows

The Load Job and Unload Job windows provide a visual presentation of the basic components that you choose for each job.

The following figure shows the Load Job window.
Figure 1. The Load Job window

1098 Part VI: Administering

Related reference:
Unload data from a database
Load data to a database table

Views windows

A Views window shows a graphic representation of the relationships among various ipload components. From a Views window, you can search for specific components,
select an existing component for editing, or create a component.

A Views window does not allow you to change any values. To change the values of a component, you must display a Component-Definition window.

Access views windows
 Available options in a Views window

Access views windows

The following table lists the four types of views windows and gives instructions for how to access each view.

Window name Purpose How to access See

Format Views Shows the load and unload maps that are
associated with a particular format

Click Search in the Record Formats window
Click Format in the Load Job window*
Click Format in the Unload Job window*

Figure 1

Map Views Shows the databases, tables, queries, and
formats that are associated with a map

Click Search in the Load Record Maps window
Click Search in the Unload Record Maps window
Click Map in the Load Job window*
Click Map in the Unload Job window*

Figure 1

Database Views Shows the tables in the database or the queries
that are associated with the database

Click Search in the Query window
Click Table in the Load Job window*
Click Query in the Unload Job window*

Figure 1

Filter Views Shows the formats that are associated with a
particular filter

Click Search in the Filter window
Click Filter in the Load Job window*

Filter views

* These options display the Views window only if the corresponding text box is empty. If the text box includes the name of a component, the Component-Definition
window is displayed.

Available options in a Views window

The four types of Views windows operate in a similar manner. When a Views window appears, you have the following options:

Type in a component name and search for the component.
Click a label associated with an icon to expand the view and see related components.
Click an icon to open the Component-Definition window that allows you to edit the component values.
Click Create to display the Component-Selection window that allows you to create a component.

Search for a component in a Views window
You can use the Search button in a Views window to locate a specific component.

Part VI: Administering 1099

Expand the view in a Views window
Three of the Views windows expand their views to show related components.

Search for a component in a Views window

You can use the Search button in a Views window to locate a specific component.

Type the component name in the search text box and then click Search. The view displays only the component names that match the text string.

You can use the following wildcard search characters in the search text string.
Table 1. Wildcard search characters

Wildcard symbol Effect

? Matches any single character

* Matches any string of characters

Expand the view in a Views window

Three of the Views windows expand their views to show related components.

To expand the view, click an icon label (for example, customer_del) in the first pane. In the Database Views window, click an icon label in the second pane to expand the
view further. The following figure shows the Format Views window.
Figure 1. The Format Views window

When you click an icon label in the Formats pane, the view expands to show maps that are related to your choice. The following figure shows the expanded view.
Figure 2. Expanded view of a format

You can click the icon that you want to display a definition window for any format or map that is shown.

Selection-List windows

A Selection-List window lists the possible values for a text box. A down arrow that follows a text box indicates that you can use a selection list to see and select possible
values for the text box. When you click the down arrow, the corresponding Selection-List window appears.

The following figure shows the selection list that is available for the Machine Type text box in the Defaults window. After you select an item in the list box, click OK, and the
item appears in the text box on the original window.
Figure 1. The Defaults window and a selection list

1100 Part VI: Administering

Tip: If your entry is rejected, look at the selection list. Your entry is invalid if it is not available in the selection list.
Selection-List windows are available for many text boxes throughout the HPL user interface. These windows have various names, but these topics refer to them as
selection lists.

Message windows

A message window typically contains either a warning or an information update. A warning lets you verify or cancel the action that you have chosen. An update informs you
about the successful completion of an operation or explains why an operation failed.

The following figure shows a typical error message.
Figure 1. The Message window

The HPL ipload utility buttons

After you move beyond the main window, every window has at least one button to help you move through the interface.

In general, buttons appear in three locations:

Toolbar buttons appear across the top of the display.
Icon buttons appear in the middle section of the display.
Buttons appear across the bottom of the display.

The HPL ipload utility toolbar buttons
 Toolbar buttons appear at the top of many windows. The function of the window determines which buttons appear.

The HPL ipload utility icon buttons
 Icon buttons appear in the middle sections of the Load Job, Unload Job, and Views windows. The icon buttons represent various components. When you click it,

each button opens another display.
Buttons at the bottom of the HPL ipload utility display

 The buttons across the bottom of the display let you indicate the next action. Most windows have one or more of these buttons.

The HPL ipload utility toolbar buttons

Toolbar buttons appear at the top of many windows. The function of the window determines which buttons appear.
The following sections describe the toolbar buttons. Buttons that appear in only one window are described with the specific window.

Button Button name Purpose See

Browse Displays the Browse window The HPL browsing options

Copy Copies the selected component (format, map, query, filter, device, or
project) to a new item

The Copy button

Connect Lets you reattach to an active unload (or load) job from the Unload (or
Load) Job Select window

Figure 1

Delete (trash can) Deletes the selected component (format, map, and so on) The Delete button

Delete (eraser) Breaks the association between a database column and a data-file field Using the Delete button

File Displays the Import/Export File Selection window Exporting and importing queries

Find Allows you to quickly locate a particular field or column in a Map window Using the Find button

Part VI: Administering 1101

Button Button name Purpose See

Generate Lets you generate jobs automatically The Generate options of the ipload utility

Notes Allows you to type descriptive text for an item The Notes button

Options Displays an options window where you can change default values or
supply additional parameters

Changing the unload options, Changing the load
options

Print Prints the parameters for the selected item The Print button

Save As Saves a copy of the currently selected item (behaves in the same way as
the Copy button)

The Copy button

Search Displays a Views window where you can see the relationships among
components

Views windows

Specs Displays the Specifications window, where you can view the attributes for
selected columns or fields

Using the Specs button

The Browse button
 With the Browse button, you can look through the files that show information about the load or unload jobs and any problems that the onpload utility found.

The Copy button
 You can copy a selected component with the Copy button. This feature can save you time when you are creating a component. You can copy an existing component

and then modify the copy with your changes.
The Delete button

 The Delete button lets you delete one or more selected components.
The Notes button

 You can type descriptive text for an item with the Notes button. The text of the note is displayed in the Notes area in a window when you select the item. The Notes
button is a useful tool for identifying ipload components, load jobs, unload jobs, and projects.
The Print button

 You can print information that is associated with a component with the Print button. Before you start ipload, you must set your workstation so that it can find a
printer.

The Browse button

With the Browse button, you can look through the files that show information about the load or unload jobs and any problems that the onpload utility found.

Related concepts:
 Browsing options

The Copy button

You can copy a selected component with the Copy button. This feature can save you time when you are creating a component. You can copy an existing component and
then modify the copy with your changes.

You can copy one component at a time, or you can select and copy multiple components at the same time. You can copy components that are grouped under a project
(filters, formats, maps, and queries) within the same project, or to a different project.

If you copy a component within a project, you must give the copy a different name. If you copy a component to a different project, you can retain the name for the copy or
give the copy a different name. If you copy multiple components, you must copy them to a different project. When you copy multiple components, the components retain
their names.
Important: Devices are not project specific. When you copy a device, you must give the copy a new name.

Copying an existing format into a new format

Copying an existing format into a new format

To copy an existing format to a new format:

1. In the HPL main window, select the project that includes the format that you want to copy.
2. Choose Components > Formats to access the Record Formats window. For an example, see Creating a fixed format.
3. Select the format that you want to copy. This example assumes that the format to copy is some_format.
4. Click the Copy button.

The Copy Data window appears, as the following figure shows. The Copy Data window displays a list of existing projects. The Copy To text box shows the name of
the format that you are copying.
Figure 1. The Copy Data window

1102 Part VI: Administering

5. Select the project to which you want to copy the format.
6. Type the name that you want to give to the copied format in the Copy To text box.

If you are copying the format to another project, you can keep the same name. You must change the name, however, if you are copying the format to the same
project.

7. Click OK. The display returns to the Record Formats window.
8. Click Cancel to return to the HPL main window.

The Delete button

The Delete button lets you delete one or more selected components.

Deleting an existing format

Deleting an existing format

To delete an existing format:

1. In the HPL main window, select the project that includes the format that you want to delete.
2. Choose Components > Formats to access the Record Formats window. For an example, see Creating a fixed format.
3. Select the format that you want to delete.
4. Click the Delete button.

The Confirm Delete window appears, as the following figure shows. The Confirm Delete window describes the impact of deleting this format. The text in this window
is different for each of the component types.
Figure 1. The Confirm Delete window

5. Click OK to confirm the deletion, or click Cancel to cancel it.
If you click OK, the format is deleted and any associated maps, filters, and jobs.

6. Click Cancel to return to the HPL main window.

The Notes® button

You can type descriptive text for an item with the Notes button. The text of the note is displayed in the Notes area in a window when you select the item. The Notes button
is a useful tool for identifying ipload components, load jobs, unload jobs, and projects.

Creating a note

Related reference:
 The note table in the onpload database

Creating a note

To create a note:

1. Click the Notes button in a Component-Definition window.
The Notes window appears, as the following figure shows.
Figure 1. The Notes window

Part VI: Administering 1103

2. Type the descriptive text in the Notes text box.
3. Click OK to store the note and return to the Component-Definition window.

When you select the component, the note text is displayed in the Notes area.

If you do not change a note, click Cancel instead of OK.

For example, the note created in the Notes window is associated with the authors format. The next time you go to the Record Formats window and select authors, ipload
displays the note text, as the following figure shows.
Figure 2. The Record Formats window with notes text

The ipload utility stores the information that you type in the note table window of the onpload database. For a description of the note table, see The note table in the
onpload database.

The Print button

You can print information that is associated with a component with the Print button. Before you start ipload, you must set your workstation so that it can find a printer.

For information about setting up a printer, see your operating-system publications.

If you click the Print button in the Map-Definition window in Figure 2, the following printout results:

--
LOAD MAP REPORT
--

Project : <default>
Name: a_map

OPTIONS
 Database Table Format
 -------- --------- --------------
 testdbtab1a_format

RECORD FORMAT MAP VIEW
 Format FieldTable Column Option Data
 ---------------------- ------------------- -----------------
 input1 col3
 input2 col2
 input3 col1

The HPL ipload utility icon buttons

Icon buttons appear in the middle sections of the Load Job, Unload Job, and Views windows. The icon buttons represent various components. When you click it, each
button opens another display.

1104 Part VI: Administering

The following table shows and describes the icon buttons that are used in these windows.

Component Description Window Action

Device

The device or device array
where the source files are
located

Load Job, Unload Job If the text box is empty, click the Device button to display the Device
Array Selection window, where you can create or open a device type.
If the text box has an entry, click the Device button to display the Device
Array Selection window for that specific device or type the name of a
different device in the text box.

Filter

The filter that controls which
records are selected from the
data file for a database update
(The use of a filter is optional.)

Load Job, Filter Views If the text box is empty, click the Filter button to display the Filter Views
window, where you select a filter and associated format. You can also
create a filter from this window.
If the text box has an entry, click the Filter button to display the Filter-
Definition window for that specific filter or type the name of a different
filter in the text box.
In the Filter Views window, click the Filter button to display the Filter-
Definition window for a specific filter.

Format

The format of the source data
used for this load or unload

Load Job, Unload Job If the text box is empty, click the Format button to display the Format
Views window, where you can select a format and associated map. You
can also create a format from this window.
If the text box has an entry, click the Format button to display the
Format-Definition window for that specific format or type the name of a
different format in the text box.
In all Views windows, click the Format button to display the format
definition for a specific format. In these windows, the button shows only
one of the three symbols (F, D, C) to indicate whether the type of format
is fixed, delimited, or COBOL.

Map

The map that correlates fields
of the data source to database
columns

Load Job, Unload Job, Map
Views, Format Views,
Database Views

If the text box is empty, click the Map button to display the Map Views
window, where you can select a map and associated table and format.
You also can create a map from this window.
If the text box has an entry, click the Map button to display the Map-
Definition window for that specific map or type the name of a different
map in the text box.
In a Views window, click the Map button to display the Map-Definition
window for a specific map.

Options

The options that let you
specify characteristics of the
load or unload

Load Job, Unload Job Click the Options button to display the Load Options window.

Query

The query that selects data
from the database table

Unload Job, Database
Views, Map Views

If the text box is empty, click the Query button to display the Database
Views window from which you can select the table and associated map
and format.
If the text box has an entry, click the Query button to display the Query-
Definition window for that specific query or type the name of a different
query in the text box.
In a Views window, click the Query button to display the Query-Definition
window for a specific query.

Table

The database table into which
the converted data will be
loaded

Load Job, Database Views,
Query Definition

Click the Table button to display the Database Views window from which
you can select the table and associated map and format. If an
association is not apparent, click Create to create one.
Click the Table button in the Query-Definition window to choose a table
and columns for the Select entry.

Related tasks:
Changing the load options

Buttons at the bottom of the HPL ipload utility display

The buttons across the bottom of the display let you indicate the next action. Most windows have one or more of these buttons.

Table 1. Buttons that indicate the next action
Button name Action

Apply Saves changes but does not exit.

Cancel Does not save any changes. Exit to the previous display.

Create Displays the Component-Selection window.

Help Displays context-sensitive help in a separate window. For information about the online help, see The HPL online help.

OK Save changes and exit to the previous display.

Use OK only when you have changed the display. If you are exiting from a series of displays, use Cancel to exit from the display. The following figure shows the use of OK
and Cancel.

Part VI: Administering 1105

Figure 1. Using OK and Cancel from the HPL main window

The HPL online help

The Help menu on the High-Performance Loader (HPL) main window has Glossary and Contents choices.

The Glossary option opens a scrolling list of items. Select an item to see its definition. The Contents option takes you to the main contents page. This page directs you to
discussions of various HPL topics.

If you click Help in any window other than the HPL main window, Help displays information that is related to the current window. After the Help window opens, you can
click its Help button for more information about using the Help window.

The UNIX keyboard commands to move the cursor

Instead of using the mouse to move from area to area in the High-Performance Loader (HPL) user interface, you can use UNIX keyboard commands to move the cursor. As
you move around, the currently selected item is highlighted with a box.

The following table lists the cursor-moving keystrokes.
Table 1. Cursor moving keystrokes

Keystroke Result

TAB Move from area to area. Sometimes used to move from tab stop to tab stop.

SHIFT-TAB Back up; that is, move from area to area in reverse order.

CONTROL-TAB Move from area to area when TAB is reserved to move from tab stop to tab stop.

Cursor keys Move from item to item within a functional area.

SPACEBAR Select the current item or action.

Most displays in the HPL user interface are divided into functional areas, such as toolbar buttons, selection group, component-name text box, component list box, and so
on. Depending on the nature of the specific display, sometimes TAB moves from item to item (or even from tab stop to tab stop) within a major area. On other displays, TAB
moves only between functional areas, and you must use SPACEBAR to move around within the functional area.

Define HPL projects

This section explains how to create a project and how projects are related. The individual components that you store in projects are described in later sections.

HPL projects
 You can organize your work by specifying projects with the High-Performance Loader (HPL). A project is a collection of individual pieces that you use to load and

unload data. A project can include load and unload jobs and the maps, formats, filters, and queries that you use to build the load and unload jobs.
Project organization

 The High-Performance Loader (HPL) uses only one database, onpload, to track the preparation that you do for loading and unloading data. By using projects, you
can organize your work into functional areas.
Select or create a project with the Projects window

 You can select or create a project from the Projects window. After you select a project, you can copy the project, delete it, print the project parameters, or make a
note that describes the project.

Related reference:
 Choose a project

HPL projects

You can organize your work by specifying projects with the High-Performance Loader (HPL). A project is a collection of individual pieces that you use to load and unload
data. A project can include load and unload jobs and the maps, formats, filters, and queries that you use to build the load and unload jobs.

Project organization

1106 Part VI: Administering

The High-Performance Loader (HPL) uses only one database, onpload, to track the preparation that you do for loading and unloading data. By using projects, you can
organize your work into functional areas.

For example, you might regularly transfer data to or from several unrelated databases. You could put all of the preparation for each database into a separate project.

When you first start ipload, ipload creates a project named <default>. If you prefer, you can select the <default> project and assign all of your work to that project. The
HPL does not require that you create any additional projects. However, creating projects and putting separate tasks into distinct projects makes your work easier to
maintain.

The following figure shows the relationships among projects, jobs, and components.
Figure 1. Illustration of project hierarchy

The preceding figure shows that jobs are linked directly to the projects. The format, map, filter, and query components belong to a project but are not directly linked to a
job, as illustrated with Project One. In general, you create a format, map, and filter or query for each job, as shown with Project Two. However, in some cases, you might
use the same component for more than one job within a project.

For example, for reports about a medical study, you might want to create three reports: one about subjects under 50 years of age, one about subjects over 50, and one
about all subjects. In that case, the description of how to find the information (the format and map) is the same for all three reports, but the selection of information (the
query) is different for each report. (Formats, maps, and queries are described in detail in later chapters.)

All components (maps, formats, queries, filters, and load and unload jobs) that you create in a project are associated with that project in the onpload database.
Components that are associated with a project are visible (usable) only when the project is selected. When you select a different project, a different set of components
becomes available.

Device-array definitions and configuration parameters are not included in project definitions. The following figure shows the components that the HPL uses. Each project is
distinct, but the devices and configuration parameters apply to all projects.
Figure 2. Relationship of projects, devices, and configuration parameters

Related reference:
 Define projects

The project table in the onpload database

Select or create a project with the Projects window

You can select or create a project from the Projects window. After you select a project, you can copy the project, delete it, print the project parameters, or make a note that
describes the project.

The ipload utility stores project information in the project table of the onpload database.
Figure 1. The Projects window

Part VI: Administering 1107

Defining a new project
 Selecting a project

 The HPL provides two methods for selecting a project.

Related reference:
 The project table in the onpload database

Defining a new project

To define a new project:

1. Choose Configure > Project from the HPL main window.
The Projects window appears, as Figure 1 shows.

2. Choose a name for the project and type it in the Create Project text box.
3. Click Apply.

The ipload utility creates the project but does not exit from the Projects window. You can create another project, or you can use the toolbar buttons to manipulate
the project.

4. Click Cancel to return to the HPL main window.

If you want to create one project and then exit, click OK instead of Apply.

Related concepts:
 Initial options on the HPL main window

Selecting a project

The HPL provides two methods for selecting a project.

Selecting a project for a load or unload job
 Selecting a project to edit

Selecting a project for a load or unload job

To select a project for a load or unload job or to edit components:

1. Select the project name from the Select Project list box in the HPL main window.
2. Choose the action that you want to take from one of the menus on the HPL main window.

Selecting a project to edit

To select a project to edit:

1. Choose Configure > Project from the HPL main window.
The Projects window appears, as Figure 1 shows.

2. Select the project that you want to edit from the Projects list box.
3. Perform the edit actions (copy, delete, print, or describe with a note) you want.

1108 Part VI: Administering

4. Click Cancel to return to the HPL main window.

Configure the High-Performance Loader

This section describes the process of configure the High-Performance Loader (HPL).

Configure the ipload utility
 When you configure the ipload utility, you describe the type of computer, code sets, and other aspects of your database server environment. Configuration

information is stored in the onpload database.
Select a database server

 The High-Performance Loader (HPL) needs to know the location of two databases: the onpload database and the target database.
Modify the onpload default values

 You must describe the computer environments of your database servers. This information applies to database servers. If you change the description of a database
server, the changes apply to all jobs that you run on that database server. You can prepare a default computing environment that applies to all database servers that
are not explicitly described.
Selecting a driver

 Modify the machine description
 The information that the Machines option of the Configure menu stores describes the characteristics of a specific computer. The High-Performance Loader (HPL)

uses these characteristics to control the conversion of binary data formats. Unless you are converting binary data, you do not need to be concerned about the
machine description.

Related reference:
 Check the ipload utility default values

Configure the ipload utility

When you configure the ipload utility, you describe the type of computer, code sets, and other aspects of your database server environment. Configuration information is
stored in the onpload database.

The configuration tasks include:

Selecting a database server
Modifying the onpload defaults
Selecting or creating a driver
Modifying the machine description

Related concepts:
 The ipload utility

Related reference:
 HPL performance

Select a database server

The High-Performance Loader (HPL) needs to know the location of two databases: the onpload database and the target database.

The target database is the IBM® Informix® database into which you load data or from which you unload data. When you start ipload, ipload assumes that both the onpload
database and the target database are on the database server that the INFORMIXSERVER environment variable specifies. You can use the Connect Server window (Figure
1) to specify different database servers.

The sqlhosts file or registry controls connectivity to database servers. The ipload utility scans the sqlhosts information to derive the lists of available database servers that
the Connect Server window displays.
Restriction: You cannot use the alias loghost as a machine name in the sqlhosts file. The loghost alias is present on all computers; consequently, onpload cannot correctly
identify computers based on this name.

Selecting a database server
 Create the onpload database

 When you first start ipload, ipload creates an onpload database. If you use the Connect Server window to choose a different onpload database server, ipload
creates another onpload database on that database server.

Related concepts:
 Initial options on the HPL main window

Selecting a database server

To select a database server:

1. Choose Configure > Server from the HPL main window.
The Connect Server window appears, as the following figure shows.
Figure 1. The Connect Server window

Part VI: Administering 1109

2. Select the database server where the onpload database is going from the Onpload Server list box.
3. Select the database server that includes the database that you will load or unload from the Target Server list box.
4. Click OK.
5. Click OK in the Configure Server window to return to the HPL main window.

Create the onpload database

When you first start ipload, ipload creates an onpload database. If you use the Connect Server window to choose a different onpload database server, ipload creates
another onpload database on that database server.

The default name of the database that the High-Performance Loader (HPL) uses is onpload. To give some other name to the HPL database, set the DBONPLOAD
environment variable.

Related tasks:
 Preparing multiple onpload databases

Modify the onpload default values

You must describe the computer environments of your database servers. This information applies to database servers. If you change the description of a database server,
the changes apply to all jobs that you run on that database server. You can prepare a default computing environment that applies to all database servers that are not
explicitly described.

The Defaults window
 You can change the server name, machine type, and data code set from the Defaults window.

Specifying the onpload defaults

Related reference:
 Look at the Defaults window

The defaults table in the onpload database

The Defaults window

You can change the server name, machine type, and data code set from the Defaults window.

The following figure shows the Defaults window.
Figure 1. The Defaults window

The ipload utility saves the information from the Defaults window in the defaults table of the onpload database. For more information about the defaults table, see The
defaults table in the onpload database.
Tip: You can use DB-Acess to examine the default values. The following tables in the onpload database contain default values: defaults, delimiters, driver, and machines.

Table 1. The Defaults window options
Display option Header

1110 Part VI: Administering

Display option Header

Server Name The Server Name text box specifies the database server with which the settings are associated. The information provided for the special server name
default applies to all database servers for which no explicit information is provided. For example, if most the database servers on your network (that
will be using the HPL) are BrandX computers, default should describe the BrandX computers. To describe the computing environment of the other
database servers on the network, specify the database server name.
The selection list that is associated with the Server Name text box lists the database servers that are identified in the sqlhosts information.

Machine Type The Machine Type text box describes fixed-length, binary-format records. It defines the sizes and byte order of data in data files that the specified
database server produces. The selection list that is associated with the Machine Type text box provides descriptions of several computers. You can use
the Machines option on the Configure menu to add descriptions of other computers to this list (see Modify the machine description).

Data Code Set The Data Code Set text box specifies the character set of the data file. When you load data into a database, you can convert the character set of the
data file into the character set of the database. For example, you can convert EBCDIC to ASCII, or any other character set that your system supports.
Conversely, you can convert the data from a database into a selected character set when you unload data.
You can select the GLS code set you want from this selection list. The character set of the database is determined by the DB_LOCALE environment
variable. For information about locales and code sets, see the IBM® Informix® GLS User's Guide.

Specifying the onpload defaults

To specify defaults for onpload:

1. Choose Configure > Defaults from the HPL main window.
The Defaults window appears, as Figure 1 shows.

2. Update the values in each of the text boxes. Click the down arrows to display selection lists that show possible values for each text box.
3. Click Apply to save the values and prepare the defaults for another database server.
4. Click Cancel to return to the HPL main window.

If you want to prepare the defaults for only one database server, click OK instead of Apply.

Related concepts:
Modify the machine description

Selecting a driver

In a UNIX environment, you can use pipe-device arrays to connect custom programs to the input or output of the onpload utility. Although pipe-device arrays provide the
simplest way to customize the input or output of onpload, connecting the standard I/O of programs is less efficient than directly incorporating the functionality into
onpload.

The ipload utility identifies custom software by the driver name that you assign to the record-format definitions.

To incorporate custom file-handling software directly into the onpload program:

1. Use the API described in Available API support functions to write the driver.
2. Add the driver name to the onpload database. For details, see Adding a custom-driver name.
3. Select the driver from the Driver selection list in the Format Options window. For details, see Format options.

The Drivers window
 You can add information about custom drivers from the Drivers window. After you add a custom driver name, you can assign the driver to the record-format

definitions.
Adding a custom-driver name

The Drivers window

You can add information about custom drivers from the Drivers window. After you add a custom driver name, you can assign the driver to the record-format definitions.

The following figure shows the Drivers window. The Driver Name list box displays the currently available drivers, their class, and type.
Figure 1. The Drivers window

Part VI: Administering 1111

Table 1. The Drivers window options

Display option Description

Driver Name The Driver Name text box specifies the name of the custom-driver program. Before you can use the custom driver, you must add the program to your
onpload shared library. For more information, see Rebuilding the shared-library file.

Driver Class The Driver Class text box specifies the format type that the custom driver supports. The custom driver must produce data in a format that onpload
supports. The onpload utility supports the following driver classes:

Fixed
Delimited
COBOL

Related reference:
 The driver table in the onpload database

Adding a custom-driver name

To add a custom-driver name:

1. Choose Configure > Driver from the HPL main window.
The Drivers window appears, as Figure 1 shows.

2. Type the name of the driver that you are adding in the Driver Name text box.
3. Select the driver class.
4. Click Apply to save this driver and add another driver.

If you want to add only one driver, click OK instead of Apply.

5. When you finish, click OK to return to the HPL main window.

Modify the machine description

The information that the Machines option of the Configure menu stores describes the characteristics of a specific computer. The High-Performance Loader (HPL) uses
these characteristics to control the conversion of binary data formats. Unless you are converting binary data, you do not need to be concerned about the machine
description.

When you first start ipload, ipload stores the characteristics of several computers. You can select one of the existing computer types, modify an existing description, or
create a machine description.

You use the information from the Machines window when you prepare the defaults for the database servers on your network. The information from the Machines window
is stored in the machines table of the onpload database. The default information for the HPL includes descriptions of the binary data sizes for several computers. If the
default data does not include the computer from which you are reading data, you can create a description for that computer.

The Machines window
 Editing the description of a computer

 Adding a computer type to the Machines list

Related tasks:
 Specifying the onpload defaults

Related reference:
 Look at the Machines window

The machines table in the onpload database

1112 Part VI: Administering

The Machines window

The following figure shows the Machines window. If you select SPARCstation from the Machine Type selection list, the following values appear in the Machines window.
Figure 1. The Machines window

Table 1. The Machines window options
Display option Description

Machine Type Name for the computer type that this entry describes.

Byte Order Bit ordering of binary information for this computer. The two possible formats are LSB and MSB. In the LSB format, the least-significant bits of a value
are at lower memory addresses. In the MSB format, the most-significant bits of a value are at lower memory addresses.

Short Size Number of bytes required to hold a short integer value.

Integer Size Number of bytes required to hold an integer.

Long Size Number of bytes required to hold a long-integer value.

Float Size Number of bytes required to hold a floating-point value.

Double Size Number of bytes required to hold a double-sized floating-point value.

Related reference:
 The machines table in the onpload database

Editing the description of a computer

To edit the description of a computer:

1. Choose Configure > Machines from the HPL main window.
The Machines window appears, as Figure 1 shows.

2. Click the down arrow and select a machine type from the selection list.
3. Modify the values as appropriate.
4. Click Apply to save the values and modify another machine description.
5. When you finish, click Cancel to return to the HPL main window.

If you want to modify the description of only one computer, click OK instead of Apply.

Adding a computer type to the Machines list

To add a computer type to the Machines list:

1. Choose Configure > Machines from the HPL main window.
The Machines window appears, as Figure 1 shows.

2. Type the new name in the Machine Type text box.
3. Type an appropriate value in each text box.
4. Click Apply to save the values and add another computer type.
5. When you finish, click Cancel to return to the HPL main window.

If you want to add only one computer type, click OK instead of Apply.

Define device arrays

This section describes how to define and use device arrays with the High-Performance Loader (HPL).

Part VI: Administering 1113

Device arrays
A device array groups several I/O devices so that the High-Performance Loader (HPL) can perform parallel processing of the input and output. When you specify
multiple devices in a device array, onpload sets up separate, parallel streams of input or output, when it performs a database load or unload.
Multiple devices in a device array
The Device-Array Selection window
You can create a device array or select an existing array from the Device-Array Selection window. If you select an existing array, you can edit that array or use one of
the toolbar buttons to copy, delete, or print the array.
The Device-Array Definition window
You can add, edit, or delete devices from an array from the Device-Array Definition window.

Related concepts:
 Components of the unload job

Device arrays

A device array groups several I/O devices so that the High-Performance Loader (HPL) can perform parallel processing of the input and output. When you specify multiple
devices in a device array, onpload sets up separate, parallel streams of input or output, when it performs a database load or unload.

Device arrays set up simultaneous access to one or more tape devices, files, or pipes (UNIX only) so that the onpload utility can take advantage of parallel processing.

Device arrays are not project specific. You can use the same device array for a load or unload job on any of the projects that you define.

Related reference:
 Define device arrays

Multiple devices in a device array

You can include files, pipes (UNIX only), and tape devices in a single array. Devices for the device array discusses factors that you should take into account when you
decide what devices to assign to an array. If your array includes pipe commands, onpload starts the pipe when it begins execution.

When the High-Performance Loader (HPL) unloads data, it assigns records to the devices of a device array in a round-robin fashion.

The Device-Array Selection window

You can create a device array or select an existing array from the Device-Array Selection window. If you select an existing array, you can edit that array or use one of the
toolbar buttons to copy, delete, or print the array.

The following figure shows the Device-Array Selection window.
Figure 1. The Device-Array Selection window

Creating a device array
 Opening an existing device array

Creating a device array

To create a device array:

1. Choose Components > Devices from the HPL main window.
The Device-Array Selection window appears, as Figure 1 shows.

1114 Part VI: Administering

2. Click Create in the Selection Type group.
3. Select a name for the new device and type it in the Device Array text box.
4. Click OK.

The Device-Array Definition window appears, as Figure 1 shows.

Opening an existing device array

To open an existing device array:

1. Choose Components > Devices from the HPL main window.
The Device-Array Selection window appears, as Figure 1 shows.

2. Click Open in the Selection Type group.
3. Select a device from the Current Arrays list box.
4. Click OK.

The Device-Array Definition window appears, as Figure 1 shows.

The Device-Array Definition window

You can add, edit, or delete devices from an array from the Device-Array Definition window.

Figure 1. A partially completed Device-Array Definition window

Table 1. The Device-Array Definition window options
Display option Description

Array Item Type
group

The Array Item Type group lists the types of devices that you can include in a device array. You can mix different types of devices in a single array.

Device text box Depending on the array item type that you selected from the Array Item Type group, the label for the text box where you type a device name is Tape
Device, File Name, or Pipe Command (UNIX only). Complete this text box as follows.

Device type
What to type

Tape Device
The full path name of the tape device (example: /dev/rmt/0)

File Name
The full path name of the file (example: /work/mydata)

Pipe Command
The full path name of the executable pipe command or shell script (example: /tmp/g)

Part VI: Administering 1115

Display option Description

Tape
Parameters
group

When you select Tape as the array item type, the Tape Parameters group becomes active (not gray), as the following figure shows. You must type the
block and tape size. The tape size must be greater than zero. The example shown in the following figure is for UNIX. An example of a tape device name
for Windows is 11.1tape0. Windows does not support remote tape load and unload.
Figure 2. The tape parameters group

Adding, editing, and removing devices
 You can add devices to the device array, you can edit the devices, and you can remove them.

Related reference:
 The device table in the onpload database

Adding, editing, and removing devices

You can add devices to the device array, you can edit the devices, and you can remove them.

Adding devices to the device array
 Editing a device in the device array
 Deleting a device from the device array

Adding devices to the device array

To add devices to the device array:

1. Click Add in the Device-Array Definition window.
2. Click the device type in the Array Item Type group.
3. Type the full path name of the device in the Device text box. If you specified a tape device, the Tape Parameters group becomes active, as Figure 2 shows.

a. Type the block size in kilobytes.
b. Click MB (megabytes) or GB (gigabytes) to specify the units to use for the tape size.
c. Specify the tape size.

4. When you have included all of the information for the device, click Perform. The device that you added appears in the Array Items list box.
5. Repeat steps 2 through 4 to add other items to the device array.
6. When you have added all of the devices to the array, click OK to return to the Device-Array Selection window. Your new array appears in the Current Arrays list box.
7. Click Cancel to return to the HPL main window.

Editing a device in the device array

To edit a device in the device array:

1. Click Edit in the Device-Array Definition window.
2. Select a device from the Array Items list box. The selected item appears in the Device text box.
3. Edit the path name and tape parameters, as appropriate.
4. Click Perform.
5. Click OK to return to the Device-Array Selection window.
6. Click Cancel to return to the HPL main window.

Tip: When you edit a device, you can change the path name and the tape parameters, but you cannot change the array-item type (tape, file, pipe). If you need to change
the device type, you must delete the item and then add a new item.

Deleting a device from the device array

To delete a device from the device array:

1. Click Delete in the Device-Array Definition window.
2. Select a device from the Array Items list box.
3. Click Perform.
4. Click OK to return to the Device-Array Selection window.

1116 Part VI: Administering

5. Click Cancel to return to the HPL main window.

Define formats

This section describes the formats that the High-Performance Loader (HPL) provides and shows how to prepare and edit the format component.

Formats
 A format describes the structure of the data in a data file.

Formats of supported datafile records
 Fixed-length records

 Delimited records
 Delimited records are records whose fields can vary in length. In a data file that contains delimited records, the records and fields are separated by a delimiter.

COBOL records
 Other formats

 In addition to delimited, fixed, and COBOL formats, the High-Performance Loader (HPL) provides two other formats for loading and unloading data: fast format and
fast job. These formats are not included on the Record Formats window because the format specifications are predefined; you do not need to make any choices.
Format options

 The format options let you change the default driver, the character set, the default computer type, and the delimiters. Information about the format options is
stored in the formats table of the onpload database.
Format Views window

 You can display a list of the formats and load and unload maps that are associated with a project from the Format Views window. You can also create or edit a
format.

Related concepts:
 Components of the unload job

Formats

A format describes the structure of the data in a data file.

Before you can import records from a data file into IBM® Informix® databases or export records from a database to a data file, you must define a format that describes the
data file. You do not need to define a format for the database because ipload already knows the schema (the organization) of the database table.

These topics use the term format in two ways:

To refer to the arrangement of data fields in a record of a data file
To refer to the HPL component that documents the arrangement of the data fields

After you familiarize yourself with the concepts in this section, you might save yourself some work by using one of the Generate options to create formats automatically.

Related reference:
 The Generate options of the ipload utility

Formats of supported datafile records

Data files can be structured in various ways. The High-Performance Loader (HPL) supports data-file records of the following formats:

Fixed-length
Delimited
COBOL
Other formats

You can define new format components at any time. Also, you can test your format before you actually load or unload data.

The ipload utility includes options that let you modify the data before it is inserted into the database.

The ipload utility stores information about formats in the formatitem and format tables of the onpload database.
Important: To prepare the format component, you must know the format of the records in the data file. If you do not know the data-file format, you must get it from the
person who provided the data file.
Related concepts:

 Preview data-file records
Related reference:

 Format options
The formatitem table in the onpload database
The formats table in the onpload database
Define formats

Fixed-length records

In fixed-length or fixed-format records, each field starts and ends at the same place in every record. A data file that contains data records of equal and constant length
might be organized as follows.
Figure 1. Sample file with fixed-length records

Part VI: Administering 1117

aaabbbbcccddddggghhhh

The data file illustrated previously has three records. Each record has a field of three characters followed by a field of four characters, so the total record length is seven
characters. The file does not contain any separation between records; delimiters are unnecessary because all fields have the same length. The VARCHAR data types are
therefore always the fixed maximum size of the field.

When you define a fixed-length format, you specify the length of each field. The ipload utility calculates the offset for each field and the total length of the record from the
field lengths that you supply.

Creating a fixed format
 You can create and define formats for fixed-length records from the Record Formats and the Fixed Format Definition windows.

Editing a format
 After you create and save a format, you might need to add a new field, insert a new field, edit a field, or delete a field. The process for editing an existing format is

essentially the same, regardless of the file type.
Create a fixed format that uses carriage returns

 Create a fixed format that includes BYTE or TEXT data
 You can organize the byte or text data in a fixed-format data file with inline data or data in a separate file.

Create a fixed format that includes Ext type or Simple LO data
 You can organize the Ext Type or Simple LO data in a fixed-format data file with fixed-length data or inline data.

Creating a fixed format

You can create and define formats for fixed-length records from the Record Formats and the Fixed Format Definition windows.

To create a format for fixed-length records:

1. Choose Components > Formats from the HPL main window.
The Record Formats window appears, as the following figure shows.
Figure 1. The Record Formats window

2. Click Create in the Mode group.
3. Click Fixed in the Type group.
4. Choose a name for the format and type it in the Create Format text box.
5. Click OK.

The Fixed Format definition window appears. The title bar includes the name that you chose for the format. The following figure shows the Fixed Format Definition
window as it might appear after you prepare the format for the file that Figure 1 shows.
Figure 2. A completed Fixed-Format Definition window with an open selection list

1118 Part VI: Administering

Table 1. The Fixed-Format Definition window options

Display option Description

Bytes The Bytes text box specifies the number of characters that the field occupies in the record. In the Bytes text box, you must set the number of
bytes for your data types. Although ipload uses default information to calculate an offset if you create a format that has a new length, it does
not readjust the lengths for existing formats. To change the default information, see The Machines window. The ipload utility automatically
calculates the total length of the data file as you add each field description.

Decimals The Decimals text box specifies the number of decimal places that are displayed when you convert floating-point types to ASCII. You can set
the number of decimals only for the Float and Double data types.

6. Click Add in the Operation group.
7. Choose a name for the field and type the name in the Field Name text box.
8. Type the data type in the Data Type text box. For columns that contain user-defined types (UDTs) columns, you must choose an Ext Type format. For information

about user-defined types, see IBM® Informix® Guide to SQL: Reference.
The down arrow next to the Data Type text box displays the selection list that appears at the right in Figure 2. Data types allowed in a fixed format describes the
data types that appear in the selection list.

9. Type the appropriate value in the Bytes text box (or in the Decimals text box, if appropriate). If you chose the Ext Type String in the Data Type box, you must specify
a size, or you get an error. Field size depends on the type of data and its representation in the data file.

10. Click Perform.
After you click Perform, ipload calculates the proper offset for this field in the record and displays the value under the Offset heading, as Figure 2 shows.

11. Repeat steps 7 through 10 for each field in your data file.
12. Click OK to save the format and return to the Record Formats window.
13. Click Cancel to return to the HPL main window.

Tip: Use the field name to map the data file to the database. You can type any name that you choose. You might find it easier to remember the names if you use the same
name as the corresponding column of the database.

Data types allowed in a fixed format

Related reference:
 The formats table in the onpload database

Data types allowed in a fixed format

You can use the following data types when you are preparing a fixed format.

Data type Description

Chars ASCII format data

Short Unsigned Short Integer Unsigned Integer Long
Integer Unsigned Long Float Double

The Machines description specifies the number of bytes required in fixed format for integers and floating-point
values (see The Machines window.) When you select one of these data types, iploadsets the number of bytes.

Date Date string

UNIX Date A long integer interpreted as the system date from a UNIX system

Blob Length The number of bytes of BYTE and TEXT (binary large object) that follow this record

Blob File A file that contains BYTE and TEXT data

BLOB and CLOB A file that contains smart large object (BLOB or CLOB) data

Simple LO Length The number of bytes of simple large object data (BYTE and TEXT data) that follow this record

Simple LO File The name of a file that contains a Simple LO data (BYTE and TEXT data)

INT8 An eight-byte integer type

SERIAL8 An eight-byte serial column

BIGINT An ASCII character string or an eight-byte integer type

Part VI: Administering 1119

Data type Description

BIGSERIAL An ASCII character string or an eight-byte integer type

Ext Type String The ASCII representation of an extended data type (Ext Type) value

Ext Type String Length The length of an ASCII Ext Type value. The Ext Type value follows at the end of the input/output record. Use
Ext Type String Length data type if you have data that contains null UDT values.

Ext Type Binary The binary representation of an Ext Type value

Ext Type Binary Length The length of the binary representation of an Ext Type value. The binary value follows at the end of the
input/output record. Use Ext Type Binary Length data type if you have data that contains null UDT values.

The HPL supports several data types under the Ext Type mechanism. As a result, the specific names of these data types do not appear in the data-type selection list. For
the following data types, choose the appropriate Ext Type data type:

INT8
LVARCHAR
SERIAL8
BLOB
BOOLEAN
CLOB
Collection data types
Distinct data type
Opaque data types
Row types

Editing a format

After you create and save a format, you might need to add a new field, insert a new field, edit a field, or delete a field. The process for editing an existing format is
essentially the same, regardless of the file type.

The following example uses a fixed-format file, but the same procedure applies to COBOL and delimited files also.

Adding a new field description to the format
 Inserting a new field into the format

 Editing the description of a field
 Deleting a field description from the format

Related concepts:

 Preview data-file records
Related tasks:

 Editing a format

Adding a new field description to the format

To add a new field description to the format:

1. Open the Fixed Format Definition window. For more information, see Creating a fixed format.
2. Click Add in the Operation group.
3. Type the field specifications in the text boxes at the top of the window.
4. Click Perform to add the new field at the end of the list.
5. Click OK to save your changes and return to the Record Formats window.
6. Click Cancel to return to the HPL main window.

Inserting a new field into the format

To insert a new field into the format:

1. Open the Fixed Format Definition window. For more information, see Creating a fixed format.
2. Click Insert in the Operation group.
3. Select the field before which you want to insert the new field.
4. Type the field specifications in the text boxes at the top of the window.
5. Click Perform to insert the new field before the selected field.
6. Click OK to save your changes and return to the Record Formats window.
7. Click Cancel to return to the HPL main window.

Editing the description of a field

To edit the description of a field:

1. Open the Fixed Format Definition window. For more information, see Creating a fixed format.

1120 Part VI: Administering

2. Click Edit in the Operation group.
3. Select the field from the list of fields.
4. Change the information that you want.
5. Click Perform.
6. Click OK to save your changes and return to the Record Formats window.
7. Click Cancel to return to the HPL main window.

Deleting a field description from the format

To delete a field description from the format:

1. Open the Fixed Format Definition window. For more information, see Creating a fixed format.
2. Click Delete in the Operation group.
3. Select the field that you want to delete.
4. Click Perform to delete the field.
5. Click OK to save your changes and return to the Record Formats window.
6. Click Cancel to return to the HPL main window.

Create a fixed format that uses carriage returns

A fixed-format data file often includes a carriage return (new line) at the end of each record, such as the data file in the following example file.

20 chars 20 chars 15 chars2 chars

John Brown 100 Main St. Citadel LA
Mary Smith 3141Temple WayChesapeake AZ
Larry Little 44 Elm Rd. #6 Boston MA

When you prepare the format for this data file, you must include a dummy field for the carriage return. When you create the load map for this format, do not link the
dummy field to a database column. The following figure shows the format for the data file illustrated previously.
Figure 1. Fixed format with dummy entry for carriage return

Related tasks:
 Creating a load map

Create a fixed format that includes BYTE or TEXT data

You can organize the byte or text data in a fixed-format data file with inline data or data in a separate file.

Inline data
 BYTE or TEXT data that is included as part of a fixed-format data file is called inline data. When byte or text data is inline, the data-file record has two parts: a fixed-

length part and a variable-length part.
Data in a separate file

 You can also store BYTE and TEXT data in separate files.

Inline data

BYTE or TEXT data that is included as part of a fixed-format data file is called inline data. When byte or text data is inline, the data-file record has two parts: a fixed-length
part and a variable-length part.

For example, a record with two fields and byte or text data might be organized as follows.
Figure 1. Organization of a record that includes inline TEXT data

field1textlengthfield2textdata

Part VI: Administering 1121

The length of the TEXT data is included in the fixed-length part of the record. The actual TEXT data is inserted at the end of the fixed-length part of the record. The High-
Performance Loader (HPL) reads the TEXT length from the fixed-length part of the record and uses that length to read the actual TEXT data. The HPL also uses the TEXT
length to calculate the offset to the beginning of the next record.

The following figure shows the format definition of a record with inline BYTE and TEXT data. The arrows show how the HPL puts the record into the database. The arrows
from field 1 and field 2 indicate entries in fixed-length format. The split arrow shows that the HPL uses the TEXT length information to find the TEXT data and insert it
into the table. The HPL does not insert the TEXT length into the database.
Figure 2. Inline TEXT Data

When you define the format in the Format-Definition window, select Blob Length as the data type for the textlength field. The following figure shows the format for the
example in Figure 1. The format does not include an entry for TEXT data.
Figure 3. Fixed format that includes TEXT data

When you create a map to link the input fields that are defined by the format to the columns of a database table, connect the textlength input field to the table column
that contains the TEXT data.

Related reference:
 Define maps

Data in a separate file

You can also store BYTE and TEXT data in separate files.

During a load, BYTE and TEXT data files are read and inserted into the database. During an unload job, the file is created, and BYTE and TEXT data is written to the file.
When the fixed-format input contains the path name of a data file, the HPL uses that path name to insert data into a column of the database table, as the following figure
shows. When you prepare the format, select Blob File for the data type.
Figure 1. BYTE or TEXT data in a file

When you create a map to link the fields of the input record to the columns of a database table, link the name of the BYTE or TEXT file with the BYTE or TEXT column. The
arrows in Figure 1 illustrate how the HPL inserts the BYTE or TEXT data into the column.

Related reference:
 Define maps

Create a fixed format that includes Ext type or Simple LO data

You can organize the Ext Type or Simple LO data in a fixed-format data file with fixed-length data or inline data.

Fixed-length data
 When you designate a field as an Ext Type String or Ext Type Binary data type, you specify that the data is going occupy a fixed amount of space, similar to the

behavior of a fixed-length Chars data type. With fixed-length data format, you must specify the number of bytes that the field occupies in the record.
Inline data

 Simple LO data or varying-sized Ext Type data that is included as part of a fixed-format data file is called inline data. When Ext Type or Simple LO data is inline, the
data-file record has two parts: a fixed-length part and a variable-length part.
Simple LO data in a separate file

 You can also store Simple LO data in separate files.

1122 Part VI: Administering

Fixed-length data

When you designate a field as an Ext Type String or Ext Type Binary data type, you specify that the data is going occupy a fixed amount of space, similar to the behavior of
a fixed-length Chars data type. With fixed-length data format, you must specify the number of bytes that the field occupies in the record.

Inline data

Simple LO data or varying-sized Ext Type data that is included as part of a fixed-format data file is called inline data. When Ext Type or Simple LO data is inline, the data-
file record has two parts: a fixed-length part and a variable-length part.

For example, a record with two fields and a Simple LO might be organized as follows.

field1Simple LO lengthfield1Simple LO data

The data-type length of the Ext Type or Simple LO data is included in the fixed-length part of the record. The actual TEXT data is inserted at the end of the fixed-length part
of the record. The HPL reads the Ext Type or Simple LO length from the fixed-length part of the record and uses that length to read the actual Ext Type or Simple LO data.
The HPL also uses the Ext Type or Simple LO length to calculate the offset to the beginning of the next record.

The following figure shows the format definition of a record with inline Ext Type or Simple LO data. The arrows show how the HPL puts the record into the database. The
arrows from field 1 and field 2 indicate entries in fixed-length format. The split arrow shows that the HPL uses the Simple LO length information to find the Simple LO
data and insert it into the table. The HPL does not insert the Simple LO length into the database.
Figure 1. Inline TEXT data

When you define the format in the format-definition window, select the appropriate data-type length data type (Ext Type String Length, Ext Type Binary Length, or
Simple LO Length) for the data-type length field. The following figure shows the format for the example previously illustrated. The format does not include an entry for
Simple LO data.
Figure 2. Fixed format that includes a Simple LO

Important: Ext Type binary-length format is not supported for complex types.
When you create a map to link the input fields that are defined by the format to the columns of a database table, connect the data type length input field to the table
column that contains that particular data. In this case, connect the Simple LO length input field to the table column that contains the Simple LO data.

Related reference:
 Define maps

Simple LO data in a separate file

You can also store Simple LO data in separate files.

During a load, Simple LO data files are read and inserted into the database. During an unload job, the file is created and BYTE and TEXT data is written to the file. When the
fixed-format input contains the path name of a data file, the High-Performance Loader (HPL) uses that path name to insert data into a column of the database table, as the
following figure shows. When you prepare the format, select Blob File for the data type.
Figure 1. Simple LO data in a file

Part VI: Administering 1123

When you create a map to link the fields of the input record to the columns of a database table, link the name of the Simple LO file with the Simple LO column. The arrows
in Figure 1 illustrate how the HPL inserts the Simple LO data into the column.

Related reference:
 Define maps

Delimited records

Delimited records are records whose fields can vary in length. In a data file that contains delimited records, the records and fields are separated by a delimiter.

The following data file uses a vertical bar (|) as the field delimiter and a carriage return as the record delimiter:

John Brown|100 Main St.|Citadel|LA|215/887-1931
Mary Smith|3141 Temple Way|Chesapeake|AZ|415/812-9919
Larry Little|44 Elm Rd. # 6|Boston|MA|617/184-1231

The ipload utility uses the vertical bar and carriage return as the default field and record delimiters.

Create a delimited format
 Create a delimited format that includes BYTE or TEXT data

 In a delimited format, BYTE or TEXT data can be characters, hexadecimal data, or a separate file.
Create a delimited format with extended data types

Related tasks:

 Modifying delimited-format options

Create a delimited format

To create a format for delimited records, follow the same steps as in Creating a fixed format, with the following modifications:

In step 3, click Delimited in the Type group.
Omit step 9. When you use delimited records, ipload does not need byte or decimal information.

Data types allowed in a delimited format

Data types allowed in a delimited format

You can use the following data types when you prepare a delimited format.
Table 1. Data types allowed in delimited format

Data type Description

Chars Normal ASCII data

BYTE or TEXT File File that contains BYTE or TEXT data

TEXT Data TEXT data is formatted as ASCII text. If the text includes carriage returns (new lines) or delimiters, a backslash (\) must precede those characters.

BYTE or TEXT
HexASCII

BYTE or TEXT data that is formatted in ASCII hexadecimal. The onpload utility translates the data into binary format before it loads the data into
the database.

BLOB or CLOB File that contains smart large object (BLOB or CLOB) data

Simple LO File The name of a file that contains Simple LO data (BYTE and TEXT data)

Simple LO Text Simple LO data that is formatted as ASCII text. If the text includes carriage returns, newline characters, or delimiters, a backslash (\) must
precede those characters

Simple LO HexASCII Simple LO data that is formatted in ASCII hexadecimal. The onpload utility translates the data into binary format before it loads the data into the
database.

Ext Type String The ASCII representation of a Data Type (Ext Type) value

Ext Type HexASCII The HexASCII representation of an Ext Type value

Create a delimited format that includes BYTE or TEXT data

In a delimited format, BYTE or TEXT data can be characters, hexadecimal data, or a separate file.

The following sample data-file record shows a data record that has two fields of character data followed by a field of character BYTE or TEXT data, a field of hexadecimal
byte or text data, and the path name of a file that contains BYTE or TEXT data.

field1|field2|TEXT data|BEEEF6699|/bbs/kaths/data2jn95

The following figure shows a format for the sample data-file record previously illustrated.
Figure 1. Delimited format with BYTE or TEXT entries

1124 Part VI: Administering

Create a delimited format with extended data types

Extended data types include the following data types:

User defined (distinct and opaque)
Collection
CLOB and BLOB
Row

In a delimited format, CLOB and BLOB data is always written to a file. CLOB data can be ASCII or hexadecimal data. BLOB data can be binary data. The path name of the
file, the file size, and the offset are embedded in the data file during unload. However, when you perform a load, you only need to specify the path name.

The following sample data-file record shows a data record that has a field of character data (field1), a row-type field (ROW('abcd', NULL)), a collection-type field (SET{1}),
an integer field (10), a BLOB-type field (/work/data/photo.jpg), an integer field (20), and a CLOB-type field (work/data/text.txt).

field1|ROW(‘abcd’, NULL|SET{1}|10|/work/photo.jpg|20|
/work/text.txt

The following figure shows a sample format for the sample data-file record that was previously illustrated.
Figure 1. Delimited format with extended data type entries

If you unload by using a format that is similar to Figure 1, the unloaded data might resemble the following sample data-file record. You can use this data to load the same
file again, instead of using the path name.
Figure 2. Sample data-file record that includes extended data types

field1|ROW(‘abcd’, NULL|SET{1 }|10|0,51f4,blob67e9.8ac|20|
0,c 692,clob67e9.9ad

By default, the clob67e9.8ad and blob67e9.8ac files in Figure 2 are written to /tmp. To change the default, modify the path in the PLOAD_LO_PATH environment variable.

COBOL records

The HPL supports COBOL sequential data files that do not contain internal indexing. The following figure shows the COBOL-Format Definition window for preparing a
COBOL format.
Figure 1. Fixed-format definition window for a COBOL format

Part VI: Administering 1125

Create a COBOL format
 Picture and usage descriptions

 The picture and usage description must conform to ANSI-COBOL 85 specifications.

Create a COBOL format

To create a format for COBOL records, follow the same steps as in Creating a fixed format, with the following modifications:

In step 3, click COBOL in the Type group in the Record Formats window.
In step 8, type the COBOL picture description in the Picture text box.
In step 9, type the data type in the Usage text box.
The arrow displays the selection list of available data types for the Usage text box.
Figure 1. Fixed-format definition window for a COBOL format

Important: Ext types are not supported in COBOL format.

Picture and usage descriptions

The picture and usage description must conform to ANSI-COBOL 85 specifications.

For information about COBOL picture strings, see the documentation for the COBOL compiler.

Picture description
The picture description must match the record file descriptor (FD) from the COBOL program that generates or use the data. For information about COBOL formats, see
your COBOL programmer's publication.

Usage description
The usage description must match the data-field type described in the FD descriptor of the COBOL program. If the COBOL program does not include a usage clause, select
the Chars (character) option for the usage.

Packed-decimal conversions

1126 Part VI: Administering

When values are converted to packed-decimal formats, supply a picture clause that matches the picture clauses in the COBOL programs that use the data. Otherwise, the
COBOL interpretation of the values is wrong.

The following table lists some examples of appropriate picture clauses.

Picture Input data Output data COBOL value =

9999999 123 0000123C 123

9999V99 123 0000123C 1.23

9999.99 123 0000123C 1.23

9999V99 -123.22 0012322D -123.22

Other formats

In addition to delimited, fixed, and COBOL formats, the High-Performance Loader (HPL) provides two other formats for loading and unloading data: fast format and fast
job. These formats are not included on the Record Formats window because the format specifications are predefined; you do not need to make any choices.

Fast format and fast job are the most efficient ways to load and unload data because their formats are predefined.

Fast format
Fast format loads or unloads data in which each individual column uses IBM® Informix® internal format. You can reorder, add, or delete columns, but you cannot conduct
conversion on the column itself.

Select Fixed internal in the Generate window to get this type of load. For information about the Generate window, see The Generate options of the ipload utility.

Fast job
A fast job loads or unloads an entire row of the IBM Informix database table in internal format. A fast job is also called a raw load or a no conversion job. For more
information, see Format type group.

The -fn flag of the onpload command-line utility specifies a fast job. For information about the onpload utility, see The onpload utility.

Format options

The format options let you change the default driver, the character set, the default computer type, and the delimiters. Information about the format options is stored in the
formats table of the onpload database.

Modifying fixed and COBOL formats
 Modifying delimited-format options

Related concepts:
 Formats of supported datafile records

Related reference:
 The formats table in the onpload database

Format type group

Modifying fixed and COBOL formats

You can modify the following options for fixed and COBOL formats.

Character set
The code set that is used to translate the data in the data table

Driver
The driver that is used with the delimited format. For more information, see Selecting a driver.

Machine
The machine type that produced the data files. For more information, see Modify the machine description.

For a fixed format, you can select the GLS code set you want from the Character Set selection list. For information about locales and code sets, see the IBM® Informix® GLS
User's Guide.

To modify the options for fixed and COBOL formats:

1. Display the Format-Definition window for the format that you want.
To display the window, follow the steps in Creating a fixed format.

2. Click Options.
The Options window (in this example, the Fixed Format Options window) appears, as following figure shows.
Figure 1. The Fixed Format Options window

Part VI: Administering 1127

3. Modify the options as appropriate.
4. Click OK to save your options and return to the Format-Definition window.

Modifying delimited-format options

You can modify the following options of the delimited format from the Delimiter Options window.

Character set
The code set used to translate the data in the data table.

Driver
The driver that is used with the delimited format. For more information, see Selecting a driver.

Delimiting characters
The delimiting characters, which are sometimes called record separators and field separators, indicate the beginning and end of records and fields.
You can specify the delimiting characters in ASCII, HEX, OCTAL, or DECIMAL format.

You can select the GLS code set you want from the Character Set selection list. For information about locales and code sets, see the IBM Informix GLS User's Guide.

To modify the options for delimited formats:

1. Display the Delimited Format Definition window.
To display the window, complete the steps in Creating a fixed format with the following modification: in step 3, click Delimited.

2. Click the Options button in the Delimited Format Definition window.
The Delimiter Options window appears, as the following figure shows.
Figure 1. The Delimiter Options window

3. Modify the options that you want to change, or add information.
For example, add Field Start and Field End information to mark the beginning and end of a field (column).

The default escape character is \ (the backslash).

If the Field Start and Field End values contain both single or double quotation marks and specified characters are not present in a field, an error occurs. The error
occurs because the input does not match the expected layout. If one of these characters appears in a field, you must mark the character with the escape key (to
escape the character).

For comma-separated values (CSV), enter , (a comma) in the Field Separator field. For more information, see Testing the import of a CSV file.

An error can also occur if the Field Separator value appears inside a quoted field or any special character (such as the end field, end record, or escape character)
appears in a field. In this case, you must also escape the character.

4. Click OK to save your changes and return to the Delimited Format Definition window.

Tip: You can use the DBDELIMITER environment variable to set the field delimiter for the dbexport utility and the LOAD and UNLOAD statements. However, do not use
DBDELIMITER with the HPL because the onpload utility does not use this environment variable.
For more information about environment variables, see the IBM Informix Guide to SQL: Reference.

Testing the import of a CSV file
 This procedure shows how to test importing sample data from a spreadsheet into IBM Informix.

Related concepts:
 Delimited records

Related reference:
 The delimiters table in the onpload database

1128 Part VI: Administering

Testing the import of a CSV file

This procedure shows how to test importing sample data from a spreadsheet into IBM® Informix®.

Files containing comma-separated values (CSV) are a commonly used for transferring simple text data between programs. The CSV format uses a comma as a field
separator and a new line as a record separator. Double quotation marks are used to embed commas, new lines, or double quotation marks within strings. Some
applications (for example, some spreadsheet applications) provide the option of exporting text data in the CSV format.

To test importing a CSV file:

1. Create a test database and simple table in .
2. In your spreadsheet application:

a. Create a spreadsheet with columns that correspond to the columns in your table.
b. Populate the columns with some test data.
c. Export the data by saving it in .csv format.

3. Copy the resulting .csv file and paste it in a location that you can access from ipload.
4. Start ipload and choose Components > Generate Job to create a job.
5. In the Generate Job window:

a. Select Load/Unload Job in the Generate group.
b. Select Delimited in the Format Type group.
c. Specify the .csv file as the source for input to the new job you are creating. Specify a name in the Generate Name field, select your database in the Database

field, select you table in the Table field, and then insert the full path to the .csv file in the Device field.
d. Click OK.

6. Load the job by choosing Jobs > Load.
7. While you can do many things (such as filtering and mapping) on the Load Job window, for this test, select the Format button.

The Delimited Format window appears. You use this window to define the format of the input file.

8. In the Delimited Format window, click the Options button to display the Delimited Options window.
9. In the Delimiter Options window, change the value in the Field Separator field to , (a comma) and click OK.

The ipload utility returns you to the Delimited Format window.

10. In the Delimited Format window, click OK.
The ipload utility returns you to the Load Job window.

11. Click Run to run the job.
The ipload utility displays status information while the job runs, and then it displays the results of the job.

12. Click OK twice to return to the main ipload window.

As an evaluation, you can use DBAccess to verify that the data was successfully loaded.

For more information, see Generating load and unload components.

Format Views window

You can display a list of the formats and load and unload maps that are associated with a project from the Format Views window. You can also create or edit a format.

The Format Views window appears in the following situations:

When you click Format in the Unload Job window and no format name is in the Formats text box
When you click Search in the Query window

The following figure shows a Format Views window. Views windows discusses how to use Views windows.
Figure 1. The Format-Views window

Define queries

Part VI: Administering 1129

This section describe how to define queries including how to create, edit, and export and import queries.

HPL queries
 You can build an SQL statement with the ipload query component.

Creating a query
 Use the Query window to create a query.

Editing a query
 To edit a query, follow the same steps as for creating a query, but open an existing query in the Query window.

Exporting and importing queries
 You can use the File button on the Query-Definition window to export a query to a file or to import a query that you prepared with some other tool.

The Database Views window
 You can display a list of the queries, maps, and formats that are associated with a project from the Database Views window. You can also create or edit a query.

Related concepts:
 Components of the unload job

HPL queries

You can build an SQL statement with the ipload query component.

The ipload utility stores query information in the query table of the onpload database. The SQL statement is stored as TEXT data.

During the unload process, the High-Performance Loader (HPL) uses a query to select data from a database table (or tables), as the following figure shows. The HPL can
process any valid SQL statement.
Figure 1. Extracting data from a database table

These topics use the term query in two ways:

To refer to the SQL statement that selects information from the database
To refer to the HPL component that lets you build and store the SQL statement

Related reference:
 The query table in the onpload database

Creating a query

Use the Query window to create a query.

To create a query:

1. Choose Components > Query from the HPL main window.
The Query window appears, as Figure 1 shows.

2. Click Create in the Selection Type group.
3. Choose a name for your query and type it in the Query text box.
4. In the Database text box, type the name of the database that contains the tables from which you want to extract data. Or, click the down arrow to select from a

database selection list.
The following figure shows the Query window with the Query text box completed and stores_demo selected from the selection list.
Figure 1. The Query window

1130 Part VI: Administering

5. Click OK.
The Query-Definition window appears, as Figure 2 shows. The name that you chose for your query appears in the title bar.

6. Type your query in the Select, From, and Where text boxes.
The following figure shows the following simple query of the customer table of the stores_demo database:

SELECT customer.fname, customer.lname,
customer.zipcode
FROM customer
WHERE zipcode > 50000

Figure 2. The Query-Definition window

If you prefer, you can type the entire query into the Select text box. If you later edit the query, ipload divides the query into SELECT, FROM, and WHERE clauses.

7. Click OK to save the query and return to the Query window.
The query that you just created now appears in the Query list box at the right side of the Query window.

8. Click Cancel to return to the HPL main window.

Using the Column Selection window
The Table button displays the Column Selection window. You can use the Column Selection window to build queries by selecting tables and columns. The ipload
utility inserts the selected columns and tables into the appropriate text boxes of the Query-Definition window.
Editing the WHERE clause

 When you use the Column Selection window to select a column or columns for the WHERE clause, the selected columns appear in the Where text box.

Related reference:
 The query table in the onpload database

Using the Column Selection window

The Table button displays the Column Selection window. You can use the Column Selection window to build queries by selecting tables and columns. The ipload utility
inserts the selected columns and tables into the appropriate text boxes of the Query-Definition window.

To use the Column Selection window:

1. Follow the steps in Creating a query to display the Query-Definition window.
2. Click Table.

The Column Selection window appears, as Figure 1 shows. The Tables list box includes synonyms and views that are valid for the local database server.

3. Select a table.
After you select a table, the right pane displays a list of the columns in that table. The following query shows the Column Selection window with the customer table
selected.
Figure 1. The Column Selection window after selecting a table

Part VI: Administering 1131

4. Select one or more columns to use in the query.
To select a single column, select that column.
To select all columns, click Select All.
To select consecutive columns, select the first column. Move to the final column and hold down SHIFT while you select that column.
To select nonconsecutive columns, select a column. Hold down CONTROL while you select additional items.

The following figure shows the Column Selection window with several columns selected.
Figure 2. Columns selected from a table

5. When you finish selecting columns, click OK to return to the Query-Definition window.
When the Query-Definition window reappears, the mouse cursor changes to a pointing hand and the message line reads:

Position Cursor Where Column Data to be Inserted

6. Select the Select text box or the Where text box.
The following figure shows columns inserted into the Select text box. The ipload utility also inserts the table name into the From text box.
Figure 3. The Query-Definition window after using the table button

7. Repeat steps 2 through 6 to add columns from other tables.
8. Modify the text in the Where text box so that it is a valid WHERE clause. See Editing the WHERE clause.
9. Click OK to save the query and return to the Query window.

10. Click Cancel to return to the HPL window.

1132 Part VI: Administering

Editing the WHERE clause

When you use the Column Selection window to select a column or columns for the WHERE clause, the selected columns appear in the Where text box.

In the Where text box, as shown in the figure below, the =? symbols indicate where you must provide match conditions. The following figure shows the result when you
choose zipcode and customer_num from the customer table.
Figure 1. The Where text box entry after you use the Table button

To edit the WHERE clause:

1. Select =? and change it to the match condition that you want.
For example, the Where text box in Figure 1 contains the following text:

customer.zipcode =? and customer.customer_num =?

You must change both occurrences of =? to valid match conditions. You might change the text as follows:

customer.zipcode > 50000 and
customer.customer_num > 150

For a full description of match conditions, see Match condition operators and characters.

2. Check the comparison operators.
When you select multiple columns from the Column Selection window, ipload inserts and into the expression between each column. You might need to change and
to or.

Editing a query

To edit a query, follow the same steps as for creating a query, but open an existing query in the Query window.

To edit a query:

1. Choose Components > Query from the HPL main window.
The Query window appears, as Figure 1 shows.

2. Click Open.
3. Select a query from the list of queries.
4. Click OK.

The Query-Definition window appears, as Figure 2 shows. The name of the query that you are editing appears in the title bar.

5. Modify the Select, From, and Where text boxes.
6. Click OK to save the modified query.
7. Click Cancel to return to the HPL main window.

Exporting and importing queries

You can use the File button on the Query-Definition window to export a query to a file or to import a query that you prepared with some other tool.

For example, you might use DB-Acess to prepare and test a query and to save the query to a file. You can then import that query into the High-Performance Loader (HPL).

Importing a query
 You can use the Import/Export File Selection window to import a query that you prepared outside of the High-Performance Loader (HPL).

Exporting a query
 The File button also allows you to export the query as an SQL statement.

Part VI: Administering 1133

Importing a query

You can use the Import/Export File Selection window to import a query that you prepared outside of the High-Performance Loader (HPL).

To import a query:

1. Display the Query-Definition window by following the steps in Creating a query.
2. Click File.

The Import/Export File Selection window appears, as the following figure shows.
Figure 1. The Import/Export File Selection window

3. Click Import.
4. Specify the file that you want to import.

a. Type a path name and appropriate wildcards in the Filter text box and click Filter. Use an asterisk (*) to list all of the files in the directory. Then select a file
and click OK or double-click a file name.

b. Type the full path name in the Selection text box and then click OK.
The text from the imported file appears in the Query-Definition window.

If ipload can interpret the SQL statement, the SQL statement is inserted into the appropriate Select, From, and Where text boxes.

If ipload cannot interpret the SQL statement, the entire content of the imported file appears in the Select text box.

5. Edit the query so that it meets your needs.
6. Click OK.

If the query is a valid SQL query, the display returns to the Query window.

If the query is not a valid SQL query, ipload highlights the portion of the query that it cannot interpret and provides an error message.

7. From the Query window, click Cancel to return to the HPL main window.

Exporting a query

The File button also allows you to export the query as an SQL statement.

You can prepare a query for export in the following ways:

Create a query. (See Creating a query.)
Open an existing query.
Import an already prepared query and modify it. (See Importing a query.)

To export a file:

1. Follow the steps in Creating a query to prepare a query in the Query-Definition window (see Figure 2).
2. Click File.

The Import/Export File Selection window appears (see Figure 1).

3. Click Export.
4. Select the directory and file where the query is to be stored.

a. Add the name of a new file to a path name in the Selection text box and click OK.
b. Type a path name and appropriate wildcard in the Filter text box and click Filter. Then select a file name.

5. Click OK.
If the file that you specified exists, ipload asks if you want to overwrite the existing file, as the following figure shows.
Figure 1. The Confirm File Overwrite window

6. You now have two choices:
Click OK to overwrite. The display returns to the Query window.

1134 Part VI: Administering

Click Cancel to choose a different file name.
The ipload utility writes the text from the Select, From, and Where text boxes into the specified file as a single SQL statement.

7. Click OK. The display returns to the Query window.

The Database Views window

You can display a list of the queries, maps, and formats that are associated with a project from the Database Views window. You can also create or edit a query.

The Database Views window appears in the following situations:

When you click Query in the Unload Job window and no query name is in the Query text box
When you click Search in the Query window

The following figure shows the Database Views window. Views windows discusses how to use Views windows.
Figure 1. The Database Views window

Define maps

This section describes how to define maps with the High-Performance Loader (HPL). It also describes the options that are available for defining maps.

Load and unload maps
 You can use the ipload utility to build a map. A map specifies the relationship between the fields of a data file and the columns of a database.

Unload maps
 An unload map associates columns extracted from a database by a query with the fields in a data-file record. You can create an unload map from the Load Job

window or from the Components menu of the HPL main window. After you define an unload map, you use it with the Unload Job window or the onpload utility.
Mapping options

 The mapping options define conversions that onpload applies to the data before it inserts the data into the database (for a load job) or into the data file (for an
unload job). These conversions can include case conversion, text justification, data masking through picture strings, default values, and fill characters. The mapping
options also allow you to replace imported data with data from other database tables.
Editing options

 This section discusses specialized options in the Map-Definition window.
Map Views window

 You can display a list of the components that are associated with a database in a specific project from the Map Views window. You can also create or edit a map.

Related concepts:
 Inline data

Data in a separate file
Simple LO data in a separate file
Components of the unload job
Related reference:

 Inline data

Load and unload maps

You can use the ipload utility to build a map. A map specifies the relationship between the fields of a data file and the columns of a database.

To load data into a database, you define a load map, which associates fields from records in a data file to columns in a database table.

To unload data, you define an unload map. The unload map associates the columns that a query retrieves from one or more tables to the fields in a data file.

The following figure shows the relationship between load and unload maps.
Figure 1. Using a map

Part VI: Administering 1135

The ipload utility stores information about maps in the maps, mapitem, mapoption, and mapreplace tables of the onpload database.

You can define a map at any time. After you define a map, you use it with the Load Job window or the onpload utility.

The Map-Definition window
 You can associate an input item with a table column from the Map-Definition window.

Creating a load map
 You can create a load map from the Load Job window or from the Components menu of the High-Performance Loader (HPL) main window.

Related reference:
 The onpload database

Define maps
The mapitem table in the onpload database
The maps table in the onpload database

The Map-Definition window

You can associate an input item with a table column from the Map-Definition window.

The following figure shows a Map-Definition window for a load map.
Figure 1. The Map-Definition window

The map specifies which fields of the data file are loaded into database columns. The data moves from the fields of a data file into the columns of a database.

The Table and Format panes
 The Map-Definition window contains two panes: the Table pane and the Format pane.

Unassigned or multiple-assigned fields and columns
 Identical field names and column names

 When you create a format, you can assign arbitrary names to the fields of the data file. You might find it convenient to assign names that correspond to the names of
the columns in the database. When you create a map, ipload automatically links columns and fields that have the same name and type, thus saving you work.

The Table and Format panes

The Map-Definition window contains two panes: the Table pane and the Format pane.

The window has two panes so that you can take the following actions:

Scroll the panes to see all of the columns or fields of a long data file or database table.
Connect an input field to more than one column.

The left column of icons in each pane represents the active elements of the display. These left columns do not change. In a load map, the columns in the Table pane
receive the input. In the Format pane, data from the fields moves into the columns of the database table.

1136 Part VI: Administering

The right column of icons in each pane represents the associations that you make. These columns change as you build the map. A field might be listed more than once in
the right column of the Table pane because you can store a field from the data file in more than one database column. This field is mapped (with a split arrow) to two
columns in the Format pane. A column never appears more than once in the list to the right of the Format pane because a column can only receive input from one
database field.

By scanning the left pane, you can easily see which columns are receiving data from the data file. By scanning the right pane, you can see which fields of the data file are
providing data and which fields are not being used.

Unassigned or multiple-assigned fields and columns

The High-Performance Loader (HPL) does not require a one-to-one connection between the fields and columns. You can map a field to multiple columns. Figure 2 shows a
map where the data from one field is placed into two columns.

You can also have a column that has no mapping association. Field 1 in the Format pane in Figure 2 does not have an association. If a column does not receive input,
onpload sets the column to null.

Identical field names and column names

When you create a format, you can assign arbitrary names to the fields of the data file. You might find it convenient to assign names that correspond to the names of the
columns in the database. When you create a map, ipload automatically links columns and fields that have the same name and type, thus saving you work.

Creating a load map

You can create a load map from the Load Job window or from the Components menu of the High-Performance Loader (HPL) main window.

Before you can create a load map, you must create a format that describes the data file that you plan to load. For information about how to create a format, see Define
formats.
Important: The HPL does not support conversion from extended type data and smart-large-object data (Ext Type data types) to non-Ext Type data types. A field that is
defined as an Ext Type data type can be mapped only to an Ext Type column. For more information about Ext Type data types, see Data types allowed in a fixed format or
Data types allowed in a delimited format
To create a load map:

1. Choose Components > Maps > Load Map from the HPL main window.
The Record Maps window appears, as the following figure shows.
Figure 1. The Load Record Maps window

2. Click Create in the Selection Type group.
3. Choose a name for the map and type it in the Map Name text box.
4. Type the names of the database and table where the data will be loaded in their corresponding text boxes.

You can also click the down arrow to choose the names from a selection list. The Tables selection list includes synonyms that are valid for the local database server.

5. Type the format that describes the data file in the Format text box.
You can also click the down arrow to choose the format from a selection list.

6. Click OK to open the Map-Definition window.
A Map-Definition window similar to Figure 2 appears.

7. Click a column icon in the left column in the Table pane and hold the mouse button down. A box appears around the icon and its name.
8. Drag the box to a field icon in the Format pane.

When you connect columns to fields, it does not matter whether you drag a column to a field or drag a field to a column, but you must always connect items from
the left column of each pane.

The following figure shows a Map-Definition window with this step completed.

Part VI: Administering 1137

Figure 2. Map-Definition window, one association completed

9. Repeat steps 7 and 8 for each field that you want to transfer into the database.
10. Add the options that you want, if any. For instructions, see Defining the mapping options.
11. Click OK to return to the Load Record Maps window.

Related reference:
 Create a fixed format that uses carriage returns

Unload maps

An unload map associates columns extracted from a database by a query with the fields in a data-file record. You can create an unload map from the Load Job window or
from the Components menu of the HPL main window. After you define an unload map, you use it with the Unload Job window or the onpload utility.

Creating an unload map
 Unload data by using functions

 If you use a function in a query to unload data, you must associate a name with the result of that function.

Creating an unload map

Before you can create an unload map, you must define a query on the table that will be unloaded. For instructions on how to define a query, see HPL queries.
Important: The HPL does not support conversion from extended type data and smart-large-object data (Ext Type data types) to non-Ext Type data types. An Ext Type
column can be mapped only to an Ext Type field. For more information about Ext Type data types, see Data types allowed in a fixed format or Data types allowed in a
delimited format.
To create an unload map:

1. Choose Components > Maps > Unload Map from the HPL main window.
The Unload Record Maps window appears, as the following figure shows.
Figure 1. The Unload Record Maps window

2. Click Create in the Selection Type group.
3. Choose a name for the map and type the name in the Map Name text box.
4. Type the name of the database in the Database text box. You can click the down arrow to choose a database from a selection list of databases.

1138 Part VI: Administering

5. Type the name of a query in the Query text box. You can click the down arrow to choose a query from a selection list of queries.
6. Type the format name in the Format text box. You can click the down arrow to choose a format from a selection list of formats.
7. Click OK.

A Map-Definition window is similar to the following figure. In this figure, some of the field names match column names. The ipload utility automatically maps
columns to fields of the same name. The direction of the arrows indicates the flow of data, as shown.
Figure 2. The Map-Definition window

8. To map a database column to a data-file field, click the database-column icon. Drag the column to the data-file field icon that you want. An arrow links the column
icon to the field icon.

9. Repeat step 8 until you have mapped all the columns you want to fields.
10. Define any mapping options as appropriate. For information about mapping options, see Mapping options.
11. Click OK to save the map and return to the Unload Record Maps window.
12. Click Cancel to return to the HPL main window.

Unload data by using functions

If you use a function in a query to unload data, you must associate a name with the result of that function.

In the following example, the returned value of the function TRIM is assigned the name field1.

SELECT TRIM(col1) field1 FROM tab1

After submitting the query, you must attach field1 to col1 of the unload file manually, as the following figure shows.
Figure 1. The Map-Definition window

Mapping options

The mapping options define conversions that onpload applies to the data before it inserts the data into the database (for a load job) or into the data file (for an unload job).
These conversions can include case conversion, text justification, data masking through picture strings, default values, and fill characters. The mapping options also allow
you to replace imported data with data from other database tables.

The information from the Mapping Options window is stored in the mapoption table of the onpload database.

Defining the mapping options
 This procedure describes how to specify mapping options.

Set the mapping options
 You can set as many of the choices on the Mapping Options window as you need.

Related reference:
 The onpload database

Part VI: Administering 1139

Defining the mapping options

This procedure describes how to specify mapping options.

To define mapping options:

1. Display the Map-Definition window by following the steps for Creating a load map, or Creating an unload map.
2. Select the field or column (in the right column of a pane) that you want to modify.
3. Click Options.

The Mapping Options window appears, as the following figure shows.
Figure 1. The Mapping Options window

4. Change the options that you want.
5. When you have set all the options that you want, click OK to return to the Map-Definition window.

When you return to the map window, an options symbol (a small box) appears between the field and the column, as the following figure shows. The options symbol
indicates that mapping options are in effect.
Figure 2. Fragment of the Map-Definition window showing an options symbol

Related reference:
 The mapoption table in the onpload database

Set the mapping options

You can set as many of the choices on the Mapping Options window as you need.

Justification option
The Justification option positions text within a record. You can justify the text to the left or right, or you can center it.

Case Convert option
The Case Convert option converts the case of the data to the selected case. The High-Performance Loader (HPL) supports upper, lower, and proper-name conversions. For
example, you can make the following conversions.

Input Conversion type Result

JOHN LEE SMITH Proper Name John Lee Smith

john lee smith Proper Name John Lee Smith

john lee smith Upper JOHN LEE SMITH

JOHN LEE SMITH Lower john lee smith

Default Value option
The Default Value option specifies the value that is inserted into the column when no field is mapped into that column.

Transfer Bytes option
The Transfer Bytes option specifies the number of bytes in the record field to transfer to the database column.

1140 Part VI: Administering

For variable-length format records, this number reflects the maximum size of the field. The actual number of bytes to transfer is determined by the record or field
delimiters.

Column Offset option
The Column Offset option specifies the offset from the beginning of a column field at which to start transferring the data from the field of the data record. Offsets are zero
based.

Field Offset option
The Field Offset option specifies the offset from the beginning of a record field at which to start transferring data to the column. Offsets are zero based.

Field Minimum and Field Maximum options
The Field Minimum and Field Maximum options specify the smallest and largest acceptable values for a numeric column. If the data in the field is outside that range, the
HPL rejects the record. This option is available only for fields with numeric formats, such as integer, short, or float.

Fill Character option
The Fill Character option lets you specify a character that you use to pad the contents of a field. The fill character can be any character that you can type on the keyboard.
You can specify a fill character for fixed ASCII and COBOL loads or unloads. The fill character is filled in as a trailing character.

Picture option
The Picture option lets you reformat and mask data from the field of a record before the data is transferred to the database. Picture strings, explains picture strings.

Function option
The Function option specifies a user-defined function that is called for every record that is processed. You must add the function to the dynamically linked library. For
information about using custom functions, see the API interface documentation in Custom-conversion functions.

Editing options

This section discusses specialized options in the Map-Definition window.

Using the Delete button
 You can break the association between a column and a field with the Delete button in the Map-Definition window.

Using the Find button
 You can find a column or field in a pane with the Find button in the Map-Definition window. The ipload utility scrolls the selected item into view and puts a box

around it. This option is useful when the list of columns or fields is so long that the pane cannot display all of the items.
Using the Specs button

 With the Specs button, you can display the Specifications window, where you can examine the characteristics of the columns and fields in your map.

Using the Delete button

You can break the association between a column and a field with the Delete button in the Map-Definition window.

To use the Delete button:

1. Click an icon in the right column of either of the panes in the Map-Definition window.
2. Click Delete to remove the arrow that connects the item to another item.

Using the Find button

You can find a column or field in a pane with the Find button in the Map-Definition window. The ipload utility scrolls the selected item into view and puts a box around it.
This option is useful when the list of columns or fields is so long that the pane cannot display all of the items.

To use the Find button:

1. In the Map-Definition window, select either the Table pane or the Format pane.
When you select a pane, the view indicator in the upper right corner of the window changes to show which pane you selected. The following figure shows the upper
portion of the Map-Definition window after you select the Format pane.
Figure 1. The view indicator

Part VI: Administering 1141

2. Click Find.
The Find Node window appears, as the following figure shows.
Figure 2. The Find Node window

Because the view indicator shows Format View, the Find Node window lists the fields of the data file. To see the columns of the database table, make sure that the
view indicator shows Table View.

3. To select the item to find, you can use either of these methods:
Scroll through the list box to locate the item that you want to find and then select the item.
Type the name of the item that you want to find in the Selection text box.

4. Click OK. The Map-Definition window appears again. The selected field or column is highlighted with a box.

Using the Specs button

With the Specs button, you can display the Specifications window, where you can examine the characteristics of the columns and fields in your map.

The following figure shows a sample Specifications window.
Figure 1. The Specifications window

To use the Specifications window:

1. Click Specs in the Map-Definition window to display the Specifications window.
2. Select a column from the Columns list box or a field from the Fields list box or both.

The specification boxes in the lower part of the screen display the characteristics of the selected items.

3. When you finish examining the specifications, click OK to return to the Map-Definition window.

The Specifications window displays the attributes of columns and fields. The Specifications window does not allow you to edit the attributes it displays. To change the
attributes of a field, you must modify the format of the data file. (See Format options.) To change the attributes of a column, you must use appropriate SQL statements to
modify the database table.

Map Views window

You can display a list of the components that are associated with a database in a specific project from the Map Views window. You can also create or edit a map.

The Map Views window appears in the following situations:

If you click Map in the Load Job or Unload Job window when no map name is in the Map text box

1142 Part VI: Administering

If you click Search in the Load Record Maps or Unload Record Maps window

The following figure shows the Map Views window for a load map.
Figure 1. The Map Views window for a load map

Seeing the load maps of a database
 Seeing selected load maps

Seeing the load maps of a database

To see the load maps of a database:

1. Select a project in the HPL main window.
2. Choose Components > Maps from the HPL main window.
3. Choose Load > Map or Maps > Unload Map.
4. After the Load Record Maps or Unload Record Maps window appears, click Search.

The Map Views window appears, as Figure 1 shows.

5. Select a database.
The ipload utility displays a list of the maps associated with that database, as the following figure shows. The Table and Format columns show the database column
and the format associated with each map.

If you want to edit a specific map or format, click its button and the corresponding definition window appears.
Figure 1. The Map Views window with the view expanded

Seeing selected load maps

To see selected load maps:

1. Open the Map Views window.
2. Select a database.
3. Type the name or partial name of a map, table, or format in the Map, Table, or Format text box. You can use wildcards in the name.
4. Click Search.

The following figure shows the maps that you find when you search for any table that includes orders in its name.

Part VI: Administering 1143

Figure 1. The maps that a search found

Define filters

This section describes how to create, edit, and delete filters.

Filters
 Filters are similar to queries. However, queries select data from database tables, whereas filters select data from a data file. During the load process, ipload loads

all of the records from a data file into a database table unless you use a filter to exclude some of the records.
Example of using filter

 Creating a filter
 Modifying a filter

 After you create a filter, you might need to modify that filter.
Filter views

 You can display a list of the filters and formats that are associated with a project from the Filter Views window. You can also create or edit a filter.
Filters with code-set conversion (GLS)

Filters

Filters are similar to queries. However, queries select data from database tables, whereas filters select data from a data file. During the load process, ipload loads all of
the records from a data file into a database table unless you use a filter to exclude some of the records.

A filter is a mechanism for prescreening data-file records for eligibility as database table entries. You can use the filter to include or exclude records explicitly during the
load process. You define match conditions to filter the records. Match conditions are selection criteria that test one or more data-file fields for certain values or text.

You can define filters at any time. After you define a filter, you can specify it in the Load Job window. The Load Job window is illustrated in Figure 2.

Filters have the following restrictions:

You cannot use filters with Ext Type data types.
The DATE and DATETIME data filters can only be applied to the fixed ASCII and delimited format types.

Example of using filter

Suppose that you have a worldwide telemarketing data file that contains the name, country, yearly salary, and age of potential contacts, as the following example shows:

John BrownUS 125,00057
Mary SmithArgentina83,00043
Larry Little US 118,00042
Ann SouthCanada 220,00053
David PetersonFrance 175,00072
Richard NorthSpain350,00039
Nancy RichardsJapan150,00054
William ParkerEgypt200,00064

To create a database that includes people who earn over $100,000 a year, are over the age of 50, and live outside the United States:

1. Use the match condition discard salary < 100,000 to exclude people who earn less than $100,000 a year. The selected records are as follows:

John BrownUS125,00057
Larry Little US118,00042
Ann SouthCanada220,00053
David PetersonFrance175,00072
Richard NorthSpain350,00039
Nancy RichardsJapan150,00054
William ParkerEgypt200,00064

2. Use the match condition keep age > 50 to include people over the age of 50. The remaining records are as follows:

John BrownUS125,00057
Ann SouthCanada220,00053
David PetersonFrance175,00072
Nancy RichardsJapan150,00054
William ParkerEgypt200,00064

3. Use the match condition discard country = US to exclude people living in the United States. The remaining records are the records that match all of the restrictions:

Ann SouthCanada220,00053
David PetersonFrance175,00072
Nancy RichardsJapan150,00054
William ParkerEgypt200,00064

1144 Part VI: Administering

If you want to use the same data file to create a database of only those people who live in the United States, or only those people under the age of 30, simply define
another filter. There is no limit to the number of filters that you can define for a data file.

Related reference:
 Define filters

Creating a filter

Before you can create a filter, you must create a format that describes the data file. For information about how to create a format, see Define formats.
The ipload utility stores the filter information in the filters table of the onpload database. For more information about the filters table, see The filters table in the onpload
database.

To create a filter:

1. Choose Components > Filter from the HPL main window.
The Filters window appears, as the following figure shows.
Figure 1. The Filters window

2. Click Create in the Mode group.
3. Choose a name for the filter and type the name in the Filter text box.
4. Type the name of an existing format in the Format text box, or click the down arrow and choose a format from the selection list.
5. Click OK.

The Filter-Definition window appears. The following figure shows a partially completed Filter-Definition window.
Figure 2. The Filter-Definition window

From the Filter-Definition window, you can prepare a filter that specifies which data from the input file is be loaded into the database table.

The Filter-Definition window has the following parts.
Table 1. Parts of the Filter-Definition window

Section Description

Fields Specifies the data-file field used in a match condition

Status Indicates whether you want to keep or discard records that meet the match condition

Match Condition Specifies the criteria for keeping or discarding a record

Filter Items/Status Lists existing filter items and their status As you add match conditions, the conditions are added to this list.

Preparing the filter definition

Related reference:

Part VI: Administering 1145

The filteritem table in the onpload database
The filters table in the onpload database

Preparing the filter definition

To prepare the filter definition:

1. Click Add in the Operation group to specify that you want to add a new match condition.
2. Type the name of the record field that you want to match in the Fields text box. You can also click the down arrow to see a selection list.
3. Click Keep or Discard in the Status group. This selection indicates whether the matching record should be entered into the database or discarded.
4. Type the match condition in the Match Condition text box by using the appropriate logical operators and match characters.

See Match condition operators and characters for a list of the logical operators and match characters.

5. Click Perform.
6. Repeat steps 2 through 5 for each additional filter item.
7. Click OK to save the filter and return to the Filters window.
8. Click Cancel to return to the HPL main window.

Modifying a filter

After you create a filter, you might need to modify that filter.

1. Choose Components > Filter from the HPL main window to display the Filters window.
2. Click Open in the Mode group.
3. Select the filter that you want to modify.
4. Click OK to display the Filter-Definition window.
5. Click Add in the Operation group.
6. Type the name of the record field in the Fields text box.
7. Type the match condition in the Match Condition text box.
8. Click Keep or Discard in the Status group to indicate the filter status.
9. Click Perform.

10. Click OK to save your changes and return to the Filters window.
11. Click Cancel to return to the HPL main window.

Editing an existing filter
 Adding an item to the filter

 Inserting an item into the filter sequence
 Deleting a filter

Editing an existing filter

To edit an existing filter:

1. Choose Components > Filter from the HPL main window tp display the Filters window.
2. Click Open in the Mode group.
3. Select the filter that you want to modify.
4. Click OK to display the Filter-Definition window.
5. Click Edit in the Operation group.
6. Select the filter item you want from the list of items. The field, status, and match conditions appear in their respective areas on the screen.
7. Change the information that you want.
8. Click Perform.
9. Click OK to save your changes and return to the Filters window.

10. Click Cancel to return to the HPL main window.

Adding an item to the filter

To add an item to the filter:

1. Choose Components > Filter from the HPL main window to display the Filters window.
2. Click Open in the Mode group.
3. Select the filter that you want to modify.
4. Click OK to display the Filter-Definition window.
5. Click Add in the Operation group.
6. Type the name of the record field in the Fields text box.
7. Type the match condition in the Match Condition text box.
8. Click Keep or Discard in the Status group to indicate the filter status.
9. Click Perform.

10. Click OK to save your changes and return to the Filters window.
11. Click Cancel to return to the HPL main window.

1146 Part VI: Administering

Inserting an item into the filter sequence

To insert an item in the filter sequence:

1. Choose Components > Filter from the HPL main window to display the Filters window.
2. Click Open in the Mode group.
3. Select the filter that you want to modify.
4. Click OK to display the Filter-Definition window.
5. Click Insert in the Operation group.
6. From the list of items, select the filter item before which you want to insert the new item.
7. Type the name of the record field in the Fields text box.
8. Type the match condition in the Match Condition text box.
9. Click Keep or Discard in the Status group to indicate the filter status.

10. Click Perform to insert the new item before the selected filter item in the Filter Items list box.
11. Click OK to save your changes and return to the Filters window.
12. Click Cancel to return to the HPL main window.

Deleting a filter

To delete a filter:

1. Choose Components > Filter from the HPL main window to display the Filters window.
2. Click Open in the Mode group.
3. Select the filter that you want to edit.
4. Click OK to display the Filter-Definition window.
5. Click Delete in the Operation group.
6. Select the item that you want to delete from the list of filter items.
7. Click Perform.
8. Click OK to save your changes and return to the Filters window.
9. Click Cancel to return to the HPL main window.

Filter views

You can display a list of the filters and formats that are associated with a project from the Filter Views window. You can also create or edit a filter.

The Filter Views window appears in the following situations:

If you click Filter in the Load Job window when no filter name is in the Filter text box
If you click Search in the Filters window

The following figure shows the Filter Views window. Views windows discusses the use of Views windows.
Figure 1. The Filter Views window

Filters with code-set conversion (GLS)

When you use a filter to select or discard data during the load, the High-Performance Loader (HPL) interprets the filter specification in the code set of the database server.
The filtering process on data that undergoes code-set conversion occurs in the following order:

1. The onpload utility converts the input data to the code set of the database server.
2. The onpload utility performs the filtering operation.

If the code-set conversion process creates lossy errors, then the output of the filter operation can be unexpected. For information about lossy errors and how to define or
evaluate a code-set conversion specification, see the IBM® Informix® GLS User's Guide.

Part VI: Administering 1147

Unload data from a database

This section describes the Unload Job window.

Unload jobs
 An unload job converts IBM Informix database records to a specified format and then unloads those records to a file, tape, pipe (UNIX only), or device array.

Components of the unload job
 The Unload Job windows

 You can create an unload job or select an existing job for editing from the Unload Job Select window.
Generate options for an unload job

 Instead of individually creating the components that are required on the Unload Job window, you can use the Generate options to create an unload job.

Related concepts:
 The HPL data-unload process

Load Job and Unload Job windows

Unload jobs

An unload job converts IBM® Informix® database records to a specified format and then unloads those records to a file, tape, pipe (UNIX only), or device array.

You can run an unload job from the Unload Job window of ipload, or you can run the onpload utility from the command line.

Related reference:
 The onpload utility

Components of the unload job

Before you can unload data, you must first define the following components of the unload job:

The device array that receives the unloaded data.
The format that describes the organization of the data file into which you are unloading data.
The query that extracts the records that you want from the database.
The unload map that describes the relationship between the columns of a database table and the fields of the data-file record.
The map also specifies any necessary data translations, such as case conversion and justification.

You can define these components in the following ways:

Define each component from the Unload Job window.
Define each component individually from the Components menu.
Use the Generate Job option from the Components menu.
Use the Generate button in the Unload Job window.

Choose the database server
 You must run the unload job on the target server. The target server is the database server that contains the database from which you unload the data. The database

must be on the same database server as onpload that extracts data from it. You can run ipload on any database server on your network.
Run multiple jobs

 You can run multiple unload jobs concurrently.

Related concepts:
 Define device arrays

Related reference:
 Define formats

Define queries
Define maps
The Generate options of the ipload utility

Choose the database server

You must run the unload job on the target server. The target server is the database server that contains the database from which you unload the data. The database must
be on the same database server as onpload that extracts data from it. You can run ipload on any database server on your network.

Run multiple jobs

You can run multiple unload jobs concurrently.

However, because the High-Performance Loader (HPL) is designed to use as many system resources as possible, running concurrent jobs might overload the system. If
you are using a UNIX cron job to run the load and unload jobs, let one job finish before you start the next.

The Unload Job window displays the target and onpload database servers in the upper right corner of the display.

1148 Part VI: Administering

The Unload Job windows

You can create an unload job or select an existing job for editing from the Unload Job Select window.

From the Unload Job window, you can also create or modify the components of an unload job and run the unload job. You can change unload options before you run the
unload job. The unload options include the isolation level and the maximum number of errors to permit before onpload stops the unload job.

The ipload utility stores the information about the unload job in the session table of the onpload database. The session table draws information from other onpload
tables, such as maps, formats, and so on.

Creating an unload job
 Use the Unload Job Select and Unload Job windows to create an unload job.

Run the unload job
 Specify to write to the end of the tape

 On the Unload Job Select window, you can specify to write to the tape until the end of the device with the Write/read to/from tape until end of device check box.
When a tape device is full, you are prompted to provide the next tape, until the unload job is complete.
The command-line information

 If you select an existing job in the Unload Job Select window, the Command Line text box shows the onpload command that ipload generated for that unload job.
Changing the unload options

 Editing an unload job
 After you save an unload job, you can return to the unload job and modify it.

Related reference:
 The onpload database

Creating an unload job

Use the Unload Job Select and Unload Job windows to create an unload job.

To create an unload job:

1. Choose Jobs > Unload from the HPL main window.
The Unload Job Select window appears, as the following figure shows.
Figure 1. The Unload Job Select window

2. Click Create in the Selection Type group.
3. Choose a name for this unload job and type the name in the Job Name text box.
4. Optionally check the Write/read to/from tape until end of device check box. For more information, see Specify to write to the end of the tape.
5. Click OK.

The Unload Job window appears, as the following figure shows. The ipload utility windows, provides detailed descriptions of the buttons in the Unload Job window.
Figure 2. The Unload Job window

Part VI: Administering 1149

6. Type appropriate values for all of the unload components. If you click a component button, the corresponding view window opens, and you can create or select the
component.

7. Specify the file that contains rejected record by using one of these methods:
Type the name of the rejected file in the Discards Records text box.
Click the down arrow next to the Discard Records text box to select the file name from the file-selection list.

8. Select the file that contains the unload status log by using one of these methods:
Type the name of the log file in the Logfile text box.
Click the down arrow next to the Logfile text box to select a file name from the File-Selection window.

9. Click Options to change unload options. For more information, see Changing the unload options.
10. Click Save to save this unload job. (If you click Run to run the job immediately, the job is saved automatically.)
11. Now you can either run the unload job or exit and run the job later.

Click Run to run the job.
Click Cancel to exit to the Unload Job Select window.

Important: Use Ext Type String Length data type or Ext Type Binary Length data type if you unload data that contains null UDT values.

Run the unload job

If you click Run in the Unload Job window, the Active Job window appears, as the following figure shows. The Active Job window displays the progress of your job and
indicates when the job completes. When the Active Job window indicates that the job is complete, click OK to return to the Unload Job Select window.

The information that onpload displays in the Active Job window is also stored in the log file whose name you selected in step 8.
Figure 1. The Active Job window

Problems during an unload job
 If you encounter any problems during the unload, examine the various files that onpload creates.

Related reference:
 View the status of a load job or unload job

1150 Part VI: Administering

Problems during an unload job

If you encounter any problems during the unload, examine the various files that onpload creates.

Important: If a write to a file fails because a disk is out of space, the operating system does not return information about how much of the write succeeded. In this
situation, the onpload utility cannot accurately report the number of records that were written to disk. Thus, the number of records that are logged as unloaded in the log
file is imprecise.
Related reference:

 The HPL browsing options

Specify to write to the end of the tape

On the Unload Job Select window, you can specify to write to the tape until the end of the device with the Write/read to/from tape until end of device check box. When a
tape device is full, you are prompted to provide the next tape, until the unload job is complete.

Important: If you select this option, you must also select it when loading from the Load Job window or specify the -Z option from the command line; otherwise, the loaded
and unloaded data might be inconsistent.
If you check this check box, it supersedes any tape size information you enter in the Device-Array Definition window or at the command line.
Important: You must provide the same tapes in the same order on the same devices for both unload jobs and load jobs to ensure consistency.

The command-line information

If you select an existing job in the Unload Job Select window, the Command Line text box shows the onpload command that ipload generated for that unload job.

The following figure shows the Command Line portion of an Unload Job Select window. The Command Line text box displays the onpload command generated for the job
shown in Figure 1.
Figure 1. Fragment of the Unload Job Select window

The command line, onpload -p testum -j testum2_out -fu, contains the following arguments.

-p testum
The project where the job is stored.

-j testum2_out
The name of the job.

-fu
The job that unloads (rather than loads) data.

You can copy the onpload command from the Command Line text box and paste it at a system prompt to run the unload job. If you need to run the unload job multiple
times (for example, every evening at 5:00 p.m.), you can save the onpload command and run it later.

You do not need to start ipload to run a job from the system prompt. Both ipload and onpload use the onpload database, but each one uses it independently.

Changing the unload options

The Unload Options window contains the following options.
Table 1. The Unload Options window options

Option Description

Isolation Level The criteria for how the query selects records. The four levels of isolation (from highest to lowest) are as follows:

Committed
Cursor Stability
Repeatable Read
Dirty Read

The higher the isolation level, the lower the unload performance. For a more detailed definition of isolation levels, see the IBM® Informix® Guide to
SQL: Syntax.

Max Errors The maximum number of error conditions to be encountered. If the number of unload errors exceeds this number, the unload job stops.

To change unload options:

Part VI: Administering 1151

1. Display the Unload Job window. See the instructions for Creating an unload job.
2. Click Options.

The Unload Options window appears, as the following figure shows.
Figure 1. The Unload Options window

3. Change the options that you want.
4. Click OK to return to the Unload Job window.

Editing an unload job

After you save an unload job, you can return to the unload job and modify it.

To edit an unload job:

1. Choose Jobs > Unload from the HPL main window.
2. Click Open in the Selection Type group.
3. Select a job from the Job Information list box.
4. Click OK to display the Unload Job window.
5. Make the appropriate changes to the entries in the Unload Job window.
6. Click Options to change unload options. For more information, see Changing the unload options.
7. Click Save to save this unload job.
8. Now you can either run the unload job or exit and run the job later.

Click Run to run the job.
Click Cancel to exit.

Generate options for an unload job

Instead of individually creating the components that are required on the Unload Job window, you can use the Generate options to create an unload job.

You can click Generate in the Unload Job window, or you can choose Components > Generate from the HPL main window.

The Generate options do not give you as much flexibility as the Unload Job window, but the options let you create the components quickly. In addition, the Generate
options let you create formats (Binary, Fixed Internal, and No Conversion) that are not available from the Format-Definition window.

Related reference:
 The Generate options of the ipload utility

Load data to a database table

This section describes the load process.

Load jobs
 A load job loads data from a set of one or more files into a single database table. A record format, which defines each field of a record, specifies the layout of the

input data. A load map specifies how the record fields are mapped to the columns of the target table. During the load process, the onpload utility converts data
from record field to table column.
Components of the load job

 The High-Performance Loader (HPL) lets you define the individual components of a data load individually or lets you use the generate option to define the
components automatically.
The Load Job windows

 You can create, save, and run a load job from the Load Job Select window and the Load Job window. The Load Job window visually represents the various
components of a load. After you select the components, you can save the load job for future use or run it immediately.
Generate options for a load job

 Instead of individually creating the components that are required on the Load Job window, you can use the Generate options to create a load job.

Related concepts:
 Load Job and Unload Job windows

Load jobs

1152 Part VI: Administering

A load job loads data from a set of one or more files into a single database table. A record format, which defines each field of a record, specifies the layout of the input
data. A load map specifies how the record fields are mapped to the columns of the target table. During the load process, the onpload utility converts data from record field
to table column.

Components of the load job

The High-Performance Loader (HPL) lets you define the individual components of a data load individually or lets you use the generate option to define the components
automatically.

The components of the load job specify:

The device array where the source data files resides
The format of the data files
The filter that accepts or rejects source-file records for the load
The map that specifies the relationship between the data-file format and the database table schema

When you run a load job, you select which individual components to use. The collection of the various components for a specific load is called the load job. You can assign
a name to a load job, save the job, and then retrieve and rerun it as often as you need to. You can modify an existing job or save it under another job name.

You can define as many different load jobs as you need. You can group your load jobs under one or more projects to make the tasks easier to manage.

Choose the database server
 You must run the load job on the target server. The target server is the database server that contains the database into which you load the data. The target database

must be on the same database server as the onpload program that updates it.
Run multiple jobs

 You can run only one express-load job at a time on the same table, although you can run multiple unload jobs concurrently. Because the High-Performance Loader
(HPL) is designed to maximize the use of system resources, running concurrent jobs might overload the system.
Prepare user privileges and the violations table

 You must make sure that the user who runs a load job has sufficient privileges to manage the constraints and the violations table.

Related reference:
 Define onpladm utility jobs

Choose the database server

You must run the load job on the target server. The target server is the database server that contains the database into which you load the data. The target database must
be on the same database server as the onpload program that updates it.

Tip: The onpload database and the ipload interface can be on different computers. You can run the ipload interface on any computer that can connect to the database
server that contains the onpload database.

Run multiple jobs

You can run only one express-load job at a time on the same table, although you can run multiple unload jobs concurrently. Because the High-Performance Loader (HPL) is
designed to maximize the use of system resources, running concurrent jobs might overload the system.

If you are using a UNIX cron job to run the load or unload jobs, let one job finish before you start the next.

Prepare user privileges and the violations table

You must make sure that the user who runs a load job has sufficient privileges to manage the constraints and the violations table.

The following table summarizes the actions that you must take. The following sections discuss these actions in more detail.

Table Status User Privileges Action

Owned by user No further action is required.

Not owned by user User has DBA privileges on the table. No further action is required.

Not owned by user User does not have DBA privileges on the table. User must have:

Resource privileges on database.
Alter privileges on table.

Owner must start violations table.

For detailed information about user privileges and violations tables, see the IBM® Informix® Guide to SQL: Syntax and the IBM Informix Guide to SQL: Reference.

Set user constraints
 To modify any constraint, index, or trigger, a user must have both Alter privileges on the table and the Resource privilege on the database. The user must also have

these privileges to start or stop a violations table. You use the GRANT statement to set these privileges.
Manage the violations and diagnostics tables

Part VI: Administering 1153

Set user constraints

To modify any constraint, index, or trigger, a user must have both Alter privileges on the table and the Resource privilege on the database. The user must also have these
privileges to start or stop a violations table. You use the GRANT statement to set these privileges.

Manage the violations and diagnostics tables

You can turn on or turn off the generation of constraint-violation information. If you turn on the generation of constraint-violation information, onpload writes the
information to the violations and diagnostics tables.

The High-Performance Loader (HPL) manages the violations and diagnostics tables in the following manner:

1. Starts the load job.
2. Starts the violations and diagnostics tables if they do not exist. (If a violations and diagnostics table exists, the HPL uses that table).

The HPL uses the following SQL statement to start the violations table:

START VIOLATIONS TABLE FOR tablename

3. Performs the load job.
4. Stops the violations and diagnostics tables if they were started at step 2.

The HPL uses the following SQL statement to stop the violations and diagnostics tables:

STOP VIOLATIONS TABLE FOR tablename

5. Drops the violations table if the violations table is empty.

The START VIOLATIONS TABLE statement creates the violations and diagnostics tables and associates them with the load table. The STOP VIOLATIONS TABLE statement
dissociates the violations and diagnostics tables from the load table.

The violations table (tablename_vio) and the diagnostics table (tablename_dia) are always owned by the owner of the table with which they are associated. The Resource
privilege lets a user start and stop a violations table, but it does not let the user drop a table that the user does not own. Thus, the HPL cannot drop the violations table in
step 5 if the user is not the owner.

Failure to drop the violations table does not cause the load job to fail. However, this failure leaves in the database a violations table that is not associated with a table. If
the user tries to run the job again, the START VIOLATIONS TABLE statement in step 2 fails because the table tablename_vio exists.

To solve this problem, the owner of the table or the database administrator must explicitly create the violations and diagnostics tables by using the START VIOLATIONS
statement. When the owner creates the violations table, the following actions take place:

In step 2, the HPL uses the existing violations table.
In step 4, the HPL does not stop the violations table because the table was not started in step 2.
In step 5, the HPL does not drop the violations table because the user does not own the table.

After the load job is complete, an active violations table remains in the database. This table might be empty, but does no harm. When the user runs the load job a second
time, the violations table is available, and the load job succeeds.

Related tasks:
 Changing the load options

Related information:
 START VIOLATIONS TABLE statement

STOP VIOLATIONS TABLE statement

The Load Job windows

You can create, save, and run a load job from the Load Job Select window and the Load Job window. The Load Job window visually represents the various components of a
load. After you select the components, you can save the load job for future use or run it immediately.

The ipload utility assigns path names for the log files that document the load and that capture records that do not pass the specified filter or that do not pass conversion.

When you use ipload to create a job, ipload stores information for the job in a row in the session table of the onpload database. The ipload utility stores information about
the components of the load job in other tables of the onpload database, including format, maps, filters, and so on. When you use the onpload command, columns in the
session table reference the components to assemble the information necessary for the job.

Creating a load job
 Use the Load Job Select window to create a load job or select an existing job to edit.

Run the load job
 Specify to read to the end of the tape

 From the Load Job Select window, you can specify to read from the tape until the end of the device with the Write/read to/from tape until end of device check box.
When a tape device is empty, you are prompted to provide a new tape, until the load job is complete.
The command-line information

 If you select an existing job in the Load Job Select window, the Command Line text box shows the onpload command that ipload generated for that load job.
Changing the load options

 Editing a load job
 After you create and save a load job, you can later return and modify that load job.

Related reference:
 The onpload database

1154 Part VI: Administering

The session table in the onpload database

Creating a load job

Use the Load Job Select window to create a load job or select an existing job to edit.

To create a load job:

1. Choose Jobs > Load from the HPL main window.
The Load Job Select window appears, as the following figure shows.
Figure 1. The Load Job Select window

2. Click Create in the Selection Type group.
3. Select a name for the job and type it in the Job Name text box.
4. Optional: Check the Write/read to/from tape until end of device check box. For more information, see Specify to read to the end of the tape.
5. Click OK.

The Load Job window appears, as the following figure shows.
Figure 2. The Load Job window

6. Type the appropriate values for the components of the load.
The HPL ipload utility icon buttons describes the icons that represent the components of the load. For detailed information about these components, see the
individual topics on device arrays, formats, filters, and maps.

7. Select a base name for the files that contain rejected records and type it in the Discard Records text box. Reviewing records that the conversion rejected gives
information about rejected records.

8. Choose a name for the file that contains the load job status log and type it in the Logfile text box. For more information about the log file, see View the status of a
load job or unload job.

9. Click Options to change the load options. For more information about these options, see Changing the load options.
10. Click Save to save this load job. (If you click Run to run the job immediately, the job is saved automatically.)
11. Now you can either run the load job or exit and run the job later.

Click Run to run the job.

Part VI: Administering 1155

Click Cancel to exit to the Load Job Select window.

Run the load job

If you click Run in the Load Job window, the Active Job window appears, as Figure 1 shows. The Active Job window displays the progress of your job and indicates when
the job completes. When the Active Job window indicates that the load job is complete, click OK to return to the Load Job Select window.
Tip: Before you run a load job, you might want to view the data-file records according to a specified format to check your definitions.
After you run an express-mode load, you must make a level-0 backup before you can access the table that you loaded.

Make a level-0 backup
 Express-mode loads do not log loaded data. After an express-mode load, onpload sets the table to read-only as a protective measure. To make the table available

for write access, you must do a level-0 backup for all the dbspaces that the fragments of the loaded table occupy. The level-0 backup allows data recovery for the
table in case of future database corruption.
Problems during a load job

 If you encounter any problems during the load, examine the various files that onpload creates.

Related concepts:
 Preview data-file records

Make a level-0 backup

Express-mode loads do not log loaded data. After an express-mode load, onpload sets the table to read-only as a protective measure. To make the table available for
write access, you must do a level-0 backup for all the dbspaces that the fragments of the loaded table occupy. The level-0 backup allows data recovery for the table in
case of future database corruption.

If you do not need to provide for data recovery, you can use /dev/null as the backup device for the level-0 backup. This strategy makes the table available for write access
without actually backing up the data. If a user attempts to write into the table before you make a level-0 backup, the database server issues an error message.

If you run several express-load jobs on different tables in a database, you can complete all of the loads before you perform the level-0 backup. However, if you try to do a
second load on the same table without making a level-0 backup, the database server issues an error message.

For discussions of table fragments and dbspaces, see the IBM® Informix® Administrator's Guide. For information about making backups, see the IBM Informix Backup and
Restore Guide.

Related concepts:
 How the express and deluxe modes work

Problems during a load job

If you encounter any problems during the load, examine the various files that onpload creates.

Important: Because of operating-system limitations, the onpload utility cannot load successfully from a file (on disk) that is larger than 2 GB on a platform that is less than
a 64-bit platform. If you try to read a file that is larger than 2 GB, onpload HPL fails only after it processes the first 2 GB of data. The HPL log file reports the following
error:

Cannot read file /some_dir/a_long_file - aio error code 27

Related reference:
 The HPL browsing options

Specify to read to the end of the tape

From the Load Job Select window, you can specify to read from the tape until the end of the device with the Write/read to/from tape until end of device check box. When a
tape device is empty, you are prompted to provide a new tape, until the load job is complete.

Important: If you select this option, you must also select it when unloading from the Unload Job window, or specify the -Z option from the command line; otherwise, the
loaded and unloaded data might be inconsistent.
If you check this check box, it supersedes any tape size information you enter in the Device-Array Definition window or at the command line.
Important: You must provide the same tapes in the same order on the same devices for both the unload jobs and the load jobs to ensure consistency.

The command-line information

If you select an existing job in the Load Job Select window, the Command Line text box shows the onpload command that ipload generated for that load job.

The following figure shows the Command Line portion of a Load Job Select window. The Command Line text box displays the onpload command generated for the load job
that Figure 3 shows.
Figure 1. Fragment of the Load Job Select window

1156 Part VI: Administering

The command line, onpload -p practice -j newjob -fl, contains the following arguments.

-p practice
The project where the job is stored.

-j newjob
The name of the job.

-fl
The job that loads (rather than unloads) data.

You can copy the onpload command from the Command Line text box and paste it at a system prompt to run the load job. If you need to run the load job multiple times,
you can save the onpload command and run it later.

You do not need to start ipload to run a job from the system prompt. The ipload and onpload utilities both use the onpload database, but each utility uses it
independently.

Changing the load options

Before you run a load job, you can review or change any load options. The load options include specifying the number of records to load, the starting record number, and
the loading mode.
The ipload utility stores option information in the session table of the onpload database.

The Load Options window contains the following option text boxes.
Table 1. The Load Options window options

Option Description

Load Mode The mode for the load: express, deluxe, or deluxe without replication

Generate Violations Records Whether or not to generate violations records

Tapes The number of tapes that contain source data

Number Records The number of records to process in the data file

Start Record The record number in the data file from which to start loading

Max Errors The maximum number of error conditions to be encountered
If the number of load errors exceeds this number, the load stops.

Commit Interval The number of records to load before logging the transaction
If you set the commit interval to 0, onpload uses the default value of 10. You can use this option only with deluxe mode.

To change load options:

1. Display the Load Job window. See Creating a load job.
2. Click Options.

The Load Options window appears, as the following figure shows.
Figure 1. The Load Options window

3. Change the options that you want.
4. Click OK to return to the Load Job window.

Related concepts:

Part VI: Administering 1157

The HPL ipload utility icon buttons
Manage the violations and diagnostics tables
Related reference:
The onpload database

Editing a load job

After you create and save a load job, you can later return and modify that load job.

To edit a load job:

1. Choose Jobs > Load from the HPL main window to display the Load Job Select window.
2. Click Open in the Selection Type group.
3. Select a job from the Job Information list box.
4. Click OK to display the Load Job window.
5. Make appropriate changes to the entries in the Load Job window.
6. Click Options to change load options.
7. Click Save to save this load job.
8. Run or cancel the load, as follows:

Click Run to run the data load.
Click Cancel to exit.

Generate options for a load job

Instead of individually creating the components that are required on the Load Job window, you can use the Generate options to create a load job.

You can click Generate in the Load Job window, or you can choose Components > Generate Job from the HPL main window.

The Generate options do not give you as much flexibility as creating each component individually, but these options let you create the components quickly. (After you
generate the components, you can edit the components individually by accessing them through the Components menu.) In addition, the Generate options let you create
formats (Fixed Internal and No Conversion) that are not available from the Format-Definition window.

Related reference:
 The Generate options of the ipload utility

The Generate options of the ipload utility

This section describes the Generate options for the ipload utility.

Overview of the ipload Generate options
 Use the generate options of ipload to automatically generate components of a load or unload job. The generate options can save you time when you create formats,

maps, queries, and load and unload jobs.
Tasks that generate load or unload components

 Generate from the Load Job window
 Use the Generate button in the Load Job window to save time when the format of the data file corresponds to the format of the database table.

Generate from the Unload Job window
 Use the Generate button in the Unload Job window to save time when the format of the data file is similar to the format of the database table.

Generate from the Components menu
 To generate all of the components for both load and unload jobs in one operation, choose Components > Generate Job from the main HPL window. This Generate

option lets you choose formats that are not available from the Format-Definition window.

Related concepts:
 Formats

Components of the unload job
Related reference:

 The ipload utility Generate options
Generate options for an unload job
Generate options for a load job

Overview of the ipload Generate options

Use the generate options of ipload to automatically generate components of a load or unload job. The generate options can save you time when you create formats, maps,
queries, and load and unload jobs.

When you generate a load or unload job for a database, ipload creates a format for the data file and a map that associates the columns of the table with the fields of the
data-file records. Although the generated components might not match your database schema or data-file records exactly, the components created by the generate
options provide useful starting points for building HPL components. After you generate default components, you can modify the components to match your specific needs.

Tasks that generate load or unload components

1158 Part VI: Administering

Use the ipload utility to perform the following tasks:

Generate load components from the Load Job window.
Generate unload components from the Unload Job window.
Generate both load and unload components from the Components menu.

Generate from the Load Job window

Use the Generate button in the Load Job window to save time when the format of the data file corresponds to the format of the database table.

When you generate from the Load Job window, ipload makes the following assumptions about the file (or device array) that contains the data:

The file is an ASCII file.
The file uses the same locale as the database.
The file uses a vertical bar (|) for the field delimiter and a new line for the record delimiter.
The fields in each record of the file correspond one-to-one to the columns of the target table.
All records in the file should be loaded.

Generating a job from the Load Job window
 When you generate from the Load Job window, ipload creates a format, a map, a job, and, if needed, a device array.

Generating a job from the Load Job window

When you generate from the Load Job window, ipload creates a format, a map, a job, and, if needed, a device array.

To generate a job from the Load Job window:

1. Choose Jobs > Load from the HPL main window to display the Load Job Select window.
2. Click Create in the Selection Type group.
3. Select a name for the load job and type it in the Job Name text box.
4. Click OK to display the Load Job window.
5. Click Generate.

The Autogenerate Load Components window appears, as the following figure shows.
Figure 1. The Autogenerate Load Components window

6. Click Device Array or File to indicate the location of the source data
To load from an existing device array, click Device Array and type the name of the device array.
To load from a file, click File and type the full path name of the file. The ipload utility automatically generates a device array that includes the file.

7. In the Load To group, type the name of the database and table that will receive the data.
8. Click OK to generate the components of the load and return to the Load Job window.
9. If needed, click Filter to prepare a filter.

10. If you want, change the path names in the Discard Records and Logfile text boxes.
11. Click Save to save the components and the job.
12. Click Run to run job or Cancel to exit.

Generate from the Unload Job window

Use the Generate button in the Unload Job window to save time when the format of the data file is similar to the format of the database table.

When you generate from the Unload Job window, ipload makes the following assumptions about the file (or device array) into which the data is unloaded:

The file is an ASCII file.
The file uses the same locale as the database.
The file uses a vertical bar (|) for the field delimiter and a new line for the record delimiter.

Generating a job that uses a query
 When you generate from the Unload Job window, ipload creates a format, a map, a job, and, if needed, a device array. You can generate an unload job that uses a

query to select from one or more tables or that unloads an entire table.
Generating a job that unloads an entire table

Part VI: Administering 1159

Generating a job that uses a query

When you generate from the Unload Job window, ipload creates a format, a map, a job, and, if needed, a device array. You can generate an unload job that uses a query to
select from one or more tables or that unloads an entire table.

To generate a job that uses a query

1. Follow the instructions in Creating a query to create a query.
2. Choose Job > Unload from the HPL main window to display the Unload Job Select window.
3. Click Create in the Selection Type group.
4. Select a name for the unload job and type it in the Job Name text box.
5. Click OK to display the Unload Job window.
6. Click Generate.

The Autogenerate Unload Components window appears, as the following figure shows.
Figure 1. The Autogenerate Unload Components window

7. Click Query in the Unload From group.
8. Enter the name of the query. You can use the down arrow to see selection lists. When you unload from a table, you do not enter a query.
9. Click Device Array or File in the Unload To group.

If you click Device Array, you can use the down arrow to see a list of the available device arrays.
If you click File, ipload creates a device array of the same name as the unload job and inserts the specified file into that device array.

Important: If you are executing onpload from the command line during an unload job, you must first create the file.
10. Click OK to generate the components of the unload job.

The display returns to the Unload Job window. The ipload utility completes the Unload Job window. If you chose cust_out for the unload job name (step 4), the
Unload Job window appears as the following figure shows.
Figure 2. The Unload Job window

11. Click Save to save this Unload Job. You can click Run to run the job, or click Cancel to exit and run the job later.
12. To run the job, click Run to display the Active Job window.
13. When the Active Job window displays Job Completed, click Cancel to return to the main HPL window.

Generating a job that unloads an entire table

To generate a job that unloads an entire table:

1. Choose Jobs > Unload from the HPL main window to display the Unload Job Select window.
2. Click Create in the Selection Type group.
3. Choose a name for the unload job and type it in the Job Name text box.
4. Click OK to display the Unload Job window.
5. Click Generate.

1160 Part VI: Administering

The Autogenerate Unload Components window appears, as Figure 1 shows.

6. Click Table in the Unload From group.
7. Enter the database that you want in the Database text box and the table that you want in the Table text box. You can use the down arrows to see selection lists.

When you unload from a table, you do not enter a query.
8. Click Device Array or File in the Unload To group.

If you click Device Array, you can use the down arrow to see a list of the available device arrays.
If you click File, ipload creates a device array of the same name as the unload job and inserts the specified file into that device array.

9. Click OK to generate the components of the unload job. The Unload Job window reappears, with the components of the job completed.
10. Click Save to save this Unload Job. You can click Run to run the job, or click Cancel to exit and run the job later.
11. To run the job, click Run and the Active Job window appears.
12. When the Active Job window displays Job Completed, click Cancel to return to the main HPL window.

Generate from the Components menu

To generate all of the components for both load and unload jobs in one operation, choose Components > Generate Job from the main HPL window. This Generate option
lets you choose formats that are not available from the Format-Definition window.

The Generate window
 You can specify the characteristics of the components that ipload creates from the Generate window.

Generating load and unload components
 When you choose Components > Generate, you can generate all of the components required for a load job and an unload job: format, load map, unload map, query,

and device array.
Using the No Conversion Job option

 The No Conversion Job option uses the IBM® Informix® internal format to unload data from a table. Jobs loaded or unloaded with this option are sometimes called
raw loads or raw unloads.

The Generate window

You can specify the characteristics of the components that ipload creates from the Generate window.

The following figure shows the Generate window. This window generates all of the components required for a load job and an unload job: format, load map, unload map,
query, and device array.
Figure 1. The Generate window

Generate group
 The Generate group specifies the type of generate to perform.

Format type group
 The Format Type group specifies the format of the data file.

Generate group

The Generate group specifies the type of generate to perform.

The Generate group has the following choices.

Choice Effect See

Load/Unload Job Generates both load and unload jobs Generating load and
unload components

No Conversion Job Generates a job that treats an entire database record as one entity Using the No Conversion
Job option

Maps and Formats only Generates only a format, a load map, and an unload map

Format type group

The Format Type group specifies the format of the data file.

Part VI: Administering 1161

The Format Type group has the following choices.

Choice Description See

Delimited The fields of a data-file record are separated by a field delimiter, and records
are separated by a record delimiter. The default delimiter for fields is a vertical
bar (|). The default delimiter for records is a new line.

Modifying delimited-
format options

Fixed Internal The data file uses IBM® Informix® internal format. The only changes to the
data that you can make when you use this format are ALTER TABLE changes:
modify the order of columns, delete or add columns, or change the data type.
The HPL loads and unloads data in this format more efficiently than data in the
Delimited and Fixed ASCII formats.

Other formats

Fixed ASCII All records are the same length. Each record contains characters in fixed-
length fields. This format is the same as the Fixed format choice of the Record
Formats window.

Fixed-length records

Fixed Binary The data file records contain data in fixed-length fields. Character-oriented
data is in character fields. Numeric data (integer, float, and so on) is in
machine-dependent binary values. Use this format for loading or unloading
data for an application that has or requires data in binary format. Data in
binary format is much more compact than data in ASCII format.

Fixed-length records

COBOL The data file is formatted according to COBOL 86 standards. All COBOL data
types are supported.

COBOL records

COBOL (byte) The data file is formatted with byte alignments for COMP-4 data type. All
COBOL data types are supported.

Tip: To generate EBCDIC data, select the Delimited or Fixed ASCII format and use the format options to change the code set.
Related reference:
Format options
Alter the schema of a table

Generating load and unload components

When you choose Components > Generate, you can generate all of the components required for a load job and an unload job: format, load map, unload map, query, and
device array.

To generate the components for loading or unloading a database:

1. Choose Components > Generate Jobs from the main HPL window to display the Generate window.
2. Click Load/Unload Job in the Generate group.
3. Select a format for the data file in the Format Type group.
4. Select a name for the generated components and type it in the Generate Name text box. This name is used for each of the components that this option creates.
5. Type the name of the database that you will load or unload in the Database text box. Or, click the down arrow to select a database from the selection list.
6. Type the name of the table within the database in the Table text box. Or, click the down arrow to select a table from the selection list.
7. Type the name of a device array in the Device text box. Or, click the down arrow to select a device from the selection list.

If you enter the name of a device (file) instead of a device array, ipload creates a device array of the same name as the unload job and inserts the specified device
into that device array.

When you specify a file instead of a device array in the Device text box, ipload makes the following assumptions about the data file:
The file is an ASCII file.
The file uses the same locale as the database.
The file uses a vertical bar (|) for the field delimiter and a new line for the record delimiter.
The fields in the data file are in the same order as the columns of the target table.

8. Click OK.

The following figure shows appropriate choices for generating load and unload jobs for delimited output from the state table of the stores_demo database. After ipload
creates the components, you can run the job or use the Component-Definition windows to make any necessary changes.
Figure 1. The Generate window

For information about generating a job from a .csv file, see Testing the import of a CSV file.

Using the No Conversion Job option

1162 Part VI: Administering

The No Conversion Job option uses the IBM® Informix® internal format to unload data from a table. Jobs loaded or unloaded with this option are sometimes called raw
loads or raw unloads.

The No Conversion Job option treats an entire database record as one entity by using the internal format. It does not generate formats or maps. The No Conversion Job
option is the fastest option that you can use for loading and unloading data. Use this option to transport data or when you need to reorganize the disks on your computer.
No-conversion jobs are always completed in express mode. You cannot use the onpload command line to convert the running job to deluxe mode when using a no-
conversion job.

When you run a job that you created with the No Conversion Job option, ipload displays a Fast Job Startup window instead of the usual Load Job or Unload Job window.

To use the Fast Job Startup window:

1. Choose Components > Generate Job from the main HPL window.
2. Click No Conversion Job in the Generate group.
3. Select a name for the job and type it in the Generate Name text box.
4. Type the names of the database, table, and device array in the Database, Table, and Device text boxes.
5. Click OK. The display returns to the HPL main window.
6. Choose JobsLoad (or Jobs > Unload) from the main HPL window.

The Load Job Select or Unload Job Select window appears.

7. Select the job from the Job Information list box.
8. Click OK.

The Fast Job Startup window appears, as the following figure shows.
Figure 1. The Fast Job Startup window for a load job

9. Click Run to run the job and the Active Job window appears.
10. When the Active Job window displays Job Completed, click Cancel to return to the main HPL window.

Related reference:
 Settings for a no-conversion load or unload job

The HPL browsing options

This section describes the browsing options that are available for the High-Performance Loader (HPL).

Browsing options
 Use the browsing options of the High-Performance Loader (HPL) to preview records from the data file, review records after you perform a load or unload job, review

various files associated with the HPL, and view the status of a load or unload job.

Related reference:
 Problems during an unload job

Problems during a load job

Browsing options

Use the browsing options of the High-Performance Loader (HPL) to preview records from the data file, review records after you perform a load or unload job, review
various files associated with the HPL, and view the status of a load or unload job.

Preview data-file records
 Before you actually run a load job, you can use the Record Browser window to check your definition of the format. The display shows errors such as incorrect field

lengths or missing fields. You can edit the format to correct your format definitions.
Reviewing records that the conversion rejected

 When you run a load job, onpload creates a file that contains information about records of the data file that the conversion rejected.
Viewing the violations table

 The load job also creates two tables in the target database that contain information about records that passed the conversion but that the database server rejected.
The tables are named tablename_vio and tablename_dia, where tablename is the name of the table being loaded.
View the status of a load job or unload job

 When a load or unload job is complete, onpload writes a record of the load or unload job into a log file.

Related concepts:
 The Browse button

Related reference:
 View error records

Part VI: Administering 1163

Preview data-file records

Before you actually run a load job, you can use the Record Browser window to check your definition of the format. The display shows errors such as incorrect field lengths
or missing fields. You can edit the format to correct your format definitions.

Using the Record Browser window
 You can review records in a specified format, search the list of available formats, or edit a format from the Record Browser window.

Related concepts:
 Formats of supported datafile records

Related tasks:
 Editing a format

Related reference:
 Run the load job

Using the Record Browser window

You can review records in a specified format, search the list of available formats, or edit a format from the Record Browser window.

Reviewing data-file records in a selected format
 Searching and editing a format

 Editing a format

Reviewing data-file records in a selected format

To review data-file records in a selected format:

1. In the HPL main window, select the project that contains your load job.
2. Choose Browsers > Record.

The Record Browser window appears, as the following figure shows.
Figure 1. The Record Browser window

3. Type the name of the format to be applied to the source data file or click the format name in the list box.
4. In the Data File text box, type the name of the data file that you plan to load, or click the down arrow and select a file from the selection list.
5. Click OK.

The second Record Browser window appears, as the following figure shows. This Record Browser window displays each of the fields in the format, followed by the
value of the field for the given Record Number.
Figure 2. The Record Browser window

6. You can take the following actions:
Type the record number that you want to view. Click Select.

1164 Part VI: Administering

Click Next to display the next record.
Click Previous to display the previous record.

7. When you finish browsing, click Cancel to return to the HPL main window.

Searching and editing a format

To search for and edit a format:

1. In the HPL main window, select the project that contains your load job.
2. Choose Browsers > Record to display the Record Browser window.
3. In the Format text box, type the format name or partial format name that you want to find. You can use wildcards (for example, *cust*).
4. Click Search. The ipload utility displays all formats of the current project that include the letters cust.
5. Click Cancel to return to the HPL main window.

Editing a format

To edit a format:

1. Select the project that contains your load job.
2. Choose Browsers > Record from the HPL main window.
3. Click a format button to edit the format. The ipload utility displays the Format-Definition window.

Related tasks:
 Editing a format

Reviewing records that the conversion rejected

When you run a load job, onpload creates a file that contains information about records of the data file that the conversion rejected.

This file is named basename.rej where basename is the base name that you selected in step 7 of Creating a load job. When you use a generate option to create the
components for a load job, basename is /tmp/jobname where jobname is the name that you selected for the unload job.

To review rejected records:

1. On the HPL main window, select the project that contains your load job.
2. Choose Browser > Record to display the Record Browser window.
3. Type the name of the format to be applied to the rejected-records file in the Format text box. Or, click the format name in the list box.
4. Type the name of the rejected-records file in the Data File text box. Or, click the down arrow and select a data file from the selection list.
5. Click OK to display the second Record Browser window.
6. You can take the following actions:

Type the record number that you want to view. Click Select.
Click Next to display the next record.
Click Previous to display the previous record.

7. Click Cancel to return to the HPL main window.

Viewing the violations table

The load job also creates two tables in the target database that contain information about records that passed the conversion but that the database server rejected. The
tables are named tablename_vio and tablename_dia, where tablename is the name of the table being loaded.

View the violations table to browse through records that passed the filter and conversion but that the database server rejected. The High-Performance Loader (HPL) writes
these records into the violations table (tablename_vio). The data in the violations table has the same format as the database table.

The IBM® Informix® Guide to SQL: Syntax discusses in detail the information found in the violations table.

To view the violations table:

1. Choose Browsers > Violations from the HPL main window.
The Violations Table Browser window appears, as the following figure shows.
Figure 1. The Violations Table Browser window

Part VI: Administering 1165

2. Type the name of the database and table that you want to review the violations or click the down arrows to make your choices from selection lists.
3. Click Select.

The following figure shows the first record of a violations table.
Figure 2. A record in the Violations Table Browser window

4. Click Next and Previous to move forward and backward through the violations table.
5. Click Cancel to return to the HPL main window.

View the status of a load job or unload job

When a load or unload job is complete, onpload writes a record of the load or unload job into a log file.

Viewing the log file
 The default name for a log file is /tmp/jobname.log, where jobname is the name that you chose for the job. You can specify a different name for the log file in the

Load Job window or Unload Job window.
Sample log file

Related reference:

 Run the unload job
The HPL log-file and pop-up messages

Viewing the log file

The default name for a log file is /tmp/jobname.log, where jobname is the name that you chose for the job. You can specify a different name for the log file in the Load Job
window or Unload Job window.

To view the log file:

1. Choose Browsers > Logfile from the HPL main window.
The Browse Logfile window appears, as the following figure shows. When the window appears, the Filter text box and the Selection text box show the directory from
which ipload was started.
Figure 1. The Browse Logfile window

1166 Part VI: Administering

2. In the Filter text box, type the full path name of the directory that contains the log. You can use wildcards to select only certain files from that directory.
3. Click Filter.

The Files list box shows a list of the files that match the path that you entered in the Filter text box.

4. In the Files list box, click the name of the file that you want to examine. The full path name of the selected file appears in the Selection text box.
5. Click OK.

A Browse window appears that displays the contents of the selected file.

6. Review the log with the scroll bar to move through the log.
7. Click Cancel to return to the HPL main window.

Alternatively, if you know the full path name of the log file, you can simply type the path name in the Selection text box and click OK.

Sample log file

The following example shows a sample log file entry:

Sat Mar 11 13:52:42 1995

Session ID 1

Unload Database -> stores_demo
Query Name -> f_manufact
Device Array-> fmanufact
Query Mapping-> f_manufact
Query-> select * from manufact
Convert Reject -> /work/data/f_manu_unl

Database Unload Completed -- Unloaded 9 Records Detected 0 Errors

Sat Mar 11 13:52:50 1995

You can review the log file to determine load status and to see where any errors occurred. The log file is a simple ASCII file. You can print it if necessary.

Manage the High-Performance Loader

Manage modes, errors, and performance
 When you manage the High-Performance Loader (HPL), you manage modes, violations (errors), and performance. You also need to avoid the limitation that occurs

when using an Excalibur Text DataBlade module index
HPL modes

 The High-Performance Loader (HPL) offers two load modes, deluxe mode and express mode, and one unload mode. The express mode is faster, and the deluxe
mode is more flexible.
HPL load and unload errors

 When you load records from a data file, some of the records might not meet the criteria that you established for the database table.
HPL performance

 You can improve the HPL performance by preparing an environment that is optimized for the particular load or unload job that you are performing.
Limitation when using the Excalibur Text DataBlade Module indexes
You cannot create a load job with multiple devices to insert rows into a table that has an Excalibur Text DataBlade module index. A multiple-device load fails
because the Excalibur Text DataBlade module does not handle concurrency correctly.

Related concepts:
 HPL loading modes

Manage modes, errors, and performance

When you manage the High-Performance Loader (HPL), you manage modes, violations (errors), and performance. You also need to avoid the limitation that occurs when
using an Excalibur Text DataBlade module index

Part VI: Administering 1167

HPL modes

The High-Performance Loader (HPL) offers two load modes, deluxe mode and express mode, and one unload mode. The express mode is faster, and the deluxe mode is
more flexible.

The following figure shows the load and unload modes of the HPL.
Figure 1. The load and unload modes of the HPL

The HPL deluxe mode
 The HPL express mode

 The express mode for loading is faster than the deluxe mode, but has some limitations
How the express and deluxe modes work

Related concepts:

 Express-mode limitations

The HPL deluxe mode

The deluxe mode has the following features:

Performs row-by-row referential and constraint checking as the data is loaded
Allows loading of data while other users are working (no table locking) if the table already has an associated violations table before the load and if either of the
following conditions apply:

The index is set to FILTERING WITHOUT ERROR mode
The table does not have unique indexes.

Allows users to access and update the table during a load
Loaded data is immediately visible to the user.

Logs data, but also offers a no-logging option
Updates indexes
Evaluates triggers
Sets constraints to FILTERING WITHOUT ERROR
Sets the isolation mode as if for an insert cursor
Simulates an INSERT statement, except that the HPL allows the load to handle parallel data streams
Allows loading of data without replication

The deluxe mode has the following limitations:

Does not support loads without conversion
Does not support loads that have conversion but do not generate a violations table
Does not support the -fv option

When you use the deluxe mode without replication to load data into the table that was used to define the replicates, the data in that table is not replicated.

Related concepts:
 The HPL express mode

How the express and deluxe modes work
The onpload utility deluxe-mode process
Comparison between an express-mode and a deluxe-mode load operation

The HPL express mode

The express mode for loading is faster than the deluxe mode, but has some limitations

The express mode has the following features:

Locks tables for exclusive use by the load utility
Disables referential and constraint checking on the table
Requires a level-0 backup
Sets all objects (such as indexes or constraints) to disabled before loading
Re-enables all objects after loading, if possible, and flags objects that cannot be re-enabled in the violations and diagnostic tables
Supports loading of raw tables
Supports the loading of logged databases and ANSI mode databases
However:

If you load ANSI mode databases in express mode, you cannot use DB-Access to select data from the database tables.
If you load logged databases in express mode, you must perform a level-0 backup before you can write to the target database.

1168 Part VI: Administering

The express mode does not support:

Tables that contain smart large objects (BLOB or CLOB data types)
Tables that contain simple large objects (TEXT and BYTE) or extended data types
Loading of data on a heterogeneous data replication (HDR) replicated table from a database that has transactions
A table that has a fragmentation strategy and has a WITH ROW IDs clause to enable by using row IDs with fragmentation
Tables with primary key constraints when child table records refer to the load table
Rows that are larger than the system page size
The static-hash access method
Triggers on the loaded data, because express mode cannot invoke the triggers

Important: If your load job has any of these conditions, you must use deluxe mode to load your data.
Related concepts:

 The HPL deluxe mode
How the express and deluxe modes work
The onpload utility express-mode load process
Express-mode limitations
Comparison between an express-mode and a deluxe-mode load operation

How the express and deluxe modes work

A deluxe-mode load simulates an INSERT statement, except that the High-Performance Loader (HPL) allows the load to handle parallel data streams.

The sequence of events when you run an express-mode load is as follows:

1. The onpload utility locks the table with a shared lock.
Other users can read data in existing rows.

2. The onpload utility creates new extents and fills them with the new rows. However, onpload does not update the database structures that track extents.
The new extents are not visible to the user.

3. At the end of the express load, onpload updates the internal structures of the database.
4. The onpload utility sets the table to read-only.

This setting occurs because in express mode onpload does not log data, and therefore, the table is in an unrecoverable state.

5. The onpload utility unlocks the table and enables the constraints. The new rows become visible to the user for read only.
6. The user performs a level-0 backup.
7. Your database server sets the table to read/write.

If the load fails, onpload discards the extents and clears the internal information that says the table is unrecoverable.

Foreign-key constraints
 Express® mode cannot disable primary constraints or unique constraints that are referenced as foreign keys that are active on other tables. If you want to load data

into such a table, you must first use SET CONSTRAINTS DISABLED statements to disable the foreign-key constraints in the referencing table or tables. After the
load is finished, re-enable the foreign-key constraints.
Comparison between an express-mode and a deluxe-mode load operation

Related concepts:

 The HPL deluxe mode
The HPL express mode
Make a level-0 backup
Related information:

 INSERT statement
The INSERT statement

Foreign-key constraints

Express® mode cannot disable primary constraints or unique constraints that are referenced as foreign keys that are active on other tables. If you want to load data into
such a table, you must first use SET CONSTRAINTS DISABLED statements to disable the foreign-key constraints in the referencing table or tables. After the load is
finished, re-enable the foreign-key constraints.

The following figure shows an example of foreign-key constraints. The table target has a primary key (thePK) and a unique key (unique) that table blue and table green
reference. Before you perform an express-mode load into the table target, you must disable the foreign-key constraints in both table blue and table green.
Figure 1. Foreign-key constraints

Part VI: Administering 1169

Related concepts:
Comparison between an express-mode and a deluxe-mode load operation

Comparison between an express-mode and a deluxe-mode load operation

The following table contrasts the operation of an express-mode and a deluxe-mode operation.

Express® mode action Performed by Deluxe mode action Performed by

Set objects to disabled onpload Set constraints to filtering onpload

Load records from the data file into the
table (including rows that would cause
violations if constraints were on)

onpload Load records from data file into the table.
Write records that violate constraints into
the violations table and not into the target
table

onpload

Enable objects. Detect violators and copy
them into the _vio table.

onpload Set constraints to non-filtering onpload

Complete a level-0 backup to make the
database writable

user

Resolve violators user Resolve violators user

Related concepts:
 Foreign-key constraints

The HPL deluxe mode
The HPL express mode

HPL load and unload errors

When you load records from a data file, some of the records might not meet the criteria that you established for the database table.

For example, the data file might contain:

Null values where the table specifies NOT NULL
Values in an incorrect format (for example, alphabetic characters in a numeric field)
Records that do not have the expected number of fields

The way that the HPL treats these errors depends on the mode (deluxe or express) and the type of job (load or unload).

The HPL separates errors into the following two classes:

Rejected records from the input file
These records include:

Records that the filter rejected
Records that cannot be converted

Constraint violations

Rejected records from the input file
 Input-file records that the High-Performance Loader (HPL) rejects because they could not be converted include records in an incorrect format, records that do not

have the expected number of fields, and records whose fields contain null values for columns that do not allow null values.
Constraint violations

 View error records
 Choose from the Browsers menu in the HPL main window to view the error records that onpload generates.

Rejected records from the input file

Input-file records that the High-Performance Loader (HPL) rejects because they could not be converted include records in an incorrect format, records that do not have
the expected number of fields, and records whose fields contain null values for columns that do not allow null values.

The onpload utility writes these records into a file with the suffix .rej. The onpload utility writes records that are rejected because they do not match the filter criteria into
a file with the suffix .flt.

Constraint violations

When the onpload utility starts a deluxe-mode load, it runs the following SQL statement:

SET CONSTRAINTS ON mytable FILTERING

This statement has two results:

The utility adds two tables, mytable_vio and mytable_dia, to the database that contains mytable.
All of the constraints that are associated with the table are set to filtering. Filtering mode causes any record that does not meet the constraint requirements to be
added to the mytable_vio table instead of generating an error.

1170 Part VI: Administering

The use of filtering mode for constraints is covered in detail in the IBM® Informix® Guide to SQL: Syntax.

View error records

Choose from the Browsers menu in the HPL main window to view the error records that onpload generates.

Related concepts:
 Browsing options

HPL performance

You can improve the HPL performance by preparing an environment that is optimized for the particular load or unload job that you are performing.

You must consider the following aspects of your load and unload jobs:

Configuration-parameter values
Mode (express or deluxe)
Devices for the device array
Usage models

The onpload configuration parameters
 The onpload configuration parameters control the number of threads that onpload starts and the number and size of the buffers that are used to transfer data.

Express-mode limitations
 The onstat options for onpload

 The onstat utility has two options that you can use to observe the behavior of database server threads during express-mode loads.
Devices for the device array

 On a data-load job, each device runs independently of other devices. Thus mixing fast and slow devices does not adversely affect the speed of the load.
HPL usage tasks

 Settings for a no-conversion load or unload job
 A no-conversion load or unload is not highly CPU intensive because no conversion is involved. In this case, the load or unload is expected to be limited by the speed

of the tape devices. No-conversion loads and unloads are always completed in express mode.
An express-mode load with delimited ASCII

 In an express-mode load with delimited ASCII, the load or unload job is limited by the available CPU. The conversion to or from IBM® Informix® types to ASCII is the
most expensive portion of these operations
HPL performance hints

 In general, the performance of the High-Performance Loader (HPL) depends on the underlying hardware resources: CPU, memory, disks, tapes, controllers, and so
on. Any of these resources could be a bottleneck, depending on the speed of the resource, the load on the resource, and the particular nature of the load or unload.

Related reference:
 Configure the ipload utility

The onpload configuration parameters

The onpload configuration parameters control the number of threads that onpload starts and the number and size of the buffers that are used to transfer data.

The following figure shows which part of the onpload process is affected by each configuration parameter.
Figure 1. The onpload configuration parameters

The AIOBUFSIZE and AIOBUFFERS parameters control the number and size of the buffers that onpload uses for reading from the input device. CONVERTTHREADS and
CONVERTVPS control the amount of CPU resources to apply to data conversion. STRMBUFFSIZE and STRMBUFFERS control the number and size of the buffers used to
transport data between onpload and the database server.

The onpload configuration parameters are stored in the following files:

$INFORMIXDIR/etc/$PLCONFIG (UNIX)
%INFORMIXDIR%\etc\%PLCONFIG (Windows)

Related reference:
 HPL usage tasks

HPL performance hints

Part VI: Administering 1171

High-Performance Loader configuration file

Express-mode limitations

You cannot use express mode in certain situations. For example, express mode does not support the loading of simple large objects (Simple LOs) or Ext Type Data and
smart-large-object data (Ext Type data types), ensuring constraints, or invoking triggers.

In addition, you cannot use DB-Access to select data from ANSI database tables if the data was loaded in express mode. If you attempt to select data from such tables,
the database server rejects the SELECT statements because the tables were not archived. Only read-only access is allowed to the tables until a level-0 archive is
performed.

Related concepts:
 The HPL express mode

HPL modes

The onstat options for onpload

The onstat utility has two options that you can use to observe the behavior of database server threads during express-mode loads.

Use the following command to display light-append information:

onstat -g lap

The onstat -j option provides an interactive mode that lets you gather special information about an onpload job.

Related reference:
 The onstat -j option

Devices for the device array

On a data-load job, each device runs independently of other devices. Thus mixing fast and slow devices does not adversely affect the speed of the load.

In most unload jobs, all devices receive equal amounts of data. Thus the speed of all devices is limited by the speed of the slowest device. If you have several fast devices
and one or two slow devices, it might be advantageous to remove the slow devices.

When CPU resources are plentiful during an HPL job, the device controllers are a potential bottleneck. If you have configured extra converter threads and extra converter
VPs, CPU use should be close to 100 percent. If CPU use is not close to 100 percent, the cause might be one of the following situations:

The device controller is managing too many devices.
The devices themselves are slow.

Related reference:
 Define device arrays

HPL usage tasks

Three tasks that you might need to perform for the High-Performance Loader (HPL) are:

Reorganizing computer configuration
Altering the schema of a table
Assessing information for loading or unloading external data

Reorganize computer configuration
 If you are not changing the table schema, use a No-Conversion Job to unload and load when you need to reorganize the configuration of your computer or change to

a different computer. The no-conversion mode is the fastest means of performing an unload job or a load job, because rows are unloaded in IBM® Informix® internal
format with no conversion and reloaded in the same fashion.
Alter the schema of a table

 When you need to alter a table (add, drop, or change the data type of columns), use the Fixed Internal format. In Fixed Internal format, rows are unloaded in IBM
Informix internal format on a column-by-column basis. Thus you can drop, add, or modify columns and still minimize conversion overhead.
Assess information for loading or unloading external data

 When you load or unload data from an external source, you must assess the type of data and the amount of conversion that is required so that you can choose
appropriate configuration parameters.

Related concepts:
 The onpload configuration parameters

Reorganize computer configuration

If you are not changing the table schema, use a No-Conversion Job to unload and load when you need to reorganize the configuration of your computer or change to a
different computer. The no-conversion mode is the fastest means of performing an unload job or a load job, because rows are unloaded in IBM® Informix® internal format

1172 Part VI: Administering

with no conversion and reloaded in the same fashion.

Restriction: You cannot use a No-Conversion Job when the source and target computers use different internal byte representations. For information about the byte-order
type, see The Machines window.
For information about preparing for a no-conversion unload/load with ipload, see Using the No Conversion Job option. To set no-conversion mode when you are using the
onpload utility at the command line, use the -fn option. For more information, see The onpload utility.

Alter the schema of a table

When you need to alter a table (add, drop, or change the data type of columns), use the Fixed Internal format. In Fixed Internal format, rows are unloaded in IBM®
Informix® internal format on a column-by-column basis. Thus you can drop, add, or modify columns and still minimize conversion overhead.

Related reference:
 Format type group

Assess information for loading or unloading external data

When you load or unload data from an external source, you must assess the type of data and the amount of conversion that is required so that you can choose appropriate
configuration parameters.

The following sections show possible configuration parameters for two different types of load jobs. Suppose your hardware has the following configuration:

Eight CPU symmetric multiprocessors, each about 40 MIPS
Several (say 16) 300-MB disks (for the database)
Four 1.2-MB tape devices (to load to and unload from)
512-MB memory

You also have this information about your system:

The database server is running with seven CPU virtual processors.
The data that you want to load has a row of about 150 bytes with a mix of INT, DATE, DECIMAL, CHAR, and VARCHAR data types. (This is similar to the LINEITEM
table in the TPC-D database).

Settings for a no-conversion load or unload job

A no-conversion load or unload is not highly CPU intensive because no conversion is involved. In this case, the load or unload is expected to be limited by the speed of the
tape devices. No-conversion loads and unloads are always completed in express mode.

The following table lists sample values of configuration parameters for a raw load.

Configuration parameter Suggested value Comment

CONVERTVPS 4 This process is not CPU intensive.

CONVERTTHREADS 1 This process is not CPU intensive.

STRMBUFFSIZE 128 Choose some multiple of the AIOBUFSIZE, up to about 8*AIOBUFSIZE.

STRMBUFFERS 5 Should be CONVERTTHREADS + 4.

AIOBUFSIZE 32 Choose a buffer size to match the best block size for the tape drive. Large
buffers increase performance if sufficient memory is available.

AIOBUFFERS 5 CONVERTTHREADS + 4 or 2 * CONVERTTHREADS, whichever is larger

Run no-conversion load jobs with tables with hidden columns
 If you run no-conversion jobs, the physical image of the table in the load file must match the physical image of the target table and all columns must exist in the

same order and be of the same type.

Related tasks:
 Using the No Conversion Job option

Run no-conversion load jobs with tables with hidden columns

If you run no-conversion jobs, the physical image of the table in the load file must match the physical image of the target table and all columns must exist in the same
order and be of the same type.

By default a no-conversion unload job does not contain the hidden columns, because the job resulted from unloading a "SELECT *" query and this type of SELECT query
does not return any hidden columns. Under these circumstances, the target table where the load will occur must not contain any hidden columns. If it does contain hidden
columns, the image of the file will not be a match.

If your application requires that the unload file contains the hidden columns (for example, if the target table has hidden columns and it is not possible to alter the table to
remove the columns while the load occurs) , you must use a SELECT statement that explicitly indicates the columns in the select list.

Part VI: Administering 1173

The target table should not contain hidden columns, because these columns retain internal information for internal activities of the engine. Loading hidden columns can
create unexpected results.

Hidden columns tables include but are not restricted to fragmented tables with rowid columns, tables with VERCOLS, and tables with CRCOLS. Also fragmented tables
with rowid columns do not support no-conversion jobs.

An express-mode load with delimited ASCII

In an express-mode load with delimited ASCII, the load or unload job is limited by the available CPU. The conversion to or from IBM® Informix® types to ASCII is the most
expensive portion of these operations

Because this conversion is expensive, the following configuration might be more appropriate. The following table lists sample values of configuration parameters for an
express-mode load with delimited ASCII.

Configuration parameter Sample value Comment

CONVERTVPS 8 One convert VP per CPU

CONVERTTHREADS 2 Four devices * 2 thread/device = 8 threads

STRMBUFFSIZE 32 Should be some multiple of AIOBUFSIZE. For this CPU-intensive case, 1 or 2 * AIOBUFSIZE is
sufficient.

STRMBUFFERS 4 CONVERTTHREADS + 4

AIOBUFSIZE 32 Choose a buffer size to match the best block size for the tape drive. Large buffers increase
performance if sufficient memory is available.

AIOBUFFERS 5 CONVERTTHREADS + 4 or 2 * CONVERTTHREADS, whichever is larger

HPL performance hints

In general, the performance of the High-Performance Loader (HPL) depends on the underlying hardware resources: CPU, memory, disks, tapes, controllers, and so on. Any
of these resources could be a bottleneck, depending on the speed of the resource, the load on the resource, and the particular nature of the load or unload.

For example, load and unload jobs that perform no conversions consume minimal CPU resources. These jobs are thus likely to be limited by device or controller
bandwidth. Alternatively, ASCII loads and unloads are CPU intensive because of the overhead of conversion to and from ASCII. This section discusses some topics that
you should consider when you try to improve performance.

Choose an efficient format
 When you load data to or unload data from a source that is not IBM® Informix®, you can use fixed or delimited format in an appropriate code set such as ASCII or

EBCDIC.
Ensure enough converter threads and VPs

 Loads and unloads other than raw and fast-format ones are likely to be CPU intensive due to conversion overhead. In such cases, conversion speed is likely to
determine the load or unload speed. It is thus important to use sufficient conversion resources (that is, enough converter threads and VPs).
Ensure enough memory

 To maximize available memory and scan resources, the High-Performance Loader (HPL) automatically sets the PDQPRIORITY environment variable to 100, if it is
not already set. If the PDQPRIORITY environment variable is set, HPL uses that value.
Ensure enough buffers of adequate size

 You set the size and number of buffers in the plconfig configuration file with the onpload utility.
Increase the commit interval

Related concepts:

 The onpload configuration parameters

Choose an efficient format

When you load data to or unload data from a source that is not IBM® Informix®, you can use fixed or delimited format in an appropriate code set such as ASCII or EBCDIC.

In general, ASCII loads and unloads are the fastest. If you are using onpload for a machine or schema reorganization, choose the no-conversion format. Delimited and
fixed ASCII formats are comparable in behavior except when VARCHAR data is present. If the schema contains VARCHAR data and the length of the VARCHAR data varies
greatly, you might want to choose delimited format.

Related concepts:
 Ensure enough converter threads and VPs

Ensure enough memory
Related reference:

 Ensure enough buffers of adequate size
Increase the commit interval

Ensure enough converter threads and VPs

Loads and unloads other than raw and fast-format ones are likely to be CPU intensive due to conversion overhead. In such cases, conversion speed is likely to determine
the load or unload speed. It is thus important to use sufficient conversion resources (that is, enough converter threads and VPs).

1174 Part VI: Administering

The number of converter threads that is required for a device depends on the relative speeds of the device and the CPU as well as the data types in the table being loaded
or unloaded. CHAR and VARCHAR formats are the cheapest to convert. INT, DATE, SMFLOAT, and FLOAT are more expensive. DECIMAL and MONEY are among the most
expensive formats to convert.

The plconfig file specifies the number of converter threads per device. You can override this value on the onpload command line with the -M option.

The number of converter VPs should be based on the conversion intensity of the load or unload and the number of physical CPUs on the computer. If the load or unload is
expected to be highly intensive, you might want to specify the number of convert VPs to be the number of physical CPUs (or one fewer) to take advantage of all of the
available CPUs. You can set the number of converter VPs in the onpload configuration file.

The database server and onpload client VPs might both be competing for the same physical CPU resources. To reduce contention, run only the number of VPs that are
necessary on both the database server and onpload sides. However, if the number of database server VPs is already specified, you might have a choice only in the number
of onpload VPs. In this case, the suggestions in the previous paragraph apply.

Too few converter threads and VPs can make conversion a bottleneck. However, too many converter threads can waste time in scheduling threads in and out of the VPs. In
general, more than ten converter threads per VP is too many.

Related concepts:
 Choose an efficient format

Ensure enough memory
Related reference:

 Ensure enough buffers of adequate size
Increase the commit interval

Ensure enough memory

To maximize available memory and scan resources, the High-Performance Loader (HPL) automatically sets the PDQPRIORITY environment variable to 100, if it is not
already set. If the PDQPRIORITY environment variable is set, HPL uses that value.

If the PDQPRIORITY environment variable is set to 0 or if the PDQPRIORITY environment variable is disabled on the database server, then HPL cannot unload multiple
devices.

Related concepts:
 Choose an efficient format

Ensure enough converter threads and VPs
Related reference:

 Ensure enough buffers of adequate size
Increase the commit interval

Ensure enough buffers of adequate size

You set the size and number of buffers in the plconfig configuration file with the onpload utility.

For adequate performance, you should provide at least two (preferably three) AIO and stream buffers per converter thread. The size of AIO buffers should be at least as
large as the device block size, and the size of the stream buffers should be large (32 or 64 KB), as the following table shows.

Configuration Parameter Size Comment

STRMBUFFSIZE 64 Should be some multiple of AIOBUFSIZE for best
performance

STRMBUFFERS 2 * CONVERTTHREADS

AIOBUFSIZE 64

AIOBUFFERS 2 * CONVERTTHREADS

Related concepts:
 Choose an efficient format

Ensure enough converter threads and VPs
Ensure enough memory
Related reference:

 Increase the commit interval

Increase the commit interval

In the deluxe modes, the commit interval specifies the number of records that should be loaded before the transaction is committed (see Figure 1). Low values (frequent
commits) degrade performance and high values improve performance. If you increase the commit interval, you might need to increase the size of your logical-log buffers.

While larger commit intervals can speed up loads, larger commit intervals require larger logical-log space and increase the checkpoint time. These side effects impact
other system users during onpload operations.

Related concepts:
 Choose an efficient format

Ensure enough converter threads and VPs
Ensure enough memory
Related reference:

Part VI: Administering 1175

Ensure enough buffers of adequate size

Limitation when using the Excalibur Text DataBlade Module indexes

You cannot create a load job with multiple devices to insert rows into a table that has an Excalibur Text DataBlade module index. A multiple-device load fails because the
Excalibur Text DataBlade module does not handle concurrency correctly.

To avoid this limitation:

Create a load with a single device.
Complete the load by using multiple devices and then create the Excalibur Text DataBlade module index on the table.

The onpload utility

This section describes how to use the onpload utility.

Overview of the onpload utility
 After you create the onpload database with the ipload interface, the onpload utility allows you to perform loads and unloads directly from the command line.

However, you cannot load or unload binary large objects (BLOBs) or character large objects (CLOBs) to or from multiple files.
The onpload file name size limitations on UNIX

 On UNIX, you cannot have a file name size greater than 256 characters.
Start the onpload utility

 You can start onpload from the command line or from ipload.
Using the onpload utility

 The onpload utility syntax
 Set the onpload run mode with the -f option

 The -f option lets you set the type of source data and the type of mode. Possible modes are express load, deluxe load, deluxe load without replication, or unload. If
used along with the -j option, you can override only a few values from the onpload database.
Modify the size of onpload database parameters

 The options that are described in this section let you enter size information that overrides existing parameters in the onpload database.
Override the onpload database values

 The options that are described in this topic let you enter size information that overrides existing parameters in the onpload database. You can override only these
parameters. You cannot override other options, such as run mode.
Load data into collection data type columns

Related concepts:

 The onpload utility
Unload jobs

Overview of the onpload utility

After you create the onpload database with the ipload interface, the onpload utility allows you to perform loads and unloads directly from the command line. However,
you cannot load or unload binary large objects (BLOBs) or character large objects (CLOBs) to or from multiple files.

The onpload command uniquely specifies a row in the session table in the onpload database. Each row in the session table specifies all the components and options that
are associated with a job.

The onpload file name size limitations on UNIX

On UNIX, you cannot have a file name size greater than 256 characters.

Suppose you have a 128-character database name and a 128-character table name and automatically generate the project (auto job generation), the generated device file
names have the following format:

directory_specified/databasename_tablename.unl

In this situation, the device name would exceed 256 characters and the job would not run. To work around this problem, modify the device file names (assuming the
specification file name is device.hpl):

1. Describe the device with the following command:

onpladm describe device devicename -F device.hpl

2. Modify the device.hpl specification file to shorten the names of .unl files.
3. Modify the device attributes with the following command:

onpladm modify device devicename -F device.hpl

Alternatively, do not use the auto generation option of onpladm when you have both database and table names that would produce a generated name exceeding the 256
UNIX file name limit. Instead, manually provide a device file name.

Related reference:
 The onpladm utility

1176 Part VI: Administering

Start the onpload utility

You can start onpload from the command line or from ipload.

When you click Run in the Load Job window (Figure 2) or in the Unload Job window (Figure 2), ipload uses information from the onpload database to start onpload.

Typically, you use ipload to start a job when you plan to perform that particular load or unload once. For a job that needs to be run periodically, such as a weekly report,
you might choose to run the job from the command line.

The information that you give to onpload as command-line arguments takes precedence over any information that is in the onpload database. The information from the
command-line arguments is effective only for a single load. The command-line arguments do not affect the values in the onpload database or in the plconfig configuration
file.

Using the onpload utility

In most cases, use the Load Job window (Figure 2) or Unload Job window (Figure 2) to prepare the load or unload job.

After you prepare the job, the Command Line text box on the Load Job Select window (Figure 1) or the Unload Job Select window (Figure 1) shows you the command line
that ipload prepared for the job. You can copy that command line and use it to run the job at a later time. You can also use the command-line options shown in this section
to modify the basic command line that ipload prepared.
Tip: Enter onpload with no options at the command line to display a command-line listing of all onpload options and their functions.
When you use the onpload utility, you cannot load or unload smart large objects (BLOB or CLOB data types) to or from multiple files.

The onpload and onpladm utilities include support for long object names up to 128 characters, but the ipload utility does not.

The following sections give additional information about the syntax and individual options of the onpload utility.

The onpload utility syntax

>>-onpload-->

>--+- -V--+-><
 '-+- -j--jobname--+-------------+--+------------------+------------+-'
 | '- -d--source-' '- -p--projectname-' |
 '- -m--map-- -d--source--+------------------+--| Other Options |-'
 '- -p--projectname-'

Other Options

|--| Setting the run mode |--| Modifying parameter size |------->

>--| Overriding database values |--+-----+----------------------|
 '- -Z-'

For more information about the options shown in the diagram, see Set the onpload run mode with the -f option, Modify the size of onpload database parameters, and
Override the onpload database values.

The following table contains an explanation of the elements in the diagram.

Element Purpose Key considerations

-V Displays the current version number and the software
serial number.

This option is available only from the command line.

-d source Sets the path name of the file, tape, or pipe (UNIX only) or
the name of the device array to use for the load or unload
session

If the -f option is not set to a, d, or p, onpload assumes
that the data source is a file.
To use ipload, see Interpret the onpload -d and -f options
together.

-j jobname Names a load or unload job from the onpload database When using the -j option, you can override only a few
values from the onpload database. See Override the
onpload database values
To set by using ipload, see Components of the unload job
and Components of the load job.

-m map Names a map from the onpload database To use ipload, see Figure 1.

-p projectname Identifies the project where the format and map are
stored

To use ipload, see Project organizationIf you use this
feature, you must use it for both the load and unload
commands. Otherwise, the unloaded data might not
match the loaded data.

-Z Enables writing to or reading from a tape until the end of
the device. The onpload utility prompts you for additional
tapes until the load or unload is completed

If the -Z option is not set, the onpload uses the tape size
provided on the command line. If the -Z option is set, it
supersedes the tape size information provided.
This option is equivalent to checking the Write/read
to/from tape until end of device check box on the Load
Job Select or Unload-Job Select windows.

Part VI: Administering 1177

The pload command line assumes the default project unless otherwise specified with the -p option.

For example, you might use the Load Job window to prepare the following command:

onpload -j bigload -p zz

If you receive a tape that you know contains data with bugs, you might choose to modify the command to allow errors and to save the log in a special place, as follows:

onpload -j bigload -p zz -fl -e 1000 -l /mylogs/buggytape.log

For information about the -fl option, see Set the onpload run mode with the -f option.

Set the onpload run mode with the -f option

The -f option lets you set the type of source data and the type of mode. Possible modes are express load, deluxe load, deluxe load without replication, or unload. If used
along with the -j option, you can override only a few values from the onpload database.

See Override the onpload database values.

Setting the Run Mode

 .-l--+---+-.
 | '-c-' |
|-- -f--+---+--+----------+--+---+------------------------------|
 +-d-+ '-u--------' +-n-+
 +-p-+ +-q-+
 '-a-' +-v-+
 +-M-+
 '-N-'

Element Purpose Key considerations

M Displays the program module or line number in messages. This flag is available only from the command line. This flag is
used for debugging.

N Allows deluxe mode load without replication This flag works only if the -j job argument, which specifies a
session table job to run, is left blank.

a Treats data source as a device-array. The definition of the device array is extracted from the onpload
database. To use ipload, see Device arrays.

c Sets mode to deluxe mode. If this flag is not set, onpload uses express mode. To use ipload,
see HPL modes.

d Treats data source as a device (tape or file). To set this option by using ipload, see Device arrays.

l Loads data into database. This is the default flag, as opposed to u, which unloads data
from the database. To use ipload, see Components of the load
job.

n Specifies that onpload does not need to perform data
conversion.

The target table for the load must have the same schema as the
table from which the data is extracted.
If onpload generated the input data file as a data file in IBM®
Informix® format, you do not need to perform data conversion
when you reload data. To use ipload, see Using the No
Conversion Job option.

p Treats data source as a program to run and reads interface to the
program by way of a pipe (on UNIX only).

To use ipload, see Device arrays.

q Tells onpload not to generate status messages while a job is
running.

None.

u Unloads data from database. If this flag is not set, onpload loads data into the database. To
use ipload, see Components of the unload job.

v Tells onpload not to generate violations records. This flag is available only from the command line, and is not
supported with deluxe mode load.

Type the onpload -f flags
 When you combine -f flags into one group, do not put spaces between the flags. For example, use -f acq.

Interpret the onpload -d and -f options together

Type the onpload -f flags

When you combine -f flags into one group, do not put spaces between the flags. For example, use -f acq.

If you prefer, you can use multiple occurrences of the -f option instead of combining all of the possible -f flags into one group. For example, the following two command
lines are equivalent:

onpload -m mymap -d mydev -flnc

onpload -m mymap -d mydev -fl -fn -fc

1178 Part VI: Administering

Interpret the onpload -d and -f options together

The argument of the -d option gives the name of the data source. You can specify the device type of the data source with flags of the -f option, as follows:

If the command line does not specify a device type, onpload treats the data source as the path name of a cooked file on disk. Because no device type is specified,
the following onpload command treats filename as the name of a file:

onpload -m mapname -d filename

The -fd option in the following command causes onpload to treat /dev/rmt/rst11b as the name of a tape device:

onpload -m mapname -d /dev/rmt/rst11b -fd

The tape device name must be Berkeley Software Distribution (BSD) compliant.

The -fa option in the following command causes onpload to treat tapearray3 as the name of a device array. The device array is described in the onpload database.

onpload -m mapname -d tapearray3 -fa

In an UNIX environment, the -fp option in the following command causes onpload to treat apipename as the name of a pipe. When onpload starts executing, it
causes the pipe process to start executing.

onpload -m mapname -d apipename -fp

The same semantics apply for an unload job. If you use the u flag of the -f option to indicate an unload job, the interpretation of the data-source name is as described
previously. For example, the following command specifies that onpload should unload data to the device /dev/rmt/rst11:

onpload -m mapname -d /dev/rmt/rst11 -fdu

Modify the size of onpload database parameters

The options that are described in this section let you enter size information that overrides existing parameters in the onpload database.

Modifying Parameter Size

|--+--------------------+---------------------------------------|
 +- -A--tapehead------+
 +- -B--blocksize-----+
 +- -G--swapbytes-----+
 +- -I--commit_int----+
 +- -a--iobufsize-----+
 +- -b -bufsize-------+
 +- -e--maxerrors-----+
 +- -i--prog_interval-+
 +- -n--numrecs-------+
 +- -s--startrec------+
 '- -t--numtapes------'

Element Purpose Key considerations

-A tapehead Tells onpload to skip the specified number of bytes on
the tape before it starts reading data records.

This option is available only from the command line.
For specific details on this option, see The session table
in the onpload database.

-B blocksize Sets the tape I/O block size (bytes). If the data source is a device array, this setting is
ignored. To use ipload, see Figure 2.

-G swapbytes Sets the number of bytes in a swap group. This option is available only from the command line.
This option globally reverses the byte order in the input
data stream. Each group of bytes is swapped with the
group of bytes that follows it.

-I commit_int Sets the number of records to process before doing a
commit.

This option applies only to deluxe mode.
To use ipload, see Figure 1.

-a iobufsize Sets the size (kilobytes) of the asynchronous I/O buffers,
the memory buffers used to transfer data to and from
tapes and files.

This option is available only from the command line
This value overrides the value (AIOBUFSIZE) set in the
HPL configuration file (plconfig).

For specific details on this option, see The AIOBUFSIZE
configuration parameter.

-b bufsize Sets the size (kilobytes) of the server stream buffer, the
memory buffer used to write records to the database.

This option is available only from the command line.
Larger buffers result in more efficient data exchange
with the database. This value overrides the value
(STRMBUFFSIZE) set in the HPL configuration file
(plconfig).

For specific details on this option, see The
STRMBUFFSIZE configuration parameter.

-e maxerrors Sets the error threshold that causes the load or unload
session to shut down.

If no number is specified, the default is to process all
records. To use ipload, see Figure 1.

Part VI: Administering 1179

Element Purpose Key considerations

-i prog_interval Sets the number of records to process before making an
entry in the log file specified by the -l option.

This option is available only from the command line.
If no log file is specified, progress messages are sent to
stdout. If the -i option is omitted, the default number is
1000. To set, see The onpload -i option.

-n numrecs Sets the number of records to load. If no number is specified, all records are processed.
The -n option does not affect unload operations
because pload cannot maintain row ordering. To use
ipload, see Figure 1.

-s startrec Sets the starting record to load. This option is used to skip records. For example, setting
-s to 10 starts the loading at the 10th record, so that if
the file contains 20 records, 11 records are loaded.
Setting -s to 0 or 1 the load starts with the first record.
If you do not set this option, the load starts with the
first record.
The -s option does not affect unload operations
because pload cannot maintain row ordering. To use
ipload, see Figure 1.

-t numtapes Specifies the number of tapes to load. If you do not set this option, the default value is 1. To
use ipload, see Figure 1.

The onpload -i option
 You can specify the number of records to process before onpload reports the progress in an entry in the log file with the -i option.

The onpload -i option

You can specify the number of records to process before onpload reports the progress in an entry in the log file with the -i option.

The onpload utility calculates the progress message count in the pload log file as equal to the number of rows processed, but rounded down to the nearest multiple of the
value of progress_interval. For example, if the number of rows processed is 910 and the value of progress_interval is 100, then the progress message count is 900.

The onpload utility updates the row count only once for each stream buffer of data that it processes. Thus, reducing the row count on the -i option does not necessarily
increase the number of progress messages in the log file. For example, if the stream buffer holds 910 rows of data, setting row_count to 10, 100, and 900 has the same
effect: onpload writes one progress message.

Override the onpload database values

The options that are described in this topic let you enter size information that overrides existing parameters in the onpload database. You can override only these
parameters. You cannot override other options, such as run mode.

Overriding the onpload database values

|--+------------------+---|
 +- -C--caseconvert-+
 +- -D--override_db-+
 +- -F--filter------+
 +- -L--trace_level-+
 +- -M--converters--+
 +- -R--rejectfile--+
 +- -S--servername--+
 +- -T--target_db---+
 '- -l--logfile-----'

Element Purpose

-C caseconvert Sets the case-conversion option that converts all character
information

-D override_db Overrides the database specified in the map used for the load

-F filter Identifies the filter that onpload uses for screening load records

-L trace_level Sets the amount of information logged during the load

-M converters Sets the maximum number of conversion threads per device

-R rejectfile Identifies the file destination for rejected records

-S servername Sets the onpload database server

-T target_db Sets the target database serve

-l logfile Specifies the name of a file to which onpload sends messages

Load data into collection data type columns

1180 Part VI: Administering

The onpload utility might need to create temporary smart large objects while loading data into collection data type columns. To create temporary smart large objects,
onpload obtains sbspace information from the SBSPACETEMP configuration parameter, or if that parameter is not set, from the SBSPACENAME configuration parameter.
For more information about temporary sbspaces, see the IBM® Informix® Administrator's Guide.

If onpload does not find a temporary sbspace, the load job fails with the following error message in the onpload log file:

Fatal error in server row processing - SQL error -9810 ISAM error -12053

If you see the error message shown previously in onpload log file, configure a temporary sbspace by using the SBSPACETEMP configuration parameter or a default
sbspace by using the SBSPACENAME configuration parameter and then restart the load job.

The onpladm utility

This section describes how to use the onpladm utility.

Overview of the onpladm utility
 The onpladm command-line interface is equivalent to the ipload utility. You can use the onpladm utility from the command line to create, modify, and delete High-

Performance Loader (HPL) objects. The HPL objects include projects, jobs, maps, formats, queries, filters, device arrays, and machines.
Define onpladm utility jobs

 You can create, modify, describe, list, run, and delete jobs with the onpladm utility.
Define device arrays

 You can create, modify, describe, list, and delete device arrays with the onpladm utility.
Define maps

 You can create, modify, describe, list, and delete maps with the onpladm utility.
Define formats

 You can create, modify, describe, list, and delete formats with the onpladm utility.
Define queries

 You can create, modify, describe, list, and delete queries with the onpladm utility.
Define filters

 You can create, modify, describe, list, and delete filters with the onpladm utility.
Define projects

 You can create a project, run all jobs in a project, list all projects, and delete a project with the onpladm utility.
Define machine types

 You can create, modify, describe, list, and delete machine types with the onpladm utility.
Define database operations

Related concepts:

 The onpladm utility
The onpload file name size limitations on UNIX
Related reference:

 Examples of loading and unloading jobs using the ipload utility
Start the ipload utility
The ipload utility GUI or the onpladm command-line interface

Overview of the onpladm utility

The onpladm command-line interface is equivalent to the ipload utility. You can use the onpladm utility from the command line to create, modify, and delete High-
Performance Loader (HPL) objects. The HPL objects include projects, jobs, maps, formats, queries, filters, device arrays, and machines.

You can use the onpladm utility on both UNIX and Windows computers.

While the onpload and onpladm utilities include support for object names that contain up to 128 characters, the ipload utility does not. If you use long database, table or
column names and create jobs by using onpladm, you cannot run these jobs with the ipload utility. For ipload, database, table and column names cannot exceed 18
characters.

The onpladm utility features
 You can create and maintain the onpload database with the onpladm utility and the ipload utility. The onpload database stores information about the High-

Performance Loader (HPL) objects of load and unload jobs.
Specification-file conventions

 Use specification files to create, modify, and describe the HPL objects. When you enter the onpladm command to describe an object, the contents of the
specification file appear.
Error handling

Related information:

 Cannot create shared-memory pool: errno UNIX_error_num

The onpladm utility features

You can create and maintain the onpload database with the onpladm utility and the ipload utility. The onpload database stores information about the High-Performance
Loader (HPL) objects of load and unload jobs.

The first time that you issue a create command, the onpladm utility creates the onpload database, if it does not yet exist.

The onpladm utility can perform the functions that the following table describes.

Part VI: Administering 1181

Object OperationObject Operation

Project Create, delete, describe, list, run

Job Create, delete, describe, list, modify, run

Map Create, delete, describe, list, modify

Format Create, delete, describe, list, modify

Query Create, delete, describe, list, modify

Device array Create, delete, describe, list, modify

Computer Create, delete, describe, list, modify

Target server Configure and list default settings

Filter Create, delete, describe, list, modify

The onpladm utility also allows you to:

Create jobs and other objects with a single, minimum-input command.
Specify object characteristics in specification files.
Create, load, or unload jobs for all tables in a database.
Create jobs for an entire database and group the jobs into a project with a single command.
Run individual jobs or projects independently.

Important: The most effective way to use onpladm is to create and modify HPL objects is to:

1. Create the default objects by using default job creation options.
2. Use describe object syntax to describe the objects.
3. Manually modify these objects with correct values for different configuration parameters.
4. Use modify object syntax to correctly create these objects.

Specification-file conventions

Use specification files to create, modify, and describe the HPL objects. When you enter the onpladm command to describe an object, the contents of the specification file
appear.

When you create a job or map with a quick command, the onpladm utility uses default attributes to create the job or map. If you create a job or map with a specification
file, you can specify attribute values.

The following diagram illustrates the syntax to create or modify an object by using a specification file.

Creating or modifying an object with a specification file

>>-onpladm--+-create-+--object--+-------------------+----------->
 '-modify-' '- -F -specfilename-'

>--+-----------------+---><
 '- -S -servername-'

Element Purpose Key considerations

-F specfilename Sets the specification file The default value is the standard output.

-S servername Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

Use the following conventions when you create specification files:

Begin object definitions with BEGIN OBJECT and end them with END OBJECT.
If object definitions contain variable items, begin each variable item with BEGIN SEQUENCE and end each item with END SEQUENCE.
For example, you might use the following specification file to create a device array that consists of a file and a pipe:

BEGIN OBJECT DEVICEARRAY mydevice
Optional Attributes
BEGIN SEQUENCE
TYPE FILE
FILE /work/data.unl
TAPEBLOCKSIZE 0
TAPEDEVICESIZE 0
PIPECOMMAND
END SEQUENCE
BEGIN SEQUENCE
TYPE PIPE
FILE
TAPEBLOCKSIZE 0
TAPEDEVICESIZE 0
PIPECOMMAND /work/bin/datacreate.sh
END SEQUENCE
END OBJECT

For more information about attributes and their possible values, see the description of each specification file.

Precede comments in specification files with a pound sign (#).
List attributes in the exact order in which the specification-file format displays them.

1182 Part VI: Administering

Use the following syntax to refer to the attributes of an object or the attributes of elements of an object:
Attribute_name Attribute_value

Important: Do not use this for BEGIN and END statements and comment statements.
You must always provide an attribute name. You must provide both the attribute name and the attribute value to describe a required attribute, but you only have to
provide the attribute name if the attribute is optional.

Attributes and their values depend on their object type. For more information about attributes and object types, see the corresponding specification files.

Enclose attribute values that contain spaces in double quotation marks.
Precede double quotation marks in attribute values with a double quotation mark.
For example, to enter a MATCH condition for “CA” in a filter object, include the following line:MATCH =""CA""

For more information about file conventions, see individual specification-file formats.

Related reference:
 Create maps

Error handling

The onpladm commands have two return values:

0
If the command is successful, a success message appears.

-1
If the command fails, an error message appears.

Define onpladm utility jobs

You can create, modify, describe, list, run, and delete jobs with the onpladm utility.

Create onpladm jobs
 Modify a job by using a detailed specification file

 Describe a job
 List all jobs in a project

 Run a job
 Delete a job

Related reference:

 Components of the load job

Create onpladm jobs

You can create two types of jobs:

Conversion jobs
Use a conversion job to process data that requires conversion before loading and that is not in internal format. Conversion jobs have associated maps and format
objects.

No-conversion jobs (fast jobs)
Use a no-conversion job to process data that does not require conversion before loading and that uses the IBM® Informix® internal format. No maps or formats are
associated with a no-conversion job. Consequently, a no-conversion job is faster than a conversion job. No-conversion jobs are always completed in express mode.

Create conversion jobs
 Create no-conversion jobs

 A no-conversion job is faster than a conversion job because onpload uses the internal format of the target database and does not create maps or formats. No-
conversion jobs are always run in express mode.

Create conversion jobs

When you use command-line parameters to create a conversion load or unload job, all maps, formats, and query objects automatically have the same name as the job
name. If you delete a job, the map.format or the query objects will remain intact unless you specifically delete the format or query objects.

When you create a conversion job with detailed specification files, the High-Performance Loader (HPL) objects can have different names from the job name.

Create conversion jobs by using a quick command
 When you create a conversion job by using a quick command, the onpladm utility creates all High-Performance Loader (HPL) objects associated with the job. The

HPL objects that it creates have the same name as the job.
Create conversion jobs by using detailed specification files

 You can also specify job details in specification files that you reference from the command line. When you create a job by using a specification file, you must create
all associated High-Performance Loader (HPL) objects; the onpladm utility does not create these objects for you.

Part VI: Administering 1183

Create conversion jobs by using a quick command

When you create a conversion job by using a quick command, the onpladm utility creates all High-Performance Loader (HPL) objects associated with the job. The HPL
objects that it creates have the same name as the job.

The following diagram illustrates the syntax to create a conversion job from the command line.

Creating a conversion job

>>-onpladm create job -job--+---------------+-- -d--device ----->
 '- -p--project -'

>-- -D--database-- -t--table--+--------------------------+------>
 '-| Setting the run mode |-'

>--+------------------------+--+-------------+------------------>
 +- -n -------------------+ '- -T--target-'
 '-| Setting the format |-'

>--+-------------+--+-----------------+--+----------------+----><
 '- -S--server-' '- -M--devicesize-' '- -B--blocksize-'

Element Purpose Key considerations

-B blocksize Sets the tape I/O block size (bytes) No default value

-d device Sets the name of device, such as a file, device array, tape,
or pipe

No default value

-D database Name of the target database that contains the information
to be loaded or unloaded

No default value.

job Names a load or unload job from the onpload database None

-M devicesize Tape device size in kilobytes The device size must be greater than zero.

-n Sets no-conversion express job None

-p project Identifies the project where the format and map are stored The default is the project created when the onpload
database is built.

-S server Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

-t table Name of the table to be loaded or unloaded None

-T target Name of the target server to which the data will download The default is the value of the INFORMIXSERVER
environment variable.

The following diagram illustrates the syntax to set the run mode with the -f option.

Setting the Run Mode

 .-l--+---+-.
 | '-c-' |
|-- -f--+---+--+----------+--+---+--+---+-----------------------|
 +-d-+ '-u--------' '-n-' '-N-'
 +-p-+
 '-a-'

Element Purpose Key considerations

a Treats data source as a device-array The definition of the device array is extracted from the onpload
database.

c Sets mode to deluxe mode If this flag is not set, onpladm uses express mode.

d Treats data source as a tape device None

l Loads data into database This is the default flag, as opposed to u, which unloads data
from the database.

n Specifies that onpladm does not need to perform data
conversion

The target table for the load must have the same schema as the
table from which the data is extracted.

If onpladm generated the input data file as a data file in IBM®
Informix® format, you do not need to perform data conversion
when you reload data.

N Allows deluxe mode load without replication This flag works only if the job argument, which specifies a
session table job to run, is left blank.

p Treats data source as a program to run and reads interface to the
program by way of a pipe (on UNIX only)

None

u Unloads data from database If this flag is not set, onpladm loads data into the database.

The following diagram illustrates the syntax to set the format type with the -z option.

1184 Part VI: Administering

Setting the Format

|-- -z--+----+--|
 +-D--+
 +-FI-+
 +-FA-+
 +-FB-+
 +-C--+
 '-CB-'

Element Purpose Key considerations

D Sets the format to delimited This is the default value. See Delimited
records.

FI Sets the format to fixed internal See Fixed-length records.

FA Sets the format to fixed ASCII See Fixed-length records.

FB Sets the format to fixed binary format. See Fixed-length records.

C Sets the format to COBOL See COBOL records.

CB Sets the format to COBOL (byte) See COBOL records.

Create conversion jobs by using detailed specification files

You can also specify job details in specification files that you reference from the command line. When you create a job by using a specification file, you must create all
associated High-Performance Loader (HPL) objects; the onpladm utility does not create these objects for you.

Create a conversion-load job
 Create a conversion unload job

Related reference:

 Describe a job

Create a conversion-load job

Use the syntax shown in Specification-file conventions to create a conversion-load job from a specification file.

Use the following syntax to create a specification file for a conversion-load job:

BEGIN OBJECT LOADJOB jobname
Compulsory Attributes
PROJECT projectname
DEVICE device_array_name
MAP mapname

FILTER filtername
SERVER targetservername
DATABASE targetdatabasename
FLTFILE filtered_records_filename
REJECTFILE rejected_records_filename
LOGFILE job_progress_logfilename
RUNMODE runmode_type
GENERATEVIORECS violation_records_option
TAPES sourcetape_num
NUMRECORDS records_num
STARTRECORD start_record
MAXERRORS max_error_num

END OBJECT

The following table lists the attributes and their attribute values.

Attribute Attribute value

device_array_name Device-array name
You must create the device array; onpladm does not create it for you.

filtername Filter name

jobname Job name

job_progress_logfilename Path to the job-progress log file

mapname Map name
You must create the map before you use this option; onpladm does not create the
map for you.

max_error_num Maximum number of errors; if exceeded, load ends

projectname Name of an existing project

records_num Number of records to be processed in the data file

Part VI: Administering 1185

Attribute Attribute value

rejected_records_filename Rejected-records file name (rejected by database server)

filtered_records_filename Filtered-records file name (rejected by filter)

runmode_type Type of run mode:

E
Express® mode

D
Deluxe mode without replication

DR
Deluxe mode with replication

sourcetape_num Number of tapes that contain source data

start_record Number of the first record to begin a load

targetdatabasename Name of the database that the records will be loaded or unloaded to; if set, this
value overrides the database value in the load or unload map

targetservername Name of the target database server

violation_records_option Specify: Y to generate violations records or N not to generate violations records

Create a conversion unload job

Use the syntax shown in Specification-file conventions to create a conversion unload job from a specification file.

Use the following syntax to create a conversion unload job:

BEGIN OBJECT UNLOADJOB jobname
Compulsory Attributes
PROJECT projectname
DEVICE device_array_name
MAP mapname

FILTER filtername
SERVER targetservername
DATABASE targetdatabasename
REJECTFILE rejected_records_filename
LOGFILE job_progress_logfilename
ISOLATIONLEVEL isolation_level
MAXERRORS max_error_num

END OBJECT

The following table lists the arguments and their attribute values.

Attribute Attribute value

device_array_name Device-array name
You must create the device array; onpladm does not create it for you.

filtername Filter name

isolation_level Unload isolation level:

DR
Dirty Read

CR
Committed Read

CS
Cursor Stability

RR
Repeatable Read

jobname Job name

job_progress_logfilename Path to the job-progress log file

mapname Map name
You must create the map before you use this option; onpladm does not create the
map for you.

max_error_num Maximum number of errors; if exceeded, unload ends

projectname Name of an existing project

rejected_records_filename Rejected-records file name (rejected by database server)

targetdatabasename Name of the database that the records will be loaded or unloaded to; if set, this
value overrides the database value in the load or unload map

targetservername Name of the target database server

1186 Part VI: Administering

Create no-conversion jobs

A no-conversion job is faster than a conversion job because onpload uses the internal format of the target database and does not create maps or formats. No-conversion
jobs are always run in express mode.

Create no-conversion jobs by using a quick command
 When you create a job by using a quick command, the onpladm utility creates all High-Performance Loader (HPL) objects associated with that job.

Create no-conversion jobs by using detailed specification files
 You can also specify job details in specification files that you reference from the command line. When you create a job by using a specification file, you must create

all associated High-Performance Loader (HPL) objects; the onpladm utility does not create these objects for you.

Create no-conversion jobs by using a quick command

When you create a job by using a quick command, the onpladm utility creates all High-Performance Loader (HPL) objects associated with that job.

The following diagram illustrates the syntax to create a no-conversion job.

Creating a no-conversion job

>>-onpladm create job -job--+---------------+-- -n-------------->
 '- -p--project -'

>-- -d--device -- -D--database-- -t--table---------------------->

 .--.
 V |
>----+--+-+-><
 '-+-------------+--+-------------+--| Setting the run mode |-'
 '- -S--server-' '- -T--target-'

Element Purpose Key considerations

-d device Sets the name of device, such as a file, device array, tape, or
pipe

No default value.

-D database Name of the target database that contains the information to
be loaded or unloaded

No default value.

job Names a load or unload job from the onpload database None

-n Sets no-conversion express job None

-p project Identifies the project where the format and map are stored The default is the project created when the onpload
database is built.

-S server Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

-t table Name of the table to be loaded or unloaded None

-T target Name of the target server to which the data will download The default is the value of the INFORMIXSERVER
environment variable.

The following diagram illustrates the syntax to set the run mode with the -f option.

Setting the run mode

 .-l-.
|-- -f--+---+--+---+--|
 +-d-+ '-u-'
 +-p-+
 '-a-'

Element Purpose Key considerations

a Treats the data source as a device-array The definition of the device array is extracted from the onpload
database.

d Treats the data source as a tape device None

l Loads data into the database This is the default flag, as opposed to u, which unloads data
from the database.

p Treats the data source as a program to run, and reads the
interface to the program by way of a pipe (UNIX only)

None

u Unloads data from the database If this flag is not set, onpladm loads data into the database.

Create no-conversion jobs by using detailed specification files

Part VI: Administering 1187

You can also specify job details in specification files that you reference from the command line. When you create a job by using a specification file, you must create all
associated High-Performance Loader (HPL) objects; the onpladm utility does not create these objects for you.

Create a no-conversion load job
 Create a no-conversion unload job

Create a no-conversion load job

Use the syntax shown in Specification-file conventions to create a no-conversion load job with specification files.

Use the following syntax to create a specification file for a no-conversion load job:

BEGIN OBJECT FASTLOADJOB jobname
Compulsory Attributes
PROJECT projectname
DEVICE device_array_name
DATABASE targetdatabasename
TABLE tablename

SERVER targetservername

END OBJECT

The following table lists the attributes and their values.

Attribute Attribute value

device_array_name Device-array name
You must create the device array; onpladm does not create it for you.

jobname Job name

projectname Name of an existing project

tablename Table name

targetdatabasename Name of the database that the records will be loaded or unloaded to; if set, this value overrides the database
value in the load map

targetservername Name of the target database server

Create a no-conversion unload job

Use the syntax shown in Specification-file conventions to create a no-conversion unload job with specification files.

Use the following syntax to create a specification file for a no-conversion unload job:

BEGIN OBJECT FASTUNLOADJOB jobname
Compulsory Attributes
PROJECT projectname
DEVICE device_array_name
DATABASE targetdatabasename
QUERY queryname

SERVER targetservername

END OBJECT

The following table lists the attributes and their values.

Attribute Attribute value

device_array_name Device-array name
You must create the device array; onpladm does not create it for you.

jobname Job name

projectname Name of an existing project

queryname The SQL SELECT statement, in quotation marks, that contains unload criteria

targetdatabasename Name of the database that the records will be loaded or unloaded to; if set, this value overrides the database
value in the load map

targetservername Name of the target database server

Modify a job by using a detailed specification file

Use the syntax shown in Specification-file conventions to modify a job by using a specification file.

For information about the job-specification file, see Create no-conversion jobs by using detailed specification files.

1188 Part VI: Administering

Describe a job

The following diagram illustrates the syntax to describe a job.

Describing a job

>>-onpladm describe job--jobname-- -f--+---+-------------------->
 +-l-+
 '-u-'

 .-----------------------.
 V |
>----+-------------------+-+-----------------------------------><
 +- -F--specfilename-+
 +- -p--projectname--+
 +- -R---------------+
 '- -S--servername---'

Element Purpose Key considerations

-F specfilename Sets the specification file The default value is the standard output.

-f Flags to specify the type of job The default is load job.

l Specifies a load job None

u Specifies an unload job None

jobname Names a job from the onpload database None

-p projectname Identifies the project where the format and map are
stored

None

-R Deletes all associated objects if they are not referenced
by other objects

None

-S servername Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

Related reference:
 Create conversion jobs by using detailed specification files

List all jobs in a project

The following diagram illustrates the syntax to display all the jobs in a project.

Displaying all jobs in a project

>>-onpladm list job--+------------------+--+------------+------->
 '- -p -projectname-' '- -f--+---+-'
 +-l-+
 '-u-'

>--+-----------------+---><
 '- -S -servername-'

Element Purpose Key considerations

-f Flags to specify the type of job The default is load job.

l Specifies a load job None

u Specifies an unload job None

-p projectname Identifies the project where the format and map are
stored

None

-S servername Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

Run a job

The following diagram illustrates the syntax to run a job and display the job progress or send it to a log file.

Running a job

>>-onpladm run job -jobname--+------------------+-- -f--+---+--->
 '- -p -projectname-' +-l-+
 '-u-'

Part VI: Administering 1189

 .----------------------.
 V |
>----+------------------+-+------------------------------------><
 +- -l -logfilename-+
 +- -S -servername--+
 '- -Z--------------'

Element Purpose Key considerations

-f Flags to specify the type of job The default is load job.

l Specifies a load job None

u Specifies an unload job None

jobname Names a load or unload job from the onpload database None

-l logname Sets the path for a log file where job progress is recorded None

-p projectname Identifies the project where the format and map are
stored

None

-S servername Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

-Z Enables writing to or reading from a tape until the end of
the device. The onpladm utility prompts you for
additional tapes until the load or unload is completed.

If you use this feature, you must use it for both load and
unload jobs. Otherwise, the unloaded data might not
match the loaded data.
If the -Z option is not set, the onpladm uses the tape size
specified with the -M option of the create job command.
If the -Z option is set, it supersedes the tape size
information provided.

The onpladm utility when referential constraints are on tables

Related tasks:
 Running onpladm on UNIX with the database server running on Windows

The onpladm utility when referential constraints are on tables

The onpladm utility unloads and loads an entire database by creating individual table unload and load jobs. If the load mode is express, the default load mode, the
onpladm utility disables referential constraints during load jobs. If database tables have constraints on them, problems can occur. For example, if one table has a
referential constraint to another table and that table is not yet loaded, a violation that prevents a table from loading can occur.

If tables have constraints, you can manually disable the constraints after the load job is complete.

Delete a job

The following diagram illustrates the syntax to delete a job.

Deleting a Job

>>-onpladm delete job -jobname-- -f--+---+---------------------->
 +-l-+
 '-u-'

 .----------------------.
 V |
>----+------------------+-+------------------------------------><
 +- -p -projectname-+
 +- -S -servername--+
 '- -R--------------'

Element Purpose Key considerations

-f Flags to specify the type of job The default is load job.

l Specifies a load job None

u Specifies an unload job None

jobname Names a load or unload job from the onpload database None

-p projectname Identifies the project where the format and map are
stored

None

-S servername Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

-R Deletes all associated objects if they are not referenced
by other objects

None

1190 Part VI: Administering

Define device arrays

You can create, modify, describe, list, and delete device arrays with the onpladm utility.

Create a device array
 You can only create a device array by using a detailed specification file.

Modify a device array
 You can only modify a device array with a specification file.

Describe a device array
 List project device arrays

 Deleting a device array

Related concepts:
 Device arrays

Devices for the device array

Create a device array

You can only create a device array by using a detailed specification file.

Use the syntax shown in Specification-file conventions to create a device array.

Use the following syntax to create a device array:

BEGIN OBJECT DEVICEARRAY device_array_name
Compulsory Attributes
BEGIN SEQUENCE
TYPE device_type
FILE device_path
TAPEBLOCKSIZE tapeblock_size
TAPEDEVICESIZE tapedevice_size
PIPECOMMAND pipe_commandname
END SEQUENCE

END OBJECT

The following table lists the attributes and their values.

Attribute Attribute value

device_array_name Device-array name
You must create the device array; onpladm does not create it for you.

device_path Path to the device; only valid if device type is file or tape

device_type Type of device, in uppercase letters (for instance, PIPE, FILE, or
TAPE)

tapeblock_size Tape-block size

tapedevice_size Tape-device size in megabytes

pipe_commandname Pipe command name

Related reference:
 Modify a device array

Describe a device array

Modify a device array

You can only modify a device array with a specification file.

Use the syntax shown in Specification-file conventions to modify a device array.

Related reference:
 Create a device array

Describe a device array

The following diagram illustrates the syntax to describe a device array.

Describing a device array

>>-onpladm describe device devicename--devicename--------------->

>--+-------------------+--+-----------------+------------------><
 '- -F -specfilename-' '- -S -servername-'

Part VI: Administering 1191

Element Purpose Key considerations

devicename Sets the name of device, such as a file, device array,
tape, or pipe

None

-F specfilename Sets the specification file The default value is the standard output.

-S servername Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

Related reference:
Create a device array

List project device arrays

To list all the device arrays in a project, use the following syntax.

Listing project device arrays

>>-onpladm list device--+------------------+-------------------->
 '- -p -projectname-'

>--+-----------------+---><
 '- -S -servername-'

Element Purpose Key considerations

-p projectname Identifies the project where the format and map are
stored

None

-S servername Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

Deleting a device array

The following diagram illustrates the syntax to delete a device array.

Deleting project device arrays

>>-onpladm delete device -devicename--+-----------------+------><
 '- -S -servername-'

Element Purpose Key considerations

devicename Sets the name of device, such as a file, device array, tape,
or pipe

None

-S servername Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

Define maps

You can create, modify, describe, list, and delete maps with the onpladm utility.

Create maps
 You can create maps by using a quick command or a specification file.

Delete a map
 Describe a map

 Modify a map by using a detailed specification file
 List all maps in a project

Related concepts:

 Load and unload maps

Create maps

You can create maps by using a quick command or a specification file.

Create a map by using a quick command
 When you create a map by using a quick command, the onpladm utility creates a format object with the same name as the map, plus the suffix -fmt. The generated

format name (as for all onpladm objects) has a maximum length of 18 characters.

1192 Part VI: Administering

Create a map with a detailed specification file
When you create a map, the onpladm utility creates a format object with the same name as the map. When you create a map with a specification file, you must
create all associated High-Performance Loader (HPL) objects; the onpladm utility does not create these objects for you.

Related reference:
 Specification-file conventions

Create a map by using a quick command

When you create a map by using a quick command, the onpladm utility creates a format object with the same name as the map, plus the suffix -fmt. The generated format
name (as for all onpladm objects) has a maximum length of 18 characters.

For example, if the map name is mymap, the format name is mymap-fmt. If the map name is 123456789123456789, the format name is 12345678912345-fmt.

The create map command also creates a query object for the unload map. The following diagram illustrates the syntax to create a map from the command line.

Creating a map

>>-onpladm create map -mapname--+---------------+--------------->
 '- -p--project -'

 .----------------------------.
 V |
>-- -D--database -- -t--table----+------------------------+-+--><
 +- -S -servername--------+
 +- -T -targetservername--+
 +-| Setting the format |-+
 '- -f--+---+-------------'
 +-l-+
 '-u-'

Element Purpose Key considerations

-D database Name of the target database that contains the information to
be loaded or unloaded

No default value

-f Flags to specify the type of job The default is load job.

l Specifies a load job None

u Specifies an unload job None

mapname Sets the map None

-p project Identifies the project where the format and map are stored The default is the project created when the onpload
database is built.

-S server Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

-t table Name of the table to be loaded or unloaded None

-T target Name of the target server to which the data will download The default is the value of the INFORMIXSERVER
environment variable.

The following diagram illustrates the syntax to set the format type with the -z option.

Setting the format

|-- -z--+----+--|
 +-D--+
 +-FI-+
 +-FA-+
 +-FB-+
 +-C--+
 '-CB-'

Element Purpose Key considerations

D Sets the format to delimited This is the default value. See Delimited
records.

FI Sets the format to fixed internal See Fixed-length records.

FA Sets the format to fixed ASCII See Fixed-length records.

FB Sets the format to fixed binary See Fixed-length records.

C Sets the format to COBOL See COBOL records.

CB Sets the format to COBOL (byte) See COBOL records.

Create a map with a detailed specification file

Part VI: Administering 1193

When you create a map, the onpladm utility creates a format object with the same name as the map. When you create a map with a specification file, you must create all
associated High-Performance Loader (HPL) objects; the onpladm utility does not create these objects for you.

Use the syntax shown in Specification-file conventions to create maps with specification files.

Use the following syntax to creating a load map with a specification file:

BEGIN OBJECT LOADMAP mapname

Compulsory Attributes
PROJECT projectname
FORMAT formatname
DATABASE targetdatabasename
TABLE targettablename

BEGIN SEQUENCE
COLUMNNAME columnname
FIELDNAME fieldname
JUSTIFICATION justification
CASECONVERT caseconversion
DEFAULTVALUE defaultvalue
TRANSFERBYTES byte_transfer
COLUMNOFFSET column_offset
FIELDOFFSET field_offset
FIELDMINIMUM field_minimum
FIELDMAXIMUM field_maximum
FILLCHARACTER fillcharacter
PICTURE picture
FUNCTION record_function
STORAGECODING storage_format
BLOBCOLUMN blob_columnname
END SEQUENCE

END OBJECT

The following table lists the attributes and their values.

Attribute Attribute value

blob_columnname The column that contains the name of the file where BYTE or TEXT data is stored
See Simple LO data in a separate file.

byte_transfer Number of bytes to transfer from record field to database column

caseconversion Enter UPPER for all uppercase data, LOWER for all lowercase data, and PROPER for
data with an initial capital letter

columnname Name of the column to be mapped

column_offset Amount of offset from the beginning of the column to the location on the column
from which data transfer begins

defaultvalue Value when no field is mapped to the column

fieldname Field corresponding to the record format to be mapped

field_maximum Largest acceptable numeric-column value

field_minimum Smallest acceptable numeric-column value

field_offset Amount of offset from the start of the field record to the location in the record from
which data transfer begins

fillcharacter Character used to pad contents of a field

formatname Associated format name
You must create the format; onpladm does not create it for you.

justification Enter left, right, or CENTER to position text within a record

mapname Map name

picture Reformats and masks data from the field of a record before data is transferred to
database

projectname Name of existing project

record_function User-defined function in a shared library that is called for every record that is
processed
See Custom-conversion functions.

storage_format The format in which to store BYTE or TEXT data

targetdatabasename Name of the database that the records will be loaded and unloaded to

targettablename Target-table name

Use the following syntax to create an unload map with a specification file:

BEGIN OBJECT UNLOADMAP mapname

Compulsory Attributes
PROJECT projectname
FORMAT formatname
DATABASE targetdatabasename
QUERY queryname

BEGIN SEQUENCE

1194 Part VI: Administering

COLUMNNAME columnname
FIELDNAME fieldname
JUSTIFICATION justification
CASECONVERT caseconversion
DEFAULTVALUE defaultvalue
TRANSFERBYTES byte_transfer
COLUMNOFFSET column_offset
FIELDOFFSET field_offset
FIELDMINIMUM field_minimum
FIELDMAXIMUM field_maximum
FILLCHARACTER fillcharacter
PICTURE picture
FUNCTION record_function
STORAGECODING storage_format
BLOBCOLUMN blob_columnname
END SEQUENCE

END OBJECT

The following table lists the attributes and their values.

Attribute Attribute value

blob_columnname The column that contains the name of the file where BYTE or TEXT data is stored
See Simple LO data in a separate file.

byte_transfer Number of bytes to transfer from record field to database column

caseconversion Enter UPPER for all uppercase data, LOWER for all lowercase data, and PROPER for data with an initial capital
letter

columnname Name of the column to be mapped

column_offset Amount of offset from the beginning of the column to the location on the column from which data transfer begins

defaultvalue Value when no field is mapped to the column

fieldname Field corresponding to the record format to be mapped

field_maximum Largest acceptable numeric-column value

field_minimum Smallest acceptable numeric-column value

field_offset Amount of offset from the start of the field record to the location in the record from which data transfer begins

fillcharacter Character used to pad contents of a field

formatname Associated format name

justification Enter left, right, or CENTER to position text within a record

mapname Map name

picture Reformats and masks data from the field of a record before data is transferred to database

projectname Name of existing project

queryname Query name

record_function User-defined function in dynamically linked library that is called for every record that is processed
See Custom-conversion functions.

storage_format The format in which to store BYTE or TEXT data

targetdatabasename Name of the database that the records will be loaded and unloaded to

Related reference:
 Describe a map

Modify a map by using a detailed specification file

Delete a map

The following diagram illustrates the syntax to delete a map.

Deleting a map

>>-onpladm delete map -mapname-- -f--+---+---------------------->
 +-l-+
 '-u-'

 .----------------------.
 V |
>----+------------------+-+------------------------------------><
 +- -p -projectname-+
 '- -S -servername--'

Element Purpose Key considerations

-f Flags to specify the type of job The default is load job.

l Specifies a load job None

u Specifies an unload job None

Part VI: Administering 1195

Element Purpose Key considerations

mapname Sets the map name None

-p projectname Identifies the project where the format and map are
stored

None

-S servername Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

Describe a map

The following diagram illustrates the syntax to describe a map.

Describing a map

>>-onpladm describe map -mapname-- -f--+---+-------------------->
 +-l-+
 '-u-'

 .-----------------------.
 V |
>----+-------------------+-+-----------------------------------><
 +- -p -projectname--+
 +- -F -specfilename-+
 '- -S -servername---'

Element Purpose Key considerations

-f Flags to specify the type of job The default is load job.

l Specifies a load job None

u Specifies an unload job None

-F specfilename Sets the specification file The default value is the standard output.

mapname Sets the map name None

-p projectname Identifies the project where the format and map are
stored

None

-S servername Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

Related reference:
 Create a map with a detailed specification file

Modify a map by using a detailed specification file

Use the syntax shown in Specification-file conventions to modify an existing map with a specification file.

Related reference:
 Create a map with a detailed specification file

List all maps in a project

The following diagram illustrates the syntax to list all the maps in a project.

Listing all maps in a project

 .----------------------.
 V |
>>-onpladm list map--+------------+----+------------------+-+--><
 '- -f--+---+-' +- -p -projectname-+
 +-l-+ '- -S -servername--'
 '-u-'

Element Purpose Key considerations

-f Flags to specify the type of job The default is load job.

l Specifies a load job None

u Specifies an unload job None

-p projectname Identifies the project where the format and map are
stored

None

1196 Part VI: Administering

Element Purpose Key considerations

-S servername Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

Define formats

You can create, modify, describe, list, and delete formats with the onpladm utility.

Create a format
 You can only create formats by using a detailed specification file.

Modify a format by using a specification file
 You can only modify a format by using a specification file.

Describe a format
 List all formats in a project

 Delete a format

Related concepts:
 Formats of supported datafile records

Create a format

You can only create formats by using a detailed specification file.

Use the syntax shown in Specification-file conventions to create a format by using a detailed specification file.

Use the following syntax to create a fixed-format object from a specification file:

BEGIN OBJECT FIXEDFORMAT formatname

Compulsory Attributes
PROJECT projectname
CHARACTERSET data_codeset
MACHINE machine_type
BEGIN SEQUENCE
FIELDNAME fieldname
DATATYPE datatype
BYTES field_bytes
DECIMALS decimal_places
OFFSET offset_bytes
END SEQUENCE

END OBJECT

The following table lists the attributes and their values.

Attribute Attribute value

data_codeset Code set used to translate data in the data table
For more information about data code sets, see the following file on your product CD:
$INFORMIXDIR/gls/cm3/registry

datatype Type of field data
See Data types allowed in a fixed format.

decimal_places Number of decimal places for Float and Double data types

field_bytes Number of bytes that the field occupies in the record

fieldname Field name in the format

formatname Format name

machine_type Type of computer that produced the data, such as a SPARCstation
See List all existing machine types.

offset_bytes Number of bytes of the field offset in the record

projectname Name of existing project

Use the following syntax to create a COBOL-format object from a specification file:

BEGIN OBJECT COBOLFORMAT formatname

Compulsory Attributes
PROJECT projectname
CHARACTERSET data_codeset
MACHINE machine_type
DRIVER driver_type
BEGIN SEQUENCE
FIELDNAME fieldname
PICTURE picture_description
USAGE usage_description
END SEQUENCE

END OBJECT

Part VI: Administering 1197

The following table lists the attributes and their values.

Attribute Attribute value

data_codeset Code set used to translate data in the data table
For more information about data code sets, see the following file on your product CD:
$INFORMIXDIR/gls/cm3/registry

driver_type Type of driver: COBOL (default) or COBOL_b

fieldname Field name in the format

formatname Format name

machine_type Type of computer that produced the data, such as a SPARCstation

picture_description Picture description that matches the record FD from the COBOL program
See Picture strings.

projectname Name of existing project

usage_description Number of bytes that the field occupies in the record

Use the following syntax to create a delimited-format object:

BEGIN OBJECT DELIMITEDFORMAT formatname

Compulsory Attributes
PROJECT projectname
CHARACTERSET data_codeset
RECORDSTART recordstart_delimit_character
RECORDEND recordend_delimit_character
FIELDSTART fieldstart_delimit_character
FIELDEND fieldend_delimit_character
FIELDSEPARATOR fieldseparator_delimit_character
BEGIN SEQUENCE
FIELDNAME format_fieldname
FIELDTYPE field_datatype
END SEQUENCE

END OBJECT

The following table lists the attributes and their values.

Attribute Attribute value

data_codeset Code set used to translate data in the data table
For more information about data code sets, see the following file on your product CD:
$INFORMIXDIR/gls/cm3/registry

field_datatype Type of field data
See Data types allowed in a delimited format.

fieldend_delimit_character Delimiting character that specifies the end of the field, in hexadecimal or decimal format
Begin a hexadecimal character with 0x.

fieldstart_delimit_character Delimiting character that specifies the start of the field, in hexadecimal or decimal format
Begin a hexadecimal character with 0x.

fieldseparator_delimit_character Delimiting character that specifies the field separator, in hexadecimal or decimal format
Begin a hexadecimal character with 0x.

format_fieldname Format field name

formatname Format name

recordend_delimit_character Delimiting character that specifies the end of the record, in hexadecimal or decimal format
Begin a hexadecimal character with 0x.

recordstart_delimit_character Delimiting character that specifies the start of the record, in hexadecimal or decimal format
Begin a hexadecimal character with 0x.

projectname Name of existing project

Related reference:
 Modify a format by using a specification file

Describe a format

Modify a format by using a specification file

You can only modify a format by using a specification file.

Use the syntax shown in Specification-file conventions to modify a format.

Related reference:
 Create a format

Describe a format

The following diagram illustrates the syntax to describe a format to a file.

1198 Part VI: Administering

Describing a format

>>-onpladm describe format -formatname-------------------------->

 .-----------------------.
 V |
>----+-------------------+-+-----------------------------------><
 +- -p -projectname--+
 +- -F -specfilename-+
 '- -S -servername---'

Element Purpose Key considerations

-F specfilename Sets the specification file The default value is the standard output.

formatname Sets the format name None

-p projectname Identifies the project where the format and map are
stored

None

-S servername Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

Related reference:
 Create a format

List all formats in a project

The following diagram illustrates the syntax to list all formats in a project to standard output.

Listing all formats in a project

 .----------------------.
 V |
>>-onpladm list format----+------------------+-+---------------><
 +- -p -projectname-+
 '- -S -servername--'

Element Purpose Key considerations

-p projectname Identifies the project where the format and map are
stored

None

-S servername Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

Delete a format

The following diagram illustrates the syntax to delete a format.

Deleting all formats in a project

>>-onpladm delete format -formatname---------------------------->

 .----------------------.
 V |
>----+------------------+-+------------------------------------><
 +- -p -projectname-+
 '- -S -servername--'

Element Purpose Key considerations

formatname Sets the format name None

-p projectname Identifies the project where the format and map are
stored

None

-S servername Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

Define queries

You can create, modify, describe, list, and delete queries with the onpladm utility.

Creating a query
 You can only create a query by using a detailed specification file.

Part VI: Administering 1199

Modify a query
You can only modify a query by using a detailed specification file.
Describing a query
List all queries in a project
Delete a query

Creating a query

You can only create a query by using a detailed specification file.

Use the syntax shown in Specification-file conventions to create a query.

Use the following syntax to create a specification file for a query:

BEGIN OBJECT QUERY queryname
Compulsory Attributes
PROJECT projectname
DATABASE targetdatabasename
SELECTSTATEMENT sql_statement

END OBJECT

The following table lists the attributes and their values.

Attribute Attribute value

queryname Query name

projectname Name of an existing project

sql_statement SQL SELECT statement, in quotation marks, that contains unload
criteria

targetdatabasename Name of the database that the records will be loaded or unloaded to

Related reference:
 Modify a query

Describing a query

Modify a query

You can only modify a query by using a detailed specification file.

Use the syntax shown in Specification-file conventions to modify a query by using a specification file.

Related reference:
 Creating a query

Describing a query

The following diagram illustrates the syntax to describe a query.

Describing a query

>>-onpladm describe query -queryname---------------------------->

 .-----------------------.
 V |
>----+-------------------+-+-----------------------------------><
 +- -p -projectname--+
 +- -F -specfilename-+
 '- -S -servername---'

Element Purpose Key considerations

-F specfilename Sets the specification file The default value is the standard output.

queryname Sets the query name None

-p projectname Identifies the project where the format and map are
stored

None

-S servername Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

Related reference:
 Creating a query

List all queries in a project
1200 Part VI: Administering

The following diagram illustrates the syntax to list all queries in a project to standard output.

Listing all queries in a project

 .----------------------.
 V |
>>-onpladm list query----+------------------+-+----------------><
 +- -p -projectname-+
 '- -S -servername--'

Element Purpose Key considerations

-p projectname Identifies the project where the format and map are
stored

None

-S servername Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

Delete a query

The following diagram illustrates the syntax to delete a query.

Deleting a query

 .----------------------.
 V |
>>-onpladm delete query -queryname----+------------------+-+---><
 +- -p -projectname-+
 '- -S -servername--'

Element Purpose Key considerations

-p projectname Identifies the project where the format and map are
stored

None

queryname Sets the name of the query None

-S servername Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

Define filters

You can create, modify, describe, list, and delete filters with the onpladm utility.

Create a filter
 You can only create a filter by using a specification file.

Modify a filter
 You can only modify a filter by using a detailed specification file.

Describe a filter
 List all filters in a project

 Delete a filter

Related reference:
 Example of using filter

Create a filter

You can only create a filter by using a specification file.

Use the syntax shown in Specification-file conventions to create a filter by using a specification file.

Use the following syntax to create a filter by using a specification file:

BEGIN OBJECT FILTER filtername
Compulsory Attributes
PROJECT projectname
FORMAT formatname
BEGIN SEQUENCE
FIELDNAME data_file_fieldname
STATUS record_status
MATCH match_criteria
END SEQUENCE

END OBJECT

The following table lists the attributes and their values.

Part VI: Administering 1201

Attribute Attribute valueAttribute Attribute value

data_file_fieldname Data-file field to be used in the match condition

formatname Associated format name

filtername Filter name

match_criteria Match criteria, in quotation marks. See Match condition operators and
characters.

projectname Name of existing project

record_status Type a K to keep records that meet a match condition or D to discard them.

Related reference:
 Modify a filter

Describe a filter

Modify a filter

You can only modify a filter by using a detailed specification file.

Use the syntax shown in Specification-file conventions to modify a filter.

Related reference:
 Create a filter

Describe a filter

The following diagram illustrates the syntax to describe a filter.

Describing a filter

>>-onpladm describe filter -filtername-------------------------->

 .-----------------------.
 V |
>----+-------------------+-+-----------------------------------><
 +- -p -projectname--+
 +- -F -specfilename-+
 '- -S -servername---'

Element Purpose Key considerations

-F specfilename Sets the specification file The default value is the standard output.

filtername Sets the filter name None

-p projectname Identifies the project where the format and map are
stored

None

-S servername Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

Related reference:
 Create a filter

List all filters in a project

The following diagram illustrates the syntax to list all the filters in a project.

Listing all filters in a project

 .----------------------.
 V |
>>-onpladm list filter----+------------------+-+---------------><
 +- -p -projectname-+
 '- -S -servername--'

Element Purpose Key considerations

-p projectname Identifies the project where the format and map are
stored

None

-S servername Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

1202 Part VI: Administering

Delete a filter

The following diagram illustrates the syntax to delete a filter.

Deleting a filter

>>-onpladm delete filter -filtername---------------------------->

 .----------------------.
 V |
>----+------------------+-+------------------------------------><
 +- -p -projectname-+
 '- -S -servername--'

Element Purpose Key considerations

filtername Sets the name of the filter None

-p projectname Identifies the project where the format and map are
stored

None

-S servername Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

Define projects

You can create a project, run all jobs in a project, list all projects, and delete a project with the onpladm utility.

Create a project
 Run all jobs in a project

 List all projects
 Delete a project

Related concepts:
 Project organization

Create a project

The following diagram illustrates the syntax to create a new, empty project to which you can add the HPL jobs.

Creating a project

>>-onpladm create project -projectname--+-----------------+----><
 '- -S -servername-'

Element Purpose Key considerations

-p projectname Identifies the project where the format and map are
stored

None

-S servername Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

Run all jobs in a project

The following diagram illustrates the syntax to run all load or unload jobs in a project.

Running all jobs in a project

>>-onpladm run project -projectname-- -f--+---+----------------->
 +-l-+
 '-u-'

 .----------------------.
 V |
>----+------------------+-+------------------------------------><
 +- -l -logfilename-+
 '- -S -servername--'

Element Purpose Key considerations

-f Flags to specify the type of job The default is load job.

Part VI: Administering 1203

Element Purpose Key considerations

l Specifies a load job None

u Specifies an unload job None

-l logfilename Sets the path for a log file where job progress is recorded None

projectname Identifies the project where the format and map are
stored

None

-S servername Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

Related reference:
 The onpladm utility on Windows

List all projects

The following diagram illustrates the syntax to list all your projects.

Listing all projects

>>-onpladm list project--+-----------------+-------------------><
 '- -S -servername-'

Element Purpose Key considerations

-S servername Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

Delete a project

The following diagram illustrates the syntax to delete a project, all of its corresponding jobs, and other HPL objects that it holds.

Deleting a project

>>-onpladm delete project -projectname--+-----------------+----><
 '- -S -servername-'

Element Purpose Key considerations

projectname Identifies the project where the format and map are
stored

None

-S servername Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

Define machine types

You can create, modify, describe, list, and delete machine types with the onpladm utility.

Create a machine type
 You can only create a machine type by using a specification file.

Modify a machine type
 You can only modify a machine type by using a detailed specification file.

Describe a machine
 List all existing machine types

 Delete a machine type
 You can only delete a machine type by using a specification file.

Create a machine type

You can only create a machine type by using a specification file.

Use the syntax shown in Specification-file conventions to create a machine type.

Use the following syntax to create a machine object by using a specification file:

BEGIN OBJECT MACHINE machinename
Compulsory Attributes
BYTEORDER machinetype_byteorder
SHORTSIZE shortinteger_bytes

1204 Part VI: Administering

INTEGERSIZE integer_bytes
LONGSIZE longinteger_bytes
FLOATSIZE float_bytes
DOUBLESIZE double_bytes

END OBJECT

The following table lists the attributes and their values.

Attribute Attribute value

double_bytes Double integer size

float_bytes Float size

integer_bytes Integer size

machinename Machine name

longinteger_bytes Long integer size

machinetype_byteorder Computer byte-order type
Enter MSB for most-significant bit or LSB for least-significant
bit.

shortinteger_bytes Short integer size

Related reference:
 Modify a machine type

Describe a machine

Modify a machine type

You can only modify a machine type by using a detailed specification file.

Use the syntax shown in Specification-file conventions to modify a machine type.

Related reference:
 Create a machine type

Describe a machine

The following diagram illustrates the syntax to describe a machine.

Describing a machine

>>-onpladm describe machine -machinename------------------------>

 .-----------------------.
 V |
>----+-------------------+-+-----------------------------------><
 +- -F -specfilename-+
 '- -S -servername---'

Element Purpose Key considerations

-F specfilename Sets the specification file The default value is the standard output.

machinename Sets the machine name None

-S servername Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

Related reference:
 Create a machine type

List all existing machine types

The following diagram illustrates the syntax to list the machine types.

Listing all machines

>>-onpladm list machine--+-----------------+-------------------><
 '- -S -servername-'

Element Purpose Key considerations

-S servername Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

Part VI: Administering 1205

Delete a machine type

You can only delete a machine type by using a specification file.

The following diagram illustrates the syntax to delete a machine type.

Deleting a Machine

>>-onpladm delete machine -machinename--+-----------------+----><
 '- -S -servername-'

Element Purpose Key considerations

machinename Sets the machine type None

-S servername Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

Define database operations

You can perform the following database operations with the onpladm utility:

Create load and unload jobs for all tables in a database with a single command.
Load or unload all tables in a database.

Create a database project
 Configure target-server attributes

 To configure target-server attributes, you must set target-server attribute values and list target-server defaults.

Create a database project

When you create a database project with a single command, the onpladm utility:

Creates all load or unload jobs for every table in a database
Creates all the associated project HPL objects required for the jobs
Groups the load or unload jobs and associated project HPL jobs into a single project that has the same name as the database

When you create a database project, you must specify the data-files source directory name or the tape-device path.

If you specify the data-files source directory, the files that the onpladm utility creates have the following format:

PREFIX_DATABASE_TABLE.unl

PREFIX is an option that you specify on the command line, DATABASE is the name of the target database, and TABLE is the name of the target-table name.

If you do not specify a prefix, the onpladm utility creates files of the following format:

DATABASE_TABLE.unl

The onpladm utility truncates the format file name if it is longer than the maximum file name length of 18 characters.

The following diagram illustrates the syntax to create a project for all the tables in a database.

Creating a database project

>>-onpladm create project--projectname-- -d--device ------------>

>-- -D--database --+--------------------------+----------------->
 '-| Setting the run mode |-'

>--+------------------------+--+--------------+----------------->
 +- -n--------------------+ '- -P--prefix -'
 '-| Setting the format |-'

>--+--------------+--+--------------+--+------------------+----->
 '- -T--target -' '- -S--server -' '- -M--devicesize -'

>--+-----------------+---><
 '- -B--blocksize -'

Element Purpose Key considerations

-B blocksize Sets the tape I/O block size (bytes) No default value.

-d device Sets the name of device, such as a file, device array, tape,
or pipe

No default value.

1206 Part VI: Administering

Element Purpose Key considerations

-D database Name of the target database that contains the information
to be loaded or unloaded

No default value.

-M devicesize Tape device size in kilobytes The device size must be greater than zero.

-n Sets no-conversion express job None

-P prefix Filename prefix for the files to be used as devices None

projectname Identifies the project where the format and map are stored None

-S server Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

-T target Name of the target server to which the data will download The default is the value of the INFORMIXSERVER
environment variable.

The following diagram illustrates the syntax to set the run mode with the -f option.

Setting the run mode

|-- -f--+---+--+---+--+---+-------------------------------------|
 '-d-' '-c-' '-N-'

Element Purpose Key considerations

c Sets mode to deluxe mode. If this flag is not set, onpladm uses express
mode.

d Treats data source as a tape device None

N Allows deluxe mode load without replication None

The following diagram illustrates the syntax to set the format type with the -z option.

Setting the format

|-- -z--+----+--|
 +-D--+
 +-FI-+
 +-FA-+
 +-FB-+
 +-C--+
 '-CB-'

Element Purpose Key considerations

D Sets the format to delimited This is the default value. See Delimited
records.

FI Sets the format to fixed internal See Fixed-length records.

FA Sets the format to fixed ASCII See Fixed-length records.

FB Sets the format to fixed binary See Fixed-length records.

C Sets the format to COBOL See COBOL records.

CB Sets the format to COBOL (byte) See COBOL records.

Configure target-server attributes

To configure target-server attributes, you must set target-server attribute values and list target-server defaults.

Set target-server attribute values
 List target-server defaults

Set target-server attribute values

The following diagram illustrates the syntax to set default values for target server attributes.

Setting target server attribute values

>>-onpladm configure defaults--+-----------------+-------------->
 '- -s -servername-'

>-- -m -machinetype-- -c -data_codeset--+-----------------+----><
 '- -S -servername-'

Element Purpose Key considerations

Part VI: Administering 1207

Element Purpose Key considerations

- c data_codeset Character set for data files The character set of the database is determined by the
DB_LOCALE environment variable. For information
about locales and code sets, see the IBM® Informix®
GLS User's Guide.

-m machinetype Machine type None

-s servername Database server for which defaults are set If a server is not specified, the default information
within the onpload database that describes all database
servers is modified.

-S servername Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

List target-server defaults

The following diagram illustrates the syntax to list target-server default values.

Listing target server defaults

>>-onpladm list defaults--+-----------------+------------------->
 '- -s -servername-'

>--+-----------------+---><
 '- -S -servername-'

Element Purpose Key considerations

-s servername Database server for which defaults are set If a server is not specified, the default information within
the onpload database that describes all database servers
is modified.

-S servername Sets the onpload database server The default is the value of the INFORMIXSERVER
environment variable.

Appendixes

This section contains additional reference information.

The onpload database
 The tables in the onpload database hold information that the onpload utility uses. This section describes the tables in the onpload database that you create or

modify with ipload.
High-Performance Loader configuration file

 The default $INFORMIXDIR/etc/plconfig.std file on UNIX or %\INFORMIXDIR%\etc\plconfig.std on Windows is the high-performance loader configuration file.
Picture strings

 The HPL uses two types of picture strings: COBOL picture strings and other picture strings.
Match condition operators and characters

 This section describes the operators that are available when you match text and it provides an example of each operator.
Custom-conversion functions

 Custom-conversion functions allow you to add additional data conversion capability to the High-Performance Loader (HPL). This feature lets onpload call a custom-
conversion function during the data-conversion process.
The onstat -j option

 The -j option of the onstat utility provides special information about the status of an onpload job. The -j option provides an interactive mode that is analogous to
onstat -i.
The HPL log-file and pop-up messages

 This section provides explanatory notes and corrective actions for unnumbered messages that print in the High-Performance Loader (HPL) log file. The section also
includes information specific to messages that are returned to standard output or appear in a pop-up dialog box (depending on the way you started onpload).
Custom drivers

 If your operating system supports dynamic linking of libraries, you can use a custom driver to extend the functionality of the High-Performance Loader (HPL) to
support different file types or access mechanisms.
Run load and unload jobs on a Windows computer

 Conversion and reversion scripts for HPL database migration
 When you convert or revert to different versions of the database server, you can use conversion and reversion scripts to manually upgrade or revert your onpload

database. You must use these scripts if you are required to upgrade between the same server versions.

The onpload database

The tables in the onpload database hold information that the onpload utility uses. This section describes the tables in the onpload database that you create or modify with
ipload.

When you start ipload, ipload looks for a database named onpload on the database server that your INFORMIXSERVER environment variable specifies. If the onpload
database is not present, ipload creates an onpload database as a non-ANSI database.

1208 Part VI: Administering

When ipload creates an onpload database, it populates some of the tables in the database with default values. You can use DB-Acess to examine the values in the tables.
However, it is recommended that you always use ipload to change the onpload database.

The defaults table in the onpload database
 The defaults table contains default values that the High-Performance Loader (HPL) uses. When ipload creates the onpload database, it inserts a single row into this

table. This row specifies the default configuration assumptions for the database server, the type of computer, and the data code set.
The delimiters table in the onpload database

 The ipload utility uses the values in the delimiters table to display the field-delimiter values that the Delimiter Options window shows. When ipload creates the
onpload database, it inserts values into this table. The values in the delimiters table are for reference and do not change.
The device table in the onpload database

 The device table defines the elements of a device array. Use the Device-Array Definition window to modify this table.
The driver table in the onpload database

 The filteritem table in the onpload database
 The filteritem table defines the conditions to be applied to load data to filter out records. Each filter item is attached to a particular field of a record in a data file.

Use the filter options to modify this table.
The filters table in the onpload database

 The filters table assigns a unique number to each group of filter items that together form a filter. Each filter is associated with a project and a format definition. Use
the Filter-Definition window to create or modify a filter.
The formatitem table in the onpload database

 The formatitem table defines the data-file records. Each field of a data file is described by an entry in this table. Use the Records Format window to prepare the
record formats.
The formats table in the onpload database

 The formats table defines the basic information for a record format. Use the Records Format window to modify this table.
The language table in the onpload database

 The onpload utility does not use the language table at this time.
The machines table in the onpload database

 The machines table defines the binary type sizes and byte order for different computers. The High-Performance Loader (HPL) uses this information when you
transfer binary data.
The mapitem table in the onpload database

 The mapitem table defines the relationship between the columns of a database table and the record fields of a data file. The table stores pairs of column/record
entries. The map options modify this table.
The mapoption table in the onpload database

 The mapoption table defines conversion options for the mapping pairs that are defined in mapitem table. Use the Mapping Options window to modify this table.
The maps table in the onpload database

 The maps table defines record-to-table mappings (for loads) and query-to-record mappings (for unloads). Use the map options to modify this table.
The note table in the onpload database

 The note table holds comments that you can store about the components that are used for loads and unloads. You can store notes about all of the onpload
components: projects, devices, formats, maps, queries, filters, and load and unload jobs.
The project table in the onpload database

 The project table lists the projects in this onpload database. Use the Project window to modify this table.
The query table in the onpload database

 The query table stores the queries that are used for unloading data from an IBM® Informix® database. Use the Query-Definition window to modify this table.
The session table in the onpload database

 The session table controls the parameters that onpload uses to start a load or unload job.

Related concepts:
 Load and unload maps

Mapping options
The Unload Job windows
The Load Job windows
Related tasks:

 Changing the load options
Related reference:

 Start the ipload utility

The defaults table in the onpload database

The defaults table contains default values that the High-Performance Loader (HPL) uses. When ipload creates the onpload database, it inserts a single row into this table.
This row specifies the default configuration assumptions for the database server, the type of computer, and the data code set.

Column Type Description

node CHAR(18) The name of a database server

machine CHAR(18) Specifies the default machine type (foreign key to the machines
table)

datatype CHAR(18) The code set of the data file

dbgls CHAR(18) Reserved
Used previously for the code set of the target database

You can specify a set of defaults for each database server. If this table does not contain an entry for a database server, the database uses the defaults that the record
named default specifies.

Use the Defaults window to modify this table.

Related concepts:
 Modify the onpload default values

Part VI: Administering 1209

The delimiters table in the onpload database

The ipload utility uses the values in the delimiters table to display the field-delimiter values that the Delimiter Options window shows. When ipload creates the onpload
database, it inserts values into this table. The values in the delimiters table are for reference and do not change.

Column Type Description

hex CHAR(2) Hexadecimal representation of the delimiter

octal CHAR(4) Octal representation of the delimiter

ascii CHAR(15) ASCII characters (printable) that form the delimiter

control CHAR(10) Control character sequence that generates the
delimiter

Related tasks:
 Modifying delimited-format options

The device table in the onpload database

The device table defines the elements of a device array. Use the Device-Array Definition window to modify this table.

Column Type Description

name CHAR(18) Name of the device array described in this row (primary key)

seq INTEGER Device number within the device array (primary key)

type CHAR(5) Device type (pipe (UNIX only), file, or tape)

file CHAR(128) File or device to be accessed by this array element

blocksize INTEGER I/O blocksize (tape devices only)

devicesize INTEGER Capacity of device (tape devices only)

pipecommand CHAR(128) The pipe command to invoke when onpload starts to access to the
device element (UNIX only)

lockflag CHAR(1) Flag for locking mechanism that ipload uses

header TEXT The tape header for a device that DDR uses

Related concepts:
 The Device-Array Definition window

The driver table in the onpload database

The onpload utility uses different set routines, called drivers, to handle different file formats. For example, the delimited driver handles delimited file formats. The
routines in a driver process data unloaded from or loaded into the data file. The onpload utility includes drivers for widely used data-file formats. You can prepare
additional, custom drivers for other formats and bind them into the onpload shared library. The set of available drivers is stored in the driver table.

Column Type Description

drivername CHAR(18) Name of driver (primary key)

drivertype CHAR(1) Data-file format: Fixed, Delimited,
COBOL

You can use the procedure that Custom drivers describes to build custom drivers. A custom driver takes data from a file and constructs input for onpload that is in a
format that onpload recognizes (Fixed, Delimited, COBOL).

Related concepts:
 The Drivers window

The filteritem table in the onpload database

The filteritem table defines the conditions to be applied to load data to filter out records. Each filter item is attached to a particular field of a record in a data file. Use the
filter options to modify this table.

Column Type Description

formid INTEGER Filter identifier (foreign key to the filters table)

seq INTEGER Specifies the order in which the filter items (the match expression) are
applied

fname CHAR(128) The name of the field that this filter affects

option CHAR(7) Specifies the disposition of a record (discard or keep) when the match
criterion is true

1210 Part VI: Administering

Column Type Description

match CHAR(60) Match expression that is applied to data field

Related tasks:
 Creating a filter

The filters table in the onpload database

The filters table assigns a unique number to each group of filter items that together form a filter. Each filter is associated with a project and a format definition. Use the
Filter-Definition window to create or modify a filter.

Column Type Description

formid SERIAL Filter identifier (primary key)

projectid INTEGER Project with which this filter is associated (foreign key to the project
table)

formatid INTEGER Format identifier of the format definition to which this filter applies
(foreign key to the formats table)

name CHAR(128) The name of the filter

lockflag CHAR(1) Flag for locking mechanism used by ipload
Related tasks:

 Creating a filter

The formatitem table in the onpload database

The formatitem table defines the data-file records. Each field of a data file is described by an entry in this table. Use the Records Format window to prepare the record
formats.

Table 1 lists the possible values for the ftype column. For more information, see Figure 2.

Column Type Description

formid INTEGER Record format identifier (foreign key to the formats table)

seq INTEGER Item sequence number for internal organization

fname CHAR(128) Name of record field

ftype INTEGER A number that indicates the type of data in the field

bytes INTEGER Number of bytes in field

decimals INTEGER Number of decimal values to format when converting to
ASCII

offset INTEGER Offset in record image where field starts

qual INTEGER IBM® Informix® DATETIME/INTERVAL qualifier

picture CHAR(15) COBOL picture definition

Table 1. Possible values for the ftype column

Value for ftype Type of data

1 Character (fixed and delimited)

2 Date

3 Short integer

4 Integer

5 Long Integer

6 Floating-point vale

7 Double floating-point value

8 Unsigned short integer

9 Unsigned integer

10 Unsigned long integer

11 UNIX date

18 Packed Decimal

19 Zoned decimal

20 Comp-1

21 Comp-2

22 Comp-3

Part VI: Administering 1211

Value for ftype Type of data

23 Comp-4

24 Comp-5

25 Comp-6

26 Comp-X

27 Comp-N

28 Character (COBOL)

34 Blob Length

35 Blob File

36 Blob HexASCII

37 Blob Text

39 INT8

40 SERIAL8

41 BOOLEAN

42 Extended Type String

43 Extended Type HexASCII

44 Extended Type Binary

45 Extended Type StringLength

46 Extended Type BinaryLength

49 BIGINT

50 BIGSERIAL

51 INT64 (64-bit integer)

Related concepts:
 Formats of supported datafile records

The formats table in the onpload database

The formats table defines the basic information for a record format. Use the Records Format window to modify this table.

Column Type Description

formid SERIAL Unique format identifier (primary key)

projectid INTEGER Project to which the format is assigned (foreign key to the project table)

name CHAR(128) Name of format

type CHAR(10) Data-file format: Fixed, Delimited, COBOL

driver CHAR(18) Driver to use to access data records

machine CHAR(18) Machine name that defines binary-data parameters (foreign key to the
machinename column of the machines table)

datatype CHAR(18) Character code set to use for conversion of data records

recordlength INTEGER Length in bytes of a fixed-format record

recordstrt CHAR(15) Record-start sequence for delimited format

recordstrty CHAR(10) Type of the record-start sequence:Hex, Octal, ASCII, or Decimal

recordend CHAR(15) Record-end sequence for delimited format

recordendt CHAR(10) Type of the record-end sequence:Hex, Octal, ASCII, or Decimal

fieldsep CHAR(15) Field-separator sequence for delimited format

fieldsept CHAR(10) Type of the field-separator sequence:Hex, Octal, ASCII, or Decimal

fieldstrt CHAR(15) Field-start sequence for delimited format

fieldstrty CHAR(10) Type of the field-start sequence: Hex, Octal, ASCII, or Decimal

fieldend CHAR(15) Field-end sequence for delimited format

fieldendt CHAR(10) Record-end sequence separator type:Hex, Octal, ASCII, or Decimal

lockflag CHAR(1) Flag for locking mechanism that ipload uses

Related concepts:
 Formats of supported datafile records

Related tasks:
 Creating a fixed format

Related reference:
 Format options

1212 Part VI: Administering

The language table in the onpload database

The onpload utility does not use the language table at this time.

The machines table in the onpload database

The machines table defines the binary type sizes and byte order for different computers. The High-Performance Loader (HPL) uses this information when you transfer
binary data.

When ipload creates the onpload database, it inserts definitions for several different types of computers into this table. To transfer binary data to or from a computer that
is not described in this table, you must create a machine definition by using the Machines window.

Column Type Description

machinename CHAR(18) Computer name or type (primary
key)

byteorder CHAR(3) Binary byte ordering: LSB or MSB

shortsize INTEGER Size of a short integer

intsize INTEGER Size of an integer

longsize INTEGER Size of a long integer

floatsize INTEGER Size of a float value

doublesize INTEGER Size of a double value

Related concepts:
 Modify the machine description

The Machines window

The mapitem table in the onpload database

The mapitem table defines the relationship between the columns of a database table and the record fields of a data file. The table stores pairs of column/record entries.
The map options modify this table.

Column Type Description

formid INTEGER Specifies the map to which this record belongs (foreign key to the maps
table)

seq INTEGER Unique identifier for the database-column/data file-record pair

colname VARCHAR(128,0) Name of database column

fname CHAR(128) Name of field in a data-file record

Related concepts:
 Load and unload maps

The mapoption table in the onpload database

The mapoption table defines conversion options for the mapping pairs that are defined in mapitem table. Use the Mapping Options window to modify this table.

Column Type Description

formid INTEGER Specifies the map to which this record belongs (foreign key to the maps
table)

seq INTEGER The database-column and/or data file-record pair to which this option
applies (foreign key to the mapitem table)

bytes INTEGER Maximum number of bytes to transfer from a field of a data file

minvalue FLOAT Minimum value allowed in field

maxvalue FLOAT Maximum value allowed in field

ccase CHAR(18) Case conversion option: None, Lower, Upper, Proper Noun

justify CHAR(18) String justification to perform: None, Left, Right, Center

fill CHAR(1) Fill character for string padding

picture CHAR(55) Picture mask to apply to target data

coloffset INTEGER Offset in column at which to start data transfer

recoffset INTEGER Offset in record field from which to start data extract

Part VI: Administering 1213

Column Type Description

function CHAR(55) Custom function to call

looktable CHAR(18) Not in use

matchcol CHAR(18) Not in use

coldefault CHAR(18) Default value to set on column: ASCII HEX or ASCII binary

inputcode CHAR(18) Format in which the BYTE or TEXT data is stored in the data file: ASCII
HEX or ASCII binary

storecode CHAR(18) Format in which to store the BYTE or TEXT data

blobcolumn CHAR(18) The column that contains the name of the file where the BYTE or TEXT
data is stored

If the values of inputcode and storecode are different, onpload converts the contents of the BYTE or TEXT data.

Related tasks:
 Defining the mapping options

The maps table in the onpload database

The maps table defines record-to-table mappings (for loads) and query-to-record mappings (for unloads). Use the map options to modify this table.

Column Type Description

projectid INTEGER Project to which this map is assigned (foreign key to the project table)

formid SERIAL Unique identifier for map (primary key)

name CHAR(128) Name of map

type CHAR(6) Specifies whether the map is a load or unload map; possible values
include:

Record (load map)
Query (unload map)

dbname CHAR(30) Name of load or unload database

qtable CHAR(18) Name of table to be loaded; used only for loads

query CHAR(128) Name of query; used only for unloads

formatid INTEGER Identifier of the format that this map uses (foreign key to the format
table)

lockflag CHAR(1) Flag for locking mechanism that ipload uses

Related concepts:
 Load and unload maps

The note table in the onpload database

The note table holds comments that you can store about the components that are used for loads and unloads. You can store notes about all of the onpload components:
projects, devices, formats, maps, queries, filters, and load and unload jobs.

Column Type Description

type CHAR(18) Specifies the type of component to which this note is attached

formid INTEGER Corresponds to the formid of the component specified in the type
column (The two columns together uniquely identify the component to
which the note is attached.)

projectid INTEGER ID of project to which this note belongs (foreign key to the project table)

createdate DATE Date that the note was created

modifydate DATE Date that the note was last modified

note TEXT Text of the note

Related concepts:
 The Notes button

The project table in the onpload database

The project table lists the projects in this onpload database. Use the Project window to modify this table.

Column Type Description

1214 Part VI: Administering

Column Type Description

name CHAR(128) Name of object

projectid SERIAL Uniquely identifies the project (primary
key)

dcreate DATE Date that the project was created

Related concepts:
 Select or create a project with the Projects window

Project organization

The query table in the onpload database

The query table stores the queries that are used for unloading data from an IBM® Informix® database. Use the Query-Definition window to modify this table.

Column Type Description

formid SERIAL Unique number that identifies this query (primary key)

projectid INTEGER Number of the project that includes this query (foreign key to the projects
table)

name CHAR(128) Name of the query

database CHAR(30) Name of database being queried

arrayname CHAR(128) Not in use

lockflag CHAR(1) Flag for locking mechanism that ipload uses

sqlselect TEXT SQL statement of the query

Related concepts:
 HPL queries

Related tasks:
 Creating a query

The session table in the onpload database

The session table controls the parameters that onpload uses to start a load or unload job.

Table 1. Columns in the session table

Column Type Description

sessiontype CHAR(1) Describes the type of load or unload session:

U = Job is driven by the user interface.
N = Job expects a socket interface and is removed when the job is finished.
S = Job is run from the command line.

automate CHAR(1) Flag for automatically creating maps and formats at run time:

Y = Create automatically.
blank = Do not create.

lockflag CHAR(1) Flag for locking mechanism that ipload uses

sessionid SERIAL Session identifier (primary key)

name CHAR(130) Name of the load or unload job. This name appears in the command line displayed in the Load Job Select or
Unload Job Select window.

status CHAR(1) Job status:

R = Running
C = Connecting
S = Starting
blank = Job is complete.

server CHAR(40) Override default server to load and unload

map CHAR(18) Name of the map that controls the load (foreign key to the name column of the maps table; the maps table
specifies the format and, for unload jobs, the query)

infile CHAR(160) Name of the device array (foreign key to the name column of the device table)

hostname CHAR(40) Name of the computer on which the onpload utility is running

dbname CHAR(30) Name of database to be loaded or unloaded

filter CHAR(128) Filter for screening import data (foreign key to the name column of the filters table)

recordfilter CHAR(384) File in which to store filtered records

Part VI: Administering 1215

Column Type Description

suspensefile CHAR(384) File in which to store records that do not pass conversion

rejectfile CHAR(384) File in which to place records that the database server rejected

logfile CHAR(384) File in which to place session status messages

projectid INTEGER Project for maps and formats (foreign key to the project table)

headersize INTEGER Size in bytes of header information to strip from input

quiet INTEGER If true, suppresses status message output

tracelevel INTEGER Higher values result in more status messages

sourcetrace INTEGER If true, source and module line numbers are placed in status message outputs

multicthread INTEGER Sets the maximum number of conversion threads that you can invoke on a device

blocksize INTEGER I/O block size for accessing device

filetype INTEGER Specifies the type of file: tape, array, pipe (UNIX only)

number_records INTEGER Specifies the number of records to load

start_record INTEGER Specifies the number of the record at which to start loading

maxerrors INTEGER Maximum number of errors to allow before aborting the load or unload

swapbytes INTEGER Specifies the number of bytes to swap
(If swapbytes is 4, the first 4 bytes are swapped with the next 4 bytes. If blank, bytes are not swapped.)

runmode INTEGER Contains a value that qualifies onpload to perform a load or unload operation. You can determine the run
mode by selecting the loadmode and runmode fields from the session table.
For load operations, the runmode is a combination of the following values:

129 = Deluxe mode + conversion
130 = Express® mode + conversion
385 = Deluxe mode + no violations + conversion
386 = Express mode + conversion + no violations
4225 = Deluxe mode + no replication + conversion
4481 = Deluxe mode + no replication + no violations + conversion

For example, you could have this command for a load operation:

 onpladm create job j4 -flN -D tst -t
tab1 -d data.unl

For this command for a load job, the runmode value is:

 0x00001081 = Deluxe+Conversion+NoReplication

For unload operations, the runmode is a combination of the following values:

2 = No conversion
129 = Conversion (128) + dirty read isolation level (1)
130 = Conversion (128) + committed read isolation level (2)
131 = Conversion (128) + cursor stability isolation level (3)
132 = conversion (128) + repeatable read isolation level (4)

loadmode INTEGER Type of job:

1 = Load
2 = Unload

caseconvert INTEGER Case conversion type. Convert to:

U or u = uppercase
L or l = lowercase
P or p = proper names

commitinterval INTEGER Commit interval for committing a load transaction.
The value is specified in the Load Options window, Figure 1. The commit interval applies only to deluxe
mode.

socketport INTEGER Set by onpload to specify the port number of the connection

numtapes INTEGER Number of tapes to load

Tip: Deluxe-mode loads do not support the “no conversion” option and the “with conversion and do not generate violations table” option.
Related concepts:

 The Load Job windows

High-Performance Loader configuration file

The default $INFORMIXDIR/etc/plconfig.std file on UNIX or %\INFORMIXDIR%\etc\plconfig.std on Windows is the high-performance loader configuration file.

1216 Part VI: Administering

The file is similar to the onconfig file in the etc directory in $INFORMIXDIR. The plconfig.std file sets various onpload buffer and system configuration parameters. You
can modify the parameters to maximize resource utilization.

The PLCONFIG environment variable specifies an alternative name for the HPL configuration file. This file must be in the etc directory in $INFORMIXDIR. If you do not set
the PLCONFIG environment variable, the default name of the file is plconfig.std.

HPL configuration parameter descriptions
 HPL configuration parameter file conventions

 Each parameter in the plconfig.std file in the etc directory in $INFORMIXDIR is on a separate line. The file can also contain blank lines and comment lines that
start with a # symbol.
The AIOBUFFERS configuration parameter

 The AIOBUFFERS configuration parameter sets the number of buffers used to transport data from converter threads to the AIO handler.
The AIOBUFSIZE configuration parameter

 The AIOBUFSIZE configuration parameter sets the size of the AIO memory buffers that transfer data to and from tapes and files. The High-Performance Loader
(HPL) uses the AIO buffers to pass data between the converters and the I/O drivers.
The CONVERTTHREADS configuration parameter

 The CONVERTTHREADS configuration parameter sets the number of convert threads for each file I/O device. The convert threads run on the convert VPs.
The CONVERTVPS configuration parameter

 The CONVERTVPS parameter limits the maximum number of VPs used for convert threads. This parameter limits the number of VPs that the onpload client uses so
that onpload does not monopolize system resources.
The HPLAPIVERSION configuration parameter

 The HPLAPIVERSION configuration parameter specifies whether to use custom conversion or driver functions with three or four arguments. Using four arguments
allows different lengths for data in the input and output buffers.
The HPL_DYNAMIC_LIB_PATH configuration parameter

 The STRMBUFFERS configuration parameter
 The STRMBUFFERS parameter sets the number of server-stream buffers per device. The onpload utility sends data to the database server through a server stream.

The server stream is a set of shared-memory buffers. The memory for the server-stream buffer is allocated from the memory allocated for the database server.
The STRMBUFFSIZE configuration parameter

 The STRMBUFFSIZE configuration parameter sets the size of a server-stream buffer. Larger buffers are more efficient because moving buffers around requires less
overhead.

Related concepts:
 The onpload configuration parameters

Related reference:
 The PLCONFIG environment variable

HPL configuration parameter descriptions

The description of each configuration parameter has one or more of the following fields (depending on their relevance):

Default value
The value that appears in the plconfig.std file unless you explicitly change it

Units
The units in which the parameter is expressed

Range of values
The possible values for this parameter

See
Cross-reference to further discussion

HPL configuration parameter file conventions

Each parameter in the plconfig.std file in the etc directory in $INFORMIXDIR is on a separate line. The file can also contain blank lines and comment lines that start with
a # symbol.

The syntax of a parameter line is as follows:

PARAMETER_NAME parameter_value # optional comment

Parameters and their values are case-sensitive. The parameter names are always all uppercase letters. If the parameter-value entry is described with uppercase letters,
you must use uppercase. You must put white space (tabs or spaces or both) between the parameter name, parameter value, and optional comment. Do not use any tabs or
spaces within a parameter value.

The AIOBUFFERS configuration parameter

The AIOBUFFERS configuration parameter sets the number of buffers used to transport data from converter threads to the AIO handler.

You must set the AIOBUFFERS parameter on Windows computers to a minimum of 8.

Default value
Maximum of (4,CONVERTTHREADS)

Recommended value
Maximum of (4, 2*CONVERTTHREADS)

Range of values
Integer value > 4

Part VI: Administering 1217

See
Assess information for loading or unloading external data

The AIOBUFSIZE configuration parameter

The AIOBUFSIZE configuration parameter sets the size of the AIO memory buffers that transfer data to and from tapes and files. The High-Performance Loader (HPL) uses
the AIO buffers to pass data between the converters and the I/O drivers.

The AIOBUFSIZE parameter is not the same as the tape-block size that you can set in the device arrays (see Figure 2). The tape-block size lets you control the size of the
block that the device controller sends to the tape drive, while AIOBUFSIZE lets you control the size of internal buffers that pass data. If your computer has memory
available, you can improve performance by increasing the AIOBUFSIZE parameter.

Default value
64

Units
Kilobytes

Range of values
Minimum: 0.5 KB (512 bytes)
Maximum: depends on operating system resources

See
Assess information for loading or unloading external data

The CONVERTTHREADS configuration parameter

The CONVERTTHREADS configuration parameter sets the number of convert threads for each file I/O device. The convert threads run on the convert VPs.

If you are doing a convert-intensive job, increasing CONVERTTHREADS can improve performance on multiple-CPU computers. For convert-intensive jobs, set
CONVERTTHREADS to 2 or 3 as a starting point for performance tuning. Except for computers with many CPUs, the useful maximum number of CONVERTTHREADS is
almost always less than 10.

The total number of convert threads that onpload uses is as follows:

CONVERTTHREADS * numdevices

where numdevices is the number of devices in the current device array.
Having more than one converter per thread, in general, allows the conversion phase to run faster given that CPU resources are available. Conversion can be a CPU-
intensive phase if complex conversions are being performed.

Default value
1

Range of values
Minimum: 1
Maximum: depends on computer configuration

See
Assess information for loading or unloading external data

The CONVERTVPS configuration parameter

The CONVERTVPS parameter limits the maximum number of VPs used for convert threads. This parameter limits the number of VPs that the onpload client uses so that
onpload does not monopolize system resources.

Setting CONVERTVPS too large can cause performance degradation. Do not set more converter VPs than there are physical CPUs. If the number of CONVERTVPS exceeds
the number of physical CPUs, system resources are consumed with no performance benefit.

On single-CPU computers, increasing this parameter has a negative effect on performance.

Default value
Single-processor computer: 1
Multiprocessor computer: 50 percent of physical CPUs

Range of values
From 1 to the number of physical CPUs

See
Assess information for loading or unloading external data

The HPLAPIVERSION configuration parameter

The HPLAPIVERSION configuration parameter specifies whether to use custom conversion or driver functions with three or four arguments. Using four arguments allows
different lengths for data in the input and output buffers.

Default value

1218 Part VI: Administering

0
Range of values

0 or 1
0 = The custom conversion or driver function receives three arguments:

The buffer into which the output should be placed
The maximum length of the output buffer
The value of the input field

1 = The custom conversion or driver function receives four arguments:

The buffer into which the output should be placed
The maximum length of the output buffer
The value of the input field
The length of the input value

See
The onpload conversion process

The HPL_DYNAMIC_LIB_PATH configuration parameter

The ipldd11a.SOLIBSUFFIX shared-library file can contain custom-code files. You can add custom drivers or custom conversion functions to this file to extend the
functionality of the High-Performance Loader (HPL). For more information about custom drivers, see Custom drivers. For more information about custom conversion
functions, see Custom-conversion functions.

Previous versions of the database server required the ipldd11a.SOLIBSUFFIX file to be installed in the /usr/lib directory on Solaris. Although you can set the value of
HPL_DYNAMIC_LIB_PATH to /usr/lib, doing so creates a security risk.

Default value
$INFORMIXDIR/lib/ipldd11a.so

Range of values
Any valid directory, plus ipldd11a.SOLIBSUFFIX. (SOLIBSUFFIX is the shared-library suffix for your operating system.)
For security reasons, you should keep all shared libraries used by the database server in directories under $INFORMIXDIR.

See
Rebuilding the shared-library file

If you use customized files with the High-Performance Loader, set the HPL_DYNAMIC_LIB_PATH configuration parameter in the plconfig file to the location of the custom-
code shared library.

The STRMBUFFERS configuration parameter

The STRMBUFFERS parameter sets the number of server-stream buffers per device. The onpload utility sends data to the database server through a server stream. The
server stream is a set of shared-memory buffers. The memory for the server-stream buffer is allocated from the memory allocated for the database server.

Each device has a separate server stream with STRMBUFFERS buffers. Thus the total number of stream buffers is as follows:

STRMBUFFERS * numdevices

where numdevices is the number of devices in the current array.

Default value
Maximum of (4,2*CONVERTTHREADS)

Recommended value
Maximum of (4,2*CONVERTTHREADS)

Range of values
Integer > 4

See
Assess information for loading or unloading external data

The STRMBUFFSIZE configuration parameter

The STRMBUFFSIZE configuration parameter sets the size of a server-stream buffer. Larger buffers are more efficient because moving buffers around requires less
overhead.

Default value
64

Units
Kilobytes

Range of values
Minimum: 2 * operating system page size
Maximum: depends on operating system resources

See
Assess information for loading or unloading external data

Part VI: Administering 1219

Picture strings

The HPL uses two types of picture strings: COBOL picture strings and other picture strings.

COBOL picture strings describe a data field in a file that a COBOL program generates. For a discussion of COBOL picture strings, see COBOL records. The other picture-
string type reformats and masks character data. This appendix discusses the non-COBOL picture strings.

Picture strings allow you to insert constants, strip unwanted characters, and organize the position of character data. Picture strings have three basic types: alphanumeric,
numeric, and date. Each type is handled uniquely. The picture-string type is determined by the control characters that you use to specify the picture.

You specify the picture string in the Picture text box in the Mapping Options window. For information about the Mapping Options window, see Mapping options.

Alphanumeric pictures
 Alphanumeric pictures control formatting of alphanumeric strings. An alphanumeric picture allows you to mix constant characters in the picture specification with

the data being processed. You can also mask out unwanted character types.
Numeric pictures

 Numeric pictures allow you to decode and reformat integer and decimal numeric values. A value is interpreted as a numeric value only if its picture string contains
numeric picture-control characters.
Date pictures

 When you load data, the date-format picture specifies how the High-Performance Loader (HPL) formats the input data before it writes the data into a database.
When you extract data from a database, the date-format picture specifies how the HPL reformats the date before it writes the date to the output.

Alphanumeric pictures

Alphanumeric pictures control formatting of alphanumeric strings. An alphanumeric picture allows you to mix constant characters in the picture specification with the data
being processed. You can also mask out unwanted character types.

When the HPL processes an alphanumeric picture, the picture string is scanned until a picture-control character is found. All noncontrol characters in the picture string are
placed directly into the output string.

When a control character is found in the picture string, the input data is scanned until a character that matches the type of the picture-replacement character is found.
This character is placed in the output string, and the process is repeated.

The alphanumeric picture-control characters are X, a, A, 9, and \. A picture string that includes any of the preceding characters is, by definition, an alphanumeric picture
string. All other characters in an alphanumeric picture string are treated as literals and inserted directly into the resulting output string.

The following list describes the behavior of the alphanumeric picture-control characters.

Character
Definition

X
Replaces the control character with any character from input data

A
Replaces the control character with an alphanumeric character from input

a
Replaces the control character with an alphabetic character from input

9
Replaces the control character with a numeric character from input Fills the string with leading 0 characters so that the length of the input string matches the length
of the picture specification.

\
Causes the character that follows the backslash to be placed in the output. That is, the character that follows a backslash is not a control character.

The following table lists some examples of alphanumeric pictures.

Picture Input data Output data

XX-AJXXXX 12P45-q 12-PJ45-q

AA-\AJAAAA 12P45-q 12-AJP45q

aaaaaaaa 12P45-q Pq

aa99999 123abc ab00000

Numeric pictures

Numeric pictures allow you to decode and reformat integer and decimal numeric values. A value is interpreted as a numeric value only if its picture string contains numeric
picture-control characters.

The input data is first scanned for the number of digits to the left and right of the decimal point (if any), and for a negative sign that can either precede or follow the data.
The picture string is then used to reformat the value. The numeric picture-control characters are 9, S, V, and Z.

The following list describes the behavior of the numeric picture-control characters.

Character
Definition

9
Replaces the control character with a numeric character

1220 Part VI: Administering

S
Replaces the control character with a minus sign if the input value is negative

V
Inserts a decimal point

Z
Replaces the control character with a numeric character or a leading zero

The following table lists some examples of numeric pictures.

Picture Input data Output data Comment

9999999 123 0000123 Simple reformat

S999.99 123- -123.00 Sign controlled on output

99V99 123 01.23 Implicit decimal point

99.99 103.455 103.45 Strip decimals

Date pictures

When you load data, the date-format picture specifies how the High-Performance Loader (HPL) formats the input data before it writes the data into a database. When you
extract data from a database, the date-format picture specifies how the HPL reformats the date before it writes the date to the output.

The date control characters are M, D, and Y. The following list provides definitions of these control characters.

Character
Definition

D
Day value

H
Hour value

M
Month value or minute value

S
Second value

Y
Year value

You can use IBM® Informix® DATETIME strings, such as YYYY/MM/DD HH:MM:SS.

The following table shows some examples of date picture strings.

Picture DBDATE value Input Output

MM/DD/YY YMD2/ 12/20/91 91/12/20

MM/DD/YY DMY2/ 12/20/91 20/12/91

MMDDYY DMY2/ 122091 20/12/91

MM DD YYYY DMY4/ 12/20/1991 20/12/1991

MM/DD/YY DMY2. 12/20/91 20.12.91

M/D/YY DMY2/ 02/01/91 2/1/91

Match condition operators and characters

This section describes the operators that are available when you match text and it provides an example of each operator.

Operator descriptions and examples

Operator descriptions and examples

Operator Description

= value Matches if the character string in, or the value of, the data-record field equals the specified text or value. If you specify a character string, the
characters must be delimited by quotes. For example, if you are matching on a field named City, the match condition = "Dallas" selects all records
whose City field contains the entry Dallas.

value Equals (=) is the default operator. Thus, this case is equivalent to = value, except that the characters do not have to be delimited by quotes. For
example, if you are matching on a field named City, the match condition Dallas selects all records whose City field contains the entry Dallas.

> value Matches if the data record field is greater than the specified value. For example, if you are matching on a field named Income, the match condition >
50000 selects all records whose Income field contains an entry greater than 50,000. Character strings must be delimited by quotes (> "Jones").

< value Matches if the data record field is less than the specified value. For example, if you are matching on a field named Income, the match condition <
50000 selects all records whose Income field contains an entry less than 50,000. Character strings must be delimited by quotes (< "Jones").

Part VI: Administering 1221

Operator Description

>= value Matches if the data-record field is equal to or greater than the specified value. For example, if you are matching on a field named Income, the match
condition >= 50000 selects all records whose Income field contains an entry of 50,000 or greater. Character strings must be delimited by quotes (>=
"Jones").

<= value Matches if the data-record field is less than or equal to the specified value. For example, if you are matching on a field named Income, the match
condition <= 50000 selects all records whose Income field contains an entry of 50,000 or less. Character strings must be delimited by quotes (<=
"Jones").

<> value Matches if the data-record field is not equal to the specified value. Character strings must be delimited by quotes. For example, if you are matching on
a field named State, the match condition <>"TX" selects all records whose State field contains an entry other than TX.

between value1
and value2

Matches if the data-record field is between the range specified in value 1 and value 2. For example, if you are matching on a field named Income, the
match condition between 50000 and 100000 selects all records whose Income field contains an entry 50,000 - 100,000. Character strings must
be delimited by quotes.

and Constructs a comparison of two or more items. Matches only if the data record fields match all of the comparisons. The comparisons can only be
applied to one field. For example, if you are matching a field named Income, the match condition > 5000 and <> 6000 selects all the records with
income greater than 5000, but not a record of 6000.

or Constructs a comparison of two or more items. Matches if the data record fields match any of the comparisons. For example, if you are matching on a
field named City, the match condition = "Dallas" or = "Fort Worth" selects all records whose City field contains either the entry Dallas or the entry
Fort Worth.

NULL Matches when all characters are blank or when a character is binary zero (null). For example, you might want to discard any records that have all
blanks for a name field.

* (asterisk) Wildcard match of any number of characters in a string. For example, to match on a field that contains the city name and state, the match condition
Dall* would select records with any of the following entries:

Dallas-Forth Worth
Dallas, TX
Dallas TX

? Matches any single character in a string. For example, to match on a field that contains a last name, the match condition Sm?th would select records
with any of the following entries:

Smith
Smyth

Custom-conversion functions

Custom-conversion functions allow you to add additional data conversion capability to the High-Performance Loader (HPL). This feature lets onpload call a custom-
conversion function during the data-conversion process.

When you create a custom-conversion function, you associate it with a particular mapping of input field to output field. To associate a custom function with a field, enter
the name of the function in the Function text box of the Mapping Options window. For information about mapping options, see Mapping options.

Although the mapping options associate the custom-conversion function with a particular field, the function can access all the input data fields and all the output data
fields through a set of API functions provided with the onpload utility.

Custom conversion example
 The onpload conversion process

 The onpload conversion process is identical for both import or export operations.

Custom conversion example

As an example, you might implement custom-conversion functions to do the following, expressed in pseudocode:

IF input field 1 satisfies condition A
THEN
DO calculation X on input field 7
OUTPUT data to output column 7
ELSE
DO calculation Y on input field 6
OUTPUT data to output column 5

The custom-conversion function feature is available only on computers with operating systems that support dynamic linking.

The onpload conversion process

The onpload conversion process is identical for both import or export operations.

The onpload utility:

Extracts the source data from their native format.

1222 Part VI: Administering

Examines the map.
Applies the conversions called out in the map.
Conversion order is implied by the ordering of the source-field names that are specified in the map.

Calls any custom-conversion function that is specified for a source field.
The parameters that onpload passes to the conversion function depends on the value of the HPLAPIVERSION parameter in the plconfig file:

If HPLAPIVERSION is set to 0 or it is not present in the plconfig file, then onpload passes the buffer into which the output should be placed, the maximum
length of the output buffer, and the value of the input field.
If HPLAPIVERSION is set to 1, then onpload passes the buffer into which the output should be placed, the maximum length of the output buffer, the value of
the input field, and the length of the input value.

For more information, see The HPLAPIVERSION configuration parameter.

If there is a custom-conversion function, applies the value that the custom-conversion function places in the function output buffer to the destination field that is
associated with the source field in the map.
Sends the results to the output generators.

The custom-conversion function API uses ASCII strings as the canonical data type. The API functions present data as ASCII strings and expect data from the custom-
conversion functions to be presented as ASCII strings. The API functions convert source data of different types to ASCII strings, and also convert ASCII string data from
custom-conversion functions to destination data types.

Integrating custom conversion functions
 Custom-conversion functions are loaded into the onpload executable command through a shared library.

API functions

Integrating custom conversion functions

Custom-conversion functions are loaded into the onpload executable command through a shared library.

To integrate your custom-conversion functions into the onpload executable command:

1. Prepare the custom-conversion function table.
The onpload utility uses the entries in a function table to translate custom-function string names that are specified in the load or unload map. You must supply the
function table and the custom-conversion functions.

To code the function table, use the following template for the file plcstcnv.c. You can copy this template from the $INFORMIXDIR/incl/hpl directory. Add as many
entries into the functiontable array as needed.

The onpload utility searches the functiontable array for the string name of the custom-conversion function that the map specifies. The function pointer that is
associated with the string name is retrieved and used as the custom-conversion function. In the following template for the file plcstcnv.c, ycf1 and ycf2 are the
strings that ipload uses to find the custom functions your_conversion_func1 and your_conversion_func2. To add custom function string names to the onpload
database, see Mapping options.

/*
 * plcstcnv.c
 */
#include "pldriver.h"

extern int your_conversion_func1();
extern int your_conversion_func2();

struct functable functiontable[] =
{
{"ycf1", your_conversion_func1},
{"ycf2", your_conversion_func2},
{0, 0}
};
/* end of plcstcnv.c */

2. Prepare your conversion functions. Use the template in the following example to code your conversion functions:

/*
 * your_custom_conversion.c
 */

/*
 * The argument list must be adhered to.
 */
int your_conversion_func1(outbuffer, buflen, value)
char *outbuffer; /* where to put your output */
intbuflen;/* max size of buffer in bytes*/
char *value; /* input value */
{
/* your processing here */
}

int your_conversion_func2(outbuffer, buflen, value)
char *outbuffer; /* where to put your output */
intbuflen;/* max size of buffer */
char *value; /* input value */
{
/* your processing here */
}
/* end of your_custom_conversion.c */

3. Rebuild the onpload shared-library file ipldd11a.SOLIBSUFFIX, (where SOLIBSUFFIX is the shared-library suffix for your platform). Follow the instructions in
Rebuilding the shared-library file.

Part VI: Administering 1223

The onpload utility uses the same library for both custom-conversion functions and custom drivers. When you rebuild the library, if there are custom drivers, you
must link the custom-driver code as well as the custom-conversion functions.

4. Install the shared library in the appropriate path for your platform. For example, on Solaris the shared library should be installed in $INFORMIXDIR/lib or any
configurable path that is specified by the HPL_DYNAMIC_LIB_PATH configuration parameter.

API functions

Depending on the value of the HPLAPIVERSION parameter in the plconfig file, onpload expects your custom-conversion function to have one of the following prototypes.

If the HPLAPIVERSION parameter is set to 0 or HPLAPIVERSION is not present in the plconfig file, use the following prototype:

/*
 * input:: char* outbuffer: where to put your output.
 * intbuflen: size you have for your output.
 * char* value: the input value to work on.
 * return:: 0 to indicate ok.
 * non-zero to discard entire record.
 */

int your_func(outbuffer, buflen, value)
char *outbuffer;
intbuflen;
char *value;
{
/* your processing here */
}

If the HPLAPIVERSION parameter is set to 1, use the following prototype:

/*
 * input:: char* outbuffer: where to put your output.
 * intbuflen: size you have for your output.
 * char* value: the input value to work on.
 * intvallen: size of the input value.
 * return:: 0 to indicate ok.
 * non-zero to discard entire record.
 */

int your_func(outbuffer, buflen, value, vallen)
char *outbuffer;
intbuflen;
char *value;
intvallen;
{
/* your processing here */
}

To discard an entire record, return a nonzero value. Otherwise, return a zero value.

The following functions support your access to data in the source and destination buffers.

The DBXget_source_value(fldname,buffer,buflen) routine
 This routine retrieves the source value that is associated with fldname and copies the value to the specified buffer.

The DBXget_dest_value(fldname,buffer,buflen) routine
 This routine retrieves the destination value that is associated with fldname and copies the value to the specified buffer.

The DBXput_dest_value(fldname,buffer) routine
 If a previous conversion has not set the destination value, this routine sets the destination value that is passed to the buffer. The ipload utility automatically clips

the data value if it is too long.
The DBXget_dest_length(fldname) routine

 This routine returns the maximum length of the data buffer that is associated with fldname.

The DBXget_source_value(fldname,buffer,buflen) routine

This routine retrieves the source value that is associated with fldname and copies the value to the specified buffer.

Arguments I/O Description

char *fldname Input Name of source field, as defined in ipload map

char *buffer Input Address where fldname value is placed

int buflen Input Buffer size in bytes

The DBXget_dest_value(fldname,buffer,buflen) routine

This routine retrieves the destination value that is associated with fldname and copies the value to the specified buffer.

Arguments I/O Description

1224 Part VI: Administering

Arguments I/O Description

char *fldname Input Name of destination field, as defined in ipload map

char *buffer Input Address where fldname value is placed

int buflen Input Buffer size in bytes

The DBXput_dest_value(fldname,buffer) routine

If a previous conversion has not set the destination value, this routine sets the destination value that is passed to the buffer. The ipload utility automatically clips the data
value if it is too long.

Arguments I/O Description

char *fldname Input Name of destination field, as defined in ipload map

char *buffer Input Address where fldname value is placed

The DBXget_dest_length(fldname) routine

This routine returns the maximum length of the data buffer that is associated with fldname.

Arguments I/O Description

char *fldname Input Name of destination field, as defined in ipload map

The onstat -j option

The -j option of the onstat utility provides special information about the status of an onpload job. The -j option provides an interactive mode that is analogous to onstat -i.

For information about onstat -i and how to use the interactive mode, refer to the IBM® Informix® Administrator's Reference.

Using the onstat -j option
 When onpload starts, it writes a series of messages to stdout or to a log file.

Related concepts:
 Threads that the onpload utility uses

Related reference:
 The onstat options for onpload

Using the onstat -j option

When onpload starts, it writes a series of messages to stdout or to a log file.

The following lines show a typical onpload log file:

Mon Jul 24 16:11:30 1995

SHMBASE0x4400000
CLIENTNUM 0x49010000
Session ID 1

Load Database-> cnv001
Load Table -> cnv001a
Load File-> testrec.dat
Record Mapping -> cnv001a

Database Load Completed -- Processed 50 Records
Records Inserted-> 50
Detected Errors--> 0
Engine Rejected--> 0

Mon Jul 24 16:11:37 1995

The two lines that start with SHMBASE and CLIENTNUM provide the information that you need to locate shared memory for an instance of onpload. The oninit process
has similar values stored in the $onconfig file. When you use onstat to gather information about the oninit process, onstat uses information from
$INFORMIXDIR/etc/$onconfig to locate shared memory. When you use onstat to gather information about onpload, you must give onstat the name of a file that
contains SHMBASE and CLIENTNUM information.

Typically the file that contains the SHMBASE and CLIENTNUM information is the log file. For example, if the onpload log file is /tmp/cnv001a.log, you can enter the
following command:

onstat -j /tmp/cnv001a.log

Part VI: Administering 1225

The previous command causes onstat to attach to onpload shared memory and to enter interactive mode. You can then enter ? or any other bogus request to see a usage
message displayed. An example follows:

onstat> ?
Interactive Mode: One command per line, and - are optional.
-rzrepeat option every n seconds (default: 5) and
zero profile counts
 MT COMMANDS:
allPrint all MT information
athPrint all threads
waiPrint waiting threads
actPrint active threads
reaPrint ready threads
slePrint all sleeping threads
spiprint spin locks with long spins
schprint VP scheduler statistics
lmxPrint all locked mutexes
wmxPrint all mutexes with waiters
conPrint conditions with waiters
stk <tid>Dump the stack of a specified thread
gloPrint MT global information
mem <pool name|session id>print pool statistics.
segPrint memory segment statistics.
rbmprint block map for resident segment
nbmprint block map for non-resident segments
afr <pool name|session id> Print allocated poolfragments.
ffr <pool name|session id> Print free pool fragments.
ufr <pool name|session id> Print pool usage breakdown
iovPrint disk IO statistics by vp
iofPrint disk IO statistics by chunk/file
ioqPrint disk IO statistics by queue
iogPrint AIO global information
iobPrint big buffer usage by IO VP class
stsPrint max and current stack sizes
qstprint queue statistics
wstprint thread wait statistics
jalPrint all Pload information
jctPrint Pload control table
jpaPrint Pload program arguments
jtaPrint Pload thread array
jmqPrint Pload message queues, jms for summary only
onstat>

Most of the options are the same as those that you use to gather information about the database server, with the following exceptions:

jalPrint all Pload information
jctPrint Pload control table
jpaPrint Pload program arguments
jtaPrint Pload thread array
jmqPrint Pload message queues, jms for summary only

These options apply only to onpload. You can use onstat -j to check the status of a thread, locate the VP and its PID, and then attach a debugger to a particular thread.
The options for onstat that do not apply to onpload are not available (for example, -g ses).

The HPL log-file and pop-up messages

This section provides explanatory notes and corrective actions for unnumbered messages that print in the High-Performance Loader (HPL) log file. The section also
includes information specific to messages that are returned to standard output or appear in a pop-up dialog box (depending on the way you started onpload).

For more information about error messages and corrective actions, use the finderr (UNIX) or Informix Error Messages (Windows) utility.

Several HPL error messages refer to the errno.h file, which is located in the following directories:

/usr/include/errno.h in UNIX
errno.h, windsock.h, and winsock2.h in the include subdirectory for Microsoft Visual C++.

A few of the messages included here might require you to contact Technical Support. Such messages are rarely, if ever, seen at customer locations.

For information about how to view the log file and some guidance on how and when you might want to read it, see "Viewing Log Files" in chapter 14.

How HPL logfile messages are ordered
 HPL logfile message categories

 The HPL log-file messages
 HPL logfile pop-up messages

Related reference:

 View the status of a load job or unload job

How HPL logfile messages are ordered

The HPL log-file messages appear in this section in alphabetical order, sorted with the following additional rules:

The time stamp that precedes each message is ignored.
Letter case in alphabetization is ignored.
File, record, database server, and table names are ignored.

1226 Part VI: Administering

Error numbers are ignored.
Spaces are ignored.
Quotation marks are ignored.
The word the is ignored if it is the first word in the message.

A cause and suggested corrective action for a message or group of messages follows the message text.

A section that lists pop-up messages (or messages that are returned to standard error) appears after the log-file message sections. Messages in this section are arranged
according to the same rules that apply to log-file messages.

HPL logfile message categories

Four general categories of messages can be defined, although some messages fall into more than one category:

Routine information
Assertion-failed messages
Administrative action needed
Fatal error detected

The assertion-failed messages reflect their traditional use by technical staff to assist in troubleshooting. The information that they report often falls into the category of
unexpected events that might or might not develop into problems caught by other error codes. Moreover, the messages are terse and often technical. They might report on
one or two isolated statistics and not provide an overall picture.

When technical staff investigate a problem, this information can suggest to them possible research paths. However, you might find that the information has little or no
application when it is taken out of this context, or when processing proceeds normally.

The HPL log-file messages

Blob conversion error occurred on record record_num
 Cannot access database table table_name: SQL error error_num

 Cannot allocate shared memory
 Cannot allocate TLI memory for operating_system structure

 Cannot bind socket connection: errno= operating-system_error_num
 Cannot bind TLI connection: t_errno= t_error_num

 Cannot configure driver driver_name
 Cannot connect to message server: Socket error = UNIX_error_num

 Cannot connect to message server: TLI erro r= t_error_num, TLI event = t_event_num, errno = error_num
 Cannot connect to server_name: SQL error error_num, ISAM error error_num

 Cannot connect worker to server data stream
 Cannot disable table_name object constraints: SQL error error_num, ISAM error error_num

 Cannot disable primary-key constraint. Child-table references exist
 Cannot express load to logged table on HDR server server_name

 Cannot filter indexes for table table_name: SQL error error_num, ISAM error error_num
 Cannot find the shared library path in the plconfig file. Using the shared library from the default location library_location

 Cannot find the user-defined function user_func_name in the shared library: error error_num
 Cannot get systable info for table table_name: SQL error error_num, ISAM error error_num

 Cannot initialize shared library handling
 Cannot load code-set conversion file from file_name to file_name

 Cannot load mapping definitions
 Cannot load the shared library library_location

 Shared library load failed with error message error_message.
Cannot locate delimiter in data file

 Cannot open
 Cannot open simple large object file: file_name, simple large object not loaded

 Cannot open database database_name: SQL error error_num, ISAM error error_num
 Cannot open file file_name: error number operating-system_error_num

 Cannot open TCP connection for server_name: errno operating-system_error_num
 Cannot perform express mode load on table with pseudo rowid

 Cannot perform express-mode load with rowsize = row_length > page_size
 Cannot read file file_name: AIO error code operating-system_error_num

 Cannot re-enable all objects: num_violations violations detected
 Check for violations in violations table table_name and diagnostics table table_name.

Cannot reorder query statement to align simple large objects or Ext Types
 Cannot reorder query statement to align blobs

 Cannot set mode of table_name objects from current_mode to final_mode mode: SQL error error_num, ISAM error error_num
 Cannot start violations table for table_name: SQL error error_num, ISAM error error_num

 Cannot stop violations table for table_name: SQL error error_num, ISAM error error_num
 Cannot unload to multiple devices when the given query cannot be executed in parallel

 Cannot write file file_name: AIO error code operating-system_error_num
 Code-set conversion overflow

 Conversion of onpload database failed due to error error_num
 Conversion of onpload database failed due to error error_num, run as user informix

 Custom conversion function function_name not found in shared library
 Discarded num_bytes null bytes from end of tape device device_name
 Environment variable variable_name expansion would overflow string

Part VI: Administering 1227

Error accepting socket connection: errno = operating-system_error_num
Error accessing file_name
Error accessing format: SQL error error_num, ISAM error error_num
Error accessing map map_name: SQL error error_num, ISAMerror error_num
Error accessing sysmaster: SQL error error_num, ISAMerror error_num
Error accessing table table_name: SQL error error_num, ISAM error error_num
Error: AIO buffer size buffer_size is less than required minimum size size
Error error_num closing current database
Error operating-system_error_num closing file file_name
Error error_num converting record field field_name to column column_name
Error declaring cursor: could not get table info
Error declaring cursor: SQL error error_num, ISAM error error_num
Error describing unload query query_name: SQL error error_num, ISAM error error_num
Error error_num initializing backend connection
Error inserting into table table_name: SQL error error_num, ISAM error error_num
Error listening for socket connection: t_errno = t_error_num errno = operating-system_error_num
Error listening for TLI connection: t_errno = t_error_num errno = UNIX_error_num
Error error_num on record record_num converting column column_name to record field field_name
Error occurred on record %d reading pipe %s
Error on close of server load session: SQL error error_num, ISAM error error_num
Error opening cursor: SQL Error error_num
Error preparing query: SQL error error_num
Error preparing statement statement_name: SQL error error_num, ISAM error error_num
Error preparing unload query query_name: SQL error error_num, ISAM error error_num
Error error_num reading message queue
Error operating-system_error_num reading TLI/socket connection
Error error_num setting isolation level
Error error_num writing message on message queue
Error operating-system_error_num writing TLI/socket connection
Error: Stream buffer size buffer_size is less than required minimum size size
Exhausted all attempts to allocate shared-memory key.
Fatal error: cannot execute pipe_name
Fatal error: cannot load X resource
Fatal error creating server load session: error error_num
Fatal error getting stream buffer from server
Fatal error in server row processing: SQL error error_num, ISAM error error_num
File type device file file_name is not a regular (disk) file
Got Interrupt: Shutting down
Internal error: Cannot initialize AIO library
Internal error: Cannot send message
Internal error: error_num. Contact Tech Support
Internal error: invalid message type error_num
Internal error error_num reading queue
Invalid count detected, might be due to abnormal BE shutdown
Invalid code-set character: Cannot convert
Invalid HEXASCII simple large object or extended type representation on record record_num
Invalid HEXASCII simple large object representation in fieldname, record record_num
Invalid project name project_name entered
Invalid reject count detected, might be due to abnormal BE shutdown. Using last known reject count and proceeding
Invalid session ID id_number
Invalid tape header expecting -> tape_name
Map map_name type is not a load map
Method not supported by current driver
MT cannot bind to vpid
MT internal failure
MT failure putting CPU online
No insert permission on table table_name
No mapping to simple large object field field_name
onpload must run on the host host_name that contains the target database
onpload terminated by signal
Pipe type device file file_name is not a regular file
Pload cannot reorder queries having expressions/aggregates and blobs/udts in the same select list
Reorder the select list in the query in the following order: 1. non-blob non-udt columns 2. inrow udts in the case of fixed format 3. other blob/udt columns
Query contains unmapped simple large object column column_name: Cannot proceed
Query for unload is not a select query.
Record is too long to process: recnum record_num, length record_length, bufsize buffer_size
Server interface error; expected num_input but got num_received instead
SQL error error_num executing statement statement_name
Simple large object or extended type conversion error occurred on record record_num
Start record record_num is greater than number of records total_num read from input file_name
Successfully loaded the shared library library_location
Table table_name will be read-only until level-0 archive
Tables with BLOBS cannot be loaded in High Performance Mode
Tables with BLOBS or extended types cannot be loaded in Express mode
Tables with simple large objects or extended types cannot be processed with no conversion (-fn)
Tape header is larger than I/O buffer: tape header_length, I/O buffer_size
Tape type device file file_name is not a character-special or block-special file
There is no mapping to column column_name, which cannot accept null values
Unable to load locale categories for locale locale_name: error error_num
Unload query select item for the query_item expression needs to be assigned a name

1228 Part VI: Administering

Write/read to/from tape until end of device
Write to device (tape or pipe) device_name failed; no space left on device. AIO error error_num

Blob conversion error occurred on record record_num

Explanation

The SQLBYTE simple large object data could not be converted to HEXASCII, or the SQLTEXT simple large object data has invalid character data (characters not in the code
set).

User response

Remove the invalid characters from the input data.

Cannot access database table table_name: SQL error error_num

Explanation

The target database table cannot be accessed.

User response

For more information, use the finderr or Informix Error Messages utility.

Cannot allocate shared memory

Explanation
A memory allocation error occurred. Probably the system is out of virtual shared memory.

User response
Run onpload again when fewer users are on the system.

For UNIX, increase the amount of available shared memory with the UNIX kernel configuration.

For Windows, reduce the number of applications running concurrently.

Cannot allocate TLI memory for operating_system structure

Explanation

System memory cannot be allocated for communications. This situation should only happen if all system resources are consumed.

User response

Note the circumstances and contact Technical Support.

Cannot bind socket connection: errno= operating-system_error_num

Explanation

A TCP socket cannot be opened.

User response
See your errno.h file.

Cannot bind TLI connection: t_errno= t_error_num

Explanation
An error occurred when onpload attempted to open a TLI connection.

User response
Check that TLI services are installed on the operating system. See your tiuser.h file.

Part VI: Administering 1229

UNIX Only

Cannot configure driver driver_name

Explanation

You might be specifying a driver incorrectly. If the Driver Class specification is not Fixed, Cobol, or Delimited, either the onpload custom-driver shared library is not in the
path name, or the custom-driver shared library is not installed correctly.

User response

For information about building a shared library, see "Rebuilding the shared-library file". Make sure that your driver is configured correctly for Fixed, Cobol, or Delimited.

UNIX Only

Cannot connect to message server: Socket error = UNIX_error_num

Explanation

This message is generated by ipload when it cannot connect to the onpload socket service.

User response

See /usr/include/errno.h.

UNIX Only

Cannot connect to message server: TLI erro r= t_error_num, TLI event = t_event_num,
errno = error_num

Explanation
An error occurred when onpload attempted to open a TLI connection.

User response

Check that TLI services are installed on the operating system. See /usr/include/tiuser.h (t_error_num).

UNIX only

Cannot connect to server_name: SQL error error_num, ISAM error error_num

Explanation
The target database server cannot be opened.

User response

For more information, use the finderr or Informix Error Messages utility.

Cannot connect worker to server data stream

Explanation

A possible permissions problem exists for onpload or oninit.

User response

Note the circumstances and contact Technical Support.

Cannot disable table_name object constraints: SQL error error_num, ISAM error
error_num

Explanation

1230 Part VI: Administering

The constraint objects are disabled during the load and re-enabled after the load. An error occurred when onpload attempted to disable the constraint objects.

User response

For more information, use the finderr or Informix Error Messages utility.

Cannot disable primary-key constraint. Child-table references exist

Explanation

You attempted to use express mode to load a table that has child-table records that refer to it. The express mode does not support this condition. (The onpload utility
cannot disable the primary key constraint when child-table records refer to the load table.)

User response

Perform the load in deluxe mode or remove the constraint in question.

Cannot express load to logged table on HDR server server_name

Explanation

You attempted to use express mode to load an HDR replicated table. The express mode does not support this condition.

User response
Perform the load in deluxe mode.

Cannot filter indexes for table table_name: SQL error error_num, ISAM error
error_num

Explanation
The index objects are set to filtering mode during the load and re-enabled after the load. An error occurred when onpload attempted to set the indexes objects to filtering
mode.

User response
For more information, use the finderr or Informix Error Messages utility.

Cannot find the shared library path in the plconfig file. Using the shared library from
the default location library_location

Explanation

The ipldd11a.so shared library path is not set in the plconfig file.

User response

If the default location is not correct, set the correct shared library path in the plconfig file by using the HPL_DYNAMIC_LIB_PATH configuration parameter.

Cannot find the user-defined function user_func_name in the shared library: error
error_num

Explanation

The onpload process could not find the required user-defined function in the shared library.

User response

Restart the onpload load or unload with the correct shared library or function name in the pload job definition.

Cannot get systable info for table table_name: SQL error error_num, ISAM error
error_num

Part VI: Administering 1231

Explanation

Cannot access the systable table to get dictionary information for the indicated table.

User response
For more information, use the finderr or Informix Error Messages utility.

Cannot initialize shared library handling

Explanation
The pload utility cannot start because it failed to initialize the shared library-handling functionality.

User response
Ensure that the computer has the proper resources and that the shared library has been built properly.

Cannot load code-set conversion file from file_name to file_name

Explanation
The data type for the load file is different from the data type for the database server. The code set does not exist in the $INFORMIXDIR/gls/cvx or
%INFORMIXDIR%\gls\cvx directory where x is the version number of the cv subdirectory.

User response

Check that the file exists. Check the file for permissions.

Cannot load mapping definitions

Explanation

A memory-allocation error or database-integrity error occurred when onpload accessed the onpload database.

User response

Use oncheck to check the maps, mapitem, mapoption, formats, and formatitem tables for consistency. If the tables are consistent, a referential integrity problem
between the map and the format the map references might exist. If the problems persist, contact Technical Support.

Cannot load the shared library library_location Shared library load failed with error
message error_message.

Explanation

The onpload utility could not load the shared library from the library_location path and failed with error_message.

User response

For more information, use the finderr or Informix Messages utility. Correct the problem and reload the shared library.

Cannot locate delimiter in data file

Explanation
No delimiter is found when onpload scans for an end-of-record delimiter in the load data.

User response
Check that the end-of-record delimiter specification is correct, or that you have the correct data file. Note differences in the end-of-line characters between UNIX and
Windows.

Cannot open

Explanation

1232 Part VI: Administering

An internal error occurred when onpload attempted to open the load or unload file.

User response

Note the circumstances and contact Technical Support.

Cannot open simple large object file: file_name, simple large object not loaded

Explanation

The record references a file name that should contain a simple large object, but the file cannot be located.

User response

Check that the simple-large-object file exists.

Cannot open database database_name: SQL error error_num, ISAM error error_num

Explanation

The target database cannot be opened.

User response
For more information, use the finderr or Informix Messages utility.

Cannot open file file_name: error number operating-system_error_num

Explanation
The file cannot be opened.

User response
See your errno.h file.

Cannot open TCP connection for server_name: errno operating-system_error_num

Explanation

A TCP socket cannot be opened.

User response

See your errno.h file.

Cannot perform express mode load on table with pseudo rowid

Explanation

The load table is fragmented by row ID. The express mode does not support this condition.

User response

Perform the load in deluxe mode.

Cannot perform express-mode load with rowsize = row_length > page_size

Explanation

The table-row size exceeds page size. The express mode does not support this condition.

User response
Perform the load in deluxe mode.

Part VI: Administering 1233

Cannot read file file_name: AIO error code operating-system_error_num

Explanation
The load file cannot be accessed. This error might result from operating-system limitations; the onpload utility cannot load successfully from a file (on disk) that is longer
than 2 GB.

User response
See your errno.h file.

Cannot re-enable all objects: num_violations violations detected Check for
violations in violations table table_name and diagnostics table table_name.

Explanation

Data loaded by onpload violates the object constraints specified for the table. The records that violate the object constraints have been placed in the violations table, and
the reason code for each violation is listed in the diagnostics table.

User response

Review the information in the violations and diagnostics tables.

Cannot reorder query statement to align simple large objects or Ext Types

Explanation

The unload query does not contain a FROM clause.

User response

Rewrite the query so that it contains a FROM clause.

Cannot reorder query statement to align blobs

Explanation

The unload query does not contain a FROM clause.

User response
Rewrite the query so that it contains a FROM clause.

Cannot set mode of table_name objects from current_mode to final_mode mode: SQL
error error_num, ISAM error error_num

Explanation
The object constraints are disabled during the load and re-enabled after the load. An error occurred when onpload attempted to reset object constraints back to their
original state.

User response
For more information, use the finderr or Informix Messages utility.

Cannot start violations table for table_name: SQL error error_num, ISAM error
error_num

Explanation

An error occurred when onpload attempted to set up the violations table for the load table.

User response

1234 Part VI: Administering

For more information, use the finderr or Informix Messages utility.

Cannot stop violations table for table_name: SQL error error_num, ISAM error
error_num

Explanation

If a violations table exists on the load table, violations can be turned off during the load. An error occurred when onpload attempted to turn off violations detection.

User response

For more information, use the finderr or Informix Messages utility.

Cannot unload to multiple devices when the given query cannot be executed in
parallel

Explanation

The server determined that the query cannot be run in parallel.

User response

Remove non-parallel aspects of the query, such as non-parallel UDRs, or unload to a single device.

Cannot write file file_name: AIO error code operating-system_error_num

Explanation
The unload file cannot be accessed.

User response
See your errno.h file.

Code-set conversion overflow

Explanation
The code-set conversion caused the number of bytes in the BYTE and TEXT data to expand or contract when onpload unloaded the data into a fixed-format record. The
onpload utility cannot update the BYTE and TEXT data tag in the record that specifies the length of the BYTE and TEXT data at this stage.

User response

To unload this data, use a delimited format.

Conversion of onpload database failed due to error error_num

Explanation

The onpload tried to convert the old database when onpload ran for the first time on the new database server. This conversion failed because of the error referenced in
the error message.

User response

For more information, use the finderr or Informix Messages utility. Resolve this error before you rerun onpload.

Conversion of onpload database failed due to error error_num, run as user informix

Explanation

Database conversion fails because the current user running onpload does not have sufficient privileges to convert the onpload database.

User response

Run the onpload job as user informix once.

Part VI: Administering 1235

Custom conversion function function_name not found in shared library

Explanation
The custom function specified in a map option was not located in ipldd11a.so. The shared library extension is platform-specific; for example, the .so extension is specific
for Solaris and is probably different on other platforms.

User response
For information about how to configure the custom function library, see "Custom-conversion functions".

UNIX Only

Discarded num_bytes null bytes from end of tape device device_name

Explanation
The tape data is not blocked in a multiple of the record size, so that the last block of data contained bytes that are discarded. This situation occurs on devices with stream
cartridges that allow writing to the device only in whole blocks.

User response
If necessary, manually enter the discarded data.

Environment variable variable_name expansion would overflow string

Explanation
A mapping option specifies an environment variable as the default value, but expansion of the environment variable requires more space than allocated to the column.

User response

Use a shorter default value, or expand the length of the column.

Error accepting socket connection: errno = operating-system_error_num

Explanation

A TCP socket cannot be accessed.

User response

See your errno.h file.

Error accessing file_name

Explanation

An error occurred when onpload attempted to open the load or unload file.

User response

Check that the file exists. Check the file for permissions.

Error accessing format: SQL error error_num, ISAM error error_num

Explanation
An integrity problem exists in the onpload database. The format for the map does not exist, or a problem exists with the format or formatitem table.

User response
For more information, use the finderr or Informix Messages utility.

Error accessing map map_name: SQL error error_num, ISAMerror error_num

1236 Part VI: Administering

Explanation

The requested map for the load or unload does not exist, or a problem exists with the onpload database.

User response
For more information, use the finderr or Informix Messages utility.

Error accessing sysmaster: SQL error error_num, ISAMerror error_num

Explanation
An access error occurred on the sysmaster database on the target server where onpload attempted to perform the load or unload job.

User response
For more information, use the finderr or Informix Messages utility.

Error accessing table table_name: SQL error error_num, ISAM error error_num

Explanation
The target database table cannot be accessed.

User response

For more information, use the finderr or Informix Messages utility.

Error: AIO buffer size buffer_size is less than required minimum size size

Explanation

AIO buffer size is less than required size.

User response

Increase the specified buffer size in the plconfig file.

Error error_num closing current database

Explanation

A server error occurred when onpload closed the onpload or target database.

User response

For more information, use the finderr or Informix Messages utility.

Error operating-system_error_num closing file file_name

Explanation
An error occurred when onpload closed the load or unload file.

User response
See your errno.h file

Error error_num converting record field field_name to column column_name

Explanation
A conversion error occurred when onpload attempted to convert the record data to the database column type.

User response

Part VI: Administering 1237

For more information, use the finderr or Informix Messages utility. If the load map indicates that the data field is mapped to the correct column, check that the supplied
data is valid.

Error declaring cursor: could not get table info

Explanation

Cannot access information about the load table.

User response

Check the validity of the table in the target database.

Error declaring cursor: SQL error error_num, ISAM error error_num

Explanation

The onpload utility is unable to use the autogenerated formats and maps to create entries in a table in the onpload database.

User response

For more information, use the finderr or Informix Messages utility.

Error describing unload query query_name: SQL error error_num, ISAM error
error_num

Explanation
The unload query cannot be processed.

User response
For more information, use the finderr or Informix Messages utility.

Error error_num initializing backend connection

Explanation
An internal error occurred in onpload. It is possible that the server went down.

User response

Note the circumstances and contact Technical Support.

Error inserting into table table_name: SQL error error_num, ISAM error error_num

Explanation

The onpload utility is unable to use the autogenerated formats and maps to create entries in a table in the onpload database.

User response

For more information, use the finderr or Informix Messages utility.

Error listening for socket connection: t_errno = t_error_num errno = operating-
system_error_num

Explanation

An error occurred listening on a Socket connection.

User response

See your errno.h file.

1238 Part VI: Administering

Error listening for TLI connection: t_errno = t_error_num errno = UNIX_error_num

Explanation
An error occurred listening on a TLI connection.

User response
See /usr/include/tiuser.h (t_error_num).

UNIX Only

Error error_num on record record_num converting column column_name to record
field field_name

Explanation
A conversion error occurred when onpload attempted to convert the column data to the record field type.

User response
For more information, use the finderr or Informix Messages utility. Check the load map to verify that the column is mapped to the correct record field.

Error occurred on record %d reading pipe %s

Explanation
A conversion error occurred in a record.

User response

No action is required.

Error on close of server load session: SQL error error_num, ISAM error error_num

Explanation

An internal error occurred in onpload. Probably the server went down.

User response

Note the circumstances and contact Technical Support.

Error opening cursor: SQL Error error_num

Explanation

An error occurred when onpload attempted to set up an insert cursor on the load table.

User response

For more information, use the finderr or Informix Messages utility.

Error preparing query: SQL error error_num

Explanation
The unload query cannot be processed.

User response
For more information, use the finderr or Informix Messages utility.

Part VI: Administering 1239

Error preparing statement statement_name: SQL error error_num, ISAM error
error_num

Explanation
An internal error occurred when onpload attempted to access the onpload database.

User response
For more information, use the finderr or Informix Messages utility.

Error preparing unload query query_name: SQL error error_num, ISAM error
error_num

Explanation

The unload query cannot be processed.

User response

For more information, use the finderr or Informix Messages utility.

Error error_num reading message queue

Explanation

This critical initialization error probably means that the operating kernel does not have enough shared memory or semaphores configured or that the allocated shared
memory was removed.

User response

On UNIX, increase shared memory or semaphores. On Windows, repeat the operation.

If the condition persists, contact Technical Support.

Error operating-system_error_num reading TLI/socket connection

Explanation

An error occurred reading a socket or TLI connection, based on the type of connection specified in onconfig file.

User response

See your errno.h file.

Error error_num setting isolation level

Explanation

An access error occurred when onpload attempted to set the isolation level for an unload job.

User response

For more information, use the finderr or Informix Messages utility.

Error error_num writing message on message queue

Explanation
This critical initialization error probably means that the operating system kernel does not have enough shared memory or semaphores configured, or that the allocated
shared memory has been removed.

User response
On UNIX, increase shared memory or semaphores. On Windows, repeat the operation.

1240 Part VI: Administering

If the condition persists, contact Technical Support.

Error operating-system_error_num writing TLI/socket connection

Explanation

An error occurred writing a socket or TLI connection, based on the type of connection specified in onconfig file.

User response

See your errno.h file.

Error: Stream buffer size buffer_size is less than required minimum size size

Explanation

Stream buffer size is less than required size.

User response

Increase the specified buffer size in the plconfig file.

Exhausted all attempts to allocate shared-memory key.

Explanation
All the shared-memory keys in the key range tried by onpload are currently allocated.

User response
Wait until another onpload session finishes. If the problem persists, contact Technical Support.

Fatal error: cannot execute pipe_name

Explanation
An attempt to run the PIPE type device in the device array failed.

User response

Make sure that the PIPE entry in the device array is a valid, executable program. Pipes are only supported on UNIX.

Fatal error: cannot load X resource

Explanation

This is an internal error.

Fatal error creating server load session: error error_num

Explanation

Cannot start the load session with the server.

User response

Note the circumstances and contact Technical Support.

Fatal error getting stream buffer from server

Explanation

An internal error occurred in onpload. It is possible that the server went down.

Part VI: Administering 1241

User response

Note the circumstances and contact Technical Support.

Fatal error in server row processing: SQL error error_num, ISAM error error_num

Explanation

An internal communication problem exists between the server and onpload.

User response
Note the circumstances and contact Technical Support.

File type device file file_name is not a regular (disk) file

Explanation
The device array specifies that the file is a disk file, but it is not.

User response
Change the type of the file in the device-array definition, or make sure that the file is a disk file.

Got Interrupt: Shutting down

Explanation

An internal error occurred, or a user sent an interrupt to onpload.

User response

If a user did not generate this interrupt, contact Technical Support.

Internal error: Cannot initialize AIO library

Explanation

This critical initialization error probably means that the UNIX kernel does not have enough shared memory or semaphores configured.

User response

Increase shared memory or semaphores. If the condition persists, contact Technical Support.

Internal error: Cannot send message

Explanation

An internal error occurred in onpload. The most likely cause is a lack of shared memory.

User response
Note the circumstances and contact Technical Support.

Internal error: error_num. Contact Tech Support

Explanation
A critical internal error occurred.

User response
Note the circumstances and contact Technical Support.

Internal error: invalid message type error_num

1242 Part VI: Administering

Explanation

A critical internal error occurred.

User response
Note the circumstances and contact Technical Support.

Internal error error_num reading queue

Explanation
This critical initialization error probably means that the operating system kernel does not have enough shared memory or semaphores configured.

User response
On UNIX, increase shared memory or semaphores. On Windows, repeat the operation.

If the condition persists, contact Technical Support.

Invalid count detected, might be due to abnormal BE shutdown

Explanation
The count of rows being loaded became corrupted. This message can appear if a deluxe load job ends with an error.

User response
Contact IBM® Technical Support.

Invalid code-set character: Cannot convert

Explanation
The data being loaded or unloaded has invalid character data.

User response

Make sure that you specified the correct data type on the format definition.

Invalid HEXASCII simple large object or extended type representation on record
record_num

Explanation

The simple large object or extended type field being loaded was classed as HEXASCII, but the data contains a non-HEXASCII character.

User response

Fix the data.

Invalid HEXASCII simple large object representation in fieldname, record
record_num

Explanation

The simple large object data field being loaded was classed as HEXASCII, but the data contains a non-HEXASCII character.

User response

Fix the data.

Invalid project name project_name entered

Explanation

Part VI: Administering 1243

Incorrect project name was specified for onpload.

User response

Check the given project name and restart onpload.

Invalid reject count detected, might be due to abnormal BE shutdown. Using last
known reject count and proceeding

Explanation

The count of rows being loaded became corrupted. This message can appear if a deluxe load job ends with an error.

User response

Contact IBM® Technical Support.

Invalid session ID id_number

Explanation

The command line specified an invalid session ID for the job to run. An entry for the entered session ID must exist in the session table of the onpload database in order to
run the job.

User response
Make sure the session ID on the command line matches the correct session ID in the session table.

Invalid tape header expecting -> tape_name

Explanation
Incorrect tape was mounted.

User response
Mount the correct tape.

Map map_name type is not a load map

Explanation

Incorrect map was specified to onpload. You must use a load map for a load job and an unload map for an unload job.

User response

Verify that you are using the correct map type.

Method not supported by current driver

Explanation

An internal error occurred in onpload.

User response

Note the circumstances and contact Technical Support.

MT cannot bind to vpid

Explanation

This critical initialization error probably means that the operating system kernel does not have enough shared memory or semaphores configured.

User response

1244 Part VI: Administering

On UNIX, increase shared memory or semaphores. On Windows, repeat the operation.

If the condition persists, contact Technical Support.

MT internal failure

Explanation
This critical initialization error probably means that the operating system kernel does not have enough shared memory or semaphores configured.

User response
On UNIX, increase shared memory or semaphores. On Windows, repeat the operation.

If the condition persists, contact Technical Support.

MT failure putting CPU online

Explanation
This critical initialization error probably means that the UNIX kernel does not have enough shared memory or semaphores configured.

User response
Increase shared memory or semaphores. If the condition persists, contact Technical Support.

No insert permission on table table_name

Explanation
You cannot load the indicated table because the DBA has not granted permission for you to do so.

User response

Make sure that you have insert permissions on the table.

No mapping to simple large object field field_name

Explanation

The record format specifies a simple large object or extended type, but no column from the query is mapped to the record field.

User response

Map a column to the field, or remove the field from the record format.

onpload must run on the host host_name that contains the target database

Explanation

User tried to run onpload on a host computer other than the one that has the target database.

User response
Run onpload on the host specified in the error message.

onpload terminated by signal

Explanation
Either an internal error occurred or a user sent onpload a termination signal.

User response
If the signal is not SIGKILL, SIGTERM, or SIGQUIT, note the circumstances and contact Technical Support.

UNIX Only

Part VI: Administering 1245

Pipe type device file file_name is not a regular file

Explanation
The device array specifies that the file is a pipe (executable program) file, but it is not.

User response
Change the type of the file in the device-array definition, or make sure that the file is an executable disk file. Pipes are only supported on UNIX.

Pload cannot reorder queries having expressions/aggregates and blobs/udts in the
same select list Reorder the select list in the query in the following order: 1. non-
blob non-udt columns 2. inrow udts in the case of fixed format 3. other blob/udt
columns

Explanation

The onpload utility requires that the special columns (simple large column and user-defined types) appear at the end of the select list. The onpload utility will reorder
simple SELECT statements but is unable to reorder the select list because of expressions, aggregates, or both.

User response

Reorder select columns manually as explained in error message. Alternatively, you can remove aggregates and expressions from the select list by selecting the columns
into a temporary table and then unloading them from that table.

Query contains unmapped simple large object column column_name: Cannot
proceed

Explanation

The unload query is extracting a simple large object or extended type column that is not mapped to the record field.

User response

Modify the unload query so that it does not reference the simple large object or extended type column, or map it to a field in the record format.

Query for unload is not a select query.

Explanation

The unload query does not contain a SELECT statement.

User response
Modify the query so that it contains a SELECT statement.

Record is too long to process: recnum record_num, length record_length, bufsize
buffer_size

Explanation
The record size exceeds the size of the onpload buffers (AIOBUFSIZE). This error can occur when a delimited record contains simple-large-objects or extended types, and
a format specification for a field is missing, which causes a simple large object or an extended type to be treated as a regular field.

User response
Increase the size of AIOBUFSIZE for this record, or check that the format specification for the field matches the input file.

Server interface error; expected num_input but got num_received instead

Explanation

1246 Part VI: Administering

An onpload/server interface error occurred.

User response

Note the circumstances and contact Technical Support.

SQL error error_num executing statement statement_name

Explanation

An internal error occurred when onpload accessed the onpload database.

User response

For more information, use the finderr or Informix Messages utility.

Simple large object or extended type conversion error occurred on record
record_num

Explanation

The SQLBYTE simple large object or extended type data could not be converted to HEXASCII, or the SQLTEXT simple large object or extended type has invalid character
data (characters not in the code set).

User response
Remove the invalid characters from the input data.

Start record record_num is greater than number of records total_num read from input
file_name

Explanation
A start record was specified for the load, but fewer records are in the input file than the indicated number of records to skip.

User response
Specify the start-record number again.

Successfully loaded the shared library library_location

Explanation

The shared library was loaded successfully.

User response

Check the path to verify that the correct library is being used. If the path is incorrect, edit the HPL_DYNAMIC_LIB_PATH configuration parameter in the plconfig file to
supply the correct path.

Table table_name will be read-only until level-0 archive

Explanation

After an express-mode load, a level-0 archive is needed to make the table available for update.

User response

Perform a level-0 archive.

Tables with BLOBS cannot be loaded in High Performance Mode

Explanation

You attempted to use express mode to load a table that contains BLOB data types. The express mode does not support this condition.

Part VI: Administering 1247

User response

Perform the load in deluxe mode.

Tables with BLOBS or extended types cannot be loaded in Express® mode

Explanation

You attempted to use express mode to load a table that contains BLOB or extended data types. The express mode does not support this condition.

User response
Perform the load in deluxe mode.

Tables with simple large objects or extended types cannot be processed with no
conversion (-fn)

Explanation
You attempted a no-conversion load on a table with simple large object or extended type columns. This action is not allowed.

User response
Remove the no-conversion specification, and run the job again.

Tape header is larger than I/O buffer: tape header_length, I/O buffer_size

Explanation

A tape header size is too large to fit into a memory buffer.

User response

Increase AIOBUFSIZE in PLCONFIG to at least the value specified for tape I/O.

Tape type device file file_name is not a character-special or block-special file

Explanation

The device array specifies that the file is a tape device, but it is not.

User response

Change the type of the file in the device-array definition, or make sure that the file is a tape device.

There is no mapping to column column_name, which cannot accept null values

Explanation

The specified column has a NOT NULL constraint, but in the definition of the load map, no field is mapped to the column.

User response
Correct the load map or drop the NOT NULL constraint.

Unable to load locale categories for locale locale_name: error error_num

Explanation
The GLS locale specified in CLIENT_LOCALE or DB_LOCALE cannot be loaded, or if these variables are not set, the GLS file cannot be loaded.

User response
Check the $INFORMIXDIR/gls or %INFORMIXDIR%\gls directory to ensure that the locale files are present.

1248 Part VI: Administering

Unload query select item for the query_item expression needs to be assigned a
name

Explanation
A SELECT statement contains a column name that might not be unique.

User response
Modify the SELECT statement to contain a name for each column expression. For example:

SELECT Max(I) Mcol FROM table x

Write/read to/from tape until end of device

Explanation
The onpload command-line option -Z enabled write to and read from the tape until the end of the device.

User response
No action is required.

Write to device (tape or pipe) device_name failed; no space left on device. AIO error
error_num

Explanation
The write to tape is failing on a tape device due to lack of space.

User response

Increase the space on the tape device or replace the device and restart the load or unload job.

HPL logfile pop-up messages

Cannot attach to server shared memory
 Cannot create shared-memory message queue: error error_num

 Cannot create shared-memory pool: errno UNIX_error_num
 Cannot initialize multithreaded library

 Cannot initialize shared memory: errno operating-system_error_num
 Cannot load X resource

 Cannot open. Enter (r)etry, (c)ontinue, (q)uit job when ready
 Cannot open log file log_file_name.

 Cannot start I/O. Enter (r)etry, (c)ontinue, (q)uit job when ready
 Fatal error: shared memory will conflict with server

 Incorrect database version. Make sure that it is upgraded properly
 Press ‘r’ when ready, ‘c’ to shutdown device or ‘q’ to quit

 Set the shared library path as an absolute path in the plconfig file
 Tables with blobs cannot be loaded in High-Performance Mode

 Write error. Enter (r)etry, (c)ontinue, (q)uit job when ready

Cannot attach to server shared memory

Explanation
If the server is on, a permissions problem exists.

User response

On UNIX, check that the following permissions and ownership of onpload are set:

-rwsr-sr-x 1 informix informix

On Windows, check the permissions of the user running onpload.

Part VI: Administering 1249

Cannot create shared-memory message queue: error error_num

Explanation
A critical initialization error occurred. Probably the UNIX kernel does not have enough shared memory or semaphores configured.

User response
Increase shared memory or semaphores. If the condition persists, contact Technical Support.

UNIX Only

Cannot create shared-memory pool: errno UNIX_error_num

Explanation
The operating system shared-memory system cannot be accessed.

User response
See your errno.h file.

UNIX Only

Related concepts:
 Overview of the onpladm utility

Cannot initialize multithreaded library

Explanation

A critical initialization error occurred. Probably the UNIX kernel does not have enough shared memory or semaphores configured.

User response

Increase shared memory or semaphores. If the condition persists, contact Technical Support.

UNIX Only

Cannot initialize shared memory: errno operating-system_error_num

Explanation

The operating system shared-memory system cannot be accessed.

User response

See your errno.h file.

Cannot load X resource

Explanation

The ipload utility attempted to display a full-color splash screen image but another process was already using the resources needed for color display.

User response
Use the ipload -n option, which does not display a splash screen.

UNIX Only

Cannot open. Enter (r)etry, (c)ontinue, (q)uit job when ready

Explanation

An internal error occurred when onpload attempted to open the load or unload file.

User response

1250 Part VI: Administering

Press r to try to access the load or unload file again. Press c to skip the file indicated and continue to process the rest of the files. Press q to stop the job.

Cannot open log file log_file_name.

Explanation

The log file for the job cannot be opened.

User response

See your errno.h file.

Cannot start I/O. Enter (r)etry, (c)ontinue, (q)uit job when ready

Explanation

An internal error occurred when onpload attempted to open the load or unload file.

User response

Press r to try to access the load or unload file again. Press c to skip the file indicated and continue to process the rest of the files. Press q to stop the job.

Fatal error: shared memory will conflict with server

Explanation
The shared-memory segment allocated to onpload is located below the shared memory segment of the server, and the size needed to run the job would cause the
onpload shared memory to overlap the shared memory of the server.

User response
Reduce the size and number of buffers allocated to onpload on $INFORMIXDIR/etc/plconfig or %INFORMIXDIR%\etc\plconfig, or increase the start address for the
shared memory location of the server.

Incorrect database version. Make sure that it is upgraded properly

Explanation
Upgrade of onpload database failed.

User response

Look in $INFORMIXDIR/etc/conpload.out for information about conversion errors.

Press ‘r’ when ready, ‘c’ to shutdown device or ‘q’ to quit

Explanation

The tape device is full.

User response

Mount a new tape device and press r to continue the load or unload process. Press c to stop the load or unload process on the current drive. Press q to stop the load or
unload process.

Set the shared library path as an absolute path in the plconfig file

Explanation

The full absolute path of the ipldd11a.so shared library is not set.

User response

Set the HPL_DYNAMIC_LIB_PATH configuration parameter to an absolute path in the plconfig file and restart the job.

Part VI: Administering 1251

Tables with blobs cannot be loaded in High-Performance Mode

Explanation
The express mode cannot load tables that contain BLOB data types.

User response
Use Deluxe mode.

Write error. Enter (r)etry, (c)ontinue, (q)uit job when ready

Explanation

An internal error occurred when onpload attempted to open the load or unload file.

User response

Press r to try to access the load or unload file again. Press c to skip the file indicated and continue to process the rest of the files. Press q to stop the job.

Custom drivers

If your operating system supports dynamic linking of libraries, you can use a custom driver to extend the functionality of the High-Performance Loader (HPL) to support
different file types or access mechanisms.

For example, you could implement a custom interface to load data from a structured file, a high-speed communications link, or another program that generates data to be
stored in the database.

The onpload utility accesses the custom code through the driver name that you assign to the record-format definition. When onpload references a record format, the
driver that the record format specifies is examined. If the driver name does not match one of the standard drivers (Fixed, COBOL, Delimited), onpload looks into the
custom-driver function table to find the custom driver.

The custom-driver code reads data into buffers during a load job and writes out buffers during an unload job. By following the coding procedure discussed in this section,
you can use the parallel I/O facilities of the HPL to manipulate data buffers, or you can use a custom driver to replace the HPL I/O facilities with your own I/O functionality.

Add a custom driver to the onpload utility
 Connect your code to onpload at run time
 When onpload determines that a custom driver is required to read or write data for a given record format, it calls the function pl_get_user_method().

An example of a custom driver
The example in this topic shows how to code a custom driver that completely takes over the open, close, read, and write responsibility. The example illustrates the
form of a driver and the necessary initialization, registration, and mechanism of the driver. The coding of user- specific functionality is not represented.
Available driver methods

 Available API support functions
 This section describes the API support functions that you can use with custom drivers.

Add a custom driver to the onpload utility

To add a custom driver to onpload, you must perform the following tasks:

Add the custom driver to the onpload database.
Prepare the code for the custom driver.
For instructions, see Preparing the custom-driver code.

Build the shared-library file for the custom driver and custom-conversion functions and install the file in the appropriate directory.
For instructions, see Rebuilding the shared-library file.

Adding the driver name to the onpload database
 You must add the name of the custom driver to the onpload database so that you can select it when you prepare a load or unload job.

Preparing the custom-driver code
 A driver is implemented as a set of functions, referred to as methods. The methods enable onpload to open, close, read, and write data files. You can create a

custom driver that adds more complex functionality to data-file handling of onpload.
Rebuilding the shared-library file

 If you use custom drivers or custom-conversion functions, you must rebuild the ipldd11a.SOLIBSUFFIX shared-library file with your custom-code files.
(SOLIBSUFFIX is the shared-library suffix for your operating system.)

Adding the driver name to the onpload database

You must add the name of the custom driver to the onpload database so that you can select it when you prepare a load or unload job.

To add a driver name to the onpload database:

1252 Part VI: Administering

1. Choose a name for your custom driver. You can select your own name. This section uses the name your_custom_driver.
2. Add the name to the onpload database by choosing Configure > Driver For more information, see Adding a custom-driver name.
3. If you prepare multiple custom drivers, you must choose a name for each driver and add it to the onpload database.

Preparing the custom-driver code

A driver is implemented as a set of functions, referred to as methods. The methods enable onpload to open, close, read, and write data files. You can create a custom
driver that adds more complex functionality to data-file handling of onpload.

A custom driver consists of one or more functions that replace the capability of an existing driver method. The custom driver needs to provide all of the methods for a
driver, such as OPEN, READ, WRITE, and CLOSE.

To add to the capability of an existing driver method, the custom driver function calls the existing driver method from the custom function before or after any custom
processing, as appropriate.

To replace an existing driver method, the custom function provides all processing that is necessary for that function. The custom driver function does not call the existing
standard driver functions.

To prepare the custom-driver code, you must prepare the following two files. You can store the files in any convenient directory.

The your_custom_driver.c file contains the functions that provide your user-specific driver functionality. You must provide a function for each driver.
The plcstdrv.c file tells onpload where to find the custom-driver functions.

Preparing the file that provides the driver functionality
 Preparing the plcstdrv.c file

Preparing the file that provides the driver functionality

To prepare the file that provides the driver functionality:

1. Create a file for the driver functions (for example, your_custom_driver.c).
2. Prepare the driver code.

This section includes an example of driver files, An example of a custom driver. Use this example as a template for building your driver code.

The driver methods and API functions that you can use are described in Available driver methods and Available API support functions.

Preparing the plcstdrv.c file

To prepare the plcstdrv.c file:

1. Use the following code as a template to create the plcstdrv.c file. You can copy a template for plcstdrv.c from the $INFORMIXDIR/incl/hpl directory.

/***
 * Start of plcstdrv.c
 */

/* plcstdrv.h is in $INFORMIXDIR/incl/hpl */
#include "plcstdrv.h"

/* Your driver configuration function */
int your_driver_config_function();

(*pl_get_user_method(driver, method)) ()
char *driver;
intmethod;
{
/*
 * your_driver_name is the name of your driver
 */
if (strcmp(driver, "your_driver_name") == 0)
{
/*
 * If onpload is trying to configure the driver,
 * return the function that will handle the
 * initialization.
 */
if (method == PL_MTH_CONFIGURE)
return(your_driver_config_function);
}
/*
 * YYYY is the name of another driver
 * This is how additional custom drivers are configured
 */
if (strcmp(driver, "YYYY") == 0)
{
if (method == PL_MTH_CONFIGURE)
return(YYYY_driver_config_function);
}
}
/***************** end of plcstdrv.c *******************/

Part VI: Administering 1253

2. Replace your_driver_name with the name of the driver that you chose in step 1 of Adding the driver name to the onpload database.
3. Replace your_driver_config_function with the function name of the driver-configuration function that you coded in your_custom_driver.c.
4. To add multiple custom drivers, repeat the main if statement for each driver.

Rebuilding the shared-library file

If you use custom drivers or custom-conversion functions, you must rebuild the ipldd11a.SOLIBSUFFIX shared-library file with your custom-code files. (SOLIBSUFFIX is
the shared-library suffix for your operating system.)

After you rebuild ipldd11a.SOLIBSUFFIX, you must install it in the $INFORMIXDIR/lib directory. To store the shared library in a different location, such as /usr/lib, set the
HPL_DYNAMIC_LIB_PATH configuration parameter to the appropriate path in the plconfig file.
Important: For security reasons, you should keep all shared libraries used by the database server in directories under $INFORMIXDIR.
To build the shared-library file:

1. Use the following code as a template to prepare a makefile. You can copy a template for the makefile from the $INFORMIXDIR/incl/hpl directory.

Makefile for building onpload shared library

LD = ld

link flag for building dynamic library, may be different
for your platform, see the man page for ld, the link
editor.
LDSOFLAGS = -G

where to find plcstdrv.h
INCL = $INFORMIXDIR/incl/hpl

SOLIBSUFFIX is the shared library suffix for your
platform. For Solaris it is "so"
SOLIBSUFFIX = so

PLCDLIBSO = ipldd11a.$(SOLIBSUFFIX)

.c.o:
$(CC) $(CFLAGS) -I$(INCL) -c $<

plcstdrv.c contains the custom driver table, required
plcstcnv.c contains the custom function table, required
your_custom_driver.c contains your custom driver
#routines, optional
your_custom_conversion.c contains your custom
#conversion functions, optional

SOOBJS = plcsrdrv.o plcsrcnv.o your_custom_driver.o
your_custom_function.o

solib: $(SOOBJS)
$(LD) -o $(PLCDLIBSO) $(LDSOFLAGS) $(SOOBJS)

################ end of makefile ######################

2. Include the following files in the makefile.

File Description

plcstdrv.c Prepares the custom driver tables.

plcstcnv.c Prepares the custom-conversion function tables.

your_custom_driver.c Contains your user-specific driver functions

your_custom_functions.c Contains your user-specific conversion functions

Custom-conversion functions describes the plcstcnv.c and the your_custom_functions.c files.

3. Run make by using the makefile.
The makefile builds the shared-library file ipldd11a.SOLIBSUFFIX, where SOLIBSUFFIX is the shared-library suffix for your operating system.

The HPL uses the same library for both custom-conversion functions and custom drivers, so when you rebuild the library, you must also link the custom-conversion
code.

4. Install the shared library in the appropriate path for your operating system.
For example, on Solaris you must install the shared library in the $INFORMIXDIR/lib directory, or in the directory specified by the HPLDYNAMICLIB configuration
variable in the plconfig file. You can move ipldd11a.SOLIBSUFFIX into the shared-library directory, or you can use a link. For administrative purposes, a link might
be clearer.

5. Set the owner and group of the shared-library files to informix. Set the permission bits to 0755 (octal).

Tip: When the libraries are updated, the letter before the decimal (here, the letter a) changes to indicate that the library has changed. If you do not find ipldd11a, look for
ipldd11b or ipldd11c.

Connect your code to onpload at run time

1254 Part VI: Administering

When onpload determines that a custom driver is required to read or write data for a given record format, it calls the function pl_get_user_method().

The pl_get_user_method() function returns the function that the loader should call to perform initial driver configuration before any I/O activity is started. The function
that you specify should be a function that you are supplying in your driver. This function should not do any other initialization. The example in the previous section
illustrates the coding technique for this initial connection of your driver to onpload.

Driver initialization
 The onpload utility calls the configure function that you returned in pl_get_user_method(), expecting this function to configure all driver methods that are to be

customized. The configure function must call the pl_inherit_methods() function, specifying the class of driver that is appropriate for the data being processed.
Register driver functions

 The pl_set_method_function() registers a passed function to the passed method ID.

Driver initialization

The onpload utility calls the configure function that you returned in pl_get_user_method(), expecting this function to configure all driver methods that are to be
customized. The configure function must call the pl_inherit_methods() function, specifying the class of driver that is appropriate for the data being processed.

A driver class can be one of following classes.

Driver class Description

Fixed Fixed drivers process data on the assumption that the data is organized as constant length records of the same format. Fields in the record will
consistently appear at the same offset in each record.

Delimited Delimited drivers assume that the record and field boundaries are defined by markers (called delimiters) in the data.

COBOL The COBOL driver treats data as constant length records in the same manner as the Fixed driver. The distinguishing factor of the COBOL driver is its
support for conversion of the ANSI COBOL data types.

After the pl_inherit_methods() function is called, you can add additional functions that are called to support open, close, read, and write requirements of the driver. Call
pl_set_method_function() to tie your driver functions into the onpload execution.

Register driver functions

The pl_set_method_function() registers a passed function to the passed method ID.

For a description of the method IDs (defined in $INFORMIXDIR/incl/plcustom/pldriver.h) applicable to your driver implementation, refer to the Available API support
functions.

The following table shows the available methods.

Method Description

PL_MTH_OPEN The function called to open the file of interest for the load/unload

PL_MTH_CLOSE The function called to close the file at the end of the load/unload

PL_MTH_RAWREAD The function called to get the next block of data from the load file

PL_MTH_RAWWRITE The function called to write a block of data that is passed to it

You do not need to register a function for any of the methods IDs (although presumably you register at least one, or there is no point in writing the driver).

Use the pl_driver_inherit() function to get the standard function for the passed method. For example, to find and run the function currently registered for reading data
from the load input, you would code as follows:

int my_rawread_function(bufptr, bufsize, bytesread)
char *bufptr;
int bufsize;
int *bytesread;
{
int (*funcptr)();
int rtn;

funcptr = pl_driver_inherit(PL_MTH_RAWREAD);
rtn = (*funcptr)(bufptr, bufsize, &bytesread);
if (rtn)
return(rtn); /* error */
 /*
* Now you have a buffer of data in bufptr, of
* size bytesread. So you can process data in
* this buffer here before it is converted
*/
return(rtn);
}

For performance reasons, system calls are discouraged. System calls cause the VP on which the driver thread is running to be blocked for the duration of the system call.
This blockage prevents the VP from doing other work, causing onpload to run less efficiently.

An example of a custom driver

The example in this topic shows how to code a custom driver that completely takes over the open, close, read, and write responsibility. The example illustrates the form of
a driver and the necessary initialization, registration, and mechanism of the driver. The coding of user- specific functionality is not represented.

Part VI: Administering 1255

The plcstdrv.c file
Custom-driver code for MYDRIVER

The plcstdrv.c file

Assume that you chose MYDRIVER as the driver name and that you added this name to the onpload database with ipload. The plcstdrv.c file is as follows:

#include "plcstdrv.h"

int DrConfig();

(*pl_get_user_method(driver, method)) ()
char*driver;
int method;
{
if (strcmp(driver, "customdrv") == 0)
{
if (method == PL_MTH_CONFIGURE)
return (DrConfig);
}

return (0);
}

Custom-driver code for MYDRIVER

The following driver code supports MYDRIVER:

#include <plcstdrv.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/fcntl.h>

extern char *malloc();
externerrno;

static int DrOpen();
static int DrRead();
static int DrWrite();
static int DrClose();

#define CTRLDELIM 0x01/* fake delimiter (CTRL-A) */
#define REALDELIM 0x7c/* real delimiter (|) */
#define ESCAPSIGN 0x5c/* escape sign(\) */
#define ENDRECORD 0x0a/* end of record (\n) */

int fd;

/*---
 * DrConfig()
 *
 * Input : (char *)driver name
 * (void *)method table
 *
 * Return : PL_RTN_OK
 *
 * Schema : Fills in the driver table
 ---/

int
DrConfig(driver,methodtable)
char*driver;
void*methodtable;
{
pl_inherit_methods("Delimited", methodtable);
pl_set_method_function(methodtable, PL_MTH_OPEN, DrOpen);
pl_set_method_function(methodtable, PL_MTH_RAWREAD, DrRead);
pl_set_method_function(methodtable, PL_MTH_RAWWRITE, DrWrite);
pl_set_method_function(methodtable, PL_MTH_CLOSE, DrClose);
pl_lock_globals();

return PL_RTN_OK;
}

/*--
 * DrOpen()
 *
 * Input : (devicearray *) devdevice array structure
 *
 * Return : PL_RTN_FAILerror
 * PL_RTN_OK open succeeded
 *
 * Schema : Open the specific file for that driver thread
 * Note that the custom driver thread is bound to its
 * own CPU VP, therefore it is safe to have globals like fd
 --/

1256 Part VI: Administering

static int
DrOpen(dev)
devicearray*dev;
{
fd = open(dev->filename, O_RDONLY);
if (fd < 0)
{
return PL_RTN_FAIL;
}

return PL_RTN_OK;
}

/*--
 * DrRead()
 *
 * Input : (char *) bfoutput buffer to write record to
 * (int)size size of output buffer
 * (int *) countnumber of bytes written to output buffer
 *
 * Return : PL_RTN_FAILerror
 * PL_RTN_OK returning buffer
 * PL_RTN_EOFreturning the last buffer, no more data
 *
 *
 * Schema : Reads from input and fill up data buffer provided by the
 * caller. Here, the caller expect a record where the delimiter
 * is |. Our custom driver changes all CTRL-A into | and
 * escapes the already existing | from input.
 --/

static int
DrRead(bf, size, count)
char*bf;
int size;
int*count;
{
int rtn;/* return value */
int n; /* bytes read in */
static char*bftemp = 0;/* temp buffer*/
char*p; /* pointer to temp buff */
char*start; /* start of output buffer*/
static off_tcurrseek = 0; /* current seek in input */
int escaped = 0;/* did we escape last character */

start = bf;

if (bftemp == 0)
{
if ((bftemp = malloc(size)) == 0)
{
return PL_RTN_FAIL;
}
}

/*
 * read data in
 */
errno = 0;
do
{
n = read(fd, bftemp, size);
} while (n == -1 && errno == 4);

rtn = (n < 0) ? PL_RTN_FAIL : (n == size) ? PL_RTN_OK : PL_RTN_EOF;

currseek += n;

p = bftemp;

/*
 * format output buffer
 */
while (size)
{
if (*p == REALDELIM)
{
*bf = ESCAPSIGN;
escaped = 1;
}
else if (*p == CTRLDELIM)
{
*bf = REALDELIM;
}
else
{
*bf = *p;
}

size--;
bf++;

if (escaped && size)

Part VI: Administering 1257

{
*bf++ = *p;
escaped = 0;
size--;
}

p++;

if ((int) (p - bftemp) == n)
break;
}

if (escaped)
{
p--;
rtn = PL_RTN_OK;
}

if ((int) (p - bftemp) != n)
{
currseek -= (off_t) (n - (p - bftemp));
lseek(fd, currseek, SEEK_SET);
}

if (rtn == PL_RTN_EOF)
{
*bf = 0;
}

*count = (int) (bf - start);

return rtn;
}

static int
DrWrite(bf, size)
char*bf;
int size;
{
return PL_RTN_OK;
}

static int
DrClose(device)
devicearray *device;
{
close(fd);

return PL_RTN_OK;
}

Available driver methods

The following section describes the methods that you can use to build custom drivers. The methods defined in this section use the return values that are described in the
following table.

Return value Interpretation

PL_RTN_OK Method ran successfully.

PL_RTN_FAIL Method did not succeed. Stop processing.

PL_RTN_EOF Method reached the end of the file.

The PL_MTH_OPEN function
 Call this function to open the file of interest for the load or unload.

The PL_MTH_CLOSE function
 Call this function to close the file at the end of the load or unload.

The PL_MTH_OPEN function

Call this function to open the file of interest for the load or unload.

Function information Description of arguments

Input arguments: devicearray *device; Device/file path name to
open

Output arguments: None

Return values: PL_RTN_OK, PL_RTN_FAIL

1258 Part VI: Administering

The PL_MTH_CLOSE function

Call this function to close the file at the end of the load or unload.

Function information Description of arguments

Input arguments: None

Output arguments: None

Return values: PL_RTN_OK, PL_RTN_FAIL

Available API support functions

This section describes the API support functions that you can use with custom drivers.

The methods defined in this section use the return values that are described in the following table.

Return value Interpretation

PL_RTN_OK Function succeeded.

PL_RTN_FAIL n Function failed.

The pl_inherit_methods(driver, methodtable) function
 This function loads the passed method function table with the functions currently configured for the passed driver.

The pl_set_method_function(methodtable, method, function) function
 This function inserts the passed function into the method chain.

The pl_driver_inherit(method) function
 This function returns a pointer to the function that currently supports the passed method and advances the method chain so that the next request returns the next

function in the method list.
The pl_get_recordlength() function

 This function returns the length of the active record format. If the format is for a delimited record type, the value returned is 0.
The pl_set_informix_conversion(flag) function

 When this function is set to 1, it disables data conversion during the load. The data must be formatted in IBM® Informix® format (as opposed to another type of
format that would have to be converted before loading the data into the database). When this function is set to 0, data conversion is enabled.
The pl_lock_globals() function

 This function ensures global data integrity when you supply a custom driver that uses globally defined variables.
The pl_reset_inherit_chain(method) function

 This function resets the function inheritance chain to the start of the list. You should need it only if you are implementing recursive processing.

The pl_inherit_methods(driver, methodtable) function

This function loads the passed method function table with the functions currently configured for the passed driver.

Function information Description of arguments

Function type: int

Input arguments: char *driver void *methodtable Name of driver to inherit Pointer to method
table

Return values: PL_RTN_OK, PL_RTN_FAIL

The onpload utility is supplied with three standard drivers described in Driver initialization.

The pl_set_method_function(methodtable, method, function) function

This function inserts the passed function into the method chain.

Function information Description of arguments

Function type: int

Input arguments: void *methodtable
int method int (*funcptr)()

Method table passed to PL_MTH_CONFIGURE
Method ID Function to insert into method
chain

Return values: PL_RTN_OK, PL_RTN_FAIL

The pl_driver_inherit(method) function

Part VI: Administering 1259

This function returns a pointer to the function that currently supports the passed method and advances the method chain so that the next request returns the next
function in the method list.

Function information Description of arguments

Function type: int

Input argument: int method Method ID

Return values: PL_RTN_OK, PL_RTN_FAIL

When you inherit a driver and use the pl_set_method_function to override a method, you can assume all processing functionality for method.

However, if you want to add to the existing processing functionality, pl_driver_inherit returns the function that was installed in the function table before the call to
pl_set_method_function.

Example
You are processing a file in which the context of the data determines the record fields present. You want to analyze the records and reformat the data into a delimited
format that the onpload data converter recognizes.

In the driver setup, specify that your function should inherit the Delimited driver and add your custom function to the PL_MTH_READREC method.

When your function is called, get the inherited function with pl_driver_inherit(). Invoke this function, which returns a pointer to the start of a record and its length.

Apply your changes to the data in the buffer that is returned by the call to the inherited function.

The pl_get_recordlength() function

This function returns the length of the active record format. If the format is for a delimited record type, the value returned is 0.

Function information Description of arguments

Function type: int

Return values length of record PL_RTN_FAIL Function succeeded
Function failed

The pl_set_informix_conversion(flag) function

When this function is set to 1, it disables data conversion during the load. The data must be formatted in IBM® Informix® format (as opposed to another type of format that
would have to be converted before loading the data into the database). When this function is set to 0, data conversion is enabled.

Function information Description of arguments

Function type: int

Input argument: int flag 1 = disable, 0 = enable

Return values: PL_RTN_OK, PL_RTN_FAIL

The pl_lock_globals() function

This function ensures global data integrity when you supply a custom driver that uses globally defined variables.

Function information Description of arguments

Function type: int

Return values: PL_RTN_OK, PL_RTN_FAIL

The pl_reset_inherit_chain(method) function

This function resets the function inheritance chain to the start of the list. You should need it only if you are implementing recursive processing.

Function information Description of arguments

Function type: void

Input arguments: int method Method ID

Return values: none

1260 Part VI: Administering

Run load and unload jobs on a Windows computer

You can run load and unload jobs on Windows computers by using the following methods:

Prepare and run jobs with the onpladm utility on a Windows computer.
Prepare jobs with the ipload utility on a UNIX computer; then run them on a database server on a Windows computer.

The onpladm utility on Windows
 You can run all onpladm utility commands from the Windows command line.

Preparing jobs with the ipload utility on Windows computers
 You cannot prepare load and unload jobs for the High-Performance Loader (HPL) on Windows computers. However, you can use the ipload utility on UNIX to

prepare the load and unload jobs and then use the onpload command on Windows to run those jobs.

Related concepts:
 The ipload utility

Related reference:
 Prepare to use the ipload utility

The onpladm utility on Windows

You can run all onpladm utility commands from the Windows command line.

If you use the onpladm utility to start a project on Windows, the utility starts each onpload job in a new command window because, by default, the
INTERACTIVE_DESKTOP_OFF environment variable is set to 0. If you want the jobs to start in the background, set the INTERACTIVE_DESKTOP_OFF environment variable
to 1.

The setting of the INTERACTIVE_DESKTOP_OFF environment variable influences the behavior of all stored procedures in an instance.

For general information about the onpladm utility, see The onpladm utility.

Run the Run Job or Run Project commands
 To run the Run Job or Run Project commands with the onpladm utility, enter a user name and password in the Host Information tab of the SETNET32 utility of the

IBM® Informix® Client Software Development Kit.
Running onpladm on UNIX with the database server running on Windows

 You can run the Run Job or Run Project commands on the onpladm utility on a UNIX computer and create High-Performance Loader (HPL) objects in a database
server that runs on a Windows computer.

Related reference:
 Run all jobs in a project

Run the Run Job or Run Project commands

To run the Run Job or Run Project commands with the onpladm utility, enter a user name and password in the Host Information tab of the SETNET32 utility of the IBM®
Informix® Client Software Development Kit.

For more information about the SETNET32 utility, see the Informix Client Products Installation Guide.

If you do not enter the user name and user password, you receive the following error:

Cannot execute stored procedure start_onpload SQL ERROR -668

If you receive this error, the online log file contains the following message:

System() command "$INFORMIXDIR/bin/onpload -H hostname -S
servername -rl -fb" in SPL routine cannot be executed because user
"username" did not connect with a password.

To run other commands with the onpladm utility, you do not have to enter a user name and password.

Running onpladm on UNIX with the database server running on Windows

You can run the Run Job or Run Project commands on the onpladm utility on a UNIX computer and create High-Performance Loader (HPL) objects in a database server
that runs on a Windows computer.

To run the Run Job or Run Project commands on UNIX with a database server on Windows:

1. Make the UNIX computer a trusted host on your Windows computer.
2. Verify that the UNIX computer and Windows computers can connect to each other.
3. Install a database server on the Windows computer. Verify that the database server is running.
4. Install a database server on the UNIX computer.

Ensure that the database servers on the UNIX and Windows computers are the same version. You do not need to start the database server on the UNIX computer to
run the onpladm utility.

5. Set the INFORMIXSERVER and INFORMIXSQLHOSTS environment variables on your UNIX workstation as follows:

Part VI: Administering 1261

INFORMXSERVER WINservername
INFORMIXSQLHOSTS full.sqlhosts.pathname

WINservername
Name of the database server on the Windows computer

full.sqlhosts.pathname
Complete path of the sqlhosts file on the UNIX computer (for instance, $INFORMIXDIR/etc/sqlhosts.wn)

Use the -S or -T onpladm utility option to override the INFORMIXSERVER environment variable setting.

6. Add the following line to the $INFORMIXSQLHOSTS file on the UNIX workstation:

WINservername ontlitcp WINname servicename

WINservername
Name of the database server on the Windows computer.

WINname
Name of the Windows computer.

servicename
Service that the Windows database server uses.

7. Use the onpladm utility commands to create, configure, delete, describe, list, and modify HPL objects on your Windows database server. For more information, see
The onpladm utility.

8. Prepare load and unload jobs with the onpladm utility. For more information, see Create onpladm jobs.
9. Type the following line into the .netrc file in your home directory on a UNIX computer:

machine WIN_machinename login username password user_password

WIN_machinename
Name of the Windows computer.

username
Your user name.

user_password
Your user password.

Your user name and user password must be valid on the Windows computer.

Related reference:
 Run a job

Preparing jobs with the ipload utility on Windows computers

You cannot prepare load and unload jobs for the High-Performance Loader (HPL) on Windows computers. However, you can use the ipload utility on UNIX to prepare the
load and unload jobs and then use the onpload command on Windows to run those jobs.

To use the ipload utility on UNIX to prepare jobs for a database server on Windows:

1. Make the UNIX computer a trusted host on your Windows computer.
2. Ensure that the UNIX computer can connect to the Windows computer.
3. Install a database server on Windows and make sure that it is running.
4. Install a database server on UNIX. You need not start the database server to run the ipload utility.
5. Make sure that the database server installed on UNIX is the same version as the IBM® Informix® database server on Windows.
6. If the database server on UNIX is running, do not modify the environment variables. If the database server on UNIX is not running, set the environment variables

(from your UNIX workstation), as the following example shows:

INFORMIXSERVER WINservername
INFORMIXSQLHOSTS full.sqlhosts.pathname

WINservername
The name of the database server on Windows

full.sqlhosts.pathname
The full path name of the sqlhosts file on your UNIX workstation (for example, $INFORMIXDIR/etc/sqlhosts.wn)

7. Add the following line to the $INFORMIXSQLHOSTS file on the UNIX workstation:

WINservername ontlitcp WINname servicename

WINservername
Name of the database server on the Windows computer.

WINname
Name of the Windows computer.

servicename
Service that the Windows database server uses.

8. On UNIX, run ipload as the DBA or as user informix.
If the database server on UNIX is not running (and you set the environment variables correctly), ipload immediately connects to the Windows database server. If
the database server on UNIX is running, ipload initially connects to that database server. To connect to the database server on Windows, choose Configure Server.

The Connect Server dialog shows two columns: Onpload Server and Target Server. Select the database server on Windows in both columns and click OK. The ipload
utility connects to the database server on Windows.

9. Create, edit, view, and run HPL jobs on the database server on Windows. After you prepare the load and unload jobs by using ipload, you can also run the jobs by
using the onpload command on your Windows computer.

1262 Part VI: Administering

Conversion and reversion scripts for HPL database migration

When you convert or revert to different versions of the database server, you can use conversion and reversion scripts to manually upgrade or revert your onpload database.
You must use these scripts if you are required to upgrade between the same server versions.

Alternatively, you can use the IFX_ONPLOAD_AUTO_UPGRADE environment variable with the ipload or onpladm utilities to automatically upgrade the onpload database
the first time that you run a High-Performance Loader (HPL) utility after you migrate to a new version of the database server. You cannot use the
IFX_ONPLOAD_AUTO_UPGRADE environment variable with the onpload utility.

If you run an HPL utility before upgrading the onpload database, you receive the following error, which informs you that the onpload database must be converted:

Incorrect database version. Make sure that it is upgraded properly.
To upgrade please run the $INFORMIXDIR/etc/conv/conpload.sh script manually.
For automatic upgrade please set the IFX_ONPLOAD_AUTO_UPGRADE variable.

Upgrade the High-Performance Loader onpload database
 When you upgrade to a new version of the database server, you must also upgrade the onpload database.

Revert from the current onpload database

Upgrade the High-Performance Loader onpload database

When you upgrade to a new version of the database server, you must also upgrade the onpload database.

If you are upgrading from a version of the database server that is before Version 9.40, you must run a conversion script. For instructions for running this script, see your
IBM® Informix® Migration Guide.

Starting with Version 9.40.xC3, the database server has a new version of the onpload database with longer column lengths. The onpload database now requires slightly
more disk space than it did in previous versions. The following table shows the relationship between the database server version and the onpload database schema
version.

Database server version Database version of
onpload

Pre 7.3 0 or not available

7.31 1

9.2, 9.3, 9.40.xC1, 9.40.xC2 2

9.40.xC3 and later 3

Revert from the current onpload database

Starting with Version 10.00 of the database server, reversion of the onpload database is automatic.

Performance Guide

These topics describe how to configure and operate your IBM® Informix® database server to improve overall system throughput and to improve the performance of SQL
queries.

This information contains performance tuning issues and methods that are relevant to daily database server administration and query execution. Performance
measurement and tuning encompass a broad area of research and practice and can involve information beyond the scope of this publication.

This information is intended for the following users:

Database administrators
Database server administrators
Database-application programmers
Performance engineers

This information assumes that you have the following background:

A working knowledge of your computer, your operating system, and the utilities that your operating system provides
Some experience working with relational databases or exposure to database concepts
Some experience with database server administration, operating-system administration, or network administration

Information in these topics can help you perform the following tasks:

Monitor the system resources that are critical to performance
Identify database activities that affect these critical resources
Identify and monitor queries that are critical to performance
Use the database server utilities (especially onperf and onstat) for performance monitoring and tuning
Eliminate performance bottlenecks by:

Balancing the load on system resources
Adjusting the configuration parameters or environment variables of your database server
Adjusting the arrangement of your data

Part VI: Administering 1263

Allocating resources for decision-support queries
Creating indexes to speed up retrieval of your data

Performance measurement and tuning encompass a broad area of research and practice and can involve information beyond the scope of these topics.

These topics are taken from the IBM Informix Performance Guide.

Performance basics
 Performance measurement and tuning issues and methods are relevant to daily database server administration and query execution.

Performance monitoring and the tools you use
 You can use performance monitoring tools to create a performance history, to monitor database resources at scheduled times, or to monitor ongoing transaction or

query performance.
Effect of configuration on CPU utilization

 The combination of operating-system and Informix configuration parameters can affect CPU utilization. You can change the settings of the Informix configuration
parameters that directly affect CPU utilization, and you can adjust the settings for different types of workloads.
Effect of configuration on memory utilization

 The combination of operating-system and Informix configuration parameters can affect memory utilization.
Effect of configuration on I/O activity
The configuration of your database server affects I/O activity.
Table performance considerations

 Some performance issues are associated with unfragmented tables and table fragments.
Boosted Partition Free Space Caches (PFSC)

 Indexes and index performance considerations
 Informix provides several types of indexes. Some performance issues are associated with indexes.

Locking
 The database server uses locks, which can affect concurrency and performance. You can monitor and administer locks.

Fragmentation guidelines
 One of the most frequent causes of poor performance in relational database systems is contention for data that resides on a single I/O device. Proper fragmentation

of high-use tables can significantly reduce I/O contention. These topics discuss the performance considerations that are involved when you use table
fragmentation.
Queries and the query optimizer

 These topics describe query plans, explain how the database server manages query optimization, and discuss factors that you can use to influence the query plan.
These topics also describe performance considerations for SPL routines, the UDR cache, and triggers.
Optimizer directives

 Optimizer directives are comments that tell the query optimizer how to execute a query. You can use optimizer directives to improve query performance.
Parallel database query (PDQ)

 You can manage how the database server performs PDQ and you can monitor the resources that the database server uses for PDQ.
Improving individual query performance

 You can test, monitor, and improve queries.
The onperf utility on UNIX

 The onperf utility is a windowing environment that you can use to monitor the database server performance. The onperf utility monitors the database server
running on the UNIX operating system.
Appendix

Copyright© 2020 HCL Technologies Limited

Performance basics

Performance measurement and tuning issues and methods are relevant to daily database server administration and query execution.

These topics:

Describe a basic approach for performance measurement and tuning
Provide guidelines for a quick start to obtain acceptable initial performance on a small database
Describe roles in maintaining good performance

Developing a basic approach to performance measurement and tuning
 To maintain optimum performance for your database applications, develop a plan for measuring system performance, making adjustments to maintain good

performance and taking corrective measures when performance degrades. Regular, specific measurements can help you to anticipate and correct performance
problems.
Quick start for acceptable performance on a small database

 If you have a small database with each table residing on only one disk and using only one CPU virtual processor, you can take specific measurements to help you
anticipate and correct performance problems.
Performance goals

 When you plan for measuring and tuning performance, you should consider performance goals and determine which goals are the most important.
Measurements of performance

 You can use throughput, response time, cost per transaction, and resource utilization measures to evaluate performance.
Resource utilization and performance

 A typical transaction-processing application undergoes different demands throughout its various operating cycles. Peak loads during the day, week, month, and
year, as well as the loads imposed by decision-support (DSS) queries or backup operations, can significantly impact any system that is running near capacity. You
can use direct historical data derived from your particular system to pinpoint this impact.
Factors that affect resource utilization

 The performance of your database server application depends many factors, including hardware and software configuration, your network configuration, and the
design of your database.
Maintenance of good performance

 Performance is affected in some way by all system users: the database server administrator, the database administrator, the application designers, and the client
application users.

1264 Part VI: Administering

https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Developing a basic approach to performance measurement and tuning

To maintain optimum performance for your database applications, develop a plan for measuring system performance, making adjustments to maintain good performance
and taking corrective measures when performance degrades. Regular, specific measurements can help you to anticipate and correct performance problems.

By recognizing problems early, you can prevent them from affecting users significantly. Early indications of a performance problem are often vague; users might report that
the system seems sluggish. Users might complain that they cannot get all their work done, that transactions take too long to complete, that queries take too long to
process, or that the application slows down at certain times during the day.

To determine the nature of the problem, you must measure the actual use of system resources and evaluate the results.

Users typically report performance problems in the following situations:

Response times for transactions or queries take longer than expected.
Transaction throughput is insufficient to complete the required workload.
Transaction throughput decreases.

An iterative approach to optimizing database server performance is recommended. If repeating the steps found in the following list does not produce the desired
improvement, insufficient hardware resources or inefficient code in one or more client applications might be causing the problem.

To optimize performance:

1. Establish performance objectives.
2. Take regular measurements of resource utilization and database activity.
3. Identify symptoms of performance problems: disproportionate utilization of CPU, memory, or disks.
4. Tune the operating-system configuration.
5. Tune the database server configuration.
6. Optimize the chunk and dbspace configuration, including placement of logs, sort space, and space for temporary tables and sort files.
7. Optimize the table placement, extent sizing, and fragmentation.
8. Improve the indexes.
9. Optimize background I/O activities, including logging, checkpoints, and page cleaning.

10. Schedule backup and batch operations for off-peak hours.
11. Optimize the implementation of the database application.
12. Repeat steps 2 through 11.

Related concepts:
 Performance goals

Measurements of performance
Resource utilization and performance
Factors that affect resource utilization
Maintenance of good performance
Related tasks:

 Quick start for acceptable performance on a small database

Copyright© 2020 HCL Technologies Limited

Quick start for acceptable performance on a small database

If you have a small database with each table residing on only one disk and using only one CPU virtual processor, you can take specific measurements to help you
anticipate and correct performance problems.

To achieve acceptable initial performance on a small database:

1. Generate statistics of your tables and indexes to provide information to the query optimizer to enable it to choose query plans with the lowest estimated cost.
These statistics are a minimum starting point to obtain good performance for individual queries. For guidelines, see Update statistics when they are not generated
automatically. To see the query plan that the optimizer chooses for each query, see Display the query plan.

2. If you want a query to run in parallel with other queries, you must turn on the Parallel Database Query (PDQ) feature.
Without table fragmentation across multiple disks, parallel scans do not occur. With only one CPU virtual processor, parallel joins or parallel sorts do not occur.
However, PDQ priority can obtain more memory to perform the sort. For more information, see Parallel database query (PDQ).

3. If you want to mix online transaction processing (OLTP) and decision-support system (DSS) query applications, you can control the amount of resources a long-
running query can obtain so that your OLTP transactions are not affected.
For information about how to control PDQ resources, see The allocation of resources for parallel database queries.

4. Monitor sessions and drill down into various details to improve the performance of individual queries.
For information about the various tools and session details to monitor, see Monitoring memory usage for each session and Monitor sessions and threads.

Related concepts:
 Performance goals

Measurements of performance
Resource utilization and performance
Factors that affect resource utilization
Maintenance of good performance
Related tasks:

 Developing a basic approach to performance measurement and tuning

Part VI: Administering 1265

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Performance goals

When you plan for measuring and tuning performance, you should consider performance goals and determine which goals are the most important.

Many considerations go into establishing performance goals for the database server and the applications that it supports. Be clear and consistent about articulating
performance goals and priorities, so that you can provide realistic and consistent expectations about the performance objectives for your application. Consider the
following questions when you establish performance goals:

Is your top priority to maximize transaction throughput, minimize response time for specific queries, or achieve the best overall mix?
What sort of mix between simple transactions, extended decision-support queries, and other types of requests does the database server typically handle?
At what point are you willing to trade transaction-processing speed for availability or the risk of loss for a particular transaction?
Is this database server instance used in a client/server configuration? If so, what are the networking characteristics that affect its performance?
What is the maximum number of users that you expect?
Is your configuration limited by memory, disk space, or CPU resources?

The answers to these questions can help you set realistic performance goals for your resources and your mix of applications.

Related concepts:
 Measurements of performance

Resource utilization and performance
Factors that affect resource utilization
Maintenance of good performance
Related tasks:

 Developing a basic approach to performance measurement and tuning
Quick start for acceptable performance on a small database

Copyright© 2020 HCL Technologies Limited

Measurements of performance

You can use throughput, response time, cost per transaction, and resource utilization measures to evaluate performance.

Throughput, response time, and cost per transaction are described in the topics that follow.

Resource utilization can have one of two meanings, depending on the context. The term can refer to the amount of a resource that a particular operation requires or uses,
or it can refer to the current load on a particular system component. The term is used in the former sense to compare approaches for accomplishing a given task. For
instance, if a given sort operation requires 10 megabytes of disk space, its resource utilization is greater than another sort operation that requires only 5 megabytes of disk
space. The term is used in the latter sense to refer, for instance, to the number of CPU cycles that are devoted to a particular query during a specific time interval.

For a discussion about the performance impact of different load levels on various system components, see Resource utilization and performance.

Throughput
 Throughput measures the overall performance of the system. For transaction processing systems, throughput is typically measured in transactions per second (TPS)

or transactions per minute (TPM).
Response time

 Response time measures the performance of an individual transaction or query. Response time is typically treated as the elapsed time from the moment that a user
enters a command or activates a function until the time that the application indicates that the command or function has completed.
Cost per transaction

 The cost per transaction is a financial measure that is typically used to compare overall operating costs among applications, database servers, or hardware
platforms. You can measure the cost per transaction.

Related concepts:
 Performance goals

Resource utilization and performance
Factors that affect resource utilization
Maintenance of good performance
Related tasks:

 Developing a basic approach to performance measurement and tuning
Quick start for acceptable performance on a small database

Copyright© 2020 HCL Technologies Limited

Throughput

Throughput measures the overall performance of the system. For transaction processing systems, throughput is typically measured in transactions per second (TPS) or
transactions per minute (TPM).

Throughput depends on the following factors:

The specifications of the host computer
The processing overhead in the software
The layout of data on disk

1266 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The degree of parallelism that both hardware and software support
The types of transactions being processed

Ways to measure throughput
 The best way to measure throughput for an application is to include code in the application that logs the time stamps of transactions as they commit.

Standard throughput benchmarks
 The Transaction Processing Performance Council (TPC) provides standard benchmarks that allow reasonable throughput comparisons across hardware

configurations and database servers. is an active member in good standing of the TPC.

Copyright© 2020 HCL Technologies Limited

Ways to measure throughput

The best way to measure throughput for an application is to include code in the application that logs the time stamps of transactions as they commit.

If your application does not provide support for measuring throughput directly, you can obtain an estimate by tracking the number of COMMIT WORK statements that the
database server logs during a given time interval. You can use the onlog utility to obtain a listing of logical-log records that are written to log files. You can use information
from this command to track insert, delete, and update operations as well as committed transactions. However, you cannot obtain information stored in the logical-log
buffer until that information is written to a log file.

If you need more immediate feedback, you can use onstat -p to gather an estimate. You can use the SET LOG statement to set the logging mode to unbuffered for the
databases that contain tables of interest. You can also use the trusted auditing facility in the database server to record successful COMMIT WORK events or other events
of interest in an audit log file. Using the auditing facility can increase the overhead involved in processing any audited event, which can reduce overall throughput.

Related information:
 Auditing data security

Copyright© 2020 HCL Technologies Limited

Standard throughput benchmarks

The Transaction Processing Performance Council (TPC) provides standard benchmarks that allow reasonable throughput comparisons across hardware configurations and
database servers. is an active member in good standing of the TPC.

The TPC provides the following standardized benchmarks for measuring throughput:

TPC-A
This benchmark is used for simple online transaction-processing (OLTP) comparisons. It characterizes the performance of a simple transaction-processing system,
emphasizing update-intensive services. TPC-A simulates a workload that consists of multiple user sessions connected over a network with significant disk I/O
activity.

TPC-B
This benchmark is used for stress-testing peak database throughput. It uses the same transaction load as TPC-A but removes any networking and interactive
operations to provide a best-case throughput measurement.

TPC-C
This benchmark is used for complex OLTP applications. It is derived from TPC-A and uses a mix of updates, read-only transactions, batch operations, transaction
rollback requests, resource contentions, and other types of operations on a complex database to provide a better representation of typical workloads.

TPC-D
This benchmark measures query-processing power in terms of completion times for very large queries. TPC-D is a decision-support benchmark built around a set of
typical business questions phrased as SQL queries against large databases (in the gigabyte or terabyte range).

Because every database application has its own particular workload, you cannot use TPC benchmarks to predict the throughput for your application. The actual
throughput that you achieve depends largely on your application.

Copyright© 2020 HCL Technologies Limited

Response time

Response time measures the performance of an individual transaction or query. Response time is typically treated as the elapsed time from the moment that a user enters
a command or activates a function until the time that the application indicates that the command or function has completed.

The response time for a typical Informix® application includes the following sequence of actions. Each action requires a certain amount of time. The response time does
not include the time that it takes for the user to think of and enter a query or request:

1. The application forwards a query to the database server.
2. The database server performs query optimization and retrieves any user-defined routines (UDRs). UDRs include both SPL routines and external routines.
3. The database server retrieves, adds, or updates the appropriate records and performs disk I/O operations directly related to the query.
4. The database server performs any background I/O operations, such as logging and page cleaning, that occur during the period in which the query or transaction is

still pending.
5. The database server returns a result to the application.
6. The application displays the information or issues a confirmation and then issues a new prompt to the user.

Figure 1 contains a diagram that shows how the actions just described in steps 1 through 6 contribute to the overall response time.

Part VI: Administering 1267

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Figure 1. Components of the response time for a single transaction

Response time and throughput
 Response time and throughput are related. The response time for an average transaction tends to decrease as you increase overall throughput.

Response-time measurement
 To measure the response time for a query or application, you can use the timing commands and performance monitoring and timing functions that your operating

system provides.

Copyright© 2020 HCL Technologies Limited

Response time and throughput

Response time and throughput are related. The response time for an average transaction tends to decrease as you increase overall throughput.

However, you can decrease the response time for a specific query, at the expense of overall throughput, by allocating a disproportionate amount of resources to that
query. Conversely, you can maintain overall throughput by restricting the resources that the database allocates to a large query.

The trade-off between throughput and response time becomes evident when you try to balance the ongoing need for high transaction throughput with an immediate need
to perform a large decision-support query. The more resources that you apply to the query, the fewer you have available to process transactions, and the larger the impact
your query can have on transaction throughput. Conversely, the fewer resources you allow the query, the longer the query takes.

Copyright© 2020 HCL Technologies Limited

Response-time measurement

To measure the response time for a query or application, you can use the timing commands and performance monitoring and timing functions that your operating system
provides.

Operating-system timing commands
 Your operating system typically has a utility that you can use to time a command. You can often use this timing utility to measure the response times to SQL

statements that a DB-Access command file issues.
Operating-system tools for monitoring performance

 Operating systems usually have a performance monitor that you can use to measure response time for a query or process.
Timing functions within your application

 Most programming languages have a library function for the time of day. If you have access to the source code, you can insert pairs of calls to this function to
measure the elapsed time between specific actions.

Copyright© 2020 HCL Technologies Limited

Operating-system timing commands

Your operating system typically has a utility that you can use to time a command. You can often use this timing utility to measure the response times to SQL statements
that a DB-Access command file issues.

UNIX Only
If you have a command file that performs a standard set of SQL statements, you can use the time command on many systems to obtain an accurate timing for those
commands.

The following example shows the output of the UNIX time command:

time commands.dba
...
4.3 real 1.5 user 1.3 sys

The time output lists the amount of elapsed time (real), the user CPU time, and the system CPU time. If you use the C shell, the first three columns of output from
the C shell time command show the user, system, and elapsed times, respectively. In general, an application often performs poorly when the proportion of system
CPU time exceeds one-third of the total elapsed time.

The time command gathers timing information about your application. You can use this command to invoke an instance of your application, perform a database
operation, and then exit to obtain timing figures, as the following example illustrates:

1268 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

time sqlapp
 (enter SQL command through sqlapp, then exit)
10.1 real 6.4 user 3.7 sys

You can use a script to run the same test repeatedly, which allows you to obtain comparable results under different conditions. You can also obtain estimates of
your average response time by dividing the elapsed time for the script by the number of database operations that the script performs.

Copyright© 2020 HCL Technologies Limited

Operating-system tools for monitoring performance

Operating systems usually have a performance monitor that you can use to measure response time for a query or process.

Windows Only
You can often use the Performance Logs and Alerts that the Windows operating system supplies to measure the following times:

User time
Processor time
Elapsed time

Copyright© 2020 HCL Technologies Limited

Timing functions within your application

Most programming languages have a library function for the time of day. If you have access to the source code, you can insert pairs of calls to this function to measure the
elapsed time between specific actions.

ESQL/C Only
For example, if the application is written in IBM® Informix® ESQL/C, you can use the dtcurrent() function to obtain the current time. To measure response time, you
can call dtcurrent() to report the time at the start of a transaction and again to report the time when the transaction commits.

Elapsed time, in a multiprogramming system or network environment where resources are shared among multiple processes, does not always correspond to execution
time. Most operating systems and C libraries contain functions that return the CPU time of a program.

Copyright© 2020 HCL Technologies Limited

Cost per transaction

The cost per transaction is a financial measure that is typically used to compare overall operating costs among applications, database servers, or hardware platforms. You
can measure the cost per transaction.

To measure the cost per transaction:

1. Calculate all the costs associated with operating an application. These costs can include the installed price of the hardware and software; operating costs, including
salaries; and other expenses. These costs can include the installed price of the hardware and software; operating costs, including salaries; and other expenses.

2. Project the total number of transactions and queries for the effective life of an application.
3. Divide the total cost over the total number of transactions.

Although this measure is useful for planning and evaluation, it is seldom relevant to the daily issues of achieving optimum performance.

Copyright© 2020 HCL Technologies Limited

Resource utilization and performance

A typical transaction-processing application undergoes different demands throughout its various operating cycles. Peak loads during the day, week, month, and year, as
well as the loads imposed by decision-support (DSS) queries or backup operations, can significantly impact any system that is running near capacity. You can use direct
historical data derived from your particular system to pinpoint this impact.

You must take regular measurements of the workload and performance of your system to predict peak loads and compare performance measurements at different points
in your usage cycle. Regular measurements help you to develop an overall performance profile for your database server applications. This profile is critical in determining
how to improve performance reliably.

For the measurement tools that the database server provides, see Database server tools. For the tools that your operating system provides for measuring performance
impacts on system and hardware resources, see Operating-system tools.

Utilization is the percentage of time that a component is actually occupied, as compared with the total time that the component is available for use. For instance, if a CPU
processes transactions for a total of 40 seconds during a single minute, its utilization during that interval is 67 percent.

Measure and record utilization of the following system resources regularly:

CPU
Memory

Part VI: Administering 1269

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Disk

A resource is said to be critical to performance when it becomes overused or when its utilization is disproportionate to that of other components. For instance, you might
consider a disk to be critical or overused when it has a utilization of 70 percent and all other disks on the system have 30 percent. Although 70 percent does not indicate
that the disk is severely overused, you can improve performance by rearranging data to balance I/O requests across the entire set of disks.

How you measure resource utilization depends on the tools that your operating system provides for reporting system activity and resource utilization. After you identify a
resource that seems overused, you can use the performance-monitoring utilities that the database server provides to gather data and make inferences about the database
activities that might account for the load on that component. You can adjust your database server configuration or your operating system to reduce those database
activities or spread them among other components. In some cases, you might need to provide additional hardware resources to resolve a performance bottleneck.

Resource utilization
 Whenever a system resource, such as a CPU or a particular disk, is occupied by a transaction or query, the resource is unavailable for processing other requests.

Pending requests must wait for the resources to become available before they can complete.
CPU utilization

 Estimates of CPU utilization and response time can help you determine if you need to eliminate or reschedule some activities.
Memory utilization

 Memory is not managed as a single component, such as a CPU or disk, but as a collection of small components called pages.
Disk utilization

 Because transfer rates vary among disks, most operating systems do not report disk utilization directly. Instead, they report the number of data transfers per
second (in operating-system memory-page-size units.)

Related concepts:
 Performance goals

Measurements of performance
Factors that affect resource utilization
Maintenance of good performance
Related tasks:

 Developing a basic approach to performance measurement and tuning
Quick start for acceptable performance on a small database

Copyright© 2020 HCL Technologies Limited

Resource utilization

Whenever a system resource, such as a CPU or a particular disk, is occupied by a transaction or query, the resource is unavailable for processing other requests. Pending
requests must wait for the resources to become available before they can complete.

When a component is too busy to keep up with all its requests, the overused component becomes a bottleneck in the flow of activity. The higher the percentage of time
that the resource is occupied, the longer each operation must wait for its turn.

You can use the following formula to estimate the service time for a request based on the overall utilization of the component that services the request. The expected
service time includes the time that is spent both waiting for and using the resource in question. Think of service time as that portion of the response time accounted for by
a single component within your computer, as the following formula shows:

S= P/(1-U)

S
is the expected service time.

P
is the processing time that the operation requires after it obtains the resource.

U
is the utilization for the resource (expressed as a decimal).

As Figure 1 shows, the service time for a single component increases dramatically as the utilization increases beyond 70 percent. For instance, if a transaction requires 1
second of processing by a given component, you can expect it to take 2 seconds on a component at 50 percent utilization and 5 seconds on a component at 80 percent
utilization. When utilization for the resource reaches 90 percent, you can expect the transaction to take 10 seconds to make its way through that component.
Figure 1. Service Time for a Single Component as a Function of Resource Utilization

If the average response time for a typical transaction soars from 2 or 3 seconds to 10 seconds or more, users are certain to notice and complain.
Important: Monitor any system resource that shows a utilization of over 70 percent or any resource that exhibits symptoms of overuse as described in the following
sections.
When you consider resource utilization, also consider whether increasing the page size of a standard or temporary dbspace is beneficial in your environment. If you want a
longer key length than is available for the default page size of a standard or temporary dbspace, you can increase the page size.

Copyright© 2020 HCL Technologies Limited

CPU utilization

Estimates of CPU utilization and response time can help you determine if you need to eliminate or reschedule some activities.

1270 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

You can use the resource-utilization formula in the previous topic (Resource utilization) to estimate the response time for a heavily loaded CPU. However, high utilization
for the CPU does not always indicate a performance problem. The CPU performs all calculations that are needed to process transactions. The more transaction-related
calculations that it performs within a given period, the higher the throughput will be for that period. As long as transaction throughput is high and seems to remain
proportional to CPU utilization, a high CPU utilization indicates that the computer is being used to the fullest advantage.

On the other hand, when CPU utilization is high but transaction throughput does not keep pace, the CPU is either processing transactions inefficiently or it is engaged in
activity not directly related to transaction processing. CPU cycles are being diverted to internal housekeeping tasks such as memory management.

You can easily eliminate the following activities:

Large queries that might be better scheduled at an off-peak time
Unrelated application programs that might be better performed on another computer

If the response time for transactions increases to such an extent that delays become unacceptable, the processor might be swamped; the transaction load might be too
high for the computer to manage. Slow response time can also indicate that the CPU is processing transactions inefficiently or that CPU cycles are being diverted.

When CPU utilization is high, a detailed analysis of the activities that the database server performs can reveal any sources of inefficiency that might be present due to
improper configuration. For information about analyzing database server activity, see Database server tools.

Copyright© 2020 HCL Technologies Limited

Memory utilization

Memory is not managed as a single component, such as a CPU or disk, but as a collection of small components called pages.

The size of a typical page in memory can range from 1 to 8 kilobytes, depending on your operating system. A computer with 64 megabytes of memory and a page size of 2
kilobytes contains approximately 32,000 pages.

When the operating system needs to allocate memory for use by a process, it scavenges any unused pages within memory that it can find. If no free pages exist, the
memory-management system has to choose pages that other processes are still using and that seem least likely to be needed in the short run. CPU cycles are required to
select those pages. The process of locating such pages is called a page scan. CPU utilization increases when a page scan is required.

Memory-management systems typically use a least recently used algorithm to select pages that can be copied out to disk and then freed for use by other processes. When
the CPU has identified pages that it can appropriate, it pages out the old page images by copying the old data from those pages to a dedicated disk. The disk or disk
partition that stores the page images is called the swap disk, swap space, or swap area. This paging activity requires CPU cycles as well as I/O operations.

Eventually, page images that have been copied to the swap disk must be brought back in for use by the processes that require them. If there are still too few free pages,
more must be paged out to make room. As memory comes under increasing demand and paging activity increases, this activity can reach a point at which the CPU is
almost fully occupied with paging activity. A system in this condition is said to be thrashing. When a computer is thrashing, all useful work comes to a halt.

To prevent thrashing, some operating systems use a coarser memory-management algorithm after paging activity crosses a certain threshold. This algorithm is called
swapping. When the memory-management system resorts to swapping, it appropriates all pages that constitute an entire process image at once, rather than a page at a
time.

Swapping frees up more memory with each operation. However, as swapping continues, every process that is swapped out must be read in again, dramatically increasing
disk I/O to the swap device and the time required to switch between processes. Performance is then limited to the speed at which data can be transferred from the swap
disk back into memory. Swapping is a symptom of a system that is severely overloaded, and throughput is impaired.

Many systems provide information about paging activity that includes the number of page scans performed, the number of pages sent out of memory (paged out), and the
number of pages brought in from memory (paged in):

Paging out is the critical factor because the operating system pages out only when it cannot find pages that are free already.
A high rate of page scans provides an early indicator that memory utilization is becoming a bottleneck.
Pages for terminated processes are freed in place and simply reused, so paging-in activity does not provide an accurate reflection of the load on memory. A high
rate of paging in can result from a high rate of process turnover with no significant performance impact.

Although the principle for estimating the service time for memory is the same as that described in Resource utilization and performance, you use a different formula to
estimate the performance impact of memory utilization than you do for other system components.

You can use the following formula to calculate the expected paging delay for a given CPU utilization level and paging rate:

PD= (C/(1-U)) * R * T

PD
is the paging delay.

C
is the CPU service time for a transaction.

U
is the CPU utilization (expressed as a decimal).

R
is the paging-out rate.

T
is the service time for the swap device.

As paging increases, CPU utilization also increases, and these increases are compounded. If a paging rate of 10 per second accounts for 5 percent of CPU utilization,
increasing the paging rate to 20 per second might increase CPU utilization by an additional 5 percent. Further increases in paging lead to even sharper increases in CPU
utilization, until the expected service time for CPU requests becomes unacceptable.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1271

https://www.hcltech.com/
https://www.hcltech.com/

Disk utilization

Because transfer rates vary among disks, most operating systems do not report disk utilization directly. Instead, they report the number of data transfers per second (in
operating-system memory-page-size units.)

Because each disk acts as a single resource, you can use the following basic formula to estimate the service time, which is described in detail in Resource utilization:

S= P/(1-U)

To compare the load on disks with similar access times, simply compare the average number of transfers per second.

If you know the access time for a given disk, you can use the number of transfers per second that the operating system reports to calculate utilization for the disk. To do
so, multiply the average number of transfers per second by the access time for the disk as listed by the disk manufacturer. Depending on how your data is laid out on the
disk, your access times can vary from the rating of the manufacturer. To account for this variability, you should add 20 percent to the access-time specification of the
manufacturer.

The following example shows how to calculate the utilization for a disk with a 30-millisecond access time and an average of 10 transfer requests per second:

U = (A * 1.2) * X
 = (.03 * 1.2) * 10
 = .36

U
is the resource utilization (this time of a disk).

A
is the access time (in seconds) that the manufacturer lists.

X
is the number of transfers per second that your operating system reports.

You can use the utilization to estimate the processing time at the disk for a transaction that requires a given number of disk transfers. To calculate the processing time at
the disk, multiply the number of disk transfers by the average access time. Include an extra 20 percent to account for access-time variability:

P = D (A * 1.2)

P
is the processing time at the disk.

D
is the number of disk transfers.

A
is the access time (in seconds) that the manufacturer lists.

For example, you can calculate the processing time for a transaction that requires 20 disk transfers from a 30-millisecond disk as follows:

P = 20 (.03 * 1.2)
 = 20 * .036
 = .72

Use the processing time and utilization values that you calculated to estimate the expected service time for I/O at the particular disk, as the following example shows:

S = P/(1-U)
 = .72 / (1 - .36)
 = .72 / .64
 = 1.13

Copyright© 2020 HCL Technologies Limited

Factors that affect resource utilization

The performance of your database server application depends many factors, including hardware and software configuration, your network configuration, and the design of
your database.

You must consider these factors when you attempt to identify performance problems or make adjustments to your system:

Hardware resources
As discussed earlier in this chapter, hardware resources include the CPU, physical memory, and disk I/O subsystems.

Operating-system configuration
The database server depends on the operating system to provide low-level access to devices, process scheduling, interprocess communication, and other vital
services.

The configuration of your operating system has a direct impact on how well the database server performs. The operating-system kernel takes up a significant
amount of physical memory that the database server or other applications cannot use. However, you must reserve adequate kernel resources for the database
server to use.

Network configuration and traffic
Applications that depend on a network for communication with the database server, and systems that rely on data replication to maintain high availability, are
subject to the performance constraints of that network. Data transfers over a network are typically slower than data transfers from a disk. Network delays can have
a significant impact on the performance of the database server and other application programs that run on the host computer.

Database server configuration
Characteristics of your database server instance, such as the number of CPU virtual processors (VPs), the size of your resident and virtual shared-memory portions,
and the number of users, play an important role in determining the capacity and performance of your applications.

1272 Part VI: Administering

https://www.hcltech.com/

Dbspace, blobspace, and chunk configuration
The following factors can affect the time that it takes the database server to perform disk I/O and process transactions:

The placement of the root dbspace, physical logs, logical logs, and temporary-table dbspaces
The presence or absence of mirroring
The use of devices that are buffered or unbuffered by the operation system

Database and table placement
The placement of tables and fragments within dbspaces, the isolation of high-use fragments in separate dbspaces, and the spreading of fragments across multiple
dbspaces can affect the speed at which the database server can locate data pages and transfer them to memory.

Tblspace organization and extent sizing
Fragmentation strategy and the size and placement of extents can affect the ability of the database server to scan a table rapidly for data. Avoid interleaved extents
and allocate extents that are sufficient to accommodate growth of a table to prevent performance problems.

Query efficiency
Proper query construction and cursor use can decrease the load that any one application or user imposes. Remind users and application developers that others
require access to the database and that each person's activities affect the resources that are available to others.

Scheduling background I/O activities
Logging, checkpoints, page cleaning, and other operations, such as making backups or running large decision-support queries, can impose constant overhead and
large temporary loads on the system. Schedule backup and batch operations for off-peak times whenever possible.

Remote client/server operations and distributed join operations
These operations have an important impact on performance, especially on a host system that coordinates distributed joins.

Application-code efficiency
Application programs introduce their own load on the operating system, the network, and the database server. These programs can introduce performance
problems if they make poor use of system resources, generate undue network traffic, or create unnecessary contention in the database server. Application
developers must make proper use of cursors and locking levels to ensure good database server performance.

Related concepts:
 Performance goals

Measurements of performance
Resource utilization and performance
Maintenance of good performance
Related tasks:

 Developing a basic approach to performance measurement and tuning
Quick start for acceptable performance on a small database

Copyright© 2020 HCL Technologies Limited

Maintenance of good performance

Performance is affected in some way by all system users: the database server administrator, the database administrator, the application designers, and the client
application users.

The database server administrator usually coordinates the activities of all users to ensure that system performance meets overall expectations. For example, the
operating-system administrator might need to reconfigure the operating system to increase the amount of shared memory. Bringing down the operating system to install
the new configuration requires bringing the database server down. The database server administrator must schedule this downtime and notify all affected users when the
system will be unavailable.

The database server administrator should:

Be aware of all performance-related activities that occur.
Educate users about the importance of performance, how performance-related activities affect them, and how they can assist in achieving and maintaining optimal
performance.

The database administrator should pay attention to:

How tables and queries affect the overall performance of the database server
The placement of tables and fragments
How the distribution of data across disks affects performance

Application developers should:

Carefully design applications to use the concurrency and sorting facilities that the database server provides, rather than attempt to implement similar facilities in
the application.
Keep the scope and duration of locks to the minimum to avoid contention for database resources.
Include routines within applications that, when temporarily enabled at runtime, allow the database server administrator to monitor response times and transaction
throughput.

Database users should:

Pay attention to performance and report problems to the database server administrator promptly.
Be courteous when they schedule large, decision-support queries and request as few resources as possible to get the work done.

Related concepts:
 Performance goals

Measurements of performance
Resource utilization and performance
Factors that affect resource utilization

Part VI: Administering 1273

https://www.hcltech.com/

Related tasks:
Developing a basic approach to performance measurement and tuning
Quick start for acceptable performance on a small database

Copyright© 2020 HCL Technologies Limited

Performance monitoring and the tools you use

You can use performance monitoring tools to create a performance history, to monitor database resources at scheduled times, or to monitor ongoing transaction or query
performance.

This chapter also contains cross-references to topics that about how to interpret the results of performance monitoring

The kinds of data that you need to collect depend on the kinds of applications that you run on your system. The causes of performance problems on OLTP (online
transaction processing) systems are different from the causes of problems on systems that are used primarily for DSS query applications. Systems with mixed use provide
a greater performance-tuning challenge and require a sophisticated analysis of performance-problem causes.

Evaluate the current configuration
 Before you begin to adjust the configuration of your database server, evaluate the performance of your current configuration. You can view the contents of your

configuration file with onstat commands.
Create a performance history

 As soon as you set up your database server and begin to run applications on it, you should begin scheduled monitoring of resource use. As you accumulate data,
you can analyze performance information.
Monitor database server resources

 Monitor specific database server resources to identify performance bottlenecks and potential trouble spots and to improve resource use and response time.
Monitor transactions

 You can use the onlog and onstat utilities to monitor transactions.
Monitor sessions and queries

 Monitoring sessions and threads is important for sessions that perform queries as well as sessions that perform inserts, updates, and deletes. Some of the
information that you can monitor for sessions and threads allows you to determine if an application is using a disproportionate amount of the resources.

Copyright© 2020 HCL Technologies Limited

Evaluate the current configuration

Before you begin to adjust the configuration of your database server, evaluate the performance of your current configuration. You can view the contents of your
configuration file with onstat commands.

To alter certain database server characteristics, you must bring down the database server, which can affect your production system. Some configuration adjustments can
unintentionally decrease performance or cause other negative side effects.

If your database applications satisfy user expectations, avoid frequent adjustments, even if those adjustments might theoretically improve performance. If your users are
reasonably satisfied, take a measured approach to reconfiguring the database server. When possible, use a test instance of the database server to evaluate configuration
changes before you reconfigure your production system.

When performance problems relate to backup operations, you might also examine the number or transfer rates for tape drives. You might need to alter the layout or
fragmentation of your tables to reduce the impact of backup operations. For information about disk layout and table fragmentation, see Table performance considerations
and Indexes and index performance considerations.

For client/server configurations, consider network performance and availability. Evaluating network performance is beyond the scope of this publication. For information
about monitoring network activity and improving network availability, see your network administrator or see the documentation for your networking package.

Determine whether you want to set the configuration parameters that help maintain server performance by automatically adjusting properties of the database server while
it is running, for example:

AUTO_AIOVPS: Adds AIO virtual processors when I/O workload increases.
AUTO_CKPTS: Increases the frequency of checkpoints to avoid transaction blocking.
AUTO_LRU_TUNING: Manages cached data flushing as the server load changes.
AUTO_READAHEAD: Changes the automatic read-ahead mode or disables automatic read-ahead operations for a query.
AUTO_REPREPARE: Reoptimizes SPL routines and reprepares prepared objects after a schema change.
AUTO_STAT_MODE: Enables or disables the mode for selectively updating only stale or missing data distributions in UPDATE STATISTICS operations.
AUTO_TUNE: Enables or disables all automatic tuning configuration parameters that have values that are not present in your configuration file.
DYNAMIC_LOGS: Allocates additional log files when necessary.
LOCKS: Allocates additional locks when necessary.
RTO_SERVER_RESTART: Provides the best performance possible while meeting the recovery time objective after a problem.

Related concepts:
 Create a performance history

Monitor database server resources
Monitor transactions
Monitor sessions and queries
Related information:

 onstat -c command: Print ONCONFIG file contents
onstat -g cfg command: Print the current values of configuration parameters

Copyright© 2020 HCL Technologies Limited

1274 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Create a performance history

As soon as you set up your database server and begin to run applications on it, you should begin scheduled monitoring of resource use. As you accumulate data, you can
analyze performance information.

To accumulate data for performance analysis, use the command-line utilities described in Database server tools and Operating-system tools in operating scripts or batch
files.

The importance of a performance history
 If you have a history of the performance of your system, you can begin to track the cause of problems as soon as users report slow response or inadequate

throughput.
Tools that create a performance history

 When you monitor database server performance, you use tools from the host operating system and command-line utilities that you can run at regular intervals from
scripts or batch files.

Related concepts:
 Evaluate the current configuration

Monitor database server resources
Monitor transactions
Monitor sessions and queries

Copyright© 2020 HCL Technologies Limited

The importance of a performance history

If you have a history of the performance of your system, you can begin to track the cause of problems as soon as users report slow response or inadequate throughput.

If a history is not available, you must start tracking performance after a problem arises, and you might not be able to tell when and how the problem began. Trying to
identify problems after the fact significantly delays resolution of a performance problem.

To build a performance history and profile of your system, take regular snapshots of resource-utilization information.

For example, if you chart the CPU utilization, paging-out rate, and the I/O transfer rates for the various disks on your system, you can begin to identify peak-use levels,
peak-use intervals, and heavily loaded resources.

If you monitor fragment use, you can determine whether your fragmentation scheme is correctly configured. Monitor other resource use as appropriate for your database
server configuration and the applications that run on it.

Choose tools from those described in the following sections, and create jobs that build up a history of disk, memory, I/O, and other database server resource use. To help
you decide which tools to use to create a performance history, this chapter briefly describes the output of each tool.

Copyright© 2020 HCL Technologies Limited

Tools that create a performance history

When you monitor database server performance, you use tools from the host operating system and command-line utilities that you can run at regular intervals from scripts
or batch files.

You also use performance monitoring tools with a graphical interface to monitor critical aspects of performance as queries and transactions are performed.

Operating-system tools
The database server relies on the operating system of the host computer to provide access to system resources such as the CPU, memory, and various unbuffered
disk I/O interfaces and files. Each operating system has its own set of utilities for reporting how system resources are used.
Database server tools

 The database server provides tools and utilities that capture snapshot information about your configuration and performance.

Copyright© 2020 HCL Technologies Limited

Operating-system tools

The database server relies on the operating system of the host computer to provide access to system resources such as the CPU, memory, and various unbuffered disk I/O
interfaces and files. Each operating system has its own set of utilities for reporting how system resources are used.

Different implementations of some operating systems have monitoring utilities with the same name but different options and informational displays.

UNIX Only
The following table lists some UNIX utilities that monitor system resources.

UNIX Utility Description

Part VI: Administering 1275

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

UNIX Utility Description

vmstat utility Displays virtual-memory statistics

iostat utility Displays I/O utilization statistics

sar utility Displays a variety of resource statistics

ps utility Displays active process information

For details on how to monitor your operating-system resources, consult the reference manual or your system administration guide.

To capture the status of system resources at regular intervals, use scheduling tools that are available with your host operating system (for example, cron) as part of your
performance monitoring system.

Windows Only
You can often use the Performance Logs and Alerts that the Windows operating system supplies to monitor resources such as processor, memory, cache, threads, and
processes. The Performance Logs and Alerts also provide charts, alerts, reports, and the ability to save information to log files for later analysis.

For more information about how to use the Performance Logs and Alerts, consult your operating-system manuals.

Related reference:
 Database server tools

Copyright© 2020 HCL Technologies Limited

Database server tools

The database server provides tools and utilities that capture snapshot information about your configuration and performance.

You can use these utilities regularly to build a historical profile of database activity, which you can compare with current operating-system resource-utilization data. These
comparisons can help you discover which database server activities have the greatest impact on system-resource utilization. You can use this information to identify and
manage your high-impact activities or adjust your database server or operating-system configuration.

The database server tools and utilities that you can use for performance monitoring include:

The onstat utility
The onlog utility
The oncheck utility
The onperf utility (on UNIX only)
DB-Access and the system-monitoring interface (SMI), which you can use to monitor performance from within your application
SQL administration API commands

You can use onstat, onlog, or oncheck commands invoked by the cron scheduling facility to capture performance-related information at regular intervals and build a
historical performance profile of your database server application. The following sections describe these utilities.

You can use SQL SELECT statements to query the system-monitoring interface (SMI) from within your application.

The SMI tables are a collection of tables and pseudo-tables in the sysmaster database that contain dynamically updated information about the operation of the database
server. The database server constructs these tables in memory but does not record them on disk. The onstat utility options obtain information from these SMI tables.

You can use cron and SQL scripts with DB-Access or onstat utility options to query SMI tables at regular intervals.
Tip: The SMI tables are different from the system catalog tables. System catalog tables contain permanently stored and updated information about each database and its
tables (sometimes referred to as metadata or a data dictionary).
You can use onperf to display database server activity with the Motif window manager.

Performance information that the onstat utility displays
 The onstat utility displays a wide variety of performance-related and status information contained within the SMI tables. You can use the onstat utility to check the

current status of the database server and monitor the activities of the database server.

Related concepts:
 The onperf utility on UNIX

Related reference:
 Operating-system tools

Related information:
 The onstat utility

The onlog utility
The oncheck Utility
DB-Access User's Guide
The System-Monitoring Interface Tables
System catalog tables
SQL administration API portal: Arguments by privilege groups

Copyright© 2020 HCL Technologies Limited

Performance information that the onstat utility displays

1276 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

The onstat utility displays a wide variety of performance-related and status information contained within the SMI tables. You can use the onstat utility to check the
current status of the database server and monitor the activities of the database server.

For a complete list of all onstat options, use the onstat - - command. For a complete display of all the information that onstat gathers, use the onstat -a command.
Tip: Profile information displayed by onstat commands, such as onstat -p, accumulates from the time the database server was started. To clear performance profile
statistics so that you can create a new profile, run the onstat -z. If you use onstat -z to reset statistics for a performance history or appraisal, ensure that other users do
not also enter the command at different intervals.
The following table lists some of the onstat commands that display general performance-related information.

Table 1. onstat commands that display performance information
onstat
command Description

onstat -p Displays a performance profile that includes the number of reads and writes, the number of times that a resource was requested but was not available,
and other miscellaneous information

onstat -b Displays information about buffers currently in use

onstat -l Displays information about the physical and logical logs

onstat -x Displays information about transactions, including the thread identifier of the user who owns the transaction

onstat -u Displays a user activity profile that provides information about user threads including the thread owner's session ID and login name

onstat -R Displays information about buffer pools, including information about buffer pool page size.

onstat -F Displays page-cleaning statistics that include the number of writes of each type that flushes pages to disk

onstat -g Requires an additional argument that specifies the information to be displayed
For example, onstat -g mem displays memory statistics.

For more information about options that provide performance-related information, see Monitoring fragmentation with the onstat -g ppf command and Monitor database
server resources.

Related information:
 onstat -g monitoring options

Copyright© 2020 HCL Technologies Limited

Monitor database server resources

Monitor specific database server resources to identify performance bottlenecks and potential trouble spots and to improve resource use and response time.

One of the most useful commands for monitoring system resources is onstat -g and its many options.

Monitor resources that impact CPU utilization
 Threads, network communications, and virtual processors impact CPU utilization. You can use onstat -g arguments to monitor threads, network communications,

and virtual processors.
Monitor memory utilization

 You can use some specific onstat -g command options to monitor memory utilization.
Monitor disk I/O utilization

 You can use some specific onstat -g arguments and the oncheck utility to determine if your disk I/O operations are efficient for your applications.

Related concepts:
 Evaluate the current configuration

Create a performance history
Monitor transactions
Monitor sessions and queries

Copyright© 2020 HCL Technologies Limited

Monitor resources that impact CPU utilization

Threads, network communications, and virtual processors impact CPU utilization. You can use onstat -g arguments to monitor threads, network communications, and
virtual processors.

Use the following onstat -g command options to monitor threads.

onstat -g
Option Description

act Displays active threads.

ath Displays all threads.
The sqlexec threads represent portions of client sessions; the rstcb value corresponds to the user field of the onstat -u command.

cpu Displays the last time the thread ran, how much CPU time the thread used, the number of times the thread ran, and other statistics about all the
threads running in the server.

rea Displays ready threads.

sle Displays all sleeping threads.

Part VI: Administering 1277

https://www.hcltech.com/
https://www.hcltech.com/

onstat -g
Option Description

sts Displays maximum and current stack use per thread.

tpf tid Displays a thread profile for tid.
If tid is 0, this argument displays profiles for all threads.

wai Displays waiting threads, including all threads waiting on mutex or condition, or yielding.

Use the following onstat -g command options to monitor the network.

onstat -g Command Option Description

ntd Displays network statistics by service.

ntt Displays network user times.

ntu Displays network user statistics.

qst Displays queue statistics.

Use the following onstat -g command options to monitor virtual processors.

onstat -g
Command
Option Description

glo Displays global multithreading information, including CPU-use information about virtual processors, the total number of sessions, and other
multithreading global counters.

sch Displays the number of semaphore operations, spins, and busy waits for each VP.

spi Displays spin locks that are acquired by virtual processors after they have spun more than 10,000 times.
To reduce contention, reduce the number of virtual processors, reduce the load on the computer, or, on some platforms, use the no-age or processor
affinity options of virtual processors. If sh_lock mutexes have highly contended spin locks, create private memory caches for CPU virtual processors
by setting the VP_MEMORY_CACHE_KB configuration parameter.

wst Displays wait statistics.

Copyright© 2020 HCL Technologies Limited

Monitor memory utilization

You can use some specific onstat -g command options to monitor memory utilization.

Use the following onstat -g options to monitor memory utilization. For overall memory information, omit table name, pool name, or session id from the commands that
permit those optional parameters.

Table 1. onstat -g Options for monitoring memory utilization

Argument Description

ffr pool name |
session id

Displays free fragments for a pool of shared memory or by session

dic table name Displays one line of information for each table cached in the shared-memory dictionary
If you provide a specific table name as a parameter, this argument displays internal SQL information about that table.

dsc Displays one line of information for each column of distribution statistics cached in the data distribution cache.

mem pool name
| session id

Displays memory statistics for the pools that are associated with a session
If you omit pool_name | session id, this argument displays pool information for all sessions.

mgm Displays Memory Grant Manager resource information, including:

The values of the PDQ configuration parameters
Memory and scan information
Load information, such as the number of queries that are waiting for memory, the number of queries that are waiting for scans, the number of
queries that are waiting for queries with higher PDQ priority to run, and the number of queries that are waiting for a query slot
Active queries and the number of queries at each gate
Statistics on free resources
Statistics on queries
The resource/lock cycle prevention count, which shows the number of times the system immediately activated a query to avoid a potential
deadlock

nsc client id Displays shared-memory status by client ID
If you omit client id, this argument displays all client status areas.

nsd Displays network shared-memory data for poll threads

nss session id Displays network shared-memory status by session id
If you omit session id, this argument displays all session status areas.

osi Displays information about your operating system resources and parameters, including shared memory and semaphore parameters, the amount of
memory currently configured on the computer, and the amount of memory that is unused
Use this option when the server is not online.

1278 Part VI: Administering

https://www.hcltech.com/

Argument Description

prc Displays one line of information for each user-defined routine (SPL routine or external routine written in C or Java™ programming language) cached in
the UDR cache

seg Displays shared-memory-segment statistics
This argument shows the number and size of all attached segments.

ses session id Displays memory usage for session id
If you omit session id, this argument displays memory usage for all sessions.

ssc Displays one line of information for each query cached in the SQL statement cache

stm session id Displays memory usage of each SQL statement for session id
If you omit session id, this argument displays memory usage for all sessions.

ufr pool name |
session id

Displays allocated pool fragments by user or session

Related information:
 onstat -g monitoring options

Copyright© 2020 HCL Technologies Limited

Monitor disk I/O utilization

You can use some specific onstat -g arguments and the oncheck utility to determine if your disk I/O operations are efficient for your applications.

Using onstat -g to monitor I/O utilization
 You can use some specific onstat -g command arguments to monitor disk IO.

Using the oncheck utility to monitor I/O utilization
 Disk I/O operations are usually the longest component of the response time for a query. You can use the oncheck Utility to monitor disk I/O operations.

Copyright© 2020 HCL Technologies Limited

Using onstat -g to monitor I/O utilization

You can use some specific onstat -g command arguments to monitor disk IO.

Use the following onstat -g command arguments to monitor disk I/O utilization.

onstat -g
Argument Description

iof Displays asynchronous I/O statistics by chunk or file
This argument is similar to the onstat -d, except that information about nonchunk files also appears. This argument displays information about
temporary dbspaces and sort files.

iog Displays asynchronous I/O global information

ioq Displays asynchronous I/O queuing statistics

iov Displays asynchronous I/O statistics by virtual processor

For a detailed case study that uses various onstat outputs, see Case studies and examples.

Related concepts:
 Using the oncheck utility to monitor I/O utilization

Copyright© 2020 HCL Technologies Limited

Using the oncheck utility to monitor I/O utilization

Disk I/O operations are usually the longest component of the response time for a query. You can use the oncheck Utility to monitor disk I/O operations.

Contiguously allocated disk space improves sequential disk I/O operations, because the database server can read in larger blocks of data and use the read-ahead feature
to reduce the number of I/O operations.

The oncheck utility displays information about storage structures on a disk, including chunks, dbspaces, blobspaces, extents, data rows, system catalog tables, and other
options. You can also use oncheck to determine the number of extents that exist within a table and whether or not a table occupies contiguous space.

The oncheck utility provides the following options and information that apply to contiguous space and extents.

Option Information

-pB Blobspace simple large object (TEXT or BYTE data)
For information about how to use this option to determine the efficiency of blobpage size, see Determine blobpage fullness with oncheck -pB
output.

-pe Chunks and extents
For information about how to use this option to monitor extents, see Checking for extent interleaving and Eliminating interleaved extents.

Part VI: Administering 1279

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Option Information

-pk Index key values.

For information about how to improve the performance of this option, see Improving performance for index checks.

-pK Index keys and row IDs
For information about how to improve the performance of this option, see Improving performance for index checks.

-pl Index-leaf key values
For information about how to improve the performance of this option, see Improving performance for index checks.

-pL Index-leaf key values and row IDs
For information about how to improve the performance of this option, see Improving performance for index checks.

-pp Pages by table or fragment
For information about how to use this option to monitor space, see Considering the upper limit on extents.

-pP Pages by chunk
For information about how to use this option to monitor extents, see Considering the upper limit on extents.

-pr Root reserved pages
For information about how to use this option, see Estimating tables with fixed-length rows.

-ps Space used by smart large objects and metadata in sbspace.

-pS Space used by smart large objects and metadata in sbspace and storage characteristics
For information about how to use this option to monitor space, see Monitoring sbspaces.

-pt Space used by table or fragment
For information about how to use this option to monitor space, see Estimating table size.

-pT Space used by table, including indexes
For information about how to use this option to monitor space, see Performance of in-place alters for DDL operations.

For more information about using oncheck to monitor space, see Estimating table size. For more information about concurrency during oncheck execution, see Improving
performance for index checks.

Related concepts:
 Using onstat -g to monitor I/O utilization

Related information:
 The oncheck Utility

Copyright© 2020 HCL Technologies Limited

Monitor transactions

You can use the onlog and onstat utilities to monitor transactions.

Using the onlog utility to monitor transactions
 The onlog utility displays all or selected portions of the logical log. This utility can help you identify a problematic transaction or gauge transaction activity that

corresponds to a period of high utilization, as indicated by your periodic snapshots of database activity and system-resource consumption.
Using the onstat utility to monitor transactions

 If the throughput of transactions is not very high, you can use some onstat utility commands to identify a transaction that might be a bottleneck.

Related concepts:
 Evaluate the current configuration

Create a performance history
Monitor database server resources
Monitor sessions and queries

Copyright© 2020 HCL Technologies Limited

Using the onlog utility to monitor transactions

The onlog utility displays all or selected portions of the logical log. This utility can help you identify a problematic transaction or gauge transaction activity that
corresponds to a period of high utilization, as indicated by your periodic snapshots of database activity and system-resource consumption.

This onlog utility can take input from selected log files, the entire logical log, or a backup tape of previous log files.

Use onlog with caution when you read logical-log files still on disk, because attempting to read unreleased log files stops other database activity. For greatest safety, back
up the logical-log files first and then read the contents of the backup files. With proper care, you can use the onlog -n option to restrict onlog only to logical-log files that
have been released.

To check on the status of logical-log files, use onstat -l.

Related information:
 The onlog utility

Copyright© 2020 HCL Technologies Limited

1280 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Using the onstat utility to monitor transactions

If the throughput of transactions is not very high, you can use some onstat utility commands to identify a transaction that might be a bottleneck.

Use the following onstat utility commands to monitor transactions.

onstat command Description

onstat -x Displays transaction information such as number of locks held and isolation level.

onstat -u Displays information about each user thread

onstat -k Displays locks held by each session

onstat -g sql Displays last SQL statement this session executed

Related information:
 The onstat utility

Copyright© 2020 HCL Technologies Limited

Monitor sessions and queries

Monitoring sessions and threads is important for sessions that perform queries as well as sessions that perform inserts, updates, and deletes. Some of the information
that you can monitor for sessions and threads allows you to determine if an application is using a disproportionate amount of the resources.

To monitor database server activity, you can view the number of active sessions and the amount of resources that they are using.

Monitoring memory usage for each session
 You can use some specific onstat -g command arguments to get memory information for each session.

Using the SET EXPLAIN statement
 You can use the SET EXPLAIN statement or the EXPLAIN directive to display the query plan that the optimizer creates for an individual query.

Related concepts:
 Evaluate the current configuration

Create a performance history
Monitor database server resources
Monitor transactions

Copyright© 2020 HCL Technologies Limited

Monitoring memory usage for each session

You can use some specific onstat -g command arguments to get memory information for each session.

Use the following command arguments to get memory information for each session.

onstat -g command argument Description

ses Displays one-line summaries of all active sessions

ses session id Displays session information by session id

sql session id Displays SQL information by session
If you omit session id, this argument displays summaries of all sessions.

stm session id Displays amount of memory used by each prepared SQL statement in a session
If you omit session id, this argument displays information for all prepared statements.

For examples and discussions of session-monitoring command-line utilities, see Monitoring memory usage for each session and Monitor sessions and threads.

Related tasks:
 Using the SET EXPLAIN statement

Copyright© 2020 HCL Technologies Limited

Using the SET EXPLAIN statement

You can use the SET EXPLAIN statement or the EXPLAIN directive to display the query plan that the optimizer creates for an individual query.

For more information, see Display the query plan.

Related reference:
 Monitoring memory usage for each session

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1281

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Effect of configuration on CPU utilization

The combination of operating-system and Informix® configuration parameters can affect CPU utilization. You can change the settings of the Informix configuration
parameters that directly affect CPU utilization, and you can adjust the settings for different types of workloads.

Multiple database server instances that run on the same host computer perform poorly when compared with a single database server instance that manages multiple
databases. Multiple database server instances cannot balance their loads as effectively as a single database server. Avoid multiple residency for production environments
in which performance is critical.

UNIX configuration parameters that affect CPU utilization
 Your database server distribution includes a machine notes file that contains recommended values for UNIX configuration parameters. Because the UNIX

parameters affect CPU utilization, you should compare the values in the machine notes file with your current operating-system configuration.
Windows configuration parameters that affect CPU utilization

 The Informix distribution includes a machine notes file that contains recommended values for Informix configuration parameters on Windows. Compare the values
in this file with your current ONCONFIG configuration file settings.
Configuration parameters and environment variables that affect CPU utilization

 Some configuration parameters and environment variables affect CPU utilization. You might need to adjust the settings of these parameters and variables when you
consider methods of improving performance.
Network buffer pools

 The sizes of buffers for TCP/IP connections affect memory and CPU utilization. Sizing these buffers to accommodate a typical request can improve CPU utilization
by eliminating the need to break up requests into multiple messages.
Virtual processors and CPU utilization

 While the database server is online, you can start and stop virtual processors (VPs) that belong to certain classes.
Connections and CPU utilization

 Some applications have a large number of client/server connections. Opening and closing connections can consume a large amount of system CPU time.

Copyright© 2020 HCL Technologies Limited

UNIX configuration parameters that affect CPU utilization

Your database server distribution includes a machine notes file that contains recommended values for UNIX configuration parameters. Because the UNIX parameters
affect CPU utilization, you should compare the values in the machine notes file with your current operating-system configuration.

The following UNIX parameters affect CPU utilization:

Semaphore parameters
Parameters that set the maximum number of open file descriptors
Memory configuration parameters

UNIX semaphore parameters
 Semaphores are kernel resources with a typical size of 1 byte each. Semaphores for the database server are in addition to any that you allocate for other software

packages. You can set some UNIX semaphore parameters.
UNIX file-descriptor parameters

 Some operating systems require you to specify a limit on the number of file descriptors that a process can have open at any one time. To specify this limit, use an
operating-system configuration parameter, typically NOFILE, NOFILES, NFILE, or NFILES.
UNIX memory configuration parameters

 The configuration of memory in the operating system can affect other resources, including CPU and I/O.

Related concepts:
 Configuration parameters and environment variables that affect CPU utilization

Network buffer pools
Virtual processors and CPU utilization
Connections and CPU utilization
Related tasks:

 Windows configuration parameters that affect CPU utilization

Copyright© 2020 HCL Technologies Limited

UNIX semaphore parameters

Semaphores are kernel resources with a typical size of 1 byte each. Semaphores for the database server are in addition to any that you allocate for other software
packages. You can set some UNIX semaphore parameters.

Each instance of the database server requires the following semaphore sets:

One set for each group of up to 100 virtual processors (VPs) that are started with the database server
One set for each additional VP that you might add dynamically while the database server is running
One set for each group of 100 or fewer user sessions connected through the shared-memory communication interface

Tip: For best performance, allocate enough semaphores for double the number of ipcshm connections that you expect. Use the NETTYPE configuration parameter to
configure database server poll threads for this doubled number of connections.
Because utilities such as onmode use shared-memory connections, you must configure a minimum of two semaphore sets for each instance of the database server: one
for the initial set of VPs and one for the shared-memory connections that database server utilities use. The SEMMNI operating-system configuration parameter typically

1282 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

specifies the number of semaphore sets to allocate. For information about how to set semaphore-related parameters, see the configuration instructions for your operating
system.

The SEMMSL operating-system configuration parameter typically specifies the maximum number of semaphores per set. Set this parameter to at least 100.

Some operating systems require that you configure a maximum total number of semaphores across all sets, which the SEMMNS operating-system configuration parameter
typically specifies. Use the following formula to calculate the total number of semaphores that each instance of the database server requires:

SEMMNS = init_vps + added_vps + (2 * shmem_users) + concurrent_utils

init_vps
is the number of virtual processors (VPs) that are started with the database server. This number includes CPU, PIO, LIO, AIO, SHM, TLI, SOC, and ADM VPs. The
minimum value is 15.

added_vps
is the number of VPs that you intend to add dynamically.

shmem_users
is the number of shared-memory connections that you allow for this instance of the database server.

concurrent_utils
is the number of concurrent database server utilities that can connect to this instance. It is suggested that you allow for a minimum of six utility connections: two
for ON-Bar and four for other utilities such as onstat, and oncheck.

If you use software packages that require semaphores, the SEMMNI configuration parameter must include the total number of semaphore sets that the database server
and your other software packages require. You must set the SEMMSL configuration parameter to the largest number of semaphores per set that any of your software
packages require. For systems that require the SEMMNS configuration parameter, multiply SEMMNI by the value of SEMMSL to calculate an acceptable value.

Related concepts:
 Configuring poll threads

Copyright© 2020 HCL Technologies Limited

UNIX file-descriptor parameters

Some operating systems require you to specify a limit on the number of file descriptors that a process can have open at any one time. To specify this limit, use an
operating-system configuration parameter, typically NOFILE, NOFILES, NFILE, or NFILES.

The number of open file descriptors that each instance of the database server needs depends on the number of chunks in your database, the number of VPs that you run,
and the number of network connections that your database server instance must support.

Use the following formula to calculate the number of file descriptors that your instance of the database server requires:

NFILES = (chunks * NUMBER_OF_AIO_VPS) + NUMBER_of_CPU_VPS + net_connections

chunks
is the number of chunks to be configured.

net_connections
is the number of network connections that you specify in either of the following places:

sqlhosts file
NETTYPE configuration entries

Network connections include all but those specified as the ipcshm connection type.

Each open file descriptor is about the same length as an integer within the kernel. Allocating extra file descriptors is an inexpensive way to allow for growth in the number
of chunks or connections on your system.

Copyright© 2020 HCL Technologies Limited

UNIX memory configuration parameters

The configuration of memory in the operating system can affect other resources, including CPU and I/O.

Insufficient physical memory for the overall system load can lead to thrashing, as Memory utilization describes. Insufficient memory for the database server can result in
excessive buffer-management activity. For more information about configuring memory, see Configuring UNIX shared memory.

Copyright© 2020 HCL Technologies Limited

Windows configuration parameters that affect CPU utilization

The Informix® distribution includes a machine notes file that contains recommended values for Informix configuration parameters on Windows. Compare the values in this
file with your current ONCONFIG configuration file settings.

Informix runs in the background. For best performance, give the same priority to foreground and background applications.

On Windows, to change the priorities of foreground and background applications, go to Start > Settings > Control Panel, open the System icon, and click the Advanced
Tab. Select the Performance Options button and select either the Applications or Background Services radio button.

Part VI: Administering 1283

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The configuration of memory in the operating system can impact other resources, including CPU and I/O. Insufficient physical memory for the overall system load can lead
to thrashing, as Memory utilization describes. Insufficient memory for Informix can result in excessive buffer-management activity. When you set the Virtual Memory
values in the System icon on the Control Panel, ensure that you have enough paging space for the total amount of physical memory.

Related concepts:
 UNIX configuration parameters that affect CPU utilization

Configuration parameters and environment variables that affect CPU utilization
Network buffer pools
Virtual processors and CPU utilization
Connections and CPU utilization

Copyright© 2020 HCL Technologies Limited

Configuration parameters and environment variables that affect CPU utilization

Some configuration parameters and environment variables affect CPU utilization. You might need to adjust the settings of these parameters and variables when you
consider methods of improving performance.

The following configuration parameters in the database server configuration file have a significant impact on CPU utilization:

DS_MAX_QUERIES
DS_MAX_SCANS
FASTPOLL
MAX_PDQPRIORITY
MULTIPROCESSOR
NETTYPE
OPTCOMPIND
SINGLE_CPU_VP
VPCLASS
VP_MEMORY_CACHE_KB

The following environment variables affect CPU utilization:

OPTCOMPIND
PDQPRIORITY
PSORT_NPROCS

The OPTCOMPIND environment variable, when set in the environment of a client application, indicates the preferred way to perform join operations. This variable
overrides the value that the OPTCOMPIND configuration parameter sets. For details on how to select a preferred join method, see Optimizing access methods.

The PDQPRIORITY environment variable, when set in the environment of a client application, places a limit on the percentage of CPU VP utilization, shared memory, and
other resources that can be allocated to any query that the client starts.

A client can also use the SET PDQPRIORITY statement in SQL to set a value for PDQ priority. The actual percentage allocated to any query is subject to the factor that the
MAX_PDQPRIORITY configuration parameter sets. For more information about how to limit resources that can be allocated to a query, see Limiting PDQ resources in
queries.

PSORT_NPROCS, when set in the environment of a client application, indicates the number of parallel sort threads that the application can use. The database server
imposes an upper limit of 10 sort threads per query for any application. For more information about parallel sorts and PSORT_NPROCS, see Configure dbspaces for
temporary tables and sort files.

Specifying virtual processor class information
 Use the VPCLASS configuration parameter to specify a class of virtual processors, the number of virtual processors that the database server should start for a

specific class, and the maximum number allowed.
Setting the MULTIPROCESSOR configuration parameter when using multiple CPU VPs

 If you are running multiple CPU VPs, set the MULTIPROCESSOR configuration parameter to 1. When you set MULTIPROCESSOR to 1, the database server performs
locking in a manner that is appropriate for a multiprocessor. Otherwise, set this parameter to 0.
Setting the SINGLE_CPU_VP configuration parameter when using one CPU VP

 If you are running only one CPU VP, set the SINGLE_CPU_VP configuration parameter to 1. Otherwise, set this parameter to 0.
Optimizing access methods

 The OPTCOMPIND configuration parameter helps the query optimizer choose an appropriate access method for your application. When the optimizer examines join
plans, OPTCOMPIND indicates the preferred method for performing the join operation for an ordered pair of tables.
Limiting PDQ resources in queries

 The MAX_PDQPRIORITY configuration parameter limits the percentage of parallel database query (PDQ) resources that a query can use. Use MAX_PDQPRIORITY
to limit the impact of large CPU-intensive queries on transaction throughput.
Limiting the performance impact of CPU-intensive queries

 The DS_MAX_QUERIES configuration parameter specifies a maximum number of decision-support queries that can run at any one time. Queries with a low PDQ
priority use proportionally fewer resources, so a larger number of those queries can run simultaneously. You can use the DS_MAX_QUERIES configuration
parameter to limit the performance impact of CPU-intensive queries.
Limiting the number of PDQ scan threads that can run concurrently

 The DS_MAX_SCANS configuration parameter limits the number of PDQ scan threads that can run concurrently. This configuration parameter prevents the database
server from being flooded with scan threads from multiple decision-support queries.
Configuring poll threads

 The NETTYPE configuration parameter configures poll threads for each connection type that your instance of the database server supports. If your database server
instance supports connections over more than one interface or protocol, you must specify a separate NETTYPE configuration parameter for each connection type.
Enabling fast polling

 You can use the FASTPOLL configuration parameter to enable or disable fast polling of your network, if your operating-system platform supports fast polling. Fast
polling is beneficial if you have a large number of connections.

Related concepts:

1284 Part VI: Administering

https://www.hcltech.com/

UNIX configuration parameters that affect CPU utilization
Network buffer pools
Virtual processors and CPU utilization
Connections and CPU utilization
Related tasks:
Windows configuration parameters that affect CPU utilization
Related information:
Database configuration parameters
Environment variables

Copyright© 2020 HCL Technologies Limited

Specifying virtual processor class information

Use the VPCLASS configuration parameter to specify a class of virtual processors, the number of virtual processors that the database server should start for a specific
class, and the maximum number allowed.

To execute user-defined routines (UDRs), you can define a new class of virtual processors to isolate UDR execution from other transactions that execute on the CPU virtual
processors. Typically you write user-defined routines to support user-defined data types.

If you do not want a user-defined routine to affect the normal processing of user queries in the CPU class, you can use the CREATE FUNCTION statement to assign the
routine to a user-defined class of virtual processors. The class name that you specify in the VPCLASS configuration parameter must match the name specified in the
CLASS modifier of the CREATE FUNCTION statement.

For guidelines, on using the cpu and num options of the VPCLASS configuration parameter, see Setting the number of CPU VPs.

Setting the number of CPU VPs
 You can configure the number of CPU virtual processors (VPs) that the database server uses. Do not allocate more CPU VPs than there are CPU processors available

to service them.
Disabling process priority aging for CPU VPs

 Use the noage option of the VPCLASS configuration parameter to disable process priority aging for database server CPU VPs on operating systems that support this
feature. Priority aging occurs when the operating system lowers the priority of long-running processes as they accumulate processing time. You might want to
disable priority aging because it can cause the performance of the database server processes to decline over time.
Specifying processor affinity

 Use the aff option of the VPCLASS parameter to specify the processors to which you want to bind CPU VPs or AIO VPs. When you assign a CPU VP to a specific CPU,
the VP runs only on that CPU. However, other processes can also run on that CPU.
Setting the number of AIO VPs

 Use the aio and num options of the VPCLASS configuration parameter to indicate the number of AIO virtual processors that the database server starts initially.

Related information:
 VPCLASS configuration parameter

CREATE FUNCTION statement

Copyright© 2020 HCL Technologies Limited

Setting the number of CPU VPs

You can configure the number of CPU virtual processors (VPs) that the database server uses. Do not allocate more CPU VPs than there are CPU processors available to
service them.

When the database server starts, the number of CPU VPs is automatically increased to half the number of CPU processors on the database server computer, unless the
SINGLE_CPU_VP configuration parameter is enabled. However, you might want to change the number of CPU VPs based on your performance needs.

You can enable the database server to add CPU VPs as needed, up to the number of CPU processors on the computer. Include the autotune=1 option in the VPCLASS
setting:

VPCLASS cpu,autotune=1

If you do not set the VPCLASS configuration parameter to autotune=1, use the following guidelines to set the number of CPU VPs.

Uniprocessor computers
For uniprocessor computers, specify one CPU VP:

VPCLASS cpu,num=1

Dual-processor computers
For dual-processor systems, you might improve performance by running with two CPU VPs. To test if performance improves, set the num field of the VPCLASS
configuration parameter to 1 in the onconfig file and then add a CPU VP dynamically at run time by running the onmode -p command.

Multiprocessor computers that are primarily database servers
For multiprocessor systems with four or more CPUs that are primarily used as database servers, set the num option of the VPCLASS configuration parameter in the
onconfig file to one less than the total number of processors. For example, if you have four CPUs, use the following specification:

VPCLASS cpu,num=3

When you use this setting, one processor is available to run the database server utilities or the client application.

Multiprocessor computers that are not primarily database servers
For multiprocessor systems that you do not use primarily to support database servers, you can start with somewhat fewer CPU VPs to allow for other activities on
the system and then gradually add more if necessary.

Part VI: Administering 1285

https://www.hcltech.com/
https://www.hcltech.com/

Multi-core or hardware multithreading computers with logical CPUs
For multiprocessor systems that use multi-core processors or hardware multithreading to support more logical CPUs than physical processors, you can assign the
number of CPU VPs according to the number of logical CPU VPs available for that purpose. The amount of processing that an additional logical CPU can provide
might be only a fraction of what a dedicated physical processor can support.
On systems, where multi-core processors are installed, the optimal configuration in most cases is the same as for systems with a number of individual processors
equal to the total number of cores. Setting the number of CPU VPs to N-1, where N is number of cores is close to optimal for CPU-intensive workloads.

On computers where the CPU uses multiple threads per core, operating systems show more logical processors than actual processing cores. To take advantage of
more CPU threads, the database server must be configured with the number of CPU VPs in the range between N and M, where N is number of cores and M is total
number of logical CPUs reported by system. The number of CPU VPs where optimal performance is achieved depends on the workload.

When increasing the number of CPU VPs to use more threads per core, the expected gain in performance is only a fraction of what dedicated physical processor or
core can provide.

If you are migrating Informix® from multi-CPU/multicore systems to systems with multiple threads per core, take special care in regard to processor affinity. When
binding Informix CPU VPs to the logical processors of the operating system, you must be aware of the architecture for the CPU. If you are not sure, do not use the
CPU affinity so that the operating system schedules CPU VPs to logical processors with available resources. Using affinity without understanding the relationship
between the logical CPUs and processing cores can result in severe performance degradation.

For example, to bind each of 8 configured CPU VPs to a separate core on an 8-core system with two threads per core (16 logical CPUs), use the following setting:

VPCLASS cpu,num=8,aff=(0-14/2)

Related information:
 VPCLASS configuration parameter

Copyright© 2020 HCL Technologies Limited

Disabling process priority aging for CPU VPs

Use the noage option of the VPCLASS configuration parameter to disable process priority aging for database server CPU VPs on operating systems that support this
feature. Priority aging occurs when the operating system lowers the priority of long-running processes as they accumulate processing time. You might want to disable
priority aging because it can cause the performance of the database server processes to decline over time.

Your database server distribution includes a machine notes file that contains information about whether your version of the database server supports this feature.

Specify the noage option of VPCLASS if your operating system supports this feature.

Related information:
 VPCLASS configuration parameter

Copyright© 2020 HCL Technologies Limited

Specifying processor affinity

Use the aff option of the VPCLASS parameter to specify the processors to which you want to bind CPU VPs or AIO VPs. When you assign a CPU VP to a specific CPU, the VP
runs only on that CPU. However, other processes can also run on that CPU.

The database server supports automatic binding of CPU VPs to processors on multiprocessor host computers that support processor affinity. Your database server
distribution includes a machine notes file that contains information about whether your version of the database server supports this feature.

You can use processor affinity for the purposes that the following sections describe.

Distributing computation impact
 You can use processor affinity to distribute the computation impact of CPU virtual processors (VPs) and other processes. On computers that are dedicated to the

database server, assigning CPU VPs to all but one of the CPUs achieves maximum CPU utilization.
Isolating AIO VPs from CPU VPs

 On a system that runs database server and client (or other) applications, you can bind asynchronous I/O (AIO) VPs to the same CPUs to which you bind other
application processes through the operating system. In this way, you isolate client applications and database I/O operations from the CPU VPs.
Avoiding a certain CPU

 The database server assigns CPU VPs to CPUs serially, starting with the CPU number you specify in this parameter. You might want to avoid assigning CPU VPs to a
certain CPU that has a specialized hardware or operating-system function (such as interrupt handling).

Related information:
 VPCLASS configuration parameter

Copyright© 2020 HCL Technologies Limited

Distributing computation impact

You can use processor affinity to distribute the computation impact of CPU virtual processors (VPs) and other processes. On computers that are dedicated to the database
server, assigning CPU VPs to all but one of the CPUs achieves maximum CPU utilization.

On computers that support both database server and client applications, you can bind applications to certain CPUs through the operating system. By doing so, you
effectively reserve the remaining CPUs for use by database server CPU VPs, which you bind to the remaining CPUs with the VPCLASS configuration parameter. Set the aff

1286 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

option of the VPCLASS configuration parameter to the numbers of the CPUs on which to bind CPU VPs. For example, the following VPCLASS setting assigns CPU VPs to
processors 4 to 7:

VPCLASS cpu,num=4,aff=(4-7)

When specifying a range of processors, you can also specify an incremental value with the range that indicates which CPUs in the range should be assigned to the virtual
processors. For example, you can specify that the virtual processors are assigned to every other CPU in the range 0-6, starting with CPU 0.

VPCLASS CPU,num=4,aff=(0-6/2)

The virtual processors are assigned to CPUs 0, 2, 4, 6.
If you specify VPCLASS CPU,num=4,aff=(1-10/3), the virtual processors are assigned to every third CPU in the range 1-10, starting with CPU 1. The virtual processors
are assigned to CPUs 1, 4, 7, 10.

When you specify more than one value or range, the values and ranges do not have to be incremental or in any particular order. For example you can specify aff=
(8,12,7-9,0-6/2).

The database server assigns CPU virtual processors to CPUs in a circular pattern, starting with the first processor number that you specify in the aff option. If you specify a
larger number of CPU virtual processors than physical CPUs, the database server continues to assign CPU virtual processors starting with the first CPU. For example,
suppose you specify the following VPCLASS settings:

VPCLASS cpu,num=8,aff=(4-7)

The database server makes the following assignments:

CPU virtual processor number 0 to CPU 4
CPU virtual processor number 1 to CPU 5
CPU virtual processor number 2 to CPU 6
CPU virtual processor number 3 to CPU 7
CPU virtual processor number 4 to CPU 4
CPU virtual processor number 5 to CPU 5
CPU virtual processor number 6 to CPU 6
CPU virtual processor number 7 to CPU 7

Related information:
 VPCLASS configuration parameter

Copyright© 2020 HCL Technologies Limited

Isolating AIO VPs from CPU VPs

On a system that runs database server and client (or other) applications, you can bind asynchronous I/O (AIO) VPs to the same CPUs to which you bind other application
processes through the operating system. In this way, you isolate client applications and database I/O operations from the CPU VPs.

This isolation can be especially helpful when client processes are used for data entry or other operations that require waiting for user input. Because AIO VP activity
usually comes in quick bursts followed by idle periods waiting for the disk, you can often interweave client and I/O operations without their unduly impacting each other.

Binding a CPU VP to a processor does not prevent other processes from running on that processor. Application (or other) processes that you do not bind to a CPU are free
to run on any available processor. On a computer that is dedicated to the database server, you can leave AIO VPs free to run on any processor, which reduces delays on
database operations that are waiting for I/O. Increasing the priority of AIO VPs can further improve performance by ensuring that data is processed quickly once it arrives
from disk.

Copyright© 2020 HCL Technologies Limited

Avoiding a certain CPU

The database server assigns CPU VPs to CPUs serially, starting with the CPU number you specify in this parameter. You might want to avoid assigning CPU VPs to a certain
CPU that has a specialized hardware or operating-system function (such as interrupt handling).

Copyright© 2020 HCL Technologies Limited

Setting the number of AIO VPs

Use the aio and num options of the VPCLASS configuration parameter to indicate the number of AIO virtual processors that the database server starts initially.

If your operating system does not support kernel asynchronous I/O (KAIO), the database server uses AIO virtual processors (VPs) to manage all database I/O requests.

If the VPCLASS configuration parameter does not specify the number of AIO VPs to start in the onconfig file, the number of AIO VPs initially started is equal to the number
of chunks that use AIO, up to a maximum of 128.

You can enable the database server to increase the number of AIO VPs as needed to improve performance. Include the autotune=1 option in the VPCLASS configuration
parameter setting:

VPCLASS aio,autotune=1

Part VI: Administering 1287

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The recommended number of AIO virtual processors depends on how many disks your configuration supports. If KAIO is not implemented on your platform, you should
allocate one AIO virtual processor for each disk that contains database tables. You can add an additional AIO virtual processor for each chunk that the database server
accesses frequently.

The machine notes file for your version of the database server indicates whether the operating system supports KAIO. If KAIO is supported, the machine notes describe
how to enable KAIO on your specific operating system.

If your operating system supports KAIO, the CPU VPs make asynchronous I/O requests to the operating system instead of AIO virtual processors. In this case, configure
only one AIO virtual processor, plus two additional AIO virtual processor for every file chunk that does not use KAIO.

If you use cooked files and if you enable direct I/O using the DIRECT_IO configuration parameter, you can reduce the number of AIO virtual processors. If the database
server implements KAIO and if direct I/O is enabled, the database server will attempt to use KAIO, so you probably do not need more than one AIO virtual processor.
Temporary dbspaces do not use direct I/O. If you have temporary dbspaces, you will probably need more than one AIO virtual processors.

Even when direct I/O is enabled with the DIRECT_IO configuration parameter, if the file system does not support either direct I/O or KAIO, you still must allocate two
additional AIO virtual processors for every active dbspace chunk that is not using KAIO.

The goal in allocating AIO virtual processors is to allocate enough of them so that the lengths of the I/O request queues are kept short (that is, the queues have as few I/O
requests in them as possible). When the I/O request queues remain consistently short, I/O requests are processed as fast as they occur. Use the onstat -g ioq command
to monitor the length of the I/O queues for the AIO virtual processors.

Allocate enough AIO VPs to accommodate the peak number of I/O requests. Generally, allocating a few extra AIO VPs is not detrimental. To start additional AIO VPs while
the database server is in online mode, use the onmode -p command. You cannot drop AIO VPs in online mode.

Related information:
 AUTO_AIOVPS configuration parameter

VPCLASS configuration parameter

Copyright© 2020 HCL Technologies Limited

Setting the MULTIPROCESSOR configuration parameter when using multiple CPU
VPs

If you are running multiple CPU VPs, set the MULTIPROCESSOR configuration parameter to 1. When you set MULTIPROCESSOR to 1, the database server performs locking
in a manner that is appropriate for a multiprocessor. Otherwise, set this parameter to 0.

The number of CPU VPs is used as a factor in determining the number of scan threads for a query. Queries perform best when the number of scan threads is a multiple (or
factor) of the number of CPU VPs. Adding or removing a CPU VP can improve performance for a large query because it produces an equal distribution of scan threads
among CPU VPs. For instance, if you have 6 CPU VPs and scan 10 table fragments, you might see a faster response time if you reduce the number of CPU VPs to 5, which
divides evenly into 10. You can use onstat -g ath to monitor the number of scan threads per CPU VP or use onstat -g ses to focus on a particular session.

Related information:
 MULTIPROCESSOR configuration parameter

Copyright© 2020 HCL Technologies Limited

Setting the SINGLE_CPU_VP configuration parameter when using one CPU VP

If you are running only one CPU VP, set the SINGLE_CPU_VP configuration parameter to 1. Otherwise, set this parameter to 0.

Important: If you set the SINGLE_CPU_VP parameter to 1, the value of the num option of the VPCLASS configuration parameter must also be 1.
Note: The database server treats user-defined virtual-processor classes (that is, VPs defined with VPCLASS) as if they were CPU VPs. Thus, if you set SINGLE_CPU_VP to
nonzero, you cannot create any user-defined classes.
When you set the SINGLE_CPU_VP parameter to 1, you cannot add CPU VPs while the database server is in online mode.

Related information:
 SINGLE_CPU_VP configuration parameter

VPCLASS configuration parameter

Copyright© 2020 HCL Technologies Limited

Optimizing access methods

The OPTCOMPIND configuration parameter helps the query optimizer choose an appropriate access method for your application. When the optimizer examines join plans,
OPTCOMPIND indicates the preferred method for performing the join operation for an ordered pair of tables.

If OPTCOMPIND is equal to 0, the optimizer gives preference to an existing index (nested-loop join) even when a table scan might be faster. If OPTCOMPIND is set to 1 and
the isolation level for a given query is set to Repeatable Read, the optimizer uses nested-loop joins.

When OPTCOMPIND is equal to 2, the optimizer selects a join method based on cost alone even though table scans can temporarily lock an entire table. For more
information about OPTCOMPIND and the different join methods, see Effect of OPTCOMPIND on the query plan.

To set the value for OPTCOMPIND for specific applications or user sessions, set the OPTCOMPIND environment variable for those sessions. Values for this environment
variable have the same range and semantics as for the configuration parameter.

1288 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Setting the value of OPTCOMPIND within a session
You can set or change the value of OPTCOMPIND within a session for different kinds of queries. To do this, use the SET ENVIRONMENT OPTCOMPIND statement,
not the OPTCOMPIND configuration parameter or the OPTCOMPIND environment variable.

Related information:
 OPTCOMPIND configuration parameter

Copyright© 2020 HCL Technologies Limited

Setting the value of OPTCOMPIND within a session

You can set or change the value of OPTCOMPIND within a session for different kinds of queries. To do this, use the SET ENVIRONMENT OPTCOMPIND statement, not the
OPTCOMPIND configuration parameter or the OPTCOMPIND environment variable.

For a DSS query, you should set the value of OPTCOMPIND to 2 or 1, and you should be sure that the isolation level is not set to Repeatable Read. For an OLTP query, you
could set the value to 0 or 1 with the isolation level not set to Repeatable Read.

The value that you enter using the SET ENVIRONMENT OPTCOMPIND command takes precedence over the default setting specified by the OPTCOMPIND environment
variable or by the OPTCOMPIND configuration parameter in the ONCONFIG file. The default OPTCOMPIND setting is restored when the routine that issued the SET
ENVIRONMENT OPTCOMPIND statement exits, or until the same routine resets the value of OPTCOMPIND to the system default by issuing the following statement:

SET ENVIRONMENT OPTCOMPIND DEFAULT;

No other user sessions or routines are affected by SET ENVIRONMENT OPTCOMPIND statements that you execute, because their scope is local to the routine in which
they are issued, rather than the entire session.

Related information:
 OPTCOMPIND session environment option

Copyright© 2020 HCL Technologies Limited

Limiting PDQ resources in queries

The MAX_PDQPRIORITY configuration parameter limits the percentage of parallel database query (PDQ) resources that a query can use. Use MAX_PDQPRIORITY to limit
the impact of large CPU-intensive queries on transaction throughput.

To limit the impact of large CPU-intensive queries on transaction throughput

Set the value of the MAX_PDQPRIORITY configuration parameter to an integer that represents a percentage of the following PDQ resources that a query can request:

Memory
CPU VPs
Disk I/O
Scan threads

When a query requests a percentage of PDQ resources, the database server allocates the MAX_PDQPRIORITY percentage of the amount requested, as the following
formula shows:

Resources allocated = PDQPRIORITY/100 * MAX_PDQPRIORITY/100

For example, if a client uses the SET PDQPRIORITY 80 statement to request 80 percent of PDQ resources, but MAX_PDQPRIORITY is set to 50, the database server
allocates only 40 percent of the resources (50 percent of the request) to the client.

For decision support and online transaction processing (OLTP), setting MAX_PDQPRIORITY allows the database server administrator to control the impact that individual
decision-support queries have on concurrent OLTP performance. Reduce the value of MAX_PDQPRIORITY when you want to allocate more resources to OLTP processing.
Increase the value of MAX_PDQPRIORITY when you want to allocate more resources to decision-support processing.

For more information about how to control the use of PDQ resources, see The allocation of resources for parallel database queries.

Related information:
 MAX_PDQPRIORITY configuration parameter

Copyright© 2020 HCL Technologies Limited

Limiting the performance impact of CPU-intensive queries

The DS_MAX_QUERIES configuration parameter specifies a maximum number of decision-support queries that can run at any one time. Queries with a low PDQ priority
use proportionally fewer resources, so a larger number of those queries can run simultaneously. You can use the DS_MAX_QUERIES configuration parameter to limit the
performance impact of CPU-intensive queries.

The DS_MAX_QUERIES configuration parameter controls only queries with a PDQ priority that is nonzero.

The database server uses the value of DS_MAX_QUERIES with DS_TOTAL_MEMORY to calculate quantum units of memory to allocate to a query. For more information
about how the database server allocates memory to queries, see The DS_TOTAL_MEMORY configuration parameter and memory utilization.

Related concepts:
 The DS_TOTAL_MEMORY configuration parameter and memory utilization

Part VI: Administering 1289

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Related information:
DS_MAX_QUERIES configuration parameter

Copyright© 2020 HCL Technologies Limited

Limiting the number of PDQ scan threads that can run concurrently

The DS_MAX_SCANS configuration parameter limits the number of PDQ scan threads that can run concurrently. This configuration parameter prevents the database
server from being flooded with scan threads from multiple decision-support queries.

To calculate the number of scan threads allocated to a query, use the following formula:

scan_threads = min (nfrags, (DS_MAX_SCANS * pdqpriority / 100
 * MAX_PDQPRIORITY / 100))

nfrags
is the number of fragments in the table with the largest number of fragments.

pdqpriority
is the PDQ priority value set by either the PDQPRIORITY environment variable or the SQL statement SET PDQPRIORITY.

Reducing the number of scan threads can reduce the time that a large query waits in the ready queue, particularly when many large queries are submitted concurrently.
However, if the number of scan threads is less than nfrags, the query takes longer once it is underway.

For example, if a query needs to scan 20 fragments in a table, but the scan_threads formula lets the query begin when only 10 scan threads are available, each scan
thread scans two fragments serially. Query execution takes approximately twice as long as if 20 scan threads were used.

Related information:
 DS_MAX_SCANS configuration parameter

Copyright© 2020 HCL Technologies Limited

Configuring poll threads

The NETTYPE configuration parameter configures poll threads for each connection type that your instance of the database server supports. If your database server
instance supports connections over more than one interface or protocol, you must specify a separate NETTYPE configuration parameter for each connection type.

You typically include a separate NETTYPE parameter for each connection type that is associated with a dbservername. You list dbservernames in the DBSERVERNAME and
DBSERVERALIASES configuration parameters. You associate connection types with dbservernames in the sqlhosts information. For details about connection types and the
sqlhosts information, see Connectivity configuration in your.IBM® Informix® Administrator's Guide.

Specifying the connection protocol
 The first NETTYPE entry, which specifies the protocol for a given connection type, applies to all dbservernames associated with that type. Subsequent NETTYPE

entries for that connection type are ignored.
Specifying virtual-processor classes for poll threads

 Each poll thread that is configured or added dynamically by a NETTYPE entry runs in a separate VP. A poll thread can run in one of two types of VP classes: NET
(network) and CPU. Network VP classes include SOC, STR, SHM, and TLI. For best performance, use a NETTYPE entry to assign only one poll thread to the CPU VP
class. Assign all additional poll threads to network VP classes by specifying NET in the NETTYPE configuration parameter values.
Specifying the number of connections and poll threads

 The optimum number of connections per poll thread is approximately 300 for uniprocessor computers and up to 350 for multiprocessor computers, although this
can vary depending on the platform and database server workload.
Improve connection performance and scalability

 You can improve connection performance and scalability by specifying information in the NUMFDSERVERS and NS_CACHE configuration parameters and by using
multiple listen threads.

Related reference:
 UNIX semaphore parameters

Related information:
 NETTYPE configuration parameter

Copyright© 2020 HCL Technologies Limited

Specifying the connection protocol

The first NETTYPE entry, which specifies the protocol for a given connection type, applies to all dbservernames associated with that type. Subsequent NETTYPE entries for
that connection type are ignored.

NETTYPE entries are required for connection types that are used for outgoing communication only even if those connection types are not listed in the sqlhosts
information.

UNIX Only
The following protocols apply to UNIX platforms:

IPCSHM
TLITCP
IPCSTR

1290 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

SOCTCP
TLIIMC
SOCIMC
SQLMUX
SOCSSL

Windows Only
The following protocols apply to Windows platforms:

SOCTCP
IPCNMP
SQLMUX
SOCSSL

Related information:
 NETTYPE configuration parameter

Copyright© 2020 HCL Technologies Limited

Specifying virtual-processor classes for poll threads

Each poll thread that is configured or added dynamically by a NETTYPE entry runs in a separate VP. A poll thread can run in one of two types of VP classes: NET (network)
and CPU. Network VP classes include SOC, STR, SHM, and TLI. For best performance, use a NETTYPE entry to assign only one poll thread to the CPU VP class. Assign all
additional poll threads to network VP classes by specifying NET in the NETTYPE configuration parameter values.

Related information:
 NETTYPE configuration parameter

Copyright© 2020 HCL Technologies Limited

Specifying the number of connections and poll threads

The optimum number of connections per poll thread is approximately 300 for uniprocessor computers and up to 350 for multiprocessor computers, although this can vary
depending on the platform and database server workload.

A poll thread can support 1024 or more connections. If the FASTPOLL configuration parameter is enabled, you might be able to configure fewer poll threads, but test the
performance to determine the optimal configuration for your environment.

Each NETTYPE entry configures the number of poll threads for a specific connection type, the number of connections per poll thread, and the type of virtual-processor
class in which those poll threads run. If the number of connections per thread exceeds 350 and the number of poll threads for the current connection type is less than the
number of CPU VPs, you can improve performance by specifying the CPU VP class, adding poll threads (do not exceed the number of CPU VPs), and resetting the number
of connections per thread. The default number of connections per thread is 50.

Important: Each ipcshm connection requires a semaphore. Some operating systems require that you configure a maximum number of semaphores that can be requested
by all software packages that run on the computer. For best performance, double the number of actual ipcshm connections when you allocate semaphores for shared-
memory communications. See UNIX semaphore parameters.
If your computer is a uniprocessor and your database server instance is configured for only one connection type, you can omit the NETTYPE parameter. The database
server uses the information that is provided in the sqlhosts information to establish client/server connections.

If your computer is a uniprocessor and your database server instance is configured for more than one connection type, include a separate NETTYPE entry for each
connection type. If the number of connections of any one type significantly exceeds 300, assign two or more poll threads, up to a maximum of the number of CPU VPs, and
specify NET for a network VP class, as the following example shows:

NETTYPE ipcshm,1,50,CPU
NETTYPE tlitcp,2,200,NET # supports 400 connections

For ipcshm, the number of poll threads correspond to the number of memory segments. For example, if NETTYPE is set to 3,100 and you want one poll thread, set the
poll thread to 1,300.

If your computer is a multiprocessor, your database server instance is configured for only one connection type, and the number of connections does not exceed 350, you
can use NETTYPE to specify a single poll thread on either the CPU or a network VP class. If the number of connections exceeds 350, set the VP class type to NET, increase
the number of poll threads, and recalculate conn_per_thread.

Important: Carefully distinguish between poll threads for network connections and poll threads for shared memory connections, which run one per CPU virtual processor.
Configure TCP connections to run in network virtual processors, and configure the minimum that is needed to maintain responsiveness. Configure shared memory
connections to run in every CPU virtual processor.
Related concepts:

 Improve connection performance and scalability
Related information:

 NETTYPE configuration parameter
VPCLASS configuration parameter

Copyright© 2020 HCL Technologies Limited

Improve connection performance and scalability

Part VI: Administering 1291

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

You can improve connection performance and scalability by specifying information in the NUMFDSERVERS and NS_CACHE configuration parameters and by using multiple
listen threads.

Informix® SQL sessions can migrate across CPU VPs. You can improve the performance and scalability of network connections on UNIX by using the NUMFDSERVERS
configuration parameter to specify a number for the poll threads to use when distributing a TCP/IP connection across VPs. Specifying NUMFDSERVERS information is
useful if the database server has a high rate of new connect and disconnect requests or if you find a high amount of contention between network shared file (NSF) locks.

You should also review and, if necessary, change the information in the NETTYPE configuration parameter, which defines the number of poll threads for a specific
connection type, the number of connections per poll thread, and the virtual-processor class in which those poll threads run. You specify NETTYPE configuration parameter
information as follows:

NETTYPE connection_type,poll_threads,conn_per_thread,vp_class

On UNIX, if vp_class is NET, poll_threads can be a value that is greater than or equal to 1. If vp_class is CPU, the number of poll_threads can be 1 through the
number of CPU VPs. On Windows, poll_threads can be value that is greater than or equal to 1.

For example, suppose you specify 8 poll threads in the NETTYPE configuration parameter, as follows:

NETTYPE soctcp,8,300,NET

You can also specify 8 in the NUMFDSERVERS configuration parameter to enable the server to use all 8 poll thread to handle network connections migrating between VPs.

You can use the NS_CACHE configuration parameter to define the maximum retention time for an individual entry in the host name/IP address cache, the service cache,
the user cache, and the group cache. The server can get information from the cache faster than it does when querying the operating system.

You can improve service for connection requests by using multiple listen threads. When you specify DBSERVERNAME and DBSERVERALIASES configuration parameter
information for onimcsoc or onsoctcp protocols, you can specify the number of multiple listen threads for the database server aliases in your sqlhosts information. The
default value of number is 1.

The DBSERVERNAME and DBSERVERALIASES configuration parameters define database server names (dbservernames) that have corresponding entries in the sqlhosts
information. Each dbservername parameter in the sqlhosts information has a nettype entry that specifies an interface/protocol combination. The database server runs
one or more poll threads for each unique nettype entry.

You can use the onstat -g ath command to display information about all threads.

Related concepts:
 Specifying the number of connections and poll threads

Monitor threads with onstat -g ath output
Related information:

 NETTYPE configuration parameter
NUMFDSERVERS configuration parameter
NS_CACHE configuration parameter
DBSERVERNAME configuration parameter
DBSERVERALIASES configuration parameter
Multiple listen threads
Name service maximum retention time set in the NS_CACHE configuration parameter

Copyright© 2020 HCL Technologies Limited

Enabling fast polling

You can use the FASTPOLL configuration parameter to enable or disable fast polling of your network, if your operating-system platform supports fast polling. Fast polling is
beneficial if you have a large number of connections.

For example, if you have more than 300 concurrent connections with the database server, you can enable the FASTPOLL configuration parameter for better performance.

Related information:
 FASTPOLL configuration parameter

Copyright© 2020 HCL Technologies Limited

Network buffer pools

The sizes of buffers for TCP/IP connections affect memory and CPU utilization. Sizing these buffers to accommodate a typical request can improve CPU utilization by
eliminating the need to break up requests into multiple messages.

However, you must use this capability with care; the database server dynamically allocates buffers of the indicated sizes for active connections. Unless you carefully size
buffers, they can use large amounts of memory. For details on how to size network buffers, see Network buffer size.

The database server dynamically allocates network buffers from the global memory pool for request messages from clients. After the database server processes client
requests, it returns buffers to a common network buffer pool that is shared among sessions that use SOCTCP, IPCSTR, or TLITCP network connections.

This common network buffer pool provides the following advantages:

Prevents frequent allocations and deallocations from the global memory pool
Uses fewer CPU resources to allocate and deallocate network buffers to and from the common network buffer pool for each network transfer
Reduces contention for allocation and deallocation of shared memory

The free network buffer pool can grow during peak activity periods. To prevent large amounts of unused memory from remaining in these network buffer pools when
network activity is no longer high, the database server returns free buffers when the number of free buffers reaches specific thresholds.

1292 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

The database server provides the following features to further reduce the allocation and deallocation of and contention for the free network buffers:

A private free network buffer pool for each session to prevent frequent allocations and deallocations of network buffers from the common network buffer pool or
from the global memory pool in shared memory
Capability to specify a larger than 4-kilobyte buffer size to receive network packets or messages from clients

As the system administrator, you can control the free buffer thresholds and the size of each buffer with the following methods:

NETTYPE configuration parameter
IFX_NETBUF_PVTPOOL_SIZE environment variable
IFX_NETBUF_SIZE environment variable and b (client buffer size) option in the sqlhosts information

Network buffers
 The database server implements a threshold of free network buffers to prevent frequent allocations and deallocations of shared memory for the network buffer

pool. This threshold enables the database server to correlate the number of free network buffers with the number of connections that you specify in the NETTYPE
configuration parameter.
Support for private network buffers

 The database server provides support for private network buffers for each session that uses SOCTCP, IPCSTR, or TLITCP network connections.
Network buffer size

 The IFX_NETBUF_SIZE environment variable specifies the size of each network buffer in the common network buffer pool and the private network buffer pool.

Related concepts:
 UNIX configuration parameters that affect CPU utilization

Configuration parameters and environment variables that affect CPU utilization
Virtual processors and CPU utilization
Connections and CPU utilization
Related tasks:

 Windows configuration parameters that affect CPU utilization

Copyright© 2020 HCL Technologies Limited

Network buffers

The database server implements a threshold of free network buffers to prevent frequent allocations and deallocations of shared memory for the network buffer pool. This
threshold enables the database server to correlate the number of free network buffers with the number of connections that you specify in the NETTYPE configuration
parameter.

The database server dynamically allocates network buffers for request messages from clients. After the database server processes client requests, it returns buffers to
the network free-buffer pool.

If the number of free buffers is greater than the threshold, the database server returns the memory allocated to buffers over the threshold to the global pool.

The database server uses the following formula to calculate the threshold for the free buffers in the network buffer pool:

free network buffers threshold =
 100 + (0.7 * number_connections)

The value for number_connections is the total number of connections that you specified in the third field of the NETTYPE entry for the different type of network
connections (SOCTCP, IPCSTR, or TLITCP). This formula does not use the NETTYPE entry for shared memory (IPCSHM).

If you do not specify a value in the third field of the NETTYPE parameter, the database server uses the default value of 50 connections for each NETTYPE entry
corresponding to the SOCTCP, TLITCP, and IPCSTR protocols.

Copyright© 2020 HCL Technologies Limited

Support for private network buffers

The database server provides support for private network buffers for each session that uses SOCTCP, IPCSTR, or TLITCP network connections.

For situations in which many connections and sessions are constantly active, these private network buffers have the following advantages:

Less contention for the common network buffer pool
Fewer CPU resources to allocate and deallocate network buffers to and from the common network buffer pool for each network transfer

The IFX_NETBUF_PVTPOOL_SIZE environment variable specifies the size of the private network buffer pool for each session. The default size is one buffer.

Use the onstat utility commands in the following table to monitor the network buffer usage.

Command Output Field Description

onstat -g ntu q-pvt The current number and highest number of buffers that are free in the private pool for this
session

onstat -g ntm q-exceeds The number of times that the free buffer threshold was exceeded

The onstat -g ntu command displays the following format for the q-pvt output field:

current number / highest number

If the number of free buffers (value in q-pvt field) is consistently 0, you can perform one of the following actions:

Increase the number of buffers with the environment variable IFX_NETBUF_PVTPOOL_SIZE.

Part VI: Administering 1293

https://www.hcltech.com/
https://www.hcltech.com/

Increase the size of each buffer with the environment variable IFX_NETBUF_SIZE.

The q-exceeds field indicates the number of times that the threshold for the shared network free-buffer pool was exceeded. When this threshold is exceeded, the
database server returns the unused network buffers (over this threshold) to the global memory pool in shared memory. Optimally, this value should be 0 or a low number
so that the server is not allocating or deallocating network buffers from the global memory pool.

Related information:
 IFX_NETBUF_PVTPOOL_SIZE environment variable (UNIX)

IFX_NETBUF_SIZE environment variable

Copyright© 2020 HCL Technologies Limited

Network buffer size

The IFX_NETBUF_SIZE environment variable specifies the size of each network buffer in the common network buffer pool and the private network buffer pool.

The default buffer size is 4 kilobytes.

The IFX_NETBUF_SIZE environment variable allows the database server to receive messages longer than 4 kilobytes in one system call. The larger buffer size reduces the
amount of overhead required to receive each packet.

Increase the value of IFX_NETBUF_SIZE if you know that clients send greater than 4-kilobyte packets. Clients send large packets during any of the following situations:

Loading a table
Inserting rows greater than 4 kilobytes
Sending simple large objects

The b option for sqlhosts allows the client to send and receive greater than 4 kilobytes. The value for the sqlhosts option should typically match the value for
IFX_NETBUF_SIZE.

You can use the following onstat command to see the network buffer size:

onstat -g afr global | grep net

The size field in the output shows the network buffer size in bytes.

Related information:
 Connectivity configuration

IFX_NETBUF_SIZE environment variable

Copyright© 2020 HCL Technologies Limited

Virtual processors and CPU utilization

While the database server is online, you can start and stop virtual processors (VPs) that belong to certain classes.

You can use onmode -p to start additional VPs for the following classes while the database server is online: CPU, AIO, PIO, LIO, SHM, TLI, and SOC. You can drop VPs of
the CPU class only while the database server is online.

You should carefully distinguish between poll threads for network connections and poll threads for shared memory connections, which should run one per CPU virtual
processor. TCP connections should only be in network virtual processors, and you should only have the minimum needed to maintain responsiveness. Shared memory
connections should only be in CPU virtual processors and should run in every CPU virtual processor

Adding virtual processors
 Whenever you add a network VP (SOC or TLI), you also add a poll thread. Every poll thread runs in a separate VP, which can be either a CPU VP or a network VP of

the appropriate network type.
Monitoring virtual processors

 Monitor the virtual processors to determine if the number of virtual processors configured for the database server is optimal for the current level of activity.
Private memory caches

 Each CPU virtual processor (VP) or tenant VP can have a private memory cache to speed access time to memory blocks.

Related concepts:
 UNIX configuration parameters that affect CPU utilization

Configuration parameters and environment variables that affect CPU utilization
Network buffer pools
Connections and CPU utilization
Related tasks:

 Windows configuration parameters that affect CPU utilization

Copyright© 2020 HCL Technologies Limited

Adding virtual processors

Whenever you add a network VP (SOC or TLI), you also add a poll thread. Every poll thread runs in a separate VP, which can be either a CPU VP or a network VP of the
appropriate network type.

1294 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Adding more VPs can increase the load on CPU resources, so if the NETTYPE value indicates that an available CPU VP can handle the poll thread, the database server
assigns the poll thread to that CPU VP. If all the CPU VPs have poll threads assigned to them, the database server adds a second network VP to handle the poll thread.

Copyright© 2020 HCL Technologies Limited

Monitoring virtual processors

Monitor the virtual processors to determine if the number of virtual processors configured for the database server is optimal for the current level of activity.

To monitor virtual processors:

Use command-line utilities, such as onstat-g ioq to view information. See Using some onstat-g commands to monitor virtual processors
Use the AUTO_AIOVPS configuration parameter to enable the database server to automatically increase the number of AIO virtual processors and page-cleaner
threads when the server detects that AIO virtual processors are not keeping up with the I/O workload.
Query SMI tables. See Using SMI tables to monitor virtual processors.

Using some onstat-g commands to monitor virtual processors
 You can use the onstat-g glo, onstat-g rea, and onstat-g ioq commands to monitor virtual processors.

Using SMI tables to monitor virtual processors
 You can get information from system-monitoring interface (SMI) tables to use to monitor virtual processors.

Copyright© 2020 HCL Technologies Limited

Using some onstat-g commands to monitor virtual processors

You can use the onstat-g glo, onstat-g rea, and onstat-g ioq commands to monitor virtual processors.

Monitor virtual processors with the onstat-g glo command
 Use the onstat-g glo command to display information about each virtual processor that is running and to display cumulative statistics for each virtual-processor

class.
Monitor virtual processors with the onstat-g rea command

 Use the onstat-g rea command to monitor the number of threads in the ready queue.
Monitor virtual processors with the onstat-g ioq command

 Use the onstat-g ioq command to determine whether you need to allocate additional AIO virtual processors.

Copyright© 2020 HCL Technologies Limited

Monitor virtual processors with the onstat-g glo command

Use the onstat-g glo command to display information about each virtual processor that is running and to display cumulative statistics for each virtual-processor class.

The onstat -g glo command provides the following types of information:

How many session threads that are running
How often threads switch, yield, or need to spin many times to obtain a latch or resource
The virtual processor classes that are running and how much time each class spent running
The number of virtual processors that are running for each virtual processor class
The virtual processors that are running and how much time each virtual processor spent running
The efficiency of each virtual processor

Use the onstat -g rea command to determine whether you need to increase the number of virtual processors.

Related concepts:
 Monitor virtual processors with the onstat-g rea command

Related information:
 onstat -g glo command: Print global multithreading information

Copyright© 2020 HCL Technologies Limited

Monitor virtual processors with the onstat-g rea command

Use the onstat-g rea command to monitor the number of threads in the ready queue.

onstat-g rea displays this information:

The status field in the output shows the value ready when the thread is in the ready queue.
The vp-class output field shows the virtual processor class on which the thread executes.

If the number of threads in the ready queue is growing for a class of virtual processors (for example, the CPU class), you might have to add more of those virtual
processors to your configuration.

Part VI: Administering 1295

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Figure 1. onstat-g rea output

Ready threads:
tid tcb rstcb prty status vp-class name

6 536a38 406464 4 ready 3cpu main_loop()
28 60cfe8 40a124 4 ready 1cpu onmode_mon
33 672a20 409dc4 2 ready 3cpu sqlexec

Related concepts:
 Monitor virtual processors with the onstat-g glo command

Related information:
 onstat -g rea command: Print ready threads

Copyright© 2020 HCL Technologies Limited

Monitor virtual processors with the onstat-g ioq command

Use the onstat-g ioq command to determine whether you need to allocate additional AIO virtual processors.

The onstat-g ioq command displays the length of the I/O queues under the column len, as the figure below shows. You can also see the maximum queue length (since the
database server started) in the maxlen column. If the length of the I/O queue is growing, I/O requests are accumulating faster than the AIO virtual processors can process
them. If the length of the I/O queue continues to show that I/O requests are accumulating, consider adding AIO virtual processors.
Figure 1. onstat-g ioq and onstat -d output

onstat -g ioq

AIO I/O queues:
q name/id len maxlen totalops dskread dskwrite dskcopy
 adt 0 0 0 0 0 0 0
 msc 0 0 1 12 0 0 0
 aio 0 0 4 89 68 0 0
 pio 0 0 1 1 0 1 0
 lio 0 0 1 17 0 17 0
 kio 0 0 0 0 0 0 0
 gfd 3 0 3 254 242 12 0
 gfd 4 0 17 614 261 353 0

onstat -d
Dbspaces
address number flags fchunk nchunks flags owner name
a1de1d8 1 1 1 1 N informix rootdbs
a1df550 2 1 2 1 N informix space1
 2 active, 32,678 maximum
Chunks
address chk/dbs offset size free bpages flags pathname
a1de320 1 1 0 75000 66447 PO- /ix/root_chunk
a1df698 2 2 0 500 447 PO- /ix//chunk1
 2 active, 32,678 maximum

Each chunk serviced by the AIO virtual processors has one line in the onstat-g ioq output, identified by the value gfd in the q name column. You can correlate the line in
onstat -g ioq with the actual chunk because the chunks are in the same order as in the onstat -d output. For example, in the onstat-g ioq output, there are two gfd
queues. The first gfd queue holds requests for root_chunk because it corresponds to the first chunk shown in the onstat -d output. Likewise, the second gfd queue holds
requests for chunk1 because it corresponds to the second chunk in the onstat -d output.

If the database server has a mixture of raw devices and cooked files, the gfd queues correspond only to the cooked files in onstat -d output.

Related information:
 onstat -g ioq command: Print I/O queue information

Copyright© 2020 HCL Technologies Limited

Using SMI tables to monitor virtual processors

You can get information from system-monitoring interface (SMI) tables to use to monitor virtual processors.

You must connect to the sysmaster database to query the SMI tables. Query the sysvpprof SMI table to obtain information about the virtual processors that are currently
running. This table contains the following columns.

Column Description

vpid ID number of the virtual processor

class Class of the virtual processor

usercpu Seconds of user CPU consumed

syscpu Seconds of system CPU consumed

Copyright© 2020 HCL Technologies Limited

1296 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Private memory caches

Each CPU virtual processor (VP) or tenant VP can have a private memory cache to speed access time to memory blocks.

All memory allocations that are requested by threads in the database server are fulfilled by memory pools. When a memory pool has insufficient memory blocks to satisfy
a memory allocation request, blocks are allocated from the global memory pool. Because all threads use the same global memory pool, contention can occur. Private
memory caches allow each virtual processor to retain its own set of memory blocks that can be used to bypass the global memory pool. The initial allocation for private
memory caches is from the global memory pool. When the blocks are freed, they are freed to the private memory cache on a specific virtual process. When a memory
allocation is requested, the thread first checks whether the allocation can be satisfied by blocks in the private memory cache. Otherwise, the thread requests memory
from the global memory pool.

To determine whether private memory caches might improve performance for your database server, run the onstat -g spi command and look for the sh_lock mutex. If
onstat -g spi command output shows contention for the sh_lock mutex, try creating private memory caches.

You set the VP_MEMORY_CACHE_KB configuration parameter to enable private memory caches by specifying the initial combined size of all private memory caches. By
default, the total size of private memory caches is limited to the size value of the VP_MEMORY_CACHE_KB configuration parameter. You can set the mode to DYNAMIC to
allow the size of each private memory cache to increase or decrease automatically based on the workload of the associated VP. In dynamic mode, the total size of private
memory caches can exceed the value of the VP_MEMORY_CACHE_KB configuration parameter, but cannot exceed the value of the SHMTOTAL configuration parameter.

You can view statistics about VP private memory caches by running the onstat -g vpcache command. You can view statistics about memory pools by running the onstat -g
mem command.

Attention: If you have multiple VPs, private memory caches can increase the amount of memory that the database server uses.
Related information:

 VP_MEMORY_CACHE_KB configuration parameter
onstat -g vpcache command: Print CPU virtual processor and tenant virtual processor private memory cache statistics
onstat -g mem command: Print pool memory statistics
onstat -g spi command: Print spin locks with long spins

Copyright© 2020 HCL Technologies Limited

Connections and CPU utilization

Some applications have a large number of client/server connections. Opening and closing connections can consume a large amount of system CPU time.

The following topics describe ways that you might be able to reduce the system CPU time required to open and close connections.

Multiplexed connections and CPU utilization
 Many traditional nonthreaded SQL client applications use multiple database connections to perform work for a single user. Each database connection establishes a

separate network connection to the database server. The multiplexed connection facility provides the ability for one network connection in the database server to
handle multiple database connections from a client application.
MaxConnect for multiple connections UNIX

 IBM® Informix MaxConnect is a networking product for Informix database server environments on UNIX. You can use Informix MaxConnect to manage large
numbers (from several hundred to tens of thousands) of client/server connections. Informix MaxConnect is best for OLTP data transfers, but is not recommended
for large multimedia data transfers.

Related concepts:
 UNIX configuration parameters that affect CPU utilization

Configuration parameters and environment variables that affect CPU utilization
Network buffer pools
Virtual processors and CPU utilization
Related tasks:

 Windows configuration parameters that affect CPU utilization

Copyright© 2020 HCL Technologies Limited

Multiplexed connections and CPU utilization

Many traditional nonthreaded SQL client applications use multiple database connections to perform work for a single user. Each database connection establishes a
separate network connection to the database server. The multiplexed connection facility provides the ability for one network connection in the database server to handle
multiple database connections from a client application.

Multiplexed connections enable the database server to create multiple database connections without consuming the additional computer resources that are required for
additional network connections.

When a nonthreaded client uses a multiplexed connection, the database server still creates the same number of user sessions and user threads as with a nonmultiplexed
connection. However, the number of network connections decreases when you use multiplexed connections. Instead, the database server uses a multiplex listener thread
to allow the multiple database connections to share the same network connection.

To improve response time for nonthreaded clients, you can use multiplexed connections to execute SQL queries. The amount of performance improvement depends on
the following factors:

The decrease in total number of network connections and the resulting decrease in system CPU time
The usual cause for a large amount of system CPU time is the processing of system calls for the network connection. Therefore, the maximum decrease in system
CPU time is proportional to the decrease in the total number of network connections.

Part VI: Administering 1297

https://www.hcltech.com/
https://www.hcltech.com/

The ratio of this decrease in system CPU time to the user CPU time
If the queries are simple and use little user CPU time, you might experience a sizable reduction in response time when you use a multiplexed connection. But if the
queries are complex and use a large amount of user CPU time, you might not experience a performance improvement.

To get an idea of the amounts of system CPU time and user CPU times per virtual processor, use the onstat -g glo option.

To use multiplexed connections for a nonthreaded client application, you must take the following steps before you bring up the database server:

1. Define an alias using the DBSERVERALIASES configuration parameter. For example, specify:

DBSERVERALIASES ids_mux

2. Add an SQLHOSTS entry for the alias using sqlmux as the nettype entry, which is the second column in the SQLHOSTS file. For example, specify:

ids_mux onsqlmux

The other fields in this entry, the hostname and servicename, must be present, but they are ignored.

3. Enable multiplexing for the selected connection types by specifying m=1 in the sqlhosts file or registry that the client uses for the database server connection.
4. On Windows platforms, you must also set the IFX_SESSION_MUX environment variable.

Warning: On Windows, a multithreaded application must not use the multiplexed connection feature. If a multithreaded application enables the multiplexing option in the
sqlhosts registry entry and also defines the IFX_SESSION_MUX environment variable, it can produce disastrous results, including crashing and data corruption.
Related information:

 Multiplexed connections
Supporting multiplexed connections

Copyright© 2020 HCL Technologies Limited

MaxConnect for multiple connections UNIX

IBM® Informix® MaxConnect is a networking product for Informix database server environments on UNIX. You can use Informix MaxConnect to manage large numbers
(from several hundred to tens of thousands) of client/server connections. Informix MaxConnect is best for OLTP data transfers, but is not recommended for large
multimedia data transfers.

Informix MaxConnect provides the following performance advantages for medium to large OLTP configurations:

Reduces CPU requirements on the database server by reducing the number of physical connections.
Informix MaxConnect multiplexes connections so that the ratio of client connections to database connections can be 100:1 or higher.

Improves end-user response time by increasing system scalability to many thousands of connections
Reduces operating-system overhead by aggregating multiple small packets into one transfer operation

To obtain maximum performance benefit, install Informix MaxConnect on either a dedicated computer to which Informix clients connect or on the client application
server. Either of these configurations offloads the CPU requirements of handling a large number of connections from the database server computer.

To monitor Informix MaxConnect, use the onstat -g imc command on the database server computer and use the imcadmin command on the computer where Informix
MaxConnect is located.

For more information about installing, configuring, monitoring, and tuning Informix MaxConnect, see the IBM Informix MaxConnect User's Guide.
Important: Informix MaxConnect and the IBM Informix MaxConnect User's Guide ship separately from IBM Informix.

Copyright© 2020 HCL Technologies Limited

Effect of configuration on memory utilization

The combination of operating-system and Informix® configuration parameters can affect memory utilization.

You can change the settings of the Informix configuration parameters that directly affect memory utilization, and you can adjust the settings for different types of
workloads.

Consider the amount of physical memory that is available on your host when you allocate shared memory for the database server by setting operating-system
configuration parameters. In general, if you increase space for database server shared memory, you can enhance the performance of your database server. You must
balance the amount of shared memory that is dedicated to the database server against the memory requirements for VPs and other processes.

Shared memory
 You must configure adequate shared-memory resources for the database server in your operating system. Insufficient shared memory can adversely affect

performance.
Configuration parameters that affect memory utilization

 A large number of configuration parameters in the ONCONFIG file affect memory utilization and performance.
Configure and monitor memory caches

 The database server uses caches to store information in memory instead of performing a disk read or another operation to obtain the information. These memory
caches improve performance for multiple queries that access the same tables. You can set some configuration parameters to increase the effectiveness of each
cache. You can view information about memory caches by running onstat commands.
Session memory

 The database server uses the virtual portion of shared memory mainly for user sessions. Most of the memory that each user session allocates is for SQL statements.
You can determine which session and which statements are using large amounts of memory. If necessary, you can set the SESSION_LIMIT_MEMORY configuration
parameter to limit the amount of memory available to a session.

1298 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Data-replication buffers and memory utilization
Data replication requires two instances of the database server, a primary one and a secondary one, running on two computers. If you implement data replication for
your database server, the database server holds logical-log records in the data-replication buffer before it sends them to the secondary database server.
Memory latches
The database server uses latches to control access to shared memory structures such as the buffer pool or the memory pools for the SQL statement cache. You can
obtain statistics on latch use and information about specific latches. These statistics provide a measure of the system activity.
Encrypted values
An encrypted value uses more storage space than the corresponding plain text value because all of the information needed to decrypt the value except the
encryption key is stored with the value.

Related concepts:
 The Memory Grant Manager

Copyright© 2020 HCL Technologies Limited

Shared memory

You must configure adequate shared-memory resources for the database server in your operating system. Insufficient shared memory can adversely affect performance.

The database server threads and processes require shared memory to share data by sharing access to segments of memory.

The shared memory that Informix® uses can be divided into the following parts, each of which has one or more shared memory segments:

Resident portion
Virtual portion
Message portion
Buffer pool portion

The resident and message portions are static; you must allocate sufficient memory for them before you bring the database server into online mode. (Typically, you must
reboot the operating system to reconfigure shared memory.) The virtual portion of shared memory for the database server grows dynamically, but you must still include an
adequate initial amount for this portion in your allocation of operating-system shared memory.

The amount of space that is required is the total that all portions of database server shared memory need. You specify the total amount of shared memory with the
SHMTOTAL configuration parameter.

The LOCKS configuration parameter specifies the initial size of the lock table. If the number of locks that sessions allocate exceeds the value of LOCKS, the database
server dynamically increases the size of the lock table. If you expect the lock table to grow dynamically, set SHMTOTAL to 0. When SHMTOTAL is 0, there is no limit on total
memory (including shared memory) allocation.

Resident portion of shared memory
The resident portion of shared memory includes areas of shared memory that record the state of the database server, including locks, log files, and the locations of
dbspaces, chunks, and tblspaces.
Virtual portion of shared memory

 Informix uses the virtual portion of shared memory to allocate memory to each database server subsystem, as needed.
Message portion of shared memory

 The message portion of shared memory contains the message buffers that the shared-memory communication interface uses. The amount of space required for
these buffers depends on the number of user connections that you allow using a given networking interface.
Buffer pool portion of shared memory

 The buffer pool portion of shared memory contains one or more buffer pools. Each page size that is used by a dbspace has a buffer pool.
Estimating the size of the resident portion of shared memory

 You can use formulas to estimate the size of the resident portion (in KB) of shared memory when you allocate operating-system shared memory.
Estimating the size of the virtual portion of shared memory

 You can use a formula to estimate the initial size of the virtual portion of shared memory. You specify the initial size in the SHMVIRTSIZE configuration parameter.
Estimating the size of the message portion of shared memory

 You can estimate the size of the message portion of shared memory in kilobytes.
Configuring UNIX shared memory

 On UNIX, you can configure shared-memory segments for the database server.
Freeing shared memory with onmode -F

 You can run the onmode -F command to free shared-memory segments that are unavailable or no longer needed for a process.

Related information:
 LOCKS configuration parameter

SHMTOTAL configuration parameter

Copyright© 2020 HCL Technologies Limited

Resident portion of shared memory

The resident portion of shared memory includes areas of shared memory that record the state of the database server, including locks, log files, and the locations of
dbspaces, chunks, and tblspaces.

The settings that you use for the LOCKS, LOGBUFF, and PHYSBUFF configuration parameters help determine the size of the resident portion.

In addition to these configuration parameters, which affect the size of the resident portion, the RESIDENT configuration parameter can affect memory use. When a
computer supports forced residency and the RESIDENT configuration parameter is set to a value that locks the resident or resident and virtual portions, the resident
portion is never paged out.

The machine notes file for your database server indicates whether your operating system supports forced residency.

Part VI: Administering 1299

https://www.hcltech.com/
https://www.hcltech.com/

On AIX®, Solaris, and Linux systems that support large pages, the IFX_LARGE_PAGES environment variable can enable the use of large pages for non-message shared
memory segments that are locked in physical memory. If large pages are configured by operating system commands and the RESIDENT configuration parameter specifies
that some or all of the resident and virtual portions of shared memory are locked in physical memory, Informix® uses large pages for the corresponding shared memory
segments, provided sufficient large pages are available. The use of large pages can offer significant performance benefits in large memory configurations.

Related reference:
 Configuration parameters that affect memory utilization

Related information:
 IFX_LARGE_PAGES environment variable

Copyright© 2020 HCL Technologies Limited

Virtual portion of shared memory

Informix® uses the virtual portion of shared memory to allocate memory to each database server subsystem, as needed.

The virtual portion of shared memory for the database server includes the following components:

Large buffers, which are used for large read and write I/O operations
Sort-space pools
Active thread-control blocks, stacks, and heaps
User-session data
Caches for SQL statements, data-dictionary information, and user-defined routines
A global pool for network-interface message buffers and other information

The SHMVIRTSIZE configuration parameter in the onconfig file provides the initial size of the virtual portion. As the need for additional space in the virtual portion arises,
the database server adds shared memory in increments that the SHMADD configuration parameter specifies. The EXTSHMADD configuration parameter configures the
size of the virtual-extension shared memory segments that are added for user-defined routines and DataBlade routines. The limit on the total shared memory allocated to
the database server is specified by the SHMTOTAL parameter.

The size of the virtual portion depends primarily on the types of applications and queries that you are running. Depending on your application, an initial estimate for the
virtual portion might be as low as 100 KB per user or as high as 500 KB per user, plus an additional 4 megabytes if you intend to use data distributions.

When a computer supports forced residency and the RESIDENT configuration parameter is set to a value that locks virtual segments, the virtual segments that are locked
are never paged out.

On AIX®, Solaris, and Linux systems that support large pages, the IFX_LARGE_PAGES environment variable can enable the use of large pages for non-message shared
memory segments that are locked in physical memory. If large pages are configured by operating system commands and the RESIDENT configuration parameter specifies
that some or all of the resident and virtual portions of shared memory are locked in physical memory, Informix uses large pages for the corresponding shared memory
segments, provided sufficient large pages are available. The use of large pages can offer significant performance benefits in large memory configurations.

Related tasks:
 Creating data distributions

Related reference:
 Configuration parameters that affect memory utilization

Related information:
 IFX_LARGE_PAGES environment variable

EXTSHMADD configuration parameter
SHMADD configuration parameter
SHMTOTAL configuration parameter
SHMVIRTSIZE configuration parameter

Copyright© 2020 HCL Technologies Limited

Message portion of shared memory

The message portion of shared memory contains the message buffers that the shared-memory communication interface uses. The amount of space required for these
buffers depends on the number of user connections that you allow using a given networking interface.

If a particular interface is not used, you do not need to include space for it when you allocate shared memory in the operating system.

Copyright© 2020 HCL Technologies Limited

Buffer pool portion of shared memory

The buffer pool portion of shared memory contains one or more buffer pools. Each page size that is used by a dbspace has a buffer pool.

The BUFFERPOOL configuration parameter specifies the size of the buffer pool when the database server is started. If the buffer pool is extendable, the database server
increases the size of the buffer pool in the buffer pool portion of shared memory.

You can determine the current size of the buffer pool portion of shared memory by running the onstat -g buf command and adding the values in the Total Mem field for
each buffer pool. For example, the following output shows that the memory for one buffer pool is 32 MB:

Fg Writes LRU Writes Avg. LRU Time Chunk Writes Total Mem
0 0 nan 10883 32Mb

1300 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The maximum size of each buffer pool depends on the amount of available shared memory and the values of the BUFFERPOOL configuration parameters.

Related information:
 Buffer pool portion of shared memory

BUFFERPOOL configuration parameter
onstat -g buf command: Print buffer pool profile information

Copyright© 2020 HCL Technologies Limited

Estimating the size of the resident portion of shared memory

You can use formulas to estimate the size of the resident portion (in KB) of shared memory when you allocate operating-system shared memory.

The result of your calculations is an estimate that normally, slightly exceeds the actual memory that is used for the resident portion of shared memory.

The following estimate was calculated to determine the resident portion of shared memory on a 64-bit server. The sizes that are shown are subject to change, and the
calculation is approximate.

To estimate the size of the resident portion of shared memory

1. Calculate the values in the following formulas:

locks_value = LOCKS * 136
logbuff_value = LOGBUFF * 1024 * 3
physbuff_value = PHYSBUFF * 1024 * 2

2. Calculate the estimated size of the resident portion in KB, using the following formula:

rsegsize = 1.02 * (locks_value + logbuff_value
 + physbuff_value + 1,200,000) / 1024

Copyright© 2020 HCL Technologies Limited

Estimating the size of the virtual portion of shared memory

You can use a formula to estimate the initial size of the virtual portion of shared memory. You specify the initial size in the SHMVIRTSIZE configuration parameter.

The formula for estimating an initial size of the virtual portion of shared memory is as follows:

shmvirtsize = fixed overhead + shared structures +
 (mncs * private structures) +
 other buffers

To estimate an SHMVIRTSIZE value with the preceding formula:

1. Estimate the value for the fixed overhead portion of the formula as follows:

fixed overhead = global pool +
 thread pool after booting

a. Run the onstat -g mem command to obtain the pool sizes allocated to sessions.
b. Subtract the value in the freesize field from the value in the totalsize to obtain the number of bytes allocated per session.
c. Estimate a value for the thread pool after booting variable. This variable is partially dependent on the number of virtual processors.

2. Estimate the value of shared structures with the following formula:

shared structures = AIO vectors + sort memory +
 dbspace backup buffers +
 data-dictionary cache size +
 size of user-defined routine cache +
 histogram pool +
 STMT_CACHE_SIZE (SQL statement cache) +
 other pools (See onstat display.)

3. Estimate the next part of the formula, as follows:
a. Estimate the value of mncs (which is the maximum number of concurrent sessions) with the following formula:

mncs = number of poll threads *
 number connections per poll thread

The value for number of poll threads is the value that you specify in the second field of the NETTYPE configuration parameter.

The value for number of connections per poll thread is the value that you specify in the third field of the NETTYPE configuration parameter.

You can also obtain an estimate of the maximum number of concurrent sessions when you run the onstat -u command during peak processing. The last line
of the onstat -u output contains the maximum number of concurrent user threads.

b. Estimate the value of private structures, as follows:

private structures = stack + heap +
 session control-block structures

stack
Generally 32 KB but dependent on recursion in user-defined routines. You can obtain the stack size for each thread with the onstat -g sts option.

heap

Part VI: Administering 1301

https://www.hcltech.com/
https://www.hcltech.com/

About 15 KB. You can obtain the heap size for an SQL statement when you use the onstat -g stm option.
session control-block structures

The amount of memory used per session. The onstat -g ses option displays the amount of memory, in bytes, in the total memory column listed for
each session id.

c. Multiply the results of steps 3a and 3b to obtain the following part of the formula:

mncs * private structures

4. Estimate the value of other buffers to account for private buffers allocated for features such as lightweight I/O operations for smart large objects (about 180 KB per
user).

5. Add the results of steps 1 through 4 to obtain an estimate for the SHMVIRTSIZE configuration parameter.

Tip: When the database server is running with a stable workload, you can use onstat -g seg to obtain a precise value for the actual size of the virtual portion of shared
memory. You can then use the value for shared memory that this command reports to reconfigure SHMVIRTSIZE.
To specify the size of segments that are added later to the virtual shared memory, set the SHMADD configuration parameter. Use the EXTSHMADD configuration parameter
to specify the size of virtual-extension segments that are added for user-defined routines and DataBlade routines.

The following table contains a list of additional topics for estimating the size of shared structures in memory.

Table 1. Information for shared-memory structures

Shared-Memory Structure More Information

Sort memory Estimating memory needed for sorting

Data-dictionary cache Data-dictionary configuration

Data-distribution cache (histogram pool) Data-distribution configuration

User-defined routine (UDR) cache SPL routine executable format stored in UDR cache

SQL statement cache Enabling the SQL statement cache Monitor and tune the SQL statement cache

Other pools To see how much memory is allocated to the different pools, use the onstat -g mem
command.

Related concepts:
 Session memory

Related information:
 SHMVIRTSIZE configuration parameter

NETTYPE configuration parameter
onstat -g mem command: Print pool memory statistics

Copyright© 2020 HCL Technologies Limited

Estimating the size of the message portion of shared memory

You can estimate the size of the message portion of shared memory in kilobytes.

Estimate the size of the message portion of shared memory, using the following formula:

msegsize = (10,531 * ipcshm_conn + 50,000)/1024

ipcshm_conn
is the number of connections that can be made using the shared-memory interface, as determined by the NETTYPE parameter for the ipcshm protocol.

Related information:
 NETTYPE configuration parameter

Copyright© 2020 HCL Technologies Limited

Configuring UNIX shared memory

On UNIX, you can configure shared-memory segments for the database server.

On UNIX, perform the following steps to configure the shared-memory segments that your database server configuration needs. For information about how to set
parameters related to shared memory, see the configuration instructions for your operating system.

To configure shared-memory segments for the database server:

1. If your operating system does not have a size limit for shared-memory segments, take the following actions:
a. Set the operating-system configuration parameter for maximum segment size, typically SHMMAX or SHMSIZE, to the total size that your database server

configuration requires. This size includes the amount of memory that is required to start your database server instance and the amount of shared memory
that you allocate for dynamic growth of the virtual portion.

b. Set the operating-system configuration parameter for the maximum number of segments, typically SHMMNI, to at least 1 per instance of the database
server.

2. If your operating system has a segment-size limit, take the following actions:
a. Set the operating-system configuration parameter for the maximum segment size, typically SHMMAX or SHMSIZE, to the largest value that your system

allows.
b. Use the following formula to calculate the number of segments for your instance of the database server. If there is a remainder, round up to the nearest

integer.

1302 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

SHMMNI = total_shmem_size / SHMMAX

total_shmem_size
is the total amount of shared memory that you allocate for the database server use.

3. Set the operating-system configuration parameter for the maximum number of segments, typically SHMMNI, to a value that yields the total amount of shared
memory for the database server when multiplied by SHMMAX or SHMSIZE. If your computer is dedicated to a single instance of the database server, that total can
be up to 90 percent of the size of virtual memory (physical memory plus swap space).

4. If your operating system uses the SHMSEG configuration parameter to indicate the maximum number of shared-memory segments that a process can attach, set
this parameter to a value that is equal to or greater than the largest number of segments that you allocate for any instance of the database server.

For additional tips on configuring shared memory in the operating system, see the machine notes file for UNIX or the release notes file for Windows.

Related concepts:
 The SHMADD and EXTSHMADD configuration parameters and memory utilization

Copyright© 2020 HCL Technologies Limited

Freeing shared memory with onmode -F

You can run the onmode -F command to free shared-memory segments that are unavailable or no longer needed for a process.

The database server does not automatically free the shared-memory segments that it adds during its operations. After memory has been allocated to the database server
virtual portion, the memory remains unavailable for use by other processes running on the host computer. When the database server runs a large decision-support query,
it might acquire a large amount of shared memory. After the query completes, the database server no longer requires that shared memory. However, the shared memory
that the database server allocated to service the query remains assigned to the virtual portion even though it is no longer needed.

The onmode -F command locates and returns unused 8-kilobyte blocks of shared memory that the database server still holds. Although this command runs only briefly
(one or two seconds), onmode -F dramatically inhibits user activity while it runs. Systems with multiple CPUs and CPU VPs typically experience less degradation while this
utility runs.

You should run onmode -F during slack periods with an operating-system scheduling facility (such as cron on UNIX). In addition, consider running this utility after you
perform any task that substantially increases the size of database server shared memory, such as large decision-support queries, index builds, sorts, or backup
operations.

Related information:
 onmode -F: Free unused memory segments

Copyright© 2020 HCL Technologies Limited

Configuration parameters that affect memory utilization

A large number of configuration parameters in the ONCONFIG file affect memory utilization and performance.

The following configuration parameters significantly affect memory utilization:

BUFFERPOOL
DS_NONPDQ_QUERY_MEM
DS_TOTAL_MEMORY
EXTSHMADD
LOCKS
LOGBUFF
LOW_MEMORY_MGR
LOW_MEMORY_RESERVE
PHYSBUFF
RESIDENT
SHMADD
SHMBASE
SHMTOTAL
SHMVIRTSIZE
SHMVIRT_ALLOCSEG
STACKSIZE
Memory cache parameters (see Configure and monitor memory caches)
Network buffer size (see Network buffer pools)

The SHMBASE parameter indicates the starting address for database server shared memory. When set according to the instructions in the machine notes file or release
notes file, this parameter has no appreciable effect on performance. For the path name of each file, see the Introduction to this guide.

The DS_NONPDQ_QUERY_MEM parameter increases the amount of memory that is available for non-PDQ queries. You can only use this parameter if PDQ priority is set to
zero. For more information, see Configuring memory for queries with hash joins, aggregates, and other memory-intensive elements.

The following sections describe the performance effects and considerations associated with some of the configuration parameters that are listed at the beginning of this
section.

Setting the size of the buffer pool, logical-log buffer, and physical-log buffer
 The values that you specify for the BUFFERPOOL, DS_TOTAL_MEMORY, LOGBUFF, and PHYSBUFF configuration parameters depend on the type of applications that

you are using (OLTP or DSS) and the page size.

Part VI: Administering 1303

https://www.hcltech.com/
https://www.hcltech.com/

The LOCKS configuration parameter and memory utilization
The LOCKS configuration parameter specifies the initial size of the lock table. The lock table holds an entry for each lock that a session uses. Each lock uses 120
bytes within a lock table. You must provide for this amount of memory when you configure shared memory.
The RESIDENT configuration parameter and memory utilization
The RESIDENT configuration parameter specifies whether shared-memory residency is enforced for the resident portion of database server shared memory. This
configuration parameter works only on computers that support forced residency.
The SHMADD and EXTSHMADD configuration parameters and memory utilization
The SHMADD configuration parameter specifies the size of each increment of shared memory that the database server dynamically adds to the virtual portion. The
EXTSHMADD configuration parameter specifies the size of a virtual-extension segment that is added when user-defined routines or DataBlade routines run in user-
defined virtual processors. Trade-offs are involved in determining the size of an increment.
The SHMTOTAL configuration parameter and memory utilization
The SHMTOTAL configuration parameter places an absolute upper limit on the amount of shared memory that an instance of the database server can use.
The SHMVIRTSIZE configuration parameter and memory utilization
The SHMVIRTSIZE parameter specifies the size of the virtual portion of shared memory to allocate when you start the database server. The virtual portion of shared
memory holds session- and request-specific data as well as other information.
The SHMVIRT_ALLOCSEG configuration parameter and memory utilization
The SHMVIRT_ALLOCSEG configuration parameter specifies a threshold at which the database server should allocate memory. This configuration parameter also
defines an alarm event security-code that is activated if the server cannot allocate the new memory segment, thus ensuring that the database server never runs out
of memory.
The STACKSIZE configuration parameter and memory utilization
The STACKSIZE configuration parameter indicates the initial stack size for each thread. The database server assigns the amount of space that this parameter
indicates to each active thread. This space comes from the virtual portion of database server shared memory. You can reduce the amount of shared memory that
the database server adds dynamically.

Related concepts:
 Resident portion of shared memory

Virtual portion of shared memory
Related information:

 LOW_MEMORY_MGR configuration parameter
LOW_MEMORY_RESERVE configuration parameter

Copyright© 2020 HCL Technologies Limited

Setting the size of the buffer pool, logical-log buffer, and physical-log buffer

The values that you specify for the BUFFERPOOL, DS_TOTAL_MEMORY, LOGBUFF, and PHYSBUFF configuration parameters depend on the type of applications that you
are using (OLTP or DSS) and the page size.

Table 1 lists suggested settings for these parameters or guidelines for setting the parameters.

For information about estimating the size of the resident portion of shared memory, see Estimating the size of the resident portion of shared memory. This calculation
includes figuring the size of the buffer pool, logical-log buffer, physical-log buffer, and lock table.

Table 1. Guidelines for OLTP and DSS applications
Configuration Parameter OLTP Applications DSS Applications

BUFFERPOOL The percentage of physical memory that you need for
buffer space depends on the amount of memory that is
available on your system and the amount of memory
that is used for other applications.

Set to a small buffer value and increase the
DS_TOTAL_MEMORY value for light scans, queries, and
sorts.
For operations such as index builds that read data
through the buffer pool, configure a larger number of
buffers.

DS_TOTAL_MEMORY Set to a value from 20 to 50 percent of the value of
SHMTOTAL, in kilobytes.

Set to a value from 50 to 90 percent of SHMTOTAL.

LOGBUFF The default value for the logical log buffer size is 64 KB.
If you decide to use a smaller value, the database server
generates a message a message that indicates that
optimal performance might not be obtained. Using a
logical log buffer smaller than 64 KB, impacts
performance, not transaction integrity.

If the database or application is defined to use buffered
logging, increasing the LOGBUFF size beyond 64 KB
improves performance.

Because database or table logging is usually turned off for
DSS applications, you can set LOGBUFF to 32 KB.

PHYSBUFF The default value for the physical log buffer size is 128
KB.
If the RTO_SERVER_RESTART configuration parameter
is enabled, use the 512 kilobyte default value for
PHYSBUFF.

If you decide to use a value that is smaller than the
default value, the database server generates a message
that indicates that optimal performance might not be
obtained. Using a physical log buffer that is smaller than
the default size impacts performance, not transaction
integrity.

Because most DSS applications do not physically log, you
can set PHYSBUFF to 32 KB.

1304 Part VI: Administering

https://www.hcltech.com/

The BUFFERPOOL configuration parameter and memory utilization
The BUFFERPOOL configuration parameter specifies the properties of buffer pools. The information that you define in the BUFFERPOOL configuration parameter
fields affects memory use.
The DS_TOTAL_MEMORY configuration parameter and memory utilization
The DS_TOTAL_MEMORY configuration parameter places a ceiling on the amount of shared memory that a query can obtain. You can use this parameter to limit the
performance impact of large, memory-intensive queries. The higher you set this parameter, the more memory a large query can use, and the less memory is
available for processing other queries and transactions.
The LOGBUFF configuration parameter and memory utilization
The LOGBUFF configuration parameter determines the amount of shared memory that is reserved for each of the three buffers that hold the logical-log records until
they are flushed to the logical-log file on disk. The size of a buffer determines how often it fills and therefore how often it must be flushed to the logical-log file on
disk.
The LOW_MEMORY_RESERVE configuration parameter and memory utilization
The LOW_MEMORY_RESERVE configuration parameter reserves a specific amount of memory, in kilobytes, for the database server to use when critical activities are
needed and the server has limited free memory.
The PHYSBUFF configuration parameter and memory utilization
The PHYSBUFF configuration parameter determines the amount of shared memory that is reserved for each of the two buffers that serve as temporary storage
space for data pages that are about to be modified. The size of a buffer determines how often it fills and therefore how often it must be flushed to the physical log
on disk.

Related information:
 BUFFERPOOL configuration parameter

DS_TOTAL_MEMORY configuration parameter
LOGBUFF configuration parameter
PHYSBUFF configuration parameter
RTO_SERVER_RESTART configuration parameter

Copyright© 2020 HCL Technologies Limited

The BUFFERPOOL configuration parameter and memory utilization

The BUFFERPOOL configuration parameter specifies the properties of buffer pools. The information that you define in the BUFFERPOOL configuration parameter fields
affects memory use.

You can have multiple buffer pools if you have dbspaces that use different page sizes. The onconfig configuration file contains a BUFFERPOOL line for each page size. For
example, on a computer with a 2 KB page size, the onconfig file can contain up to nine lines, including the default specification. When you create a dbspace with a different
page size, a buffer pool for that page size is created automatically, if it does not exist. A BUFFERPOOL entry for the page size is added to the onconfig file. The values of the
BUFFERPOOL configuration parameter fields are the same as the default specification.

The BUFFERPOOL configuration parameter controls the number of data buffers available to the database server. These buffers are in the buffer pool portion of shared
memory and are used to cache database data pages in memory.

Increasing the number of buffers increases the likelihood that a needed data page might already be in memory as the result of a previous request. However, allocating too
many buffers can affect the memory-management system and lead to excess operating system paging activity. To take advantage of the large memory available on 64-bit
addressing machines, you can increase the size of the buffer pool.

The size of the buffer pool has a significant effect on database I/O and transaction throughput. You can ensure that the buffer pool has enough buffers by making the
buffer pool extendable. When the buffer pool is extendable, the database server expands the buffer pool as needed to improve performance.

The size of the buffer pool is equal to the number of buffers multiplied by the page size. The percentage of physical memory that you need for buffer space depends on the
amount of memory that you have available on your system and the amount that is used for other applications. For systems with a large amount of available physical
memory (4 GB or more), buffer space might be as much as 90 percent of physical memory. For systems with smaller amounts of available physical memory, buffer space
might range from 20 to 25 percent of physical memory.

For example, suppose that your system has a page size of 2 KB and 100 MB of physical memory. You can set the value in the buffers field to 10,000 - 12,500, which
allocates 20 - 25 MB of memory.

Calculate all other shared-memory parameters after you specify the size of the buffer pool.

Note: If you use non-default page sizes, you might need to increase the size of your physical log. If you frequently update non-default pages, you might need a 150 - 200
percent increase of the physical log size. Some experimentation might be needed to tune the physical log. You can adjust the size of the physical log as necessary
according to how frequently the filling of the physical log triggers checkpoints.
You can use onstat -g buf to monitor buffer pool statistics, including the read-cache rate of the buffer pool. This rate represents the percentage of database pages that are
already present in a shared-memory buffer when a query requests a page. (If a page is not already present, the database server must copy it into memory from disk.) If
the database server finds the page in the buffer pool, it spends less time on disk I/O. Therefore, you want a high read-cache rate for good performance. For OLTP
applications where many users read small sets of data, the goal is to achieve a read cache rate of 95 percent or better. If the buffer pool is extendable, you can specify the
read cache hit ratio below which the database server extends the buffer pool.

Use the memory-management monitor utility in your operating system (such as vmstat or sar on UNIX) to note the level of page scans and paging-out activity. If these
levels rise suddenly or rise to unacceptable levels during peak database activity, reduce the size of the buffer pool.

Smart large objects and buffers
Depending upon your situation, you can take one of the following actions to achieve better performance for applications that use smart large objects:

If your applications frequently access smart large objects that are 2 KB or 4 KB in size, use the buffer pool to keep them in memory longer. Use the following
formula to increase the value of the buffers field:

Additional_buffers = numcur_open_lo *
 (lo_userdata / pagesize)

Part VI: Administering 1305

https://www.hcltech.com/

In this formula:
numcur_open_lo is the number of concurrently opened smart large objects that you can obtain from the onstat -g smb fdd command.
lo_userdata is the number of bytes of smart-large-object data that you want to buffer.
pagesize is the default page size in bytes for the computer.

As a rule, try to have enough buffers to hold two smart-large-object pages for each concurrently open smart large object. The additional page is available for read-
ahead purposes.

Use lightweight I/O buffers in the virtual portion of shared memory.
Use lightweight I/O buffers only when you read or write smart large objects in operations greater than 8000 bytes and seldom access them. That is, if the read or
write function calls read large amounts of data in a single-function invocation, use lightweight I/O buffers.

When you use lightweight I/O buffers, you can prevent the flood of smart large objects into the buffer pool and leave more buffers available for other data pages
that multiple users frequently access.

Related concepts:
 Lightweight I/O for smart large objects

BUFFERPOOL and its effect on page cleaning
Related information:

 BUFFERPOOL configuration parameter
Monitor buffers

Copyright© 2020 HCL Technologies Limited

The DS_TOTAL_MEMORY configuration parameter and memory utilization

The DS_TOTAL_MEMORY configuration parameter places a ceiling on the amount of shared memory that a query can obtain. You can use this parameter to limit the
performance impact of large, memory-intensive queries. The higher you set this parameter, the more memory a large query can use, and the less memory is available for
processing other queries and transactions.

For OLTP applications, set DS_TOTAL_MEMORY to 20 - 50 percent of the value of SHMTOTAL, in KB. For applications that involve large decision-support (DSS) queries,
increase the value of DS_TOTAL_MEMORY to 50 - 80 percent of SHMTOTAL. If you use your database server instance exclusively for DSS queries, set this parameter to 90
percent of SHMTOTAL.

A quantum unit is the minimum increment of memory that is allocated to a query. The Memory Grant Manager (MGM) allocates memory to queries in quantum units. The
database server uses the value of DS_MAX_QUERIES with the value of DS_TOTAL_MEMORY to calculate a quantum of memory, according to the following formula:

quantum = DS_TOTAL_MEMORY / DS_MAX_QUERIES

The database server can adjust the size of the quantum dynamically when it grants memory. To allow for more simultaneous queries with smaller quanta each, increase
the value of the DS_MAX_QUERIES configuration parameter.

Algorithm for determining DS_TOTAL_MEMORY
 The database server derives a value for DS_TOTAL_MEMORY if you do not set the DS_TOTAL_MEMORY configuration parameter or if you set this configuration

parameter to an inappropriate value.
Deriving a minimum for decision-support memory

 In the first part of the algorithm that the database server uses to derive the new value for the DS_TOTAL_MEMORY configuration parameter, the database server
establishes a minimum amount for decision-support memory.
Deriving a working value for decision-support memory

 In the second part of the algorithm that the database server uses to derive the new value for the DS_TOTAL_MEMORY configuration parameter, the database server
establishes a working value for the amount of decision-support memory.
Checking the derived value for decision-support memory

 In the final part of the algorithm that the database server uses to derive the new value for the DS_TOTAL_MEMORY configuration parameter, the database server
verifies that the amount of shared memory is greater than min_ds_total_memory and less than the maximum possible memory space for your computer.

Related concepts:
 The Memory Grant Manager

Limiting the performance impact of CPU-intensive queries
Related information:

 DS_TOTAL_MEMORY configuration parameter

Copyright© 2020 HCL Technologies Limited

Algorithm for determining DS_TOTAL_MEMORY

The database server derives a value for DS_TOTAL_MEMORY if you do not set the DS_TOTAL_MEMORY configuration parameter or if you set this configuration parameter
to an inappropriate value.

Whenever the database server changes the value that you assigned to DS_TOTAL_MEMORY, it sends the following message to your console:

DS_TOTAL_MEMORY recalculated and changed from old_value Kb
 to new_value Kb

The variable old_value represents the value that you assigned to DS_TOTAL_MEMORY in your configuration file. The variable new_value represents the value that the
database server derived.

When you receive the preceding message, you can use the algorithm to investigate what values the database server considers inappropriate. You can then take corrective
action based on your investigation.

The following sections document the algorithm that the database server uses to derive the new value for DS_TOTAL_MEMORY.

1306 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Deriving a minimum for decision-support memory

In the first part of the algorithm that the database server uses to derive the new value for the DS_TOTAL_MEMORY configuration parameter, the database server
establishes a minimum amount for decision-support memory.

When you assign a value to the DS_MAX_QUERIES configuration parameter, the database server sets the minimum amount of decision-support memory according to the
following formula:

min_ds_total_memory = DS_MAX_QUERIES * 128 kilobytes

When you do not assign a value to the DS_MAX_QUERIES configuration parameter, the database server uses the following formula instead, which is based on the value of
information in the VPCLASS configuration parameter:

min_ds_total_memory = NUMBER_CPUVPS * 2 * 128 kilobytes

Copyright© 2020 HCL Technologies Limited

Deriving a working value for decision-support memory

In the second part of the algorithm that the database server uses to derive the new value for the DS_TOTAL_MEMORY configuration parameter, the database server
establishes a working value for the amount of decision-support memory.

The database server verifies this amount in the third and final part of the algorithm.

When the DS_TOTAL_MEMORY configuration parameter is set
 When the DS_TOTAL_MEMORY configuration parameter is set, the database server checks whether the SHMTOTAL configuration parameter is set and then

determines which formula to use to calculate the amount of decision-support memory.
When the DS_TOTAL_MEMORY configuration parameter is not set

 When the DS_TOTAL_MEMORY configuration parameter is not set, the database server uses other sources to calculate a value for the amount of decision-support
memory.

Copyright© 2020 HCL Technologies Limited

When the DS_TOTAL_MEMORY configuration parameter is set

When the DS_TOTAL_MEMORY configuration parameter is set, the database server checks whether the SHMTOTAL configuration parameter is set and then determines
which formula to use to calculate the amount of decision-support memory.

When SHMTOTAL is set, the database server uses the following formula to calculate the amount of decision-support memory:

IF DS_TOTAL_MEMORY <= SHMTOTAL - nondecision_support_memory THEN
 decision_support_memory = DS_TOTAL_MEMORY
ELSE
 decision_support_memory = SHMTOTAL -
 nondecision_support_memory

This algorithm effectively prevents you from setting DS_TOTAL_MEMORY to values that the database server cannot possibly allocate to decision-support memory.

When SHMTOTAL is not set, the database server sets decision-support memory equal to the value that you specified in DS_TOTAL_MEMORY.

Related information:
 DS_TOTAL_MEMORY configuration parameter

Copyright© 2020 HCL Technologies Limited

When the DS_TOTAL_MEMORY configuration parameter is not set

When the DS_TOTAL_MEMORY configuration parameter is not set, the database server uses other sources to calculate a value for the amount of decision-support
memory.

When SHMTOTAL is set, the database server uses the following formula to calculate the amount of decision-support memory:

decision_support_memory = SHMTOTAL -
 nondecision_support_memory

When the database server finds that you did not set SHMTOTAL, it sets decision-support memory as in the following example:

decision_support_memory = min_ds_total_memory

For a description of the variable min_ds_total_memory, see Deriving a minimum for decision-support memory.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1307

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Checking the derived value for decision-support memory

In the final part of the algorithm that the database server uses to derive the new value for the DS_TOTAL_MEMORY configuration parameter, the database server verifies
that the amount of shared memory is greater than min_ds_total_memory and less than the maximum possible memory space for your computer.

When the database server finds that the derived value for decision-support memory is less than the value of the min_ds_total_memory variable, it sets decision-support
memory equal to the value of min_ds_total_memory.

When the database server finds that the derived value for decision-support memory is greater than the maximum possible memory space for your computer, it sets
decision-support memory equal to the maximum possible memory space.

Copyright© 2020 HCL Technologies Limited

The LOGBUFF configuration parameter and memory utilization

The LOGBUFF configuration parameter determines the amount of shared memory that is reserved for each of the three buffers that hold the logical-log records until they
are flushed to the logical-log file on disk. The size of a buffer determines how often it fills and therefore how often it must be flushed to the logical-log file on disk.

If you log smart large objects, increase the size of the logical-log buffers to prevent frequent flushing to the logical-log file on disk.

Related reference:
 Configuration parameters that affect critical data

Related information:
 LOGBUFF configuration parameter

Copyright© 2020 HCL Technologies Limited

The LOW_MEMORY_RESERVE configuration parameter and memory utilization

The LOW_MEMORY_RESERVE configuration parameter reserves a specific amount of memory, in kilobytes, for the database server to use when critical activities are
needed and the server has limited free memory.

If you enable the new LOW_MEMORY_RESERVE configuration parameter by setting it to a specified value in kilobytes, critical activities, such as rollback activities, can
complete even when you receive out-of-memory errors.

Related information:
 LOW_MEMORY_RESERVE configuration parameter

onstat -g seg command: Print shared memory segment statistics

Copyright© 2020 HCL Technologies Limited

The PHYSBUFF configuration parameter and memory utilization

The PHYSBUFF configuration parameter determines the amount of shared memory that is reserved for each of the two buffers that serve as temporary storage space for
data pages that are about to be modified. The size of a buffer determines how often it fills and therefore how often it must be flushed to the physical log on disk.

Choose a value for PHYSBUFF that is an even increment of the system page size.

Related information:
 PHYSBUFF configuration parameter

Copyright© 2020 HCL Technologies Limited

The LOCKS configuration parameter and memory utilization

The LOCKS configuration parameter specifies the initial size of the lock table. The lock table holds an entry for each lock that a session uses. Each lock uses 120 bytes
within a lock table. You must provide for this amount of memory when you configure shared memory.

If the number of locks needed by sessions exceeds the value set in the LOCKS configuration parameter, the database server attempts to increase the lock table by
doubling its size. Each time that the lock table overflows (when the number of locks needed is greater than the current size of the lock table), the database server
increases the size of the lock table, up to 99 times. Each time that the database server increases the size of the lock table, the server attempts to double its size. However,
the server will limit each actual increase to no more than the maximum number of added locks shown in Table 1. After the 99th time that the database server increases
the lock table, the server no longer increases the size of the lock table, and an application needing a lock receives an error.

The following table shows the maximum number of locks allowed on 32-bit and 64-bit platforms

Table 1. Maximum number of locks on 32-bit and 64-bit platforms

Platform Maximum Number of
Initial Locks

Maximum Number of Dynamic Lock
Table Extensions

Maximum Number of Locks Added Per Lock
Table Extension

Maximum Number of Locks
Allowed

1308 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Platform Maximum Number of
Initial Locks

Maximum Number of Dynamic Lock
Table Extensions

Maximum Number of Locks Added Per Lock
Table Extension

Maximum Number of Locks
Allowed

32-bit 8,000,000 99 100,000 8,000,000 + (99 x 100,000)

64-bit 500,000,000 99 1,000,000 500,000,000 + (99 x
1,000,000)

The default value for the LOCKS configuration parameter is 20,000.

To estimate a different value for the LOCKS configuration parameter, estimate the maximum number of locks that a query needs and multiply this estimate by the number
of concurrent users. You can use the guidelines in the following table to estimate the number of locks that a query needs.

Locks per
Statement

Isolation Level Table Row Key TEXT or BYTE Data CLOB or BLOB Data

SELECT Dirty Read 0 0 0 0 0

SELECT Committed Read 1 0 0 0 0

SELECT Cursor Stability 1 1 0 0 1 lock for the CLOB or BLOB value or
(if byte-range locking is used) 1 lock
for each range

SELECT Indexed Repeatable Read 1 Number of rows
that satisfy
conditions

Number of rows
that satisfy
conditions

0 1 lock for the CLOB or BLOB value or
(if byte-range locking is used) 1 lock
for each range

SELECT Sequential Repeatable Read 1 0 0 0 1 lock for the CLOB or BLOB value or
(if byte-range locking is used) 1 lock
for each range

INSERT Not applicable 1 1 Number of
indexes

Number of pages in
TEXT or BYTE data

1 lock for the CLOB or BLOB value

DELETE Not applicable 1 1 Number of
indexes

Number of pages in
TEXT or BYTE data

1 lock for the CLOB or BLOB value

UPDATE Not applicable 1 1 2 per changed
key value

Number of pages in
old plus new TEXT or
BYTE data

1 lock for the CLOB or BLOB value or
(if byte-range locking is used) 1 lock
for each range

Important: During the execution of the SQL statement DROP DATABASE, the database server acquires and holds a lock on each table in the database until the entire DROP
operation completes. Make sure that the value for LOCKS is large enough to accommodate the largest number of tables in a database.
Related concepts:

 Configuring and managing lock usage
Related information:

 LOCKS configuration parameter

Copyright© 2020 HCL Technologies Limited

The RESIDENT configuration parameter and memory utilization

The RESIDENT configuration parameter specifies whether shared-memory residency is enforced for the resident portion of database server shared memory. This
configuration parameter works only on computers that support forced residency.

The resident portion in the database server contains the buffer pools that are used for database read and write activity. Performance improves when these buffers remain
in physical memory.

You should set the RESIDENT parameter to 1. If forced residency is not an option on your computer, the database server issues an error message and ignores this
configuration parameter.

On machines that support 64-bit addressing, you can have a very large buffer pool and the virtual portion of database server shared memory can also be very large. The
virtual portion contains various memory caches that improve performance of multiple queries that access the same tables (see Configure and monitor memory caches). To
make the virtual portion resident in physical memory in addition to the resident portion, set the RESIDENT parameter to -1.

If your buffer pool is very large, but your physical memory is not very large, you can set RESIDENT to a value greater than 1 to indicate the number of memory segments to
stay in physical memory. This specification makes only a subset of the buffer pool resident.

You can turn residency on or off for the resident portion of shared memory in the following ways:

Use the onmode utility to reverse temporarily the state of shared-memory residency while the database server is online.
Change the RESIDENT parameter to turn shared-memory residency on or off the next time that you start database server shared memory.

Related information:
 RESIDENT configuration parameter

Copyright© 2020 HCL Technologies Limited

The SHMADD and EXTSHMADD configuration parameters and memory utilization

The SHMADD configuration parameter specifies the size of each increment of shared memory that the database server dynamically adds to the virtual portion. The
EXTSHMADD configuration parameter specifies the size of a virtual-extension segment that is added when user-defined routines or DataBlade routines run in user-defined

Part VI: Administering 1309

https://www.hcltech.com/
https://www.hcltech.com/

virtual processors. Trade-offs are involved in determining the size of an increment.

Adding shared memory uses CPU cycles. The larger each increment, the fewer increments are required, but less memory is available for other processes. Adding large
increments is generally preferred; but when memory is heavily loaded (the scan rate or paging-out rate is high), smaller increments allow better sharing of memory
resources among competing programs.

The range of values for SHMADD is 1024 through 4294967296 KB for a 64-bit operating system and 1024 through 524288 KB for a 32-bit operating system. The following
table contains recommendations for setting SHMADD according to the size of physical memory.

Memory Size SHMADD Value

256 MB or less 8192 KB (the default)

257 - 512 MB 16,384 KB

Larger than 512 MB 32,768 KB

The range of values for EXTSHMADD is the same as the range of values of SHMADD.

Note: A shared memory segment can be as large as 4 terabytes, depending on platform limits and the value of the SHMMAX kernel parameter. Use the onstat -g seg
command to display the number of shared-memory segments that the database server is currently using.
Related tasks:

 Configuring UNIX shared memory
Related information:

 SHMADD configuration parameter
EXTSHMADD configuration parameter

Copyright© 2020 HCL Technologies Limited

The SHMTOTAL configuration parameter and memory utilization

The SHMTOTAL configuration parameter places an absolute upper limit on the amount of shared memory that an instance of the database server can use.

If the SHMTOTAL configuration parameter is set to 0 or left unassigned, the database server continues to attach additional shared memory as needed until no virtual
memory is available on the system.

You can usually set the SHMTOTAL configuration parameter to 0, except in the following cases:

You must limit the amount of virtual memory that the database server uses for other applications or other reasons.
Your operating system runs out of swap space and performs abnormally. In this case, you can set SHMTOTAL to a value that is a few megabytes less than the total
swap space that is available on your computer.
You are using automatic low memory management.

Related information:
 SHMTOTAL configuration parameter

Copyright© 2020 HCL Technologies Limited

The SHMVIRTSIZE configuration parameter and memory utilization

The SHMVIRTSIZE parameter specifies the size of the virtual portion of shared memory to allocate when you start the database server. The virtual portion of shared
memory holds session- and request-specific data as well as other information.

Although the database server adds increments of shared memory to the virtual portion as needed to process large queries or peak loads, allocation of shared memory
increases time for transaction processing. Therefore, you should set SHMVIRTSIZE to provide a virtual portion large enough to cover your normal daily operating
requirements. The size of SHMVIRTSIZE can be as large the SHMMAX configuration parameter allows.

The maximum value of SHMVIRTSIZE, which must be a positive integer, is:

4 terabytes on a 64-bit database server
2 gigabytes on a 32-bit database server

For an initial setting, it is suggested that you use the larger of the following values:

8000
connections * 350

The connections variable is the number of connections for all network types that are specified in the sqlhosts information by one or more NETTYPE configuration
parameters. (The database server uses connections * 200 by default.)

Once system utilization reaches a stable workload, you can reconfigure a new value for SHMVIRTSIZE. As noted in Freeing shared memory with onmode -F, you can
instruct the database server to release shared-memory segments that are no longer in use after a peak workload or large query.

Related information:
 SHMVIRTSIZE configuration parameter

Copyright© 2020 HCL Technologies Limited

The SHMVIRT_ALLOCSEG configuration parameter and memory utilization
1310 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The SHMVIRT_ALLOCSEG configuration parameter specifies a threshold at which the database server should allocate memory. This configuration parameter also defines
an alarm event security-code that is activated if the server cannot allocate the new memory segment, thus ensuring that the database server never runs out of memory.

When you set the SHMVIRT_ALLOCSEG configuration parameter, you must:

Specify the percentage of memory used or the whole number of kilobytes remaining on the server. You cannot use negative values and values between 0 and .39.
Specify the alarm event-security code, which is a value ranging from 1 (not noteworthy) to 5 (fatal). If you do not specify an event-security code, the server sets the
value to 3, which is the default value.

Example 1:

SHMVIRT_ALLOCSEG 3000, 4

This specifies that if the database serve has 3000 kilobytes remaining in virtual memory and additional kilobytes of memory cannot be allocated, the server raises an
alarm level of 4.
Example 2:

SHMVIRT_ALLOCSEG .8, 4

This specifies that if the database server has twenty percent remaining in virtual memory and additional kilobytes of memory cannot be allocated, the server raises an
alarm level of 4.
Related information:

 Event Alarm Parameters
SHMVIRT_ALLOCSEG configuration parameter

Copyright© 2020 HCL Technologies Limited

The STACKSIZE configuration parameter and memory utilization

The STACKSIZE configuration parameter indicates the initial stack size for each thread. The database server assigns the amount of space that this parameter indicates to
each active thread. This space comes from the virtual portion of database server shared memory. You can reduce the amount of shared memory that the database server
adds dynamically.

To reduce the amount of shared memory that the database server adds dynamically, estimate the amount of the stack space required for the average number of threads
that your system runs and include that amount in the value that you set for the SHMVIRTSIZE configuration parameter.

To estimate the amount of stack space that you require, use the following formula:

stacktotal = STACKSIZE * avg_no_of_threads

avg_no_of_threads
is the average number of threads. You can monitor the number of active threads at regular intervals to determine this amount. Use onstat -g sts to check the stack
use of threads. A general estimate is between 60 and 70 percent of the total number of connections (specified in the NETTYPE parameters in your ONCONFIG file),
depending on your workload.

The database server also executes user-defined routines (UDRs) with user threads that use this stack. Programmers who write user-defined routines should take the
following measures to avoid stack overflow:

Do not use large automatic arrays.
Avoid excessively deep calling sequences.
For DB-Access only: Use mi_call to manage recursive calls.

If you cannot avoid stack overflow with these measures, use the STACK modifier of the CREATE FUNCTION statement to increase the stack for a particular routine.

Related information:
 STACKSIZE configuration parameter

Copyright© 2020 HCL Technologies Limited

Configure and monitor memory caches

The database server uses caches to store information in memory instead of performing a disk read or another operation to obtain the information. These memory caches
improve performance for multiple queries that access the same tables. You can set some configuration parameters to increase the effectiveness of each cache. You can
view information about memory caches by running onstat commands.

The following table lists the main memory caches that have the greatest effect on performance and how to configure and monitor those caches.

Table 1. Main memory caches

Cache Name Cache Description Configuration Parameters onstat command

Data Dictionary Stores information about the table definition (such as
column names and data types).

DD_HASHSIZE: The maximum number of buckets in
the cache.
DD_HASHMAX: The number of tables in each bucket

onstat -g dic

Data Distribution Stores distribution statistics for a column. DS_POOLSIZE: The maximum number of entries in
the cache.
DS_HASHSIZE: The number of buckets in the cache.

onstat -g dsc

Part VI: Administering 1311

https://www.hcltech.com/
https://www.hcltech.com/

Cache Name Cache Description Configuration Parameters onstat command

SQL Statement Stores parsed and optimized SQL statements. STMT_CACHE: Enable the SQL statement cache.
STMT_CACHE_HITS: The number of times anSQL
statement is run before it is cached.

STMT_CACHE_NOLIMIT: Prohibit entries into the
SQL statement cache when allocated memory
exceeds the value of the STMT_CACHE_SIZE
configuration parameter.

STMT_CACHE_NUMPOOL: The number of memory
pools for the SQL statement cache.

STMT_CACHE_SIZE: The size of the SQL statement
cache, in KB.

onstat -g ssc

UDR Stores frequently used user-defined routines and SPL
routines.

PC_POOLSIZE: The maximum number of user-
defined routines and SPL routines in the cache.
PC_HASHSIZE: The number of buckets in the UDR
cache.

onstat -g prc

The following table lists more memory caches and how to configure and monitor those caches.

Table 2. Additional memory caches

Cache Name Cache Description Configuration Parameters onstat command

Access method Stores user-defined access methods. None. onstat -g cac am

Aggregate Stores user-defined aggregates. DS_POOLSIZE
DS_HASHSIZE

onstat -g cac agg

AQT dictionary Stores accelerated query tables that the database server
uses to determine which queries can be processed by
Informix® Warehouse Accelerator.

None. onstat -g cac aqt

Cast Stores user-defined casts. DS_POOLSIZE
DS_HASHSIZE

onstat -g cac cast

External directives Stores external directives. None. onstat -g cac ed

LBAC security policy
information

Stores LBAC security policies. PLCY_POOLSIZE
PLCY_HASHSIZE

onstat -g cac
lbacplcy

LBAC credential memory Stores LBAC credentials. USRC_POOLSIZE
USRC_HASHSIZE

onstat -g cac
lbacusrc

Operator class instance Stores user-defined operator classes. DS_POOLSIZE
DS_HASHSIZE

onstat -g cac opci

Procedure name Stores user-defined routine and SPL routine names. PC_POOLSIZE
PC_HASHSIZE

onstat -g cac prn

Routine resolution Stores user-defined routine resolution information. DS_POOLSIZE
DS_HASHSIZE

onstat -g cac rr

Secondary transient Stores transient unnamed complex data types on secondary
servers in a high-availability cluster.

DS_POOLSIZE
DS_HASHSIZE

onstat -g cac ttype

Extended type ID Stores the IDs of user-defined types. DS_POOLSIZE
DS_HASHSIZE

onstat -g cac typei

Extended type name Stores the name of user-defined types. DS_POOLSIZE
DS_HASHSIZE

onstat -g cac typen

Data-dictionary cache
 The first time that the database server accesses a table, it retrieves the information that it needs about the table (such as the column names and data types) from

the system catalog tables on disk. After the database server has accessed the table, it places that information in the data-dictionary cache in shared memory.
Data-distribution cache

 The query optimizer uses distribution statistics generated by the UPDATE STATISTICS statement in the MEDIUM or HIGH mode to determine the query plan with
the lowest cost. The first time that the optimizer accesses the distribution statistics for a column, the database server retrieves the statistics from the sysdistrib
system catalog table on disk and places that information in the data-distribution cache in memory.
Monitor and tune the SQL statement cache

 The SQL statement cache stores optimized SQL statements so that multiple users who run the same SQL statement can achieve some performance improvements.

Related concepts:
 SPL routine executable format stored in UDR cache

Related information:
 onstat -g cac command: Print information about caches

onstat -g dsc command: Print distribution cache information
onstat -g prc command: Print sessions using UDR or SPL routines
onstat -g ssc command: Print SQL statement occurrences
Database configuration parameters

Copyright© 2020 HCL Technologies Limited

1312 Part VI: Administering

https://www.hcltech.com/

Data-dictionary cache

The first time that the database server accesses a table, it retrieves the information that it needs about the table (such as the column names and data types) from the
system catalog tables on disk. After the database server has accessed the table, it places that information in the data-dictionary cache in shared memory.

Figure 1 shows how the database server uses this cache for multiple users. User 1 accesses the column information for tabid 120 for the first time. The database server
puts the column information in the data-dictionary cache. When user 2, user 3 and user 4 access the same table, the database server does not have to read from disk to
access the data-dictionary information for the table. Instead, it reads the dictionary information from the data-dictionary cache in memory.
Figure 1. Data-dictionary cache

The database server still places pages for system catalog tables in the buffer pool, as it does all other data and index pages. However, the data-dictionary cache offers an
additional performance advantage, because the data-dictionary information is organized in a more efficient format and organized to allow fast retrieval.

Data-dictionary configuration
 The database server uses a hashing algorithm to store and locate information within the data-dictionary cache. The DD_HASHSIZE and DD_HASHMAX configuration

parameters control the size of the data-dictionary cache.

Copyright© 2020 HCL Technologies Limited

Data-dictionary configuration

The database server uses a hashing algorithm to store and locate information within the data-dictionary cache. The DD_HASHSIZE and DD_HASHMAX configuration
parameters control the size of the data-dictionary cache.

To modify the number of buckets in the data-dictionary cache, use DD_HASHSIZE (must be a prime number). To modify the number of tables that can be stored in one
bucket, use DD_HASHMAX.

For medium to large systems, you can start with the following values for these configuration parameters:

DD_HASHSIZE: 503
DD_HASHMAX: 4

With these values, you can potentially store information about 2012 tables in the data-dictionary cache, and each hash bucket can have a maximum of 4 tables.

If the bucket reaches the maximum size, the database server uses a least recently used mechanism to clear entries from the data dictionary.

Related information:
 DD_HASHSIZE configuration parameter

DD_HASHMAX configuration parameter

Copyright© 2020 HCL Technologies Limited

Data-distribution cache

The query optimizer uses distribution statistics generated by the UPDATE STATISTICS statement in the MEDIUM or HIGH mode to determine the query plan with the
lowest cost. The first time that the optimizer accesses the distribution statistics for a column, the database server retrieves the statistics from the sysdistrib system
catalog table on disk and places that information in the data-distribution cache in memory.

Figure 1 shows how the database server accesses the data-distribution cache for multiple users. When the optimizer accesses the column distribution statistics for User 1
for the first time, the database server puts the distribution statistics in the data-distribution cache. When the optimizer determines the query plan for user 2, user 3 and
user 4 who access the same column, the database server does not have to read from disk to access the data-distribution information for the table. Instead, it reads the
distribution statistics from the data-distribution cache in shared memory.
Figure 1. Data-distribution cache

The database server initially places pages for the sysdistrib system catalog table in the buffer pool as it does all other data and index pages. However, the data-
distribution cache offers additional performance advantages. It:

Is organized in a more efficient format
Is organized to allow fast retrieval
Bypasses the overhead of the buffer pool management

Part VI: Administering 1313

https://www.hcltech.com/
https://www.hcltech.com/

Frees more pages in the buffer pool for actual data pages rather than system catalog pages
Reduces I/O operations to the system catalog table

Data-distribution configuration
 The database server uses a hashing algorithm to store and locate information within the data-distribution cache. The DS_POOLSIZE configuration parameter

controls the size of the data-distribution cache and controls the total number of column distributions that can be stored in the data-distribution cache. The value of
the DS_POOLSIZE configuration parameter represents half of the maximum number of distributions in the data distribution cache.

Copyright© 2020 HCL Technologies Limited

Data-distribution configuration

The database server uses a hashing algorithm to store and locate information within the data-distribution cache. The DS_POOLSIZE configuration parameter controls the
size of the data-distribution cache and controls the total number of column distributions that can be stored in the data-distribution cache. The value of the DS_POOLSIZE
configuration parameter represents half of the maximum number of distributions in the data distribution cache.

To modify the number of buckets in the data-distribution cache, use the DS_HASHSIZE configuration parameter.

For example, with the default values of 127 for DS_POOLSIZE and 31 for DS_HASHSIZE, you can potentially store distributions for about 254 columns in the data-
distribution cache. When the cache is full, the database server automatically increases the size of the cache by 10%.

The values that you set for DS_HASHSIZE and DS_POOLSIZE, depend on the following factors:

The number of columns for which you run the UPDATE STATISTICS statement in HIGH or MEDIUM mode and you expect to be used most often in frequently run
queries.
If you do not specify columns when you run UPDATE STATISTICS for a table, the database server generates distributions for all columns in the table.

You can use the values of DD_HASHSIZE and DD_HASHMAX as guidelines for DS_HASHSIZE and DS_POOLSIZE. The DD_HASHSIZE and DD_HASHMAX specify the
size for the data-dictionary cache, which stores information and statistics about tables that queries access.

For medium to large systems, you can start with the following values:

DD_HASHSIZE 503
DD_HASHMAX 4
DS_HASHSIZE 503
DS_POOLSIZE 1000

Monitor these caches by running the onstat -g dsc command to see the actual usage, and you can adjust these parameters accordingly.

The amount of memory available
The amount of memory that is required to store distributions for a column depends on the level at which you run UPDATE STATISTICS. Distributions for a single
column might require between 1 KB and 2 MB, depending on whether you specify medium or high mode or enter a finer resolution percentage when you run
UPDATE STATISTICS.

If the size of the data-distribution cache is too small, the following performance problems can occur:

The database server uses the DS_POOLSIZE value to determine when to remove entries from the data-distribution cache. However, if the optimizer needs the
dropped distributions for another query, the database server must reaccess them from the sysdistrib system catalog table on disk. The additional I/O and buffer
pool operations to access sysdistrib on disk adds to the total response time of the query.
The database server tries to maintain the number of entries in data-distribution cache at the DS_POOLSIZE value. If the total number of entries reaches within an
internal threshold of DS_POOLSIZE, the database server uses a least recently used mechanism to remove entries from the data-distribution cache. The number of
entries in a hash bucket can go past this DS_POOLSIZE value, but the database server eventually reduces the number of entries when memory requirements drop.

If DS_HASHSIZE is small and DS_POOLSIZE is large, overflow lists can be long and require more search time in the cache.
Overflow occurs when a hash bucket already contains an entry. When multiple distributions hash to the same bucket, the database server maintains an overflow list
to store and retrieve the distributions after the first one.

If DS_HASHSIZE and DS_POOLSIZE are approximately the same size, the overflow lists might be smaller or even nonexistent, which might waste memory. However,
the amount of unused memory is insignificant overall.

You might want to change the values of the DS_HASHSIZE and DS_POOLSIZE configuration parameters if you see the following situations:

If the data-distribution cache is full most of the time and commonly used columns are not listed in the distribution name field, try increasing the values of the
DS_HASHSIZE and DS_POOLSIZE configuration parameters.
If the total number of entries is much lower than the value of the DS_POOLSIZE configuration parameter, you can reduce the values of the DS_HASHSIZE and
DS_POOLSIZE configuration parameters.
If the number of hits are not evenly distributed among hash lists, increase the number of hash lists by increasing the value of the DS_HASHSIZE configuration
parameter. Adjust the number of hash lists to have the least number of high hit entries per hash list.

Related information:
 DD_HASHSIZE configuration parameter

DD_HASHMAX configuration parameter
DS_POOLSIZE configuration parameter
onstat -g dsc command: Print distribution cache information

Copyright© 2020 HCL Technologies Limited

Monitor and tune the SQL statement cache

1314 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

The SQL statement cache stores optimized SQL statements so that multiple users who run the same SQL statement can achieve some performance improvements.

These performance improvements are:

Reduced response times because they bypass the optimization step, as Figure 1 shows
Reduced memory usage because the database server shares query data structures among users

For more information about the effect of the SQL statement cache on the performance of individual queries, see Optimize queries with the SQL statement cache.

Figure 1 shows how the database server accesses the SQL statement cache for multiple users.

When the database server runs an SQL statement for User 1 for the first time, the database server checks whether the same exact SQL statement is in the SQL
statement cache. If it is not in the cache, the database server parses the statement, determines the optimal query plan, and runs the statement.
When User 2 runs the same SQL statement, the database server finds the statement in the SQL statement cache and does not optimize the statement.
Similarly, if User 3 and User 4 run the same SQL statement, the database server does not optimize the statement. Instead, it uses the query plan in the SQL
statement cache in memory.
Figure 1. Database server actions when using the SQL statement cache

Prepared statements and the statement cache
 Prepared statements are inherently cached for a single session. This means that if a prepared statement is executed many times or if a single cursor is opened

many times, the session uses the same prepared query plan.
SQL statement cache configuration

 The value of the STMT_CACHE configuration parameter enables or disables the SQL statement cache.
Number of SQL statement executions

 When the SQL statement cache is enabled, the database server inserts a qualified SQL statement and its memory structures immediately in the SQL statement
cache by default.
Monitoring and tuning the size of the SQL statement cache

 If the size of the SQL statement cache is too small, performance problems can occur. You can monitor the effectiveness of the size of the SQL statement cache.
Memory limit and size

 Although the database server tries to clean the SQL statement cache, sometimes entries cannot be removed because they are currently in use. In this case, the size
of the SQL statement cache can exceed the value of the STMT_CACHE_SIZE configuration parameter.
Multiple SQL statement cache pools

 Under some circumstances when the SQL statement cache is enabled, the database server allocates memory from one pool for query structures.
SQL statement cache information in onstat -g ssc output

 The onstat -g ssc command displays summary information for the SQL statement cache.

Copyright© 2020 HCL Technologies Limited

Prepared statements and the statement cache

Prepared statements are inherently cached for a single session. This means that if a prepared statement is executed many times or if a single cursor is opened many
times, the session uses the same prepared query plan.

If a session prepares a statement and then executes it many times, the SQL statement cache does not affect performance, because the statement is optimized just once
during the PREPARE statement.

However, if other sessions also prepare that same statement, or if the first session prepares the statement several times, the statement cache usually provides a direct
performance benefit, because the database server only calculates the query plan once. Of course, the original session might gain a small benefit from the statement
cache, even if it only prepares the statement once, because other sessions use less memory, and the database server does less work for the other sessions

Copyright© 2020 HCL Technologies Limited

SQL statement cache configuration

Part VI: Administering 1315

https://www.hcltech.com/
https://www.hcltech.com/

The value of the STMT_CACHE configuration parameter enables or disables the SQL statement cache.

For more information about how the value of the STMT_CACHE configuration parameter enables the SQL statement cache, see Enabling the SQL statement cache
describes.

Figure 1 shows how the database server uses the values of the pertinent configuration parameters for the SQL statement cache. Further explanation follows the figure.
Figure 1. Configuration parameters that affect the SQL statement cache

When the database server uses the SQL statement cache for a user, it means the database server takes the following actions:

Checks the SQL statement cache first for a match of the SQL statement that the user is executing
If the SQL statement matches an entry, executes the statement using the query memory structures in the SQL statement cache (User 2 in Figure 1)
If the SQL statement does not match an entry, the database server checks if it qualifies for the cache.
For information about what qualifies an SQL statement for the cache, see SQL statement cache qualifying criteria.

If the SQL statement qualifies, inserts an entry into the cache for subsequent executions of the statement.

The following parameters affect whether or not the database server inserts the SQL statement into the cache (User 1 in Figure 1):

STMT_CACHE_HITS specifies the number of times the statement executes with an entry in the cache (referred to as hit count). The database server inserts one of
the following entries, depending on the hit count:

If the value of STMT_CACHE_HITS is 0, inserts a fully cached entry, which contains the text of the SQL statement plus the query memory structures
If the value of STMT_CACHE_HITS is not 0 and the statement does not exist in the cache, inserts a key-only entry that contains the text of the SQL statement.
Subsequent executions of the SQL statement increment the hit count.
If the value of STMT_CACHE_HITS is equal to the number of hits for a key-only entry, adds the query memory structures to make a fully cached entry.

STMT_CACHE_SIZE specifies the size of the SQL statement cache, and STMT_CACHE_NOLIMIT specifies whether or not to limit the memory of the cache to the
value of STMT_CACHE_SIZE. If you do not specify the STMT_CACHE_SIZE parameter, it defaults to 524288 (512 * 1024) bytes.
The default value for STMT_CACHE_NOLIMIT is 1, which means the database server will insert entries into the SQL statement cache even though the total amount
of memory might exceed the value of STMT_CACHE_SIZE.

When STMT_CACHE_NOLIMIT is set to 0, the database server inserts the SQL statement into the cache if the current size of the cache will not exceed the memory
limit.

The following sections on STMT_CACHE_HITS, STMT_CACHE_SIZE, STMT_CACHE_NOLIMIT, STMT_CACHE_NUMPOOL and provide more details on how the following
configuration parameters affect the SQL statement cache and reasons why you might want to change their default values.

Copyright© 2020 HCL Technologies Limited

Number of SQL statement executions

When the SQL statement cache is enabled, the database server inserts a qualified SQL statement and its memory structures immediately in the SQL statement cache by
default.

If your workload has a disproportionate number of ad hoc queries, use the STMT_CACHE_HITS configuration parameter to specify the number of times an SQL statement
is executed before the database server places a fully cached entry in the statement cache.

When the STMT_CACHE_HITS configuration parameter is greater than 0 and the number of times the SQL statement has been executed is less than STMT_CACHE_HITS,
the database server inserts key-only entries in the cache. This specification minimizes unshared memory structures from occupying the statement cache, which leaves
more memory for SQL statements that applications use often.

Monitor the number of hits on the SQL statement cache to determine if your workload is using this cache effectively. The following sections describe ways to monitor the
SQL statement cache hits.

1316 Part VI: Administering

https://www.hcltech.com/

Monitoring the number of hits on the SQL statement cache
To monitor the number of hits in the SQL statement cache, run the onstat -g ssc command.
Determining the number of nonshared entries in the SQL statement cache
To determine how many nonshared entries exist in the SQL statement cache, run onstat -g ssc all.

Related concepts:
 Too many single-use queries in the SQL statement cache

Related information:
 STMT_CACHE_HITS configuration parameter

Copyright© 2020 HCL Technologies Limited

Monitoring the number of hits on the SQL statement cache

To monitor the number of hits in the SQL statement cache, run the onstat -g ssc command.

The onstat -g ssc command displays fully cached entries in the SQL statement cache. Figure 1 shows sample output for onstat -g ssc.
Figure 1. onstat -g ssc output

onstat -g ssc

Statement Cache Summary:
#lrus currsize maxsize Poolsize #hits nolimit
4 49456 524288 57344 0 1

Statement Cache Entries:

lru hash ref_cnt hits flag heap_ptr database user
----------------- ---- --
 0 153 0 0 -F a7e4690 vjp_stores virginia
 SELECT * FROM customer, orders
 WHERE customer.customer_num = orders.customer_num
 AND order_date > "01/01/07"

 1 259 0 0 -F aa58c20 vjp_stores virginia
 SELECT * FROM customer, orders
 WHERE customer.customer_num = orders.customer_num
 AND order_date > "01/01/2007"

 2 232 0 1 DF aa3d020 vjp_stores virginia
 SELECT C.customer_num, O.order_num
 FROM customer C, orders O, items I
 WHERE C.customer_num = O.customer_num
 AND O.order_num = I.order_num

 3 232 1 1 -F aa8b020 vjp_stores virginia
 SELECT C.customer_num, O.order_num
 FROM customer C, orders O, items I
 WHERE C.customer_num = O.customer_num
 AND O.order_num = I.order_num

 Total number of entries: 4.

To monitor the number of times that the database server reads the SQL statement within the cache, look at the following output columns:

In the Statement Cache Summary portion of the onstat -g ssc output, the #hits column is the value of the SQL_STMT_HITS configuration parameter.
In Figure 1, the #hits column in the Statement Cache Summary portion of the output has a value of 0, which is the default value of the STMT_CACHE_HITS
configuration parameter.

Important: The database server uses entries in the SQL statement cache only if the statements are exactly the same. The first two entries in Figure 1 are not the
same because each contains a different literal value in the order_date filter.
In the Statement Cache Entries portion of the onstat -g ssc output, the hits column shows the number of times that the database server ran each individual
SQL statement from the cache. In other words, the column shows the number of times that the database server uses the memory structures in the cache instead of
optimizing the statements to generate them again.
The first time that it inserts the statement in the cache, the hits value is 0.

The first two SQL statements in Figure 1 have a hits column value of 0, which indicates that each statement is inserted into the cache but not yet run from
the cache.
The last two SQL statements in Figure 1 have a hits column value of 1, which indicates that these statements ran once from the cache.

The hits value for individual entries indicates how much sharing of memory structures is done. Higher values in the hits column indicate that the SQL statement
cache is useful in improving performance and memory usage.

For a complete description of the output fields that onstat -g ssc displays, see SQL statement cache information in onstat -g ssc output.

Copyright© 2020 HCL Technologies Limited

Determining the number of nonshared entries in the SQL statement cache

To determine how many nonshared entries exist in the SQL statement cache, run onstat -g ssc all.

Part VI: Administering 1317

https://www.hcltech.com/
https://www.hcltech.com/

The onstat -g ssc all option displays the key-only entries in addition to the fully cached entries in the SQL statement cache.

To determine how many nonshared entries exist in the cache:

1. Compare the onstat -g ssc all output with the onstat -g ssc output.
2. If the difference between these two outputs shows that many nonshared entries exist in the SQL statement cache, increase the value of the STMT_CACHE_HITS

configuration parameter to allow more shared statements to reside in the cache and reduce the management overhead of the SQL statement cache.

You can use one of the following methods to change the STMT_CACHE_HITS parameter value:

Update the ONCONFIG file to specify the STMT_CACHE_HITS configuration parameter. You must restart the database server for the new value to take effect.
You can use a text editor to edit the ONCONFIG file. Then bring down the database server with the onmode -ky command and restart with the oninit command.

Increase the STMT_CACHE_HITS configuration parameter dynamically while the database server is running:
You can use any of the following methods to reset the STMT_CACHE_HITS value at run time:

Issue the onmode -W command. The following example specifies that three (3) instances are required before a new query is added to the statement cache:

onmode -W STMT_CACHE_HITS 2

Call the ADMIN or TASK function of the SQL administration API. The following example is equivalent to the onmode command in the previous example:

EXECUTE FUNCTION TASK("ONMODE", "W", "STMT_CACHE_HITS", "2");

If you increase STMT_CACHE_HITS dynamically without updating the configuration file, and the database server is subsequently restarted, the STMT_CACHE_HITS
setting reverts the value in the ONCONFIG file. Therefore, if you want the setting to persist after subsequent restarts, modify the ONCONFIG file.

Copyright© 2020 HCL Technologies Limited

Monitoring and tuning the size of the SQL statement cache

If the size of the SQL statement cache is too small, performance problems can occur. You can monitor the effectiveness of the size of the SQL statement cache.

The following performance problems can occur:

Frequently executed SQL statements are not in the cache
The statements used most often should remain in the SQL statement cache. If the SQL statement cache is not large enough, the database server might not have
enough room to keep these statements when other statements come into the cache. For subsequent executions, the database server must reparse, reoptimize, and
reinsert the SQL statement into the cache. Try increasing STMT_CACHE_SIZE.

The database server spends a lot of time cleaning the SQL statement cache
The database server tries to prevent the SQL statement cache from allocating large amounts of memory by using a threshold (70 percent of the STMT_CACHE_SIZE
parameter) to determine when to remove entries from the SQL statement cache. If the new entry causes the size of the SQL statement cache to exceed the
threshold, the database server removes least recently used entries (that are not currently in use) before inserting the new entry.

However, if a subsequent query needs the removed memory structures, the database server must reparse and reoptimize the SQL statement. The additional
processing time to regenerate these memory structures adds to the total response time of the query.

You can set the size of the SQL statement cache in memory with the STMT_CACHE_SIZE configuration parameter. The value of the parameter is the size in kilobytes. If
STMT_CACHE_SIZE is not set, the default value is 512 kilobytes.

The onstat -g ssc output shows the value of STMT_CACHE_SIZE in the maxsize column. In Figure 1, this maxsize column has a value of 524288, which is the default
value (512 * 1024 = 524288).

Use the onstat -g ssc and onstat -g ssc all options to monitor the effectiveness of size of the SQL statement cache. If you do not see cache entries for the SQL statements
that applications use most, the SQL statement cache might be too small or too many unshared SQL statement occupy the cache. The following sections describe how to
determine these situations.

Changing the size of the SQL statement cache
 You can analyze onstat -g ssc all output to determine if the SQL statement cache is too small. If the size of the cache is too small, you can change it.

Too many single-use queries in the SQL statement cache
 When the database server places many queries that are only used once in the cache, they might replace statements that other applications use often. You can view

onstat -g ssc all output to determine if too many unshared SQL statements occupy the cache. If so, you can prevent unshared SQL statements from being fully
cached.

Related information:
 STMT_CACHE_SIZE configuration parameter

Copyright© 2020 HCL Technologies Limited

Changing the size of the SQL statement cache

You can analyze onstat -g ssc all output to determine if the SQL statement cache is too small. If the size of the cache is too small, you can change it.

To determine if the size of the SQL statement cache is too small:

1. Run onstat -g ssc all to determine if the cache is too small.
2. Look at the values in the following output columns in the Statement Cache Entries portion of the onstat -g ssc all output:

The flags column shows the current status of an SQL statement in the cache.
A value of F in the second position indicates that the statement is currently fully cached.

1318 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

A value of - in the second position indicates that only the statement text (key-only entry) is in the cache. Entries with this - value in the second position
appear in the onstat -g ssc all output, but not in the onstat -g ssc output.

The hits column shows the number of times the SQL statement has been executed, excluding the first time it is inserted into the cache.
If you do not see fully cached entries for statements that applications use most and the value in the hits column is large for the entries that do occupy the cache,
then the SQL statement cache is too small.

To change the size of the SQL statement cache:

1. Update the value of the STMT_CACHE_SIZE configuration parameter.
2. Restart the database server for the new value to take effect.

Related information:
 STMT_CACHE_SIZE configuration parameter

Copyright© 2020 HCL Technologies Limited

Too many single-use queries in the SQL statement cache

When the database server places many queries that are only used once in the cache, they might replace statements that other applications use often. You can view onstat
-g ssc all output to determine if too many unshared SQL statements occupy the cache. If so, you can prevent unshared SQL statements from being fully cached.

Look at the values in the following output columns in the Statement Cache Entries portion of the onstat -g ssc all output. If you see a lot of entries that have both of
the following values, too many unshared SQL statements occupy the cache:

flags column value of F in the second position
A value of F in the second position indicates that the statement is currently fully cached.

hits column value of 0 or 1
The hits column shows the number of times the SQL statement has been executed, excluding the first time it is inserted into the cache.

Increase the value of the STMT_CACHE_HITS configuration parameter to prevent unshared SQL statements from being fully cached.

Related concepts:
 Number of SQL statement executions

Related information:
 STMT_CACHE_HITS configuration parameter

Copyright© 2020 HCL Technologies Limited

Memory limit and size

Although the database server tries to clean the SQL statement cache, sometimes entries cannot be removed because they are currently in use. In this case, the size of the
SQL statement cache can exceed the value of the STMT_CACHE_SIZE configuration parameter.

The default value of the STMT_CACHE_NOLIMIT configuration parameter is 1, which means the database server inserts the statement even though the current size of the
cache might be greater than the value of the STMT_CACHE_SIZE parameter.

If the value of the STMT_CACHE_NOLIMIT configuration parameter is 0, the database server does not insert either a fully-qualified or key-only entry into the SQL
statement cache if the size will exceed the value of STMT_CACHE_SIZE.

Use the onstat -g ssc option to monitor the current size of the SQL statement cache. Look at the values in the following output columns of the onstat -g ssc output:

The currsize column shows the number of bytes currently allocated in the SQL statement cache.
In Figure 1, the currsize column has a value of 11264.

The maxsize column shows the value of STMT_CACHE_SIZE.
In Figure 1, the maxsize column has a value of 524288, which is the default value (512 * 1024 = 524288).

When the SQL statement cache is full and users are currently executing all statements within it, any new SQL statements that a user executes can cause the SQL
statement cache to grow beyond the size that STMT_CACHE_SIZE specifies. When the database server is no longer using an SQL statement within the SQL statement
cache, it frees memory in the SQL statement cache until the size reaches a threshold of STMT_CACHE_SIZE. However, if thousands of concurrent users are executing
several ad hoc queries, the SQL statement cache can grow very large before any statements are removed. In such cases, take one of the following actions:

Set the STMT_CACHE_NOLIMIT configuration parameter to 0 to prevent insertions when the cache size exceeds the value of the STMT_CACHE_SIZE parameter.
Set the STMT_CACHE_HITS parameter to a value greater than 0 to prevent caching unshared SQL statements.

You can use one of the following methods to change the STMT_CACHE_NOLIMIT configuration parameter value:

Update the ONCONFIG file to specify the STMT_CACHE_NOLIMIT configuration parameter. You must restart the database server for the new value to take effect.
Use the onmode -W command to override the STMT_CACHE_NOLIMIT configuration parameter dynamically while the database server is running.

onmode -W STMT_CACHE_NOLIMIT 0

If you restart the database server, the value reverts the value in the ONCONFIG file. Therefore, if you want the setting to remain for subsequent restarts, modify the
ONCONFIG file.

Related information:
 STMT_CACHE_HITS configuration parameter

Part VI: Administering 1319

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Multiple SQL statement cache pools

Under some circumstances when the SQL statement cache is enabled, the database server allocates memory from one pool for query structures.

These circumstances are:

When the database server does not find a matching entry in the cache
When the database server finds a matching key-only entry in the cache and the hit count reaches the value of the STMT_CACHE_HITS configuration parameter

This one pool can become a bottleneck as the number of users increases. The STMT_CACHE_NUMPOOL configuration parameter allows you to configure multiple
sscpools.

You can monitor the pools in the SQL statement cache to determine the following situations:

The number of SQL statement cache pools is sufficient for your workload.
The size or limit of the SQL statement cache is not causing excessive memory management.

Number of SQL statement cache pools
 When the SQL statement cache (SSC) is enabled, the database server allocates memory from the SSC pool for unlinked SQL statements. The default value for the

STMT_CACHE_NUMPOOL configuration parameter is 1. As the number of users increases, this one SSC pool might become a bottleneck.
Size of SQL statement cache pools and the current cache

 Use the onstat -g ssc pool option to monitor the usage of each SQL statement cache (SSC) pool.

Related information:
 STMT_CACHE_NUMPOOL configuration parameter

Copyright© 2020 HCL Technologies Limited

Number of SQL statement cache pools

When the SQL statement cache (SSC) is enabled, the database server allocates memory from the SSC pool for unlinked SQL statements. The default value for the
STMT_CACHE_NUMPOOL configuration parameter is 1. As the number of users increases, this one SSC pool might become a bottleneck.

The number of longspins on the SSC pool indicates whether or not the SSC pool is a bottleneck.

Use the onstat -g spi option to monitor the number of longspins on an SSC pool. The onstat -g spi command displays a list of the resources in the system for which a wait
was required before a latch on the resource could be obtained. During the wait, the thread spins (or loops), trying to acquire the resource. The onstat -g spi output
displays the number of times a wait (Num Waits column) was required for the resource and the number of total loops (Num Loops column). The onstat -g spi output
displays only resources that have at least one wait.

Figure 1 shows an excerpt of sample output for onstat -g spi. Figure 1 indicates that no waits occurred for any SSC pool (the Name column does not list any SSC pools).
Figure 1. onstat -g spi output

Spin locks with waits:
Num Waits Num Loops Avg Loop/Wait Name
34477 387761 11.25 mtcb sleeping_lock
312 10205 32.71 mtcb vproc_list_lock

If you see an excessive number of longspins (Num Loops column) on an SSC pool, increase the number of SSC pools in the STMT_CACHE_NUMPOOL configuration
parameter to improve performance.

Related information:
 STMT_CACHE_NUMPOOL configuration parameter

Copyright© 2020 HCL Technologies Limited

Size of SQL statement cache pools and the current cache

Use the onstat -g ssc pool option to monitor the usage of each SQL statement cache (SSC) pool.

The onstat -g ssc pool command displays the size of each pool. The onstat -g ssc option displays the cumulative size of the SQL statement cache in the currsize column.
This current size is the size of memory allocated from the SSC pools by the statements that are inserted into the cache. Because not all statements that allocate memory
from the SSC pools are inserted into the cache, the current cache size could be smaller than the total size of the SSC pools. Normally, the total size of all SSC pools does
not exceed the STMT_CACHE_SIZE value.

Figure 1 shows sample output for onstat -g ssc pool.
Figure 1. onstat -g ssc pool output

onstat -g ssc pool

Pool Summary:
name class addr totalsize freesize #allocfrag #freefrag
sscpool0 V a7e4020 57344 2352 52 7

1320 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Blkpool Summary:
name class addr size #blks

The Pool Summary section of the onstat -g ssc pool output lists the following information for each pool in the cache.

Column Description

name The name of the SQL statement cache (SSC) pool

class The shared-memory segment type in which the pool has been created. For SSC pools, this value is always “V” for the virtual portion of shared-
memory.

addr The shared-memory address of the SSC pool structure

totalsize The total size, in bytes, of this SSC pool

freesize the number of free bytes in this SSC pool

#allocfrag The number of contiguous areas of memory in this SSC pool that are allocated

#freefrag The number of contiguous areas of memory that are not used in this SSC pool

The Blkpool Summary section of the onstat -g ssc pool output lists the following information for all pools in the cache.

Column Description

name The name of the SSC pool

class The shared-memory segment type in which the pool has been created. For SSC pools, this value is always “V” for the virtual portion of shared-
memory.

addr The shared-memory address of the SSC pool structure

totalsize The total size, in bytes, of this SSC pool

#blks The number of 8-kilobyte blocks that make up all the SSC pools

Copyright© 2020 HCL Technologies Limited

SQL statement cache information in onstat -g ssc output

The onstat -g ssc command displays summary information for the SQL statement cache.

The onstat -g ssc command displays the following information for the SQL statement cache.

Table 1. SQL statement cache information in onstat -g ssc output

Column Description

#lrus The number of LRU queues. Multiple LRU queues facilitate concurrent lookup and insertion of cache entries.

currsize The number of bytes currently allocated to entries in the SQL statement cache

maxsize The number of bytes specified in the STMT_CACHE_SIZE configuration parameter

poolsize The cumulative number of bytes for all pools in the SQL statement cache. Use the onstat -g ssc pool option to monitor individual pool usage.

#hits Setting of the STMT_CACHE_HITS configuration parameter, which specifies the number of times that a query is executed before it is inserted into the
cache

nolimit Setting of STMT_CACHE_NOLIMIT configuration parameter

The onstat -g ssc command lists the following information for each fully cached entry in the cache. The onstat -g ssc all option lists the following information for both the
fully cached entries and key-only entries.

Column Description

lru The LRU identifier

hash The hash-bucket identifier

ref_cnt The number of sessions currently using this statement

hits The number of times that users read the query from the cache, excluding the first time the statement entered the cache

Part VI: Administering 1321

https://www.hcltech.com/

Column Description

flags Shows flag codes.
The flag codes for position 1 are:

D
Indicates that the statement has been dropped
A statement in the cache can be dropped (not used any more) when one of its dependencies has changed. For example, when you run UPDATE
STATISTICS for the table, the optimizer statistics might change, making the query plan for the SQL statement in the cache obsolete. In this case,
the database server marks the statement as dropped the next time that it tries to use it.

-
Indicates that the statement has not been dropped

The flag codes for position 2 are:

F
Indicates that the cache entry is fully cached and contains the memory structures for the query

I
Indicates that the statement is in the process of being moved to a fully cached state

-
Indicates that the statement is not fully cached
A statement is not fully cached when the number of times the statement has been executed is less than the value of the STMT_CACHE_HITS
configuration parameter. Entries with this - value in the second position appear in the onstat -g ssc all but not in the onstat -g ssc output.

heap_ptr Pointer to the associated heap for the statement

database Database against which the SQL statement is executed

user User executing the SQL statement

statement Statement text as it would be used to test for a match

Copyright© 2020 HCL Technologies Limited

Session memory

The database server uses the virtual portion of shared memory mainly for user sessions. Most of the memory that each user session allocates is for SQL statements. You
can determine which session and which statements are using large amounts of memory. If necessary, you can set the SESSION_LIMIT_MEMORY configuration parameter
to limit the amount of memory available to a session.

Use the following utility options to determine which session and prepared SQL statements are using large amounts of memory:

onstat -g mem
onstat -g stm

The onstat -g mem option displays memory usage of all sessions. You can find the session that is using the most memory by looking at the totalsize and freesize output
columns. The following figure shows sample output for onstat -g mem. This sample output shows the memory use for three user sessions with the values 14, 16, 17 in the
names output column.
Figure 1. onstat -g mem output

onstat -g mem

Pool Summary:
name class addr totalsize freesize #allocfrag #freefrag
...
14 V a974020 45056 11960 99 10
16 V a9ea020 90112 10608 159 5
17 V a973020 45056 11304 97 13
...
Blkpool Summary:
name class addr size #blks
mt V a235688 798720 19
global V a232800 0 0

To display the memory that is allocated by each prepared statement, use the onstat -g stm option. The following figure shows sample output for onstat -g stm.
Figure 2. onstat -g stm output

onstat -g stm

session 25 --
 sdblock heapsz statement (‘*' = Open cursor)
 d36b018 9216 select sum(i) from t where i between -1 and ?
 d378018 6240 *select tabname from systables where tabid=7
 d36b114 8400 <SPL statement>

The heapsz column in the output in Figure 2 shows the amount of memory that is used by the statement. An asterisk (*) precedes the statement text if a cursor is open on
the statement. The output does not show the individual SQL statements in an SPL routine.

To display the memory for only one session, specify the session ID in the onstat -g stm option. For an example, see Monitor session memory with onstat -g mem and
onstat -g stm output.

Set the SESSION_LIMIT_MEMORY configuration parameter to limit how much memory a session can allocate, and can prevent individual sessions from monopolizing
system resources. This limit does not apply to a user who holds administrative privileges, such as user informix or a DBSA user.

1322 Part VI: Administering

https://www.hcltech.com/

For example, to limit each session to 10 MB of memory, set SESSION_LIMIT_MEMORY 102400 in the ONCONFIG file.

Related tasks:
 Estimating the size of the virtual portion of shared memory

Related information:
 SESSION_LIMIT_MEMORY configuration parameter

Copyright© 2020 HCL Technologies Limited

Data-replication buffers and memory utilization

Data replication requires two instances of the database server, a primary one and a secondary one, running on two computers. If you implement data replication for your
database server, the database server holds logical-log records in the data-replication buffer before it sends them to the secondary database server.

The data-replication buffer is always the same size as the logical-log buffer.

Copyright© 2020 HCL Technologies Limited

Memory latches

The database server uses latches to control access to shared memory structures such as the buffer pool or the memory pools for the SQL statement cache. You can obtain
statistics on latch use and information about specific latches. These statistics provide a measure of the system activity.

The statistics include the number of times that threads waited to obtain a latch. A large number of latch waits typically results from a high volume of processing activity in
which the database server is logging most of the transactions.

Information about specific latches includes a listing of all the latches that are held by a thread and any threads that are waiting for latches. This information allows you to
locate any specific resource contentions that exist.

You, as the database administrator, cannot configure or tune the number of latches. However, you can increase the number of memory structures on which the database
server places latches to reduce the number of latch waits. For example, you can tune the number of SQL statement cache memory pools or the number of SQL statement
cache LRU queues. For more information, see Multiple SQL statement cache pools.
Warning: Never stop a database server process that is holding a latch. If you do, the database server immediately initiates an abort.

Monitoring latches with command-line utilities
 You can obtain information about latches by running onstat -p or onstat -s.

Monitoring latches with SMI tables
 You can query the sysprofile SMI table to obtain the number of times a thread waited for a latch.

Copyright© 2020 HCL Technologies Limited

Monitoring latches with command-line utilities

You can obtain information about latches by running onstat -p or onstat -s.

Monitoring latches with onstat -p
 Run onstat -p to obtain the values in the lchwaits field. This field stores the number of times that a thread was required to wait for a shared-memory latch.

Monitoring latches with onstat -s
 Run onstat -s to obtain general latch information. The output includes the userthread column, which lists the address of any user thread that is waiting for a latch.

Copyright© 2020 HCL Technologies Limited

Monitoring latches with onstat -p

Run onstat -p to obtain the values in the lchwaits field. This field stores the number of times that a thread was required to wait for a shared-memory latch.

Figure 1 shows an excerpt of sample onstat -p output that shows the lchwaits field.
Figure 1. Partial onstat -p output showing the lchwaits field

...
ixda-RA idx-RA da-RA logrec-RA RA-pgsused lchwaits
5 0 204 0 148 12

Related information:
 onstat -p command: Print profile counts

Copyright© 2020 HCL Technologies Limited

Monitoring latches with onstat -s

Part VI: Administering 1323

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Run onstat -s to obtain general latch information. The output includes the userthread column, which lists the address of any user thread that is waiting for a latch.

You can compare this address with the user addresses in the onstat -u output to obtain the user-process identification number.

Figure 1 shows sample onstat -s output.
Figure 1. onstat -s output

...
Latches with lock or userthread set
name address lock wait userthread
LRU1 402e90 0 0 6b29d8
bf[34] 4467c0 0 0 6b29d8
...

Copyright© 2020 HCL Technologies Limited

Monitoring latches with SMI tables

You can query the sysprofile SMI table to obtain the number of times a thread waited for a latch.

The latchwts column of the sysprofile table contains the number of times that a thread waited for a latch.

Copyright© 2020 HCL Technologies Limited

Encrypted values

An encrypted value uses more storage space than the corresponding plain text value because all of the information needed to decrypt the value except the encryption key
is stored with the value.

Omitting the hint used with the password can reduce encryption overhead by up to 50 bytes. If you are using encrypted values, you must make sure that you have
sufficient space available for the values.
Note: Embedding zero bytes in the encrypted result is not recommended.
Related information:

 Column-level encryption
Calculating storage requirements for encrypted data

Copyright© 2020 HCL Technologies Limited

Effect of configuration on I/O activity

The configuration of your database server affects I/O activity.

The following factors affect I/O activity:

The assignment of chunks and dbspaces can create I/O hot spots, or disk partitions with a disproportionate amount of I/O activity.
Your allocation of critical data, sort areas, and areas for temporary files and index builds can place intermittent loads on various disks.
How you configure read-ahead can increase the effectiveness of individual I/O operations.
How you configure the background I/O tasks, such as logging and page cleaning, can affect I/O throughput.

Chunk and dbspace configuration
 The number of disks that you use and the configuration of your chunks, dbspaces, and blobspaces affect the performance of your database server. You can improve

performance by planning disk use and the configuration of chunks, dbspaces, and blobspaces.
I/O for cooked files for dbspace chunks

 On UNIX, you can control the use of direct I/O for cooked files used for dbspace chunks.
Placement of critical data

 The disk or disks that contain the system reserved pages, the physical log, and the dbspaces that contain the logical-log files are critical to the operation of the
database server. The database server cannot operate if any of these elements becomes unavailable. By default, the database server places all three critical
elements in the root dbspace.
Configuration parameters that affect critical data

 The configuration parameters that configure the root dbspace and the logical and physical logs affect critical data.
Configure dbspaces for temporary tables and sort files

 Applications that use temporary tables or large sort operations require a large amount of temporary space. To improve performance of these applications, use the
DBSPACETEMP configuration parameter or the DBSPACETEMP environment variable to designate one or more dbspaces for temporary tables and sort files.
Configure sbspaces for temporary smart large objects

 Applications can use temporary smart large objects for text, image, or other user-defined data types that are only required during the life of the user session. These
applications do not require logging of the temporary smart large objects. Logging adds I/O activity to the logical log and increases memory utilization.
Placement of simple large objects

 You can store simple large objects in either the same dbspace in which the table resides or in a blobspace.
Factors that affect I/O for smart large objects

 An sbspace is a logical storage unit, composed of one or more chunks, in which you can store smart large objects (such as BLOB, CLOB, or multi representational
data). Disk layout for sbspaces, the settings of certain configuration parameters, and some onspaces utility options affect I/O for smart large objects.
Table I/O

 One of the most frequent functions that the database server performs is to bring data and index pages from disk into memory. Pages can be read individually for

1324 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

brief transactions and sequentially for some queries. You can configure the number of pages that the database server brings into memory, and you can configure
the timing of I/O requests for sequential scans.
Configuration parameters that affect table I/O
The AUTO_READAHEAD configuration parameter changes the automatic read-ahead mode or disables automatic read-ahead for a query. In addition, the DATASKIP
configuration parameter enables or disables data skipping.
Background I/O activities
Background I/O activities do not service SQL requests directly. Many of these activities are essential to maintain database consistency and other aspects of
database server operation. However, they create overhead in the CPU and take up I/O bandwidth.

Copyright© 2020 HCL Technologies Limited

Chunk and dbspace configuration

The number of disks that you use and the configuration of your chunks, dbspaces, and blobspaces affect the performance of your database server. You can improve
performance by planning disk use and the configuration of chunks, dbspaces, and blobspaces.

All the data that resides in a database is stored on disk. The speed at which the database server can copy the appropriate data pages to and from disk determines how
well your application performs.

Disks are typically the slowest component in the I/O path for a transaction or query that runs entirely on one host computer. Network communication can also introduce
delays in client/server applications, but these delays are typically outside the control of the database server administrator. For information about actions that the database
server administrator can take to improve network communications, see Network buffer pools and Connections and CPU utilization.

Disks can become overused or saturated when users request pages too often. Saturation can occur in the following situations:

You use a disk for multiple purposes, such as for both logging and active database tables.
Disparate data resides on the same disk.
Table extents become interleaved.

The various functions that your application requires, as well as the consistency-control functions that the database server performs, determine the optimal disk, chunk,
and dbspace layout for your application. The more disks that you make available to the database server, the easier it is to balance I/O across them. For more information
about these factors, see Table performance considerations.

This section outlines important issues for the initial configuration of your chunks, dbspaces, and blobspaces. Consider the following issues when you decide how to lay out
chunks and dbspaces on disks:

Placement and mirroring of critical data
Load balancing
Reduction of contention
Ease of backup and restore

Together with round-robin fragmentation, you can balance chunks over disks and controllers, saving time and handling errors. Placing multiple chunks on a single disk can
improve throughput.

Associate disk partitions with chunks
 You should assign chunks to entire disk partitions. When a chunk coincides with a disk partition (or device), it is easy to track disk-space use, and you avoid errors

caused by miscalculated offsets.
Associate dbspaces with chunks

 You should associate a single chunk with a dbspace, especially when that dbspace is to be used for a table fragment.
Placing system catalog tables with database tables

 When a disk that contains the system catalog for a particular database fails, the entire database remains inaccessible until the system catalog is restored. Because
of this potential inaccessibility, do not cluster the system catalog tables for all databases in a single dbspace. Instead place the system catalog tables with the
database tables that they describe.

Copyright© 2020 HCL Technologies Limited

Associate disk partitions with chunks

You should assign chunks to entire disk partitions. When a chunk coincides with a disk partition (or device), it is easy to track disk-space use, and you avoid errors caused
by miscalculated offsets.

The maximum size for a chunk is 4 terabytes.

Copyright© 2020 HCL Technologies Limited

Associate dbspaces with chunks

You should associate a single chunk with a dbspace, especially when that dbspace is to be used for a table fragment.

For more information about table placement and layout, see Table performance considerations.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1325

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Placing system catalog tables with database tables

When a disk that contains the system catalog for a particular database fails, the entire database remains inaccessible until the system catalog is restored. Because of this
potential inaccessibility, do not cluster the system catalog tables for all databases in a single dbspace. Instead place the system catalog tables with the database tables
that they describe.

To create a system catalog table in the table dbspace:

1. Create a database in the dbspace in which the table is to reside.
2. Use the SQL statements DATABASE or CONNECT to make that database the current database.
3. Enter the CREATE TABLE statement to create the table.

Copyright© 2020 HCL Technologies Limited

I/O for cooked files for dbspace chunks

On UNIX, you can control the use of direct I/O for cooked files used for dbspace chunks.

On UNIX, you can allocate disk space in two ways:

Use files that are buffered through the operating system. These files are often called cooked files.
Use unbuffered disk access, also called raw disk space.

When dbspaces reside on raw disk devices (also called character-special devices), the database server uses unbuffered disk access. A raw disk directly transfers data
between the database server memory and disk without also copying data.

While you should generally use raw disk devices on UNIX systems to achieve better performance, you might prefer to use cooked files, which are easier to allocate and
manage than raw devices. If you use cooked files, you might be able to get better performance by enabling the Informix® direct I/O option.

In addition, Informix supports a separate concurrent I/O option on AIX® operating systems. If you enable concurrent I/O on AIX, you get both unbuffered I/O and
concurrent I/O. With concurrent I/O, writing to two parts of a file can occur concurrently. (On some other operating systems and file systems, enabling direct I/O also
enables concurrent I/O as part of the same file system direct I/O feature.)

To determine the best performance, perform benchmark testing for the dbspace and table layout on your system.

Direct I/O (UNIX)
 On UNIX, you can use direct I/O to improve the performance of cooked files. Direct I/O can be beneficial because it avoids file system buffering. Because direct I/O

uses unbuffered I/O, it is more efficient for reads and writes that go to disk (as opposed to those reads and writes that merely access the file system buffers).
Direct I/O (Windows)

 Direct I/O is used for dbspace chunks on Windows platforms regardless of the value of the DIRECT_IO configuration parameter.
Concurrent I/O (AIX only)

 On AIX operating systems, you can use concurrent I/O in addition to direct I/O for chunks that use cooked files. Concurrent I/O can improve performance, because
it allows multiple reads and writes to a file to occur concurrently, without the usual serialization of noncompeting read and write operations.
Enabling the direct I/O or concurrent I/O option (UNIX)

 Use the DIRECT_IO configuration parameter to enable the direct I/O option on UNIX or the concurrent I/O option on AIX.
Confirming the use of the direct or concurrent I/O option (UNIX)

 You can confirm and monitor the use of direct I/O or concurrent I/O (on AIX) for cooked file chunks.

Copyright© 2020 HCL Technologies Limited

Direct I/O (UNIX)

On UNIX, you can use direct I/O to improve the performance of cooked files. Direct I/O can be beneficial because it avoids file system buffering. Because direct I/O uses
unbuffered I/O, it is more efficient for reads and writes that go to disk (as opposed to those reads and writes that merely access the file system buffers).

Direct I/O generally requires data to be aligned on disk sector boundaries.

Direct I/O also allows the use of kernel asynchronous I/O (KAIO), which can further improve performance. By using direct I/O and KAIO where available, the performance
of cooked files used for dbspace chunks can approach the performance of raw devices.

If your file system supports direct I/O for the page size used for the dbspace chunk, the database server operates as follows:

Does not use direct I/O by default.
Uses direct I/O if the DIRECT_IO configuration parameter is set to 1.
Uses KAIO (if the file system supports it) with direct I/O by default.
Does not use KAIO with direct I/O if the environment variable KAIOOFF is set.

If Informix® uses direct I/O for a chunk, and another program tries to open the chunk file without using direct I/O, the open will normally succeed, but there can be a
performance penalty. The penalty can occur because the file system attempts to ensure that each open sees the same file data, either by switching to buffered I/O and not
using direct I/O for the duration of the conflicting open, or by flushing the file system cache before each direct I/O operation and invalidating the file system cache after
each direct write.

Informix does not use direct I/O for temporary dbspaces.

Related information:
 DIRECT_IO configuration parameter (UNIX)

1326 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Direct I/O (Windows)

Direct I/O is used for dbspace chunks on Windows platforms regardless of the value of the DIRECT_IO configuration parameter.

Copyright© 2020 HCL Technologies Limited

Concurrent I/O (AIX only)

On AIX® operating systems, you can use concurrent I/O in addition to direct I/O for chunks that use cooked files. Concurrent I/O can improve performance, because it
allows multiple reads and writes to a file to occur concurrently, without the usual serialization of noncompeting read and write operations.

Concurrent I/O can be especially beneficial when you have data in a single chunk file striped across multiple disks.

Concurrent I/O, which you enable by setting the DIRECT_IO configuration parameter to 2, includes the benefit of avoiding file system buffering and is subject to the same
limitations and use of KAIO as occurs if you use direct I/O without concurrent I/O. Thus, when concurrent I/O is enabled, you get both unbuffered I/O and concurrent I/O.

If Informix® uses concurrent I/O for a chunk, and another program (such as an external backup program) tries to open the same chunk file without using concurrent I/O,
the open operation will fail.

Informix does not use direct or concurrent I/O for cooked files used for temporary dbspace chunks.

Related information:
 DIRECT_IO configuration parameter (UNIX)

Copyright© 2020 HCL Technologies Limited

Enabling the direct I/O or concurrent I/O option (UNIX)

Use the DIRECT_IO configuration parameter to enable the direct I/O option on UNIX or the concurrent I/O option on AIX®.

Prerequisites:

You must log on as user root or informix.
Direct I/O or concurrent I/O must be available and the file system must support direct I/O for the page size used for the dbspace chunk.

To enable direct I/O, set the DIRECT_IO configuration parameter to 1.

To enable concurrent I/O with direct I/O on AIX operating systems, set the DIRECT_IO configuration parameter to 2.

If you do not want to enable direct I/O or concurrent I/O, set the DIRECT_IO configuration parameter to 0.

Related information:
 DIRECT_IO configuration parameter (UNIX)

Copyright© 2020 HCL Technologies Limited

Confirming the use of the direct or concurrent I/O option (UNIX)

You can confirm and monitor the use of direct I/O or concurrent I/O (on AIX®) for cooked file chunks.

You can confirm the use of direct I/O or concurrent I/O by:

Displaying onstat -d information.
The onstat -d command displays information that includes a flag that identifies whether direct I/O, concurrent I/O (on AIX), or neither is used for cooked file
chunks.

Verifying that the DIRECT_IO configuration parameter is set to 1 (for direct I/O) or 2 (for concurrent I/O).

Related information:
 DIRECT_IO configuration parameter (UNIX)

onstat -d command: Print chunk information

Copyright© 2020 HCL Technologies Limited

Placement of critical data

The disk or disks that contain the system reserved pages, the physical log, and the dbspaces that contain the logical-log files are critical to the operation of the database
server. The database server cannot operate if any of these elements becomes unavailable. By default, the database server places all three critical elements in the root

Part VI: Administering 1327

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

dbspace.

To arrive at an appropriate placement strategy for critical data, you must make a trade-off between the availability of data and maximum logging performance.

The database server also places temporary table and sort files in the root dbspace by default. You should use the DBSPACETEMP configuration parameter and the
DBSPACETEMP environment variable to assign these tables and files to other dbspaces. For details, see Configure dbspaces for temporary tables and sort files.

Consider separate disks for critical data components
 If you place the root dbspace, logical log, and physical log in separate dbspaces on separate disks, you can obtain some distinct performance advantages. The disks

that you use for each critical data component should be on separate controllers.
Consider mirroring for critical data components

 Consider mirroring for the dbspaces that contain critical data. Mirroring these dbspaces ensures that the database server can continue to operate even when a
single disk fails.

Copyright© 2020 HCL Technologies Limited

Consider separate disks for critical data components

If you place the root dbspace, logical log, and physical log in separate dbspaces on separate disks, you can obtain some distinct performance advantages. The disks that
you use for each critical data component should be on separate controllers.

This approach has the following advantages:

Isolates logging activity from database I/O and allows physical-log I/O requests to be serviced in parallel with logical-log I/O requests
Reduces the time that you need to recover from a failure
However, unless the disks are mirrored, there is an increased risk that a disk that contains critical data might be affected in the event of a failure, which will bring
the database server to a halt and require the complete restoration of all data from a level-0 backup.

Allows for a relatively small root dbspace that contains only reserved pages, the database partition, and the sysmaster database
In many cases, 10,000 kilobytes is sufficient.

The database server uses different methods to configure various portions of critical data. To assign an appropriate dbspace for the root dbspace and physical log, set the
appropriate database server configuration parameters. To assign the logical-log files to an appropriate dbspace, use the onparams utility.

For more information about the configuration parameters that affect each portion of critical data, see Configuration parameters that affect critical data.

Copyright© 2020 HCL Technologies Limited

Consider mirroring for critical data components

Consider mirroring for the dbspaces that contain critical data. Mirroring these dbspaces ensures that the database server can continue to operate even when a single disk
fails.

However, depending on the mix of I/O requests for a given dbspace, a trade-off exists between the fault tolerance of mirroring and I/O performance. You obtain a marked
performance advantage when you mirror dbspaces that have a read-intensive usage pattern and a slight performance disadvantage when you mirror write-intensive
dbspaces.

Most modern storage devices have excellent mirroring capabilities, and you can use those devices instead of the mirroring capabilities of the database server.

When mirroring is in effect, two disks are available to handle read requests, and the database server can process a higher volume of those requests. However, each write
request requires two physical write operations and does not complete until both physical operations are performed. The write operations are performed in parallel, but
the request does not complete until the slower of the two disks performs the update. Thus, you experience a slight performance penalty when you mirror write-intensive
dbspaces.

Consider mirroring the root dbspace
 You can achieve a certain degree of fault tolerance with a minimum performance penalty if you mirror the root dbspace and restrict its contents to read-only or

seldom-accessed tables.
Consider mirroring smart-large-object chunks

 You can achieve higher availability and faster access if you mirror chunks that contain metadata pages.
Mirroring and its effect on the logical log

 The logical log is write intensive. If the dbspace that contains the logical-log files is mirrored, you encounter a slight double-write performance penalty. However,
you can adjust the rate at which logging generates I/O requests to a certain extent by choosing an appropriate log buffer size and logging mode.
Mirroring and its effect on the physical log

 The physical log is write intensive, with activity occurring at checkpoints and when buffered data pages are flushed. I/O to the physical log also occurs when a page-
cleaner thread is activated. If the dbspace that contains the physical log is mirrored, you encounter a slight double-write performance penalty.

Copyright© 2020 HCL Technologies Limited

Consider mirroring the root dbspace

You can achieve a certain degree of fault tolerance with a minimum performance penalty if you mirror the root dbspace and restrict its contents to read-only or seldom-
accessed tables.

1328 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

When you place update-intensive tables in other, nonmirrored dbspaces, you can use the database server backup-and-restore facilities to perform warm restores of those
tables in the event of a disk failure. When the root dbspace is mirrored, the database server remains online to service other transactions while the failed disk is being
repaired.

When you mirror the root dbspace, always place the first chunk on a different device than that of the mirror. The MIRRORPATH configuration parameter should have a
different value than ROOTPATH.

Related information:
 MIRRORPATH configuration parameter

ROOTPATH configuration parameter

Copyright© 2020 HCL Technologies Limited

Consider mirroring smart-large-object chunks

You can achieve higher availability and faster access if you mirror chunks that contain metadata pages.

An sbspace is a logical storage unit composed of one or more chunks that store smart large objects, which consist of CLOB (character large object) or BLOB (binary large
object) data.

The first chunk of an sbspace contains a special set of pages, called metadata, which is used to locate smart large objects in the sbspace. Additional chunks that are
added to the sbspace can also have metadata pages if you specify them on the onspaces command when you create the chunk.

Consider mirroring chunks that contain metadata pages for the following reasons:

Higher availability
Without access to the metadata pages, users cannot access any smart large objects in the sbspace. If the first chunk of the sbspace contains all of the metadata
pages and the disk that contains that chunk becomes unavailable, you cannot access a smart large object in the sbspace, even if it resides on a chunk on another
disk. For high availability, mirror at least the first chunk of the sbspace and any other chunk that contains metadata pages.

Faster access
By mirroring the chunk that contains the metadata pages, you can spread read activity across the disks that contain the primary chunk and mirror chunk.

Related information:
 Sbspaces

Copyright© 2020 HCL Technologies Limited

Mirroring and its effect on the logical log

The logical log is write intensive. If the dbspace that contains the logical-log files is mirrored, you encounter a slight double-write performance penalty. However, you can
adjust the rate at which logging generates I/O requests to a certain extent by choosing an appropriate log buffer size and logging mode.

For details on the slight double-write performance penalty, see Consider mirroring for critical data components.

With unbuffered and ANSI-compliant logging, the database server requests a flush of the log buffer to disk for every committed transaction (two when the dbspace is
mirrored). Buffered logging generates far fewer I/O requests than unbuffered or ANSI-compliant logging.

With buffered logging, the log buffer is written to disk only when it fills and all the transactions that it contains are completed. You can reduce the frequency of logical-log
I/O even more if you increase the size of your logical-log buffers. However, buffered logging leaves transactions in any partially filled buffers vulnerable to loss in the event
of a system failure.

Although database consistency is guaranteed under buffered logging, specific transactions are not guaranteed against a failure. The larger the logical-log buffers, the more
transactions you might need to reenter when service is restored after a failure.

Unlike the physical log, you cannot specify an alternative dbspace for logical-log files in your initial database server configuration. Instead, use the onparams utility first to
add logical-log files to an alternative dbspace and then drop logical-log files from the root dbspace.

Related information:
 The onparams Utility

Copyright© 2020 HCL Technologies Limited

Mirroring and its effect on the physical log

The physical log is write intensive, with activity occurring at checkpoints and when buffered data pages are flushed. I/O to the physical log also occurs when a page-
cleaner thread is activated. If the dbspace that contains the physical log is mirrored, you encounter a slight double-write performance penalty.

For details on the slight double-write performance penalty, see Consider mirroring for critical data components.

To keep I/O to the physical log at a minimum, you can adjust the checkpoint interval and the LRU minimum and maximum thresholds. (See CKPTINTVL and its effect on
checkpoints and BUFFERPOOL and its effect on page cleaning.)

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1329

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Configuration parameters that affect critical data

The configuration parameters that configure the root dbspace and the logical and physical logs affect critical data.

You can use the following configuration parameters to configure the root dbspace:

ROOTNAME
ROOTOFFSET
ROOTPATH
ROOTSIZE
MIRROR
MIRRORPATH
MIRROROFFSET

These parameters determine the location and size of the initial chunk of the root dbspace and configure mirroring, if any, for that chunk. (If the initial chunk is mirrored, all
other chunks in the root dbspace must also be mirrored). Otherwise, these parameters have no major impact on performance.

The following configuration parameters affect the logical logs:

LOGSIZE
LOGBUFF

The LOGSIZE configuration parameter determines the size of each logical-log files. The LOGBUFF configuration parameter determines the size of the three logical-log
buffers that are in shared memory.

The PHYSFILE configuration parameter determines the initial size of the physical log in rootdbs. This configuration parameter is used only when the instance is created.

Related concepts:
 The LOGBUFF configuration parameter and memory utilization

Checkpoints and the physical log

Copyright© 2020 HCL Technologies Limited

Configure dbspaces for temporary tables and sort files

Applications that use temporary tables or large sort operations require a large amount of temporary space. To improve performance of these applications, use the
DBSPACETEMP configuration parameter or the DBSPACETEMP environment variable to designate one or more dbspaces for temporary tables and sort files.

Depending on how the temporary space is created, the database server uses the following default locations for temporary table and sort files when you do not set
DBSPACETEMP:

The dbspace of the current database, when you create an explicit temporary table with the TEMP TABLE clause of the CREATE TABLE statement and do not specify
a dbspace for the table either in the IN dbspace clause or in the FRAGMENT BY clause
This action can severely affect I/O to that dbspace. If the root dbspace is mirrored, you encounter a slight double-write performance penalty for I/O to the
temporary tables and sort files.

The root dbspace when you create an explicit temporary table with the INTO TEMP option of the SELECT statement
This action can severely affect I/O to the root dbspace. If the root dbspace is mirrored, you encounter a slight double-write performance penalty for I/O to the
temporary tables and sort files.

The operating-system directory or file that you specify in one of the following variables:
In UNIX, the operating-system directory or directories that the PSORT_DBTEMP environment variable specifies, if it is set
If PSORT_DBTEMP is not set, the database server writes sort files to the operating-system file space in the /tmp directory.

In Windows, the directory specified in TEMP or TMP in the User Environment Variables window on Control Panel > System.
The database server uses the operating-system directory or files to direct any overflow that results from the following database operations:

SELECT statement with GROUP BY clause
SELECT statement with ORDER BY clause
Hash-join operation
Nested-loop join operation
Index builds

Warning: If you do not specify a value for the DBSPACETEMP configuration parameter or the DBSPACETEMP environment variable, the database server uses this
operating-system file for implicit temporary tables. If this file system has insufficient space to hold a sort file, the query that performs the sort returns an error. Meanwhile,
the operating system might be severely impacted until you remove the sort file.
You can improve performance with the use of temporary dbspaces that you create exclusively to store temporary tables and sort files. Use the DBSPACETEMP
configuration parameter and the DBSPACETEMP environment variable to assign these tables and files to temporary dbspaces.

When you specify dbspaces in either the DBSPACETEMP configuration parameter or the DBSPACETEMP environment variable, you gain the following performance
advantages:

Reduced I/O impact on the root dbspace, production dbspaces, or operating-system files
Use of parallel sorts into the temporary files (to process query clauses such as ORDER BY or GROUP BY, or to sort index keys when you execute CREATE INDEX)
when you specify more than one dbspace for temporary tables and PDQ priority is set to greater than 0.
Improved speed with which the database server creates temporary tables when you assign two or more temporary dbspaces on separate disks
Automatic fragmentation of the temporary tables across dbspaces when SELECT....INTO TEMP statements are run

The following table shows statements that create temporary tables and information about where the temporary tables are created.

1330 Part VI: Administering

https://www.hcltech.com/

Statement That Creates
Temporary Table

Database Logged WITH NO LOG clause FRAGMENT BY clause Where Temp Table CreatedStatement That Creates
Temporary Table

Database Logged WITH NO LOG clause FRAGMENT BY clause Where Temp Table Created

CREATE TEMP TABLE Yes No No Root dbspace

CREATE TEMP TABLE Yes Yes No One of dbspaces that are
specified in DBSPACETEMP

CREATE TEMP TABLE Yes No Yes Cannot create temp table. Error
229/196

SELECT ..INTO TEMP Yes Yes No Fragmented by round-robin only
in the non-logged dbspaces that
are specified in DBSPACETEMP

Important: Use the DBSPACETEMP configuration parameter or the DBSPACETEMP environment variable for better performance of sort operations and to prevent the
database server from unexpectedly filling file systems. The dbspaces that you list must be composed of chunks that are allocated as unbuffered devices.

Creating temporary dbspaces
 You can create a dbspace for the exclusive use of temporary tables and sort files. The database server does not perform logical or physical logging of temporary

dbspaces, and temporary dbspaces are never backed up as part of a full-system backup.
Specify temporary tables in the DBSPACETEMP configuration parameter

 The DBSPACETEMP configuration parameter specifies a list of dbspaces in which the database server places temporary tables and sort files by default. Some or all
of the dbspaces that you list in this configuration parameter can be temporary dbspaces, which are reserved exclusively to store temporary tables and sort files.
Override the DBSPACETEMP configuration parameter for a session

 To override the DBSPACETEMP configuration parameter, you can use the DBSPACETEMP environment variable for both temporary tables and sort files. This
environment variable specifies a comma- or colon-separated list of dbspaces in which to place temporary tables for the current session.
Estimating temporary space for dbspaces and hash joins

 You can estimate and increase the amount of temporary space for dbspaces and for hash joins. If you do this, you can prevent the possible overflow of memory to
temporary space on disk.
PSORT_NPROCS environment variable

 The PSORT_NPROCS environment variable specifies the maximum number of threads that the database server can use to sort a query. When a query involves a
large sort operation, multiple sort threads can execute in parallel to improve the performance of the query.

Related concepts:
 Specify temporary tables in the DBSPACETEMP configuration parameter

Related information:
 DBSPACETEMP configuration parameter

CREATE TEMP TABLE statement
INTO TEMP clause

Copyright© 2020 HCL Technologies Limited

Creating temporary dbspaces

You can create a dbspace for the exclusive use of temporary tables and sort files. The database server does not perform logical or physical logging of temporary dbspaces,
and temporary dbspaces are never backed up as part of a full-system backup.

To create a dbspace for the exclusive use of temporary tables and sort files, use onspaces -t. For best performance, use the following guidelines:

If you create more than one temporary dbspace, create each dbspace on a separate disk to balance the I/O impact.
Place no more than one temporary dbspace on a single disk.

You cannot mirror a temporary dbspace that you create with onspaces -t.
Important: In the case of a database with logging, you must include the WITH NO LOG clause in the SELECT... INTO TEMP statement to place the explicit temporary tables
in the dbspaces listed in the DBSPACETEMP configuration parameter and the DBSPACETEMP environment variable. Otherwise, the database server stores the explicit
temporary tables in the root dbspace.
Related information:

 DBSPACETEMP configuration parameter
create tempdbspace argument: Create a temporary dbspace (SQL administration API)
onspaces -c -d: Create a dbspace

Copyright© 2020 HCL Technologies Limited

Specify temporary tables in the DBSPACETEMP configuration parameter

The DBSPACETEMP configuration parameter specifies a list of dbspaces in which the database server places temporary tables and sort files by default. Some or all of the
dbspaces that you list in this configuration parameter can be temporary dbspaces, which are reserved exclusively to store temporary tables and sort files.

If the database server inserts data into a temporary table through a SELECT INTO TEMP operation that creates the TEMP table, that temporary table uses round-robin
distributed storage. Its fragments are created in the temporary dbspaces that are listed in the DBSPACETEMP configuration parameter or in the DBSPACETEMP
environment variable. For example, the following query uses round-robin distributed storage:

SELECT col1 FROM tab1
 INTO TEMP temptab1 WITH NO LOG;

The DBSPACETEMP configuration parameter lets the database administrator restrict which dbspaces the database server uses for temporary storage.
Important: The DBSPACETEMP configuration parameter is not set in the onconfig.std file. For best performance with temporary tables and sort files, use DBSPACETEMP
to specify two or more dbspaces on separate disks.

Part VI: Administering 1331

https://www.hcltech.com/
https://www.hcltech.com/

Tips:

If you work on a small system with a limited number of disks and cannot place temporary dbspaces on different disk drives, you might consider using 1 (or
possibly 2) temporary dbspaces. This can reduce the logging that is associated with the temporary dbspaces.
If you have many disk drives, you can parallelize many operations (such as sorts, joins, and temporary tables) without having multiple temporary dbspaces.
The number of temporary dbspaces that you have relates to how much you want to spread the I/O out. A good starting place is 4 temporary dbspaces. If you
create too many small temporary dbspaces, you will not have enough space for nonparallel creation of large objects.

Related concepts:
 Configure dbspaces for temporary tables and sort files

Distribution schemes
Related information:

 DBSPACETEMP configuration parameter
CREATE TEMP TABLE statement

Copyright© 2020 HCL Technologies Limited

Override the DBSPACETEMP configuration parameter for a session

To override the DBSPACETEMP configuration parameter, you can use the DBSPACETEMP environment variable for both temporary tables and sort files. This environment
variable specifies a comma- or colon-separated list of dbspaces in which to place temporary tables for the current session.

Important: Use the DBSPACETEMP configuration parameter or the DBSPACETEMP environment variable for better performance of sort operations and to prevent the
database server from unexpectedly filling file systems.
You should use DBSPACETEMP rather than the PSORT_DBTEMP environment variable to specify sort files for the following reasons:

DBSPACETEMP typically yields better performance.
When dbspaces reside on character-special devices (also known as raw disk devices), the database server uses unbuffered disk access. I/O is faster to unbuffered
devices than to regular (buffered) operating-system files because the database server manages the I/O operation directly.

PSORT_DBTEMP specifies one or more operating-system directories in which to place sort files.
These operating-system files can unexpectedly fill on your computer because the database server does not manage them.

Copyright© 2020 HCL Technologies Limited

Estimating temporary space for dbspaces and hash joins

You can estimate and increase the amount of temporary space for dbspaces and for hash joins. If you do this, you can prevent the possible overflow of memory to
temporary space on disk.

You can use the following guidelines to estimate the amount of temporary space to allocate:

For OLTP applications, allocate temporary dbspaces that equal at least 10 percent of the table.
For DSS applications, allocate temporary dbspaces that equal at least 50 percent of the table.

A hash join, which works by building a table (the hash table) from the rows in one of the tables in a join, and then probing it with rows from the other table, can use a
significant amount of memory and can potentially overflow to temporary space on disk. The hash table size is governed by the size of the table used to build the hash table
(which is often the smaller of the two tables in the join), after applying any filters, which can reduce the number of rows and possibly reduce the number of columns.

Hash-join partitions are organized into pages. Each page has a header. The header and tuples are larger in databases on 64-bit platforms than in builds on 32-bit
platforms. The size of each page is the base page size (2K or 4K depending on system) unless a single row needs more space. If you need more space, you can add bytes
to the length of your rows.

You can use the following formula to estimate the amount of memory that is required for the hash table in a hash join:

hash_table_size = (32 bytes + row_size_smalltab) * num_rows_smalltab

where row_size_smalltab and num_rows_smalltab refer to the row size and the number of rows, respectively, in the smaller of the two tables participating in the
hash join.
For example, suppose you have a page head that is 80 bytes in length and a row header that is 48 bytes in length. Because each row must be aligned to 8 bytes, you might
need to add up to 7 bytes to the row length, as shown in these formulas:

per_row_size = 48 bytes + rowsize + mod(rowsize, 8)
page_size = base_page_size (2K or 4K)
rows_per_page = round_down_to_integer((page_size - 80 bytes) / per_row_size)

If the value of rows_per_page is less than one, increase the page_size value to the smallest multiple of the base_page_size, as shown in this formula:

size = (numrows_smalltab / rows_per_page) * page_size

You can use the DS_NONPDQ_QUERY_MEM configuration parameter to configure sort memory for all queries except PDQ queries. Its setting has no effect, however, if the
PDQ priority setting is greater than zero.

For more information, see Hash join and Configuring memory for queries with hash joins, aggregates, and other memory-intensive elements.

Related information:
 DS_NONPDQ_QUERY_MEM configuration parameter

Copyright© 2020 HCL Technologies Limited

1332 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

PSORT_NPROCS environment variable

The PSORT_NPROCS environment variable specifies the maximum number of threads that the database server can use to sort a query. When a query involves a large sort
operation, multiple sort threads can execute in parallel to improve the performance of the query.

When the value of PDQ priority is 0 and PSORT_NPROCS is greater than 1, the database server uses parallel sorts. The management of PDQ does not limit these sorts. In
other words, although the sort is executed in parallel, the database server does not regard sorting as a PDQ activity. When PDQ priority is 0, the database server does not
control sorting by any of the PDQ configuration parameters.

When PDQ priority is greater than 0 and PSORT_NPROCS is greater than 1, the query benefits both from parallel sorts and from PDQ features such as parallel scans and
additional memory. Users can use the PDQPRIORITY environment variable to request a specific proportion of PDQ resources for a query. You can use the
MAX_PDQPRIORITY parameter to limit the number of such user requests. For more information about MAX_PDQPRIORITY, see Limiting PDQ resources in queries.

The database server allocates a relatively small amount of memory for sorting, and that memory is divided among the PSORT_NPROCS sort threads. Sort processes use
temporary space on disk when not enough memory is allocated. For more information about memory allocated for sorting, see Estimating memory needed for sorting.
Important: For better performance for a sort operation, set PSORT_NPROCS initially to 2 if your computer has multiple CPUs. If the subsequent CPU activity is lower than
I/O activity, you can increase the value of PSORT_NPROCS.
For more information about sorts during index builds, see Improving performance for index builds.

Copyright© 2020 HCL Technologies Limited

Configure sbspaces for temporary smart large objects

Applications can use temporary smart large objects for text, image, or other user-defined data types that are only required during the life of the user session. These
applications do not require logging of the temporary smart large objects. Logging adds I/O activity to the logical log and increases memory utilization.

You can store temporary smart large objects in a permanent sbspace or a temporary sbspace.

Permanent sbspaces
If you store the temporary smart large objects in a regular sbspace and keep the default no logging attribute, changes to the objects are not logged, but the
metadata is always logged.

Temporary sbspaces
Applications that update temporary smart large objects stored in temporary sbspaces are significantly faster because the database server does not log the
metadata or the user data in a temporary sbspace.

To improve performance of applications that update temporary smart large objects, specify the LOTEMP flag in the mi_lo_specset_flags or ifx_lo_specset_flags API
function and specify a temporary sbspace for the temporary smart large objects. The database server uses the following order of precedence for locations to place
temporary smart large objects:

The sbspace you specify in the mi_lo_specset_sbspace or ifx_lo_specset_sbspace API function when you create the smart large object
Specify a temporary sbspace in the API function so that changes to the objects and the metadata are not logged. The sbspace you specify in the API function
overrides any default sbspaces that the SBSPACETEMP or SBSPACENAME configuration parameters might specify.

The sbspace you specify in the IN Sbspace clause when you create an explicit temporary table with the TEMP TABLE clause of the CREATE TABLE statement
Specify a temporary sbspace in the IN Sbspace clause so that changes to the objects and the metadata are not logged.

The permanent sbspace you specify in the SBSPACENAME configuration parameter, if you do not specify an sbspace in the SBSPACETEMP configuration parameter

If no temporary sbspace is specified in any of the above methods, then the database server issues the following error message when you try to create a temporary smart
large object:

-12053 Smart Large Objects: No sbspace number specified.

Creating temporary sbspaces
 To create an sbspace for the exclusive use of temporary smart large objects, use onspaces -c -S with the -t option.

Specify which sbspaces to use for temporary storage
 The SBSPACETEMP configuration parameter specifies a list of sbspaces in which the database server places temporary smart large objects by default. Some or all

of the sbspaces that you list in this configuration parameter can be temporary sbspaces, which are reserved exclusively to store temporary smart large objects.

Copyright© 2020 HCL Technologies Limited

Creating temporary sbspaces

To create an sbspace for the exclusive use of temporary smart large objects, use onspaces -c -S with the -t option.

For best performance, use the following guidelines:

If you create more than one temporary sbspace, create each sbspace on a separate disk to balance the I/O impact.
Place no more than one temporary sbspace on a single disk.

The database server does not perform logical or physical logging of temporary sbspaces, and temporary sbspaces are never backed up as part of a full-system backup.
You cannot mirror a temporary sbspace that you create with onspaces -t.
Important: In the case of a database with logging, you must include the WITH NO LOG clause in the SELECT... INTO TEMP statement to place the temporary smart large
objects in the sbspaces listed in the SBSPACETEMP configuration parameter. Otherwise, the database server stores the temporary smart large objects in the sbspace
listed in the SBSPACENAME configuration parameter.

Part VI: Administering 1333

https://www.hcltech.com/
https://www.hcltech.com/

Related information:
onspaces -c -S: Create an sbspace
Creating a temporary sbspace

Copyright© 2020 HCL Technologies Limited

Specify which sbspaces to use for temporary storage

The SBSPACETEMP configuration parameter specifies a list of sbspaces in which the database server places temporary smart large objects by default. Some or all of the
sbspaces that you list in this configuration parameter can be temporary sbspaces, which are reserved exclusively to store temporary smart large objects.

Important: The SBSPACETEMP configuration parameter is not set in the onconfig.std file. For best performance with temporary smart large objects, use SBSPACETEMP to
specify two or more sbspaces on separate disks.
Related information:

 SBSPACETEMP configuration parameter

Copyright© 2020 HCL Technologies Limited

Placement of simple large objects

You can store simple large objects in either the same dbspace in which the table resides or in a blobspace.

A blobspace is a logical storage unit composed of one or more chunks that store only simple large objects (TEXT or BYTE data). For information about sbspaces, which
store smart large objects (such as BLOB, CLOB, or multirepresentational data), see Factors that affect I/O for smart large objects.

If you use a blobspace, you can store simple large objects on a separate disk from the table with which the data is associated. You can store simple large objects
associated with different tables in the same blobspace.

You can create a blobspace with the onspaces utility or with an SQL administration API command that uses the create blobspace argument with the admin() or task()
function.

You assign simple large objects to a blobspace when you create the tables with which simple large objects are associated, using the CREATE TABLE statement.

Simple large objects are not logged and do not pass through the buffer pool. However, frequency of checkpoints can affect applications that access TEXT or BYTE data. For
more information, see LOGSIZE and LOGFILES and their effect on checkpoints.

Advantage of blobspaces over dbspaces
 If you store simple large objects in a blobspace on a separate disk from the table with which it is associated, instead of storing the objects in a dbspace, you can

obtain some performance advantages.
Blobpage size considerations

 Blobspaces are divided into units called blobpages. The database server retrieves simple large objects from a blobspace in blobpage-sized units. You specify the
size of a blobpage in multiples of a disk page when you create the blobspace.

Related information:
 CREATE TABLE statement

create blobspace argument: Create a blobspace (SQL administration API)
onspaces -c -b: Create a blobspace

Copyright© 2020 HCL Technologies Limited

Advantage of blobspaces over dbspaces

If you store simple large objects in a blobspace on a separate disk from the table with which it is associated, instead of storing the objects in a dbspace, you can obtain
some performance advantages.

The performance advantages of storing simple large objects in a blobspace are:

You have parallel access to the table and simple large objects.
Unlike simple large objects stored in a dbspace, blobspace data is written directly to disk. Simple large objects do not pass through resident shared memory, which
leaves memory pages free for other uses.
Simple large objects are not logged, which reduces logging I/O activity for logged databases.

For more information, see Storing simple large objects in the tblspace or a separate blobspace.

Copyright© 2020 HCL Technologies Limited

Blobpage size considerations

Blobspaces are divided into units called blobpages. The database server retrieves simple large objects from a blobspace in blobpage-sized units. You specify the size of a
blobpage in multiples of a disk page when you create the blobspace.

The optimal blobpage size for your configuration depends on the following factors:

1334 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The size distribution of the simple large objects
The trade-off between retrieval speed for your largest simple large object and the amount of disk space that is wasted by storing simple large objects in large
blobpages

To retrieve simple large objects as quickly as possible, use the size of your largest simple large object rounded up to the nearest disk-page-sized increment. This scheme
guarantees that the database server can retrieve even the largest simple large object in a single I/O request. Although this scheme guarantees the fastest retrieval, it has
the potential to waste disk space. Because simple large objects are stored in their own blobpage (or set of blobpages), the database server reserves the same amount of
disk space for every blobpage even if the simple large object takes up a fraction of that page. Using a smaller blobpage allows you to make better use of your disk,
especially when large differences exist in the sizes of your simple large objects.

To achieve the greatest theoretical utilization of space on your disk, you can make your blobpage the same size as a standard disk page. Then many, if not most, simple
large objects would require several blobpages. Because the database server acquires a lock and issues a separate I/O request for each blobpage, this scheme performs
poorly.

In practice, a balanced scheme for sizing uses the most frequently occurring simple-large-object size as the size of a blobpage. For example, suppose that you have 160
simple-large-object values in a table with the following size distribution:

Of these values, 120 are 12 kilobytes each.
The other 40 values are 16 kilobytes each.

You can choose one of the following blobpage sizes:

The 12-kilobyte blobpage size provides greater storage efficiency than a 16-kilobyte blobpage size, as the following two calculations show:
12 kilobytes
This configuration allows the majority of simple-large-object values to require a single blobpage and the other 40 values to require two blobpages. In this
configuration, 8 kilobytes is wasted in the second blobpage for each of the larger values. The total wasted space is as follows:

wasted-space = 8 kilobtyes * 40
 = 329 kilobytes

16 kilobytes
In this configuration, 4 kilobytes is wasted in the extents of 120 simple large objects. The total wasted space is as follows:

wasted-space = 4 kilobtyes * 120
 = 640 kilobytes

If your applications access the 16-kilobyte simple-large-object values more frequently, the database server must perform a separate I/O operation for each
blobpage. In this case, the 16-kilobyte blobpage size provides better retrieval speed than a 12-kilobyte blobpage size.

The maximum number of pages that a blobspace can contain is 2147483647. Therefore, the size of the blobspace is limited to the blobpage size x 2147483647. This
includes blobpages in all chunks that make up the blobspace.

Tip: If a table has more than one simple-large-object column and the data values are not close in size, store the data in different blobspaces, each with an appropriately
sized blobpage.

Optimize blobspace blobpage size
 When you are evaluating blobspace storage strategy, you can measure efficiency by two criteria: blobpage fullness and the blobpages required per simple large

object.
Obtain blobspace storage statistics

 To help you determine the optimal blobpage size for each blobspace, use the oncheck -pB command.
Determine blobpage fullness with oncheck -pB output

 The oncheck -pB command displays statistics that describe the average fullness of blobpages. These statistics provide a measure of storage efficiency for
individual simple large objects in a database or table.

Copyright© 2020 HCL Technologies Limited

Optimize blobspace blobpage size

When you are evaluating blobspace storage strategy, you can measure efficiency by two criteria: blobpage fullness and the blobpages required per simple large object.

Blobpage fullness refers to the amount of data within each blobpage. TEXT and BYTE data stored in a blobspace cannot share blobpages. Therefore, if a single simple
large object requires only 20 percent of a blobpage, the remaining 80 percent of the page is unavailable for use.

However, avoid making the blobpages too small. When several blobpages are needed to store each simple large object, you increase the overhead cost of storage. For
example, more locks are required for updates, because a lock must be acquired for each blobpage.

Copyright© 2020 HCL Technologies Limited

Obtain blobspace storage statistics

To help you determine the optimal blobpage size for each blobspace, use the oncheck -pB command.

The command lists the following statistics for each table (or database):

The number of blobpages used by the table (or database) in each blobspace
The average fullness of the blobpages used by each simple large object stored as part of the table (or database)

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1335

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Determine blobpage fullness with oncheck -pB output

The oncheck -pB command displays statistics that describe the average fullness of blobpages. These statistics provide a measure of storage efficiency for individual
simple large objects in a database or table.

If you find that the statistics for a significant number of simple large objects show a low percentage of fullness, the database server might benefit from changing the size of
the blobpage in the blobspace.

Both the oncheck -pB and onstat -d update commands display the same information about the number of free blobpages. The onstat -d update command displays the
same information as onstat -d and an accurate number of free blobpages for each blobspace chunk.

Execute oncheck -pB with either a database name or a table name as a parameter. The following example retrieves storage information for all simple large objects stored
in the table sriram.catalog in the stores_demo database:

oncheck -pB stores_demo:sriram.catalog

oncheck -pB Output
Figure 1 shows the output of this command.
Figure 1. Output of oncheck -pB

 BLOBSpace Report for stores_demo:sriram.catalog

Total pages used by table 7

BLOBSpace usage:
Space Page Percent Full
Name Number Pages 0-25% 26-50% 51-75 76-100%

blobPIC 0x300080 1 x
 blobPIC 0x300082 2 x

Page Size is 6144 3

bspc1 0x2000b2 2 x
bspc1 0x2000b6 2 x

Page Size is 2048 4

Space Name is the name of the blobspace that contains one or more simple large objects stored as part of the table (or database).

Page Number is the starting address in the blobspace of a specific simple large object.

Pages is the number of the database server pages required to store this simple large object.

Percent Full is a measure of the average blobpage fullness, by blobspace, for each blobspace in this table or database.

Page Size is the size in bytes of the blobpage for this blobspace. Blobpage size is always a multiple of the database server page size.

The example output indicates that four simple large objects are stored as part of the table sriram.catalog. Two objects are stored in the blobspace blobPIC in 6144-byte
blobpages. Two more objects are stored in the blobspace bspc1 in 2048-byte blobpages.

The summary information that appears at the top of the display, Total pages used by table is a simple total of the blobpages needed to store simple large objects. The
total says nothing about the size of the blobpages used, the number of simple large objects stored, or the total number of bytes stored.

The efficiency information displayed under the Percent Full heading is imprecise, but it can alert an administrator to trends in the storage of TEXT and BYTE data.

Interpreting blobpage average fullness
 You can analyze the output of the oncheck -pB command to calculate average fullness.

Analyzing efficiency criteria with oncheck -pB output
 You can analyze the output of the oncheck -pB command to determine if there is a more efficient storage strategy.

Copyright© 2020 HCL Technologies Limited

Interpreting blobpage average fullness

You can analyze the output of the oncheck -pB command to calculate average fullness.

The first simple large object listed in Determine blobpage fullness with oncheck -pB output is stored in the blobspace blobPIC and requires one 6144-byte blobpage. The
blobpage is 51 to 75 percent full, meaning that the size is between 0.51 * 6144 = 3133 bytes and 0.75 * 6144 = 4608. The maximum size of this simple large object must
be less than or equal to 75 percent of 6144 bytes, or 4608 bytes.

The second object listed under blobspace blobPIC requires two 6144-byte blobpages for storage, or a total of 12,288 bytes. The average fullness of all allocated
blobpages is 51 to 75 percent. Therefore, the minimum size of the object must be greater than 50 percent of 12,288 bytes, or 6144 bytes. The maximum size of the
simple large object must be less than or equal to 75 percent of 12,288 bytes, or 9216 bytes. The average fullness does not mean that each page is 51 to 75 percent full. A
calculation would yield 51 to 75 percent average fullness for two blobpages where the first blobpage is 100 percent full and the second blobpage is 2 to 50 percent full.

Now consider the two simple large objects in blobspace bspc1. These two objects appear to be nearly the same size. Both objects require two 2048-byte blobpages, and
the average fullness for each is 76 to 100 percent. The minimum size for these simple large objects must be greater than 75 percent of the allocated blobpages, or 3072
bytes. The maximum size for each object is slightly less than 4096 bytes (allowing for overhead).

1336 Part VI: Administering

https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Analyzing efficiency criteria with oncheck -pB output

You can analyze the output of the oncheck -pB command to determine if there is a more efficient storage strategy.

Looking at the efficiency information for that is shown for blobspace bspc1 in Figure 1, a database server administrator might decide that a better storage strategy for
TEXT and BYTE data would be to double the blobpage size from 2048 bytes to 4096 bytes. (Blobpage size is always a multiple of the database server page size.) If the
database server administrator made this change, the measure of page fullness would remain the same, but the number of locks needed during an update of a simple large
object would be reduced by half.

The efficiency information for blobspace blobPIC reveals no obvious suggestion for improvement. The two simple large objects in blobPIC differ considerably in size, and
there is no optimal storage strategy. In general, simple large objects of similar size can be stored more efficiently than simple large objects of different sizes.

Copyright© 2020 HCL Technologies Limited

Factors that affect I/O for smart large objects

An sbspace is a logical storage unit, composed of one or more chunks, in which you can store smart large objects (such as BLOB, CLOB, or multi representational data).
Disk layout for sbspaces, the settings of certain configuration parameters, and some onspaces utility options affect I/O for smart large objects.

The DataBlade API and the Informix® ESQL/C application programming interface also provide functions that affect I/O operations for smart large objects.
Important: For most applications, you should use the values that the database server calculates for the disk-storage information.

Disk layout for sbspaces
 You create sbspaces on separate disks from the table with which the data is associated. You can store smart large objects associated with different tables within

the same sbspace. When you store smart large objects in an sbspace on a separate disk from the table with which it is associated, the database server provides
some performance advantages.
Configuration parameters that affect sbspace I/O

 The SBSPACENAME, BUFFERPOOL, and LOGBUFF configuration parameters affect the I/O performance of sbspaces.
onspaces options that affect sbspace I/O

 When you create an sbspace with the onspaces utility, you specify information that affects I/O performance. This information includes the size of extents, the
buffering mode (and whether you want the server to use lightweight I/O), and logging.

Related information:
 Sbspaces

What is Informix ESQL/C?
DataBlade API overview

Copyright© 2020 HCL Technologies Limited

Disk layout for sbspaces

You create sbspaces on separate disks from the table with which the data is associated. You can store smart large objects associated with different tables within the same
sbspace. When you store smart large objects in an sbspace on a separate disk from the table with which it is associated, the database server provides some performance
advantages.

These performance advantages are:

You have parallel access to the table and smart large objects.
When you choose not to log the data in an sbspace, you reduce logging I/O activity for logged databases.

To create an sbspace, use the onspaces utility. You assign smart large objects to an sbspace when you use the CREATE TABLE statement to create the tables with which
the smart large objects are associated.

Related information:
 onspaces -c -S: Create an sbspace

CREATE TABLE statement

Copyright© 2020 HCL Technologies Limited

Configuration parameters that affect sbspace I/O

The SBSPACENAME, BUFFERPOOL, and LOGBUFF configuration parameters affect the I/O performance of sbspaces.

The SBSPACENAME configuration parameter indicates the default sbspace name if you do not specify the sbspace name when you define a column of data type CLOB or
BLOB. To reduce disk contention and provide better load balancing, place the default sbspace on a separate disk from the table data.

The BUFFERPOOL configuration parameter specifies the default values for buffers and LRU queues in a buffer pool for both the default page size buffer pool and for any
non-default pages size buffer pools. The size of your memory buffer pool affects I/O operations for smart large objects because the buffer pool is the default area of
shared memory for these objects. If your applications frequently access smart large objects, it is advantageous to have these objects in the buffer pool. Smart large

Part VI: Administering 1337

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

objects only use the default page size buffer pool. For information about estimating the amount to increase your buffer pool for smart large objects, see The BUFFERPOOL
configuration parameter and memory utilization.

By default, the database server reads smart large objects into the buffers in the resident portion of shared memory. For more information on using lightweight I/O buffers,
see Lightweight I/O for smart large objects.

The LOGBUFF configuration parameter affects logging I/O activity because it specifies the size of the logical-log buffers that are in shared memory. The size of these
buffers determines how quickly they fill and therefore how often they need to be flushed to disk.

If you log smart-large-object user data, increase the size of your logical-log buffer to prevent frequent flushing to these log files on disk.

Related information:
 SBSPACENAME configuration parameter

BUFFERPOOL configuration parameter
LOGBUFF configuration parameter

Copyright© 2020 HCL Technologies Limited

onspaces options that affect sbspace I/O

When you create an sbspace with the onspaces utility, you specify information that affects I/O performance. This information includes the size of extents, the buffering
mode (and whether you want the server to use lightweight I/O), and logging.

Sbspace extents
 As you add smart large objects to a table, the database server allocates disk space to the sbspace in units called extents. Each extent is a block of physically

contiguous pages from the sbspace.
Lightweight I/O for smart large objects

 Instead of using the buffer pool, the administrator and programmer have the option to use lightweight I/O. Lightweight I/O operations use private buffers in the
session pool of the virtual portion of shared memory.
Logging

 If you decide to log all write operations on data stored in sbspaces, logical-log I/O activity and memory utilization increases.

Copyright© 2020 HCL Technologies Limited

Sbspace extents

As you add smart large objects to a table, the database server allocates disk space to the sbspace in units called extents. Each extent is a block of physically contiguous
pages from the sbspace.

Even when the sbspace includes more than one chunk, each extent is allocated entirely within a single chunk so that it remains contiguous. Contiguity is important to I/O
performance.

When the pages of data are contiguous, disk-arm motion is minimized when the database server reads the rows sequentially. The mechanism of extents is a compromise
between the following competing requirements:

The size of some smart large objects is not known in advance.
The number of smart large objects in different tables can grow at different times and different rates.
All the pages of a single smart large object should ideally be adjacent for best performance when you retrieve the entire object.

Because you might not be able to predict the number and size of smart large objects, you cannot specify the extent length of smart large objects. Therefore, the database
server adds extents only as they are needed, but all the pages in any one extent are contiguous for better performance. In addition, when the database server creates a
new extent that is adjacent to the previous extent, it treats both extents as a single extent.

The number of pages in an sbspace extent is determined by one of the following methods:

The database server calculates the extent size for a smart large object from a set of heuristics, such as the number of bytes in a write operation. For example, if an
operation asks to write 30 kilobytes, the database server tries to allocate an extent the size of 30 kilobytes.
The final size of the smart large object as indicated by one of the following functions when you open the sbspace in an application program:

For DB-Access: the DataBlade API mi_lo_specset_estbytes function. For more information about the DataBlade API functions to open a smart large object
and set the estimated number of bytes, see the IBM® Informix DataBlade API Programmer's Guide.
For ESQL/C: the Informix® ESQL/C ifx_lo_specset_estbytes function. For more information about the Informix ESQL/C functions to open a smart large object
and set the estimated number of bytes, see the IBM Informix ESQL/C Programmer's Manual.

These functions are the best way to set the extent size because they reduce the number of extents in a smart large object. The database server tries to allocate the entire
smart large object as one extent (if an extent of that size is available in the chunk).

The EXTENT_SIZE flag in the -Df option of the onspaces command when you create or alter the sbspace
Most administrators do not use the onspaces EXTENT_SIZE flag because the database server calculates the extent size from heuristics. However, you might
consider using the onspaces EXTENT_SIZE flag in the following situations:

Many one-page extents are scattered throughout the sbspace.
Almost all smart large objects are the same length.

The EXTENT SIZE keyword of the CREATE TABLE statement when you define the CLOB or BLOB column
Most administrators do not use the EXTENT SIZE keyword when they create or alter a table because the database server calculates the extent size from heuristics.
However, you might consider using this EXTENT SIZE keyword if almost all smart large objects are the same length.

Important: For most applications, you should use the values that the database server calculates for the extent size. Do not use the DataBlade API mi_lo_specset_extsz
function or the Informix ESQL/C ifx_lo_specset_extsz function to set the extent size of the smart large object.

1338 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

If you know the size of the smart large object, it is recommended that you specify the size in the DataBlade API mi_lo_specset_estbytes() function or Informix ESQL/C
ifx_lo_specset_estbytes() function instead of in the onspaces utility or the CREATE TABLE or the ALTER TABLE statement. These functions are the best way to set the
extent size because the database server allocates the entire smart large object as one extent (if it has contiguous storage in the chunk).

Extent sizes over one megabyte do not provide much I/O benefit because the database server performs read and write operations in multiples of 60 kilobytes at the most.
However, the database server registers each extent for a smart large object in the metadata area; therefore, especially large smart large objects might have many extent
entries. Performance of the database server might degrade when it accesses these extent entries. In this case, you can reduce the number of extent entries in the
metadata area if you specify the eventual size of the smart large object in the mi_lo_specset_estbytes() function or ifx_lo_specset_estbytes() function.

For more information, see Improving metadata I/O for smart large objects.

Copyright© 2020 HCL Technologies Limited

Lightweight I/O for smart large objects

Instead of using the buffer pool, the administrator and programmer have the option to use lightweight I/O. Lightweight I/O operations use private buffers in the session
pool of the virtual portion of shared memory.

By default, smart large objects pass through the buffer pool in the resident portion of shared memory. Although smart large objects have lower priority than other data, the
buffer pool can become full when an application accesses many smart large objects. A single application can fill the buffer pool with smart large objects and leave little
room for data that other applications might need. In addition, when the database server performs scans of many pages into the buffer pool, the overhead and contention
associated with checking individual pages in and out might become a bottleneck.

Important: Use private buffers only when you read or write smart large objects in read or write operations greater than 8080 bytes and you seldom access them. That is, if
you have infrequent read or write function calls that read large amounts of data in a single function invocation, lightweight I/O can improve I/O performance.

Advantages of lightweight I/O for smart large objects
 Lightweight I/O provides some performance advantages, because the database server is not using the buffer pool.

Specifying lightweight I/O for smart large objects
 To specify the use of lightweight I/O when creating the sbspace, use the BUFFERING tag of the -Df option in the onspaces -c -S command.

Related concepts:
 The BUFFERPOOL configuration parameter and memory utilization

Copyright© 2020 HCL Technologies Limited

Advantages of lightweight I/O for smart large objects

Lightweight I/O provides some performance advantages, because the database server is not using the buffer pool.

Lightweight I/O provides the following advantages:

Transfers larger blocks of data in one I/O operation
These I/O blocks can be as large as 60 kilobytes. But the bytes must be adjacent for the database server to transfer them in a single I/O operation.

Bypasses the overhead of the buffer pool when many pages are read
Prevents frequently accessed pages from being forced out of the buffer pool when many sequential pages are read for smart large objects

When you use lightweight I/O buffers for smart large objects, the database server might read several pages with one I/O operation. A single I/O operation reads in several
smart-large-object pages, up to the size of an extent. For information about when to specify extent size, see Sbspace extents.

Copyright© 2020 HCL Technologies Limited

Specifying lightweight I/O for smart large objects

To specify the use of lightweight I/O when creating the sbspace, use the BUFFERING tag of the -Df option in the onspaces -c -S command.

The default value for BUFFERING is ON, which means to use the buffer pool. The buffering mode that you specify (or the default, if you do not specify) in the onspaces
command is the default buffering mode for all smart large objects stored within the sbspace.
Important: In general, if read and write operations to the smart large objects are less than 8080 bytes, do not specify a buffering mode when you create the sbspace. If
you are reading or writing short blocks of data, such as 2 kilobytes or 4 kilobytes, leave the default of “buffering=ON” to obtain better performance.
Programmers can override the default buffering mode when they create, open, or alter a smart-large-object instance with DataBlade API and the Informix® ESQL/C
functions. The DataBlade API and the Informix ESQL/C application programming interface provide the LO_NOBUFFER flag to allow lightweight I/O for smart large objects.
Important: Use the LO_NOBUFFER flag only when you read or write smart large objects in operations greater than 8080 bytes and you seldom access them. That is, if you
have infrequent read or write function calls that read large amounts of data in a single function invocation, lightweight I/O can improve I/O performance.
Related information:

 onspaces -c -S: Create an sbspace
What is Informix ESQL/C?
DataBlade API overview

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1339

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Logging

If you decide to log all write operations on data stored in sbspaces, logical-log I/O activity and memory utilization increases.

For more information, see Configuration parameters that affect sbspace I/O.

Copyright© 2020 HCL Technologies Limited

Table I/O

One of the most frequent functions that the database server performs is to bring data and index pages from disk into memory. Pages can be read individually for brief
transactions and sequentially for some queries. You can configure the number of pages that the database server brings into memory, and you can configure the timing of
I/O requests for sequential scans.

You can also indicate how the database server is to respond when a query requests data from a dbspace that is temporarily unavailable.

The following sections describe these methods of reading pages.

For information about I/O for smart large objects, see Factors that affect I/O for smart large objects.

Sequential scans
 When the database server performs a sequential scan of data or index pages, most of the I/O wait time is caused by seeking the appropriate starting page. To

dramatically improve performance for sequential scans, you can bring in a number of contiguous pages with each I/O operation.
Light scans

 Some sequential scans of tables can use light scans to read the data. A light scan bypasses the buffer pool by utilizing session memory to read directly from disk.
Unavailable data

 Another aspect of table I/O pertains to situations in which a query requests access to a table or fragment in a dbspace that is temporarily unavailable. When the
database server determines that a dbspace is unavailable as the result of a disk failure, queries directed to that dbspace fail by default. The database server allows
you to specify dbspaces that, when unavailable, can be skipped by queries,

Copyright© 2020 HCL Technologies Limited

Sequential scans

When the database server performs a sequential scan of data or index pages, most of the I/O wait time is caused by seeking the appropriate starting page. To dramatically
improve performance for sequential scans, you can bring in a number of contiguous pages with each I/O operation.

The action of bringing additional pages along with the first page in a sequential scan is called read ahead.

The timing of I/O operations that are needed for a sequential scan is also important. If the scan thread must wait for the next set of pages to be brought in after working its
way through each batch, a delay occurs. Timing second and subsequent read requests to bring in pages before they are needed provides the greatest efficiency for
sequential scans. The number of pages to bring in and the frequency of read-ahead I/O requests depends on the availability of space in the memory buffers. Read-ahead
operations can increase page cleaning to unacceptable levels if too many pages are brought in with each batch or if batches are brought in too often.

Related information:
 Read-ahead operations

Copyright© 2020 HCL Technologies Limited

Light scans

Some sequential scans of tables can use light scans to read the data. A light scan bypasses the buffer pool by utilizing session memory to read directly from disk.

Light scans can provide performance advantages over use of the buffer pool for sequential scans and skip scans of large tables. These advantages include:

Bypassing the overhead of the buffer pool when many data pages are read
Preventing frequently accessed pages from being forced out of the buffer pool when many sequential pages are read for a single query.

Light scans occur under these conditions:

The optimizer chooses a sequential scan or a skip-scan of the table.
The amount of data in the table exceeds one MB.
The query meets one of the following locking conditions:

The isolation level is Dirty Read (or the database has no transaction logging).
The table has at least a shared lock on the entire table and the isolation level is not Cursor Stability.
Note: A sequential scan in Repeatable Read isolation automatically acquires a share lock on the table.

Tables that cannot be accessed by light scans
Light scans are only performed on user tables whose data rows are stored in tblspaces. Light scans are not used to access indexes, or to access data stored in blobspaces,
smart blob spaces, or partition blobs. Similarly, light scans are not used to access data in the system catalog tables, nor in the tables and pseudotables of system

1340 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

databases like sysadmin, sysmaster, sysuser, and sysutils.

Configuration settings that affect light scans
If the BATCHEDREAD_TABLE configuration parameter or the IFX_BATCHEDREAD_TABLE session environment option to the SET ENVIRONMENT statement is set to 0, light
scans are not used to access tables that have variable length rows, or tables where the row length is greater than the pagesize of the dbspace in which the table is
contained. A variable length row includes tables that have a variable length column, such as VARCHAR, LVARCHAR or NVARCHAR, as well as tables that are compressed.

You can use the IFX_BATCHEDREAD_TABLE session environment option of the SET ENVIRONMENT statement, or the onmode -wm command, to override the setting of
the BATCHEDREAD_TABLE configuration parameter for the current session. You can use the onmode -wf command to change the value of BATCHEDREAD_TABLE in the
ONCONFIG file.

Example of onstat output during a light scan
If you have a long-running scan, you can view output from the onstat -g scn command to check the progress of the scan, to determine how long the scan will take before it
completes, and to see whether the scan is a light scan or a bufferpool scan.

The following example shows some of the output from onstat -g scn for a light scan. The word Light in the Scan Type field identifies the scan as a light scan.

SesID Thread Partnum Rowid Rows Scan'd Scan Type Lock Mode Notes
17 48 300002 207 15 Light Forward row lookup

Related information:
 BATCHEDREAD_TABLE configuration parameter

onstat -g scn command: Print scan information

Copyright© 2020 HCL Technologies Limited

Unavailable data

Another aspect of table I/O pertains to situations in which a query requests access to a table or fragment in a dbspace that is temporarily unavailable. When the database
server determines that a dbspace is unavailable as the result of a disk failure, queries directed to that dbspace fail by default. The database server allows you to specify
dbspaces that, when unavailable, can be skipped by queries,

For information about specifying dbspaces that, when unavailable, can be skipped by queries, see How DATASKIP affects table I/O.
Warning: If a dbspace containing data that a query requests is listed in the DATASKIP configuration parameter and is currently unavailable because of a disk failure, the
data that the database server returns to the query can be inconsistent with the actual contents of the database.

Copyright© 2020 HCL Technologies Limited

Configuration parameters that affect table I/O

The AUTO_READAHEAD configuration parameter changes the automatic read-ahead mode or disables automatic read-ahead for a query. In addition, the DATASKIP
configuration parameter enables or disables data skipping.

Automatic read-ahead processing helps improve query performance by issuing asynchronous page requests when Informix® detects that the query is encountering I/O.
Asynchronous page requests can improve query performance by overlapping query processing with the processing necessary to retrieve data from disk and put it in the
buffer pool. You can also use the AUTO_READAHEAD environment option of the SET ENVIRONMENT statement of SQL to enable or disable the value of the
AUTO_READAHEAD configuration parameter for a session.

How DATASKIP affects table I/O
 The DATASKIP configuration parameter allows you to specify which dbspaces, if any, queries can skip when those dbspaces are unavailable as the result of a disk

failure. You can list specific dbspaces and turn data skipping on or off for all dbspaces.

Related information:
 AUTO_READAHEAD configuration parameter

Copyright© 2020 HCL Technologies Limited

How DATASKIP affects table I/O

The DATASKIP configuration parameter allows you to specify which dbspaces, if any, queries can skip when those dbspaces are unavailable as the result of a disk failure.
You can list specific dbspaces and turn data skipping on or off for all dbspaces.

When data skipping is enabled, the database server sets the sixth character in the SQLWARN array to W..
Warning: The database server cannot determine whether the results of a query are consistent when a dbspace is skipped. If the dbspace contains a table fragment, the
user who executes the query must ensure that the rows within that fragment are not needed for an accurate query result. Turning DATASKIP on allows queries with
incomplete data to return results that can be inconsistent with the actual state of the database. Without proper care, that data can yield incorrect or misleading query
results.
Related information:

 DATASKIP Configuration Parameter
SQLWARN array

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1341

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Background I/O activities

Background I/O activities do not service SQL requests directly. Many of these activities are essential to maintain database consistency and other aspects of database
server operation. However, they create overhead in the CPU and take up I/O bandwidth.

These overhead activities take time away from queries and transactions. If you do not configure background I/O activities properly, too much overhead for these activities
can limit the transaction throughput of your application.

The following list shows some background I/O activities:

Checkpoints
Logging
Page cleaning
Backup and restore
Rollback and recovery
Data replication
Auditing

Checkpoints occur regardless of whether much database activity occurs; however, they can occur with greater frequency as activity increases. Other background activities,
such as logging and page cleaning, occur more frequently as database use increases. Activities such as backups, restores, or fast recoveries occur only as scheduled or
under exceptional circumstances.

For the most part, tuning your background I/O activities involves striking a balance between appropriate checkpoint intervals, logging modes and log sizes, and page-
cleaning thresholds. The thresholds and intervals that trigger background I/O activity often interact; adjustments to one threshold might shift the performance bottleneck
to another.

The following sections describe the performance effects and considerations that are associated with the configuration parameters that affect these background I/O
activities.

Configuration parameters that affect checkpoints
 The RTO_SERVER_RESTART, CKPTINTVL, LOGSIZE, LOGFILES, PHYSFILE, and ONDBSPACEDOWN configuration parameters affect checkpoints.

Configuration parameters that affect logging
 The LOGBUFF, PHYSBUFF, LOGFILES, LOGSIZE, DYNAMIC_LOGS, AUTO_LLOG, LTXHWM, LTXEHWM, SESSION_LIMIT_LOGSPACE, SESSION_LIMIT_TXN_TIME, and

TEMPTAB_NOLOG configuration parameters affect logging.
Configuration parameters that affect page cleaning

 Several configuration parameters, including the CLEANERS and RTO_SERVER_RESTART configuration parameters, affect page cleaning. If pages are not cleaned
often enough, an sqlexec thread that performs a query might be unable to find the available pages that it needs.
Configuration parameters that affect backup and restore

 Four configuration parameters that affect backup and restore on all operating systems also affect background I/O. Additional configuration parameters affect
backup and restore on UNIX.
Configuration parameters that affect rollback and recovery

 The OFF_RECVRY_THREADS, ON_RECVRY_THREADS, PLOG_OVERFLOW_PATH, and RTO_SERVER_RESTART configuration parameters affect recovery. The
LOW_MEMORY_RESERVE configuration parameter reserves a specific amount of memory, in kilobytes, for the database server to use when critical activities, such
as rollback activities, are needed.
Configuration parameters that affect data replication and auditing

 Data replication and auditing are optional. If you use these features, you can set configuration parameters that affect data-replication performance and auditing
performance.
LRU tuning

 The LRU settings for flushing each buffer pool between checkpoints are not critical to checkpoint performance. The LRU settings are necessary only for maintaining
enough clean pages for page replacement.

Copyright© 2020 HCL Technologies Limited

Configuration parameters that affect checkpoints

The RTO_SERVER_RESTART, CKPTINTVL, LOGSIZE, LOGFILES, PHYSFILE, and ONDBSPACEDOWN configuration parameters affect checkpoints.

RTO_SERVER_RESTART and its effect on checkpoints
 The RTO_SERVER_RESTART configuration parameter specifies the amount of time, in seconds, that Informix® has to recover from an unplanned outage.

CKPTINTVL and its effect on checkpoints
 If the RTO_SERVER_RESTART configuration parameter is not on, the CKPTINTVL configuration parameter specifies the frequency, in seconds, at which the database

server checks to determine whether a checkpoint is needed.
LOGSIZE and LOGFILES and their effect on checkpoints

 The LOGSIZE and LOGFILES configuration parameters indirectly affect checkpoints because they specify the size and number of logical-log files. A checkpoint can
occur when the database server detects that the next logical-log file to become current contains the most-recent checkpoint record.
Checkpoints and the physical log

 The PHYSFILE configuration parameter specifies the size of the initial physical log. A checkpoint occurs when either the physical log becomes 75 percent full or a
high number of dirty partitions exist.
ONDBSPACEDOWN and its effect on checkpoints

 The ONDBSPACEDOWN configuration parameter specifies the response that the database server makes when an I/O error indicates that a dbspace is down. By
default, the database server identifies any dbspace that contains no critical data as down and continues processing. Critical data includes the root dbspace, the
logical log, or the physical log.

Copyright© 2020 HCL Technologies Limited

1342 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

RTO_SERVER_RESTART and its effect on checkpoints

The RTO_SERVER_RESTART configuration parameter specifies the amount of time, in seconds, that Informix® has to recover from an unplanned outage.

The performance advantage of enabling this configuration parameter is:

Enabling fast recovery to meet the RTO_SERVER_RESTART policy by seeding the buffer pool with the data pages required by log replay.

The performance disadvantages of enabling this configuration parameter are:

Increased physical log activity which might slightly impact transaction performance
Increased checkpoint frequency, because the physical log space is depleted more quickly (You can increase the size of the physical log to avoid the increase in
checkpoint frequency.)

When RTO_SERVER_RESTART is enabled, the database server:

Attempts to make sure nonblocking checkpoints do not run out of critical resources during checkpoint processing by triggering more frequent checkpoints if
transactions might run out of physical or logical log resources, which would cause transaction blocking.
Ignores the CKPTINTVL configuration parameter.
Automatically controls checkpoint frequency to meet the RTO policy and to prevent the server from running out of log resources.
Automatically adjusts the number of AIO virtual processors and cleaner threads and automatically tunes LRU flushing.

The database server prints warning messages in the message log if the server cannot meet the RTO_SERVER_RESTART policy.

Automatic checkpoints, LRU tuning, and AIO virtual processor tuning
 The database server automatically adjusts checkpoint frequency to avoid transaction blocking. The server monitors physical and logical log consumption along with

information about past checkpoint performance. Then, if necessary, the server triggers checkpoints more frequently to avoid transaction blocking.

Related information:
 RTO_SERVER_RESTART configuration parameter

Copyright© 2020 HCL Technologies Limited

Automatic checkpoints, LRU tuning, and AIO virtual processor tuning

The database server automatically adjusts checkpoint frequency to avoid transaction blocking. The server monitors physical and logical log consumption along with
information about past checkpoint performance. Then, if necessary, the server triggers checkpoints more frequently to avoid transaction blocking.

You can turn off automatic checkpoint tuning by setting onmode -wf AUTO_CKPTS to 0, or setting the AUTO_CKPTS configuration parameter to 0.

Because the database server does not block transactions during checkpoint processing, LRU flushing is relaxed. If the server is not able to complete checkpoint
processing before the physical log is full (which causes transaction blocking), and if you cannot increase the size of the physical log, you can configure the server for more
aggressive LRU flushing. The increase in LRU flushing impacts transaction performance, but reduces transaction blocking. If you do not configure the server for more
aggressive flushing, the server automatically adjusts LRU flushing to be more aggressive only when the server is unable to find a low priority buffer for page replacement.

If the VPCLASS configuration parameter setting for AIO virtual processors is set to autotune=1, the database server automatically increases the number of AIO virtual
processors and page-cleaner threads when the server detects that AIO virtual processors are not keeping up with the I/O workload.

Automatic LRU tuning affects all buffer pools and adjusts lru_min_dirty and lru_max_dirty values in the BUFFERPOOL configuration parameter.

Related concepts:
 LRU tuning

Related information:
 AUTO_CKPTS configuration parameter

BUFFERPOOL configuration parameter
VPCLASS configuration parameter

Copyright© 2020 HCL Technologies Limited

CKPTINTVL and its effect on checkpoints

If the RTO_SERVER_RESTART configuration parameter is not on, the CKPTINTVL configuration parameter specifies the frequency, in seconds, at which the database server
checks to determine whether a checkpoint is needed.

When the RTO_SERVER_RESTART configuration parameter is on, the database server ignores the CKPTINTVL configuration parameter. Instead, the server automatically
triggers checkpoints in order to maintain the RTO_SERVER_RESTART policy.

The database server can skip a checkpoint if all data is physically consistent when the checkpoint interval expires.

Checkpoints also occur in either of these circumstances:

Whenever the physical log becomes 75 percent full
If a high number of dirty partitions exist, even if the physical log is not 75 percent full.
This occurs because when the database server checks if the physical log is 75 percent full, the server also checks if the following condition is true:

(Physical Log Pages Used + Number of Dirty Partitions) >=
(Physical Log Size * 9) /10)

Part VI: Administering 1343

https://www.hcltech.com/
https://www.hcltech.com/

A partition, which represents one page going into the physical log during checkpoint processing and has a page that maintains information (such as the number of
rows and number of data pages) about the partition, becomes dirty when the partition is updated.

If you set CKPTINTVL to a long interval, you can use physical-log capacity to trigger checkpoints based on actual database activity instead of an arbitrary time unit.
However, a long checkpoint interval can increase the time needed for recovery in the event of a failure. Depending on your throughput and data-availability requirements,
you can choose an initial checkpoint interval of 5, 10, or 15 minutes, with the understanding that checkpoints might occur more often, depending on physical-logging
activity.

The database server writes a message to the message log to note the time that it completes a checkpoint. To read these messages, use onstat -m.

Related information:
 CKPTINTVL configuration parameter

Copyright© 2020 HCL Technologies Limited

LOGSIZE and LOGFILES and their effect on checkpoints

The LOGSIZE and LOGFILES configuration parameters indirectly affect checkpoints because they specify the size and number of logical-log files. A checkpoint can occur
when the database server detects that the next logical-log file to become current contains the most-recent checkpoint record.

If you need to free the logical-log file that contains the last checkpoint, the database server must write a new checkpoint record to the current logical-log file. If the
frequency with which logical-log files are backed up and freed increases, the frequency at which checkpoints occur increases. Although checkpoints block user
processing, they no longer last as long. Because other factors (such as the physical-log size) also determine the checkpoint frequency, this effect might not be significant.

When the dynamic log allocation feature is enabled, the size of the logical log does not affect the thresholds for long transactions as much as it did in previous versions of
the database server. For details, see LTXHWM and LTXEHWM and their effect on logging.

The LOGSIZE, LOGFILES, and LOGBUFF configuration parameters also affect logging I/O activity and logical backups. For more information, see Configuration parameters
that affect logging.

Related information:
 LOGFILES configuration parameter

LOGSIZE configuration parameter
Estimate the number of logical-log files

Copyright© 2020 HCL Technologies Limited

Checkpoints and the physical log

The PHYSFILE configuration parameter specifies the size of the initial physical log. A checkpoint occurs when either the physical log becomes 75 percent full or a high
number of dirty partitions exist.

The rate at which transactions generate physical log activity can affect checkpoint performance. To avoid transaction blocking during checkpoint processing, consider the
size of the physical log and how quickly it fills.

You can enable the database server to expand the size of the physical log as needed to improve performance by creating an extendable plogspace for the physical log.

For example, operations that do not perform updates do not generate before-images. If the size of the database is growing, but applications rarely update the data, little
physical logging occurs. In this situation, you might not need a large physical log.

Similarly, you can define a smaller physical log if your application updates the same pages. The database server writes the before-image of only the first update that is
made to a page for the following operations:

Inserts, updates, and deletes for rows that contain user-defined data types (UDTs), smart large objects, and simple large objects
ALTER statements
Operations that create or modify indexes (B-tree, R-tree, or user-defined indexes)

Because the physical log is recycled after each checkpoint, the physical log must be large enough to hold before-images from changes between checkpoints. If the
database server frequently triggers checkpoints because it runs out of physical log space, consider increasing the size of the physical log.

If you increase the checkpoint interval or if you anticipate increased update activity, you might want to increase the size of the physical log.

The physical log is an important part of maintaining RTO_SERVER_RESTART policy. To ensure that you have an abundance of space, set the size of the physical log to at
least 110 percent of the size of all buffer pools.

You can use the onparams utility to change the physical log location and size. You can change the physical log while transactions are active and without restarting the
database server.

Related reference:
 Configuration parameters that affect critical data

Related information:
 PHYSFILE configuration parameter

Strategy for estimating the size of the physical log
Change the physical-log location and size
Plogspace

Copyright© 2020 HCL Technologies Limited

1344 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

ONDBSPACEDOWN and its effect on checkpoints

The ONDBSPACEDOWN configuration parameter specifies the response that the database server makes when an I/O error indicates that a dbspace is down. By default,
the database server identifies any dbspace that contains no critical data as down and continues processing. Critical data includes the root dbspace, the logical log, or the
physical log.

To restore access to that database, you must back up all logical logs and then perform a warm restore on the down dbspace.

The database server halts operation whenever a disabling I/O error occurs on a nonmirrored dbspace that contains critical data, regardless of the setting for
ONDBSPACEDOWN. In such an event, you must perform a cold restore of the database server to resume normal database operations.

The value of ONDBSPACEDOWN has no affect on temporary dbspaces. For temporary dbspaces, the database server continues processing regardless of the
ONDBSPACEDOWN setting. If a temporary dbspace requires fixing, you can drop and recreate it.

When ONDBSPACEDOWN is set to 2, the database server continues processing to the next checkpoint and then suspends processing of all update requests. The database
server repeatedly retries the I/O request that produced the error until the dbspace is repaired and the request completes or the database server administrator intervenes.
The administrator can use onmode -O to mark the dbspace down and continue processing while the dbspace remains unavailable or use onmode -k to halt the database
server.
Important: This 2 setting for ONDBSPACEDOWN can affect the performance for update requests severely because they are suspended due to a down dbspace. When you
use this setting for ONDBSPACEDOWN, be sure to monitor the status of the dbspaces.
When you set ONDBSPACEDOWN to 1, the database server treats all dbspaces as though they were critical. Any nonmirrored dbspace that becomes disabled halts normal
processing and requires a cold restore. The performance impact of halting and performing a cold restore when any dbspace goes down can be severe.
Important: If you decide to set ONDBSPACEDOWN to 1, consider mirroring all your dbspaces.
Related information:

 ONDBSPACEDOWN configuration parameter

Copyright© 2020 HCL Technologies Limited

Configuration parameters that affect logging

The LOGBUFF, PHYSBUFF, LOGFILES, LOGSIZE, DYNAMIC_LOGS, AUTO_LLOG, LTXHWM, LTXEHWM, SESSION_LIMIT_LOGSPACE, SESSION_LIMIT_TXN_TIME, and
TEMPTAB_NOLOG configuration parameters affect logging.

Logging, checkpoints, and page cleaning are necessary to maintain database consistency. A direct trade-off exists between the frequency of checkpoints or the size of the
logical logs and the time that it takes to recover the database in the event of a failure. Therefore, a major consideration when you attempt to reduce the overhead for these
activities is the delay that you can accept during recovery.

LOGBUFF and PHYSBUFF and their effect on logging
 The LOGBUFF and PHYSBUFF configuration parameters affect logging I/O activity because they specify the respective sizes of the logical-log and physical-log

buffers that are in shared memory. The size of these buffers determines how quickly the buffers fill and therefore how often they need to be flushed to disk.
LOGFILES and its effect on logging

 The LOGFILES configuration parameter, which specifies the number of logical-log files, affects logging.
LOGSIZE and its effect on logging

 The LOGSIZE configuration parameter specifies the size of each logical log file. It is difficult to predict how much logical-log space your database server system
requires until the system is fully in use.
DYNAMIC_LOGS and its effect on logging

 The dynamic log file allocation feature prevents hanging problems that are caused by rollbacks of a long transaction because the database server does not run out
of log space. The DYNAMIC_LOGS configuration parameter specifies whether the dynamic log file allocation feature is off, on, or causes the server to pause to allow
the manual addition of a logical log file.
AUTO_LLOG and its effect on logging

 Insufficient logical logs can affect performance by triggering frequent checkpoints, blocking checkpoints, or long checkpoints. The AUTO_LLOG configuration
parameter controls whether the database server automatically adds logical logs to improve performance.
LTXHWM and LTXEHWM and their effect on logging

 The LTXHWM and LTXEHWM configuration parameters define long transaction watermarks.
TEMPTAB_NOLOG and its effect on logging

 The TEMPTAB_NOLOG configuration parameter allows you to disable logging on temporary tables. You can do this to improve performance and to prevent Informix®
from transferring temporary tables when using High-Availability Data Replication (HDR).
SESSION_LIMIT_LOGSPACE and its effect on logging

 The SESSION_LIMIT_LOGSPACE configuration parameter specifies the maximum amount of log space that a session can use for individual transactions, and can
prevent individual sessions from monopolizing the logical log.
SESSION_LIMIT_TXN_TIME and its effect on logging

 The SESSION_LIMIT_TXN_TIME configuration parameter limits how much time a transaction can run in a session, and can prevent individual session transactions
from monopolizing the logical log.

Copyright© 2020 HCL Technologies Limited

LOGBUFF and PHYSBUFF and their effect on logging

The LOGBUFF and PHYSBUFF configuration parameters affect logging I/O activity because they specify the respective sizes of the logical-log and physical-log buffers that
are in shared memory. The size of these buffers determines how quickly the buffers fill and therefore how often they need to be flushed to disk.

Related information:
 LOGBUFF configuration parameter

PHYSBUFF configuration parameter

Part VI: Administering 1345

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

LOGFILES and its effect on logging

The LOGFILES configuration parameter, which specifies the number of logical-log files, affects logging.

When you initialize or restart the database server, it creates the number of logical-log files that you specify in the LOGFILES configuration parameter.

You might add logical-log files for the following reasons:

To increase the disk space allocated to the logical log
To change the size of your logical-log files
To enable an open transaction to roll back
As part of moving logical-log files to a different dbspace

Calculating the space allocated to logical log files
 If all of your logical log files are the same size, you can calculate the total space allocated to the logical log files.

Related information:
 LOGFILES configuration parameter

Estimate the number of logical-log files

Copyright© 2020 HCL Technologies Limited

Calculating the space allocated to logical log files

If all of your logical log files are the same size, you can calculate the total space allocated to the logical log files.

To calculate the space allocated to these files, use the following formula:

total logical log space = LOGFILES * LOGSIZE

If you add logical-log files that are not the size specified by the LOGSIZE configuration parameter, you cannot use the LOGFILES * LOGSIZE expression to calculate the
size of the logical log. Instead, you need to add the sizes for each individual log file on disk.

Use the onstat -l utility to monitor logical-log files.

Copyright© 2020 HCL Technologies Limited

LOGSIZE and its effect on logging

The LOGSIZE configuration parameter specifies the size of each logical log file. It is difficult to predict how much logical-log space your database server system requires
until the system is fully in use.

The size of the logical log space (LOGFILES * LOGSIZE) is determined by these policies:

Recovery time objective (RTO)
This is the length of time you can afford to be without your systems. If your only objective is failure recovery, the total log space only needs to be large enough to
contain all the transactions for two checkpoint cycles. When the RTO_SERVER_RESTART configuration parameter is enabled and the server has a combined buffer
pool size of less that four gigabytes, you can configure the total log space to 110% of the combined buffer pool sizes. Too much log space does not impact
performance; however, too little log space can cause more frequent checkpoints and transaction blocking.

Recovery point objective (RPO)
This describes the age of the data you want to restore in the event of a disaster. If the objective is to make sure transactional work is protected, the optimum
LOGSIZE should be a multiple of how much work gets done per RPO unit. Because the database server supports partial log backup, an optimal log size is not critical
and a non-optimal log size simply means more frequent log file changes. RPO is measured in units of time. If the business rule is that the system cannot lose more
than ten minutes of transactional data if a complete site disaster occurs, then a log backup should occur every ten minutes.
You can use the Scheduler, which manages and executes scheduled administrative tasks, to set up automatic log backup.

Long Transactions
If you have long transactions that require a large amount of log space, you should allocate that space for the logs. Inadequate log space impacts transaction
performance.

Choose a log size based on how much logging activity occurs and the amount of risk in case of catastrophic failure. If you cannot afford to lose more than an hour's worth
of data, create many small log files that each hold an hour's worth of transactions. Turn on continuous-log backup. Small logical-log files fill sooner, which means more
frequent logical-log backups.

If your system is stable with high logging activity, choose larger logs to improve performance. Continuous-log backups occur less frequently with large log files. Also
consider the maximum transaction rates and speed of the backup devices. Do not let the whole logical log fill. Turn on continuous-log backup and leave enough room in
the logical logs to handle the longest transactions.

The backup process can hinder transaction processing that involves data located on the same disk as the logical-log files. If enough logical-log disk space is available,
however, you can wait for periods of low user activity before you back up the logical-log files.

Estimating logical-log size when logging dbspaces
 To estimate the size of logical logs, use a formula or onstat -u information.

1346 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Estimating the logical-log size when logging simple large objects
To obtain better overall performance for applications that perform frequent updates of TEXT or BYTE data in blobspaces, reduce the size of the logical log.
Estimating the logical-log size when logging smart large objects
If you plan to log smart-large-object user data, you must ensure that the log size is considerably larger than the amount of data being written. Smart-large-object
metadata is always logged even if the smart large objects are not logged.

Related information:
 LOGSIZE configuration parameter

The Scheduler

Copyright© 2020 HCL Technologies Limited

Estimating logical-log size when logging dbspaces

To estimate the size of logical logs, use a formula or onstat -u information.

Use the following formula to obtain an initial estimate for LOGSIZE in kilobytes:

LOGSIZE = (connections * maxrows * rowsize) / 1024) / LOGFILES

In this formula:

connections is the maximum number of connections for all network types specified in the sqlhosts information by one or more NETTYPE parameters. If you
configured more than one connection by setting multiple NETTYPE configuration parameters in your configuration file, sum the users fields for each NETTYPE
parameter, and substitute this total for connections in the preceding formula.
maxrows is the largest number of rows to be updated in a single transaction.
rowsize is the average size of a row in bytes. You can calculate rowsize by adding up the length (from the syscolumns system catalog table) of the columns in a row.
1024 is a necessary divisor because you specify LOGSIZE in kilobytes.

To obtain a better estimate during peak activity periods, execute the onstat -u command. The last line of the onstat -u output contains the maximum number of
concurrent connections.

You need to adjust the size of the logical log when your transactions include simple large objects or smart large objects, as the following sections describe.

You also can increase the amount of space devoted to the logical log by adding another logical-log file.

Related information:
 Adding logical-log files manually

Copyright© 2020 HCL Technologies Limited

Estimating the logical-log size when logging simple large objects

To obtain better overall performance for applications that perform frequent updates of TEXT or BYTE data in blobspaces, reduce the size of the logical log.

Blobpages cannot be reused until the logical log to which they are allocated is backed up. When TEXT or BYTE data activity is high, the performance impact of more
frequent checkpoints is balanced by the higher availability of free blobpages.

When you use volatile blobpages in blobspaces, smaller logs can improve access to simple large objects that must be reused. Simple large objects cannot be reused until
the log in which they are allocated is flushed to disk. In this case, you can justify the cost in performance because those smaller log files are backed up more frequently.

Copyright© 2020 HCL Technologies Limited

Estimating the logical-log size when logging smart large objects

If you plan to log smart-large-object user data, you must ensure that the log size is considerably larger than the amount of data being written. Smart-large-object
metadata is always logged even if the smart large objects are not logged.

Use the following guidelines when you log smart large objects:

If you are appending data to a smart large object, the increased logging activity is roughly equal to the amount of data written to the smart large object.
If you are updating a smart large object (overwriting data), the increased logging activity is roughly twice the amount of data written to the smart large object. The
database server logs both the before-image and after-image of a smart large object for update transactions. When updating the smart large objects, the database
server logs only the updated parts of the before and after image.
Metadata updates affect logging less. Even though metadata is always logged, the number of bytes logged is usually much smaller than the smart large objects.

Copyright© 2020 HCL Technologies Limited

DYNAMIC_LOGS and its effect on logging

The dynamic log file allocation feature prevents hanging problems that are caused by rollbacks of a long transaction because the database server does not run out of log
space. The DYNAMIC_LOGS configuration parameter specifies whether the dynamic log file allocation feature is off, on, or causes the server to pause to allow the manual

Part VI: Administering 1347

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

addition of a logical log file.

Dynamic log allocation allows you to do the following actions:

Add a logical log file while the system is active, even during fast recover.
Insert a logical log file immediately after the current log file, instead of appending it to the end.
Immediately access the logical log file even if the root dbspace is not backed up.

The default value for the DYNAMIC_LOGS configuration parameter is 2, which means that the database server automatically allocates a new logical log file after the
current log file when it detects that the next log file contains an open transaction. The database server automatically checks if the log after the current log still contains an
open transaction at the following times:

Immediately after it switches to a new log file while writing log records (not while reading and applying log records)
At the beginning of the transaction cleanup phase which occurs as the last phase of logical recovery
Logical recovery happens at the end of fast recovery and at the end of a cold restore or roll forward.

During transaction cleanup (rollback of open transactions), a switch to a new log file log might occur
The database server also checks after this switch because it is writing log records for the rollback.

When you use the default value of 2 for DYNAMIC_LOGS, the database server determines the location and size of the new logical log for you:

The database server uses the following criteria to determine on which disk to allocate the new log file:
Favor mirrored dbspaces
Avoid root dbspace until no other critical dbspace is available
Least favored space is unmirrored and noncritical dbspaces

The database server uses the average size of the largest log file and the smallest log file for the size of the new logical log file. If not enough contiguous disk space is
available for this average size, the database server searches for space for the next smallest average size. The database server allocates a minimum of 200 kilobytes
for the new log file.

If you want to control the location and size of the additional log file, set DYNAMIC_LOGS to 1. When the database server switches log files, it still checks if the next active
log contains an open transaction. If it does find an open transaction in the next log to be active, it does the following actions:

Issues alarm event 27 (log required)
Writes a warning message to the online log
Pauses to wait for the administrator to manually add a log with the onparams -a -i command-line option

You can write a script that will execute when alarm event 27 occurs to execute onparams -a -i with the location you want to use for the new log. Your script can also
execute the onstat -d command to check for adequate space and execute the onparams -a -i command with the location that has enough space. You must use the -i
option to add the new log right after the current log file.

If you set DYNAMIC_LOGS to 0, the database server still checks whether the next active log contains an open transaction when it switches log files. If it does find an open
transaction in the next log to be active, it issues the following warning:

WARNING: The oldest logical log file (%d) contains records
from an open transaction (0x%p), but the Dynamic Log
Files feature is turned off.

Related information:
 DYNAMIC_LOGS configuration parameter

Fast recovery

Copyright© 2020 HCL Technologies Limited

AUTO_LLOG and its effect on logging

Insufficient logical logs can affect performance by triggering frequent checkpoints, blocking checkpoints, or long checkpoints. The AUTO_LLOG configuration parameter
controls whether the database server automatically adds logical logs to improve performance.

If you created a server during installation, the AUTO_LLOG configuration parameter is enabled automatically. Otherwise, you can edit the value of the AUTO_LLOG
configuration parameter.

If the AUTO_LLOG configuration parameter is enabled, the database server automatically adds logical log files under the following circumstances:

When a substantial portion of the last 20 checkpoints were caused by logical logs filling up
When inadequate logical log space causes a blocking checkpoint
When inadequate logical log space causes a long checkpoint

The AUTO_LLOG configuration parameter also specifies the dbspace for new logical log files and the maximum size of all logical log files before the server stops adding
logical logs for performance. The following guidelines show estimates of the maximum amount of space for logical logs that you might need, depending on the number of
concurrent users who access your database server:

1 - 100 users: 200 MB
101 - 500 users: 5 MB
501 - 1000 users: 1 GB
More than 1000 users: 2 GB

The settings of the AUTO_LLOG configuration parameter and the DYNAMIC_LOGS configuration parameters do not interact.

Related information:
 AUTO_LLOG configuration parameter

Copyright© 2020 HCL Technologies Limited

1348 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

LTXHWM and LTXEHWM and their effect on logging

The LTXHWM and LTXEHWM configuration parameters define long transaction watermarks.

After the release of the dynamic log file feature, long transaction high watermarks are no longer as critical, because the server does not run out of log space unless you use
up the physical disk space available on the system. The LTXHWM parameter still indicates how full the logical log is when the database server starts to check for a possible
long transaction and to roll it back. LTXEHWM still indicates the point at which the database server suspends new transaction activity to locate and roll back a long
transaction. These events are usually rare, but if they occur, they can indicate a serious problem within an application.

Under normal operations, use the default values for LTXHWM and LTXEHWM. However, you might want to change these default values for one of the following reasons:

To allow other transactions to continue update activity (which requires access to the log) during the rollback of a long transaction
In this case, you increase the value of LTXEHWM to raise the point at which the long transaction rollback has exclusive access to the log.

To run scheduled transactions of unknown length, such as large loads that are logged
In this case, you increase the value of LTXHWM so that the transaction has a chance to complete before it reaches the high watermark.

Related information:
 LTXEHWM configuration parameter

LTXHWM configuration parameter

Copyright© 2020 HCL Technologies Limited

TEMPTAB_NOLOG and its effect on logging

The TEMPTAB_NOLOG configuration parameter allows you to disable logging on temporary tables. You can do this to improve performance and to prevent Informix® from
transferring temporary tables when using High-Availability Data Replication (HDR).

To disable logging on temporary tables, set the TEMPTAB_NOLOG configuration parameter to 1.

To enable logging on temporary tables for primary server and to disable logging on temporary tables for secondary servers(HDR, RSS and SDS), set the TEMPTAB_NOLOG
configuration parameter to 2.

Related information:
 TEMPTAB_NOLOG configuration parameter

Copyright© 2020 HCL Technologies Limited

SESSION_LIMIT_LOGSPACE and its effect on logging

The SESSION_LIMIT_LOGSPACE configuration parameter specifies the maximum amount of log space that a session can use for individual transactions, and can prevent
individual sessions from monopolizing the logical log.

SESSION_LIMIT_LOGSPACE does not apply to a user who holds administrative privileges, such as user informix or a DBSA user.

Related information:
 SESSION_LIMIT_LOGSPACE configuration parameter

SESSION_LIMIT_TXN_TIME configuration parameter

Copyright© 2020 HCL Technologies Limited

SESSION_LIMIT_TXN_TIME and its effect on logging

The SESSION_LIMIT_TXN_TIME configuration parameter limits how much time a transaction can run in a session, and can prevent individual session transactions from
monopolizing the logical log.

The database server terminates a transaction that exceeds the SESSION_LIMIT_TXN_TIME limit, and produces an error in the database server message log.

SESSION_LIMIT_TXN_TIME does not apply to a user who holds administrative privileges, such as user informix or a DBSA user.

Copyright© 2020 HCL Technologies Limited

Configuration parameters that affect page cleaning

Several configuration parameters, including the CLEANERS and RTO_SERVER_RESTART configuration parameters, affect page cleaning. If pages are not cleaned often
enough, an sqlexec thread that performs a query might be unable to find the available pages that it needs.

If the sqlexec thread cannot find the available pages that it needs, the thread initiates a foreground write and waits for pages to be freed. Foreground writes impair
performance, so you should avoid them. To reduce the frequency of foreground writes, increase the number of page cleaners or decrease the threshold for triggering a
page cleaning.

Part VI: Administering 1349

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Use onstat -F to monitor the frequency of foreground writes.

The following configuration parameters affect page cleaning:

BUFFERPOOL, which contains lrus, lru_max_dirty, and lru_min_dirty values
Information that was specified with the BUFFERS, LRUS, LRU_MAX_DIRTY, and LRU_MIN_DIRTY configuration parameters before Version 10.0 is now specified
using the BUFFERPOOL configuration parameter.

CLEANERS
RTO_SERVER_RESTART

CLEANERS and its effect on page cleaning
 The CLEANERS configuration parameter indicates the number of page-cleaner threads to run. For installations that support fewer than 20 disks, one page-cleaner

thread is recommended for each disk that contains database server data. For installations that support between 20 and 100 disks, one page-cleaner thread is
recommended for every two disks. For larger installations, one page-cleaner thread is recommended for every four disks.
BUFFERPOOL and its effect on page cleaning

 The BUFFERPOOL configuration parameter specifies the number of least recently used (LRU) queues to set up within the shared-memory buffer pool. The buffer
pool is distributed among LRU queues. Configuring more LRU queues allows more page cleaners to operate and reduces the size of each LRU queue.
RTO_SERVER_RESTART and its effect on page cleaning

 The RTO_SERVER_RESTART configuration parameter allows you to use recovery time objective (RTO) standards to set the amount of time, in seconds, that
Informix® has to recover from a problem after you restart Informix and bring it into online or quiescent mode.

Copyright© 2020 HCL Technologies Limited

CLEANERS and its effect on page cleaning

The CLEANERS configuration parameter indicates the number of page-cleaner threads to run. For installations that support fewer than 20 disks, one page-cleaner thread
is recommended for each disk that contains database server data. For installations that support between 20 and 100 disks, one page-cleaner thread is recommended for
every two disks. For larger installations, one page-cleaner thread is recommended for every four disks.

If you increase the number of LRU queues, you must increase the number of page-cleaner threads proportionally.

Related information:
 CLEANERS configuration parameter

Copyright© 2020 HCL Technologies Limited

BUFFERPOOL and its effect on page cleaning

The BUFFERPOOL configuration parameter specifies the number of least recently used (LRU) queues to set up within the shared-memory buffer pool. The buffer pool is
distributed among LRU queues. Configuring more LRU queues allows more page cleaners to operate and reduces the size of each LRU queue.

For a single-processor system, set the lrus field of the BUFFERPOOL configuration parameter to a minimum of 8. For multiprocessor systems, set the lrus field to a
minimum of 8 or to the number of CPU VPs, whichever is greater.

The lrus, lru_max_dirty, and lru_min_dirty values control how often pages are flushed to disk between checkpoints. Automatic LRU tuning, as set by the AUTO_LRU
configuration parameter, affects all buffer pools and adjusts the lru_min_dirty and lru_max_dirty values in the BUFFERPOOL configuration parameter.

If you increase the lru_max_dirty and lru_min_dirty values to improve transaction throughput, do not change the gap between the lru_max_dirty and lru_min_dirty.

When the buffer pool is very large and transaction blocking is occurring during checkpoint processing, look in the message log to determine which resource is triggering
transaction blocking. If the physical or logical log is critically low and triggers transaction blocking, increase the size of the resource that is causing the transaction
blocking. If you cannot increase the size of the resource, consider making LRU flushing more aggressive by decreasing the lru_min_dirty and lru_max_dirty settings so
that the server has fewer pages to flush to disk during checkpoint processing.

To monitor the percentage of dirty pages in LRU queues, use the onstat -R command. When the number of dirty pages consistently exceeds the lru_max_dirty limit, you
have too few LRU queues or too few page cleaners. First, use the BUFFERPOOL configuration parameter to increase the number of LRU queues. If the percentage of dirty
pages still exceeds the lru_max_dirty limit, update the CLEANERS configuration parameter to increase the number of page cleaners.

Related concepts:
 The BUFFERPOOL configuration parameter and memory utilization

Related information:
 BUFFERPOOL configuration parameter

Number of LRU queues to configure

Copyright© 2020 HCL Technologies Limited

RTO_SERVER_RESTART and its effect on page cleaning

The RTO_SERVER_RESTART configuration parameter allows you to use recovery time objective (RTO) standards to set the amount of time, in seconds, that Informix® has
to recover from a problem after you restart Informix and bring it into online or quiescent mode.

When this configuration parameter is enabled, the database server automatically adjusts the number of AIO virtual processors and cleaner threads and automatically
tunes LRU flushing.

1350 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Use the AUTO_LRU_TUNING configuration parameter to specify whether automatic LRU tuning is enabled or disabled when the server starts.

Related information:
 RTO_SERVER_RESTART configuration parameter

AUTO_LRU_TUNING configuration parameter

Copyright© 2020 HCL Technologies Limited

Configuration parameters that affect backup and restore

Four configuration parameters that affect backup and restore on all operating systems also affect background I/O. Additional configuration parameters affect backup and
restore on UNIX.

The following configuration parameters affect backup and restore on all operating systems:

BAR_MAX_BACKUP
BAR_NB_XPORT_COUNT
BAR_PROGRESS_FREQ
BAR_XFER_BUF_SIZE

In addition, the following configuration parameters affect backup and restore on UNIX:

LTAPEBLK
LTAPEDEV
LTAPESIZE
TAPEBLK
TAPEDEV
TAPESIZE

ON-Bar configuration parameters
 BAR_MAX_BACKUP, BAR_NB_XPORT_COUNT, BAR_PROGRESS_FREQ, and BAR_XFER_BUF_SIZE are some ON-Bar configuration parameters that affect

background I/O.
ontape configuration parameters (UNIX)

 On UNIX, LTAPEBLK, LTAPEDEV, LTAPESIZE, TAPEBLK, TAPEDEV, and TAPESIZE are configuration parameters that affect the ontape utility.

Copyright© 2020 HCL Technologies Limited

ON-Bar configuration parameters

BAR_MAX_BACKUP, BAR_NB_XPORT_COUNT, BAR_PROGRESS_FREQ, and BAR_XFER_BUF_SIZE are some ON-Bar configuration parameters that affect background I/O.

The BAR_MAX_BACKUP configuration parameter specifies the maximum number of backup processes per ON-Bar command. This configuration parameter also defines
the degree of parallelism, determining how many processes start to run concurrently, including processes for backing up and restoring a whole system. When the number
of running processes is reached, further processes start only when a running process completes its operation.

BAR_NB_XPORT_COUNT specifies the number of shared-memory data buffers for each backup or restore process.

BAR_PROGRESS_FREQ specifies, in minutes, how frequently the backup or restore progress messages display in the activity log.

BAR_XFER_BUF_SIZE specifies the size, in pages, of the buffers.

Related information:
 BAR_MAX_BACKUP configuration parameter

BAR_NB_XPORT_COUNT configuration parameter
BAR_PROGRESS_FREQ configuration parameter
BAR_XFER_BUF_SIZE configuration parameter

Copyright© 2020 HCL Technologies Limited

ontape configuration parameters (UNIX)

On UNIX, LTAPEBLK, LTAPEDEV, LTAPESIZE, TAPEBLK, TAPEDEV, and TAPESIZE are configuration parameters that affect the ontape utility.

On UNIX, the LTAPEBLK, LTAPEDEV, and TAPESIZE configuration parameters specify the block size, device, and tape size for logical-log backups made with ontape. The
TAPEBLK configuration parameter specifies the block size for database backups made with ontape, onload, and onunload.

TAPEDEV specifies the tape device. TAPESIZE specifies the tape size for these backups.

Related information:
 ON-Bar and ontape configuration parameters and environment variable

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1351

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Configuration parameters that affect rollback and recovery

The OFF_RECVRY_THREADS, ON_RECVRY_THREADS, PLOG_OVERFLOW_PATH, and RTO_SERVER_RESTART configuration parameters affect recovery. The
LOW_MEMORY_RESERVE configuration parameter reserves a specific amount of memory, in kilobytes, for the database server to use when critical activities, such as
rollback activities, are needed.

OFF_RECVRY_THREADS and ON_RECVRY_THREADS and their effect on fast recovery
 The OFF_RECVRY_THREADS configuration parameter specifies the number of recovery threads that operate when the database server performs a cold restore or

fast recovery. The setting of ON_RECVRY_THREADS specifies the number of recovery threads that operate when the database server performs a warm restore.
PLOG_OVERFLOW_PATH and its effect on fast recovery

 The PLOG_OVERFLOW_PATH configuration parameter specifies the location of a disk file (named plog_extend.servernum) that the database server uses if the
physical log file overflows during fast recovery.
RTO_SERVER_RESTART and its effect on fast recovery

 The RTO_SERVER_RESTART configuration parameter enables you to use recovery time objective (RTO) standards to set the amount of time, in seconds, that
Informix® has to recover from a problem after you restart Informix and bring it into online or quiescent mode.
The LOW_MEMORY_RESERVE configuration parameter and memory utilization

 The LOW_MEMORY_RESERVE configuration parameter reserves a specific amount of memory, in kilobytes, for the database server to use when critical activities are
needed and the server has limited free memory.

Copyright© 2020 HCL Technologies Limited

OFF_RECVRY_THREADS and ON_RECVRY_THREADS and their effect on fast recovery

The OFF_RECVRY_THREADS configuration parameter specifies the number of recovery threads that operate when the database server performs a cold restore or fast
recovery. The setting of ON_RECVRY_THREADS specifies the number of recovery threads that operate when the database server performs a warm restore.

To improve the performance of fast recovery, increase the number of recovery threads with the OFF_RECVRY_THREADS configuration parameter. When fast recovery
begins, the database server creates an LGR memory pool and allocates approximately 100 KB from this pool for each recovery thread. The LGR pool and its memory are
freed when fast recovery completes. Because secondary servers in a high-availability cluster are almost always in fast recovery mode, the LGR memory pool is almost
always present on secondary servers.

Follow these guidelines when you set the OFF_RECVRY_THREADS configuration parameter:

If you have enough shared memory, set the number of threads to the number of tables or fragments that are frequently updated. Balance the number of threads
with the amount of shared memory.
On a single-CPU computer, set the number of threads to 10 - 30 or 40. The cost of too many threads can outweigh the advantages of parallel operations.

A warm restore takes place concurrently with other database operations. To reduce the impact of the warm restore on other users, you can allocate fewer threads to it
than you might allocate to a cold restore. However, to replay logical-log transactions in parallel during a warm restore, specify more threads with the
ON_RECVRY_THREADS configuration parameter.

Related information:
 OFF_RECVRY_THREADS configuration parameter

ON_RECVRY_THREADS configuration parameter

Copyright© 2020 HCL Technologies Limited

PLOG_OVERFLOW_PATH and its effect on fast recovery

The PLOG_OVERFLOW_PATH configuration parameter specifies the location of a disk file (named plog_extend.servernum) that the database server uses if the physical
log file overflows during fast recovery.

The database server removes the plog_extend.servernum file when the first checkpoint is performed during a fast recovery.

Related information:
 PLOG_OVERFLOW_PATH configuration parameter

Copyright© 2020 HCL Technologies Limited

RTO_SERVER_RESTART and its effect on fast recovery

The RTO_SERVER_RESTART configuration parameter enables you to use recovery time objective (RTO) standards to set the amount of time, in seconds, that Informix® has
to recover from a problem after you restart Informix and bring it into online or quiescent mode.

Related information:
 RTO_SERVER_RESTART configuration parameter

Copyright© 2020 HCL Technologies Limited

The LOW_MEMORY_RESERVE configuration parameter and memory utilization
1352 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The LOW_MEMORY_RESERVE configuration parameter reserves a specific amount of memory, in kilobytes, for the database server to use when critical activities are
needed and the server has limited free memory.

If you enable the new LOW_MEMORY_RESERVE configuration parameter by setting it to a specified value in kilobytes, critical activities, such as rollback activities, can
complete even when you receive out-of-memory errors.

Related information:
 LOW_MEMORY_RESERVE configuration parameter

onstat -g seg command: Print shared memory segment statistics

Copyright© 2020 HCL Technologies Limited

Configuration parameters that affect data replication and auditing

Data replication and auditing are optional. If you use these features, you can set configuration parameters that affect data-replication performance and auditing
performance.

To obtain immediate performance improvements, you can disable these features, provided that the operating requirements for your system allow you to do so.

Configuration parameters that affect data replication
Synchronized data replication can increase the amount of time it take longer to free the log buffer after a log flush. The DRINTERVAL, DRTIMEOUT, and
HDR_TXN_SCOPE configuration parameters can adjust synchronization and system performance.
Configuration parameters that affect auditing

 The ADTERR and ADTMODE configuration parameters affect auditing performance.

Copyright© 2020 HCL Technologies Limited

Configuration parameters that affect data replication

Synchronized data replication can increase the amount of time it take longer to free the log buffer after a log flush. The DRINTERVAL, DRTIMEOUT, and HDR_TXN_SCOPE
configuration parameters can adjust synchronization and system performance.

The DRINTERVAL configuration parameter indicates whether the data-replication buffer is flushed synchronously or asynchronously to the secondary database server. If
this parameter is set to flush asynchronously, it specifies the interval between flushes. Each flush impacts the CPU and sends data across the network to the secondary
database server.

If the DRINTERVAL configuration parameter is set to 0, the synchronization mode that is specified by the HDR_TXN_SCOPE configuration parameter is used. The
HDR_TXN_SCOPE configuration parameter specifies whether HDR replication is fully synchronous, nearly synchronous, or asynchronous.

In fully synchronous mode, transactions require acknowledgement of completion on the HDR secondary server before they can complete.
In asynchronous mode, transactions do not require acknowledgement of being received or completed on the HDR secondary server before they can complete.
In nearly synchronous mode, transactions require acknowledgement of being received on the HDR secondary server before they can complete.

The DRTIMEOUT configuration parameter specifies the interval for which either database server waits for a transfer acknowledgment from the other. If the primary
database server does not receive the expected acknowledgment, it adds the transaction information to the file named in the DRLOSTFOUND configuration parameter. If
the secondary database server receives no acknowledgment, it changes the data-replication mode as the DRAUTO configuration parameter specifies.

Related information:
 DRINTERVAL configuration parameter

DRTIMEOUT configuration parameter
DRLOSTFOUND configuration parameter
DRAUTO configuration parameter
HDR_TXN_SCOPE configuration parameter
onstat -g dri command: Print high-availability data replication information
Replication of primary-server data to secondary servers
Fully synchronous mode for HDR replication
Nearly synchronous mode for HDR replication
Asynchronous mode for HDR replication

Copyright© 2020 HCL Technologies Limited

Configuration parameters that affect auditing

The ADTERR and ADTMODE configuration parameters affect auditing performance.

The ADTERR configuration parameter specifies whether the database server is to halt processing for a user session for which an audit record encounters an error. When
ADTERR is set to halt such a session, the response time for that session appears to degrade until one of the successive attempts to write the audit record succeeds.

The ADTMODE configuration parameter enables or disables auditing according to the audit records that you specify with the onaudit utility. Records are written to files in
the directory that the AUDITPATH parameter specifies. The AUDITSIZE parameter specifies the size of each audit-record file.

The effect of auditing on performance is largely determined by the auditing events that you choose to record. Depending on which users and events are audited, the
impact of these configuration parameters can vary widely.

Part VI: Administering 1353

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Infrequent events, such as requests to connect to a database, have low performance impact. Frequent events, such as requests to read any row, can generate a large
amount of auditing activity. The more users for whom such frequent events are audited, the greater the impact on performance.

Related information:
 ADTERR configuration parameter

ADTMODE configuration parameter
Auditing data security

Copyright© 2020 HCL Technologies Limited

LRU tuning

The LRU settings for flushing each buffer pool between checkpoints are not critical to checkpoint performance. The LRU settings are necessary only for maintaining
enough clean pages for page replacement.

The default settings for LRU flushing are 50 percent for lru_min_dirty and 60 percent for lru_max_dirty.

If your database server has been configured for more aggressive LRU flushing because of checkpoint performance, you can decrease the LRU flushing at least to the
default values.

The database server automatically tunes LRU flushing when the AUTO_LRU_TUNING configuration parameter is on and in the following cases:

A page replacement is forced to perform a foreground write in order to find an empty page. In this case, LRU flushing is adjusted to be 5 percent more aggressive for
the specific bufferpool where the foreground write took place.
A page replacement is forced to use a buffer that is marked as high priority, meaning it is frequently accessed. In this case, LRU flushing is adjusted to be one (1)
percent more aggressive for the specific bufferpool where the page replacement using high priority buffer took place.
If the RTO_SERVER_RESTART configuration parameter is on and the time it takes to flush the bufferpool is longer than the recovery time objective, LRU flushing is
adjusted to be 10 percent more aggressive for all bufferpools.

After a checkpoint has occurred, if a page replacement performed a foreground write during the previous checkpoint interval, the database server increases the LRU
settings by 5 percent and continues to increase the LRU flushing at each subsequent checkpoint until the foreground write stops or until the lru_max_dirty for a given
buffer pool falls below 10 percent. For example, if a page replacement performs a foreground write and the LRU settings for a buffer pool are 80 and 90, the database
server adjusts these to 76 and 85.5.

In addition to foreground writes, LRU flushing is tuned more aggressively whenever a page fault replaces high priority buffers and non-high priority buffers are on the
modified LRU queue. Automatic LRU adjustments only make LRU flushing more aggressive; they do not decrease LRU flushing. Automatic LRU adjustments are not
permanent and are not recorded in the ONCONFIG file.

LRU flushing is reset to the values contained in the ONCONFIG file on which the database server starts.

The AUTO_LRU_TUNING configuration parameter specifies whether automatic LRU tuning is enabled or disabled when the server starts.

Related concepts:
 Automatic checkpoints, LRU tuning, and AIO virtual processor tuning

Related information:
 AUTO_LRU_TUNING configuration parameter

RTO_SERVER_RESTART configuration parameter

Copyright© 2020 HCL Technologies Limited

Table performance considerations

Some performance issues are associated with unfragmented tables and table fragments.

Issues include:

Table placement on disk to increase throughput and reduce contention
Space estimates for tables, blobpages, sbspaces, and extents
Changes to tables that add or delete historical data
Denormalization of the database to reduce overhead

Placing tables on disk
 Tables that the database server supports reside on one or more portions of one or more disks. You control the placement of a table on disk when you create it by

assigning it to a dbspace.
Estimating table size

 You can calculate the approximate sizes (in disk pages) of tables.
Managing the size of first and next extents for the tblspace tblspace

 The tblspace tblspace is a collection of pages that describe the location and structure of all tblspaces in a dbspace. Each dbspace has one tblspace tblspace. When
you create a dbspace, you can use the TBLTBLFIRST and TBLTBLNEXT configuration parameters to specify the first and next extent sizes for the tblspace tblspace
in a root dbspace.
Managing sbspaces

 An sbspace is a logical storage unit composed of one or more chunks that store smart large objects. You can estimate the amount of storage needed for smart large
objects, improve metadata I/O, monitor sbspaces, and change storage characteristics.
Managing extents

 As you add rows to a table, the database server allocates disk space in units called extents. Each extent is a block of physically contiguous pages from the dbspace.
Even when the dbspace includes more than one chunk, each extent is allocated entirely within a single chunk, so that it remains contiguous.
Storing multiple table fragments in a single dbspace

 You can store multiple fragments of the same table or index in a single dbspace, thus reducing the total number of dbspaces needed for a fragmented table. You

1354 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

must specify a name for each fragment that you want to store in the same dbspace. Storing multiple table or index fragments in a single dbspace simplifies the
management of dbspaces.
Displaying a list of table and index partitions
Use the onstat -g opn option to display a list of the table and index partitions, by thread ID, that are currently open in the system.
Changing tables to improve performance
You can change tables to improve performance by dropping indexes, attaching or detaching fragments, and altering table definitions. You can also create databases
for decision-support applications by unloading and loading tables in OLTP databases.
Denormalize the data model to improve performance
You might need to denormalize the data model to reduce overhead and optimize performance.
Reduce disk space in tables with variable length rows
You can enable the database server to insert more rows per page into tables with variable-length rows, if you set the MAX_FILL_DATA_PAGES configuration
parameter to 1. Allowing more variable length rows per page has advantages and disadvantages.
Reduce disk space by compressing tables and fragments
You can reduce disk space by compressing data in tables and table fragments. After compressing data, you can repack the data to consolidate the free space in a
table or fragment, and shrink the space for the data to return the free space to the dbspace.

Copyright© 2020 HCL Technologies Limited

Placing tables on disk

Tables that the database server supports reside on one or more portions of one or more disks. You control the placement of a table on disk when you create it by assigning
it to a dbspace.

Tables that the database server supports reside on one or more portions of a disk or disks. You control the placement of a table on disk when you create it by assigning it
to a dbspace. A dbspace consists of one or more chunks. Each chunk corresponds to all or part of a disk partition. When you assign chunks to dbspaces, you make the disk
space in those chunks available for storing tables or table fragments.

When you configure chunks and allocate them to dbspaces, you must relate the size of the dbspaces to the tables or fragments that each dbspace is to contain. To
estimate the size of a table, follow the instructions in Estimating table size.

The database administrator (DBA) who is responsible for creating a table assigns that table to a dbspace in one of the following ways:

By using the IN DBSPACE clause of the CREATE TABLE statement
By using the dbspace of the current database
The most recent DATABASE or CONNECT statement that the DBA issues before issuing the CREATE TABLE statement sets the current database.

The DBA can fragment a table across multiple dbspaces, as described in Planning a fragmentation strategy, or use the ALTER FRAGMENT statement to move a table to
another dbspace. The ALTER FRAGMENT statement provides the simplest method for altering the placement of a table. However, the table is unavailable while the
database server processes the alteration. Schedule the movement of a table or fragment at a time that affects the fewest users.

Other methods exist for moving tables between dbspaces:

You can unload the data from a table and then move that data to another dbspace with the SQL statements LOAD and UNLOAD, the onload and onunload utilities or
the High-Performance Loader (HPL).
You can load data into and unload data from external tables.

Moving tables between databases with LOAD and UNLOAD, onload and onunload, or HPL involves periods in which data from the table is copied to tape and then reloaded
onto the system. These periods present windows of vulnerability during which a table can become inconsistent with the rest of the database. To prevent the table from
becoming inconsistent, you must restrict access to the version that remains on disk while the data transfers occur.

Depending on the size, fragmentation strategy, and indexes that are associated with a table, it can be faster to unload a table and reload it than to alter fragmentation. For
other tables, it can be faster to alter fragmentation. You can experiment to determine which method is faster for a table that you want to move or re-partition.

Isolating high-use tables
 You can place a table with high I/O activity on a dedicated disk device. Doing this reduces contention for the data that is stored in that table.

Placing high-use tables on middle partitions of disks
 To minimize disk-head movement, place the most frequently accessed data on partitions close to the middle band of the disk (not near the center and not near the

edge). This approach minimizes disk-head movement to reach data in the high-demand table.
Using multiple disks

 You can use multiple disks for dbspaces, logical logs, temporary tables, and sort files.
Backup and restore considerations when placing tables on disks

 When you decide where to place your tables or fragments, remember that if a device that contains a dbspace fails, all tables or table fragments in that dbspace are
rendered inaccessible, even though tables and fragments in other dbspaces are accessible. The need to limit data unavailability in the event of a disk failure might
influence which tables you group together in a particular dbspace.
Factors affecting the performance of nonfragmented tables and table fragments

 Numerous factors affect the performance of an individual table or table fragment. These include the placement of the table or fragment, the size of the table or
fragment, the indexing strategy that was used, the size and placement of table extents with respect to one another, and the frequency of access to the table.

Related information:
 ALTER FRAGMENT statement

LOAD statement
UNLOAD statement
The onunload and onload utilities
Moving data with external tables
CREATE EXTERNAL TABLE Statement

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1355

https://www.hcltech.com/
https://www.hcltech.com/

Isolating high-use tables

You can place a table with high I/O activity on a dedicated disk device. Doing this reduces contention for the data that is stored in that table.

When disk drives have different performance levels, you can put the tables with the highest use on the fastest drives. Placing two high-use tables on separate disk devices
reduces competition for disk access when the two tables experience frequent, simultaneous I/O from multiple applications or when joins are formed between them.

To isolate a high-use table on its own disk device, assign the device to a chunk, assign that chunk to a dbspace, and then place the table in the dbspace that you created.
Figure 1 shows three high-use tables, each in a separate dbspace, placed on three disks.
Figure 1. Isolating high-use tables

Copyright© 2020 HCL Technologies Limited

Placing high-use tables on middle partitions of disks

To minimize disk-head movement, place the most frequently accessed data on partitions close to the middle band of the disk (not near the center and not near the edge).
This approach minimizes disk-head movement to reach data in the high-demand table.

The following figure shows the placement of the most frequently accessed data on partitions close to the middle band of the disk.
Figure 1. Disk platter with high-use table located on middle Partitions

To place high-use tables on the middle partition of the disk, create a raw device composed of cylinders that reside midway between the spindle and the outer edge of the
disk. (For instructions on how to create a raw device, see the IBM® Informix® Administrator's Guide for your operating system.) Allocate a chunk, associating it with this raw
device, as your IBM Informix Administrator's Reference describes. Then create a dbspace with this same chunk as the initial and only chunk. When you create a high-use
table, place the table in this dbspace.

Copyright© 2020 HCL Technologies Limited

Using multiple disks

You can use multiple disks for dbspaces, logical logs, temporary tables, and sort files.

Using multiple disks for a dbspace
 Using multiple disks for a dbspace helps to distribute I/O across dbspaces that contain several small tables.

Using multiple disks for logical logs
 You can distribute logical logs in different dbspaces on multiple disks in round-robin fashion to improve logical backup performance. This scheme allows the

database server to back up logs on one disk, while performing logging operations on the other disks.
Spreading temporary tables and sort files across multiple disks

 You can spread the I/O associated with temporary tables and sort files across multiple disks, after defining dbspaces for temporary tables and sort files. This can
improve performance for applications that require a large amount of temporary space for temporary tables or large sort operations.

Copyright© 2020 HCL Technologies Limited

Using multiple disks for a dbspace

Using multiple disks for a dbspace helps to distribute I/O across dbspaces that contain several small tables.

A dbspace can include multiple chunks, and each chunk can represent a different disk. The maximum size for a chunk is 4 terabytes. This arrangement allows you to
distribute data in a dbspace over multiple disks. Figure 1 shows a dbspace distributed over three disks.
Figure 1. A dbspace distributed over three disks

1356 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Because you cannot use this type of distributed dbspace for parallel database queries (PDQ), you should use the table-fragmentation techniques described in Distribution
schemes to partition large, high-use tables across multiple dbspaces.

Copyright© 2020 HCL Technologies Limited

Using multiple disks for logical logs

You can distribute logical logs in different dbspaces on multiple disks in round-robin fashion to improve logical backup performance. This scheme allows the database
server to back up logs on one disk, while performing logging operations on the other disks.

Keep your logical logs and the physical log on separate devices to improve performance by decreasing I/O contention on a single device. The logical and physical logs are
created in the root dbspace when the database server is initialized. After initialization, you can move them to other dbspaces.

Copyright© 2020 HCL Technologies Limited

Spreading temporary tables and sort files across multiple disks

You can spread the I/O associated with temporary tables and sort files across multiple disks, after defining dbspaces for temporary tables and sort files. This can improve
performance for applications that require a large amount of temporary space for temporary tables or large sort operations.

To define several dbspaces for temporary tables and sort files, use onspaces -t. When you place these dbspaces on different disks and list them in the DBSPACETEMP
configuration parameter, you spread the I/O associated with temporary tables and sort files across multiple disks, as Figure 1 illustrates. You can list dbspaces that
contain regular tables in DBSPACETEMP.
Figure 1. Dbspaces for temporary tables and sort files

Users can specify their own lists of dbspaces for temporary tables and sort files with the DBSPACETEMP environment variable. For details, see Configure dbspaces for
temporary tables and sort files.

Copyright© 2020 HCL Technologies Limited

Backup and restore considerations when placing tables on disks

When you decide where to place your tables or fragments, remember that if a device that contains a dbspace fails, all tables or table fragments in that dbspace are
rendered inaccessible, even though tables and fragments in other dbspaces are accessible. The need to limit data unavailability in the event of a disk failure might
influence which tables you group together in a particular dbspace.

Although you must perform a cold restore if a dbspace that contains critical data fails, you need only perform a warm restore if a noncritical dbspace fails. The desire to
minimize the impact of cold restores might influence the dbspace that you use to store critical data.

Copyright© 2020 HCL Technologies Limited

Factors affecting the performance of nonfragmented tables and table fragments

Numerous factors affect the performance of an individual table or table fragment. These include the placement of the table or fragment, the size of the table or fragment,
the indexing strategy that was used, the size and placement of table extents with respect to one another, and the frequency of access to the table.

Copyright© 2020 HCL Technologies Limited

Estimating table size

You can calculate the approximate sizes (in disk pages) of tables.

For a description of size calculations for indexes, see Estimating index pages.

Part VI: Administering 1357

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The disk pages allocated to a table are collectively referred to as a tblspace. The tblspace includes data pages. A separate tblspace includes index pages. If simple large
objects (TEXT or BYTE data) are associated with a table that is not stored in an alternative dbspace, pages that hold simple large objects are also included in the tblspace.

The tblspace does not correspond to any fixed region within a dbspace. The data extents and indexes that make up a table can be scattered throughout the dbspace.

The size of a table includes all the pages within the tblspace: data pages and pages that store simple large objects. Blobpages that are stored in a separate blobspace are
not included in the tblspace and are not counted as part of the table size.

The following sections describe how to estimate the page count for each type of page within the tblspace.

Tip: If an appropriate sample table exists, or if you can build a sample table of realistic size with simulated data, you do not need to make estimates. You can run oncheck
-pt to obtain exact numbers.

Estimating data pages
 How you estimate the data pages of a table depends on whether that table contains fixed-length or variable-length rows.

Estimating pages that simple large objects occupy
 You can estimate the total number of pages for all simple large objects, or you can estimate the number of pages based on the median size of the simple large

objects.

Copyright© 2020 HCL Technologies Limited

Estimating data pages

How you estimate the data pages of a table depends on whether that table contains fixed-length or variable-length rows.

Estimating tables with fixed-length rows
 You can estimate the size (in pages) of a table with fixed-length rows. A table with fixed-length rows has no columns of the VARCHAR or NVARCHAR data type.

Estimating tables with variable-length rows
 You can estimate the size of a table with variable-length rows with columns of the VARCHAR or NVARCHAR data type.

Selecting an intermediate value for the size of the table
 The actual table size should fall somewhere between the projected number of data pages (projsize) and the maximum number of data pages (maxsize).

Copyright© 2020 HCL Technologies Limited

Estimating tables with fixed-length rows

You can estimate the size (in pages) of a table with fixed-length rows. A table with fixed-length rows has no columns of the VARCHAR or NVARCHAR data type.

Perform the following steps to estimate the size (in pages) of a table with fixed-length rows.

To estimate the page size, row size, number of rows, and number of data pages:

1. Use onstat -b to obtain the size of a page.
The buffer size field in the last line of this output displays the page size.

2. Subtract 28 from this amount to account for the header that appears on each data page. The resulting amount is referred to as pageuse.
3. To calculate the size of a row, add the widths of all the columns in the table definition. TEXT and BYTE columns each use 56 bytes. If you have already created your

table, you can use the following SQL statement to obtain the size of a row:

SELECT rowsize FROM systables WHERE tabname =
 'table-name';

4. Estimate the number of rows that the table is expected to contain. This number is referred to as rows. The procedure for calculating the number of data pages that a
table requires differs depending on whether the row size is less than or greater than pageuse.

5. If the size of the row is less than or equal to pageuse, use the following formula to calculate the number of data pages. The trunc() function notation indicates that
you are to round down to the nearest integer.

data_pages = rows / trunc(pageuse/(rowsize + 4))

The maximum number of rows per page is 255, regardless of the size of the row.

Important: Although the maximum size of a row that the database server accepts is approximately 32 kilobytes, performance degrades when a row exceeds the
size of a page. For information about breaking up wide tables for improved performance, see Denormalize the data model to improve performance.

6. If the size of the row is greater than pageuse, the database server divides the row between pages. The page that contains the initial portion of a row is called the
home page. Pages that contains subsequent portions of a row are called remainder pages. If a row spans more than two pages, some of the remainder pages are
completely filled with data from that row. When the trailing portion of a row uses less than a page, it can be combined with the trailing portions of other rows to fill
out the partial remainder page. The number of data pages is the sum of the home pages, the full remainder pages, and the partial remainder pages.

a. Calculate the number of home pages.
The number of home pages is the same as the number of rows:

homepages = rows

b. Calculate the number of full remainder pages.
First calculate the size of the row remainder with the following formula:

remsize = rowsize - (pageuse + 8)

If remsize is less than pageuse - 4, you have no full remainder pages.

If remsize is greater than pageuse - 4, use remsize in the following formula to obtain the number of full remainder pages:

1358 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

fullrempages = rows * trunc(remsize/(pageuse - 8))

c. Calculate the number of partial remainder pages.
First calculate the size of a partial row remainder left after you have accounted for the home and full remainder pages for an individual row. In the following
formula, the remainder() function notation indicates that you are to take the remainder after division:

partremsize = remainder(rowsize/(pageuse - 8)) + 4

The database server uses certain size thresholds with respect to the page size to determine how many partial remainder pages to use. Use the following
formula to calculate the ratio of the partial remainder to the page:

partratio = partremsize/pageuse

Use the appropriate formula in the following table to calculate the number of partial remainder pages.

partratio Value Formula to Calculate the Number of Partial Remainder Pages

Less than .1 partrempages = rows/(trunc((pageuse/10)/remsize) + 1)

Less than .33 partrempages = rows/(trunc((pageuse/3)/remsize) + 1)

.33 or larger partrempages = rows

d. Add up the total number of pages with the following formula:

tablesize = homepages + fullrempages + partrempages

Copyright© 2020 HCL Technologies Limited

Estimating tables with variable-length rows

You can estimate the size of a table with variable-length rows with columns of the VARCHAR or NVARCHAR data type.

When a table contains one or more VARCHAR or NVARCHAR columns, its rows can have varying lengths. These varying lengths introduce uncertainty into the calculations.
You must form an estimate of the typical size of each VARCHAR column, based on your understanding of the data, and use that value when you make the estimates.
Important: When the database server allocates space to rows of varying size, it considers a page to be full when no room exists for an additional row of the maximum size.
To estimate the size of a table with variable-length rows, you must make the following estimates and choose a value between them, based on your understanding of the
data:

The maximum size of the table, which you calculate based on the maximum width allowed for all VARCHAR or NVARCHAR columns
The projected size of the table, which you calculate based on a typical width for each VARCHAR or NVARCHAR column

To estimate the maximum number of data pages:

1. To calculate rowsize, add together the maximum values for all column widths.
2. Use this value for rowsize and perform the calculations described in Estimating tables with fixed-length rows. The resulting value is called maxsize.

To estimate the projected number of data pages:

1. To calculate rowsize, add together typical values for each of your variable-width columns. It is suggested that you use the most frequently occurring width within a
column as the typical width for that column. If you do not have access to the data or do not want to tabulate widths, you might choose to use some fractional
portion of the maximum width, such as 2/3 (.67).

2. Use this value for rowsize and perform the calculations described in Estimating tables with fixed-length rows. The resulting value is called projsize.

Copyright© 2020 HCL Technologies Limited

Selecting an intermediate value for the size of the table

The actual table size should fall somewhere between the projected number of data pages (projsize) and the maximum number of data pages (maxsize).

Based on your knowledge of the data, choose a value within that range that seems most reasonable to you. The less familiar you are with the data, the more conservative
(higher) your estimate should be.

Copyright© 2020 HCL Technologies Limited

Estimating pages that simple large objects occupy

You can estimate the total number of pages for all simple large objects, or you can estimate the number of pages based on the median size of the simple large objects.

The blobpages can reside in either the dbspace where the table resides or in a blobspace. For more information about when to use a blobspace, see Storing simple large
objects in the tblspace or a separate blobspace.

The following methods for estimating blobpages yield a conservative (high) estimate because a single TEXT or BYTE column does not necessarily occupy the entire
blobpage within a tblspace. In other words, a blobpage in a tblspace can contain multiple TEXT or BYTE columns.

To estimate the number of blobpages:

1. Obtain the page size with onstat -b.

Part VI: Administering 1359

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

2. Calculate the usable portion of the blobpage with the following formula:

bpuse = pagesize - 32

3. For each byte of blobsize n, calculate the number of pages that the byte occupies (bpages_n) with the following formula:

bpages1 = ceiling(bytesize1/bpuse)
bpages2 = ceiling(bytesize2/bpuse)
...
bpages_n = ceiling(bytesize_n/bpuse)

The ceiling() function indicates that you should round up to the nearest integer value.

4. Add up the total number of pages for all simple large objects, as follows:

blobpages = bpages1 + bpages2 + ... + bpagesn

Alternatively, you can base your estimate on the median size of simple large objects (TEXT or BYTE data); that is, the simple-large-object data size that occurs most
frequently. This method is less precise, but it is easier to calculate.

To estimate the number of blobpages based on the median size of simple large objects:

1. Calculate the number of pages required for simple large objects of median size, as follows:

mpages = ceiling(mblobsize/bpuse)

2. Multiply this amount by the total number of simple large objects, as follows:

blobpages = blobcount * mpages

Storing simple large objects in the tblspace or a separate blobspace
 When you create a simple-large-object column on magnetic disk, you have the option of storing the column data in the tblspace or in a separate blobspace. You can

often improve performance by storing simple-large-object data in a separate blobspace, and by storing smart large objects and user-defined data in sbspaces.
Estimating tblspace pages for simple large objects

 In your estimate of the space required for a table, include blobpages for any simple large objects that are to be stored in that tblspace. For a table that is both
relatively small and nonvolatile, you can achieve the effect of a dedicated blobspace by separating row pages and blobpages.

Copyright© 2020 HCL Technologies Limited

Storing simple large objects in the tblspace or a separate blobspace

When you create a simple-large-object column on magnetic disk, you have the option of storing the column data in the tblspace or in a separate blobspace. You can often
improve performance by storing simple-large-object data in a separate blobspace, and by storing smart large objects and user-defined data in sbspaces.

In the following example, a TEXT value is stored in the tblspace, and a BYTE value is stored in a blobspace named rasters:

CREATE TABLE examptab
 (
 pic_id SERIAL,
 pic_desc TEXT IN TABLE,
 pic_raster BYTE IN rasters
)

For information about storing simple-large-object data in a separate blobspace, see Estimating pages that simple large objects occupy.
A TEXT or BYTE value is always stored apart from the rows of the table; only a 56-byte descriptor is stored with the row. However, a simple large object occupies at least
one disk page. The simple large object to which the descriptor points can reside in the same set of extents on disk as the table rows (in the same tblspace) or in a separate
blobspace.

When simple large objects are stored in the tblspace, the pages of their data are interspersed among the pages that contain rows, which can greatly increase the size of
the table. When the database server reads only the rows and not the simple large objects, the disk arm must move farther than when the blobpages are stored apart. The
database server scans only the row pages in the following situations:

When it performs any SELECT operation that does not retrieve a simple-large-object column
When it uses a filter expression to test rows

Another consideration is that disk I/O to and from a dbspace is buffered in shared memory of the database server. Pages are stored in case they are needed again soon,
and when pages are written, the requesting program can continue before the actual disk write takes place. However, because blobspace data is expected to be
voluminous, disk I/O to and from blobspaces is not buffered, and the requesting program is not allowed to proceed until all output has been written to the blobspace.

For best performance, store a simple-large-object column in a blobspace in either of the following circumstances:

When single data items are larger than one or two pages each
When the number of pages of TEXT or BYTE data is more than half the number of pages of row data

Copyright© 2020 HCL Technologies Limited

Estimating tblspace pages for simple large objects

In your estimate of the space required for a table, include blobpages for any simple large objects that are to be stored in that tblspace. For a table that is both relatively
small and nonvolatile, you can achieve the effect of a dedicated blobspace by separating row pages and blobpages.

To separate row pages from blobpages within a dbspace:

1360 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

1. Load the entire table with rows in which the simple-large-object columns are null.
2. Create all indexes. The row pages and the index pages are now contiguous.
3. Update all the rows to install the simple large objects. The blobpages now appear after the pages of row and index data within the tblspace.

Copyright© 2020 HCL Technologies Limited

Managing the size of first and next extents for the tblspace tblspace

The tblspace tblspace is a collection of pages that describe the location and structure of all tblspaces in a dbspace. Each dbspace has one tblspace tblspace. When you
create a dbspace, you can use the TBLTBLFIRST and TBLTBLNEXT configuration parameters to specify the first and next extent sizes for the tblspace tblspace in a root
dbspace.

You can use the onspaces utility to specify the initial and next extent sizes for the tblspace tblspace in non-root dbspaces.

Specify the initial and next extent sizes if you want to reduce the number of tblspace tblspace extents and reduce the frequency of situations when you need to place the
tblspace tblspace extents in non-primary chunks.

The ability to specify a first extent size that is larger than the default provides flexibility for managing space. When you create an extent, you can reserve space during
creation of the dbspace, thereby decreasing the risk of needing additional extents created in chunks that are not initial chunks.

You can only specify the first and next extent sizes when you create a dbspace. You cannot alter the specification of the first and next extents sizes after the creation of the
dbspace. In addition, you cannot specify extent sizes for temporary dbspaces, sbspaces, blobspaces, or external spaces.

If you do not specify first and next extent sizes for the tblspace tblspace, Informix® uses the existing default extent sizes.

Related information:
 TBLTBLFIRST configuration parameter

TBLTBLNEXT configuration parameter
Specifying the first and next extent sizes for the tblspace tblspace

Copyright© 2020 HCL Technologies Limited

Managing sbspaces

An sbspace is a logical storage unit composed of one or more chunks that store smart large objects. You can estimate the amount of storage needed for smart large
objects, improve metadata I/O, monitor sbspaces, and change storage characteristics.

Estimating pages that smart large objects occupy
 In your estimate of the space required for a table, you should also consider the amount of sbspace storage for any smart large objects (such as CLOB, BLOB, or

multi-representative data types) that are part of the table. An sbspace contains user-data areas and metadata areas.
Improving metadata I/O for smart large objects

 The metadata pages in an sbspace contain information about the location of the smart large objects in the sbspace. Typically, these pages are read intensive. You
can improve metadata I/O by redistributing it.
Monitoring sbspaces

 You can monitor the effectiveness of I/O operations on smart large objects. For better I/O performance, all smart large objects should be allocated in one extent to
be contiguous.
Changing storage characteristics of smart large objects

 When you create an sbspace, but do not specify values in the -Df option of the onspaces -c -S command, you use the defaults for the storage characteristics and
attributes (such as logging and buffering). After you monitor sbspaces, you might want to change the storage characteristics, logging status, lock mode, or other
attributes for new smart large objects.

Copyright© 2020 HCL Technologies Limited

Estimating pages that smart large objects occupy

In your estimate of the space required for a table, you should also consider the amount of sbspace storage for any smart large objects (such as CLOB, BLOB, or multi-
representative data types) that are part of the table. An sbspace contains user-data areas and metadata areas.

CLOB and BLOB data is stored in sbpages that reside in the user-data area. The metadata area contains the smart-large-object attributes, such as average size and
whether or not the smart large object is logged. For more information about sbspaces, see your IBM® Informix® Administrator's Guide.

Estimating the size of the sbspace and metadata area
 The first chunk of an sbspace must have a metadata area. When you add smart large objects, the database server adds more control information to this metadata

area.
Sizing the metadata area manually for a new chunk

 Each chunk can contain metadata, but the sum total must accommodate enough room for all LO headers (average length 570 bytes each) and the chunk free list
(which lists all the free extents in the chunk).

Copyright© 2020 HCL Technologies Limited

Estimating the size of the sbspace and metadata area

Part VI: Administering 1361

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The first chunk of an sbspace must have a metadata area. When you add smart large objects, the database server adds more control information to this metadata area.

If you add a chunk to the sbspace after the initial allocation, you can take one of the following actions for metadata space:

Allocate another metadata area on the new chunk by default.
This action provides the following advantages:

It is easier because the database server automatically calculates and allocates a new metadata area on the added chunk based on the average smart large
object size
Distributes I/O operations on the metadata area across multiple disks

Use the existing metadata area
If you specify the onspaces -U option, the database server does not allocate metadata space in the new chunk. Instead it must use a metadata area in one of the
other chunks.

In addition, the database server reserves 40 percent of the user area to be used in case the metadata area runs out of space. Therefore, if the allocated metadata
becomes full, the database server starts using this reserved space in the user area for additional control information.

You can let the database server calculate the size of the metadata area for you on the initial chunk and on each added chunks. However, you might want to specify the size
of the metadata area explicitly, to ensure that the sbspace does not run out of metadata space and the 40 percent reserve area. You can use one of the following methods
to explicitly specify the amount of metadata space to allocate:

Specify the AVG_LO_SIZE tag on the onspaces -Df option.
The database server uses this value to calculate the size of the metadata area to allocate when the -Ms option is not specified. If you do not specify AVG_LO_SIZE,
the database server uses the default value of 8 kilobytes to calculate the size of the metadata area.

Specify the metadata area size in the -Ms option of the onspaces utility.
Use the procedure that Sizing the metadata area manually for a new chunk describes to estimate a value to specify in the onspaces -Ms option.

Copyright© 2020 HCL Technologies Limited

Sizing the metadata area manually for a new chunk

Each chunk can contain metadata, but the sum total must accommodate enough room for all LO headers (average length 570 bytes each) and the chunk free list (which
lists all the free extents in the chunk).

The following procedure assumes that you know the sbspace size and need to allocate more metadata space.

To size the metadata area manually for a new chunk:

1. Use the onstat -d option to obtain the size of the current metadata area from the Metadata size field.
2. Estimate the number of smart large objects that you expect to reside in the sbspace and their average size.
3. Use the following formula to calculate the total size of the metadata area:

Total metadata kilobytes = (LOcount*570)/1024 +
 (numchunks*800) + 100

LOcount
is the number of smart large objects that you expect to have in all sbspace chunks, including the new one.

numchunks
is the total number of chunks in the sbspace.

4. To obtain the additional required area for metadata, subtract the current metadata size that you obtained in step 1 from the value that you obtained in step 3.
5. When you add another chunk, specify in the -Ms option of the onspaces -a command the value that you obtained in step 4.

Example of calculating the metadata area for a new chunk
 This topic contains an example showing how to estimate the metadata size required for two sbspaces chunks.

Copyright© 2020 HCL Technologies Limited

Example of calculating the metadata area for a new chunk

This topic contains an example showing how to estimate the metadata size required for two sbspaces chunks.

Suppose the Metadata size field in the onstat -d option shows that the current metadata area is 1000 pages. If the system page size is 2048 bytes, the size of this
metadata area is 2000 kilobytes, as the following calculation shows:

current metadata = (metadata_size * pagesize) / 1024
 = (1000 * 2048) / 1024
 = 2000 kilobytes

Suppose you expect 31,000 smart large objects in the two sbspace chunks. The following formula calculates the total size of metadata area required for both chunks,
rounding up fractions:

Total metadata = (LOcount*570)/1024 + (numchunks*800) + 100
 = (31,000 * 570)/1024 + (2*800) + 100
 = 17256 + 1600 + 100
 = 18956 kilobytes

To obtain the additional area that is required for metadata:

1362 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

1. Subtract the current metadata size from the total metadata value.

Additional metadata = Total metadata - current metadata
 = 18956 - 2000
 = 16956 kilobytes

2. When you add the chunk to the sbspace, use the -Ms option of the onspaces -a command to specify a metadata area of 16,956 kilobytes.

% onspaces -a sbchk2 -p /dev/raw_dev1 -o 200 -Ms 16956

Copyright© 2020 HCL Technologies Limited

Improving metadata I/O for smart large objects

The metadata pages in an sbspace contain information about the location of the smart large objects in the sbspace. Typically, these pages are read intensive. You can
improve metadata I/O by redistributing it.

You can distribute I/O to these pages in one of the following ways:

Mirror the chunks that contain metadata.
For more information about the implications of mirroring, see Consider mirroring for critical data components.

Position the metadata pages on the fastest portion of the disk.
Because the metadata pages are the most read-intensive part of an sbspace, place the metadata pages toward the middle of the disk to minimize disk seek time. To
position metadata pages, use the -Mo option when you create the sbspace or add a chunk with the onspaces utility.

Spread metadata pages across disks.
To spread metadata pages across disks, create multiple chunks in an sbspace, with each chunk residing on a separate disk. When you add a chunk to the sbspace
with the onspaces utility, specify the -Ms option to allocate pages for the metadata information.

Although the database server attempts to keep the metadata information with its corresponding data in the same chunk, it cannot guarantee that they will be
together.

Decrease the number of extents each smart large object occupies.
When a smart large object spans multiple extents, the metadata area contains a separate descriptor for each extent. To decrease the number of descriptor entries
that must be read for each smart large object, specify the expected final size of the smart large object when you create the smart large object.

The database server allocates the smart large object as a single extent (if it has contiguous storage in the chunk) when you specify the final size in either of the
following functions:

The DataBlade API mi_lo_specset_estbytes function
The Informix® ESQL/C ifx_lo_specset_estbytes function

For more information about the functions to open a smart large object and to set the estimated number of bytes, see the IBM® Informix ESQL/C Programmer's
Manual and IBM Informix DataBlade API Programmer's Guide.

For more information about sizing extents, see Sbspace extents.

Important: For highest data availability, mirror all sbspace chunks that contain metadata.

Copyright© 2020 HCL Technologies Limited

Monitoring sbspaces

You can monitor the effectiveness of I/O operations on smart large objects. For better I/O performance, all smart large objects should be allocated in one extent to be
contiguous.

For more information about sizing extents, see Sbspace extents.

Contiguity provides the following I/O performance benefits:

Minimizes the disk-arm motion
Requires fewer I/O operations to read the smart large object
When doing large sequential reads, can take advantage of lightweight I/O, which reads in larger blocks of data (60 kilobytes or more, depending on your platform) in
a single I/O operation

You can use the following command-line utilities to monitor the effectiveness of I/O operations on smart large objects:

oncheck -cS, -pe and -pS
onstat -g smb s option

The following sections describe how to use these utility options to monitor sbspaces.

Monitoring sbspaces with oncheck -cS
 The oncheck -cS option checks smart-large-object extents and the sbspace partitions in the user-data area.

Monitoring sbspaces with oncheck -pe
 The oncheck -pe option displays information that includes the size in pages of the chunk, the number of pages used, the number of pages that are free, and a list of

all the tables in the chunk, with the initial page number and the length of the table in pages. This option also shows if smart large objects occupy contiguous space
within an sbspace.
Monitoring sbspaces with oncheck -pS

 The oncheck -pS option displays information about smart-large-object extents and metadata areas in sbspace partitions. If you do not specify an sbspace name on

Part VI: Administering 1363

https://www.hcltech.com/
https://www.hcltech.com/

the command line, oncheck checks and displays the metadata for all sbspaces.
Monitoring sbspaces with onstat -g smb
The onstat -g smb s option displays sbspace attributes.

Copyright© 2020 HCL Technologies Limited

Monitoring sbspaces with oncheck -cS

The oncheck -cS option checks smart-large-object extents and the sbspace partitions in the user-data area.

Figure 1 shows an example of the output from the -cS option for s9_sbspc.

The values in the Sbs#, Chk#, and Seq# columns correspond to the Space Chunk Page value in the -pS output. The Bytes and Pages columns display the size of each
smart large object in bytes and pages.

To calculate the average size of smart large objects, you can total the numbers in the Size (Bytes) column and then divide by the number of smart large objects. In Figure
1, the average number of bytes allocated is 2690, as the following calculation shows:

Average size in bytes = (15736 + 98 + 97 + 62 + 87 + 56) / 6
 = 16136 / 6
 = 2689.3

For information about how to specify smart large object sizes to influence extent sizes, see Sbspace extents.
Figure 1. oncheck -cS output

Validating space 's9_sbspc' ...

Large Objects
 ID Ref Size Allocced Creat Last
 Sbs# Chk# Seq# Cnt (Bytes) Pages Extns Flags Modified
 ---- ---- ----- ---- ---------- -------- ----- ----- ------------------------
 2 2 1 1 15736 8 1 N-N-H Thu Jun 21 16:59:12 2007
 2 2 2 1 98 1 1 N-K-H Thu Jun 21 16:59:12 2007
 2 2 3 1 97 1 1 N-K-H Thu Jun 21 16:59:12 2007
 2 2 4 1 62 1 1 N-K-H Thu Jun 21 16:59:12 2007
 2 2 5 1 87 1 1 N-K-H Thu Jun 21 16:59:12 2007
 2 2 6 1 56 1 1 N-K-H Thu Jun 21 16:59:12 2007

The Extns field shows the minimum extent size, in number of pages, allocated to each smart large object.

Copyright© 2020 HCL Technologies Limited

Monitoring sbspaces with oncheck -pe

The oncheck -pe option displays information that includes the size in pages of the chunk, the number of pages used, the number of pages that are free, and a list of all the
tables in the chunk, with the initial page number and the length of the table in pages. This option also shows if smart large objects occupy contiguous space within an
sbspace.

Execute oncheck -pe to display the following information to determine if the smart large objects occupy contiguous space within an sbspace:

Identifies each smart large object with the term SBLOBSpace LO
The three values in brackets following SBLOBSpace LO correspond to the Sbs#, Chk#, and Seq# columns in the -cS output.

Offset of each smart large object
Number of disk pages (not sbpages) used by each smart large object

Tip: The oncheck -pe option provides information about sbspace use in terms of database server pages, not sbpages.
Figure 1 shows sample output. In this example, the size field shows that the first smart large object occupies eight pages. Because the offset field shows that the first
smart large object starts at page 53 and the second smart large object starts at page 61, the first smart large object occupies contiguous pages.
Figure 1. oncheck -pe output that shows contiguous space use

Chunk Pathname Size Used Free
 1000 940 60

 Description Offset Size
 -- -------- --------
 RESERVED PAGES 0 2
 CHUNK FREELIST PAGE 2 1
 s9_sbspc:'informix'.TBLSpace 3 50
 SBLOBSpace LO [2,2,1] 53 8
 SBLOBSpace LO [2,2,2] 61 1
 SBLOBSpace LO [2,2,3] 62 1
 SBLOBSpace LO [2,2,4] 63 1
 SBLOBSpace LO [2,2,5] 64 1
 SBLOBSpace LO [2,2,6] 65 1
...

Copyright© 2020 HCL Technologies Limited

Monitoring sbspaces with oncheck -pS
1364 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The oncheck -pS option displays information about smart-large-object extents and metadata areas in sbspace partitions. If you do not specify an sbspace name on the
command line, oncheck checks and displays the metadata for all sbspaces.

Figure 1 shows an example of the -pS output for s9_sbspc.

To display information about smart large objects, execute the following command:

oncheck -pS spacename

The oncheck -pS output displays the following information for each smart large object in the sbspace:

Space chunk page
Size in bytes of each smart large object
Object ID that DataBlade API and Informix® ESQL/C functions use
Storage characteristics of each smart large object

When you use onspaces -c -S to create an sbspace, you can use the -Df option to specify various storage characteristics for the smart large objects. You can use onspaces
-ch to change attributes after the sbspace is created. The Create Flags field in the oncheck -pS output displays these storage characteristics and other attributes of each
smart large object. In Figure 1, the Create Flags field shows LO_LOG because the LOGGING tag was set to ON in the -Df option.
Figure 1. oncheck -pS output

Space Chunk Page = [2,2,2] Object ID = 987122917
 LO SW Version 4
 LO Object Version 1
 Created by Txid 7
 Flags 0x31 LO_LOG LO_NOKEEP_LASTACCESS_TIME LO_HIGH_INTEG
 Data Type 0
 Extent Size -1
 IO Size 0
 Created Thu Apr 12 17:48:35 2007
 Last Time Modified Thu Apr 12 17:48:43 2007
 Last Time Accessed Thu Apr 12 17:48:43 2007
 Last Time Attributes Modified Thu Apr 12 17:48:43 2007
 Ref Count 1
 Create Flags 0x31 LO_LOG LO_NOKEEP_LASTACCESS_TIME LO_HIGH_INTEG
 Status Flags 0x0 LO_FROM_SERVER
 Size (Bytes) 2048
 Size Limit -1
 Total Estimated Size -1
 Deleting TxId -1
 LO Map Size 200
 LO Map Last Row -1
 LO Map Extents 2
 LO Map User Pages 2

Copyright© 2020 HCL Technologies Limited

Monitoring sbspaces with onstat -g smb

The onstat -g smb s option displays sbspace attributes.

Use the onstat -g smb s option to display the following characteristics that affect the I/O performance of each sbspace:

Logging status
If applications are updating temporary smart large objects, logging is not required. You can turn off logging to reduce the amount of I/O activity to the logical log,
CPU utilization, and memory resources.

Average smart-large-object size
Average size and extent size should be similar to reduce the number of I/O operations required to read in an entire smart large object. The avg s/kb output field
shows the average smart-large-object size in kilobytes. In Figure 1, the avg s/kb output field shows the value 30 kilobytes.

Specify the final size of the smart large object in either of the following functions to allocate the object as a single extent:

The DataBlade API mi_lo_specset_estbytes function
The Informix® ESQL/C ifx_lo_specset_estbytes function

For more information about the functions to open a smart large object and to set the estimated number of bytes, see the IBM® Informix ESQL/C Programmer's
Manual and IBM Informix DataBlade API Programmer's Guide.

First extent size, next extent size, and minimum extent size
The 1st sz/p, nxt sz/p, and min sz/p output fields show these extent sizes if you set the extent tags in the -Df option of onspaces. In Figure 1, these output fields
show values of 0 and -1 because these tags are not set in onspaces.

Figure 1. onstat -g smb s output

sbnum 7 address 2afae48
 Space : flags nchk owner sbname
 -------- 1 informix client
 Defaults : LO_LOG LO_KEEP_LASTACCESS_TIME

 LO : ud b/pg flags flags avg s/kb max lcks
 2048 0 -------- 30 -1
 Ext/IO : 1st sz/p nxt sz/p min sz/p mx io sz
 4 0 0 -1

 HdrCache : max free
 512 0

Part VI: Administering 1365

https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Changing storage characteristics of smart large objects

When you create an sbspace, but do not specify values in the -Df option of the onspaces -c -S command, you use the defaults for the storage characteristics and
attributes (such as logging and buffering). After you monitor sbspaces, you might want to change the storage characteristics, logging status, lock mode, or other attributes
for new smart large objects.

The database administrator or programmer can use the following methods to override these default values for storage characteristics and attributes:

The database administrator can use one of the following onspaces options:
Specify values when the sbspace is first created with the onspaces -c -S command.
Change values after the sbspace is created with the onspaces -ch command.

Specify these values in the tag options of the -Df option of onspaces. For more information about the onspaces utility, see the IBM® Informix Administrator's
Reference.

The database administrator can specify values in the PUT clause of the CREATE TABLE or ALTER TABLE statements.
These values override the values in the onspaces utility and are valid only for smart large objects that are stored in the associated column of the specific table.
Other smart large objects (from columns in other tables) might also reside in this same sbspace. These other columns continue to use the storage characteristics
and attributes of the sbspace that onspaces defined (or the default values, if onspaces did not define them) unless these columns also used a PUT clause to
override them for a particular column.

If you do not specify the storage characteristics for a smart-large-object column in the PUT clause, they are inherited from the sbspace.

If you do not specify the PUT clause when you create a table with smart-large-object columns, the database server stores the smart large objects in the system
default sbspace, which is specified by the SBSPACENAME configuration parameter in the ONCONFIG file. In this case, the storage characteristics and attributes are
inherited from the SBSPACENAME sbspace.

Programmers can use functions in the DataBlade API and Informix® ESQL/C to alter storage characteristics for a smart-large-object column.
For information about the DataBlade API functions for smart large objects, see the IBM Informix DataBlade API Programmer's Guide. For information about the
Informix ESQL/C functions for smart large objects, see the IBM Informix ESQL/C Programmer's Manual.

Table 1 summarizes the ways to alter the storage characteristics for a smart large object.

Table 1. Altering storage characteristics and other attributes of an sbspace

Storage Character-
istic or Attribute

System Default Value System-Specified Storage
Characteristics Specified by
-Df Option in onspaces
Utility

Column-Level Storage
Characteristics Specified by PUT
clause of CREATE TABLE or
ALTER TABLE

Storage Characteris-tics
Specified by a
DataBlade API Function

Storage Characteris-
tics Specified by an
ESQL/C Function

Last-access time OFF ACCESSTIME KEEP ACCESS TIME, NO KEEP
ACCESS TIME

Yes Yes

Lock mode BLOB LOCK_MODE No Yes Yes

Logging status OFF LOGGING LOG, NO LOG Yes Yes

Data integrity HIGH INTEG No HIGH INTEG, MODERATE INTEG Yes No

Size of extent None EXTENT_SIZE EXTENT SIZE Yes Yes

Size of next extent None NEXT_SIZE No No No

Minimum extent size 2 kilobytes on Windows
4 kilobytes on UNIX

MIN_EXT_SIZE No No No

Size of smart large
object

8 kilobytes Average size of all smart large
objects in sbspace:
AVG_LO_SIZE

No Estimated size of a
particular smart large
object Maximum size of a
particular smart large
object

Estimated size of a
particular smart large
object Maximum size of
a particular smart large
object

Buffer pool usage ON BUFFERING No LO_BUFFER and LO_
NOBUFFER flags

LO_BUFFER and LO_
NOBUFFER flags

Name of sbspace SBSPACE-NAME Not in -Df option. Name
specified in onspaces -S
option.

Name of an existing sbspace in
which a smart large object resides:
PUT ... IN clause

Yes Yes

Fragmenta-tion
across multiple
sbspaces

None No Round-robin distribution scheme:
PUT ... IN clause

Round-robin or
expression-based
distribution scheme

Round-robin or
expression-based
distribution scheme

Last-access time OFF ACCESSTIME KEEP ACCESS TIME, NO KEEP
ACCESS TIME

Yes Yes

Altering smart-large-object columns
 When you create or modify a table, you have several options for choosing storage characteristics and other attributes (such as logging status, buffering, data

integrity, and locking granularity) for specific smart-large-object columns.

Copyright© 2020 HCL Technologies Limited

1366 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Altering smart-large-object columns

When you create or modify a table, you have several options for choosing storage characteristics and other attributes (such as logging status, buffering, data integrity, and
locking granularity) for specific smart-large-object columns.

When you create or modify a table that can store BLOB or CLOB objects, you have these options:

Use the values that were set when the sbspace was created. These values are specified in one of the following ways:
With the various flags of the -Df option of the onspaces -c -S command
With the system default value for any flag that was not specified.

For guidelines to change the default storage characteristics of the -Df flags, see onspaces options that affect sbspace I/O.

Use the PUT clause of the CREATE TABLE statement to specify non-default values for particular characteristics or attributes, including the number of sbspaces, the
extent size, the logging, buffering, and data integrity status, and the locking granularity.
Characteristics or attributes that you do not specify in the PUT clause default to the values set in the onspaces -c -S command, or to system default values (for
example, no logging).

Later, you can use the PUT clause of the ALTER TABLE statement to change the optional storage characteristics of BLOB or CLOB columns. See Table 1 for characteristics
and attributes of sbspaces that you can change.

You can use the PUT clause of the ALTER TABLE statement to perform the following actions:

Specify the smart-large-object characteristics and storage location when you add a new BLOB or CLOB column to a table.
The smart large objects in the new columns can have characteristics different from those in the existing columns.

Change the smart-large-object characteristics of an existing column.
The new column characteristics apply only to smart large objects in new rows inserted after the ALTER TABLE PUT statement was issued. The old characteristics
persist for any smart large objects that already existed in the column before the ALTER TABLE PUT statement modified the column.

For example, the BLOB data in the catalog table in the superstores_demo database is stored in s9_sbspc with logging turned off and has an extent size of 100 kilobytes.
You can use the PUT clause of the ALTER TABLE statement to turn on logging and store new smart large objects in a different sbspace.

For information about changing sbspace extents with the CREATE TABLE statement, see Extent sizes for smart large objects in sbspaces.

Related information:
 Sbspace logging

CREATE TABLE statement

Copyright© 2020 HCL Technologies Limited

Managing extents

As you add rows to a table, the database server allocates disk space in units called extents. Each extent is a block of physically contiguous pages from the dbspace. Even
when the dbspace includes more than one chunk, each extent is allocated entirely within a single chunk, so that it remains contiguous.

Contiguity is important to performance. When the pages of data are contiguous, and when the database server reads the rows sequentially during read-ahead, light scans,
or lightweight I/O operations, disk-arm motion is minimized. For more information about these operations, see Sequential scans, Light scans, and Configuration
parameters that affect sbspace I/O.

The mechanism of extents is a compromise between the following competing requirements:

Most dbspaces are shared among several tables.
The size of some tables is not known in advance.
Tables can grow at different times and different rates.
All the pages of a table should be adjacent for best performance.

If you have a table that needs more extents and the database server runs out of space on the partition header page, the database server automatically allocates extended
secondary partition header pages to accommodate new extent entries. The database server can allocate up to 32767 extents for any partition, unless the size of a table
dictates a limit to the number of extents.

Because table sizes are not known, the database server cannot preallocate table space. Therefore, the database server adds extents only as they are needed, but all the
pages in any one extent are contiguous for better performance. In addition, when the database server creates an extent that is next to the previous one, it treats both as a
single extent.

A frequently updated table can become fragmented over time which degrades the performance every time the table is accessed by the server. Defragmenting a table
brings data rows closer together and avoids partition header page overflow problems.

Choosing table extent sizes
 When you create a table, you can specify extent sizes for the data rows of a table in a dbspace and for each fragment of a fragmented table, and the smart large

objects in an sbspace. The database server calculates extent sizes for smart large objects in sbspaces.
Monitoring active tblspaces

 Monitor tblspaces to determine which tables are active. Active tables are those that a thread has currently opened.
Monitoring the upper limit on extents and extent interleaving

 You can monitor the upper limit on the number of extents. You can also check for and eliminate extent interleaving.
Reclaiming unused space within an extent

 After the database server allocates disk space to a tblspace as part of an extent, that space remains dedicated to the tblspace. Even if all extent pages become
empty after you delete data, the disk space remains unavailable for use by other tables unless you reclaim the space.
Managing extent deallocation with the TRUNCATE keyword

 TRUNCATE is an SQL keyword that quickly deletes active rows from a table and the b-tree structures of its indexes, without dropping the table or its schema, access

Part VI: Administering 1367

https://www.hcltech.com/

privileges, triggers, constraints, and other attributes. With this SQL data-definition language statement, you can depopulate a local table and reuse the table without
re-creating it, or you can release the storage space that formerly held its data rows and b-tree structures.
Defragment partitions to merge extents
You can improve performance by defragmenting partitions to merge non-contiguous extents.

Copyright© 2020 HCL Technologies Limited

Choosing table extent sizes

When you create a table, you can specify extent sizes for the data rows of a table in a dbspace and for each fragment of a fragmented table, and the smart large objects in
an sbspace. The database server calculates extent sizes for smart large objects in sbspaces.

Extent sizes for tables in a dbspace
 When you create a table, you can specify the size of the first extent, as well as the size of the extents to be added as the table grows. You can also modify the size of

the first extent in a table in a dbspace, and you can modify the size of new subsequent extents.
Extent sizes for table fragments

 When you fragment an existing table, you might want to adjust the next-extent size because each fragment requires less space than the original, unfragmented
table.
Extent sizes for smart large objects in sbspaces

 When you create a table, you should use the extent size that the database server calculates for smart large objects in sbspaces. Alternatively, you can use the final
size of the smart large object, as indicated by a particular function when you open the sbspace in an application program.

Copyright© 2020 HCL Technologies Limited

Extent sizes for tables in a dbspace

When you create a table, you can specify the size of the first extent, as well as the size of the extents to be added as the table grows. You can also modify the size of the
first extent in a table in a dbspace, and you can modify the size of new subsequent extents.

The following sample SQL statement creates a table with a 512-kilobyte initial extent and 100-kilobyte added extents:

CREATE TABLE big_one (…column specifications…)
 IN big_space
 EXTENT SIZE 512
 NEXT SIZE 100

The default value for the extent size and the next-extent size is eight times the disk page size on your system. For example, if you have a 2-kilobyte page, the default
length is 16 kilobytes.

You can use the ALTER TABLE statement with the MODIFY EXTENT SIZE clause to change the size of the first extent of a table in a dbspace. When you change the size of
the first extent, Informix® records the change in the system catalog and on the partition page, but only makes the actual change when the table is rebuilt or a new partition
or fragment is created.

You might want to change the size of the first extent of a table in a dbspace in either of these situations:

If a table was created with small first extent size and you need to keep adding a lot of next extents, the table becomes fragmented across multiple extents and the
data is scattered.
If a table was created with a first extent that is much larger than the amount of data that is stored, space is wasted.

The following example changes the size of the first extent of a table in a dbspace to 50 kilobytes:

ALTER TABLE customer MODIFY EXTENT SIZE 50;

Changes to the first extent size are recorded into the system catalog table and on the partition page on the disk. However, changes to the first extent size do not take effect
immediately. Instead, whenever a change that rebuilds the table occurs, the server uses the new first extent size.

For example, if a table has a first extent size of 8 kilobytes and you use the ALTER TABLE statement to change this to 16 kilobytes, the server does not drop the current
first extent and recreate it with the new size. Instead, the new first extent size of 16 kilobytes takes effect only when the server rebuilds the table after actions such as
creating a cluster index on the table or detaching a fragment from the table.

If a TRUNCATE TABLE statement without the REUSE option is executed before the ALTER TABLE statement with the MODIFY EXTENT SIZE clause, there is no change in
the current first extent.

Use the MODIFY NEXT SIZE clause to change the size of the next extent to be added. This change does not affect next extents that already exist.

The following example changes the size of the next extent of a table to 50 kilobytes:

ALTER TABLE big_one MODIFY NEXT SIZE 50;

The next extent sizes of the following kinds of tables do not affect performance significantly:

A small table is defined as a table that has only one extent. If such a table is heavily used, large parts of it remain buffered in memory.
An infrequently used table is not important to performance no matter what size it is.
A table that resides in a dedicated dbspace always receives new extents that are adjacent to its old extents. The size of these extents is not important because,
being adjacent, they perform as one large extent.

Avoid creating large numbers of extents

1368 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

When you assign an extent size to these kinds of tables, the only consideration is to avoid creating large numbers of extents. A large number of extents causes the
database server to spend extra time finding the data. In addition, an upper limit exists on the number of extents allowed. (Considering the upper limit on extents covers
this topic.)

Tips for allocating space for table extents
No upper limit exists on extent sizes except the size of the chunk. The maximum size for a chunk is 4 terabytes. When you know the final size of a table (or can confidently
predict it within 25 percent), allocate all its space in the initial extent. When tables grow steadily to unknown size, assign them next-extent sizes that let them share the
dbspace with a small number of extents each.

Allocating space for table extents
To allocate space for table extents:

1. Decide how to allocate space among the tables.
For example, you might divide the dbspace among three tables in the ratio 0.4: 0.2: 0.3 (reserving 10 percent for small tables and overhead).

2. Give each table one-fourth of its share of the dbspace as its initial extent.
3. Assign each table one-eighth of its share as its next-extent size.
4. Monitor the growth of the tables regularly with oncheck.

As the dbspace fills up, you might not have enough contiguous space to create an extent of the specified size. In this case, the database server allocates the largest
contiguous extent that it can.

Related information:
 TBLTBLFIRST configuration parameter

TBLTBLNEXT configuration parameter
MODIFY EXTENT SIZE

Copyright© 2020 HCL Technologies Limited

Extent sizes for table fragments

When you fragment an existing table, you might want to adjust the next-extent size because each fragment requires less space than the original, unfragmented table.

If the unfragmented table was defined with a large next-extent size, the database server uses that same size for the next-extent on each fragment, which results in over-
allocation of disk space. Each fragment requires only a proportion of the space for the entire table.

For example, if you fragment the preceding big_one sample table across five disks, you can alter the next-extent size to one-fifth the original size. The following example
changes the next-extent size to one-fifth of the original size:

ALTER TABLE big_one MODIFY NEXT SIZE 2;

Related information:
 MODIFY NEXT SIZE clause

Copyright© 2020 HCL Technologies Limited

Extent sizes for smart large objects in sbspaces

When you create a table, you should use the extent size that the database server calculates for smart large objects in sbspaces. Alternatively, you can use the final size of
the smart large object, as indicated by a particular function when you open the sbspace in an application program.

You can use the final size of the smart large object when you open one of the following application programs:

For DB-Access: Use the DataBlade API mi_lo_specset_estbytes function. For more information about the DataBlade API functions to open a smart large object and
set the estimated number of bytes, see the IBM® Informix DataBlade API Programmer's Guide.
For ESQL/C: Use the Informix® ESQL/C ifx_lo_specset_estbytes function. For more information about the Informix ESQL/C functions to open a smart large object
and set the estimated number of bytes, see the IBM Informix ESQL/C Programmer's Manual.

For more information about sizing extents, see Sbspace extents. For more information, see Monitoring sbspaces.

Copyright© 2020 HCL Technologies Limited

Monitoring active tblspaces

Monitor tblspaces to determine which tables are active. Active tables are those that a thread has currently opened.

Output from the onstat -t option includes the tblspace number and the following four fields.

Field
Description

npages
Pages allocated to the tblspace

Part VI: Administering 1369

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

nused
Pages used from this allocated pool

nextns
Number of extents used

npdata
Number of data pages used

If a specific operation needs more pages than are available (npages minus nused), a new extent is required. If enough space is available in this chunk, the database server
allocates the extent here; if not, the database server looks for space in other available chunks. If none of the chunks contains adequate contiguous space, the database
server uses the largest block of contiguous space that it can find in the dbspace. Figure 1 shows an example of the output from this option.
Figure 1. onstat -t output

Tblspaces
 n address flgs ucnt tblnum physaddr npages nused npdata nrows nextns
 0 422528 1 1 100001 10000e 150 124 0 0 3
 1 422640 1 1 200001 200004 50 36 0 0 1
54 426038 1 6 100035 1008ac 3650 3631 3158 60000 3
62 4268f8 1 6 100034 1008ab 8 6 4 60 1
63 426a10 3 6 100036 1008ad 368 365 19 612 3
64 426b28 1 6 100033 1008aa 8 3 1 6 1
193 42f840 1 6 10001b 100028 8 5 2 30 1
 7 active, 200 total, 64 hash buckets

Copyright© 2020 HCL Technologies Limited

Monitoring the upper limit on extents and extent interleaving

You can monitor the upper limit on the number of extents. You can also check for and eliminate extent interleaving.

The maximum number of extents for a partition is 32767.

Considering the upper limit on extents
 Do not allow a table to acquire a large number of extents because an upper limit exists on the number of extents allowed. Trying to add an extent after you reach

the limit causes error -136 (No more extents) to follow an INSERT request.
Checking for extent interleaving

 When two or more growing tables share a dbspace, extents from one tblspace can be placed between extents from another tblspace. When this situation occurs,
the extents are said to be interleaved. Performance suffers when disk seeks for a table must span more than one extent, particularly for sequential scans.
Eliminating interleaved extents

 You can eliminate interleaved extents by reorganizing the tables with the UNLOAD and LOAD statements, creating or altering an index to cluster, or using the ALTER
TABLE statement.

Copyright© 2020 HCL Technologies Limited

Considering the upper limit on extents

Do not allow a table to acquire a large number of extents because an upper limit exists on the number of extents allowed. Trying to add an extent after you reach the limit
causes error -136 (No more extents) to follow an INSERT request.

To help ensure that the limit is not exceeded, the database server performs the following actions:

The database server checks the number of extents each time that it creates an extent. If the number of the extent being created is a multiple of 16, the database
server automatically doubles the next-extent size for the table. Therefore, at every 16th creation, the database server doubles the next-extent size.
When the database server creates an extent next to the previous extent, it treats both extents as a single extent.

Copyright© 2020 HCL Technologies Limited

Checking for extent interleaving

When two or more growing tables share a dbspace, extents from one tblspace can be placed between extents from another tblspace. When this situation occurs, the
extents are said to be interleaved. Performance suffers when disk seeks for a table must span more than one extent, particularly for sequential scans.

Interleaving creates gaps between the extents of a table. Figure 1 shows gaps between table extents.

Figure 1. Interleaved table extents

Try to optimize the table-extent sizes to allocate contiguous disk space, which limits head movement. Also consider placing the tables in separate dbspaces.

Check periodically for extent interleaving by monitoring chunks. Execute oncheck -pe to obtain the physical layout of information in the chunk. The following information
appears:

Dbspace name and owner
Number of chunks in the dbspace
Sequential layout of tables and free space in each chunk

1370 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Number of pages dedicated to each table extent or free space

This output is useful for determining the degree of extent interleaving. If the database server cannot allocate an extent in a chunk despite an adequate number of free
pages, the chunk might be badly interleaved.

Copyright© 2020 HCL Technologies Limited

Eliminating interleaved extents

You can eliminate interleaved extents by reorganizing the tables with the UNLOAD and LOAD statements, creating or altering an index to cluster, or using the ALTER TABLE
statement.

Reorganizing dbspaces and tables to eliminate extent interleaving
 You can rebuild a dbspace to eliminate interleaved extents so that the extents for each table are contiguous.

Creating or altering an index to cluster
 Depending on the circumstances, you can eliminate extent interleaving if you create a clustered index or alter a clustered index. When you use the TO CLUSTER

clause of the CREATE INDEX or ALTER INDEX statement, the database server sorts and reconstructs the table.
Using ALTER TABLE to eliminate extent interleaving

 If you use the ALTER TABLE statement to add or drop a column or to change the data type of a column, the database server copies and reconstructs the table. When
the database server reconstructs the entire table, it rewrites the table to other areas of the dbspace. However, if other tables are in the dbspace, no guarantee
exists that the new extents will be adjacent to each other.

Copyright© 2020 HCL Technologies Limited

Reorganizing dbspaces and tables to eliminate extent interleaving

You can rebuild a dbspace to eliminate interleaved extents so that the extents for each table are contiguous.

The order of the reorganized tables within the dbspace is not important, but the pages of each reorganized table should be contiguous so that no lengthy seeks are
required to read the table sequentially. When the disk arm reads a table nonsequentially, it ranges only over the space that table occupies.

Figure 1. A dbspace reorganized to eliminate interleaved extents

To reorganize tables in a dbspace:

1. For DB-Access users: Copy the tables in the dbspace individually to tape with the UNLOAD statement in DB-Access.
2. Drop all the tables in the dbspace.
3. Re-create the tables with the LOAD statement or the dbload utility.

The LOAD statement re-creates the tables with the same properties they had before, including the same extent sizes.

You can also unload a table with the onunload utility and reload the table with the companion onload utility.

Related information:
 LOAD statement

UNLOAD statement
The onunload and onload utilities

Copyright© 2020 HCL Technologies Limited

Creating or altering an index to cluster

Depending on the circumstances, you can eliminate extent interleaving if you create a clustered index or alter a clustered index. When you use the TO CLUSTER clause of
the CREATE INDEX or ALTER INDEX statement, the database server sorts and reconstructs the table.

The TO CLUSTER clause reorders rows in the physical table to match the order in the index. For more information, see Clustering.

The TO CLUSTER clause eliminates interleaved extents under the following conditions:

The chunk must contain contiguous space that is large enough to rebuild each table.
The database server must use this contiguous space to rebuild the table.
If blocks of free space exist before this larger contiguous space, the database server might allocate the smaller blocks first. The database server allocates space for
the ALTER INDEX process from the beginning of the chunk, looking for blocks of free space that are greater than or equal to the size that is specified for the next
extent. When the database server rebuilds the table with the smaller blocks of free space that are scattered throughout the chunk, it does not eliminate extent
interleaving.

To display the location and size of the blocks of free space, execute the oncheck -pe command.

To use the TO CLUSTER clause of the ALTER INDEX statement:

1. For each table in the chunk, drop all fragmented or detached indexes except the one that you want to cluster.

Part VI: Administering 1371

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

2. Cluster the remaining index with the TO CLUSTER clause of the ALTER INDEX statement. This step eliminates interleaving the extents when you rebuild the table by
rearranging the rows.

3. Re-create all the other indexes.

You do not need to drop an index before you cluster it. However, the ALTER INDEX process is faster than CREATE INDEX because the database server reads the data rows
in cluster order using the index. In addition, the resulting indexes are more compact.

To prevent the problem from recurring, consider increasing the size of the tblspace extents.

Copyright© 2020 HCL Technologies Limited

Using ALTER TABLE to eliminate extent interleaving

If you use the ALTER TABLE statement to add or drop a column or to change the data type of a column, the database server copies and reconstructs the table. When the
database server reconstructs the entire table, it rewrites the table to other areas of the dbspace. However, if other tables are in the dbspace, no guarantee exists that the
new extents will be adjacent to each other.

Important: For certain types of operations that you specify in the ADD, DROP, and MODIFY clauses, the database server does not copy and reconstruct the table during the
ALTER TABLE operation. In these cases, the database server uses an in-place alter algorithm to modify each row when it is updated (rather than during the ALTER TABLE
operation). For more information about the conditions for this in-place alter algorithm, see In-place alter.

Copyright© 2020 HCL Technologies Limited

Reclaiming unused space within an extent

After the database server allocates disk space to a tblspace as part of an extent, that space remains dedicated to the tblspace. Even if all extent pages become empty
after you delete data, the disk space remains unavailable for use by other tables unless you reclaim the space.

Important: When you delete rows in a table, the database server reuses that space to insert new rows into the same table. This section describes the procedures for
reclaiming unused space for use by other tables.
You might want to resize a table that does not require the entire amount of space that was originally allocated to it. You can reallocate a smaller dbspace and release the
unneeded space for other tables to use.

As the database server administrator, you can reclaim the disk space in empty extents and make it available to other users by rebuilding the table. To rebuild the table, use
any of the following SQL statements:

ALTER INDEX
UNLOAD and LOAD
ALTER FRAGMENT

Reclaiming space in an empty extent with ALTER INDEX
 If the table with the empty extents includes an index, you can run the ALTER INDEX statement with the TO CLUSTER clause. Clustering an index rebuilds the table in

a different location within the dbspace.
Reclaiming space in an empty extent by unloading and re-creating or reloading a table

 If the table does not include an index, you can unload the table, re-create the table (either in the same dbspace or in another one), and reload the data with the
UNLOAD and LOAD statements or the onunload and onload utilities.
Releasing space in an empty extent with ALTER FRAGMENT

 You can use the ALTER FRAGMENT statement to rebuild a table. When you run this statement, it releases space within the extents that were allocated to that table.

Copyright© 2020 HCL Technologies Limited

Reclaiming space in an empty extent with ALTER INDEX

If the table with the empty extents includes an index, you can run the ALTER INDEX statement with the TO CLUSTER clause. Clustering an index rebuilds the table in a
different location within the dbspace.

When you run the ALTER INDEX statement with the TO CLUSTER clause, all of the extents associated with the previous version of the table are released. Also, the newly
built version of the table has no empty extents.

Related concepts:
 Clustering

Related information:
 ALTER INDEX statement

Copyright© 2020 HCL Technologies Limited

Reclaiming space in an empty extent by unloading and re-creating or reloading a
table

1372 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

If the table does not include an index, you can unload the table, re-create the table (either in the same dbspace or in another one), and reload the data with the UNLOAD
and LOAD statements or the onunload and onload utilities.

Related information:
 LOAD statement

UNLOAD statement
The onunload and onload utilities

Copyright© 2020 HCL Technologies Limited

Releasing space in an empty extent with ALTER FRAGMENT

You can use the ALTER FRAGMENT statement to rebuild a table. When you run this statement, it releases space within the extents that were allocated to that table.

For more information about the syntax of the ALTER FRAGMENT statement, see the IBM® Informix® Guide to SQL: Syntax.

Copyright© 2020 HCL Technologies Limited

Managing extent deallocation with the TRUNCATE keyword

TRUNCATE is an SQL keyword that quickly deletes active rows from a table and the b-tree structures of its indexes, without dropping the table or its schema, access
privileges, triggers, constraints, and other attributes. With this SQL data-definition language statement, you can depopulate a local table and reuse the table without re-
creating it, or you can release the storage space that formerly held its data rows and b-tree structures.

Two implementations of TRUNCATE exist:

The first implementation, called "fast truncate," operates on most tables.
The second implementation, called "slow truncate," operates on tables that include opaque or smart large object data types, or inherited indexes that are defined
on ROW types within data type hierarchies.

The performance advantages of using the TRUNCATE TABLE statement instead of the DELETE statement are much better for the fast truncate implementation, because
this implementation does not examine or run all of the rows in a table. Slow truncation implementation occurs on tables that include opaque or smart large object data
types or inherited indexes that are defined on ROW types within data types, because the truncate operation examines each row containing these items.

For more information about using TRUNCATE, see the IBM® Informix® Guide to SQL: Syntax.

Copyright© 2020 HCL Technologies Limited

Defragment partitions to merge extents

You can improve performance by defragmenting partitions to merge non-contiguous extents.

A frequently updated table can become fragmented over time which degrades the performance every time the table is accessed by the server. Defragmenting a table
brings data rows closer together and avoids partition header page overflow problems.

Defragmenting an index brings the entries closer together which improves the speed at which the table information is accessed.

You cannot stop a defragment request after the request has been submitted. Additionally, there are specific objects that cannot be defragmented and you cannot
defragment a partition if another operation is running that conflicts with the defragment request.

Tip: Before you defragment a partition:

Review the information about important limitations and considerations in Partition defragmentation.
Run the oncheck -pt and pT command to determine the number of extents for a specific table or fragment.

To defragment a table, index, or partition, run the EXECUTE FUNCTION command with the defragment argument. You can specify the table name, index name, or partition
number that you want to defragment.

You can use the onstat -g defragment command to display information about the active defragment requests.

Related information:
 Scheduling data optimization

onstat -g defragment command: Print defragment partition extents
oncheck -pt and -pT: Display tblspaces for a Table or Fragment
defragment argument: Dynamically defragment partition extents (SQL administration API)

Copyright© 2020 HCL Technologies Limited

Storing multiple table fragments in a single dbspace

You can store multiple fragments of the same table or index in a single dbspace, thus reducing the total number of dbspaces needed for a fragmented table. You must
specify a name for each fragment that you want to store in the same dbspace. Storing multiple table or index fragments in a single dbspace simplifies the management of

Part VI: Administering 1373

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

dbspaces.

You can also use this feature to improve query performance over storing each fragment in a different dbspace when a dbspace is located on a faster device.

For more information, see information about managing partitions in the IBM® Informix® Administrator's Guide.

Copyright© 2020 HCL Technologies Limited

Displaying a list of table and index partitions

Use the onstat -g opn option to display a list of the table and index partitions, by thread ID, that are currently open in the system.

For an example of onstat -g opn output and an explanation of output fields, see the IBM® Informix® Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

Changing tables to improve performance

You can change tables to improve performance by dropping indexes, attaching or detaching fragments, and altering table definitions. You can also create databases for
decision-support applications by unloading and loading tables in OLTP databases.

You might want to change an existing table for various reasons:

To refresh large decision-support tables with data periodically
To add or drop historical data from a certain time period
To add, drop, or modify columns in large decision-support tables when the need arises for different data analysis

Loading and unloading tables
 You can create databases for decision-support applications by periodically loading tables that have been unloaded from active OLTP databases.

Dropping indexes for table-update efficiency
 In some applications, you can confine most table updates to a single time period. You can set up your system so that all updates are applied overnight or on

specified dates. When updates are performed as a batch, you can drop all nonunique indexes while you make updates and then create new indexes afterward.
Creating and enabling referential constraints efficiently

 When you create or enable foreign-key constraints on existing tables that contain data, you can sometimes achieve better performance by reducing the time that
the database server spends searching for violating rows.
Attaching or detaching fragments

 You can use ALTER FRAGMENT ATTACH and DETACH statements to perform data warehouse-type operations. ALTER FRAGMENT DETACH provides a way to delete
a segment of the table data rapidly. Similarly, ALTER FRAGMENT ATTACH provides a way to load large amounts of data into an existing table incrementally by taking
advantage of the fragmentation technology.
Altering a table definition

 The database server uses one of these algorithms to process an ALTER TABLE statement in SQL: slow alter, in-place alter, or fast alter.

Copyright© 2020 HCL Technologies Limited

Loading and unloading tables

You can create databases for decision-support applications by periodically loading tables that have been unloaded from active OLTP databases.

You can use one or more of the following methods to load large tables quickly:

External tables
Nonlogging tables
The database server provides support to:

Create nonlogging or logging tables in a logging database.
Alter a table from nonlogging to logging and vice versa.

The two table types are STANDARD (logging tables) and RAW (nonlogging tables). You can use any loading utility such as dbimport or HPL to load raw tables.

High-Performance Loader (HPL)
You can use HPL in express mode to load tables quickly.

The following sections describe:

Advantages of logging and nonlogging tables
Step-by-step procedures to load data using nonlogging tables

Advantages of logging tables
 Logging type options specify the logging characteristics that can improve performance in various bulk operations on the table.

Advantages of nonlogging tables
 Nonlogging tables, which are also called raw tables, have characteristics that enable you to load very large data warehousing tables quickly.

Related information:
 Moving data with external tables

CREATE EXTERNAL TABLE Statement

1374 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Advantages of logging tables

Logging type options specify the logging characteristics that can improve performance in various bulk operations on the table.

STANDARD, which corresponds to a table in a logged database of previous versions, is the default logging type that is used when you issue the CREATE TABLE statement
without specifying the table type.

Standard tables have the following features:

Logging to allow rollback, recovery, and restoration from archives.
Recovery from backups
All insert, delete, and update operations
Constraints to maintain the integrity of your data
Indexes to quickly retrieve a small number of rows

OLTP applications usually use standard tables. OLTP applications typically have the following characteristics:

Real-time insert, update, and delete transactions
Logging and recovery of these transactions is critical to preserve the data. Locking is critical to allow concurrent access and to ensure the consistency of the data
selected.

Update, insert, or delete one row or a few rows at a time
Indexes speed access to these rows. An index requires only a few I/O operations to access the pertinent row, but scanning a table to find the pertinent row might
require many I/O operations.

Copyright© 2020 HCL Technologies Limited

Advantages of nonlogging tables

Nonlogging tables, which are also called raw tables, have characteristics that enable you to load very large data warehousing tables quickly.

Raw tables have following characteristics:

They do not use CPU and I/O resources for logging.
They avoid problems such as running out of logical-log space.
They are locked exclusively during an express load so that no other user can access the table during the load.
They do not support referential constraints and unique constraints, so overhead for constraint-checking is eliminated.

Quickly loading a large standard table
 You can change a large, existing standard table into a nonlogging table and then load the table.

Quickly loading a new nonlogging table
 You quickly create a new nonlogging table and load the table.

Copyright© 2020 HCL Technologies Limited

Quickly loading a large standard table

You can change a large, existing standard table into a nonlogging table and then load the table.

To quickly load a large, existing standard table:

1. Drop indexes, referential constraints, and unique constraints.
2. Change the table to nonlogging.

The following sample SQL statement changes a STANDARD table to nonlogging:

ALTER TABLE largetab TYPE(RAW);

3. Load the table using a load utility such as dbexport or the High-Performance Loader (HPL). For more information about dbexport and dbload, see the IBM®
Informix® Migration Guide. For more information about HPL, see the IBM Informix High-Performance Loader User's Guide.

4. Perform a level-0 backup of the nonlogging table. You must make a level-0 backup of any nonlogging table that has been modified before you convert it to
STANDARD type. The level-0 backup provides a starting point from which to restore the data.

5. Change the nonlogging table to a logging table before you use it in a transaction. The following sample SQL statement changes a raw table to a standard table:

ALTER TABLE largetab TYPE(STANDARD);

Warning: Do not use nonlogging tables within a transaction where multiple users can modify the data. If you need to use a nonlogging table within a transaction,
either set Repeatable Read isolation level or lock the table in exclusive mode to prevent concurrency problems.
For more information about standard tables, see the previous section, Advantages of logging tables.

6. Re-create indexes, referential constraints, and unique constraints.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1375

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Quickly loading a new nonlogging table

You quickly create a new nonlogging table and load the table.

To quickly create and load a new, large table:

1. Create a nonlogging table in a logged database.
The following sample SQL statements create a nonlogging table:

CREATE DATABASE history WITH LOG;
CONNECT TO DATABASE history;
CREATE RAW TABLE history (...
);

2. Load the table using a load utility such as dbexport. For more information about dbexport and dbload, see the IBM® Informix® Migration Guide.
3. Perform a level-0 backup of the nonlogging table.

You must make a level-0 backup of any nonlogging table that has been modified before you convert it to STANDARD type. The level-0 backup provides a starting
point from which to restore the data.

4. Change the nonlogging table to a logging table before you use it in a transaction.
The following sample SQL statement changes a raw table to a standard table:

ALTER TABLE largetab TYPE(STANDARD);

Warning: Do not use nonlogging tables within a transaction where multiple users can modify the data. If you need to use a nonlogging table within a transaction,
either set Repeatable Read isolation level or lock the table in exclusive mode to prevent concurrency problems.
For more information about standard tables, see the previous section, Advantages of logging tables.

5. Create indexes on columns most often used in query filters.
6. Create any referential constraints and unique constraints, if needed.

Copyright© 2020 HCL Technologies Limited

Dropping indexes for table-update efficiency

In some applications, you can confine most table updates to a single time period. You can set up your system so that all updates are applied overnight or on specified
dates. When updates are performed as a batch, you can drop all nonunique indexes while you make updates and then create new indexes afterward.

This strategy can have two positive effects:

The updating program runs much faster if it does not need to update indexes at the same time that it updates tables.
Re-created indexes are more efficient.

For more information about when to drop indexes, see Nonunique indexes.

To load a table that has no indexes:

1. Drop the table (if it exists).
2. Create the table without specifying any unique constraints.
3. Load all rows into the table.
4. Alter the table to apply the unique constraints.
5. Create the nonunique indexes.

If you cannot guarantee that the loaded data satisfies all unique constraints, you must create unique indexes before you load the rows. You save time if the rows are
presented in the correct sequence for at least one of the indexes. If you have a choice, make it the row with the largest key. This strategy minimizes the number of leaf
pages that must be read and written.

Copyright© 2020 HCL Technologies Limited

Creating and enabling referential constraints efficiently

When you create or enable foreign-key constraints on existing tables that contain data, you can sometimes achieve better performance by reducing the time that the
database server spends searching for violating rows.

By maintaining the referential integrity of the database during DML operations, and by supporting efficient join-query execution paths on tables that are related by a star
schema, foreign-key constraints can improve the performance of DML operations in databases where the primary key of each dimension table corresponds to a foreign key
of the fact table.

When you use the ALTER TABLE ADD CONSTRAINT or ALTER TABLE MODIFY statement to define a foreign-key constraint on an existing table, you might be able to reduce
the time required to validate of the new foreign-key constraint, if the referenced table already has a unique index or a primary-key constraint on the column corresponding
to the key of the foreign-key constraint. When it creates a foreign-key constraint on a table that already contains data, the database server checks the table for any rows
that violate the constraint. If an index exists, the database server makes a cost-based decision whether to scan every row in the table for violations, or to scan only the
index valses.

For large tables, scanning only the index values can provide substantial performance improvement, unless one of the following requirements is not satisfied:

The ALTER TABLE statement is creating only one foreign-key constraint.

1376 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

The ALTER TABLE statement is not also creating or enabling a CHECK constraint.
The ALTER TABLE statement is not also changing the data type of any existing column in the table.
The foreign-key columns do not include user-defined data types (UDTs) or built-in opaque data types.
The new mode of the foreign-key constraint is not DISABLED.
The table is not associated with an active violation table.

Except in the case of one or more violating rows, the ALTER TABLE ADD CONSTRAINT or ALTER TABLE MODIFY statement can create and validate a foreign-key constraint
when some of these requirements are not satisfied, but the database server will not consider using the index-key algorithm to validate the foreign-key constraint. The
additional validation costs to scan the entire table tend to be proportional to the size of the table.

Enabling a foreign-key constraint using index-scan validation
To validate the enabled foreign-key constraint, the database server performs a full-table scan to search for violating rows, unless a unique index or a primary-key
constraint already exists on the foreign-key column values. In that case, the database server consider using an index scan for validation, unless one or more of the
following requirements is not satisfied:

The SET CONSTRAINTS statement is enabling only one foreign-key constraint.
The same statement is not enabling a CHECK constraint.
The foreign-key columns do not include user-defined data types (UDTs) or built-in opaque data types.
The new mode of the foreign-key constraint is not DISABLED.
The table is not associated with an active violation table.

Unless the table has one or more violating rows, the SET CONSTRAINTS statement can enable and validate a foreign-key constraint when some of these requirements are
not satisfied, but the database server will not consider using the index-key algorithm to validate the foreign-key constraint. The additional validation costs for a full table
scan can be substantial for very large tables.

Skipping validation of foreign-key constraints
In both the ALTER TABLE and SET CONSTRAINTS operations described above, the goal was to use a more efficient algorithm for validating the referential constraint.
Greater efficiencies can be achieved, at least temporarily, by postponing or avoiding the validation of ENABLED or FILTERING foreign-key constraints that are being
created by ALTER TABLE ADD CONSTRAINT statements, or while a DISABLED foreign-key constraint is being reset to an ENABLED or FILTERING mode.

This feature can be useful when tables that enforced referential constraints need to be moved from an OLTP environment to another database or to a data warehouse. To
export the tables and restore their constraints without validation might be necessary if the time available for relocation is insufficient for violations checking. The tables
might seem unlikely to include violating rows, if the constraints were dropped or disabled immediately before the tables were exported.

Three alternative mechanisms are available for bypassing the validation of enabled or filtering foreign-key constraints while they are being created, or while they are being
exported, or while their mode is being changed from DISABLED:

You can include the NOVALIDATE keyword in the constraint mode specification
of the ALTER TABLE ADD CONSTRAINT statement,
or of the SET CONSTRAINTS ENABLED statement,
or of the SET CONSTRAINTS FILTERING WITH ERROR statement,
or of the SET CONSTRAINTS FILTERING WITHOUT ERROR statements.

If you plan to run multiple ALTER TABLE ADD CONSTRAINT or SET CONSTRAINTS statements, run the SET ENVIRONMENT NOVALIDATE ON statement to disable
the validation of foreign-key constraints during the current session.
Setting this session environment option makes NOVIOLATE the default mode for enabled or filtering referential constraints while the DDL statement is running.

If you are migrating data, include the -nv option in the dbimport command.
The effect of the -nv command-line option is that the constraint modes of any ALTER TABLE ADD CONSTRAINT or SET CONSTRAINTS statements that create or
enable foreign-key constraints are processed so that the ENABLED, or FILTERING WITH ERROR, or FILTERING WITHOUT ERROR constraint mode specifications are
instead implemented (respectively) as the ENABLED NOVALIDATE, or FILTERING WITH ERROR NOVALIDATE, or FILTERING WITHOUT ERROR NOVALIDATE modes.

In each case, no constraint validation of existing rows occurs during the DDL statement.

The effect of the NOVALIDATE keyword or of the -nv command-line flag of dbimport does not persist outside the DDL operation that created or changed the mode of the
foreign-key constraint. The same constraint enforces referential integrity during subsequent DELETE, INSERT, MERGE, and UPDATE operations. The NOVALIDATE mode of
the referential constraint is not registered in the sysobjstate system catalog table.

If a NOVALIDATE constraint mode is used on a table that might already contains rows that violate the foreign-key constraint, it is the responsibility of the user to verify that
no violating rows exist in the data.

Copyright© 2020 HCL Technologies Limited

Attaching or detaching fragments

You can use ALTER FRAGMENT ATTACH and DETACH statements to perform data warehouse-type operations. ALTER FRAGMENT DETACH provides a way to delete a
segment of the table data rapidly. Similarly, ALTER FRAGMENT ATTACH provides a way to load large amounts of data into an existing table incrementally by taking
advantage of the fragmentation technology.

For more information about how to take advantage of the performance enhancements for the ATTACH and DETACH options of the ALTER FRAGMENT statement, see
Improve the performance of operations that attach and detach fragments.

Copyright© 2020 HCL Technologies Limited

Altering a table definition

Part VI: Administering 1377

https://www.hcltech.com/
https://www.hcltech.com/

The database server uses one of these algorithms to process an ALTER TABLE statement in SQL: slow alter, in-place alter, or fast alter.

Slow alter
 When the database server uses the slow alter algorithm to process an ALTER TABLE statement, the table can be unavailable to other users for a long period of time.

In-place alter
 The in-place alter algorithm provides numerous performance advantages over the slow alter algorithm

Fast alter
 The database server uses the fast alter algorithm when the ALTER TABLE statement changes attributes of the table but does not affect the data.

Copyright© 2020 HCL Technologies Limited

Slow alter

When the database server uses the slow alter algorithm to process an ALTER TABLE statement, the table can be unavailable to other users for a long period of time.

The table might be unavailable because the database server:

Locks the table in exclusive mode for the duration of the ALTER TABLE operation
Makes a copy of the table in order to convert the table to the new definition
Converts the data rows during the ALTER TABLE operation
Can treat the ALTER TABLE statement as a long transaction and abort it if the LTXHWM threshold is exceeded

Because the database server makes a copy of the table to convert the table to the new definition, a slow alter operation requires space at least twice the size of the
original table plus log space.

The database server uses the slow alter algorithm when the ALTER TABLE statement makes column changes that it cannot perform in place:

Adding or dropping a column created with the ROWIDS keyword
Adding or dropping a column created with the REPLCHECK keyword
Dropping a column of the TEXT or BYTE data type
Modifying a SMALLINT column to SERIAL, SERIAL8, or BIGSERIAL
Converting an INT column to SERIAL, SERIAL8, or BIGSERIAL
Modifying the data type of a column so that some possible values of the old data type cannot be converted to the new data type (For example, if you modify a
column of data type INTEGER to CHAR(n), the database server uses the slow alter algorithm if the value of n is less than 11. An INTEGER requires 10 characters
plus one for the minus sign for the lowest possible negative values.)
Modifying the data type of a fragmentation column in a way that value conversion might cause rows to move to another fragment
Adding, dropping or modifying any column when the table contains user-defined data types, smart large objects, or LVARCHAR, SET, MULTISET, ROW, or
COLLECTION data types
Modifying the original size or reserve specifications of VARCHAR or NVARCHAR columns
Adding ERKEY shadow columns

Copyright© 2020 HCL Technologies Limited

In-place alter

The in-place alter algorithm provides numerous performance advantages over the slow alter algorithm

The in-place alter algorithm:

Increases table availability
Other users can access the table sooner when the ALTER TABLE operation uses the in-place alter algorithm, because the database server locks the table for only
the time that it takes to update the table definition and rebuild indexes that contain altered columns.

This increase in table availability can increase system throughput for application systems that require 24 by seven operations.

When the database server uses the in-place alter algorithm, it locks the table for a shorter time than the slow alter algorithm because the database server:

Does not make a copy of the table to convert the table to the new definition
Does not convert the data rows during the ALTER TABLE operation
Alters the physical columns in place with the latest definition after the alter operation when you later update or insert rows. The database server converts the
rows that reside on each page that you updated.

Requires less space than the slow alter algorithm
When the ALTER TABLE operation uses the slow alter algorithm, the database server makes a copy of the table to convert the table to the new definition. The ALTER
TABLE operation requires space at least twice the size of the original table plus log space.

When the ALTER TABLE operation uses the in-place alter algorithm, the space savings can be substantial for very large tables.

Improves system throughput during the ALTER TABLE operation
The database server does not log any changes to the table data during the in-place alter operation. Not logging changes has the following advantages:

Log space savings can be substantial for very large tables.
The alter operation is not a long transaction.

If the check_for_ipa Scheduler task is enabled, each table that has one or more outstanding in-place alter operations is listed in the ph_alert table in the sysadmin
database. The alert text is: Table database:owner.table_name has outstanding in place alters. The alert type is informative.

Conditions for in-place alter operations
 The database server can use the in-place alter algorithm to process only certain ADD, DROP, or MODIFY operations of the ALTER TABLE statement, and only if the

1378 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

table schema or the ALTER TABLE statement does not require a slow alter algorithm.
Performance considerations for DML statements
The database server performs additional actions if it detects any down-level version page during the execution of data manipulation language (DML) statements
(INSERT, UPDATE, DELETE, SELECT). These actions can impact performance.
Performance of in-place alters for DDL operations
In-place alter operations on data definition language (DDL) statements can slow performance. Therefore, monitor outstanding in-place alter operation because
many outstanding alter operations affect subsequent ALTER TABLE statements.
Altering a column that is part of an index
If the altered column is part of an index, the table is still altered in place, but in this case the database server rebuilds the index or indexes implicitly. If you do not
need to rebuild the index, you should drop or disable it before you perform the alter operation. Taking these steps improves performance.

Related information:
 The ph_alert Table

Copyright© 2020 HCL Technologies Limited

Conditions for in-place alter operations

The database server can use the in-place alter algorithm to process only certain ADD, DROP, or MODIFY operations of the ALTER TABLE statement, and only if the table
schema or the ALTER TABLE statement does not require a slow alter algorithm.

ALTER TABLE operations that can be done in place
The database server can use the in-place alter algorithm in the following ALTER TABLE operations:

Add columns of built-in data types, except the data types that are listed in Conditions that prevent in-place alter operations.
Drop a column of built-in data types, except a column that contains TEXT or BYTE data types, or a column that was created with the ROWIDS keyword.
In Enterprise Replication, add or drop a column that is created with the CRCOLS keyword.
Modify a column for which the database server can convert all possible values of the old data type to the new data type.
Modify a column that is part of the fragmentation expression for its table, only if value changes do not require any data row to move from one fragment to another
fragment after data type conversion.

The following table shows the conditions under which the ALTER TABLE MODIFY statement uses the in-place alter algorithm to convert columns of supported data types.

Key:

All = The database server uses the in-place alter algorithm for all cases of the specific column operation.
nf = The database server uses the in-place alter algorithm when the modified column is not part of the table fragmentation expression.

Table 1. MODIFY operations and conditions that use the in-place alter algorithm
Operation on Column Condition

Convert a SMALLINT column to an INTEGER column All

Convert a SMALLINT column to a BIGINT column All

Convert a SMALLINT column to an INT8 column All

Convert a SMALLINT column to a DEC(p2,s2) column p2-s2 >= 5

Convert a SMALLINT column to a DEC(p2) column p2-s2 >= 5 OR nf

Convert a SMALLINT column to a SMALLFLOAT column All

Convert a SMALLINT column to a FLOAT column All

Convert a SMALLINT column to a CHAR(n) column n >= 6 AND nf

Convert an INT column to an INT8 column All

Convert an INT column to a DEC(p2,s2) column p2-s2 >= 10

Convert an INT column to a DEC(p2) column p2 >= 10 OR nf

Convert an INT column to a SMALLFLOAT column nf

Convert an INT column to a FLOAT column All

Convert an INT column to a CHAR(n) column n >= 11 AND nf

Convert a SERIAL column to an INT8 column All

Convert a SERIAL column to a DEC(p2,s2) column p2-s2 >= 10

Convert a SERIAL column to a DEC(p2) column p2 >= 10 OR nf

Convert a SERIAL column to a SMALLFLOAT column nf

Convert a SERIAL column to a FLOAT column All

Convert a SERIAL column to a CHAR(n) column n >= 11 AND nf

Convert a SERIAL column to a BIGSERIAL column All

Convert a SERIAL column to a SERIAL8 column All

Convert a SERIAL8 column to a BIGSERIAL column All

Convert a BIGSERIAL column to a SERIAL8 column All

Part VI: Administering 1379

https://www.hcltech.com/

Operation on Column Condition

Convert a DEC(p1,s1) column to a SMALLINT column p1-s1 < 5 AND (s1 == 0 OR nf)

Convert a DEC(p1,s1) column to an INTEGER column p1-s1 < 10 AND (s1 == 0 OR nf)

Convert a DEC(p1,s1) column to an INT8 column p1-s1 < 20 AND (s1 == 0 OR nf)

Convert a DEC(p1,s1) column to a SERIAL column p1-s1 < 10 AND (s1 == 0 OR nf)

Convert a DEC(p1,s1) column to a BIGSERIAL column p1-s1 < 20 AND (s1 == 0 OR nf)

Convert a DEC(p1,s1) column to a SERIAL8 column p1-s1 < 20 AND (s1 == 0 OR nf)

Convert a DEC(p1,s1) column to a DEC(p2,s2) column p2-s2 >= p1-s1 AND (s2 >= s1 OR
nf)

Convert a DEC(p1,s1) column to a DEC(p2) column p2 >= p1 OR nf

Convert a DEC(p1,s1) column to a SMALLFLOAT column nf

Convert a DEC(p1,s1) column to a FLOAT column nf

Convert a DEC(p1,s1) column to a CHAR(n) column n >= 8 AND nf

Convert a DEC(p1) column to a DEC(p2) column p2 >= p1 OR nf

Convert a DEC(p1) column to a SMALLFLOAT column nf

Convert a DEC(p1) column to a FLOAT column nf

Convert a DEC(p1) column to a CHAR(n) column n >= 8 AND nf

Convert a SMALLFLOAT column to a DEC(p2) column nf

Convert a SMALLFLOAT column to a FLOAT column nf

Convert a SMALLFLOAT column to a CHAR(n) column n >= 8 AND nf

Convert a FLOAT column to a DEC(p2) column nf

Convert a FLOAT column to a SMALLFLOAT column nf

Convert a FLOAT column to a CHAR(n) column n >= 8 AND nf

Convert a CHAR(m) column to a CHAR(n) column n >= m OR (nf AND not ANSI mode)

Increase the length of a character-type column Not in ANSI mode databases

Increase the length of a DECIMAL or MONEY column All

Convert an INT column to a SERIAL column All

Convert an INT column to a BIGSERIAL column All

Convert an INT column to a SERIAL8 column All

Convert a BIGINT column to a BIGSERIAL column All

Convert a BIGINT column to a SERIAL8 column All

Convert a INT8 column to a BIGSERIAL column All

Convert a INT8 column to a SERIAL8 column All

Note: If first column of an index is altered, the operation to find the next serial value is very fast as it can make use of the index. If altered column is not first column of an
index, the operation will do a sequential scan of the table to find the next serial value.
If you supply the serial value of the altered column, the operation is fast as the serial value is provided and does not require any calculation.

Conditions that prevent in-place alter operations
When the table contains an opaque data type, a user-defined data type, an LVARCHAR data type, a BOOLEAN data type, or a smart large object (BLOB or CLOB), the
database server does not use the in-place alter algorithm, even when the column that is being altered is of a data type that can support in-place alter operations.

The in-place alter algorithm is not used if the ALTER TABLE DROP statement specifies BYTE or TEXT columns, or the ROWIDS keyword, or if the ALTER TABLE ADD
statement includes the ROWID keyword.

If any column data types in an ALTER TABLE MODIFY statement cannot be converted by in-place alter operations, or if data movement is required for a fragmented table,
the database server uses the slow alter algorithm for data type conversion instead of using the in-place alter algorithm.

For example, the database server does not use the in-place alter algorithm in the following situations:

When more than one algorithm is needed
For example, assume that an ALTER TABLE MODIFY statement converts a SMALLINT column to a DEC(8,2) column and converts an INTEGER column to a CHAR(8)
column. The conversion of the first column is an in-place alter operation, but the conversion of the second column is a slow alter operation. The database server
uses the slow alter algorithm to execute this statement.

When the ALTER TABLE operation moves data records to another fragment
For example, suppose you have a table with two integer columns and the following fragment expression:

col1 < col2 IN dbspace1, REMAINDER IN dbspace2

If you issue an ALTER TABLE MODIFY statement to convert the integer values to character values, the database server stores the row (4, 30) in dbspace1 before
the alter operation, but stores it in dbspace2 after the alter operation, not as integers, 4 < 30, but as characters, '30' < '4'.

When the database server cannot convert all possible values of the old data type to the new data type.

1380 Part VI: Administering

For example, you cannot convert a BIGSERIAL column to a SERIAL column, because the modified column cannot store BIGSERIAL values that are beyond the range
of SERIAL values. (However, you can change a column from SERIAL to BIGSERIAL with an in-place alter operation, if other columns in the table do not conflict with
any of the other restrictions on in-place alter operations.)

Related information:
 IBMInformix data types

DECIMAL

Copyright© 2020 HCL Technologies Limited

Performance considerations for DML statements

The database server performs additional actions if it detects any down-level version page during the execution of data manipulation language (DML) statements (INSERT,
UPDATE, DELETE, SELECT). These actions can impact performance.

Each time you execute an ALTER TABLE statement that uses the in-place alter algorithm, the database server creates a new version of the table structure. The database
server keeps track of all versions of table definitions. The database server resets the version status and all of the version structures and alter structures until the entire
table is converted to the final format, or until a slow alter is performed.

If the database server detects any down-level version page during the execution of DML statements (INSERT, UPDATE, DELETE, and SELECT statements, and MERGE
statements that specify Insert, Update, or Delete clauses), it performs the following actions:

For UPDATE statements, the database server converts the entire data page or pages to the final format.
For INSERT statements, the database server converts the inserted row to the final format and inserts it in the best-fit page. The database server converts the
existing rows on the best-fit page to the final format.
For DELETE statements, the database server does not convert the data pages to the final format.
For SELECT statements, the database server does not convert the data pages to the final format.
If your query accesses rows that are not yet converted to the new table definition, you might notice a slight degradation in the performance of your individual query,
because the database server reformats each row before it is returned.

Copyright© 2020 HCL Technologies Limited

Performance of in-place alters for DDL operations

In-place alter operations on data definition language (DDL) statements can slow performance. Therefore, monitor outstanding in-place alter operation because many
outstanding alter operations affect subsequent ALTER TABLE statements.

The oncheck -pT command displays data-page versions for outstanding in-place alter operations. An in-place alter is outstanding when data pages still exist with the old
definition.

Figure 1 shows a portion of the output that the following oncheck command produces after four in-place alter operations are run on the customer demonstration table:
Figure 1. Sample oncheck -pT output for the customer table

oncheck -pT stores_demo:customer

...
Home Data Page Version Summary

 Version Count

 0 (oldest) 2
 1 0
 2 0
 3 0
 4 (current) 0
...

The Count field in Figure 1 displays the number of pages that currently use that version of the table definition. This oncheck output shows that four versions are
outstanding:

A value of 2 in the Count field for the oldest version indicates that two pages use the oldest version.
A value of 0 in the Count fields for the next four versions indicates that no pages were to the latest table definition.

Important: As you perform more in-place alter operation on a table, each subsequent ALTER statement or the SQL statements that run against the tables with outstanding
alters take more time to run than the previous statement. To maintain efficient performance, regularly remove outstanding in-place alter operations.
You can remove in-place alter operations by running the admin() or task() SQL administration command with the table update_ipa or fragment update_ipa argument.
You can include the parallel option to run the operation in parallel. For example, the following statement removes in-place alter operations in parallel from a table that is
named auto:

EXECUTE FUNCTION task('table update_ipa parallel','auto');

If your goal is saving runtime CPU, then plan to keep as few outstanding alters operations on a table as possible (generally no more than 3 or 4). If your goal is to save on
disk space and your alter operations add or grow columns, then leaving in-place alters outstanding helps reduce disk space. If you need to revert to an earlier version of
the database server, however, one requirement is that no data pages can include incomplete ALTER TABLE or ALTER FRAGMENT operations.

After all outstanding in-place alter operations have been completed on a table or fragment, the oncheck -pT command displays the total number of data pages in the
Count field for the current version of the table.

Related information:
 Resolve outstanding in-place alter operations

Part VI: Administering 1381

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Altering a column that is part of an index

If the altered column is part of an index, the table is still altered in place, but in this case the database server rebuilds the index or indexes implicitly. If you do not need to
rebuild the index, you should drop or disable it before you perform the alter operation. Taking these steps improves performance.

However, if the column that you modify is a primary key or foreign key and you want to keep this constraint, you must specify those keywords again in the ALTER TABLE
statement, and the database server rebuilds the index.

For example, suppose you create tables and alter the parent table with the following SQL statements:

CREATE TABLE parent
 (si SMALLINT PRIMARY KEY CONSTRAINT pkey);
CREATE TABLE child
 (si SMALLINT REFERENCES parent ON DELETE CASCADE
 CONSTRAINT ckey);
INSERT INTO parent (si) VALUES (1);
INSERT INTO parent (si) VALUES (2);
INSERT INTO child (si) VALUES (1);
INSERT INTO child (si) VALUES (2);
ALTER TABLE parent
 MODIFY (si INT PRIMARY KEY CONSTRAINT pkey);

This ALTER TABLE example converts a SMALLINT column to an INT column. The database server retains the primary key because the ALTER TABLE statement specifies
the PRIMARY KEY keywords and the pkey constraint. When you specify a PRIMARY KEY constraint in the MODIFY clause, the database server also silently creates a NOT
NULL constraint on the same primary key column. However, the database server drops any referential constraints to that primary key. Therefore, you must also specify the
following ALTER TABLE statement for the child table:

ALTER TABLE child
 MODIFY (si int references parent on delete cascade
 constraint ckey);

Even though the ALTER TABLE operation on a primary key or foreign key column rebuilds the index, the database server still takes advantage of the in-place alter
algorithm. The in-place alter algorithm can provide performance benefits, including the following:

It does not make a copy of the table in order to convert the table to the new definition.
It does not convert the data rows during the alter operation.
It does not rebuild all indexes on the table.

Warning: If you alter a table that is part of a view, you must re-create the view to obtain the latest definition of the table.

Copyright© 2020 HCL Technologies Limited

Fast alter

The database server uses the fast alter algorithm when the ALTER TABLE statement changes attributes of the table but does not affect the data.

The database server uses the fast alter algorithm when you use the ALTER TABLE statement to:

Change the next-extent size.
Add or drop a constraint.
Change the lock mode of the table.
Change the unique index attribute without modifying the column type.
Add shadow columns for row versioning with the ADD VERCOLS keywords.

With the fast alter algorithm, the database server holds the lock on the table for just a short time. In some cases, the database server locks the system catalog tables only
to change the attribute. In either case, the table is unavailable for queries for only a short time.

Copyright© 2020 HCL Technologies Limited

Denormalize the data model to improve performance

You might need to denormalize the data model to reduce overhead and optimize performance.

The entity-relationship data model, which the IBM® Informix® Guide to SQL: Tutorial describes, produces tables that contain no redundant or derived data. According to the
tenets of relational database theory, these tables are well structured.

Sometimes, to meet extraordinary demands for high performance, you might need to denormalize the data model by modifying it in ways that are undesirable from a
theoretical standpoint. This section describes some modifications and their associated costs.

Shortening rows
 Usually, tables with shorter rows yield better performance than those with longer rows because disk I/O is performed in pages, not in rows. The shorter the rows of

a table, the more rows occur on a page. The more rows per page, the fewer I/O operations it takes to read the table sequentially, and the more likely it is that a
nonsequential access can be performed from a buffer.
Expelling long strings

 The most bulky attributes are often character strings. To make the rows shorter, you can remove long strings from the entity table.

1382 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Splitting wide tables
Consider all the attributes of an entity that has rows that are too wide for good performance. Look for some theme or principle to divide them into two groups. Then
split the table into two tables, a primary table and a companion table, repeating the primary key in each one.
Redundant data
Normalized tables contain no redundant data. Every attribute appears in only one table.

Copyright© 2020 HCL Technologies Limited

Shortening rows

Usually, tables with shorter rows yield better performance than those with longer rows because disk I/O is performed in pages, not in rows. The shorter the rows of a table,
the more rows occur on a page. The more rows per page, the fewer I/O operations it takes to read the table sequentially, and the more likely it is that a nonsequential
access can be performed from a buffer.

The entity-relationship data model puts all the attributes of one entity into a single table for that entity. For some entities, this strategy can produce rows of awkward
lengths.

To shorten the rows, you can break columns into separate tables that are associated by duplicate key values in each table. As the rows get shorter, query performance
should improve.

Copyright© 2020 HCL Technologies Limited

Expelling long strings

The most bulky attributes are often character strings. To make the rows shorter, you can remove long strings from the entity table.

You can use the following methods to expel long strings:

Use VARCHAR columns.
Use TEXT data.
Move strings to a companion table.
Build a symbol table.

Convert CHAR columns into VARCHAR columns to shorten rows (GLS)
 A database might contain CHAR columns that you can convert to VARCHAR columns. You can use a VARCHAR column to shorten the average row length when the

average length of the text string in the CHAR column is at least 2 bytes shorter than the width of the column.
Convert a long string to a TEXT data type column

 When a string fills half a disk page or more, consider converting it to a TEXT data type column in a separate blobspace.
Move strings to a companion table

 Strings that are less than half a page waste disk space if you treat them as TEXT data, but you can move them from the main table to a companion table.
Build a symbol table

 If a column contains strings that are not unique in each row, you can move those strings to a table in which only unique copies are stored.

Copyright© 2020 HCL Technologies Limited

Convert CHAR columns into VARCHAR columns to shorten rows (GLS)

A database might contain CHAR columns that you can convert to VARCHAR columns. You can use a VARCHAR column to shorten the average row length when the average
length of the text string in the CHAR column is at least 2 bytes shorter than the width of the column.

VARCHAR data is immediately compatible with most existing programs, forms, and reports. You might need to recompile any forms produced by application development
tools to recognize VARCHAR columns. Always test forms and reports on a sample database after you modify the table schema.

For information about other character data types, see the IBM® Informix® GLS User's Guide.

Copyright© 2020 HCL Technologies Limited

Convert a long string to a TEXT data type column

When a string fills half a disk page or more, consider converting it to a TEXT data type column in a separate blobspace.

The column within the row page is only 56 bytes long, which allows more rows on a page than when you include a long string. However, the TEXT data type is not
automatically compatible with existing programs. The application needed to fetch a TEXT value is a bit more complicated than the code for fetching a CHAR value into a
program.

Copyright© 2020 HCL Technologies Limited

Move strings to a companion table
Part VI: Administering 1383

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Strings that are less than half a page waste disk space if you treat them as TEXT data, but you can move them from the main table to a companion table.

If you split a table into two tables, the primary table and a companion table, repeat the primary key in each table.

Copyright© 2020 HCL Technologies Limited

Build a symbol table

If a column contains strings that are not unique in each row, you can move those strings to a table in which only unique copies are stored.

For example, the customer.city column contains city names. Some city names are repeated in the column, and most rows have some trailing blanks in the field. Using the
VARCHAR data type eliminates the blanks but not the duplication.

You can create a table named cities, as the following example shows:

CREATE TABLE cities (
 city_num SERIAL PRIMARY KEY,
 city_name VARCHAR(40) UNIQUE
)

You can change the definition of the customer table so that its city column becomes a foreign key that references the city_num column in the cities table.

To insert the city of the new customer into cities, you must change any program that inserts a new row into customer. The database server return code in the SQLCODE
field of the SQL Communications Area (SQLCA) can indicate that the insert failed because of a duplicate key. It is not a logical error; it simply means that an existing
customer is located in that city. For more information about the SQLCA, see the IBM® Informix® Guide to SQL: Tutorial.

Besides changing programs that insert data, you must also change all programs and stored queries that retrieve the city name. The programs and stored queries must use
a join to the new cities table in order to obtain their data. The extra complexity in programs that insert rows and the extra complexity in some queries is the result of giving
up theoretical correctness in the data model. Before you make the change, be sure that it returns a reasonable savings in disk space or execution time.

Copyright© 2020 HCL Technologies Limited

Splitting wide tables

Consider all the attributes of an entity that has rows that are too wide for good performance. Look for some theme or principle to divide them into two groups. Then split
the table into two tables, a primary table and a companion table, repeating the primary key in each one.

The shorter rows allow you to query or update each table quickly.

Division by Bulk
One principle on which you can divide an entity table is bulk. Move the bulky attributes, which are usually character strings, to the companion table. Keep the numeric and
other small attributes in the primary table. In the demonstration database, you can split the ship_instruct column from the orders table. You can call the companion table
orders_ship. It has two columns, a primary key that is a copy of orders.order_num and the original ship_instruct column.

Division by Frequency of Use
Another principle for division of an entity is frequency of use. If a few attributes are rarely queried, move them to a companion table. In the demonstration database, for
example, perhaps only one program queries the ship_instruct, ship_weight, and ship_charge columns. In that case, you can move them to a companion table.

Division by Frequency of Update
Updates take longer than queries, and updating programs lock index pages and rows of data during the update process, preventing querying programs from accessing the
tables. If you can separate one table into two companion tables, one with the most-updated entities and the other with the most-queried entities, you can often improve
overall response time.

Performance Costs of Splitting Tables
Splitting a table uses extra disk space and adds complexity. Two copies of the primary key occur for each row, one copy in each table. Two primary-key indexes also exist.
You can use the methods described in earlier sections to estimate the number of added pages.

You must modify existing programs, reports, and forms that use SELECT * because fewer columns are returned. Programs, reports, and forms that use attributes from both
tables must perform a join to bring the tables together.

In this case, when you insert or delete a row, two tables are altered instead of one. If you do not coordinate the alteration of the two tables (by making them within a single
transaction, for example), you lose semantic integrity.

Copyright© 2020 HCL Technologies Limited

Redundant data

Normalized tables contain no redundant data. Every attribute appears in only one table.

1384 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Normalized tables also contain no derived data. Instead, data that can be computed from existing attributes is selected as an expression based on those attributes.

Normalizing tables minimizes the amount of disk space used and makes updating the tables as easy as possible. However, normalized tables can force you to use joins
and aggregate functions often, and those processes can be time consuming.

As an alternative, you can introduce new columns that contain redundant data, provided you understand the trade-offs involved.

Adding redundant data
 A correct data model avoids redundancy by keeping any attribute only in the table for the entity that it describes. If the attribute data is needed in a different

context, you join tables to make the connection. But joining takes time. If a frequently used join affects performance, you can eliminate it by duplicating the joined
data in another table.

Copyright© 2020 HCL Technologies Limited

Adding redundant data

A correct data model avoids redundancy by keeping any attribute only in the table for the entity that it describes. If the attribute data is needed in a different context, you
join tables to make the connection. But joining takes time. If a frequently used join affects performance, you can eliminate it by duplicating the joined data in another
table.

In the stores_demo database, the manufact table contains the names of manufacturers and their delivery times. An actual working database might contain many other
attributes of a supplier, such as address and sales representative name.

The contents of manufact are primarily a supplement to the stock table. Suppose that a time-critical application frequently refers to the delivery lead time of a particular
product but to no other column of manufact. For each such reference, the database server must read two or three pages of data to perform the lookup.

You can add a new column, lead_time, to the stock table and fill it with copies of the lead_time column from the corresponding rows of manufact. That arrangement
eliminates the lookup and therefore speeds up the application.

Like derived data, redundant data takes space and poses an integrity risk. In the example described in the previous paragraph, many extra copies of the lead time for each
manufacturer can exist. (Each manufacturer can appear in stock many times.) The programs that insert or update a row of manufact must also update multiple rows of
stock.

The integrity risk is simply that the redundant copies of the data might not be accurate. If a lead time is changed in manufact, the stock column is outdated until it is also
updated. As you do with derived data, define the conditions under which redundant data might be wrong.

For more information about database design, see the IBM® Informix® Database Design and Implementation Guide.

Copyright© 2020 HCL Technologies Limited

Reduce disk space in tables with variable length rows

You can enable the database server to insert more rows per page into tables with variable-length rows, if you set the MAX_FILL_DATA_PAGES configuration parameter to
1. Allowing more variable length rows per page has advantages and disadvantages.

Potential advantages of allowing more variable length rows per page are:

Reducing the disk space required to store data
Enabling the server to use the buffer pool more efficiently
Reducing table scan times

Possible disadvantages of using the MAX_FILL_DATA_PAGES allowing more variable length rows per page are:

The server might store rows in a different physical order.
As the page fills, updates made to the variable-length columns in a row could cause the row to expand so it no longer completely fits on the page. This causes the
server to split the row onto two pages, increasing the access time for the row.

If the MAX_FILL_DATA_PAGES configuration parameter is enabled, the server will add a new row to a recently modified page with existing rows if adding the row leaves at
least 10 percent of the page free for future expansion of all the rows in the page. If the MAX_FILL_DATA_PAGES configuration parameter is not enabled, the server will
add the row only if there is sufficient room on the page to allow the new row to grow to its maximum length.

If you enable the MAX_FILL_DATA_PAGES configuration parameter and you want this to affect existing variable length rows, the existing tables must be reloaded.

Copyright© 2020 HCL Technologies Limited

Reduce disk space by compressing tables and fragments

You can reduce disk space by compressing data in tables and table fragments. After compressing data, you can repack the data to consolidate the free space in a table or
fragment, and shrink the space for the data to return the free space to the dbspace.

Compression is advantageous for applications with a lot of I/O activity and for applications in which the reduction of disk space usage is critical. However, if your
applications run with high buffer cache hit ratios and high performance is more important than space usage, you might not want to compress data, because compression
might slightly decrease performance.

Compressing data, consolidating data, and returning free space have the following benefits:

Part VI: Administering 1385

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Significant savings in disk storage space
Reduced disk usage for compressed fragments
Significant saving of logical log usage, which saves additional space and can prevent bottlenecks for high-throughput OLTP after the compression operation is
completed.
Fewer page reads, because more rows can fit on a page
Smaller buffer pools, because more data fits in the same size pool
Reduced I/O activity, because:

More compressed rows than uncompressed rows fit on a page
Log records for insert, update, and delete operations of compressed rows are smaller

Ability to compress older fragments of time-fragmented data that are not often accessed, while leaving more recent data that is frequently accessed in
uncompressed form
Ability to free space no longer needed for a table
Faster backup and restore

Because compressed data covers fewer pages and has more rows per page than uncompressed data, the query optimizer might choose different plans after compression.

You can speed up compression and repacking by running the operations in parallel.

Related information:
 Compression

table or fragment arguments: Compress data and optimize storage (SQL administration API)

Copyright© 2020 HCL Technologies Limited

Boosted Partition Free Space Caches (PFSC)

When MAX_FILL_DATA_PAGES is set, a small cache is automatically created in memory for each table with variable-length rows. The purpose of this "lite" PFSC is to track
exactly how much free space exists on up to 32 pages from which rows have recently been deleted. This information can be searched very quickly when inserting a row. If
a spot for the new row is found on a page being tracked by the cache, the row is inserted on that page. If not, the table's bitmaps will have to be consulted, which may be
less efficient in some cases.

A boosted PFSC is a cache that tracks all free space in the table or fragment. All inserts to this table use this larger cache in lieu of the bitmaps. This feature can
significantly improve insert performance, though additional memory is required.

Consider creating a boosted PFSC for a table under the following conditions:

MAX_FILL_DATA_PAGES = 1
The table is either compressed or its schema contains variable-length columns
The table is relatively large
The table is relatively volatile, with deletes affecting rows of all ages

Copyright© 2020 HCL Technologies Limited

Indexes and index performance considerations

Informix® provides several types of indexes. Some performance issues are associated with indexes.

Types of indexes
 Informix uses B-tree indexes, R-tree indexes, functional indexes, and indexes that DataBlade modules provide for user-defined data. The server also uses forest of

trees (FOT) indexes, which are alternatives to B-tree indexes.
Estimating index pages

 The index pages associated with a table can add significantly to the size of a dbspace.
Managing indexes

 An index on the appropriate column can save thousands, tens of thousands, or in extreme cases, even millions of disk operations during a query. However, indexes
entail costs.
Improve query performance with a forest of trees index

 A forest of trees index is an alternate indexing method that alleviates the performance bottlenecks and root node contention that can occur when many concurrent
users access a traditional B-tree index.
Creating and dropping an index in an online environment

 You can use the CREATE INDEX ONLINE and DROP INDEX ONLINE statements to create and drop an index in an online environment, when the database and its
associated tables are continuously available.
Improving performance for index builds

 You can improve performance for index builds by adjusting the PDQ priority and by allocating enough memory and temporary space for the entire index.
Storing multiple index fragments in a single dbspace

 You can store multiple fragments of the same index in a single dbspace, reducing the total number of dbspaces needed for a fragmented table. You must specify a
name for each fragment that you want to store in the same dbspace. Storing multiple index fragments in a single dbspace simplifies the management of dbspaces.
Improving performance for index checks

 The oncheck utility provides better concurrency for tables that use row locking. When a table uses page locking, oncheck places a shared lock on the table when it
performs index checks. Shared locks do not allow other users to perform updates, inserts, or deletes on the table while oncheck checks or prints the index
information.
Indexes on user-defined data types

 You can define your own data types and the functions that operate on these data types. You can define indexes on some kinds of user-defined data types.

Copyright© 2020 HCL Technologies Limited

1386 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Types of indexes

Informix® uses B-tree indexes, R-tree indexes, functional indexes, and indexes that DataBlade modules provide for user-defined data. The server also uses forest of trees
(FOT) indexes, which are alternatives to B-tree indexes.

B-tree indexes
 Informix uses a B-tree index for columns that contain built-in data types (referred to as a traditional B-tree index), columns that contain one-dimensional user-

defined data types (referred to as a generic B-tree index), and values that a user-defined data type returns.
Forest of trees indexes

 A forest of trees index is like a B-tree index, but it has multiple root nodes and potentially fewer levels. Multiple root nodes can alleviate root node contention,
because more concurrent users can access the index. A forest of trees index can also improve the performance of a query by reducing the number of levels involved
in buffer read operations.
R-tree indexes

 Informix uses an R-tree index for spatial data (such as two-dimensional or three-dimensional data).
Indexes that DataBlade modules provide

 DataBlade modules can contain user-defined data types. A DataBlade module can also provide a user-defined index for the new data type.

Related concepts:
 Estimating index pages

Managing indexes
Creating and dropping an index in an online environment
Storing multiple index fragments in a single dbspace
Improving performance for index checks
Indexes on user-defined data types
What is a functional index?
Related tasks:

 Improve query performance with a forest of trees index
Improving performance for index builds

Copyright© 2020 HCL Technologies Limited

B-tree indexes

Informix® uses a B-tree index for columns that contain built-in data types (referred to as a traditional B-tree index), columns that contain one-dimensional user-defined
data types (referred to as a generic B-tree index), and values that a user-defined data type returns.

Built-in data types include character, datetime, integer, float, and so forth. For more information about built-in data types, see IBM® Informix Guide to SQL: Reference.

User-defined data types include opaque and distinct data types. For more information about user-defined data types, see IBM Informix User-Defined Routines and Data
Types Developer's Guide.

The return value of a user-defined function can be a built-in or user-defined data type, but not a simple large object (TEXT or BYTE data type) or a smart large object (BLOB
or CLOB data type). For more information about how to use functional indexes, see Using a functional index.

For information about how to estimate B-tree index size, see Estimating index pages.

Structure of conventional index pages
 A conventional index is arranged as a hierarchy of pages (technically, a B-tree).

Related concepts:
 Forest of trees indexes

R-tree indexes
Indexes that DataBlade modules provide

Copyright© 2020 HCL Technologies Limited

Structure of conventional index pages

A conventional index is arranged as a hierarchy of pages (technically, a B-tree).

The following figure shows the B-tree structure of an index. The topmost level of the hierarchy contains a single root page. Intermediate levels, when needed, contain
branch pages. Each branch page contains entries that see a subset of pages in the next level of the index. The bottom level of the index contains a set of leaf pages. Each
leaf page contains a list of index entries that see rows in the table.

Figure 1. B-tree structure of an index

Part VI: Administering 1387

https://www.hcltech.com/
https://www.hcltech.com/

The number of levels needed to hold an index depends on the number of unique keys in the index and the number of index entries that each page can hold. The number of
entries per page depends, in turn, on the size of the columns being indexed.

If the index page for a given table can hold 100 keys, a table of up to 100 rows requires a single index level: the root page. When this table grows beyond 100 rows, to a
size between 101 and 10,000 rows, it requires a two-level index: a root page and between 2 and 100 leaf pages. When the table grows beyond 10,000 rows, to a size
between 10,001 and 1,000,000 rows, it requires a three-level index: the root page, a set of 100 branch pages, and a set of up to 10,000 leaf pages.

Index entries contained within leaf pages are sorted in key-value order. An index entry consists of a key and one or more row pointers. The key is a copy of the indexed
columns from one row of data. A row pointer provides an address used to locate a row that contains the key. A unique index contains one index entry for every row in the
table.

For information about special indexes for Informix®, see Indexes on user-defined data types.

Related concepts:
 Forest of trees indexes

Copyright© 2020 HCL Technologies Limited

Forest of trees indexes

A forest of trees index is like a B-tree index, but it has multiple root nodes and potentially fewer levels. Multiple root nodes can alleviate root node contention, because
more concurrent users can access the index. A forest of trees index can also improve the performance of a query by reducing the number of levels involved in buffer read
operations.

You can create a forest of trees index as an alternative to a B-Tree index, but not as an alternative to an R-Tree index or other types of indexes.

Unlike a traditional B-tree index, which contains one root node, a forest of trees index is a large B-Tree index that is divided into smaller subtrees (which you can think of
as buckets). These subtrees contain multiple root nodes and leaves. The following figure shows the structure of a forest of trees index.

Figure 1. Structure of a forest of trees index

Informix® stores and retrieves an item from a subtree by:

1. Computing a hash value from the columns that you selected when creating the index.
2. Mapping the hash value to a subtree for storage or retrieval of the row.

Forest of trees indexes are detached indexes. The server does not support forest of trees attached indexes.

You create a forest of trees index with the CREATE INDEX statement of SQL and the HASH ON clause.

You enable or disable forest of trees indexes with the SET INDEXES statement of SQL.

You can identify a forest of trees index by the FOT indicator in the Index Name field in SET EXPLAIN output.

You can look up the number of hashed columns and subtrees in a forest of trees index by viewing information in the sysindices table for the database containing tables
that have forest of trees indexes.

The server treats a forest of trees index the same way it treats a B-tree index. Therefore, in a logged database, you can control how the B-tree scanner threads remove
deletions from both forest of trees and B-tree indexes.

Restrictions: You cannot:

Create forest of trees indexes on columns with complex data types, UDTs, or functional columns.
Use the FILLFACTOR option of the CREATE INDEX statement when you create forest of trees indexes, because the indexes are built from top to bottom.
Create clustered forest of trees indexes.
Run the ALTER INDEX statement on forest of trees indexes.
Run the SET INDEXES statement on forest of trees indexes in a database of secondary servers within a cluster environment.
Use forest of trees indexes in queries that use aggregates, including minimum and maximum range values.
Perform range scans directly on the HASH ON columns of a forest of trees index.
However, you can perform range scans on columns that are not listed in the HASH ON column list. For range scans on columns listed in HASH ON column list, you
must create an additional B-tree index that contains the appropriate column list for the range scan. This additional B-tree index might have the same column list as
the forest of trees index, plus or minus a column.

Use a forest of trees index for an OR index path. The database server does not use forest of trees indexes for queries that have an OR predicate on the indexed
columns.

Related concepts:
 B-tree indexes

R-tree indexes
Indexes that DataBlade modules provide
Structure of conventional index pages
Related tasks:

 Improve query performance with a forest of trees index
Detecting root node contention
Creating a forest of trees index

1388 Part VI: Administering

https://www.hcltech.com/

Disabling and enabling a forest of trees index
Determining if you are using a forest of trees index
Related information:
CREATE INDEX statement
HASH ON clause

Copyright© 2020 HCL Technologies Limited

R-tree indexes

Informix® uses an R-tree index for spatial data (such as two-dimensional or three-dimensional data).

For information about sizing an R-tree index, see the IBM® Informix R-Tree Index User's Guide.

Related concepts:
 B-tree indexes

Forest of trees indexes
Indexes that DataBlade modules provide

Copyright© 2020 HCL Technologies Limited

Indexes that DataBlade modules provide

DataBlade modules can contain user-defined data types. A DataBlade module can also provide a user-defined index for the new data type.

For example, the Excalibur Text Search DataBlade provides an index to search text data. For more information, see the Informix® Excalibur Text Search DataBlade.

For more information about the types of data and functions that each DataBlade module provides, see the user guide of each DataBlade module. For information about
how to determine the types of indexes available in your database, see Identifying the available access methods.

Related concepts:
 B-tree indexes

Forest of trees indexes
R-tree indexes

Copyright© 2020 HCL Technologies Limited

Estimating index pages

The index pages associated with a table can add significantly to the size of a dbspace.

By default, the database server creates the index in the same dbspace as the table, but in a separate tblspace from the table. To place the index in a separate dbspace,
specify the IN keyword in the CREATE INDEX statement.

Although you cannot explicitly specify the extent size of an index, you can estimate the number of pages that an index might occupy to determine if your dbspace or
dbspaces have enough space allocated.

Index extent sizes
 The database server determines the extent size of an index based on the extent size for the corresponding table, regardless of whether the index is fragmented or

not fragmented.
Estimating conventional index pages

 You can estimate the size of index pages, using a series of formulas.

Related concepts:
 Types of indexes

Managing indexes
Creating and dropping an index in an online environment
Storing multiple index fragments in a single dbspace
Improving performance for index checks
Indexes on user-defined data types
Related tasks:

 Improve query performance with a forest of trees index
Improving performance for index builds

Copyright© 2020 HCL Technologies Limited

Index extent sizes

The database server determines the extent size of an index based on the extent size for the corresponding table, regardless of whether the index is fragmented or not
fragmented.

Part VI: Administering 1389

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Formula for estimating the extent size of an attached index
For an attached index, the database server uses the ratio of the index key size to the row size to assign an appropriate extent size for the index.
Formula for estimating the extent size of a detached index
For a detached index, the database server uses the ratio of the index key size plus some overhead bytes to the row size to assign an appropriate extent size for the
index.

Copyright© 2020 HCL Technologies Limited

Formula for estimating the extent size of an attached index

For an attached index, the database server uses the ratio of the index key size to the row size to assign an appropriate extent size for the index.

The following formula shows how the database server uses the ratio of the index key size to the row size:

Index extent size = (index_key_size /
table_row_size) *
 table_extent_size

In this formula:

index_key_size is the total widths of the indexed column or columns plus 5 for a key descriptor.
table_row_size is the sum of all the columns in the row.
table_extent_size is the value that you specify in the EXTENT SIZE keyword of the CREATE TABLE statement.

If the index is not unique, then the extent size is reduced by 20 percent.

The database server also uses this same ratio for the next-extent size for the index:

Index next extent size =
(index_key_size/table_row_size)*
 table_next_extent_size

Copyright© 2020 HCL Technologies Limited

Formula for estimating the extent size of a detached index

For a detached index, the database server uses the ratio of the index key size plus some overhead bytes to the row size to assign an appropriate extent size for the index.

The following formula shows how the database server uses the ratio of the index key size plus some overhead bytes to the row size:

Detached Index extent size = ((index_key_size +
9) / table_row_size) *
 table_extent_size

For example, suppose you have the following values:

index_key_size = 8 bytes
table_row_size = 33 bytes
table_extent_size = 150 * 2-kilobyte page

The above formula calculates the extent size as follows:

Detached Index extent size = ((8 + 9) /
33) * 150 * 2-kilobyte page
 = (17/33) * 300 kilobytes
 = 154 kilobytes

Important: For a non-unique index, the formula calculates an extent size that is reduced by 20 percent.

Copyright© 2020 HCL Technologies Limited

Estimating conventional index pages

You can estimate the size of index pages, using a series of formulas.

To estimate the number of index pages:

1. Add up the total widths of the indexed column or columns.
This value is referred to as colsize. Add 4 to colsize to obtain keysize, the actual size of a key in the index. For example, if colsize is 6, the value of keysize is 10.

2. Calculate the expected proportion of unique entries to the total number of rows.
The formulas in subsequent steps see this value as propunique.

If the index is unique or has few duplicate values, use 1 for propunique.

If a significant proportion of entries are duplicates, divide the number of unique index entries by the number of rows in the table to obtain a fractional value for
propunique. For example, if the number of rows in the table is 4,000,000 and the number of unique index entries is 1,000,000, the value of propunique is .25.

If the resulting value for propunique is less than .01, use .01 in the calculations that follow.

1390 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

3. Estimate the size of a typical index entry with one of the following formulas, depending on whether the table is fragmented or not:
a. For nonfragmented tables, use the following formula:

entrysize = (keysize * propunique) + 5 + 4

The value 5 represents the number of bytes for the row pointer in a nonfragmented table.

For nonunique indexes, the database server stores the row pointer for each row in the index node but stores the key value only once. The entrysize value
represents the average length of each index entry, even though some entries consist of only the row pointer.

For example, if propunique is .25, the average number of rows for each unique key value is 4. If keysize is 10, the value of entrysize is 11.5, calculated as (10 *
0.25) + 5 + 4 = 2.5 + 9 = 11.5. The following calculation shows the space required for all four rows:

space for four rows = 4 * 11.5 = 46

This space requirement is the same when you calculate it for the key value and add the four row pointers, as the following formula shows:

space for four rows = 10 + (4 * 9) = 46

b. For fragmented tables, use the following formula:

entrysize = (keysize * propunique) + 9 + 4

The value 9 represents the number of bytes for the row pointer in a fragmented table.

4. Estimate the number of entries per index page with the following formula:

pagents = trunc(pagefree/entrysize)

In this formula:

pagefree is the page size minus the page header (2020 for a 2-kilobyte page size).
entrysize is the size of a typical index entry, which you estimated in the previous step.

The trunc() function notation indicates that you should round down to the nearest integer value.

5. Estimate the number of leaf pages with the following formula:

leaves = ceiling(rows/pagents)

In this formula:

rows is the number of rows that you expect to be in the table.
pagents is the number of entries per index page, which you estimated in the previous step.

The ceiling() function notation indicates that you should round up to the nearest integer value.

6. Estimate the number of branch pages at the second level of the index with the following formula:

branches0 = ceiling(leaves/node_ents)

Calculate the value for node_ents with the following formula:

node_ents = trunc(pagefree / (keysize + 4) + 4)

In this formula:

pagefree is the page size minus the page header (2020 for a 2-kilobyte page size).
keysize is the colsize plus 4. You obtained this value in step 1.

In the formula, 4 represents the number of bytes for the leaf node pointer.

7. If the value of branches0 is greater than 1, more levels remain in the index.
To calculate the number of pages contained in the next level of the index, use the following formula:

branchesn+1 = ceiling(branchesn/node_ents)

In this formula:

branchesn is the number of branches for the last index level that you calculated.
branchesn+1 is the number of branches in the next level.
node_ents is the value that you calculated in step 6.

8. Repeat the calculation in step 7 for each level of the index until the value of branchesn+1 equals 1.
9. Add up the total number of pages for all branch levels calculated in steps 6 through 8. This sum is called branchtotal.

10. Use the following formula to calculate the number of pages in the compact index:

compactpages = (leaves + branchtotal)

11. If your database server instance uses a fill factor for indexes, the size of the index increases.
The default fill factor value is 90 percent. You can change the fill factor value for all indexes with the FILLFACTOR configuration parameter. You can also change the
fill factor for an individual index with the FILLFACTOR clause of the CREATE INDEX statement in SQL.

To incorporate the fill factor into your estimate for index pages, use the following formula:

indexpages = 100 * compactpages / FILLFACTOR

The preceding estimate is a guideline only. As rows are deleted and new ones are inserted, the number of index entries can vary within a page. This method for estimating
index pages yields a conservative (high) estimate for most indexes. For a more precise value, build a large test index with real data and check its size with the oncheck
utility.

Tip: A forest of trees index can be larger than a B-Tree index. When you estimate the size of a forest of trees index, the estimates apply to each subtree in the index. Then,
you must aggregate the buckets to calculate the total estimation.

Part VI: Administering 1391

Copyright© 2020 HCL Technologies Limited

Managing indexes

An index on the appropriate column can save thousands, tens of thousands, or in extreme cases, even millions of disk operations during a query. However, indexes entail
costs.

An index is necessary on any column or combination of columns that must be unique. However, as discussed in Queries and the query optimizer, the presence of an index
can also allow the query optimizer to speed up a query.

The optimizer can use an index in the following ways:

To replace repeated sequential scans of a table with nonsequential access
To avoid reading row data when processing expressions that name only indexed columns
To avoid a sort (including building a temporary table) when executing the GROUP BY and ORDER BY clauses

Space costs of indexes
 The first cost of an index is disk space. The presence of an index can add many pages to a dbspace; it is easy to have as many index pages as row pages in an

indexed table. Additionally, in an environment where multiple languages are used, indexes created for each language require additional disk space.
Time costs of indexes

 The second cost of an index is time whenever the table is modified.
Unclaimed index space

 A background thread, the B-tree scanner, identifies an index with the most unclaimed index space. Unclaimed index space degrades performance and causes extra
work for the server. When an index is chosen for scanning, the entire leaf of the index is scanned for deleted (dirty) items that were committed, but not yet removed
from the index. The B-tree scanner removes these items when necessary.
Indexes on columns

 You can create an index for one or more columns in a table. Indexes are required on columns that must be unique and are not specified as primary keys.
Nonunique indexes

 In some applications, most table updates can be confined to a single time period. You might be able to set up your system so that all updates are applied overnight
or on specified dates. Additionally, when updates are performed as a batch, you can drop all nonunique indexes while you make updates and then create new
indexes afterward. This strategy can improve performance.

Related concepts:
 Types of indexes

Estimating index pages
Creating and dropping an index in an online environment
Storing multiple index fragments in a single dbspace
Improving performance for index checks
Indexes on user-defined data types
Using a functional index
Related tasks:

 Improve query performance with a forest of trees index
Improving performance for index builds

Copyright© 2020 HCL Technologies Limited

Space costs of indexes

The first cost of an index is disk space. The presence of an index can add many pages to a dbspace; it is easy to have as many index pages as row pages in an indexed
table. Additionally, in an environment where multiple languages are used, indexes created for each language require additional disk space.

When you consider space costs, also consider whether increasing the page size of a standard or temporary dbspace is beneficial in your environment. If you want a longer
key length than is available for the default page size, you can increase the page size. If you increase the page size, the size must be an integral multiple of the default page
size, not greater than 16K bytes.

You might not want to increase the page size if your application contains small sized rows. Increasing the page size for an application that randomly accesses small rows
might decrease performance. In addition, a page lock on a larger page will lock more rows, reducing concurrency in some situations.

You can save disk space by compressing detached B-tree indexes, consolidating free space in the index, and returning the free space to the dbspace.

Related information:
 B-tree index compression

Copyright© 2020 HCL Technologies Limited

Time costs of indexes

The second cost of an index is time whenever the table is modified.

The following descriptions assume that approximately two pages must be read to locate an index entry. That is the case when the index consists of a root page, one level
of branch pages, and a set of leaf pages. The root page is assumed to be in a buffer already. The index for a very large table has at least two intermediate levels, so about
three pages are read when the database server references such an index.

Presumably, one index is used to locate a row being altered. The pages for that index might be found in page buffers in shared memory for the database server. However,
the pages for any other indexes that need altering must be read from disk.

1392 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Under these assumptions, index maintenance adds time to different kinds of modifications, as the following list shows:

When you delete a row from a table, the database server must delete its entries from all indexes.
The database server must look up the entry for the deleted row (two or three pages in) and rewrite the leaf page. The write operation to update the index is
performed in memory, and the leaf page is flushed when the least recently used (LRU) buffer that contains the modified page is cleaned. This operation requires two
or three page accesses to read the index pages if needed and one deferred page access to write the modified page.

When you insert a row, the database server must insert its entries in all indexes.
The database server must find a place in which to enter the inserted row within each index (two or three pages in) and rewrite (one deferred page out), for a total of
three or four immediate page accesses per index.

When you update a row, the database server must look up its entries in each index that applies to an altered column (two or three pages in).
The database server must rewrite the leaf page to eliminate the old entry (one deferred page out) and then locate the new column value in the same index (two or
three more pages in) and the row entered (one more deferred page out).

Insertions and deletions change the number of entries on a leaf page. Although virtually every pagents operation requires some additional work to deal with a leaf page
that has either filled or been emptied, if pagents is greater than 100, this additional work occurs less than 1 percent of the time. You can often disregard it when you
estimate the I/O impact.

In short, when a row is inserted or deleted at random, allow three to four added page I/O operations per index. When a row is updated, allow six to eight page I/O
operations for each index that applies to an altered column. If a transaction is rolled back, all this work must be undone. For this reason, rolling back a transaction can take
a long time.

Because the alteration of the row itself requires only two page I/O operations, index maintenance is clearly the most time-consuming part of data modification. For
information about one way to reduce this cost, see Clustering.

Copyright© 2020 HCL Technologies Limited

Unclaimed index space

A background thread, the B-tree scanner, identifies an index with the most unclaimed index space. Unclaimed index space degrades performance and causes extra work
for the server. When an index is chosen for scanning, the entire leaf of the index is scanned for deleted (dirty) items that were committed, but not yet removed from the
index. The B-tree scanner removes these items when necessary.

The B-tree scanner allows multiple threads.

Use the BTSCANNER configuration parameter to specify the number of B-tree scanner threads to start and the priority of the B-tree scanner threads when the database
server starts. For details, see the IBM® Informix® Administrator's Reference.

You can invoke the B-tree scanner from the command line.

Copyright© 2020 HCL Technologies Limited

Indexes on columns

You can create an index for one or more columns in a table. Indexes are required on columns that must be unique and are not specified as primary keys.

In addition, you must add an index on columns that:

Are used in joins that are not specified as foreign keys
Are frequently used in filter expressions
Are frequently used for ordering or grouping
Do not involve duplicate keys
Are amenable to clustered indexing

Filtered columns in large tables
 If a column is often used to filter the rows of a large table, consider placing an index on it. The optimizer can use the index to select the wanted columns and avoid a

sequential scan of the entire table.
Order-by and group-by columns

 You can place an index on the ordering column or columns of a table. The database server then uses the index that to sort the query results in the most efficient
manner.
Avoiding columns with duplicate keys

 Duplicate keys in indexes can cause performance problems. You can take steps to avoid these problems.
Clustering

 Clustering is a method for arranging the rows of a table so that their physical order on disk closely corresponds to the sequence of entries in the index.

Copyright© 2020 HCL Technologies Limited

Filtered columns in large tables

If a column is often used to filter the rows of a large table, consider placing an index on it. The optimizer can use the index to select the wanted columns and avoid a
sequential scan of the entire table.

Part VI: Administering 1393

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Suppose you have a table that contains a large mailing list. If you find that a postal-code column is often used to filter a subset of rows, consider putting an index on that
column.

This strategy yields a net savings of time only when the selectivity of the column is high; that is, when only a small fraction of rows holds any one indexed value.
Nonsequential access through an index takes several more disk I/O operations than sequential access does, so if a filter expression on the column passes more than a
fourth of the rows, the database server might as well read the table sequentially.

As a rule, indexing a filter column saves time in the following cases:

The column is used in filter expressions in many queries or in slow queries.
The column contains at least 100 unique values.
Most column values appear in fewer than 10 percent of the rows.

Copyright© 2020 HCL Technologies Limited

Order-by and group-by columns

You can place an index on the ordering column or columns of a table. The database server then uses the index that to sort the query results in the most efficient manner.

When a large quantity of rows must be ordered or grouped, the database server must put the rows in order. One way that the database server performs this task is to
select all the rows into a temporary table and sort the table. But, as explained in Queries and the query optimizer, if the ordering columns are indexed, the optimizer
sometimes reads the rows in sorted order through the index, thus avoiding a final sort.

Because the keys in an index are in sorted sequence, the index really represents the result of sorting the table. By placing an index on the ordering column or columns, you
can replace many sorts during queries with a single sort when the index is created.

Copyright© 2020 HCL Technologies Limited

Avoiding columns with duplicate keys

Duplicate keys in indexes can cause performance problems. You can take steps to avoid these problems.

When duplicate keys are permitted in an index, entries that match a given key value are grouped in lists. The database server uses these lists to locate rows that match a
requested key value. When the selectivity of the index column is high, these lists are generally short. But when only a few unique values occur, the lists become long and
can cross multiple leaf pages.

Placing an index on a column that has low selectivity (that is, a small number of distinct values relative to the number of rows) can reduce performance. In such cases, the
database server must not only search the entire set of rows that match the key value, but it must also lock all the affected data and index pages. This process can impede
the performance of other update requests as well.

To correct this problem, replace the index on the low-selectivity column with a composite index that has a higher selectivity. Use the low-selectivity column as the leading
column and a high-selectivity column as your second column in the index. The composite index limits the number of rows that the database server must search to locate
and apply an update.

You can use any second column to disperse the key values as long as its value does not change, or changes at the same time as the real key. The shorter the second
column the better, because its values are copied into the index and expand its size.

Copyright© 2020 HCL Technologies Limited

Clustering

Clustering is a method for arranging the rows of a table so that their physical order on disk closely corresponds to the sequence of entries in the index.

When you know that a table is ordered by a certain index, you can avoid sorting. You can also be sure that when the table is searched on that column, it is read effectively
in sequential order, instead of nonsequentially. These points are covered in Queries and the query optimizer.
Tip: For information about eliminating interleaved extents by altering an index to cluster, see Creating or altering an index to cluster.
In the stores_demo database, the orders table has an index, zip_ix, on the postal-code column. The following statement causes the database server to put the rows of
the customer table in descending order by postal code:

ALTER INDEX zip_ix TO CLUSTER

To cluster a table on a nonindexed column, you must create an index. The following statement reorders the orders table by order date:

CREATE CLUSTER INDEX o_date_ix ON orders (order_date ASC)

To reorder a table, the database server must copy the table. In the preceding example, the database server reads all the rows in the table and constructs an index. Then it
reads the index entries in sequence. For each entry, it reads the matching row of the table and copies it to a new table. The rows of the new table are in the desired
sequence. This new table replaces the old table.

Clustering is not preserved when you alter a table. When you insert new rows, they are stored physically at the end of the table, regardless of their contents. When you
update rows and change the value of the clustering column, the rows are written back into their original location in the table.

Clustering can be restored after the order of rows is disturbed by ongoing updates. The following statement reorders the table to restore data rows to the index sequence:

ALTER INDEX o_date_ix TO CLUSTER

1394 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Reclustering is usually quicker than the original clustering because reading out the rows of a nearly clustered table is similar in I/O impact to a sequential scan.

Clustering and reclustering take a lot of space and time. To avoid some clustering, build the table in the desired order initially.

Configuration parameters that affect the degree of clustering
 The clust field in the sysindexes or the sysindices table represents the degree of clustering of the index. The values of several configuration parameters affect the

clust field.

Related concepts:
 Reclaiming space in an empty extent with ALTER INDEX

Copyright© 2020 HCL Technologies Limited

Configuration parameters that affect the degree of clustering

The clust field in the sysindexes or the sysindices table represents the degree of clustering of the index. The values of several configuration parameters affect the clust
field.

The value of this field is affected by:

The size of the buffer pool as specified by the BUFFERPOOL configuration parameter
The DS_MAX_QUERIES configuration parameter, which specifies the maximum number of PDQ queries that can run concurrently

Each of these configuration parameters affects the amount of buffer space available for a single user session. Additional buffers can result in better clustering (a smaller
clust value in the sysindexes or sysindices tables).

You can create more buffers by performing one or both of the following tasks:

Increasing the size of the buffer pool by updating the value of the BUFFERPOOL configuration parameter
Decreasing the value of the DS_MAX_QUERIES configuration parameter

Related information:
 BUFFERPOOL configuration parameter

DS_MAX_QUERIES configuration parameter

Copyright© 2020 HCL Technologies Limited

Nonunique indexes

In some applications, most table updates can be confined to a single time period. You might be able to set up your system so that all updates are applied overnight or on
specified dates. Additionally, when updates are performed as a batch, you can drop all nonunique indexes while you make updates and then create new indexes
afterward. This strategy can improve performance.

Dropping nonunique indexes can have the following positive effects:

The updating program can run faster with fewer indexes to update. Often, the total time to drop the indexes, update without them, and re-create them is less than
the time to update with the indexes in place. (For a discussion of the time cost of updating indexes, see Time costs of indexes.)
Newly made indexes are more efficient. Frequent updates tend to dilute the index structure so that it contains many partly full leaf pages. This dilution reduces the
effectiveness of an index and wastes disk space.

As a time-saving measure, make sure that a batch-updating program calls for rows in the sequence that the primary-key index defines. That sequence causes the pages of
the primary-key index to be read in order and only one time each.

The presence of indexes also slows down the population of tables when you use the LOAD statement or the dbload utility. Loading a table that has no indexes is a quick
process (little more than a disk-to-disk sequential copy), but updating indexes adds a great deal of overhead.

To avoid this overhead, you can:

1. Drop the table (if it exists).
2. Create the table without specifying any unique constraints.
3. Load all rows into the table.
4. Alter the table to apply the unique constraints.
5. Create the nonunique indexes.

If you cannot guarantee that the loaded data satisfies all unique constraints, you must create unique indexes before you load the rows. It saves time if the rows are
presented in the correct sequence for at least one of the indexes. If you have a choice, make it the row with the largest key. This strategy minimizes the number of leaf
pages that must be read and written.

Copyright© 2020 HCL Technologies Limited

Improve query performance with a forest of trees index

A forest of trees index is an alternate indexing method that alleviates the performance bottlenecks and root node contention that can occur when many concurrent users
access a traditional B-tree index.

Part VI: Administering 1395

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

A forest of trees index differs from a B-tree index in that it has multiple root nodes and fewer levels. Multiple root nodes can alleviate root node contention, because more
concurrent users can access the index.

If you know that a particular table has a deep tree, you can improve performance by creating a forest of trees index with fewer levels in the tree. For example, suppose you
create an index where one of the columns is a 100 byte column containing character data. If you have a large number of rows in that table, the tree might contain six or
seven levels. If you create a forest of trees index instead of a B-tree index, you can create more than one tree with four levels, so that every index traversal goes only four
levels deep rather than seven levels deep.

Detecting root node contention
 You can analyze the output of the onstat -g spi command to identify the performance bottlenecks that a forest of trees index can alleviate.

Creating a forest of trees index
 You use the CREATE INDEX statement with the HASH ON clause to create a forest of trees index.

Disabling and enabling a forest of trees index
 You can use the INDEXES DISABLED option of the SET Database Object Mode statement of SQL to disable a forest of trees index, if you want the server to stop

updating the index and to stop using it during queries. After you are ready to put the index into production, you can use the INDEXES ENABLED option to re-enable
it.
Performing a range scan on a forest of trees index

 While you cannot perform range scans directly on the HASH ON columns of a forest of trees index, you can perform range scans on the columns that are not listed in
the HASH ON column list. To perform range scans on columns that are listed in HASH ON column list, you must create an additional B-tree index that contains the
appropriate column list for the range scan.
Determining if you are using a forest of trees index

 You can determine whether an index is a forest of trees index by viewing SET EXPLAIN output. A forest of trees index has FOT in the Index Name field of the output.
Finding the number of hashed columns and subtrees in a forest of trees index

 You can look up the number of hashed columns and subtrees in a forest of trees index by viewing information in the sysindices table for the database containing
tables that have forest of trees indexes.

Related concepts:
 Types of indexes

Estimating index pages
Managing indexes
Creating and dropping an index in an online environment
Storing multiple index fragments in a single dbspace
Improving performance for index checks
Indexes on user-defined data types
Forest of trees indexes
Related tasks:

 Improving performance for index builds

Copyright© 2020 HCL Technologies Limited

Detecting root node contention

You can analyze the output of the onstat -g spi command to identify the performance bottlenecks that a forest of trees index can alleviate.

To detect root node contention and determine whether you need a forest of trees index:

1. Run the onstat -g spi | sort -nr command to display information about spin locks with long spins.
The output of the onstat -g spi command shows spin locks with waits, which occur when threads are reading from or writing to an index concurrently and a
particular thread did not succeed in acquiring the lock on the first try.

2. Analyze the onstat -g spioutput. Look for loop and wait information in these columns:
Num Waits: The Total number of times a thread waited for the spin lock.
Num Loops: The total number of attempts before a thread successfully acquired the spin lock.
Avg Loop/Wait: The average number of attempts to acquire the spin lock, computed as Num Loops / Num Waits.

For example, the following output snippet shows spin locks with large numbers of waits and loops:

Spin locks with waits:
Num Waits Num Loops Avg Loop/Wait Name
332480 1568908 4.72 fast mutex, 3:bf[1234] 0x2d00008 0x1028a0d8000
39722 498769 12.56 mutex lock, name = log
20761 101831 4.90 fast mutex, 7:bf[62] 0x1300003 0x109da128000
14818 77680 5.24 mutex lock, name = MGM mutex
6523 34350 5.27 fast mutex, 3:bf[362] 0x20008e 0x10289a08000

3. Query sysmaster:systabnames with the hexadecimal representation of the part number shown in the onstat -g spi output. If the tabname represents an index
name, the index is a forest of trees candidate.
For example, run this query:

echo "select tabname, hex(partnum) from systabnames
 where hex(partnum) = '0x02d00008'" | dbaccess sysmaster -

tabname daily_market_idx
(expression) 0x02d00008

$ echo 'select tabname, hex(partnum) from systabnames'
 where hex(partnum) = 0x01300003 | dbaccess sysmaster -

tabname trade_history_idx
(expression) 0x01300003

$ echo 'select tabname, hex(partnum) from systabnames'
 where hex(partnum) = 0x0020008E | dbaccess sysmaster -

1396 Part VI: Administering

https://www.hcltech.com/

tabname trade_request_idx2
(expression) 0x0020008E

Related concepts:
 Forest of trees indexes

Related tasks:
 Creating a forest of trees index

Disabling and enabling a forest of trees index
Performing a range scan on a forest of trees index
Determining if you are using a forest of trees index
Finding the number of hashed columns and subtrees in a forest of trees index
Related information:

 onstat -g spi command: Print spin locks with long spins

Copyright© 2020 HCL Technologies Limited

Creating a forest of trees index

You use the CREATE INDEX statement with the HASH ON clause to create a forest of trees index.

Prerequisite: Determine whether you need a forest of trees index to reduce performance bottlenecks and contention or to reduce the number of levels in a traditional B-
Tree index.

To create a forest of trees index:

1. Choose the columns for the index and determine the number of subtrees to create.
2. Create the index by using the CREATE INDEX statement with the HASH ON clause:

For example, the following command creates a forest of trees index with 100 subtrees (buckets) on the C1 column:

CREATE INDEX fotidx ON tab(c1) hash on (c1) with 100 buckets

After you create a forest of trees index, it is enabled.

You can monitor onstat -g spi command output to verify that root node contention no longer occurs. If you identify performance bottlenecks that are caused by highly
contended spin locks, you can rebuild the forest of trees index with more buckets.

Related concepts:
 Forest of trees indexes

Related tasks:
 Detecting root node contention

Disabling and enabling a forest of trees index
Performing a range scan on a forest of trees index
Determining if you are using a forest of trees index
Finding the number of hashed columns and subtrees in a forest of trees index
Related information:

 CREATE INDEX statement
HASH ON clause

Copyright© 2020 HCL Technologies Limited

Disabling and enabling a forest of trees index

You can use the INDEXES DISABLED option of the SET Database Object Mode statement of SQL to disable a forest of trees index, if you want the server to stop updating
the index and to stop using it during queries. After you are ready to put the index into production, you can use the INDEXES ENABLED option to re-enable it.

To disable a forest of trees index:

Run the SET INDEXES DISABLED statement of SQL.
For example, for an index named fotidx, specify:

SET INDEXES fotidx DISABLED;

You can re-enable a disabled forest of trees index, for example, by specifying:

SET INDEXES fotidx ENABLED;

Related concepts:
 Forest of trees indexes

Related tasks:
 Detecting root node contention

Creating a forest of trees index
Performing a range scan on a forest of trees index
Determining if you are using a forest of trees index
Finding the number of hashed columns and subtrees in a forest of trees index

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1397

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Performing a range scan on a forest of trees index

While you cannot perform range scans directly on the HASH ON columns of a forest of trees index, you can perform range scans on the columns that are not listed in the
HASH ON column list. To perform range scans on columns that are listed in HASH ON column list, you must create an additional B-tree index that contains the appropriate
column list for the range scan.

To create indexes for range scans:

1. Create a forest of trees index with at least one column that is not hashed.
For example, specify:

CREATE INDEX idx1 on tab(c1,c2) HASH ON (c1) with 100 buckets;

You can perform a range scan directly on column c2, but not on column c1, which is listed in HASH ON column list.

2. For range scans on the columns listed in HASH ON column list, create an additional B-tree index that contains the appropriate column list for the range scan. This
additional B-tree index might have the same column list as the forest of trees index, plus or minus a column.
For example, specify:

CREATE INDEX idx2 on tab(c1, c2, c3);

Related tasks:
 Detecting root node contention

Creating a forest of trees index
Disabling and enabling a forest of trees index
Determining if you are using a forest of trees index
Finding the number of hashed columns and subtrees in a forest of trees index
Related information:

 CREATE INDEX statement
HASH ON clause

Copyright© 2020 HCL Technologies Limited

Determining if you are using a forest of trees index

You can determine whether an index is a forest of trees index by viewing SET EXPLAIN output. A forest of trees index has FOT in the Index Name field of the output.

In the following example of partial SET EXPLAIN output, informix.fot_idx is the name of a forest of trees index.

Estimated Cost: 1
Estimated # of Rows Returned: 1

 1) informix.t: INDEX PATH

 (1) Index Name: informix.fot_idx (FOT)
 Index Keys: c1 c2 (Serial, fragments: ALL)
 Lower Index Filter: informix.t.c1 = 1

Related concepts:
 Forest of trees indexes

Related tasks:
 Detecting root node contention

Creating a forest of trees index
Disabling and enabling a forest of trees index
Performing a range scan on a forest of trees index
Finding the number of hashed columns and subtrees in a forest of trees index

Copyright© 2020 HCL Technologies Limited

Finding the number of hashed columns and subtrees in a forest of trees index

You can look up the number of hashed columns and subtrees in a forest of trees index by viewing information in the sysindices table for the database containing tables
that have forest of trees indexes.

To view information about a forest of trees index:

1. Query the sysindices table for the index.
2. Go to the row containing the forest of trees index and view information in the nhashcols and nbuckets columns.

Related tasks:
 Detecting root node contention

Creating a forest of trees index
Disabling and enabling a forest of trees index
Performing a range scan on a forest of trees index
Determining if you are using a forest of trees index

Copyright© 2020 HCL Technologies Limited

1398 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Creating and dropping an index in an online environment

You can use the CREATE INDEX ONLINE and DROP INDEX ONLINE statements to create and drop an index in an online environment, when the database and its associated
tables are continuously available.

The CREATE INDEX ONLINE statement enables you to create an index without having an exclusive lock placed over the table during the duration of the index build. You
can use the CREATE INDEX ONLINE statement even when reads or updates are occurring on the table. This means index creation can begin immediately.

When you create an index online, the database server logs the operation with a flag, so data recovery and restore operations can recreate the index.

When you create an index online, you can use the ONLIDX_MAXMEM configuration parameter to limit the amount of memory that is allocated to the preimage log pool and
to the updator log pool in shared memory. You might want to do this if you plan to complete other operations on a table column while executing the CREATE INDEX
ONLINE statement on the column. For more information about this parameter, see Limiting memory allocation while creating indexes online.

The DROP INDEX ONLINE statement enables you to drop indexes even when Dirty Read is the transaction isolation level.

The advantages of creating indexes using the CREATE INDEX ONLINE statement are:

If a new index is needed to improve the performance of queries on a table, you can immediately create the index without a lock placed over the table.
The database server can create an index while a table is being updated.
The table is available for the duration of the index build.
The query optimizer can establish better query plans, since the optimizer can update statistics in unlocked tables.

The advantages of dropping indexes using the DROP INDEX ONLINE statement are:

You can drop an inefficient index without disturbing ongoing queries that are using that index.
After the index is flagged, the query optimizer will not use the index for new SELECT operations on tables.

If you initiate a DROP INDEX ONLINE statement for a table that is being updated, the operation does not occur until after the table update is completed. After you issue
the DROP INDEX ONLINE statement, no one can reference the index, but concurrent operations can use the index until the operations terminate. The database server
waits to drop the index until all users have finished accessing the index.

An example of creating an index in an online environment is:

CREATE INDEX idx_1 ON table1(col1) ONLINE

An example of dropping an index in an online environment is:

DROP INDEX idx_1 ONLINE

For more information about the CREATE INDEX ONLINE and DROP INDEX ONLINE statements, see the IBM® Informix Guide to SQL: Syntax.

When you cannot create or drop indexes online
 You cannot use the CREATE INDEX ONLINE and the DROP INDEX ONLINE statements under certain circumstances.

Creating attached indexes in an online environment
 You can create attached indexes using the CREATE INDEX ONLINE statement, but the statement only operates when Dirty Read is the transaction isolation level.

Limiting memory allocation while creating indexes online
 The ONLIDX_MAXMEM configuration parameter limits the amount of memory that is allocated to a single preimage pool and a single updator log pool.

Related concepts:
 Types of indexes

Estimating index pages
Managing indexes
Storing multiple index fragments in a single dbspace
Improving performance for index checks
Indexes on user-defined data types
Related tasks:

 Improve query performance with a forest of trees index
Improving performance for index builds

Copyright© 2020 HCL Technologies Limited

When you cannot create or drop indexes online

You cannot use the CREATE INDEX ONLINE and the DROP INDEX ONLINE statements under certain circumstances.

You cannot use the CREATE INDEX ONLINE statement:

To create an index at the same time that a table is being altered
To create a clustered index
To create a Virtual-Index Interface (VII) /R-tree index
To create a functional index
To create an index that is partitioned by an interval fragmentation strategy
To create an index on a table that is partitioned by an interval fragmentation strategy

You cannot use the DROP INDEX ONLINE statement:

To drop a Virtual-Index Interface (VII) /R-tree index
To drop a clustered index

Part VI: Administering 1399

https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Creating attached indexes in an online environment

You can create attached indexes using the CREATE INDEX ONLINE statement, but the statement only operates when Dirty Read is the transaction isolation level.

The index creation takes an exclusive lock on the table and waits for all other concurrent processes scanning the table to quit using the index partitions before creating the
attached index. If the table is being read or updated, the CREATE INDEX ONLINE statement waits for the exclusive lock for the duration of the lock mode setting.

Copyright© 2020 HCL Technologies Limited

Limiting memory allocation while creating indexes online

The ONLIDX_MAXMEM configuration parameter limits the amount of memory that is allocated to a single preimage pool and a single updator log pool.

The preimage and updator log pools, pimage_<partnum> and ulog_<partnum>, are shared memory pools that are created when a CREATE INDEX ONLINE statement is
executed. The pools are freed when the execution of the statement is completed.

The default value of the ONLIDX_MAXMEM configuration parameter is 5120 kilobytes. The minimum value that you can specify is 16 kilobytes; the maximum value is
4294967295 kilobytes.

You can set the ONLIDX_MAXMEM configuration parameter before starting the database server, or you can change it dynamically through the onmode -wf and onmode -
wm commands.

Copyright© 2020 HCL Technologies Limited

Improving performance for index builds

You can improve performance for index builds by adjusting the PDQ priority and by allocating enough memory and temporary space for the entire index.

Whenever possible, the database server uses parallel processing to improve the response time of index builds. The number of parallel processes is based on the number
of fragments in the index and the value of the PSORT_NPROCS environment variable. The database server builds the index with parallel processing even when the value
of PDQ priority is 0.

You can often improve the performance of an index build by taking the following steps:

1. Set PDQ priority to a value greater than 0 to obtain more memory than the default 128 kilobytes.
When you set PDQ priority to greater than 0, the index build can take advantage of the additional memory for parallel processing.

To set PDQ priority, use either the PDQPRIORITY environment variable or the SET PDQPRIORITY statement in SQL.

2. Do not set the PSORT_NPROCS environment variable. If you have a computer with multiple CPUs, the database server uses two threads per sort when it sorts index
keys and PSORT_NPROCS is not set. The number of sorts depends on the number of fragments in the index, the number of keys, the key size, and the values of the
PDQ memory configuration parameters.

3. Allocate enough memory and temporary space to build the entire index.
a. Estimate the amount of virtual shared memory that the database server might need for sorting.

For more information, see Estimating memory needed for sorting.

b. Specify more memory with the DS_TOTAL_MEMORY and DS_MAX_QUERIES configuration parameters.
c. If not enough memory is available, estimate the amount of temporary space needed for an entire index build.

For more information, see Estimating temporary space for index builds.

d. Use the onspaces -t utility to create large temporary dbspaces and specify them in the DBSPACETEMP configuration parameter or the DBSPACETEMP
environment variable.
For information about how to optimize temporary dbspaces, see Configure dbspaces for temporary tables and sort files.

Estimating memory needed for sorting
 To calculate the amount of virtual shared memory that the database server might need for sorting, estimate the maximum number of sorts that might occur

concurrently and multiply that number by the average number of rows and the average row size.
Estimating temporary space for index builds

 You can estimate the number of bytes of temporary space needed for an entire index build.

Related concepts:
 Types of indexes

Estimating index pages
Managing indexes
Creating and dropping an index in an online environment
Storing multiple index fragments in a single dbspace
Improving performance for index checks
Indexes on user-defined data types
Related tasks:

 Improve query performance with a forest of trees index

Copyright© 2020 HCL Technologies Limited

1400 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Estimating memory needed for sorting

To calculate the amount of virtual shared memory that the database server might need for sorting, estimate the maximum number of sorts that might occur concurrently
and multiply that number by the average number of rows and the average row size.

For example, if you estimate that 30 sorts could occur concurrently, the average row size is 200 bytes, and the average number of rows in a table is 400, you can estimate
the amount of shared memory that the database server needs for sorting as follows:

30 sorts * 200 bytes * 400 rows = 2,400,000 bytes

You can use the DS_NONPDQ_QUERY_MEM configuration parameter to configure the amount sort memory available for non-PDQ queries.
Important: You can only use this parameter if the PDQ priority is set to zero. Its setting has no effect if the PDQ priority is greater than zero.
The minimum and default value of DS_NONPDQ_QUERY_MEM is 128 kilobytes. The maximum supported value is 25 percent of DS_TOTAL_MEMORY. For more
information, see Configuring memory for queries with hash joins, aggregates, and other memory-intensive elements.

If the PDQ priority is greater than 0, the maximum amount of shared memory that the database server allocates for a sort is controlled by the memory grant manager
(MGM). The MGM uses the settings of PDQ priority and the following configuration parameters to determine how much memory to grant for the sort:

DS_TOTAL_MEMORY
DS_MAX_QUERIES
MAX_PDQPRIORITY

For more information about allocating memory for parallel processing, see The allocation of resources for parallel database queries.

Copyright© 2020 HCL Technologies Limited

Estimating temporary space for index builds

You can estimate the number of bytes of temporary space needed for an entire index build.

To estimate the amount of temporary space needed for an index build, perform the following steps:

1. Add the total widths of the indexed columns or returned values from user-defined functions. This value is referred to as colsize.
2. Estimate the size of a typical item to sort with one of the following formulas, depending on whether the index is attached or not:

a. For a nonfragmented table and a fragmented table with an index created without an explicit fragmentation strategy, use the following formula:

sizeof_sort_item = keysize + 4

b. For fragmented tables with the index explicitly fragmented, use the following formula:

sizeof_sort_item =

keysize + 8

3. Estimate the number of bytes needed to sort with the following formula:

temp_bytes = 2 * (rows *
sizeof_sort_item)

This formula uses the factor 2 because everything is stored twice when intermediate sort runs use temporary space. Intermediate sort runs occur when not enough
memory exists to perform the entire sort in memory.

The value for rows is the total number of rows that you expect to be in the table.

Copyright© 2020 HCL Technologies Limited

Storing multiple index fragments in a single dbspace

You can store multiple fragments of the same index in a single dbspace, reducing the total number of dbspaces needed for a fragmented table. You must specify a name
for each fragment that you want to store in the same dbspace. Storing multiple index fragments in a single dbspace simplifies the management of dbspaces.

You can also use this feature to improve query performance over storing each fragment in a different dbspace when a dbspace is located on a faster device.

For more information, see information about managing partitions in the IBM® Informix Administrator's Guide.

Related concepts:
 Types of indexes

Estimating index pages
Managing indexes
Creating and dropping an index in an online environment
Improving performance for index checks
Indexes on user-defined data types
Related tasks:

 Improve query performance with a forest of trees index
Improving performance for index builds

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1401

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Improving performance for index checks

The oncheck utility provides better concurrency for tables that use row locking. When a table uses page locking, oncheck places a shared lock on the table when it
performs index checks. Shared locks do not allow other users to perform updates, inserts, or deletes on the table while oncheck checks or prints the index information.

If the table uses page locking, the database server returns the following message if you run oncheck without the -x option:

WARNING: index check requires a s-lock on stable whose
lock level is page.

For detailed information about oncheck locking, see the IBM® Informix Administrator's Reference.

The following summary describes locking performed during index checks:

By default, the database server does not place a shared lock on the table when you check an index with the oncheck -ci, -cI, -pk, -pK, -pl, or -pL options unless
the table uses page locking. When oncheck checks indexes for a table with page locking, it places a shared lock on the table, so no other users can perform
updates, inserts, or deletes until the check has completed.
By not placing a shared lock on tables using row locks during index checks, the oncheck utility cannot be as accurate in the index check. For absolute assurance of
a complete index check, execute oncheck with the -x option. With the -x option, oncheck places a shared lock on the table, and no other users can perform
updates, inserts, or deletes until the check completes.

You can query the systables system catalog table to see the current lock level of the table, as the following sample SQL statement shows:

SELECT locklevel FROM systables
 WHERE tabname = "customer"

If you do not see a value of R (for row) in the locklevel column, you can modify the lock level, as the following sample SQL statement shows:

ALTER TABLE tab1 LOCK MODE (ROW);

Row locking might add other side effects, such as an overall increase in lock usage. For more information about locking levels, see Locking.

Related concepts:
 Types of indexes

Estimating index pages
Managing indexes
Creating and dropping an index in an online environment
Storing multiple index fragments in a single dbspace
Indexes on user-defined data types
Related tasks:

 Improve query performance with a forest of trees index
Improving performance for index builds

Copyright© 2020 HCL Technologies Limited

Indexes on user-defined data types

You can define your own data types and the functions that operate on these data types. You can define indexes on some kinds of user-defined data types.

DataBlade modules also provide extended data types and functions to the database server.

You can define indexes on the following kinds of user-defined data types:

Opaque data types
An opaque data type is a fundamental data type that you can use to define columns in the same way you use built-in types. An opaque data type stores a single
value and cannot be divided into components by the database server. For information about creating opaque data types, see the CREATE OPAQUE TYPE statement
in the IBM® Informix Guide to SQL: Syntax and IBM Informix User-Defined Routines and Data Types Developer's Guide. For more information about the data types and
functions that each DataBlade module provides, see the user guide of each DataBlade module.

Distinct data types
A distinct data type has the same representation as an existing opaque or built-in data type but is different from these types. For information about distinct data
types, see the IBM Informix Guide to SQL: Reference and the CREATE DISTINCT TYPE statement in the IBM Informix Guide to SQL: Syntax.

For more information about data types, see the IBM Informix Guide to SQL: Reference.

Defining indexes for user-defined data types
 As with built-in data types, you might improve the response time for a query when you define indexes for new data types.

Using an index that a DataBlade module provides
 DataBlade modules can provide new data types that users can access. A DataBlade module can also provide a new index for the new data type.

Choosing operator classes for indexes
 For most situations, use the default operators that are defined for a secondary-access method. However, when you want to order the data in a different sequence or

provide index support for a user-defined data type, you must extend an operator class.

Related concepts:
 Types of indexes

Estimating index pages
Managing indexes
Creating and dropping an index in an online environment
Storing multiple index fragments in a single dbspace
Improving performance for index checks

1402 Part VI: Administering

https://www.hcltech.com/

Related tasks:
Improve query performance with a forest of trees index
Improving performance for index builds

Copyright© 2020 HCL Technologies Limited

Defining indexes for user-defined data types

As with built-in data types, you might improve the response time for a query when you define indexes for new data types.

The response time for a query might improve when Informix® uses an index for:

Columns used to join two tables
Columns that are filters for a query
Columns in an ORDER BY or GROUP BY clause
Results of functions that are filters for a query

For more information about when the query performance can improve with an index on a built-in data type, see Improve performance by adding or removing indexes.

Informix and DataBlade modules provide a variety of different types of indexes (also referred to as secondary-access methods). A secondary-access method is a set of
database server functions that build, access, and manipulate an index structure. These functions encapsulate index operations, such as how to scan, insert, delete, or
update nodes in an index.

To create an index on a user-defined data type, you can use any of the following secondary-access methods:

Generic B-tree index
A B-tree index is good for a query that retrieves a range of data values. For more information, see B-tree secondary-access method.

R-tree index
An R-tree index is good for searches on multidimensional data. For more information, see the IBM® Informix R-Tree Index User's Guide.

Secondary-access methods that a DataBlade module provides for a new data type
A DataBlade module that supports a certain type of data can also provide a new index for that new data type. For more information, see Using an index that a
DataBlade module provides.

You can create a functional index on the resulting values of a user-defined function on one or more columns. For more information, see Using a functional index.

After you choose the desired index type, you might also need to extend an operator class for the secondary-access method. For more information about how to extend
operator classes, see the IBM Informix User-Defined Routines and Data Types Developer's Guide.

B-tree secondary-access method
 Informix provides the generic B-tree index for columns in database tables. In traditional relational database systems, the B-tree access method handles only built-

in data types and therefore it can only compare two keys of built-in data types. The generic B-tree index is an extended version of a B-tree that Informix provides to
support user-defined data types.
Identifying the available access methods

 To supplement the built-in B-tree secondary-access method that Informix provides, your enterprise might have installed DataBlade modules that implement
additional secondary-access methods. If additional access methods exist, they are defined in the sysams system catalog table. You can query the sysams system
catalog to determine if additional access methods are available.
User-defined secondary-access methods

 If the concepts of less than, greater than, and equal do not apply to the data to be indexed, you might consider using a user-defined secondary-access method
instead of the built-in secondary-access method, which is a B-tree index. You can use a user-defined secondary-access method to access other indexing structures,
such as an R-tree index.
Using a functional index

 You can create a column index on the actual values in one or more columns. You can also create a functional index on the values of one or more columns that a
user-defined function returns from arguments.

Copyright© 2020 HCL Technologies Limited

B-tree secondary-access method

Informix® provides the generic B-tree index for columns in database tables. In traditional relational database systems, the B-tree access method handles only built-in data
types and therefore it can only compare two keys of built-in data types. The generic B-tree index is an extended version of a B-tree that Informix provides to support user-
defined data types.

Tip: For more information about the structure of a B-tree index and how to estimate the size of a B-tree index, see Estimating index pages.
Informix uses the generic B-tree as the built-in secondary-access method. This built-in secondary-access method is registered in the sysams system catalog table with
the name btree. When you use the CREATE INDEX statement (without the USING clause) to create an index, the database server creates a generic B-tree index. For more
information, see the CREATE INDEX statement in the IBM® Informix Guide to SQL: Syntax.
Tip: Informix also defines another secondary-access method, the R-tree index. For more information about how to use an R-tree index, see the IBM Informix R-Tree Index
User's Guide.

Uses for a B-tree index
 A B-tree index is good for a query that retrieves a range of data values. If the data to be indexed has a logical sequence to which the concepts of less than, greater

than, and equal apply, the generic B-tree index is a useful way to index your data.
Extending a generic B-tree index

 Initially, the generic B-tree can index data that is one of the built-in data types, and it orders the data in lexicographical sequence. However, you can extend a
generic B-tree for some other data types.

Part VI: Administering 1403

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Uses for a B-tree index

A B-tree index is good for a query that retrieves a range of data values. If the data to be indexed has a logical sequence to which the concepts of less than, greater than,
and equal apply, the generic B-tree index is a useful way to index your data.

Initially, the generic B-tree index supports the relational operators (<,<=,=,>=,>) on all built-in data types and orders the data in lexicographical sequence.

The optimizer considers whether to use the B-tree index to execute a query if you define a generic B-tree index on:

Columns used to join two tables
Columns that are filters for a query
Columns in an ORDER BY or GROUP BY clause
Results of functions that are filters for a query

Copyright© 2020 HCL Technologies Limited

Extending a generic B-tree index

Initially, the generic B-tree can index data that is one of the built-in data types, and it orders the data in lexicographical sequence. However, you can extend a generic B-
tree for some other data types.

You can extend a generic B-tree to support columns and functions on the following data types:

User-defined data types (opaque and distinct data types) that you want the B-tree index to support
In this case, you must extend the default operator class of the generic B-tree index.

Built-in data types that you want to order in a different sequence from the lexicographical sequence that the generic B-tree index uses
In this case, you must define a different operator class from the default generic B-tree index.

An operator class is the set of functions (operators) that are associated with a nontraditional B-tree index. For more details on operator classes, see Choosing operator
classes for indexes.

Copyright© 2020 HCL Technologies Limited

Identifying the available access methods

To supplement the built-in B-tree secondary-access method that Informix® provides, your enterprise might have installed DataBlade modules that implement additional
secondary-access methods. If additional access methods exist, they are defined in the sysams system catalog table. You can query the sysams system catalog to
determine if additional access methods are available.

To identify the secondary-access methods that are available for your database, query the sysams system catalog table with the following SELECT statement:

SELECT am_id, am_owner, am_name, am_type FROM sysams
 WHERE am_type = 'S';

An 'S' value in the am_type column identifies the access method as a secondary-access method. This query returns the following information:

The am_id and am_name columns identify the secondary-access method.
The am_owner column identifies the owner of the access method.

In an ANSI-compliant database, the access-method name must be unique within the name space of the user. The access-method name always begins with the owner in
the format am_owner.am_name.

By default, Informix provides the following definitions in the sysams system catalog table for two secondary-access methods, btree and rtree.

Access Method am_id Column am_name Column am_owner Column

Generic B-tree 1 btree 'informix'

R-tree 2 rtree 'informix'

Important: The sysams system catalog table does not contain a row for the built-in primary access method. This primary access method is internal to Informix and does
not require a definition in sysams. However, the built-in primary access method is always available for use.
If you find additional rows in the sysams system catalog table (rows with am_id values greater than 2), the database supports additional user-defined access methods.
Check the value in the am_type column to determine whether a user-defined access method is a primary- or secondary-access method.

For more information about the columns of the sysams system catalog table, see the IBM® Informix Guide to SQL: Reference. For information about how to determine the
operator classes that are available in your database, see Identifying the available operator classes.

Copyright© 2020 HCL Technologies Limited

User-defined secondary-access methods

1404 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

If the concepts of less than, greater than, and equal do not apply to the data to be indexed, you might consider using a user-defined secondary-access method instead of
the built-in secondary-access method, which is a B-tree index. You can use a user-defined secondary-access method to access other indexing structures, such as an R-
tree index.

If your database supports a user-defined secondary-access method, you can specify that the database server uses this access method when it accesses a particular
index. For information about how to determine the secondary-access methods that your database defines, see Identifying the available access methods.

To choose a user-defined secondary-access method, use the USING clause of the CREATE INDEX statement. The USING clause specifies the name of the secondary-
access method to use for the index you create. This name must be listed in the am_name column of the sysams system catalog table and must be a secondary-access
method (the am_type column of sysams is 'S').

The secondary-access method that you specify in the USING clause of CREATE INDEX must already be defined in the sysams system catalog. If the secondary-access
method has not yet been defined, the CREATE INDEX statement fails.

When you omit the USING clause from the CREATE INDEX statement, the database server uses B-tree indexes as the secondary-access method. For more information,
see the CREATE INDEX statement in the IBM® Informix Guide to SQL: Syntax.

R-tree indexes
 Informix supports the R-tree index for columns that contain spatial data such as maps and diagrams. An R-tree index uses a tree structure whose nodes store

pointers to lower-level nodes.

Copyright© 2020 HCL Technologies Limited

R-tree indexes

Informix® supports the R-tree index for columns that contain spatial data such as maps and diagrams. An R-tree index uses a tree structure whose nodes store pointers to
lower-level nodes.

At the leaves of the R-tree are a collection of data pages that store n-dimensional shapes. For more information about the structure of an R-tree index and how to estimate
the size of an R-tree index, see the IBM® Informix R-Tree Index User's Guide.

Copyright© 2020 HCL Technologies Limited

Using a functional index

You can create a column index on the actual values in one or more columns. You can also create a functional index on the values of one or more columns that a user-
defined function returns from arguments.

Important: The database server imposes the following restrictions on the user-defined routines (UDRs) on which a functional index is defined:

The arguments cannot be column values of a collection data type.
The function cannot return a large object (including built-in types BLOB, BYTE, CLOB, and TEXT).
The function cannot be a VARIANT function.
The function cannot include any DML statement of SQL.
The function must be a UDR, rather than a built-in function. However, you can create an SPL wrapper that calls and returns the value from a built-in function of SQL.

In addition, do not create functional indexes using any routine that calls the built-in DECRYPT_BINARY() or DECRYPT_CHAR() functions, which can display encrypted data
values in plain text. (Do not attempt to use data values in any encrypted column as an index key.)

To decide whether to use a column index or functional index, determine whether a column index is the right choice for the data that you want to index. An index on a
column of some data types might not be useful for typical queries. For example, the following query asks how many images are dark:

SELECT COUNT(*) FROM photos WHERE
darkness(picture) > 0.5

An index on the picture data itself does not improve the query performance. The concepts of less than, greater than, and equal are not particularly meaningful when
applied to an image data type. Instead, a functional index that uses the darkness() function can improve performance. You might also have a user-defined function that
runs frequently enough that performance improves when you create an index on its values.

What is a functional index?
 A functional index can be a B-tree index, an R-tree index, or a user-defined index type that a DataBlade module provides.

When is a functional index used?
 The optimizer considers whether to use a functional index to access the results of functions that are in a SELECT clause or are in the filters in the WHERE clause.

Creating a functional index
 You can build a functional index on a user-defined function. The user-defined function can be either an external function or an SPL function.

Related concepts:
 Managing indexes

Copyright© 2020 HCL Technologies Limited

What is a functional index?

A functional index can be a B-tree index, an R-tree index, or a user-defined index type that a DataBlade module provides.

Part VI: Administering 1405

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

When you create a functional index, the database server computes the values of the user-defined function and stores them as key values in the index. When a change in
the table data causes a change in one of the values of an index key, the database server automatically updates the functional index.

You can use a functional index for functions that return values of both user-defined data types (opaque and distinct) and built-in data types. However, you cannot define a
functional index if the function returns a simple-large-object data type (TEXT or BYTE).

For more information about the types of indexes, see Defining indexes for user-defined data types. For information about space requirements for functional indexes, see
Estimating index pages.

Related concepts:
 Types of indexes

Copyright© 2020 HCL Technologies Limited

When is a functional index used?

The optimizer considers whether to use a functional index to access the results of functions that are in a SELECT clause or are in the filters in the WHERE clause.

Copyright© 2020 HCL Technologies Limited

Creating a functional index

You can build a functional index on a user-defined function. The user-defined function can be either an external function or an SPL function.

To build a functional index on a user-defined function:

1. Write the code for the user-defined function if it is an external function.
2. Register the user-defined function in the database with the CREATE FUNCTION statement.
3. Build the functional index with the CREATE INDEX statement.

For example, to create a functional index on the darkness() function:

1. Write the code for the user-defined darkness() function that operates on the data type and returns a decimal value.
2. Register the user-defined function in the database with the CREATE FUNCTION statement:

CREATE FUNCTION darkness(im image)
RETURNS decimal
EXTERNAL NAME '/lib/image.so'
LANGUAGE C NOT VARIANT

In this example, you can use the default operator class for the functional index because the return value of the darkness() function is a built-in data type, DECIMAL.

3. Build the functional index with the CREATE INDEX statement.

CREATE TABLE photos
(
 name char(20),
 picture image
...
);
CREATE INDEX dark_ix ON photos (darkness(picture));

In this example, assume that the user-defined data type of image has already been defined in the database.

The optimizer can now consider the functional index when you specify the darkness() function as a filter in the query:

SELECT count(*) FROM photos WHERE
darkness(picture) > 0.5

You can also create a composite index with user-defined functions. For more information, see Use composite indexes.
Warning: Do not create a functional index using either the DECRYPT_BINARY() or the DECRYPT_CHAR() function. These functions store plain text data in the database,
defeating the purpose of encryption. For more information about encryption, see the IBM® Informix® Administrator's Guide.

Copyright© 2020 HCL Technologies Limited

Using an index that a DataBlade module provides

DataBlade modules can provide new data types that users can access. A DataBlade module can also provide a new index for the new data type.

For example, the Excalibur Text Search DataBlade module provides an index to search text data. For more information, see the Excalibur Text Search DataBlade Module
User's Guide.

For more information about the types of data and functions that each DataBlade module provides, see the user guide for the DataBlade module. For information about
how to determine the types of indexes available in your database, see Identifying the available access methods.

Copyright© 2020 HCL Technologies Limited

1406 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Choosing operator classes for indexes

For most situations, use the default operators that are defined for a secondary-access method. However, when you want to order the data in a different sequence or
provide index support for a user-defined data type, you must extend an operator class.

For more information about how to extend an operator class, see IBM® Informix® User-Defined Routines and Data Types Developer's Guide.

Operator classes
 An operator class is a set of function names that is associated with a secondary-access method. These functions allow the secondary-access method to store and

search for values of a particular data type.
Built-in B-tree operator class

 The built-in secondary-access method (the generic B-tree) has a default operator class called btree_ops, which is defined in the sysopclasses system catalog
table.
Identifying the available operator classes

 You can identify the operator classes that are available for your database by querying the sysopclasses system catalog table.
User-defined operator classes

 The CREATE INDEX statement specifies the operator class to use for each component of an index. If you do not specify an operator class, the CREATE INDEX
statement uses the default operator class for the secondary-access method that you create. You can use a user-defined operator class for components of an index.

Copyright© 2020 HCL Technologies Limited

Operator classes

An operator class is a set of function names that is associated with a secondary-access method. These functions allow the secondary-access method to store and search
for values of a particular data type.

The query optimizer for the database server uses an operator class to determine if an index can process the query with the least cost. An operator class indicates two
things to the query optimizer:

Which functions that appear in an SQL statement can be evaluated with a given index
These functions are called the strategy functions for the operator class.

Which functions the index uses to evaluate the strategy functions
These functions are called the support functions for the operator class.

With the information that the operator class provides, the query optimizer can determine whether a given index is applicable to the query. The query optimizer can
consider whether to use the index for the given query when the following conditions are true:

An index exists on the particular column or columns in the query.
For the index that exists, the operation on the column or columns in the query matches one of the strategy functions in the operator class associated with the index.

The query optimizer reviews the available indexes for the table or tables and matches the index keys with the column specified in the query filter. If the column in the filter
matches an index key, and the function in the filter is one of the strategy functions of the operator class, the optimizer includes the index when it determines which query
plan has the lowest execution cost. In this manner, the optimizer can determine which index can process the query with the least cost.

Informix® stores information about operator classes in the sysopclasses system catalog table.

Strategy and support functions of a secondary access method
 Informix uses the strategy functions of a secondary-access method to help the query optimizer determine whether a specific index is applicable to a specific

operation on a data type.
Default operator classes

 Each secondary-access method has a default operator class associated with it. By default, the CREATE INDEX statement associates the default operator class with
an index.

Copyright© 2020 HCL Technologies Limited

Strategy and support functions of a secondary access method

Informix® uses the strategy functions of a secondary-access method to help the query optimizer determine whether a specific index is applicable to a specific operation on
a data type.

If an index exists and the operator in the filter matches one of the strategy functions in the operator class, the optimizer considers whether to use the index for the query.

Informix uses the support functions of a secondary-access method to build and access the index. These functions are not called directly by end users. When an operator in
the query filter matches one of the strategy functions, the secondary-access method uses the support functions to traverse the index and obtain the results. Identification
of the actual support functions is left to the secondary-access method.

Copyright© 2020 HCL Technologies Limited

Default operator classes

Part VI: Administering 1407

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Each secondary-access method has a default operator class associated with it. By default, the CREATE INDEX statement associates the default operator class with an
index.

For example, the following CREATE INDEX statement creates a B-tree index on the postalcode column and automatically associates the default B-tree operator class with
this column:

CREATE INDEX postal_ix ON customer(postalcode)

For more information about how to specify a new default operator class for an index, see User-defined operator classes.

Copyright© 2020 HCL Technologies Limited

Built-in B-tree operator class

The built-in secondary-access method (the generic B-tree) has a default operator class called btree_ops, which is defined in the sysopclasses system catalog table.

By default, the CREATE INDEX statement associates the btree_ops operator class with it when you create a B-tree index. For example, the following CREATE INDEX
statement creates a generic B-tree index on the order_date column of the orders table and associates with this index the default operator class for the B-tree secondary-
access method:

CREATE INDEX orddate_ix ON orders (order_date)

Informix® uses the btree_ops operator class to specify:

The strategy functions to tell the query optimizer which filters in a query can use a B-tree index
The support function to build and search the B-tree index

B-tree strategy functions
 The btree_ops operator class defines the names of strategy functions for the btree access method.

B-tree support function
 The btree_ops operator class has one support function, a comparison function called compare(). The btree_ops operator class has one support function, a

comparison function called compare().

Copyright© 2020 HCL Technologies Limited

B-tree strategy functions

The btree_ops operator class defines the names of strategy functions for the btree access method.

The strategy functions that the btree_ops operator class defines are:

lessthan (<)
lessthanorequal (<=)
equal (=)
greaterthanorequal (>=)
greaterthan (>)

These strategy functions are all operator functions. That is, each function is associated with an operator symbol; in this case, with a relational-operator symbol. For more
information about relational-operator functions, see the IBM® Informix® User-Defined Routines and Data Types Developer's Guide.

When the query optimizer examines a query that contains a column, it checks to see if this column has a B-tree index defined on it. If such an index exists and if the query
contains one of the relational operators that the btree_ops operator class supports, the optimizer can choose a B-tree index to execute the query.

Copyright© 2020 HCL Technologies Limited

B-tree support function

The btree_ops operator class has one support function, a comparison function called compare(). The btree_ops operator class has one support function, a comparison
function called compare().

The compare() function is a user-defined function that returns an integer value to indicate whether its first argument is equal to, less than, or greater than its second
argument, as follows:

A value of 0 when the first argument is equal to the second argument
A value less than 0 when the first argument is less than the second argument
A value greater than 0 when the first argument is greater than the second argument

The B-tree secondary-access method uses the compare() function to traverse the nodes of the generic B-tree index. To search for data values in a generic B-tree index,
the secondary-access method uses the compare() function to compare the key value in the query to the key value in an index node. The result of the comparison
determines if the secondary-access method needs to search the next-lower level of the index or if the key resides in the current node.

The generic B-tree access method also uses the compare() function to perform the following tasks for generic B-tree indexes:

Sort the keys before the index is built
Determine the linear order of keys in a generic B-tree index
Evaluate the relational operators

1408 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Search for data values in an index

The database server uses the compare() function to evaluate comparisons in the SELECT statement. To provide support for these comparisons for opaque data types, you
must write the compare() function. For more information, see the IBM® Informix® User-Defined Routines and Data Types Developer's Guide.

The database server also uses the compare() function when it uses a B-tree index to process an ORDER BY clause in a SELECT statement. However, the optimizer does not
use the index to perform an ORDER BY operation if the index does not use the btree-ops operator class.

Copyright© 2020 HCL Technologies Limited

Identifying the available operator classes

You can identify the operator classes that are available for your database by querying the sysopclasses system catalog table.

The database server provides the default operator class for the built-in secondary-access method, the generic B-tree index. In addition, your environment might have
installed DataBlade modules that implement other operator classes. All operator classes are defined in the sysopclasses system catalog table.

To identify the operator classes that are available for your database, query the sysopclasses system catalog table with the following SELECT statement:

SELECT opclassid, opclassname, amid, am_name
FROM sysopclasses, sysams
WHERE sysopclasses.amid = sysams.am_id

This query returns the following information:

The opclassid and opclassname columns identify the operator class.
The am_id and am_name columns identify the associated secondary-access methods.

By default, the database server provides the following definitions in the sysopclasses system catalog table for two operator classes, btree_ops and rtree_ops.

Access Method opclassid Column opclassname
Column

amid Column am_name Column

Generic B-tree 1 btree_ops 1 btree

R-tree 2 rtree_ops 2 rtree

If you find additional rows in the sysopclasses system catalog table (rows with opclassid values greater than 2), your database supports user-defined operator classes.
Check the value in the amid column to determine the secondary-access methods to which the operator class belongs.

The am_defopclass column in the sysams system catalog table stores the operator-class identifier for the default operator class of a secondary-access method. To
determine the default operator class for a given secondary-access method, you can run the following query:

SELECT am_id, am_name, am_defopclass, opclass_name
FROM sysams, sysopclasses
WHERE sysams.am_defopclass = sysopclasses.opclassid

By default, the database server provides the following default operator classes.

Access Method am_id Column am_name Column am_defopclass Column opclass_name Column

Generic B-tree 1 btree 1 btree_ops

R-tree 2 rtree 2 rtree_ops

For more information about the columns of the sysopclasses and sysams system catalog tables, see the IBM® Informix Guide to SQL: Reference. For information about
how to determine the access methods that are available in your database, see Identifying the available access methods.

Copyright© 2020 HCL Technologies Limited

User-defined operator classes

The CREATE INDEX statement specifies the operator class to use for each component of an index. If you do not specify an operator class, the CREATE INDEX statement
uses the default operator class for the secondary-access method that you create. You can use a user-defined operator class for components of an index.

To specify a user-defined operator class for a particular component of an index, you can:

Use a user-defined operator class that your database already defines.
Use an R-tree operator class, if your database defined the R-tree secondary-access method. For more information about R-trees, see the IBM® Informix® R-Tree
Index User's Guide.

If your database supports multiple-operator classes for the secondary-access method that you want to use, you can specify which operator classes the database server is
to use for a particular index. For information on how to determine the operator classes that your database defines, see Identifying the available operator classes.

Each part of a composite index can specify a different operator class. You choose the operator classes when you create the index. In the CREATE INDEX statement, you
specify the name of the operator class to use after each column or function name in the index-key specification. Each name must be listed in the opclassname column of
the sysopclasses system catalog table and must be associated with the secondary-access method that the index uses.

For example, if your database defines the abs_btree_ops secondary-access method to define a new sort order, the following CREATE INDEX statement specifies that the
table1 table associates the abs_btree_ops operator class with the col1_ix B-tree index:

CREATE INDEX col1_ix ON table1(col1 abs_btree_ops)

Part VI: Administering 1409

https://www.hcltech.com/
https://www.hcltech.com/

The operator class that you specify in the CREATE INDEX statement must already be defined in the sysopclasses system catalog with the CREATE OPCLASS statement. If
the operator class has not yet been defined, the CREATE INDEX statement fails. For information about how to create an operator class, see IBM Informix User-Defined
Routines and Data Types Developer's Guide.

Copyright© 2020 HCL Technologies Limited

Locking

The database server uses locks, which can affect concurrency and performance. You can monitor and administer locks.

Locks
 A lock is a software mechanism that you can set to prevent others from using a resource. You can place a lock on a single row or key, a page of data or index keys, a

whole table, or an entire database.
Configuring the lock mode

 When you create a table, the default lock mode is page. You can change the lock mode (and thus increase or decrease concurrency) when you create or alter tables
or by setting the IFX_DEF_TABLE_LOCKMODE environment variable or the DEF_TABLE_LOCKMODE configuration parameter.
Setting the lock mode to wait

 When an application process encounters a lock, the default behavior of the database server is to return an error. Instead, you can run an SQL statement to set the
lock mode to wait. This specifies that an application process does not proceed until the lock is removed.
Locks with the SELECT statement

 The type and duration of locks that the database server places depend on the isolation level set in the application, the database mode (logging, nonlogging, or
ANSI,) and on whether the SELECT statement is within an update cursor. These locks can affect overall performance because they affect concurrency.
Locks placed with INSERT, UPDATE, and DELETE statements

 When you execute an INSERT, UPDATE, or DELETE statement, the database server uses exclusive locks. An exclusive lock means that no other users can update or
delete the item until the database server removes the lock.
The internal lock table

 The database server stores locks in an internal lock table. When the database server reads a row, it checks if the row or its associated page, table, or database is
listed in the lock table. If it is in the lock table, the database server must also check the lock type.
Monitoring locks

 You can analyze information about locks and monitor locks by viewing information in the internal lock table that contains stored locks.
Locks for smart large objects

 Smart large objects have several unique locking behaviors because their columns are typically much larger than other columns in a table.

Copyright© 2020 HCL Technologies Limited

Locks

A lock is a software mechanism that you can set to prevent others from using a resource. You can place a lock on a single row or key, a page of data or index keys, a whole
table, or an entire database.

Additional types of locks are available for smart large objects. For more information, see Locks for smart large objects.

The maximum number of rows or pages locked in a single transaction is controlled by the total number of locks configured. The number of tables in which those rows or
pages are locked is not explicitly controlled.

Locking granularity
 The level and type of information that the lock protects is called locking granularity. Locking granularity affects performance.

Row and key locks
 Row and key locks generally provide the best overall performance when you are updating a relatively small number of rows, because they increase concurrency.

However, the database server incurs some overhead in obtaining a lock. For an operation that changes a large number of rows, obtaining one lock per row might not
be cost effective.
Page locks

 Page locking is the default mode when you create a table without the LOCK MODE clause. With page locking, instead of locking only the row, the database server
locks the entire page that contains the row. If you update several rows on the same page, the database server uses only one lock for the page.
Table locks

 In a data warehouse environment, it might be more appropriate for queries to acquire locks of larger granularity. For example, if a query accesses most of the rows
in a table, its efficiency increases if it acquires a smaller number of table locks instead of many page or row locks.
Database locks

 You can place a lock on the entire database when you open the database with the DATABASE statement. A database lock prevents read or update access by anyone
but the current user.

Related concepts:
 Configuring the lock mode

Locks with the SELECT statement
Locks placed with INSERT, UPDATE, and DELETE statements
The internal lock table
Locks for smart large objects
Related tasks:

 Setting the lock mode to wait
Related reference:

 Monitoring locks

Copyright© 2020 HCL Technologies Limited

1410 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Locking granularity

The level and type of information that the lock protects is called locking granularity. Locking granularity affects performance.

When a user cannot access a row or key, the user can wait for another user to unlock the row or key. If a user locks an entire page, a higher probability exists that more
users will wait for a row in the page.

The ability of more than one user to access a set of rows is called concurrency. The goal of the database administrator is to increase concurrency to increase total
performance without sacrificing performance for an individual user.

Copyright© 2020 HCL Technologies Limited

Row and key locks

Row and key locks generally provide the best overall performance when you are updating a relatively small number of rows, because they increase concurrency. However,
the database server incurs some overhead in obtaining a lock. For an operation that changes a large number of rows, obtaining one lock per row might not be cost
effective.

For an operation that changes a large number of rows, consider Page locks.

The default locking mode is page-locking. If you want row or key locks, you must create the table with row locking on or alter the table.

The following example shows how to create a table with row locking on:

CREATE TABLE customer(customer_num serial, lname char(20)...)
 LOCK MODE ROW;

The ALTER TABLE statement can also change the lock mode.

When the lock mode is ROW and you insert or update a row, the database server creates a row lock. In some cases, you place a row lock by simply reading the row with a
SELECT statement.

When the lock mode is ROW and you insert, update, or delete a key (performed automatically when you insert, update, or delete a row), the database server creates a lock
on the key in the index.

Key-value locks
 When a user deletes a row within a transaction, the row cannot be locked because it does not exist. However, the database server must somehow record that a row

existed until the end of the transaction. The database server uses key-value locking to lock the deleted row.

Copyright© 2020 HCL Technologies Limited

Key-value locks

When a user deletes a row within a transaction, the row cannot be locked because it does not exist. However, the database server must somehow record that a row
existed until the end of the transaction. The database server uses key-value locking to lock the deleted row.

When the database server deletes a row, key values in the indexes for the table are not removed immediately. Instead, each key value is marked as deleted, and a lock is
placed on the key value.

Other users might encounter key values that are marked as deleted. The database server must determine whether a lock exists. If a lock exists, the delete has not been
committed, and the database server sends a lock error back to the application (or it waits for the lock to be released if the user executed SET LOCK MODE TO WAIT).

One of the most important uses for key-value locking is to assure that a unique key remains unique through the end of the transaction that deleted it. Without this
protection mechanism, user A might delete a unique key within a transaction, and user B might insert a row with the same key before the transaction commits. This
scenario makes rollback by user A impossible. Key-value locking prevents user B from inserting the row until the end of user A's transaction.

Copyright© 2020 HCL Technologies Limited

Page locks

Page locking is the default mode when you create a table without the LOCK MODE clause. With page locking, instead of locking only the row, the database server locks the
entire page that contains the row. If you update several rows on the same page, the database server uses only one lock for the page.

When you insert or update a row, the database server creates a page lock on the data page. In some cases, the database server creates a page lock when you simply read
the row with a SELECT statement.

When you insert, update, or delete a key (performed automatically when you insert, update, or delete a row), the database server creates a lock on the page that contains
the key in the index.
Important: A page lock on an index page can decrease concurrency more substantially than a page lock on a data page. Index pages are dense and hold a large number of
keys. By locking an index page, you make a potentially large number of keys unavailable to other users until you release the lock. Tables that use page locks cannot
support the USELASTCOMMITTED concurrency feature, which is described in the Committed Read isolation section.
Page locks are useful for tables in which the normal user changes a large number of rows at one time. For example, an orders table that holds orders that are commonly
inserted and queried individually is not a good candidate for page locking. But a table that holds old orders and is updated nightly with all of the orders placed during the

Part VI: Administering 1411

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

day might be a good candidate. In this case, the type of isolation level that you use to access the table is important. For more information, see Isolation level.

Copyright© 2020 HCL Technologies Limited

Table locks

In a data warehouse environment, it might be more appropriate for queries to acquire locks of larger granularity. For example, if a query accesses most of the rows in a
table, its efficiency increases if it acquires a smaller number of table locks instead of many page or row locks.

The database server can place two types of table locks:

Shared lock
No other users can write to the table.

Exclusive lock
No other users can read from or write to the table.

Another important distinction between these two types of table locks is the actual number of locks placed:

In shared mode, the database server places one shared lock on the table, which informs other users that no updates can be performed. In addition, the database
server adds locks for every row updated, deleted, or inserted.
In exclusive mode, the database server places only one exclusive lock on the table, no matter how many rows it updates. If you update most of the rows in the
table, place an exclusive lock on the table.

Important: A table lock on a table can decrease update concurrency radically. Only one update transaction can access that table at any given time, and that update
transaction locks out all other transactions. However, multiple read-only transactions can simultaneously access the table. This behavior is useful in a data warehouse
environment where the data is loaded and then queried by multiple users.
You can switch a table back and forth between table-level locking and the other levels of locking. This ability to switch locking levels is useful when you use a table in a
data warehouse mode during certain time periods but not in others.

A transaction tells the database server to use table-level locking for a table with the LOCK TABLE statement. The following example places an exclusive lock on the table:

LOCK TABLE tab1 IN EXCLUSIVE MODE;

The following example places a shared lock on the table:

LOCK TABLE tab1 IN SHARE MODE:

In some cases, the database server places its own table locks. For example, if the isolation level is Repeatable Read, and the database server must read a large portion of
the table, it places a table lock automatically instead of setting row or page locks. The database server places a table lock on a table when it creates or drops an index.

Copyright© 2020 HCL Technologies Limited

Database locks

You can place a lock on the entire database when you open the database with the DATABASE statement. A database lock prevents read or update access by anyone but
the current user.

The following statement opens and locks the sales database:

DATABASE sales EXCLUSIVE

Copyright© 2020 HCL Technologies Limited

Configuring the lock mode

When you create a table, the default lock mode is page. You can change the lock mode (and thus increase or decrease concurrency) when you create or alter tables or by
setting the IFX_DEF_TABLE_LOCKMODE environment variable or the DEF_TABLE_LOCKMODE configuration parameter.

If you know that most of your applications might benefit from a lock mode of row, you can take one of the following actions:

Use the LOCK MODE ROW clause in each CREATE TABLE statement or ALTER TABLE statement.
Set the IFX_DEF_TABLE_LOCKMODE environment variable to ROW so that all tables you subsequently create within a session use ROW without the need to specify
the lock mode in the CREATE TABLE statement or ALTER TABLE statement.
Set the DEF_TABLE_LOCKMODE configuration parameter to ROW so that all tables subsequently created within the database server use ROW without the need to
specify the lock mode in the CREATE TABLE statement or ALTER TABLE statement.

If you change the lock mode with the IFX_DEF_TABLE_LOCKMODE environment variable or DEF_TABLE_LOCKMODE configuration parameter, the lock mode of existing
tables are not affected. Existing tables continue to use the lock mode with which they were defined at the time they were created.

In addition, if you previously changed the lock mode of a table to ROW, and subsequently execute an ALTER TABLE statement to alter some other characteristic of the
table (such as add a column or change the extent size), you do not need to specify the lock mode. The lock mode remains at ROW and is not set to the default PAGE mode.

You can still override the lock mode of individual tables by specifying the LOCK MODE clause in the CREATE TABLE statement or ALTER TABLE statement.

The following list shows the order of precedence for the lock mode on a table:

1412 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The system default is page locks. The database server uses this system default if you do not set the configuration parameter, do not set the environment variable, or
do not specify the LOCK MODE clause in the SQL statements.
If you set the DEF_TABLE_LOCKMODE configuration parameter, the database server uses this value when you do not set the environment variable, or do not specify
the LOCK MODE clause in the SQL statements.
If you set the IFX_DEF_TABLE_LOCKMODE environment variable, this value overrides the DEF_TABLE_LOCKMODE configuration parameter and system default.
The database server uses this value when you do not specify the LOCK MODE clause in the SQL statements.
If you specify the LOCK MODE clause in the CREATE TABLE statement or ALTER TABLE statement, this value overrides the IFX_DEF_TABLE_LOCKMODE, the
DEF_TABLE_LOCKMODE configuration parameter and system default.

Related concepts:
 Locks

Locks with the SELECT statement
Locks placed with INSERT, UPDATE, and DELETE statements
The internal lock table
Locks for smart large objects
Related tasks:

 Setting the lock mode to wait
Related reference:

 Monitoring locks

Copyright© 2020 HCL Technologies Limited

Setting the lock mode to wait

When an application process encounters a lock, the default behavior of the database server is to return an error. Instead, you can run an SQL statement to set the lock
mode to wait. This specifies that an application process does not proceed until the lock is removed.

To suspend the current process until the lock releases, run the following SQL statement :

SET LOCK MODE TO WAIT;

You can also specify the maximum number of seconds that a process waits for a lock to be released before issuing an error. In the following example, the database server
waits for 20 seconds before issuing an error:

SET LOCK MODE TO WAIT 20;

To return to the default behavior (no waiting for locks), execute the following statement:

SET LOCK MODE TO NOT WAIT;

Related concepts:
 Locks

Configuring the lock mode
Locks with the SELECT statement
Locks placed with INSERT, UPDATE, and DELETE statements
The internal lock table
Locks for smart large objects
Related reference:

 Monitoring locks

Copyright© 2020 HCL Technologies Limited

Locks with the SELECT statement

The type and duration of locks that the database server places depend on the isolation level set in the application, the database mode (logging, nonlogging, or ANSI,) and
on whether the SELECT statement is within an update cursor. These locks can affect overall performance because they affect concurrency.

Isolation level
 The number and duration of locks placed on data during a SELECT statement depend on the level of isolation that the user sets. The type of isolation can affect

overall performance because it affects concurrency.
Locking nonlogging tables

 The database server does not place page or row locks on a nonlogging table when you use the table within a transaction. However, you can lock nonlogging tables
to prevent concurrency problems when other users are modifying a nonlogging table
Update cursors

 An update cursor is a special kind of cursor that applications can use when the row might potentially be updated. Update cursors use promotable locks in which the
database server places an update lock on the row when the application fetches the row. The lock is changed to an exclusive lock when the application uses an
update cursor and UPDATE...WHERE CURRENT OF to update the row.

Related concepts:
 Locks

Configuring the lock mode
Locks placed with INSERT, UPDATE, and DELETE statements
The internal lock table
Locks for smart large objects
Related tasks:

 Setting the lock mode to wait
Related reference:

 Monitoring locks

Part VI: Administering 1413

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Isolation level

The number and duration of locks placed on data during a SELECT statement depend on the level of isolation that the user sets. The type of isolation can affect overall
performance because it affects concurrency.

Before you execute a SELECT statement, you can set the isolation level with the SET ISOLATION statement, which is part of the Informix® extension to the ANSI SQL-92
standard, or with the ANSI/ISO-compliant SET TRANSACTION. The main differences between the two statements are that SET ISOLATION has an additional isolation
level, Cursor Stability, and SET TRANSACTION cannot be executed more than once in a transaction as SET ISOLATION can. The SET ISOLATION statement is part of the
Informix extension to the ANSI SQL-92 standard. The SET ISOLATION statement can change the enduring isolation level for the session

Dirty Read isolation
 The Dirty Read isolation (or ANSI Read Uncommitted) level does not place any locks on any rows fetched during a SELECT statement. Dirty Read isolation is

appropriate for static tables that are used for queries.
Committed Read isolation

 A reader with the Committed Read isolation (or ANSI Read Committed) isolation level checks for locks before returning a row. By checking for locks, the reader
cannot return any uncommitted rows.
Cursor Stability isolation

 A reader with Cursor Stability isolation acquires a shared lock on the row that is currently fetched. This action assures that no other user can update the row until
the user fetches a new row.
Repeatable Read isolation

 Repeatable Read isolation (ANSI Serializable and ANSI Repeatable Read) is the strictest isolation level. With Repeatable Read, the database server locks all rows
examined (not just fetched) for the duration of the transaction.

Copyright© 2020 HCL Technologies Limited

Dirty Read isolation

The Dirty Read isolation (or ANSI Read Uncommitted) level does not place any locks on any rows fetched during a SELECT statement. Dirty Read isolation is appropriate
for static tables that are used for queries.

Use Dirty Read isolation with care if update activity occurs at the same time. With Dirty Read, the reader can read a row that has not been committed to the database and
might be eliminated or changed during a rollback. For example, consider the following scenario:

User 1 starts a transaction.
User 1 inserts row A.
User 2 reads row A.
User 1 rolls back row A.

User 2 reads row A, which user 1 rolls back seconds later. In effect, user 2 read a row that was never committed to the database. Uncommitted data that is rolled back can
be a problem in applications.

Because the database server does not check or place any locks for queries, Dirty Read isolation offers the best performance of all isolation levels. However, because of
potential problems with uncommitted data that is rolled back, use Dirty Read isolation with care.

Because problems with uncommitted data that is rolled back are an issue only with transactions, databases that do not have transaction (and hence do not allow
transactions) use Dirty Read as a default isolation level. In fact, Dirty Read is the only isolation level allowed for databases that do not have transaction logging.

Copyright© 2020 HCL Technologies Limited

Committed Read isolation

A reader with the Committed Read isolation (or ANSI Read Committed) isolation level checks for locks before returning a row. By checking for locks, the reader cannot
return any uncommitted rows.

The database server does not actually place any locks for rows read during Committed Read. It simply checks for any existing rows in the internal lock table.

Committed Read is the default isolation level for databases with logging if the log mode is not ANSI-compliant. For databases created with a logging mode that is not
ANSI-compliant, Committed Read is an appropriate isolation level for most activities. For ANSI-compliant databases, Repeatable Read is the default isolation level.

Ways to reduce the risk of Committed Read isolation level conflicts
 In the Committed Read isolation level, locks held by other sessions can cause SQL operations to fail if the current session cannot acquire a lock or if the database

server detects a deadlock. (A deadlock occurs when two users hold locks, and each user wants to acquire a lock that the other user owns.) The LAST COMMITTED
keyword option to the SET ISOLATION COMMITTED READ statement of SQL reduces the risk of locking conflicts.

Copyright© 2020 HCL Technologies Limited

Ways to reduce the risk of Committed Read isolation level conflicts

1414 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

In the Committed Read isolation level, locks held by other sessions can cause SQL operations to fail if the current session cannot acquire a lock or if the database server
detects a deadlock. (A deadlock occurs when two users hold locks, and each user wants to acquire a lock that the other user owns.) The LAST COMMITTED keyword
option to the SET ISOLATION COMMITTED READ statement of SQL reduces the risk of locking conflicts.

The LAST COMMITTED keyword option to the SET ISOLATION COMMITTED READ statement of SQL instructs the server to return the most recently committed version of
the rows, even if another concurrent session holds an exclusive lock. You can use the LAST COMMITTED keyword option for B-tree and functional indexes, tables that
support transaction logging, and tables that do not have page-level locking or exclusive locks. For more information, see information about the SET ISOLATION statement
in the IBM® Informix® Guide to SQL: Syntax.

For databases created with transaction logging, you can set the USELASTCOMMITTED configuration parameter to specify whether the database server uses the last
committed version of the data, rather than wait for the lock to be released, when sessions using the Dirty Read or Committed Read isolation level (or the ANSI/ISO level of
Read Uncommitted or Read Committed) attempt to read a row on which a concurrent session holds a shared lock. The last committed version of the data is the version of
the data that existed before any updates occurred.

If no value or a value of NONE is set for the USELASTCOMMITTED configuration parameter or for the USELASTCOMMITTED session environment variable, sessions in a
COMMITTED READ or READ COMMITTED isolation level wait for any exclusive locks to be released, unless the SET ISOLATION COMMITTED READ LAST COMMITTED
statement of SQL instructs the database server to read the most recently committed version of the data.

Setting the USELASTCOMMITTED configuration parameter to operate with the Committed Read isolation level can affect performance only if concurrent conflicting
updates occur. When concurrent conflicting updates occur, the performance of queries depends on the dynamics of the transactions. For example, a reader using the last
committed version of the data, might need to undo the updates made to a row by another concurrent transaction. This situation involves reading one or more log records,
thereby increasing the I/O traffic, which can affect performance.

Related information:
 USELASTCOMMITTED configuration parameter

Copyright© 2020 HCL Technologies Limited

Cursor Stability isolation

A reader with Cursor Stability isolation acquires a shared lock on the row that is currently fetched. This action assures that no other user can update the row until the user
fetches a new row.

In the example for a cursor in Figure 1, at fetch a row the database server releases the lock on the previous row and places a lock on the row being fetched. At close the
cursor, the server releases the lock on the last row.
Figure 1. Locks placed for cursor stability

set isolation to cursor stability
declare cursor for SELECT * FROM customer
open the cursor
while there are more rows
 fetch a row
 do work
end while
close the cursor

If you do not use a cursor to fetch data, Cursor Stability isolation behaves in the same way as Committed Read. No locks are actually placed.

Copyright© 2020 HCL Technologies Limited

Repeatable Read isolation

Repeatable Read isolation (ANSI Serializable and ANSI Repeatable Read) is the strictest isolation level. With Repeatable Read, the database server locks all rows
examined (not just fetched) for the duration of the transaction.

The example in Figure 1 shows when the database server places and releases locks for a repeatable read. At fetch a row, the server places a lock on the row being fetched
and on every row it examines in order to retrieve this row. At close the cursor, the server releases the lock on the last row.
Figure 1. Locks placed for repeatable read

set isolation to repeatable read
begin work
declare cursor for SELECT * FROM customer
open the cursor
while there are more rows
 fetch a row
 do work
end while
close the cursor
commit work

Repeatable Read is useful during any processing in which multiple rows are examined, but none must change during the transaction. For example, suppose an application
must check the account balance of three accounts that belong to one person. The application gets the balance of the first account and then the second. But, at the same
time, another application begins a transaction that debits the third account and credits the first account. By the time that the original application obtains the account
balance of the third account, it has been debited. However, the original application did not record the debit of the first account.

When you use Committed Read or Cursor Stability, the previous scenario can occur. However, it cannot occur with Repeatable Read. The original application holds a read
lock on each account that it examines until the end of the transaction, so the attempt by the second application to change the first account fails (or waits, depending upon
SET LOCK MODE).

Part VI: Administering 1415

https://www.hcltech.com/
https://www.hcltech.com/

Because even examined rows are locked, if the database server reads the table sequentially, a large number of rows unrelated to the query result can be locked. For this
reason, use Repeatable Read isolation for tables when the database server can use an index to access a table. If an index exists and the optimizer chooses a sequential
scan instead, you can use directives to force use of the index. However, forcing a change in the query path might negatively affect query performance.

Copyright© 2020 HCL Technologies Limited

Locking nonlogging tables

The database server does not place page or row locks on a nonlogging table when you use the table within a transaction. However, you can lock nonlogging tables to
prevent concurrency problems when other users are modifying a nonlogging table

Use one of the following methods to prevent concurrency problems when other users are modifying a nonlogging table:

Lock the table in exclusive mode for the whole transaction.
Use Repeatable Read isolation level for the whole transaction.

Important: Nonlogging raw tables are intended for fast loading of data. You should change the table to STANDARD before you use it in a transaction or modify the data
within it.

Copyright© 2020 HCL Technologies Limited

Update cursors

An update cursor is a special kind of cursor that applications can use when the row might potentially be updated. Update cursors use promotable locks in which the
database server places an update lock on the row when the application fetches the row. The lock is changed to an exclusive lock when the application uses an update
cursor and UPDATE...WHERE CURRENT OF to update the row.

When the update lock is on the row as the application fetches it, other users can still view the row.

In some cases, the database server might place locks on rows that the database server has examined but not actually fetched. Whether this behavior occurs depends on
how the database server executes the SQL statement.

The advantage of an update cursor is that you can view the row with the confidence that other users cannot change it or view it with an update cursor while you are
viewing it and before you update it.

If you do not update the row, the default behavior of the database server is to release the update lock when you execute the next FETCH statement or close the cursor.
However, if you execute the SET ISOLATION statement with the RETAIN UPDATE LOCKS clause, the database server does not release any currently existing or
subsequently placed update locks until the end of the transaction.

The code in Figure 1 shows when the database server places and releases update locks with a cursor. At fetch row 1, the database server places an update lock on row 1.
At fetch row 2, the server releases the update lock on row 1 and places an update lock on row 2. However, after the database server executes the SET ISOLATION
statement with the RETAIN UPDATE LOCKS clause, it does not release any update locks until the end of the transaction. At fetch row 3, it places an update lock on row 3.
At fetch row 4, it places an update lock on row 4. At commit work, the server releases the update locks for rows 2, 3, and 4.
Figure 1. When update locks are released

declare update cursor
begin work
open the cursor
fetch row 1
fetch row 2
SET ISOLATION TO COMMITTED READ
 RETAIN UPDATE LOCKS
fetch row 3
fetch row 4
commit work

In an ANSI-compliant database, update cursors are usually not needed because any select cursor behaves the same as an update cursor without the RETAIN UPDATE
LOCKS clause.

The code in Figure 2 shows the database server promoting an update lock to an exclusive lock. At fetch the row, the server places an update lock on the row being fetched.
At update the row, the server promotes the lock to exclusive. At commit work, it releases the lock.
Figure 2. When update locks are promoted

declare update cursor
begin work
open the cursor
fetch the row
do work
update the row (use WHERE CURRENT OF)
commit work

To use an update cursor, run SELECT FOR UPDATE in your application.

Copyright© 2020 HCL Technologies Limited

Locks placed with INSERT, UPDATE, and DELETE statements

1416 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

When you execute an INSERT, UPDATE, or DELETE statement, the database server uses exclusive locks. An exclusive lock means that no other users can update or delete
the item until the database server removes the lock.

In addition, no other users can view the row unless they are using the Dirty Read isolation level.

When the database server removes the exclusive lock depends on whether the database supports transaction logging:

If the database supports logging, the database server removes all exclusive locks when the transaction completes (commits or rolls back).
If the database does not support logging, the database server removes all exclusive locks immediately after the INSERT, MERGE, UPDATE, or DELETE statement
completes, except when the lock is on the row that is currently being fetched into an update cursor.
In this situation, the lock is retained during the fetch operation on the row, but only until the server fetches the next row, or until the server updates the current row
by promoting the lock to an exclusive lock.

In a nonlogging database, the promotable update lock on a row fetched for update can be released by a DDL operation on the database while the INSERT, MERGE,
UPDATE, or DELETE statement that originally created the lock is still running. To reduce the risk of data corruption if a concurrent session modifies the unlocked row,
restrict operations that use promotable update locks to databases that support transaction logging.

Related concepts:
 Locks

Configuring the lock mode
Locks with the SELECT statement
The internal lock table
Locks for smart large objects
Related tasks:

 Setting the lock mode to wait
Related reference:

 Monitoring locks

Copyright© 2020 HCL Technologies Limited

The internal lock table

The database server stores locks in an internal lock table. When the database server reads a row, it checks if the row or its associated page, table, or database is listed in
the lock table. If it is in the lock table, the database server must also check the lock type.

The following table shows the types of locks that the lock table can contain.

Lock Type Description Statement That Usually Places the Lock

S Shared lock SELECT

X Exclusive lock INSERT, UPDATE, DELETE

U Update lock SELECT in an update cursor

B Byte lock Any statement that updates VARCHAR columns

A byte lock is generated only if you shrink the size of a data value in a VARCHAR column. The byte lock exists solely for roll forward and rollback execution, so a byte lock is
created only if you are working in a database that uses logging. Byte locks appear in onstat -k output only if you are using row-level locking; otherwise, they are merged
with the page lock.

In addition, the lock table might store intent locks, with the same lock type as previously shown. In some cases, a user might need to register his or her possible intent to
lock an item, so that other users cannot place a lock on the item.

Depending on the type of operation and the isolation level, the database server might continue to read the row and place its own lock on the row, or it might wait for the
lock to be released (if the user executed SET LOCK MODE TO WAIT). The following table shows the locks that a user can place if another user holds a certain type of lock.
For example, if one user holds an exclusive lock on an item, another user requesting any kind of lock (exclusive, update, or shared) receives an error.

 Hold X lock Hold U lock Hold S lock

Request X lock No No Yes

Request U lock No No Yes

Request S lock No Yes Yes

Related concepts:
 Locks

Configuring the lock mode
Locks with the SELECT statement
Locks placed with INSERT, UPDATE, and DELETE statements
Locks for smart large objects
Related tasks:

 Setting the lock mode to wait
Related reference:

 Monitoring locks

Copyright© 2020 HCL Technologies Limited

Monitoring locks

You can analyze information about locks and monitor locks by viewing information in the internal lock table that contains stored locks.

Part VI: Administering 1417

https://www.hcltech.com/
https://www.hcltech.com/

View the lock table with onstat -k. Figure 1 shows sample output for onstat -k.
Figure 1. onstat -k output

Locks
address wtlist owner lklist type tblsnum rowid key#/bsiz
300b77d0 0 40074140 0 HDR+S 10002 106 0
300b7828 0 40074140 300b77d0 HDR+S 10197 123 0
300b7854 0 40074140 300b7828 HDR+IX 101e4 0 0
300b78d8 0 40074140 300b7854 HDR+X 101e4 102 0
 4 active, 5000 total, 8192 hash buckets

In this example, a user is inserting one row in a table. The user holds the following locks (described in the order shown):

A shared lock on the database
A shared lock on a row in the systables system catalog table
An intent-exclusive lock on the table
An exclusive lock on the row

To determine the table to which the lock applies, execute the following SQL statement. For tblsnum, substitute the value shown in the tblsnum field in the onstat -k
output.

SELECT *
 FROM SYSTABLES
 WHERE HEX(PARTNUM) = "tblsnum";

Where tblsnum is the modified value that onstat -k returns. For example, if onstat -k returns 10027f, tbslnum is 0x0010027F.
You can also query the syslocks table in the sysmaster database to obtain information about each active lock. The syslocks table contains the following columns.

Column Description

dbsname Database on which the lock is held

tabname Name of the table on which the lock is held

rowidlk ID of the row on which the lock is held (0 indicates a table lock.)

keynum The key number for the row

type Type of lock

owner Session ID of the lock owner

waiter Session ID of the first waiter on the lock

Configuring and managing lock usage
 The LOCKS configuration parameter specifies the initial size of the internal lock table. If the database server increases the size of the lock table, you should increase

the size of the LOCKS configuration parameter.
Monitoring lock waits and lock errors

 You can view information about sessions, lock usage, and lock waits.
Monitoring the number of free locks

 You can find the current number of free locks on a lock-free list by viewing the output of the onstat -L command .
Monitoring deadlocks

 You can monitor deadlocks. A deadlock occurs when two users hold locks, and each user wants to acquire a lock that the other user owns.
Monitoring isolation levels that sessions use

 The onstat -g ses and onstat -g sql output shows the isolation level that a session is currently using.

Related concepts:
 Locks

Configuring the lock mode
Locks with the SELECT statement
Locks placed with INSERT, UPDATE, and DELETE statements
The internal lock table
Locks for smart large objects
Related tasks:

 Setting the lock mode to wait

Copyright© 2020 HCL Technologies Limited

Configuring and managing lock usage

The LOCKS configuration parameter specifies the initial size of the internal lock table. If the database server increases the size of the lock table, you should increase the
size of the LOCKS configuration parameter.

For information about how to determine an initial value for the LOCKS configuration parameter, see The LOCKS configuration parameter and memory utilization.

If the number of locks needed by sessions exceeds the value set in the LOCKS configuration parameter, the database server attempts to increase the lock table by
doubling its size. Each time that the lock table overflows (when the number of locks needed is greater than the current size of the lock table), the database server
increases the size of the lock table, up to 99 times. Each time that the database server increases the size of the lock table, the server attempts to double its size. However,
the server will limit each actual increase to no more than the maximum number of added locks shown in Table 1. After the 99th time that the database server increases
the lock table, the server no longer increases the size of the lock table, and an application needing a lock receives an error.

Maximum number of locks allowed on 32-bit and 64-bit platforms
The following table shows the maximum number of allowed locks.

1418 Part VI: Administering

https://www.hcltech.com/

Table 1. Maximum number of locks on 32-bit and 64-bit platforms

Platform
Maximum Number of
Initial Locks

Maximum Number of Dynamic Lock
Table Extensions

Maximum Number of Locks Added Per Lock
Table Extension

Maximum Number of Locks
Allowed

32-bit 8,000,000 99 100,000 8,000,000 + (99 x 100,000)

64-bit 500,000,000 99 1,000,000 500,000,000 + (99 x
1,000,000)

View messages concerning increases to the size of the lock table
Every time the database server increases the size of the lock table, the server places a message in the message log file. You should monitor the message log file
periodically and increase the size of the LOCKS configuration parameter if you see that the database server has increased the size of the lock table.

Monitor out-of-locks errors
To monitor the number of times that applications receive the out-of-locks error, view the ovlock field in the output of onstat -p. You can also see similar information from
the sysprofile table in the sysmaster database. The following rows contain the relevant statistics.

Row Description

ovlock Number of times that sessions attempted to exceed the maximum number of locks

lockreqs Number of times that sessions requested a lock

lockwts Number of times that sessions waited for a lock

Examine how applications use locks
If the database server is using an unusually large number of locks, you can examine how individual applications are using locks, as follows:

1. Monitor sessions with onstat -u to see if a particular user is using an especially high number of locks (a high value in the locks column).
2. If a particular user uses a large number of locks, examine the SQL statements in the application to determine whether you should lock the table or use individual

row or page locks.

A table lock is more efficient than individual row locks, but it reduces concurrency.

One way to reduce the number of locks placed on a table is to alter a table to use page locks instead of row locks. However, page locks reduce overall concurrency for the
table, which can affect performance.

You can also reduce the number of locks placed on a table by locking the table in exclusive mode.

Related concepts:
 The LOCKS configuration parameter and memory utilization

Copyright© 2020 HCL Technologies Limited

Monitoring lock waits and lock errors

You can view information about sessions, lock usage, and lock waits.

If the application executes SET LOCK MODE TO WAIT, the database server waits for a lock to be released instead of returning an error. An unusually long wait for a lock can
give users the impression that the application is hanging.

In Figure 1, the onstat -u output shows that session ID 84 is waiting for a lock (L in the first column of the Flags field). To find out the owner of the lock, use the onstat -k
command.
Figure 1. onstat -u output that shows lock usage

onstat -u

Userthreads
address flags sessid user tty wait tout locks nreads nwrites
40072010 ---P--D 7 informix - 0 0 0 35 75
400723c0 ---P--- 0 informix - 0 0 0 0 0
40072770 ---P--- 1 informix - 0 0 0 0 0
40072b20 ---P--- 2 informix - 0 0 0 0 0
40072ed0 ---P--F 0 informix - 0 0 0 0 0
40073280 ---P--B 8 informix - 0 0 0 0 0
40073630 ---P--- 9 informix - 0 0 0 0 0
400739e0 ---P--D 0 informix - 0 0 0 0 0
40073d90 ---P--- 0 informix - 0 0 0 0 0
 40074140 Y-BP--- 81 lsuto 4 50205788 0 4 106 221
400744f0 --BP--- 83 jsmit - 0 0 4 0 0
400753b0 ---P--- 86 worth - 0 0 2 0 0
40075760 L--PR-- 84 jones 3 300b78d8 -1 2 0 0
 13 active, 128 total, 16 maximum concurrent

onstat -k

Locks
address wtlist owner lklist type tblsum rowid key#/bsiz
300b77d0 0 40074140 0 HDR+S 10002 106 0
300b7828 0 40074140 300b77d0 HDR+S 10197 122 0

Part VI: Administering 1419

https://www.hcltech.com/

300b7854 0 40074140 300b7828 HDR+IX 101e4 0 0
 300b78d8 40075760 40074140 300b7854 HDR+X 101e4 100 0
300b7904 0 40075760 0 S 10002 106 0
300b7930 0 40075760 300b7904 S 10197 122 0
 6 active, 5000 total, 8192 hash buckets

To find out the owner of the lock for which session ID 84 is waiting:

1. Obtain the address of the lock in the wait field (300b78d8) of the onstat -u output.
2. Find this address (300b78d8) in the Locks address field of the onstat -k output.

The owner field of this row in the onstat -k output contains the address of the user thread (40074140).

3. Find this address (40074140) in the Userthreads field of the onstat -u output.
The sessid field of this row in the onstat -u output contains the session ID (81) that owns the lock.

To eliminate the contention problem, you can have the user exit the application gracefully. If this solution is not possible, you can stop the application process or remove
the session with onmode -z.

Copyright© 2020 HCL Technologies Limited

Monitoring the number of free locks

You can find the current number of free locks on a lock-free list by viewing the output of the onstat -L command .

Related information:
 onstat -L command: Print the number of free locks

Copyright© 2020 HCL Technologies Limited

Monitoring deadlocks

You can monitor deadlocks. A deadlock occurs when two users hold locks, and each user wants to acquire a lock that the other user owns.

For example, user pradeep holds a lock on row 10. User jane holds a lock on row 20. Suppose that jane wants to place a lock on row 10, and pradeep wants to place a
lock on row 20. If both users execute SET LOCK MODE TO WAIT, they potentially might wait for each other forever.

Informix® uses the lock table to detect deadlocks automatically and stop them before they occur. Before a lock is granted, the database server examines the lock list for
each user. If a user holds a lock on the resource that the requestor wants to lock, the database server traverses the lock wait list for the user to see if the user is waiting for
any locks that the requestor holds. If so, the requestor receives a deadlock error.

Deadlock errors can be unavoidable when applications update the same rows frequently. However, certain applications might always be in contention with each other.
Examine applications that are producing a large number of deadlocks and try to run them at different times.

To monitor the number of deadlocks, use the deadlks field in the output of onstat -p.

In a distributed transaction, the database server does not examine lock tables from other database server systems, so deadlocks cannot be detected before they occur.
Instead, you can set the DEADLOCK_TIMEOUT configuration parameter. DEADLOCK_TIMEOUT specifies the number of seconds that the database server waits for a
remote database server response before it returns an error. Although reasons other than a distributed deadlock might cause the delay, this mechanism keeps a
transaction from hanging indefinitely.

To monitor the number of distributed deadlock timeouts, use the dltouts field in the onstat -p output.

Copyright© 2020 HCL Technologies Limited

Monitoring isolation levels that sessions use

The onstat -g ses and onstat -g sql output shows the isolation level that a session is currently using.

The following table summarizes the values in the IsoLvl column in onstat -g ses and onstat -g sql output.

Value
Description

DR
Dirty Read

CR
Committed Read

CS
Cursor Stability

CRU
Committed Read with RETAIN UPDATE LOCKS

CSU
Cursor Stability with RETAIN UPDATE LOCKS

DRU
Dirty Read with RETAIN UPDATE LOCKS

LC

1420 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Committed Read, Last Committed
RR

Repeatable Read

If a great deal of lock contention occurs, check the isolation level of sessions to make sure it is appropriate for the application.

Copyright© 2020 HCL Technologies Limited

Locks for smart large objects

Smart large objects have several unique locking behaviors because their columns are typically much larger than other columns in a table.

This section discusses the following unique behaviors:

Types of locks on smart large objects
Byte-range locking
Lock promotion
Dirty Read isolation level with smart large objects

Types of locks on smart large objects
The database server uses one of the following granularity levels for locking smart large objects:

The sbspace chunk header partition
The smart large object
A byte range of the smart large object

The default locking granularity is at the level of the smart large object. In other words, when you update a smart large object, by default the database server locks the
smart large object that is being updated.

Locks on the sbspace chunk header partition only occur when the database server promotes locks on smart large objects. For more information, see Lock promotion.

Byte-range locking
 Rather than locking the entire smart large object, you can lock only a specific byte range of a smart large object.

Lock promotion
 The database server uses lock promotion to decrease the total number of locks held on smart large objects. Too many locks can result in poorer performance

because the database server frequently searches the lock table to determine if a lock exists on an object.
Dirty Read isolation level and smart large objects

 You can use the Dirty Read isolation level for smart large objects.

Related concepts:
 Locks

Configuring the lock mode
Locks with the SELECT statement
Locks placed with INSERT, UPDATE, and DELETE statements
The internal lock table
Related tasks:

 Setting the lock mode to wait
Related reference:

 Monitoring locks

Copyright© 2020 HCL Technologies Limited

Byte-range locking

Rather than locking the entire smart large object, you can lock only a specific byte range of a smart large object.

Byte-range locking is advantageous because it allows multiple users to update the same smart large object simultaneously, as long as they are updating different parts of
it. Also, users can read a part of a smart large object while another user is updating or reading a different part of the same smart large object.

Figure 1 shows two locks placed on a single smart large object. The first lock is on bytes 2, 3, and 4. The second lock is on byte 6 alone.
Figure 1. Example of byte-range locking

How the database server manages byte-range locks
 The database server manages byte-range locks in the lock table in a similar fashion to other locks placed on rows, pages, and tables. However, the lock table must

also store the byte range.
Using byte-range locks

 By default, the database server places a lock on the smart large object. Instead, you can enable byte-range locking.

Part VI: Administering 1421

https://www.hcltech.com/
https://www.hcltech.com/

Monitoring byte-range locks
You can use onstat -k to list all byte-range locks. Use the onstat -K command to list byte-range locks and all waiters for byte-range locks.
Setting number of locks for byte-range locking
When you use byte-range locking, the database server can use more locks because of the possibility of multiple locks on one smart large object. Even though the
lock table grows when it runs out of space, you might want to increase value of the LOCKS configuration parameter to match lock usage so that the database server
does not need to allocate more space dynamically.

Copyright© 2020 HCL Technologies Limited

How the database server manages byte-range locks

The database server manages byte-range locks in the lock table in a similar fashion to other locks placed on rows, pages, and tables. However, the lock table must also
store the byte range.

If you place a second lock on a byte range adjacent to a byte range that is currently locked, the database server consolidates the two locks into one lock on the entire
range.

If a user holds locks that the Figure 1 shows, and the user requests a lock on byte five, the database server consolidates the locks placed on bytes two through six into one
lock.

Likewise, if a user unlocks only a portion of the bytes included within a byte-range lock, the database server might be split into multiple byte-range locks. In the Figure 1
the user could unlock byte three, which causes the database server to change the one lock on bytes two through four to one lock on byte two and one lock on byte four.

Copyright© 2020 HCL Technologies Limited

Using byte-range locks

By default, the database server places a lock on the smart large object. Instead, you can enable byte-range locking.

To use byte-range locks, you must perform one of the following actions:

To set byte-range locking for the sbspace that stores the smart large object, use the onspaces utility. The following example sets byte-range locking for the new
sbspace:

onspaces -c -S slo -g 2 -p /ix/9.2/liz/slo -o 0 -s 1000
 -Df LOCK_MODE=RANGE

When you set the default locking mode for the sbspace to byte-range locking, the database server locks only the necessary bytes when it updates any smart large
objects stored in the sbspace.

To set byte-range locking for the smart large object when you open it, use one of the following methods:
In DB-Access: Set the MI_LO_LOCKRANGE flag in the mi_lo_open() DataBlade API function.
In ESQL/C: Set the LO_LOCKRANGE flag in the ifx_lo_open() Informix® ESQL/C function. When you set byte-range locking for the individual smart large
object, the database server implicitly locks only the necessary bytes when it selects or updates the smart large object.

To lock a byte range explicitly, use one of the following functions:
For DB-Access:mi_lo_lock()
For ESQL/C:ifx_lo_lock()
These functions lock the range of bytes that you specify for the smart large object. If you specify an exclusive lock with either function, UPDATE statements
do not place locks on the smart large object if they update the locked bytes.

The database server releases exclusive byte-range locks placed with mi_lo_lock() or ifx_lo_lock() at the end of the transaction. The database server releases
shared byte-range locks placed with mi_lo_lock() or ifx_lo_lock() based on the same rules as locks placed with SELECT statements, depending upon the
isolation level. You can also release shared byte-range locks with one of the following functions:

For DB-Access:mi_lo_unlock(). For more information about the DataBlade API functions, see the IBM® Informix DataBlade API Programmer's Guide.
For ESQL/C:ifx_lo_unlock(). For more information about Informix ESQL/C functions, see the IBM Informix ESQL/C Programmer's Manual.

Copyright© 2020 HCL Technologies Limited

Monitoring byte-range locks

You can use onstat -k to list all byte-range locks. Use the onstat -K command to list byte-range locks and all waiters for byte-range locks.

Figure 1 shows an excerpt from the output of onstat -k.
Figure 1. Byte-range locks in onstat -k output

Byte-Range Locks
rowid/LOid tblsnum address status owner offset size type
104 200004 a020e90 HDR
[2, 2, 3] a020ee4 HOLD a1b46d0 50 10 S
202 200004 a021034 HDR
[2, 2, 5] a021088 HOLD a1b51e0 40 5 S
102 200004 a035608 HDR
[2, 2, 1] a0358fc HOLD a1b4148 0 500 S
 a035758 HOLD a1b3638 300 100 S
 21 active, 2000 total, 2048 hash buckets

1422 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Byte-range locks produce the following information in the onstat -k output.

Column Description

rowid The rowid of the row that contains the locked smart large object

LOid The three values: sbspace number, chunk number, and sequence number (a value that represents the position in the chunk)

tblsnum The number of the tblspace that holds the smart large object

address The address of the lock

status The status of the lock
HDR is a placeholder. HOLD indicates the user specified in the owner column owns the lock. WAIT (shown only with onstat -K) indicates that the user
specified in the owner column is waiting for the lock.

owner The address of the owner (or waiter)
Cross reference this value with the address in onstat -u.

offset The offset into the smart large object where the bytes are locked

size The number of bytes locked, starting at the value in the offset column

type S (shared lock) or X (exclusive)

Copyright© 2020 HCL Technologies Limited

Setting number of locks for byte-range locking

When you use byte-range locking, the database server can use more locks because of the possibility of multiple locks on one smart large object. Even though the lock
table grows when it runs out of space, you might want to increase value of the LOCKS configuration parameter to match lock usage so that the database server does not
need to allocate more space dynamically.

Be sure to monitor the number of locks used with onstat -k, so you can determine if you need to increase the value of the LOCKS configuration parameter.

Copyright© 2020 HCL Technologies Limited

Lock promotion

The database server uses lock promotion to decrease the total number of locks held on smart large objects. Too many locks can result in poorer performance because the
database server frequently searches the lock table to determine if a lock exists on an object.

If the number of locks held by a transaction exceeds 33 percent of the current number of allocated locks for the database server, the database server attempts to promote
any existing byte-range locks to a single lock on the smart large object.

If the number of locks that a user holds on a smart large object (not on byte ranges of a smart large object) equals or exceeds 10 percent of the current capacity of the lock
table, the database server attempts to promote all of the smart-large-object locks to one lock on the smart-large-object header partition. This kind of lock promotion
improves performance for applications that are updating, loading, or deleting a large number of smart large objects. For example, a transaction that deletes millions of
smart large objects would consume the entire lock table if the database server did not use lock promotion. The lock promotion algorithm has deadlock avoidance built in.

You can identify a smart-large-object header partition in onstat -k by 0 in the rowid column and a tablespace number with a high-order first byte-and-a-half that
corresponds to the dbspace number where the smart large object is stored. For example, if the tblspace number is listed as 0x200004 (the high-order zeros are
truncated), the dbspace number 2 corresponds to the dbspace number listed in onstat -d.

Even if the database server attempts to promote a lock, it might not be able to do so. For example, the database server might not be able to promote byte-range locks to
one smart-large-object lock because other users have byte-range locks on the same smart large object. If the database server cannot promote a byte-range lock, it does
not change the lock, and processing continues as normal.

Copyright© 2020 HCL Technologies Limited

Dirty Read isolation level and smart large objects

You can use the Dirty Read isolation level for smart large objects.

For information about how Dirty Reads affects consistency, see Dirty Read isolation.

Set the Dirty Read isolation level for smart large objects in one of the following ways:

Use the SET TRANSACTION MODE or SET ISOLATION statement.
Use the LO_DIRTY_READ flag in one of the following functions:

For DB-Access:mi_lo_open()
For ESQL/C:ifx_lo_open()

If consistency for smart large objects is not important, but consistency for other columns in the row is important, you can set the isolation level to Committed Read, Cursor
Stability, or Repeatable Read and open the smart large object with the LO_DIRTY_READ flag.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1423

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Fragmentation guidelines

One of the most frequent causes of poor performance in relational database systems is contention for data that resides on a single I/O device. Proper fragmentation of
high-use tables can significantly reduce I/O contention. These topics discuss the performance considerations that are involved when you use table fragmentation.

The database server supports table fragmentation (also partitioning), which allows you to store data from a single table on multiple disk devices. Fragmentation enables
you to define groups of rows or index keys within a table according to some algorithm or scheme. You can store each group or fragment (also referred to as a partition) in a
separate dbspace associated with a specific physical disk.

For information about fragmentation and parallel execution, see Parallel database query (PDQ).

For an introduction to fragmentation concepts and methods, see the IBM Informix Database Design and Implementation Guide. For information about the SQL statements
that manage fragments, see the IBM Informix Guide to SQL: Syntax.

Planning a fragmentation strategy
 You can decide on a fragmentation goal for your database and devise a strategy to meet that goal.

Distribution schemes
 After you decide whether to fragment table rows, index keys, or both, and you decide how the rows and keys should be distributed over fragments, you can decide

on a scheme to implement this distribution. Informix supports random distribution among fragments and value-based distribution among fragments.
Strategy for fragmenting indexes

 When you fragment a table, the indexes that are associated with that table are fragmented implicitly, according to the distribution scheme that you use, except for
the round-robin fragmentation scheme when automatic location is enabled. Indexes on tables that use the round-robin distribution scheme are not fragmented
when the AUTOLOCATE configuration parameter or environment option is set to a positive integer. You can use the FRAGMENT BY clause of the CREATE INDEX
statement to fragment the index on any table.
Strategy for fragmenting temporary tables

 You can fragment an explicit temporary table across dbspaces that reside on different disks.
Distribution schemes that eliminate fragments

 Fragment elimination is a database server feature that reduces the number of fragments involved in a database operation. This capability can improve performance
significantly and reduce contention for the disks on which fragments reside.
Improve the performance of operations that attach and detach fragments

 When you use ALTER FRAGMENT ATTACH and DETACH statements to add or remove a large amount of data in a very large table, you can take steps to improve the
performance of the ATTACH and DETACH operations.
Monitoring fragment use

 Once you determine a fragmentation strategy, you can monitor fragmentation.

Copyright© 2020 HCL Technologies Limited

Planning a fragmentation strategy

You can decide on a fragmentation goal for your database and devise a strategy to meet that goal.

A fragmentation strategy consists of two parts:

A distribution scheme that specifies how to group rows into fragments
You specify the distribution scheme in the FRAGMENT BY clause of the CREATE TABLE, CREATE INDEX, or ALTER FRAGMENT statements.

The set of dbspaces in which you locate the fragments
You specify the set of dbspaces or in the IN clause (storage option) of these SQL statements.

To formulate a fragmentation strategy:

1. Decide on your primary fragmentation goal, which should depend, to a large extent, on the types of applications that access the table.
2. Make the following decisions based on your primary fragmentation goal:

Whether to fragment the table data, the table index, or both
What the ideal distribution of rows or index keys is for the table

3. Choose either an expression-based or round-robin distribution scheme:
If you choose an expression-based distribution scheme, you must then design suitable fragment expressions.
If you choose a round-robin distribution scheme, the database server determines which rows to put into a specific fragment.

For more information, see Distribution schemes.

4. To complete the fragmentation strategy, you must decide on the number and location of the fragments:
The number of fragments depends on your primary fragmentation goal.
Where you locate fragments depends on the number of disks available in your configuration.

When you plan a fragmentation strategy, be aware of these space and page issues:

Although a 4-terabyte chunk can be on a 2-kilobyte page, only 32 gigabytes can be utilized in a dbspace because of a rowid format limitation.
For a fragmented table, all fragments must use the same page size.
For a fragmented index, all fragments must use the same page size.
A table can be in one dbspace and the index for that table can be in another dbspace. These dbspaces do not need to have the same page size.

Fragmentation goals
 You can analyze your application and workload to identify fragmentation goals and to determine the balance to strike among fragmentation goals.

Examining your data and queries
 To determine a fragmentation strategy, you must gather information about the table that you might fragment. You must also know how the data in the table is used.

Considering physical fragmentation factors
 When you fragment a table, the physical placement issues that pertain to tables apply to individual table fragments. Because each fragment resides in its own

dbspace on a disk, you must address these issues separately for the fragments on each disk.

1424 Part VI: Administering

https://www.hcltech.com/

Related concepts:
Distribution schemes
Strategy for fragmenting indexes
Strategy for fragmenting temporary tables
Distribution schemes that eliminate fragments
Improve the performance of operations that attach and detach fragments
Monitoring fragment use

Copyright© 2020 HCL Technologies Limited

Fragmentation goals

You can analyze your application and workload to identify fragmentation goals and to determine the balance to strike among fragmentation goals.

Fragmentation goals can include:

Improved performance for individual queries
To improve the performance of individual queries, fragment tables appropriately and set resource-related parameters to specify system resource use (memory, CPU
virtual processors, and so forth).

Reduced contention between queries and between transactions
If your database server is used primarily for online transaction processing (OLTP) and only incidentally for decision-support queries, you can often use
fragmentation to reduce contention when simultaneous queries against the same table perform index scans to return a few rows.

Increased data availability
Careful fragmentation of dbspaces can improve data availability if devices fail. Table fragments on the failed device can be restored quickly, and other fragments are
still accessible.

Improved data-load performance
When you use the High-Performance Loader (HPL) to load a table that is fragmented across multiple disks, it allocates threads to insert the data into the fragments
in parallel, using light appends. For more information about this load method, see the IBM® Informix High-Performance Loader User's Guide.

You can use the ALTER FRAGMENT ON TABLE statement with the ATTACH clause to add data quickly to a very large table. For more information, see Improve the
performance of operations that attach and detach fragments.

The performance of a fragmented table is primarily governed by the following factors:

The storage option that you use for allocating disk space to fragments (discussed in Considering physical fragmentation factors)
The distribution scheme used to assign rows to individual fragments (discussed in Distribution schemes)

Improved query performance through fragmentation strategy
 If the primary goal of fragmentation is improved performance for individual queries, try to distribute all of the rows of the table evenly over the different disks.

Overall query-completion time is reduced when the database server does not need to wait for data retrieval from a table fragment that has more rows than other
fragments.
Reduced contention between queries and transactions

 Fragmentation can reduce contention for data in tables that multiple queries and OLTP applications use. Fragmentation often reduces contention when many
simultaneous queries against a table perform index scans to return a few rows.
Increased data availability

 When you distribute table and index fragments across different disks or devices, you improve the availability of data during disk or device failures. The database
server continues to allow access to fragments stored on disks or devices that remain operational.
Increased granularity for backup and restore

 You must consider backup and restore factors when you are deciding how to distribute dbspaces across disk.

Copyright© 2020 HCL Technologies Limited

Improved query performance through fragmentation strategy

If the primary goal of fragmentation is improved performance for individual queries, try to distribute all of the rows of the table evenly over the different disks. Overall
query-completion time is reduced when the database server does not need to wait for data retrieval from a table fragment that has more rows than other fragments.

If queries access data by performing sequential scans against significant portions of tables, fragment the table rows only. Do not fragment the index. If an index is
fragmented and a query has to cross a fragment boundary to access the data, the performance of the query can be worse than if you do not fragment.

If queries access data by performing an index read, you can improve performance by using the same distribution scheme for the index and the table.

If you use round-robin fragmentation, do not fragment your index. Consider placing that index in a separate dbspace from other table fragments.

For more information about improving performance for queries, see Query expressions for fragment elimination and Improving individual query performance.

Copyright© 2020 HCL Technologies Limited

Reduced contention between queries and transactions

Fragmentation can reduce contention for data in tables that multiple queries and OLTP applications use. Fragmentation often reduces contention when many
simultaneous queries against a table perform index scans to return a few rows.

Part VI: Administering 1425

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

For tables subjected to this type of load, fragment both the index keys and data rows with a distribution scheme that allows each query to eliminate unneeded fragments
from its scan. Use an expression-based distribution scheme. For more information, see Distribution schemes that eliminate fragments.

To fragment a table for reduced contention, start by investigating which queries access which parts of the table. Next, fragment your data so that some of the queries are
routed to one fragment while others access a different fragment. The database server performs this routing when it evaluates the fragmentation rule for the table. Finally,
store the fragments on separate disks.

Your success in reducing contention depends on how much you know about the distribution of data in the table and the scheduling of queries against the table. For
example, if the distribution of queries against the table is set up so that all rows are accessed at roughly the same rate, try to distribute rows evenly across the fragments.
However, if certain values are accessed at a higher rate than others, you can compensate for this difference by distributing the rows over the fragments to balance the
access rate. For more information, see Designing an expression-based distribution scheme.

Copyright© 2020 HCL Technologies Limited

Increased data availability

When you distribute table and index fragments across different disks or devices, you improve the availability of data during disk or device failures. The database server
continues to allow access to fragments stored on disks or devices that remain operational.

This availability has important implications for the following types of applications:

Applications that do not require access to unavailable fragments
A query that does not require the database server to access data in an unavailable fragment can still successfully retrieve data from fragments that are available.
For example, if the distribution expression uses a single column, the database server can determine if a row is contained in a fragment without accessing the
fragment. If the query accesses only rows that are contained in available fragments, a query can succeed even when some of the data in the table is unavailable.
For more information, see Designing an expression-based distribution scheme.

Applications that accept the unavailability of data
Some applications might be designed in such a way that they can accept the unavailability of data in a fragment and require the ability to retrieve the data that is
available. To specify which fragments can be skipped, these applications can execute the SET DATASKIP statement before they execute a query. Alternatively, the
database server administrator can use the onspaces -f option to specify which fragments are unavailable.

If your fragmentation goal is increased availability of data, fragment both table rows and index keys so that if a disk drive fails, some of the data is still available. If
applications must always be able to access a subset of your data, keep those rows together in the same mirrored dbspace.

Copyright© 2020 HCL Technologies Limited

Increased granularity for backup and restore

You must consider backup and restore factors when you are deciding how to distribute dbspaces across disk.

Backup and restore factors to consider are:

Data availability. When you decide where to place your tables or fragments, remember that if a device that contains a dbspace fails, all tables or table fragments in
that dbspace are inaccessible, even though tables and fragments in other dbspaces are accessible. The need to limit data unavailability in the event of a disk failure
might influence which tables you group together in a particular dbspace.
Cold versus warm restores. Although you must perform a cold restore if a dbspace that contains critical data fails, you need to perform only a warm restore if a
noncritical dbspace fails. The desire to minimize the impact of cold restores might influence the dbspace that you use to store critical data.

For more information about backup and restore, see your IBM® Informix® Backup and Restore Guide.

Copyright© 2020 HCL Technologies Limited

Examining your data and queries

To determine a fragmentation strategy, you must gather information about the table that you might fragment. You must also know how the data in the table is used.

To gather information about your table:

1. Identify the queries that are critical to performance to determine if the queries are online transaction processing (OLTP) or decision-support system (DSS) queries.
2. Use the SET EXPLAIN statement to determine how the data is being accessed.

For information about the output of the SET EXPLAIN statement, see Report that shows the query plan chosen by the optimizer. To determine how the data is
accessed, you can sometimes simply review the SELECT statements along with the table schema.

3. Determine what portion of the data each query examines.
For example, if certain rows in the table are read most of the time, you can isolate them in a small fragment to reduce I/O contention for other fragments.

4. Determine which statements create temporary files.
Decision-support queries typically create and access large temporary files, and placement of temporary dbspaces can be critical to performance.

5. If particular tables are always joined together in a decision-support query, spread fragments for these tables across different disks.
6. Examine the columns in the table to determine which fragmentation scheme would keep each scan thread equally busy for the decision-support queries.

To see how the column values are distributed, create a distribution on the column with the UPDATE STATISTICS statement and examine the distribution with
dbschema.

1426 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

dbschema -d database -hd table

Copyright© 2020 HCL Technologies Limited

Considering physical fragmentation factors

When you fragment a table, the physical placement issues that pertain to tables apply to individual table fragments. Because each fragment resides in its own dbspace on
a disk, you must address these issues separately for the fragments on each disk.

For details about placement issues that apply to tables, see Table performance considerations.

Fragmented and nonfragmented tables differ in the following ways:

For fragmented tables, each fragment is placed in a separate, designated dbspace or multiple named fragments of the table are created within a single dbspace.
For nonfragmented tables, the table can be placed in the default dbspace of the current database.

Regardless of whether the table is fragmented or not, you should create a single chunk on each disk for each dbspace.

Extent sizes for a fragmented table are usually smaller than the extent sizes for an equivalent nonfragmented table because fragments do not grow in increments as
large as the entire table. For more information on how to estimate the space to allocate, see Estimating table size.
In a fragmented table, the row pointer is not a unique unchanging pointer to the row on a disk. The database server uses the combination of fragment ID and row
pointer internally, inside an index, to point to the row. These two fields are unique but can change over the life of the row. An application cannot access the fragment
ID; therefore, you should use primary keys to access a specific row in a fragmented table. For more information, see the IBM® Informix® Database Design and
Implementation Guide.
An attached index or an index on a nonfragmented table uses 4 bytes for the row pointer. A detached index uses 8 bytes of disk space per key value for the
fragment ID and row pointer combination. For more information about how to estimate space for an index, see Estimating index pages. For more information on
attached indexes and detached indexes, see Strategy for fragmenting indexes.

Decision-support queries usually create and access large temporary files; placement of temporary dbspaces is a critical factor for performance. For more information
about placement of temporary files, see Spreading temporary tables and sort files across multiple disks.

Copyright© 2020 HCL Technologies Limited

Distribution schemes

After you decide whether to fragment table rows, index keys, or both, and you decide how the rows and keys should be distributed over fragments, you can decide on a
scheme to implement this distribution. Informix® supports random distribution among fragments and value-based distribution among fragments.

Random distribution among fragments
Round-robin fragmentation

This type of fragmentation places rows one after another in fragments, rotating through the series of fragments to distribute the rows evenly.
For smart large objects, you can specify multiple sbspaces in the PUT clause of the CREATE TABLE or ALTER TABLE statement to distribute smart large objects in a
round-robin distribution scheme so that the number of smart large objects in each space is approximately equal.

Value-based distribution among fragments
Expression-based fragmentation

This type of fragmentation puts rows that contain specified values in the same fragment. You specify a fragmentation expression that defines criteria for assigning a
set of rows to each fragment, either as a range rule or some arbitrary rule.
You can specify a remainder fragment that holds all rows that do not match the criteria for any other fragment, although a remainder fragment reduces the
efficiency of the expression-based distribution scheme.

List-based fragmentation
This type of fragmentation puts rows that contain specified values that match one of the specified values in a list of discrete values in the same fragment. For each
fragment, you specify a list of one or more constant expressions as fragment expressions that correspond to one or more columns in the table. The column or set of
columns from which the fragment expressions are calculated is called the fragment key.
You can optionally specify a remainder fragment that holds all rows that do not match the criteria for any other fragment. You can also optionally specify a NULL
fragment that stores rows with missing data in the fragment key columns (because its fragment expression is NULL or IS NULL).

The most important difference between fragmentation by list and fragmentation by expression is that every value in the list for each fragment must be unique
among all the lists for fragments of the same table or index.

Interval-based fragmentation
This type of fragmentation partitions data into fragments that are based on quantified values within a specific interval within the range of fragment key of a single
numeric, DATE, or DATETIME column in the same fragment. You specify at least one range expression as the fragment expression that defines the upper limit of
fragment key values for each fragment, and an interval expression that specifies the size of the range of system-defined fragments that the database server creates
automatically.
You can optionally define a NULL fragment to store rows with missing data in the fragment key column, but no remainder fragment is supported or needed. The
database server automatically creates a new fragment to store rows with non-NULL fragment key values outside the range of any existing fragment. The fragments
that you define with range expressions are called range fragments, and the system-defined fragments that the database server creates at runtime are called interval
fragments. This type of distribution scheme is sometimes called a range interval distribution strategy.

Choosing a distribution scheme
 When choosing a distribution scheme, you must consider the ease of data balancing, whether you want fragments to be eliminated, and the effect of the data skip

Part VI: Administering 1427

https://www.hcltech.com/
https://www.hcltech.com/

feature.
Designing an expression-based distribution scheme
The first step in designing an expression-based distribution scheme is to determine the distribution of data in the table, particularly the distribution of values for the
column on which you base the fragmentation expression.
Suggestions for improving fragmentation
You can improve fragmentation for optimal performance in decision-support and OLTP queries.

Related concepts:
 Strategy for fragmenting indexes

Strategy for fragmenting temporary tables
Distribution schemes that eliminate fragments
Improve the performance of operations that attach and detach fragments
Monitoring fragment use
Specify temporary tables in the DBSPACETEMP configuration parameter
Related tasks:

 Planning a fragmentation strategy
Related information:

 List fragmentation clause
Interval fragment clause
Fragmentation: Storage distribution strategies

Copyright© 2020 HCL Technologies Limited

Choosing a distribution scheme

When choosing a distribution scheme, you must consider the ease of data balancing, whether you want fragments to be eliminated, and the effect of the data skip feature.

Table 1 compares round-robin and expression-based distribution schemes.

Table 1. Distribution-Scheme Comparisons
Distribution Scheme Ease of Data Balancing Fragment Elimination Data Skip

Round-robin Automatic. Data is balanced over time. The database server cannot eliminate
fragments.

You cannot determine if the integrity of the
transaction is compromised when you use the data-
skip feature. However, you can insert into a table
fragmented by round-robin.

Expression-based Requires knowledge of the data
distribution.

If expressions on one or two columns are
used, the database server can eliminate
fragments for queries that have either range
or equality expressions.

You can determine whether the integrity of a
transaction has been compromised when you use the
data-skip feature. You cannot insert rows if the
appropriate fragment for those rows is down.

The distribution scheme that you choose depends on the following factors:

The features in Table 1 of which you want to take advantage
Whether or not your queries tend to scan the entire table
Whether or not you know the distribution of data to be added
Whether or not your applications tend to delete many rows
Whether or not you cycle your data through the table

Basically, the round-robin scheme provides the easiest and surest way of balancing data. However, with round-robin distribution, you have no information about the
fragment in which a row is located, and the database server cannot eliminate fragments.

In general, round-robin is the correct choice only when all the following conditions apply:

Your queries tend to scan the entire table.
You do not know the distribution of data to be added.
Your applications tend not to delete many rows. (If they do, load balancing can be degraded.)

An expression-based scheme might be the best choice to fragment the data if any of the following conditions apply:

Your application calls for numerous decision-support queries that scan specific portions of the table.
You know what the data distribution is.
You plan to cycle data through a database.

If you plan to add and delete large amounts of data periodically, based on the value of a column such as date, you can use that column in the distribution scheme. You can
then use the alter fragment attach and alter fragment detach statements to cycle the data through the table.

The ALTER FRAGMENT ATTACH and DETACH statements provide the following advantages over bulk loads and deletes:

The rest of the table fragments are available for other users to access. Only the fragment that you attach or detach is not available to other users.
With the performance enhancements, the execution of an ALTER FRAGMENT ATTACH or DETACH statement is much faster than a bulk load or mass delete.

For more information, see Improve the performance of operations that attach and detach fragments.

In some cases, an appropriate index scheme can circumvent the performance problems of a particular distribution scheme. For more information, see Strategy for
fragmenting indexes.

Copyright© 2020 HCL Technologies Limited

1428 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Designing an expression-based distribution scheme

The first step in designing an expression-based distribution scheme is to determine the distribution of data in the table, particularly the distribution of values for the
column on which you base the fragmentation expression.

To obtain this information, run the UPDATE STATISTICS statement for the table and then use the dbschema utility to examine the distribution.

After you know the data distribution, you can design a fragmentation rule that distributes data across fragments as required to meet your fragmentation goal. If your
primary goal is to improve performance, your fragment expression should generate an even distribution of rows across fragments.

If your primary fragmentation goal is improved concurrency, analyze the queries that access the table. If certain rows are accessed at a higher rate than others, you can
compensate by opting for an uneven distribution of data over the fragments that you create.

Try not to use columns that are subject to frequent updates in the distribution expression. Such updates can cause rows to move from one fragment to another (that is, be
deleted from one and added to another), and this activity increases CPU and I/O overhead.

Try to create nonoverlapping regions based on a single column with no REMAINDER fragment for the best fragment-elimination characteristics. The database server
eliminates fragments from query plans whenever the query optimizer can determine that the values selected by the WHERE clause do not reside on those fragments,
based on the expression-based fragmentation rule by which you assign rows to fragments. For more information, see Distribution schemes that eliminate fragments.

Copyright© 2020 HCL Technologies Limited

Suggestions for improving fragmentation

You can improve fragmentation for optimal performance in decision-support and OLTP queries.

The following suggestions are guidelines for fragmenting tables and indexes:

For optimal performance in decision-support queries, fragment the table to increase parallelism, but do not fragment the indexes. Detach the indexes, and place
them in a separate dbspace.
For best performance in OLTP queries, use fragmented indexes to reduce contention between sessions. You can often fragment an index by its key value, which
means the OLTP query only has to look at one fragment to find the location of the row.
If the key value does not reduce contention, as when every user looks at the same set of key values (for instance, a date range), consider fragmenting the index on
another value used in the WHERE clause. To cut down on fragment administration, consider not fragmenting some indexes, especially if you cannot find a good
fragmentation expression to reduce contention.

Use round-robin fragmentation on data when the table is read sequentially by decision-support queries. Round-robin fragmentation is a good method for spreading
data evenly across disks when no column in the table can be used for an expression-based fragmentation scheme. However, in most DSS queries, all fragments are
read.
To reduce the total number of required dbspaces and decrease the time needed for searches, you can store multiple named fragments within the same dbspace.
If you are using expressions, create them so that I/O requests, rather than quantities of data, are balanced across disks. For example, if the majority of your queries
access only a portion of data in the table, set up your fragmentation expression to spread active portions of the table across disks, even if this arrangement results
in an uneven distribution of rows.
Keep fragmentation expressions simple. Fragmentation expressions can be as complex as you want. However, complex expressions take more time to evaluate and
might prevent fragments from being eliminated from queries.
Arrange fragmentation expressions so that the most restrictive condition for each dbspace is tested within the expression first. When the database server tests a
value against the criteria for a given fragment, evaluation stops when a condition for that fragment tests false. Thus, if the condition that is most likely to be false is
placed first, fewer conditions need to be evaluated before the database server moves to the next fragment. For example, in the following expression, the database
server tests all six of the inequality conditions when it attempts to insert a row with a value of 25:

x >= 1 and x <= 10 in dbspace1,
x > 10 and x <= 20 in dbspace2,
x > 20 and x <= 30 in dbspace3

By comparison, only four conditions in the following expression need to be tested: the first inequality for dbspace1 (x <= 10), the first for dbspace2 (x <= 20),
and both conditions for dbspace3:

x <= 10 and x >= 1 in dbspace1,
x <= 20 and x > 10 in dbspace2,
x <= 30 and x > 20 in dbspace3

Avoid any expression that requires a data-type conversion. Type conversions increase the time to evaluate the expression. For instance, a DATE data type is
implicitly converted to INTEGER for comparison purposes.
Do not fragment on columns that change frequently unless you are willing to incur the administration costs. For example, if you fragment on a date column and
older rows are deleted, the fragment with the oldest dates tends to empty, and the fragment with the recent dates tends to fill up. Eventually you must drop the old
fragment and add a new fragment for newer orders.
Do not fragment every table. Identify the critical tables that are accessed most frequently. Put only one fragment for a table on a disk.
Do not fragment small tables. Fragmenting a small table across many disks might not be worth the overhead of starting all the scan threads to access the
fragments. Also, balance the number of fragments with the number of processors on your system.
When you define a fragmentation strategy on an unfragmented table, check the next-extent size to ensure that you are not allocating large amounts of disk space
for each fragment.

Copyright© 2020 HCL Technologies Limited

Strategy for fragmenting indexes

Part VI: Administering 1429

https://www.hcltech.com/
https://www.hcltech.com/

When you fragment a table, the indexes that are associated with that table are fragmented implicitly, according to the distribution scheme that you use, except for the
round-robin fragmentation scheme when automatic location is enabled. Indexes on tables that use the round-robin distribution scheme are not fragmented when the
AUTOLOCATE configuration parameter or environment option is set to a positive integer. You can use the FRAGMENT BY clause of the CREATE INDEX statement to
fragment the index on any table.

Each index of a fragmented table occupies its own tblspace with its own extents.

You can fragment the index with either of the following strategies:

Same fragmentation strategy as the table
Different fragmentation strategy from the table

Attached indexes
 An attached index is an index that implicitly follows the table fragmentation strategy (distribution scheme and set of dbspaces in which the fragments are located).

When you create an index on a fragmented table, the index is an attached index, unless you use the round-robin distribution scheme and automatic location is
enabled. Indexes on tables that use the round-robin distribution scheme are not fragmented when the AUTOLOCATE configuration parameter or environment
option is set to a positive integer.
Detached indexes

 A detached index is an index with a separate fragmentation strategy that you set up explicitly with the CREATE INDEX statement.
Restrictions on indexes for fragmented tables

 If the database server scans a fragmented index, multiple index fragments must be scanned and the results merged together. (The exception is if the index is
fragmented according to some index-key range rule, and the scan does not cross a fragment boundary.) Because of this requirement, performance on index scans
might suffer if the index is fragmented.

Related concepts:
 Distribution schemes

Strategy for fragmenting temporary tables
Distribution schemes that eliminate fragments
Improve the performance of operations that attach and detach fragments
Monitoring fragment use
Related tasks:

 Planning a fragmentation strategy

Copyright© 2020 HCL Technologies Limited

Attached indexes

An attached index is an index that implicitly follows the table fragmentation strategy (distribution scheme and set of dbspaces in which the fragments are located). When
you create an index on a fragmented table, the index is an attached index, unless you use the round-robin distribution scheme and automatic location is enabled. Indexes
on tables that use the round-robin distribution scheme are not fragmented when the AUTOLOCATE configuration parameter or environment option is set to a positive
integer.

To create an attached index, do not specify a fragmentation strategy or storage option in the CREATE INDEX statement, as in the following sample SQL statements:

CREATE TABLE tb1(a int)
 FRAGMENT BY EXPRESSION
 (a >=0 AND a < 5) IN dbsbspace1,
 (a >=5 AND a < 10) IN dbspace2
 ...
 ;

CREATE INDEX idx1 ON tb1(a);

For fragmented tables that use expression-based or round-robin distribution schemes, you can also create multiple partitions of a table or index within a single dbspace.
This enables you to reduce the number of required dbspaces, thereby simplifying the management of dbspaces.

To create an attached index with partitions, include the partition name in your SQL statements, as shown in this example:

CREATE TABLE tb1(a int)
 FRAGMENT BY EXPRESSION
 PARTITION part1 (a >=0 AND a < 5) IN dbs1,
 PARTITION part2 (a >=5 AND a < 10) IN dbs1
 ...
 ;

 CREATE INDEX idx1 ON tb1(a);

You can use "PARTITION BY EXPRESSION" instead of "FRAGMENT BY EXPRESSION" in CREATE TABLE, CREATE INDEX, and ALTER FRAGMENT ON INDEX statements as
shown in this example:

ALTER FRAGMENT ON INDEX idx1 INIT PARTITION BY EXPRESSION
 PARTITION part1 (a <= 10) IN dbs1,
 PARTITION part2 (a <= 20) IN dbs1,
 PARTITION part3 (a <= 30) IN dbs1;

Use ALTER FRAGMENT syntax to change fragmented indexes that do not have partitions into indexes that have partitions. The syntax below shows how you might convert
a fragmented index into an index that contains partitions:

CREATE TABLE t1 (c1 int) FRAGMENT BY EXPRESSION
 (c1=10) IN dbs1, (c1=20) IN dbs2, (c1=30) IN dbs3
CREATE INDEX ind1 ON t1 (c1) FRAGMENT BY EXPRESSION
 (c1=10) IN dbs1, (c1=20) IN dbs2, (c1=30) IN dbs3

ALTER FRAGMENT ON INDEX ind1 INIT FRAGMENT BY EXPRESSION
 PARTITION part_1 (c1=10) IN dbs1, PARTITION part_2 (c1=20) IN dbs1,

1430 Part VI: Administering

https://www.hcltech.com/

 PARTITION part_3 (c1=30) IN dbs1,

Creating a table or index containing partitions improves performance by enabling the database server to search more quickly and by reducing the required number of
dbspaces.

The database server fragments the attached index according to the same distribution scheme as the table by using the same rule for index keys as for table data. As a
result, attached indexes have the following physical characteristics:

The number of index fragments is the same as the number of data fragments.
Each attached index fragment resides in the same dbspace as the corresponding table data, but in a separate tblspace.
An attached index or an index on a nonfragmented table uses 4 bytes for the row pointer for each index entry. For more information about how to estimate space for
an index, see Estimating index pages.

Informix® does not support forest of trees attached indexes.

Copyright© 2020 HCL Technologies Limited

Detached indexes

A detached index is an index with a separate fragmentation strategy that you set up explicitly with the CREATE INDEX statement.

The following sample SQL statements create a detached index:

CREATE TABLE tb1 (a int)
 FRAGMENT BY EXPRESSION
 (a <= 10) IN tabdbspc1,
 (a <= 20) IN tabdbspc2,
 (a <= 30) IN tabdbspc3;

CREATE INDEX idx1 ON tb1 (a)
 FRAGMENT BY EXPRESSION
 (a <= 10) IN idxdbspc1,
 (a <= 20) IN idxdbspc2,
 (a <= 30) IN idxdbspc3;

This example illustrates a common fragmentation strategy, to fragment indexes in the same way as the tables, but specify different dbspaces for the index fragments. This
fragmentation strategy of putting the index fragments in different dbspaces from the table can improve the performance of operations such as backup, recovery, and so
forth.

By default, all new indexes that the CREATE INDEX statement creates are detached and stored in separate tablespaces from the data unless the deprecated IN TABLE
syntax is specified.

To create a detached index with partitions, include the partition name in your SQL statements, as shown in this example:

CREATE TABLE tb1 (a int)
 FRAGMENT BY EXPRESSION
 PARTITION part1 (a <= 10) IN dbs1,
 PARTITION part2 (a <= 20) IN dbs2,
 PARTITION part3 (a <= 30) IN dbs3;

 CREATE INDEX idx1 ON tb1 (a)
 FRAGMENT BY EXPRESSION
 PARTITION part1 (a <= 10) IN dbs1,
 PARTITION part2 (a <= 20) IN dbs2,
 PARTITION part3 (a <= 30) IN dbs3;

You can use the PARTITION BY EXPRESSION keywords instead of the FRAGMENT BY EXPRESSION keywords in the CREATE TABLE, CREATE INDEX, and ALTER
FRAGMENT ON INDEX statements.

If you do not want to fragment the index, you can put the entire index in a separate dbspace.

You can fragment the index for any table by expression. However, you cannot explicitly create a round-robin fragmentation scheme for an index. Whenever you fragment a
table using a round-robin fragmentation scheme, convert all indexes that accompany the table to detached indexes for the best performance.

Detached indexes have the following physical characteristics:

Each detached index fragment resides in a different tblspace from the corresponding table data. Therefore, the data and index pages cannot be interleaved within
the tblspace.
Detached index fragments have their own extents and tblspace IDs. The tblspace ID is also known as the fragment ID and partition number. A detached index uses
8 bytes of disk space per index entry for the fragment ID and row pointer combination. For more information on how to estimate space for an index, see Estimating
index pages.

Forest of trees indexes are detached indexes. They cannot be attached indexes.

The database server stores the location of each table and index fragment, along with other related information, in the sysfragments system catalog table. You can view
the sysfragments system catalog table to access information about fragmented tables and indexes, including the following :

The value in the partn column is the partition number or fragment id of the table or index fragment. The partition number for a detached index is different from the
partition number of the corresponding table fragment.
The value in the strategy column is the distribution scheme used in the fragmentation strategy.

For a complete description of column values that the sysfragments system catalog table contains, see the IBM® Informix® Guide to SQL: Reference. For information about
how to use sysfragments to monitor your fragments, see Monitoring fragment use.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1431

https://www.hcltech.com/
https://www.hcltech.com/

Restrictions on indexes for fragmented tables

If the database server scans a fragmented index, multiple index fragments must be scanned and the results merged together. (The exception is if the index is fragmented
according to some index-key range rule, and the scan does not cross a fragment boundary.) Because of this requirement, performance on index scans might suffer if the
index is fragmented.

Because of these performance considerations, the database server places the following restrictions on indexes:

You cannot fragment indexes by round-robin.
You cannot fragment unique indexes by an expression that contains columns that are not in the index key.

For example, the following statement is not valid:

CREATE UNIQUE INDEX ia on tab1(col1)
 FRAGMENT BY EXPRESSION
 col2<10 in dbsp1,
 col2>=10 AND col2<100 in dbsp2,
 col2>100 in dbsp3;

Copyright© 2020 HCL Technologies Limited

Strategy for fragmenting temporary tables

You can fragment an explicit temporary table across dbspaces that reside on different disks.

You can create a temporary, fragmented table with the TEMP TABLE clause of the CREATE TABLE statement. However, you cannot alter the fragmentation strategy of
fragmented temporary tables (as you can with permanent tables). The database server deletes the fragments that are created for a temporary table at the same time that
it deletes the temporary table.

You can define your own fragmentation strategy for an explicit temporary table, or you can let the database server dynamically determine the fragmentation strategy.

For more information about explicit and implicit temporary tables, see your IBM® Informix Administrator's Guide.

Related concepts:
 Distribution schemes

Strategy for fragmenting indexes
Distribution schemes that eliminate fragments
Improve the performance of operations that attach and detach fragments
Monitoring fragment use
Related tasks:

 Planning a fragmentation strategy

Copyright© 2020 HCL Technologies Limited

Distribution schemes that eliminate fragments

Fragment elimination is a database server feature that reduces the number of fragments involved in a database operation. This capability can improve performance
significantly and reduce contention for the disks on which fragments reside.

Fragment elimination improves both response time for a given query and concurrency between queries. Because the database server does not need to read in
unnecessary fragments, I/O for a query is reduced. Activity in the LRU queues is also reduced.

If you use an appropriate distribution scheme, the database server can eliminate fragments from the following database operations:

The fetch portion of the SELECT, INSERT, delete or update statements in SQL
The database server can eliminate fragments when these SQL statements are optimized, before the actual search.

Nested-loop joins
When the database server obtains the key value from the outer table, it can eliminate fragments to search on the inner table.

Whether the database server can eliminate fragments from a search depends on two factors:

The distribution scheme in the fragmentation strategy of the table that is being searched
The form of the query expression (the expression in the WHERE clause of a SELECT, INSERT, delete or update statement)

Fragmentation expressions for fragment elimination
 Some operators in expressions result in automatic fragment elimination.

Query expressions for fragment elimination
 A query expression (the expression in the WHERE clause) can consist of simple expressions, not simple expressions, and multiple expressions.

Effectiveness of fragment elimination
 The database server cannot eliminate fragments when you fragment a table with a round-robin distribution scheme. Furthermore, not all expression-based

distribution schemes give you the same fragment-elimination behavior.

Related concepts:
 Distribution schemes

Strategy for fragmenting indexes
Strategy for fragmenting temporary tables

1432 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Improve the performance of operations that attach and detach fragments
Monitoring fragment use
Related tasks:
Planning a fragmentation strategy

Copyright© 2020 HCL Technologies Limited

Fragmentation expressions for fragment elimination

Some operators in expressions result in automatic fragment elimination.

When the fragmentation strategy is defined with any of the following operators, fragment elimination can occur for a query on the table.

IN
=
<
>
<=
>=
AND
OR
NOT
IS NULL (only when not combined with other expressions using AND or OR operators)

If the fragmentation expression uses any of the following operators, fragment elimination does not occur for queries on the table.

!=
IS NOT NULL

For examples of fragmentation expressions that allow fragment elimination, see Effectiveness of fragment elimination.

Copyright© 2020 HCL Technologies Limited

Query expressions for fragment elimination

A query expression (the expression in the WHERE clause) can consist of simple expressions, not simple expressions, and multiple expressions.

The database server considers only simple expressions or multiple simple expressions combined with certain operators for fragment elimination.

A simple expression consists of the following parts:

column operator value

Simple Expression Part
Description

column
Is a single column name
The database server supports fragment elimination on all column types except columns that are defined with the NCHAR, NVARCHAR, BYTE, and TEXT data types.

operator
Must be an equality or range operator

value
Must be a literal or a host variable

The following examples show simple expressions:

name = "Fred"
date < "08/25/2008"
value >= :my_val

The following examples are not simple expressions:

unitcost * count > 4500
price <= avg(price)
result + 3 > :limit

The database server considers two types of simple expressions for fragment elimination, based on the operator:

Range expressions
Equality expressions

Range expressions in query
 The database server can handle one or two column fragment elimination on queries with any combination of five relational operators in the WHERE clause.

Equality expressions in query
 The database server can handle one or multiple column fragment elimination on queries with a combination of equality operators in the WHERE clause.

Copyright© 2020 HCL Technologies Limited

Range expressions in query

Part VI: Administering 1433

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The database server can handle one or two column fragment elimination on queries with any combination of five relational operators in the WHERE clause.

Range expressions use the following relational operators:

<
>
<=
>=
!=

The database server can also eliminate fragments when these range expressions are combined with the following operators:

AND, OR, NOT
IS NULL, IS NOT NULL
MATCH, LIKE

If the range expression contains MATCH or LIKE, the database server can also eliminate fragments if the string does not begin with a wildcard character. The following
examples show query expressions that can take advantage of fragment elimination:

columna MATCH "ab*"
columna LIKE "ab%" OR columnb LIKE "ab*"

Copyright© 2020 HCL Technologies Limited

Equality expressions in query

The database server can handle one or multiple column fragment elimination on queries with a combination of equality operators in the WHERE clause.

Equality expressions use the following equality operators:

=, IN

The database server can also eliminate fragments when these equality expressions are combined with the following operators:

AND, OR

Copyright© 2020 HCL Technologies Limited

Effectiveness of fragment elimination

The database server cannot eliminate fragments when you fragment a table with a round-robin distribution scheme. Furthermore, not all expression-based distribution
schemes give you the same fragment-elimination behavior.

The following table summarizes the fragment-elimination behavior for different combinations of expression-based distribution schemes and query expressions. Partitions
in fragmented tables do not affect the fragment-elimination behavior shown in the following table.

Table 1. Fragment elimination for different types of expression-based distribution schemes and query expressions

Type of Query (WHERE clause)
Expression

Nonoverlapping Fragments on a
Single Column

Overlapping or Non-contiguous Fragments on
a Single Column

Nonoverlapping Fragments on
Multiple Columns

Range expression Fragments can be eliminated. Fragments cannot be eliminated. Fragments cannot be eliminated.

Equality expression Fragments can be eliminated. Fragments can be eliminated. Fragments can be eliminated.

This table shows that the distribution schemes enable fragment elimination, but the effectiveness of fragment elimination is determined by the WHERE clause of the
specified query.

For example, consider a table fragmented with the following expression:

FRAGMENT BY EXPRESSION
100 < column_a AND column_b < 0 IN dbsp1,
100 >= column_a AND column_b < 0 IN dbsp2,
column_b >= 0 IN dbsp3

The database server cannot eliminate any fragments from the search if the WHERE clause has the following expression:

column_a = 5 OR column_b = -50

However, the database server can eliminate the fragment in dbspace dbsp3 if the WHERE clause has the following expression:

column_b = -50

Furthermore, the database server can eliminate the two fragments in dbspaces dbsp2 and dbsp3 if the WHERE clause has the following expression:

column_a = 5 AND column_b = -50

Partitions in fragmented tables do not affect fragment-elimination behavior.

Nonoverlapping fragments on a single column
 A fragmentation rule that creates nonoverlapping fragments on a single column is the preferred fragmentation rule from a fragment-elimination standpoint.

Overlapping fragments on a single column
 The fragments on a single column can be overlapping and noncontiguous. You can use any range, MOD function, or arbitrary rule that is based on a single column.

Nonoverlapping fragments, multiple columns
 The database server uses an arbitrary rule to define nonoverlapping fragments based on multiple columns.

1434 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Nonoverlapping fragments on a single column

A fragmentation rule that creates nonoverlapping fragments on a single column is the preferred fragmentation rule from a fragment-elimination standpoint.

The advantage of this type of distribution scheme is that the database server can eliminate fragments for queries with range expressions as well as queries with equality
expressions. You should meet these conditions when you design your fragmentation rule. Figure 1 gives an example of this type of fragmentation rule.
Figure 1. Example of nonoverlapping fragments on a single column

...
FRAGMENT BY EXPRESSION
a<=8 OR a IN (9,10) IN dbsp1,
10<a AND a<=20 IN dbsp2,
a IN (21,22,23) IN dbsp3,
a>23 IN dbsp4;

You can create nonoverlapping fragments using a range rule or an arbitrary rule based on a single column. You can use relational operators, as well as AND, IN, OR, or
BETWEEN. Be careful when you use the BETWEEN operator. When the database server parses the BETWEEN keyword, it includes the end points that you specify in the
range of values. Avoid using a REMAINDER clause in your expression. If you use a REMAINDER clause, the database server cannot always eliminate the remainder
fragment.

Copyright© 2020 HCL Technologies Limited

Overlapping fragments on a single column

The fragments on a single column can be overlapping and noncontiguous. You can use any range, MOD function, or arbitrary rule that is based on a single column.

The only restriction for this category of fragmentation rule is that you base the fragmentation rule on a single column.

Figure 1 shows an example of this type of fragmentation rule.
Figure 1. Example of overlapping fragments on a single column

...
FRAGMENT BY EXPRESSION
a<=8 OR a IN (9,10,21,22,23) IN dbsp1,
a>10 IN dbsp2;

If you use this type of distribution scheme, the database server can eliminate fragments on an equality search but not a range search. This distribution scheme can still be
useful because all INSERT and many UPDATE operations perform equality searches.

This alternative is acceptable if you cannot use an expression that creates nonoverlapping fragments with contiguous values. For example, in cases where a table is
growing over time, you might want to use a MOD function rule to keep the fragments of similar size. Expression-based distribution schemes that use MOD function rules
fall into this category because the values in each fragment are not contiguous.

Copyright© 2020 HCL Technologies Limited

Nonoverlapping fragments, multiple columns

The database server uses an arbitrary rule to define nonoverlapping fragments based on multiple columns.

The following figures show an example of nonoverlapping fragments on two columns.
Figure 1. Example of nonoverlapping fragments on two columns

...
FRAGMENT BY EXPRESSION
0<a AND a<=10 AND b IN (‘E', ‘F', ‘G') IN dbsp1,
0<a AND a<=10 AND b IN (‘H', ‘I', ‘J') IN dbsp2,
10<a AND a<=20 AND b IN (‘E', ‘F', ‘G') IN dbsp3,
10<a AND a<=20 AND b IN (‘H', ‘I', ‘J') IN dbsp4,
20<a AND a<=30 AND b IN (‘E', ‘F', ‘G') IN dbsp5,
20<a AND a<=30 AND b IN (‘H', ‘I', ‘J') IN dbsp6;

Figure 2. Schematic example of nonoverlapping fragments on two columns

Part VI: Administering 1435

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

If you use this type of distribution scheme, the database server can eliminate fragments on an equality search but not a range search. This capability can still be useful
because all INSERT operations and many UPDATE operations perform equality searches. Avoid using a REMAINDER clause in the expression. If you use a REMAINDER
clause, the database server cannot always eliminate the remainder fragment.

This alternative is acceptable if you cannot obtain sufficient granularity using an expression based on a single column.

Copyright© 2020 HCL Technologies Limited

Improve the performance of operations that attach and detach fragments

When you use ALTER FRAGMENT ATTACH and DETACH statements to add or remove a large amount of data in a very large table, you can take steps to improve the
performance of the ATTACH and DETACH operations.

The ALTER FRAGMENT DETACH statement provides a way to delete a segment of the table data rapidly. Similarly, the ALTER FRAGMENT ATTACH statement provides a
way to load large amounts of data incrementally into an existing table by taking advantage of the fragmentation technology. However, the ALTER FRAGMENT ATTACH and
ALTER FRAGMENT DETACH statements can take a long time to execute when the database server rebuilds indexes on the surviving table.

The database server provides performance optimizations for the ATTACH and DETACH operations of the ALTER FRAGMENT statement that reuse the indexes on the
surviving tables. By eliminating the index build during the ATTACH or DETACH operation,

this reduces the time required for the ALTER FRAGMENT ATTACH and ALTER FRAGMENT DETACH statements to execute,
and improves the availability of the table.

The ALTER FRAGMENT operation requires exclusive access and exclusive locks on all of the tables involved in the operation. When you use the FORCE_DDL_EXEC
environment option to specify a time limit for the database server to force out any transactions in other sessions that have opened (or that hold locks on) the tables
involved in an ALTER FRAGMENT ON TABLE operation, also use the SET LOCK MODE TO WAIT statement to specify that number of seconds as the limit for waiting.

If the database server is unable to get exclusive access and exclusive locks on the table because of DDL transactions in concurrent sessions, the server will start rolling
back the transactions that are open or that have locks on the table, until the specified time limit is reached. You might want to enable the FORCE_DDL_EXEC option and
issue the SET LOCK MODE TO WAIT statement on a busy system, perhaps one that runs 24 hours a day, if you do not want to wait for transactions in concurrent sessions
to close before you can alter a fragment.

Improving ALTER FRAGMENT ATTACH performance
 You can take advantage of the performance optimizations for the ALTER FRAGMENT ATTACH statement if your database meets certain requirements.

Improving ALTER FRAGMENT DETACH performance
 You can improve the performance of ALTER FRAGMENT DETACH statements by formulating appropriate distribution schemes for your table and index fragments

and by eliminating the index build during the execution of ALTER FRAGMENT DETACH statements.
Forcing out transactions when altering table fragments

 You can enable the server to force out transactions that have opened or hold locks on the target table of an ALTER FRAGMENT ON TABLE operation in a logging
database. Users holding the DBA access privilege can do this by enabling the FORCE_DDL_EXEC session environment option of the SET ENVIRONMENT statement.

Related concepts:
 Distribution schemes

Strategy for fragmenting indexes
Strategy for fragmenting temporary tables
Distribution schemes that eliminate fragments
Monitoring fragment use
Related tasks:

 Planning a fragmentation strategy

Copyright© 2020 HCL Technologies Limited

Improving ALTER FRAGMENT ATTACH performance

You can take advantage of the performance optimizations for the ALTER FRAGMENT ATTACH statement if your database meets certain requirements.

To take advantage of the performance optimization, you must meet all of the following requirements:

Formulate appropriate distribution schemes for your table and index fragments.
Ensure that no data movement occurs between the resultant partitions due to fragment expressions.

1436 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Update statistics for all the participating tables.
Make the indexes on the attached tables unique if the index on the surviving table is unique.

Important: Only logging databases can benefit from the performance improvements for the ALTER FRAGMENT ATTACH statement. Without logging, the database server
works with multiple copies of the same table to ensure recoverability of the data when a failure occurs. This requirement prevents reuse of the existing index fragments.

Distribution schemes for reusing indexes
 You can use one of three distribution schemes that allow the attach operation of the ALTER FRAGMENT statement to reuse existing indexes.

Ensuring no data movement when you attach a fragment
 You can ensure there is no data movement when you attach a fragment by establishing identical check constraint expressions and verifying that fragment

expressions are not overlapping.
Indexes on attached tables

 The database server tries to reuse the indexes on the attached tables as fragments of the resultant index. However, the corresponding index on the attached table
might not exist or might not be usable due to disk-format mismatches. In these cases, it might be faster to build an index on the attached tables rather than to build
the entire index on the resultant table.

Copyright© 2020 HCL Technologies Limited

Distribution schemes for reusing indexes

You can use one of three distribution schemes that allow the attach operation of the ALTER FRAGMENT statement to reuse existing indexes.

These distributions schemes are:

Fragmenting the index in the same way as the table
Fragmenting the index with the same set of fragment expressions as the table
Attaching unfragmented tables to form a fragmented table

Fragmenting the index in the same way as the table
 You fragment an index in the same way as the table when you create an index without specifying a fragmentation strategy.

Fragmenting the index with the same distribution scheme as the table
 You fragment an index with the same distribution scheme as the table when you create an index that uses the same fragment expressions as the table.

Attaching unfragmented tables together
 You can take advantage of the performance benefits of the ALTER FRAGMENT ATTACH operation when you combine two unfragmented tables into one fragmented

table.

Copyright© 2020 HCL Technologies Limited

Fragmenting the index in the same way as the table

You fragment an index in the same way as the table when you create an index without specifying a fragmentation strategy.

A fragmentation strategy is the distribution scheme and set of dbspaces in which the fragments are located. For details, see Planning a fragmentation strategy.

Example of Fragmenting the Index in the Same Way as the Table
Suppose you create a fragmented table and index with the following SQL statements:

CREATE TABLE tb1(a int)
 FRAGMENT BY EXPRESSION
 (a >=0 AND a < 5) IN db1,
 (a >=5 AND a <10) IN db2;

CREATE INDEX idx1 ON tb1(a);

Suppose you then create another table that is not fragmented, and you subsequently decide to attach it to the fragmented table.

CREATE TABLE tb2 (a int, CHECK (a >=10 AND a<15))
 IN db3;

CREATE INDEX idx2 ON tb2(a)
 IN db3;

ALTER FRAGMENT ON TABLE tb1
 ATTACH
 tb2 AS (a >= 10 and a<15) AFTER db2;

This attach operation can take advantage of the existing index idx2 if no data movement occurs between the existing and the new table fragments. If no data movement
occurs:

The database server reuses index idx2 and converts it to a fragment of index idx1.
The index idx1 remains as an index with the same fragmentation strategy as the table tb1.

If the database server discovers that one or more rows in the table tb2 belong to preexisting fragments of the table tb1, the database server:

Drops and rebuilds the index idx1 to include the rows that were originally in tables tb1 and tb2
Drops the index idx2

Part VI: Administering 1437

https://www.hcltech.com/
https://www.hcltech.com/

For more information about how to ensure no data movement between the existing and the new table fragments, see Ensuring no data movement when you attach a
fragment.

Copyright© 2020 HCL Technologies Limited

Fragmenting the index with the same distribution scheme as the table

You fragment an index with the same distribution scheme as the table when you create an index that uses the same fragment expressions as the table.

The database server determines if the fragment expressions are identical, based on the equivalency of the expression tree instead of the algebraic equivalence. For
example, consider the following two expressions:

(col1 >= 5)
(col1 = 5 OR col1 > 5)

Although these two expressions are algebraically equivalent, they are not identical expressions.

Example of Fragmenting the Index with the Same Distribution Scheme as the Table
Suppose you create two fragmented tables and indexes with the following SQL statements:

CREATE TABLE tb1 (a INT)
 FRAGMENT BY EXPRESSION
 (a <= 10) IN tabdbspc1,
 (a <= 20) IN tabdbspc2,
 (a <= 30) IN tabdbspc3;
CREATE INDEX idx1 ON tb1 (a)
 FRAGMENT BY EXPRESSION
 (a <= 10) IN idxdbspc1,
 (a <= 20) IN idxdbspc2,
 (a <= 30) IN idxdbspc3;

CREATE TABLE tb2 (a INT CHECK a> 30 AND a<= 40)
 IN tabdbspc4;
CREATE INDEX idx2 ON tb2(a)
 IN idxdbspc4;

Suppose you then attach table tb2 to table tb1 with the following sample SQL statement:

ALTER FRAGMENT ON TABLE tb1
 ATTACH tb2 AS (a <= 40);

The database server can eliminate the rebuild of index idx1 for this attach operation for the following reasons:

The fragmentation expression for index idx1 is identical to the fragmentation expression for table tb1. The database server:
Expands the fragmentation of the index idx1 to the dbspace idxdbspc4
Converts index idx2 to a fragment of index idx1

No rows move from one fragment to another because the CHECK constraint is identical to the resulting fragmentation expression of the attached table.
For more information about how to ensure no data movement between the existing and the new table fragments, see Ensuring no data movement when you attach
a fragment.

Copyright© 2020 HCL Technologies Limited

Attaching unfragmented tables together

You can take advantage of the performance benefits of the ALTER FRAGMENT ATTACH operation when you combine two unfragmented tables into one fragmented table.

For example, suppose you create two unfragmented tables and indexes with the following SQL statements:

CREATE TABLE tb1(a int) IN db1;
 CREATE INDEX idx1 ON tb1(a) in db1;
CREATE TABLE tb2(a int) IN db2;
 CREATE INDEX idx2 ON tb2(a) in db2;

You might want to combine these two unfragmented tables with the following sample distribution scheme:

ALTER FRAGMENT ON TABLE tb1
 ATTACH
 tb1 AS (a <= 100),
 tb2 AS (a > 100);

If no data migrates between the fragments of tb1 and tb2, the database server redefines index idx1 with the following fragmentation strategy:

CREATE INDEX idx1 ON tb1(a) F
 FRAGMENT BY EXPRESSION
 a <= 100 IN db1,
 a > 100 IN db2;

Important: This behavior results in a different fragmentation strategy for the index prior to version 7.3 and version 9.2 of the database server. In earlier versions, the
ALTER FRAGMENT ATTACH statement creates an unfragmented detached index in the dbspace db1.

Copyright© 2020 HCL Technologies Limited

1438 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Ensuring no data movement when you attach a fragment

You can ensure there is no data movement when you attach a fragment by establishing identical check constraint expressions and verifying that fragment expressions are
not overlapping.

To ensure that no data movement occurs when you attach a fragment:

1. Establish a check constraint on the attached table that is identical to the fragment expression that it will assume after the ALTER FRAGMENT ATTACH operation.
2. Define the fragments with nonoverlapping expressions.

For example, you might create a fragmented table and index with the following SQL statements:

CREATE TABLE tb1(a int)
 FRAGMENT BY EXPRESSION
 (a >=0 AND a < 5) IN db1,
 (a >=5 AND a <10) IN db2;

CREATE INDEX idx1 ON tb1(a);

Suppose you create another table that is not fragmented, and you subsequently decide to attach it to the fragmented table.

CREATE TABLE tb2 (a int, check (a >=10 and a<15))
 IN db3;

CREATE INDEX idx2 ON tb2(a)
 IN db3;

ALTER FRAGMENT ON TABLE tb1
 ATTACH
 tb2 AS (a >= 10 AND a<15) AFTER db2;

This ALTER FRAGMENT ATTACH operation takes advantage of the existing index idx2 because the following steps were performed in the example to prevent data
movement between the existing and the new table fragment:

The check constraint expression in the CREATE TABLE tb2 statement is identical to the fragment expression for table tb2 in the ALTER FRAGMENT ATTACH
statement.
The fragment expressions specified in the CREATE TABLE tb1 and the ALTER FRAGMENT ATTACH statements are not overlapping.

Therefore, the database server preserves index idx2 in dbspace db3 and converts it into a fragment of index idx1. The index idx1 remains as an index with the same
fragmentation strategy as the table tb1.

Copyright© 2020 HCL Technologies Limited

Indexes on attached tables

The database server tries to reuse the indexes on the attached tables as fragments of the resultant index. However, the corresponding index on the attached table might
not exist or might not be usable due to disk-format mismatches. In these cases, it might be faster to build an index on the attached tables rather than to build the entire
index on the resultant table.

Informix® estimates the cost to create the whole index on the resultant table. The server then compares this cost to the cost of building the individual index fragments for
the attached tables and chooses the index build with the least cost.

Automatically Gathered Statistics for New Indexes
When the CREATE INDEX statement runs successfully, with or without the ONLINE keyword, Informix automatically gathers the following statistics for the newly created
index:

Index-level statistics, equivalent to the statistics gathered in the UPDATE STATISTICS operation in LOW mode, for all types of indexes, including B-tree, Virtual
Index Interface, and functional indexes.
Column-distribution statistics, equivalent to the distribution generated in the UPDATE STATISTICS operation in HIGH mode, for a non-opaque leading indexed
column of an ordinary B-tree index. The resolution of the HIGH mode is 1.0 for a table size that is less than 1 million rows and 0.5 for higher table sizes. Tables with
more than 1 million rows have a better resolution because they have more bins for statistics.

The automatically gathered distribution statistics are available to the query optimizer when it designs query plans for the table on which the new index was created.

Run UPDATE STATISTICS Before Attaching Tables
To ensure that cost estimates are correct, you should execute the UPDATE STATISTICS statement on all of the participating tables before you attach the tables. The LOW
mode of the UPDATE STATISTICS statement is sufficient to derive the appropriate statistics for the optimizer to determine cost estimates for rebuilding indexes.

For more information about using the UPDATE STATISTICS statement, see the IBM® Informix Guide to SQL: Syntax.

Example for situation when corresponding index does not exist
 When a table does not have an index on a column that can serve as the fragment of the resultant index, the database server estimates the cost of building the index

fragment for the column, compares this cost to rebuilding the entire index for all fragments on the resultant table, and chooses the index build with the least cost.
Example for situation when index on table is not usable

 When the index on a table is not usable, the database server estimates the cost of building the index fragment, compares this cost to rebuilding the entire index for
all fragments on the resultant table, and chooses the index build with the least cost.

Part VI: Administering 1439

https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Example for situation when corresponding index does not exist

When a table does not have an index on a column that can serve as the fragment of the resultant index, the database server estimates the cost of building the index
fragment for the column, compares this cost to rebuilding the entire index for all fragments on the resultant table, and chooses the index build with the least cost.

Suppose you create a fragmented table and index with the following SQL statements:

CREATE TABLE tb1(a int, b int)
 FRAGMENT BY EXPRESSION
 (a >=0 AND a < 5) IN db1,
 (a >=5 AND a <10) IN db2;
CREATE INDEX idx1 ON tb1(a);

Suppose you then create two more tables that are not fragmented, and you subsequently decide to attach them to the fragmented table.

CREATE TABLE tb2 (a int, b int,
 CHECK (a >=10 and a<15)) IN db3;
CREATE INDEX idx2 ON tb2(a) IN db3;
CREATE TABLE tb3 (a int, b int,
 CHECK (a >= 15 and a<20)) IN db4;
CREATE INDEX idx3 ON tb3(b) IN db4;

ALTER FRAGMENT ON TABLE tb1
 ATTACH tb2 AS (a >= 10 and a<15) tb3 AS (a >= 15 and a<20);

The three CREATE INDEX statements automatically calculate distribution statistics for the leading column of each index in HIGH mode, as well as index statistics and
table statistics in LOW mode.

The only time the UPDATE STATISTICS LOW FOR TABLE statement is required is after a CREATE INDEX statement in a situation in which the table has other preexisting
indexes, as shown in this example:

CREATE TABLE tb1(col1 int, col2 int);
CREATE INDEX index idx1 on tb1(col1);
 (equivalent to update stats low on table tb1)
LOAD from tb1.unl insert into tb1; (load some data)
CREATE INDEX idx2 on tb1(col2);

The statement CREATE INDEX idx2 on tb1(col2) is NOT completely equivalent to UPDATE STATISTICS LOW FOR TABLE tb1, because the CREATE INDEX
statement does not update index- level statistics for the preexisting index called idx1.

In the preceding example, table tb3 does not have an index on column a that can serve as the fragment of the resultant index idx1. The database server estimates the
cost of building the index fragment for column a on the consumed table tb3 and compares this cost to rebuilding the entire index for all fragments on the resultant table.
The database server chooses the index build with the least cost.

Copyright© 2020 HCL Technologies Limited

Example for situation when index on table is not usable

When the index on a table is not usable, the database server estimates the cost of building the index fragment, compares this cost to rebuilding the entire index for all
fragments on the resultant table, and chooses the index build with the least cost.

Suppose you create tables and indexes as in the previous section, but the index on the third table specifies a dbspace that the first table also uses. The following SQL
statements show this scenario:

CREATE TABLE tb1(a int, b int)
 FRAGMENT BY EXPRESSION
 (a >=0 AND a < 5) IN db1,
 (a >=5 AND a <10) IN db2;
CREATE INDEX idx1 ON tb1(a);
CREATE TABLE tb2 (a int, b int, check (a >=10 and a<15))
 IN db3;
CREATE INDEX idx2 ON tb2(a)
 IN db3;

CREATE TABLE tb3 (a int, b int, check (a >= 15 and a<20))
 IN db4;
CREATE INDEX idx3 ON tb3(a)
 IN db2 ;

This example creates the index idx3 on table tb3 in the dbspace db2. As a result, index idx3 is not usable because index idx1 already has a fragment in the dbspace db2,
and the fragmentation strategy does not allow more than one fragment to be specified in a given dbspace.

Again, the database server estimates the cost of building the index fragment for column a on the consumed table tb3 and compares this cost to rebuilding the entire index
idx1 for all fragments on the resultant table. Then the database server chooses the index build with the least cost.

Copyright© 2020 HCL Technologies Limited

Improving ALTER FRAGMENT DETACH performance

1440 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

You can improve the performance of ALTER FRAGMENT DETACH statements by formulating appropriate distribution schemes for your table and index fragments and by
eliminating the index build during the execution of ALTER FRAGMENT DETACH statements.

To eliminate the index build during execution of the ALTER FRAGMENT DETACH statement, use one of the following fragmentation strategies:

Fragment the index in the same way as the table.
Fragment the index with the same distribution scheme as the table.

Important: Only logging databases can benefit from the performance improvements for the ALTER FRAGMENT DETACH statement. Without logging, the database server
works with multiple copies of the same table to ensure recoverability of the data when a failure occurs. This requirement prevents reuse of the existing index fragments.

Fragmenting the index in the same way as the table
 You fragment an index in the same way that you fragment the table when you create a fragmented table and subsequently create an index without specifying a

fragmentation strategy, unless the distribution scheme is round-robin and automatic location is enabled. Indexes on tables that use the round-robin distribution
scheme are not fragmented when the AUTOLOCATE configuration parameter or environment option is set to a positive integer.
Fragmenting the index using same distribution scheme as the table

 You fragment an index with the same distribution scheme as the table when you create the index that uses the same fragment expressions as the table.

Copyright© 2020 HCL Technologies Limited

Fragmenting the index in the same way as the table

You fragment an index in the same way that you fragment the table when you create a fragmented table and subsequently create an index without specifying a
fragmentation strategy, unless the distribution scheme is round-robin and automatic location is enabled. Indexes on tables that use the round-robin distribution scheme
are not fragmented when the AUTOLOCATE configuration parameter or environment option is set to a positive integer.

For example, suppose you create a fragmented table and index with the following SQL statements:

CREATE TABLE tb1(a int)
 FRAGMENT BY EXPRESSION
 (a >=0 AND a < 5) IN db1,
 (a >=5 AND a <10) IN db2,
 (a >=10 AND a <15) IN db3;
CREATE INDEX idx1 ON tb1(a);

The database server fragments the index keys into dbspaces db1, db2, and db3 with the same column a value ranges as the table because the CREATE INDEX statement
does not specify a fragmentation strategy.

Suppose you then decide to detach the data in the third fragment with the following SQL statement:

ALTER FRAGMENT ON TABLE tb1
 DETACH db3 tb3;

Because the fragmentation strategy of the index is the same as the table, the ALTER FRAGMENT DETACH statement does not rebuild the index after the detach operation.
The database server drops the fragment of the index in dbspace db3, updates the system catalog tables, and eliminates the index build.

Copyright© 2020 HCL Technologies Limited

Fragmenting the index using same distribution scheme as the table

You fragment an index with the same distribution scheme as the table when you create the index that uses the same fragment expressions as the table.

A common fragmentation strategy is to fragment indexes in the same way as the tables but to specify different dbspaces for the index fragments. This fragmentation
strategy of putting the index fragments into different dbspaces from the table can improve the performance of operations such as backup and recovery.

For example, suppose you create a fragmented table and index with the following SQL statements:

CREATE TABLE tb1(a int, b int)
 FRAGMENT BY EXPRESSION
 (a >=0 AND a < 5) IN db1,
 (a >=5 AND a <10) IN db2,
 (a >=10 AND a <15) IN db3;

CREATE INDEX idx1 on tb1(a)
 FRAGMENT BY EXPRESSION
 (a >=0 AND a< 5) IN db4,
 (a >=5 AND a< 10) IN db5,
 (a >=10 AND a<15) IN db6;

Suppose that you then decide to detach the data in the third fragment with the following SQL statement:

ALTER FRAGMENT ON TABLE tb1
 DETACH db3 tb3;

Because the distribution scheme of the index is the same as the table, the ALTER FRAGMENT DETACH statement does not rebuild the index after the detach operation.
The database server drops the fragment of the index in dbspace db3, updates the system catalog tables, and eliminates the index build.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1441

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Forcing out transactions when altering table fragments

You can enable the server to force out transactions that have opened or hold locks on the target table of an ALTER FRAGMENT ON TABLE operation in a logging database.
Users holding the DBA access privilege can do this by enabling the FORCE_DDL_EXEC session environment option of the SET ENVIRONMENT statement.

You might want to do this on a busy system, perhaps one that runs 24 hours a day, if you do not want to wait for sessions to close before you alter a fragment.

Be aware, however, that by forcing out concurrent transactions to avoid waiting for locks to be released, the database server closes the Update cursors and rolls back the
transactions of other users.

Prerequisites:

You must be user informix or hold DBA access privileges on the database.
The table must be in a database that supports transaction logging.

To force out concurrent transactions of other sessions when altering a table fragment:

1. Set the FORCE_DDL_EXEC environment option of the SET ENVIRONMENT statement to one of the following values:
ON, on , '1', or "1" to enable the server to force out transactions that are open or have a lock on the table when an ALTER FRAGMENT ON TABLE statement
is issued, until the server obtains a lock and exclusive access to the table.
A positive integer that represents an amount of time in seconds. The numeric value enables the server to force out transactions until the server gets
exclusive access and exclusive locks on the table, or until the specified time limit. If the server cannot force out transactions by the specified number of
seconds, the server stops attempting to force out the transactions, and the ALTER FRAGMENT statement waits for the locks to be released when the
concurrent transactions are committed or rolled back.

For example, to enable the FORCE_DDL_EXEC environment option to operate for 100 seconds when an ALTER FRAGMENT ON TABLE statement is issued, specify:

SET ENVIRONMENT FORCE_DDL_EXEC '100';

2. Set the lock mode to wait to ensure that the server will wait a specified amount of time before forcing out any transactions.
For example, to set the lock mode to wait for 20 seconds, specify:

SET LOCK MODE TO WAIT "20";

For more information, see Setting the lock mode to wait.

3. Run an ALTER FRAGMENT ON TABLE statement, for example, to attach, detach, modify, add, or drop the fragment.

The following SQL statements perform these actions:

enable the FORCE_DDL_EXEC session environment option for 100 seconds,
set the database server to wait up to 25 seconds for locks to be released,
and change the interval size and storage location of range fragment p2 of table tabF:

SET ENVIRONMENT FORCE_DDL_EXEC '100';
SET LOCK MODE TO WAIT 25;
ALTER FRAGMENT ON TABLE tabF MODIFY
 PARTITION p2 TO PARTITION p2 VALUES < 500 IN dbs0;

Attention:
While the ALTER FRAGMENT statement above is running, other transactions that attempt to access rows in table tabF are at risk of being forced out, if their Update cursor
holds locks on rows in fragment p2.

After a transaction is rolled back because the FORCE_DDL_EXEC session environment option is enabled by another session, the database server returns this error to the
session whose transaction failed:

-458 Long transaction aborted.

The concurrent transaction failing with error -458 was not necessarily "long," but it had not yet been committed after opening or holding locks on the same table that the
ALTER FRAGMENT statement in this example was modifying.
After you complete an ALTER FRAGMENT ON TABLE operation with the FORCE_DDL_EXEC session environment option enabled, you can turn the FORCE_DDL_EXEC
session environment option off. For example, specify:

SET ENVIRONMENT FORCE_DDL_EXEC OFF;

Related information:
 FORCE_DDL_EXEC session environment option

Copyright© 2020 HCL Technologies Limited

Monitoring fragment use

Once you determine a fragmentation strategy, you can monitor fragmentation.

You can monitor fragmentation in the following ways:

Run individual onstat utility commands to capture information about specific aspects of a running query.
Run a SET EXPLAIN statement before you run a query to write the query plan to an output file.

Monitoring fragmentation with the onstat -g ppf command
 With the onstat -g ppf command, you can view partition information and monitor the I/O activity to verify your strategy and determine whether the I/O is balanced

across fragments.

1442 Part VI: Administering

https://www.hcltech.com/

Monitoring fragmentation with SET EXPLAIN output
When the table is fragmented, the output of the SET EXPLAIN ON statement shows which table or index the database server scans to execute the query.

Related concepts:
 Distribution schemes

Strategy for fragmenting indexes
Strategy for fragmenting temporary tables
Distribution schemes that eliminate fragments
Improve the performance of operations that attach and detach fragments
Related tasks:

 Planning a fragmentation strategy

Copyright© 2020 HCL Technologies Limited

Monitoring fragmentation with the onstat -g ppf command

With the onstat -g ppf command, you can view partition information and monitor the I/O activity to verify your strategy and determine whether the I/O is balanced across
fragments.

The onstat -g ppf output includes the number of read-and-write requests sent to each fragment that is currently open. Because a request can trigger multiple I/O
operations, these requests do not indicate how many individual disk I/O operations occur, but you can get a good idea of the I/O activity from the displayed columns.

The brfd column in the output displays the number of buffer reads in pages. (Each buffer can contain one page.) This information is useful if you need to monitor the time
a query takes to execute. Typically query execution time has a strong dependency on the number of required buffer reads. If the size of client-server buffering is small and
your database contains TEXT data, query execution time can involve significantly more buffer reads, because the server reads the prior TEXT data.

The onstat -g ppf output by itself does not identify the table in which a fragment is located. To determine the table for the fragment, join the partnum column in the
output to the partnum column in the sysfragments system catalog table. The sysfragments table displays the associated table id. You can also find the table name for
the fragment by joining the table id column in sysfragments to the table id column in systables.

To determine the table name in onstat -g ppf output:

1. Obtain the value in the partnum field of the onstat -g ppf output.
2. Join the tabid column in the sysfragments system catalog table with the tabid column in the systables system catalog table to obtain the table name from

systables.
Use the partnum field value that you obtain in step 1 in the SELECT statement.

SELECT a.tabname FROM systables a, sysfragments b
 WHERE a.tabid = b.tabid
 AND partn = partnum_value;

Copyright© 2020 HCL Technologies Limited

Monitoring fragmentation with SET EXPLAIN output

When the table is fragmented, the output of the SET EXPLAIN ON statement shows which table or index the database server scans to execute the query.

The SET EXPLAIN output identifies the fragments with a fragment number. The fragment numbers are the same as those contained in the partn column in the
sysfragments system catalog table.

The following example of partial SET EXPLAIN output shows a query that takes advantage of fragment elimination and scans two fragments in table t1:

QUERY:

SELECT * FROM t1 WHERE c1 > 12

Estimated Cost: 3
Estimated # of Rows Returned: 2

1) informix.t1: SEQUENTIAL SCAN (Serial, fragments: 1, 2)

 Filters: informix.t1.c1 > 12

If the optimizer must scan all fragments (that is, if it is unable to eliminate any fragment from consideration), the SET EXPLAIN output displays fragments: ALL. In
addition, if the optimizer eliminates all the fragments from consideration (that is, none of the fragments contain the queried information), the SET EXPLAIN output displays
fragments: NONE.

For information about how the database server eliminates a fragment from consideration, see Distribution schemes that eliminate fragments.

For more information about the SET EXPLAIN ON statement, see Report that shows the query plan chosen by the optimizer.

Copyright© 2020 HCL Technologies Limited

Queries and the query optimizer

These topics describe query plans, explain how the database server manages query optimization, and discuss factors that you can use to influence the query plan. These
topics also describe performance considerations for SPL routines, the UDR cache, and triggers.

Part VI: Administering 1443

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The parallel database query (PDQ) features in the database server provide the largest potential performance improvements for a query. Parallel database query (PDQ)
describes PDQ and the Memory Grant Manager (MGM) and explains how to control resource use by queries.

PDQ provides the most substantial performance gains if you fragment your tables as described in Fragmentation guidelines.

Improving individual query performance explains how to improve the performance of specific queries.

Data warehouse queries and performance issues related to dimensional databases are described in the IBM Informix Data Warehouse Guide.

1. The query plan
 The query optimizer evaluates the different ways in which a query might be performed and determines the best way to select the requested data. During this

evaluation, the optimizer formulates a query plan to fetch the data rows that are required to process a query.
2. Factors that affect the query plan

 When the optimizer determines the query plan, it assigns a cost to each possible plan and then chooses the plan with the lowest cost. The optimizer analyzes
several factors to determine the cost of each query plan.

3. Time costs of a query
 You can adjust a few, but not all, of the response-time effects of actions that the database server performs when processing a query.

4. Optimization when SQL is within an SPL routine
 If an SPL routine contains SQL statements, the database server optimizes and executes the SQL within the SPL routine.

5. Trigger execution
A trigger is a database object that automatically executes one or more SQL statements (the triggered action) when a specified data manipulation language operation
(the triggering event) occurs. You can define one or more triggers on a table to execute after a SELECT, INSERT, UPDATE or DELETE triggering event.

Related information:
 Performance tuning dimensional databases

Copyright© 2020 HCL Technologies Limited

The query plan

The query optimizer evaluates the different ways in which a query might be performed and determines the best way to select the requested data. During this evaluation,
the optimizer formulates a query plan to fetch the data rows that are required to process a query.

For example, when evaluating the different ways in which a query might be performed, the optimizer must determine whether indexes should be used. If the query
includes a join, the optimizer must determine the join plan (hash or nested loop) and the order in which tables are evaluated or joined.

The following topics describe the components of a query plan and show examples of query plans.

The access plan
 The way that the optimizer chooses to read a table is called an access plan. The simplest method to access a table is to read it sequentially, which is called a table

scan. The optimizer chooses a table scan when most of the table must be read or the table does not have an index that is useful for the query.
The join plan

 When a query contains more than one table, Informix® joins the tables using filters in the query. The way that the optimizer chooses to join the tables is the join
plan.
Example of query-plan execution
This topic contains an example of a query with a SELECT statement that calls for a three-way join and describes one possible query plan.
Query plans that include an index self-join path

 An index self-join is a type of index scan that you can think of as a union of many small index scans, each one with a single unique combination of lead-key columns
and filters on non-lead-key columns.
Query plan evaluation

 The optimizer considers all query plans by analyzing factors such as disk I/O and CPU costs.
Report that shows the query plan chosen by the optimizer

 Any user who runs a query can use the SET EXPLAIN statement or the EXPLAIN directive to display the query plan that the optimizer chooses.
Sample query plan reports

 The topics in this section describe sample query plans that you might want to display when analyzing the performance of different kinds of queries.
XML query plans in IBM Data Studio

 IBM® Data Studio consists of a set of tools to use for administration, data modeling, and building queries from data that comes from data servers. The
EXPLAIN_SQL routine prepares a query and returns a query plan in XML. The IBM Data Studio Administration Edition can use the EXPLAIN_SQL routine to obtain a
query plan in XML format, interpret the XML, and render the plan visually.

Next topic: Factors that affect the query plan

Copyright© 2020 HCL Technologies Limited

The access plan

The way that the optimizer chooses to read a table is called an access plan. The simplest method to access a table is to read it sequentially, which is called a table scan.
The optimizer chooses a table scan when most of the table must be read or the table does not have an index that is useful for the query.

The optimizer can also choose to access the table by an index. If the column in the index is the same as a column in a filter of the query, the optimizer can use the index to
retrieve only the rows that the query requires. The optimizer can use a key-only index scan if the columns requested are within one index on the table. The database server
retrieves the needed data from the index and does not access the associated table.
Important: The optimizer does not choose a key-only scan for a VARCHAR column. If you want to take advantage of key-only scans, use the ALTER TABLE with the MODIFY
clause to change the column to a CHAR data type.
The optimizer compares the cost of each plan to determine the best one. The database server derives cost from estimates of the number of I/O operations required,
calculations to produce the results, rows accessed, sorting, and so forth.

1444 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

The join plan

When a query contains more than one table, Informix® joins the tables using filters in the query. The way that the optimizer chooses to join the tables is the join plan.

In the following query, the customer and orders table are joined by the customer.customer_num = orders.customer_num filter:

SELECT * from customer, orders
WHERE customer.customer_num = orders.customer_num
AND customer.lname = "Higgins";

The join method can be a nested-loop join or a hash join.

Because of the nature of hash joins, an application with isolation level set to Repeatable Read might temporarily lock all the records in tables that are involved in the join,
including records that fail to qualify the join. This situation leads to decreased concurrency among connections. Conversely, nested-loop joins lock fewer records but
provide reduced performance when a large number of rows are accessed. Thus, each join method has advantages and disadvantages.

Nested-loop join
 In a nested-loop join, the database server scans the first, or outer table, and then joins each of the rows that pass table filters to the rows found in the second, or

inner table.
Hash join

 The optimizer usually uses a hash join when at least one of the two join tables does not have an index on the join column or when the database server must read a
large number of rows from both tables. No index and no sorting is required when the database server performs a hash join.
Join order

 The order that tables are joined in a query is extremely important. A poor join order can cause query performance to decline noticeably.

Copyright© 2020 HCL Technologies Limited

Nested-loop join

In a nested-loop join, the database server scans the first, or outer table, and then joins each of the rows that pass table filters to the rows found in the second, or inner
table.

Figure 1 shows tables and rows, and the order they are read, for query:

SELECT * FROM customer, orders
WHERE customer.customer_num=orders.customer_num
AND order_date>"01/01/2007";

The database server accesses an outer table by an index or by a table scan. The database server applies any table filters first. For each row that satisfies the filters on the
outer table, the database server reads the inner table to find a match.

The database server reads the inner table once for every row in the outer table that fulfills the table filters. Because of the potentially large number of times that the inner
table can be read, the database server usually accesses the inner table by an index.

Figure 1. Nested-loop join

If the inner table does not have an index, the database server might construct an autoindex at the time of query execution. The optimizer might determine that the cost to
construct an autoindex at the time of query execution is less than the cost to scan the inner table for each qualifying row in the outer table.

If the optimizer changes a subquery to a nested-loop join, it might use a variation of the nested-loop join, called a semi join. In a semi join, the database server reads the
inner table only until it finds a match. In other words, for each row in the outer table, the inner table contributes at most one row. For more information on how the
optimizer handles subqueries, see Query plans for subqueries.

Copyright© 2020 HCL Technologies Limited

Hash join

The optimizer usually uses a hash join when at least one of the two join tables does not have an index on the join column or when the database server must read a large
number of rows from both tables. No index and no sorting is required when the database server performs a hash join.

A hash join consists of two activities: first building the hash table (build phase) and then probing the hash table (probe phase). Figure 1 shows the hash join in detail.

In the build phase, the database server reads one table and, after it applies any filters, creates a hash table. Think of a hash table conceptually as a series of buckets, each
with an address that is derived from the key value by applying a hash function. The database server does not sort keys in a particular hash bucket.

Smaller hash tables can fit in the virtual portion of database server shared memory. The database server stores larger hash files on disk in the dbspace specified by the
DBSPACETEMP configuration parameter or the DBSPACETEMP environment variable.

Part VI: Administering 1445

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

In the probe phase, the database server reads the other table in the join and applies any filters. For each row that satisfies the filters on the table, the database server
applies the hash function on the key and probes the hash table to find a match.
Figure 1. How a hash join is executed

Copyright© 2020 HCL Technologies Limited

Join order

The order that tables are joined in a query is extremely important. A poor join order can cause query performance to decline noticeably.

The following SELECT statement calls for a three-way join:

SELECT C.customer_num, O.order_num
 FROM customer C, orders O, items I
 WHERE C.customer_num = O.customer_num
 AND O.order_num = I.order_num

The optimizer can choose one of the following join orders:

Join customer to orders. Join the result to items.
Join orders to customer. Join the result to items.
Join customer to items. Join the result to orders.
Join items to customer. Join the result to orders.
Join orders to items. Join the result to customer.
Join items to orders. Join the result to customer.

For an example of how the database server executes a plan according to a specific join order, see Example of query-plan execution.

Copyright© 2020 HCL Technologies Limited

Example of query-plan execution

This topic contains an example of a query with a SELECT statement that calls for a three-way join and describes one possible query plan.

The following SELECT statement calls for a three-way join:

SELECT C.customer_num, O.order_num
 FROM customer C, orders O, items I
 WHERE C.customer_num = O.customer_num
 AND O.order_num = I.order_num

Assume also that no indexes are on any of the three tables. Suppose that the optimizer chooses the customer-orders-items path and the nested-loop join for both joins
(in reality, the optimizer usually chooses a hash join for two tables without indexes on the join columns). Figure 1 shows the query plan, expressed in pseudocode. For
information about interpreting query plan information, see Report that shows the query plan chosen by the optimizer.
Figure 1. A query plan in pseudocode

for each row in the customer table do:
 read the row into C
 for each row in the orders table do:
 read the row into O
 if O.customer_num = C.customer_num then
 for each row in the items table do:
 read the row into I
 if I.order_num = O.order_num then
 accept the row and send to user
 end if
 end for
 end if
 end for
end for

This procedure reads the following rows:

All rows of the customer table once
All rows of the orders table once for each row of the customer table
All rows of the items table once for each row of the customer-orders pair

This example does not describe the only possible query plan. Another plan merely reverses the roles of customer and orders: for each row of orders, it reads all rows of
customer, looking for a matching customer_num. It reads the same number of rows in a different order and produces the same set of rows in a different order. In this
example, no difference exists in the amount of work that the two possible query plans need to do.

Example of a join with column filters
 The presence of a column filter can change the query plan. A column filter is a WHERE expression that reduces the number of rows that a table contributes to a join.

1446 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Example of a join with indexes
The presence of indexes and constraints in query plans provides the optimizer with options that can greatly improve query-execution time.

Copyright© 2020 HCL Technologies Limited

Example of a join with column filters

The presence of a column filter can change the query plan. A column filter is a WHERE expression that reduces the number of rows that a table contributes to a join.

The following example shows the query described in Example of query-plan execution with a filter added:

SELECT C.customer_num, O.order_num
 FROM customer C, orders O, items I
 WHERE C.customer_num = O.customer_num
 AND O.order_num = I.order_num
 AND O.paid_date IS NULL

The expression O.paid_date IS NULL filters out some rows, reducing the number of rows that are used from the orders table. Consider a plan that starts by reading from
orders. Figure 1 displays this sample plan in pseudocode.
Figure 1. Query plan that uses a column filter

for each row in the orders table do:
 read the row into O
 if O.paid_date is null then
 for each row in the customer table do:
 read the row into C
 if O.customer_num = C.customer_num then
 for each row in the items table do:
 read the row into I
 if I.order_num = O.order_num then
 accept row and return to user
 end if
 end for
 end if
 end for
 end if
end for

Let pdnull represent the number of rows in orders that pass the filter. It is the value of COUNT(*) that results from the following query:

SELECT COUNT(*) FROM orders WHERE paid_date IS NULL

If one customer exists for every order, the plan in Figure 1 reads the following rows:

All rows of the orders table once
All rows of the customer table, pdnull times
All rows of the items table, pdnull times

Figure 2 shows an alternative execution plan that reads from the customer table first.
Figure 2. The alternative query plan in pseudocode

for each row in the customer table do:
 read the row into C
 for each row in the orders table do:
 read the row into O
 if O.paid_date is null and
 O.customer_num = C.customer_num then
 for each row in the items table do:
 read the row into I
 if I.order_num = O.order_num then
 accept row and return to user
 end if
 end for
 end if
 end for

Because the filter is not applied in the first step that Figure 2 shows, this plan reads the following rows:

All rows of the customer table once
All rows of the orders table once for every row of customer
All rows of the items table, pdnull times

The query plans in Figure 1 and Figure 2 produce the same output in a different sequence. They differ in that one reads a table pdnull times, and the other reads a table
SELECT COUNT(*) FROM customer times. By choosing the appropriate plan, the optimizer can save thousands of disk accesses in a real application.

Copyright© 2020 HCL Technologies Limited

Example of a join with indexes

The presence of indexes and constraints in query plans provides the optimizer with options that can greatly improve query-execution time.

This topic shows the outline of a query plan that differs from query shown in Example of a join with column filters, because it is constructed using indexes.
Figure 1. Query plan with indexes

Part VI: Administering 1447

https://www.hcltech.com/
https://www.hcltech.com/

for each row in the customer table do:
 read the row into C
 look up C.customer_num in index on orders.customer_num
 for each matching row in the orders index do:
 read the table row for O
 if O.paid_date is null then
 look up O.order_num in index on items.order_num
 for each matching row in the items index do:
 read the row for I
 construct output row and return to user
 end for
 end if
 end for
end for

The keys in an index are sorted so that when the database server finds the first matching entry, it can read any other rows with identical keys without further searching,
because they are located in physically adjacent positions. This query plan reads only the following rows:

All rows of the customer table once
All rows of the orders table once (because each order is associated with only one customer)
Only rows in the items table that match pdnull rows from the customer-orders pairs

This query plan achieves a great reduction in cost compared with plans that do not use indexes. An inverse plan, reading orders first and looking up rows in the customer
table by its index, is also feasible by the same reasoning.

The physical order of rows in a table also affects the cost of index use. To the degree that a table is ordered relative to an index, the overhead of accessing multiple table
rows in index order is reduced. For example, if the orders table rows are physically ordered according to the customer number, multiple retrievals of orders for a given
customer would proceed more rapidly than if the table were ordered randomly.

In some cases, using an index might incur additional costs. For more information, see Index lookup costs.

Copyright© 2020 HCL Technologies Limited

Query plans that include an index self-join path

An index self-join is a type of index scan that you can think of as a union of many small index scans, each one with a single unique combination of lead-key columns and
filters on non-lead-key columns.

The union of small index scans results in an access path that uses only subsets of the full range of a composite index. The table is logically joined to itself, and the more
selective non-leading index keys are applied as index-bound filters to each unique combination of the leading key values.

An index self-join is beneficial for situations in which:

The lead key of an index has many duplicates, and
Predicates on the lead key are not selective, but predicates on the non-leading index keys are selective.

The query in Figure 1 shows the SET EXPLAIN output for a query plan that includes an index self-join path.

Figure 1. SET EXPLAIN output for a query with an index self-join path

QUERY:

SELECT a.c1,a.c2,a.c3 FROM tab1 a WHERE (a.c3 >= 100103) AND
 (a.c3 <= 100104) AND (a.c1 >= 'PICKED ') AND
 (a.c1 <= 'RGA2 ') AND (a.c2 >= 1) AND (a.c2 <= 7)
 ORDER BY 1, 2, 3

Estimated Cost: 155
Estimated # of Rows Returned: 1
 1) informix.a: INDEX PATH
 (1) Index Keys: c1 c2 c3 c4 c5 (Key-Only) (Serial, fragments: ALL)
 Index Self Join Keys (c1 c2)
 Lower bound: informix.a.c1 >= 'PICKED ' AND (informix.a.c2 >= 1)
 Upper bound: informix.a.c1 <= 'RGA2 ' AND (informix.a.c2 <= 7)
 Lower Index Filter: (informix.a.c1 = informix.a.c1 AND
 informix.a.c2 = informix.a.c2) AND informix.a.c3 >= 100103
 Upper Index Filter: informix.a.c3 <= 100104
 Index Key Filters: (informix.a.c2 <= 7) AND
 (informix.a.c2 >= 1)

In Figure 1, an index exists on columns c1, c2, c3, c4, and c5. The optimizer chooses c1 and c2 as lead keys, which implies that columns c1 and c2 have many duplicates.
Column c3 has few duplicates and thus the predicates on column c3 (c3 >= 100103 and c3 <= 100104) have good selectivity.

As Figure 1 shows, an index self-join path is a self-join of two index scans using the same index. The first index scan retrieves each unique value for lead key columns,
which are c1 and c2. The unique value of c1 and c2 is then used to probe the second index scan, which also uses predicates on column c3. Because predicates on column
c3 have good selectivity:

The index scan on the inner side of the nested-loop join is very efficient, retrieving only the few rows that satisfy the c3 predicates.
The index scan does not retrieve extra rows.

Thus, for each unique value of c1 and c2, an efficient index scan on c1, c2 and c3 occurs.

The following lines in the example indicate that the optimizer has chosen an index self join path for this table, with columns c1 and c2 as the lead keys for the index self-
join path:

Index Self Join Keys (c1 c2)
 Lower bound: informix.a.c1 >= 'PICKED ' AND (informix.a.c2 >= 1)

1448 Part VI: Administering

https://www.hcltech.com/

 Upper bound: informix.a.c1 <= 'RGA2 ' AND (informix.a.c2 <= 7)

The example shows the bounds for columns c1 and c2, which you can conceive of as the bounds for the index scan to retrieve the qualified leading keys of the index.

The following information in the example shows the self-join:

(informix.a.c1 = informix.a.c1 AND informix.a.c2 = informix.a.c2)

This information represents the inner index scan. For lead key columns c1 and c2 the self- join predicate is used, indicating the value of c1 and c2 comes from the outer
index scan. The predicates on column c3 serve as an index filter that makes the inner index scan efficient.

Regular index scans do not use filters on column c3 to position the index scan, because the lead key columns c1 and c2 do not have equality predicates.

The INDEX_SJ directive forces an index self-join path using the specified index, or choosing the least costly index in a list of indexes, even if data distribution statistics are
not available for the leading index key columns. The AVOID_INDEX_SJ directive prevents a self-join path for the specified index or indexes. Also see Access-method
directives and the IBM® Informix® Guide to SQL: Syntax.

Copyright© 2020 HCL Technologies Limited

Query plan evaluation

The optimizer considers all query plans by analyzing factors such as disk I/O and CPU costs.

The optimizer constructs all feasible plans simultaneously using a bottom-up, breadth-first search strategy. That is, the optimizer first constructs all possible join pairs. It
eliminates the more expensive pair of any redundant pair. (Redundant pairs are join pairs that contain the same tables and produce the same set of rows as another join
pair.)

For example, if neither join specifies an ordered set of rows by using the ORDER BY or GROUP BY clauses of the SELECT statement, the join pair (A x B) is redundant with
respect to (B x A).

If the query uses additional tables, the optimizer joins each remaining pair to a new table to form all possible join triplets, eliminating the more expensive of redundant
triplets and so on for each additional table to be joined. When a non-redundant set of possible join combinations has been generated, the optimizer selects the plan that
appears to have the lowest execution cost.

Copyright© 2020 HCL Technologies Limited

Report that shows the query plan chosen by the optimizer

Any user who runs a query can use the SET EXPLAIN statement or the EXPLAIN directive to display the query plan that the optimizer chooses.

For information about how to specify the directives, see EXPLAIN directives. The user enters the SET EXPLAIN ON statement or the SET EXPLAIN ON AVOID_EXECUTE
statement before the SQL statement for the query, as the following example shows.

SET EXPLAIN ON AVOID_EXECUTE;
SELECT * FROM customer, orders
WHERE customer.customer_num = orders.customer_num
 AND customer.lname = "Higgins";

If a user does not have any access to SQL code source, the Database Administrator can set dynamically the SET EXPLAIN using the onmode -Y command.

After the database server executes the SET EXPLAIN ON statement or sets dynamically the SET EXPLAIN with onmode -Y command, the server writes an explanation of
each query plan to a file for subsequent queries that the user enters.

The explain output file
 The SET EXPLAIN statement enables or disables recording measurements of queries in the current session, including the plan of the query optimizer, an estimate of

the number of rows returned, and the relative cost of the query. The measurements appear in an output file.
Query statistics section provides performance debugging information

 If the EXPLAIN_STAT configuration parameter is enabled, a Query Statistics section appears in the explain output file that the SET EXPLAIN statement of SQL and
the onmode -Y session_id command displays.

Related concepts:
 The explain output file

Query statistics section provides performance debugging information
Report that shows the query plan chosen by the optimizer
Enabling external directives
Related information:

 SET EXPLAIN statement
Using the FILE TO option
Default name and location of the explain output file on UNIX
Default name and location of the output file on Windows
onmode -Y: Dynamically change SET EXPLAIN
onmode and Y arguments: Change query plan measurements for a session (SQL administration API)

Copyright© 2020 HCL Technologies Limited

The explain output file

Part VI: Administering 1449

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The SET EXPLAIN statement enables or disables recording measurements of queries in the current session, including the plan of the query optimizer, an estimate of the
number of rows returned, and the relative cost of the query. The measurements appear in an output file.

When you run the onmode -Y command to turn on dynamic SET EXPLAIN, the output is displayed in a new explain output file. If a file from the SET EXPLAIN statement
exists, the database server stops using it, and instead uses the file created by onmode -Y until the administrator turns off dynamic SET EXPLAIN for the session.

The output file specifies if external directives are in effect.

The following codes in the Query Statistics section of the explain output file provide information about external tables:

xlcnv identifies an operation that is loading data from an external table and inserting the data into a base table. Here x = external table, l = loading, and cnv =
converter
xucnv identifies an operation that is unloading data from an external table and inserting the data into a base table. Here x = external table, u = unloading, and cnv
= converter

The Query Statistics section of the explain output file is a useful resource for debugging performance problems. See Query statistics section provides performance
debugging information.

Related concepts:
 Report that shows the query plan chosen by the optimizer

Query statistics section provides performance debugging information
Enabling external directives
Related information:

 SET EXPLAIN statement
Using the FILE TO option
Default name and location of the explain output file on UNIX
Default name and location of the output file on Windows
onmode -Y: Dynamically change SET EXPLAIN
onmode and Y arguments: Change query plan measurements for a session (SQL administration API)

Copyright© 2020 HCL Technologies Limited

Query statistics section provides performance debugging information

If the EXPLAIN_STAT configuration parameter is enabled, a Query Statistics section appears in the explain output file that the SET EXPLAIN statement of SQL and the
onmode -Y session_id command displays.

The Query Statistics section of the explain output file shows the estimated number of rows that the query plan expects to return, the actual number of returned rows, and
other information about the query. You can use this information, which provides an indication of the overall flow of the query plan and how many rows flow through each
stage of the query, to debug performance problems.

The following example shows query statistics in SET EXPLAIN output. If the estimated and actual number of rows scanned or joined are quite different, the statistics on
those tables might be old and should be updated.

Figure 1. Query statistics in SET EXPLAIN output

select * from tab1, tab2 where tab1.c1 = tab2.c1 and tab1.c3 between 0 and 15

Estimated Cost: 104
Estimated # of Rows Returned: 69

 1) zelaine.tab2: SEQUENTIAL SCAN

 2) zelaine.tab1: INDEX PATH

 (1) Index Keys: c1 c3 (Serial, fragments: ALL)
 Lower Index Filter: (zelaine.tab1.c1 = zelaine.tab2.c1
 AND zelaine.tab1.c3 >= 0)
 Upper Index Filter: zelaine.tab1.c3 <= 15
NESTED LOOP JOIN

Query statistics:

 Table map :

 Internal name Table name

 t1 tab2
 t2 tab1

 type table rows_prod est_rows rows_scan time est_cost

 scan t1 50 50 50 00:00:00 4

 type table rows_prod est_rows rows_scan time est_cost

 scan t2 67 69 4 00:00:00 2

 type rows_prod est_rows time est_cost

 nljoin 67 70 00:00:00 104

Related concepts:
 The explain output file

Report that shows the query plan chosen by the optimizer

1450 Part VI: Administering

https://www.hcltech.com/

Sample query plan reports
Enabling external directives
Related information:
SET EXPLAIN statement
Using the FILE TO option
Default name and location of the explain output file on UNIX
Default name and location of the output file on Windows
onmode -Y: Dynamically change SET EXPLAIN
onmode and Y arguments: Change query plan measurements for a session (SQL administration API)

Copyright© 2020 HCL Technologies Limited

Sample query plan reports

The topics in this section describe sample query plans that you might want to display when analyzing the performance of different kinds of queries.

Single-table query
 This topic shows sample SET EXPLAIN output for a simple query and a complex query on a single table.

Multitable query
 This topic shows sample SET EXPLAIN output for a multiple-table query.

Key-first scan
 This topic shows a sample query that uses a key-first scan, which is an index scan that uses keys other than those listed as lower and upper index filters.

Query plans for subqueries
 The optimizer can change a subquery to a join automatically if the join provides a lower cost.

Query plans for collection-derived tables
 A collection-derived table is a special method that the database server uses to process a query on a collection. To use a collection-derived table, a query must

contain the TABLE keyword in the FROM clause of an SQL statement.

Related concepts:
 Query statistics section provides performance debugging information

Copyright© 2020 HCL Technologies Limited

Single-table query

This topic shows sample SET EXPLAIN output for a simple query and a complex query on a single table.

Figure 1 shows SET EXPLAIN output for a simple query.
Figure 1. Partial SET EXPLAIN output for a simple query

QUERY:

SELECT fname, lname, company FROM customer

Estimated Cost: 2
Estimated # of Rows Returned: 28

 1) virginia.customer: SEQUENTIAL SCAN

Figure 2 shows SET EXPLAIN output for a complex query on the customer table.

Figure 2. Partial SET EXPLAIN output for a complex query

QUERY:

SELECT fname, lname, company FROM customer
WHERE company MATCHES 'Sport*' AND
 customer_num BETWEEN 110 AND 115
ORDER BY lname

Estimated Cost: 1
Estimated # of Rows Returned: 1
Temporary Files Required For: Order By

 1) virginia.customer: INDEX PATH

 Filters: virginia.customer.company MATCHES 'Sport*'

 (1) Index Keys: customer_num (Serial, fragments: ALL)
 Lower Index Filter: virginia.customer.customer_num >= 110
 Upper Index Filter: virginia.customer.customer_num <= 115

The following output lines in Figure 2 show the scope of the index scan for the second query:

Lower Index Filter: virginia.customer.customer_num >= 110
Start the index scan with the index key value of 110.

Upper Index Filter: virginia.customer.customer_num <= 115
Stop the index scan with the index key value of 115.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1451

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Multitable query

This topic shows sample SET EXPLAIN output for a multiple-table query.

Figure 1. Partial SET EXPLAIN output for a multi-table query

QUERY:

SELECT C.customer_num, O.order_num, SUM (I.total_price)
FROM customer C, orders O, items I
WHERE C.customer_num = O.customer_num
AND O.order_num = I.order_num
GROUP BY C.customer_num, O.order_num

Estimated Cost: 78
Estimated # of Rows Returned: 1
Temporary Files Required For: Group By

 1) virginia.o: SEQUENTIAL SCAN

 2) virginia.c: INDEX PATH

 (1) Index Keys: customer_num (Key-Only) (Serial, fragments: ALL)
 Lower Index Filter:
 virginia.c.customer_num = virginia.o.customer_num
NESTED LOOP JOIN

 3) virginia.i: INDEX PATH

 (1) Index Keys: order_num (Serial, fragments: ALL)
 Lower Index Filter: virginia.o.order_num = virginia.i.order_num
NESTED LOOP JOIN

The SET EXPLAIN output lists the order in which the database server accesses the tables and the access plan to read each table. The plan in Figure 1 indicates that the
database server is to perform the following actions:

1. The database server is to read the orders table first.
Because no filter exists on the orders table, the database server must read all rows. Reading the table in physical order is the least expensive approach.

2. For each row of orders, the database server is to search for matching rows in the customer table.
The search uses the index on customer_num. The notation Key-Only means that only the index need be read for the customer table because only the
c.customer_num column is used in the join and the output, and the column is an index key.

3. For each row of orders that has a matching customer_num, the database server is to search for a match in the items table using the index on order_num.

Copyright© 2020 HCL Technologies Limited

Key-first scan

This topic shows a sample query that uses a key-first scan, which is an index scan that uses keys other than those listed as lower and upper index filters.

Figure 1. Partial SET EXPLAIN output for a key-first scan

create index idx1 on tab1(c1, c2);

select * from tab1 where (c1 > 0) and ((c2 = 1) or (c2 = 2))
Estimated Cost: 4
Estimated # of Rows Returned: 1

1) pubs.tab1: INDEX PATH

 (1) Index Keys: c1 c2 (Key-First) (Serial, fragments: ALL)
 Lower Index Filter: pubs.tab1.c1 > 0
 Index Key Filters: (pubs.tab1.c2 = 1 OR pubs.tab1.c2 = 2)

Even though in this example the database server must eventually read the row data to return the query results, it attempts to reduce the number of possible rows by
applying additional key filters first. The database server uses the index to apply the additional filter, c2 = 1 OR c2 = 2, before it reads the row data.

Copyright© 2020 HCL Technologies Limited

Query plans for subqueries

The optimizer can change a subquery to a join automatically if the join provides a lower cost.

For example, Figure 1 sample output of the SET EXPLAIN ON statement shows that the optimizer changes the table in the subquery to be the inner table in a join.
Figure 1. Partial SET EXPLAIN output for a flattened subquery

QUERY:

SELECT company, fname, lname, phone
FROM customer c

1452 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

WHERE EXISTS(
 SELECT customer_num FROM cust_calls u
 WHERE c.customer_num = u.customer_num)

Estimated Cost: 6
Estimated # of Rows Returned: 7

 1) virginia.c: SEQUENTIAL SCAN

 2) virginia.u: INDEX PATH (First Row)

 (1) Index Keys: customer_num call_dtime (Key-Only)
 (Serial, fragments: ALL)
 Lower Index Filter: virginia.c.customer_num = virginia.u.customer_num
NESTED LOOP JOIN (Semi Join)

For more information about the SET EXPLAIN ON statement, see Report that shows the query plan chosen by the optimizer.

When the optimizer changes a subquery to a join, it can use several variations of the access plan and the join plan:

First-row scan
A first-row scan is a variation of a table scan. When the database server finds one match, the table scan halts.

Skip-duplicate-index scan
The skip-duplicate-index scan is a variation of an index scan. The database server does not scan duplicates.

Semi join
The semi join is a variation of a nested-loop join. The database server halts the inner-table scan when the first match is found. For more information about a semi
join, see Nested-loop join.

Copyright© 2020 HCL Technologies Limited

Query plans for collection-derived tables

A collection-derived table is a special method that the database server uses to process a query on a collection. To use a collection-derived table, a query must contain the
TABLE keyword in the FROM clause of an SQL statement.

For more information about how to use collection-derived tables in an SQL statement, see the IBM® Informix Guide to SQL: Syntax.

Although the database does not actually create a table for the collection, it processes the data as if it were a table. Collection-derived tables allow developers to use fewer
cursors and host variables to access a collection, in some cases.

These SQL statements create a collection column called children:

CREATE ROW TYPE person(name CHAR(255), id INT);
CREATE TABLE parents(name CHAR(255),
id INT,
children LIST(person NOT NULL));

The following query creates a collection-derived table for the children column and treats the elements of this collection as rows in a table:

SELECT name, id
FROM TABLE(MUTLISET(SELECT children
FROM parents
WHERE parents.id
= 1001)) c_table(name, id);

Alternatively, you can specify a collection-derived table in the FROM clause, as shown in this example:

SELECT name, id
FROM (SELECT children
FROM parents
WHERE parents.id
= 1001) c_table(name, id);

Example showing how the database server completes the query
 Informix® performs several steps when completing a query for collection-derived tables.

Derived tables folded into parent queries
 You can improve the performance of collection-derived tables by using SQL to fold derived tables in simple queries into a parent query instead of into query results

that are put into a temporary table.

Copyright© 2020 HCL Technologies Limited

Example showing how the database server completes the query

Informix® performs several steps when completing a query for collection-derived tables.

When completing a query, the database server performs the steps shown in this example:

1. Scans the parent table to find the row where parents.id = 1001
This operation is listed as a SEQUENTIAL SCAN in the SET EXPLAIN output that Figure 1 shows.

2. Reads the value of the collection column called children.

Part VI: Administering 1453

https://www.hcltech.com/
https://www.hcltech.com/

3. Scans the single collection and returns the value of name and id to the application.
This operation is listed as a COLLECTION SCAN in the SET EXPLAIN output that Figure 1 shows.

Figure 1. Query plan that uses a collection-derived table

QUERY:

SELECT name, id
FROM (SELECT children
FROM parents
WHERE parents.id
= 1001) c_table(name, id);

Estimated Cost: 2
Estimated # of Rows Returned: 1

 1) lsuto.c_table: COLLECTION SCAN
 Subquery:

 Estimated Cost: 1
 Estimated # of Rows Returned: 1

 1) lsuto.parents: SEQUENTIAL SCAN

 Filters: lsuto.parents.id = 1001

Copyright© 2020 HCL Technologies Limited

Derived tables folded into parent queries

You can improve the performance of collection-derived tables by using SQL to fold derived tables in simple queries into a parent query instead of into query results that
are put into a temporary table.

Use SQL like that in this example:

select * from ((select col1, col2 from tab1)) as vtab(c1,c2)

However, if the query is complex because it involves aggregates, ORDER BY operations, or the UNION operation, the server creates a temporary table.

The database server folds derived tables in a manner that is similar to the way the server folds views through the IFX_FOLDVIEW configuration parameter (described in
Enable view folding to improve query performance). When the IFX_FOLDVIEW configuration parameter is enabled, views are folded into a parent query. The views are not
folded into query results that are put into a temporary table.

The following examples show derived tables folded into the main query.

Figure 1. Query plan that uses a derived table folded into the parent query

select * from ((select vcol0, tab1.col1 from
 table(multiset(select col2 from tab2 where col2 > 50))
 vtab2(vcol0),tab1)) vtab1(vcol1,vcol2)
 where vcol1 = vcol2

Estimated Cost: 2
Estimated # of Rows Returned: 1

 1) informix.tab2: SEQUENTIAL SCAN

 Filters: informix.tab2.col2 > 50

 2) informix.tab1: SEQUENTIAL SCAN

 Filters:
 Table Scan Filters: informix.tab1.col1 > 50

DYNAMIC HASH JOIN
 Dynamic Hash Filters: informix.tab2.col2 = informix.tab1.col1

Figure 2. Second query plan that uses a derived table folded into the parent query

select * from (select col1 from tab1 where col1 = 100) as vtab1(c1)
left join (select col1 from tab2 where col1 = 10) as vtab2(vc1)
on vtab1.c1 = vtab2.vc1

Estimated Cost: 5
Estimated # of Rows Returned: 1

 1) informix.tab1: SEQUENTIAL SCAN

 Filters: informix.tab1.col1 = 100

 2) informix.tab2: AUTOINDEX PATH

 (1) Index Keys: col1 (Key-Only)
 Lower Index Filter: informix.tab1.col1 = informix.tab2.col1
 Index Key Filters: (informix.tab2.col1 = 10)

 ON-Filters:(informix.tab1.col1 = informix.tab2.col1
 AND informix.tab2.col1 = 10)
 NESTED LOOP JOIN(LEFT OUTER JOIN)

1454 Part VI: Administering

https://www.hcltech.com/

The following example shows a complex query involving the UNION operation. Here, a temporary table has been created.

Figure 3. Complex derived-table query that creates a temporary table

select * from (select col1 from tab1 union select col2 from tab2)
as vtab(vcol1) where vcol1 < 50

Estimated Cost: 4
Estimated # of Rows Returned: 1

 1) (Temp Table For Collection Subquery): SEQUENTIAL SCAN

Copyright© 2020 HCL Technologies Limited

XML query plans in IBM Data Studio

IBM® Data Studio consists of a set of tools to use for administration, data modeling, and building queries from data that comes from data servers. The EXPLAIN_SQL
routine prepares a query and returns a query plan in XML. The IBM Data Studio Administration Edition can use the EXPLAIN_SQL routine to obtain a query plan in XML
format, interpret the XML, and render the plan visually.

If you plan to use IBM Data Studio to obtain Visual Explain output, you must create and specify a default sbspace name for the SBSPACENAME configuration parameter in
your onconfig file. The EXPLAIN_SQL routine creates BLOBs in this sbspace.

For information about using IBM Data Studio, see IBM Data Studio documentation.

Copyright© 2020 HCL Technologies Limited

Factors that affect the query plan

When the optimizer determines the query plan, it assigns a cost to each possible plan and then chooses the plan with the lowest cost. The optimizer analyzes several
factors to determine the cost of each query plan.

Some of the factors that the optimizer uses to determine the cost of each query plan are:

The number of I/O requests that are associated with each file system access
The CPU work that is required to determine which rows meet the query predicate
The resources that are required to sort or group the data
The amount of memory available for the query (specified by the DS_TOTAL_MEMORY and DS_MAX_QUERIES parameters)

To calculate the cost of each possible query plan, the optimizer:

Uses a set of statistics that describes the nature and physical characteristics of the table data and indexes
Examines the query filters
Examines the indexes that can be used in the plan
Uses the cost of moving data to perform joins locally or remotely for distributed queries

For queries that access remote tables in cross-server operations, certain characteristics can significantly degrade performance relative to the corresponding DML
operations on tables and views in the local database. Query specifications that can potentially limit performance with remote tables include the following specifications:

ANSI LEFT OUTER JOIN syntax
Derived tables based on remote tables
TEMP tables as materialized views that reference remote tables.

Limitations on remote views
Reoptimization can occur with multiple executions of queries involving remote views. The optimizer does not pick up the query plans from statement cache even if
the statement cache is enabled.

Statistics held for the table and index
 The accuracy with which the query optimizer can assess the execution cost of a query plan depends on the information available to the optimizer. Use the UPDATE

STATISTICS statement to maintain simple statistics about a table and its associated indexes. Updated statistics provide the query optimizer with information that
can minimize the amount of time required to perform queries on that table.
Filters in the query

 The query optimizer bases query-cost estimates on the number of rows to be retrieved from each table. In turn, the estimated number of rows is based on the
selectivity of each conditional expression that is used within the WHERE clause. A conditional expression that is used to select rows is termed a filter.
Indexes for evaluating a filter

 The query optimizer notes whether an index can be used to evaluate a filter. For this purpose, an indexed column is any single column with an index or the first
column named in a composite index.
Effect of PDQ on the query plan

 When the parallel database query (PDQ) feature is turned on, the optimizer can choose to execute a query in parallel. This can improve performance dramatically
when the database server processes queries that decision-support applications initiate.
Effect of OPTCOMPIND on the query plan

 The OPTCOMPIND setting influences the access plan that the optimizer chooses for single and multiple-table queries. You can change the value of OPTCOMPIND
within a session for different kinds of queries.
Effect of available memory on the query plan

 Informix® constrains the amount of memory that a parallel query can use based on the values of the DS_TOTAL_MEMORY and DS_MAX_QUERIES configuration
parameters. If the amount of memory available for the query is too low to execute a hash join, the database server uses a nested-loop join instead.

Previous topic: The query plan

Part VI: Administering 1455

https://www.hcltech.com/
https://www.hcltech.com/

Next topic: Time costs of a query

Copyright© 2020 HCL Technologies Limited

Statistics held for the table and index

The accuracy with which the query optimizer can assess the execution cost of a query plan depends on the information available to the optimizer. Use the UPDATE
STATISTICS statement to maintain simple statistics about a table and its associated indexes. Updated statistics provide the query optimizer with information that can
minimize the amount of time required to perform queries on that table.

The database server starts a statistical profile of a table when the table is created, and the profile is refreshed when you issue the UPDATE STATISTICS statement. The
query optimizer does not recalculate the profile for tables automatically. In some cases, gathering the statistics might take longer than executing the query.

To ensure that the optimizer selects a query plan that best reflects the current state of your tables, run UPDATE STATISTICS at regular intervals. For guidelines, see
Update statistics when they are not generated automatically.

The optimizer uses the following system catalog information as it creates a query plan:

The number of rows in a table, as of the most recent UPDATE STATISTICS statement
Whether a column is constrained to be unique
The distribution of column values, when requested with the MEDIUM or HIGH keyword in the UPDATE STATISTICS statement
For more information about data distributions, see Creating data distributions.

The number of disk pages that contain row data

The optimizer also uses the following system catalog information about indexes:

The indexes that exist on a table, including the columns that they index, whether they are ascending or descending, and whether they are clustered
The depth of the index structure (a measure of the amount of work that is needed to perform an index lookup)
The number of disk pages that index entries occupy
The number of unique entries in an index, which can be used to estimate the number of rows that an equality filter returns
Second-largest and second-smallest key values in an indexed column

Only the second-largest and second-smallest key values are noted, because the extreme values might have a special meaning that is not related to the rest of the data in
the column. The database server assumes that key values are distributed evenly between the second largest and second smallest. Only the initial 4 bytes of these keys are
stored. If you create a distribution for a column associated with an index, the optimizer uses that distribution when it estimates the number of rows that match a query.

For more information about system catalog tables, see the IBM® Informix® Guide to SQL: Reference.

Copyright© 2020 HCL Technologies Limited

Filters in the query

The query optimizer bases query-cost estimates on the number of rows to be retrieved from each table. In turn, the estimated number of rows is based on the selectivity of
each conditional expression that is used within the WHERE clause. A conditional expression that is used to select rows is termed a filter.

The selectivity is a value between 0 and 1 that indicates the proportion of rows within the table that the filter can pass. A selective filter, one that passes few rows, has a
selectivity near 0, and a filter that passes almost all rows has a selectivity near 1. For guidelines on filters, see Improve filter selectivity.

The optimizer can use data distributions to calculate selectivity for the filters in a query. However, in the absence of data distributions, the database server calculates
selectivity for filters of different types based on table indexes. The following table lists some of the selectivity values that the optimizer assigns to filters of different types.
Selectivity that is calculated using data distributions is even more accurate than the selectivity that this table shows.

In the table:

indexed-col is the first or only column in an index.
2nd-max, 2nd-min are the second-largest and second-smallest key values in indexed column.
The plus sign (+) means logical union (= the Boolean OR operator) and the multiplication symbol (x) means logical intersection (= the Boolean AND operator).

Table 1. Selectivity values that the optimizer assigns to filters of different types
Filter Expression Selectivity (F)

indexed-col = literal-valueindexed-col = host-variableindexed-col IS NULL F = 1/(number of distinct keys in index)

tab1.indexed-col = tab2.indexed-col F = 1/(number of distinct keys in the larger index)

indexed-col > literal-value F = (2nd-max - literal-value)/(2nd-max - 2nd-min)

indexed-col < literal-value F = (literal-value - 2nd-min)/(2nd-max - 2nd-min)

any-col IS NULLany-col = any-expression F = 1/10

any-col > any-expressionany-col < any-expression F = 1/3

any-col MATCHES any-expressionany-col LIKE any-expression F = 1/5

EXISTS subquery F = 1 if subquery estimated to return >0 rows, else 0

NOT expression F = 1 - F(expression)

expr1 AND expr2 F = F(expr1) x F(expr2)

1456 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Filter Expression Selectivity (F)

expr1 OR expr2 F = F(expr1) + F(expr2) - (F(expr1) x F(expr2))

any-col IN list Treated as any-col = item1 OR . . . OR any-col = itemn.

any-col relop ANY subquery Treated as any-col relop value1 OR . . . OR any-col relop valuen for estimated size of
subquery n.
Here relop is any relational operator, such as <, >, >=, <=.

Copyright© 2020 HCL Technologies Limited

Indexes for evaluating a filter

The query optimizer notes whether an index can be used to evaluate a filter. For this purpose, an indexed column is any single column with an index or the first column
named in a composite index.

If the values contained in the index are all that is required, the database server does not read the rows. It is faster to omit the page lookups for data pages whenever the
database server can read values directly from the index.

The optimizer can choose an index for any one of the following cases:

When the column is indexed and a value to be compared is a literal, a host variable, or an uncorrelated subquery
The database server can locate relevant rows in the table by first finding the row in an appropriate index. If an appropriate index is not available, the database
server must scan each table in its entirety.

When the column is indexed and the value to be compared is a column in another table (a join expression)
The database server can use the index to find matching values. The following join expression shows such an example:

WHERE customer.customer_num = orders.customer_num

If rows of customer are read first, values of customer_num can be applied to an index on orders.customer_num.

When processing an ORDER BY clause
If all the columns in the clause appear in the required sequence within a single index, the database server can use the index to read the rows in their ordered
sequence, thus avoiding a sort.

When processing a GROUP BY clause
If all the columns in the clause appear in one index, the database server can read groups with equal keys from the index without requiring additional processing
after the rows are retrieved from their tables.

Copyright© 2020 HCL Technologies Limited

Effect of PDQ on the query plan

When the parallel database query (PDQ) feature is turned on, the optimizer can choose to execute a query in parallel. This can improve performance dramatically when the
database server processes queries that decision-support applications initiate.

For more information, see Parallel database query (PDQ).

Copyright© 2020 HCL Technologies Limited

Effect of OPTCOMPIND on the query plan

The OPTCOMPIND setting influences the access plan that the optimizer chooses for single and multiple-table queries. You can change the value of OPTCOMPIND within a
session for different kinds of queries.

To change the value of OPTCOMPIND within a session, use the SET ENVIRONMENT OPTCOMPIND command, not the OPTCOMPIND configuration parameter. For more
information about using this command, see Setting the value of OPTCOMPIND within a session.

Single-table query
 For single-table scans, when OPTCOMPIND is set to 0 or 1 and the current transaction isolation level is Repeatable Read, the optimizer considers two types of

access plans.
Multitable query

 For join plans, the OPTCOMPIND setting influences the access plan for a specific ordered pair of tables.

Copyright© 2020 HCL Technologies Limited

Single-table query

For single-table scans, when OPTCOMPIND is set to 0 or 1 and the current transaction isolation level is Repeatable Read, the optimizer considers two types of access
plans.

Part VI: Administering 1457

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

If:

An index is available, the optimizer uses it to access the table.
No index is available, the optimizer considers scanning the table in physical order.

When OPTCOMPIND is not set in the database server configuration, its value defaults to 2. When OPTCOMPIND is set to 2 or 1 and the current isolation level is not
Repeatable Read, the optimizer chooses the least expensive plan to access the table.

Copyright© 2020 HCL Technologies Limited

Multitable query

For join plans, the OPTCOMPIND setting influences the access plan for a specific ordered pair of tables.

Set OPTCOMPIND to 0 if you want the database server to select a join method exactly as it did in previous versions of the database server. This option ensures
compatibility with previous versions.

If OPTCOMPIND is set to 0 or set to 1 and the current transaction isolation level is Repeatable Read, the optimizer gives preference to the nested-loop join.
Important: When OPTCOMPIND is set to 0, the optimizer does not choose a hash join.
If OPTCOMPIND is set to 2 or set to 1 and the transaction isolation level is not Repeatable Read, the optimizer chooses the least expensive query plan from among those
previously listed and gives no preference to the nested-loop join.

Copyright© 2020 HCL Technologies Limited

Effect of available memory on the query plan

Informix® constrains the amount of memory that a parallel query can use based on the values of the DS_TOTAL_MEMORY and DS_MAX_QUERIES configuration
parameters. If the amount of memory available for the query is too low to execute a hash join, the database server uses a nested-loop join instead.

For more information about parallel queries and the DS_TOTAL_MEMORY and DS_MAX_QUERIES parameters, see Parallel database query (PDQ).

Copyright© 2020 HCL Technologies Limited

Time costs of a query

You can adjust a few, but not all, of the response-time effects of actions that the database server performs when processing a query.

The following costs can be reduced by optimal query construction and appropriate indexes:

Sort time
Data mismatches
In-place ALTER TABLE
Index lookups

For information about how to optimize specific queries, see Improving individual query performance.

Memory-activity costs
 The database server can process only data in memory. It must read rows into memory to evaluate those rows against the filters of a query. After the server finds

rows that satisfy those filters, it prepares an output row in memory by assembling the selected columns.
Sort-time costs

 A sort requires in-memory work as well as disk work. The in-memory work depends on the number of columns that are sorted, the width of the combined sort key,
and the number of row combinations that pass the query filter. You can reduce the cost of sorting.
Row-reading costs

 When the database server needs to examine a row that is not already in memory, it must read that row from disk. The database server does not read only one row; it
reads the entire page that contains the row. If the row spans more than one page, it reads all of the pages.
Sequential access costs

 Disk costs are lowest when the database server reads the rows of a table in physical order.
Nonsequential access costs

 The disk-access time is much higher when a disk device reads table pages nonsequentially than when it reads that same table sequentially.
Index lookup costs

 The database server incurs additional costs when it finds a row through an index. The index is stored on disk, and its pages must be read into memory with the data
pages that contain the desired rows.
In-place ALTER TABLE costs

 For certain conditions, the database server uses an in-place alter algorithm to modify each row when you execute an ALTER TABLE statement. After the alter table
operation, the database server inserts rows using the latest definition. If your query accesses rows that are not yet converted to the new table definition, you might
notice a slight degradation in the performance of your individual query, because the database server reformats each row in memory before it is returned.
View costs

 A complex view could run more slowly than expected.
Small-table costs

 A table is small if it occupies so few pages that it can be retained entirely in the page buffers. Operations on small tables are generally faster than operations on
large tables.
Data-mismatch costs

 An SQL statement can encounter additional costs when the data type of a column that is used in a condition differs from the definition of the column in the CREATE

1458 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

TABLE statement.
Encrypted-value costs
An encrypted value uses more storage space than the corresponding plain-text value because all of the information needed to decrypt the value except the
encryption key is stored with the value.
GLS functionality costs
Sorting or indexing certain data sets can degrade performance.
Network-access costs
Moving data over a network imposes delays in addition to those you encounter with direct disk access.

Previous topic: Factors that affect the query plan
Next topic: Optimization when SQL is within an SPL routine

Copyright© 2020 HCL Technologies Limited

Memory-activity costs

The database server can process only data in memory. It must read rows into memory to evaluate those rows against the filters of a query. After the server finds rows that
satisfy those filters, it prepares an output row in memory by assembling the selected columns.

Most of these activities are performed quickly. Depending on the computer and its workload, the database server can perform hundreds or even thousands of comparisons
each second. As a result, the time spent on in-memory work is usually a small part of the execution time.

Although some in-memory activities, such as sorting, take a significant amount of time, it takes much longer to read a row from disk than to examine a row that is already
in memory.

Copyright© 2020 HCL Technologies Limited

Sort-time costs

A sort requires in-memory work as well as disk work. The in-memory work depends on the number of columns that are sorted, the width of the combined sort key, and the
number of row combinations that pass the query filter. You can reduce the cost of sorting.

You can use the following formula to calculate the in-memory work that a sort operation requires:

Wm = (c * Nfr) + (w * Nfrlog2(Nfr))

Wm
is the in-memory work.

c
is the number of columns to order and represents the costs to extract column values from the row and concatenate them into a sort key.

w
is proportional to the width of the combined sort key in bytes and stands for the work to copy or compare one sort key. A numeric value for w depends strongly on
the computer hardware in use.

Nfr
is the number of rows that pass the query filter.

Sorting can involve writing information temporarily to disk if the amount of data to sort is large. You can direct the disk writes to occur in the operating-system file space or
in a dbspace that the database server manages. For details, see Configure dbspaces for temporary tables and sort files.

The disk work depends on the number of disk pages where rows appear, the number of rows that meet the conditions of the query predicate, the number of rows that can
be placed on a sorted page, and the number of merge operations that must be performed. Use the following formula to calculate the disk work that a sort operation
requires:

Wd = p + (Nfr/Nrp) * 2 * (m - 1))

Wd
is the disk work.

p
is the number of disk pages.

Nfr
is the number of rows that pass the filters.

Nrp
is the number of rows that can be placed on a page.

m
represents the number of levels of merge that the sort must use.

The factor m depends on the number of sort keys that can be held in memory. If there are no filters, Nfr/Nrp is equivalent to p.

When all the keys can be held in memory, m=1 and the disk work is equivalent to p. In other words, the rows are read and sorted in memory.

For moderate to large tables, rows are sorted in batches that fit in memory, and then the batches are merged. When m=2, the rows are read, sorted, and written in
batches. Then the batches are read again and merged, resulting in disk work proportional to the following value:

Wd = p + (2 * (Nfr/Nrp))

The more specific the filters, the fewer the rows that are sorted. As the number of rows increases, and the amount of memory decreases, the amount of disk work
increases.

Part VI: Administering 1459

https://www.hcltech.com/
https://www.hcltech.com/

To reduce the cost of sorting, use the following methods:

Make your filters as specific (selective) as possible.
Limit the projection list to the columns that are relevant to your problem.

Copyright© 2020 HCL Technologies Limited

Row-reading costs

When the database server needs to examine a row that is not already in memory, it must read that row from disk. The database server does not read only one row; it reads
the entire page that contains the row. If the row spans more than one page, it reads all of the pages.

The actual cost of reading a page is variable and hard to predict. The actual cost is a combination of the factors shown in the following table.

Factor Effect of Factor

Buffering If the needed page is in a page buffer already, the cost to read is nearly zero.

Contention If two or more applications require access to the disk hardware, I/O requests can be delayed.

Seek time The slowest thing that a disk does is to seek; that is, to move the access arm to the track that holds the data. Seek time depends on the speed of the
disk and the location of the disk arm when the operation starts. Seek time varies from zero to nearly a second.

Latency The transfer cannot start until the beginning of the page rotates under the access arm. This latency, or rotational delay, depends on the speed of the
disk and on the position of the disk when the operation starts. Latency can vary from zero to a few milliseconds.

The time cost of reading a page can vary from microseconds for a page that is already in a buffer, to a few milliseconds when contention is zero and the disk arm is already
in position, to hundreds of milliseconds when the page is in contention and the disk arm is over a distant cylinder of the disk.

Copyright© 2020 HCL Technologies Limited

Sequential access costs

Disk costs are lowest when the database server reads the rows of a table in physical order.

When the first row on a page is requested, the disk page is read into a buffer page. After the page is read in, it does not need not to be read again; requests for subsequent
rows on that page are filled from the buffer until all the rows on that page are processed. When one page is exhausted, the page for the next set of rows must be read in.

When you use unbuffered devices for dbspaces, and the table is organized properly, the disk pages of consecutive rows are placed in consecutive locations on the disk.
This arrangement allows the access arm to move very little when it reads sequentially. In addition, latency costs are usually lower when pages are read sequentially.

Related information:
 Read-ahead operations

Copyright© 2020 HCL Technologies Limited

Nonsequential access costs

The disk-access time is much higher when a disk device reads table pages nonsequentially than when it reads that same table sequentially.

Whenever a table is read in random order, additional disk accesses are required to read the rows in the required order. Disk costs are higher when the rows of a table are
read in a sequence unrelated to physical order on disk. Because the pages are not read sequentially from the disk, both seek and rotational delays occur before each page
can be read.

Nonsequential access often occurs when you use an index to locate rows. Although index entries are sequential, there is no guarantee that rows with adjacent index
entries must reside on the same (or adjacent) data pages. In many cases, a separate disk access must be made to fetch the page for each row located through an index. If
a table is larger than the page buffers, a page that contained a row previously read might be cleaned (removed from the buffer and written back to the disk) before a
subsequent request for another row on that page can be processed. That page might have to be read in again.

Depending on the relative ordering of the table with respect to the index, you can sometimes retrieve pages that contain several needed rows. The degree to which the
physical ordering of rows on disk corresponds to the order of entries in the index is called clustering. A highly clustered table is one in which the physical ordering on disk
corresponds closely to the index.

Copyright© 2020 HCL Technologies Limited

Index lookup costs

The database server incurs additional costs when it finds a row through an index. The index is stored on disk, and its pages must be read into memory with the data pages
that contain the desired rows.

An index lookup works down from the root page to a leaf page. The root page, because it is used so often, is almost always found in a page buffer. The odds of finding a leaf
page in a buffer depend on the size of the index, the form of the query, and the frequency of column-value duplication. If each value occurs only once in the index and the
query is a join, each row to be joined requires a nonsequential lookup into the index, followed by a nonsequential access to the associated row in the table.

1460 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Reading duplicate values from an index
Reading an index with duplicate entries incurs an additional cost over reading the table sequentially.
Searching for NCHAR or NVARCHAR columns in an index
A query using an index on an NCHAR or NVARCHAR scans the entire index, resulting in additional time costs.

Copyright© 2020 HCL Technologies Limited

Reading duplicate values from an index

Reading an index with duplicate entries incurs an additional cost over reading the table sequentially.

Each entry or set of entries with the same value must be located in the index. Then, for each entry in the index, a random access must be made to the table to read the
associated row. However, if there are many duplicate rows per distinct index value, and the associated table is highly clustered, the added cost of joining through the index
can be slight.

Copyright© 2020 HCL Technologies Limited

Searching for NCHAR or NVARCHAR columns in an index

A query using an index on an NCHAR or NVARCHAR scans the entire index, resulting in additional time costs.

Global Language Support (GLS) Only
Indexes that are built on NCHAR or NVARCHAR columns are sorted using a locale-specific comparison value. For example, the Spanish double-l character (ll) might
be treated as a single unique character instead of a pair of ls.

In some locales, the comparison value is not based on the code-set order. The index build uses the locale-specific comparison value to store the key values in the
index. As a result, a query using an index on an NCHAR or NVARCHAR scans the entire index because the database server searches the index in code-set order.

Copyright© 2020 HCL Technologies Limited

In-place ALTER TABLE costs

For certain conditions, the database server uses an in-place alter algorithm to modify each row when you execute an ALTER TABLE statement. After the alter table
operation, the database server inserts rows using the latest definition. If your query accesses rows that are not yet converted to the new table definition, you might notice
a slight degradation in the performance of your individual query, because the database server reformats each row in memory before it is returned.

For more information about the conditions and performance advantages when an in-place alter occurs, see Altering a table definition.

Copyright© 2020 HCL Technologies Limited

View costs

A complex view could run more slowly than expected.

You can create views of tables for a number of reasons:

To limit the data that a user can access
To reduce the time that it takes to write a complex query
To hide the complexity of the query that a user needs to write

However, a query against a view might execute more slowly than expected when the complexity of the view definition causes a temporary table to be created to process
the query. This temporary table is referred to as a materialized view. For example, you can create a view with a union to combine results from several SELECT statements.

The following sample SQL statement creates a view that includes unions:

CREATE VIEW view1 (col1, col2, col3, col4)
 AS
 SELECT a, b, c, d
 FROM tab1 WHERE
 UNION
 SELECT a2, b2, c2, d2
 FROM tab2 WHERE
...
 UNION
 SELECT an, bn, cn, dn
 FROM tabn WHERE
;

When you create a view that contains complex SELECT statements, the end user does not need to handle the complexity. The end user can just write a simple query, as
the following example shows:

SELECT a, b, c, d
 FROM view1

Part VI: Administering 1461

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

 WHERE a < 10;

However, this query against view1 might execute more slowly than expected because the database server creates a fragmented temporary table for the view before it
executes the query.

Another situation when the query might execute more slowly than expected is if you use a view in an ANSI join. The complexity of the view definition might cause a
temporary table to be created.

To determine if you have a query that must build a temporary table to process the view, execute the SET EXPLAIN statement. If you see Temp Table For View in the
SET EXPLAIN output file, your query requires a temporary table to process the view.

Copyright© 2020 HCL Technologies Limited

Small-table costs

A table is small if it occupies so few pages that it can be retained entirely in the page buffers. Operations on small tables are generally faster than operations on large
tables.

As an example, in the stores_demo database, the state table that relates abbreviations to names of states has a total size of fewer than 1000 bytes; it fits in no more than
two pages. This table can be included in any query at little cost. No matter how this table is used, it costs no more than two disk accesses to retrieve this table from disk
the first time that it is required.

Copyright© 2020 HCL Technologies Limited

Data-mismatch costs

An SQL statement can encounter additional costs when the data type of a column that is used in a condition differs from the definition of the column in the CREATE TABLE
statement.

For example, the following query contains a condition that compares a column to a data type value that differs from the table definition:

CREATE TABLE table1 (a integer,);
SELECT * FROM table1
 WHERE a = '123';

The database server rewrites this query before execution to convert 123 to an integer. The SET EXPLAIN output shows the query in its adjusted format. This data
conversion has no noticeable overhead.

The additional costs of a data mismatch are most severe when the query compares a character column with a noncharacter value and the length of the number is not
equal to the length of the character column. For example, the following query contains a condition in the WHERE clause that equates a character column to an integer
value because of missing quotation marks:

CREATE TABLE table2 (char_col char(3),);
SELECT * FROM table2
 WHERE char_col = 1;

This query finds all of the following values that are valid for char_col:

' 1'
'001'
'1'

These values are not necessarily clustered together in the index keys. Therefore, the index does not provide a fast and correct way to obtain the data. The SET EXPLAIN
output shows a sequential scan for this situation.
Warning: The database server does not use an index when the SQL statement compares a character column with a noncharacter value that is not equal in length to the
character column.

Copyright© 2020 HCL Technologies Limited

Encrypted-value costs

An encrypted value uses more storage space than the corresponding plain-text value because all of the information needed to decrypt the value except the encryption key
is stored with the value.

Most encrypted data requires approximately 33 percent more storage space than unencrypted data. Omitting the hint used with the password can reduce encryption
overhead by up to 50 bytes. If you are using encrypted values, you must make sure that you have sufficient space available for the values.

Copyright© 2020 HCL Technologies Limited

GLS functionality costs

Sorting or indexing certain data sets can degrade performance.

For information about the performance degradation that occurs from indexing some data sets, see Searching for NCHAR or NVARCHAR columns in an index.

1462 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

If you do not need a non-ASCII collation sequence, use the CHAR and VARCHAR data types for character columns whenever possible. Because CHAR and VARCHAR data
require simple value-based comparison, sorting and indexing these columns is less expensive than for non-ASCII data types (NCHAR or NVARCHAR, for example).

For more information about other character data types, see the IBM® Informix® GLS User's Guide.

Copyright© 2020 HCL Technologies Limited

Network-access costs

Moving data over a network imposes delays in addition to those you encounter with direct disk access.

Network delays can occur when the application sends a query or update request across the network to a database server on another computer. Although the database
server performs the query on the remote host computer, that database server returns the output to the application over the network.

Data sent over a network consists of command messages and buffer-sized blocks of row data. Although the details can differ depending on the network and the
computers, the database server network activity follows a simple model in which one computer, the client, sends a request to another computer, the server. The server
replies with a block of data from a table.

Whenever data is exchanged over a network, delays are inevitable in the following situations:

When the network is busy, the client must wait its turn to transmit. Such delays are usually less than a millisecond. However, on a heavily loaded network, these
delays can increase exponentially to tenths of seconds and more.
When the server is handling requests from more than one client, requests might be queued for a time that can range from milliseconds to seconds.
When the server acts on the request, it incurs the time costs of disk access and in-memory operations that the preceding sections describe.

Transmission of the response is also subject to network delays.

Network access time is extremely variable. In the best case, when neither the network nor the server is busy, transmission and queuing delays are insignificant, and the
server sends a row almost as quickly as a local database server might. Furthermore, when the client asks for a second row, the page is likely to be in the page buffers of
the server.

Unfortunately, as network load increases, all these factors tend to worsen at the same time. Transmission delays rise in both directions, which increases the queue at the
server. The delay between requests decreases the likelihood of a page remaining in the page buffer of the responder. Thus, network-access costs can change suddenly
and quite dramatically.

If you use the SELECT FIRST n clause in a distributed query, you will still see only the requested amount of data. However, the local database server does not send the
SELECT FIRST n clause to the remote site. Therefore, the remote site might return more data.

The optimizer that the database server uses assumes that access to a row over the network takes longer than access to a row in a local database. This estimate includes
the cost of retrieving the row from disk and transmitting it across the network.

For information about actions that might improve performance across the network, see the following sections:

Optimizer estimates of distributed queries
MaxConnect for multiple connections UNIX
Multiplexed connections and CPU utilization
Network buffer pools

Copyright© 2020 HCL Technologies Limited

Optimization when SQL is within an SPL routine

If an SPL routine contains SQL statements, the database server optimizes and executes the SQL within the SPL routine.

The topics in this section contain information about how and when the database server optimizes and executes these routines.

SQL optimization
 If an SPL routine contains SQL statements, at some point the query optimizer evaluates the possible query plans for SQL in the SPL routine and selects the query

plan with the lowest cost. The database server puts the selected query plan for each SQL statement in an execution plan for the SPL routine.
Execution of an SPL routine

 When the database server executes an SPL routine with the EXECUTE PROCEDURE statement, with the CALL statement, or within an SQL statement, the server
performs several activities.
SPL routine executable format stored in UDR cache

 The first time that a user executes an SPL routine, the database server stores the executable format and any query plans in the UDR cache in the virtual portion of
shared memory.

Previous topic: Time costs of a query
Next topic: Trigger execution

Copyright© 2020 HCL Technologies Limited

SQL optimization

If an SPL routine contains SQL statements, at some point the query optimizer evaluates the possible query plans for SQL in the SPL routine and selects the query plan with
the lowest cost. The database server puts the selected query plan for each SQL statement in an execution plan for the SPL routine.

Part VI: Administering 1463

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

When you create an SPL routine with the CREATE PROCEDURE statement, the database server attempts to optimize the SQL statements within the SPL routine at that
time. If the tables cannot be examined at compile time (because they do not exist or are not available), the creation does not fail. In this case, the database server
optimizes the SQL statements the first time that the SPL routine executes.

The database server stores the optimized execution plan in the sysprocplan system catalog table for use by other processes. In addition, the database server stores
information about the SPL routine (such as procedure name and owner) in the sysprocedures system catalog table and an ASCII version of the SPL routine in the
sysprocbody system catalog table.

Figure 1 summarizes the information that the database server stores in system catalog tables during the compilation process.
Figure 1. SPL information stored in system catalog tables

Displaying the execution plan
 When you execute an SPL routine, it is already optimized. You can display the query plan for each SQL statement contained in the SPL routine

Automatic reoptimization
 In some situations, the database server reoptimizes an SQL statement the next time an SPL routine.

Reoptimizing SPL routines
 You can run an SQL statement that reoptimizes an SPL routine to prevent automatic reoptimization.

Optimization levels for SQL in SPL routines
 The current optimization level set in an SPL routine affects how the SPL routine is optimized.

Copyright© 2020 HCL Technologies Limited

Displaying the execution plan

When you execute an SPL routine, it is already optimized. You can display the query plan for each SQL statement contained in the SPL routine

To display the query plan, execute the SET EXPLAIN ON statement prior to one of the following SQL statements that always tries to optimize the SPL routine:

CREATE PROCEDURE
UPDATE STATISTICS FOR PROCEDURE
For example, use the following statements to display the query plan for an SPL routine:

SET EXPLAIN ON;
UPDATE STATISTICS FOR PROCEDURE procname;

Copyright© 2020 HCL Technologies Limited

Automatic reoptimization

In some situations, the database server reoptimizes an SQL statement the next time an SPL routine.

If the AUTO_REPREPARE configuration parameter or the IFX_AUTO_REPREPARE session environment variable is disabled, the following error can result when prepared
objects or SPL routines are executed after the schema of a table referenced by the prepared object or indirectly referenced by the SPL routine has been modified:

-710 Table <table-name> has been dropped, altered, or renamed.

The database server uses a dependency list to keep track of changes that would cause reoptimization the next time that an SPL routine executes.

The database server reoptimizes an SQL statement the next time an SPL routine executes after one of the following situations:

Execution of any data definition language (DDL) statement (such as ALTER TABLE, DROP INDEX, and CREATE INDEX) that might alter the query plan
Alteration of a table that is linked to another table with a referential constraint (in either direction)
Execution of UPDATE STATISTICS FOR TABLE for any table involved in the query
The UPDATE STATISTICS FOR TABLE statement changes the version number of the specified table in systables.

Renaming a column, database, or index with the RENAME statement

Whenever the SPL routine is reoptimized, the database server updates the sysprocplan system catalog table with the reoptimized execution plan.

Copyright© 2020 HCL Technologies Limited

Reoptimizing SPL routines

You can run an SQL statement that reoptimizes an SPL routine to prevent automatic reoptimization.

If you do not want to incur the cost of automatic reoptimization when you first execute an SPL routine after one of the situations that Automatic reoptimization lists,
execute the UPDATE STATISTICS statement with the FOR PROCEDURE clause immediately after the situation occurs. In this way, the SPL routine is reoptimized before any

1464 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

users execute it.

To prevent unnecessary reoptimization of all SPL routines, ensure that you specify a specific procedure name in the FOR PROCEDURE clause.

UPDATE STATISTICS FOR PROCEDURE myroutine;

For guidelines to run UPDATE STATISTICS, see Update statistics when they are not generated automatically.

Copyright© 2020 HCL Technologies Limited

Optimization levels for SQL in SPL routines

The current optimization level set in an SPL routine affects how the SPL routine is optimized.

The algorithm that a SET OPTIMIZATION HIGH statement invokes is a sophisticated, cost-based strategy that examines all reasonable query plans and selects the best
overall alternative. For large joins, this algorithm can incur more overhead than desired. In extreme cases, you can run out of memory.

The alternative algorithm that a SET OPTIMIZATION LOW statement invokes eliminates unlikely join strategies during the early stages, which reduces the time and
resources spent during optimization. However, when you specify a low level of optimization, the optimal strategy might not be selected because it was eliminated from
consideration during early stages of the algorithm.

For SPL routines that remain unchanged or change only slightly and that contain complex SELECT statements, you might want to set the SET OPTIMIZATION statement to
HIGH when you create the SPL routine. This optimization level stores the best query plans for the SPL routine. Then set optimization to LOW before you execute the SPL
routine. The SPL routine then uses the optimal query plans and runs at the more cost-effective rate if reoptimization occurs.

Copyright© 2020 HCL Technologies Limited

Execution of an SPL routine

When the database server executes an SPL routine with the EXECUTE PROCEDURE statement, with the CALL statement, or within an SQL statement, the server performs
several activities.

The database server performs these activities:

It reads the interpreter code from the system catalog tables and converts it from a compressed format to an executable format. If the SPL routine is in the UDR
cache, the database server retrieves it from the cache and bypasses the conversion step.
It executes any SPL statements that it encounters.
When the database server encounters an SQL statement, it retrieves the query plan from the database and executes the statement. If the query plan has not been
created, the database server optimizes the SQL statement before it executes.
When the database server reaches the end of the SPL routine or when it encounters a RETURN statement, it returns any results to the client application. Unless the
RETURN statement has a WITH RESUME clause, the SPL routine execution is complete.

Copyright© 2020 HCL Technologies Limited

SPL routine executable format stored in UDR cache

The first time that a user executes an SPL routine, the database server stores the executable format and any query plans in the UDR cache in the virtual portion of shared
memory.

When another user executes an SPL routine, the database server first checks the UDR cache. SPL execution performance improves when the database server can execute
the SPL routine from the UDR cache. The UDR cache also stores UDRs, user-defined aggregates, and extended data types definitions.

Adjust the UDR cache
 The default number of SPL routines, UDRs, and other user-defined definitions in the UDR cache is 127. You can change the number of entries with the

PC_POOLSIZE configuration parameter.

Related reference:
 Configure and monitor memory caches

Copyright© 2020 HCL Technologies Limited

Adjust the UDR cache

The default number of SPL routines, UDRs, and other user-defined definitions in the UDR cache is 127. You can change the number of entries with the PC_POOLSIZE
configuration parameter.

The database server uses a hashing algorithm to store and locate SPL routines in the UDR cache. You can modify the number of buckets in the UDR cache with the
PC_HASHSIZE configuration parameter. For example, if the value of the PC_POOLSIZE configuration parameter is 100 and the value of the PC_HASHSIZE configuration
parameter is 10, each bucket can have up to 10 SPL routines and UDRs.

Too many buckets cause the database server to move out cached SPL routines when the bucket fills. Too few buckets increase the number of SPL routines in a bucket, and
the database server must search though the SPL routines in a bucket to determine if the SPL routine that it needs is there.

Part VI: Administering 1465

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

When the number of entries in a bucket reaches 75 percent, the database server removes the least recently used SPL routines from the bucket (and hence from the UDR
cache) until the number of SPL routines in the bucket is 50 percent of the maximum SPL routines in the bucket.

Monitor the UDR cache by running the onstat -g prc command. If the numbers in the hits fields are not evenly distributed among buckets, increase the value of the
PC_HASHSIZE configuration parameter. Adjust the number of buckets to have the least number of high hit entries per bucket.

Important: PC_POOLSIZE and PC_HASHSIZE also control other memory caches for the database server (excluding the buffer pool, the SQL statement cache, the data
distribution cache, and the data-dictionary cache). When you modify the size and number of hash buckets for SQL routines, you also modify the size and number of hash
buckets for the other caches (such as the aggregate cache, oplcass, and typename cache).
Related information:

 onstat -g prc command: Print sessions using UDR or SPL routines
PC_POOLSIZE configuration parameter
PC_HASHSIZE configuration parameter

Copyright© 2020 HCL Technologies Limited

Trigger execution

A trigger is a database object that automatically executes one or more SQL statements (the triggered action) when a specified data manipulation language operation (the
triggering event) occurs. You can define one or more triggers on a table to execute after a SELECT, INSERT, UPDATE or DELETE triggering event.

You can also define INSTEAD OF triggers on a view. These triggers specify the SQL statements to be executed as triggered actions on the underlying table when a
triggering INSERT, UPDATE or DELETE statement attempts to modify the view. These triggers are called INSTEAD OF triggers because only the triggered SQL action is
executed; the triggering event is not executed. For more information about using triggers, see the IBM® Informix® Guide to SQL: Tutorial and information about the CREATE
TRIGGER statement in the IBM Informix Guide to SQL: Syntax.
Figure 1. Trigger information stored in system catalog tables

When you use the CREATE TRIGGER statement to register a new trigger, the database server:

Stores information about the trigger in the systriggers system catalog table.
Stores the text of the statements that the trigger executes in the systrigbody system catalog table.

The sysprocedures system catalog table identifies trigger routines that can be invoked only as triggered actions.

Memory-resident tables of the sysmaster database indicate whether the table or view has triggers on it.

Whenever a SELECT, INSERT, UPDATE, or DELETE statement is issued, the database server checks to see if the statement is a triggering event that activates a trigger for
the table and columns (or for the view) on which the DML statement operates. If the statement requires activating triggers, the database server retrieves the statement
text of the triggered actions from the systrigbody table and runs the triggered DML statements or SPL routine before, during, or after the triggering events. For INSTEAD
OF triggers on a view, the database server performs the triggered actions instead of the triggering events.

Performance implications for triggers
 In many situations, triggers can improve performance slightly because of the reduction in the number of messages passed from the client to the database server.

Previous topic: Optimization when SQL is within an SPL routine

Copyright© 2020 HCL Technologies Limited

Performance implications for triggers

In many situations, triggers can improve performance slightly because of the reduction in the number of messages passed from the client to the database server.

For example, if the trigger fires five SQL statements, the client saves at least 10 messages passed between the client and database server (one to send the SQL statement
and one for the reply after the database server executes the SQL statement). Triggers improve performance the most when they execute more SQL statements and the
network speed is comparatively slow.

When the database server executes an SQL statement, it must perform the following actions:

Determine if triggers must be fired
Retrieve the triggers from systriggers and systrigbody

These operations cause only a slight performance impact that can be offset by the decreased number of messages passed between the client and the server.

However, triggers executed on SELECT statements have additional performance implications. The following sections explain these implications.

SELECT triggers on tables in a table hierarchy
 When the database server executes a SELECT statement that includes a table that is involved in a table hierarchy, and the SELECT statement fires a SELECT trigger,

performance might be slower if the SELECT statement that invokes the trigger involves a join, sort, or materialized view.
SELECT triggers and row buffering

 The lack of buffering for SELECT statements that fire SELECT triggers might reduce performance slightly compared to an identical SELECT statement that does not
fire a SELECT trigger.

Copyright© 2020 HCL Technologies Limited

1466 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

SELECT triggers on tables in a table hierarchy

When the database server executes a SELECT statement that includes a table that is involved in a table hierarchy, and the SELECT statement fires a SELECT trigger,
performance might be slower if the SELECT statement that invokes the trigger involves a join, sort, or materialized view.

In this case, the database server does not know which columns are affected in the table hierarchy, so it can execute the query differently. The following behaviors might
occur:

Key-only index scans are disabled on the table that is involved in a table hierarchy.
If the database server needs to sort data selected from a table involved in a table hierarchy, it copies all of the columns in the SELECT list to the temporary table,
not just the sort columns.
If the database server uses the table included in the table hierarchy to build a hash table for a hash join with another table, it bypasses the early projection,
meaning it uses all of the columns from the table to build the hash table, not just the columns in the join.
If the SELECT statement contains a materialized view (meaning a temporary table must be built for the columns in a view) that contains columns from a table
involved in a table hierarchy, all columns from the table are included in the temporary table, not just the columns actually contained in the view.

Copyright© 2020 HCL Technologies Limited

SELECT triggers and row buffering

The lack of buffering for SELECT statements that fire SELECT triggers might reduce performance slightly compared to an identical SELECT statement that does not fire a
SELECT trigger.

In SELECT statements whose tables do not fire SELECT triggers, the database server sends more than one row back to the client and stores the rows in a buffer even
though the client application requested only one row with a FETCH statement. However, for SELECT statements that contain one or more tables that fire a SELECT trigger,
the database server sends only the requested row back to the client instead of a buffer full. The database server cannot return other rows to the client until the trigger
action occurs.

Copyright© 2020 HCL Technologies Limited

Optimizer directives

Optimizer directives are comments that tell the query optimizer how to execute a query. You can use optimizer directives to improve query performance.

What optimizer directives are
 Optimizer directives are specifications formatted as comments that provide information to the query optimizer about how to execute a query.

Reasons to use optimizer directives
 In most cases, the optimizer chooses the fastest query plan. You can use optimizer directives when the optimizer does not choose the best query plan to perform a

query, because of the complexity of the query, or because the query does not have enough information about the nature of the data. A poor query plan produces
poor performance.
Preparation for using directives

 In most cases, the optimizer chooses the fastest query plan. However, you can take steps to assist the optimizer and to prepare for using directives.
Guidelines for using directives

 Guidelines for directives include frequently analyzing the effectiveness of the query and using negative directives.
Types of optimizer directives that are supported in SQL statements

 Directives that are in SQL statements are embedded in queries. These directives include access-method directives, join-order directives, join-plan directives, and
optimization-goal directives.
Configuration parameters and environment variables for optimizer directives

 You can use the DIRECTIVES configuration parameter to turn on or off all directives that the database server encounters, and you can use the IFX_DIRECTIVES
environment variable to override the setting of the DIRECTIVES configuration parameter.
Optimizer directives and SPL routines

 Directives operate differently for a query in an SPL routine because a SELECT statement in an SPL routine is not necessarily optimized immediately before the
database server executes it.
Avoiding index or prepared object exceptions by forced reoptimization

 If the AUTO_REPREPARE configuration parameter and the IFX_AUTO_REPREPARE session environment variable are enabled, Informix automatically recompiles
prepared statements and SPL routines after the schema of a referenced table is modified by a DDL statement. If the AUTO_REPREPARE configuration parameter or
the IFX_AUTO_REPREPARE session environment variable is disabled, you can take steps to prevent errors.
External optimizer directives

 If you are user informix, you can create, save, and delete external directives.

Copyright© 2020 HCL Technologies Limited

What optimizer directives are

Optimizer directives are specifications formatted as comments that provide information to the query optimizer about how to execute a query.

You can use two kinds of optimizer directives:

Optimizer directives in the form of instructions that are embedded in queries (For more information, see Optimizer directives that are embedded in queries.

Part VI: Administering 1467

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

External optimizer directives that you create and save for use as temporary workaround solutions to problems when you do not want to change SQL statements in
queries. (For more information, see External optimizer directives.)

Optimizer directives that are embedded in queries
 Optimizer directives embedded in queries are comments in a SELECT statement that provide information to the query optimizer on how to execute a query. You can

also place directives in UPDATE and DELETE statements, instructing the optimizer how to access the data.
External optimizer directives

 External optimizer directives are optimizer directives that an administrator can create and store in the sysdirectives catalog table. The administrator can then use
an ONCONFIG variable to make the directives available.

Related concepts:
 Reasons to use optimizer directives

Preparation for using directives
Guidelines for using directives
Types of optimizer directives that are supported in SQL statements
Configuration parameters and environment variables for optimizer directives
Optimizer directives and SPL routines
Avoiding index or prepared object exceptions by forced reoptimization
Related tasks:

 External optimizer directives

Copyright© 2020 HCL Technologies Limited

Optimizer directives that are embedded in queries

Optimizer directives embedded in queries are comments in a SELECT statement that provide information to the query optimizer on how to execute a query. You can also
place directives in UPDATE and DELETE statements, instructing the optimizer how to access the data.

Optimizer directives can either be explicit directions (for example, "use this index" or "access this table first"), or they can eliminate possible query plans (for example, "do
not read this table sequentially" or "do not perform a nested-loop join").

Copyright© 2020 HCL Technologies Limited

External optimizer directives

External optimizer directives are optimizer directives that an administrator can create and store in the sysdirectives catalog table. The administrator can then use an
ONCONFIG variable to make the directives available.

Client users also specify an environment variable and can choose to use these optimizer directives in queries in situations when they do not want to insert comments in
SQL statements.

External directives are useful when it is not feasible to rewrite a query for a short-term solution to a problem, for example, when a query starts to perform poorly. Rewriting
the query by changing the SQL statement is preferable for long-term solutions to problems.

External directives are for occasional use only. The number of directives stored in the sysdirectives catalog should not exceed 50. A typical enterprise only needs 0 to 9
directives.

Copyright© 2020 HCL Technologies Limited

Reasons to use optimizer directives

In most cases, the optimizer chooses the fastest query plan. You can use optimizer directives when the optimizer does not choose the best query plan to perform a query,
because of the complexity of the query, or because the query does not have enough information about the nature of the data. A poor query plan produces poor
performance.

Before you decide when to use optimizer directives, you should understand what makes a good query plan.

The optimizer creates a query plan based on costs of using different table-access paths, join orders, and join plans.

Some query plan guidelines are:

Do not use an index when the database server must read a large portion of the table. For example, the following query might read most of the customer table:

SELECT * FROM customer WHERE STATE <> "ALASKA";

Assuming the customers are evenly spread among all 50 states, you might estimate that the database server must read 98 percent of the table. It is more efficient
to read the table sequentially than to traverse an index (and subsequently the data pages) when the database server must read most of the rows.

When you choose between indexes to access a table, use an index that can rule out the most rows. For example, consider the following query:

SELECT * FROM customer
WHERE state = "NEW YORK" AND order_date = "01/20/97"

Assuming that 200,000 customers live in New York and only 1000 customers ordered on any one day, the optimizer most likely chooses an index on order_date
rather than an index on state to perform the query.

1468 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Place small tables or tables with restrictive filters early in the query plan. For example, consider the following query:

SELECT * FROM customer, orders
 WHERE customer.customer_num = orders.customer_num
 AND
 customer.state = "NEVADA";

In this example, if you read the customer table first, you can rule out most of the rows by applying the filter that chooses all rows in which state = "NEVADA".

By ruling out rows in the customer table, the database server does not read as many rows in the orders table (which might be significantly larger than the customer
table).

Choose a hash join when neither column in the join filter has an index.
In the previous example, if customer.customer_num and orders.customer_num are not indexed, a hash join is probably the best join plan.

Choose nested-loop joins if:
The number of rows retrieved from the outer table after the database server applies any table filters is small, and the inner table has an index that can be
used to perform the join.
The index on the outermost table can be used to return rows in the order of the ORDER BY clause, eliminating the need for a sort.

For information about query plans, see The query plan. For more information about directives, see

Preparation for using directives
Guidelines for using directives
Types of optimizer directives that are supported in SQL statements

Related concepts:
 What optimizer directives are

Preparation for using directives
Guidelines for using directives
Types of optimizer directives that are supported in SQL statements
Configuration parameters and environment variables for optimizer directives
Optimizer directives and SPL routines
Avoiding index or prepared object exceptions by forced reoptimization
Related tasks:

 External optimizer directives

Copyright© 2020 HCL Technologies Limited

Preparation for using directives

In most cases, the optimizer chooses the fastest query plan. However, you can take steps to assist the optimizer and to prepare for using directives.

To prepare for using directives, make sure that you perform the following tasks:

Run UPDATE STATISTICS.
Without accurate statistics, the optimizer cannot choose the appropriate query plan. Run UPDATE STATISTICS any time that the data in the tables changes
significantly (many new rows are added, updated, or deleted). For more information, see Update the statistics for the number of rows.

Create distributions.
One of the first things that you should try when you attempt to improve a slow query is to create distributions on columns involved in a query. Distributions provide
the most accurate information to the optimizer about the nature of the data in the table. Run UPDATE STATISTICS HIGH on columns involved in the query filters to
see if performance improves. For more information, see Creating data distributions.

In some cases, the query optimizer does not choose the best query plan because of the complexity of the query or because (even with distributions) it does not have
enough information about the nature of the data. In these cases, you can attempt to improve performance for a particular query by using directives.

Related concepts:
 What optimizer directives are

Reasons to use optimizer directives
Guidelines for using directives
Types of optimizer directives that are supported in SQL statements
Configuration parameters and environment variables for optimizer directives
Optimizer directives and SPL routines
Avoiding index or prepared object exceptions by forced reoptimization
Related tasks:

 External optimizer directives

Copyright© 2020 HCL Technologies Limited

Guidelines for using directives

Guidelines for directives include frequently analyzing the effectiveness of the query and using negative directives.

Consider the following guidelines:

Examine the effectiveness of a particular directive frequently to make sure it continues to operate effectively. Imagine a query in a production program with several
directives that force an optimal query plan. Some days later, users add, update, or delete a large number of rows, which changes the nature of the data so much that
the once optimal query plan is no longer effective. This example illustrates how you must use directives with care.

Part VI: Administering 1469

https://www.hcltech.com/
https://www.hcltech.com/

Use negative directives (such as AVOID_NL, AVOID_FULL, and so on) whenever possible. When you exclude a behavior that degrades performance, you rely on the
optimizer to use the next-best choice rather than attempt to force a path that might not be optimal.

Related concepts:
 What optimizer directives are

Reasons to use optimizer directives
Preparation for using directives
Types of optimizer directives that are supported in SQL statements
Configuration parameters and environment variables for optimizer directives
Optimizer directives and SPL routines
Avoiding index or prepared object exceptions by forced reoptimization
Related tasks:

 External optimizer directives

Copyright© 2020 HCL Technologies Limited

Types of optimizer directives that are supported in SQL statements

Directives that are in SQL statements are embedded in queries. These directives include access-method directives, join-order directives, join-plan directives, and
optimization-goal directives.

Include the directives in the SQL statement as a comment that occurs immediately after the SELECT, UPDATE, or DELETE keyword. The first character in a directive is
always a plus (+) sign. In the following query, the ORDERED directive specifies that the tables should be joined in the same order as they are listed in the FROM clause. The
AVOID_FULL directive specifies that the optimizer should discard any plans that include a full table scan on the listed table (employee).

SELECT --+ORDERED, AVOID_FULL(e) * FROM employee e, department d
> 50000;

For a complete syntax description for directives, see the IBM® Informix Guide to SQL: Syntax.

To influence the choice of a query plan that the optimizer makes, you can alter the following aspects of a query:

Access method
Join order
Join method
Optimization goal
Star-join directives

You can also use EXPLAIN directives instead of the SET EXPLAIN statement to show the query plan. The following sections describe these aspects in detail.

Access-method directives
 The database server uses an access method to access a table. The server can either read the table sequentially via a full table scan or use any one of the indexes on

the table. Access-method directives influence the access method.
Join-order directives

 The join-order directive ORDERED tells the optimizer to join tables in the order that the SELECT statement lists them.
Join-method directives

 The join-method directives influence how the database server joins two tables in a query.
Optimization-goal directives

 In some queries, you might want to find only the first few rows in the result of a query. Or, you might know that all rows must be accessed and returned from the
query. You can use the optimization-goal directives to find the first row that satisfies the query or all rows that satisfy the query.
Star-join directives

 Star-join directives can specify how the query optimizer joins two or more tables, among which one or more dimension tables have foreign-key dependencies on
one or more fact tables.
EXPLAIN directives

 You can use the EXPLAIN directives to display the query plan that the optimizer chooses, and you can specify to display the query plan without running the query.
Example of directives that can alter a query plan

 Directives can alter the query plan. You can use particular directives to force the optimizer to choose a particular type of query plan, for example one that uses hash
joins and the order of tables as they appear in the query.

Related concepts:
 What optimizer directives are

Reasons to use optimizer directives
Preparation for using directives
Guidelines for using directives
Configuration parameters and environment variables for optimizer directives
Optimizer directives and SPL routines
Avoiding index or prepared object exceptions by forced reoptimization
Related tasks:

 External optimizer directives

Copyright© 2020 HCL Technologies Limited

Access-method directives

The database server uses an access method to access a table. The server can either read the table sequentially via a full table scan or use any one of the indexes on the
table. Access-method directives influence the access method.

1470 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

The following table lists the directives that influence the access method:

Access-Method
Directive Description

INDEX Tells the optimizer to use the index specified to access the table. If the directive lists more than one index, the optimizer chooses the index that
yields the least cost.

AVOID_INDEX Tells the optimizer not use any of the indexes listed. You can use this directive with the AVOID_FULL directive.

INDEX_SJ Forces an index self-join path using the specified index, or choosing the least costly index in a list of indexes, even if data distribution statistics are
not available for the leading index key columns of the index.
For information about index self-join paths, see Query plans that include an index self-join path.

AVOID_INDEX_SJ Tells the optimizer not to use an index self-join path for the specified index or indexes.

FULL Tells the optimizer to perform a full table scan.

AVOID_FULL Tells the optimizer not to perform a full table scan on the listed table. You can use this directive with the AVOID_INDEX directive.

INDEX_ALL or
MULTI_INDEX

Access the table by using the specified indexes for a multi-index scan.
The INDEX_ALL and MULTI_INDEX keywords are synonyms.

AVOID_MULTI_IND
EX

Tells the optimizer not to consider a multi-index scan path for the specified table.

In some cases, forcing an access method can change the join method that the optimizer chooses. For example, if you exclude the use of an index with the AVOID_INDEX
directive, the optimizer might choose a hash join instead of a nested-loop join.

The optimizer considers an index self-join path only if all of the following conditions are met:

The index does not have functional keys, user-defined types, built-in opaque types, or non-B-tree indexes
Data distribution statistics are available for the index key column under consideration
The number of rows in the table is at least 10 times the number of unique combinations of all possible lead-key column values.

If all of these conditions are met, the optimizer estimates the cost of an index self-join path and compares it with the costs of alternative access methods. The optimizer
then picks the best access method for the table. For more information about the access-method directives and some examples of their usage, see the IBM® Informix®
Guide to SQL: Syntax.

Copyright© 2020 HCL Technologies Limited

Join-order directives

The join-order directive ORDERED tells the optimizer to join tables in the order that the SELECT statement lists them.

Effect of join order on join plan
 By specifying the join order, you might affect more than just how tables are joined.

Join order when you use views
 The ORDERED directive that is inside a view or is in a query that contains a view affect the join order.

Copyright© 2020 HCL Technologies Limited

Effect of join order on join plan

By specifying the join order, you might affect more than just how tables are joined.

For example, consider the following query:

SELECT --+ORDERED, AVOID_FULL(e)
* FROM employee e, department d
WHERE e.dept_no = d.dept_no AND e.salary > 5000

In this example, the optimizer chooses to join the tables with a hash join. However, if you arrange the order so that the second table is employee (and must be accessed
by an index), the hash join is not feasible.

SELECT --+ORDERED, AVOID_FULL(e)
* FROM department d, employee e
WHERE e.dept_no = d.dept_no AND e.salary > 5000;

The optimizer chooses a nested-loop join in this case.

Copyright© 2020 HCL Technologies Limited

Join order when you use views

The ORDERED directive that is inside a view or is in a query that contains a view affect the join order.

Two cases can affect join order when you use views:

Part VI: Administering 1471

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The ORDERED directive is inside the view.
The ORDERED directive inside a view affects the join order of only the tables inside the view. The tables in the view must be joined contiguously. Consider the
following view and query:

CREATE VIEW emp_job_view as
 SELECT {+ORDERED}
 emp.job_num, job.job_name
 FROM emp, job
 WHERE emp.job_num = job.job_num;

SELECT * from dept, emp_job_view, project
 WHERE dept.dept_no = project.dept_num
 AND emp_job_view.job_num = project.job_num;

The ORDERED directive specifies that the emp table come before the job table. The directive does not affect the order of the dept and project table. Therefore, all
possible join orders are as follows:

emp, job, dept, project
emp, job, project, dept
project, emp, job, dept
dept, emp, job, project
dept, project, emp, job
project, dept, emp, job

The ORDERED directive is in a query that contains a view.
If an ORDERED directive appears in a query that contains a view, the join order of the tables in the query are the same as they are listed in the SELECT statement.
The tables within the view are joined as they are listed within the view.

In the following query, the join order is dept, project, emp, job:

CREATE VIEW emp_job_view AS
 SELECT
 emp.job_num, job.job_name
 FROM emp, job
 WHERE emp.job_num = job.job_num;
SELECT {+ORDERED}
 * FROM dept, project, emp_job_view
 WHERE dept.dept_no = project.dept_num
 AND emp_job_view.job_num = project.job_num;

An exception to this rule is when the view cannot be folded into the query, as in the following example:

CREATE VIEW emp_job_view2 AS
 SELECT DISTINCT
 emp.job_num, job.job_name
 FROM emp,job
 WHERE emp.job_num = job.job_num;

In this example, the database server executes the query and puts the result in a temporary table. The order of tables in this query is dept, project, temp_table.

Copyright© 2020 HCL Technologies Limited

Join-method directives

The join-method directives influence how the database server joins two tables in a query.

The following directives influence the join method between two tables:

USE_NL
Use the listed tables as the inner table in a nested-loop join.

USE_HASH
Access the listed tables with a hash join. You can also choose whether the table is used to create the hash table or to probe the hash table.

AVOID_NL
Do not use the listed tables as the inner table in a nested-loop join. A table listed with this directive can still participate in a nested-loop join as an outer table.

AVOID_HASH
Do not access the listed tables with a hash join. Optionally, you can allow a hash join but restrict the table from being the one that is probed or the table from which
the hash table is built.

You can specify the keyword /BUILD after the name of a table in a USE_HASH or AVOID_HASH optimizer directives:

With USE_HASH directives, the /BUILD keyword tells the optimizer to use the specified table to build the hash table.
With AVOID_HASH, the /BUILD keyword tells the optimizer to avoid using the specified table to build the hash table.

You can specify the keyword /PROBE after the name of a table in a USE_HASH or AVOID_HASH optimizer directives:

With USE_HASH directives, the /PROBE keyword tells the optimizer to use the specified table to probe the hash table.
With AVOID_HASH directives, the /PROBE keyword tells the optimizer to avoid using the specified table to probe the hash table.

Copyright© 2020 HCL Technologies Limited

Optimization-goal directives
1472 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

In some queries, you might want to find only the first few rows in the result of a query. Or, you might know that all rows must be accessed and returned from the query. You
can use the optimization-goal directives to find the first row that satisfies the query or all rows that satisfy the query.

For example, you might want to find only the first few rows in the result of a query, because the Informix® ESQL/C program opens a cursor for the query and performs a
FETCH to find only the first row.

Use the optimization-goal directives to optimize the query for either one of these cases:

FIRST_ROWS
Choose a plan that optimizes the process of finding only the first row that satisfies the query.

ALL_ROWS
Choose a plan that optimizes the process of finding all rows (the default behavior) that satisfy the query.

If you use the FIRST_ROWS directive, the optimizer might abandon a query plan that contains activities that are time-consuming up front. For example, a hash join might
take too much time to create the hash table. If only a few rows must be returned, the optimizer might choose a nested-loop join instead.

In the following example, assume that the database has an index on employee.dept_no but not on department.dept_no. Without directives, the optimizer chooses a
hash join.

SELECT *
FROM employee, department
WHERE employee.dept_no = department.dept_no

However, with the FIRST_ROWS directive, the optimizer chooses a nested-loop join because of the high initial overhead required to create the hash table.

SELECT {+first_rows} *
FROM employee, department
WHERE employee.dept_no = department.dept_no

Copyright© 2020 HCL Technologies Limited

Star-join directives

Star-join directives can specify how the query optimizer joins two or more tables, among which one or more dimension tables have foreign-key dependencies on one or
more fact tables.

The following directives can influence the join plan for tables that logically participate in a star schema or in a snowflake schema:

FACT
The optimizer considers a query plan in which the specified table is a fact table in a star-join execution plan.

AVOID_FACT
The optimizer does not consider a star-join execution plan that treats the specified table (or any of the tables in the list of tables) as a fact table.

STAR_JOIN
The optimizer favors a star-join execution plan, if available.

AVOID_STAR_JOIN
The optimizer chooses a query execution plan that is not a star-join plan.

These star-join directives have no effect unless the parallel database query feature (PDQ) is enabled.

Related information:
 Star-Join Directives

Concepts of dimensional data modeling
Keys to join the fact table with the dimension tables
Use the snowflake schema for hierarchical dimension tables

Copyright© 2020 HCL Technologies Limited

EXPLAIN directives

You can use the EXPLAIN directives to display the query plan that the optimizer chooses, and you can specify to display the query plan without running the query.

You can use these directives:

EXPLAIN
Displays the query plan that the optimizer chooses.

EXPLAIN AVOID_EXECUTE
Displays the query plan that the optimizer chooses, but does not run the query.

When you want to display the query plan for one SQL statement only, use these EXPLAIN directives instead of the SET EXPLAIN ON or SET EXPLAIN ON AVOID_EXECUTE
statements.

When you use AVOID_EXECUTE (either the directive or in the SET EXPLAIN statement), the query does not execute but displays the following message:

No rows returned.

Figure 1 shows sample output for a query that uses the EXPLAIN AVOID_EXECUTE directive.

Part VI: Administering 1473

https://www.hcltech.com/
https://www.hcltech.com/

Figure 1. Result of EXPLAIN AVOID_EXECUTE directives

QUERY:

select --+ explain avoid_execute
 l.customer_num, l.lname, l.company,
 l.phone, r.call_dtime, r.call_descr
from customer l, cust_calls r
where l.customer_num = r.customer_num

DIRECTIVES FOLLOWED:
EXPLAIN
AVOID_EXECUTE
DIRECTIVES NOT FOLLOWED:

Estimated Cost: 7
Estimated # of Rows Returned: 7

 1) informix.r: SEQUENTIAL SCAN

 2) informix.l: INDEX PATH

 (1) Index Keys: customer_num (Serial, fragments: ALL)
 Lower Index Filter: informix.l.customer_num = informix.r.customer_num
NESTED LOOP JOIN

The following table describes the pertinent output lines in Figure 1 that describe the chosen query plan.

Output Line in Figure 1 Chosen Query Plan Description

DIRECTIVES FOLLOWED: EXPLAIN AVOID_EXECUTE Use the directives EXPLAIN and AVOID_EXECUTE to display the query plan and
do not execute the query.

Estimated # of Rows Returned: 7 Estimate that this query returns seven rows.

Estimated Cost: 7 This estimated cost of 7 is a value that the optimizer uses to compare different
query plans and select the one with the lowest cost.

1) informix.r: SEQUENTIAL SCAN Use the cust_calls r table as the outer table and scan it to obtain each row.

2) informix.l: INDEX PATH For each row in the outer table, use an index to obtain the matching row(s) in
the inner table customer l.

(1) Index Keys: customer_num (Serial, fragments: ALL) Use the index on the customer_num column, scan it serially, and scan all
fragments (the customer l table consists of only one fragment).

Lower Index Filter: informix.l.customer_num =
informix.r.customer_num

Start the index scan at the customer_num value from the outer table.

Copyright© 2020 HCL Technologies Limited

Example of directives that can alter a query plan

Directives can alter the query plan. You can use particular directives to force the optimizer to choose a particular type of query plan, for example one that uses hash joins
and the order of tables as they appear in the query.

The following example shows how directives can alter the query plan.

Suppose you have the following query:

SELECT * FROM emp,job,dept
WHERE emp.location = 10
 AND emp.jobno = job.jobno
 AND emp.deptno = dept.deptno
 AND dept.location = "DENVER";

Assume that the following indexes exist:

ix1: emp(empno,jobno,deptno,location)
ix2: job(jobno)
ix3: dept(location)

You run the query with SET EXPLAIN ON to display the query path that the optimizer uses.

QUERY:

SELECT * FROM emp,job,dept
WHERE emp.location = "DENVER"
 AND emp.jobno = job.jobno
 AND emp.deptno = dept.deptno
 AND dept.location = "DENVER"

Estimated Cost: 5
Estimated # of Rows Returned: 1

1) informix.emp: INDEX PATH

 Filters: informix.emp.location = 'DENVER'

 (1) Index Keys: empno jobno deptno location (Key-Only)

2) informix.dept: INDEX PATH

1474 Part VI: Administering

https://www.hcltech.com/

 Filters: informix.dept.deptno = informix.emp.deptno

 (1) Index Keys: location
 Lower Index Filter: informix.dept.location = 'DENVER'
NESTED LOOP JOIN

3) informix.job: INDEX PATH

 (1) Index Keys: jobno (Key-Only)
 Lower Index Filter: informix.job.jobno = informix.emp.jobno
NESTED LOOP JOIN

The diagram in Figure 1 shows a possible query plan for this query. The query plan has three levels of information: (1) a nested-loop join, (2) an index scan on one table
and a nested-loop join, and (3) index scans on two other tables.
Figure 1. Possible query plan without directives

Perhaps you are concerned that using a nested-loop join might not be the fastest method to execute this query. You also think that the join order is not optimal. You can
force the optimizer to choose a hash join and order the tables in the query plan according to their order in the query, so the optimizer uses the query plan that Figure 2
shows. This query plan that has three levels of information: (1) a hash join, (2) an index scan and a hash join, and (3) an index scan on two other tables.
Figure 2. Possible query plan with directives

To force the optimizer to choose the query plan that uses hash joins and the order of tables shown in the query, use the directives that the following partial SET EXPLAIN
output shows:

QUERY:

SELECT {+ORDERED,
 INDEX(emp ix1),
 FULL(job),
 USE_HASH(job /BUILD),
 USE_HASH(dept /BUILD),
 INDEX(dept ix3)}
 * FROM emp,job,dept
 WHERE emp.location = 1
 AND emp.jobno = job.jobno
 AND emp.deptno = dept.deptno
 AND dept.location = "DENVER"

DIRECTIVES FOLLOWED:
ORDERED
INDEX (emp ix1)
FULL (job)
USE_HASH (job/BUILD)
USE_HASH (dept/BUILD)
INDEX (dept ix3)
DIRECTIVES NOT FOLLOWED:

Estimated Cost: 7
Estimated # of Rows Returned: 1

1) informix.emp: INDEX PATH

 Filters: informix.emp.location = 'DENVER'

 (1) Index Keys: empno jobno deptno location (Key-Only)

2) informix.job: SEQUENTIAL SCAN

DYNAMIC HASH JOIN
 Dynamic Hash Filters: informix.emp.jobno = informix.job.jobno

3) informix.dept: INDEX PATH

 (1) Index Keys: location
 Lower Index Filter: informix.dept.location = 'DENVER'

DYNAMIC HASH JOIN
 Dynamic Hash Filters: informix.emp.deptno = informix.dept.deptno

Part VI: Administering 1475

Copyright© 2020 HCL Technologies Limited

Configuration parameters and environment variables for optimizer directives

You can use the DIRECTIVES configuration parameter to turn on or off all directives that the database server encounters, and you can use the IFX_DIRECTIVES
environment variable to override the setting of the DIRECTIVES configuration parameter.

If the DIRECTIVES configuration parameter is set to 1 (the default), the optimizer follows all directives. If the DIRECTIVES configuration parameter is set to 0, the
optimizer ignores all directives.

You can override the setting of DIRECTIVES. If the IFX_DIRECTIVES environment variable is set to 1 or ON, the optimizer follows directives for any SQL the client session
executes. If IFX_DIRECTIVES is 0 or OFF, the optimizer ignores directives for any SQL in the client session.

Any directives in an SQL statement take precedence over the join plan that the OPTCOMPIND configuration parameter forces. For example, if a query includes the
USE_HASH directive and OPTCOMPIND is set to 0 (nested-loop joins preferred over hash joins), the optimizer uses a hash join.

Related concepts:
 What optimizer directives are

Reasons to use optimizer directives
Preparation for using directives
Guidelines for using directives
Types of optimizer directives that are supported in SQL statements
Optimizer directives and SPL routines
Avoiding index or prepared object exceptions by forced reoptimization
Related tasks:

 External optimizer directives

Copyright© 2020 HCL Technologies Limited

Optimizer directives and SPL routines

Directives operate differently for a query in an SPL routine because a SELECT statement in an SPL routine is not necessarily optimized immediately before the database
server executes it.

The optimizer creates a query plan for a SELECT statement in an SPL routine when the database server creates the SPL routine or during the execution of the UPDATE
STATISTICS statement that include the FOR FUNCTION, FOR PROCEDURE, or FOR ROUTINE keywords.

The optimizer reads and applies directives at the time that it creates the query plan. Because it stores the query plan in a system catalog table, the SELECT statement is
not reoptimized when it is executed. Therefore, settings of IFX_DIRECTIVES and DIRECTIVES affect SELECT statements inside an SPL routine when they are set at any of
the following times:

Before the CREATE PROCEDURE statement
Before the UPDATE STATISTICS FOR ROUTINE statements that cause SQL data-manipulation statements in SPL routines to be optimized
During certain circumstances when SELECT statements have variables supplied at runtime

Related concepts:
 What optimizer directives are

Reasons to use optimizer directives
Preparation for using directives
Guidelines for using directives
Types of optimizer directives that are supported in SQL statements
Configuration parameters and environment variables for optimizer directives
Avoiding index or prepared object exceptions by forced reoptimization
Related tasks:

 External optimizer directives

Copyright© 2020 HCL Technologies Limited

Avoiding index or prepared object exceptions by forced reoptimization

If the AUTO_REPREPARE configuration parameter and the IFX_AUTO_REPREPARE session environment variable are enabled, Informix® automatically recompiles
prepared statements and SPL routines after the schema of a referenced table is modified by a DDL statement. If the AUTO_REPREPARE configuration parameter or the
IFX_AUTO_REPREPARE session environment variable is disabled, you can take steps to prevent errors.

If the AUTO_REPREPARE configuration parameter or the IFX_AUTO_REPREPARE session environment variable is disabled, the following error can result when prepared
objects or SPL routines are executed after the schema of a table referenced by the prepared object or indirectly referenced by the SPL routine has been modified.

-710 Table <table-name> has been dropped, altered, or renamed.

This error can occur with explicitly prepared statements. These statements have the following form:

PREPARE statement_id FROM quoted_string;

After a statement has been prepared in the database server and before execution of the statement, a table to which the statement refers might have been renamed or
altered, possibly changing the structure of the table. Problems can occur as a result.

1476 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Adding an index to the table after preparing the statement can also invalidate the statement. A subsequent OPEN command for a cursor fails if the cursor refers to the
invalid prepared statement; the failure occurs even if the OPEN command has the WITH REOPTIMIZATION clause.

If an index was added after the statement was prepared, you must prepare the statement again and declare the cursor again. You cannot simply reopen the cursor if it was
based on a prepared statement that is no longer valid.

This error can also occur with SPL routines. Before the database server executes a new SPL routine the first time, it optimizes the code (statements) in the SPL routine.
Optimization makes the code depend on the structure of the tables that the procedure references. If the table structure changes after the procedure is optimized, but
before it is executed, this error can occur.

Each SPL routine is optimized the first time that it is run (not when it is created). This behavior means that an SPL routine might succeed the first time it is run but fail later
under virtually identical circumstances. The failure of an SPL routine can also be intermittent, because failure during one execution forces an internal warning to
reoptimize the procedure before the next execution.

The database server keeps a list of tables that the SPL routine references explicitly. Whenever any one of these explicitly referenced tables is modified, the database
server reoptimizes the procedure the next time the procedure is executed.

However, if the SPL routine depends on a table that is referenced only indirectly, the database server cannot detect the need to reoptimize the procedure after that table is
changed. For example, a table can be referenced indirectly if the SPL routine invokes a trigger. If a table that is referenced by the trigger (but not directly by the SPL
routine) is changed, the database server does not know that it should reoptimize the SPL routine before running it. When the procedure is run after the table has been
changed, this error can occur.

Use one of two methods to recover from this error:

Issue the UPDATE STATISTICS FOR PROCEDURE statement to force reoptimization of the procedure.
Rerun the procedure.

To prevent this error, you can force reoptimization of the SPL routine. For example, to force reoptimization of an SPL routine called procedure_name, execute the following
statement:

UPDATE STATISTICS FOR PROCEDURE procedure_name;

Note that the following UPDATE STATISTICS statement has the same effect:

UPDATE STATISTICS FOR ROUTINE procedure_name;

Important:
Keep in mind that in databases that use transaction logging, you must run the UPDATE STATISTICS statement in a transaction that does not contain any other SQL
statements.

You can add this statement to your program in either of the following ways:

Place the UPDATE STATISTICS statement after each DDL statement that changes the mode of an object.
Place the UPDATE STATISTICS statement before each execution of the SPL routine.

For efficiency, you can put the UPDATE STATISTICS statement with the action that occurs less frequently in the program (change of object mode or execution of the
procedure). In most cases, the action that occurs less frequently in the program is the change of object mode.
When you follow this method of recovering from this error, you must execute the UPDATE STATISTICS FOR PROCEDURE statement for each procedure that references the
changed tables indirectly, unless the procedure also references the tables explicitly.

You can also recover from this error by simply rerunning the SPL routine. The first time that the stored procedure fails, the database server marks the procedure as
needing reoptimization. The next time that you run the procedure, the database server reoptimizes the procedure before running it. However, running the SPL routine
twice might not be practical or safe. A safer choice is to use the UPDATE STATISTICS FOR PROCEDURE statement to force reoptimization of the procedure.

Related concepts:
 What optimizer directives are

Reasons to use optimizer directives
Preparation for using directives
Guidelines for using directives
Types of optimizer directives that are supported in SQL statements
Configuration parameters and environment variables for optimizer directives
Optimizer directives and SPL routines
Related tasks:

 External optimizer directives

Copyright© 2020 HCL Technologies Limited

External optimizer directives

If you are user informix, you can create, save, and delete external directives.

Creating and saving external directives
 You can define external directives by creating association records that include query optimizer directives, and saving those records in the sysdirectives system

catalog table. Association records associate a list of one or more optimizer directives with a specific query text. The database server can apply those optimizer
directives to subsequent instances of the same query text.
Enabling external directives

 After you create and save external directives, you must set the configuration parameter and environmental variable that enable the directives. The database server
searches for a directive for a query only if the external directives are set on both the database server and the client.
Deleting external directives

 When you no longer need an external directive, the DBA or user informix can use the DELETE statement of SQL to remove it from the sysdirectives system catalog
table.

Part VI: Administering 1477

https://www.hcltech.com/

Related concepts:
What optimizer directives are
Reasons to use optimizer directives
Preparation for using directives
Guidelines for using directives
Types of optimizer directives that are supported in SQL statements
Configuration parameters and environment variables for optimizer directives
Optimizer directives and SPL routines
Avoiding index or prepared object exceptions by forced reoptimization

Copyright© 2020 HCL Technologies Limited

Creating and saving external directives

You can define external directives by creating association records that include query optimizer directives, and saving those records in the sysdirectives system catalog
table. Association records associate a list of one or more optimizer directives with a specific query text. The database server can apply those optimizer directives to
subsequent instances of the same query text.

Use the SAVE EXTERNAL DIRECTIVES statement to create the association record to use for the list of one or more query directives These directives are applied
automatically to subsequent instances of the same query.

The following example shows a SAVE EXTERNAL DIRECTIVES statement that registers an association-record in the system catalog as a new row in the sysdirectives table
that can be used as a query optimizer directive.

SAVE EXTERNAL DIRECTIVES {+INDEX(t1,i11)} ACTIVE FOR
 SELECT {+INDEX(t1, i2) } c1 FROM t1 WHERE c1=1;

The following data is stored in the association record that the SQL statement above defined:

id 16
query select {+INDEX(t1, i2) } c1 from t1 where c1=1
directive INDEX(t1,i11)
directivecode BYTE value

active 1
hashcode -589336273

Here {+INDEX(t1,i11)}, the external directive that followed the DIRECTIVES keyword, will be applied to future instances of the specified query, but the inline
{+INDEX(t1,i2)} directive will be ignored.

The information in the external directives that immediately follow the DIRECTIVES keyword must be within comment indicators, just as the same directives would appear
in SELECT, UPDATE, MERGE, and DELETE statements, except that blank characters, rather than comma (,) symbols, are the required separators if the list of external
directives includes more than one directive.

Copyright© 2020 HCL Technologies Limited

Enabling external directives

After you create and save external directives, you must set the configuration parameter and environmental variable that enable the directives. The database server
searches for a directive for a query only if the external directives are set on both the database server and the client.

Enable the directive by using a combination of the EXT_DIRECTIVES configuration parameter, which is in the ONCONFIG file, and the IFX_EXTDIRECTIVES client-side
environment variable.

The EXT_DIRECTIVE values that you can use are:

Value Explanation

0 (default) Off. The directive cannot be enabled, even if IFX_EXTDIRECTIVES is enabled.

1 On. The directive can be enabled for a session if IFX_EXTDIRECTIVES is
enabled.

2 On. The directive can be used even if IFX_EXTDIRECTIVES is not enabled.

You can also use the EXTDIRECTIVES option of the SET ENVIRONMENT statement to enable or disable external directives during a session. What you specify with the
EXTDIRECTIVES option overwrites the external directive setting that is specified in the EXT_DIRECTIVES configuration parameter in the ONCONFIG file.

To overwrite the value for enabling or disabling the external directive in the ONCONFIG file:

To enable the external directives during a session, specify 1, on, or ON as the value for SET ENVIRONMENT EXTDIRECTIVES.
To disable the external directives during a session, specify 0, off, or OFF as the value for SET ENVIRONMENT EXTDIRECTIVES.

To enable the default values specified in the EXT_DIRECTIVES configuration parameter and in the client-side IFX_EXTDIRECTIVES environment variable during a session,
specify DEFAULT as the value for the EXTDIRECTIVES option of the SET ENVIRONMENT statement.

The explain output file specifies whether external directives are in effect.

Related concepts:
 The explain output file

Query statistics section provides performance debugging information
Report that shows the query plan chosen by the optimizer

1478 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Related information:
SET EXPLAIN statement
Using the FILE TO option
Default name and location of the explain output file on UNIX
Default name and location of the output file on Windows
onmode -Y: Dynamically change SET EXPLAIN
onmode and Y arguments: Change query plan measurements for a session (SQL administration API)

Copyright© 2020 HCL Technologies Limited

Deleting external directives

When you no longer need an external directive, the DBA or user informix can use the DELETE statement of SQL to remove it from the sysdirectives system catalog table.

When external directives are enabled and the sysdirectives system catalog table is not empty,

the database server compares every query with the query text of every ACTIVE external directive,
and for queries executed by the DBA (or by user informix) with every TEST ONLY external directive.

The purpose of external directives is to improve the performance of queries that match the query string, but the use of such directives can potentially slow other queries, if
the query execution optimizer must compare the query strings of a large number of active external directives with the text of every SELECT statement. For this reason,
recommends that the DBA not allow the sysdirectives table to accumulate more than a few ACTIVE rows. (An alternative way to avoid unintended performance impact on
other queries is to disable support for external directives by setting the EXT_DIRECTIVES configuration parameter to 0. Setting the IFX_EXTDIRECTIVES client
environment variable to 0 has the same effect.)

Copyright© 2020 HCL Technologies Limited

Parallel database query (PDQ)

You can manage how the database server performs PDQ and you can monitor the resources that the database server uses for PDQ.

What PDQ is
 Parallel database query (PDQ) is a database server feature that can improve performance dramatically when the server processes queries that decision-support

applications initiate. PDQ enables Informix to distribute the work for one aspect of a query among several processors. For example, if a query requires an
aggregation, Informix can distribute the work for the aggregation among several processors.
Structure of a PDQ query

 Each decision-support query has a primary thread. The database server can start additional threads to perform tasks for the query (for example, scans and sorts).
Depending on the number of tables or fragments that a query must search and the resources that are available for a decision-support query, the database server
assigns different components of a query to different threads.
Database server operations that use PDQ

 Informix processes some types of SQL operations that the database server processes in parallel. However some situations limit the degree of parallelism that
Informix can use.
The Memory Grant Manager

 The Memory Grant Manager (MGM) is a database server component that coordinates the use of memory, CPU virtual processors (VPs), disk I/O, and scan threads
among decision-support queries. The MGM uses the DS_MAX_QUERIES, DS_TOTAL_MEMORY, DS_MAX_SCANS, and MAX_PDQPRIORITY configuration parameters
to determine the quantity of these PDQ resources that can be granted to a decision-support query.
The allocation of resources for parallel database queries

 When you configure the database server, consider how the use of PDQ affects users of OLTP, decision-support (DSS) applications, and other applications. Then you
can plan how to allocate resources for PDQ.
Managing PDQ queries
The database server administrator, the writer of an application, and the users all have a certain amount of control over the amount of resources that Informix
allocates to processing a query. The database server administrator exerts control through the use of configuration parameters. The application developer or the
user can exert control through an environment variable or SQL statement.
Monitoring resources used for PDQ and DSS queries

 You can monitor the resources (shared memory and threads) that the Memory Grant Manager (MGM) has allocated for PDQ queries and the resources that PDQ and
decision-support (DSS) queries currently use.

Copyright© 2020 HCL Technologies Limited

What PDQ is

Parallel database query (PDQ) is a database server feature that can improve performance dramatically when the server processes queries that decision-support
applications initiate. PDQ enables Informix® to distribute the work for one aspect of a query among several processors. For example, if a query requires an aggregation,
Informix can distribute the work for the aggregation among several processors.

PDQ also includes tools for resource management.

Another database server feature, table fragmentation, allows you to store the parts of a table on different disks. PDQ delivers maximum performance benefits when the
data that you query is in fragmented tables. For information about how to use fragmentation for maximum performance, see Planning a fragmentation strategy.

Related concepts:
 Database server operations that use PDQ

The allocation of resources for parallel database queries

Part VI: Administering 1479

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Managing PDQ queries
Monitoring resources used for PDQ and DSS queries

Copyright© 2020 HCL Technologies Limited

Structure of a PDQ query

Each decision-support query has a primary thread. The database server can start additional threads to perform tasks for the query (for example, scans and sorts).
Depending on the number of tables or fragments that a query must search and the resources that are available for a decision-support query, the database server assigns
different components of a query to different threads.

The database server initiates these PDQ threads, which are listed as secondary threads in the SET EXPLAIN output.

Secondary threads are further classified as either producers or consumers, depending on their function. A producer thread supplies data to another thread. For example, a
scan thread might read data from shared memory that corresponds to a given table and pass it along to a join thread. In this case, the scan thread is considered a
producer, and the join thread is considered a consumer. The join thread, in turn, might pass data along to a sort thread. When doing so, the join thread is considered a
producer, and the sort thread is considered a consumer.

Several producers can supply data to a single consumer. When this situation occurs, the database server sets up an internal mechanism, called an exchange, that
synchronizes the transfer of data from those producers to the consumer. For instance, if a fragmented table is to be sorted, the optimizer typically calls for a separate scan
thread for each fragment. Because of different I/O characteristics, the scan threads can be expected to complete at different times. An exchange is used to funnel the data
produced by the various scan threads into one or more sort threads with a minimum of buffering. Depending on the complexity of the query, the optimizer might call for a
multilayered hierarchy of producers, exchanges, and consumers. Generally speaking, consumer threads work in parallel with producer threads so that the amount of
intermediate buffering that the exchanges perform remains negligible.

The database server creates these threads and exchanges automatically and transparently. They terminate automatically as they complete processing for a given query.
The database server creates new threads and exchanges as needed for subsequent queries.

Copyright© 2020 HCL Technologies Limited

Database server operations that use PDQ

Informix® processes some types of SQL operations that the database server processes in parallel. However some situations limit the degree of parallelism that Informix
can use.

In the topics on database server operations that use PDQ in this section, a query is any SELECT statement.

Parallel update and delete operations
 Informix performs some types of update and delete operations in parallel.

Parallel insert operations
 Informix performs some types of insert operations in parallel.

Parallel index builds
 Index builds can take advantage of PDQ and can be parallelized. The database server performs both scans and sorts in parallel for index builds.

Parallel user-defined routines
 If a query contains a user-defined routine (UDR) in an expression, the database server can execute a query in parallel when you turn on PDQ.

Hold cursors that use PDQ
 When hold cursors that are created by declaring the WITH HOLD qualifier have no locks, PDQ is enabled.

SQL operations that do not use PDQ
 The database server does not process some types of queries in parallel.

Update statistics operations affected by PDQ
 An SQL UPDATE STATISTICS statement that is not processed in parallel, is affected by PDQ because it must allocate the memory used for sorting. Thus the behavior

of the UPDATE STATISTICS statement is affected by the memory management associated with PDQ.
SPL routines and triggers and PDQ

 Statements that involve SPL routines are not executed in parallel. However, statements within procedures are executed in parallel.
Correlated and uncorrelated subqueries

 The database server does not use PDQ to process correlated subqueries. Only one thread at a time can execute a correlated subquery. While one thread executes a
correlated subquery, other threads that request to execute the subquery are blocked until the first one completes.
OUTER index joins and PDQ

 The database server reduces the PDQ priority of queries that contain OUTER index joins to LOW (if the priority is set to a higher value) for the duration of the query.
If a subquery or a view contains OUTER index joins, the database server lowers the PDQ priority of only that subquery or view, not of the parent query or any other
subquery.
Remote tables used with PDQ

 Although the database server can process the data stored in a remote table in parallel, the data is communicated serially because the database server allocates a
single thread to submit and receive the data from the remote table. The database server lowers the PDQ priority of queries that require access to a remote database
to LOW.

Related concepts:
 What PDQ is

Copyright© 2020 HCL Technologies Limited

Parallel update and delete operations

1480 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Informix® performs some types of update and delete operations in parallel.

The database server takes the following two steps to process UPDATE and DELETE statements:

1. Fetches the qualifying rows.
2. Applies the action of updating or deleting.

The database server performs the first step of an UPDATE or DELETE statement in parallel, with the following exceptions:

The targeted table in a DELETE statement has a referential constraint that can cascade to a child table.
The UPDATE or DELETE statement contains an OR clause and the optimizer chooses an OR index to process the OR filter.
The UPDATE statement contains a subquery that the optimizer converts into a join.

Copyright© 2020 HCL Technologies Limited

Parallel insert operations

Informix® performs some types of insert operations in parallel.

The types of insert operations that the server performs in parallel are:

SELECT...INTO TEMP inserts using explicit temporary tables.
INSERT INTO...SELECT inserts using implicit temporary tables.

Explicit inserts with SELECT...INTO TEMP statements
 The database server can insert rows in parallel into explicit temporary tables that you specify in SQL statements of the form SELECT....INTO TEMP.

Implicit inserts with INSERT INTO...SELECT statements
 The database server can also insert rows in parallel into implicit tables that it creates when it processes SQL statements of the form INSERT INTO...SELECT.

Copyright© 2020 HCL Technologies Limited

Explicit inserts with SELECT...INTO TEMP statements

The database server can insert rows in parallel into explicit temporary tables that you specify in SQL statements of the form SELECT....INTO TEMP.

For example, the database server can perform the inserts in parallel into the temporary table, temp_table, as the following example shows:

SELECT * FROM table1 INTO TEMP temp_table

To perform parallel inserts into a temporary table:

1. Set PDQ priority > 0.
You must meet this requirement for any query that you want the database server to perform in parallel.

2. Set DBSPACETEMP to a list of two or more dbspaces.
This step is required because of the way that the database server performs the insert. To perform the insert in parallel, the database server first creates a
fragmented temporary table. So that the database server knows where to store the fragments of the temporary table, you must specify a list of two or more
dbspaces in the DBSPACETEMP configuration parameter or the DBSPACETEMP environment variable. In addition, you must set DBSPACETEMP to indicate storage
space for the fragments before you execute the SELECT...INTO statement.

The database server performs the parallel insert by writing in parallel to each of the fragments in a round-robin fashion. Performance improves as you increase the
number of fragments.

Related concepts:
 Implicit inserts with INSERT INTO...SELECT statements

Copyright© 2020 HCL Technologies Limited

Implicit inserts with INSERT INTO...SELECT statements

The database server can also insert rows in parallel into implicit tables that it creates when it processes SQL statements of the form INSERT INTO...SELECT.

For example, the database server processes the following INSERT statement in parallel:

INSERT INTO target_table SELECT * FROM source_table

The target table can be either a permanent table or a temporary table.

The database server processes this type of INSERT statement in parallel only when the target tables meet the following criteria:

The value of PDQ priority is greater than 0.
The target table is fragmented into two or more dbspaces.
The target table has no enabled referential constraints or triggers.
The target table is not a remote table.
In a database with logging, the target table does not contain filtering constraints.
The target table does not contain columns of TEXT or BYTE data type.

Part VI: Administering 1481

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The database server does not process parallel inserts that reference an SPL routine. For example, the database server never processes the following statement in parallel:

INSERT INTO table1 EXECUTE PROCEDURE ins_proc

Related tasks:
 Explicit inserts with SELECT...INTO TEMP statements

Copyright© 2020 HCL Technologies Limited

Parallel index builds

Index builds can take advantage of PDQ and can be parallelized. The database server performs both scans and sorts in parallel for index builds.

The following operations initiate index builds:

Create an index.
Add a unique, primary key.
Add a referential constraint.
Enable a referential constraint.

When PDQ is in effect, the scans for index builds are controlled by the PDQ configuration parameters described in The allocation of resources for parallel database
queries.

If you have a computer with multiple CPUs, the database server uses two sort threads to sort the index keys. The database server uses two sort threads during index
builds without the user setting the PSORT_NPROCS environment variable.

Copyright© 2020 HCL Technologies Limited

Parallel user-defined routines

If a query contains a user-defined routine (UDR) in an expression, the database server can execute a query in parallel when you turn on PDQ.

The database server can perform the following parallel operations if the UDR is written and registered appropriately:

Parallel scans
Parallel comparisons with the UDR

For more information about how to enable parallel execution of UDRs, see Parallel UDRs.

Copyright© 2020 HCL Technologies Limited

Hold cursors that use PDQ

When hold cursors that are created by declaring the WITH HOLD qualifier have no locks, PDQ is enabled.

PDQ will be set for hold cursors in the following cases:

Queries with Dirty Read or Committed Read isolation level, ANSI, and read-only cursor
Queries with Dirty Read or Committed Read isolation level, NON-ANSI, non-updateable cursor

Copyright© 2020 HCL Technologies Limited

SQL operations that do not use PDQ

The database server does not process some types of queries in parallel.

For example, the server does not process the following types of queries in parallel:

Queries started with an isolation level of Cursor Stability
Subsequent changes to the isolation level do not affect the parallelism of queries already prepared. This situation results from the inherent nature of parallel scans,
which scan several rows simultaneously.

Queries that use a cursor declared as FOR UPDATE
Queries in the FOR EACH ROW section of the Action clause of a Select trigger
A DELETE or MERGE statement in the FOR EACH ROW section of the Action clause of a Delete trigger
An INSERT or MERGE statement in the FOR EACH ROW section of the Action clause of an Insert trigger
An UPDATE or MERGE statement in the FOR EACH ROW section of the Action clause of an Update trigger
Data definition language (DDL) statements.
For a complete list of the DDL statements of SQL that Informix® supports, see the IBM® Informix Guide to SQL: Syntax.

In addition, the database server does not process sequence objects in PDQ operations. If your SQL statement includes sequencing operations, such as expressions that
include the NEXTVAL or CURRVAL operators, PDQ processing is unavailable for that statement.

1482 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Update statistics operations affected by PDQ

An SQL UPDATE STATISTICS statement that is not processed in parallel, is affected by PDQ because it must allocate the memory used for sorting. Thus the behavior of the
UPDATE STATISTICS statement is affected by the memory management associated with PDQ.

The database server must allocate the memory that the UPDATE STATISTICS statement uses for sorting.

If you have an extremely large database and indexes are fragmented, UPDATE STATISTICS LOW can automatically run statements in parallel. For more information, see
Update statistics in parallel on very large databases.

Copyright© 2020 HCL Technologies Limited

SPL routines and triggers and PDQ

Statements that involve SPL routines are not executed in parallel. However, statements within procedures are executed in parallel.

When the database server executes an SPL routine, it does not use PDQ to process non-related SQL statements contained in the procedure. Each SQL statement can be
executed independently in parallel, however, using intraquery parallelism when possible. As a consequence, you should limit the use of procedure calls from within data
manipulation language (DML) statements if you want to use the parallel-processing abilities of the database server. For a complete list of DML statements, see the IBM®
Informix Guide to SQL: Syntax.

The database server uses intraquery parallelism to process the statements in the body of an SQL trigger in the same way that it processes statements in SPL routines. For
restrictions on using PDQ for queries in some triggered actions of Select, Insert, and Update triggers, see SQL operations that do not use PDQ.

Copyright© 2020 HCL Technologies Limited

Correlated and uncorrelated subqueries

The database server does not use PDQ to process correlated subqueries. Only one thread at a time can execute a correlated subquery. While one thread executes a
correlated subquery, other threads that request to execute the subquery are blocked until the first one completes.

For uncorrelated subqueries, only the first thread that makes the request actually executes the subquery. Other threads simply use the results of the subquery and can do
so in parallel.

As a consequence, it is strongly recommended that, whenever possible, you use joins rather than subqueries to build queries so that the queries can take advantage of
PDQ.

Copyright© 2020 HCL Technologies Limited

OUTER index joins and PDQ

The database server reduces the PDQ priority of queries that contain OUTER index joins to LOW (if the priority is set to a higher value) for the duration of the query. If a
subquery or a view contains OUTER index joins, the database server lowers the PDQ priority of only that subquery or view, not of the parent query or any other subquery.

Copyright© 2020 HCL Technologies Limited

Remote tables used with PDQ

Although the database server can process the data stored in a remote table in parallel, the data is communicated serially because the database server allocates a single
thread to submit and receive the data from the remote table. The database server lowers the PDQ priority of queries that require access to a remote database to LOW.

In this case, all local scans are parallel, but all local joins and remote access are nonparallel.

Copyright© 2020 HCL Technologies Limited

The Memory Grant Manager

The Memory Grant Manager (MGM) is a database server component that coordinates the use of memory, CPU virtual processors (VPs), disk I/O, and scan threads among
decision-support queries. The MGM uses the DS_MAX_QUERIES, DS_TOTAL_MEMORY, DS_MAX_SCANS, and MAX_PDQPRIORITY configuration parameters to determine
the quantity of these PDQ resources that can be granted to a decision-support query.

The MGM dynamically allocates the following resources for decision-support queries:

Part VI: Administering 1483

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The number of scan threads that are started for each decision-support query
The number of threads that can be started for each query
The amount of memory in the virtual portion of database server shared memory that the query can reserve

When your database server system has heavy OLTP use, and you find performance is degrading, you can use the MGM facilities to limit the resources that are committed
to decision-support queries. During off-peak hours, you can designate a larger proportion of the resources to parallel processing, which achieves higher throughput for
decision-support queries.

The MGM grants memory to a query for such activities as sorts, hash joins, and processing of GROUP BY clauses. The amount of memory that decision-support queries use
cannot exceed DS_TOTAL_MEMORY.

The MGM grants memory to queries in quantum increments. To calculate the approximate size of the quantum, use the following formula:

memory quantum = DS_TOTAL_MEMORY / DS_MAX_QUERIES

For example, if DS_TOTAL_MEMORY is 12 MB and DS_MAX_QUERIES is 4, the quantum is 3 MB (12/4). Thus, with these values in effect, a quantum of memory equals 3
MB. The database server can adjust the size of the quantum dynamically when it grants memory. In general, memory is allocated more efficiently when quanta are
smaller. You can often improve performance of concurrent queries by increasing DS_MAX_QUERIES to reduce the size of a quantum of memory.

To monitor resources that the MGM allocates, run the onstat -g mgm command. This command shows only the amount of memory that is used; it does not show the
amount of memory that is granted.

The MGM also grants a maximum number of scan threads per query that is based on the values of the DS_MAX_SCANS and the DS_MAX_QUERIES parameters.

The following formula yields the maximum number of scan threads per query:

scan_threads = min (nfrags, DS_MAX_SCANS * (pdqpriority / 100)
 * (MAX_PDQPRIORITY / 100))

nfrags
Is the number of fragments in the table with the largest number of fragments.

pdqpriority
Is the value for PDQ priority that is set by either the PDQPRIORITY environment variable or the SQL statement SET PDQPRIORITY.

The PDQPRIORITY environment variable and the SQL statement SET PDQPRIORITY request a percentage of PDQ resources for a query. You can use the
MAX_PDQPRIORITY configuration parameter to limit the percentage of the requested resources that a query can obtain and to limit the impact of decision-support
queries on OLTP processing.

Related concepts:
 Effect of configuration on memory utilization

Limiting the priority of decision-support queries
The DS_TOTAL_MEMORY configuration parameter and memory utilization
Related information:

 onstat -g mgm command: Print MGM resource information

Copyright© 2020 HCL Technologies Limited

The allocation of resources for parallel database queries

When you configure the database server, consider how the use of PDQ affects users of OLTP, decision-support (DSS) applications, and other applications. Then you can
plan how to allocate resources for PDQ.

When the database server uses PDQ to perform a query in parallel, it puts a heavy load on the operating system. In particular, PDQ exploits the following resources:

Memory
CPU VPs
Disk I/O (to fragmented tables and temporary table space)
Scan threads

You can control how the database server uses resources in the following ways:

Limit the priority of parallel database queries.
Adjust the amount of memory.
Limit the number of scan threads.
Limit the number of concurrent queries.

Limiting the priority of decision-support queries
 You can limit the parallel processing resources that decision-support (DSS) queries consume by adjusting the values of PDQPRIORITY environment variable, the

MAX_PDQPRIORITY configuration parameter, and other configuration parameters.
Adjusting the amount of memory for DSS and PDQ queries

 You can estimate the amount of shared memory to allocate to decision-support (DSS) queries. Then, if necessary, you can adjust the value of the
DS_TOTAL_MEMORY configuration parameter, which specifies the amount of memory available for PDQ queries.
Limiting the number of concurrent scans

 The database server apportions some number of scans to a query according to its PDQ priority (among other factors). You can adjust the value of the
DS_MAX_SCANS configuration parameter to limit the number of concurrent scans.
Limiting the maximum number of PDQ queries

 You can adjust the maximum number of PDQ queries that can run concurrently by changing the value of the DS_MAX_QUERIES configuration parameter.

Related concepts:
 What PDQ is

Copyright© 2020 HCL Technologies Limited

1484 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Limiting the priority of decision-support queries

You can limit the parallel processing resources that decision-support (DSS) queries consume by adjusting the values of PDQPRIORITY environment variable, the
MAX_PDQPRIORITY configuration parameter, and other configuration parameters.

The default value for the PDQ priority of individual applications is 0, which means that PDQ processing is not used. The database server uses this value unless one of the
following actions overrides it:

You set the PDQPRIORITY environment variable.
The application uses the SET PDQPRIORITY statement.

The PDQPRIORITY environment variable and the MAX_PDQPRIORITY configuration parameter work together to control the amount of resources to allocate for parallel
processing. Setting these correctly is critical for the effective operation of PDQ.

The MAX_PDQPRIORITY configuration parameter allows you to limit the parallel processing resources that DSS queries consume. Thus, the PDQPRIORITY environment
variable sets a reasonable or recommended priority value, and MAX_PDQPRIORITY limits the resources that an application can claim.

The MAX_PDQPRIORITY configuration parameter specifies the maximum percentage of the requested resources that a query can obtain. For instance, if PDQPRIORITY is
80 and MAX_PDQPRIORITY is 50, each active query receives an amount of memory equal to 40 percent of DS_TOTAL_MEMORY, rounded down to the nearest quantum. In
this example, MAX_PDQPRIORITY effectively limits the number of concurrent decision-support queries to two. Subsequent queries must wait for earlier queries to finish
before they acquire the resources that they need to run.

An application or user can use the DEFAULT tag of the SET PDQPRIORITY statement to use the value for PDQ priority if the value has been set by the PDQPRIORITY
environment variable. DEFAULT is the symbolic equivalent of a -1 value for PDQ priority.

You can use the onmode command-line utility to change the values of the following configuration parameters temporarily:

Use onmode -M to change the value of DS_TOTAL_MEMORY.
Use onmode -Q to change the value of DS_MAX_QUERIES.
Use onmode -D to change the value of MAX_PDQPRIORITY.
Use onmode -S to change the value of DS_MAX_SCANS.

These changes remain in effect only as long as the database server remains up and running. When the database server starts, it uses the values listed in the ONCONFIG
file.

For more information about the preceding parameters, see Effect of configuration on memory utilization. For more information about onmode, see your IBM® Informix
Administrator's Reference.

If you must change the values of the decision-support parameters on a regular basis (for example, to set MAX_PDQPRIORITY to 100 each night for processing reports),
you can use a scheduled operating-system job to set the values. For information about creating scheduled jobs, see your operating-system manuals.

To obtain the best performance from the database server, choose values for the PDQPRIORITY environment variable and MAX_PDQPRIORITY parameter, observe the
resulting behavior, and then adjust the values for these parameters. No well-defined rules exist for choosing these environment variable and parameter values. The
following sections discuss strategies for setting PDQPRIORITY and MAX_PDQPRIORITY for specific needs.

Limiting the value of the PDQ priority
 You can adjust the value of the MAX_PDQPRIORITY configuration parameter to adjust the PDQ priority and allocate more resources to either OLTP or decision-

support processing.
Maximizing OLTP throughput for queries

 At times, you might want to allocate resources to maximize the throughput for individual OLTP queries rather than for decision-support queries.
Conserving resources when using PDQ

 If applications make little use of queries that require parallel sorts and parallel joins, consider using the LOW setting for PDQ priority.
Allowing maximum use of parallel processing

 Set PDQPRIORITY and MAX_PDQPRIORITY to 100 if you want the database server to assign as many resources as possible to parallel processing.
Determining the level of parallel processing

 You can use different numeric settings for PDQPRIORITY to experiment with the effects of parallelism on a single application.
Limits on parallel operations associated with PDQ priority

 The database server reduces the PDQ priority of queries that contain outer joins to LOW (if set to a higher value) for the duration of the query. If a subquery or a
view contains outer joins, the database server lowers the PDQ priority only of that subquery or view, not of the parent query or of any other subquery.
Using SPL routines with PDQ queries

 The database server freezes the PDQ priority that is used to optimize SQL statements within SPL routines at the time of procedure creation or the last manual
recompilation with the UPDATE STATISTICS statement. You can change the client value of PDQPRIORITY.

Related concepts:
 The Memory Grant Manager

Copyright© 2020 HCL Technologies Limited

Limiting the value of the PDQ priority

You can adjust the value of the MAX_PDQPRIORITY configuration parameter to adjust the PDQ priority and allocate more resources to either OLTP or decision-support
processing.

The MAX_PDQPRIORITY configuration parameter limits the PDQ priority that the database server grants when users either set the PDQPRIORITY environment variable or
issue the SET PDQPRIORITY statement before they issue a query. When an application or an end user attempts to set a PDQ priority, the priority that is granted is
multiplied by the value that MAX_PDQPRIORITY specifies.

Set the value of MAX_PDQPRIORITY lower when you want to allocate more resources to OLTP processing.

Part VI: Administering 1485

https://www.hcltech.com/

Set the value of MAX_PDQPRIORITY higher when you want to allocate more resources to decision-support processing.

The possible range of values is 0 to 100. This range represents the percent of resources that you can allocate to decision-support processing.

Related concepts:
 Maximizing OLTP throughput for queries

Conserving resources when using PDQ
Allowing maximum use of parallel processing
Determining the level of parallel processing
Limits on parallel operations associated with PDQ priority
Using SPL routines with PDQ queries

Copyright© 2020 HCL Technologies Limited

Maximizing OLTP throughput for queries

At times, you might want to allocate resources to maximize the throughput for individual OLTP queries rather than for decision-support queries.

In this case, set MAX_ PDQPRIORITY to 0, which limits the value of PDQ priority to OFF. A PDQ priority value of OFF does not prevent decision-support queries from
running. Instead, it causes the queries to run without parallelization. In this configuration, response times for decision-support queries might be slow.

Related concepts:
 Limiting the value of the PDQ priority

Conserving resources when using PDQ
Allowing maximum use of parallel processing
Determining the level of parallel processing
Limits on parallel operations associated with PDQ priority
Using SPL routines with PDQ queries

Copyright© 2020 HCL Technologies Limited

Conserving resources when using PDQ

If applications make little use of queries that require parallel sorts and parallel joins, consider using the LOW setting for PDQ priority.

If the database server is operating in a multiuser environment, you might set MAX_PDQPRIORITY to 1 to increase interquery performance at the cost of some intraquery
parallelism. A trade-off exists between these two different types of parallelism because they compete for the same resources. As a compromise, you might set
MAX_PDQPRIORITY to some intermediate value (perhaps 20 or 30) and set PDQPRIORITY to LOW. The environment variable sets the default behavior to LOW, but the
MAX_PDQPRIORITY configuration parameter allows individual applications to request more resources with the SET PDQPRIORITY statement.

Related concepts:
 Limiting the value of the PDQ priority

Maximizing OLTP throughput for queries
Allowing maximum use of parallel processing
Determining the level of parallel processing
Limits on parallel operations associated with PDQ priority
Using SPL routines with PDQ queries

Copyright© 2020 HCL Technologies Limited

Allowing maximum use of parallel processing

Set PDQPRIORITY and MAX_PDQPRIORITY to 100 if you want the database server to assign as many resources as possible to parallel processing.

This setting is appropriate for times when parallel processing does not interfere with OLTP processing.

Related concepts:
 Limiting the value of the PDQ priority

Maximizing OLTP throughput for queries
Conserving resources when using PDQ
Determining the level of parallel processing
Limits on parallel operations associated with PDQ priority
Using SPL routines with PDQ queries

Copyright© 2020 HCL Technologies Limited

Determining the level of parallel processing

You can use different numeric settings for PDQPRIORITY to experiment with the effects of parallelism on a single application.

For information about how to monitor parallel execution, see Monitoring resources used for PDQ and DSS queries.

1486 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Related concepts:
Limiting the value of the PDQ priority
Maximizing OLTP throughput for queries
Conserving resources when using PDQ
Allowing maximum use of parallel processing
Limits on parallel operations associated with PDQ priority
Using SPL routines with PDQ queries

Copyright© 2020 HCL Technologies Limited

Limits on parallel operations associated with PDQ priority

The database server reduces the PDQ priority of queries that contain outer joins to LOW (if set to a higher value) for the duration of the query. If a subquery or a view
contains outer joins, the database server lowers the PDQ priority only of that subquery or view, not of the parent query or of any other subquery.

The database server lowers the PDQ priority of queries that require access to a remote database (same or different database server instance) to LOW if you set it to a
higher value. In that case, all local scans are parallel, but all local joins and remote accesses are nonparallel.

Related concepts:
 Limiting the value of the PDQ priority

Maximizing OLTP throughput for queries
Conserving resources when using PDQ
Allowing maximum use of parallel processing
Determining the level of parallel processing
Using SPL routines with PDQ queries

Copyright© 2020 HCL Technologies Limited

Using SPL routines with PDQ queries

The database server freezes the PDQ priority that is used to optimize SQL statements within SPL routines at the time of procedure creation or the last manual
recompilation with the UPDATE STATISTICS statement. You can change the client value of PDQPRIORITY.

To change the client value of PDQPRIORITY, embed the SET PDQPRIORITY statement within the body of your SPL routine.

The PDQ priority value that the database server uses to optimize or reoptimize an SQL statement is the value that was set by a SET PDQPRIORITY statement, which must
have been executed within the same procedure. If no such statement has been executed, the value that was in effect when the procedure was last compiled or created is
used.

The PDQ priority value currently in effect outside a procedure is ignored within a procedure when it is executing.

It is suggested that you turn PDQ priority off when you enter a procedure and then turn it on again for specific statements. You can avoid tying up large amounts of
memory for the procedure, and you can make sure that the crucial parts of the procedure use the appropriate PDQ priority, as the following example illustrates:

CREATE PROCEDURE my_proc (a INT, b INT, c INT)
 Returning INT, INT, INT;
SET PDQPRIORITY 0;
...
SET PDQPRIORITY 85;
SELECT ... (big complicated SELECT statement)
SET PDQPRIORITY 0;
...
;

Related concepts:
 Limiting the value of the PDQ priority

Maximizing OLTP throughput for queries
Conserving resources when using PDQ
Allowing maximum use of parallel processing
Determining the level of parallel processing
Limits on parallel operations associated with PDQ priority

Copyright© 2020 HCL Technologies Limited

Adjusting the amount of memory for DSS and PDQ queries

You can estimate the amount of shared memory to allocate to decision-support (DSS) queries. Then, if necessary, you can adjust the value of the DS_TOTAL_MEMORY
configuration parameter, which specifies the amount of memory available for PDQ queries.

Use the following formula as a starting point for estimating the amount of shared memory to allocate to DSS queries:

DS_TOTAL_MEMORY = p_mem - os_mem - rsdnt_mem -
 (128 kilobytes * users) - other_mem

p_mem
represents the total physical memory that is available on the host computer.

os_mem

Part VI: Administering 1487

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

represents the size of the operating system, including the buffer cache.
resdnt_mem

represents the size of Informix® resident shared memory.
users

is the number of expected users (connections) specified in the NETTYPE configuration parameter.
other_mem

is the size of memory used for other (non-IBM® Informix) applications.

The value for DS_TOTAL_MEMORY that is derived from this formula serves only as a starting point. To arrive at a value that makes sense for your configuration, you must
monitor paging and swapping. (Use the tools provided with your operating system to monitor paging and swapping.) When paging increases, decrease the value of
DS_TOTAL_MEMORY so that processing the OLTP workload can proceed.

The amount of memory that is granted to a single parallel database query depends on many system factors, but in general, the amount of memory granted to a single
parallel database query is proportional to the following formula:

memory_grant_basis = (DS_TOTAL_MEMORY/DS_MAX_QUERIES) *
 (PDQPRIORITY / 100) *
 (MAX_PDQPRIORITY / 100)

However, if the currently executing queries on all databases of the server instance require more memory than this estimate of the average allocation, another query might
overflow to disk or might wait until concurrent queries completed execution and released sufficient memory resources for running the query. The following alternative
formula estimates the PDQ memory available for a single query directly:

memory_for_single_query = DS_TOTAL_MEMORY *
 (PDQPRIOIRTY / 100) *
 (MAX_PDQPRIORITY / 100)

Copyright© 2020 HCL Technologies Limited

Limiting the number of concurrent scans

The database server apportions some number of scans to a query according to its PDQ priority (among other factors). You can adjust the value of the DS_MAX_SCANS
configuration parameter to limit the number of concurrent scans.

The DS_MAX_SCANS and MAX_PDQPRIORITY configuration parameters allow you to limit the resources that users can assign to a query, according to the following
formula:

scan_threads = min (nfrags, (DS_MAX_SCANS * (pdqpriority / 100)
 * (MAX_PDQPRIORITY / 100))

nfrags
is the number of fragments in the table with the largest number of fragments.

pdqpriority
is the PDQ priority value set by either the PDQPRIORITY environment variable or the SET PDQPRIORITY statement.

For example, suppose a large table contains 100 fragments. With no limit on the number of concurrent scans allowed, the database server would concurrently execute
100 scan threads to read this table. In addition, many users could initiate this query.

As the database server administrator, you set the DS_MAX_SCANS configuration parameter to a value lower than the number of fragments in this table to prevent the
database server from being flooded with scan threads by multiple decision-support queries. You can set DS_MAX_SCANS to 20 to ensure that the database server
concurrently executes a maximum of 20 scan threads for parallel scans. Furthermore, if multiple users initiate parallel database queries, each query receives only a
percentage of the 20 scan threads, according to the PDQ priority assigned to the query and the value for the MAX_PDQPRIORITY configuration parameter that the
database server administrator sets.

Copyright© 2020 HCL Technologies Limited

Limiting the maximum number of PDQ queries

You can adjust the maximum number of PDQ queries that can run concurrently by changing the value of the DS_MAX_QUERIES configuration parameter.

The DS_MAX_QUERIES configuration parameter limits the number of concurrent decision-support queries that can run.

To estimate the number of decision-support (DSS) queries that the database server can run concurrently, count each query that runs with PDQ priority set to 1 or greater
as one full query.

The database server allocates less memory to queries that run with a lower priority, so you can assign lower-priority queries a PDQ priority value that is between 1 and 30,
depending on the resource impact of the query. The total number of queries with PDQ priority values greater than 0 cannot exceed the value of DS_MAX_QUERIES.

Copyright© 2020 HCL Technologies Limited

Managing PDQ queries

The database server administrator, the writer of an application, and the users all have a certain amount of control over the amount of resources that Informix® allocates to
processing a query. The database server administrator exerts control through the use of configuration parameters. The application developer or the user can exert control
through an environment variable or SQL statement.

1488 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Analyzing query plans with SET EXPLAIN output
You can use SET EXPLAIN output to study the query plans of an application. The output of the SET EXPLAIN statement shows decisions that the query optimizer
makes. It shows whether parallel scans are used, the maximum number of threads required to answer the query, and the type of join used for the query.
Influencing the choice of a query plan
The OPTCOMPIND environment variable and the OPTCOMPIND configuration parameter indicate the preferred join plan, thus assisting the optimizer in selecting
the appropriate join method for parallel database queries. To influence the optimizer in its choice of a join plan, you can set the OPTCOMPIND configuration
parameter.
Setting the PDQ priority dynamically
You can use the SET PDQPRIORITY statement to set PDQ priority dynamically within an application. The PDQ priority value can be any integer from -1 through 100.
Enabling the database server to allocate PDQ memory
You can set the IMPLICIT_PDQ session environment option of the SET ENVIRONMENT statement to enable the database server to calculate the amount of PDQ
memory to allocate to queries during the current session. This potentially overrides the current PDQPRIORITY setting.
User control of PDQ resources
To indicate the PDQ priority of a query, you can set the PDQPRIORITY environment variable or execute the SET PDQPRIORITY statement prior to issuing a query.
These PDQ priority options allow you to request a certain amount of parallel-processing resources for the query.
DBA control of resources for PDQ and DSS queries
To manage the total amount of resources that the database server allocates to parallel database and decision-support (DSS) queries, the database server
administrator can set the environment variable and configuration parameters.

Related concepts:
 What PDQ is

Copyright© 2020 HCL Technologies Limited

Analyzing query plans with SET EXPLAIN output

You can use SET EXPLAIN output to study the query plans of an application. The output of the SET EXPLAIN statement shows decisions that the query optimizer makes. It
shows whether parallel scans are used, the maximum number of threads required to answer the query, and the type of join used for the query.

You can restructure a query or use OPTCOMPIND to change how the optimizer treats the query.

Copyright© 2020 HCL Technologies Limited

Influencing the choice of a query plan

The OPTCOMPIND environment variable and the OPTCOMPIND configuration parameter indicate the preferred join plan, thus assisting the optimizer in selecting the
appropriate join method for parallel database queries. To influence the optimizer in its choice of a join plan, you can set the OPTCOMPIND configuration parameter.

The value that you assign to the OPTCOMPIND configuration parameter is referenced only when applications do not set the OPTCOMPIND environment variable.

Set OPTCOMPIND to 0 if you want the database server to select a join plan exactly as it did in versions of the database server prior to version 6.0. This option ensures
compatibility with previous versions of the database server.

An application with an isolation mode of Repeatable Read can lock all records in a table when it performs a hash join. For this reason, you should set OPTCOMPIND to 1.

If you want the optimizer to make the determination for you based on cost, regardless of the isolation level of applications, set OPTCOMPIND to 2.

You can use the SET ENVIRONMENT OPTCOMPIND command to change the value of OPTCOMPIND within a session. For more information about using this command, see
Setting the value of OPTCOMPIND within a session.

For more information about OPTCOMPIND and the different join plans, see The query plan.

Copyright© 2020 HCL Technologies Limited

Setting the PDQ priority dynamically

You can use the SET PDQPRIORITY statement to set PDQ priority dynamically within an application. The PDQ priority value can be any integer from -1 through 100.

The PDQ priority set with the SET PDQPRIORITY statement supersedes the PDQPRIORITY environment variable.

The DEFAULT tag for the SET PDQPRIORITY statement allows an application to revert to the value for PDQ priority as set by the environment variable, if any. For more
information about the SET PDQPRIORITY statement, see the IBM® Informix Guide to SQL: Syntax.

Copyright© 2020 HCL Technologies Limited

Enabling the database server to allocate PDQ memory

You can set the IMPLICIT_PDQ session environment option of the SET ENVIRONMENT statement to enable the database server to calculate the amount of PDQ memory
to allocate to queries during the current session. This potentially overrides the current PDQPRIORITY setting.

Part VI: Administering 1489

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The maximum amount of memory that the database server can allocate, however, is limited by the physical memory available to your system, and by the settings of these
parameters:

The PDQPRIORITY environment variable
The most recent SET PDQPRIORITY statement of SQL
The MAX_PDQPRIORITY configuration parameter
The DS_TOTAL_MEMORY configuration parameter
The BOUND_IMPL_PDQ session environment variable.

The IMPLICIT_PDQ session environment option is available only on systems that support PDQPRIORITY.
By default, the IMPLICIT_PDQ session environment variable is set to OFF. When IMPLICIT_PDQ is set to OFF, the server does not override the current PDQPRIORITY
setting.

To enable the database server to calculate memory allocations for queries and to distribute memory among query operators according to their needs, enter the following
statement before you issue the query:

SET ENVIRONMENT IMPLICIT_PDQ ON;

If you instead set the IMPLICIT_PDQ value to an integer in the range from 1 to 100, the database server scales its estimate by the specified value. For example, the
following example restricts memory allocation in aubsequent queries of the session to half of the current PDQPRIORITY setting:

SET ENVIRONMENT IMPLICIT_PDQ '50';

If you set a low IMPLICIT_PDQ value, the amount of memory assigned to the query is proportionally reduced, which might increase the amount of query-operator
overflow.

The IMPLICIT_PDQ functionality for a query requires at least LOW distribution statistics on all tables that the query accesses. If distribution statistics are missing for one
or more tables that the query references, the IMPLICIT_PDQ setting has no effect on the resources available for query execution. This restriction also applies to star-join
queries, which are not supported in the case of missing statistics.

Limiting PDQ resource allocation by setting BOUND_IMPL_PDQ
If IMPLICIT_PDQ is set to ON or to a numeric value, you can also use the BOUND_IMPL_PDQ session environment option of the SET ENVIRONMENT statement of SQL to
specify that the allocated PDQ memory should be no greater than the current explicit PDQPRIORITY value or range. If the IMPLICIT_PDQ session environment setting is
OFF, whether explicitly off by default, then the BOUND_IMPL_PDQ setting has no effect.

For example, the following statement forces the database server to use explicit PDQPRIORITY values as guidelines in allocating memory, if the IMPLICIT_PDQ session
environment option has already been set:

SET ENVIRONMENT BOUND_IMPL_PDQ ON;

If the IMPLICIT_PDQ setting is an integer in the range from 1 to 100, the explicit PDQPRIORITY value is scaled by that setting as a percentage during the current session.
When the BOUND_IMPL_PDQ session environment option is set to ON (or to one), you require the database server to use the explicit PDQPRIORITY setting as the upper
bound for memory that can be allocated to a query. If you set both IMPLICIT_PDQ and BOUND_IMPL_PDQ, then the explicit PDQPRIORITY value determines the upper
limit of memory that can be allocated to a query.

If you include an integer value in the SET ENVIRONMENT statement, you must put quote marks around the value. However, do not put quote marks around the ON and
OFF keywords.

The following examples are statements with integer values:

SET ENVIRONMENT IMPLICIT_PDQ "50";
SET ENVIRONMENT BOUND_IMPL_PDQ "1";

Copyright© 2020 HCL Technologies Limited

User control of PDQ resources

To indicate the PDQ priority of a query, you can set the PDQPRIORITY environment variable or execute the SET PDQPRIORITY statement prior to issuing a query. These
PDQ priority options allow you to request a certain amount of parallel-processing resources for the query.

The resources that you request and the amount of resources that the database server allocates for the query can differ. This difference occurs when the database server
administrator uses the MAX_PDQPRIORITY configuration parameter to put a ceiling on user-requested resources, as the following topic explains.

Copyright© 2020 HCL Technologies Limited

DBA control of resources for PDQ and DSS queries

To manage the total amount of resources that the database server allocates to parallel database and decision-support (DSS) queries, the database server administrator
can set the environment variable and configuration parameters.

Controlling resources allocated to PDQ
 To control resources allocated to PDQ, you can set the PDQPRIORITY environment variable. The queries that do not set the PDQPRIORITY environment variable

before they issue a query do not use PDQ. In addition, to place a ceiling on user-specified PDQ priority levels, you can set the MAX_PDQPRIORITY configuration
parameter.
DBA control of resources allocated to decision-support queries

 A DBA can control the resources that the database server allocates to decision-support queries by setting the DS_TOTAL_MEMORY, DS_MAX_SCANS, and
DS_MAX_QUERIES configuration parameters.

1490 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Controlling resources allocated to PDQ

To control resources allocated to PDQ, you can set the PDQPRIORITY environment variable. The queries that do not set the PDQPRIORITY environment variable before
they issue a query do not use PDQ. In addition, to place a ceiling on user-specified PDQ priority levels, you can set the MAX_PDQPRIORITY configuration parameter.

When you set the PDQPRIORITY environment variable and MAX_PDQPRIORITY parameter, you exert control over the resources that the database server allocates
between OLTP and DSS applications. For example, if OLTP processing is particularly heavy during a certain period of the day, you might want to set MAX_PDQPRIORITY to
0. This configuration parameter puts a ceiling on the resources requested by users who use the PDQPRIORITY environment variable, so PDQ is turned off until you reset
MAX_PDQPRIORITY to a nonzero value.

Copyright© 2020 HCL Technologies Limited

DBA control of resources allocated to decision-support queries

A DBA can control the resources that the database server allocates to decision-support queries by setting the DS_TOTAL_MEMORY, DS_MAX_SCANS, and
DS_MAX_QUERIES configuration parameters.

In addition to setting limits for decision-support memory and the number of decision-support queries that can run concurrently, the database server uses these
parameters to determine the amount of memory to allocate to individual decision-support queries as users submit them. To do so, the database server first calculates a
unit of memory called a quantum by dividing DS_TOTAL_MEMORY by DS_MAX_QUERIES. When a user issues a query, the database server allocates a percent of the
available quanta equal to the PDQ priority of the query.

You can also limit the number of concurrent decision-support scans that the database server allows by setting the DS_MAX_SCANS configuration parameter.

Previous versions of the database server allowed you to set a PDQ priority configuration parameter in the ONCONFIG file. If your applications depend on a global setting
for PDQ priority, you can use one of the following methods:

For UNIX: Define PDQPRIORITY as a shared environment variable in the informix.rc file. For more information about the informix.rc file, see the IBM® Informix®
Guide to SQL: Reference.
For Windows: Set the PDQPRIORITY environment variable for a particular group through a logon profile. For more information about the logon profile, see your
operating-system manual.

Copyright© 2020 HCL Technologies Limited

Monitoring resources used for PDQ and DSS queries

You can monitor the resources (shared memory and threads) that the Memory Grant Manager (MGM) has allocated for PDQ queries and the resources that PDQ and
decision-support (DSS) queries currently use.

You monitor PDQ resource use in the following ways:

Run individual onstat utility commands to capture information about specific aspects of a running query.
Execute a SET EXPLAIN statement before you run a query to write the query plan to an output file.

Monitoring PDQ resources by using the onstat Utility
 You can use various onstat utility commands to determine how many threads are active and the shared-memory resources that those threads use.

Identifying parallel scans in SET EXPLAIN output
 When PDQ is turned on, the SET EXPLAIN output shows whether the optimizer chose parallel scans. If the optimizer chose parallel scans, the output lists

Parallel. (If PDQ is turned off, the output lists Serial.)

Related concepts:
 What PDQ is

Copyright© 2020 HCL Technologies Limited

Monitoring PDQ resources by using the onstat Utility

You can use various onstat utility commands to determine how many threads are active and the shared-memory resources that those threads use.

You can use the onstat -g mgm command to monitor how the Memory Grant Manager (MGM) coordinates memory use and to scan threads.

Monitoring PDQ threads with onstat utility commands
 You can obtain information about all of the threads that are running for a decision-support query by running the onstat -u and onstat -g ath commands.

Monitoring resources allocated for a session running a DSS query
 You can monitor the resources allocated for, and used by, a session that is running a decision-support (DSS) query by running the onstat -g ses command.

Related information:
 onstat -g mgm command: Print MGM resource information

Part VI: Administering 1491

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Monitoring PDQ threads with onstat utility commands

You can obtain information about all of the threads that are running for a decision-support query by running the onstat -u and onstat -g ath commands.

The onstat -u option lists all the threads for a session. If a session is running a decision-support query, the output lists the primary thread and any additional threads. For
example, session 10 in Figure 1 has a total of five threads running.

Figure 1. onstat -u output

Userthreads
address flags sessid user tty wait tout locks nreads nwrites
80eb8c ---P--D 0 informix - 0 0 0 33 19
80ef18 ---P--F 0 informix - 0 0 0 0 0
80f2a4 ---P--B 3 informix - 0 0 0 0 0
80f630 ---P--D 0 informix - 0 0 0 0 0
80fd48 ---P--- 45 chrisw ttyp3 0 0 1 573 237
810460 ------- 10 chrisw ttyp2 0 0 1 1 0
810b78 ---PR-- 42 chrisw ttyp3 0 0 1 595 243
810f04 Y------ 10 chrisw ttyp2 beacf8 0 1 1 0
811290 ---P--- 47 chrisw ttyp3 0 0 2 585 235
81161c ---PR-- 46 chrisw ttyp3 0 0 1 571 239
8119a8 Y------ 10 chrisw ttyp2 a8a944 0 1 1 0
81244c ---P--- 43 chrisw ttyp3 0 0 2 588 230
8127d8 ----R-- 10 chrisw ttyp2 0 0 1 1 0
812b64 ---P--- 10 chrisw ttyp2 0 0 1 20 0
812ef0 ---PR-- 44 chrisw ttyp3 0 0 1 587 227
 15 active, 20 total, 17 maximum concurrent

The onstat -g ath output also lists these threads and includes a name column that indicates the role of the thread. Threads that a primary decision-support thread started
have a name that indicates their role in the decision-support query. For example, Figure 2 lists four scan threads, started by a primary thread (sqlexec).

Figure 2. onstat -g ath Output

Threads:
tid tcb rstcb prty status vp-class name
...
11 994060 0 4 sleeping(Forever) 1cpu kaio
12 994394 80f2a4 2 sleeping(secs: 51) 1cpu btclean
26 99b11c 80f630 4 ready 1cpu onmode_mon
32 a9a294 812b64 2 ready 1cpu sqlexec
113 b72a7c 810b78 2 ready 1cpu sqlexec
114 b86c8c 81244c 2 cond wait(netnorm) 1cpu sqlexec
115 b98a7c 812ef0 2 cond wait(netnorm) 1cpu sqlexec
116 bb4a24 80fd48 2 cond wait(netnorm) 1cpu sqlexec
117 bc6a24 81161c 2 cond wait(netnorm) 1cpu sqlexec
118 bd8a24 811290 2 ready 1cpu sqlexec
119 beae88 810f04 2 cond wait(await_MC1) 1cpu scan_1.0
120 a8ab48 8127d8 2 ready 1cpu scan_2.0
121 a96850 810460 2 ready 1cpu scan_2.1
122 ab6f30 8119a8 2 running 1cpu scan_2.2

Related concepts:
 Monitoring resources allocated for a session running a DSS query

Copyright© 2020 HCL Technologies Limited

Monitoring resources allocated for a session running a DSS query

You can monitor the resources allocated for, and used by, a session that is running a decision-support (DSS) query by running the onstat -g ses command.

The onstat -g ses option displays the following information:

The shared memory allocated for a session that is running a decision-support query
The shared memory used by a session that is running a decision-support query
The number of threads that the database server started for a session

For example, in Figure 1, session number 49 is running five threads for a decision-support query.

Figure 1. onstat -g ses output

session #RSAM total used
id user tty pid hostname threads memory memory
57 informix - 0 - 0 8192 5908
56 user_3 ttyp3 2318 host_10 1 65536 62404
55 user_3 ttyp3 2316 host_10 1 65536 62416
54 user_3 ttyp3 2320 host_10 1 65536 62416
53 user_3 ttyp3 2317 host_10 1 65536 62416
52 user_3 ttyp3 2319 host_10 1 65536 62416
51 user_3 ttyp3 2321 host_10 1 65536 62416
49 user_1 ttyp2 2308 host_10 5 188416 178936
2 informix - 0 - 0 8192 6780
1 informix - 0 - 0 8192 4796

1492 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Related concepts:
Monitoring PDQ threads with onstat utility commands

Copyright© 2020 HCL Technologies Limited

Identifying parallel scans in SET EXPLAIN output

When PDQ is turned on, the SET EXPLAIN output shows whether the optimizer chose parallel scans. If the optimizer chose parallel scans, the output lists Parallel. (If
PDQ is turned off, the output lists Serial.)

If PDQ is turned on, the optimizer also indicates the maximum number of threads that are required to answer the query. The # of Secondary Threads field in the SET
EXPLAIN output indicates the number of threads that are required in addition to your user session thread. The total number of threads necessary is the number of
secondary threads plus 1.

The following example shows SET EXPLAIN output for a table with fragmentation and PDQ priority set to LOW:

SELECT * FROM t1 WHERE c1 > 20

Estimated Cost: 2
Estimated # of Rows Returned: 2

1) informix.t1: SEQUENTIAL SCAN (Parallel, fragments: 2)

 Filters: informix.t1.c1 > 20

of Secondary Threads = 1

The following example of partial SET EXPLAIN output shows a query with a hash join between two fragmented tables and PDQ priority set to ON. The query is marked with
DYNAMIC HASH JOIN, and the table on which the hash is built is marked with Build Outer.

QUERY:

SELECT h1.c1, h2.c1 FROM h1, h2 WHERE h1.c1 = h2.c1

Estimated Cost: 2
Estimated # of Rows Returned: 5

1) informix.h1: SEQUENTIAL SCAN (Parallel, fragments: ALL)

2) informix.h2: SEQUENTIAL SCAN (Parallel, fragments: ALL)

DYNAMIC HASH JOIN (Build Outer)
 Dynamic Hash Filters: informix.h1.c1 = informix.h2.c1

of Secondary Threads = 6

The following example of partial SET EXPLAIN output shows a table with fragmentation, PDQ priority set to LOW, and an index that was selected as the access plan:

SELECT * FROM t1 WHERE c1 < 13

Estimated Cost: 2
Estimated # of Rows Returned: 1

1) informix.t1: INDEX PATH

 (1) Index Keys: c1 (Parallel, fragments: ALL)
 Upper Index Filter: informix.t1.c1 < 13

of Secondary Threads = 3

Copyright© 2020 HCL Technologies Limited

Improving individual query performance

You can test, monitor, and improve queries.

Test queries using a dedicated test system
 You can test a query on a system that does not interfere with production database servers. However, you must be careful, because testing queries on a separate

system might distort your tuning decisions.
Display the query plan

 Before you change a query, display its query plan to determine the kind and amount of resources that the query requires. The query plan shows what parallel scans
are used, the maximum number of threads required, and the indexes used.
Improve filter selectivity

 You can control the amount of information that a query evaluates. The greater the precision with which you specify the desired rows, the greater the likelihood that
your queries will complete quickly.
Automatic statistics updating

 The database server updates statistics automatically according to a predefined schedule and a set of expiration policies. The Auto Update Statistics (AUS)
maintenance system identifies tables and indexes that require new optimizer statistics and runs the appropriate UPDATE STATISTICS statements to optimize query
performance.

Part VI: Administering 1493

https://www.hcltech.com/
https://www.hcltech.com/

Update statistics when they are not generated automatically
The UPDATE STATISTICS statement updates the statistics in the system catalog tables that the optimizer uses to determine the lowest-cost query plan.
Improve performance by adding or removing indexes
You can often improve the performance of a query by adding or, in some cases, removing indexes. You can also enable the optimizer to automatically fetch a set of
keys from an index buffer.
Optimizer estimates of distributed queries
The optimizer assumes that access to a row from a remote database takes longer than access to a row in a local database. The optimizer estimates include the cost
of retrieving the row from disk and transmitting it across the network.
Improve sequential scans
You can improve the performance of sequential read operations on large tables by eliminating repeated sequential scans.
Enable view folding to improve query performance
You can significantly improve the performance of a query that involves a view by enabling view folding.
Reduce the join and sort operations
After you understand what the query is doing, you can look for ways to obtain the same output with less effort.
Optimize user-response time for queries
You can influence the amount of time that Informix takes to optimize a query and to return rows to a user.
Optimize queries for user-defined data types
Queries that access user-defined data types (UDTs) can take advantage of the same performance features that built-in data types use.
Optimize queries with the SQL statement cache
Before the database server runs an SQL statement, it must first parse and optimize the statement. Optimizing statements can be time consuming, depending on the
size of the SQL statement.
Monitor sessions and threads
You can monitor the number of active sessions and threads and the amount of resources that they are using. Monitoring sessions and threads is important for
sessions that perform queries as well as sessions that perform inserts, updates, and deletes.
Monitor transactions
You can monitor transactions to track open transactions and the locks that those transactions hold. You can use several onstat utility options to view transaction,
lock, and session statistics.

Related information:
 Tune the new version for performance and adjust queries

Copyright© 2020 HCL Technologies Limited

Test queries using a dedicated test system

You can test a query on a system that does not interfere with production database servers. However, you must be careful, because testing queries on a separate system
might distort your tuning decisions.

Even if you use your database server as a data warehouse, you might sometimes test queries on a separate system until you understand the tuning issues that are relevant
to the query.

If you are trying to improve performance of a large query, one that might take several minutes or hours to complete, you can prepare a scaled-down database in which
your tests can complete more quickly. However, be aware of these potential problems:

The optimizer can make different choices in a small database than in a large one, even when the relative sizes of tables are the same. Verify that the query plan is
the same in the real and the model databases.
Execution time is rarely a linear function of table size. For example, sorting time increases faster than table size, as does the cost of indexed access when an index
goes from two to three levels. What appears to be a big improvement in the scaled-down environment can be insignificant when applied to the full database.

Therefore, any conclusion that you reach as a result of tests in the model database must be tentative until you verify them in the production database.

You can often improve performance by adjusting your query or data model with the following goals in mind:

If you are using a multiuser system or a network, where system load varies widely from hour to hour, try to perform your experiments at the same time each day to
obtain repeatable results. Start tests when the system load is consistently light so that you are truly measuring the impact of your query only.
If the query is embedded in a complicated program, you can extract the SELECT statement and embed it in a DB-Access script.

Related information:
 Tune the new version for performance and adjust queries

Copyright© 2020 HCL Technologies Limited

Display the query plan

Before you change a query, display its query plan to determine the kind and amount of resources that the query requires. The query plan shows what parallel scans are
used, the maximum number of threads required, and the indexes used.

After you study the query plan, examine your data model to see if the changes this chapter suggests will improve the query.

You can display the query plan with one of the following methods:

Execute one of the following SET EXPLAIN statements just before the query:
SET EXPLAIN ON
This SQL statement displays the chosen query plan. For a description of the SET EXPLAIN ON output, see Report that shows the query plan chosen by the
optimizer.

SET EXPLAIN ON AVOID_EXECUTE
This SQL statement displays the chosen query plan and does not execute the query.

1494 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Use one of the following EXPLAIN directives in the query:
EXPLAIN
EXPLAIN AVOID_EXECUTE

For more information about these EXPLAIN directives, see EXPLAIN directives.

Copyright© 2020 HCL Technologies Limited

Improve filter selectivity

You can control the amount of information that a query evaluates. The greater the precision with which you specify the desired rows, the greater the likelihood that your
queries will complete quickly.

To control the amount of information that the query evaluates, use the WHERE clause of the SELECT statement. The conditional expression in the WHERE clause is
commonly called a filter.

For information about how filter selectivity affects the query plan that the optimizer chooses, see Filters in the query. The following sections provide some guidelines to
improve filter selectivity.

Filters with user-defined routines
 You can improve the selectivity of query filters that include user-defined routines (UDRs).

Avoid some filters
 For best performance, avoid filters for certain difficult regular expressions and filters for noninitial strings.

Use join filters and post-join filters
 The database server provides support for using a subset of the ANSI join syntax.

Copyright© 2020 HCL Technologies Limited

Filters with user-defined routines

You can improve the selectivity of query filters that include user-defined routines (UDRs).

You can improve the selectivity if the UDRs have the following features:

Functional indexes
You can create a functional index on the resulting values of a user-defined routine or a built-in function that operates on one or more columns. When you create a
functional index, the database server computes the return values of the function and stores them in the index. The database server can locate the return value of
the function in an appropriate index without executing the function for each qualifying column.

For more information about indexing user-defined functions, see Using a functional index.

User-defined selectivity functions
You can write a function that calculates the expected fraction of rows that qualify for the function. For a brief description of user-defined selectivity functions, see
Selectivity and cost functions. For more information about how to write and register user-defined selectivity functions, see IBM® Informix® User-Defined Routines
and Data Types Developer's Guide.

Related concepts:
 Avoid some filters

Use join filters and post-join filters

Copyright© 2020 HCL Technologies Limited

Avoid some filters

For best performance, avoid filters for certain difficult regular expressions and filters for noninitial strings.

Avoid difficult regular expressions
The MATCHES and LIKE keywords support wildcard matches, which are technically known as regular expressions. Some regular expressions are more difficult than
others for the database server to process.
Avoid noninitial substrings

 For best performance, avoid filters for noninitial strings. A filter based on a noninitial substring of a column requires the database server to test every value in the
column.

Related concepts:
 Filters with user-defined routines

Use join filters and post-join filters

Copyright© 2020 HCL Technologies Limited

Avoid difficult regular expressions

Part VI: Administering 1495

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The MATCHES and LIKE keywords support wildcard matches, which are technically known as regular expressions. Some regular expressions are more difficult than others
for the database server to process.

A wildcard in the initial position, as in the following example (find customers whose first names do not end in y), forces the database server to examine every value in the
column:

SELECT * FROM customer WHERE fname NOT LIKE '%y'

You cannot use an index with such a filter, so the table in this example must be accessed sequentially.

If a difficult test for a regular expression is essential, avoid combining it with a join. If necessary, process the single table and apply the test for a regular expression to
select the desired rows. Save the result in a temporary table and join that table to the others.

Regular-expression tests with wildcards in the middle or at the end of the operand do not prevent the use of an index when one exists.

Related concepts:
 Avoid noninitial substrings

Copyright© 2020 HCL Technologies Limited

Avoid noninitial substrings

For best performance, avoid filters for noninitial strings. A filter based on a noninitial substring of a column requires the database server to test every value in the column.

For example, in the following code, a noninitial substring requires the database server to test every value in the column:

SELECT * FROM customer
 WHERE zipcode[4,5] > '50'

The database server cannot use an index to evaluate such a filter.

The optimizer uses an index to process a filter that tests an initial substring of an indexed column. However, the presence of the substring test can interfere with the use of
a composite index to test both the substring column and another column.

Related concepts:
 Avoid difficult regular expressions

Copyright© 2020 HCL Technologies Limited

Use join filters and post-join filters

The database server provides support for using a subset of the ANSI join syntax.

This syntax that includes the following keywords:

ON keyword to specify the join condition and any optional join filters
LEFT OUTER JOIN keywords to specify which table is the dominant table (also referred to as outer table)

For more information about this ANSI join syntax, see the IBM® Informix® Guide to SQL: Syntax.

In an ANSI outer join, the database server takes the following actions to process the filters:

Applies the join condition in the ON clause to determine which rows of the subordinate table (also referred to as inner table) to join to the outer table
Applies optional join filters in the ON clause before and during the join
If you specify a join filter on a base inner table in the ON clause, the database server can apply it prior to the join, during the scan of the data from the inner table.
Filters on a base subordinate table in the ON clause can provide the following additional performance benefits:

Fewer rows to scan from the inner table prior to the join
Use of index to retrieve rows from the inner table prior to the join
Fewer rows to join
Fewer rows to evaluate for filters in the WHERE clause

For information about what occurs when you specify a join filter on an outer table in the ON clause, see the IBM Informix Guide to SQL: Syntax.

Applies filters in the WHERE clause after the join
Filters in the WHERE clause can reduce the number of rows that the database server needs to scan and reduce the number of rows returned to the user.

The term post-join filters refers to these WHERE clause filters.

When distributed queries that use ANSI-compliant LEFT OUTER syntax for specifying joined tables and nested loop joins are executed, the query is sent to each
participating database server for operations on local tables of those servers.

For example, the demonstration database has the customer table and the cust_calls table, which tracks customer calls to the service department. Suppose a certain call
code had many occurrences in the past, and you want to see if calls of this kind have decreased. To see if customers no longer have this call code, use an outer join to list
all customers.

Figure 1 shows a sample SQL statement to accomplish this ANSI join query and the SET EXPLAIN ON output for it.
Figure 1. SET EXPLAIN ON output for an ANSI join

QUERY:

SELECT c.customer_num, c.lname, c.company,
c.phone, u.call_dtime, u.call_code, u.call_descr

1496 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

FROM customer c
LEFT JOIN cust_calls u ON c.customer_num = u.customer_num
ORDER BY u.call_dtime

Estimated Cost: 14
Estimated # of Rows Returned: 29
Temporary Files Required For: Order By

1) virginia.c: SEQUENTIAL SCAN

2) virginia.u: INDEX PATH

 (1) Index Keys: customer_num call_dtime (Serial, fragments: ALL)
 Lower Index Filter: virginia.c.customer_num = virginia.u.customer_num

 ON-Filters:virginia.c.customer_num = virginia.u.customer_num
 NESTED LOOP JOIN(LEFT OUTER JOIN)

Look at the following lines in the SET EXPLAIN ON output in Figure 1:

The ON-Filters: line lists the join condition that was specified in the ON clause.
The last line of the SET EXPLAIN ON output shows all three keywords (LEFT OUTER JOIN) for the ANSI join even though this query specifies only the LEFT JOIN
keywords in the FROM clause. The OUTER keyword is optional.

Figure 2 shows the SET EXPLAIN ON output for an ANSI join with a join filter that checks for calls with the I call_code.
Figure 2. SET EXPLAIN ON output for a join filter in an ANSI join

QUERY:

SELECT c.customer_num, c.lname, c.company,
c.phone, u.call_dtime, u.call_code, u.call_descr
FROM customer c LEFT JOIN cust_calls u
ON c.customer_num = u.customer_num
AND u.call_code = 'I'
ORDER BY u.call_dtime

Estimated Cost: 13
Estimated # of Rows Returned: 25
Temporary Files Required For: Order By

 1) virginia.c: SEQUENTIAL SCAN

 2) virginia.u: INDEX PATH

 Filters: virginia.u.call_code = 'I'

 (1) Index Keys: customer_num call_dtime (Serial, fragments: ALL)
 Lower Index Filter: virginia.c.customer_num = virginia.u.customer_num

ON-Filters:(virginia.c.customer_num = virginia.u.customer_num
 AND virginia.u.call_code = 'I')
NESTED LOOP JOIN(LEFT OUTER JOIN)

The main differences between the output in Figure 1 and Figure 2 are as follows:

The optimizer chooses a different index to scan the inner table.
This new index exploits more filters and retrieves a smaller number of rows. Consequently, the join operates on fewer rows.

The ON clause join filter contains an additional filter.

The value in the Estimated # of Rows Returned line is only an estimate and does not always reflect the actual number of rows returned. The sample query in Figure
2 returns fewer rows than the query in Figure 1 because of the additional filter.

Figure 3 shows the SET EXPLAIN ON output for an ANSI join query that has a filter in the WHERE clause.
Figure 3. SET EXPLAIN ON output for the WHERE clause filter in an ANSI join

QUERY:

SELECT c.customer_num, c.lname, c.company,
 c.phone, u.call_dtime, u.call_code, u.call_descr
FROM customer c LEFT JOIN cust_calls u
ON c.customer_num = u.customer_num
 AND u.call_code = 'I'
WHERE c.zipcode = "94040"
ORDER BY u.call_dtime

Estimated Cost: 3
Estimated # of Rows Returned: 1
Temporary Files Required For: Order By

 1) virginia.c: INDEX PATH

 (1) Index Keys: zipcode (Serial, fragments: ALL)
 Lower Index Filter: virginia.c.zipcode = '94040'

 2) virginia.u: INDEX PATH

 Filters: virginia.u.call_code = 'I'

 (1) Index Keys: customer_num call_dtime (Serial, fragments: ALL)
 Lower Index Filter: virginia.c.customer_num = virginia.u.customer_num

ON-Filters:(virginia.c.customer_num = virginia.u.customer_num
 AND virginia.u.call_code = 'I')

Part VI: Administering 1497

NESTED LOOP JOIN(LEFT OUTER JOIN)

PostJoin-Filters:virginia.c.zipcode = '94040'

The main differences between the output in Figure 2 and Figure 3 are as follows:

The index on the zipcode column in the post-join filter is chosen for the dominant table.
The PostJoin-Filters line shows the filter in the WHERE clause.

Related concepts:
 Filters with user-defined routines

Avoid some filters

Copyright© 2020 HCL Technologies Limited

Automatic statistics updating

The database server updates statistics automatically according to a predefined schedule and a set of expiration policies. The Auto Update Statistics (AUS) maintenance
system identifies tables and indexes that require new optimizer statistics and runs the appropriate UPDATE STATISTICS statements to optimize query performance.

The AUS maintenance system updates the statistics for tables that are in logged databases, regardless of the database locale. By making current table statistics available
to the query optimizer, the AUS maintenance system can reduce the risk of performance degradation from inefficient query plans.

Depending on your system, you might need to adjust the AUS expiration policies or schedule. The AUS maintenance system resides in the sysadmin database.

How AUS works
 The Auto Update Statistics (AUS) maintenance system uses a combination of Scheduler sensors, tasks, thresholds, and tables to evaluate and update statistics.

AUS expiration policies
 The Auto Update Statistics (AUS) maintenance system uses expiration policies as criteria for identifying user tables that have changed to the extent that their

statistics need to be recalculated.
Viewing AUS statements

 You can view the UPDATE STATISTICS statements generated by the AUS maintenance system in the aus_cmd_list view before they are run and in the
aus_cmd_comp view after they are run successfully. Both tables are in the sysadmin database.
Prioritizing databases in AUS

 You can assign a priority to each of your databases in the AUS maintenance system.
Rescheduling AUS

 You can change when and for how long the Auto Update Statistics Refresh task runs.
Disabling AUS

 You can prevent statistics from being updated automatically by disabling the AUS maintenance system.

Related concepts:
 Update statistics when they are not generated automatically

Copyright© 2020 HCL Technologies Limited

How AUS works

The Auto Update Statistics (AUS) maintenance system uses a combination of Scheduler sensors, tasks, thresholds, and tables to evaluate and update statistics.

The Scheduler tasks, sensors, thresholds, and tables reside in the sysadmin database. By default, only user informix is granted access to the sysadmin database.

The following sequence of events describes how statistics are automatically updated:

1. The mon_table_profile sensor of the Scheduler runs every day to read data from the systables table in the sysmaster database. The sensor updates the
mon_table_profile table in the sysadmin database with information about how much each table has changed.

2. The Auto Update Statistics Evaluation task gathers information every day from the mon_table_profile table and the systable, sysdistrib, syscolumns, and
sysindices tables in the sysmaster database.

3. The Auto Update Statistics Evaluation task determines which tables need updates based on the expiration policies.
4. The Auto Update Statistics Evaluation task generates UPDATE STATISTICS statements and inserts them into the aus_command table in the sysadmin database.
5. The Auto Update Statistics Refresh task runs the UPDATE STATISTICS statements from the aus_command table on Saturday and Sunday mornings between 1:00

AM and 5:00 AM and inserts the results back into the aus_command table. Any UPDATE STATISTICS statements that did not complete before 5:00 AM remain in
the aus_command table.

The following table describes the tasks, sensors, thresholds, tables, and views in the sysadmin database that comprise the AUS maintenance system.

Table 1. AUS components

Component Type Description

mon_table_profile sensor Compiles table profile information, including the total number of updates, inserts, and
deletes that occurred on each table.
Defined in the ph_task table.

mon_table_profile table Stores table profile information gathered by its sensor. Many other Scheduler tasks use
information from this table.

Auto Update Statistics Evaluation task Identifies tables with stale statistics, based on expiration policies, and generates UPDATE
STATISTICS statements for those tables.
Defined in the ph_task table.

1498 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Component Type Description

aus_command table Stores a list of prioritized UPDATE STATISTICS statements that are scheduled to be run,
and the results of those statements after they are run.
The aus_cmd_state column indicates the status of each UPDATE STATISTICS statement:

P = Pending
I = In progress
E = Error
C = Complete without errors

If the command status is E, the associated SQL error code is listed in the aus_cmd_err_sql
column and the associated ISAM error code is listed in the aus_cmd_err_isam column.

The aus_cmd_runtime shows the time that is elapsed for the update statistics command
to complete. The aus_cmd_time shows the start time for the update statistics command.

Auto Update Statistics Refresh task Runs the prepared UPDATE STATISTICS statements on Saturdays and Sundays between
1:00 AM and 5:00 AM.
Defined in the ph_task table.

expiration policies thresholds Define the criteria for when to update statistics.
Defined in the ph_threshold table.

aus_cmd_comp view Shows information from the aus_command table about UPDATE STATISTICS statements
that were run successfully.

aus_cmd_list view Shows information from the aus_command table about UPDATE STATISTICS statements
that are scheduled to be run.

For information about other features of the Scheduler, see its description in the IBM® Informix® Administrator's Guide. For information about the sysadmin database, see
the IBM Informix Administrator's Reference.

Copyright© 2020 HCL Technologies Limited

AUS expiration policies

The Auto Update Statistics (AUS) maintenance system uses expiration policies as criteria for identifying user tables that have changed to the extent that their statistics
need to be recalculated.

Internally, the AUS maintenance system automatically skips any tables or fragments that have current statistics and prioritizes tables or fragments that have more
changes. Therefore, all tables are scheduled for updating statistics. For more information, see Automatic management of data distribution statistics.

The ph_threshold table of the sysadmin database stores the following configurable thresholds for defining AUS expiration policies.

Table 1. AUS expiration policy thresholds
Threshold Name Default Value Description

AUS_AGE 30 (days) A time-based expiration policy. Statistics or distributions are updated for a
table after this amount of time regardless of how much data has changed.

AUS_AUTO_RULES 1 (enabled) If enabled, statistics are updated using the higher of the following default
minimum guidelines or user-created distribution options:

All tables are updated in LOW mode.
All the leading index keys are updated in HIGH mode.
All non-leading index keys are updated in MEDIUM mode.
The minimum resolution for MEDIUM mode is 2.0.
The minimum confidence for MEDIUM mode is 0.95.
The minimum resolution for HIGH mode is 0.5.

If the UPDATE STATISTICS statement was run manually for a table, the
UPDATE STATISTICS statements generated by the AUS maintenance system
do not reduce the level, resolution, confidence, or sampling size options.

If disabled by being set to 0, the AUS maintenance system checks which
columns have existing distributions and generates update statistics
statements to refresh them.

AUS_PDQ 10 (priority) The PDQ priority for UPDATE STATISTICS statements run by the AUS
maintenance system. By default, all fragments for each table are analyzed in
parallel. For more information about PDQ priority, see Update statistics in
parallel on very large databases.

AUS_SMALL_TABLES 100 (rows) Statistics or distributions are updated every time for a table that has fewer
than this number of rows.

Changing AUS expiration policies
 You can change AUS expiration policies to customize how often statistics are updated based on how old the statistics are, how much data has changed, or how large

the table is.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1499

https://www.hcltech.com/
https://www.hcltech.com/

Changing AUS expiration policies

You can change AUS expiration policies to customize how often statistics are updated based on how old the statistics are, how much data has changed, or how large the
table is.

You must be connected to the sysadmin database as user informix or another authorized user.

To change the value of an expiration policy, update the value column in the ph_threshold table in the sysadmin database.
For example, if you find that queries against small tables with 1000 rows or fewer run faster if their statistics are updated more frequently, you can change the expiration
policy to ensure that their statistics are updated every week. The following example changes the value of the AUS_SMALL_TABLES threshold to 1000:

UPDATE ph_threshold
SET value = 1000
WHERE name = "AUS_SMALL_TABLES";

The new threshold takes effect the next time the Auto Update Statistics Evaluator task runs.

Copyright© 2020 HCL Technologies Limited

Viewing AUS statements

You can view the UPDATE STATISTICS statements generated by the AUS maintenance system in the aus_cmd_list view before they are run and in the aus_cmd_comp
view after they are run successfully. Both tables are in the sysadmin database.

You must be connected to the sysadmin database as user informix or another authorized user.
To view all scheduled UPDATE STATISTICS statements, run this statement:

SELECT * FROM aus_cmd_list;

To see all UPDATE STATISTICS statements that were run successfully in the previous 30 days, run this statement:

SELECT * FROM aus_cmd_comp;

To view all UPDATE STATISTICS statements that failed, run this statement:

SELECT aus_cmd_exe, aus_cmd_err_sql, aus_cmd_err_isam
FROM aus_command
WHERE aus_cmd_state = "E";

Copyright© 2020 HCL Technologies Limited

Prioritizing databases in AUS

You can assign a priority to each of your databases in the AUS maintenance system.

By default all databases have a medium priority. You can assign specific databases a high or a low priority to ensure that statistics for your most important databases are
updated first. Statistics for low priority databases are updated after high and medium priority databases, if time and resources permit. For example, if you have a system
with a production and a test database, you can assign the production database a high priority and the test database a low priority. You can also disable AUS for a database.

You must be connected to the sysadmin database as user informix or another authorized user.

To assign a priority to a database in AUS, add a row to the ph_threshold table in the sysadmin database:

High priority: Add a row with the name column set to AUS_DATABASE_HIGH and the value column set to the name of the database.
Low priority: Add a row with the name column set to AUS_DATABASE_LOW and the value column set to the name of the database.
Disable: Add a row with the name column set to AUS_DATABASE_DISABLE and the value column set to the name of the database.

If you assign more than one priority to a database, the higher priority takes precedence.

Example
The following statement sets the priority for the database that is named my_database to high:

INSERT INTO ph_threshold(id, name, task_name, value, value_type, description)
 VALUES(0,
 "AUS_DATABASE_HIGH",
 "Auto Update Statistics Evaluation",
 "my_database",
 "STRING",
 "Rank this database as high priority to get its tables done first");

Copyright© 2020 HCL Technologies Limited

Rescheduling AUS

1500 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

You can change when and for how long the Auto Update Statistics Refresh task runs.

Updating statistics is resource-intensive. Therefore, by default, statistics are automatically updated on Saturdays and Sundays between 1:00 AM and 5:00 AM. If you find
that not all pending UPDATE STATISTICS statements can be run in this time period, or you want statistics to be refreshed more often, you can change the start time, the
end time, and the days of the week to perform this task.

You must be connected to the sysadmin database as user informix or another authorized user.

To change the schedule of the Auto Update Statistics Refresh task, update the ph_task table where the value of the tk_name column is Auto Update Statistics Refresh.
The following example changes the ending time of the task to 6:00 AM:

UPDATE ph_task
SET tk_stop_time = "06:00:00"
WHERE tk_name = "Auto Update Statistics Refresh";

The following example changes the days that the task is run to every day of the week (Saturday and Sunday are enabled by default):

UPDATE ph_task
SET tk_monday = "T",
tk_tuesday = "T",
tk_wednesday = "T",
tk_thursday = "T",
tk_friday = "T"
WHERE tk_name = "Auto Update Statistics Refresh";

Copyright© 2020 HCL Technologies Limited

Disabling AUS

You can prevent statistics from being updated automatically by disabling the AUS maintenance system.

You must be connected to the sysadmin database as user informix or another authorized user.

To disable AUS, you must disable both the Auto Update Statistics Evaluation task and the Auto Update Statistics Refresh task:

1. Update the value of the tk_enable column of the ph_task table to F where the value of the tk_name column is Auto Update Statistics Evaluation.
2. Update the value of the tk_enable column of the ph_task table to F where the value of the tk_name column is Auto Update Statistics Refresh.

The following example disables both tasks:

UPDATE ph_task
SET tk_enable = "F"
WHERE tk_name = "Auto Update Statistics Evaluation";

UPDATE ph_task
SET tk_enable = "F"
WHERE tk_name = "Auto Update Statistics Refresh";

Copyright© 2020 HCL Technologies Limited

Update statistics when they are not generated automatically

The UPDATE STATISTICS statement updates the statistics in the system catalog tables that the optimizer uses to determine the lowest-cost query plan.

Important: You do not need to run UPDATE STATISTICS operations when the statistics are generated automatically.
The following statistics are generated automatically by the CREATE INDEX statement, with or without the ONLINE keyword:

Index-level statistics, equivalent to the statistics gathered in the UPDATE STATISTICS operation in LOW mode, for B-tree indexes.
Column-distribution statistics, equivalent to the distribution generated in the UPDATE STATISTICS operation in HIGH mode, for a non-opaque leading indexed
column of an ordinary B-tree index.

To ensure that the optimizer selects a query plan that best reflects the current state of your tables, run UPDATE STATISTICS at regular intervals when the statistics are not
generated automatically.

Tip: If you run UPDATE STATISTICS LOW on the sysutils database before you use ON-Bar, the time ON-BAR needs for processing is reduced.
The following table summarizes when to run different UPDATE STATISTICS statements if the statistics are not generated automatically. If you need to run UPDATE
STATISTICS statements and you have many tables, you can write a script to generate these UPDATE STATISTICS statements.

When to Execute UPDATE STATISTICS Statement Reference for Details and Examples

Number of rows has changed significantly UPDATE STATISTICS LOW
DROP DISTRIBUTIONS

Update the statistics for the number of rows
or Drop data distributions if necessary when
upgrading

For all columns that are not the leading column of
any index

UPDATE STATISTICS LOW Creating data distributions

Queries have non-indexed join columns or filter
columns

UPDATE STATISTICS MEDIUM
DISTRIBUTIONS ONLY

Creating data distributions

Queries have an indexed join columns or filter
columns

UPDATE STATISTICS HIGH table (leading column in index) Creating data distributions

Part VI: Administering 1501

https://www.hcltech.com/
https://www.hcltech.com/

When to Execute UPDATE STATISTICS Statement Reference for Details and Examples

Queries have a multicolumn indexed defined on join
columns or filter columns

UPDATE STATISTICS HIGH table (first differing column in
multicolumn index)

Creating data distributions

Queries have a multicolumn indexed defined on join
columns or filter columns

UPDATE STATISTICS LOW table (all columns in multicolumn index) Creating data distributions

Queries have many small tables (fit into one extent) UPDATE STATISTICS HIGH on small tables Creating data distributions

Queries use SPL routines UPDATE STATISTICS FOR PROCEDURE Reoptimizing SPL routines

For information about the specific statistics that the database server keeps in the system catalog tables, see Statistics held for the table and index.

Update the statistics for the number of rows
 When you run UPDATE STATISTICS LOW, the database server updates the statistics in the table, row, and page counts in the system catalog tables. You should run

UPDATE STATISTICS LOW as often as necessary to ensure that the statistic for the number of rows is as current as possible.
Drop data distributions if necessary when upgrading

 When you upgrade to a new version of the database server, you might need to drop distributions to remove the old distribution structure in the sysdistrib system
catalog table.
Creating data distributions

 You can generate statistics for a table and you can build data distributions for each table that your query accesses.
Updating statistics for join columns

 In some situations, you might want to run the UPDATE STATISTICS statement with the HIGH keyword for specific join columns.
Updating statistics for columns with user-defined data types

 Programmers can write functions that gather statistics for columns with user-defined data types. You can store the data distributions for user-defined data types in
an sbspace.
Update statistics in parallel on very large databases

 If you have an extremely large database and indexes are fragmented, UPDATE STATISTICS LOW can automatically run statements in parallel.
Adjust the amount of memory and disk space for UPDATE STATISTICS

 When you execute the UPDATE STATISTICS statement, the database server uses memory and disk to sort and construct data distributions. You can affect the
amount of memory and disk space available for UPDATE STATISTICS operations.
Data sampling during update statistics operations

 If you have a large b-tree index with more than 100 K leaf pages, you can generate index statistics based on sampling when you run UPDATE STATISTICS
statements in LOW mode. The gathering of statistics through sampling can increase the speed of the update statistics operation.
Display data distributions

 You can use the dbschema utility to display data distributions.

Related concepts:
 Automatic statistics updating

Related information:
 UPDATE STATISTICS statement

Copyright© 2020 HCL Technologies Limited

Update the statistics for the number of rows

When you run UPDATE STATISTICS LOW, the database server updates the statistics in the table, row, and page counts in the system catalog tables. You should run
UPDATE STATISTICS LOW as often as necessary to ensure that the statistic for the number of rows is as current as possible.

If the cardinality of a table changes often, run the statement more often for that table.

LOW is the default mode for UPDATE STATISTICS.

The following sample SQL statement updates the statistics in the systables, syscolumns, and sysindexes system catalog tables but does not update the data
distributions:

UPDATE STATISTICS FOR TABLE tab1;

Copyright© 2020 HCL Technologies Limited

Drop data distributions if necessary when upgrading

When you upgrade to a new version of the database server, you might need to drop distributions to remove the old distribution structure in the sysdistrib system catalog
table.

To drop the old distribution structure in the sysdistrib system catalog table, run this statement:

UPDATE STATISTICS DROP DISTRIBUTIONS;

Drop distributions in LOW mode without gathering statistics
 You can remove distribution information from the sysdistrib table and update the systables.version column in the system catalog for those tables whose

distributions were dropped, without gathering any LOW mode table and index statistics.

Copyright© 2020 HCL Technologies Limited

Drop distributions in LOW mode without gathering statistics

1502 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

You can remove distribution information from the sysdistrib table and update the systables.version column in the system catalog for those tables whose distributions
were dropped, without gathering any LOW mode table and index statistics.

You do this using the DROP DISTRIBUTIONS ONLY option in the UPDATE STATISTICS statement. Using the DROP DISTRIBUTIONS ONLY option can result in faster
performance because the database server does not gather the table and index statistics that the LOW mode option generates when the ONLY keyword does not follow the
DROP DISTRIBUTIONS keywords.

For detailed information about how to use the DROP DISTRIBUTIONS ONLY option, see the IBM® Informix® Guide to SQL: Syntax.

Copyright© 2020 HCL Technologies Limited

Creating data distributions

You can generate statistics for a table and you can build data distributions for each table that your query accesses.

(You do not need to run UPDATE STATISTICS operations when the statistics are generated automatically.)
The database server creates data distributions, which provide information to the optimizer, any time the UPDATE STATISTICS MEDIUM or UPDATE STATISTICS HIGH
command is executed.

Important:
The database server creates data distributions by sampling a column's data, sorting the data, building distributions bins, and inserting the results into the sysdistrib
system catalog table.

You can control the sample size for the scan through the keyword HIGH or MEDIUM. The difference between UPDATE STATISTICS HIGH and UPDATE STATISTICS MEDIUM
is the number of rows sampled. UPDATE STATISTICS HIGH scans the entire table, while UPDATE STATISTICS MEDIUM samples only a subset of rows, based on the
confidence and resolution used by the UPDATE STATISTICS statement.

You can use the LOW keyword with the UPDATE STATISTICS statement only for fully qualified index keys.

If a distribution has been generated for a column, the optimizer uses that information to estimate the number of rows that match a query against a column. Data
distributions in sysdistrib supersede values in the colmin and colmax column of the syscolumns system catalog table when the optimizer estimates the number of rows
returned.

When you use data-distribution statistics for the first time, try to update statistics in MEDIUM mode for all your tables and then update statistics in HIGH mode for all
columns that head indexes. This strategy produces statistical query estimates for the columns that you specify. These estimates, on average, have a margin of error less
than percent of the total number of rows in the table, where percent is the value that you specify in the RESOLUTION clause in the MEDIUM mode. The default percent
value for MEDIUM mode is 2.5 percent. (For columns with HIGH mode distributions, the default resolution is 0.5 percent.)

With the DISTRIBUTIONS ONLY option, you can execute UPDATE STATISTICS MEDIUM at the table level or for the entire system because the overhead of the extra
columns is not large.

The database server uses the storage locations that the DBSPACETEMP environment variable specifies only when you use the HIGH option of UPDATE STATISTICS.

You can prevent UPDATE STATISTICS operations from using indexes when sorting rows by setting the third parameter of the DBUPSPACE environment variable to a value
of 1.

For each table that your query accesses, build data distributions according to the following guidelines. Also see the examples below the guidelines.

To generate statistics on a table:

1. Identify the set of all columns that appear in any single-column or multi-column index on the table.
2. Identify the subset that includes all columns that are not the leading column of any index.
3. Run UPDATE STATISTICS LOW on each column in that subset.

To build data distributions for each table that your query accesses:

1. Run a single UPDATE STATISTICS MEDIUM for all columns in a table that do not head an index.
Use the default parameters unless the table is very large, in which case you should use a resolution of 1.0 and confidence of 0.99.

2. Run the following UPDATE STATISTICS statement to create distributions for non-index join columns and non-index filter columns:

UPDATE STATISTICS MEDIUM DISTRIBUTIONS ONLY;

3. Run UPDATE STATISTICS HIGH for all columns that head an index. For the fastest execution time of the UPDATE STATISTICS statement, you must execute one
UPDATE STATISTICS HIGH statement for each column, as shown in the example below this procedure.

4. If you have indexes that begin with the same subset of columns, run UPDATE STATISTICS HIGH for the first column in each index that differs, as shown in the
second example below this procedure.

5. For each single-column or multi-column index on the table:
a. Identify the set of all columns that appear in the index.
b. Identify the subset that includes all columns that are not the leading column of any index.
c. Run UPDATE STATISTICS LOW on each column in that subset. (LOW is the default.)

6. For the tables on which indexes were created in Step 3, run an UPDATE STATISTICS statement to update the sysindexes and syscolumns system catalog tables, as
shown in the following example:

UPDATE STATISTICS FOR TABLE t1(a,b,e,f);

7. For small tables, run UPDATE STATISTICS HIGH, for example:

UPDATE STATISTICS HIGH FOR TABLE t2;

Because the statement constructs the statistics only once for each index, these steps ensure that UPDATE STATISTICS executes rapidly.

Part VI: Administering 1503

https://www.hcltech.com/

Examples
Example of UPDATE STATISTICS HIGH statements for all columns that head an index

Suppose you have a table t1 with columns a, b, c, d, e, and f with the following indexes:

CREATE INDEX ix_1 ON t1 (a, b, c, d) ...
CREATE INDEX ix_3 ON t1 (f) ...

Run the following UPDATE STATISTICS statements for the columns that head an index:

UPDATE STATISTICS HIGH FOR TABLE t1(a);
UPDATE STATISTICS HIGH FOR TABLE t1(f);

These UPDATE STATISTICS HIGH statements replace the distributions created with the UPDATE STATISTICS MEDIUM statements with high distributions for index
columns.

Example of UPDATE STATISTICS HIGH statements for the first column in each index that differs:
For example, suppose you have the following indexes on table t1:

CREATE INDEX ix_1 ON t1 (a, b, c, d) ...
CREATE INDEX ix_2 ON t1 (a, b, e, f) ...
CREATE INDEX ix_3 ON t1 (f) ...

Step 3 executes UPDATE STATISTICS HIGH on column a and column f. Then run UPDATE STATISTICS HIGH on columns c and e.

UPDATE STATISTICS HIGH FOR TABLE t1(c);
UPDATE STATISTICS HIGH FOR TABLE t1(e);

In addition, you can run UPDATE STATISTICS HIGH on column b, although this is usually not necessary.

Related concepts:
 Virtual portion of shared memory

Related information:
 UPDATE STATISTICS statement

Copyright© 2020 HCL Technologies Limited

Updating statistics for join columns

In some situations, you might want to run the UPDATE STATISTICS statement with the HIGH keyword for specific join columns.

Because of improvements and adjusted cost estimates to establish better query plans, the optimizer depends greatly on an accurate understanding of the underlying data
distributions in certain cases. You might still think that a complex query does not execute quickly enough, even though you followed the guidelines in Creating data
distributions. If your query involves equality predicates, take one of the following actions:

Run the UPDATE STATISTICS statement with the HIGH keyword for specific join columns that appear in the WHERE clause of the query. If you followed the
guidelines in Creating data distributions, columns that head indexes already have HIGH mode distributions.
Determine whether HIGH mode distribution information about columns that do not head indexes can provide a better execution path, take the following steps:

To determine if UPDATE STATISTICS HIGH on join columns might make a difference:

1. Issue the SET EXPLAIN ON statement and rerun the query.
2. Note the estimated number of rows in the SET EXPLAIN output and the actual number of rows that the query returns.
3. If these two numbers are significantly different, run UPDATE STATISTICS HIGH on the columns that participate in joins, unless you have already done so.

Important: If your table is very large, UPDATE STATISTICS with the HIGH mode can take a long time to execute.
The following example shows a query that involves join columns:

SELECT employee.name, address.city
 FROM employee, address
 WHERE employee.ssn = address.ssn
 AND employee.name = 'James'

In this example, the join columns are the ssn fields in the employee and address tables. The data distributions for both of these columns must accurately reflect the
actual data so that the optimizer can correctly determine the best join plan and execution order.

You cannot use the UPDATE STATISTICS statement to create data distributions for a table that is external to the current database. For additional information about data
distributions and the UPDATE STATISTICS statement, see the IBM® Informix® Guide to SQL: Syntax.

Copyright© 2020 HCL Technologies Limited

Updating statistics for columns with user-defined data types

Programmers can write functions that gather statistics for columns with user-defined data types. You can store the data distributions for user-defined data types in an
sbspace.

Because information about the nature and use of a user-defined data type (UDT) is not available to the database server, it cannot collect the colmin and colmax column of
the syscolumns system catalog table for user-defined data types. To gather statistics for columns with user-defined data types, programmers must write functions that
extend the UPDATE STATISTICS statement. For more information, see the performance chapter in IBM® Informix® User-Defined Routines and Data Types Developer's
Guide.

1504 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Because the data distributions for user-defined data types can be large, you can optionally store them in an sbspace instead of the sysdistrib system catalog table.

To store data distributions for user-defined data types in an sbspace:

1. Use the onspaces -c -S command to create an sbspace.
To ensure recoverability of the data distributions, specify LOGGING=ON in the -Df option, as the following sample shows:

% onspaces -c -S distrib_sbsp -p /dev/raw_dev1 -o 500 -s
 20000
 -m /dev/raw_dev2 500 -Ms 150 -Mo 200 -Df
 "AVG_LO_SIZE=32,LOGGING=ON"

For information about sizing an sbspace, see Estimating pages that smart large objects occupy.

For more information about specifying storage characteristics for sbspaces, see Configuration parameters that affect sbspace I/O.

2. Specify the sbspace that you created in step 1 in the configuration parameter SYSSBSPACENAME.
3. Specify the column with the user-defined data type when you run the UPDATE STATISTICS statement with the MEDIUM or HIGH keywords to generate data

distributions.

To print the data distributions for a column with a user-defined data type, use the dbschema -hd option.

Copyright© 2020 HCL Technologies Limited

Update statistics in parallel on very large databases

If you have an extremely large database and indexes are fragmented, UPDATE STATISTICS LOW can automatically run statements in parallel.

To enable statements to automatically run in parallel, you must run UPDATE STATISTICS LOW with the PDQ priority set to a value that is between 1 and 10. If the PDQ
priority is set to 1, 10 percent of the index fragments are analyzed at one time for the current table. If the PDQ priority is set to 5, 50 percent of the index fragments are
analyzed at one time for the current table. If the PDQ priority is set to 10, all fragments are analyzed at one time for the current table. (If the PDQ priority is set to a value
that is higher than 10, Informix® operates as if the PDQ priority is set to 10, analyzing all fragments at one time for the current table.)

If you run UPDATE STATISTICS MEDIUM or HIGH, you can set the PDQ priority to a value that is higher than 10. Because the UPDATE STATISTICS MEDIUM and HIGH
statements perform a large amount of sorting operations, increasing the PDQ priority to a value that is higher than 10 provides additional memory than can improve the
speed of the sorting operations.

Copyright© 2020 HCL Technologies Limited

Adjust the amount of memory and disk space for UPDATE STATISTICS

When you execute the UPDATE STATISTICS statement, the database server uses memory and disk to sort and construct data distributions. You can affect the amount of
memory and disk space available for UPDATE STATISTICS operations.

You can affect the amount of memory and disk space available for UPDATE STATISTICS with the following methods:

PDQ priority
You can obtain more memory for sorting when you set PDQ priority greater than 0. The default value for PDQ priority is 0. To set PDQ priority, use either the
PDQPRIORITY environment variable or the SQL statement SET PDQPRIORITY.

For more information about PDQ priority, see The allocation of resources for parallel database queries.

DBUPSPACE environment variable
You can use the DBUPSPACE environment variable to specify the amount of system disk space (and the amount of memory for sorting values) that UPDATE
STATISTICS MEDIUM or UPDATE STATISTICS HIGH statements can use in each pass to construct column distributions. If you specify too small a value, the
database server instead uses enough space to write the largest column to disk.

For more information about this environment variable, see the IBM® Informix® Guide to SQL: Reference.

Copyright© 2020 HCL Technologies Limited

Data sampling during update statistics operations

If you have a large b-tree index with more than 100 K leaf pages, you can generate index statistics based on sampling when you run UPDATE STATISTICS statements in
LOW mode. The gathering of statistics through sampling can increase the speed of the update statistics operation.

By default, when UPDATE STATISTICS statements run, the database server reads all index leaf pages in sequence to gather statistics such as the number of leaf pages, the
number of unique lead key values, and cluster information. For a large index this can take a long time. With sampling, the database server reads a fraction of the index leaf
pages (the sample) and then deduces index statistics based on statistics gathered from the sample.

A possible trade-off for less time in gathering statistics is the accuracy of the statistics gathered. If there are significant skews in the data distribution for the lead index
key, the sampling approach can result in a large error margin for the statistics gathered, which in turn might affect optimizer decisions in query plan generation.

You cannot control how much data is in the sample.

To enable or disable sampling, use the USTLOW_SAMPLE configuration parameter or the USTLOW_SAMPLE environment option of the SET ENVIRONMENT statement.

Part VI: Administering 1505

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Related information:
USTLOW_SAMPLE configuration parameter
USTLOW_SAMPLE environment option

Copyright© 2020 HCL Technologies Limited

Display data distributions

You can use the dbschema utility to display data distributions.

Unless column values change considerably, you do not need to regenerate the data distributions. To verify the accuracy of the distribution, compare dbschema -hd output
with the results of appropriately constructed SELECT statements.

For example, the following dbschema command produces a list of distributions for each column of table customer in database vjp_stores with the number of values in
each bin, and the number of distinct values:

dbschema -hd customer -d vjp_stores

Figure 1 shows the data distributions for the column zipcode that this dbschema -hd command produces. Because this column heads the zip_ix index, UPDATE
STATISTICS HIGH was run on it, as the following output line indicates:

High Mode, 0.500000 Resolution

Figure 1 shows 17 bins with one distinct zipcode value in each bin.
Figure 1. Displaying Data Distributions with dbschema -hd

dbschema -hd customer -d vjp_stores

...
Distribution for virginia.customer.zipcode

Constructed on 09/18/2000

High Mode, 0.500000 Resolution

--- DISTRIBUTION ---

 (02135)
 1: (1, 1, 02135)
 2: (1, 1, 08002)
 3: (1, 1, 08540)
 4: (1, 1, 19898)
 5: (1, 1, 32256)
 6: (1, 1, 60406)
 7: (1, 1, 74006)
 8: (1, 1, 80219)
 9: (1, 1, 85008)
 10: (1, 1, 85016)
 11: (1, 1, 94026)
 12: (1, 1, 94040)
 13: (1, 1, 94085)
 14: (1, 1, 94117)
 15: (1, 1, 94303)
 16: (1, 1, 94304)
 17: (1, 1, 94609)

--- OVERFLOW ---

 1: (2, 94022)
 2: (2, 94025)
 3: (2, 94062)
 4: (3, 94063)
 5: (2, 94086)

The OVERFLOW portion of the output shows the duplicate values that might skew the distribution data, so dbschema moves them from the distribution to a separate list.
The number of duplicates in this overflow list must be greater than a critical amount that the following formula determines. Figure 1 shows a resolution value of .0050.
Therefore, this formula determines that any value that is duplicated more than one time is listed in the overflow section.

Overflow = .25 * resolution * number_rows
 = .25 * .0050 * 28
 = .035

For more information about the dbschema utility, see the IBM® Informix® Migration Guide.

Copyright© 2020 HCL Technologies Limited

Improve performance by adding or removing indexes

You can often improve the performance of a query by adding or, in some cases, removing indexes. You can also enable the optimizer to automatically fetch a set of keys
from an index buffer.

To improve the performance of a query, consider using some of the methods that the following topics describe.

1506 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

In addition:

Consider using the CREATE INDEX ONLINE and DROP INDEX ONLINE statements to create and drop an index in an online environment, when the database and its
associated tables are continuously available. These SQL statements enable you to create and drop indexes without having an access lock placed over the table
during the duration of the index builds or drops. For more information, see Creating and dropping an index in an online environment.
Set the BATCHEDREAD_INDEX configuration parameter to enable the optimizer to automatically fetch a set of keys from an index buffer. This reduces the number of
times a buffer is read.

Replace autoindexes with permanent indexes
 If the query plan includes an autoindex path to a large table, you can generally improve performance by adding an index on that column. If you perform a query

regularly, you can save time by creating a permanent index.
Use composite indexes
The optimizer can use a composite index (one that covers more than one column) in several ways.
Indexes for data warehouse applications

 Many data warehouse databases use a star schema, which consists of a fact table and a number of dimensional tables. Queries that use tables in a star schema or
snowflake schema can benefit from the proper index on the fact table.
Configure B-tree scanner information to improve transaction processing

 You can improve the performance of transaction processing in logged databases by controlling how the B-tree scanner threads remove deletions from indexes.
Determine the amount of free space in an index page

 You can use the oncheck -pT command to determine the amount of free space in each index page.

Related information:
 BATCHEDREAD_INDEX configuration parameter

Copyright© 2020 HCL Technologies Limited

Replace autoindexes with permanent indexes

If the query plan includes an autoindex path to a large table, you can generally improve performance by adding an index on that column. If you perform a query regularly,
you can save time by creating a permanent index.

If you perform the query occasionally, you can reasonably let the database server build and discard an index.

Copyright© 2020 HCL Technologies Limited

Use composite indexes

The optimizer can use a composite index (one that covers more than one column) in several ways.

The database server can use an index on columns a, b, and c (in that order) in the following ways:

To locate a particular row
The database server can use a composite index when the first filter is an equality filter and subsequent columns have range (<, <=, >, >=) expressions. The following
examples of filters use the columns in a composite index:

WHERE a=1
WHERE a>=12 AND a<15
WHERE a=1 AND b < 5
WHERE a=1 AND b = 17 AND c >= 40

The following examples of filters cannot use that composite index:

WHERE b=10
WHERE c=221
WHERE a>=12 AND b=15

To replace a table scan when all of the desired columns are contained within the index
A scan that uses the index but does not reference the table is called a key-only search.

To join column a, columns ab, or columns abc to another table
To implement ORDER BY or GROUP BY on columns a, ab, or abc but not on b, c, ac, or bc

Execution is most efficient when you create a composite index with the columns in order from most to least distinct. In other words, the column that returns the highest
count of distinct rows when queried with the DISTINCT keyword in the SELECT statement should come first in the composite index.

If your application performs several long queries, each of which contains ORDER BY or GROUP BY clauses, you can sometimes improve performance by adding indexes
that produce these orderings without requiring a sort. For example, the following query sorts each column in the ORDER BY clause in a different direction:

SELECT * FROM t1 ORDER BY a, b DESC;

To avoid using temporary tables to sort column a in ascending order and column b in descending order, you must create a composite index on (a, b DESC) or on (a DESC,
b). You need to create only one of these indexes because of the bidirectional-traverse capability of the database server. For more information about bidirectional traverse,
see the IBM® Informix® Guide to SQL: Syntax.

On the other hand, it can be less expensive to perform a table scan and sort the results instead of using the composite index when the following criteria are met:

Your table is well ordered relative to your index.
The number of rows that the query retrieves represents a large percentage of the available data.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1507

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Indexes for data warehouse applications

Many data warehouse databases use a star schema, which consists of a fact table and a number of dimensional tables. Queries that use tables in a star schema or
snowflake schema can benefit from the proper index on the fact table.

The fact table is generally large and contains the quantitative or factual information about the subject. A dimensional table describes an attribute in the fact table.

When a dimension needs lower-level information, the dimension is modeled by a hierarchy of tables, called a snowflake schema.

Consider the example of a star schema with one fact table named orders and four dimensional tables named customers, suppliers, products, and clerks. The orders
table describes the details of each sale order, which includes the customer ID, supplier ID, product ID, and sales clerk ID. Each dimensional table describes an ID in detail.
The orders table is large, and the four dimensional tables are small.

The following query finds the total direct sales revenue in the Menlo Park region (postal code 94025) for hard drives supplied by the Johnson supplier:

SELECT sum(orders.price)
FROM orders, customers, suppliers,product,clerks
WHERE orders.custid = customers.custid
 AND customers.zipcode = 94025
 AND orders.suppid = suppliers.suppid
 AND suppliers.name = 'Johnson'
 AND orders.prodid = product.prodid
 AND product.type = 'hard drive'
 AND orders.clerkid = clerks.clerkid
 AND clerks.dept = 'Direct Sales'

This query uses a typical star join, in which the fact table joins with all dimensional tables on a foreign key. Each dimensional table has a selective table filter.

An optimal plan for the star join is to perform a cartesian product on the four dimensional tables and then join the result with the fact table. The following index on the fact
table allows the optimizer to choose the optimal query plan:

CREATE INDEX ON orders(custid,suppid,prodid,clerkid)

Without this index, the optimizer might choose to first join the fact table with a single dimensional table and then join the result with the remaining dimensional tables. The
optimal plan provides better performance.

For more information about star schemas and snowflake schemas, see the IBM® Informix® Database Design and Implementation Guide.

Copyright© 2020 HCL Technologies Limited

Configure B-tree scanner information to improve transaction processing

You can improve the performance of transaction processing in logged databases by controlling how the B-tree scanner threads remove deletions from indexes.

The B-tree scanner improves transaction processing for logged databases when rows are deleted from a table with indexes. The B-tree scanner automatically determines
which index partitions will be cleaned, based on a priority list. B-tree scanner threads remove deleted index entries and rebalance the index nodes. The B-tree scanner
automatically determines which index items are to be deleted.

In a logged database, when a delete or an update operation is performed on a row, any corresponding index entry is not immediately deleted. Instead, the corresponding
index entry is flagged as deleted until a B-tree scanner thread scans the index and removes the deleted items. An index containing many deleted items can cause a
significant performance problem, because index searches need to scan a larger number of items before finding the first valid item.

The default setting for B-tree scanning provides the following type of scanning, depending on your indexes:

If the table has more than one attached index, the B-tree scanner uses the leaf scan mode. Leaf scan mode is the only type of scanning possible with multiple
attached indexes.
If the table contains a single attached index or if the indexes are detached, the B-tree scanner uses alice (adaptive linear index cleaning) mode. The initial alice scan
mode is optimized for small- to medium-sized systems with few or no indexes above 1 GB. However, if the database server detects that the alice mode is inefficient,
the alice scan mode setting is adjusted automatically to accommodate larger indexes.

Depending on your application and the order in which the system adds and deletes keys from the index, the structure of an index can become inefficient.

You use the BTSCANNER configuration parameter to specify the following information, which defines the scan mode:

The number of B-tree scanner threads to start when the database server starts
The number of B-tree scanner threads is configurable to any positive number. One B-tree scanner thread will always clean an individual index partition, so if you
occasionally or consistently have a higher number of index partitions requiring cleaning, you might want to use more than one B-tree scanner thread. At runtime,
you can turn off any B-tree scanner activity by issuing an onmode -C command. This command stops all B-tree scanner threads.

The threshold, which is the minimum number of deleted items an index must encounter before an index is placed on the priority list for eligibility for scanning and
cleaning by a B-tree scanner thread
For example, if you increase the threshold beyond 5000, you might be able to avoid frequent B-tree scanner activity on the indexes that receive the most updates
and deletes.

The range size, in kilobytes, that an index or index fragment must exceed before the index is cleaned with range scanning
An alice mode value
The level at which B-tree scanner threads compress indexes by merging two partially used index pages

The server treats a forest of trees index the same way it treats a B-tree index. Therefore, in a logged database, you can control how the B-tree scanner threads remove
deletions from both forest of trees and B-tree indexes.

The following table summarizes the differences between the scan modes.

1508 Part VI: Administering

https://www.hcltech.com/

Table 1. Scan modes for B-tree scanner threads

Scan Mode Description Performance Advantages or Issues More Information

Leaf scan mode In this mode, the leaf level of an
attached index is completely scanned for
deleted items.

This mode is only possible on attached
indexes and is the only mode the server
can use if more than one attached index
exists in a partition.

Leaf and range scan mode settings

Alice (adaptive linear index cleaning)
scan mode

If the BTSCANNER alice option is
enabled, every index partition receives a
bitmap that tracks where a deleted item
was found in the index. The scan that
occurs excludes all parts of the index
where no delete operations are found.

The initial size and granularity of these
bitmaps depend on the size of the
partitions they represent and the current
system-wide alice level. The server
periodically checks each bitmap for its
efficiency by checking the ratio of pages
to be cleaned to pages read, adjusting
scanning if necessary to get better
information. This mode allocates
additional resources (memory) to the
index that is consuming excess I/O.

You can greatly improve performance
and reduce I/O when using the alice
mode. Generally, alice mode is 64 times
more efficient than range scanning and
can automatically tune itself for
unsatisfactory indexes, which range
scanning cannot do.

Alice scan mode values

Range scan mode Range scanning, which is enabled with
the rangesize option, is performed in
the range between the low and high
page address. The leaf level of the index
partition is only scanned within this
range. The server performs light scans,
which do not immediately use and strain
the buffer pool, even though cleaning
occurs through the buffer pool.

Not recommended for Informix® Version
11.10 or higher. Alice scanning is exactly
the same as range scanning, but is 64
times more efficient, uses the same
resources, and has 128 equal ranges.

When you set alice mode scanning,
range scanning does not have an effect.

If you decide to use range scanning for
systems with only a lot of large indexes,
set the rangesize option to the
minimum partition size for range
scanning.

Leaf and range scan mode settings

For more information about the BTSCANNER configuration parameter and for more information about how the database server maintains an index tree, see the chapter on
configuration parameters and the chapter on disk structure and storage in the IBM® Informix Administrator's Reference.

Use the onstat -C option to monitor the B-tree scanner activities.

Use the onmode -C option to change the configuration of B-tree scanners during runtime.

For more information about onstat -C and onmode -C, see the IBM Informix Administrator's Reference.

Alice scan mode values
 You enable alice (adaptive linear index cleaning) mode by setting the alice option to any value between 1 and 12 (finest initial granularity). For small- to medium-

sized systems with few or no indexes above 1 gigabyte, set the alice option to 6 or 7. For systems with large indexes, set alice to a higher mode.
Leaf and range scan mode settings

 If a table has more than one attached index, the B-tree scanner uses the leaf scan mode. If you want small indexes to be scanned by the leaf scan method, set the
rangesize option of the BTSCANNER configuration parameter to 100.
B-tree scanner index compression levels and transaction processing performance

 B-tree scanner threads compress indexes by merging two partially used index pages if the amount of data on those pages is below the level that is specified by the
compression option. You can set the compression level to control the amount of I/O required to find and load data.
Setting the level for B-tree scanner compression of indexes

 Informix provides several ways to specify the level at which B-tree scanner threads will compress indexes pages. To optimize space and transaction processing, you
can lower the compression level if your indexes grow quickly. You can increase the level if your indexes have few delete and insert operations or if batch updates are
performed.

Copyright© 2020 HCL Technologies Limited

Alice scan mode values

You enable alice (adaptive linear index cleaning) mode by setting the alice option to any value between 1 and 12 (finest initial granularity). For small- to medium-sized
systems with few or no indexes above 1 gigabyte, set the alice option to 6 or 7. For systems with large indexes, set alice to a higher mode.

When you set alice mode, the higher the mode, the more memory is used per index partition. However, the memory used is not a huge amount. The advantage is less I/O,
as shown in the following table.

Table 1. Alice mode settings

Alice Mode Setting Memory or Block I/O

0 Turns off alice scanning.

1 Uses exactly 8 bytes of memory (no adjusting).

Part VI: Administering 1509

https://www.hcltech.com/

Alice Mode Setting Memory or Block I/O

2 Uses exactly 16 bytes of memory (no adjusting).

3 Each block of pages will need 512 I/O operations for
cleaning.

4 Each block of pages will need 256 I/O operations for
cleaning.

5 Each block of pages will need 128 I/O operations for
cleaning.

6 (default) Each block of pages will need 64 I/O operations for cleaning.

7 Each block of pages will need 32 I/O operations for cleaning.

8 Each block of pages will need 16 I/O operations for cleaning.

9 Each block of pages will need 8 I/O operations for cleaning.

10 Each block of pages will need 4 I/O operations for cleaning.

11 Each block of pages will need 2 I/O operations for cleaning.

12 Each block of pages will need 1 I/O operations for cleaning.

When you set the alice mode, you need to consider memory usage versus I/O. The lower the alice mode setting, the less memory the index will use. The higher the alice
mode setting, the more memory the index will use. 12 is the highest mode value, because it is a direct mapping of a single bit of memory to each instance of I/O.

Suppose you have an online page size of 2 KB and the default B-Tree Scanner I/O size of 256 pages. If you set the alice mode to 6, each byte of memory can represent
131,072 index pages (256 MB). If you set the mode to 10, each byte of memory can represent 8,192 index pages (16 MB). Thus, changing the mode setting from 6 to 10
requests 16 times the memory, but requires 16 times less I/O.

If you have an index partition that uses 1 GB, then an alice mode setting of 6 would take 4 bytes of memory, while an alice mode setting of 10 would consume 64 bytes of
memory, as shown in this formula:

({mode block size} io per bit * 8 bits per byte * 256 page per io)

Setting the alice mode to a value between 3 and 12 sets the initial amount of memory that is used for index cleaning. Subsequently, the B-tree scanners automatically
adjust the mode based on the efficiency of past cleaning operations.

For example, if after five scans (by default), the I/O efficiency is below 75 percent, the server automatically adjusts to the next alice mode if you set the mode to a value
above 2. For example, if an index is currently operating in alice mode 6, a B-tree scanner has cleaned the index at least 5 times, and the I/O efficiency is below 75 percent,
the server automatically adjusts to mode 7, the next higher mode. This doubles the memory required, but reduces the I/O by a factor of 2.

The server will re-evaluate the index after five more scans to determine the I/O efficiency again, and will continue to do this until mode 12. The server stops making
adjustments at mode 12.

The following example sets the alice mode to 6:

BTSCANNER num=2,threshold=10000,alice=6,compression=default

Related concepts:
 Leaf and range scan mode settings

B-tree scanner index compression levels and transaction processing performance
Related tasks:

 Setting the level for B-tree scanner compression of indexes

Copyright© 2020 HCL Technologies Limited

Leaf and range scan mode settings

If a table has more than one attached index, the B-tree scanner uses the leaf scan mode. If you want small indexes to be scanned by the leaf scan method, set the
rangesize option of the BTSCANNER configuration parameter to 100.

If you decide to enable range scan mode when a single index exists in the partition, set rangesize option of the BTSCANNER configuration parameter to the minimum
size that a partition must have to be scanned using this mode. Specify the size in kilobytes.

The following example specifies that:

The server will start two B-tree scanner threads.
The server will consider cleaning indexes in the hot list (a list of indexes that caused the server to do extra work) when 50000 deleted items are found in the index.
Indexes with a partition size that is equal to or larger than 100 KB will be cleaned using the range scan mode.
Indexes with a partition size of less than 100 KB will be cleaned using the leaf scan mode.
Index compression is set at the medium (default) level

BTSCANNER num=2,threshold=50000,rangesize=100,compression=default

Related concepts:
 Alice scan mode values

B-tree scanner index compression levels and transaction processing performance
Related tasks:

 Setting the level for B-tree scanner compression of indexes

Copyright© 2020 HCL Technologies Limited

1510 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

B-tree scanner index compression levels and transaction processing performance

B-tree scanner threads compress indexes by merging two partially used index pages if the amount of data on those pages is below the level that is specified by the
compression option. You can set the compression level to control the amount of I/O required to find and load data.

B-tree scanner threads look for index pages that can be compressed because they are below the specified level. The B-tree scanner can compress index pages with
deleted items and pages that do not have deleted items.

By default, a B-tree scanner compresses at the medium level. The following table provides information about the performance benefits and trade-offs if you change the
compression level to high or low.

Table 1. B-Tree Scanner Compression Level Benefits and Trade-offs
Compression Level Performance Benefits and Trade-offs When to Use

Low The low compression level is beneficial for an index that is expected
to grow quickly, with frequent B-tree node splits. When the
compression level is set to low, the B-tree index will not require as
many splits as indexes with medium or high compression levels,
because more free space remains in the B-tree nodes.

You might want to change the compression level to low if you expect
an index to grow quickly with frequent splits.

High In general, if an index is read-only or 90 percent of it is read-only, the
high compression level is beneficial because searching for data will
require fewer pages (and less I/O) to traverse. Examples might be
indexes that do not have frequent changes or indexes undergoing
batch (block) delete operations.
Using high level of compression also means a performance trade-off,
because it takes more I/O to compress the index more aggressively.
Select operations will have less I/O when the compression level is
high.

You might want to change the compression level to high under these
circumstances:

If an index is read most of the time, and delete and insert
operations occur a small percentage of the time.
If tables are loaded and updated in a batch and are kept for a
period of time as read-only tables.

If you do not need to change the compression level to high or low, set the compression option of the BTSCANNER configuration parameter to med or default.

Index Compression and the Index Fill Factor
In addition to the compression option that specifies when to attempt to join two partially used pages, you can use the FILL FACTOR configuration parameter to control
when to add new index pages. The index fill factor, which you define with the FILLFACTOR configuration parameter or the FILLFACTOR option of the CREATE INDEX
statement, is a percentage of each index page that will be filled during the index build.

Related concepts:
 Alice scan mode values

Leaf and range scan mode settings
Related tasks:

 Setting the level for B-tree scanner compression of indexes

Copyright© 2020 HCL Technologies Limited

Setting the level for B-tree scanner compression of indexes

Informix® provides several ways to specify the level at which B-tree scanner threads will compress indexes pages. To optimize space and transaction processing, you can
lower the compression level if your indexes grow quickly. You can increase the level if your indexes have few delete and insert operations or if batch updates are
performed.

Prerequisites:

Determine if adjusting the level for index compression will improve performance.
Get statistics on the number of rows read, deleted, and inserted by running the onstat -g ppf command. You can also view information in the sysptprof table.
Analyze the statistics to determine if you want to change the threshold.

For information about compression levels and the circumstances under which you might want to change the level, see B-tree scanner index compression levels and
transaction processing performance.
Specify the compression level for an instance with any of the following options:

Set the compression field of the BTSCANNER configuration parameter to low, med (medium), high, or default. (The system default value is med.)
Run the onmode -C compression value command, where value is low, med (medium), high, and default. The system default value is med.
Run an SQL administration API function with this command:

SET INDEX COMPRESSION, partition number, compression level

Examples
Set the compression option of the BTSCANNER configuration parameter to default as follows:

BTSCANNER num=4,threshold=10000,rangesize=-1,alice=6,compression=default

Set the compression option of the BTSCANNER configuration parameter to high as follows:

BTSCANNER num=4,threshold=5000,compression=high

Part VI: Administering 1511

https://www.hcltech.com/

Specify the compression level using onmode -C, as follows:

onmode –C compression high

Run either of the following SQL administration API functions to set the compression level for a single fragment of the index that has the partition number 1048960:

EXECUTE FUNCTION TASK("SET INDEX COMPRESSION", 1048960, "DEFAULT");

EXECUTE FUNCTION ADMIN("SET INDEX COMPRESSION", 1048960, "LOW");

Run the following SELECT statement to execute the task function over all index fragments. This command sets the compression level for all fragments of an index named
idx1 in a database named db1.

SELECT sysadmin:TASK("SET INDEX COMPRESSION", partnum, "MED")
FROM sysmaster:systabnames
WHERE dbsname = 'dbs1' AND tabname = 'idx1';

You can also run the following SELECT TASK statement to execute the task function over all index fragments and set the compression level for all fragments.

SELECT TASK("SET INDEX COMPRESSION", partn, "MED")
FROM dbs1:systables t, dbs1:sysfragments f
WHERE f.tabid = t.tabid AND f.fragtype = 'I' AND indexname ='idx1';

Related concepts:
 Alice scan mode values

Leaf and range scan mode settings
B-tree scanner index compression levels and transaction processing performance

Copyright© 2020 HCL Technologies Limited

Determine the amount of free space in an index page

You can use the oncheck -pT command to determine the amount of free space in each index page.

If your table has relatively low update activity and a large amount of free space exists, you might want to drop and re-create the index with a larger value for FILLFACTOR
to make the unused disk space available.

Copyright© 2020 HCL Technologies Limited

Optimizer estimates of distributed queries

The optimizer assumes that access to a row from a remote database takes longer than access to a row in a local database. The optimizer estimates include the cost of
retrieving the row from disk and transmitting it across the network.

For an example of this higher estimated cost, see The query plan of a distributed query.

Buffer data transfers for a distributed query
 Informix® uses several factors to determine the size of the buffer that sends and receives data to and from a remote server.

The query plan of a distributed query
 You can display the chosen query plan of a distributed query. The information displayed for a distributed join differs from information displayed for a local join.

Copyright© 2020 HCL Technologies Limited

Buffer data transfers for a distributed query

Informix® uses several factors to determine the size of the buffer that sends and receives data to and from a remote server.

The server uses the following factors to determine the buffer size:

The row size
The database server calculates the row size by summing the average move size (if available) or the length (from the syscolumns system catalog table) of the
columns.

The setting of the FET_BUF_SIZE environment variable on the client
You might be able to reduce the size and number of data transfers by using the FET_BUF_SIZE environment variable to increase the size of the buffer that the
database server uses to send and receive rows to and from the remote database server.

The minimum buffer size is 1024 or 2048 bytes, depending on the row size. If the row size is larger than either 1024 or 2048 bytes, the database server uses the
FET_BUF_SIZE value.

For more information about the FET_BUF_SIZE environment variable, see the IBM® Informix Guide to SQL: Reference.

Copyright© 2020 HCL Technologies Limited

The query plan of a distributed query

1512 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

You can display the chosen query plan of a distributed query. The information displayed for a distributed join differs from information displayed for a local join.

The following figure shows the chosen query plan for the distributed query.
Figure 1. Selected Output of SET EXPLAIN ALL for Distributed Query, Part 3

QUERY:

select l.customer_num, l.lname, l.company,
 l.phone, r.call_dtime, r.call_descr
 from customer l, vjp_stores@gilroy:cust_calls r
 where l.customer_num = r.customer_num

 Estimated Cost: 9
Estimated # of Rows Returned: 7

 1) informix.r: REMOTE PATH

 2) informix.l: INDEX PATH

 (1) Index Keys: customer_num (Serial, fragments: ALL)
 Lower Index Filter: informix.l.customer_num = informix.r.customer_num
NESTED LOOP JOIN

The following table shows the main differences between the chosen query plans for the distributed join and the local join.

Output Line in Figure 1 for Distributed Query Output Line in Figure 1 for Local-Only Query Description of Difference

vjp_stores@gilroy: virginia.cust_calls informix.cust_calls The remote table name is prefaced with the
database and server names.

Estimated Cost: 9 Estimated Cost: 7 The optimizer estimates a higher cost for the
distributed query.

informix.r: REMOTE PATH informix.r: SEQUENTIAL SCAN The optimizer chose to keep the outer, remote
cust_calls table at the remote site.

select x0.call_dtime,x0.call_descr,x0. customer_num
from vjp_stores:”virginia”.cust_ calls x0

 The SQL statement that the local database server
sends to the remote site. The remote site
reoptimizes this statement to choose the actual
plan.

Copyright© 2020 HCL Technologies Limited

Improve sequential scans

You can improve the performance of sequential read operations on large tables by eliminating repeated sequential scans.

Sequential access to a table other than the first table in the plan is ominous because it threatens to read every row of the table once for every row selected from the
preceding tables.

If the table is small, it is harmless to read it repeatedly because the table resides completely in memory. Sequential search of an in-memory table can be faster than
searching the same table through an index, especially if maintaining those index pages in memory pushes other useful pages out of the buffers.

When the table is larger than a few pages, however, repeated sequential access produces poor performance. One way to prevent this problem is to provide an index to the
column that is used to join the table.

Any user with the Resource privilege can build additional indexes. Use the CREATE INDEX statement to make an index.

An index consumes disk space proportional to the width of the key values and the number of rows. (See Estimating index pages.) Also, the database server must update
the index whenever rows are inserted, deleted, or updated; the index update slows these operations. If necessary, you can use the DROP INDEX statement to release the
index after a series of queries, which frees space and makes table updates easier.

Copyright© 2020 HCL Technologies Limited

Enable view folding to improve query performance

You can significantly improve the performance of a query that involves a view by enabling view folding.

You do this by setting the IFX_FOLDVIEW configuration parameter to 1.

When view folding is enabled, views are folded into a parent query. Because the views are folded into the parent query, the query results are not placed in a temporary
table.

You can use view folding in the following types of queries:

Views that contain a UNION ALL clause and the parent query incldues a regular join, Informix® join, ANSI join, or an ORDER BY clause

View folding does not occur for the following types of queries that perform a UNION ALL operation involving a view:

The view has one of the following clauses: AGGREGATE, GROUP BY, ORDER BY, UNION, DISTINCT, or OUTER JOIN (either Informix or ANSI type).
The parent query has a UNION or UNION ALL clause.

Part VI: Administering 1513

https://www.hcltech.com/
https://www.hcltech.com/

In these situations, a temporary table is created to hold query results.

Copyright© 2020 HCL Technologies Limited

Reduce the join and sort operations

After you understand what the query is doing, you can look for ways to obtain the same output with less effort.

The following suggestions can help you rewrite your query more efficiently:

Avoid or simplify sort operations.
Use parallel sorts.
Use temporary tables to reduce sorting scope.

Avoid or simplify sort operations
 In many situations you can determine how to avoid or reduce frequent or complex sort operations.

Use parallel sorts
 When you cannot avoid sorting, the database server takes advantage of multiple CPU resources to perform the required sort-and-merge operations in parallel. The

database server can use parallel sorts for any query, not just PDQ queries. You can control the number of threads that the database server uses to sort rows.
Use temporary tables to reduce sorting scope

 You can use a temporary, ordered subset of a table to increase the speed of a query. The temporary table can also simplify the work of the query optimizer, cause
the optimizer to avoid multiple-sort operations, and simplify the work of the optimizer in other ways.
Configuring memory for queries with hash joins, aggregates, and other memory-intensive elements

 Certain configuration parameters can be set to provide more memory for queries that require sorting, hash joins, aggregates, and other memory-intensive
elements.

Copyright© 2020 HCL Technologies Limited

Avoid or simplify sort operations

In many situations you can determine how to avoid or reduce frequent or complex sort operations.

The sort algorithm is highly tuned and extremely efficient. It is as fast as any external sort program that you might apply to the same data. You do not need to avoid
infrequent sorts or sorts of relatively small numbers of output rows.

However, you should try to avoid or reduce the scope of repeated sorts of large tables. The optimizer avoids a sort step whenever it can use an index to produce the output
in its proper order automatically. The following factors prevent the optimizer from using an index:

One or more of the ordered columns is not included in the index.
The columns are named in a different sequence in the index and the ORDER BY or GROUP BY clause.
The ordered columns are taken from different tables.

For another way to avoid sorts, see Use temporary tables to reduce sorting scope.

If a sort is necessary, look for ways to simplify it. As discussed in Sort-time costs, the sort is quicker if you can sort on fewer or narrower columns.

Related concepts:
 Ordering with fragmented indexes

Copyright© 2020 HCL Technologies Limited

Use parallel sorts

When you cannot avoid sorting, the database server takes advantage of multiple CPU resources to perform the required sort-and-merge operations in parallel. The
database server can use parallel sorts for any query, not just PDQ queries. You can control the number of threads that the database server uses to sort rows.

To control the number of threads that the database server uses to sort rows, use the PSORT_NPROCS environment variable.

When PDQ priority is greater than 0 and PSORT_NPROCS is greater than 1, the query benefits both from parallel sorts and from PDQ features such as parallel scans and
additional memory. Users can use the PDQPRIORITY environment variable to request a specific proportion of PDQ resources for a query. You can use the
MAX_PDQPRIORITY configuration parameter to limit the number of such user requests. For more information, see Limiting PDQ resources in queries.

In some cases, the amount of data being sorted can overflow the memory resources allocated to the query, resulting in I/O to a dbspace or sort file. For more information,
see Configure dbspaces for temporary tables and sort files.

Copyright© 2020 HCL Technologies Limited

Use temporary tables to reduce sorting scope

You can use a temporary, ordered subset of a table to increase the speed of a query. The temporary table can also simplify the work of the query optimizer, cause the
optimizer to avoid multiple-sort operations, and simplify the work of the optimizer in other ways.

1514 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

For example, suppose your application produces a series of reports on customers who have outstanding balances, one report for each major postal area, ordered by
customer name. In other words, a series of queries occurs, each of the following form (using hypothetical table and column names):

SELECT cust.name, rcvbles.balance, ...other columns...
 FROM cust, rcvbles
 WHERE cust.customer_id = rcvbles.customer_id
 AND rcvbls.balance > 0
 AND cust.postcode LIKE '98_ _ _'
 ORDER BY cust.name

This query reads the entire cust table. For every row with the specified postal code, the database server searches the index on rcvbles.customer_id and performs a
nonsequential disk access for every match. The rows are written to a temporary file and sorted. For more information about temporary files, see Configure dbspaces for
temporary tables and sort files.

This procedure is acceptable if the query is performed only once, but this example includes a series of queries, each incurring the same amount of work.

An alternative is to select all customers with outstanding balances into a temporary table, ordered by customer name, as the following example shows:

SELECT cust.name, rcvbles.balance, ...other columns...
 FROM cust, rcvbles
 WHERE cust.customer_id = rcvbles.customer_id
 AND cvbls.balance > 0
 INTO TEMP cust_with_balance

You can then execute queries against the temporary table, as the following example shows:

SELECT *
 FROM cust_with_balance
 WHERE postcode LIKE '98_ _ _'
 ORDER BY cust.name

Each query reads the temporary table sequentially, but the table has fewer rows than the primary table.

Copyright© 2020 HCL Technologies Limited

Configuring memory for queries with hash joins, aggregates, and other memory-
intensive elements

Certain configuration parameters can be set to provide more memory for queries that require sorting, hash joins, aggregates, and other memory-intensive elements.

How you configure the amount of memory that is available for a query depends on whether or not the query is a Parallel Database Query (PDQ).

Configuring memory for non-PDQ queries
If the PDQ priority is set to 0 (zero), you can change the amount of memory that is available for a query that is not a PDQ query by changing the setting of the
DS_NONPDQ_QUERY_MEM configuration parameter. You can only use this parameter if the PDQ priority is set to zero. Its setting has no effect if the PDQ priority is greater
than zero.

You can also change the value of DS_NONPDQ_QUERY_MEM with an onmode -wm or onmode -wf command.

For example, if you use the onmode utility, specify a value as shown in the following example:

onmode -wf DS_NONPDQ_QUERY_MEM=500

The minimum value for DS_NONPDQ_QUERY_MEM is 128 kilobytes. The maximum supported value is 25 percent of DS_TOTAL_MEMORY. 128 kilobytes is the default
value of DS_NONPDQ_QUERY_MEM. If you specify a value for the DS_NONPDQ_QUERY_MEM parameter, determine and adjust the value based on the number and size of
table rows involved in the query.

Informix® might recalculate the value of DS_NONPDQ_QUERY_MEM initialization if the value is more than 25 percent of the DS_TOTAL_MEMORY value.

If Informix changes the value that you set, the server sends a message in this format:

DS_NONPDQ_QUERY_MEM recalculated and changed from old_value Kb to new_value Kb.

In the message, old_value represents the value that you assigned to DS_NONPDQ_QUERY_MEM in the user configuration file, and new_value represents the value
determined by Informix.

For formulas for estimating the amount of additional space to allocate for hash joins, see Estimating temporary space for dbspaces and hash joins.

Configuring memory for PDQ queries
The Memory Grant Manager (MGM) component of Informix coordinates the use of memory, CPU virtual processors (VPs), disk I/O, and scan threads among decision-
support queries. The MGM uses the DS_MAX_QUERIES, DS_TOTAL_MEMORY, DS_MAX_SCANS, and MAX_PDQPRIORITY configuration parameter settings to determine
the quantity of these PDQ resources that can be granted to a decision-support query. The MGM also grants memory to a query for such activities as hash joins. For more
information about the MGM, see The Memory Grant Manager.

Copyright© 2020 HCL Technologies Limited

Optimize user-response time for queries

Part VI: Administering 1515

https://www.hcltech.com/
https://www.hcltech.com/

You can influence the amount of time that Informix® takes to optimize a query and to return rows to a user.

Optimization level
 You normally obtain optimum overall performance with the default optimization level, HIGH. The time that it takes to optimize the statement is usually unimportant.

However, if experimentation with your application reveals that your query is still taking too long, you can set the optimization level to LOW.
Optimization goals

 Optimizing total query time and optimizing user-response time are two optimization goals for improving query performance.

Copyright© 2020 HCL Technologies Limited

Optimization level

You normally obtain optimum overall performance with the default optimization level, HIGH. The time that it takes to optimize the statement is usually unimportant.
However, if experimentation with your application reveals that your query is still taking too long, you can set the optimization level to LOW.

If you change the optimization level to LOW, check the SET EXPLAIN output to see if the optimizer chose the same query plan as before.

To specify a HIGH or LOW level of database server optimization, use the SET OPTIMIZATION statement.

Related information:
 SET OPTIMIZATION statement

Copyright© 2020 HCL Technologies Limited

Optimization goals

Optimizing total query time and optimizing user-response time are two optimization goals for improving query performance.

Total query time is the time it takes to return all rows to the application. Total query time is most important for batch processing or for queries that require all rows be
processed before returning a result to the user, as in the following query:

SELECT count(*) FROM orders
WHERE order_amount > 2000;

User-response time is the time that it takes for the database server to return a screen full of rows back to an interactive application. In interactive applications, only a
screen full of data can be requested at one time. For example, the user application can display only 10 rows at one time for the following query:

SELECT * FROM orders
WHERE order_amount > 2000;

Which optimization goal is more important can have an effect on the query path that the optimizer chooses. For example, the optimizer might choose a nested-loop join
instead of a hash join to execute a query if user-response time is most important, even though a hash join might result in a reduction in total query time.

Specifying the query performance goal
 You can optimize user response time for your entire database server system, within a session, or for individual queries.

Preferred query plans for user-response-time optimization
 When the optimizer chooses query plans to optimize user-response time, it computes the cost for retrieving the first row in the query for each plan and chooses the

plan with the lowest cost. In some cases, the query plan with the lowest cost for retrieving the first row might not be the optimal path to retrieve all rows in the
query.

Copyright© 2020 HCL Technologies Limited

Specifying the query performance goal

You can optimize user response time for your entire database server system, within a session, or for individual queries.

The default behavior is for the optimizer to choose query plans that optimize the total query time. You can specify optimization of user-response time at several different
levels:

For the database server system
To optimize user-response time, set the OPT_GOAL configuration parameter to 0, as in the following example:

OPT_GOAL 0

Set OPT_GOAL to -1 to optimize total query time.

For the user environment
The OPT_GOAL environment variable can be set before the user application starts.

UNIX Only
To optimize user-response time, set the OPT_GOAL environment variable to 0, as in the following sample commands:

Bourne shell OPT_GOAL = 0
 export OPT_GOAL

C shell setenv OPT_GOAL 0

1516 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

For total-query-time optimization, set the OPT_GOAL environment variable to -1.

Within the session
You can control the optimization goal with the SET OPTIMIZATION statement in SQL. The optimization goal set with this statement stays in effect until the session
ends or until another SET OPTIMIZATION statement changes the goal.

The following statement causes the optimizer to choose query plans that favor total-query-time optimization:

SET OPTIMIZATION ALL_ROWS

The following statement causes the optimizer to choose query plans that favor user-response-time optimization:

SET OPTIMIZATION FIRST_ROWS

For individual queries
You can use FIRST_ROWS and ALL_ROWS optimizer directives to instruct the optimizer which query goal to use. For more information about these directives, see
Optimization-goal directives.

The precedence for these levels is as follows:

Optimizer directives
SET OPTIMIZATION statement
OPT_GOAL environment variable
OPT_GOAL configuration parameter

For example, optimizer directives take precedence over the goal that the SET OPTIMIZATION statement specifies.

Copyright© 2020 HCL Technologies Limited

Preferred query plans for user-response-time optimization

When the optimizer chooses query plans to optimize user-response time, it computes the cost for retrieving the first row in the query for each plan and chooses the plan
with the lowest cost. In some cases, the query plan with the lowest cost for retrieving the first row might not be the optimal path to retrieve all rows in the query.

The following sections explain some of the possible differences in query plans.

Nested-loop joins versus hash joins
 Hash joins generally have a higher cost to retrieve the first row than nested-loop joins do. The database server must build the hash table before it retrieves any

rows. However, in some cases, total query time is faster if the database server uses a hash join.
Table scans versus index scans

 In cases where the database server returns a large number of rows from a table, the lower-cost option for the total-query-time goal might be to scan the table
instead of using an index. However, to retrieve the first row, the lower-cost option for the user-response-time goal might be to use the index to access the table.
Ordering with fragmented indexes

 When an index is not fragmented, the database server can use the index to avoid a sort. However, when an index is fragmented, the ordering can be guaranteed only
within the fragment, not between fragments.

Copyright© 2020 HCL Technologies Limited

Nested-loop joins versus hash joins

Hash joins generally have a higher cost to retrieve the first row than nested-loop joins do. The database server must build the hash table before it retrieves any rows.
However, in some cases, total query time is faster if the database server uses a hash join.

In the following example, tab2 has an index on col1, but tab1 does not have an index on col1. When you execute SET OPTIMIZATION ALL_ROWS before you run the
query, the database server uses a hash join and ignores the existing index, as the following portion of SET EXPLAIN output shows:

QUERY:

SELECT * FROM tab1,tab2
WHERE tab1.col1 = tab2.col1
Estimated Cost: 125
Estimated # of Rows Returned: 510
1) lsuto.tab2: SEQUENTIAL SCAN
2) lsuto.tab1: SEQUENTIAL SCAN
DYNAMIC HASH JOIN
 Dynamic Hash Filters: lsuto.tab2.col1 = lsuto.tab1.col1

However, when you execute SET OPTIMIZATION FIRST_ROWS before you run the query, the database server uses a nested-loop join. The clause (FIRST_ROWS
OPTIMIZATION) in the following partial SET EXPLAIN output shows that the optimizer used user-response-time optimization for the query:

QUERY: (FIRST_ROWS OPTIMIZATION)

SELECT * FROM tab1,tab2
WHERE tab1.col1 = tab2.col1
Estimated Cost: 145
Estimated # of Rows Returned: 510
1) lsuto.tab1: SEQUENTIAL SCAN
2) lsuto.tab2: INDEX PATH
 (1) Index Keys: col1
 Lower Index Filter: lsuto.tab2.col1 = lsuto.tab1.col1
NESTED LOOP JOIN

Part VI: Administering 1517

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Table scans versus index scans

In cases where the database server returns a large number of rows from a table, the lower-cost option for the total-query-time goal might be to scan the table instead of
using an index. However, to retrieve the first row, the lower-cost option for the user-response-time goal might be to use the index to access the table.

Copyright© 2020 HCL Technologies Limited

Ordering with fragmented indexes

When an index is not fragmented, the database server can use the index to avoid a sort. However, when an index is fragmented, the ordering can be guaranteed only within
the fragment, not between fragments.

Usually, the least expensive option for the total-query-time goal is to scan the fragments in parallel and then use the parallel sort to produce the proper ordering. However,
this option does not favor the user-response-time goal.

Instead, if the user-response time is more important, the database server reads the index fragments in parallel and merges the data from all of the fragments. No
additional sort is generally needed.

Related concepts:
 Avoid or simplify sort operations

Copyright© 2020 HCL Technologies Limited

Optimize queries for user-defined data types

Queries that access user-defined data types (UDTs) can take advantage of the same performance features that built-in data types use.

These features are:

Indexes
If a query accesses a small number of rows, an index speeds retrieval because the database server does not need to read every page in a table to find the rows. For
more information, see Indexes on user-defined data types.

Parallel database query (PDQ)
Queries that access user-defined data can take advantage of parallel scans and parallel execution.

To turn on parallel execution for a query, set the PDQPRIORITY environment variable or use the SQL statement SET PDQPRIORITY. For more information about
how to set PDQ priority and configuration parameters that affect PDQ, see The allocation of resources for parallel database queries.

Optimizer directives

In addition, programmers can write the following functions or UDRs to help the optimizer create an efficient query plan for your queries:

Parallel UDRs that can take advantage of parallel database queries
User-defined selectivity functions that calculate the expected fraction of rows that qualify for the function
User-defined cost functions that calculate the expected relative cost to execute a user-defined routine
User-defined statistical functions that the UPDATE STATISTICS statement can use to generate statistics and data distributions
User-defined negator functions to allow more choices for the optimizer

The following sections summarize these techniques. For a more complete description of how to write and register user-defined selectivity functions and user-defined cost
functions, see IBM® Informix® User-Defined Routines and Data Types Developer's Guide.

Parallel UDRs
 One way to execute UDRs is in an expression in a query. You can take advantage of parallel execution if the UDR is in an expression in the query.

Selectivity and cost functions
 You can use the CREATE FUNCTION statement to create a UDR. Then, you can use routine modifiers to change the cost or selectivity that is specified in the

statement.
User-defined statistics for UDTs

 Because information about the nature and use of a user-defined data type (UDT) is not available to the database server, it cannot collect distributions or the colmin
and colmax information (found in the syscolumns system catalog table) for a UDT. Instead, you can create a special function that populates these statistics.
Negator functions

 A negator function takes the same arguments as its companion function, in the same order, but returns the Boolean complement. That is, if a function returns TRUE
for a given set of arguments, its negator function returns FALSE when passed the same arguments, in the same order.

Copyright© 2020 HCL Technologies Limited

Parallel UDRs

One way to execute UDRs is in an expression in a query. You can take advantage of parallel execution if the UDR is in an expression in the query.

1518 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

For parallel execution, the UDR must be in one of the following parts of a query:

WHERE clause
SELECT list
GROUP by list
Overloaded comparison operator
User-defined aggregate
HAVING clause
Select list for a parallel insertion statement
Generic B-tree index scan on multiple index fragments if the compare function used in the B-tree index scan is parallelizable

For example, suppose that you create an opaque data type circle, a table cir_t that defines a column of type circle, a user-defined routine area, and then run the following
sample query:

SELECT circle, area(circle)
 FROM cir_t
 WHERE circle > "(6,2,4)";

In this sample query, the following operations can run in parallel:

The UDR area(circle) in the SELECT list
If the table cir_t is fragmented, multiple area UDRs can run in parallel, one UDR on each fragment.

The expression circle > "(6,2,4)" in the WHERE clause
If the table cir_t is fragmented, multiple scans of the table can run in parallel, one scan on each fragment. Then multiple “>” comparison operators can run in
parallel, one operator per fragment.

By default, a UDR does not run in parallel. To enable parallel execution of UDRs, you must take the following actions:

Specify the PARALLELIZABLE modifier in the CREATE FUNCTION or ALTER FUNCTION statement.
Ensure that the UDR does not call functions that are not PDQ thread-safe.
Turn on PDQ priority.
Use the UDR in a parallel database query.

Copyright© 2020 HCL Technologies Limited

Selectivity and cost functions

You can use the CREATE FUNCTION statement to create a UDR. Then, you can use routine modifiers to change the cost or selectivity that is specified in the statement.

After you create a UDR, you can place it in an SQL statement.

The following example shows how you can place a UDR in an SQL statement:

SELECT * FROM image
WHERE get_x1(image.im2) and get_x2(image.im1)

The optimizer cannot accurately evaluate the cost of executing a UDR without additional information. You can provide the cost and selectivity of the function to the
optimizer. The database server uses cost and selectivity together to determine the best path. For more information about selectivity, see Filters with user-defined routines.

In the previous example, the optimizer cannot determine which function to execute first, the get_x1 function or the get_x2 function. If a function is expensive to execute,
the DBA can assign the function a larger cost or selectivity, which can influence the optimizer to change the query plan for better performance. In the previous example, if
get_x1 costs more to execute, the DBA can assign a higher cost to the function, which can cause the optimizer to execute the get_x2 function first.

You can add the following routine modifiers to the CREATE FUNCTION statement to change the cost or selectivity that the optimizer assigns to the function:

selfunc=function_name
selconst=integer
costfunc=function_name
percall_cost=integer

For more information about cost or selectivity modifiers, see the IBM® Informix® User-Defined Routines and Data Types Developer's Guide.

Copyright© 2020 HCL Technologies Limited

User-defined statistics for UDTs

Because information about the nature and use of a user-defined data type (UDT) is not available to the database server, it cannot collect distributions or the colmin and
colmax information (found in the syscolumns system catalog table) for a UDT. Instead, you can create a special function that populates these statistics.

The database server runs the statistics collection function when you execute UPDATE STATISTICS.

For more information about the importance of updating statistics, see Statistics held for the table and index. For information about improving performance, see Updating
statistics for columns with user-defined data types.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1519

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Negator functions

A negator function takes the same arguments as its companion function, in the same order, but returns the Boolean complement. That is, if a function returns TRUE for a
given set of arguments, its negator function returns FALSE when passed the same arguments, in the same order.

In certain cases, the database server can process a query more efficiently if the sense of the query is reversed. That is, “Is x greater than y?” changes to “Is y less than or
equal to x?”

Copyright© 2020 HCL Technologies Limited

Optimize queries with the SQL statement cache

Before the database server runs an SQL statement, it must first parse and optimize the statement. Optimizing statements can be time consuming, depending on the size of
the SQL statement.

The database server can store the optimized SQL statement in the virtual portion of shared memory, in an area that is called the SQL statement cache. The SQL statement
cache (SSC) can be accessed by all users, and it allows users to bypass the optimize step before they run the query. This capability can result in the following significant
performance improvements:

Reduced response times when users are running the same SQL statements.
SQL statements that take longer to optimize (usually because they include many tables and many filters in the WHERE clause) run faster from the SQL statement
cache because the database server does not optimize the statement.

Reduced memory usage because the database server shares query data structures among users.
Memory reduction with the SQL statement cache is greater when a statement has many column names in the select list.

For more information about the effect of the SQL statement cache on the performance of the overall system, see Monitor and tune the SQL statement cache.

When to use the SQL statement cache
 Applications might benefit from use of the SQL statement cache if multiple users execute the same SQL statements. The database server considers statements to

be the same if all characters match exactly.
Using the SQL statement cache

 The DBA usually makes the decision to enable the SQL statement cache. If the SQL statement cache is enabled, individual users can decide whether or not to use
the SQL statement cache for their specific environment or application.
Monitoring memory usage for each session

 You can use several onstat -g command options to obtain memory information for each session.
Monitoring usage of the SQL statement cache

 If you notice a sudden increase in response time for a query that had been using the SQL statement cache, the entry might have been dropped or deleted. You can
monitor the usage of the SQL statement cache and check for a dropped or deleted entry by displaying onstat -g ssc command output.

Copyright© 2020 HCL Technologies Limited

When to use the SQL statement cache

Applications might benefit from use of the SQL statement cache if multiple users execute the same SQL statements. The database server considers statements to be the
same if all characters match exactly.

For example, if 50 sales representatives execute the add_order application throughout the day, they all execute the same SQL statements if the application contains SQL
statements that use host variables, such as the following example:

SELECT * FROM ORDERS WHERE order_num = :hostvar

This kind of application benefits from use of the SQL statement cache because users are likely to find the SQL statements in the SQL statement cache.

The database server does not consider the following SQL statements exact matches because they contain different literal values in the WHERE clause:

SELECT * FROM customer, orders
 WHERE customer.customer_num = orders.customer_num
 AND order_date > "01/01/07"
SELECT * FROM customer, orders
 WHERE customer.customer_num = orders.customer_num
 AND order_date > "01/01/2007"

Performance does not improve with the SQL statement cache in the following situations:

If a report application is run once nightly, and it executes SQL statements that no other application uses, it does not benefit from use of the statement cache.
If an application prepares a statement and then executes it many times, performance does not improve with the SQL statement cache because the statement is
optimized just once during the PREPARE statement.

When a statement contains host variables, the database server replaces the host variables with placeholders when it stores the statement in the SQL statement cache.
Therefore, the statement is optimized without the database server having access to the values of the host variables. In some cases, if the database server had access to
the values of the host variables, the statement might be optimized differently, usually because the distributions stored for a column inform the optimizer exactly how many
rows pass the filter.

If an SQL statement that contains host variables performs poorly with the SQL statement cache turned on, try flushing the SQL statement cache with the onmode -e flush
command and running the query with values that are more frequently used across multiple executions of the query. When you flush the cache, the database server
reoptimizes the query and generates a query plan that is optimized for these frequently used values.

1520 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Important: The database server flushes an entry from the SQL statement cache only if it is not in use. If an application prepares the statement and keeps it, the entry is
still in use. In this case, the application needs to close the statement before the flush is beneficial.

Copyright© 2020 HCL Technologies Limited

Using the SQL statement cache

The DBA usually makes the decision to enable the SQL statement cache. If the SQL statement cache is enabled, individual users can decide whether or not to use the SQL
statement cache for their specific environment or application.

The database server incurs some processing overhead in managing the SQL statement cache, so you should use the SQL statement cache only when multiple users want
to share the SQL statements.

To enable the SQL statement cache, set the STMT_CACHE configuration parameter to a value that defines either of the following modes:

Always use the SQL statement cache unless a user explicitly specifies do not use the cache.
Use the SQL statement cache only when a user explicitly specifies use it.

For more information, see Enabling the SQL statement cache. For more information about the STMT_CACHE configuration parameter, see the IBM® Informix®
Administrator's Reference.

Enabling the SQL statement cache
 The database server does not use the SQL statement cache when the STMT_CACHE configuration parameter is 0 (the default value). You can change this value to

enable the SQL statement cache in one of two modes.
Placing statements in the cache

 SELECT, UPDATE, INSERT and DELETE statements can be placed in the SQL statement cache, with some exceptions. When the database server checks if an SQL
statement is in the cache, it must find an exact match.

Copyright© 2020 HCL Technologies Limited

Enabling the SQL statement cache

The database server does not use the SQL statement cache when the STMT_CACHE configuration parameter is 0 (the default value). You can change this value to enable
the SQL statement cache in one of two modes.

Use one of the following methods to change this STMT_CACHE default value:

Update the ONCONFIG file to specify the STMT_CACHE configuration parameter and restart the database server.
If you set the STMT_CACHE configuration parameter to 1, the database server uses the SQL statement cache for an individual user when the user sets the
STMT_CACHE environment variable to 1 or executes the SET STATEMENT CACHE ON statement within an application.

STMT_CACHE 1

If the STMT_CACHE configuration parameter is 2, the database server stores SQL statements for all users in the SQL statement cache except when individual users
turn off the feature with the STMT_CACHE environment variable or the SET STATEMENT CACHE OFF statement.

STMT_CACHE 2

Use the onmode -e command to override the STMT_CACHE configuration parameter dynamically.
If you use the enable keyword, the database server uses the SQL statement cache for an individual user when the user sets the STMT_CACHE environment variable
to 1 or executes the SET STATEMENT CACHE ON statement within an application.

onmode -e enable

If you use the on keyword, the database server stores SQL statements for all users in the SQL statement cache except when individual users turn off the feature
with the STMT_CACHE environment variable or the SET STATEMENT CACHE OFF statement.

onmode -e on

Note: statement cache save and statement cache restore are set to save and restore the SQL statement cache.
The following table summarizes the use of the SQL statement cache, which depends on the setting of the STMT_CACHE configuration parameter (or the execution of
onmode -e) and the use in an application of the STMT_CACHE environment variable and the SET STATEMENT CACHE statement.

STMT_ CACHE Configuration
Parameter or onmode -e

STMT_CACHE Environment
Variable

SET STATEMENT CACHE
Statement

Resulting Behavior

0 (default) Not applicable Not applicable Statement cache not used

1 0 (or not set) OFF Statement cache not used

1 1 OFF Statement cache not used

1 0 (or not set) ON Statement cache used

1 1 ON Statement cache used

1 1 Not executed Statement cache used

1 0 Not executed Statement cache not used

2 1 (or not set) ON Statement cache used

2 1 (or not set) OFF Statement cache not used

Part VI: Administering 1521

https://www.hcltech.com/
https://www.hcltech.com/

STMT_ CACHE Configuration
Parameter or onmode -e

STMT_CACHE Environment
Variable

SET STATEMENT CACHE
Statement

Resulting Behavior

2 0 ON Statement cache used

2 0 OFF Statement cache not used by user

2 0 Not executed Statement cache not used by user

2 1 (or not set) Not executed Statement cache used by user

Copyright© 2020 HCL Technologies Limited

Placing statements in the cache

SELECT, UPDATE, INSERT and DELETE statements can be placed in the SQL statement cache, with some exceptions. When the database server checks if an SQL
statement is in the cache, it must find an exact match.

For a complete list of the exceptions and a list of requirements for an exact match, see SET STATEMENT CACHE in the IBM® Informix® Guide to SQL: Syntax.

Copyright© 2020 HCL Technologies Limited

Monitoring memory usage for each session

You can use several onstat -g command options to obtain memory information for each session.

You obtain memory information by identifying the SQL statements that use a large amount of memory.

To identify SQL statements using large amount of memory:

1. Run the onstat -g ses command to display memory of all sessions and see which session has the highest memory usage.
2. Run the onstat -g ses session-id command to display more details on the session with the highest memory usage.
3. Run the onstat -g stm session-id command to display the memory used by the SQL statements.

Display all user threads and session memory usage
 Use the onstat -g ses command to display all user sessions and memory usage by session ID.

Display detailed session information and memory usage
 Use the onstat -g ses session-id command to display detailed information for a session, including memory usage.

Display information about session SQL statements
 Use the onstat -g sql session-id or onstat -g spf commands to display information about the SQL statements executed by a session.

Display information about the memory that SQL statements use in a session
 Use the onstat -g stm session-id to display information about the memory each SQL statement uses in a session.

Copyright© 2020 HCL Technologies Limited

Display all user threads and session memory usage

Use the onstat -g ses command to display all user sessions and memory usage by session ID.

When the session shares the memory structures in the SSC, the value in the used memory column should be lower than when the cache is turned off. For example, Figure
1 shows sample onstat -g ses output when the SQL statement cache is not enabled. Figure 2 shows output after the SQL statement cache is enabled and the queries in
Session 4 are run again. Figure 1 shows that Session 4 has 45656 bytes of used memory. Figure 2 shows that Session 4 has less used bytes (36920) when the SQL
statement cache is enabled.
Figure 1. onstat -g ses output when the SQL statement cache is not enabled

session #RSAM total used dynamic
id user tty pid hostname threads memory memory explain
12 informix - 0 - 0 12288 7632 off
4 informix 11 5158 smoke 1 53248 45656 off
3 informix - 0 - 0 12288 8872 off
2 informix - 0 - 0 12288 7632 off

Figure 2. onstat -g ses output when the SQL statement cache is enabled

session #RSAM total used dynamic
id user tty pid hostname threads memory memory explain
17 informix - 0 - 0 12288 7632 off
16 informix 12 5258 smoke 1 40960 38784 off
4 informix 11 5158 smoke 1 53248 36920 off
3 informix - 0 - 0 12288 8872 off
2 informix - 0 - 0 12288 7632 off

Figure 2 also shows the memory allocated and used for Session 16, which runs the same SQL statements as Session 4. Session 16 allocates less total memory (40960)
and uses less memory (38784) than Session 4 (Figure 1 shows 53248 and 45656) because Session 16 uses the existing memory structures in the SQL statement cache.

Copyright© 2020 HCL Technologies Limited

1522 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Display detailed session information and memory usage

Use the onstat -g ses session-id command to display detailed information for a session, including memory usage.

The following onstat -g ses session-id output columns display memory usage:

The Memory pools portion of the output
The totalsize column shows the number of bytes currently allocated
The freesize column shows the number of unallocated bytes

The last line of the output shows the number of bytes allocated from the sscpool.

Figure 1 shows that Session 16 has currently allocated 69632 bytes, of which 11600 bytes are allocated from the sscpool.
Figure 1. onstat -g ses session-id output

onstat -g ses 14

session #RSAM total used
id user tty pid hostname threads memory memory
14 virginia 7 28734 lyceum 1 69632 67384

tid name rstcb flags curstk status
38 sqlexec a3974d8 Y--P--- 1656 cond wait(netnorm)

Memory pools count 1
name class addr totalsize freesize #allocfrag #freefrag
14 V a974020 69632 2248 156 2

...
Sess SQL Current Iso Lock SQL ISAM F.E.
Id Stmt type Database Lvl Mode ERR ERR Vers
14 SELECT vjp_stores CR Not Wait 0 0 9.03

Current statement name : slctcur

Current SQL statement :
 SELECT C.customer_num, O.order_num FROM customer C, orders O, items I
 WHERE C.customer_num = O.customer_num AND O.order_num = I.order_num

Last parsed SQL statement :
 SELECT C.customer_num, O.order_num FROM customer C, orders O, items I
 WHERE C.customer_num = O.customer_num AND O.order_num = I.order_num

 11600 byte(s) of memory is allocated from the sscpool

Copyright© 2020 HCL Technologies Limited

Display information about session SQL statements

Use the onstat -g sql session-id or onstat -g spf commands to display information about the SQL statements executed by a session.

The following figure shows that onstat -g sql session-id displays the same information as the bottom portion of the onstat -g ses session-id command in Figure 1, which
includes the number of bytes allocated from the sscpool.
Figure 1. onstat -g sql session-id output

onstat -g sql 14

Sess SQL Current Iso Lock SQL ISAM F.E.
Id Stmt type Database Lvl Mode ERR ERR Vers
14 SELECT vjp_stores CR Not Wait 0 0 9.03

Current statement name : slctcur

Current SQL statement :
 SELECT C.customer_num, O.order_num FROM customer C, orders O, items I
 WHERE C.customer_num = O.customer_num AND O.order_num = I.order_num

Last parsed SQL statement :
 SELECT C.customer_num, O.order_num FROM customer C, orders O, items I
 WHERE C.customer_num = O.customer_num AND O.order_num = I.order_num

 11600 byte(s) of memory is allocated from the sscpool

Copyright© 2020 HCL Technologies Limited

Display information about the memory that SQL statements use in a session

Use the onstat -g stm session-id to display information about the memory each SQL statement uses in a session.

Part VI: Administering 1523

https://www.hcltech.com/
https://www.hcltech.com/

The following figure displays the output of onstat -g stm session-id for the same session (14) as in onstat -g ses session-id in Figure 1 and onstat -g sql session-id in
Figure 1.

When the SQL statement cache (SSC) is on, the database server creates the heaps in the SSC pool. Therefore, the heapsz output field in Figure 1 shows that this SQL
statement uses 10056 bytes, which is contained within the 11600 bytes in the SSC pool that the onstat -g sql 14 shows.
Figure 1. onstat -g stm session-id output

onstat -g stm 14

session 14 ---
 sdblock heapsz statement ('*' = Open cursor)
 aa11018 10056 *SELECT C.customer_num, O.order_num
FROM customer C, orders O, items I
WHERE C.customer_num = O.customer_num
AND O.order_num = I.order_num

Copyright© 2020 HCL Technologies Limited

Monitoring usage of the SQL statement cache

If you notice a sudden increase in response time for a query that had been using the SQL statement cache, the entry might have been dropped or deleted. You can monitor
the usage of the SQL statement cache and check for a dropped or deleted entry by displaying onstat -g ssc command output.

The database server drops an entry from the cache when one of the objects that the query depends on is altered so that it invalidates the data dictionary cache entry for
the query. The following operations cause a dependency check failure:

Execution of any data definition language (DDL) statement (such as ALTER TABLE, DROP INDEX, or CREATE INDEX) that might alter the query plan
Alteration of a table that is linked to another table with a referential constraint (in either direction)
Execution of UPDATE STATISTICS FOR TABLE for any table or column involved in the query
Renaming a column, database, or index with the RENAME statement

When an entry is marked as dropped or deleted, the database server must reparse and reoptimize the SQL statement the next time it executes. For example, Figure 1
shows the entries that the onstat -g ssc command displays after UPDATE STATISTICS was executed on the items and orders table between the execution of the first and
second SQL statements.

The Statement Cache Entries portion of the onstat -g ssc output in Figure 1 displays a flag field that indicates whether or not an entry has been dropped or deleted
from the SQL statement cache.

The first entry has a flag column with the value DF, which indicates that the entry is fully cached, but is now dropped because its entry was invalidated.
The second entry has the same statement text as the third entry, which indicates that it was reparsed and reoptimized when it was executed after the UPDATE
STATISTICS statement.

Figure 1. Sample onstat -g ssc command output for a dropped entry

onstat -g ssc

...
Statement Cache Entries:

lru hash ref_cnt hits flag heap_ptr database user
---------------------- ---- ---
...
 2 232 1 1 DF aa3d020 vjp_stores virginia
 SELECT C.customer_num, O.order_num
 FROM customer C, orders O, items I
 WHERE C.customer_num = O.customer_num
 AND O.order_num = I.order_num

 3 232 1 0 -F aa8b020 vjp_stores virginia
 SELECT C.customer_num, O.order_num
 FROM customer C, orders O, items I
 WHERE C.customer_num = O.customer_num
 AND O.order_num = I.order_num
...

Invalidating a statement
You can selectively invalidate entries of your choice by setting the sysmaster:syssscelem:valid column to 0 as user Informix

For example, Figure 2 shows the entries that the onstat -g ssc command displays before and after invalidating a query from the items table

The Statement Cache Entries portion of the onstat -g ssc output in Figure 2 displays a flag field that indicates whether or not an entry has been invalidated in the
SQL statement cache.

Figure 2. Sample onstat -g ssc command output for an invalidate entry

onstat -g ssc snipit

...
Statement Cache Entries:

uniqid lru hash ref_cnt hits flag heap_ptr database user
----------------------------- ---- ---
...
 7 1 2404 0 0 F 463d0438 stores_demo informix

1524 Part VI: Administering

https://www.hcltech.com/

select count(*) from items

...

Invalidate it:

update syssscelem set valid = 0 where uniqid = 7;

Confirm it is invalid with onstat -g ssc:

Statement Cache Entries:

uniqid lru hash ref_cnt hits flag heap_ptr database user
----------------------------- ---- ---
...
 7 1 2404 0 0 DF 463d0438 stores_demo informix

select count(*) from items

The user can confirm a flag of ‘D’ in ‘onstat -g ssc’ output and can query sysmaster:syssscelem to confirm ‘valid’ column is 0.
Note: Invalid entry cannot be changed to valid.

Locking a statement
You can lock an entry of your choice in the Statement Cache even when UPDATE STATISTICS is executed on tables in the sql statement.

For example, Figure 3 shows the entries that the onstat -g ssc command displays after UPDATE STATISTICS was executed on the items table between the execution of
the first and second SQL statements.

The Statement Cache Entries portion of the onstat -g ssc output in Figure 3 displays a flag field that indicates whether or not an entry has been locked in the SQL
statement cache.

Figure 3. Sample onstat -g ssc command output for locking an entry

onstat -g ssc snipit

...
Statement Cache Entries:

uniqid lru hash ref_cnt hits flag heap_ptr database user
----------------------------- ---- ---
...
 7 1 2404 0 0 F 463d0438 stores_demo informix
 select count(*) from items

 3 232 1 0 -F aa8b020 vjp_stores virginia

...

Lock it:

update syssscelem set locked = 1 where uniqid = 7;

Confirm it is locked with onstat -g ssc:

Statement Cache Entries:

uniqid lru hash ref_cnt hits flag heap_ptr database user
----------------------------- ---- ---
...
 7 1 2404 0 0 FL 463d0438 stores_demo informix

select count(*) from items

The user can confirm a flag of ‘L’ in ‘onstat -g ssc’ output and can query sysmaster:syssscelem to confirm ‘locked’ column is 1.
Note: Statements can be locked and unlocked as many times as desired.

Copyright© 2020 HCL Technologies Limited

Monitor sessions and threads

You can monitor the number of active sessions and threads and the amount of resources that they are using. Monitoring sessions and threads is important for sessions
that perform queries as well as sessions that perform inserts, updates, and deletes.

Some of the information that you can monitor for sessions and threads allows you to determine if an application is using a disproportionate amount of the resources.

Note: Session threads for a stored procedure with a PDQ priority setting and a GROUP BY clause are not released until a session is completed.

Monitor sessions and threads with onstat commands
 You can use several onstat utility commands to monitor active sessions and threads.

Monitor sessions and threads with SMI tables
 You can use the syssessions and the syssesprof system-monitoring interface (SMI) tables to obtain information about sessions and threads.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1525

https://www.hcltech.com/
https://www.hcltech.com/

Monitor sessions and threads with onstat commands

You can use several onstat utility commands to monitor active sessions and threads.

Use the following onstat utility commands to monitor sessions and threads:

onstat -u
onstat -g ath
onstat -a act
onstat -a cpu
onstat -a ses
onstat -g mem
onstat -g stm

Monitor blocking threads with the onstat -g bth and onstat -g BTH commands
 Running threads take ownership of various objects and resources; for example, buffers, locks, mutexes, decision support memory, and others. Contention for these

resources among hundreds or thousands of threads can result in chains of dependencies. Use the onstat -g bth command to display the dependencies between
blocking and waiting threads. Use the onstat -g BTH command to display session and stack information for the blocking threads.
Monitor threads with onstat –u output

 Use the onstat –u command to display information about active threads that require a database server task-control block.
Monitor threads with onstat -g ath output

 Use the onstat -g ath command to view a list of all threads. Unlike the onstat –u command, this list includes internal daemon threads that do not have a database
server task-control block.
Monitor threads with onstat -g act output

 Use the onstat -g act command to obtain a list of active threads. The onstat -g act output shows a subset of the threads that are also listed in onstat -g ath output.
Monitor threads with onstat -g cpu output

 Use the onstat –g cpu command to display the last time the thread ran, how much CPU time the thread used, the number of times the thread ran, and other
statistics about all the threads running in the server
Monitor session resources with onstat -g ses output

 Use the onstat -g ses command to monitor the resources allocated for and used by a session, in particular, a session that is running a decision-support query. The
onstat -g ses command also shows information on recently terminated sessions.
Monitor session memory with onstat -g mem and onstat -g stm output

 Use the onstat -g mem and onstat -g stm commands to obtain information about the memory used for each session.

Copyright© 2020 HCL Technologies Limited

Monitor blocking threads with the onstat -g bth and onstat -g BTH commands

Running threads take ownership of various objects and resources; for example, buffers, locks, mutexes, decision support memory, and others. Contention for these
resources among hundreds or thousands of threads can result in chains of dependencies. Use the onstat -g bth command to display the dependencies between blocking
and waiting threads. Use the onstat -g BTH command to display session and stack information for the blocking threads.

For example, a thread that is blocked waiting to enter a critical section might own a row lock for which another thread is waiting. The second thread might be blocking a
third thread that is waiting in the MGM query queue. Usually, the duration of such contention is short. However, if a thread is blocked long enough to be noticed, you might
need to identify the source of the contention. The onstat -g bth command discovers the chains of dependency and displays blocker threads followed by waiting threads, in
order. You can use the resulting picture of contentions to diagnose and correct the issues.

The following example of the onstat -g bth command output has multiple threads that are waiting on resources.

Figure 1. The ouptut of the onstat -g bth command

This command attempts to identify any blocking threads.

Highest level blocker(s)
 tid name session
 48 sqlexec 26

Threads waiting on resources
 tid name blocking resource blocker
 49 sqlexec MGM 48
 13 readahead_0 Condition (ReadAhead) -
 50 sqlexec Lock (0x4411e578) 49
 51 sqlexec Lock (0x4411e578) 49
 52 sqlexec Lock (0x4411e578) 49
 53 sqlexec Lock (0x4411e578) 49
 57 bf_priosweep() Condition (bp_cond) -
 58 scan_1.0 Condition (await_MC1) -
 59 scan_1.0 Condition (await_MC1) -

Run 'onstat -g BTH' for more info on blockers.

In this example, four threads are waiting for a lock that is owned by thread 49. Thread 49 is waiting for MGM resources that are owned by thread 48. If you run the onstat -
g BTH command, the output shows the session and stack information for the blocking thread, which in this case is thread 48.

Related information:
 onstat -g bth and -g BTH: Print blocked and waiting threads

Copyright© 2020 HCL Technologies Limited

1526 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Monitor threads with onstat –u output

Use the onstat –u command to display information about active threads that require a database server task-control block.

Active threads include threads that belong to user sessions, as well as some that correspond to database server daemons (for example, page cleaners). Figure 1 shows an
example of onstat -u output.

Also use the onstat -u command to determine if a user is waiting for a resource or holding too many locks, or to get an idea of how much I/O the user has performed.

The utility output displays the following information:

The address of each thread
Flags that indicate the present state of the thread (for example, waiting for a buffer or waiting for a checkpoint), whether the thread is the primary thread for a
session, and what type of thread it is (for example, user thread, daemon thread, and so on)
For information on these flags, see the IBM® Informix® Administrator's Reference.

The session ID and user login ID for the session to which the thread belongs
A session ID of 0 indicates a daemon thread.

Whether the thread is waiting for a specific resource and the address of that resource
The number of locks that the thread is holding
The number of read calls and the number of write calls that the thread has executed
The maximum number of current, active user threads

If you execute onstat -u while the database server is performing fast recovery, several database server threads might appear in the display.
Figure 1. onstat -u output

Userthreads
address flags sessid user tty wait tout locks nreads nwrites
80eb8c ---P--D 0 informix - 0 0 0 33 19
80ef18 ---P--F 0 informix - 0 0 0 0 0
80f2a4 ---P--B 3 informix - 0 0 0 0 0
80f630 ---P--D 0 informix - 0 0 0 0 0
80fd48 ---P--- 45 chrisw ttyp3 0 0 1 573 237
810460 ------- 10 chrisw ttyp2 0 0 1 1 0
810b78 ---PR-- 42 chrisw ttyp3 0 0 1 595 243
810f04 Y------ 10 chrisw ttyp2 beacf8 0 1 1 0
811290 ---P--- 47 chrisw ttyp3 0 0 2 585 235
81161c ---PR-- 46 chrisw ttyp3 0 0 1 571 239
8119a8 Y------ 10 chrisw ttyp2 a8a944 0 1 1 0
81244c ---P--- 43 chrisw ttyp3 0 0 2 588 230
8127d8 ----R-- 10 chrisw ttyp2 0 0 1 1 0
812b64 ---P--- 10 chrisw ttyp2 0 0 1 20 0
812ef0 ---PR-- 44 chrisw ttyp3 0 0 1 587 227
 15 active, 20 total, 17 maximum concurrent

Related information:
 onstat -u command: Print user activity profile

Copyright© 2020 HCL Technologies Limited

Monitor threads with onstat -g ath output

Use the onstat -g ath command to view a list of all threads. Unlike the onstat –u command, this list includes internal daemon threads that do not have a database server
task-control block.

The onstat -g ath command display does not include the session ID (because not all threads belong to sessions).

The status field contains information on the status of thread, such as running, cond wait, IO Idle, IO Idle, sleeping secs: number_of_seconds, or
sleeping forever. The following output example identifies many threads as sleeping forever. To improve performance, you can remove or reduce the number of
threads that are identified as sleeping forever.

Figure 1. onstat -g ath output

Threads:
tid tcb rstcb prty status vp-class name
2 10bbf36a8 0 2 sleeping forever 3lio lio vp 0
3 10bc12218 0 2 sleeping forever 4pio pio vp 0
4 10bc31218 0 2 sleeping forever 5aio aio vp 0
5 10bc50218 0 2 sleeping forever 6msc msc vp 0
6 10bc7f218 0 2 sleeping forever 7aio aio vp 1
7 10bc9e540 10b231028 4 sleeping secs: 1 1cpu main_loop()
8 10bc12548 0 2 running 1cpu tlitcppoll
9 10bc317f0 0 3 sleeping forever 1cpu tlitcplst
10 10bc50438 10b231780 2 sleeping forever 1cpu flush_sub(0)
11 10bc7f740 0 2 sleeping forever 8aio aio vp 2
12 10bc7fa00 0 2 sleeping forever 9aio aio vp 3
13 10bd56218 0 2 sleeping forever 10aio aio vp 4
14 10bd75218 0 2 sleeping forever 11aio aio vp 5
15 10bd94548 10b231ed8 3 sleeping forever 1cpu aslogflush
16 10bc7fd00 10b232630 1 sleeping secs: 26 1cpu btscanner 0
32 10c738ad8 10b233c38 4 sleeping secs: 1 1cpu onmode_mon
50 10c0db710 10b232d88 2 cond wait netnorm 1cpu sqlexec

Part VI: Administering 1527

https://www.hcltech.com/

Threads that a primary decision-support thread started have a name that indicates their role in the decision-support query. The following figure shows four scan threads
that belong to a decision-support thread.

Figure 2. onstat -g ath output showing scan threads belonging to a decision-support thread

Threads:
tid tcb rstcb prty status vp-class name
11 994060 0 4 sleeping(Forever) 1cpu kaio
12 994394 80f2a4 2 sleeping(secs: 51) 1cpu btclean
26 99b11c 80f630 4 ready 1cpu onmode_mon
32 a9a294 812b64 2 ready 1cpu sqlexec
113 b72a7c 810b78 2 ready 1cpu sqlexec
114 b86c8c 81244c 2 cond wait(netnorm) 1cpu sqlexec
115 b98a7c 812ef0 2 cond wait(netnorm) 1cpu sqlexec
116 bb4a24 80fd48 2 cond wait(netnorm) 1cpu sqlexec
117 bc6a24 81161c 2 cond wait(netnorm) 1cpu sqlexec
118 bd8a24 811290 2 ready 1cpu sqlexec
119 beae88 810f04 2 cond wait(await_MC1) 1cpu scan_1.0
120 a8ab48 8127d8 2 ready 1cpu scan_2.0
121 a96850 810460 2 ready 1cpu scan_2.1
122 ab6f30 8119a8 2 running 1cpu scan_2.2

Related concepts:
 Improve connection performance and scalability

Related information:
 onstat -g ath command: Print information about all threads

Copyright© 2020 HCL Technologies Limited

Monitor threads with onstat -g act output

Use the onstat -g act command to obtain a list of active threads. The onstat -g act output shows a subset of the threads that are also listed in onstat -g ath output.

For sample output, see the IBM® Informix® Administrator's Reference.

Related information:
 onstat -g act command: Print active threads

Copyright© 2020 HCL Technologies Limited

Monitor threads with onstat -g cpu output

Use the onstat –g cpu command to display the last time the thread ran, how much CPU time the thread used, the number of times the thread ran, and other statistics
about all the threads running in the server

The following output example shows the ID and name of each thread that is running, the ID of the virtual processor in which each thread is running, the day and time when
each thread last ran, how much CPU time each thread used, the number of times each thread was scheduled to run, and the status of each thread.

Figure 1. onstat -g cpu command output

Thread CPU Info:
tid name vp Last Run CPU Time #scheds status
2 lio vp 0 3lio* 07/18 08:35:35 0.0000 1 IO Idle
3 pio vp 0 4pio* 07/18 08:35:36 0.0102 2 IO Idle
4 aio vp 0 5aio* 07/18 08:35:47 0.6876 68 IO Idle
5 msc vp 0 6msc* 07/18 11:47:24 0.0935 14 IO Idle
6 main_loop() 1cpu* 07/18 15:02:43 2.9365 23350 sleeping secs: 1
7 soctcppoll 7soc* 07/18 08:35:40 0.1150 1 running
8 soctcpio 8soc* 07/18 08:35:40 0.0037 1 running
9 soctcplst 1cpu* 07/18 11:47:24 0.1106 10 sleeping forever
10 soctcplst 1cpu* 07/18 08:35:40 0.0103 6 sleeping forever
11 flush_sub(0) 1cpu* 07/18 15:02:43 0.0403 23252 sleeping secs: 1
12 flush_sub(1) 1cpu* 07/18 15:02:43 0.0423 23169 sleeping secs: 1
13 flush_sub(2) 1cpu* 07/18 15:02:43 0.0470 23169 sleeping secs: 1
14 flush_sub(3) 1cpu* 07/18 15:02:43 0.0407 23169 sleeping secs: 1
15 flush_sub(4) 1cpu* 07/18 15:02:43 0.0307 23169 sleeping secs: 1
16 flush_sub(5) 1cpu* 07/18 15:02:43 0.0323 23169 sleeping secs: 1
17 flush_sub(6) 1cpu* 07/18 15:02:43 0.0299 23169 sleeping secs: 1
18 flush_sub(7) 1cpu* 07/18 15:02:43 0.0314 23169 sleeping secs: 1
19 kaio 1cpu* 07/18 14:56:42 1.4560 2375587 IO Idle
20 aslogflush 1cpu* 07/18 15:02:43 0.0657 23166 sleeping secs: 1
21 btscanner_0 1cpu* 07/18 15:00:53 0.0484 784 sleeping secs: 61
37 onmode_mon 1cpu* 07/18 15:02:43 0.3467 23165 sleeping secs: 1
43 dbScheduler 1cpu* 07/18 14:58:14 1.6613 320 sleeping secs: 31
44 dbWorker1 1cpu* 07/18 13:48:10 0.4264 399 sleeping forever
45 dbWorker2 1cpu* 07/18 14:48:11 1.9346 2936 sleeping forever
94 bf_priosweep() 1cpu* 07/18 15:01:42 0.0431 77 cond wait bp_cond

Related information:
 onstat -g cpu: Print runtime statistics

Copyright© 2020 HCL Technologies Limited

1528 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Monitor session resources with onstat -g ses output

Use the onstat -g ses command to monitor the resources allocated for and used by a session, in particular, a session that is running a decision-support query. The onstat -
g ses command also shows information on recently terminated sessions.

For example, in Figure 1, session number 49 is running five threads for a decision-support query.

Figure 1. onstat -g ses output

session #RSAM total used
id user tty pid hostname threads memory memory
57 informix - 0 - 0 8192 5908
56 user_3 ttyp3 2318 host_1 1 65536 62404
55 user_3 ttyp3 2316 host_1 1 65536 62416
54 user_3 ttyp3 2320 host_1 1 65536 62416
53 user_3 ttyp3 2317 host_1 1 65536 62416
52 user_3 ttyp3 2319 host_1 1 65536 62416
51 user_3 ttyp3 2321 host_1 1 65536 62416
49 user_1 ttyp2 2308 host_1 5 188416 178936
2 informix - 0 - 0 8192 6780
1 informix - 0 - 0 8192 4796

Last 20 Sessions Terminated

Ses ID Username Hostname PID Time Reason
36 user_1 host_1 2122 01/19/2015.15:20 session limit txn time (60s)
40 user_1 host_1 2134 01/19/2015.15:14 session limit memory (5124 KB)
47 user_1 host_1 2140 01/19/2015.15:04 session limit logspace (10242 KB)
50 user_1 host_1 2145 01/19/2015.15:02 session limit txn time (39548 KB)

Related information:
 onstat -g ses command: Print session-related information

Copyright© 2020 HCL Technologies Limited

Monitor session memory with onstat -g mem and onstat -g stm output

Use the onstat -g mem and onstat -g stm commands to obtain information about the memory used for each session.

You can determine which session to focus on by the used memory column of the onstat -g ses output.

Figure 1 shows sample onstat -g ses output and some of the onstat -g mem and onstat -g stm output for Session 16.

The output of the onstat -g mem command shows the total amount of memory used by each session.
The totalsize column of the onstat -g mem 16 output shows the total amount of memory allocated to the session.

The output of the onstat -g stm command shows the portion of the total memory allocated to the current prepared SQL statement.
The heapsz column of the onstat -g stm 16 output in the following figure shows the amount of memory allocated for the current prepared SQL statement.

Figure 1. onstat -g mem and onstat -g stm to determine session memory

onstat -g ses

session #RSAM total used
id user tty pid hostname threads memory memory
18 informix - 0 - 0 12288 8928
17 informix 12 28826 lyceum 1 45056 33752
16 virginia 6 28743 lyceum 1 90112 79504
14 virginia 7 28734 lyceum 1 45056 33096
3 informix - 0 - 0 12288 10168
2 informix - 0 - 0 12288 8928

onstat -g mem 16

Pool Summary:
name class addr totalsize freesize #allocfrag #freefrag
16 V a9ea020 90112 10608 159 5
...

onstat -g stm 16

session 16 ---
 sdblock heapsz statement ('*' = Open cursor)
 aa0d018 10056 *SELECT C.customer_num, O.order_num
FROM customer C, orders O, items I
WHERE C.customer_num = O.customer_num
AND O.order_num = I.order_num

Related information:
 onstat -g lap command: Print light appends status information

onstat -g mem command: Print pool memory statistics

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1529

https://www.hcltech.com/
https://www.hcltech.com/

Monitor sessions and threads with SMI tables

You can use the syssessions and the syssesprof system-monitoring interface (SMI) tables to obtain information about sessions and threads.

Query the syssessions table to obtain the following information.

Column
Description

sid
Session ID

username
Name (login ID) of the user

uid
User ID

pid
Process ID

connected
Time that the session started

feprogram
Absolute path of the executable program or application

In addition, some columns contain flags that show the following information;

Whether the primary thread of the session is waiting for a latch, lock, log buffer, or transaction
If the thread is in a critical section.

Important: The information in the syssessions table is organized by session, and the information in the onstat -u output is organized by thread. Also, unlike the onstat -u
output, the syssessions table does not include information about daemon threads, only user threads.
Query the syssesprof table to obtain a profile of the activity of a session. This table contains a row for each session with columns that store statistics on session activity
(for example, number of locks held, number of row writes, number of commits, number of deletes, and so on).

For a complete list of the syssessions columns and descriptions of syssesprof columns, see the chapter on the sysmaster database in the IBM® Informix® Administrator's
Reference.

Copyright© 2020 HCL Technologies Limited

Monitor transactions

You can monitor transactions to track open transactions and the locks that those transactions hold. You can use several onstat utility options to view transaction, lock, and
session statistics.

The following onstat command-line options display session information.

To monitor Displays the output of See

Transaction statistics onstat -x Display information about transactions

User session statistics onstat -u Display statistics on user sessions

Lock statistics onstat -k Display information about transaction locks

Sessions running SQL statements onstat -g sql session-id Display statistics on sessions executing SQL statements

Display information about transactions
 The output of the onstat -x command contains information that you can use to monitor transactions.

Display information about transaction locks
 The output of the onstat -k command contains details on the locks that a transaction holds.

Display statistics on user sessions
 The output of the onstat -u command contains statistics on user sessions.

Display statistics on sessions executing SQL statements
 The output of the onstat -g sql command contains statistics on the SQL statements executed by the session

Copyright© 2020 HCL Technologies Limited

Display information about transactions

The output of the onstat -x command contains information that you can use to monitor transactions.

The onstat -x output contains the following information for each open transaction:

The address of the transaction structure in shared memory
Flags that indicate the following information:

The present state of the transaction (user thread attached, suspended, waiting for a rollback)
The mode in which the transaction is running (loosely coupled or tight coupled)
The stage that the transaction is in (BEGIN WORK, prepared to commit, committing or committed, rolling back)
The nature of the transaction (global transaction, coordinator, subordinate, both coordinator and subordinate)

The thread that owns the transaction

1530 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

The number of locks that the transaction holds
The logical-log file in which the BEGIN WORK record was logged
The current logical-log id and position
The isolation level
The number of attempts to start a recovery thread
The coordinator for the transaction (if the subordinate is executing the transaction)
The maximum number of concurrent transactions since you last started the database server

The onstat utility is especially useful for monitoring global transactions. For example, you can determine whether a transaction is executing in loosely coupled or tightly
coupled mode. These transaction modes have the following characteristics:

Loosely coupled mode
Each branch in a global transaction has a separate transaction ID (XID). This mode is the default.

The different database servers coordinate transactions, but do not share resources. No two transaction branches, even if they access the same database, can
share locks.
The records from all branches of a global transaction display as separate transactions in the logical log.

Tightly coupled mode
In a single global transaction, all branches that access the same database share the same transaction ID (XID). This mode only occurs with the Microsoft
Transaction Server (MTS) transaction manager.

The different database servers coordinate transactions and share resources such as locks and log records. The branches with the same XID share locks and
can never wait on another branch with the same XID because only one branch is active at one time.
Log records for branches with the same XID appear under the same transaction in the logical log.

Figure 1 shows sample output from onstat -x. The last transaction listed is a global transaction, as the G value in the fifth position of the flags column indicates. The T
value in the second position of the flags column indicates that the transaction is running in tightly coupled mode.
Figure 1. onstat -x output

Transactions
address flags userthread locks beginlg curlog logposit isol retrys coord
ca0a018 A---- c9da018 0 0 5 0x18484c COMMIT 0
ca0a1e4 A---- c9da614 0 0 0 0x0 COMMIT 0
ca0a3b0 A---- c9dac10 0 0 0 0x0 COMMIT 0
ca0a57c A---- c9db20c 0 0 0 0x0 COMMIT 0
ca0a748 A---- c9db808 0 0 0 0x0 COMMIT 0
ca0a914 A---- c9dbe04 0 0 0 0x0 COMMIT 0
ca0aae0 A---- c9dcff8 1 0 0 0x0 COMMIT 0
ca0acac A---- c9dc9fc 1 0 0 0x0 COMMIT 0
ca0ae78 A---- c9dc400 1 0 0 0x0 COMMIT 0
ca0b044 AT--G c9dc9fc 0 0 0 0x0 COMMIT 0
10 active, 128 total, 10 maximum concurrent

The output in Figure 1 shows that this transaction branch is holding 13 locks. When a transaction runs in tightly coupled mode, the branches of this transaction share
locks.

Copyright© 2020 HCL Technologies Limited

Display information about transaction locks

The output of the onstat -k command contains details on the locks that a transaction holds.

To find the relevant locks, match the address in the userthread column in onstat -x output to the address in the owner column of onstat -k output.

Figure 1 shows sample output from onstat -x and the corresponding onstat -k command. The a335898 value in the userthread column in the onstat -x output matches
the value in the owner column of the two lines of onstat -k output.
Figure 1. onstat -k and onstat -x output

onstat -x

Transactions
address flags userthread locks beginlg curlog logposit isol retrys coord
a366018 A---- a334018 0 0 1 0x22b048 COMMIT 0
a3661f8 A---- a334638 0 0 0 0x0 COMMIT 0
a3663d8 A---- a334c58 0 0 0 0x0 COMMIT 0
a3665b8 A---- a335278 0 0 0 0x0 COMMIT 0
a366798 A---- a335898 2 0 0 0x0 COMMIT 0
a366d38 A---- a336af8 0 0 0 0x0 COMMIT 0
 6 active, 128 total, 9 maximum concurrent

onstat -k

Locks
address wtlist owner lklist type tblsnum rowid key#/bsiz
a09185c 0 a335898 0 HDR+S 100002 20a 0
a0918b0 0 a335898 a09185c HDR+S 100002 204 0
 2 active, 2000 total, 2048 hash buckets, 0 lock table overflows

In the example in Figure 1, a user is selecting a row from two tables. The user holds the following locks:

A shared lock on one database
A shared lock on another database

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1531

https://www.hcltech.com/
https://www.hcltech.com/

Display statistics on user sessions

The output of the onstat -u command contains statistics on user sessions.

You can find the session-id of the transaction by matching the address in the userthread column of the onstat -x output with the address column in the onstat -u output.
The sessid column of the same line in the onstat -u output provides the session id.

For example, Figure 1 shows the address a335898 in the userthread column of the onstat -x output. The output line in onstat -u with the same address shows the
session id 15 in the sessid column.
Figure 1. Obtaining session-id for userthread in onstat -x

onstat -x

Transactions
address flags userthread locks beginlg curlog logposit isol retrys coord
a366018 A---- a334018 0 0 1 0x22b048 COMMIT 0
a3661f8 A---- a334638 0 0 0 0x0 COMMIT 0
a3663d8 A---- a334c58 0 0 0 0x0 COMMIT 0
a3665b8 A---- a335278 0 0 0 0x0 COMMIT 0
a366798 A---- a335898 2 0 0 0x0 COMMIT 0
a366d38 A---- a336af8 0 0 0 0x0 COMMIT 0
 6 active, 128 total, 9 maximum concurrent

onstat -u

address flags sessid user tty wait tout locks nreads nwrites
a334018 ---P--D 1 informix - 0 0 0 20 6
a334638 ---P--F 0 informix - 0 0 0 0 1
a334c58 ---P--- 5 informix - 0 0 0 0 0
a335278 ---P--B 6 informix - 0 0 0 0 0
 a335898 Y--P--- 15 informix 1 a843d70 0 2 64 0
a336af8 ---P--D 11 informix - 0 0 0 0 0
 6 active, 128 total, 17 maximum concurrent

For a transaction executing in loosely coupled mode, the first position of the flags column in theonstat -u output might display a value of T. This T value indicates that one
branch within a global transaction is waiting for another branch to complete. This situation could occur if two different branches in a global transaction, both using the
same database, tried to work on the same global transaction simultaneously.

For a transaction executing in tightly coupled mode, this T value does not occur because the database server shares one transaction structure for all branches that access
the same database in the global transaction. Only one branch is attached and active at one time and does not wait for locks because the transaction owns all the locks
held by the different branches.

Copyright© 2020 HCL Technologies Limited

Display statistics on sessions executing SQL statements

The output of the onstat -g sql command contains statistics on the SQL statements executed by the session

To obtain information about the last SQL statement that each session executed, issue the onstat -g sql command with the appropriate session ID.

Figure 1 shows sample output for this option using the same session ID obtained from the onstat -u sample in Figure 1.
Figure 1. onstat -g sql output

onstat -g sql 15

Sess SQL Current Iso Lock SQL ISAM F.E.
Id Stmt type Database Lvl Mode ERR ERR Vers
15 SELECT vjp_stores CR Not Wait 0 0 9.03

Current statement name : slctcur

Current SQL statement :
 select l.customer_num, l.lname, l.company, l.phone, r.call_dtime,
 r.call_descr from customer l, vjp_stores@gilroy:cust_calls r where
 l.customer_num = r.customer_num

Last parsed SQL statement :
 select l.customer_num, l.lname, l.company, l.phone, r.call_dtime,
 r.call_descr from customer l, vjp_stores@gilroy:cust_calls r where
 l.customer_num = r.customer_num

Copyright© 2020 HCL Technologies Limited

The onperf utility on UNIX

The onperf utility is a windowing environment that you can use to monitor the database server performance. The onperf utility monitors the database server running on
the UNIX operating system.

1532 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Overview of the onperf utility
The onperf utility is a graphical tool that you can use for displaying most of the same database server metrics that you can view on onstat utility reports.
Requirements for running the onperf utility
The computer that is running the onperf utility must support the X terminal and the mwm window manager.
Starting the onperf utility and exiting from it
Before you start the onperf utility, set the DISPLAY and LD_LIBRARY_PATH environment variables.
The onperf user interface
When you invoke the onperf utility, it displays an initial graph-tool window. From this graph-tool window, you can display additional graph-tool windows as well as
the query-tree, data-collector, and activity tools.
Why you might want to use onperf
You can use the onperf utility for routine monitoring, diagnosing sudden performance loss, and diagnosing performance degradation.
onperf utility metrics
When you use the onperf utility, you can view various metric classes.

Related reference:
 Database server tools

Copyright© 2020 HCL Technologies Limited

Overview of the onperf utility

The onperf utility is a graphical tool that you can use for displaying most of the same database server metrics that you can view on onstat utility reports.

The onperf utility provides the following advantages over the onstat utility:

Displays metric values graphically in real time
Allows you to choose which metrics to monitor
Allows you to scroll back to previous metric values to analyze a trend
Allows you to save performance data to a file for review at a later time

You cannot use the onperf utility on High-Availability Data Replication (HDR) secondary servers, remote standalone (RS) secondary servers, or shared disk (SD) secondary
servers.

Basic onperf utility functions
 The onperf utility displays the values of the database server metrics in a tool window and saves the database server metric values to a file. You can review the

contents of this file.
onperf utility tools

 The onperf utility provides Motif windows, called tools, which display metric values.

Related concepts:
 Requirements for running the onperf utility

Starting the onperf utility and exiting from it
The onperf user interface
Why you might want to use onperf
onperf utility metrics

Copyright© 2020 HCL Technologies Limited

Basic onperf utility functions

The onperf utility displays the values of the database server metrics in a tool window and saves the database server metric values to a file. You can review the contents of
this file.

Display metric values
 The onperf utility displays database server metrics obtained from shared memory.

Save metric values to a file
 The onperf utility saves collected metrics in a history file.

Review metric measurements
 You can review the contents of a history file in a tool window. When you request a tool to display a history file, the onperf utility starts a playback process that reads

the data from disk and sends the data to the tool for display.

Copyright© 2020 HCL Technologies Limited

Display metric values

The onperf utility displays database server metrics obtained from shared memory.

When onperf starts, it activates the following processes:

The onperf process. This process controls the display of onperf tools.
The data-collector process. This process attaches to shared memory and passes performance information to the onperf process for display in an onperf tool.

An onperf tool is a Motif window that an onperf process manages, as Figure 1 shows.
Figure 1. Data flow from shared memory to an onperf tool window

Part VI: Administering 1533

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Save metric values to a file

The onperf utility saves collected metrics in a history file.

The onperf utility allows designated metrics to be continually buffered. The data collector writes these metrics to a circular buffer called the data-collector buffer. When
the buffer becomes full, the oldest values are overwritten as the data collector continues to add data. The current contents of the data-collector buffer are saved to a
history file, as Figure 1 illustrates.
Figure 1. How onperf saves performance data

The onperf utility uses either a binary format or an ASCII representation for data in the history file. The binary format is host-dependent and allows data to be written
quickly. The ASCII format is portable across platforms.

You have control over the set of metrics stored in the data-collector buffer and the number of samples. You could buffer all metrics; however, this action might consume
more memory than is feasible. A single metric measurement requires 8 bytes of memory. For example, if the sampling frequency is one sample per second, then to buffer
200 metrics for 3,600 samples requires approximately 5.5 megabytes of memory. If this process represents too much memory, you must reduce the depth of the data-
collector buffer, the sampling frequency, or the number of buffered metrics.

To configure the buffer depth or the sampling frequency, you can use the Configuration dialog box. For more information about the Configuration dialog box, see The
graph-tool Configure menu and the Configuration dialog box.

Copyright© 2020 HCL Technologies Limited

Review metric measurements

You can review the contents of a history file in a tool window. When you request a tool to display a history file, the onperf utility starts a playback process that reads the
data from disk and sends the data to the tool for display.

The playback process is similar to the data-collector process mentioned under Save metric values to a file. However, instead of reading data from shared memory, the
playback process reads measurements from a history file. Figure 1 shows the playback process.
Figure 1. Flow of data from a history file to an onperf tool window

Copyright© 2020 HCL Technologies Limited

onperf utility tools

The onperf utility provides Motif windows, called tools, which display metric values.

Table 1. onperf utility tools

Tool Description

Graph tool This tool allows you to monitor general performance activity. You can use this tool to display any combination of
metrics that onperf supports and to display the contents of a history file. For more information, see Graph tool.

Query-tree tool This tool displays the progress of individual queries. For more information, see Query-tree tool.

Status tool This tool displays status information about the database server and allows you to save the data that is currently held
in the data-collector buffer to a file. For more information, see Status tool.

Activity tools These tools display specific database server activities. Activity tools include disk, session, disk-capacity, physical-
processor, and virtual-processor tools. The physical-processor and virtual-processor tools, respectively, display
information about all CPUs and VPs. The other activity tools each display the top 10 instances of a resource ranked
by a suitable activity measurement. For more information, see Activity tools.

Copyright© 2020 HCL Technologies Limited

1534 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Requirements for running the onperf utility

The computer that is running the onperf utility must support the X terminal and the mwm window manager.

When you install the database server, the following executable files are written to the $INFORMIXDIR/bin directory:

onperf
onedcu
onedpu
xtree

In addition, the onperf.hlp online help file is placed in the directory $INFORMIXDIR/hhelp.

When the database server is installed and running in online mode, you can bring up onperf tools either on the computer that is running the database server or on a remote
computer or terminal that can communicate with your database server instance. Figure 1 illustrates both possibilities. In either case, the computer that is running the
onperf tools must support the X terminal and the mwm window manager.
Figure 1. Two options for running onperf

Related concepts:
 Overview of the onperf utility

Starting the onperf utility and exiting from it
The onperf user interface
Why you might want to use onperf
onperf utility metrics

Copyright© 2020 HCL Technologies Limited

Starting the onperf utility and exiting from it

Before you start the onperf utility, set the DISPLAY and LD_LIBRARY_PATH environment variables.

Prerequisite: Set the DISPLAY environment variable as follows:

C shell setenv DISPLAY displayname0:0 #

Bourne shell DISPLAY=displayname0:0 #

In these commands, displayname is the name of the computer or X terminal where the onperf window should appear.

Set the LD_LIBRARY_PATH environment variable to the appropriate value for the Motif libraries on the computer that is running onperf.

With the environment properly set up, you can enter onperf to bring up a graph-tool window, as described in The onperf user interface.

You can monitor multiple database server instances from the same Motif client by invoking onperf for each database server, as the following example shows:

INFORMIXSERVER=instance1 ; export INFORMIXSERVER; onperf
INFORMIXSERVER=instance2 ; export INFORMIXSERVER; onperf
...

Exiting from the onperf Utility
To exit from the onperf utility, use the Close option to close each tool window, use the Exit option of a tool, or choose Window Manager > Close.

Related concepts:
 Overview of the onperf utility

Requirements for running the onperf utility
The onperf user interface
Why you might want to use onperf
onperf utility metrics

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1535

https://www.hcltech.com/
https://www.hcltech.com/

The onperf user interface

When you invoke the onperf utility, it displays an initial graph-tool window. From this graph-tool window, you can display additional graph-tool windows as well as the
query-tree, data-collector, and activity tools.

The graph-tool windows have no hierarchy; you can create and close these windows in any order.

Graph tool
 The graph tool is the principal onperf interface. Use the graph tool to display any set of database server metrics that the onperf data collector obtains from shared

memory.
Query-tree tool

 The query-tree tool contains options for monitoring the performance of individual queries.
Status tool

 The status tool enables you to select metrics to store in the data-collector buffer. In addition, you can use this tool to save the data currently held in the data-
collector buffer to a file.
Activity tools

 Activity tools are specialized forms of the graph tool that display instances of the specific activity, based on a ranking of the activity by some suitable metric.

Related concepts:
 Overview of the onperf utility

Requirements for running the onperf utility
Starting the onperf utility and exiting from it
Why you might want to use onperf
onperf utility metrics

Copyright© 2020 HCL Technologies Limited

Graph tool

The graph tool is the principal onperf interface. Use the graph tool to display any set of database server metrics that the onperf data collector obtains from shared
memory.

The Figure 1 shows a diagram of a graph tool that displays a graph of metrics for ISAM calls.
Figure 1. Graph-Tool window

You cannot bring up a graph-tool window from a query-tree tool, a status tool, or one of the activity tools.

Graph-tool title bar
 When you invoke onperf, the initial graph-tool window displays serverName, the database server that the INFORMIXSERVER environment variable specifies, in

the title bar. The data comes from the shared memory of the indicated database server instance.
Graph-tool graph menu

 The Graph menu contains options for creating, opening, saving the contents of, printing the contents of, annotating, and closing a graph tool.
Graph-tool metrics menu

 The Metrics menu contains options for choosing the class of metrics to display in the graph tool.
Graph-tool view menu

 The View menu contains options for changing how the graph tool appears.
The graph-tool Configure menu and the Configuration dialog box

 The Configure menu contains options of opening, editing, and saving onperf configuration information.
Graph-tool Tools menu

 The Tools menu contains options that start additional onperf tools.
Changing the scale of metrics

 When onperf displays metrics, it automatically adjusts the scale of the y-axis to accommodate the largest value. You can use the Customize Metric dialog box to
establish one for the current display.
Displaying recent-history values

 When you use the onperf utility, you can scroll back over previous metric values that are displayed in a line graph. This is useful for analyzing recent trends.

Copyright© 2020 HCL Technologies Limited

Graph-tool title bar

1536 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

When you invoke onperf, the initial graph-tool window displays serverName, the database server that the INFORMIXSERVER environment variable specifies, in the title
bar. The data comes from the shared memory of the indicated database server instance.

If the configuration of an initial graph-tool has not yet been saved or loaded from disk, onperf does not display the name of a configuration file in the title bar.

If you open a historical data file, for example named caselog.23April.2PM, in this graph-tool window, the title bar displays caselog.23.April.23.April.2PM.

Copyright© 2020 HCL Technologies Limited

Graph-tool graph menu

The Graph menu contains options for creating, opening, saving the contents of, printing the contents of, annotating, and closing a graph tool.

The Graph menu provides the following options.

Option
Use

New
Creates a new graph tool. All graph tools that you create using this option share the same data-collector and onperf processes. To create new graph tools, use this
option rather than invoke onperf multiple times.

Open History File
Loads a previously saved file of historical data into the graph tool for viewing. If the file does not exist, onperf prompts you for one. When you select a file, onperf
starts a playback process to view the file.

Save History File
Saves the contents of the data-collector buffer to either an ASCII or a binary file, as specified in the Configuration dialog box.

Save History File As
Specifies the filename in which to save the contents of the data-collector buffer.

Annotate
Brings up a dialog box in which you can enter a header label and a footer label. Each label is optional. The labels are displayed on the graph. When you save the
graph configuration, onperf includes these labels in the saved configuration file.

Print
Brings up a dialog box that allows you to select a destination file. You cannot send the contents of the graph tool directly to a printer; you must use this option to
specify a file and subsequently send the file to a printer.

Close
Closes the tool. When a tool is the last remaining tool of the onperf session, this menu item behaves in the same way as the Exit option.

Exit
Exits onperf.
Important: To save your current configuration before you load a new configuration from a file, you must choose Configure > Save Configuration or Configure >
Save Configuration As.

Copyright© 2020 HCL Technologies Limited

Graph-tool metrics menu

The Metrics menu contains options for choosing the class of metrics to display in the graph tool.

Metrics are organized by class and scope. When you select a metric for the graph tool to display, you must specify the metric class, the metric scope, and the name of the
metric.

The metric class is the generic database server component or activity that the metric monitors. The metric scope depends on the metric class. In some cases, the metric
scope indicates a particular component or activity. In other cases, the scope indicates all activities of a given type across an instance of the database server.

The Metrics menu has a separate option for each class of metrics. For more information about metrics, see Why you might want to use onperf.

When you choose a class, such as Server, you see a dialog box like the one in Figure 1.
Figure 1. The Select Metrics dialog box

The Select Metrics dialog box contains three list boxes. The list box on the left displays the valid scope levels for the selected metrics class. For example, when the scope
is set to Server, the list box displays the dbservername of the database server instance that is being monitored. When you select a scope from this list, onperf displays the
individual metrics that are available within that scope in the middle list box. You can select one or more individual metrics from this list and add them to the display by
clicking Add. To remove them from the display, click Remove.
Tip: You can display metrics from more than one class in a single graph-tool window. For example, you might first select ISAM Calls, Opens, and Starts from the Server
class. When you choose the Option menu in the same dialog box, you can select another metric class without exiting the dialog box. For example, you might select the
Chunks metric class and add the Operations, Reads, and Writes metrics to the display.

Part VI: Administering 1537

https://www.hcltech.com/
https://www.hcltech.com/

The Filter button in the dialog box brings up an additional dialog box in which you can filter long text strings shown in the Metrics dialog box. The Filter dialog box also lets
you select tables or fragments for which metrics are not currently displayed.

After you make your selections, you can click OK to proceed, or Cancel if you choose not to proceed.

Copyright© 2020 HCL Technologies Limited

Graph-tool view menu

The View menu contains options for changing how the graph tool appears.

The View menu provides the following options.

Line
Changes the graph tool to the line format. Line format includes horizontal and vertical scroll bars. The vertical scroll bar adjusts the scale of the horizontal time axis.
When you raise this bar, onperf reduces the scale and vice versa. The horizontal scroll bar allows you to adjust your view along the horizontal time axis.
To change the color and width of the lines in the line format, click the legend in the graph tool. When you do, onperf generates a Customize Metric dialog box that
provides a choice of line color and width.

Horizontal Bar Graph
Changes the graph tool to the horizontal bar format.

Vertical Bar Graph
Changes the graph tool to the vertical bar format.

Pie
Changes the graph tool to the pie-chart format. To display a pie chart, you must select at least two metrics.

Quick Rescale Axis
Rescales the axis to the largest point that is currently visible on the graph. This button turns off automatic rescaling.

Configure Axis
Displays the Axis Configuration dialog box. Use this dialog box to select a fixed value for the y-axis on the graph or select automatic axis scaling.

Copyright© 2020 HCL Technologies Limited

The graph-tool Configure menu and the Configuration dialog box

The Configure menu contains options of opening, editing, and saving onperf configuration information.

The Configure menu provides the following options.

Edit Configuration
Brings up the Configuration dialog box, which allows you to change the settings for the current data-collector buffer, graph-tool display options, and data-collector
options. The Configuration dialog box appears in Figure 1.

Open Configuration
Restarts onperf with the settings that are stored in the configuration file. Unsaved data in the data-collector buffer is lost. If no configuration file is specified and the
default does not exist, the following error message appears:

Open file filename failed.

If the specified configuration file does not exist, onperf prompts for one.

Save Configuration
Saves the current configuration to a file. If no configuration file is currently specified, onperf prompts for one.

Save Configuration As
Saves a configuration file. This option always prompts for a filename.

To configure data-collector options, graph-display options, and metrics about which to collect data, choose the Edit Configuration option to bring up the Configuration
dialog box.
Figure 1. The Configuration dialog box

The Configuration dialog box provides the following options for configuring display.

Option

1538 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Use
History Buffer Configuration

Allows you to select a metric class and metric scope to include in the data-collector buffer. The data collector gathers information about all metrics that belong to
the indicated class and scope.

Graph Display Options
Allows you to adjust the size of the graph portion that scrolls off to the left when the display reaches the right edge, the initial time interval that the graph is to span,
and the frequency with which the display is updated.

Data Collector Options
Controls the collection of data. The sample interval indicates the amount of time to wait between recorded samples. The history depth indicates the number of
samples to retain in the data-collector buffer. The save mode indicates the data-collector data should be saved in binary or ASCII format.

Copyright© 2020 HCL Technologies Limited

Graph-tool Tools menu

The Tools menu contains options that start additional onperf tools.

This menu provides the following options.

Query Tree
Starts a query-tree tool. For more information, see Query-tree tool.

Status
Starts a status tool. For more information, see Status tool.

Disk Activity
Starts a disk-activity tool. For more information, see Activity tools.

Session Activity
Starts a session-activity tool. For more information, see Activity tools.

Disk Capacity
Starts a disk-capacity tool. For more information, see Activity tools.

Physical Processor Activity
Starts a physical-processor tool. For more information, see Activity tools.

Virtual Processor Activity
Starts a virtual-processor tool. For more information, see Activity tools.

Copyright© 2020 HCL Technologies Limited

Changing the scale of metrics

When onperf displays metrics, it automatically adjusts the scale of the y-axis to accommodate the largest value. You can use the Customize Metric dialog box to establish
one for the current display.

For more information, see Graph-tool view menu.

Copyright© 2020 HCL Technologies Limited

Displaying recent-history values

When you use the onperf utility, you can scroll back over previous metric values that are displayed in a line graph. This is useful for analyzing recent trends.

The time interval to which you can scroll back is the lesser of the following intervals:

The time interval over which the metric has been displayed
The history interval that the graph-tool Configuration dialog box specifies
The length of time you can scroll back through cannot exceed the depth of the data-collector buffer.

For more information, see The graph-tool Configure menu and the Configuration dialog box.

Figure 1 illustrates the maximum scrollable intervals for metrics that span different time periods.
Figure 1. Maximum scrollable intervals for metrics that span different time periods

Part VI: Administering 1539

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Query-tree tool

The query-tree tool contains options for monitoring the performance of individual queries.

The query-tree tool is a separate executable tool that does not use the data-collector process. You cannot save query-tree tool data to a file.

This tool includes a Select Session button and a Quit button. When you select a session that is running a query, the large detail window displays the SQL operators that
constitute the execution plan for the query. The query-tree tool represents each SQL operator with a box. Each box includes a dial that indicates rows per second and a
number that indicates input rows. In some cases, not all the SQL operators can be represented in the detail window. The smaller window shows the SQL operators as
small icons.

The Quit button allows you to exit from the query-tree tool.

Copyright© 2020 HCL Technologies Limited

Status tool

The status tool enables you to select metrics to store in the data-collector buffer. In addition, you can use this tool to save the data currently held in the data-collector
buffer to a file.

Figure 1 shows a status tool.

The status tool displays:

The length of time that the data collector has been running
The size of the data-collector process area, called the collector virtual memory size
When you select different metrics to store in the data-collector buffer, you see different values for the collector virtual memory size.

Figure 1. Status Tool window

The status tool File menu provides the following options.

Option
Use

Close
This option closes the tool. When it is the last remaining tool of the onperf session, Close behaves in the same way as Exit.

Exit
This option exits onperf.

Copyright© 2020 HCL Technologies Limited

1540 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Activity tools

Activity tools are specialized forms of the graph tool that display instances of the specific activity, based on a ranking of the activity by some suitable metric.

You can choose from among the following activity tools:

The disk-activity tool, which displays the top 10 activities ranked by total operations
The session-activity tool, which displays the top 10 activities ranked by ISAM calls plus PDQ calls per second
The disk-capacity tool, which displays the top 10 activities ranked by free space in megabytes
The physical-processor-activity tool, which displays all processors ranked by nonidle CPU time
The virtual-processor-activity tool, which displays all VPs ranked by VP user time plus VP system time

The activity tools use the bar-graph format. You cannot change the scale of an activity tool manually; onperf always sets this value automatically.

The Graph menu provides you with options for closing, printing, and exiting the activity tool.

Copyright© 2020 HCL Technologies Limited

Why you might want to use onperf

You can use the onperf utility for routine monitoring, diagnosing sudden performance loss, and diagnosing performance degradation.

The following sections provide suggestions for different ways to use the onperf utility.

Routine monitoring with onperf
 You can use the onperf utility to facilitate routine monitoring. For example, you can display several metrics in a graph-tool window and run this tool throughout the

day.
Diagnosing sudden performance loss

 When you detect a sudden performance dip, you can use the onperf utility to examine the recent history of the database server metrics values to identify any trend.
Diagnosing performance degradation

 You can save the metrics that the onperf utility displays, so you can analyze it and compare it to other saved information. This can be useful when analyzing
performance problems that gradually develop and might be difficult to diagnose.

Related concepts:
 Overview of the onperf utility

Requirements for running the onperf utility
Starting the onperf utility and exiting from it
The onperf user interface
onperf utility metrics

Copyright© 2020 HCL Technologies Limited

Routine monitoring with onperf

You can use the onperf utility to facilitate routine monitoring. For example, you can display several metrics in a graph-tool window and run this tool throughout the day.

Displaying these metrics allows you to monitor database server performance visually at any time.

Copyright© 2020 HCL Technologies Limited

Diagnosing sudden performance loss

When you detect a sudden performance dip, you can use the onperf utility to examine the recent history of the database server metrics values to identify any trend.

The onperf utility allows you to scroll back over a time interval, as explained in Displaying recent-history values.

Copyright© 2020 HCL Technologies Limited

Diagnosing performance degradation

You can save the metrics that the onperf utility displays, so you can analyze it and compare it to other saved information. This can be useful when analyzing performance
problems that gradually develop and might be difficult to diagnose.

For example, if you detect a degradation in database server response time, it might not be obvious from looking at the current metrics which value is responsible for the
slowdown. The performance degradation might also be sufficiently gradual that you cannot detect a change by observing the recent history of metric values. To allow for
comparisons over longer intervals, onperf allows you to save metric values to a file, as explained in Status tool.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1541

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

onperf utility metrics

When you use the onperf utility, you can view various metric classes.

The following sections describe these metric classes. Each section indicates the scope levels available and describes the metrics within each class.

Database server performance depends on many factors, including the operating-system configuration, the database server configuration, and the workload. It is difficult
to describe relationships between onperf metrics and specific performance characteristics.

The approach taken here is to describe each metric without speculating on what specific performance problems it might indicate. Through experimentation, you can
determine which metrics best monitor performance for a specific database server instance.

Database server metrics
 The onperf utility displays metrics for the named database server, rather than a component of the database server or disk space.

Disk-chunk metrics
 The onperf utility can display metrics for a specific disk chunk.

Disk-spindle metrics
 The onperf utility can display metrics for a disk spindle.

Physical-processor metrics
The onperf utility can display CPU metrics.
Virtual-processor metrics

 The onperf utility can display metrics for a virtual-processor class.
Session metrics

 The onperf utility can display metrics for an active session.
Tblspace metrics

 The onperf utility can display metrics for a particular tblspace.
Fragment metrics

 The onperf utility can display metrics for an individual table fragment.

Related concepts:
 Overview of the onperf utility

Requirements for running the onperf utility
Starting the onperf utility and exiting from it
The onperf user interface
Why you might want to use onperf

Copyright© 2020 HCL Technologies Limited

Database server metrics

The onperf utility displays metrics for the named database server, rather than a component of the database server or disk space.

The onperf utility displays the following database server metrics.

Metric Name Description

CPU System Time System time, as defined by the platform vendor

CPU User Time User time, as defined by the platform vendor

Percent Cached (Read) Percentage of all read operations that are read from the buffer cache without requiring a disk read, calculated as
follows:

100 * ((buffer_reads — disk_reads) /
 (buffer_reads))

Percent Cached (Write) Percentage of all write operations that are buffer writes, calculated as follows:

100 * ((buffer_writes — disk_writes) /
 (buffer_writes))

Disk Reads Total number of read operations from disk

Disk Writes Total number of write operations to disk

Page Reads Number of pages read from disk

Page Writes Number of pages transferred to disk

Buffer Reads Number of reads from the buffer cache

Buffer Writes Number of writes to the buffer cache

Calls Number of calls received at the database server

Reads Number of read calls received at the database server

Writes Number of write calls received at the database server

Rewrites Number of rewrite calls received at the database server

Deletes Number of delete calls received at the database server

Commits Number of commit calls received at the database server

Rollbacks Number of rollback calls received at the database server

1542 Part VI: Administering

https://www.hcltech.com/

Metric Name Description

Table Overflows Number of times that the tblspace table was unavailable (overflowed)

Lock Overflows Number of times that the lock table was unavailable (overflowed)

User Overflows Number of times that the user table was unavailable (overflowed)

Checkpoints Number of checkpoints written since database server shared memory began

Buffer Waits Number of times that a thread waited to access a buffer

Lock Waits Number of times that a thread waited for a lock

Lock Requests Number of times that a lock was requested

Deadlocks Number of deadlocks detected

Deadlock Timeouts Number of deadlock timeouts that occurred (Deadlock timeouts involve distributed transactions.)

Checkpoint Waits Number of checkpoint waits; in other words, the number of times that threads have waited for a checkpoint to
complete

Index to Data Pages Read-aheads Number of read-ahead operations for index keys

Index Leaves Read-aheads Number of read-ahead operations for index leaf nodes

Data-path-only Read-aheads Number of read-ahead operations for data pages

Latch Requests Number of latch requests

Network Reads Number of ASF messages read

Network Writes Number of ASF messages written

Memory Allocated Amount of database server virtual-address space in kilobytes

Memory Used Amount of database server shared memory in kilobytes

Temp Space Used Amount of shared memory allocated for temporary tables in kilobytes

PDQ Calls The total number of parallel-processing actions that the database server performed

DSS Memory Amount of memory currently in use for decision-support queries

Copyright© 2020 HCL Technologies Limited

Disk-chunk metrics

The onperf utility can display metrics for a specific disk chunk.

The disk-chunk metrics take the path name of a chunk as the metric scope.

Metric Name Description

Disk Operations Total number of I/O operations to or from the indicated
chunk

Disk Reads Total number of reads from the chunk

Disk Writes Total number of writes to the chunk

Free Space (MB) The amount of free space available in megabytes

Copyright© 2020 HCL Technologies Limited

Disk-spindle metrics

The onperf utility can display metrics for a disk spindle.

The disk-spindle metrics take the path name of a disk device or operation-system file as the metric scope.

Metric Name Description

Disk Operations Total number of I/O operations to or from the indicated disk or buffered operating-system
file

Disk Reads Total number of reads from the disk or operating-system file

Disk Writes Total number of writes to the disk or operating-system file

Free Space The amount of free space available in megabytes

Copyright© 2020 HCL Technologies Limited

Physical-processor metrics

Part VI: Administering 1543

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The onperf utility can display CPU metrics.

The physical-processor metrics take either a physical-processor identifier (for example, 0 or 1) or Total as the metric scope.

Metric Name Description

Percent CPU System Time CPU system time for the physical processors

Percent CPU User Time CPU user time for the physical processors

Percent CPU Idle Time CPU idle time for the physical processors

Percent CPU Time The sum of CPU system time and CPU user time for the physical
processors

Copyright© 2020 HCL Technologies Limited

Virtual-processor metrics

The onperf utility can display metrics for a virtual-processor class.

These metrics take a virtual-processor class as a metric scope (cpu, aio, kaio, and so on). Each metric value represents a sum across all instances of this virtual-processor
class.

Metric Name Description

User Time Accumulated user time for a class

System Time Accumulated system time for a class

Semaphore Operations Total count of semaphore operations

Busy Waits Number of times that virtual processors in class avoided a context switch by spinning in a loop before going to
sleep

Spins Number of times through the loop

I/O Operations Number of I/O operations per second

I/O Reads Number of read operations per second

I/O Writes Number of write operations per second

Copyright© 2020 HCL Technologies Limited

Session metrics

The onperf utility can display metrics for an active session.

These metrics take the active session as the metric scope.

Metric Name Description

Page Reads Number of pages read from disk on behalf of a session

Page Writes Number of pages written to disk on behalf of a session

Number of Threads Number of threads currently running for the session

Lock Requests Number of lock requests issued by the session

Lock Waits Number of lock waits for session threads

Deadlocks Number of deadlocks involving threads that belong to the session

Deadlock timeouts Number of deadlock timeouts involving threads that belong to the session

Log Records Number of log records written by the session

ISAM Calls Number of ISAM calls by session

ISAM Reads Number of ISAM read calls by session

ISAM Writes Number of ISAM write calls by session

ISAM Rewrites Number of ISAM rewrite calls by session

ISAM Deletes Number of ISAM delete calls by session

ISAM Commits Number of ISAM commit calls by session

ISAM Rollbacks Number of ISAM rollback calls by session

Long Transactions Number of long transactions owned by session

Buffer Reads Number of buffer reads performed by session

Buffer Writes Number of buffer writes performed by session

Log Space Used Amount of logical-log space used

Maximum Log Space Used High-watermark of logical-log space used for this session

1544 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Metric Name Description

Sequential Scans Number of sequential scans initiated by session

PDQ Calls Number of parallel-processing actions performed for queries initiated by the
session

Memory Allocated Memory allocated for the session in kilobytes

Memory Used Memory used by the session in kilobytes

Copyright© 2020 HCL Technologies Limited

Tblspace metrics

The onperf utility can display metrics for a particular tblspace.

A tblspace name is composed of the database name, a colon, and the table name (database:table).

For fragmented tables, the tblspace represents the sum of all fragments in a table. To obtain measurements for an individual fragment in a fragmented table, use the
Fragment Metric class.

Metric Name Description

Lock Requests Total requests to lock tblspace

Lock Waits Number of times that threads waited to obtain a lock for the tblspace

Deadlocks Number of times that a deadlock involved the tblspace

Deadlock Timeouts Number of times that a deadlock timeout involved the tblspace

Reads Number of read calls that involve the tblspace

Writes Number of write calls that involve the tblspace

Rewrites Number of rewrite calls that involve the tblspace

Deletes Number of delete calls that involve the tblspace

Calls Total calls that involve the tblspace

Buffer Reads Number of buffer reads that involve tblspace data

Buffer Writes Number of buffer writes that involve tblspace data

Sequential Scans Number of sequential scans of the tblspace

Percent Free Space Percent of the tblspace that is free

Pages Allocated Number of pages allocated to the tblspace

Pages Used Number of pages allocated to the tblspace that have been written

Data Pages Number of pages allocated to the tblspace that are used as data
pages

Copyright© 2020 HCL Technologies Limited

Fragment metrics

The onperf utility can display metrics for an individual table fragment.

These metrics take the dbspace of an individual table fragment as the metric scope.

Metric Name Description

Lock Requests Total requests to lock fragment

Lock Waits Number of times that threads have waited to obtain a lock for the
fragment

Deadlocks Number of times that a deadlock involved the fragment

Deadlock Timeouts Number of times that a deadlock timeout involved the fragment

Reads Number of read calls that involve the fragment

Writes Number of write calls that involve the fragment

Rewrites Number of rewrite calls that involve the fragment

Deletes Number of delete calls that involve the fragment

Calls Total calls that involve the fragment

Buffer Reads Number of buffer reads that involve fragment data

Buffer Writes Number of buffer writes that involve fragment data

Sequential Scans Number of sequential scans of the fragment

Part VI: Administering 1545

https://www.hcltech.com/
https://www.hcltech.com/

Metric Name Description

Percent Free Space Percent of the fragment that is free

Pages Allocated Number of pages allocated to the fragment

Pages Used Number of pages allocated to the fragment that have been written to

Data Pages Number of pages allocated to the fragment that are used as data pages

Copyright© 2020 HCL Technologies Limited

Appendix

Case studies and examples
 This appendix contains a case study with examples of performance-tuning methods that this publication describes.

Copyright© 2020 HCL Technologies Limited

Case studies and examples

This appendix contains a case study with examples of performance-tuning methods that this publication describes.

Case study of a situation in which disks are overloaded
 You can identify overloaded disks and the dbspaces that reside on those disks. After you identify the overloaded disks, you can correct the problem.

Copyright© 2020 HCL Technologies Limited

Case study of a situation in which disks are overloaded

You can identify overloaded disks and the dbspaces that reside on those disks. After you identify the overloaded disks, you can correct the problem.

The following case study illustrates a situation in which the disks are overloaded. This study shows the steps taken to isolate the symptoms and identify the problem
based on an initial report from a user, and it describes the needed correction.

A database application that does not have the wanted throughput is being examined to see how performance can be improved. The operating-system monitoring tools
reveal that a high proportion of process time was spent idle, waiting for I/O. The database server administrator increases the number of CPU VPs to make more processors
available to handle concurrent I/O. However, throughput does not increase, which indicates that one or more disks are overloaded.

To verify the I/O bottleneck, the database server administrator must identify the overloaded disks and the dbspaces that reside on those disks.

To identify overloaded disks and the dbspaces that reside on those disks:

1. To check the asynchronous I/O (AIO) queues, use onstat -g ioq. Figure 1 shows the output.
Figure 1. Output from the onstat -g ioq option

AIO I/O queues:
q name/id len maxlen totalops dskread dskwrite dskcopy
opt 0 0 0 0 0 0 0
msc 0 0 0 0 0 0 0
aio 0 0 0 0 0 0 0
pio 0 0 1 1 0 1 0
lio 0 0 1 341 0 341 0
gfd 3 0 1 225 2 223 0
gfd 4 0 1 225 2 223 0
gfd 5 0 1 225 2 223 0
gfd 6 0 1 225 2 223 0
gfd 7 0 0 0 0 0 0
gfd 8 0 0 0 0 0 0
gfd 9 0 0 0 0 0 0
gfd 10 0 0 0 0 0 0
gfd 11 0 28 32693 29603 3090 0
gfd 12 0 18 32557 29373 3184 0
gfd 13 0 22 20446 18496 1950 0

In Figure 1, the maxlen and totalops columns show significant results:

The maxlen column shows the largest backlog of I/O requests to accumulate within the queue. The last three queues are much longer than any other queue
in this column listing.
The totalops column shows 100 times more I/O operations completed through the last three queues than for any other queue in the column listing.

The maxlen and totalops columns indicate that the I/O load is severely unbalanced.

Another way to check I/O activity is to use onstat -g iov. This option provides a slightly less detailed display for all VPs.

2. To check the AIO activity for each disk device associated with each queue, use onstat -g iof, as Figure 2 shows.
Figure 2. Partial output from the onstat -g iof option

gfd pathname bytes read page reads bytes write page writes io/s
3 /dev/infx5 85456896 41727 207394816 101267 572.9

1546 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

 op type count avg. time
 seeks 0 N/A
 reads 13975 0.0015
 writes 51815 0.0018
 kaio_reads 0 N/A
 kaio_writes 0 N/A

Depending on how your chunks are arranged, several queues can be associated with the same device.

3. To determine the dbspaces that account for the I/O load, use onstat -d, as Figure 3 shows.

Figure 3. Output from the onstat -d option

 Dbspaces
 address number flags fchunk nchunks flags owner name
 c009ad00 1 1 1 1 N informix rootdbs
 c009ad44 2 2001 2 1 N T informix tmp1dbs
 c009ad88 3 1 3 1 N informix oltpdbs
 c009adcc 4 1 4 1 N informix histdbs
 c009ae10 5 2001 5 1 N T informix tmp2dbs
 c009ae54 6 1 6 1 N informix physdbs
 c009ae98 7 1 7 1 N informix logidbs
 c009aedc 8 1 8 1 N informix runsdbs
 c009af20 9 1 9 3 N informix acctdbs
 9 active, 32 total

 Chunks
 address chk/dbs offset size free bpages flags pathname
 c0099574 1 1 500000 10000 9100 PO- /dev/infx2
 c009960c 2 2 510000 10000 9947 PO- /dev/infx2
 c00996a4 3 3 520000 10000 9472 PO- /dev/infx2
 c009973c 4 4 530000 250000 242492 PO- /dev/infx2
 c00997d4 5 5 500000 10000 9947 PO- /dev/infx4
 c009986c 6 6 510000 10000 2792 PO- /dev/infx4
 c0099904 7 7 520000 25000 11992 PO- /dev/infx4
 c009999c 8 8 545000 10000 9536 PO- /dev/infx4
 c0099a34 9 9 250000 450000 4947 PO- /dev/infx5
 c0099acc 10 9 250000 450000 4997 PO- /dev/infx6
 c0099b64 11 9 250000 450000 169997 PO- /dev/infx7
 11 active, 32 total

In the Chunks output, the pathname column indicates the disk device. The chk/dbs column indicates the numbers of the chunk and dbspace that reside on each disk. In
this case, only one chunk is defined on each of the overloaded disks. Each chunk is associated with dbspace number 9.

The Dbspaces output shows the name of the dbspace that is associated with each dbspace number. In this case, all three of the overloaded disks are part of the acctdbs
dbspace.

Although the original disk configuration allocated three entire disks to the acctdbs dbspace, the activity within this dbspace suggests that three disks are not enough.
Because the load is about equal across the three disks, it does not appear that the tables are necessarily laid out badly or improperly fragmented. However, you might get
better performance by adding fragments on other disks to one or more large tables in this dbspace or by moving some tables to other disks with lighter loads.

Related information:
 onstat -g iof command: Print asynchronous I/O statistics

onstat -g ioa command: Print combined onstat -g information
onstat -g ioq command: Print I/O queue information
onstat -g iov command: Print AIO VP statistics
onstat -d command: Print chunk information

Copyright© 2020 HCL Technologies Limited

SNMP Subagent Guide

These topics describe the Simple Network Management Protocol (SNMP) and the software that you need to use SNMP to monitor and manage IBM® Informix® database
servers and databases.

These topics are written for the following users:

Database server administrators
Backup operators
Performance engineers

These topics assumes that you have the following background:

A working knowledge of your computer, your operating system, and the utilities that your operating system provides
Some experience with database server administration, operating-system administration, or network administration

You must install additional software to use the IBM Informix implementation of SNMP. For specific requirements, see Informix implementation of SNMP.

The onsnmp utility cannot be run on HDR secondary servers, remote standalone (RS) secondary servers, or shared disk (SD) secondary servers.

These topics are taken from IBM Informix SNMP Subagent Guide.

SNMP concepts
 This section provides a brief introduction to Simple Network Management Protocol (SNMP).

Informix implementation of SNMP
 The IBM Informix implementation of SNMP lets database administrators monitor database servers and databases.

Part VI: Administering 1547

https://www.hcltech.com/

Management Information Base reference
An SNMP Network Manager hides most of the structures of the Management Information Base (MIB). However, an understanding of this structure can help you
comprehend the information that an SNMP Network Manager displays.

SNMP concepts

This section provides a brief introduction to Simple Network Management Protocol (SNMP).

What is SNMP?
 The Simple Network Management Protocol (SNMP) is a published, open standard for network management. SNMP lets hardware and software components on

networks provide information to network administrators.
Purpose of the SNMP

 Although the original purpose of the Simple Network Management Protocol (SNMP) was to let network administrators remotely manage an Internet system, the
design of SNMP lets network administrators manage applications and systems.
The SNMP architecture

 The Simple Network Management Protocol (SNMP) architecture includes four layers.

What is SNMP?

The Simple Network Management Protocol (SNMP) is a published, open standard for network management. SNMP lets hardware and software components on networks
provide information to network administrators.

Purpose of the SNMP

Although the original purpose of the Simple Network Management Protocol (SNMP) was to let network administrators remotely manage an Internet system, the design of
SNMP lets network administrators manage applications and systems.

SNMP provides the following capabilities:

Hides the underlying system network
Lets you manage and monitor all network components from one console

The SNMP architecture

The Simple Network Management Protocol (SNMP) architecture includes four layers.

As the following figure illustrates, the SNMP architecture includes the following layers:

SNMP Network Managers
Master agents
Subagents
Managed components

Figure 1. SNMP architecture

A network can have multiple SNMP Network Managers. Each workstation can have one master agent. The SNMP Network Managers and master agents use SNMP
protocols to communicate with each other. Each managed component has a corresponding subagent and MIBs. SNMP does not specify the protocol for communications
between master agents and subagents.

SNMP network managers
 An SNMP Network Manager is a program that asks for information from master agents and displays that information. You can use most SNMP Network Managers to

select the items to monitor and the form in which to display the information.

1548 Part VI: Administering

Master agents
A master agent is a software program that provides the interface between an SNMP Network Manager and a subagent.
Subagents
A subagent is a software program that provides information to a master agent.
Managed components
A managed component is hardware or software that provides a subagent. For example, database servers, operating systems, routers, and printers can be managed
components if they provide subagents.
Management Information Bases
A Management Information Base (MIB) is a group of tables that specify the information that a subagent provides to a master agent. MIBs follow SNMP protocols.

SNMP network managers

An SNMP Network Manager is a program that asks for information from master agents and displays that information. You can use most SNMP Network Managers to select
the items to monitor and the form in which to display the information.

An SNMP Network Manager typically provides the following features:

Remote monitoring of managed components
Low-impact sampling of the performance of a managed component
Correlation of managed component metrics with related system and network metrics
Graphical presentation of information

Many hardware and network services have created SNMP Network Managers. For example:

CA-Unicenter
Hewlett-Packard Open View
IBM® NetView®/6000
Novell Network Management System
Sun Solstice
Tivoli® TME 10 NetView

SNMP Network Managers use a connectionless protocol, which means that each exchange between an SNMP Network Manager and a master agent is a separate
transaction. A connectionless protocol allows the SNMP Network Manager to perform the following actions:

Gather information without putting an excessive load on the network
Function in an environment where heavy traffic can cause network problems

Most SNMP Network Managers provide a graphical user interface (GUI) such as the one that the following figure illustrates. With this SNMP Network Manager, you select a
node to monitor and then choose specific information from a menu.
Figure 1. SNMP Network Manager example

The following code shows how an SNMP Network Manager might display information about the databases on a network. In this example, the network has only one
database.

Feb 17 1999 [smoke] : RDBMS-MIB.rdbmsDbTable
KEY = 72000003
rdbmsDbName = CustomerData
rdbmsDbName.72000003 = AnotherData
rdbmsDbPrivateMibOID = 1.3.6.1.4.1.893
rdbmsDbVendorName = IBM Corporation
rdbmsDbName = CustomerData
rdbmsDbContact = John Doe

The following code shows how a different SNMP Network Manager could display the same information.

rdbmsDbPrivateMibOID.72000003 = 1.3.6.1.4.1.893
rdbmsDbVendorName.72000003 = IBM Corporation
rdbmsDbName.72000003 = CustomerData
rdbmsDbContact.72000003 = John Doe

In addition to text, an SNMP Network Manager might also display graphs or charts, as the following figure illustrates.
Figure 2. Example of monitoring information

Part VI: Administering 1549

Master agents

A master agent is a software program that provides the interface between an SNMP Network Manager and a subagent.

Each workstation that includes a managed component needs to have a master agent. Each managed workstation can have a different master agent. A master agent
performs the following tasks:

1. Parses requests from the SNMP Network Manager
2. Routes requests from the SNMP Network Manager to the subagents
3. Collects and formats responses from the subagents
4. Returns the responses to the SNMP Network Manager
5. Notifies the SNMP Network Manager when a request is invalid or information is unavailable

Subagents

A subagent is a software program that provides information to a master agent.

Each managed component has a corresponding subagent. A subagent performs the following tasks:

1. Receives requests from the master agent
2. Collects the requested information
3. Returns the information to the master agent
4. Notifies the master agent when a request is invalid or information is unavailable

Managed components

A managed component is hardware or software that provides a subagent. For example, database servers, operating systems, routers, and printers can be managed
components if they provide subagents.

Event notification
When an event occurs that affects the performance or availability of a managed component, the SNMP Network Manager can alert you to that condition.

The following list describes some of the decisions that you can make about event notification:

Define the conditions that need to be monitored.
Specify how frequently to poll for each condition.
When you determine the polling frequency, you must balance the need for prompt notification of an undesirable condition and the burden that polling puts on the
network.

Specify how the SNMP Network Manager notifies you of an event.
You might choose to have an icon flash or change colors when an event occurs.

Data requests
A data request can be a one-time request or a periodic request. A one-time request is useful for comparing the data for two managed components. Periodic requests are
useful for accumulating statistical information about a managed component.

Traps
You can configure the SNMP Network Manager to detect extraordinary events and notify you when they occur.

The following list describes some of the decisions that you can make about traps:

Define the conditions that need to generate a trap.
Specify how the SNMP Network Manager notifies you of a trap.
You might choose to have an icon flash or change colors when a trap occurs.

Specify how the SNMP Network Manager responds to a trap.
The SNMP Network Manager can query the managed component to determine the cause and extent of the problem.

1550 Part VI: Administering

Management Information Bases

A Management Information Base (MIB) is a group of tables that specify the information that a subagent provides to a master agent. MIBs follow SNMP protocols.

MIBs use a common interface definition language. The Structure of Management Information (SMI) defines this language and dictates how to use Abstract Syntax
Notation One (ASN.1) to describe each table in the MIBs.

MIB table naming conventions
The name of each MIB table starts with the name of the MIB. Thus each table in the RDBMS MIB starts with rdbms. For example, the RDBMS MIB includes tables that are
named rdbmsSrvTable and rdbmsDbInfoTable.

The name of each column in an MIB table starts with the name of the table, excluding Table. Thus, each column in rdbmsSrvTable starts with rdbmsSrv. For example,
rdbmsSrvVendorName and rdbmsSrvProductName are columns in rdbmsSrvTable.

The MIB hierarchy
All MIBs are part of an information hierarchy that the Internet Assigned Numbers Authority (IANA) defines. The hierarchy defines how to name tables and columns and
how to derive the numeric object identifiers (OIDs). The following figure shows the MIB hierarchy.
Figure 1. MIB hierarchy

Even though you rarely see the full path to a table, column, or value, the path is important because the SNMP components use the numeric equivalent of the path to locate
data. For example, the following value is the path to the Application MIB:

iso.org.dod.internet.mgmt.mib-2.application

An OID is the numeric equivalent of a path. It uniquely describes each piece of data that an SNMP Network Manager can obtain and is written as a string of numbers
separated by periods (.). For example, the following value is the OID for the Application MIB:

1.3.6.1.2.1.27

The following value is the OID for a value in the Application MIB:

1.3.6.1.2.1.27.1.1.8.2

The first part of this OID is the OID for the Application MIB. The final part of the OID assigns values sequentially to each table in the MIB, each column in the table, and
each value in a column.

Related concepts:
 MIB types and objects

Informix implementation of SNMP

The IBM® Informix® implementation of SNMP lets database administrators monitor database servers and databases.

Components of the Informix implementation
 Purpose of Informix SNMP

 SNMP standard
 The SNMP standard has two versions: SNMPv1 and SNMPv2.

SNMP architecture
 The architecture for the IBM Informix implementation of SNMP depends on your operating system.

Informix implementation of SNMP on UNIX or Linux
 Informix implementation of SNMP on Windows

 GLS and SNMP
 IBM Informix products include a Global Language Support (GLS) feature, which lets you work with languages that use code sets other than the standard English

code set. However, the SNMP protocols that OnSNMP supports (SNMPv1 and SNMPv2) do not recognize these different code sets.
MIB types and objects

 This section describes the types of MIBs and the types of MIB objects that the IBM Informix database server uses.
Table indexing

 Refresh control value
 As a background task, OnSNMP periodically updates the contents of MIB tables that it derives from catalog information. The refresh control value determines the

amount of time that OnSNMP spends refreshing these MIB tables versus the amount of time that it spends responding to queries from the master agent.
Files installed for SNMP

 This section lists the files that are typically installed for the IBM Informix implementation of SNMP on UNIX and Windows.

Part VI: Administering 1551

Components of the Informix implementation

The IBM® Informix® implementation consists of the following components:

Master agent
On UNIX, a master agent is provided through licensing agreements with vendors.
On Windows, install the Microsoft SNMP Extendible master agent.

Subagent
The subagent for database servers is OnSNMP.

Managed components
In the implementation of SNMP, each database server is a managed component.

MIBs
OnSNMP uses several MIBs.

Related tasks:
 Windows master agent

Related reference:
 UNIX master agents

Purpose of Informix SNMP

Event notification
 You can configure an SNMP Network Manager to notify you when a specific event occurs.

Data requests
 You can issue a one-time data request to compare the configuration parameters of two database servers. You can issue periodic data requests to provide statistical

information for assessing database performance or resource allocation.
Traps

 Information that OnSNMP provides
 All the information that OnSNMP provides is available from other sources, such as the system catalog tables, the sysmaster and sysutils databases, dbaccess calls,

and the onstat utility.

Event notification

You can configure an SNMP Network Manager to notify you when a specific event occurs.

An event usually has a corresponding object in an MIB table. The following table describes four possible events and the MIB objects that correspond to them.
Table 1. Possible events and the corresponding MIB

objects

Event MIB object

A database server is not available. onServerMode

Database availability changed. rdbmsRelState

A chunk failed. onChunkStatus

A table is running out of space. onTablePagesAllocated
onTablePagesUsed

For example, you might discover that an application that uses the IBM® Informix® database server stopped responding. You can send email to the help desk to report this
problem. The help desk can tell you about the problem, and you can look at onSessionTable to determine the cause of the problem.

Data requests

You can issue a one-time data request to compare the configuration parameters of two database servers. You can issue periodic data requests to provide statistical
information for assessing database performance or resource allocation.

For example, even if you use a database that is on a local host, you can call a remote technical support representative to report a problem. The problem might be that the
data for the transactions running in a particular situation is less than expected. From the remote location, the technical support representative can query an SNMP
Network Manager to determine the database server configuration, monitor the database server performance, and identify the bottleneck. OnSNMP provides this
information to SNMP Network Managers through the master agent.

Traps

When the status of the database server changes from its current status to any status that is less available, OnSNMP sends a message to the SNMP Network Managers. For
example, if a dbspace goes down, the database server status changes from full to limited availability. The message that OnSNMP sends is rdbmsStateChange, which is an
unsolicited trap. When an SNMP Network Manager notifies you that it received an rdbmsStateChange trap, you can query the database server that generated the trap to
determine the cause and extent of the problem.

1552 Part VI: Administering

For example, the logical logs for a database server might become full and cause the database server to become unavailable. OnSNMP can notice that the database server
is unavailable and send an rdbmsStateChange trap to an SNMP Network Manager. The SNMP Network Manager can make an icon flash to notify you of the problem. You
can then send data requests to determine the cause of the failure.

Related tasks:
 Installing and configuring a master agent manually

Information that OnSNMP provides

All the information that OnSNMP provides is available from other sources, such as the system catalog tables, the sysmaster and sysutils databases, dbaccess calls, and
the onstat utility.

However, the system catalog tables and the onstat utility refer only to a single database, and the sysmaster and sysutils databases refer only to a single database server.
OnSNMP provides information that lets an SNMP Network Manager monitor all the IBM® Informix® databases that are on a network. The following figure illustrates this
concept.
Figure 1. Monitoring databases

SNMP standard

The SNMP standard has two versions: SNMPv1 and SNMPv2.

The following table lists the versions of the SNMP standard with which OnSNMP complies.
Table 1. Versions of the SNMP standard

Operating system Version of the SNMP standard

UNIX SNMPv1 and SNMPv2

Windows SNMPv1

SNMP architecture

The architecture for the IBM® Informix® implementation of SNMP depends on your operating system.

SNMP is incompatible on High-Availability Data Replication (HDR) secondary servers, remote standalone (RS) secondary servers, or shared disk (SD) secondary servers.

SNMP architecture on UNIX
The following figure shows the SNMP architecture for database servers on UNIX. Each managed workstation runs one master agent and one server discovery process.
Each database server has one OnSNMP process.

Figure 1. SNMP architecture on UNIX

Part VI: Administering 1553

SNMP architecture on Windows
The following figure shows the SNMP architecture for database servers on Windows. Each managed workstation runs one master agent. The master agent and the SNMP
Network Manager use SNMP to communicate with each other. Each managed workstation runs one server discovery process and one infxsnmp.dll. One instance of the
onsnmp subagent is started for each instance of Informix that runs on the managed workstation. OnSNMP and the master agent do not need to use SNMP to communicate
with each other.
Figure 2. SNMP architecture on Windows

Informix implementation of SNMP on UNIX or Linux

To use the IBM® Informix® implementation of SNMP on UNIX or Linux, you must install and start the following software:

runsnmp.ksh
An SNMP Network Manager on a network management workstation
A master agent on each workstation that includes the IBM Informix database server
the IBM Informix database server
When you install the database server, the installation procedure installs the OnSNMP subagent and the server discovery process as well as the files needed for
SNMP support.

The discovery process discovers multiple server instances running on the host. These instances might belong to different versions that are installed on different
directories. Whenever a server instance is brought online, the discovery process detects it and creates an instance of OnSNMP to monitor the database server.

The runsnmp.ksh script
 The runsnmp.ksh script on UNIX ensures that both the SNMP master agent and the onsrvapd server-discovery daemon are running on a host.

1554 Part VI: Administering

UNIX master agents
On UNIX, master agents are provided through licensing agreements.
UNIX subagent
When you install the IBM Informix database server on UNIX, the installation procedure installs OnSNMP. OnSNMP consists of the onsnmp program.
UNIX server discovery process
The runsnmp.ksh script automatically starts the UNIX server discovery process. This section provides procedures for working manually with onsrvapd. Some of
these procedures include instructions on how to configure OnSNMP.

The runsnmp.ksh script

The runsnmp.ksh script on UNIX ensures that both the SNMP master agent and the onsrvapd server-discovery daemon are running on a host.

The runsnmp.ksh file is in the $INFORMIXDIR/snmp directory. You must correctly set the INFORMIXDIR environment variable to the latest installed version of the product
and run the script as root.

>>-runsnmp.ksh--+------------------------+--+------+------------>
 +- -m--master_agent_args-+ '-stop-'
 '- -s--server_disc_args--'

>--+-------+---><
 '-start-'

Issue the runsnmp.ksh commands that the following diagram shows.
Table 1. The runsnmp.ksh commands

Option Description

-m master_agent_args The master-agent arguments can be either stop or valid master-agent arguments.

-s server_disc_args The server-discovery arguments can be either stop or valid onsrvapd arguments.

start Starts snmpdm and onsrvapd if they are not running. This option is the default.

stop Stops snmpdm and onsrvapd if they are already running and exits.

The master_agent_args and the server_disc_args are not checked for correctness.

The following examples illustrate how to use runsnmp.ksh:

Start snmpdm and onsrvapd if they are not running.

runsnmp.ksh

Stop onsrvapd and subagents and then exit.

runsnmp.ksh -s stop

Stop onsrvapd and any subagents and then restart onsrvapd.

runsnmp.ksh -s stop start

Stop snmpdm, onsrvapd, and any subagents and then exit.

runsnmp.ksh stop

Stop snmpdm or snmpdp, onsrvapd, and any subagents and then restart snmpdm or snmpdp and onsrvapd.

runsnmp.ksh stop start

Start snmpdm if it is not running, and then start onsrvapd with the none option, if it is not running.

runsnmp.ksh -s “-rnone”

Related reference:
 UNIX subagent

UNIX master agents

On UNIX, master agents are provided through licensing agreements.

The following table lists these master agents.

Master Agent Company Website

EMANATE, Version 14.2 SNMP Research www.snmp.com

For some UNIX platforms, you might be able to use a master agent other than the one provided with the database server. To see whether this applies to your platform, see
your release notes.

Assuring compatibility
 Installing and configuring a master agent manually

 Starting and stopping a master agent
 Start the master agent before you start the IBM® Informix® database server, and stop all IBM Informix database servers on a workstation before you stop the

master agent.

Part VI: Administering 1555

Related reference:
Components of the Informix implementation

Assuring compatibility

The following guidelines assure master agent compatibility:

Only one master agent is provided, usually EMANATE, for each UNIX platform type.
The subagent that works with the master agent is also provided with the database server.
In some cases, the platform vendor also supplies a master agent that works with the subagent provided with the database server. This is generally true only if the
platform vendor supplies the same type of master agent as that provided with the database server and if the version number of the vendor-supplied master agent is
greater than or equal to that of the version provided with the database server.
Only run one instance of a master agent on a platform. You can run multiple instances of subagents, including multiple instances of onsnmp, if multiple database
server instances exist.
IBM® Informix® subagents can coexist with subagents that platform or third-party vendors supply if all the subagents share a common, compatible master agent.

Installing and configuring a master agent manually

The runsnmp.ksh script automatically performs the steps in this section for the master agents provided with the database server. If you bought a master agent from
another vendor, follow the installation instructions that the vendor provides.

To configure the EMANATE master agent:

1. Set the following environment variables:
Make sure that the PATH environment variable includes $INFORMIXDIR/bin.
Set SR_AGT_CONF_DIR to the directory for the EMANATE configuration file.
Set SR_LOG_DIR to the directory for the EMANATE log file.

The EMANATE configuration files are located in the $INFORMIXDIR/snmp/snmpr directory. The log files are located in the /tmp directory. The /tmp directory is the
default location if the variable is not set.

2. Make sure that either the Network Information Services or the /etc/services file configures UDP ports 161 and 162 as the SNMP ports.
a. Use the grep command to search /etc/services for snmp. The output from grep is similar to the following lines:

snmp 161/udp
snmp-trap 162/udp

b. Make sure that UDP port 161 is available so that the master agent can be the owner of the port.
3. Add the following line to the snmp configuration file for the snmpd daemon to accept messages from onsnmp:

smuxpeer 0.0

If this line does not exist, and the snmpd daemon is log enabled, the following message is reported:

 snmpd log:
refused smux peer: oid SNMPv2-SMI::zeroDotZero, password , descr rdbms subagent
 onsrvapd log:
INFO : onsrvapd pid 9045, poll 5 secs, linger 5 mts, logfile
/tmp/onsrvapd.42f0d7392355.log.
MAJOR: signalCatcher - Caught SIGCHLD.
MAJOR: childKilled - Subagent pid 9046 Status 65280.
 onsnmp log:
MAJOR: SMUX subagent failed to instantiate managed row

Related concepts:
 Traps

Starting and stopping a master agent

Start the master agent before you start the IBM® Informix® database server, and stop all IBM Informix database servers on a workstation before you stop the master
agent.

The best way to start a master agent is to run the runsnmp.ksh script as part of the startup procedure for the system. Similarly, the best way to stop a master agent is to
run the runsnmp.ksh script as part of the shutdown procedure. However, you can start or stop a master agent manually if you prefer. Additionally, while a master agent is
running, you can make sure that it is running correctly.

The runsnmp.ksh script automatically starts the EMANATE master agent at startup and stops it at shutdown.

If you bought a master agent from another vendor, follow the instructions that the vendor provides.

Starting a master agent manually
 Stopping a master agent manually
 Making sure that a master agent is running correctly

Starting a master agent manually

1556 Part VI: Administering

To start a master agent manually:

1. Log in as root.
If you do not have root user privileges, ask your system administrator to start the master agent.

2. Stop or kill any master agents and daemons that are running on the workstation.
3. Enter the following command for EMANATE: snmpdm &

Stopping a master agent manually

To stop a master agent manually:

1. Log in as root.
If you do not have root user privileges, ask your system administrator to stop the master agent.

2. Kill the following process:
For EMANATE, snmpdm

The following table describes the command-line options that you can include in the snmpdm command for the EMANATE master agent.
Table 1. The snmpdm command-line options

Option Description

-apall Turn on all messages.

-aperror Turn on error messages. Error messages are already turned on by default.

-aptrace Turn on trace messages.

-apwarn Turn on warning messages. Warning messages are already turned on by default.

-d Run the master agent in the foreground.

Making sure that a master agent is running correctly

To make sure that a master agent is running correctly:

1. Check the master agent log file to verify that the master agent has not generated any errors. The log file is located in the /tmp directory unless the environment
variable mentioned in Installing and configuring a master agent manually is set to a different directory.

2. Verify that the process is running:
For EMANATE, snmpdm

UNIX subagent

When you install the IBM® Informix® database server on UNIX, the installation procedure installs OnSNMP. OnSNMP consists of the onsnmp program.

Under normal circumstances, you do not need to start or stop OnSNMP explicitly. If you experience abnormal circumstances and need to start or stop OnSNMP explicitly,
contact Technical Support.

The following additional files are provided with the database server for SNMP support.
Table 1. Additional files provided with the database server

Program Description

onsrvapd
daemon

When you start the database server that is on this workstation, onsrvapd detects this event and starts OnSNMP for the database server. When the
database server halts, onsrvapd stops OnSNMP for that database server.

runsnmp.ksh
script

This script starts onsrvapd. It also starts the master agent that is appropriate for the platform. If you want to run OnSNMP, you need to run
runsnmp.ksh each time that you reboot.

Related concepts:
 UNIX server discovery process

Related reference:
 The runsnmp.ksh script

UNIX server discovery process

The runsnmp.ksh script automatically starts the UNIX server discovery process. This section provides procedures for working manually with onsrvapd. Some of these
procedures include instructions on how to configure OnSNMP.

The principles for starting and stopping onsrvapd manually are the same as the principles for a master agent: start onsrvapd before you start the IBM® Informix®
database server, and stop all IBM Informix database servers on a workstation before you stop onsrvapd.

Preparing onsrvapd manually
 If you do not use runsnmp.ksh to automatically prepare and start onsrvapd, perform the steps in this procedure.

Issue the onsrvapd command

Part VI: Administering 1557

Choose an installation directory

Related reference:
 UNIX subagent

Preparing onsrvapd manually

If you do not use runsnmp.ksh to automatically prepare and start onsrvapd, perform the steps in this procedure.

To prepare onsrvapd:

1. Make sure that the owner of onsrvapd is root and that the group is informix.
2. Make sure that the setuid (sticky) bit is set for the onsrvapd file.

Issue the onsrvapd command

You can specify the onsrvapd command-line options that the following syntax shows. Some of these options affect OnSNMP.

>>-onsrvapd--+-----------------------+-------------------------><
 +- -d-------------------+
 +- -g--logginglevel-----+
 +- -k--lingermnts-------+
 +- -l--pathname---------+
 +- -p--pollsecs---------+
 +- -r--server_disc_args-+
 +- -s--level------------+
 '- -V-------------------'

Table 1. The onsrvapd command-line options

Option Description

-d Flag that tells UNIX to run onsrvapd once and terminate it instead of starting it as a daemon.

-g logginglevel Logging level to which OnSNMP logs debug information. Valid values are 2, 4, 8, 16, 32, and 64. The default value is 32. The lower the value, the higher
the amount of logging. The onsrvapd daemon passes this value to OnSNMP.

-k lingerings Number of minutes that onsrvapd waits after a database server goes down before onsrvapd kills the corresponding OnSNMP. If lingermnts is 0,
onsrvapd waits indefinitely.

-l pathname Directory for the error log files. The file name of the OnSNMP error log is onsnmp.servername.log. For example, if your server name is MyServer, the file
name of the OnSNMP error log is onsnmp.MyServer.log. The file name of the onsrvapd error log is onsrvapd.log.

-p pollsecs Frequency, in seconds, with which OnSNMP polls the database server. The default value is 5 seconds. The onsrvapd daemon passes this value to
OnSNMP.

-r level Refresh control value. For a description, see Refresh control value.

-V Prints the OnSNMP version number.

Starting onsrvapd manually
 Making sure that onsrvapd is running correctly

Related reference:

 Refresh control value

Starting onsrvapd manually

To start onsrvapd manually:

1. Stop or kill any daemons that are running on the workstation.
2. Enter the command: onsrvapd.

To stop onsrvapd manually, kill the onsrvapd process.

Making sure that onsrvapd is running correctly

To make sure that onsrvapd is running correctly:

1. Check the log file to verify that onsrvapd has not generated any errors. The log file is located in the /tmp directory.
2. Verify that onsrvapd is running.

Choose an installation directory
1558 Part VI: Administering

When you have multiple IBM® Informix® installation directories on a host computer, you must set the latest installation directory as INFORMIXDIR before you run the
runsnmp.ksh script to start OnSNMP. If all the directories are for the same type of database server, use the installation directory that has the latest database server
version number.

One way to determine the latest directory to use with different types of database server lines is to find the latest version of the SNMP master agent. The EMANATE master
agent displays the version when you run it.

Informix implementation of SNMP on Windows

To use the IBM® Informix® implementation of SNMP on Windows, you must install and start the following software:

Microsoft SNMP service on each workstation that includes the database server
The database server
When you install an database server, the installation procedure installs the OnSNMP subagent and the server discovery process as well as the files needed for
SNMP support.

Windows master agent
 The Microsoft TCP/IP custom installation procedure installs the Microsoft SNMP Extendible master agent.

Windows subagent
 Windows server discovery process

 The IBM Informix Server Discovery Process for SNMP is known as onsrvapd. It is installed as a Windows service that runs under the user.

Windows master agent

The Microsoft TCP/IP custom installation procedure installs the Microsoft SNMP Extendible master agent.

For information about this master agent, see the Microsoft TCP/IP Help.

To start the Microsoft TCP/IP Help:

1. Choose Start > Help.
2. Choose the Index tab.
3. Enter the following phrase in the text box: SNMP

In response to this search request, the help system displays a Topics Found dialog box.

4. Choose TCP/IP Procedures Help.

Important: To start or stop the Microsoft SNMP Extendible master agent, you must be a member of the Administrator Group on the host workstation.
Related reference:

 Components of the Informix implementation

Windows subagent

On Windows, OnSNMP comprises the following files. The table also lists the directories in which the IBM® Informix® installation procedure installs each file.
Table 1. OnSNMP files and associated directories

File Description Directory

infxsnmp.dll Library that provides the interface between onsnmp.exe and the master agent. The IBM
Informix installation procedure installs one infxsnmp.dll on each workstation. The
initialization process for the master agent loads infxsnmp.dll.

%Windows%\system32

onsnmp.exe Subagent program. The IBM Informix installation procedure installs an onsnmp.exe file for
each database server.

%INFORMIXDIR%\bin

onsrvapd.exe Server discovery process, which starts onsnmp.exe for each database server that starts. The
IBM Informix installation procedure performs the following tasks for onsrvapd.exe:

Installs one onsrvapd.exe on each workstation
Creates the Informix Server Discovery Process for SNMP in the control panel and
configures it to start automatically when the system reboots

32-bit platforms: %Windows%\system32
64-bit platforms: Windows\SysWOW64

When you install the database server, the installation procedure automatically installs OnSNMP. When you start the database server that is on a network that uses SNMP,
onsrvapd.exe detects this event and starts OnSNMP for the database server. When the database server halts, onsrvapd.exe stops OnSNMP for that database server.

Start and stop OnSNMP
 Under normal circumstances, you do not need to start or stop OnSNMP explicitly. If you are experiencing abnormal circumstances and need to start or stop

OnSNMP explicitly, contact Technical Support.
Configure OnSNMP

 Windows registry key for the OnSNMP logging level
 On Windows, there is a registry entry to specify the logging level to which OnSNMP logs debugging information.

Start and stop OnSNMP

Part VI: Administering 1559

Under normal circumstances, you do not need to start or stop OnSNMP explicitly. If you are experiencing abnormal circumstances and need to start or stop OnSNMP
explicitly, contact Technical Support.

Configure OnSNMP

The IBM® Informix® installation procedure creates a registry key, OnSnmpSubagent, under HKEY_LOCAL_MACHINE\SOFTWARE\Informix.

The following table describes the OnSnmpSubagent arguments that you can change.
Table 1. OnSnmpSubagent arguments that can be changed

Argument Value Description

Environment\LINGER_TIME lingermnts Number of minutes that the master agent waits after a database server goes down before the
master agent kills the corresponding OnSNMP. If lingermnts is 0, the master agent waits
indefinitely.

Environment\LOGDIR pathname Complete path of the OnSNMP error-log file, including file name

Environment\REFRESH_TIME pollsecs Frequency, in seconds, with which OnSNMP polls the database server

Environment\LOGLEVEL loglevel Logging level to which OnSNMP logs debugging information. The default value is 3. The
onsrvapd daemon passes this value to OnSNMP.

The following table describes the OnSnmpSubagent arguments that you not change.
Table 2. OnSnmpSubagent arguments that do not get changed

Argument Value Description

Pathname pathname Complete path of infxsnmp.dll, including file name

MIBS\APPLMIB apploid OID for the Application MIB

MIBS\ONMIB onoid OID for the Online MIB

MIBS\RDBMSMIB rdbmsoid OID for the RDBMS MIB

The IBM Informix installation procedure also creates an argument, INFXSNMP, under
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SNMP\Parameters\ExtensionAgents. This new argument specifies the location of the OnSnmpSubagent
registry key, including the name of the key.

To change the OnSNMP configuration, change the values for these arguments.

Windows registry key for the OnSNMP logging level

On Windows, there is a registry entry to specify the logging level to which OnSNMP logs debugging information.

The logging levels that you can specify are:

6 (unrecoverable error conditions)
5 (major error conditions)
4 (warnings in the program)
3 (general information)
2 (debug information)
1 (dump all information)

Windows server discovery process

The IBM® Informix® Server Discovery Process for SNMP is known as onsrvapd. It is installed as a Windows service that runs under the user.

The discovery process discovers multiple server instances running on the host. These instances might belong to different versions that are installed on different
directories. Whenever a server instance is brought online, the discovery process detects it and creates an instance of OnSNMP to monitor the database server.

Start and stop onsrvapd
 You can start onsrvapd from the services folder in the control panel or from a command prompt.

Installing the Informix SNMP agent
 If you install the Microsoft SNMP Extendible master agent after you install the IBM Informix database server, the installation procedure cannot create INFXSNMP.

To correct this problem, run a program called inssnmp to complete the OnSNMP installation.

Start and stop onsrvapd

You can start onsrvapd from the services folder in the control panel or from a command prompt.

To start and stop onsrvapd from a command prompt, enter the following commands:

To start onsrvapd, enter:

net start onsrvapd

1560 Part VI: Administering

To stop onsrvapd, enter:

net stop onsrvapd

The OnSNMP Discovery Process (onsrvapd.exe) is installed as an Windows service and starts and stops automatically. You do not need to issue commands at the
command line. In the event you want to issue commands from the command line, see the command-line syntax listed in Issue the onsrvapd command.

Ensure that onsrvapd is running correctly, by checking the log file to verify that onsrvapd has not generated any errors. For location of the log files, see your release notes.
Verify that onsrvapd is running.

Installing the Informix SNMP agent

If you install the Microsoft SNMP Extendible master agent after you install the IBM® Informix® database server, the installation procedure cannot create INFXSNMP. To
correct this problem, run a program called inssnmp to complete the OnSNMP installation.

To run inssnmp:

1. Start a Command Prompt session.
2. Go to %INFORMIXDIR%\bin.
3. Enter the following command: inssnmp

Tip: If you install a Windows service pack on your computer before you install the Microsoft SNMP Extendible master agent, you might need to reinstall the service pack.

GLS and SNMP

IBM® Informix® products include a Global Language Support (GLS) feature, which lets you work with languages that use code sets other than the standard English code
set. However, the SNMP protocols that OnSNMP supports (SNMPv1 and SNMPv2) do not recognize these different code sets.

OnSNMP uses the US English locale when it sends information to the master agent. If OnSNMP cannot convert the code set of the database to the US English locale, it fails
and returns error -23101 with the following message:

Unable to load locale categories.

OnSNMP sends only 7-bit characters. If an eighth bit is present, OnSNMP truncates it. Thus, when an SNMP Network Manager requests character information, OnSNMP
returns a value. However, the value might not reflect the name of the database or table.

OnSNMP sends numeric information correctly, regardless of the code set that the database uses.

MIB types and objects

This section describes the types of MIBs and the types of MIB objects that the IBM® Informix® database server uses.

OnSNMP uses the following MIBs:

Application MIB
Relational Database Management System (RDBMS) MIB
IBM Informix Private MIB
Online MIB in the IBM Informix Private MIB

Application MIB
The Application MIB is a public MIB, which means that the Internet Engineering Task Force (IETF) specifies the structure of the MIB and the MIB tables. A public MIB is
the same for all managed components on an SNMP network, not just for IBM Informix products.

OnSNMP uses only applTable, which is the portion of the Application MIB that the RDBMS MIB requires.Figure 1 shows the position of the Application MIB in the MIB
hierarchy.

The following value is the path to the Application MIB:

iso.org.dod.internet.mgmt.mib-2.application

The following value is the OID for the Application MIB:

1.3.6.1.2.1.27

RDBMS MIB
The Relational Database Management System (RDBMS) MIB is a public MIB, which means that the IETF specifies the structure of the MIB and the MIB tables.

A public MIB is the same for all managed database components. However, some of the definitions in the RDBMS MIB are purposely vague to let each vendor tailor the
entries to a specific database server. For example, rdbmsSrvLimitedResourceTable contains information about the resources that a database server uses. Each database
server vendor can decide which resources to include in this table. Figure 1 shows the position of the RDBMS MIB in the MIB hierarchy.

The following value is the path to the RDBMS MIB:

iso.org.dod.internet.mgmt.mib-2.rdbmsMIB

Part VI: Administering 1561

The following value is the OID for the RDBMS MIB:

1.3.6.1.2.1.39

Private MIB
The Private MIB is a private MIB, which means that a private enterprise defines and uses it.

The Internet Assigned Numbers Authority (IANA) assigns a unique enterprise identifier to each company that uses the SNMP protocol. The Private MIB describes
information that is relevant to the specific architecture and features of database servers and databases. The following figure shows the MIB hierarchy for the Private MIB.
Figure 1. MIB hierarchy for the Private MIB

The following value is the path to the Private MIB:

iso.org.dod.internet.private.enterprises.informix

The following value is the OID for the Private MIB:

1.3.6.1.4.1.893

Online MIB
The Online MIB is in the Private MIB. The Online MIB contains information for all database servers.

In the Online MIB, all tables are after the following node:

servers.onlineMIB.onlineObjects

The OID for each table in the Online MIB starts with the following value:

1.3.6.1.4.1.893.1.1.1

MIB objects
An MIB object is similar to a column in a table.

The implementation of SNMP recognizes the following types of MIB objects:

Traps are defined as MIB objects, but they cannot be retrieved. Instead, when a certain condition is detected, OnSNMP issues an event that includes the object ID
that the trap defines.
Catalog-based MIB objects exist only if the refresh control value (described in Refresh control value) is once or all.
Enterprise Replication objects are tables that exist only if a database server is configured to participate in Enterprise Replication.

Related concepts:
 Management Information Bases

Table indexing

In the description of the MIBs in Management Information Base reference, the header for each table specifies how each row in the table is indexed. A table can have one
or more indexes. For example, the header for rdbmsSrvTable is rdbmsSrvTable[applIndex], which means that the table has one index called applIndex.

Each index value is concatenated to the column OID with periods between each value. If a MIB table has several indexes, the indexes are concatenated one after the
other. Most SNMP Network Managers display only the final portion of the OID that relates to the table being displayed. Some SNMP Network Managers display the OID as
part of the information about each individual item; other SNMP Network Managers display the OID as part of a header for a list of values.

Numeric index values
 Alphabetical index values

1562 Part VI: Administering

Numeric index values

The following line is an example of indexed information:

rdbmsRelActiveTime.72000003.893072000 = 11/16/98 12:34:08

The following table describes how to interpret the example. For more information about these values, see rdbmsRelTable.
Table 1. Values to interpret the

example

Index subvalue Description

rdbmsRelActiveTime Name of the column

72000003 rdbmsDbIndex

893072000 applIndex

Alphabetical index values

When an index is an alphabetic string, such as the name of a configuration parameter, the OID for that index consists of the following elements, all separated by periods:

Number of letters in the name
ASCII value for each letter

The following line is an example of alphabetical indexed information:

rdbmsSrvParamCurrValue.893072000.4.76.82.85.83.1 = 8

The following table describes how to interpret this example. For more information about these values, see rdbmsSrvParamTable.
Table 1. Values to interpret the example

Index subvalue Description

rdbmsSrvParamCurrValue Name of the column

893072000 applIndex

4.76.82.85.83 rdbmsSrvParamName:

4 = Number of letters
76 = L
82 = R
85 = U
83 = S

1 rdbmsSrvParamSubIndex

Refresh control value

As a background task, OnSNMP periodically updates the contents of MIB tables that it derives from catalog information. The refresh control value determines the amount
of time that OnSNMP spends refreshing these MIB tables versus the amount of time that it spends responding to queries from the master agent.

Specify the refresh control value with the runsnmp.ksh -s -r command-line option or the onsrvapd -r command-line option. The following table lists the MIB tables that
this value affects.

Table 1. MIB tables affected by options

Database-related MIB tables Table-related MIB tables

rdbmsDbInfoTable
 rdbmsDbTable

 rdbmsRelTable
 onBarTable

 onDatabaseTable

onActiveTableTable
 onFragmentTable

 onTableTable

The following table describes the possible values for the refresh control value.
Table 2. Possible values for refresh control value

Value Description

a or all Refresh the database-related and table-related tables periodically.

n or none Do not fill or refresh any of the catalog-based tables. Instead, leave the catalog-based tables empty.

o or once Fill the database-related and table-related tables once at startup.

The following table lists the default refresh control value for each operating system.
Table 3. Default refresh control values

Operating system Default refresh control value

UNIX once

Part VI: Administering 1563

Operating system Default refresh control value

Windows all

The best value to use depends on the environment and how you use OnSNMP. If the list of tables and databases changes frequently, it is probably best to use a value of
all to make sure that the MIB tables are accurate. If the environment includes many tables and databases, it is probably best to use a value of once to let OnSNMP
respond to queries.

Related concepts:
 Issue the onsrvapd command

Files installed for SNMP

This section lists the files that are typically installed for the IBM® Informix® implementation of SNMP on UNIX and Windows.

Files installed on UNIX or Linux
 Files installed on Windows

Files installed on UNIX or Linux

The runsnmp.ksh file exists for all UNIX versions of SNMP support.

The following files are installed in $INFORMIXDIR/bin.
Table 1. Files installed in $INFORMIXDIR/bin

File name Description

onsnmp OnSNMP executable file

onsrvapd Server discovery process

snmpdm EMANATE executable or a dummy file for UNIX platforms that EMANATE does not support

The following files are installed in $INFORMIXDIR/snmp.
Table 2. Files installed in $INFORMIXDIR/snmp

File name Description

./snmpr/snmpd.cnf EMANATE configuration file or a dummy file for UNIX platforms that EMANATE does not support

.runsnmp.ksh Script that starts the master agent and onsrvapd
OnSNMP uses the following log files by default.

Table 3. Default log files

File name Description

snmp.log Log file for EMANATE; not installed on UNIX platforms that EMANATE does not
support

onsrvapd.log Log file for onsrvapd.

onsnmp.*.log
For IBM® Informix®, the path is onsnmp.servername.log

Log file for onsnmp.

Files installed on Windows

The following files are created in %Windows%\system32.
Table 1. Files created in
%Windows%\system32

File name Description

infxsnmp.dll DLL for OnSNMP

onsrvapd.exe Server discovery process

The following file is created in %INFORMIXDIR%\bin.
Table 2. Files created in
%INFORMIXDIR%\bin

File name Description

onsnmp.exe OnSNMP executable

In addition, log files are created in the directories that are specified in the registry.

Management Information Base reference

1564 Part VI: Administering

An SNMP Network Manager hides most of the structures of the Management Information Base (MIB). However, an understanding of this structure can help you
comprehend the information that an SNMP Network Manager displays.

The descriptions in this section are brief. For detailed descriptions, see the online MIB files. The following table lists the directories for the MIB files.
Table 1. Directories for MIB files

Operating system MIB directory

UNIX $INFORMIXDIR/snmp

Windows %INFORMIXDIR%\etc

Many MIB values are for database servers, depending on the types of database servers that you are using.

This section presents the MIB tables in alphabetical order. For the logical order, see the MIB files. The following table summarizes the MIB tables that OnSNMP uses and
indicates the topics that contains more information.

Table 2. MIB tables that OnSNMP uses

MIB Table Description

Application applTable Attributes for each database server

RDBMS rdbmsDbInfoTable Information about databases

 rdbmsDbTable Information about databases

 rdbmsRelTable Information about the relationship between a database and the database server with
which it is associated

 rdbmsSrvInfoTable Information about the database server since it was started

 rdbmsSrvLimited-ResourceTable Information about the limited resources for each database server

 rdbmsSrvParamTable Information about the configuration parameters for each database server

 rdbmsSrvTable Information about a database server

 rdbmsTraps Information about the traps that OnSNMP can send to the SNMP Network Manager

Online onActiveBarTable Information about the current ON-Bar activity

 onActiveTableTable Information about the open and active database tables

 onBarTable Information about the backup and restore history

 onChunkTable Information about the chunks that the database servers use

 onDatabaseTable Information about active databases

 onDbspaceTable Information about dbspaces

 onErQueueTable Information about the Enterprise Replication queue

 onErSiteTable Information about the Enterprise Replication site

 onFragmentTable Information about the fragments that are in fragmented database tables

 onLockTable Information about the active locks that database servers are using

 onLogicalLogTable Information about logical logs

 onPhysicalLogTable Information about physical logs

 onServerTable Status and profile information about each active database server

 onSessionTable Information about each session

 onSqlHostTable Copy of the connection information

 onTableTable Information about a database table

Application MIB
 IBM Informix uses one table from the application MIB. This table provides general-purpose attributes for each database server.

RDBMS MIB
 The Relational Database Management System (RDBMS) MIB defines several tables that provide information about managed database servers and their databases.

Online MIB in the Informix Private MIB
 The Online MIB defines several tables that provide information that is relevant for IBM Informix database servers and their databases.

Application MIB

IBM® Informix® uses one table from the application MIB. This table provides general-purpose attributes for each database server.

applTable

applTable

The following list summarizes this table:

Contents:
Attributes for each database server

Part VI: Administering 1565

Index:
applIndex

Scope of a row:
One database server

The table has the following MIB objects.
Table 1. MIB objects for applTable

MIB object Description

applIndex Unique integer index that identifies each database server. This value is the sum of the following values:

IBM® Informix® Enterprise ID * 1,000,000
The IBM Informix Enterprise ID is 893. Therefore, Enterprise ID * 1,000,000 is 893,000,000.

SERVERNUM * 1000

applName Name of the database server.

applDirectoryName No OnSNMP support for this MIB object.

applVersion Version of the database server.

applUptime Time when the database server was last initialized.
This time is the system time according to the master agent. If the database server was last initialized before OnSNMP was last
initialized, this value is 0.

applOperStatus Operating status of the database server:

up (1)
down (2)
halted (3)
(4): OnSNMP does not use this value.
restarting (5)

applLastChange Time when the database server entered its current state.
This time is the system time according to the master agent. If the database server was last initialized before OnSNMP was last
initialized, this value is 0.

applInboundAssociations Number of current SQLCONNECT actions.

applOutboundAssociations OnSNMP does not support this MIB object.

applAccumulatedInboundAssocia
tions

Number of SQLCONNECT actions that have occurred so far.

applAccumulatedOutboundAssoci
ations

OnSNMP does not support this MIB object.

applLastInboundActivity Time for the most recent attempt to start or stop a session with a database server.
This time is the system time according to the master agent.

applLastOutboundActivity OnSNMP does not support this MIB object.

applRejectedInboundAssociations Number of times that the database server rejected an input connection due to administrative reasons or resource limitations.

applFailedOutboundAssociations OnSNMP does not support this MIB object.

RDBMS MIB

The Relational Database Management System (RDBMS) MIB defines several tables that provide information about managed database servers and their databases.
OnSNMP does not support the tables rdbmsDbLimitedResourceTable and rdbmsDbParamTable.

rdbmsDbInfoTable
 rdbmsDbTable

 rdbmsRelTable
 rdbmsSrvInfoTable

 rdbmsSrvLimitedResourceTable
 rdbmsSrvParamTable

 rdbmsSrvTable
 rdbmsTraps

rdbmsDbInfoTable

The following list summarizes this table:

Contents:
Information about databases

Index:
rdbmsDbIndex

Scope of a row:
One database that does not have an access state of unavailable

1566 Part VI: Administering

The rdbmsRelState value indicates the access state for the database.

The table has the following MIB objects.
Table 1. MIB objects for rdbmsDbInfoTable

MIB object Description

rdbmsDbIndex See rdbmsDbTable.

rdbmsDbInfoProduct
Name

Name of the database product. For example, this value might be IBM® Informix®.

rdbmsDbInfoVersion Version number of the database server that created or last restructured this database

rdbmsDbInfoSizeUni
ts

Units for rdbmsDbInfoSizeAllocated and rdbmsDbInfoSizeUsed:

Bytes (1)
Kilobytes (2)
Megabytes (3)
Gigabytes (4)
Terabytes (5)

rdbmsDbInfoSizeAll
ocated

Estimated size allocated for this database in the units that rdbmsDbInfoSizeUnits specifies

rdbmsDbInfoSizeUse
d

Estimated size in use for this database in the units that rdbmsDbInfoSizeUnits specifies

rdbmsDbInfoLastBac
kup

Date and time when the latest backup of the database was performed. If the database has never been backed up, this value is noSuchInstance
(SNMPv2) or noSuchName (SNMPv1).

rdbmsDbTable

The following list summarizes this table:

Contents:
Information about databases

Index:
rdbmsDbIndex

Scope of a row:
One database

The table has the following MIB objects.
Table 1. MIB objects for rdbmsDbTable

MIB object Description

rdbmsDbIndex Unique integer index that identifies a database. This value is the sum of the following values:

SERVERNUM * 1,000,000
If SERVERNUM is 0, OnSNMP uses 256 instead of 0.

Database number

rdbmsDbPrivateMibOID OID for the IBM® Informix® Private MIB: 1.3.6.1.4.1.893

rdbmsDbVendorName Name of the database vendor: IBM Corporation

rdbmsDbName Name of the database

rdbmsDbContact Login name of the person who created the database

rdbmsRelTable

The following list summarizes this table:

Contents:
Information about the relationship between a database and the database server with which it is associated

The table has the following MIB objects.
Table 1. MIB objects for rdbmsRelTable

MIB object Description

rdbmsDbIndex See rdbmsDbTable.

applIndex See applTable.

Part VI: Administering 1567

MIB object Description

rdbmsRelState Access state between the database server and the database:

Other (1): The database server is online, but one of the dbspaces of the database is down.
Active (2): The database server is actively using the database. The database server is online, and a user opened the database.
Available (3): The database server could use the database if asked to do so. The database server is online, but the database is not open.
Restricted (4): The database is not available. The database server is online, and a user opened the database in exclusive mode.
Unavailable (5)

rdbmsRelActiveTi
me

Date and time that the database server made the database active. If rdbmsRelState is not active, this value is noSuchInstance (SNMPv2) or
noSuchName (SNMPv1).

rdbmsSrvInfoTable

The following list summarizes this table:

Contents:
Information about the database server since it was started

Index:
applIndex

Scope of a row:
One database server

The table has the following MIB objects.
Table 1. MIB objects for rdbmsSrvInfoTable

MIB Object Description

applIndex See applTable.

rdbmsSrvInfoStartupTime Date and time when the database server was last started

rdbmsSrvInfoFinishedTransactions Number of transactions completed, either with a commit or with an abort

rdbmsSrvInfoDiskReads Number of reads from the physical disk

rdbmsSrvInfoLogicalReads Number of logical reads

rdbmsSrvInfoDiskWrites Number of writes to the physical disk

rdbmsSrvInfoLogicalWrites Number of logical writes

rdbmsSrvInfoPageReads Number of page reads

rdbmsSrvInfoPageWrites Number of page writes

rdbmsSrvInfoDiskOutOfSpaces Number of times that the database server has been unable to obtain the desired disk space

rdbmsSrvInfoHandledRequests Number of requests made to the database server on inbound associations

rdbmsSrvInfoRequestRecvs Number of receive operations that the database server made while it was processing requests on
inbound associations

rdbmsSrvInfoRequestSends Number of send operations that the database server made while it was processing requests on
inbound associations

rdbmsSrvInfoHighwaterInbound-Associations Greatest number of inbound associations that have been open at the same time

rdbmsSrvInfoMaxInbound-Associations Greatest number of inbound associations that can be open at the same time

rdbmsSrvLimitedResourceTable

The following list summarizes this table:

Contents:
Information about the limited resources for each database server

Index:
applIndex, rdbmsSrvLimitedResourceName

Scope of a row:
One limited resource

The table has the following MIB objects.
Table 1. MIB objects for rdbmsSrvLimitedResourceTable

MIB Object Description

applIndex See applTable.

1568 Part VI: Administering

MIB Object Description

rdbmsSrvLimitedResourceName Name of the limited resource:

BUFFERS
DS_MAX_QUERIES
DS_MAX_SCANS
DS_TOTAL_MEMORY
LOCKS
LTXEHWM
LTXHWM
STACKSIZE
LOGFILES
DBSPACES
CHUNKS

rdbmsSrvLimitedResourceID OID or vendor name for the IBM® Informix® Private MIB: 1.3.6.1.4.1.893 or informix

rdbmsSrvLimitedResourceLimit Maximum value that this limited resource can attain

rdbmsSrvLimitedResourceCurrent The current value for this limited resource

rdbmsSrvLimitedResourceHighwater Maximum value that this limited resource has attained since applUptime was reset. This
value is 0 for DBSPACES and CHUNKS.

rdbmsSrvLimitedResourceFailures Number of times that the database server tried to exceed the maximum value for this limited
resource since applUptime was reset. This value is 0 for DBSPACES and CHUNKS.

rdbmsSrvLimitedResourceDescription Description of the limited resource. This description includes the units for the value for the
limited resource.

rdbmsSrvParamTable

The following list summarizes this table:

Contents:
Information about the configuration parameters for each database server

Index:
applIndex, rdbmsSrvParamName, rdbmsSrvParamSubIndex

Scope of a row:
One configuration parameter that is listed in the configuration file for the database server

The ONCONFIG environment variable specifies the file name of the configuration file. The following table lists the location of the configuration file for each operating
system. For more information about the configuration file, see your IBM Informix Administrator's Guide and the IBM Informix Administrator's Reference. For more
information about the ONCONFIG environment variable, see the IBM Informix Guide to SQL: Reference.

Table 1. Location of the configure files

Operating system Location of configuration file

UNIX $INFORMIXDIR/etc/$ONCONFIG

Windows %INFORMIXDIR%\etc\%ONCONFIG%

The table has the following MIB objects.
Table 2. MIB objects for rdbmsSrvParamTable

MIB object Description

applIndex See applTable.

rdbmsSrvParamNa
me

Name of a configuration parameter

rdbmsSrvParamSu
bindex

Subindex for the configuration parameter. This value is 1 for every configuration parameter except DATASKIP, DBSPACETEMP, DBSERVERALIASES,
and NETTYPE.

rdbmsSrvParamID OID or vendor name for the IBM® Informix® Private MIB: 1.3.6.1.4.1.893 or informix

rdbmsSrvParamCur
rValue

Value of the configuration parameter. OnSNMP obtains this value from the configuration file. Therefore, it does not reflect dynamic changes that
you might make to the configuration parameter.

rdbmsSrvParamCo
mment

Purpose of the configuration parameter

rdbmsSrvTable

The following list summarizes this table:

Contents:
Information about a database server

Index:
applIndex

Part VI: Administering 1569

Scope of a row:
One database server

The table has the following MIB objects.
Table 1. MIB objects for rdbmsSrvTable

MIB object Description

applIndex See applTable.

rdbmsSrvPrivateMibOID OID for the IBM® Informix® Private MIB: 1.3.6.1.4.1.893

rdbmsSrvVendorName Name of the database server vendor: IBM Corporation

rdbmsSrvProductName Name of the database server product. For example, this value might be IBM Informix.

rdbmsSrvContact Name of the database server contact: informix

rdbmsTraps

This MIB object contains information about traps that an SNMP subsystem that supports the RDBMS MIB can generate. In this case, the SNMP subsystem is OnSNMP.

frdbmsStateChange trap

frdbmsStateChange trap

When a database server changes from its status to any less-available status, OnSNMP sends a rdbmsStateChange trap message to configured network hosts through the
master agent.

The following list summarizes this trap:

Contents:
The rdbmsRelState MIB object

Index:
rdbmsDbIndex, applIndex

Scope of a row:
If the status of the IBM® Informix® database server becomes unavailable, it generates one trap for each database.

Online MIB in the Informix Private MIB

The Online MIB defines several tables that provide information that is relevant for IBM® Informix® database servers and their databases.

onActiveBarTable
 onActiveTableTable

 onBarTable
 onChunkTable

 onDatabaseTable
 onDbspaceTable

 onErQueueTable
 onErSiteTable

 onFragmentTable
 onLockTable

 onLogicalLogTable
 onPhysicalLogTable

 onServerTable
 onSessionTable

 onSqlHostTable
 onTableTable

onActiveBarTable

The following list summarizes this table:

Contents:
Information about the current ON-Bar activity

Index:
applIndex, onActiveBarIndex

Scope of a row:
One ON-Bar activity

The table has the following MIB objects.
Table 1. MIB objects for onActiveBarTable

1570 Part VI: Administering

MIB Object DescriptionMIB Object Description

applIndex See applTable.

onActiveBarIndex A number that OnSNMP assigns

onActiveBarActivityType Type of activity:

dbspaceBackup (1)
dbspaceRestore (2)
logBackup (3)
logRestore (4)
systemBackup (5)
systemRestore (6)

onActiveBarActivityLevel Level of activity:

completeBackup (1)
incrementalLevelOne (2)
incrementalLevelTwo (3)

onActiveBarElapsedTime Length of time since the activity started, in hundredths of seconds

onActiveBarActivitySize Total number of used pages to scan OnSNMP updates this value as the activity
progresses.

onActiveBarActivityScanned Number of used pages that the activity has scanned so far

onActiveBarActivityCompleted Number of scanned pages that the activity has transferred for archiving so far

onActiveBarActivityStatus Status of the activity

onActiveTableTable

The following list summarizes this table:

Contents:
Information about the open and active database tables

Index:
applIndex, rdbmsDbIndex, onTableIndex

Scope of a row:
One open and active database table

For a fragmented database table, the values in this table are summaries of the values from all the fragments of the database table. The table has the following MIB
objects.

Table 1. MIB objects for onActiveTableTable

MIB Object Description

applIndex See applTable.

rdbmsDbIndex See rdbmsDbTable.

onTableIndex See onDbspaceTable.

onActiveTableStatus Status of the table:

not Busy (1): The table is not in use.
busy (2): The table is in use.
dirty (3): The table has been modified.

onActiveTableIsBeingAltered State of the table:

Yes (1): The table is being altered. (An index is being added or dropped, an ALTER TABLE statement
is being executed, the alter page count is being updated, or pages are being altered to conform to
the latest schema.)
No (2): The table is not being altered.

onActiveTableUsers Number of users accessing the table

onActiveTableLockRequests Number of lock requests

onActiveTableLockWaits Number of lock waits

onActiveTableLockTimeouts Number of lock timeouts

onActiveTableIsamReads Number of reads from the database table

onActiveTableIsamWrites Number of writes to the database table

onActiveTableBufferReads Number of buffer reads

onActiveTableBufferWrites Number of buffer writes

Part VI: Administering 1571

onBarTable

The following list summarizes this table:

Contents:
Information about the backup and restore history

Index:
applIndex, onBarActivityIndex, onBarObjectIndex

Scope of a row:
One object that participated in a backup or restore activity

For information about backup and restore, see the IBM Informix Backup and Restore Guide.

The table has the following MIB objects.
Table 1. MIB objects for onBarTable

MIB object Description

applIndex See applTable.

onBarActivityIndex Index to the history

onBarObjectIndex Index to the object

onBarName Name of the object

onBarType Type of object:

blobspace (1) (Only IBM® Informix® provides blobspaces.)
rootDbspace (2)
criticalDbspace (3)
noncriticalDbspace (4)
logicalLog (5)

onBarLevel Level of the backup action:

completeBackup (1)
incrementalLevelOne(2)
incrementalLevelTwo (3)

onBarStatus Status of the action on the object:

0 = successful
Nonzero = error number

onBarTimeStamp Ending time stamp for the action

onChunkTable

The following list summarizes this table:

Contents:
Information about the chunks that the database servers use

Index:
applIndex, onDbspaceIndex, onChunkIndex

Scope of a row:
One chunk

The table has the following MIB objects.
Table 1. MIB objects for onChunkTable

MIB object Description

applIndex See applTable.

onDbspaceIndex See rdbmsDbInfoTable.

onChunkIndex Unique integer index for this chunk
The database server generates this value.

onChunkFileName Path name for the chunk

onChunkFileOffset Offset into the device, in pages

onChunkPagesAllocated Chunk size, in pages

onChunkPagesUsed Number of pages used

1572 Part VI: Administering

MIB object Description

onChunkType Type of chunk:

regularChunk (1)
blobChunk (2)
stageBlob (3)

onChunkStatus Status of the chunk:

offline (1)
online (2)
recovering (3)
inconsistent (4)
dropped (5)

onChunkMirroring Mirroring status of the chunk:

notMirrored (1)
mirrored (2)
newlyMirrored (3)

onChunkReads Number of physical-read operations

onChunkPageReads Number of page reads

onChunkWrites Number of physical-write operations

onChunkPageWrites Number of page writes

onChunkMirrorFileName Path name of the mirror chunk
If the chunk is not mirrored, this value is noSuchInstance (SNMPv2) or noSuchName (SNMPv1).

onChunkMirrorFileOffset Offset of the mirror, in pages
If the chunk is not mirrored, this value is noSuchInstance (SNMPv2) or noSuchName (SNMPv1).

onChunkMirrorStatus Mirroring status:

offline (1)
online (2)
recovering (3)
inconsistent (4)
dropped (5)

If the chunk is not mirrored, this value is noSuchInstance (SNMPv2) or noSuchName (SNMPv1).

onDatabaseTable

The following list summarizes this table:

Contents:
Information about active databases

Index:
applIndex, rdbmsDbIndex

Scope of a row:
One active database
This table does not provide information about an active database if one of the dbspaces for the database is down. (The rdbmsRelState MIB object for each
database in rdbmsRelTable indicates whether a database is active and whether one of its dbspaces is down.)

The table has the following MIB objects.
Table 1. MIB objects for onDatabaseTable

MIB object Description

applIndex See applTable.

rdbmsDbIndex See rdbmsDbTable.

onDatabaseDbspace Default dbspace

onDatabaseCreated Creation date and time

onDatabaseLogging Logging status:

none (1)
buffered (2)
unbuffered (3)
ansi (4)

Part VI: Administering 1573

MIB object Description

onDatabaseOpenStatus Database status:

notOpen (1)
open (2)
openExclusive (3)

onDatabaseUsers Number of users

onDbspaceTable

The following list summarizes this table:

Contents:
Information about dbspaces

Index:
applIndex, onDbspaceIndex

Scope of a row:
One dbspace

The table has the following MIB objects.
Table 1. MIB objects for onDbspaceTable

MIB object Description

applIndex See applTable.

onDbspaceIndex Unique integer index for this dbspace. The database server generates this value.

onDbspaceName Name of the dbspace

onDbspaceOwner Login name of the owner

onDbspaceCreated Creation date

onDbspaceChunks Number of chunks in the dbspace

onDbspaceType Type of dbspace:

regularDbspace (1)
temporaryDbspace (2)
blobDbspace (3)

onDbspaceMirrorStatus Mirroring status:

notMirrored (1)
mirrored (2)
mirrorDisabled (3)
newlyMirrored (4)

onDbspaceRecoveryStatus Recovery status:

noRecoveryNeeded (1)
doneRecovery (2)
physicallyRecovered (3)
logicallyRecovering (4)

onDbspaceBackupStatus Backup status:

yes (1): The dbspace is backed up.
no (2): The dbspace is not backed up.

onDbspaceMiscStatus Miscellaneous status:

none (1): no more information
aTableDropped (2)

onDbspacePagesAllocated Size of all the primary chunks in the dbspace

onDbspacePagesUsed Number of pages used in all the primary chunks in the dbspace

onDbspaceBackupDate Date when the latest backup was performed. If the dbspace has never been backed up, this value is noSuchInstance (SNMPv2) or
noSuchName (SNMPv1).

onDbspaceLastBackupLeve
l

Level of the last backup. If the dbspace has never been backed up, this value is noSuchInstance (SNMPv2) or noSuchName (SNMPv1).

onDbspaceLastFullBackup
Date

Date and time of the last full backup (level 0). If the dbspace has never had a full backup, this value is noSuchInstance (SNMPv2) or
noSuchName (SNMPv1).

1574 Part VI: Administering

onErQueueTable

The following list summarizes this table:

Contents:
Information about the replication queues for all database servers that participate in Enterprise Replication

Index:
applIndex, onErQueueReplIndex

Scope of a row:
One replication queue

The table has the following MIB objects.
Table 1. MIB objects for onErQueueTable

MIB object Description

applIndex See applTable.

onErQueueReplIndex Unique integer index that identifies a replicant

onErQueueSiteIndex Unique integer that identifies a database server

onErQueueReplName Display string that describes the replicant or collection of replicants

onErQueueSiteName Name of the Enterprise Replication database server

onErQueueSize Current® number of bytes in the send queue

onErQueueLastCommit Date and time when last transaction was committed

onErQueueLastAck Date and time when last data was acknowledged

onErSiteTable

The following list summarizes this table:

Contents:
Information about all the remote database servers that participate in Enterprise Replication

Index:
applIndex, onErSiteIndex

Scope of a row:
A single replication queue

The table has the following MIB objects.
Table 1. MIB objects for onErSiteTable

MIB object Description

applIndex See applTable.

onErSiteIndex Integer that uniquely identifies a database server as defined in the group entry in sqlhosts

onErSiteName Name of the replication site

onErSiteState State of the replication activity for this site:

inactive (1)
active (2)
suspend (3)
quiescent (4)
hold (5)
delete (6)
failed (7)
unknown (8)

onErSiteConnectionSta
te

State of the connection to this site:

idle (1)
connected (2)
disconnected (3)
timeout (4)
shutdown (5)
error (6)
unknown (7)

onErSiteConnectionCh
ange

Date and time when the connection state last changed

onErSiteIdleTimeout Time limit for Enterprise Replication to wait for new data to send or receive. Value is set when database server is defined. Connection is closed
if time limit is exceeded.

onErSiteOutMsgs Total number of messages transmitted from the current database server to this site

Part VI: Administering 1575

MIB object Description

onErSiteOutBytes Total number of bytes transmitted from the current database server to this site

onErSiteInMsgs Total number of messages received by the current database server from this site

onErSiteInBytes Total number of bytes received by the current database server from this site

onErSiteTransactions Total number of transactions received from this site

onErSiteCommits Total number of transactions received and committed from this site

onErSiteAborts Total number of transactions aborted from this site

onErSiteLastReceived Date and time when the last transaction was processed from this site

onErSiteRowCommits Total number of rows committed from this site

onErSiteRowAborts Total number of rows aborted from this site

onErSiteRcvLatency Average latency between the source commit time and target receive time; performance measure of network queueing delay

onErSiteCommitLatenc
y

Average latency between source and target commit time; performance measure of network and database server delay

onErSiteClockErrors Number of transactions received from this site with a time that is ahead of our current time; indicates system clock synchronization problems

onFragmentTable

The following list summarizes this table:

Contents:
Information about the fragments that are in fragmented database tables

Index:
applIndex, rdbmsDbIndex, onTableIndex, onFragmentIndex

Scope of a row:
One fragment of a fragmented database table

The table has the following MIB objects.
Table 1. MIB objects for onFragmentTable

MIB object Description

applIndex See applTable.

rdbmsDbIndex See rdbmsDbTable.

onTableIndex See onDbspaceTable.

onFragmentIndex Unique integer index for the fragment

onFragmentType Type of database table:

fragmentedIndex (1)
fragmentedTable (2)

onFragmentDbspace Dbspace name for the fragment

onFragmentExpression Expression text used for fragmentation of the table or index
This value is blank if the fragmentation scheme is round-robin.

onFragmentIndexName Index identifier

onFragmentExtents Number of extents used

onFragmentPagesAllocated Total (extent) size allocated to the fragment, in pages

onFragmentPagesUsed Number of pages used

onFragmentIsamReads Number of reads from the fragment
If the fragment is not active, this value is noSuchInstance (SNMPv2) or noSuchName (SNMPv1).

onFragmentIsamWrites Number of writes to the fragment
If the fragment is not active, this value is noSuchInstance (SNMPv2) or noSuchName (SNMPv1).

onFragmentUsers Number of user threads that access the fragment.

onFragmentLockRequests Number of locks of any type requested for this fragment.

onFragmentLockWaits Number of times an initial lock request failed because the lock could not be granted initially for the fragment.

onFragmentLockTimeouts Number of deadlock timeouts for the fragment.

onLockTable

The following list summarizes this table:

Contents:

1576 Part VI: Administering

Information about the active locks that database servers are using
Index:

applIndex, onSessionIndex, onLockIndex
Scope of a row:

One lock
A row exists for each lock that the session is using and for each lock on which the session is waiting.

The table has the following MIB objects.
Table 1. MIB objects for onLockTable

MIB object Description

applIndex See applTable.

onSessionIndex See onServerTable.

onLockIndex Index to this row

onLockDatabaseName Name of the database that is using or waiting for this lock

onLockTableName Name of the table that is using or waiting for this lock

onLockType Type of the lock:

byte (1)
intentShared (2)
shared (3)
sharedByRepeatableRead (4)
update (5)
intentExclusive (6)
sharedIntentExclusive (7)
exclusive (8)
exclusiveByRepeatableRead (9)
waiting (10)

onLockGranularity Granularity of the lock:

table (1)
page (2)
row (3)
index (4)

onLockRowId rowid of the locked row

onLockWaiters Number of sessions that are waiting for the lock

onLockGrantTime Time when the lock was granted if the session is using the lock
If no transaction exists, this value is noSuchInstance (SNMPv2) or noSuchName (SNMPv1).

onLogicalLogTable

The following list summarizes this table:

Contents:
Information about logical logs

Index:
applIndex, onLogicalLogIndex

Scope of a row:
One logical log

The table has the following MIB objects.
Table 1. MIB objects for onLogicalLogTable

MIB Object Description

applIndex See applTable.

onLogicalLogIndex Index for the logical-log file

onLogicalLogID Unique integer identification number for the logical-log file

onLogicalLogDbspace Dbspace name where the log file was created

onLogicalLogStatus Status of the logical-log file:

newlyAdded (1)
free (2)
current (3)
used (4)
backedUpButNeeded (5)

Part VI: Administering 1577

MIB Object Description

onLogicalLogContainsLastCheckpoint Checkpoint status:

yes (1): The logical-log file contains the last checkpoint.
no (2): The logical-log file does not contain the last checkpoint.

onLogicalLogIsTemporary Temporary status:

yes (1): The logical-log file is temporary.
no (2): The logical-log file is not temporary.

onLogicalLogPagesAllocated Size of the logical-log file, in pages

onLogicalLogPagesUsed Number of pages used in the logical-log file

onLogicalLogFillTime Date and time when the logical-log file last filled up If the log file has never been full, this
value is noSuchInstance (SNMPv2) or noSuchName (SNMPv1).

onLogicalLogTimeUniqueIDChanged Time stamp when a new unique ID was assigned to this logical-log entry

onLogicalLogTimeLastBackupDate Date and time of the last backup for this logical-log entry

onPhysicalLogTable

The following list summarizes this table:

Contents:
Information about physical logs

Index:
applIndex

Scope of a row:
One physical log

The table has the following MIB objects.
Table 1. MIB objects for onPhysicalLogTable

MIB object Description

applIndex See applTable.

onPhysicalLogDbspace Dbspace name where the physical log was created

onPhysicalLogBufferSize Size of the physical-log buffer, in pages

onPhysicalLogBufferUsed Number of pages of the physical-log buffer that are used

onPhysicalLogPageWrites Number of pages written to the physical log

onPhysicalLogWrites Number of (disk) writes to the physical log

onPhysicalLogPagesAllocated Size of the physical log, in pages

onPhysicalLogPagesUsed Number of pages used

onServerTable

The following list summarizes this table:

Contents:
Status and profile information about each active database server

Index:
applIndex

Scope of a row:
One database server

The table has the following MIB objects.
Table 1. MIB objects for onServerTable

MIB Object Description

applIndex See applTable

1578 Part VI: Administering

MIB Object Description

onServerMode Mode of the database server:

initializing (1)
quiescent (2)
fastRecovery (3)
backingUp (4)
shuttingDown (5)
online (6)
aborting (7)
onlineReadOnly (8)

onServerCheckpointInProgress Checkpoint status:

yes (1): A checkpoint is in progress.
no (2): A checkpoint is not in progress.

onServerPageSize Size of a page, in bytes

onServerThreads Number of active threads

onServerVPs Number of virtual processors

onServerVirtualMemory Total virtual memory used, in kilobytes

onServerResidentMemory Total resident memory used, in kilobytes

onServerMessageMemory Total message memory used, in kilobytes

onServerIsamCalls Sum of all reads, writes, rewrites, deletes, commits, and rollbacks to and from the database
table

onServerLatchWaits Number of latch waits

onServerLockRequests Number of lock requests

onServerLockWaits Number of lock waits

onServerBufferWaits Number of buffer waits

onServerCheckpointWaits Number of checkpoint waits

onServerDeadLocks Number of deadlocks

onServerLockTimeouts Number of deadlock time outs

onServerLogicalLogRecords Number of logical-log records

onServerLogicalLogPageWrites Number of logical-log page writes

onServerLogicalLogWrites Number of logical-log writes

onServerBufferFlushes Number of buffer flushes

onServerForegroundWrites Number of foreground writes

onServerLRUWrites Number of LRU writes

onServerChunkWrites Number of chunk writes

onServerReadAheadPages Number of read-ahead pages This value includes data and index read-ahead pages.

onServerReadAheadPagesUsed Number of read-ahead pages used

onServerSequentialScans Number of sequential scans

onServerMemorySorts Number of memory sorts

onServerDiskSorts Number of disk sorts

onServerMaxSortSpace Maximum disk space that a sort uses, in pages

onServerNetworkReads Number of network reads

onServerNetworkWrites Number of network writes

onServerPDQCalls Number of parallel-processing actions performed

onServerTransactionCommits Number of committed transactions

onServerTransactionRollbacks Number of rolled-back transactions

onServerTimeSinceLastCheckpoint Length of time since the last checkpoint, in hundredths of second

onServerCPUSystemTime Amount of CPU time that the database server has used in System Mode, in hundredths of second

onServerCPUUserTime Amount of CPU time that the database server has used in User Mode, in hundredths of second

onSessionTable

The following list summarizes this table:

Contents:

Part VI: Administering 1579

Information about each session
Index:

applIndex, onSessionIndex
Scope of a row:

One session

The table has the following MIB objects.
Table 1. MIB objects for onSessionTable

MIB Object Description

applIndex See applTable.

onSessionIndex Unique integer index for the session

onSessionUserName Name of the user, in the form name@host(tty)

onSessionUserProgramVersion Version of the database server

onSessionUserProcessId Process ID for the session

onSessionUserTime Length of time that the user has been connected to the database server, in hundredths of seconds

onSessionState State of the session:

idle (1)
active (2)
waitingOnMutex (3)
waitingOnCondition (4)
waitingOnLock (5)
waitingOnBuffer (6)
waitingOnCheckPointing (7)
waitingOnLogicalLogWrite (8)
waitingOnTransaction (9)

onSessionDatabase Connected database

onSessionCurrentMemory Memory usage, in bytes

onSessionThreads Number of active threads

onSessionCurrentStack Average size of the stack for all threads

onSessionHighwaterStack Maximum amount of memory that any thread has used so far

onSessionLockRequests Number of lock requests

onSessionLocksHeld Number of locks held

onSessionLockWaits Number of lock waits

onSessionLockTimeouts Number of timeouts for locks

onSessionLogRecords Number of log records

onSessionIsamReads Number of reads from database tables

onSessionIsamWrites Number of writes to database tables

onSessionPageReads Number of page reads

onSessionPageWrites Number of page writes

onSessionLongTxs Number of long transactions

onSessionLogSpace Logical-log space used, in bytes

onSessionHighwaterLogSpace Maximum logical-log space that this session has ever used

onSessionSqlStatement Latest SQL statement, truncated to 250 characters if necessary

onSessionSqlIsolation SQL isolation level:

noTransactions (1)
dirtyReads (2)
readCommitted (3)
cursorRecordLocked (4)
repeatableRead (5)

onSessionSqlLockWaitMode Action to take if the isolation level requires a wait:

-1 = Wait forever.
0 = Do not wait.
>0 = Wait for specified number of seconds.

onSessionSqlEstimatedCost Estimated cost of the SQL statement according to SQLEXPLAIN

onSessionSqlEstimatedRows Estimated number of rows that the SQL statement selects according to SET EXPLAIN

onSessionSqlError Error number for the last SQL statement

onSessionSqlIsamError ISAM error number for the last SQL statement

1580 Part VI: Administering

MIB Object Description

onSessionTransactionStatus Status of the transaction:

none (1)

committing (2)
rollingBack (3)
rollingHeuristically (4)
waiting (5)

onSessionTransactionBeginLog Unique ID of the logical-log file in which the BEGIN WORK record was logged If no transaction exists, this
value is noSuchInstance (SNMPv2) or noSuchName (SNMPv1).

onSessionTransactionLastLog Unique ID of the logical-log file in which the last record was logged If no transaction exists, this value is
noSuchInstance (SNMPv2) or noSuchName (SNMPv1).

onSessionOriginatingSessionId Local session ID of the global session on the server for which this local session runs

onSqlHostTable

The following list summarizes this table:

Contents:
Copy of the connection information

Index:
applIndex, onSqlHostIndex

Scope of a row:
One connectivity value

As the following table shows, the location of the connection information depends on the operating system.
Table 1. Location of connection information

Operating
system Location of connectivity information

UNIX The INFORMIXSQLHOSTS environment variable specifies the full path name and file name of the connection information. The default location is
$INFORMIXDIR/etc/sqlhosts. For information about INFORMIXSQLHOSTS, see the IBM Informix Guide to SQL: Reference.

Windows The connectivity information is in a key in the Windows registry called HKEY_LOCAL_MACHINE\SOFTWARE\Informix\SQLHOSTS.

For details about the connection information, see your IBM Informix Administrator's Guide.

The table has the following MIB objects.
Table 2. MIB objects for onSqlHostTable

MIB object Description

applIndex See applTable.

onSqlHostIndex Index to the entry in the connectivity information

onSqlHostName Host name of the database server

onSqlHostNetType Connection type

onSqlHostServerName Name of the database server or its alias

onSqlHostServiceName Service name

onSqlHostOptions List server options in the form of key=value pairs

onTableTable

The following list summarizes this table:

Contents:
Information about a database table

Index:
applIndex, rdbmsDbIndex, onTableIndex

Scope of a row:
One database table

For a fragmented database table, the values in this table are summaries of the values from all the database table fragments. The table has the following MIB objects.
Table 1. MIB objects for onTableTable

MIB object Description

applIndex See applTable.

rdbmsDbIndex See rdbmsDbTable.

onTableIndex Table number
This value is the same as tabid in the system catalog table systables

Part VI: Administering 1581

MIB object Description

onTableName Table name

onTableOwner Table owner

onTableType Type of table:

table (1)
view (2)
privateSynonyn (3)
synonym (4)

onTableLockLevel Locking level of the table:

page (1)
row (2)

onTableCreated Creation date, in string format

onTableFirstDbspace Name of the first (or only) dbspace for the table

onTableRowSize Length of a row

onTableRows Number of rows

onTableColumns Number of columns

onTableIndices Number of indexes

onTableExtents Number of extents in use

onTablePagesAllocated Total (extent) size allocated to the table, in pages

onTablePagesUsed Number of pages in use

onTableFragments Number of fragments

onTableFragmentStrategy Fragmentation strategy:

roundRobin (1)
byExpression (2)
tableBased (3)

If the table is not fragmented, this value is noSuchInstance (SNMPv2) or noSuchName (SNMPv1).

onTableActiveFragments
Number of active fragments
If the table is not fragmented, this value is noSuchInstance (SNMPv2) or noSuchName (SNMPv1).

InformixHQ Guide

InformixHQ is a modern web console for visualizing, monitoring, and managing your Informix server instances. It is purpose built for ease-of-use, scaling out, and
optimizing DevOps needs. It provides critical performance management capabilities, monitoring how key performance metrics are changing over time and tracking how
efficiently Informix is running your workload even when you’ve stepped away from your screen. Its monitoring system feeds directly into a customizable alerting system so
you can be immediately alerted via email, Twilio, or PagerDuty whenever an issue occurs on one of your Informix database server instances. InformixHQ is designed to be
scalable to efficiently manage and monitor as many Informix database server instances as you need. Moreover, it's a tool that can be shared by the DBAs, the app
developers, the ops engineers, and management and accessed from any desktop, laptop, or mobile device. InformixHQ is the centralized hub for graphical monitoring,
alerting, and administration of your Informix database servers.

What's new in InformixHQ
 This topic includes information about new features in InformixHQ.

Architecture
InformixHQ consists of three distinct pieces that come together to give you a comprehensive monitoring and administering experience for Informix.
System Compatibility

 Before you install InformixHQ, make sure that your computer meets the system requirements.
Getting Started

 This topic provides a brief tutorial to help you get started with InformixHQ.
InformixHQ Concepts

 This topic covers some of the conceptual aspects of InformixHQ.
InformixHQ Server

 InformixHQ Agent
 Frequently asked questions (FAQs) about InformixHQ

 These topics provide short answers to some frequently asked questions about InformixHQ.

Copyright© 2020 HCL Technologies Limited

What's new in InformixHQ

This topic includes information about new features in InformixHQ.

1582 Part VI: Administering

https://www.hcltech.com/

What's new in InformixHQ 14.10.xC6
What's new in InformixHQ 14.10.xC5
What's new in InformixHQ 14.10.xC4
What's new in InformixHQ 14.10.xC2

What's new in InformixHQ 14.10.xC6
Administration
Ease of use

What's new in InformixHQ 14.10.xC5
Administration
Customization
Ease of use

What's new in InformixHQ 14.10.xC4
Administration
Ease of use

What's new in InformixHQ 14.10.xC2
Administration
Ease of use
Customization

What's new in InformixHQ 14.10.xC6
Administration

The Schema Manager page has been enhanced to:
Create and Drop Table with advanced options

For more information, see Schema Manager.

The InformixHQ server and agent now use the log4j2 library for logging. By default, the InformixHQ server and agent will log messages at INFO level to an
informixhq-server.log file and an informixhq-agent.log file respectively. You can customize the logging behavior by providing a server.log4j.xml when starting the
InformixHQ server or an agent.log4j.xml file when starting the InformixHQ agent in the current directory or classpath. Use these log4j2 configuration files to change
the logging level (ERROR, WARN, INFO, or DEBUG), change the log file location, or enable rolling window logging.

For more information, see Logging in InformixHQ .

Ease of use

Provision is made for the user to specify connection properties for InformixHQ agent separately.
For more information, see InformixHQ Agent Setup.

What's new in InformixHQ 14.10.xC5
Administration

Enhanced to support stronger hash algorithm for passwords by adding a new config property user.password.algorithm.
For more information, see InformixHQ Server Configuration.

Customization

Customized to save dashboard preferences in Custom Dashboard page
For more information, see Custom Dashboards.

Ease of use

Script to start or stop the server has been enhanced to support AIX platform.
For more information, see Getting Started.

What's new in InformixHQ 14.10.xC4
Administration

The Schema Manager page has been enhanced to:
Browse and view detailed information about database information like Stored Procedures, Sequences, User Defined Types, Data Blades
Browse and view detailed information about table information like Indexes, References, Constraints, Triggers
Create Database and Drop Database
Create Demo Database and Drop Demo Database
Create, Enable, Disable and Drop Index with advanced options

For more information, see Schema Manager.

Part VI: Administering 1583

The Connection Manager page allows you to visualize and manage CM unit, SLA and FOC for any CM.
For more information, see Connection Manager.

Ease of use

New script has been added to start or stop the server which is available in ${INFORMIXDIR}/HQ directory.
For more information, see Getting Started.

What's new in InformixHQ 14.10.xC2
Administration

The Schema Manager page allows you to browse and view detailed information about the various tables and indexes in each of your databases.
The Storage > Tables and Indexes page allows you to analyze the storage characteristics of the tables and indexes in each of your databases, perform storage
optimization actions such as compress, shrink, repack, defragment, and manage your automatic storage optimization policies.
The High Availability page makes it easy to visualize and monitor the functioning of your high availability cluster.
The Enterprise Replication page visualizes and provides details drill-down statistics about each Informix node participating in replication.
The Auto Update Statistics pages allows you to manage your automatic update statistics policies, ensuring your queries continue to run efficiently as your data
changes over time.
The Privileges page allows you to manage privileges on your database server, including database level privileges, table level privileges, SQL Admin API privileges,
and internal users.
The System Reports page provides a full set of detailed reports on various aspects of your database server's performance.
The Task Scheduler pages allows you to manage and customize tasks for your database server.
The Memory Manager page allow you to visualize and monitor your database server's memory usage as well as configure its Low Memory Manager configuration.
The Backups page has been enhanced to display a history timeline of your most recent database server backups.

Ease of use

Centralized user permission management, on the redesigned System Settings > User Management page, allows you to view and manage user's permissions
within InformixHQ in a single place.
The group incidents page allows you to view all the alerting incidents that occurs on an entire group of Informix servers from one centralized page.
The new logging framework allows not only for a better out of the box logging experience, but also provides enhanced options for logging customization.
For more information, see Logging in InformixHQ.

Customization

Build custom dashboards for a single database server or for multiple database servers, configuring what monitoring data is displayed on the dashboard and how
that data is arranged and visualized. Custom dashboards allow you to define UI pages that show you the Informix monitoring data that is most important to you.
For more information, see Custom Dashboards.

Create your own custom SQL sensors for monitoring your Informix instances. Any sysmaster SQL query can now be turned into a sensor that will integrate directly
into InformixHQ's monitoring and alerting systems.
For more information, see Custom SQL Sensors.

A new extensible alerting option allows you to define a custom script to be executed whenever an alerting incident occurs.
For more information, see Alerting incident.

Copyright© 2020 HCL Technologies Limited

Architecture

InformixHQ consists of three distinct pieces that come together to give you a comprehensive monitoring and administering experience for Informix.

1584 Part VI: Administering

https://www.hcltech.com/

InformixHQ Server
Java 8 based Jetty web server
Monitors and administers many Informix database servers
Connects directly to Informix databases servers to

Gather live data from the system
Perform administration

Connects to the InformixHQ agents regarding
Monitored data
Alerts/events

InformixHQ Agent
Lightweight Java 8 based monitoring agent
Installed alongside each of your Informix database instances
Only needs read access to database server
Can perform native command execution to gather OS statistics as well as database statistics

InformixHQ User Interface (UI)
Modernized web UI for monitoring, managing, visualizing, and assessing your Informix database servers

Copyright© 2020 HCL Technologies Limited

System Compatibility

Before you install InformixHQ, make sure that your computer meets the system requirements.

InformixHQ Prerequisites
The following table lists the software prerequisites for InformixHQ.

Software Required Version

Informix Database Server 12.10 or higher

Java 1.8

Note:
In Debian environment, InformixHQ requires "haveged" service to be up and running. To start the service, follow these steps:

sudo apt-get install haveged
update-rc.d haveged defaults
service haveged start

Supported Web Browsers
InformixHQ supports all the latest browsers. Following table lists the web browser that InformixHQ has been tested with.

Part VI: Administering 1585

https://www.hcltech.com/

Web Browser Version

Google Chrome 81

Mozilla Firefox 74

Microsoft Edge 80

Copyright© 2020 HCL Technologies Limited

Getting Started

This topic provides a brief tutorial to help you get started with InformixHQ.

Prerequisites
The following table lists the software prerequisites for InformixHQ.

Software Required Version

Informix Database Server 12.10 or higher

Java 1.8

Starting InformixHQ
InformixHQ Server or Agent can be started using any of following methods:

Java Command
Script

Using Java Command
For more information about using Java Command, see Starting the InformixHQ Server and Starting the InformixHQ Agent.

Using the Script:
The script to start the server or agent is in the form of InformixHQ.bat (Windows), InformixHQ.sh (Bash Shell for Linux) and InformixHQ.ksh (Korn shell for AIX) file on
various operating system as per the requirement of the user.
Note: This script is indicative and users are free to modify/tune the scripts as per their requirements/environments.
Script Prerequisites

Server and Agent jar file names should end with .jar and also must contain keyword “informixhq" in its name
If using default filename option with scripts, jar and properties files with default names should be present in same folder as that of script
User running the script must have read and write access to informixhq-server.log and informixhq-agent.log files
If log files don’t exist in the same folder from where HQ jar is running, HQ will create these files, so user running the script should have permissions to be able to
create these files.
Environment variable JAVA_HOME should be set correctly to JAVA 1.8 and should be included in PATH variable.

This script support BASH shell on linux (.sh), KORN shell on AIX (.ksh) and command prompt on windows (.bat). This command starts/stops InformixHQ Server and Agent.

Syntax:

InformixHQ [startserver|startagent] [encoding=<value>] [jvmmemx=<value>] [jarfile=<value>] [propfile=<value>]
 InformixHQ [stop <processid>]
 InformixHQ [list]

 startserver : Starts InformixHQ Server service
 startagent : Starts InformixHQ Agent service
 stop : Stops InformixHQ Server/Agent with processid
 list : Lists InformixHQ running processes
 encoding (Optional) : Default value is utf-8
 jvmmemx (Optional) : JVM's default value will be used If not specified
 jarfile (Optional) : Default is informixhq-server.jar for startServer option
 and informixhq-agent.jar for startAgent option
 For user provided filename, it must contain keyword
 'informixhq' and it should end with .jar"
 propfile (Optional) : Default is informixhq-server.properties for
 startServer option and informixhq-agent.properties for startAgent option
 User can provide any custom name to properties file
 JVMMemx value in m represents MB & g represents GB.

For more information about using the script, see Starting the InformixHQ Server and the Agent on Windows and Starting the InformixHQ Server and the Agent on
Linux/AIX.

Starting the InformixHQ Server
 This topic provides a brief tutorial to help you get started with InformixHQ Server.

Starting the InformixHQ Agent
 This topic covers the two ways of starting the InformixHQ Agent.

Starting the InformixHQ Server and the Agent on Windows
 This topic provides a brief tutorial about the script used to get started with InformixHQ Server and Agent on Windows.

1586 Part VI: Administering

https://www.hcltech.com/

Starting the InformixHQ Server and the Agent on Linux/AIX
This topic provides a brief tutorial about the script used to get started with InformixHQ Server and Agent on Linux/AIX.
Logging in InformixHQ
This topic provides a brief tutorial on logging in InformixHQ.

Copyright© 2020 HCL Technologies Limited

Starting the InformixHQ Server

This topic provides a brief tutorial to help you get started with InformixHQ Server.

1. Locate the informixhq-server.jar and the server.log4j.xml file in the $INFORMIXDIR/hq directory of your Informix database server installation.
2. Create an InformixHQ server configuration file. You can refer to the $INFORMIXDIR/hq/informixhq-server-example.properties file as an example.

The InformixHQ server configuration file must contain an initialAdminPassword . All other configuration properties are optional.

Sample configuration file

required initial password for the admin user
initialAdminPassword=myPassword123
optionally, uncomment these properties to have InformixHQ encrypt its internal H2
database
#h2.encrypt.enable=true
#h2.encrypt.password=password

Note: The initialAdminPassword property is only required the very first time you start the InformixHQ server, when it performs its start-up initialization and creates
the first user named admin. Afterwards, you can remove the initialAdminPassword property from the informixhq-server.properties file.
Note: Password must be at least 8 characters and must contain at least one lowercase character, one uppercase character, and one number.

3. Optionally, edit the server.log4j.xml file to configure logging in the InformixHQ.
Note: By default InformixHQ runs on 8080 port. For more information, see InformixHQ Server Configuration.

4. Start the InformixHQ server using the following command:

java -jar informixhq-server.jar informixhq-server.properties

where informixhq-server.properties is the name of the InformixHQ server configuration file.
Note: Staring from 14.10.xC4 onwards, you can start the server using an alternate method. For more information on this, see Starting the InformixHQ Server and
the Agent on Windows and Starting the InformixHQ Server and the Agent on Linux.
Sample output after starting the InformixHQ server with server.log4j.xml:

Sample output after starting the InformixHQ server without server.log4j.xml:

When the InformixHQ server is started for the first time, a user with system administrator privileges for InformixHQ is created with the username admin and the
password as specified in the initialAdminPassword property from your configuration file.

5. Using a web browser, go to the InformixHQ UI at http://localhost:8080/ and login with the user admin and the password specified in your configuration file.
6. Once logged in, click Add Server to add an Informix server that you want to monitor.

Copyright© 2020 HCL Technologies Limited

Starting the InformixHQ Agent

This topic covers the two ways of starting the InformixHQ Agent.

To get the most out of InformixHQ, you should have an InformixHQ agent running for each Informix database server that you will be monitoring through the tool. While the
InformixHQ agent is not required to view information about your database server in the InformixHQ UI, the agent is required if you want to gather monitoring data and
configure alerts for that server.

There are two options for starting the InformixHQ agent. You can use the InformixHQ UI to automatically deploy and start the InformixHQ agent or you can manually start
the InformixHQ agent on the command line.

Part VI: Administering 1587

https://www.hcltech.com/
https://www.hcltech.com/

Deploying and starting the InformixHQ agent automatically from the UI:
Before you deploy and start the InformixHQ agent automatically from the UI, you must meet the following prerequisites:

Prerequisites
1. SSH must be installed on the database server’s host machine.
2. The informixhq-agent.jar file and the informixhq-server.jar file must be located in the same directory. For customized logging, the agent.log4j.xml file must also be

included in the same directory.

To deploy and start the InformixHQ agent automatically from the UI:

1. The Informix database server that the agent will be monitoring must first be defined in InformixHQ. If the database server has not been defined yet, in the UI,
navigate to an InformixHQ group, click Add Server and define the server’s connection properties.

2. Navigate to the Informix database server’s Setup > Agent page and define a repository server and database. The repository database is where the monitored data
will be stored.

3. From the server’s Setup > Agent page, you can also try to deploy the agent with default configuration by clicking the Deploy Agent button. If the automatic
deployment is successful, you are done. Otherwise, proceed to the next step.

4. Configure agent deployment:
Username: remote user which will own and run the agent
Password or Identity File/Passphrase: remote user’s passphrase or remote user’s identity file (e.g. private key) and its optional passphrase.
Remote directory: Directory to deploy the agent files to. This directory will be created if it does not exist.

5. If SSL is enabled, keystore configuration may be required as well. If keystore configuration is not provided, InformixHQ will try to generate and deploy a keystore for
you.

Keystore file: Location of an existing keystore on the remote machine (can be relative to the remote directory)
Keystore password: Password used to access the existing keystore
Keystore type: Existing keystore’s type. Default is JKS

6. Click Deploy Agent
7. Once the agent is ready, use the InformixHQ UI in your web browser to configure the monitoring profile and alerts for this server.

Starting an InformixHQ agent manually on the command line:
1. The Informix database server that the agent will be monitoring must first be defined in InformixHQ. If the database server has not been defined yet, in the UI,

navigate to an InformixHQ group, click Add Server and define the server’s connection properties.
2. Navigate to the Informix database server’s Setup > Agent page and define a repository server and database. The repository database is where the monitored data

will be stored
3. Locate the informixhq-agent.jar and the agent.log4j.xml file in the $INFORMIXDIR/hq directory of the InformixHQ database server installation.

Note: Staring from 14.10.xC4 onwards, you can start the agent using an alternate method. For more information on this, see and Starting the InformixHQ Server
and the Agent on Windows and Starting the InformixHQ Server and the Agent on Linux.

4. Copy the agent jar file and the log4j2 configuration file to the Informix database server host machine.
5. Create an agent configuration file.

Sample agent configuration file:

host and port of the InformixHQ server
server.host=localhost
server.port=8080

The id of the Informix database server as defined in InformixHQ
informixServer.id=1

Note: You can find the id of your Informix database server by navigating to the server’s Setup page in the UI.
6. Optionally, edit the agent.log4j.xml file to configure logging in the InformixHQ. If agent.log4j.xml is not provided, default logging configuration is set and it gives

warning as shown below.
7. Start the InformixHQ agent using the following command

java -jar informixhq-agent.jar agent.properties

where agent.properties is the name of your InformixHQ agent configuration file.

Sample output after starting the agent with agent.log4j.xml:

Sample output after starting the agent without providing agent.log4j.xml:

8. At this point the agent is ready and running. Use the InformixHQ UI in your web browser to configure the monitoring profile and alerts for this server.

Copyright© 2020 HCL Technologies Limited

Logging in InformixHQ

1588 Part VI: Administering

https://www.hcltech.com/

This topic provides a brief tutorial on logging in InformixHQ.

The InformixHQ server and agent use the log4j2 library for logging. By default, the InformixHQ server and agent will log messages at INFO level to an informixhq-server.log
file and an informixhq-agent.log file respectively.

You can customize the logging behavior by providing a server.log4j.xml file in the current directory or classpath when starting the InformixHQ server or a agent.log4j.xml
file in the current directory or classpath when starting the InformixHQ agent. Use these log4j2 configuration files to change the logging level (ERROR, WARN, INFO, or
DEBUG), change the log file location, or enable rolling window logging. For more information, see the log4j2 documentation.

Sample log4j2 configuration files are provided in $INFOMRIXDIR/hq/example-server.log4j.xml and $INFORMIXDIR/hq/example-agent.log4j.xml.

ConsoleAppender
The ConsoleAppender writes its output to either System.out or System.err with System.out being the default target. A Layout must be provided to format the LogEvent.

RollingFile Appender
The RollingFileAppender is an OutputStreamAppender that writes to the file named in the fileName parameter and rolls the file over according to the TriggeringPolicy and
the RolloverPolicy.

The CompositeTriggeringPolicy takes multiple triggering policies and returns true if any of the configured policies return true. The CompositeTriggeringPolicy is configured
simply by combining other policies in a Policies element.

SizeBased Triggering Policy
Once the file reaches the specified size, the SizeBasedTriggeringPolicy causes a rollover. The size can be specified in bytes, with the suffix KB, MB or GB, for example
20MB. When combined with a time based triggering policy, the file pattern must contain a %i otherwise the target file will be overwritten on every rollover as the
SizeBased Triggering Policy will not cause the timestamp value in the file name to change. When used without a time based triggering policy, the SizeBased Triggering
Policy will cause the timestamp value to change.

TimeBased Triggering Policy
The TimeBasedTriggeringPolicy causes a rollover once the date/time pattern no longer applies to the active file. This policy accepts an interval attribute which indicates
how frequently the rollover should occur based on the time pattern and a modulate boolean attribute.

Default Rollover Policy
The default rollover takes both date/time pattern and an integer specified in filePattern Attribute in RollingFileAppender. If the pattern contains an integer, it will be
incremented on every rollover. If the date/time pattern is present, it will be replaced with current date and time values. If the file pattern ends with ".gz", ".zip", ".bz2",
".deflate", ".pack200", or ".xz", the resulting archive will be compressed using the compression scheme that matches the suffix.

This example shows a rollover strategy that will keep up to 20 files before removing them.

<?xml version="1.0" encoding="UTF-8"?>
<Configuration status="warn" name="MyApp" packages="">
 <Appenders>
 <RollingFile name="RollingFile" fileName="logs/app.log" filePattern="logs/$${date:yyyy-MM}/app-%d{MM-dd-yyyy}-%i.log.gz">
 <PatternLayout>
 <Pattern>%d %p %c{1.} [%t] %m%n</Pattern>
 </PatternLayout>
 <Policies>
 <TimeBasedTriggeringPolicy />
 <SizeBasedTriggeringPolicy size="250 MB" />
 </Policies>
 <DefaultRolloverStrategy max="20" />
 </RollingFile>
 </Appenders>
 <Loggers>
 <Root level="error">
 <AppenderRef ref="RollingFile" />
 </Root>
 </Loggers>
</Configuration>

Copyright© 2020 HCL Technologies Limited

InformixHQ Concepts

This topic covers some of the conceptual aspects of InformixHQ.

Group
InformixHQ provides the ability to create groups of servers to make them easier to manage and monitor. InformixHQ's groups are based on a hierarchy. The base “root”
group is the top level group for all InformixHQ groups and servers. From this root group, you can add as many servers and sub-groups as you desire, nesting them to
whatever level makes sense for your organization.

You can define monitoring and alerting profiles for groups, simplifying the task of managing monitoring for all of your database servers.

Part VI: Administering 1589

https://logging.apache.org/log4j/2.x/manual/index.html
https://logging.apache.org/log4j/2.x/manual/index.html
https://www.hcltech.com/

Agent
The InformixHQ agent is a lightweight Java based program that is designed to run alongside each Informix database server, gathering data about the performance of the
system. The data gathered by the agent is fully configurable and is defined by the list of sensors in the server’s monitoring profile. The data gathered by the agent is
stored in a repository database.

Repository Database
A repository database holds information collected by the InformixHQ agent about the Informix database server. The repository database can either be local to the
database server that is being monitored or it can be on a remote Informix instance. You can define a common repository database shared by multiple Informix database
server instances, or you can define a separate repository database for each monitored instance.

The repository database must be an Informix database and must exist before the agent is started. You must define the database server to be used as a repository in the
InformixHQ UI, using the Add Server action on any group dashboard, before it can be defined as a repository.

To define a repository database for a particular Informix database server, go to the server's Setup page in the UI and click on the Agent tab.

Sensor
A sensor defines a metric or set of metrics for the agent to gather. An example is the “DBSpace Usage” sensor that gathers metrics on used and free space for all database
server spaces.

Monitoring Profile
A monitoring profile defines the list of sensors that the agent runs to gather data about and Informix database server instance or about its host operating system.

For each sensor in a monitoring profile, you can configure the frequency at which that sensor will run and how long that sensor’s data will be kept in the repository
database.

Monitoring profiles can be configured for groups as well as servers. InformixHQ uses the concept of inheritance for determining a particular server's or group's monitoring
profile. All servers and groups inherit monitoring profile information from its parent group in the hierarchy. Servers or groups can also disable or override the configuration
of any sensors inherited from a parent group.

Alert
An alert defines a condition that should trigger an alerting incident in InformixHQ. An example would be an alert defined for when the Informix database server goes
offline.

Alerting profile
An alerting profile defines the set of alerts configured for a particular server or group. Alerting profiles follow an inheritance model similar to monitoring profiles.

Alerting incident
While the monitoring data is collected by the InformixHQ agent, it is the InformixHQ server that is tasked with evaluating alerting conditions. As data is collected by the
agent, the InformixHQ server evaluates each new incoming data point against the alert definitions in the server's alerting profile. Any data point that meets an alerting
condition triggers an alerting incident.

Alerting incidents are shown in the InformixHQ UI for that server. Alerting incident counts are also aggregated and highlighted on the group dashboards. Alerting incidents
can be acknowledged as read or even deleted from the Incidents page in the UI. Users of InformixHQ can configure their own alerting preferences to automatically receive
alerting incidents directly via email, Twilio, or PagerDuty.

Copyright© 2020 HCL Technologies Limited

InformixHQ Server

The InformixHQ server is a Java 8 based Jetty web server. The server is the heart of InformixHQ. It manages the monitoring profiles for all instances, communicates with
agents, handles all alerting activities, hosts the web UI, and provides the REST services that the web UI depends on.

InformixHQ Server Configuration
 InformixHQ UI

Copyright© 2020 HCL Technologies Limited

InformixHQ Server Configuration

A properties file is required to run the InformixHQ server. When starting the InformixHQ server, you can pass the properties file name as part of the start command.
Otherwise, InformixHQ will look for a properties file named informixhq-server.properties in the classpath.

An example configuration file documenting all supported InformixHQ server configuration properties can be found in $INFORMIXDIR/hq/informixhq-server-
example.properties.

1590 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Required configuration properties on initial startup
initialAdminPassword

Optional configuration properties
alert.numberConditionCheckThreads
alert.startNumberAlertSendThreads
dataSource.IFX_ISOLATION_LEVEL
hostname
httpPort
httpsPort
h2.encrypt.algorithm
h2.encrypt.enable
h2.encrypt.password
pool.connectionTimeout
pool.maximumPoolSize
pool.minimumIdle
pool.idleTimeout
redirectHTTPtoHTTPS
rest.session.timeout
ssl.keystore.file
ssl.keystore.password
ssl.key.password
user.password.algorithm
user.password.maxAge
user.password.minLength
user.password.requireLowerCase
user.password.requireNumber
user.password.requireSpecialCharacterFromSet
user.password.requireUpperCase

initialAdminPassword
When starting the InformixHQ server for the first time, an admin user will be created with the password specified in the initialAdminPassword property. This user will
have system administrative privileges on the InformixHQ server which includes the ability to create other users, grant privileges, and make configuration changes to the
server.

This property is only required the very first time you start the InformixHQ server. For security reasons, it is recommended that you remove this property from your
InformixHQ server configuration file after the InformixHQ server has been initialized for the first time.

alert.startNumberAlertSendThreads
Configures the number of threads in the thread pool that processes and dispatches alert notifications (by email, Twilio, Pager Duty, etc.) when an alerting incident occurs.
The default number of threads is 4.

alert.numberConditionCheckThreads
Configures the number of threads in the thread pool that checks whether alerting conditions have been violated whenever new monitoring data comes in. The default
number of threads is 4.

dataSource.IFX_ISOLATION_LEVEL
Specifies the isolation level to set on JDBC connections to the various Informix database servers. The default value is 1.

hostname
The host name of the InformixHQ server. The host name determines the network adapter or interface that the InformixHQ server binds the server socket to.

The default value is an empty string. When set to an empty string, the InformixHQ server will bind to all available network interfaces on the host machine.

httpPort
The HTTP port to run the InformixHQ server on. This port will serve both the InformixHQ web UI and the InformixHQ REST API. Set this value to -1 to disable the HTTP
protocol for InformixHQ. If httpPort is set to -1, make sure that httpsPort is set to something other than -1.The default value is 8080.

httpsPort
The HTTPS port to run the InformixHQ server on. This port will serve both the InformixHQ web UI and the InformixHQ REST API.

Set this value to -1 to disable the HTTPS protocol for InformixHQ. If httpsPort is set to -1, make sure that httpPort is set to something other than -1.

If httpsPort is something other than -1, you must set the ssl.keystore.file and ssl.keystore.password properties, and potentially also the ssl.key.password property if
your key password is different from the keystore password.

The default value is -1 indicating that HTTPS is disabled by default.

h2.encrypt.algorithm

Part VI: Administering 1591

Sets the algorithm for H2 database file encryption. The encryption algorithms supported by H2 are AES, XTEA, and FOG. The default value is AES.

h2.encrypt.enable
Controls whether the H2 database file which holds InformixHQ server's internal metdata is encrypted. If you set this property to true, you must also set the
h2.encrypt.password property. The default value is false.

h2.encrypt.password
Sets the password to use for H2 database file encryption. If h2.encrpyt.enable is set to true, you must set the password for encryption.

pool.connectionTimeout
Specifies the number of milliseconds to wait for a JDBC connection to an Informix database server to be established before it times out. The default value is 5000 (5
seconds).

pool.idleTimeout
Specifies the number of milliseconds that a JDBC connection can be idle in the connection pool before it is closed. The default value is 60000 (1 minute).

pool.maximumPoolSize
The maximum number of JDBC connections in each connection pool. The InformixHQ server will maintain a connection pool for each Informix database that it needs to
connect to. The pool.maximumPoolSize puts a cap on the total number of open JDBC connections that can be established to each database.

The default value is 5.

pool.minimumIdle
The minimum number of idle JDBC connections in each connection pool. The InformixHQ server will maintain a connection pool for each Informix database server that it
needs to connect to. Setting pool.minimumIdle to zero indicates that all JDBC connections in the connection pool should be closed when they have been sitting idle for
longer than the pool.idleTimeout threshold. Setting pool.minimumIdle to a positive integer indicates the number of connections that should be kept open in the
connection pool even when they exceed the pool.idleTimeout. The default and recommended value is 0.

redirectHTTPtoHTTPS
If set to true, HTTP traffic to InformixHQ will automatically be redirected to HTTPS. This will include web socket communication between the InformixHQ server and
agent. If this value is set to true, you will be required to configure SSL in your agent configuration properties.

The default value is false.

rest.session.timeout
Specifies the number of milliseconds that a REST session can be idle before it is closed. The default value is 3600000 (60 minutes).

ssl.keystore.file
The path to the keystore file that contains the certificate to use for network encryption. This property must be set if httpsPort is set to something other than -1.

ssl.keystore.password
The password to unlock the keystore file for network encryption. If this property is not set and the HTTPS is configured, you will be prompted on the command line to
enter the keystore password when starting the InformixHQ server.

ssl.key.password
The password to unlock the entry into the keystore. The default value is no password, which means to use the keystore password. If the entry into the keystore requires a
password that is different from the keystore password, set this property to the entry password.

user.password.algorithm
Sets the algorithm for InformixHQ login password. The encryption algorithms supported by InformixHQ are SHA-1, SHA-256, SHA-384, SHA-512. The default value is
SHA-256.

user.password.maxAge
Controls the maximum age (in days) of a user password. User passwords that are older than the max age will be considered as expired. Setting this property to zero, which
is the default value, specifies that user passwords never expire. Setting this property to a value greater than zero specifies the maximum age (in days) of a user password
before it expires. A user will start receiving notifications in the InformixHQ UI when the difference between the current date and the password expiration date is less than
or equal to 15 days.

1592 Part VI: Administering

user.password.minLength
Controls the minimum length for a user password. The default value is 8.

user.password.requireLowerCase
Controls whether user passwords are required to include at least one lowercase character. The default value is true.

user.password.requireNumber
Controls whether user passwords are required to include at least one number. The default value is true.

user.password.requireSpecialCharacterFromSet
Controls whether user passwords are required to include at least one special character. An empty string indicates that no special characters are required. Setting this
value to “!@#$%^&*()” would require user passwords to include at least one of those characters. The default value is an empty string.

user.password.requireUpperCase
Controls whether user passwords are required to include at least one uppercase character. The default value is true.

Copyright© 2020 HCL Technologies Limited

InformixHQ UI

This topic highlights important aspects of the InformixHQ user interface. The InformixHQ UI is run by the Jetty web server that is embedded in the InformixHQ server. The
default URL for the InformixHQ server is http://localhost:8080/ but the InformixHQ server configuration file can be used to change the port and configure whether https is
enabled.

Adding Servers and Groups
 Exploring Groups

 Exploring Informix Database Servers
 Configuring Monitoring

 Configuring Alerting
 Custom Dashboards
 Schema Manager

 Connection Manager
 InformixHQ Server Settings

 User Settings
 Users and Permissions

Copyright© 2020 HCL Technologies Limited

Adding Servers and Groups

After logging in to InformixHQ for the very first time, you will be taken to a group dashboard for the root group. This dashboard will initially contain zero servers and zero
groups.

Adding Servers
To add servers, click the Add Server button to add connection information for your Informix database server instances.

When adding a server to InformixHQ, you can provide two sets of credentials:

Monitoring credentials
Admin credentials

The monitoring credentials are used by the InformixHQ server whenever a user navigates to any part of the UI that issues a REST query which needs to gather data from
the live Informix database server instance. The monitoring credentials are also used by the agent whenever it gathers data from your database server. The admin
credentials are used whenever a user in the UI requests that an administration action be performed on the database server, for example create a dbspace, edit an
onconfig parameter, or deploy an agent.

Required privileges for the monitoring user CONNECT access to the sysmaster database
CONNECT access to the sysadmin database

Optional privileges for the monitoring user select privileges on the sysconblock, syssqltrace, syssqltrace_info,
syssqltrace_hvar, and syssqltrace_iter tables in the sysmaster database.
select privileges on the ph_task, ph_run, ph_alert, ph_threshold,
ph_bg_jobs, and ph_bg_jobs_results tables in the sysadmin database.

Part VI: Administering 1593

https://www.hcltech.com/
https://www.hcltech.com/

Note: Providing these optional privileges to the monitoring user enables the UI to
show information about the server's the storage pool, sql tracing, auto update
statistics, and scheduler tasks.

Required privileges for the admin user Part of the DBSA group.
CONNECT access to the sysadmin database.
Privilege to run SQL Admin API commands.
select/insert/update/delete privileges on ph_task, ph_run, ph_alert,
ph_threshold, ph_bg_jobs, and ph_bg_jobs_results tables in the sysadmin
database.
Execute privilege on the following functions:

exectask(lvarchar)

exectask(lvarchar,lvarchar)

exectask(integer)

exectask(integer,lvarchar)

If this server is used as a repository server storing monitoring data for one or more
instances, the admin user must also have:

RESOURCE access to the repository database.

It is required that you provide monitoring credentials when adding your Informix database server information to InformixHQ. Admin credentials need only be provided if
you want to use InformixHQ to run administrative actions on your database server or if you want the InformixHQ server to automatically deploy your agents.

SSL Connections
If your database supports or requires SSL connections you can setup SSL using the connection properties on the Add Server page. Specify the following connection
parameters:

SSLCONNECTION true

SSL_TRUSTSTORE Absolute or relative path to the truststore/keystore file from the perspective of the
directory from which the agent and the InformixHQ server start. The
truststore/keystore file must be present where both InformixHQ server and
InformixHQ agent are running

SSL_TRUSTORE_PASSWORD Password to unlock the truststore/keystore file for both InformixHQ server and
InformixHQ agent

Advanced Connection Properties
You can specify any of the advanced JDBC connection parameters when you setup your connection to alter the behavior of the underlying connections InformixHQ makes
to the Informix database servers. For more information, see Informix environment variables with the Informix JDBC Driver

Adding Groups
From the dashboard, you can also click the Add Group button to create groups of servers to make it easier to monitor and manage multiple servers.

Copyright© 2020 HCL Technologies Limited

Exploring Groups

On a group dashboard, you will see all of the servers and sub-groups that belong to the group. For each sub-group, the UI will show a card indicating the number of servers
in the group (the first number is the number of servers directly in the group; the number in parenthesis is the total number of servers under it in the hierarchy). It will also
show if and how many unread incidents exist for servers within the group.

There will also be a card for each server in the current group indicating the server and agent status. Since the agent monitors server status information, the server status
will be unknown if the agent is offline.

From the group dashboard, you can use the Add Server and Add Group buttons to add servers or groups to the hierarchy. Each server or group also has additional actions
to rename, edit connection information (for servers only), move, or delete that object. To drill down on any server or group, click on the server or group card.

From the group dashboard, you can also access the monitoring and alerting profiles for the group by selecting those menu items from the left-hand sidebar. If you are a
System Administrator, you will also see a link for granting/revoking permissions on the group.

Copyright© 2020 HCL Technologies Limited

Exploring Informix Database Servers

Clicking on any server card from a group dashboard will take you to the server's dashboard. The dashboard includes sections on server status and any alerting incidents
that have occurred, as well as information on high availability, threads, storage performance metrics, host memory and CPU usage, etc. If the agent is not running or

1594 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

sensors are not enabled, you will see the latest measurement for these metrics queried directly from the live database server. If the corresponding sensors are running,
the server dashboard will show the recent history of each of these metrics graphically to give you a visual indication of how the database server is performing.

Note: If you see a triangular exclamation icon in the top right of any dashboard, that is an indication that the dashboard uses sensors that do not exist in the server's
monitoring profile. Clicking on that icon will open a pop-up detailing the sensors used by the dashboard and providing a one-click button to enable all of those sensors.
For a particular database server, use the left-hand sidebar menu to continue to explore the server.

Copyright© 2020 HCL Technologies Limited

Configuring Monitoring

After clicking on a server or group from the dashboard, you can use the Monitoring link on the left-hand sidebar menu to configure the monitoring profile for that server or
group. The Monitoring page lists the sensors currently configured in the server or group's monitoring profile.

Clicking the Add Sensors button will open a pop-up displaying the list of sensors not yet configured for this server or group. You can add custom sensors to this list from
the Sensor Management page.

Click the Edit (pencil) icon to modify the run interval or data retention interval.

For servers or groups that inherit sensors from parent groups, there will also be a list of Inherited Sensors. The buttons next to the inherited sensors allow you to disable
or override properties of the inherited sensors.

Copyright© 2020 HCL Technologies Limited

Configuring Alerting

Alerts in InformixHQ can be fully customized. You can configure not only what you want to be alerted on, but also the threshold or condition that should trigger that alert.

Alerts defined for a group are automatically inherited by the child groups and child servers of that group. Defining alerts at the group level simplifies the process of
managing alerts for multiple servers.

To create alerts:

1. Click on a server or a group from the dashboard and then select the Alerting link on the left-hand sidebar menu. The Alerting page lists the alerts configured in the
server or group's alerting profile.

2. Click the Add Alert to open a form that guides you through the process of defining an alert. Provide an alert name to identify it.
3. Select what you want to alert on: Informix server status, agent status, or data from a sensor metric.
4. Define the alerting condition. For example, alert me when the Informix server status is offline or alert me when the number of sessions connected to Informix is

greater than 200.

For servers or groups that inherit alerts from parent groups, there will also be a list of Inherited Alerts. The buttons next to the inherited alerts allow you to disable
inherited alerts. While you cannot override parent alerts like you can do for sensors (due to the complexities of alerts), there is a clone button provided to make it easy to
clone and modify an inherited alert if changes are required.

Once alerts are defined, the InformixHQ server will evaluate the applicable alerting condition for each new data point collected by the InformixHQ agent in the process of
monitoring your database server. If an alerting condition is met, an alerting incident is created. Alerting incidents are automatically displayed in the InformixHQ UI, both
in the dashboard and the Incidents pages for the server and for the parent group(s) it belongs to.

You can enable alert notifications to be sent through email, PagerDuty, Twilio, or a custom alerting script. To enable alerting notifications, a system administrative user for
InformixHQ must enable the desired alerting notification service on the System Settings->Alerting Configuration page. For certain alerting notification services, including
email and Twilio, each individual user who wants to receive alerting notifications must enable it for their user on the My Settings->Alerting Configuration page where they
will provide user specific settings like their email address or phone number.

Copyright© 2020 HCL Technologies Limited

Custom Dashboards

Creating a custom dashboard
You can create custom dashboard of sensor metric or custom query for one or more Informix database servers.

Dashboards can be created for a single server or for multiple servers. Multi-server dashboards can have up to 5 different servers. All dashboards will be saved in the
current group. This allows you to open and view the dashboard for different database servers within that group, although you have the option of saving a default server or
set of servers for any particular dashboard.

To create a custom dashboard:

1. Click on Dashboards from the sidebar menu for a server or a group.
2. Click the New Dashboard button.
3. Select a server or set of servers which will allow you to preview the dashboard as you build it.
4. Add one or more dashboard panels.

Each dashboard panel can be defined to graph one or more sensor metrics from the repository. You can also define a graph based on custom query.

Part VI: Administering 1595

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

You can graph multiple metrics from multiple different sensors on the same graph. For multi-server dashboards, you can choose to associate each panel to a single
server or you can graph metrics for each of your servers in the same graph.

You can customize the graph types (bar, pie, line and table), attributes of the left and right y-axes, colors and labels of graphed metrics.

5. Once you add graph/data source in the panel, it mandates to save the panel to apply the changes. You can also change the name of the panel by clicking on the
pencil icon.

6. Arrange your dashboard panels. Panels can be re-sized and moved to different positions to create a custom layout for your dashboard.
You can view and save your dashboard based on the timestamp selection also. Once you select your desired timestamp, the save button will be enabled/disable
based on the action you performed with the timestamp selection.

As you make changes to your dashboard throughout the process of defining and editing, it is automatically saved.

Viewing a custom dashboard
To view a custom dashboard:

1. Go to the Dashboards page of the group or server within the group.
2. Select the desired dashboard from the list of available dashboards.
3. Optionally, select or change the servers to show on the dashboard.

If the selected dashboard has a set of default servers defined, it will open with the defined servers. Once opened however, you can change the servers shown in the
dashboard by clicking on the server drop-down at the top of the dashboard.

If the dashboard has no default servers defined, your context within InformixHQ will determine which servers get loaded into the dashboard when it opens. If you
open a dashboard from the context of a server, then that dashboard will be automatically loaded for the current server. If you open a dashboard from the context of
a group, then you will be prompted to select one or more servers from that group to show on a dashboard.

Importing a custom dashboard
To import a custom dashboard:

1. Go to the Dashboards page of the group or server within the group.
2. Click the Import button and select the JSON file that has been exported from Dashboards page in InformixHQ. New dashboard will be created with the same

configuration that has been provided while exporting dashboards.

Exporting a custom dashboard
To export a custom dashboard:

1. Go to the Dashboards page of the group or server within the group.
2. Select the desired dashboard from the list of available dashboards.
3. Click the Export button. JSON file will be downloaded to system's Downloads folder.

Copyright© 2020 HCL Technologies Limited

Schema Manager

The Schema Manager page allows you to browse and view detailed information about the various tables and indexes in each of your databases.

Use the Schema Manager to:

View detailed information about Databases
View detailed information about Tables
Create a Database
Create a Demo Database
Drop a Database
Create a Table
Drop a Table
Create an Index
Delete an Index

Viewing Database Information
 Viewing Table Information

 Creating a Database
 Creating a Demo Database

 Dropping a Database
 Creating a Table

 Dropping a Table
 Creating an Index
 Deleting an Index

Copyright© 2020 HCL Technologies Limited

Viewing Database Information

1596 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

You can view detailed information about database using different tabs like Stored Procedures, Sequences, User Defined Types, Data Blades etc.

To view database information:

1. Go to the Schema Manager page in InformixHQ.
2. Select any table from the list.
3. Click on each tab to view the information like Stored Procedures, Sequences, User Defined Types, Data Blades.

Copyright© 2020 HCL Technologies Limited

Viewing Table Information

You can view detailed information about tables using different tabs like Indexes, References, Constraints, Triggers etc

To view information about table:

1. Go to the Schema Manager page in InformixHQ.
2. Select any table from the list.
3. Click on each tab to view the information like Indexes, References, Constraints, Triggers.

Copyright© 2020 HCL Technologies Limited

Creating a Database

To create a database:

1. Go to the Schema Manager page in InformixHQ.
2. Select any database from the list.
3. Click … and – Select Create Database
4. Enter the required details.
5. Click the Finish button. The new database will be created.

Copyright© 2020 HCL Technologies Limited

Creating a Demo Database

To create a demo database:

1. Go to the Schema Manager page in InformixHQ.
2. Select any database from the list.
3. Click … and – Select Create Demo Database
4. Enter the required details.
5. Click the Create button. The demo database will be created.

Copyright© 2020 HCL Technologies Limited

Dropping a Database

To drop a database:

1. Go to the Schema Manager page in InformixHQ.
2. Select the database you want to drop.
3. Click … and – Select Drop Database
4. Click Yes to confirm. The database will be dropped.

Copyright© 2020 HCL Technologies Limited

Creating a Table

This topic explains the steps to create a table using InformixHQ UI.

There are five types of tables:

1. Standard table
2. Raw table
3. External Fixed table
4. External Delimited table

Part VI: Administering 1597

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

5. External Informix table

Standard & Raw table types are almost similar & three external table types are almost similar. This topic explains how to create both table types.

To create a table, follow the steps given below:

1. Go to the Schema Manager in InformixHQ.
2. Select desired database and click on menu option (3 dots) next to Select Database dropdown.
3. Click on Create Table option from dropdown to create a table

To create a Standard or Raw type table:

a. Enter mandatory fields such as Table Name and Table Owner.
b. Select Standard(default) or Raw type from Table Type dropdown.
c. Click on Add Column for adding columns to the table.
d. To cancel Create Table operation click on Cancel button.
e. Next button will be enabled after user is done adding columns to the table.

a. By clicking on Add Columns button pop up will appear to add column details.
b. Enter values for all mandatory fields(*).
c. To give a constraint on any column, click on Column Check Constraint checkbox.
d. Multiple columns can be added using the same pop up.
e. To go back to the main screen, click on Close button or cross icon in the upper right corner.

1598 Part VI: Administering

a. Once columns are added, user can view, edit, delete any of the columns.
b. Table level constraint can be added on this screen by clicking on Table Check Constraint checkbox.
c. Once details related to the columns are finalized, clicking on Next button takes user to add constraint page.

a. This screen is for adding a constraint like primary key, foreign key, unique key to a table.
b. To assign primary key to a table, give Primary Key Name & select Primary Key Columns.

a. To add Foreign key constraint, click on Add button in Foreign key section.
b. To assign a foreign key for a table, give Foreign Key Name & map Referenced Column with Table Column.

Part VI: Administering 1599

a. To add a Unique key constraint, click on Add button in Unique key section.
b. To assign a unique key for a table, give Unique Key Name & select Available Columns from the list. This will enable the Add button.

a. Once constraints are added user can go to either View SQLor Advance Table Options

a. Modify advance table level options using the screen given below. For example, changing lock mode, storage scheme, update statistics, etc.

1600 Part VI: Administering

a. Once advance table option are set, click on View Query & Create button to view SQL query for creating the table.
b. After clicking on View Query & Create button from Advance Table Options or on View SQLbutton from Add Constraints screen, user will be able to view

'create table' query as shown in the screen given below.
c. Click Create button to create the table.
d. If table is created successfully, information status message will be shown and user will be taken back to Schema Manager page.
e. If table creation fails, error status message is displayed and all the create table related queries will be rolled back
f. To go back to modify any properties click Back button and to cancel the operation of create table click on Cancel button.

External table type:

To create an External type table:

a. Enter mandatory fields such as Table Name and Table Owner.
b. Select one of External Fixed, External delimited, External Informix table type from Table Type dropdown.
c. Click on Add Columns for adding columns to the table.
d. To cancel Create Table operation, click on Cancel button.
e. Next button will be enabled once user adds columns to the table.

Part VI: Administering 1601

a. By clicking on Add Column button, a pop up will appear to add column details.
b. Enter all the mandatory field values(*).
c. User can add multiple columns using the same pop up.
d. To go back to the main screen, click on Close button or Cross icon.

a. Once columns are added, user can view, edit , delete any of the columns.
b. Once column details are finalized click on Next button to go to External Table Options

a. Provide information for external table options & add mandatory data file by clicking on +Add button.

1602 Part VI: Administering

a. Following pop up is used to add data files to an external table.

a. Once data files are added, user can view, edit , delete any of the data files.
b. Once External table options are finalized click on View Query & Create button to view SQL query for creating the table.
c. User can either go Back or Cancel the operation using respective buttons.

Part VI: Administering 1603

a. After clicking on View Query & Create button from the external table option, user will be able to view create table query as shown in the screen below.
b. Click Create button to create the table.
c. If table is created successfully information status message will be shown and user will be taken back to Schema Manager page.
d. If table creation fails, error status message will be displayed and all the create table queries will be rolled back.
e. To go back to modify any properties, click Back button and to cancel the operation of create table click on Cancel button.

Copyright© 2020 HCL Technologies Limited

Dropping a Table

1. Click on Schema Manager in InformixHQ.
2. Select a desired database from Select Database dropdown which contains the table to be dropped.
3. From the table list shown, locate the table to be dropped.
4. Click on menu option (3 dots) next to this table and select Drop Table from the dropdown menu to drop a table.
5. Confirm action on pop over (confirmation pop up for dropping a table).

1604 Part VI: Administering

https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Creating an Index

To create an index:

1. Go to the Schema Manager page in InformixHQ.
2. Select the table.
3. Click … and – Select Create Index
4. Enter the required details.
5. Click the View SQL button to review the SQL statement.
6. Click the Create button, index will be created.

Note: You can also enable or disable the index.

Copyright© 2020 HCL Technologies Limited

Deleting an Index

To delete an index:

1. Go to the Schema Manager page in InformixHQ.
2. Select the table for which you want to delete the index.
3. Click the Indexes tab.
4. Select the index you want to delete.
5. Click the Delete icon.
6. Click Yes to confirm. Index will be deleted.

Copyright© 2020 HCL Technologies Limited

Connection Manager

. The Connection Manager page allows you to visualize and manage CM unit, SLA and FOC for any CM.

Use the Connection Manager to:

View all connection units
1. Go to the Connection Manager page in InformixHQ.
2. Click on any CM row. All CM units will be displayed.
3. Click on any CM unit name. CM unit detail page will be displayed.

View/add/modify/delete SLA within connection units
1. Go to the Connection Manager page in InformixHQ.
2. Click on any CM row. All CM units will be listed.
3. Click on any CM unit name. SLA table will be displayed.
4. Click the Modify/Delete button on any row to edit or delete the existing SLA.
5. Click the Add SLA button to create new SLA.

View/add/modify FOC within connection units

Part VI: Administering 1605

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

1. Go to the Connection Manager page in InformixHQ.
2. Click on any CM row. FOC details will be displayed in the Cluster CM unit detail page.
3. Click the Modify button to Modify FOC values. Use the Slider to enable or disable FOC.
4. To change the FOC order, click the Click here button in CM unit page.

View or get alerts for number of SLA connections
1. Go to the Monitoring page in InformixHQ.
2. Click the +Add Sensor button.
3. Search for SLA connections. The existing SLA Connections sensor details will be displayed in the Add sensor page.

Copyright© 2020 HCL Technologies Limited

InformixHQ Server Settings

Users with System Administrator privileges, including the initial admin user created when InformixHQ is started for the very first time, will have a System Settings link in
the drop-down menu shown when they click on the user icon in the top right corner of the application title bar. This link is used for making changes to the global
InformixHQ Configuration.

The InformixHQ Configuration page includes settings for:

Alerting Configuration – enable and configure InformixHQ to be able to send alerts to users via email, Twilio, or PagerDuty
Data Cleanup Configuration – configure the schedule and settings for when InformixHQ runs its repository data cleanup jobs
Sensor Management – create and manage custom SQL sensors for monitoring your Informix database servers
Server Configuration – configure system-wide settings for the InformixHQ server, including the REST SQL session timeout.
User Management – add users and edit their InformixHQ privileges

Configuring Alerting Notification
 Creating Custom Sensors

Copyright© 2020 HCL Technologies Limited

Configuring Alerting Notification

System administrative users for InformixHQ must enable which alerting notification services the InformixHQ server should use when an alerting incident occurs. If
desired, you can configure and enable multiple alerting notification services.

InformixHQ supports the following alerting notification services, all of which can be configured and enabled on the System Settings > Alerting Configuration page.:

Email
InformixHQ can be configured to send emails through an external SMTP server when alerting incidents occur. To enable email notifications, the system
administrative user must provide a SMTP server and port to use. Optionally, you can provide a user and password for authenticating to that SMTP server and a from
email address that InformixHQ should use when sending alerting notification emails.

Email notifications must first be enabled at the system level by the system administrative user. Then each individual InformixHQ user who wants email notifications
must enable it for their email address on their My Settings->Alerting Configuration page.

Twilio
InformixHQ can be configured to send alerting incidents through Twilio. To enable Twilio notifications, the system administrative user must provide the Twilio
account SID, authorization token, and phone number to send alerts from.

Twilio notifications must be enabled at the system level by the system administrative user. Then each individual InformixHQ user who wants Twilio notifications
must enable it for their phone number on their My Settings->Alerting Configuration page.

Pager Duty
InformixHQ can be configured to send alerting incidents through Pager Duty. Pager Duty alerts are enabled globally by the system administrative user of
InformixHQ. To enable Pager Duty notifications, the system administrative user must provide a PagerDuty service key.

Pager Duty alerts do not need to be enabled by each individual user of InformixHQ. When Pager Duty alerting notifications are enabled by the system
administrative, all alerting incidents that occur in InformixHQ will be sent to the specified Pager Duty service key.

InformixHQ sends PagerDuty notifications through REST using Pager Duty’s Events API v1.

Run Script
The InformixHQ server can be configured to run a local script whenever an alerting incident occurs. Script notifications in InformixHQ provide an extensible way to
integrate InformixHQ's alerting with any alerting mechanism used by your organization.

Script notification is enabled globally by the system administrator on the System Settings > Alerting Configuration page. When script notification is enabled, the
InformixHQ server will run the specified script whenever an alerting incident occurs on any server or group managed by InformixHQ.

Before the InformixHQ server runs your script, it will set the following environment variables to contain information about the alerting incident that occurred:
ALERT_ID – id of the alerting incident
ALERT_TIMESTAMP – timestamp of the alerting incident
ALERT_SUMMARY – summary text describing the alerting incident
ALERT_MESSAGE – detailed message describing the alerting incident
SERVER_ID – id of the Informix server on which the alerting incident occurred
SERVER_ALIAS – alias of the Informix server on which the alerting incident occurred

1606 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

GROUP_ID – id of the parent group containing the Informix server on which the alerting incident occurred
GROUP_NAME – name of the parent group containing the Informix server on which the alerting incident occurred
EVENT_URL – an url link to view the alerting incident in InformixHQ

A sample use case for the “Run Script” alerting service would be, suppose your organization uses a third party alerting service that InformixHQ does not have native
support for. That service requires you to POST a JSON document to a specific URL to generate an alert. You can write a script that reads in the environment
variables set by InformixHQ, reformat that data into a JSON document as required, and then use curl to send a REST POST request to your organization’s alerting
service.

Copyright© 2020 HCL Technologies Limited

Creating Custom Sensors

Use the System Settings > Sensor Management page to create and manage custom SQL sensors. Custom sensors allow you to define data to be collected by the
InformixHQ agent. Data from custom sensors can be graphed on a custom dashboard. You can also use custom sensors to define alerting conditions in InformixHQ.

Each custom SQL sensor is based on a single SQL query to be run by the agent on the sysmaster database of the Informix server being monitored. Any data that can be
returned by a SQL query against sysmaster can be monitored by the agent.

Only System Administrative users of InformixHQ can define custom SQL sensors. Once defined, custom sensors can be added to any server or group's monitoring profile.

To define a custom SQL sensor, go to the System Settings > Sensor Management page and click Create Sensor.

For each custom sensor, define the following:

SQL
Define the SQL query to be run against the sysmaster database on the Informix server being monitored.

Select a sample server to run the query against to preview the data.
Optionally, specify the Transpose option to have the agent transpose (or pivot) the data returned by your SQL query based on a selected column.
Optionally, specify a Primary Key column for your query.

If your query returns multiple rows describing multiple objects (e.g. dbspaces), use the primary key column to define the unique identifier for each
object.

Metrics
Define a metric for each column returned by your query. Each metric will have:

Name: A display name for the metric which will be used to display this metric's data in the InformixHQ UI.
Unit: Optional. Defining the unit as percentage or bytes will direct the InformixHQ UI to format the sensor data values before they are displayed in the
UI.
Default Value: Optional. A default value to be used for the metric if the query returns null for that column.
Calculate Delta: Optional. If enabled, the agent will store the difference per second between the latest reading and the previous reading.

Sensor Metadata
A unique id for the sensor
A display name for the sensor
An optional description of the sensor
A default run interval
A default data retention interval

Copyright© 2020 HCL Technologies Limited

User Settings

Each user will have a Settings link in the drop-down menu shown when they click on the user icon in the top right corner of the application title bar. This link is where users
can configure their own personal settings.

The user settings page includes links for:

Alerting Configuration – enable alerts for your username and choose how to get alerts (email or Twilio). This requires that the InformixHQ administrator has
configured the corresponding alerting services.
Changing your password

Configuring User Alerting Notification

Copyright© 2020 HCL Technologies Limited

Configuring User Alerting Notification

InformixHQ provides two alerting notification options that can be enabled for each individual user: email and Twilio. To enable these notification services, the system
administrative user for InformixHQ must enable email and/or Twilio notifications at the system level on the InformixHQ System Settings > Alerting Configuration page.
Then each individual user must enable email or Twilio notifications for their user on the My Settings->Alerting Configuration page, providing their email address or phone
number respectively.

InfromixHQ also supports Pager Duty and Run Script based alerting notifications, but these are configured globally in InformixHQ and are not enabled for each individual
user.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1607

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Users and Permissions

Only users with System Administrator privileges can add or delete users or modify their privileges. The initial admin user that is created when the InformixHQ server starts
for the first time has System Administrator privileges. Additional users with System Administrator privileges can be created.

To add a user, delete a user, or modify their InformixHQ system privileges and permissions, a System Administrator user should click on their user icon in the top right
corner of the title bar and go to the System Settings > User Management page.

When adding a user, you can optionally make the new user a System Administrator if you want them to manage users and configure InformixHQ. System Administrators
automatically have full access (Read, SQL, and Admin permissions) on all servers and groups. When creating a new non-System Administrator, you have the option to
grant Read, SQL, and/or Admin permissions for that user to any servers and groups that have been added to InformixHQ.

Read permissions allow a user to view information about a server in the UI, Admin permissions allow a user to execute administrative actions to make changes to a server,
and SQL permissions allow a user to run SQL queries against that database server on the Schema Manager page.
Note: These three permissions are mutually exclusive. Granting Admin permissions does not automatically include Read permission.
In order to run administrative actions on an Informix database server, a user must have Admin permissions on that server and admin credentials must have been provided
when adding that server to InformixHQ. You can review and edit server credentials by going to the server’s Setup page or by going to the group dashboard, selecting the
server's card, and clicking Edit.

Permissions for a server or a group in InformixHQ are inherited. If a user is granted Read or Admin privilege on a group, the same privilege will be granted on all servers
and sub-groups within that group.

While the System Settings > User Management page allows you to view and edit the complete permissions for each individual user of InformixHQ, there is also a
Permissions page specific to each server or group that allows to you to see (and edit) all users who have permissions to that particular server or group. You can access
this page by navigating to a particular server or group and clicking on Permissions in the side-bar menu.

Copyright© 2020 HCL Technologies Limited

InformixHQ Agent

The InformixHQ agent is a lightweight Java 8 based monitoring agent. It should be installed on the host machine for each Informix database server that you want
monitored by InformixHQ.

The agent runs alongside the database server, gathering database statistics through JDBC connections to sysmaster. The InformixHQ agent only needs read access to the
database server.

By running the agent directly on the Informix server host machine, the agent is also able to gather and monitor OS statistics which can be just as critical in evaluating and
tuning the Informix database server performance metrics.

InformixHQ Agent Setup
 This topic explains how to configure InformixHQ agent from InformixHQ UI.

InformixHQ Agent Configuration Parameters

Copyright© 2020 HCL Technologies Limited

InformixHQ Agent Setup

This topic explains how to configure InformixHQ agent from InformixHQ UI.

Select repository database
Repository server is the server which contains Repository database, which will be used to store all the monitoring data collected by InformixHQ agent. Without selecting a
repository database, user is not allowed to save agent setup changes. Repository database server can be any Informix server specified in InformixHQ User Interface.

TIP: User should create a dedicated database to store metrics to be captured by InformixHQ agent. A new database can easily be created from Schema Manager page.
Similarly metrics can be defined by adding Sensors from Motitoring page.

Following are two scenarios if repository database is not available for any reason:

1. InformixHQ Agent is not configured yet:
In this scenario, InformixHQ agent configuration is not set yet by the user, probably user is setting up InformixHQ agent for the first time. InformixHQ agent
connects with monitoring server using existing Informix server connection properties.

1608 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

2. InformixHQ Agent is already configured:
In this scenario, previously saved InformixHQ agent configuration will be shown in read only mode. Basically, whenever user runs agent jar, it will connect using
already saved configuration.

Add Connection Properties
Separate connection properties can be specified for the InformixHQ agent. Users can specify connection properties for monitoring server and repository database server,
respectively. Following are two cases while specifying connection properties.

1. Repository database is located on monitoring Server:
In this scenario, InformixHQ agent will connect with monitoring server and repository database using the same connection properties.

By default, InformixHQ agent will use Informix server connection properties (from Informix server setup page) to connect with monitoring server and repository
database. (When checkbox is checked)

If needed user can add/modify InformixHQ agent connection properties by unchecking the checkbox as follows:

Part VI: Administering 1609

This will be specifically useful for providing different SSL keystore path for InformixHQ agent.

2. Repository database server is located on a different server:
In this scenario, InformixHQ agent will connect with monitoring server and repository database using different connection properties.

By default, InformixHQ agent will use connection properties of respective Informix servers to connect with monitoring server and repository database, respectively.
(When checkbox is checked)

If needed user can add/modify InformixHQ agent connection properties for monitoring server and repository database separately by unchecking respective
checkboxes as follows:

This will be specifically useful for providing different SSL keystore path for monitoring server and repository database, respectively. See (Compatibility matrix for
Java with SSL Keystore format).

In both scenarios, if checkbox is unchecked, at least one connection property should be added to enable save button.

1610 Part VI: Administering

Note:
If Repository database is not configured or could not be connected due to any reason, then user will not be able to add/modify agent connection properties.

If already configured Repository server is removed from InformixHQ, then such server will not be visible in agent setup page under "Select Repository server". In this
scenario, all the custom agent connection properties previously saved, will reset and user needs to re-enter all the custom connection properties in Agent Setup page
once new repository server is selected.

Compatibility matrix for Java with SSL Keystore format
Following are keystore formats supported based on Java providers:

Java Provider Type

IBM Java(v1.8) JKS

Oracle Java(v1.8) JKS, PKCS

Related information:
 Schema Manager

Copyright© 2020 HCL Technologies Limited

InformixHQ Agent Configuration Parameters

A properties file is required to run the InformixHQ agent.

When starting the agent, you can pass the properties file name as part of the start command. Otherwise, the agent will look for a properties file named agent.properties in
the classpath.

An example configuration file documenting the supported InformixHQ agent configuration properties can be found at $INFORMIXDIR/hq/informixhq-agent-
example.properties.

Required configuration properties
informixServer.id
server.host
server.port

Optional configuration properties
dataSource.IFX_ISOLATION_LEVEL
pool.connectionTimeout
pool.idleTimeout
pool.maximumPoolSize
pool.minimumIdle
ssl.enable
ssl.keystore.file
ssl.keystore.password
target.informixdir
target.onlinelog
target.ping.frequency
user.password.minLength
user.password.requireLowerCase
user.password.requireUpperCase
user.password.requireNumber
user.password.requireSpecialCharacterFromSet

informixServer.id
The id of the Informix database server in InformixHQ. You find the server’s id on the server’s Setup page in the InformixHQ UI.

server.host
The host name on which the InformixHQ server is running.

server.port

Part VI: Administering 1611

https://www.hcltech.com/

The port on which the InformixHQ server is running.

dataSource.IFX_ISOLATION_LEVEL
Specifies the isolation level to set on JDBC connections to the target and repository Informix database servers.

The default value is 1 (DIRTY READ).

pool.connectionTimeout
Specifies the number of milliseconds to wait for a JDBC connection to the target or repository Informix database server to be established before it times out. The default
value is 5000 (5 seconds).

pool.idleTimeout
Specifies the number of milliseconds that a JDBC connection can be idle in the connection pool before it is closed.

The default value is 60000 (1 minute).

pool.maximumPoolSize
The maximum number of JDBC connections in each connection pool. The InformixHQ agent will maintain a connection pool for the target database server and another a
connection pool for the repository database server. The pool.maximumPoolSize puts a cap on the total number of open JDBC connections that can be established to each
database. The default value is 3.

pool.minimumIdle
The minimum number of idle JDBC connections in each connection pool. The InformixHQ agent will maintain a connection pool for the target database server and another
a connection pool for the repository database server. Setting pool.minimumIdle to zero indicates that all JDBC connections in the connection pool should be closed when
they exceed the pool.idleTimeout. Setting pool.minimumIdle to a positive integer indicates the number of connections that should be kept open in the connection pool
even when they exceed the pool.idleTimeout.

The default and recommended value is 0.

ssl.enable
Whether SSL should be enabled to secure web socket communication between the agent and the InformixHQ server. Set this value to true if the InformixHQ server port
specified in server.port is an HTTPS port.
Note: if redirectHTTPtoHTTPS is set to true in the InformixHQ server configuration file, you must set this value to true in the agent configuration file.
If ssl.enable is set to true, you must also configure the ssl.keystore.file and ssl.keystore.password configuration properties.

The default value is false.

ssl.keystore.file
The path to the keystore file that contains the certificate to use for encrypting web socket communication between the agent and the InformixHQ server. This property
must be set if ssl.enable is set to true.

ssl.keystore.password
The password to unlock the keystore file for used for encrypting web socket communication between the agent and the InformixHQ server.

This property must be set if ssl.enable is set to true.

target.informixdir
Optionally, specify the directory on the local machine where Informix is installed. If left empty, the agent will query the server for the INFORMIXDIR property. This
property is used by sensors that gather data from onstat or other Informix utilities

target.onlinelog
Optionally specify the path to the online.log file for the target Informix database server.

If this is left empty and the Online Log monitoring sensor is enabled for this server, the agent will lookup the online.log file path by querying the database server.

There is no default value.

target.ping.frequency
Specifies the interval, in seconds, between pings to the target database server to see if it is still online. When the agent is running, it will regularly monitor whether the
target database server is online or offline. This property controls the duration between these checks.

The default value is 1, indicating to check the server status every second.

1612 Part VI: Administering

user.password.minLength
Controls the minimum length for a user password. The default value is 8.

user.password.requireLowerCase
Controls whether user passwords are required to include at least one lowercase character. The default value is true.

user.password.requireUpperCase
Controls whether user passwords are required to include at least one uppercase character. The default value is true.

user.password.requireNumber
Controls whether user passwords are required to include at least one number. The default value is true.

user.password.requireSpecialCharacterFromSet
Controls whether user passwords are required to include at least one special character. An empty string indicates that no special characters are required. Setting this
value to “!@#$%^&*()” would require user passwords to include at least one of those characters. The default value is an empty string.

Copyright© 2020 HCL Technologies Limited

Frequently asked questions (FAQs) about InformixHQ

These topics provide short answers to some frequently asked questions about InformixHQ.

High level architecture and functionality
 This topic provides answers to some frequently asked questions about high level architecture and functionality.

Getting Started
 This topic provides answers to some frequently asked questions on getting started with InformixHQ.

Monitoring and the Repository Database
 This topic provides answers to some frequently asked questions on monitoring and the repository database in InformixHQ.

Security
 This topic provides answers to some frequently asked questions on InformixHQ security.

Users and Permissions
 This topic provides answers to some frequently asked questions on InformixHQ users and permissions.

Copyright© 2020 HCL Technologies Limited

High level architecture and functionality

This topic provides answers to some frequently asked questions about high level architecture and functionality.

What is the difference between the InformixHQ server and agent?
Is it necessary to start the agent to use InformixHQ?
I have multiple Informix database instances running on the same host machine. Do I need one agent per host or one agent per database server?

What is the difference between the InformixHQ server and agent?
The InformixHQ server is a Java 8 based Jetty web server that hosts both the web user interface (UI) portion of the tool and the REST web services. The InformixHQ
server also connects directly to the Informix database server instances to gather live data and run administration commands, manages connections to all agents, and
evaluates and dispatches alerts when new monitored data comes in, among other things. You only need to run a single instance of the InformixHQ server to manage and
monitor all of your Informix database server instances.

The InformixHQ agent is a lightweight Java program that runs alongside each of your Informix database server instances and gathers monitoring data. The agent is
intended to be installed on the same host machine as the Informix database server that you want monitored by InformixHQ, which allows it to also gather operating
system statistics about the host machine. Unlike the InformixHQ server, you will have one instance of the InformixHQ agent running for each Informix database server that
you want the tool to monitor.

For information, see InformixHQ Architecture.

Is it necessary to start the agent to use InformixHQ?
The agent is not required to use InformixHQ. However, it is important to note that the agent process is the one responsible for gathering all of the monitoring data.
Therefore, if you choose not to connect the agent, the tool will not be monitoring your Informix database servers when you close your web browser. You will not be able to
see graphs in the UI of how various performance metrics are trending over time and you will not be able to configure alerting conditions if you are not using the agent.

Part VI: Administering 1613

https://www.hcltech.com/
https://www.hcltech.com/

I have multiple Informix database instances running on the same host machine. Do I need one
agent per host or one agent per database server?

There is a one-to-one relationship between the InformixHQ agent and the Informix database server. Each agent monitors just one Informix database server instance. If
you have multiple Informix database server instances on the same host and you want to monitor each of them, then you will need to have multiple agents on that same
host machine, one for each database server instance.

Copyright© 2020 HCL Technologies Limited

Getting Started

This topic provides answers to some frequently asked questions on getting started with InformixHQ.

Where can I get InformixHQ?
What should I do before upgrading to the latest version of InformixHQ?
Where can I find sample configuration files for the server and agent?
How can I configure the logging for the server or agent? How do I change the logging level?

Where can I get InformixHQ?
InformixHQ is available as part of the Informix database server installation for versions 12.10.xC13 or higher.

For information, see Getting Started.

What should I do before upgrading to the latest version of InformixHQ?
Before upgrading to the latest version, it is suggested to make a backup copy of the old database file i.e. a backup copy of h2db.mv.db file. This is required in case if you
ever want to revert to the previous version of InformixHQ with previous InformixHQ jar.

Where can I find sample configuration files for the server and agent?
Sample configuration files for both the InformixHQ server and agent are available in the $INFORMIXDIR/hq directory of your Informix database server installation.

For information, see InformixHQ Server Configuration and InformixHQ Agent Configuration.

How can I configure the logging for the server or agent? How do I change the logging level?
InformixHQ uses the logback library for logging. By default, the InformixHQ server and agent will log messages at INFO level to an informixhq-server.log file and an
informixhq-agent.log file respectively.

You can customize the logging behavior by providing a server-logback.xml file in the current directory or classpath when starting the InformixHQ server or a agent-
logback.xml file in the current directory or classpath when starting the InformixHQ agent. Use these logback configuration files to change the logging level (ERROR, WARN,
INFO, or DEBUG), change the log file location, or enable rolling window logging. For more information, see logback and Logging in InformixHQ.

How do you stop the server and how do you stop the agent?
You can stop both the InformixHQ server and agent by terminating the java process that is running them.

Copyright© 2020 HCL Technologies Limited

Monitoring and the Repository Database

This topic provides answers to some frequently asked questions on monitoring and the repository database in InformixHQ.

Where is the monitored data stored?
Does the repository database need to exist ahead of time? Do I need to run any DDL statements to initialize the repository database?
If I add a new database server instance to a group and start an agent for that new server, do I have to do anything to enable all of the group’s sensors on the new
server?

Where is the monitored data stored?
The monitored data is stored in the repository database as defined in the InformixHQ UI. The repository database must be an Informix database, but it can be located
wherever you choose. You can store the monitored data within the same Informix instance that is being monitored or you can choose to use a central repository database
to store all of the monitored data for all of your Informix database server instances.

Does the repository database need to exist ahead of time? Do I need to run any DDL
statements to initialize the repository database?

The repository database must exist before you define it as a repository database. You define a repository database in the InformixHQ UI on a server’s Setup > Agent page.

1614 Part VI: Administering

https://www.hcltech.com/
https://logback.qos.ch/documentation.html
https://logback.qos.ch/documentation.html
https://www.hcltech.com/

You do not need to run any DDL statements to initialize the schema for the repository database. The agent will automatically create the tables it needs to store the
monitored data.

If I add a new database server instance to a group and start an agent for that new server, do I
have to do anything to enable all of the group’s sensors on the new server?

No, this happens automatically. Sensors defined in a group's monitoring profile are automatically applied to all database servers within the group. When a new server is
added to the group, it will automatically inherit all of the sensors enabled in the group's monitoring profile. No additional step is needed to make this happen. The same
thing applies to a group's alerting profile.

Copyright© 2020 HCL Technologies Limited

Security

This topic provides answers to some frequently asked questions on InformixHQ security.

Do I need to keep the initialAdminPassword in the properties file after the InformixHQ server is started for the first time? Isn't it a security issue to keep the
password in plain text in the properties file?
How can I configure HTTPS and/or SSL for InformixHQ?
How can I encrpyt the internal H2 database that the InformixHQ server uses?
How can I configure InformixHQ to use SSL when connecting to my database server?

Do I need to keep the initialAdminPassword in the properties file after the InformixHQ server
is started for the first time? Isn't it a security issue to keep the password in plain text in the
properties file?

The initialAdminPassword property is only required in the InformixHQ server properties file the first time it is started. When the server is started for the very first time, it
initializes its internal H2 database and creates the initial admin user. For all subsequent starts of the InformixHQ server, the admin user will already exist and therefore the
initialAdminPassword will be ignored if it is present in the properties file. This means that after the server is started for the first time, you can safely remove the
initialAdminPassword property from the properties file. This allows you to avoid having that password continue to sit around in plain text in your properties file.

How can I configure HTTPS and/or SSL for InformixHQ?
To use the Secure Sockets Layer (SSL) protocol to encrypt communication with InformixHQ, you will need a keystore and certificate. You can use the method that best fits
your environment for creating the keystore and certificate, for example Java keytool, OpenSSL, or even the IBM Global Security Kit (GSKit).

Configuring HTTPS in the InformixHQ server
Once you have the keystore, secure the InformixHQ web user interface and REST API by configuring HTTPS in the InformixHQ server. To configure HTTPS in the
InformixHQ server, in your InformixHQ server properties file, set the httpsPort, ssl.keystore.file, and ssl.keystore.password properties and potentially also the
ssl.key.password property if your key password is different from the keystore password.

Additionally, if you want to disable HTTP access to the InformixHQ so that all communication to and from the InformixHQ server uses HTTPS, set the httpPort to -1
in your properties file. If instead you would like the InformixHQ server to automatically redirect all HTTP traffic to the HTTPS port, set the redirectHTTPtoHTTPS
property to true.

Sample InformixHQ server properties file with HTTPS enabled:

The initialAdminPassword is only required the first time the InformixHQ server is started
initialAdminPassword=myAdminPassword

configure ports
httpPort=-1
httpsPort=8088
redirectHTTPtoHTTPS=false

configure keystore
ssl.keystore.file=/opt/informixhq/mykeystore.jks
ssl.keystore.password=myStorePassword
uncomment the following line if a separate key password is required for your keystore
#ssl.key.password=myKeyPassword

Configuring the InformixHQ agent to encrypt its web socket communication with SSL

Once you have HTTPS enabled in the InformixHQ server, you must configure your InformixHQ agents to encrypt their web socket communication with the
InformixHQ server. If you use the Deploy Agent button in the UI to have the InformixHQ server automatically deploy the agent, it will automatically configure the
agent to use SSL if the InformixHQ server has HTTPS enabled.

If you are starting your agents manually to enable SSL, set the ssl.enable property to true in your agent configuration file and then set the ssl.keystore.file property,
the ssl.keystore.password property.

Sample agent configuration file with SSL enabled:

host and port of the InformixHQ server
server.host=localhost
server.port=8088

The id of the Informix database server as defined in InformixHQ
informixServer.id=1

Part VI: Administering 1615

https://www.hcltech.com/

SSL configuration
ssl.enable=true
ssl.keystore.file=/opt/informixhq/mykeystore.jks
ssl.keystore.password=myStorePassword

How can I encrpyt the internal H2 database that the InformixHQ server uses?
The InformixHQ server creates an H2 database to store its internal metadata. The H2 database file, h2db.mv.db will be created in the directory where you start the
InformixHQ server. It will store information about the groups and servers you define in the tool (including the database server connection credentials), the monitoring and
alerting profiles, and alerting incidents.

You can configure encryption for this H2 database file by setting the following properties in your InformixHQ server configuration file.

h2.encrypt.enable=true
h2.encyrpt.password=some_password

Optionally, you can also set the h2.encrypt.algorithm property if you want to set the encryption algorithm to something other than AES.

Note: If you want to encrypt the H2 database, you must set these properties the first time you start the InformixHQ server when the H2 database is first created and
initialized. You cannot change your H2 encryption configuration after the H2 database has been created. If you want to encrypt an H2 database that has already been
created, you can use H2's ChangeFileEncryption tool as described in http://www.h2database.com/html/features.html#file_encryption or you can delete your h2db.mv.db
file and have the InformixHQ server recreate it from scratch the next time you start it.

How can I configure InformixHQ to use SSL when connecting to my database server?
If your database supports or requires SSL connections, you can setup SSL using the connection properties on the Add Server page when adding the server or on the
server’s Setup page after it is created.

You must add the following connection properties in order to use SSL on InformixHQ’s JDBC connections to your database server:

SSLCONNECTION=true
SSL_TRUSTSTORE=/path/to/truststore
SSL_TRUSTORE_PASSWORD=password

The truststore/keystore file that you specify must be present both where InformixHQ server is running as well as the machine where the InformixHQ agent is running.

For more information, see Adding Severs and Groups.

Copyright© 2020 HCL Technologies Limited

Users and Permissions

This topic provides answers to some frequently asked questions on InformixHQ users and permissions.

What’s the difference between monitoring/admin credentials and Read/SQL/Admin permissions?
What privileges are required on the Informix database server?
Is there any relationship between the users I create in InformixHQ and OS users?

What’s the difference between monitoring/admin credentials and Read/SQL/Admin
permissions?

The monitoring and admin credentials are used by the InformixHQ server itself as part of the JDBC connection whenever it needs to connect to the database server. The
Read, SQL, and Admin permissions are those that are assigned to users in the tool and therefore control what users can see and do in the UI.

Monitoring and admin credentials

When you click Add Server from a group dashboard page to add a new Informix database server to InformixHQ, you are asked to provide the InformixHQ tool with
not only the host and port, but also user and password information that will be used when establishing a JDBC connection to that database server instance.

The monitoring credentials are used by the InformixHQ server whenever it needs to query for data to be displayed in the UI or by the InformixHQ agent data it
monitors your database server instance.

The admin credentials are used whenever a user in the UI requests that an administration action be performed on the database server, for example creating a
dbspace, editing an onconfig parameter, or deploying an agent. The user provided for the admin credentials should be a DBSA and needs access to the sysadmin
database and permissions to run SQL Admin API commands on the database server.

The required privileges for the monitoring and admin users can also be found in Adding Severs and Groups.

It is required that you provide monitoring credentials when adding your Informix database server information to InformixHQ. Admin credentials need only be
provided if you want to use InformixHQ to run administrative actions on your database server or if you want that server to be used as a repository database.

Read, SQL, and Admin permissions

The Read, SQL, and Admin permissions are the permissions assigned to the users that are created in InformixHQ itself. These permissions determine what kinds of
access that a user has on various Informix servers and groups in the UI and also which REST services that user is authorized to run. Therefore, these permissions
control what each user can see or do in the tool.

Read permission provides the ability to view information about a server. SQL permission provides the ability to run any SQL query or statement (including DML)
against the database server on its Schema Manager page in the UI. Admin permission provides the ability run administrative actions on the server, for example

1616 Part VI: Administering

http://www.h2database.com/html/features.html#file_encryption
https://www.hcltech.com/

creating a dbspace or editing and onconfig parameter. Read, SQL, and Admin permissions are mutually exclusive, so be sure to grant each user the full set of
permissions that they will need.

Read, SQL, and Admin permissions can be granted to InformixHQ users by a System Administrator user in InformixHQ on the System Settings > User Management
page or on the Permissions page for any server or group.

What privileges are required on the Informix database server?
The required privileges for the monitoring and admin users can be found in Adding Severs and Groups.

Is there any relationship between the users I create in InformixHQ and OS users?
There is no relationship between the users you create in InformixHQ and the operating system users on the host machine it is running on. Users that are created in
InformixHQ are users that are specific to the InformixHQ tool. They have no relationship to operating system users or even Informix database server users.

Copyright© 2020 HCL Technologies Limited

Backup and restore

The backup and restore guides contain information about backing up and restoring data and managing storage devices and media.

External resources

Knowledge Collection: Informix® Backup and Restore Utilities (Support document)
 This document helps you find the available resources that are related to backing up and restoring data with products.

Using Optim™ with Informix Dynamic Server, Part 1: Configure Informix Dynamic Server to work together with Optim Solutions (IBM® developerWorks®)
 This tutorial describes how to use IBM Optim Solutions to segregate older data and maintain it in such a way that it is easily accessible for reporting or strategic

decision making. In part 2 of this tutorial, follow scenarios to understand how you can use Optim to mask archived data and maintain privacy.
Data archiving with Informix Dynamic Server table-level restore (IBM developerWorks)

 This article describes the most common options for archiving your IBM Informix data. It describes techniques to retrieve your data from a backup and store the
data in an independent format, which is preserved against future changes in your environment.

Main resources

Backup and Restore Guide
 These topics describe how to use the IBM Informix ON-Bar and ontape utilities to back up and restore database server data. These utilities enable you to recover

your databases after data is lost or becomes corrupted due to hardware or software failure or accident.

Backup and Restore Guide

These topics describe how to use the IBM® Informix® ON-Bar and ontape utilities to back up and restore database server data. These utilities enable you to recover your
databases after data is lost or becomes corrupted due to hardware or software failure or accident.

These topics are of interest to the following users:

Database administrators
System administrators
Backup operators
Technical support personnel

These topics are written with the assumption that you have the following background:

Some experience with storage managers, which are applications that manage the storage devices and media that contain backups
A working knowledge of your computer, your operating system, and the utilities that your operating system provides
Some experience working with relational databases or exposure to database concepts
Some experience with database server administration, operating-system administration, or network administration

Overview of backup and restore
 These topics provide an overview of backup and restore concepts. They also provide information about planning for backup and restore operations.

ON-Bar backup and restore system
 ontape backup and restore system
 Backup and restore a Remote Secondary Server(RSS)

 Integrated Backup Encryption
 These topics provide information about Integrated Backup Encryption.

Informix Primary Storage Manager
 The IBM Informix Primary Storage Manager manages storage for ON-Bar backup and restore operations, including parallel backups, that use file devices (disks).

archecker table level restore utility
 Backup and restore configuration parameter reference

 Cloud Backup
 These topics provide information about storing and retrieving the backups directly to the ecosystem of selected cloud providers, namely Amazon S3 and Softlayer

Object Storage.
Appendixes

Part VI: Administering 1617

https://www.hcltech.com/
https://www.ibm.com/support/docview.wss?uid=swg21404291
http://www.ibm.com/developerworks/data/tutorials/dm-1004optimwithids1/index.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-0704fraenkle/index.html

Overview of backup and restore

These topics provide an overview of backup and restore concepts. They also provide information about planning for backup and restore operations.

Backup and restore concepts
 IBM Informix provides two utilities for backing up and restoring database server data. Both utilities back up and restore storage spaces and logical logs. However,

they support different features and it is important to know the differences. These topics explain basic backup and restore concepts for IBM Informix database
servers and compares the ON-Bar and ontape utilities.
Plan for backup and restore

 These topics describe the planning for backup and restore, for example by planning your recovery strategy and backup system.

Backup and restore concepts

IBM® Informix® provides two utilities for backing up and restoring database server data. Both utilities back up and restore storage spaces and logical logs. However, they
support different features and it is important to know the differences. These topics explain basic backup and restore concepts for IBM Informix database servers and
compares the ON-Bar and ontape utilities.

ON-Bar backs up and restores storage spaces (dbspaces) and logical file, by using a storage manager, whereas ontape does not use a storage manager.

Recovery system
 A recovery system, which includes backup and restore systems, enables you to back up your database server data and later restore it if your current data becomes

corrupted or inaccessible.
Comparison of the ON-Bar and ontape utilities

 This topic contains information to help you compare the ON-Bar and ontape utilities, so you can determine when to use each utility.

Recovery system

A recovery system, which includes backup and restore systems, enables you to back up your database server data and later restore it if your current data becomes
corrupted or inaccessible.

The causes of data corruption or loss can range from a program error to a disk failure to a disaster that damages the entire facility. A recovery system enables you to
recover data that you already lost due to such mishaps.

Backup systems
 A backup is a copy of one or more dbspaces (also called storage spaces) and logical logs that the database server maintains. You can also back up blobspaces and

sbspaces.
Backup levels

 To provide flexibility, the ON-Bar and ontape utilities support three backup levels.
Logical-log backup

 A logical-log backup is a copy to disk or tape of all full logical-log files. The logical-log files store a record of database server activity that occurs between backups.
Restore systems

 A restore recreates database server data from backed-up storage spaces and logical-log files.

Backup systems

A backup is a copy of one or more dbspaces (also called storage spaces) and logical logs that the database server maintains. You can also back up blobspaces and
sbspaces.

The backup copy is typically written to a secondary storage medium such as disk or magnetic tape. Store the media offline and keep a copy off site if possible.

Important: Database backups do not replace ordinary operating-system backups, which back up files other than IBM® Informix® database files.
The following figure illustrates the basic concept of a database backup.
Figure 1. A backup of database server data

You do not always have to back up all the storage spaces. If some tables change daily but others rarely change, it is inefficient to back up the storage spaces that contain
the unchanged tables every time that you back up the database server. You need to plan your backup schedule carefully to avoid long delays for backing up or restoring
data.

Related concepts:
 Backup levels

Logical-log backup
Restore systems

Backup levels

1618 Part VI: Administering

To provide flexibility, the ON-Bar and ontape utilities support three backup levels.

Level 0
Level 0 backs up all used pages that contain data for the specified storage spaces.
You need all these pages to restore the database to the state that it was in at the time that you made the backup.

Level-0 backups can be time-consuming because ON-Bar writes all the disk pages to back up media. Level-1 and level-2 backups might take almost as much time
as a level-0 backup because the database server must scan all the data to determine what has changed since the last backup. It takes less time to restore data
from level-0, level-1, and level-2 backups than from level-0 backups and a long series of logical-log backups.

Level 1
Level 1 backs up only data that has changed since the last level-0 backup of the specified storage spaces.
All changed table and index pages are backed up, including those pages with deleted data. The data that is copied to the backup reflects the state of the changed
data at the time that the level-1 backup began.

A level-1 backup takes less space and might take less time than a level-0 backup because only data that changed since the last level-0 backup is copied to the
storage manager.

Level 2
Level 2 backs up only data that has changed since the last level-1 backup of the specified storage spaces.
A level-2 backup contains a copy of every table and index page in a storage space that has changed since the last level-1 backup.

A level-2 backup takes less space and might take less time than a level-1 backup because only data that changed since the last level-1 backup is copied to the
storage manager.

Important: If disks and other media are destroyed and need to be replaced, you need at least a level-0 backup of all storage spaces and relevant logical logs to restore
data completely on the replacement hardware.
Related concepts:

 Backup systems
Logical-log backup
Restore systems
Related reference:

 Schedule backups

Logical-log backup

A logical-log backup is a copy to disk or tape of all full logical-log files. The logical-log files store a record of database server activity that occurs between backups.

To free full logical-log files, back them up. The database server reuses the freed logical-log files for recording new transactions. For a complete description of the logical
log, see your IBM® Informix® Administrator's Guide.

Restriction: Even if you do not specify logging for databases or tables, you need to back up the logical logs because they contain administrative information such as
checkpoint records and additions and deletions of chunks. When you back up these logical-log files, you can do warm restores even when you do not use logging for any of
your databases.

Manual and continuous logical-log backups
 You can manually back up logical logs or you can enable continuous logical-log backup.

Log salvage
 When the database server is offline, you can perform a special logical-log backup, called a log salvage. In a log salvage, the database server accesses the log files

directly from disk. The log salvage backs up any logical logs that have not yet been backed up and are not corrupted or destroyed.
Save logical-log backups

 You should perform frequent logical-log backups and then save the logical-log backups from at least the last two level-0 backups so that you can use them to
complete a restore.

Related concepts:
 Backup systems

Backup levels
Restore systems

Manual and continuous logical-log backups

You can manually back up logical logs or you can enable continuous logical-log backup.

A manual logical-log backup backs up all the full logical-log files and stops at the current logical-log file. You must monitor your logical logs carefully and start logical-log
backups as needed.

To find out if a logical-log file is ready to be backed up, check the flags field of onstat -l. After the logical-log file is marked as backed up, it can be reused. When the flags
field displays any of the following values, the logical-log file is ready to be backed up:

U------
U-----L

The value U means that the logical-log file is used. The value L means that the last checkpoint occurred when the indicated logical-log file was current. The value C
indicates the current log. If B appears in the third column, the logical-log file is already backed up and can be reused.

U-B---L

The flag values U---C-L or U---C-- represent the current logical log. While you are allowed to back up the current logical log, doing so forces a log switch that wastes
logical-log space. Wait until a logical-log file fills before you back it up.

Part VI: Administering 1619

If you turn on continuous logical-log backup, the database server backs up each logical log automatically when it becomes full. If you turn off continuous logical-log
backup, the logical-log files continue to fill. If all logical logs are filled, the database server hangs until the logs are backed up. You can start continuous logical log backups
by setting the ALARMPROGRAM configuration parameter in the onconfig file or by running an ON-Bar or ontape command.

Related concepts:
 Log salvage

Related reference:
 Save logical-log backups

Log salvage

When the database server is offline, you can perform a special logical-log backup, called a log salvage. In a log salvage, the database server accesses the log files directly
from disk. The log salvage backs up any logical logs that have not yet been backed up and are not corrupted or destroyed.

The log salvage enables you to recover all of your data up to the last available and uncorrupted logical-log file and the last complete transaction.

Related concepts:
 Manual and continuous logical-log backups

Related reference:
 Save logical-log backups

Save logical-log backups

You should perform frequent logical-log backups and then save the logical-log backups from at least the last two level-0 backups so that you can use them to complete a
restore.

Perform frequent logical-log backups for the following reasons:

To free full logical-log files
To minimize data loss if a disk that contains logical logs fails
To ensure that restores contain consistent and the latest transactions

You should save the logical-log backups from the last two level-0 backups because if a level-0 backup is inaccessible or unusable, you can restore data from an older
backup. If any of the logical-log backups are also inaccessible or unusable, however, you cannot roll forward the transactions from those logical-log files or from any
subsequent logical-log files.
Important: You lose transactions in logical-log files that are not backed up or salvaged.
To illustrate, as the following figure shows, suppose you perform a level-0 backup on Monday at 10 p.m. and then back up the logical logs on Tuesday at midnight. On
Wednesday at 11 a.m., you suffer a mishap that destroys your databases. You would be unable to restore the transactions that occurred between midnight on Tuesday
and 11 a.m. on Wednesday unless you had continuous logical-log backup setup.

If the disks that contain the storage spaces with the logical logs are damaged, the transactions after midnight on Tuesday might be lost. To restore these transactions from
the last logical-log backup, try to salvage the logical logs before you repair or replace the bad disk and then perform a cold restore.
Figure 1. Storage space and logical-log backups

Related concepts:
 Manual and continuous logical-log backups

Log salvage

Restore systems

A restore recreates database server data from backed-up storage spaces and logical-log files.

A restore recreates database server data that has become inaccessible because of any of the following conditions:

You need to replace a failed disk that contains database server data.
A logic error in a program has corrupted a database.
You need to move your database server data to a new computer.
A user accidentally corrupted or destroyed data.

To restore data up to the time of the failure, you must have at least one level-0 backup of each of your storage spaces from before the failure and the logical-log files that
contain all transactions since these backups.

1620 Part VI: Administering

Physical and logical restores
ON-Bar and ontape restore database server data in two phases. The first phase is the physical restore, which restores data from backups of all or selected storage
spaces. The second phase is the logical restore, which restores transactions from the logical-log backups.
Warm, cold, and mixed restores
When you restore data, you must decide whether to do so while the database server is in quiescent, online, or offline mode. The type of restore depends on which of
these operating modes the server is in.
Continuous log restore
A continuous log restore keeps a second system available to replace the primary system if the primary system for restoring logs fails.

Related concepts:
 Backup systems

Backup levels
Logical-log backup

Physical and logical restores

ON-Bar and ontape restore database server data in two phases. The first phase is the physical restore, which restores data from backups of all or selected storage spaces.
The second phase is the logical restore, which restores transactions from the logical-log backups.

Physical restore
During a physical restore, ON-Bar or ontape restores the data from the most recent level-0, level-1, and level-2 backups. When you suffer a disk failure, you can restore to
a new disk only those storage spaces with chunks that resided on the failed disk. The following figure illustrates a physical restore.
Figure 1. Physical restore

Logical restore
As the following figure shows, the database server replays the logical logs to reapply any database transactions that occurred after the last backup. The logical restore
applies only to the physically restored storage spaces.
Figure 2. Logical restore

The database server automatically knows which logical logs to restore.

For more information, see Restore data with ON-Bar and Restore with ontape.

Related concepts:
 Warm, cold, and mixed restores

Continuous log restore

Warm, cold, and mixed restores

When you restore data, you must decide whether to do so while the database server is in quiescent, online, or offline mode. The type of restore depends on which of these
operating modes the server is in.

The types of restores are as follows:

If you restore noncritical dbspaces while the database server is online or quiescent, that process is called a warm restore.
When IBM® Informix® is offline, you can perform only a cold restore.
A mixed restore is a cold restore of some storage spaces followed by a warm restore of the remaining storage spaces.

Warm restore
As the following figure shows, a warm restore restores noncritical storage spaces. A warm restore consists of one or more physical restores, a logical-log backup, and a
logical restore.
Figure 1. Warm restore

Part VI: Administering 1621

You cannot perform more than one simultaneous warm restore.

Cold restore
As the following figure shows, a cold restore salvages the logical logs, and restores the critical dbspaces (root dbspace and the dbspaces that contain the physical log and
logical-log files), other storage spaces, and the logical logs.
Figure 2. Cold restore

You can perform a cold restore onto a computer that is not identical to the one on which the backup was performed by giving any chunk a new path name and offset during
the restore.

When restoring a whole-system backup, it is not necessary to restore the logical logs. A whole-system backup contains a snapshot of the entire instance at the moment
the backup was performed, which is logically consistent across all dbspaces.

When restoring a standard backup, you must restore the logical logs by performing a logical restore.

A cold restore starts by physically restoring all critical storage spaces, then the noncritical storage spaces, and finally the logical logs. The database server goes into
recovery mode after the reserved pages of the root dbspace are restored. When the logical restore is complete, the database server goes into quiescent mode. Use the
onmode command to bring the database server online.
Tip: If you mirror the critical dbspaces, you are less likely to have to perform a cold restore after a disk failure because the database server can use the mirrored storage
space. If you mirror the logical-log spaces, you are more likely to be able to salvage logical-log data if one or more disks fail.
Required: Cold restores are required for Enterprise Replication servers before resuming replication.

Mixed restores
A mixed restore makes the critical data available sooner, however, the complete restore takes longer because the logical logs are restored and replayed several times,
once for the initial cold restore and once for each subsequent warm restore.

The initial set of storage spaces you restore in the cold restore must include all critical storage spaces in the server. To the extent that you do not restore all storage spaces
during the initial cold restore and avoid the time necessary to restore them, you can bring the server online faster than if you were to perform a cold restore of the entire
server. You can then restore the remaining storage spaces in one or more warm restores.

The storage spaces that you do not restore during the cold restore are not available until after you restore them during a warm restore, although they might not have been
damaged by the failure.

Related concepts:
 Physical and logical restores

Continuous log restore
Related reference:

 Determine failure severity

Continuous log restore

A continuous log restore keeps a second system available to replace the primary system if the primary system for restoring logs fails.

Normal log restore restores all of the available log file backups and applies the log records. After the last available log is restored and applied, the log restore finishes.
Transactions that are still open are rolled back in the transaction cleanup phase, then the server is brought into quiescent mode. After the server is quiesced, no more
logical logs can be restored.

1622 Part VI: Administering

With continuous log restore, instead of transaction clean up the server is put into log restore suspended state after the last available log is restored. The restore client
(ontape or ON-Bar) exits and returns control to you. With the server in this state, you can start another logical restore after additional logical logs become available. As
long as you start each log restore as a continuous log restore, you can continue this cycle indefinitely.

One use of continuous log restore is to keep a second system available in case the primary system fails. You can restore logical logs backed up on the primary system on
the secondary system as they become available. If the primary system fails, you can restore remaining available logical logs on the secondary system and bring that
secondary system online as the new primary system.

Continuous log restore requires much less network bandwidth than High-Availability Data Replication (HDR) and enterprise data replication (ER). Continuous log restore is
more flexible than HDR and ER because you can start continuous log restore at any time. As a result, continuous log restore is more robust than HDR or ER in
unpredictable circumstances, such as intermittent network availability.

For more information, see Configuring a continuous log restore by using ON-Bar and Configuring continuous log restore with ontape.

Related concepts:
 Physical and logical restores

Warm, cold, and mixed restores
Related tasks:

 Configuring a continuous log restore by using ON-Bar
Configuring continuous log restore with ontape

Comparison of the ON-Bar and ontape utilities

This topic contains information to help you compare the ON-Bar and ontape utilities, so you can determine when to use each utility.

ON-Bar
Backs up and restores storage spaces (dbspaces) and logical files, by using a storage manager to track backups and storage media. Use this utility when you need
to:

Select specific storage spaces
Back up to a specific point in time
Perform separate physical and logical restores
Back up and restore different storage spaces in parallel
Use multiple tape drives concurrently for backups and restores
Perform imported restores
Perform external backups and restores

ontape
Logs, backs up, and restores data, and enables you to change the logging status of a database. It does not use a storage manager. Use this utility when you need to:

Back up and restore data without a storage manager
Back up without selecting storage spaces
Change the logging mode for databases

Important: The backup that ontape and ON-Bar produce are not compatible. You cannot create a backup with ontape and restore it with ON-Bar, or vice versa.
The following table compares ON-Bar and ontape.

Table 1. Differences between ON-Bar and ontape

Can the utility… ON-Bar ontape

Use a storage manager to track backups and storage media? yes no

Back up all database server data? yes yes

Back up selected storage spaces? yes no

Back up logical-log files? yes yes

Perform continuous logical-log backups? yes yes

Perform continuous logical-log restore? yes yes

Back up while the database server is online? yes yes

Back up while the database server is in quiescent mode? yes yes

Restore all database server data? yes yes

Restore selected storage spaces? yes yes

Back up and restore storage spaces serially? yes yes

Perform cold restores with the database server offline? yes yes

Initialize high availability data replication? yes yes

Restore data to a specific point in time? yes no

Perform separate physical and logical restores? yes yes

Back up and restore different storage spaces in parallel? yes no

Use multiple tape drives concurrently for backups and restores? yes no

Restart a restore? yes no

Rename a chunk path name or device during a cold restore? yes yes

Perform imported restores? yes yes

Part VI: Administering 1623

Can the utility… ON-Bar ontape

Perform external backups and restores? yes yes

Monitor performance? yes no

Change logging mode for databases? no yes

Transform data with external programs? yes yes

Back up to or restore from cloud storage? no yes

Encrypt or decrypt a storage space during a restore? yes yes

Additional differences:

Emergency boot files and sysutils database
The ontape utility does not use the sysutils database or the emergency boot files.

Simultaneous sessions
ON-Bar, with IBM® Informix® Primary Storage Manager, supports simultaneous sessions.

Device support and storage management
The ontape utility supports remote backup devices on other hosts.

ON-Bar, with the Informix Primary Storage Manager, supports the export of backup generations into specified directories and devices.

You can also use ON-Bar with the IBM Spectrum Protect or third-party storage managers to obtain device support and storage management.

Changing the logging mode of a database
You cannot change the logging mode for ON-Bar; however you can use the ondblog utility to do this task when using ON-Bar.

You can also use the SQL administration API alternative, ALTER LOGMODE to change the logging mode.

For details about each utility, see Back up with ON-Bar and Back up with ontape.

Related reference:
 Configure ontape

Plan for backup and restore

These topics describe the planning for backup and restore, for example by planning your recovery strategy and backup system.

Plan a recovery strategy
 Before you use ON-Bar or ontape, plan your recovery goals.

Plan a backup system for a production database server
 To plan for adequate backup protection for your data, analyze your database server configuration and activity and the types of backup media available at your

installation.

Plan a recovery strategy

Before you use ON-Bar or ontape, plan your recovery goals.

Types of data loss
 The first step in planning a recovery strategy is to determine how much data loss, if any, is acceptable.

Determine failure severity
 After you determine your recovery goals, create your recovery plan. The plan should include recovery goals for multiple levels of failure.

Data use determines your backup schedule
 After you develop your recovery plan, create a backup plan based on how you use your data.

Schedule backups
 You recovery strategy should include a schedule of backups. Tailor your backup plan to the requirements of your system. The more often the data changes and the

more important it is, the more frequently you need to back it up.
Security requirements for label-based access control

 For label-based access control (LBAC), the person who runs ON-Bar or ontape does not require an exemption to security policies or an additional privilege to back
up or restore data.

Types of data loss

The first step in planning a recovery strategy is to determine how much data loss, if any, is acceptable.

The following types of data loss can occur:

Deletion of the following:
Rows, columns, tables, or databases
Chunks, storage spaces, or logical logs

Data corruption or incorrect data created
Hardware failure (such as a disk that contains chunk files fails or a backup tape that wears out)
Database server failure

1624 Part VI: Administering

Natural disaster

Determine failure severity

After you determine your recovery goals, create your recovery plan. The plan should include recovery goals for multiple levels of failure.

The following table shows recovery plans for failures with amounts of lost data.
Table 1. Sample recovery plans

Failure severity Data loss Suggested recovery plan

Small Noncritical data is lost. Restore of the data can wait until a nonpeak time. Use a warm restore.

Medium The data that is lost is critical for your business but does
not reside in a critical dbspace.

Perform a warm restore of this data as soon as possible.

Large Critical dbspaces are lost. Use a mixed restore to restore the critical data right away and a warm
restore to restore noncritical data during off-peak hours.

Disaster All data is lost. Perform a cold or mixed restore as soon as possible.

Related concepts:
 Warm, cold, and mixed restores

Data use determines your backup schedule

After you develop your recovery plan, create a backup plan based on how you use your data.

How you use the data determines how you plan your backup schedule, as follows:

Data usage
How do users use the data?

Critical dbspaces (root dbspace and dbspaces that contain the physical log and at least one logical-log file)
Critical business application data
Long-term data storage for legal or record-keeping reasons
Data sharing among groups
Test data

Transaction Time
How much transaction time can be lost? Also, how long might it take to re-enter lost transactions manually? For example, can you afford to re-enter all transactions
that occurred over the past three hours?

Quantity and Distribution
How much data can you afford to lose? For example, you lost one fourth of your customer profiles, or you lost the Midwest regional sales figures but the West Coast
figures are intact.

Ask the following questions to assist in deciding how often and when you want to back up the data:

Does your business have downtime where the system can be restored?
If your system is 24x7 (no downtime), is there a nonpeak time where a restore could occur?
If a restore must occur during a peak period, how critical is the time?
Which data can you restore with the database server online (warm restore)? Which data must be restored offline (cold restore)?
How many storage devices are available to back up and restore the data?

Schedule backups

You recovery strategy should include a schedule of backups. Tailor your backup plan to the requirements of your system. The more often the data changes and the more
important it is, the more frequently you need to back it up.

Your backup plan should also specify the backup level.

The following table shows a sample backup plan for a small or medium-sized system.
Table 1. Sample backup plan

Backup level Backup schedule

Complete backup (level-0) Saturday at 6 p.m.

Incremental backup (level-1) Tuesday and Thursday at 6 p.m.

Incremental backup (level-2) Daily at 6 p.m.

Level-0 backup of storage spaces that are updated frequently Hourly

Important: Perform a level-0 backup after you change the physical schema, such as adding a chunk to a storage space. (See Preparing to back up data.)
Related concepts:

 Backup levels

Security requirements for label-based access control
Part VI: Administering 1625

For label-based access control (LBAC), the person who runs ON-Bar or ontape does not require an exemption to security policies or an additional privilege to back up or
restore data.

LBAC protection remains intact after you restore data with ON-Bar or ontape.

Plan a backup system for a production database server

To plan for adequate backup protection for your data, analyze your database server configuration and activity and the types of backup media available at your installation.

Also, consider your budget for storage media, disks, computers and controllers, and the size of your network.

Actions after which to perform a level-0 back up
You must perform a level-0 backup of, at minimum, the root dbspace and the modified storage spaces after you perform any of the following actions:

Add or drop mirroring.
Move, drop, or resize a logical-log file.
Change the size or location of the physical log.
Change your storage-manager configuration.
Add, move, or drop a dbspace.
Add, move, or drop a chunk to any type of storage space.
Add, move, or drop a blobspace or sbspace.

For example, if you add a new dbspace dbs1, you see a warning in the message log that asks you to perform a level-0 backup of the root dbspace and the new dbspace. If
you attempt an incremental backup of the root dbspace or the new dbspace instead, ON-Bar automatically performs a level-0 backup of the new dbspace.

Tip: Although you no longer need to back up immediately after adding a log file, your next backup should be level-0 because the data structures have changed.
If you create a storage space with the same name as a deleted storage space, perform a level-0 backup twice:

1. Back up the root dbspace after you drop the storage space and before you create the storage space with the same name.
2. After you create the storage space, back up the root dbspace and the new storage space.

Actions before which to perform a level-0 back up
You must perform a level-0 backup of the modified storage spaces before you perform any of the following actions:

Convert a nonlogging database to a logging database.
Before you alter a RAW table to type STANDARD. This backup ensures that the unlogged data is restorable before you switch to a logging table type.

Evaluate hardware and memory resources
 When planning your backup system, evaluate your hardware and memory resources.

Evaluate backup and restore time
 Several factors. including database server configuration and the size of your database, affect the amount of time that the system needs to back up and restore data.

Evaluate logging and transaction activity
 When planning your backup system, also consider logging and transaction activity.

Compress row data
 Compressing row data can make backing up and restoring data more efficient.

Transform data with external programs
 You can use external programs as filter plug-ins to transform data to a different format before a backup and transform it back after the restore.

Related reference:
 onbar -b syntax: Backing up

Evaluate hardware and memory resources

When planning your backup system, evaluate your hardware and memory resources.

Evaluate the following database server and hardware configuration elements to determine which storage manager and storage devices to use:

The number of I/O virtual processors
The amount of memory available and the distribution of processor activity

Also consider temporary disk space needed for backup and restore. The database server uses temporary disk space to store the before images of data that are overwritten
while backups are occurring and overflow from query processing that occurs in memory.

When preparing to back up data, make sure that you correctly set the DBSPACETEMP environment variable or parameter to specify dbspaces with enough space for your
needs. If there is not enough room in the specified dbspaces, the backup will fail, root dbspace will be used, or the backup will fail after filling the root dbspace.

Evaluate backup and restore time

Several factors. including database server configuration and the size of your database, affect the amount of time that the system needs to back up and restore data.

How long your backup or restore takes depends on the following factors:

1626 Part VI: Administering

The speed of disks or tape devices
The faster the storage devices, the faster the backup or restore time.

The number of incremental backups that you want to restore if a disk or system failure requires you to rebuild the database
Incremental backups use less storage space than full backups and also reduce restore time.

The size and number of storage spaces in the database
Backups: Many small storage spaces take slightly longer to back up than a few large storage spaces of the same total size.

Restores: A restore usually takes as long to recover the largest storage space and the logical logs.

Whether storage spaces are mirrored
If storage spaces are mirrored, you reduce the chance of having to restore damaged or corrupted data. You can restore the mirror at nonpeak time with the
database server online.

The length of time users are interrupted during backups and restores
If you perform backups and warm restores while the database server is online, users can continue their work but might notice a slower response. If you perform
backups and warm restores with the database server in quiescent mode, users must exit the database server. If you perform a cold restore with the database server
offline, the database server is unavailable to users, so the faster the restore, the better. An external backup and restore eliminates system downtime.

The backup schedule
Not all storage spaces need to be included in each backup or restore session. Schedule backups so that you can back up more often the storage spaces that change
rapidly than those storage spaces that seldom or never change. Be sure to back up each storage space at level-0 at least once.

The layout of the tables across the dbspaces and the layout of dbspaces across the disks
When you design your database server schema, organize the data so that you can restore important information quickly. For example, you isolate critical and
frequently used data in a small set of storage spaces on the fastest disks. You also can fragment large tables across dbspaces to balance I/O and maximize
throughput across multiple disks. For more information, see your IBM® Informix® Performance Guide.

The database server and system workload
The greater the workload on the database server or system, the longer the backup or restore time.

The values of backup and restore configuration parameters
For example, the number and size of data buffers that ON-Bar uses to exchange data with the database server can affect performance. Use the
BAR_NB_XPORT_COUNT and BAR_XFER_BUF_SIZE configuration parameters to control the number and size of data buffers.

Evaluate logging and transaction activity

When planning your backup system, also consider logging and transaction activity.

The following database server usage requirements affect your decisions about the storage manager and storage devices:

The amount and rate of transaction activity that you expect
The number and size of logical logs
If you need to restore data from a database server with little transaction activity, define many small logical logs. You are less likely to lose data because of
infrequent logical-log backups.

How fast the logical-log files fill
Back up log files before they fill so that the database server does not hang.

Database and table logging modes
When you use many nonlogging databases or tables, logical-log backups might become less frequent.

Compress row data

Compressing row data can make backing up and restoring data more efficient.

Compressing row data before backing it up can improve the speed of backing up and restoring and requires less backup media. A smaller size of data results in the
following advantages over uncompressed data during backup and restore:

Backing up is quicker.
Restoring is quicker.
The logical logs are smaller.
The backup image is smaller.

Using an external compression utility to compress a backup image of compressed row data might not reduce the size of the backup image, because already compressed
data usually cannot be further compressed. In some cases, the size of the backup image of compressed row data might be larger than the size of the backup image that
was compressed by an external utility.

Transform data with external programs

You can use external programs as filter plug-ins to transform data to a different format before a backup and transform it back after the restore.

To compress or transform data, use the BACKUP_FILTER and RESTORE_FILTER configuration parameters to call external programs.

Tip: If you compress row data before backing it up, compressing the backup image with an external utility might not result in a smaller backup image.

Part VI: Administering 1627

The filter can be owned by anyone, but cannot have write access to non-privileged users. Permission on the filters is the same as that of permission on any other
executable file that is called by the IBM® Informix® server or utilities.

ON-Bar backup and restore system

Overview of the ON-Bar backup and restore system
 ON-Bar consists of various components and it works with a storage manager to back up and restore data.

Configure the storage manager and ON-Bar
 The topics in this section provide the information that you need to plan and to set up ON-Bar with a storage manager.

Back up with ON-Bar
 You can use the ON-Bar utility to back up and verify storage spaces (dbspaces, blobspaces, and sbspaces) and logical-log files.

Restore data with ON-Bar
 You can use the ON-Bar utility to restore data that was backed up by the ON-Bar utility.

External backup and restore
 Customize and maintain ON-Bar

 ON-Bar catalog tables
 These topics describe the ON-Bar tables that are stored in the sysutils database.

ON-Bar messages and return codes
 ON-Bar prints informational, progress, warning, and error messages to the ON-Bar activity log file. ON-Bar return codes indicate the status of the command.

Related reference:
 Backup and restore configuration parameters

Overview of the ON-Bar backup and restore system

ON-Bar consists of various components and it works with a storage manager to back up and restore data.

ON-Bar components
 ON-Bar components include a command-line utility, catalog tables, an activity log, and an emergency boot file. You use ON-Bar with a storage manager and the

XBSA shared library for the storage manager.

ON-Bar components

ON-Bar components include a command-line utility, catalog tables, an activity log, and an emergency boot file. You use ON-Bar with a storage manager and the XBSA
shared library for the storage manager.

The following figure shows the ON-Bar and database server components:

The storage spaces (dbspaces, blobspaces, and sbspaces) and logical logs from the database server
The sysutils database, which includes ON-Bar catalog tables
The onbar and the onbar-d command-line utilities
The XBSA shared library for the storage manager on your system
The storage media for storing backups
The ON-Bar activity log
The ON-Bar emergency boot file

Figure 1. ON-Bar components for

1628 Part VI: Administering

ON-Bar communicates with both the database server and the storage manager. You use the onbar command to start a backup or restore operation. By default, ON-Bar
backs up and restores storage spaces in parallel. ON-Bar always processes log files serially.

For a backup session, ON-Bar requests the contents of storage spaces and logical logs from the database server and passes them to the storage manager. The storage
manager stores the data on storage media. For a restore session, ON-Bar requests the backed up data from the storage manager and restores it on the database server.

ON-Bar backs up the critical dbspaces first, then the remaining storage spaces, and finally the logical logs. The critical dbspaces are the rootdbs and the dbspaces that
contain the logical logs and physical log.

ON-Bar also places the following critical files in the archive during backups:

The onconfig file
UNIX: The sqlhosts file
The ON-Bar emergency boot file: ixbar.servernum
The server boot file: oncfg_servername.servernum

You can restore storage spaces stored in both raw and cooked files. If your system contains primary and mirror storage spaces, ON-Bar writes to both the primary and
mirror chunks at the same time during the restore, except for an external restore.

ON-Bar status and error messages are written to the activity log file: bar_act.log.

Backup Services API (XBSA)
 ON-Bar and the storage manager communicate through the Backup Services Application Programming Interface (XBSA), which enables the storage manager to

manage media for the database server. By using an open-system interface to the storage manager, ON-Bar can work with various storage managers that also use
XBSA.
ON-Bar catalog tables

 ON-Bar uses the catalog tables in the sysutils database to track backup and restore operations. The onsmsync utility uses other catalog tables to track its
operations.
ixbar file: ON-Bar emergency boot file

 The emergency boot file is automatically updated after every backup. It contains the information that ON-Bar needs to perform a cold restore.
bar_act.log file: ON-Bar activity log

 ON-Bar writes informational, progress, warning, error, and debugging messages to the ON-Bar activity log, bar_act.log.
ON-Bar script

 The ON-Bar utility includes a shell script on UNIX and a batch script on Windows for customizing backup and restore operations.

Backup Services API (XBSA)

ON-Bar and the storage manager communicate through the Backup Services Application Programming Interface (XBSA), which enables the storage manager to manage
media for the database server. By using an open-system interface to the storage manager, ON-Bar can work with various storage managers that also use XBSA.

Each storage manager develops and distributes a unique version of the XBSA shared library. You must use the version of the XBSA shared library provided with the storage
manager. For example, if you use IBM® Informix® Primary Storage Manager, you must also use the XBSA shared library provided with ON-Bar. ON-Bar and the XBSA
shared library must be compiled the same way (32-bit or 64-bit).

ON-Bar uses XBSA to exchange the following types of information with a storage manager:

Control data
ON-Bar exchanges control data with a storage manager to verify that ON-Bar and XBSA are compatible, to ensure that objects are restored in the correct order to
the correct instance of the database server, and to track the history of backup objects.

Backup or restore data
During backups and restores, ON-Bar and the storage manager use XBSA to exchange data from specified storage spaces or logical-log files.

ON-Bar uses XBSA transactions to ensure data consistency. All operations included in a transaction are treated as a unit. All operations within a transaction must succeed
for objects transferred to the storage manager to be restorable.

Related concepts:
 IBM Informix Primary Storage Manager

ON-Bar catalog tables

ON-Bar uses the catalog tables in the sysutils database to track backup and restore operations. The onsmsync utility uses other catalog tables to track its operations.

ON-Bar uses the following catalog tables in the sysutils database to track backup and restore operations:

The bar_server table tracks instances of the database server.
The bar_object table tracks backup objects. A backup object is a backup of a dbspace, blobspace, sbspace, or logical-log file.
The bar_action table tracks all backup and restore attempts against each backup object, except some log salvage and cold restore events.
The bar_instance table describes each object that is backed up during a successful backup attempt.

The onsmsync utility uses and maintains the following tables to track its operations:

The bar_ixbar table contains the history of all unexpired successful backups in all timelines.
The bar_syncdeltab table is normally empty except when onsmsync is running.

For a description of the content of these tables, see ON-Bar catalog tables.

ixbar file: ON-Bar emergency boot file
Part VI: Administering 1629

The emergency boot file is automatically updated after every backup. It contains the information that ON-Bar needs to perform a cold restore.

Important: Do not modify the emergency boot file. Doing so might cause ON-Bar to select the wrong backup as part of a restore, possibly leading to data corruption or
system failure.
The file name for the boot file is ixbar.servernum, where servernum is the value of the SERVERNUM configuration parameter.

The ON-Bar emergency boot file is in the $INFORMIXDIR/etc directory on UNIX and in the %INFORMIXDIR%\etc directory on Windows. You can override the default path
and name of the boot file by changing the information specified in the BAR_IXBAR_PATH configuration parameter.

bar_act.log file: ON-Bar activity log

ON-Bar writes informational, progress, warning, error, and debugging messages to the ON-Bar activity log, bar_act.log.

ON-Bar backup and restore errors do not appear in standard output. If an error occurs when you back up and restore data, check information in the ON-Bar activity log

You can also use the activity log to:

Monitor backup and restore activities such as, which storage spaces and logical logs were backed up or restored, the progress of the operation, and approximately
how long it took.
Verify whether a backup or restore succeeded.
Track errors from the ondblog utility.
Track ON-Bar performance statistics

The ON-Bar activity log is in the /tmp directory on UNIX and in the %INFORMIXDIR%\etc directory on Windows. You specify the location of the ON-Bar activity log with
the BAR_ACT_LOG configuration parameter.

Related reference:
 BAR_ACT_LOG configuration parameter

ON-Bar messages and return codes
View ON-Bar backup and restore performance statistics
onbar -m syntax: Monitoring recent ON-Bar activity

ON-Bar script

The ON-Bar utility includes a shell script on UNIX and a batch script on Windows for customizing backup and restore operations.

When you install ON-Bar with the database server, a default script is included. The name and location of the script depends on the operating system:

UNIX
The onbar shell script is in the $INFORMIXDIR/bin directory.

Windows
The onbar.bat batch script is in the %INFORMIXDIR%\bin directory.

When you issue ON-Bar commands from the command line, the arguments are passed to the script, and then to the onbar_d utility.

Table 1. ON-Bar utilities
Utility Description

onbar_d utility Transfers data between the database server and the storage manager.

The onbar command calls the onbar_d utility that starts the onbar-driver. The onbar-driver starts and controls backup
and restore activities.

onsmsync utility Synchronizes the contents of the sysutils database, the emergency boot files, and the storage manager catalogs. Use this
utility to purge backups that are no longer needed.

ondblog utility Changes the database-logging mode. The ondblog utility logs its output in the ON-Bar activity log, bar_act.log.

archecker utility Verifies backups, and restores table-level data from an archive.

Related concepts:
 Overview of the archecker utility

Related reference:
 The onsmsync utility

Configure the storage manager and ON-Bar

The topics in this section provide the information that you need to plan and to set up ON-Bar with a storage manager.

Configure a storage manager
ON-Bar backup and restore operations require a storage manager that integrates with ON-Bar through an XBSA shared library interface.
Validating your storage manager
When you convert or revert the IBM® Informix® database server, the storage manager that you used on the old version might not be validated for the version that
you are migrating to. Verify that the storage-manager vendor successfully completed the IBM Informix validation process for the database server version and
platform.

1630 Part VI: Administering

Configuring ON-Bar
Before you begin your first backup, review the default ON-Bar parameters in the onconfig file and adjust the values as needed. You can also set an environment
variable.
Verifying the configuration of ON-Bar and your storage manager
Before you begin using ON-Bar and your storage manager, make sure that ON-Bar and your storage manager are set up correctly.
Files that ON-Bar and storage managers use
ON-Bar, IBM Informix Primary Storage Manager, and IBM Spectrum Protect use particular files in your installation.

Related tasks:
 Preparing to back up data

Configure a storage manager

ON-Bar backup and restore operations require a storage manager that integrates with ON-Bar through an XBSA shared library interface.

You can choose to use the IBM® Informix® Primary Storage Manager, the IBM Spectrum Protect, or a third-party storage manager with ON-Bar. The Informix Primary
Storage Manager is bundled with Informix. If you are using Spectrum Protect, the XBSA shared library needed for ON-Bar to communicate with Spectrum Protect is
bundled with Informix.

The Informix Primary Storage Manager manages storage for ON-Bar backup and restore operations, including parallel backups, that use file devices (disks) only, not tapes.
By default, the IBM Informix Primary Storage Manager is automatically configured with the information specified in Informix Primary Storage Manager and some ON-Bar
configuration parameters. This storage manager is also automatically configured when you use the onpsm utility. You can change the configuration. For information, see
IBM Informix Primary Storage Manager andConfiguring Informix Primary Storage Manager

Storage-manager definitions in the sm_versions file
 Most storage managers must have an entry in the sm_versions file.

Configuring Spectrum Protect
 To use IBM Spectrum Protect with IBM Informix databases, you must install and configure the IBM Spectrum Protect client on your database server computer and

IBM Spectrum Protect on your storage computer.
Configuring a third-party storage manager

 Storage managers have slightly different installation and configuration requirements. If you use a third-party storage manager, make sure that you follow the
manufacturer instructions carefully. If you have difficulty with the storage-manager installation and configuration, contact the manufacturer directly.

Related concepts:
 IBM Informix Primary Storage Manager

Setting up Informix Primary Storage Manager

Storage-manager definitions in the sm_versions file

Most storage managers must have an entry in the sm_versions file.

The IBM® Informix® Primary Storage Manager and IBM Spectrum Protect do not require an entry in the sm_versions file.

The storage-manager definition in the sm_versions file uses this format:

1|XBSA_ver|sm_name|sm_ver

In the format, XBSA_ver is the release version of the XBSA shared library for the storage manager, sm_name is the name of the storage manager, and sm_ver is the
storage-manager version. The maximum field length is 128 characters.

Before ON-Bar starts a backup or restore process with the IBM Spectrum Protect and third-party storage managers, ON-Bar calls the currently installed version of the
storage-manager-specific XBSA shared library to get its version number. If this version is compatible with the current version of ON-Bar and is defined in the sm_versions
file, ON-Bar begins the requested operation.

Related tasks:
 Updating the storage-manager definition in the sm_versions file for Spectrum Protect

Configuring a third-party storage manager

Configuring Spectrum Protect

To use IBM® Spectrum Protect with IBM Informix® databases, you must install and configure the IBM Spectrum Protect client on your database server computer and IBM
Spectrum Protect on your storage computer.

You must also configure IBM Informix Interface for Spectrum Protect and perform other Spectrum Protect configuration tasks on your IBM Informix database server
computer.

Starting with versions 8.1.2 and 7.1.8, IBM Spectrum Protect requires SSL communication between the client and the server, and therefore additional configuration steps
must be followed:

To configure Spectrum Protect:

1. Edit the Spectrum Protect client options files.
2. Assign a Spectrum Protect management class for the server to use for backups.
3. Set the IBM Informix Interface for Spectrum Protect environment variables.
4. Register with the Spectrum Protect server.
5. Initialize the IBM Informix Interface for Spectrum Protect.

Part VI: Administering 1631

6. Optional. Configure ON-Bar to support optional Spectrum Protect features.

The version of the XBSA shared library for Spectrum Protect is 1.0.3.

For details about Spectrum Protect, read the following manuals:

IBM Spectrum Protect Backup-Archive Clients Installation and User's Guide
IBM Spectrum Protect Using the Application Program Interface
IBM Spectrum Protect Administrator's Guide
IBM Spectrum Protect Administrator's Reference

Editing the Spectrum Protect client options files
 The IBM Informix Interface for Spectrum Protect communicates with the Spectrum Protect server with the Spectrum Protect API. By default, IBM Informix

Interface for Spectrum Protect uses the client user options file (dsm.opt) and, on UNIX systems, the client system options file (dsm.sys), both of which are located
in the Spectrum Protect API installation directory.
Assigning a Spectrum Protect management class for a backup

 When you back up a database, the default management class for your node is used. You can override the default value with a different value that is specified in the
INCLUDE option.
Setting the IBM Informix Interface for Spectrum Protect environment variables

 When you use the IBM Informix Interface for TSM, you need to set certain environment variables in the environment of the user.
Registering with the Spectrum Protect server

 Before backing up to and recovering from an IBM Spectrum Protect server, you must have a Spectrum Protect registered node name and a password. The process
of setting up a node name and password is called registration.
Initializing the IBM Informix Interface for Spectrum Protect password

 To initialize the password for IBM Informix Interface for Spectrum Protect, use the txbsapswd program. This program sets up a connection with the server instance
that you specified in the dsm.opt file.
Updating the storage-manager definition in the sm_versions file for Spectrum Protect

 You must update the storage-manager definition in sm_versions file for ON-Bar to use with IBM Spectrum Protect.
Configuring ON-Bar for optional Spectrum Protect features

 You can configure ON-Bar to enable or disable optional features in IBM Spectrum Protect.

Editing the Spectrum Protect client options files

The IBM® Informix® Interface for Spectrum Protect communicates with the Spectrum Protect server with the Spectrum Protect API. By default, IBM Informix Interface for
Spectrum Protect uses the client user options file (dsm.opt) and, on UNIX systems, the client system options file (dsm.sys), both of which are located in the Spectrum
Protect API installation directory.

On UNIX systems, edit both the dsm.opt and the dsm.sys files as the root user:

Specify the Spectrum Protect server to use in the client user options file, dsm.opt.
Identify the Spectrum Protect server name, communication method, and server options in the client system options file, dsm.sys.

Use the sample dsm.opt.smp and dsm.sys.smp files distributed with the Spectrum Protect API to help you get started quickly.

On Windows systems, specify the Spectrum Protect server name, communication method, and server options in the dsm.opt file.

The following example shows a simple dsm.sys on UNIX/Linux systems:

SErvername TSMSRV01
 TCPPort 9027
 TCPADMINPort 9028
 TCPServeraddress tsmcentaur.myhcl.com
 PASSWORDACCESS GENERATE
 PASSWORDDIR /work/TSM/PAX12/TSMPsswdDir
 NODENAME pax12
 ERRORLOGName /work/TSM/PAX12/dsierror.log

The TCPPort in this file should be same as the SSLTCPPORT used in the Spectrum Protect server.
The TCPADMINPort in this file should be same as the SSLTCPADMINPort used in the Spectrum Protect server.

See Spectrum Protect Installing the Clients and Spectrum Protect Trace Facility Guide for information regarding options you can specify in these files.

Editing the Spectrum Protect client user options file
 You can edit the IBM Spectrum Protect client user options file, dsm.opt. This file must refer to the correct Spectrum Protect server instance, as listed in the dsm.sys

file.
Editing the Spectrum Protect client system options file

 You can edit the IBM Spectrum Protect client systems options file, dsm.sys. This file must refer to the correctSpectrum Protect server address and communication
method.

Editing the Spectrum Protect client user options file

You can edit the IBM® Spectrum Protect client user options file, dsm.opt. This file must refer to the correct Spectrum Protect server instance, as listed in the dsm.sys file.

Set the following options in the dsm.opt file:

SERVERNAME
Identifies which Spectrum Protect server instance, as listed in the dsm.sys file, that IBM Informix® Interface for Spectrum Protect contacts for services.

TRACEFILE
Sends trace output information to a designated file.

TRACEFLAG

1632 Part VI: Administering

Sets specific trace flags

Editing the Spectrum Protect client system options file

You can edit the IBM® Spectrum Protect client systems options file, dsm.sys. This file must refer to the correctSpectrum Protect server address and communication
method.

The following Spectrum Protect options are the most important to set in the dsm.sys file:

SERVERNAME
Specifies the name that you want to use to identify a server when it is referred to in the dsm.opt file and to create an instance that contains options for that server.

COMMMETHOD
Identifies the communication method.

TCPSERVERADDRESS
Identifies the Spectrum Protect server.

PASSWORDACCESS
Specifies GENERATE to store the Spectrum Protect password.

PASSWORDDIR
Directory where the Spectrum Protect client will store the SSL encryption related files and keystore.

NODENAME
Specifies the name of the Spectrum Protect client.
Note: Use the INFORMIXSERVER / DBSERVERNAME values in such a way that, it will be easy to identify in the Spectrum Protect catalog.

The SERVERNAME option in the dsm.opt and dsm.sys files define server instance names only. The TCPSERVERADDRESS option controls which server is contacted.

You can enable deduplication by including the DEDUP=CLIENTORSERVER option in the client system options file. You must also set the IFX_BAR_USE_DEDUP
environment variable in the database server environment and restart the database server. See the IBM Spectrum Protect Backup-Archive Client Installation and User's
Guide for information about configuring deduplication.

You can set up multiple server instances in the dsm.sys file. See the IBM Spectrum Protect Backup-Archive Client Installation and User's Guide for information about
multiple server instances.

Related concepts:
 Configuring ON-Bar for optional Spectrum Protect features

Related reference:
 IFX_BAR_USE_DEDUP environment variable

Assigning a Spectrum Protect management class for a backup

When you back up a database, the default management class for your node is used. You can override the default value with a different value that is specified in the
INCLUDE option.

The INCLUDE option is placed in the include-exclude options file. The file name of the include-exclude options file is in the client system options file (dsm.sys). For more
information, see the IBM Spectrum Protect Backup-Archive Client Installation and User's Guide.

Use the following naming conventions for ON-Bar files:

A database backup:
/dbservername/dbservername/dbspacename/level

A log backup:
/dbservername/dbservername/server_number/unique_logid

For a database backup, an example of the INCLUDE statement is as follows:

Include /dbserverA/dbserverA/dbspaceA/* InformixDbMgmt

For a logical log backup, an example of the INCLUDE statement is as follows:

Include /dbserverA/dbserverA/55/* InformixLogMgmt

where the number 55 is the value of the SERVERNUM parameter in the onconfig file.

Setting the IBM Informix Interface for Spectrum Protect environment variables

When you use the IBM® Informix® Interface for TSM, you need to set certain environment variables in the environment of the user.

The following table describes these environment variables.

Table 1. IBM Informix Interface for Spectrum Protect environment variables
Environment variable Description

DSMI_CONFIG The fully qualified name for the client user option file (dsm.opt). The default value is dsm.opt in the TSM API
installation directory.

Part VI: Administering 1633

Environment variable Description

DSMI_DIR On UNIX, points to the TSM API installed path. This environment variable needs to be defined only if the TSM API is
installed in a different path from the default path. The DSMI_DIR environment variable is also used to find the dsm.sys
file.
On Windows, specifies the installation location of the TSM Backup-Archive Client. Typically, the TMS Backup-Archive
Client is installed in the C:\Tivoli\TSMClient\baclient directory.

DSMI_LOG Points to the directory that contains the API error log file (dsierror.log).
For error log files, create a directory for the error logs to be created in, then set the DSMI_LOG environment variable to
that directory. The user informix or the backup operator should have write permission on this directory.

The following example shows how to set up these environment variables for Solaris 32-bit if the TSM API is installed in the /opt/Tivoli/tsm/client/api directory:

export DSMI_CONFIG=/opt/Tivoli/tsm/client/api/bin/dsm.opt
export DSMI_DIR=/opt/Tivoli/tsm/client/api/bin
export DSMI_LOG=/home/user_a/logdir

The following example shows how to set up these environment variables for Windows if the TSM API is installed in the C:\Tivoli\TSMClient\api directory:

set DSMI_CONFIG=C:\Tivoli\TSMClient\api\BIN\dsm.opt
set DSMI_DIR=C:\Tivoli\TSMClient\baclient
set DSMI_LOG=C:\logdir

Registering with the Spectrum Protect server

Before backing up to and recovering from an IBM® Spectrum Protect server, you must have a Spectrum Protect registered node name and a password. The process of
setting up a node name and password is called registration.

After the IBM Informix® Interface for Spectrum Protect node is registered with a Spectrum Protect server, you can begin using the IBM Informix Interface for Spectrum
Protect to back up and restore your IBM Informix storage spaces and logical logs. If your workstation has a node name assigned to the Spectrum Protect backup-archive
client, you should have a different node name for IBM Informix Interface for Spectrum Protect. For information about performing the registration process, see the IBM
Spectrum Protect Backup-Archive Client Installation and User's Guide.

Initializing the IBM Informix Interface for Spectrum Protect password

To initialize the password for IBM® Informix® Interface for Spectrum Protect, use the txbsapswd program. This program sets up a connection with the server instance that
you specified in the dsm.opt file.

You must run the txbsapswd program as user root before using IBM Informix Interface for TSM.

To initialize the password:

1. Create the directory for the SSL-related files as user "informix" (PASSWORDDIR in the dsm.sys file):

$ sudo -u informix mkdir /work/TSM/PAX12/TSMPsswdDir

2. As user root, start the txbsapswd program located in $INFORMIXDIR/bin directory.
3. Enter the password and press Return. To retain your current password, press Return without a value.
4. Replace ownership and permissions in the PASSWORDDIR:

$ sudo chown -R informix:informix /work/TSM/PAX12/TSMPsswdDir

$ sudo chmod -R 750 /work/TSM/PAX12/TSMPsswdDir

Updating the storage-manager definition in the sm_versions file for Spectrum Protect

You must update the storage-manager definition in sm_versions file for ON-Bar to use with IBM® Spectrum Protect.

Before ON-Bar starts a backup or restore process, it calls the currently installed version of the storage-manager-specific XBSA shared library to get its version number. If
this version is compatible with the current version of ON-Bar and is defined in the sm_versions file, ON-Bar begins the requested operation.

To update the storage-manager definition in sm_versions file:

1. Copy the sm_versions.std template to a new file, sm_versions in the $INFORMIXDIR/etc directory on UNIX or the %INFORMIXDIR%\etc directory on Windows.
2. Put tsm in the sm_name field of the sm_versions file. The value adsm is also valid but will be deprecated in a future release.
3. Stop any ON-Bar processes (onbar_d, onbar_w, or onbar_m) that are currently running and restart them for the changes to take effect.

The following example shows the IBM Spectrum Protect definition in the sm_versions file:

1|5.3|tsm|5

Related reference:
 Storage-manager definitions in the sm_versions file

Configuring ON-Bar for optional Spectrum Protect features

1634 Part VI: Administering

You can configure ON-Bar to enable or disable optional features in IBM® Spectrum Protect.

Apply all patches and updates to Spectrum Protect before you use the following Spectrum Protect features.

Deduplication
Deduplication eliminates redundant data in backups. To enable the database server to support deduplication, set the IFX_BAR_USE_DEDUP environment variable
in the Informix® environment and restart the database server. Update the Spectrum Protect client systems option file.

Large transfer buffer size
The default transfer buffer size is 64 KB. Set the BAR_XFER_BUF_SIZE configuration parameter to specify a transfer buffer of up to 65 MB.
To limit the transfer buffer size to 64 KB regardless of the value of the BAR_XFER_BUF_SIZE configuration parameter, set the IFX_NO_LONG_BUFFERS
environment variable to 1.

Replicate, import, and export backup objects
Replicating, importing, or exporting backup objects between Spectrum Protect servers requires unique IDs for backup objects. ON-Bar automatically stores IDs in
the metadata of backup objects that are unique for all Spectrum Protect server with version 12.10.xC2 or later.
To disable the ability to restore backup objects that are moved between Spectrum Protect servers, set the IFX_TSM_OBJINFO_OFF environment variable to 1.

Related reference:
 IFX_BAR_USE_DEDUP environment variable

BAR_XFER_BUF_SIZE configuration parameter
Editing the Spectrum Protect client system options file
IFX_TSM_OBJINFO_OFF environment variable
IFX_BAR_NO_LONG_BUFFERS environment variable

Configuring a third-party storage manager

Storage managers have slightly different installation and configuration requirements. If you use a third-party storage manager, make sure that you follow the manufacturer
instructions carefully. If you have difficulty with the storage-manager installation and configuration, contact the manufacturer directly.

For the list of certified storage managers for your ON-Bar version, consult your marketing representative.
Important: Some storage managers let you specify the data to back up to specific storage devices. Configure the storage manager to back up logical logs to one device and
storage spaces to a different device for more efficient backups and restores.
To configure a third-party storage manager:

1. Set ON-Bar configuration parameters and environment variables.
2. Configure the storage manager so that ON-Bar can communicate correctly with it. For information, see your storage-manager documentation.
3. Configure your storage devices by following the instructions in your storage-manager documentation. The storage manager must know the device names of the

storage devices that it uses.
4. Label your storage volumes.
5. Mount the storage volumes on the storage devices.
6. Create the storage-manager definition in the sm_versions file. Use the definition provided by the vendor of the third-party storage manager.

a. Copy the sm_versions.std template to a new file, sm_versions in the $INFORMIXDIR/etc directory on UNIX or the %INFORMIXDIR%\etc directory on
Windows.

b. Create your own sm_versions file with the correct data for the storage manager by using the format in sm_versions.std as a template. To find out which code
name to use in sm_versions for third-party storage managers, see the storage-manager documentation.

c. Stop any ON-Bar processes (onbar_d, onbar_w, or onbar_m) that are currently running and restart them for the changes to take effect.
7. Verify that the BAR_BSALIB_PATH configuration parameter points to the correct XBSA shared library for your storage manager.
8. If you enabled deduplication for your storage manager, set the IFX_BAR_USE_DEDUP environment variable and restart the database server.
9. ON-Bar uses the value of the SERVERNUM configuration parameter as part of the storage path for the logical logs in the storage manager. If the storage manager

does not use a wildcard for the server number, set the appropriate server number environment variable for the storage manager.

After you configure the storage manager and storage devices and label volumes for your database server and logical-log backups, you are ready to initiate a backup or
restore operation with ON-Bar.

Related reference:
 IFX_BAR_USE_DEDUP environment variable

Storage-manager definitions in the sm_versions file

Validating your storage manager

When you convert or revert the IBM® Informix® database server, the storage manager that you used on the old version might not be validated for the version that you are
migrating to. Verify that the storage-manager vendor successfully completed the IBM Informix validation process for the database server version and platform.

If not, you need to install a validated storage manager before you perform backups with ON-Bar.

Configuring ON-Bar

Before you begin your first backup, review the default ON-Bar parameters in the onconfig file and adjust the values as needed. You can also set an environment variable.

You can configure the behavior of ON-Bar by setting the following configuration parameters and environment variable.

Table 1. ON-Bar configuration parameters and environment variable

Behavior Configuration parameters

Part VI: Administering 1635

Behavior Configuration parameters

Control the number and size of data buffers and the number of parallel processes. BAR_NB_XPORT_COUNT configuration parameter
BAR_XFER_BUF_SIZE configuration parameter

IFX_BAR_NO_LONG_BUFFERS environment variable

BAR_MAX_BACKUP configuration parameter

BAR_MAX_RESTORE configuration parameter

Set the debugging level and the location of debug log file. BAR_DEBUG configuration parameter
BAR_DEBUG_LOG configuration parameter

Change the path of the ON-Bar boot file. BAR_IXBAR_PATH configuration parameter

Maintain a history of expired backups. BAR_HISTORY configuration parameter

Change the location and contents of ON-Bar activity log. BAR_IXBAR_PATH configuration parameter

Maintain a history of expired backups. BAR_ACT_LOG configuration parameter
BAR_PROGRESS_FREQ configuration parameter

BAR_PERFORMANCE configuration parameter

Set automatic retrying of failed back ups or restores. BAR_RETRY configuration parameter

Allow a failed restore to be restarted. RESTARTABLE_RESTORE configuration parameter

Increase backup size estimate sent to the storage manager. BAR_SIZE_FACTOR configuration parameter

Extend the time an RS secondary server waits for a checkpoint during an external backup. BAR_CKPTSEC_TIMEOUT configuration parameter

Configure continuous log backup. ALARMPROGRAM configuration parameter

Filter or transform backed up data with an external program. BACKUP_FILTER configuration parameter
RESTORE_FILTER configuration parameter

Optimize the deduplication capabilities of storage managers. IFX_BAR_USE_DEDUP environment variable

Disable the ability to replicate, import, or export backup objects among TSM servers. IFX_TSM_OBJINFO_OFF environment variable

Force the use of the sm_versions file. IFX_BAR_NO_BSA_PROVIDER environment variable

Do not set the LTAPEDEV configuration parameter to /dev/null or NUL because logical-log backups would be disabled and you can restore only whole-system backups.

ON-Bar security
 By default, only the informix or root users on UNIX system or members of the Informix-Admin group on Windows systems can run ON-Bar commands.

ON-Bar security

By default, only the informix or root users on UNIX system or members of the Informix-Admin group on Windows systems can run ON-Bar commands.

To enable additional users to run ON-Bar commands:

On UNIX systems, create a bargroup group and add users to the group. For instructions on how to create a group, see your UNIX documentation.
On Windows systems, add the users to the Informix-Admin group.

Restriction: For security, it is recommended that ON-Bar commands not be run by the root user.
Related reference:

 onbar -r syntax: Restoring data
onbar -b syntax: Backing up
onbar -v syntax: Verifying backups
onbar -m syntax: Monitoring recent ON-Bar activity
onbar -P syntax: Printing backed-up logical logs
onbar -RESTART syntax: Restarting a failed restore

Verifying the configuration of ON-Bar and your storage manager

Before you begin using ON-Bar and your storage manager, make sure that ON-Bar and your storage manager are set up correctly.

Verify your configuration by checking the items in the following list:

The storage manager is installed and configured to manage specific storage devices.
For UNIX, make sure that the BAR_BSALIB_PATH configuration parameter specifies correctly the XBSA shared library or it is not set and the library is in the default
location.
For Windows, make sure that the BAR_BSALIB_PATH configuration parameter specifies correctly the XBSA shared library.
The sm_versions file contains a row that identifies the version number of the storage-manager-specific XBSA shared library.

After you verify that ON-Bar and your storage manager are set up correctly, run ON-Bar on your test database to make sure that you can back up and restore data. For
more information, follow the instructions in Back up with ON-Bar.

Files that ON-Bar and storage managers use

1636 Part VI: Administering

ON-Bar, IBM® Informix® Primary Storage Manager, and IBM Spectrum Protect use particular files in your installation.

The following table lists the files that ON-Bar and IBM Spectrum Protect use and the directories where the files are. These names and locations change if you set up the
onconfig file to values different from the defaults.

Table 1. List of files that ON-Bar and Spectrum Protect use
File name Directory Purpose

ac_config.std UNIX: $INFORMIXDIR/etc
Windows: %INFORMIXDIR%\etc

Template for archecker parameter values.
The ac_config.std file contains the default archecker (archive checking) utility
parameters. To use the template, copy it into another file and modify the values.

ac_msg.log /tmp
%INFORMIXDIR%\etc

The archecker message log.
When you use archecker with ON-Bar to verify a backup, it writes brief status and
error messages to the ON-Bar activity log and writes detailed status and error
messages to the archecker message log. Technical Support uses the archecker
message log to diagnose problems with backups and restores. Specify the location
of the archecker message log with the AC_MSGPATH configuration parameter.

bar_act.log /tmp
%INFORMIXDIR%

ON-Bar activity log.
For more information, see bar_act.log file: ON-Bar activity log.

bldutil.process_id /tmp
\tmp

When the sysutils database is created, error messages appear in this file.

dsierror.log $DSMI_LOG Spectrum Protect API error log.

dsm.opt $DSMI_CONFIG Spectrum Protect client user option file.

dsm.sys $DSMI_DIR Spectrum Protect client system option file.

Emergency boot files (ixbar* files) $INFORMIXDIR/etc
%INFORMIXDIR%\etc

Used in a cold restore. For more information, see ixbar file: ON-Bar emergency boot
file.

oncfg_servername.servernum $INFORMIXDIR/etc
%INFORMIXDIR%\etc

Configuration information for ON-Bar restores.
The database server creates the oncfg_servername.servernum file when you
initialize disk space. The database server updates the file every time that you add
or delete a dbspace, a logical-log file, or a chunk. The database server uses the
oncfg* file when it salvages logical-log files during a cold restore. The database
server uses the oncfg* files, so do not delete them.

save, savegrp, savefs $INFORMIXDIR/bin

sm_versions $INFORMIXDIR/etc
%INFORMIXDIR%\etc

Identifies the version of a third-party storage manager.
To update the storage-manager version, edit the sm_versions file directly.

The Informix Primary Storage Manager does not use the sm_versions.std file.

Back up with ON-Bar

You can use the ON-Bar utility to back up and verify storage spaces (dbspaces, blobspaces, and sbspaces) and logical-log files.

To perform a backup with ON-Bar:

1. Prepare for backup.
2. Back up with ON-Bar
3. Monitor backup progress.
4. Verify backups.
5. Back up storage manager information.

You can customize ON-Bar and storage manager commands in a shell or batch script. You can call ON-Bar from a job-scheduling program.

Preparing to back up data
 Before you back up storage spaces and logical logs, you must prepare the system and copy critical administrative files.

onbar -b syntax: Backing up
 Use the onbar -b command to back up storage spaces and logical logs.

onbar -m syntax: Monitoring recent ON-Bar activity
 You can monitor recent ON-Bar activity with the onbar -m command. Only users who have permission to perform backup and restore operations can use this

option.
Viewing a list of registered backups

 You can create a list of the registered ON-Bar backups performed on your system.
onbar -P syntax: Printing backed-up logical logs

 You can use the onbar -P command to print logical logs that are backed up using the ON-Bar utility.
onbar -v syntax: Verifying backups

 Use the onbar -v command to verify that backups that were created by the ON-Bar utility are complete and can be restored.

Related reference:
 Customizing ON-Bar and storage-manager commands

Preparing to back up data

Part VI: Administering 1637

Before you back up storage spaces and logical logs, you must prepare the system and copy critical administrative files.

To prepare to back up data:

1. Configure ON-Bar and your storage manager.
2. Ensure that you have enough logical log space. ON-Bar checks for available logical-log space at the beginning of a backup. If the logs are nearly full, ON-Bar backs

up and frees the logs before attempting to back up the storage spaces. If the logs contain ample space, ON-Bar backs up the storage spaces, then the logical logs.
3. Verify that you have enough temporary disk space. The database server uses temporary disk space to store the before images of data that are overwritten while

backups are occurring and overflow from query processing that occurs in memory. Verify that the DBSPACETEMP environment variable and DBSPACETEMP
configuration parameter specify dbspaces that have enough space for your needs. If there is not enough room in the specified dbspaces, the backup will fail, root
dbspace will be used, or the backup will fail after filling the root dbspace.

4. Back up administrative files to a different location.
5. Run the oncheck -cD command to verify that all database server data is consistent. You do not need to check for consistency before every level-0 backup. Do not

discard a backup that is known to be consistent until the next time that you verify the consistency of your databases.

Administrative files to back up
 Although ON-Bar backs up some critical administrative files, you must also include critical files in normal operating-system backups of important configuration files.

Related reference:
 Configure the storage manager and ON-Bar

onbar -b syntax: Backing up
Related information:

 oncheck -cd and oncheck -cD commands: Check pages

Administrative files to back up

Although ON-Bar backs up some critical administrative files, you must also include critical files in normal operating-system backups of important configuration files.

Files that ON-Bar backs up
When you back up a storage space, ON-Bar also backs up the following critical files:

The onconfig file
UNIX: The sqlhosts file
The ON-Bar emergency boot file: ixbar.servernum
The server boot file: oncfg_servername.servernum

You must restore these files if you need to replace disks or if you restore to a second computer system (imported restore).
Look at the bar_act.log file to determine whether critical files are successfully backed up. The return code for the onbar -b command indicates only whether storage
spaces are successfully backed up. The following lines from the bar_act.log file show that the ON-Bar emergency boot file, ixbar.0, is backed up:

Begin backup of critical file '/opt/informix-11.70.fc7/etc/ixbar.0'.
Completed backup of critical file '/opt/informix-11.70.fc7/etc/ixbar.0'

Files that you must manually back up
In addition to the critical files, you must also manually back up the following administrative files:

The sm_versions file
Storage-manager configuration and data files
Simple-large-object data in blobspaces that are stored on disks
Externally stored data such as external tables that a DataBlade maintains
The keystore and stash files for encrypting storage spaces, as specified by the DISK_ENCRYPTION configuration parameter

Tip: Even though ON-Bar includes the critical files with the files it backs up, it is a good practice to also include the critical files in your system archive. Having the critical
files included in both the IBM® Informix® and system archives gives you more options if you need them.

Files that ON-Bar re-creates
Although ON-Bar does not back up the following items, ON-Bar automatically re-creates them during a restore. You do not need to make backup copies of these files:

The dbspace pages that are allocated to the database server but that are not yet allocated to a tblspace extent
Mirror chunks, if the corresponding primary chunks are accessible
Temporary dbspaces
ON-Bar does not back up or restore the data in temporary dbspaces. Upon restore, the database server re-creates empty temporary dbspaces.

onbar -b syntax: Backing up

Use the onbar -b command to back up storage spaces and logical logs.

To run ON-Bar commands, you must be user root, user informix, a member of the bargroup group on UNIX, or a member of the Informix®-Admin group on Windows.

Usage
Example: Back up a whole system
Example: Back up all online storage spaces and logical logs
Example: Perform an incremental backup

1638 Part VI: Administering

Example: Back up specified storage spaces and all logical logs
Example: Back up a list of storage spaces specified in a file
Example: Back up logical logs
Example: Physical backup

Syntax for backing up with ON-Bar

>>-onbar-- -b--->

 .--------------------------.
 V |
>--+-+---+----------------------+-+-+--+-----+--+----------------+-+-><
 | | +- -L--+-0-+-----------+ | '- -O-' '- -cf--+-yes--+-' | | | |
 | | | +-1-+ | | +-no---+ |
 | | | '-2-' | | '-only-' |
 | | +- -p------------------+ | |
 | | '-+- -f--filename----+-' | |
 | | | .--------------. | | |
 | | | V | | | |
 | | +---dbspace_list-+-+ | |
 | | '- -w--------------' | |
 | '- -l--+-----+-----------------' |
 | +- -C-+ |
 | +- -c-+ |
 | '- -s-' |
 | |
 | |
 | |
 '- -F---'

Table 1. Options for the onbar -b command
Option Description

-b Specifies a backup
Backs up the storage spaces and logical logs, including the current logical log.

dbspace_list Specifies the storage spaces to be backed up, separated by blank spaces.
If you do not enter dbspace_list or -f filename, ON-Bar backs up all online storage spaces on the database
server.

-c Closes and backs up the current logical log and the other full logical logs.

-C Starts a continuous log backup.
Reserve a dedicated storage device and terminal window because the continuous log backups run indefinitely
waiting for logical logs to fill.

To stop a continuous log backup, stop the ON-Bar process with an interrupt command, such as CTRL-C or
SIGTERM.

-cf Specifies whether the critical files are backed up. The critical files are the onconfig file, the sqlhosts file, and
the ixbar.servernum file.
Valid values are:

yes = Backs up the critical files. Default when performing a level 0, 1, or 2 backup.
no = Does not back up the critical files. Default when backing up the logical log files.
only = Backs up only the critical files.

-f filename Backs up the storage spaces that are listed in the text file that is specified by the filename value.
Use this option to avoid entering a long list of storage spaces every time that you back up.

For more information, see List of storage spaces in a file.

-F Performs a fake backup
A storage-manager application is not necessary. No backup actually occurs, so no restore is possible from a
fake backup. Use fake backups sparingly, if at all. Fake backups might be appropriate in the following
situations:

Change database logging modes
Change a RAW table to a STANDARD table
Allow the user to use new logs, chunks, or mirrors without performing a backup
In special situations when you, the administrator, judge that a backup is not needed

-L Specifies the level of backup to perform on storage spaces:

0 = a complete backup (Default)
1 = changes since the last level-0 backup
2 = changes since the last level-1 backup

If you request an incremental backup and ON-Bar finds that no previous level backup was performed for a
particular storage space, ON-Bar backs up that storage space at the previous level. For example, if you
request a level-1 backup, and ON-Bar finds no level-0 backup, it makes a level-0 backup instead.

-l Performs a backup of full logical-log files.
The current logical-log file is not backed up.

Part VI: Administering 1639

Option Description

-O Overrides normal backup restrictions.
Use this option to back up logical logs when blobspaces are offline.

If a log backup occurs when blobspaces are offline, return code 178 displays in the ON-Bar activity log.

-p Backs up only physical storage spaces without logical logs.
A warning message is written to the activity log listing the log unique ID of the latest log file that is required
for a restore of the storage spaces. Use this option if logical logs are being continuously backed up. If
necessary, a log switch is initiated, so that this log can be backed up. If the current log is already newer than
the log with the archive checkpoint of the last storage space, then no log switch is initiated.

-s Salvages any logical logs that are still on disk after a database server failure. You can run the onbar -l -s
command while the server is offline.
If possible, use this option before you replace a damaged disk. If you use onbar -r to perform a cold restore
on an undamaged disk, ON-Bar automatically salvages the logical logs.

-w Backs up a whole system, which includes all storage spaces and logical logs based on a single checkpoint.
The time of the backup is stored with the backup information. The data in all storage spaces is consistent in a
whole-system backup, therefore, you do not need to restore the logical logs to make the data consistent. If
you do not save the logical logs, you must use the -w option.

Usage
Before you back up your data, make sure that your data is consistent by running the oncheck -cD command.

To run ON-Bar commands, you must be user root, user informix, or a member of the bargroup group on UNIX, or a member of the Informix-Admin group on Windows.
For more information, see ON-Bar security.

You can back up storage spaces and logical logs when the database server is in online, quiescent, or fast-recovery mode.

The storage-space chunks can be stored on raw disk storage space, in cooked files, or on an NTFS file system (Windows).

Only online storage spaces are backed up. Use the onstat -d command to determine which storage spaces are online. During a backup, if ON-Bar encounters a down
dbspace, it skips it and later returns an error. If a storage space is offline, restart the backup when the storage space is back online.

After you begin the backup, monitor its progress in the ON-Bar activity log and database server message log.

You can either back up the logical logs separately or with storage spaces. Back up the logical logs as soon as they fill so that you can reuse them and to protect against
data loss if the disks that contain the logs are lost. If the log files fill, the database server pauses until you back up the logical logs. You can either back up the logical logs
manually or start a continuous logical-log backup by running the onbar -b -C command. Logical-log backups are always level 0. After you close the current logical log, you
can back it up.

If you perform whole-system backups and restores, you do not need to restore logical logs. However, back up the logical logs when you use whole-system backups. These
log backups allow you to recover your data to a time after the whole-system backup, minimizing data loss.

If you are running continuous logical log backup and then start a whole system backup, the ON-Bar process attempts to save the logical logs. Because the continuous
logical log backup is running, an error message is returned indicating that a logical log backup is already running, and the whole system backup returns a non-zero error
code. In this case the logical logs are backed up only one time. To avoid the error, create a physical backup with the onbar -b -w -p command.

To back up a specific table or set of tables in ON-Bar, store these tables in a separate dbspace and then back up this dbspace. Alternatively, you can perform table level
restores with the archecker utility.

Example: Back up a whole system
The following command performs a level-0 whole system backup after taking a checkpoint of all online storage spaces and logical logs:

onbar -b -w

The following command performs a level-1 whole system backup:

onbar -b -w -L 1

Example: Back up all online storage spaces and logical logs
The following command performs a standard, level-0 backup of all online storage spaces and used logical logs:

onbar -b

Example: Perform an incremental backup
The following command performs a standard, level-1 backup:

onbar -b -L 1

Example: Back up specified storage spaces and all logical logs
The following command performs a level-0 backup of the dbspaces named fin_dbspace1 and fin_dbspace2 and all logical logs:

onbar -b fin_dbspace1 fin_dbspace2

1640 Part VI: Administering

Example: Back up a list of storage spaces specified in a file
The following sample file named listfile3 contains a list of storage spaces to be backed up:blobsp2.1, my_dbspace1, blobsp2.2, dbsl.1, rootdbs.1, and dbsl.2.

blobsp2.1
a comment ignore this text

 my_dbspace1 # back up this dbspace
; another comment
blobsp2.2 dbsl.1
rootdbs.1 dbsl.2 ; backing up two spaces

The following command backs up the storage spaces listed in the listfile3 file:

onbar -b -f listfile3

Example: Back up logical logs
The following command starts a manual logical-log backup:

onbar -b -l

The following command backs up the current logical-log file:

onbar -b -l -c

Example: Physical backup
The following command backs up all storage spaces without backing up any logical logs:

onbar -b -p -L 0

A warning message is written to the ON-Bar activity log file stating that log file backup was not initiated. The message also contains the log unique ID of the latest log file
that is required for a restore of the storage spaces. The latest required log file contains the archive checkpoint of the last dbspace backed up.

Example message:

2011-12-14 09:30:35 14277 14275 (-43354) WARNING: Logical logs were
 not backed up as part of this operation. Logs through log unique ID 9
 are needed for restoring this backup. Make sure these logs are backed
 up separately.

List of storage spaces in a file
 You can list storage spaces to back up or restore in a file.

Backing up blobspaces
 You can back up blobspaces in a database that uses transaction logging.

Related tasks:
 Configuring a continuous log restore by using ON-Bar

Replacing disks during a restore
Preparing to back up data
Related reference:

 Plan a backup system for a production database server
ON-Bar security

List of storage spaces in a file

You can list storage spaces to back up or restore in a file.

The filename value can be any valid UNIX or Windows file name:

Simple file names, for example: listfile_1)
Relative file names, for example: ../backup_lists/listfile_2 or ..\backup_lists\listfile2
absolute file names, for example: /usr//backup_lists/listfile3 or c:\\backup_lists\listfile3

The format rules for the file are:

If you are restoring chunks, list storage space names without paths. Each line can list more than one storage space, separated by spaces or a tab.
If you are renaming chunks, list the old chunk path name, the old offset, the new chunk path name, and the new offset. Put a blank space or a tab between each
item. Put information for each chunk on a separate line.
Comments begin with a # or a ; symbol and continue to the end of the current line.
ON-Bar ignores all comment or blank lines in the file.

Backing up blobspaces

You can back up blobspaces in a database that uses transaction logging.

Before you back up a new blobspace, make sure that the log file that recorded the creation of the blobspace is no longer the current log file. You can run the onstat -l
command to verify the logical-log status.

Part VI: Administering 1641

When users update or delete simple large objects in blobspaces, the blobpages are not freed for reuse until the log file that contains the delete records is freed. To free the
log file, you must back it up.

Important: If you perform a warm restore of a blobspace without backing up the logical logs after updating or deleting data in it, that blobspace might not be restorable.
To back up blobspaces:

1. Verify the logical-log status by running the onstat -l or xctl onstat -l command.
2. Switch to the next log file by running the onmode -l command.
3. Back up the logical logs:

If the blobspace is online, run the onbar -b -l -c command.
If the blobspace is offline, run the onbar -b -l -O or onbar -b -O command. If this backup is successful, ON-Bar returns 178.

4. Back up the blobspaces by running the onbar -b or onbar -b -w command.

Related information:
 onstat -L command: Print the number of free locks

onbar -m syntax: Monitoring recent ON-Bar activity

You can monitor recent ON-Bar activity with the onbar -m command. Only users who have permission to perform backup and restore operations can use this option.

Monitor recent ON-Bar activity

 .-20--------.
>>-onbar -m--+-+-------+-+--+----------------------+-----------><
 '-lines-' | .-5-----------. |
 '- -r--+-+---------+-+-'
 '-seconds-'

Table 1. Options for the onbar -m command

Option Description

-m Prints the recent activity of ON-Bar from the activity log file.

lines Specifies the number of lines to output. Default is 20 lines.

-r Causes the onbar -m command to repeat.

seconds Specifies the number of seconds to wait before repeating. Default is 5
seconds.

Related concepts:
 bar_act.log file: ON-Bar activity log

Related reference:
 ON-Bar messages and return codes

Message format in the ON-Bar message log
ON-Bar security

Viewing a list of registered backups

You can create a list of the registered ON-Bar backups performed on your system.

To view the list of registered backups:

1. Create a view in the sysutils database that contains information from the bar_action, bar_instance, and bar_object catalog tables. Include the following fields in
the view:

Backup_ID: The internally generated ID for the backup
Type: Defines whether the backup is a whole system backup, dbspace backup, or logical log backup.
Object_Name: The name of the object backed up.
Ifx_Time: Time at which the object was created. For dbspace backups, the checkpoint time that started the backup. For logical logs, the time when the log
become full.
CopyID_HI: The High part of the ID to locate the object in the storage manager.
CopyID_LO: The Low part of the ID to locate the object in the storage manager.
Backup_Start: Date and time when the backup started for this object
Backup_End: Date and time when the backup ended for this object.
Verify_Date: The time of the last verification made to this object, if any.

2. Run a SELECT statement against the view.

Example
The following statement creates a view that contains backup information:

CREATE VIEW list_backups(Backup_ID, Type, Object_Name, Ifx_Time, CopyID_HI,
 CopyID_LO, Backup_Start, Backup_End, Verify_Date)
AS SELECT * FROM (
SELECT
 act_aid AS backup_id,
 DECODE(act_type, 5, "Whole-System", DECODE(obj_type, "L",
 "Logical log", "Dbspace")) AS Type,
 substr(obj_name,1, 8) AS Object_Name,

1642 Part VI: Administering

 min(DBINFO ('utc_to_datetime', seal_time)) AS Ifx_Time,
 ins_copyid_hi AS CopyID_HI,
 ins_copyid_lo AS CopyID_LO,
 act_start AS Backup_Start,
 act_end AS Backup_End,
 ins_verify_date AS Verify_Date

FROM
 bar_action A,
 bar_instance I,
 bar_object O
WHERE
 A.act_aid = I.ins_aid AND
 A.act_oid = O.obj_oid AND
 A.act_oid = I.ins_oid AND
 O.obj_type in ("R", "CD", "ND", "L")
GROUP BY 1,2,3,5,6,7,8,9
ORDER BY Ifx_Time, Backup_ID) AS view_list_backups

The following query returns all the backups:

SELECT * FROM list_backups

Related information:
 The sysutils Tables

onbar -P syntax: Printing backed-up logical logs

You can use the onbar -P command to print logical logs that are backed up using the ON-Bar utility.

To run ON-Bar commands, you must be user root, user informix, a member of the bargroup group on UNIX, or a member of the Informix®-Admin group on Windows.

Usage
Example: Print a specific transaction
Example: Print multiple logical log files

Print backed-up logical logs

 .--------------------------------.
 V |
>>-onbar -P---- -n--+-unique_id-------------+-+----------------->
 '-starting_id-ending_id-'

>--+-----+--+-----+--+-----+--+-----+--+---------------+-------->
 '- -l-' '- -q-' '- -b-' '- -c-' '- -u--username-'

>--+-------------------+--+----------------------+-------------><
 '- -t--tblspace_num-' '- -x--transaction_num-'

Table 1. Options for the onbar -P command
Option Purpose

-b Print logical-log records associated with blobspace blobpages.
The database server stores these records on the logical-log backup media as part of blobspace
logging.

-c Use the compression dictionary to expand compressed data.

-l Print the long listing of the logical-log record.
The long listing of a log record includes complex hexadecimal and ASCII dumps of the entire
log record.

-n starting_id-ending_id Print the logical-log records contained in the specified range of log files. The starting_id option
is the ID of the first log to print. The ending_id option is ID of the last log to print. The value of
the starting_id option must be smaller than the value of the ending_id option.
Separate the starting and ending ID values with a hyphen. Do not include blank spaces.

-n unique_id Print the logical-log records contained in the specified log file. The unique_id option is the
unique ID number of the logical log. To determine the unique ID of a specific logical-log file,
use the onstat -l command.

-P Print backed-up logical log information

-q Do not print the program header

-t tblspace_num Print the records associated with the tblspace that you specify with the tblspace_num option.
Specify the tblspace_num value as either an unsigned integer or hexadecimal value. If you do
not use a prefix of 0x, the value is interpreted as an integer. The integer must be greater than
zero and must exist in the partnum column of the systables system catalog table.

-u username Print the records for a specific user. The user name must be an existing login name and
conform to operating-system-specific rules for login names.

Part VI: Administering 1643

Option Purpose

-x transaction_num Print only the records associated with the transaction that you specify. The transaction_num
must be an unsigned integer between zero and TRANSACTIONS -1, inclusive.
Additional Information: Use the -x option only in the unlikely situation of an error being
generated during a roll-forward. When this situation occurs, the database server sends a
message to the message log that includes the transaction ID of the offending transaction. You
can use this transaction ID with the -x option to investigate the cause of the error.

Usage
To view the backed-up logical logs, the storage manager must be running.

The output of this command is printed to stdout.

Example: Print a specific transaction
The following command prints information about a single transaction that was performed by the user informix against the tblspace 1048722 and is contained in the
logical log file 2:

onbar -P -n 2 -l -q -b -u "informix" -t 1048722 -x 1

The output for this command might be:

log uniqid: 2.
1665d0 120 DPT 1 2 0 5
 00000078 0002006c 00000010 0000fefe ...x...l
 00000001 00000000 000077e3 00000000w.....
 00000005 00000005 00002a24 00000001*$....
 00100004 0a0c21b8 00002a48 00000001!. ..*H....
 00100006 0a0c2288 00002ea1 00000001".
 0010001b 0a0c3810 00002bee 000000018. ..+.....
 00100015 0a0c3a18 00002a3d 00000001:. ..*=....
 00100005 0a0c57c0 W.
166648 60 CKPOINT 1 0 1665d0 1
 0000003c 00000042 00000010 0000fefe ...<...B
 00000001 001665d0 000077e3 00000000e. ..w.....
 00010005 00000002 00000002 001665a0e.
 00000007 ffffffff 00084403 D.

Example: Print multiple logical log files
The following command prints the logical log records for the logical logs files that have IDs of 2, 3, 4, 5, 10, 11, and 12:

onbar -P -n 2-5 -n 10-12

Related reference:
 ON-Bar security

Related information:
 onstat -l command: Print physical and logical log information

onstat -L command: Print the number of free locks
SYSTABLES

onbar -v syntax: Verifying backups

Use the onbar -v command to verify that backups that were created by the ON-Bar utility are complete and can be restored.

To run ON-Bar commands, you must be user root, user informix, a member of the bargroup group on UNIX, or a member of the Informix®-Admin group on Windows.

Sufficient temporary space must be available. For more information, see Temporary space for backup verification.

Usage
Example: Perform a point-in-time verification of a backup
Example: Verify backups of storage spaces listed in a file
Example: ON-Bar activity log verification messages
Example: archecker message log verification messages

Verify backups

>>-onbar - -v--+-----+--+-------------+--+---------------+-----><
 '- -p-' '- -t--"time"-' +- -f--filename-+
 | .-------. |
 | V | |
 +---space-+-----+
 '- -w-----------'

Table 1. Options for the onbar -v command

Option Description

1644 Part VI: Administering

Option Description

-v Verifies a backup. The server can be in any mode.
If verification is successful, you can restore the storage spaces safely.

You can verify a whole-system or physical-only backup. You cannot verify the logical logs.

space Names of storage spaces to verify.
If you enter more than one storage-space name, use a space to separate the names.

-f filename Verifies the storage spaces that are listed in the text file whose path name filename provides.
Use this option to avoid entering a long list of storage spaces every time that you verify them.

You can use any valid UNIX or Windows path name and file name. For the format of this file, see List of
storage spaces in a file.

The file can list multiple storage spaces per line.

-p Verifies a physical-only backup.

-t "time" Specifies the date and time to which dbspaces are verified. Must be surrounded by quotation marks.
How you enter the time depends on your current GLS locale convention. If the GL_DATETIME environment
variable is set, you must specify the date and time according to that variable. If the GLS locale is not set, use
ANSI-style date format: YYYY-MM-DD HH:MM:SS.

-w Verifies a whole-system backup.

Usage
The onbar -v command runs the archecker utility. The archecker utility verifies that all pages required to restore a backup exist on the media in the correct form. After
you successfully verify a backup, you can restore it safely.

When you verify a backup, ON-Bar writes summary messages to the bar_act.log that report which storage spaces were verified and whether the verification succeeded or
failed. The archecker utility writes detailed messages to the ac_msg.log. Software Support uses the ac_msg.log to diagnose problems with backups and restores.

The onbar -v command verifies only the smart-large-object extents in an sbspace. For a complete check, use the oncheck -cS command.

The onbar -v command cannot verify the links between data rows and simple large objects in a blobspace. Use the oncheck -cD command instead to verify the links in a
blobspace.

Example: Perform a point-in-time verification of a backup
The following command verifies a backup at a point-in-time:

onbar -v -t "2011-12-10 10:20:50"

Example: Verify backups of storage spaces listed in a file
The following command verifies the backed-up storage spaces that are listed in the file bkup1:

onbar -v -f /usr/backups/bkup1

Example: ON-Bar activity log verification messages
The following examples show messages about verification in the ON-Bar activity log:

The level-0 backup of dbspace dbs2.2 passed verification, as follows:

Begin backup verification of level0 for dbs2.2 (Storage Manager Copy ID:##)
Completed level-0 backup verification successfully.

The level-0 backup of rootdbs failed verification, as follows:

Begin backup verification of level0 for rootdbs (Storage Manager Copy ID:##).
ERROR: Unable to close the physical check: error_message.

Example: archecker message log verification messages
More detailed information is available in the archecker message log, as follows:

STATUS: Scan PASSED
STATUS: Control page checks PASSED
STATUS: Starting checks of dbspace dbs2.2.
STATUS: Checking dbs2.2:TBLSpace
.
.
STATUS: Tables/Fragments Validated: 1
Archive Validation Passed

Temporary space for backup verification
 When you verify backups, 15-25 MB of temporary space must be available.

Verification failures
 The verification of a backup can fail for various reasons. If a backup fails verification, do not attempt to restore it.

Related tasks:

Part VI: Administering 1645

Verifying an expired backup
Related reference:
ON-Bar security

Temporary space for backup verification

When you verify backups, 15-25 MB of temporary space must be available.

During backup verification, the archecker utility requires about 15 MB of temporary space for a medium-size system (40-50 GB) and 25 MB for a large system. This
temporary space is stored on the file system in the directory that the AC_STORAGE parameter specifies, not in the dbspaces. The temporary files contain bitmap
information about the backup and copies of partition pages, free pages in a chunk, reserved pages, and optionally, free pages in a blobspace and debugging information.
The archecker utility must have permissions to the temporary directory.

If the backup is verified successfully, these files are deleted. If the backup fails verification, these files remain. Copy them to another location so that Software Support can
review them.

If your database server contains only dbspaces, use the following formula to estimate the amount of temporary space in KB for the archecker temporary files:

space = (130 KB * number_of_chunks) + (pagesize * number_of_tables) +
(.05 KB * number_of_logs)

For IBM® Informix®, if your database server contains blobspaces or sbspaces, use the following formula to estimate the amount of temporary space for the archecker
temporary files:

space = (130 KB * number_of_chunks) + (pagesize * number_of_tables) +
(.05 KB * number_of_logs) + (pagesize * (num_of_blobpages/252))

number_of_chunks
The maximum number of chunks that you estimate for the database server.

pagesize
The system page size in KB.

number_of_tables
The maximum number of tables that you estimate for the database server.

number_of_logs
The number of logical logs on the database server.

num_of_blobpages
The number of blobpages in the blobspaces or the number of sbspaces. (If your database server contains sbspaces, substitute num_of_blobpages with the number
of sbspaces.)

For example, you would need 12.9 megabytes of temporary disk space on a 50-gigabyte system with a page size of 2 KB. This system does not contain any blobspaces, as
the following statement shows:

13,252 KB = (130 KB * 25 chunks) + (2 KB * 5000 tables) +
 (.05 KB * 50 logs) + (2 KB * 0)

To convert KB to MB, divide the result by 1024:

12.9 MB = 13,252/1024

Verification failures

The verification of a backup can fail for various reasons. If a backup fails verification, do not attempt to restore it.

The causes of a verification failure are unpredictable and range from corruption of the database server to a failed restore because ON-Bar cannot find the backup object on
the storage manager. In fact, the restore might appear to be successful but it hides the real problem with the data or media.

Backups with corrupted pages
If the pages are corrupted, the problem is with the databases rather than with the backup or the media.

Run oncheck -cd on any tables that produce errors and then redo the backup and verification. To check extents and reserved pages, run oncheck -ce and oncheck -cr.

Backups with corrupted control information
In this case, all the data is correct, but some of the backup control information is incorrect, which might cause problems with the restore. Ask Software Support for
assistance.

Backups with missing data
When a backup is missing data, it might not be recoverable. After a data loss, try to restore from an older backup. Then restore the current logical logs.

Backups of inconsistent database server data
There are cases where archecker returns “success” to ON-Bar but shows “failure” in the archecker message logs. This situation occurs when archecker verifies that ON-
Bar backed up the data correctly, but the database server data was invalid or inconsistent when it was backed up.

1646 Part VI: Administering

Diagnosing why a backup failed verification
If a backup failed verification, you can take steps to diagnose and attempt to fix the problem.
Verifying an expired backup
You can verify an expired backup in case subsequent backups are not valid.
Restoring when a backup is missing data
If a backup fails verification because of missing data, you can perform a restore from an older backup.

Diagnosing why a backup failed verification

If a backup failed verification, you can take steps to diagnose and attempt to fix the problem.

To diagnose why a backup failed verification:

1. Verify that the AC_CONFIG environment variable and the contents of the archecker configuration file are set correctly. If these variables are set incorrectly, the ON-
Bar activity log prints a message.

2. Back up the data onto different media.
Do not reuse the original backup media because it might be damaged.

Do not use any backups based on this backup. If the level-0 backup failed verification, do not use the corresponding level-1 and level-2 backups.

3. Verify this new backup. If verification succeeds, you can restore the storage spaces.
4. Use your storage manager to expire the backup that failed verification and then run the onsmsync utility without arguments to remove the bad backup from the

sysutils and emergency boot files.
5. If verification fails again, call Software Support and provide them with the following information:

Your backup tool name (ON-Bar)
The database server online.log
The archecker message log
The AC_STORAGE directory that contains the bitmap of the backup and copies of important backed-up pages

If only part of the backup is corrupted, Software Support can help you determine which portion of the backup can be restored in an emergency.

Software Support might advise you to run oncheck options against a set of tables.

Verifying an expired backup

You can verify an expired backup in case subsequent backups are not valid.

To verify an expired backup:

1. Check that the status of the backup save set on the storage manager. If the storage manager expired the backup save set, the archecker utility cannot verify it.
2. Use the storage-manager commands for activating the expired backup save set. See your storage-manager documentation.
3. Run the onbar -v command again.

Related reference:
 onbar -v syntax: Verifying backups

Restoring when a backup is missing data

If a backup fails verification because of missing data, you can perform a restore from an older backup.

To restore when a backup is missing data:

1. Choose the date and time of an older backup than the one that failed. To perform a point-in-time verification, use the onbar -v -t time space command.
2. If the older backup passes verification, perform a point-in-time physical restore by using the same time value, then perform a log restore, as follows:

onbar -r -p -t time space
onbar -r -l

3. Expire the corrupted backup at your storage manager.
4. Run the onsmsync command without arguments. The onsmsync utility removes backups that are no longer held by the storage manager from the emergency boot

file and the sysutils database, preventing ON-Bar from attempting to use such backups.

Related reference:
 The onsmsync utility

onbar -r syntax: Restoring data

Restore data with ON-Bar

You can use the ON-Bar utility to restore data that was backed up by the ON-Bar utility.

Before you restore data, use the pre-restore checklist to determine if whether a restore is needed and to prepare for a restore.

To perform a restore with the ON-Bar utility:

Part VI: Administering 1647

1. Make the storage devices that were available during the backup available for the restore.
2. If necessary, add enough temporary space to perform the restore. The logical log restore portion of a warm restore requires temporary space. The minimum amount

of temporary space is equal to the smaller of the total amount of allocated logical-log space and the number of log files to be replayed.
3. Run the onbar -r command with the appropriate options to restore the data.
4. Monitor the ON-Bar activity log.
5. After the restore is complete, run the onstat -d command to verify that all storage spaces are restored. The letter O in the flags column indicates that the chunk is

online.

Pre-restore checklist
 Use this checklist to determine if a restore is necessary and to prepare for a restore.

Storage device availability
 Verify that the storage devices and files used in the backup are available for the restore.

onbar -r syntax: Restoring data
 To run a complete restore, use onbar -r command.

Replacing disks during a restore
 You can replace disks during a restore by renaming chunks. You rename chunks by specifying new chunks paths and offsets during a cold restore with ON-Bar. This

option is useful if you need to restore storage spaces to a different disk from the one on which the backup was made. You can rename any type of chunk, including
critical chunks and mirror chunks.
Restoring to a different computer

 You can back up data on one computer and restore the data on a different computer. Importing a restore is useful for disaster recovery or upgrading a database
server. After you back up your data and move over the storage-manager objects, you can perform an imported restore. An imported restore involves copying files
from the source to the target computer and performing the restore in one of several ways.
onbar -RESTART syntax: Restarting a failed restore

 If a failure occurs with the database server, media, storage manager, or ON-Bar during a restore, you can restart the restore from the place that it failed. To restart a
failed restore, the RESTARTABLE_RESTORE configuration parameter must be set to ON in the onconfig file when the restore fails.
Resolve a failed restore

 How you resolve a failed restore depends on the cause of the failure.

Pre-restore checklist

Use this checklist to determine if a restore is necessary and to prepare for a restore.

To prepare for a restore:

Determine if you need to restore. If one or more of these problems is true, you perform a restore to fix the problem:
Has data been lost or corrupted?
Does a committed transaction error need to be undone?
Is the database server down or has a disk failed?
Is a storage space or chunk down or inconsistent?

Diagnose the problem by using database server monitoring tools.
If the root dbspace or the dbspaces that contain the physical log and logical-log files need to be restored, you must perform a cold restore. The database server
must be offline during a cold restore. Ask your client users to log off the system.
Contact the appropriate vendor to resolve the following types of problems before doing a restore:

The storage manager
The XBSA connection
The operating system
The storage media

Storage space status and required actions
 To determine the state of each storage space and its chunks, examine the output of the onstat -d command. The storage space status determines the action you

need to take to solve the problem. The database server must be online.

Related information:
 Database server monitoring

Storage space status and required actions

To determine the state of each storage space and its chunks, examine the output of the onstat -d command. The storage space status determines the action you need to
take to solve the problem. The database server must be online.

The following table describes onstat -d command output about chunk status and the actions required to solve the problems. The chunk status information is in the second
position of the flags column in the first (storage spaces) and second (chunks) sections of the output.

Table 1. Chunk flag descriptions and required actions

chunk flag Storage space or chunk state Action required

(No flag) Storage space no longer exists. Perform a point-in-time cold restore to a time before the storage
space was dropped.

D Chunk is down or storage space is disabled. Perform a warm restore of the affected storage space.

I Chunk is physically restored, but needs a logical restore. Perform a logical restore.

L Storage space is being logically restored. Try the logical restore again.

N Chunk is renamed and either down or inconsistent. Perform a warm restore of the chunk when the physical device is
available.

1648 Part VI: Administering

chunk flag Storage space or chunk state Action required

O Chunk is online. No action required.

P Storage space is physically restored. Perform a logical restore, if one is not already in progress.

R Storage space is being restored. Perform a physical or logical restore.

X Storage space or chunk is newly mirrored. No action required.

Related reference:
 onbar -r syntax: Restoring data

Related information:
 onstat -d command: Print chunk information

Storage device availability

Verify that the storage devices and files used in the backup are available for the restore.

If you drop a dbspace or mirror device after a level-0 backup, the dbspace or mirror device must be available to the database server when you begin the restore. If the
storage device is not available, the database server cannot write to the chunk and the restore fails.

If you add a chunk after your last backup, the chunk device must be available to the database server when it rolls forward the logical log.

onbar -r syntax: Restoring data

To run a complete restore, use onbar -r command.

To run ON-Bar commands, you must be user root, user informix, a member of the bargroup group on UNIX, or a member of the Informix®-Admin group on Windows.

Usage
Example: Perform a whole-system restore
Example: Restore specific storage spaces
Example: Perform a warm restore in stages
Example: Point-in-time restore
Example: Point-in-time restore with a French locale
Example: Point-in-time restore in stages
Example: Restore a dropped storage space and chunks
Example: Restore critical files

Run a full or physical restore
>>-onbar-- -r--+-----+--+-----------+--+-----+------------------>
 '- -p-' +- -e-------+ '- -w-'
 +- -encrypt-+
 '- -decrypt-'

>—+-------------+-----+----------------------+------------------>
 +- -t--"time"-+ '- -pw-+------------+--'
 '- -n--log----' '--filename--'

>--+--+-->
 +- -O--+
 '-+- -rename-- -f--filename--+-'
 | .--. |
 | V | |
 '--- -rename-- -p--old_path-- -o--old_offset-- -n--new_path-- -o--new_offset-+-'

>--+---------------+--+----------------+-----------------------><
 +- -f--filename-+ '- -cf--+-yes--+-'
 | .-------. | +-no---+
 | V | | '-only-'
 '---space-+-----'

Run a logical restore

>>-onbar-- -r-- -l--+-------------+----------------------------><
 +- -C---------+
 +- -X---------+
 +- -t--"time"-+
 '- -n--log----'

Run a tenant restore

>>-onbar-- -r--->

>-- -T--tenant_database--+-----------+-- -t--"time"--+-----+---><
 +- -encrypt-+ '- -O-'
 '- -decrypt-'

Table 1. Options for the onbar -r command.

Part VI: Administering 1649

Option DescriptionOption Description

-r Specifies a restore. If the database server is offline, ON-Bar performs a cold restore. If the database server is
in online, quiescent, or fast recovery mode, ON-Bar performs a warm restore.
In a cold restore, the -r option restores all storage spaces and salvages and restores the logical logs. In a
warm restore, the -r option restores all storage spaces that are offline and restores the logical logs.

You must specify the -r option first.

space Specifies which storage spaces to back up as a list of one or more dbspace, blobspace, or sbspace names,
separated by blank spaces.
ON-Bar restores only the storage spaces listed. If the database server is offline, you must list all the critical
dbspaces. You cannot specify temporary spaces.

-C Continuously restores logical logs from the current logical log tape without sending prompts to mount the
tape.
The server is placed in suspend log restore state, and the command exits after the last applicable log is
restored. The server sends a prompt if a log spans tapes. The configuration parameter
RESTARTABLE_RESTORE does not affect continuous log restoration.

-cf Specifies whether the critical files are restored during a cold restore.
The critical files are the onconfig file, the sqlhosts file (on UNIX), the oncfg_servername.servernum file, and
the ixbar.servernum file.

Valid values are:

yes = Restores the critical files.
no = Default. Does not restore the critical files.
only = Restores only the critical files.

-decrypt Specifies to decrypt any encrypted storage spaces during the physical restore of the spaces.

-encrypt Specifies to encrypt storage spaces during the physical restore of the spaces. Storage space encryption must
be enabled by the DISK_ENCRYPTION configuration parameter. Otherwise, the restore fails.
For more information about storage space encryption, see Changing storage space encryption during a
restore.

-e Specifies an external restore. Run the onbar -r -e command after you externally restore the storage spaces.
Marks storage spaces as physically restored, restores the logical logs, and brings the storage spaces online.

-f filename Specifies the path and file name of a text file that lists the storage spaces to restore or rename.
Use this option to avoid entering a long list of storage spaces.

For more information, see List of storage spaces in a file.

-l Specifies a logical restore only. Restores and rolls forward the logical logs. The logical restore applies only to
those storage spaces that are already physically restored.
Important: To improve performance, replay logical-log transactions in parallel during a warm restore. Use the
ON_RECVRY_THREADS configuration parameter to set the number of parallel threads. To replay logical-log
transactions in parallel during a cold restore, use the OFF_RECVRY_THREADS configuration parameter. For
more information, see your IBM® Informix Performance Guide.

-n log Indicates the unique ID of the last logical log to be restored in a cold restore. The database server must be
offline.
To find the unique ID, use the onstat -l command.

A point-in-log restore is a special point-in-time restore. You must restore all storage spaces in a point-in-log
restore so that the data is consistent. If any logical logs exist after the specified log, ON-Bar does not restore
them and their data is lost. If the specific logical log applies to more than one timeline, ON-Bar uses the latest
one.

Cannot be combined with the -t option.

-n new_path Specifies the new path of the chunk. Use with the -rename option.

-O Overrides internal error checks. Allows the restore of online storage spaces. Forces the recreation of chunk
files that no longer exist.
Used to override internal error checks to perform the following tasks:

Force the restore of online storage spaces. If a storage space in the list of storage spaces to restore is
online, ON-Bar takes the storage space offline and then restores it. If this operation succeeds, ON-Bar
completes with an exit code of 177.
Force the creation of nonexistent chunk files. If a chunk file for a storage space being restored no
longer exists, ON-Bar recreates it. The newly created chunk file is cooked disk space, not raw disk
space. If ON-Bar successfully recreates the missing chunk file, ON-Bar completes with an exit code of
179.
Force a cold restore to proceed if a critical storage space is missing. In a cold restore, ON-Bar checks
whether every critical space is being restored. This check occasionally causes false warnings. If the
warning was valid, the restore fails. If the warning was false and ON-Bar successfully restores the
server, ON-Bar completes with an exit code of 115.

Use the -O option with a whole-system restore only to recreate missing chunk files. You cannot use the onbar
-r -w -O command when the database server is online because the root dbspace cannot be taken offline
during the whole-system restore. Cannot be combined with the -rename option.

1650 Part VI: Administering

Option Description

-pw [file name] The -pw option is required only when the storage space encryption feature is enabled and no stash file is in
use. Supply an optional path to a file containing the keystore password, otherwise onbar will prompt for a
password before performing the restore.

-o new_offset Specifies the offset of the renamed chunk. Use with the -rename option.

-o old_offset Specifies the offset of the chunk to be renamed. Use with the -rename option.

-p Specifies a physical restore only.
You must follow a physical restore with a logical restore before data is accessible unless you use a whole-
system restore. This option turns off automatic log salvage before a cold restore. If the LTAPEDEV
configuration parameter is set to /dev/null or NUL, you must use the -p option during a restore.

-p old_path Specifies the path of the chunk to be renamed. Use with the -rename option.

-rename Renames one or more chunks during a cold restore. The database server must be offline.
This option is useful if you need to restore storage spaces to a different disk from the one on which the
backup was made. You can rename any type of chunk, including critical chunks and mirror chunks. You can
rename chunks that have level-0 backups.

Cannot be combined with the -O option.

-T tenant_database Restores a tenant database. The database server must be online. No other warm restores or tenant restores
can be in progress.
If you include the -t option, the data is restored to the specified point in time. If you do not include the -t
option, the data is restored to the current time.

Include the -O option unless all of the permanent tenant storage spaces are marked as down. Temporary
storage spaces are never backed up or restored.

For more information, see Restoring a tenant database to a point in time.

-t "time" Specifies the time of the last transaction to be restored from the logical logs in a cold restore or a tenant
database point-in-time restore. For a cold restore, the database server must be offline. For a tenant database
point-in-time restore, the database server must be online.
All storage spaces specified are restored to the same point in time. However, for a cold restore, if you perform
a physical restore followed by a logical restore, the logical restore can be to a later point in time. For example
you might detect that your current backup is corrupted, and that you need to restore the previous backup. In
this case, start your physical restore with the timestamp of your previous backup, and subsequently start the
logical recovery to a more recent timestamp.

A point-in-time restore is typically used to recover from a mistake. For example, if you accidentally dropped a
database, you can restore the server to a point in time just before you dropped the database.

To determine the appropriate date and time for the point-in-time restore, use the onlog utility. The onlog
utility output shows the date and time of the committed transactions in the logical log. All data transactions
that occurred after the time you specify in the restore command are lost.

Use quotation marks around the date and time. The format for the English locale is yyyy-mm-dd hh:mm:ss.
If the GL_DATETIME environment variable is set, you must specify the date and time according to that
variable.

Cannot be combined with the -n log option.

-w Performs a whole-system restore of all storage spaces and logical logs from the last whole-system backup.
The database server must be offline.
After the whole-system restore is complete, the server is in quiescent mode.

If you specify onbar -r -w without a whole-system backup, return code 147 is returned because ON-Bar
cannot find any storage spaces backed up as part of a whole-system backup.

-X Stops continuous logical log restore. Leaves the server in quiescent mode in a logical restore suspend state
without restoring additional logs.

Usage
You can restore storage spaces stored in both raw and cooked files. If your system contains primary and mirror storage spaces, ON-Bar writes to both chunks
simultaneously during the restore, except for an external restore. You cannot specify to restore temporary spaces. When you restore the critical dbspaces (for example,
the root dbspace), the database server recreates the temporary dbspaces, but they are empty.

ON-Bar restores the storage spaces in parallel if the BAR_MAX_BACKUP or BAR_MAX_RESTORE configuration parameter is set to a value greater than 1. To speed up
restores, you can add additional CPU virtual processors.

You can restore noncritical storage spaces in a warm restore, when the database server is online, in the following circumstances:

The storage space is online, but one of its chunks is offline, recovering, or inconsistent.
The storage space is offline or down.

You cannot perform more than one warm restore simultaneously. If you need to restore multiple storage spaces, specify the set of storage spaces to restore to ON-Bar or
allow ON-Bar to restore all down storage spaces by not explicitly specifying any spaces.

Tip: For faster performance in a restore, assign separate storage devices for backing up storage spaces and logical logs. If physical and logical backups are mixed together
on the storage media, it takes longer to scan the media during a restore.
In certain situations, you might want to perform a restore in stages. If multiple devices are available for the restore, you can restore multiple storage spaces separately or
concurrently, and then perform a single logical restore.

Part VI: Administering 1651

By default, ON-Bar restores the latest backup. If you do not want to restore the latest backup, you can restore from an older backup: for example, when backup
verification failed or the backup media was lost. You can perform a point-in-time restore or a point-in-log restore. Alternatively, you can expire a bad backup in the storage
manager, run the onsmsync command, and then restore from the older backup. If you accidentally drop a storage space, you can use a point-in-time restore or a point-in-
log restore to recover it.

You can force a restore of online storage spaces (except critical dbspaces) by using the -O option. The database server automatically shuts down each storage space
before it starts to restore it. Taking the storage space offline ensures that users do not try to update its tables during the restore process.

You can restore critical files during a cold restore by including the -cf yes option.

You can rename chunks by specifying new chunks paths and offsets during a cold restore with ON-Bar. This option is useful if you need to restore storage spaces to a
different disk from the one on which the backup was made. You can rename any type of chunk, including critical chunks and mirror chunks.

When storage space encryption is enabled, by default storage spaces retain the same encryption state after a restore as during the back up. You can specify to encrypt or
decrypt a storage space during a restore with the -encrypt or -decrypt options.

Example: Perform a whole-system restore
A whole-system restore is a cold restore and must be performed while the server is offline. The following command restores a whole-system backup:

onbar -r -w

Example: Restore specific storage spaces
The following example restores two specific storage spaces, fin_dbspace1 and fin_dbspace2:

onbar -r fin_dbspace1 fin_dbspace2

Example: Perform a warm restore in stages
The following commands perform a physical restore, back up logical logs, and perform a logical restore:

onbar -r -p
onbar -b -l
onbar -r -l

Example: Point-in-time restore
The following command restores database server data to its state at a specific date and time:

onbar -r -t "2011-05-10 11:35:57"

In this example, the restore replays transactions that committed on or before the specified time, including any transactions with a commit time of 11:35:57. Transactions
in progress but not committed by 11:35:57 are rolled back.

Example: Point-in-time restore with a French locale
The default date and time format for the French locale, fr_fr.8859-1, uses the format "%A %.1d %B %iY %H:%M:%S."

The following command restores the data to a specific point in time that is formatted for the French locale:

onbar -r -t "Lundi 6 Juin 2011 11:20:14"

You can set GL_DATETIME to a different date and time format that uses the date, month, two-digit year, hours, minutes, and seconds. For example:

%.1d %B %iy %H:%M:%S

The following command restores to a specific point in time by specifying a two-digit year for the French locale:

onbar -r -t "6 Juin 11 11:20:14"

Example: Point-in-time restore in stages
The following commands perform a physical restore and a logical restore to the same point in time:

onbar -r -p -t "2011-05-10 11:35:57"
onbar -r -l -t "2011-05-10 11:35:57"

Example: Restore a dropped storage space and chunks
Suppose that a transaction dropped a storage space named dbspace1 and deleted chunks at the time 2011-05-10 12:00:00. The following command restores the
storage space and recreates the deleted chunks while the server is offline:

onbar -r -t "2011-05-10 11:59:59" -O

Example: Restore critical files
The following command restores data and the critical files during a cold restore:

onbar -r -cf yes

1652 Part VI: Administering

Avoid salvaging logical logs
The onbar -r command automatically salvages the logical logs. However, avoid salvaging logical logs in some situations.
Performing a cold restore
If a critical storage space is damaged because of a disk failure or corrupted data, you must perform a cold restore. If a disk fails, you need to replace it before you
can perform a cold restore to recover data.
Configuring a continuous log restore by using ON-Bar
Use continuous log restore to keep a second system (hot backup) available to replace the primary system if the primary system fails.
Restoring data by using a mixed restore
You can use mixed restore to reduce the time until urgent data becomes online and available when you need to restore the server. Urgent data is data that you
deem as critical to your business operation.
Recreating chunk files during a restore
If the disk or file system fails, one or more chunk files might be missing from the dbspace. Use the -O option to recreate missing chunk files and any necessary
directories during a restore.
Reinitializing the database server and restoring data
Reinitializing disk space destroys all existing data managed by the database server. However, you can restore data from a backup that was performed before
reinitialization.

Related tasks:
 Restoring when a backup is missing data

Replacing disks during a restore
Related reference:

 Storage space status and required actions
External restore commands
ON-Bar security
onbar -RESTART syntax: Restarting a failed restore

Avoid salvaging logical logs

The onbar -r command automatically salvages the logical logs. However, avoid salvaging logical logs in some situations.

Use the onbar -r -p and onbar -r -l commands to skip log salvage.

If you set the LTAPEDEV configuration parameter to /dev/null on UNIX or to NUL on Windows, the logical logs are not salvaged in any ON-Bar restore (onbar -r or onbar -r
-w, for example).

Avoid salvaging the logical logs in the following situations:

When you perform an imported restore
Salvage the logical logs on the source database server but not on the target database server.

If you reinitialize the database server (oninit -i) before you perform a cold restore
Reinitialization creates new logical logs that do not contain the data that you want to restore.

If you install a new disk for the dbspace that contains the logical logs
Salvage the logs from the old disk, but not from the new disk.

Related tasks:
 Restoring to a different computer

Performing a cold restore

If a critical storage space is damaged because of a disk failure or corrupted data, you must perform a cold restore. If a disk fails, you need to replace it before you can
perform a cold restore to recover data.

If you try to perform a cold restore without a backup, data in the storage spaces that were not backed up are lost.
To perform a cold restore:

1. Shut down the server by running the onmode -ky command.
2. If the disk that contains the logical-log files must be replaced or repaired, use the onbar -b -l -s command to salvage logical-log files on the damaged disk.

Otherwise, ON-Bar automatically salvages the logical logs.
3. If necessary, repair or replace the damaged disk.
4. If the files in INFORMIXDIR are damaged, copy the back ups of administrative files to their original locations.

Otherwise, you do not need to copy the administrative files.

5. Restore the critical and noncritical storage spaces by running the onbar -r command. When the restore is complete, the database server is in quiescent mode.
6. Start the server by running the onmode -m command.
7. Synchronize the storage manager by running the onsmsync command.

Related reference:
 The onsmsync utility

Related information:
 onmode -k, -m, -s, -u, -j: Change database server mode

Configuring a continuous log restore by using ON-Bar

Part VI: Administering 1653

Use continuous log restore to keep a second system (hot backup) available to replace the primary system if the primary system fails.

The version of IBM® Informix® must be identical on both the primary and secondary systems.
To configure continuous log restore by using ON-Bar:

1. On the primary system, perform a level-0 backup with the onbar -b -L 0 command.
2. Import the backup objects that were created to the storage manager of the secondary server.
3. On the secondary system, perform a physical restore with the onbar -r -p command. After the physical restore completes on the secondary system, the database

server waits in fast recovery mode to restore logical logs.
4. On the primary system, back up logical logs with the onbar -b -l command.
5. Transfer the backed up logical logs to the secondary system and restore them with the onbar -r -l -C command.
6. Repeat steps 4 and 5 for all logical logs that are available to back up and restore.
7. If you are doing continuous log restore on a secondary system as an emergency standby, run the following commands to complete restoring logical logs and

quiesce the server:
If logical logs are available to restore, run the onbar -r -l command.
After all available logical logs are restored, run the onbar -r -l -X command.

Related concepts:
 Continuous log restore

Related reference:
 onbar -b syntax: Backing up

Restoring data by using a mixed restore

You can use mixed restore to reduce the time until urgent data becomes online and available when you need to restore the server. Urgent data is data that you deem as
critical to your business operation.

In a mixed restore, you first perform a cold restore of the critical dbspaces (the root dbspace and the dbspaces that contain the physical and logical logs) and the
dbspaces containing your urgent data. Because you do not restore all dbspaces, you can bring the server online faster. You then restore the remaining storage spaces in
one or more warm restores.

To perform a mixed restore:

1. Shut down the database server by running the onmode -ky command.
2. Perform a cold restore of the critical and urgent dbspaces by running the onbar -r command with the list of critical and urgent dbspace names. You can specify a

point in time to restore from an older backup.
3. Start the server by running the onmode -m command.
4. Synchronize the storage manager by running the onsmsync command.
5. Perform a warm restore of the remaining storage spaces by running the onbar -r command. You can perform multiple warm restores to prioritize certain storage

spaces.

Examples
Example 1: Simple mixed restore

A database server has five dbspaces in addition to the root dbspace: logdbs, dbs_1, dbs_2, dbs_3, and dbs_4. The logical logs are stored in logdbs and the
physical log is in the root dbspace. The critical dbspaces that must be restored during the initial cold restore are rootdbs and logdbs. The dbspace that contains
urgent data is dbs_1. The following commands shut down the database server, perform a cold restore on the critical and urgent dbspaces, and restart the database
server:

onmode -ky
onbar -r rootdbs logdbs dbs_1
onmode -m

After the database server starts, any data stored in rootdbs, logdbs, and dbs_1 dbspaces is accessible.

The following commands synchronize the storage manager and perform a warm restore of the remaining dbspaces, dbs_2, dbs_3, and dbs_4:

onsmsync
onbar -r

Example 2: Point-in-time mixed restore
The following commands perform a cold restore for a subset of the storage spaces (including all critical dbspaces) in the initial cold restore, perform a warm restore
for dbspace_2 and dbspace_3, followed by a warm restore of dbspace_4 and dbspace_5, and finally perform a warm restore of all remaining storage spaces:

onbar -r -t "2011-05-10 11:35:57" rootdbs logspace_1 dbspace_1
onmode -m
onsmsync
onbar -r dbspace_2 dbspace_3
onbar -r dbspace_4 dbspace_5
onbar -r

Strategies for using a mixed restore
 To implement a mixed-restore strategy, carefully select the set of dbspaces in which you place your databases and database objects when you create them.

Strategies for using a mixed restore

To implement a mixed-restore strategy, carefully select the set of dbspaces in which you place your databases and database objects when you create them.

1654 Part VI: Administering

ON-Bar backs up and restores physical, not logical, entities. Thus, ON-Bar cannot restore a particular database or a particular set of tables. Instead, ON-Bar restores a
particular set of storage spaces. It is up to you to track what is stored in those storage spaces.

For example, consider a database with the catalogs in the dbspace cat_dbs:

create database mydb in cat_dbs with log;

A table in this database is fragmented among the dbspaces tab_dbs_1 and tab_dbs_2:

create table mytab (i integer, c char(20))
fragment by round robin in tab_dbs_1, tab_dbs_2;

An index for the table is stored in the dbspace idx_dbs:

create index myidx on mytab(i) in idx_dbs;

If you need to restore the server, you cannot access all of the data in the example database until you restore the dbspaces containing the database catalogs, table data,
and index: in this case, the dbspaces cat_dbs, tab_dbs_1, tab_dbs_2, and idx_dbs.

To simplify the management and tracking of your data, divide your set of dbspaces into subsets in which you store data of a particular urgency. When you create your
database objects, place them in dbspaces appropriate to their urgency. For example, if you have data with three levels of urgency, you might want to place all the objects
(database catalogs, tables, and indexes) associated with your most urgent data in a particular set of dbspaces: for example, urgent_dbs_1, urgent_dbs_2,
...urgent_dbs_n. You would place all the objects associated with less urgent data in a different set of dbspaces: for example, less_urgent_dbs_1, less_urgent_dbs_2, ...
less_urgent_dbs_k. Lastly, you would place your remaining data in a different set of dbspaces: for example, non_urgent_dbs_1, non_urgent_dbs_2,
non_urgent_dbs_r.

If you need to restore the server, you would first perform a cold restore of all critical dbspaces and dbspaces containing urgent data, urgent_dbs_1 through urgent_dbs_n.
For example, assume that logical logs are distributed among two dbspaces, logdbsp_1 and logdbsp_2, and the physical log is in rootdbs. The critical dbspaces are
therefore rootdbs, logdbsp_1, and logdbsp_2.

You would perform the initial cold restore by issuing the following ON-Bar command:

onbar -r rootdbs logdbsp_1 logdbsp_2 urgent_dbs_1 ... urgent_dbs_2

You can bring the server online and all business-urgent data is available.

Next, perform a warm restore for the less-urgent data:

onsmsync
onbar -r less_urgent_dbs_1 less_urgent_dbs_2 less_urgent_dbs_k

Finally, you can perform a warm restore for the rest of the server by issuing the following command.

onbar -r

In a larger system with dozens of dbspaces, you can divide the warm restore portion of the mixed restore into several warm restores, each restoring only a small subset of
the dbspaces remaining to be restored in the system.

Recreating chunk files during a restore

If the disk or file system fails, one or more chunk files might be missing from the dbspace. Use the -O option to recreate missing chunk files and any necessary directories
during a restore.

The restore fails if insufficient space exists on the file system. The newly created chunk files are cooked files and are owned by group informix on UNIX or group Informix-
Admin on Windows.

Restoring when using cooked chunks
 You can recreate missing cooked chunk files during a restore.

Restoring when using raw chunks
 You can recreate missing raw chunk files during a restore.

Restoring when using cooked chunks

You can recreate missing cooked chunk files during a restore.

Restriction: ON-Bar does not recreate chunk files during a logical restore if the logical logs contain chunk-creation records.

To restore when using cooked chunks:

1. Install the new disk.
2. Based on your system, perform one of the following tasks:

On UNIX, mount the device as a file system.
On Windows, format the disk.

3. Allocate disk space for the chunk file.
4. Run the onbar -r -O space command to recreate the chunk files and restore the dbspace.

Related information:
 Allocating cooked file spaces on UNIX

Restoring when using raw chunks
Part VI: Administering 1655

You can recreate missing raw chunk files during a restore.

To restore when using raw chunks:

1. Install the new disk.
2. For UNIX, if you use symbolic links to raw devices, create new links for the down chunks that point to the newly installed disk. ON-Bar restores the chunk file to

where the symbolic link points.
3. Issue the onbar -r space command to restore the dbspace.

Related information:
 Allocating raw disk space on UNIX

Allocating raw disk space on Windows

Reinitializing the database server and restoring data

Reinitializing disk space destroys all existing data managed by the database server. However, you can restore data from a backup that was performed before
reinitialization.

You must have a current, level-0 backup of all storage spaces.
During initialization, ON-Bar saves the emergency boot file elsewhere and starts a new, empty emergency boot file. Therefore, any backups that you performed before
reinitializing the database server are not recognized. You must use the copy of the emergency boot file you saved before initialization to restore the previous database
server instance.

To reinitialize the database server and restore the old data:

1. Copy the emergency boot file, the oncfg file, and the onconfig file to a different directory.
2. Set the FULL_DISK_INIT configuration parameter to 1 in the onconfig file.
3. Shut down the database server.
4. Reinitialize the database server by running the oninit -i command.
5. Move the administrative files into the database server directory. If the administrative files are unavailable, copy them from the last backup into the database server

directory.
6. Perform a restore by running the onbar -r -p -w command. Do not salvage the logical logs.
7. Verify that you restored the correct instance of the critical and noncritical storage spaces.

Related information:
 The oninit utility

Replacing disks during a restore

You can replace disks during a restore by renaming chunks. You rename chunks by specifying new chunks paths and offsets during a cold restore with ON-Bar. This option
is useful if you need to restore storage spaces to a different disk from the one on which the backup was made. You can rename any type of chunk, including critical chunks
and mirror chunks.

The old chunk must be included in the last level-0 backup.
The following guidelines apply to new chunks:

The new chunk does not need to exist. You can install the new chunk later and perform a warm restore of a storage space containing it. If you specify a nonexistent
chunk, ON-Bar records the rename information in the chunk reserved pages, but does not restore the data. The renamed (but not restored) chunks have a status of
offline, designated by an N flag in the output of the onstat -d command.
The new chunk must have the correct permissions.
The new chunk must be included in the last level-0 backup.
The new chunk path name and offset cannot overlap existing chunks.

Tip: If you use symbolic links to chunk names, you might not need to rename chunks; you only need to edit the symbolic name definitions.
To rename chunks during a restore:

1. Shut down the database server.
2. Run the onbar -r command with the -rename option and the chunk information options. If you are renaming the primary root or mirror root chunk, ON-Bar updates

the values of the ROOTPATH and ROOTOFFSET, or MIRRORPATH, and MIRROROFFSET configuration parameters. The old version of the onconfig file is saved as
$ONCONFIG.localtime.

3. Perform a level-0 archive so that you can restore the renamed chunks.

Examples
The following table lists example values for two chunks that are used in the examples in this section.

Element Value for first chunk Value for second chunk

Old path /chunk1 /chunk2

Old offset 0 10000

New path /chunk1N /chunk2N

New offset 20000 0

Example 1: Rename chunks by supplying chunk information in the command
The following command renames the chunks chunk1 to chunk1N and chunk2 to chunk2N:

1656 Part VI: Administering

onbar -r -rename -p /chunk1 -o 0 -n /chunk1N -o 20000
 -rename -p /chunk2 -o 10000 -n /chunk2N -o 0

Example 2: Rename chunks by supplying chunk information in a file
Suppose that you have a file named listfile that has the following contents:

/chunk1 0 /chunk1N 20000
/chunk2 10000 /chunk2N 0

The following command renames the chunks chunk1 to chunk1N and chunk2 to chunk2N:

onbar -r -rename -f listfile

Renaming a chunk to a nonexistent device
 To rename a chunk to a nonexistent device, specify the new path name, but restore the storage spaces after you install the physical device. This option is useful if

you need to rename a chunk and it is convenient to perform a cold restore before you install the new device. When the new chunk device is ready, you can perform a
warm restore of a storage space onto it.

Related reference:
 onbar -r syntax: Restoring data

onbar -b syntax: Backing up

Renaming a chunk to a nonexistent device

To rename a chunk to a nonexistent device, specify the new path name, but restore the storage spaces after you install the physical device. This option is useful if you need
to rename a chunk and it is convenient to perform a cold restore before you install the new device. When the new chunk device is ready, you can perform a warm restore of
a storage space onto it.

You can combine renaming chunks with existing devices and renaming chunks with nonexistent devices in the same rename operation. This example shows how to
rename a single chunk to a nonexistent device name.

The following table lists example values for the chunks used in this example.

Storage space Old chunk path Old offset New chunk path New offset

sbspace1 /chunk3 0 /chunk3N 0

To rename a chunk to a nonexistent device:

1. Rename the chunk with the following command: onbar -r -rename -p /chunk3 -o 0 -n /chunk3N -o 0
2. When you see the following prompt, enter y to continue:

The chunk /chunk3N does not exist. If you continue, the
restore may fail later for the dbspace which contains this chunk.
Continue without creating this chunk? (y/n)

The chunk /chunk3 is renamed to /chunk3N, but the data is not yet restored to /chunk3N.

3. Perform a level-0 archive.
4. Add the physical device for /chunk3N.
5. Perform a warm restore of sbspace1 with the onbar -r sbspace1 command.
6. Perform a level-0 archive.

Restoring to a different computer

You can back up data on one computer and restore the data on a different computer. Importing a restore is useful for disaster recovery or upgrading a database server.
After you back up your data and move over the storage-manager objects, you can perform an imported restore. An imported restore involves copying files from the source
to the target computer and performing the restore in one of several ways.

Prerequisites:

Your storage manager must support imported restores.
A whole-system backup must include all storage spaces; logical logs are optional.
The level-0 backup must include all storage spaces and logical logs.

Both the source and target computers must be on the same LAN or WAN and must have the following attributes:
Identical hardware and operating systems
Identical database server versions and editions
The same configuration and ROOTPATH information, although the server names and numbers can differ.
Identical storage-manager versions
Compatible XBSA libraries

Important: Every chunk (including mirrors) must match exactly in size, location, and offset on the source and target computers for the imported restore to complete.
To perform the imported restore:

1. Install the database server and the storage manager on the target computer.
2. Set up the storage manager on the target database server instance.

a. Set the necessary environment variables.
b. Define the same type of storage devices as on the source instance.
c. Label the storage media with the correct pool names.
d. Mount the storage devices.
e. Update the sm_versions file on the target computer with the storage-manager version.

Part VI: Administering 1657

3. Be sure that the target computer has the devices and links in place for the chunks that match the devices and links on the source computer
4. Perform a level-0 backup (onbar -b or onbar -b -w) of all storage spaces on the source database server.

Restriction: Do not perform an incremental backup.
5. Mount the transferred storage volumes.

If the backup files are on disk, copy them from the source computer to the target computer.
If the backup is on tapes, mount the transferred volumes on the storage devices that are attached to the target computer. Both the source and target
computers must use the same type of storage devices such as 8-mm tape or disk.
If the backup is on the backup server, retrieve the backup from that backup server.

6. Use storage-manager commands to add the source host name as a client on the target computer.
7. Copy the following files from the source computer to the target computer.

Table 1. Administrative files to copy

File Action

Emergency boot file Rename the emergency boot file with the target database server number. For example, rename ixbar.51 to ixbar.52. The emergency boot file
needs only the entries from the level-0 backup on the source computer.
The file name is ixbar.servernum.

The oncfg files:
oncfg_servername.s
ervernum

ON-Bar needs the oncfg file to know what dbspaces to retrieve. Rename the oncfg file with the target database server name and number.
For example, rename oncfg_bostonserver.51 to oncfg_chicagoserver.52. The file name must match the DBSERVERNAME and SERVERNUM
on the target computer.

The onconfig file In the onconfig file, update the DBSERVERNAME and SERVERNUM parameters with the target database server name and number.

Storage-manager
configuration files, if
any

The storage-manager configuration files might need updating.

8. Restore the data in one of the following ways:
Table 2. Restore data options

Option Action

If you did not start the instance on the target server Use the onbar -r command to restore the data.

If you are importing a whole-system backup Use the onbar -r -w -p command to restore the data.

If you started the instance on the target server. Restore the data in stages:
a. Use the onbar -r -p command to restore the physical data.
b. Use the onbar -r -l command to restore the logical logs.

This process avoids salvaging the logs and any potential corruption of the instance.

9. Before you expire objects on the target computer and the storage manager with the onsmsync utility, perform one of the following tasks. Otherwise, onsmsync
expires the incorrect objects.

Manually edit the emergency boot file viz ixbar.servernum in the $INFORMIXDIR/etc directory on the target computer. Replace the IBM® Informix® server
name that is used on the source computer with the IBM Informix server name of the target computer
Run the onsmsync -b command as user informix on the target computer to regenerate the emergency boot file from the sysutils database only. The
regenerated emergency boot file reflects the server name of the target computer.

Related reference:
 Avoid salvaging logical logs

onbar -RESTART syntax: Restarting a failed restore

If a failure occurs with the database server, media, storage manager, or ON-Bar during a restore, you can restart the restore from the place that it failed. To restart a failed
restore, the RESTARTABLE_RESTORE configuration parameter must be set to ON in the onconfig file when the restore fails.

Restart a restore

>>-onbar-- -RESTART--><

Table 1. onbar -RESTART command

Option Description

-RESTART Restarts a restore after a database server, storage manager, or ON-Bar failure.
The RESTARTABLE_RESTORE configuration parameter must be set to ON when the restore failure
occurs.

You can restart the following types of restores:

Whole system
Point in time
Storage spaces
Logical part of a cold restore

Do not use the -RESTART option if a failure occurs during a warm logical restore.

Usage
When you enable restartable restore, the logical restore is slower if many logical logs are restored. However, you save time if the restore fails and you restart the restore.
Whether a restore is restartable does not affect the speed of the physical restore.

1658 Part VI: Administering

The physical restore restarts at the storage space and level where the failure occurred. If the restore failed while some, but not all, chunks of a storage space were
restored, all chunks of that storage space are restored. If storage spaces and incremental backups are restored successfully before the failure, they are not restored again.

If the BAR_RETRY configuration parameter is set to 2, ON-Bar automatically tries to restore any failed storage spaces and logical logs again. If the restore is successful,
you do not need to restart the restore.

If the BAR_RETRY configuration parameter is set to 0 or 1, ON-Bar does not try to restore any failed storage spaces and logical logs again. If the database server is still
running, ON-Bar skips the failed storage space and attempts to restore the remaining storage spaces. To complete the restore, run the onbar -RESTART command.

The following figure shows how a restartable restore works when the restore failed during a physical restore of dbspace2. The level-0, level-1, and level-2 backups of
rootdbs, and the level-0 and level-1 backups of dbspace1 and dbspace2 are successfully restored. The database server fails while restoring the level-1 backup of
dbspace2. When you restart the restore, ON-Bar restores the level-2 backup of dbspace 1, the level-1 and level-2 backups of dbspace2, and the logical logs.
Figure 1. Restartable physical restore

If a restore fails during the logical phase and you restart the restore, ON-Bar verifies that the storage spaces are restored, skips the physical restore, and restarts the
logical restore. The following figure shows a cold restore that failed while restoring logical log LL-3. When you restart the cold logical restore, log replay starts from the last
restored checkpoint. In this example, the last checkpoint is in logical log LL-2.

If a failure occurs during a cold logical restore, ON-Bar restarts the restore at the place of failure.
Important: If a failure occurs during a warm logical restore, restart the restore from the beginning. If the database server is still running, run the onbar -r -l command to
complete the restore.
Figure 2. Restartable cold logical restore

Related reference:
 onbar -r syntax: Restoring data

BAR_RETRY configuration parameter
RESTARTABLE_RESTORE configuration parameter
ON-Bar security

Resolve a failed restore

How you resolve a failed restore depends on the cause of the failure.

You can save some failed restores even if restartable restore is turned off. For example, if the restore fails because of a storage-manager or storage-device error, you can
fix the tape drive or storage-manager problem, remount a tape, and then continue the restore.

The following table shows what results to expect when physical restore fails and the value of the BAR_RETRY configuration parameter is > 1.

Table 1. Failed physical restore scenarios
Type of error RESTARTABLE_ RESTORE setting What to do when the physical restore fails?

Database server, ON-Bar, or
storage-manager error
(database server is still
running)

ON or OFF ON-Bar tries each failed restore again. If the storage manager failed, fix the storage-manager
error.
If the tried restore fails, issue onbar -r spaces where spaces is the list of storage spaces not yet
restored. Use onstat -d to obtain the list of storage spaces that need to be restored. ON-Bar
restores the level-0 backup of each storage space, then the level-1 and level-2 backups, if any.

ON-Bar or storage-manager
error (database server is still
running)

ON Issue the onbar -RESTART command.
If the storage manager failed, fix the storage-manager error.

The restore restarts at the storage space and backup level where the first restore failed. If the
level-0 backup of a storage space was successfully restored, the restarted restore skips the
level-0 backup and restores the level-1 and level-2 backups, if any.

Part VI: Administering 1659

Type of error RESTARTABLE_ RESTORE setting What to do when the physical restore fails?

Database server failure ON or OFF Because the database server is down, perform a cold restore. Use onbar -r to restore the critical
dbspaces and any noncritical spaces that were not restored the first time.

Database server failure ON Issue the onbar -RESTART command.
The restore restarts at the storage space and backup level where the first restore failed. If the
level-0 backup of a storage space was successfully restored, the restarted restore skips the
level-0 backup and restores the level-1 and level-2 backups, if any.

The following table shows what results to expect when logical restore fails.
Table 2. Failed logical restore scenarios

Type of error RESTARTABLE_ RESTORE setting What to do when a logical restore fails?

Database server or ON-Bar error in a
cold restore (database server is still
running)

ON Issue the onbar -RESTART command.
The logical restore restarts at the last checkpoint. If this restore fails, shut down and
restart the database server to initiate fast recovery of the logical logs. All logical logs not
restored are lost.

Database server or ON-Bar error
(database server is still running)

ON or OFF Issue the onbar -r -l command. The restore restarts at the failed logical log.
If onbar -r -l still fails, shut down and restart the database server. The database server
completes a fast recovery. All logical logs that were not restored are lost.

If fast recovery does not work, you must do a cold restore.

Database server error ON If the cold logical restore failed, issue onbar -RESTART.
If the warm logical restore failed, issue the onbar -r -l command. If that fails, restart the
entire restore from the beginning.

Storage-manager error ON or OFF ON-Bar tries each failed logical restore again. If the tried restore fails, the logical restore
is suspended. Fix the storage-manager error. Then issue the onbar -r -l command. The
restore restarts at the failed logical log.

Related reference:
 BAR_RETRY configuration parameter

RESTARTABLE_RESTORE configuration parameter

External backup and restore

These topics discuss recovering data by using external backup and restore.

External backup and restore overview
 An external backup and restore eliminates the downtime of systems because the backup and restore operations are performed external to the IBM® Informix®

system.
RS secondary server external backup

 You can perform an external backup of an RS secondary server. Performing a backup of an RS secondary server blocks that RS secondary server, but does not block
the primary server.
Data restored in an external restore

 Performing an external restore
 Initializing HDR with an external backup and restore

External backup and restore overview

An external backup and restore eliminates the downtime of systems because the backup and restore operations are performed external to the IBM® Informix® system.

ON-Bar does not move the data during the backup or physical restore. An external backup allows you to copy disks that contain storage-space chunks without using ON-
Bar. When disks fail, replace them and use vendor software to restore the data, then use ON-Bar for the logical restore. For more information, see Data restored in an
external restore.

The following are typical scenarios for external backup and restore:

Availability with disk mirroring
If you use hardware disk mirroring, you can get your system online faster with external backup and restore than with conventional ON-Bar commands.

Cloning
You can use external backup and restore to clone an existing production system for testing or migration without disturbing the production system.

The following figure shows how to perform a backup with mirroring.
Figure 1. Perform a backup with mirroring

1660 Part VI: Administering

In this configuration, the database server is running continuously, except for the short time when the database server is blocked to break the mirror. The mirrored disks
contain a copy of the database server storage spaces. To create a backup, block the database server to stop transactions and disable mirroring. The mirrored disks now
contain a copy of the consistent data at a specific point in time. After disabling mirroring, unblock the database server to allow transactions to resume and then backup the
logical logs. Copy the data from the offline mirrored disks to back up media with external commands. Now you can resume mirroring.

Block before backing up
 Before you begin an external backup, block the database server. Blocking forces a checkpoint, flushes buffers to disk, and blocks user transactions that involve

temporary tables.
Rules for an external backup

 Prepare for an external backup
 Performing an external backup when chunks are not mirrored

Block before backing up

Before you begin an external backup, block the database server. Blocking forces a checkpoint, flushes buffers to disk, and blocks user transactions that involve temporary
tables.

During the blocking operation, users can access that database server in read-only mode. Then you can physically back up or copy the data to another set of disks or
storage media by using operating-system or third-party tools. When you complete the external backup, unblock the database server so that transactions can resume. You
should include all the chunk files in each storage space, administrative files, such as onconfig, and the emergency boot file, in an external backup.
Important: To make tracking backups easier, you should back up all storage spaces in each external backup.
ON-Bar treats an external backup as equivalent to a level-0 backup. You cannot perform an external backup and then use ON-Bar to perform a level-1 backup, or vice
versa because ON-Bar does not have any record of the external backup. For more information, see Performing an external backup when chunks are not mirrored.

Rules for an external backup

Before you begin an external backup, review the rules for performing an external backup.

The rules that you must follow are:

The database server must be online or in quiescent mode during an external backup.
Use ON-Bar to back up all logical logs including the current log so that you can restore the logical logs at the end of the external restore.
Suspend continuous logical-log backups before you block the database server for an external backup. After the external backup is complete, resume the continuous
logical-log backup.
To stop continuous logical-log backup, use the CTRL-C command. To resume continuous logical-log backup, use the onbar -b -l -C command.

Wait until all ON-Bar backup sessions have completed before you block the database server. If any backup sessions are active, the block command displays an
error message.
Any OLTP work or queries are suspended while the database server is blocked. They resume after the database server is unblocked.
All critical dbspaces of the database server instance must be backed up together simultaneously within the same command bracket of onmode -c block … onmode
-c unblock. Backups of different critical dbspaces done at different times cannot be restored to a consistent system.
On AIX® operating systems, if the server is running with concurrent I/O because the DIRECT_IO configuration parameter is set to enable concurrent I/O, an online
external backup program must also use concurrent I/O.

Important: Because the external backup is outside the control of ON-Bar, you must track these backups manually. For more information, see Track an external backup.

Prepare for an external backup
Part VI: Administering 1661

These topics describe the commands used to prepare for an external backup. For the procedure, see Performing an external backup when chunks are not mirrored.

Block and unblock database server
 Track an external backup

Block and unblock database server

This topic shows the syntax of the block and unblock commands on IBM® Informix®.

>>-onmode -c--+---------+--------------------------------------><
 +-block---+
 '-unblock-'

Element Purpose Key considerations

onmode -c Performs a checkpoint and blocks or unblocks the database
server

None.

block Blocks the database server from any transactions Sets up the database server for an external backup. While the database server is
blocked, users can access it in read-only mode. Sample command: onmode -c
block

unblock Unblocks the database server, allowing data transactions and
normal database server operations to resume

Do not unblock until the external backup is finished. Sample command: onmode -
c unblock

Track an external backup

The database server and ON-Bar do not track external backups. To track the external backup data, use a third-party storage manager or track the data manually.

The following table shows which items we recommend that you track in an external backup. ON-Bar keeps a limited history of external restores.
Table 1. Items to track when you use external backup and restore

Items to track Examples

Full path names of each chunk file for each backed up storage space /work/dbspaces/rootdbs (UNIX)
c:\work\dbspaces\rootdbs (Windows)

Object type Critical dbspaces, noncritical storage spaces

ins_copyid_hi and ins_copyid_lo Copy ID that the storage manager assigns to each backup object

Backup date and time The times that the database server was blocked and unblocked

Backup media Tape volume number or disk path name

Database server version The database server version from which the backup was taken.

Performing an external backup when chunks are not mirrored

The database server must be online or in quiescent mode during an external backup.

To perform an external backup when chunks are not mirrored:

1. To obtain an external backup, block the database server with the onmode -c block command. The system takes a checkpoint and suspends all update transactions.
Users can access the database server in read-only mode.

2. To back up the storage spaces and administrative files, use a copy command, such as cp, dd, or tar on UNIX or copy on Windows, or a file-backup program. You
must back up all chunks in the storage spaces.

3. To allow normal operations to resume, unblock the database server with the onmode -c unblock command.
4. Back up all the logical logs including the current log so that checkpoint information is available for the external restore.

Important: Because external backup is not done through ON-Bar, you must ensure that you have a backup of the current logical log from the time when you execute
the onmode -c block command. Without a backup of this logical-log file, the external backup is not restorable.

5. After you perform an external backup, back up the current log with the onbar -b -l -c command.

If you lose a disk, or the whole system, you are now ready to perform an external restore.

RS secondary server external backup

You can perform an external backup of an RS secondary server. Performing a backup of an RS secondary server blocks that RS secondary server, but does not block the
primary server.

You can perform a logical restore from the logs backed up from the primary instance. The backup obtained from the secondary server cannot be restored with level-1 or
level-2 backups.

Important: The external backup is not completed if the database instance contains any of the following:

1662 Part VI: Administering

Nonlogging smart large objects
Regular blobspaces
Nonlogging databases
Raw tables

If an external backup is performed on an instance that contains any of the previously mentioned items, then the backup is incomplete and cannot be used to restore the
primary server.
If the backup fails because the checkpoint from the primary has timed out, you can use the BAR_CKPTSEC_TIMEOUT configuration parameter to increase the amount of
time, in seconds, that an RS secondary server should wait for a checkpoint to arrive from the primary server while performing an external backup.

Performing an external backup of an RS secondary server

Performing an external backup of an RS secondary server

To perform an external backup of an RS secondary server, the STOP_APPLY configuration parameter must not be enabled. If STOP_APPLY is enabled, an error is returned.
The server switches to STOP_APPLY mode when a backup is performed on an RS secondary. After the archive checkpoint is processed, the RS secondary server stops
applying logical logs, but continues receiving logs from the primary server.

To perform an external backup of an RS secondary server that has a DELAY_APPLY configuration parameter value greater than 0, it might be necessary to temporarily
decrease the parameter value. Performing the backup requires that the RSS process a checkpoint in the logical log, and if no checkpoint is observed within the amount of
time that is specified by the onmode -c block timeout command in the second step of the following procedure, a backup is not permitted. The DELAY_APPLY configuration
parameter can be decreased by the onmode -wf DELAY_APPLY=setting command.

The primary database server must be online or in quiescent mode during an external backup.

To perform an external backup:

1. Ensure that the LOG_STAGING_DIR configuration parameter on the RS secondary server is set to point to a valid staging directory.
2. To obtain an external backup, block the database server with the onmode -c block timeout command. The timeout parameter indicates the number of seconds that

the RS secondary server waits to receive a checkpoint. The timeout parameter is valid only when the onmode -c block command is run on an RS secondary server.
You must wait for the onmode -c block command to return successfully before you proceed with the external backup.

3. To back up the storage spaces and administrative files, use a copy command, such as cp, dd, or tar on UNIX or copy on Windows, or a file-backup program. You
must back up all chunks in the storage spaces.

4. To resume normal operations, unblock the database server by using the onmode -c unblock command.
5. After you perform the external backup, back up the current log and any new logs with the ON-Bar or ontape utilities.

Important: Logical log backup is only possible on the primary server.
If the DELAY_APPLY configuration parameter is set, the logs that are required for the restore process are not necessarily those logs that are currently active on the
primary server because some logs could already be archived.

After the backup completes, if the DELAY_APPLY setting on the RS secondary server was decreased, it can be set to its original value by the onmode -wf
DELAY_APPLY=setting command. After an external backup, you can perform an external restore if a disk or the whole system fails.

Data restored in an external restore

If you lose a disk, or the whole system, you can externally restore data only if it was externally backed up. You must use the same third-party utility for both the external
backup and restore. To externally restore the storage spaces, copy the backed-up data to disk. Use the onbar -r -e command to mark the storage spaces as physically
restored, replay the logical logs, and bring the storage spaces back online. If you do not specify an external restore command, the database server thinks that these
storage spaces are still down.

You can perform these types of external restores:

Warm external restore
Mark noncritical storage spaces as physically restored, then perform a logical restore of these storage spaces.

Cold external restore
Mark storage spaces as physically restored, then perform a logical restore of all storage spaces. Optionally, you can do a point-in-time cold external restore.

Restriction: When you perform a cold external restore, ON-Bar does not first attempt to salvage logical-log files from the database server because the external backup has
already copied over the logical-log data.
To salvage logical logs, perform onbar -l -s before you copy the external backup and perform the external restore (onbar -r -e).

Rename chunks
 External restore commands

Rules for an external restore
 External restores have specific rules.

Rename chunks

You can rename chunks in an external cold restore by using the rename options syntax for other restores. Use the following commands to specify new chunk names during
restore:

onbar -r -e -rename -f filename

or

onbar -r -e rename -p old_path -o old_offset-n new_path-o new_offset

Part VI: Administering 1663

External restore commands

Use the onbar -r -e command to perform a warm or cold external restore. This command marks the storage spaces as physically restored and restores the logical logs.
The following diagram shows the external restore syntax.

Performing an external restore with ON-Bar

>>-onbar -r-- -e--+-----------------------+--+---------------+-->
 | (1) | +- -p-----------+
 '-| Rename chunks |-----' +- -t--time-----+
 '- -n--last_log-'

>--+-----+--+--------------------+-----------------------------><
 '- -O-' +- -f--filename------+
 | .--------------. |
 | V | |
 +---dbspace_list-+---+
 '- -w--+-----------+-'
 +- -t--time-+
 '- -n--log--'

Notes:

1. See onbar -b syntax: Backing up

Element Purpose Key considerations

onbar -r Specifies a restore In a cold restore, if you do not specify storage space names, all of them are marked
as restored.

-e Specifies an external restore Must be used with the -r option. In a warm external restore, marks the down storage
spaces as restored unless the -O option is specified.

dbspace_list Names one or more storage spaces to be marked as
restored in a warm restore

If you do not enter dbspace_list or -f filename and the database server is online or
quiescent, ON-Bar marks only the down storage spaces as restored. If you enter
more than one storage-space name, use a space to separate the names.

-ffilename Restores the storage spaces that are listed in the text
file whose path name filename provides

To avoid entering a long list of storage spaces every time, use this option. The
filename can be any valid UNIX or Windows file name.

-n last_log Indicates the number of the last log to restore If any logical logs exist after this one, ON-Bar does not restore them and data is lost.
The -n option does not work with the -p option.

-O Restores online storage spaces None.

-p Specifies an external physical restore only After the physical restore completes, you must perform a logical restore.

-t time Restores the last backup before the specified point in
time. If you pick a backup made after the point in time,
the restore will fail.

You can use a point-in-time restore in a cold restore only. You must restore all
storage spaces.
How you enter the time depends on your current GLS locale convention. If the GLS
locale is not set, use English-style date format.

-w Performs a whole-system restore of all storage spaces
and logical logs from the last whole-system backup

You must specify the -w option in a cold restore.
If you specify onbar -r -w without a whole-system backup, return code 147 appears
because ON-Bar cannot find any storage spaces backed up as part of a whole-system
backup.

Related reference:
 onbar -r syntax: Restoring data

Rules for an external restore

External restores have specific rules.

The following rules apply to external restores:

You must externally restore from an external backup. Although the external backup is treated as a level-0 backup, it might actually be an incremental backup not
related to IBM® Informix®.
A warm external restore restores only noncritical storage spaces.
You cannot externally restore temporary dbspaces.
You cannot externally restore from regular ON-Bar backups.
You cannot verify that you are restoring from the correct backup and that the storage media is readable with ON-Bar.
If the external backups are from different times, the external restore uses the beginning logical log from the oldest backup.
You cannot perform a mixed restore. If critical dbspaces must be restored, you must perform a full cold restore.

The following rules apply to external cold restores:

Salvage the logical logs (onbar -b -l -s) before you switch the disks that contain the critical storage spaces.
If you are restoring critical dbspaces, the database server must be offline.
Point-in-time external restores must be cold and restore all storage spaces.
The external backups of all critical dbspaces of the database server instance must be simultaneous. All critical dbspaces must have to be backed up within the
same set of onmode -c block … onmode -c unblock commands.

1664 Part VI: Administering

Performing an external restore

This section describes procedures for performing cold and warm external restores.

Performing a cold external restore
 Performing a warm external restore

 Examples of external restore commands

Performing a cold external restore

If you specify the onbar -r -e command in a cold restore, you must restore all storage spaces. Use the onbar -r -e -p command to restore all or specific storage spaces.

To perform a cold external restore:

1. Shut down the database server with the onmode -ky command.
2. Salvage the logical logs with the onbar -b -l -s command.
3. To restore the storage spaces from an external backup, use a copy command, such as cp, dd, or tar on UNIX or a file-backup program.

You must restore the storage spaces to the same path as the original data and include all the chunk files.

4. To perform an external restore of all storage spaces and logical logs, use the onbar -r -e command.
5. To perform a point-in-time external restore of all storage spaces, use the onbar -r -e -t datetime command.

This step brings the database server to fast-recovery mode.

ON-Bar and the database server roll forward the logical logs and bring the storage spaces online.

Performing a warm external restore

The database server is online during a warm external restore. A warm external restore involves only noncritical storage spaces.

To perform a warm external restore:

1. To restore the storage spaces from an external backup, use a copy command, such as cp, dd, or tar on UNIX or a file-backup program.
You must restore the storage spaces to the same path as the original data and include all the chunk files for each restored storage space.

2. Perform a warm external restore of the noncritical storage spaces to bring them online.
To restore selected storage spaces and all logical logs, use the onbar -r -e dbspace_list command.
To restore the down noncritical storage space named dbsp1 and logical logs in separate steps, use the following commands:

onbar -r -e -p dbsp1
onbar -r -l dbsp1

To restore all the noncritical storage spaces and logical logs, use the onbar -r -e -O command.

Examples of external restore commands

The following table contains examples of external restore commands.

External restore command Action Comments

onbar -r -e Complete external restore In a cold restore, restores everything.
In a warm restore, restores all down noncritical storage spaces.

onbar -r -e -p
onbar -r -l

Physical external restore and separate logical
restore

If the external backups come from different times, you must perform a
logical restore. The system restores the logical logs from the oldest
external backup.

onbar -r -e dbspace_list External restore of selected storage spaces and
logical logs

Use this command in a warm external restore only.

onbar -r -e -p dbspace_list
onbar -r -l

External restore of selected storage spaces and
separate logical restore

Use this command in a warm external restore only.

onbar -r -e -t datetime External point-in-time (cold) restore Be sure to select a collection of backups from before the specified time.

onbar -r -e rename -p old_path -o
old_offset-n new_path -o new_offset

External (cold) restore with renamed chunks Use this command to rename chunks in cold external restore only.

onbar -r -e -w
onbar -r -e -p -w

Whole-system external restore When you use onbar -r -e -w -p, back up all storage spaces in one
block and unblock session. That way, all storage spaces have the same
checkpoint.

Initializing HDR with an external backup and restore

You can use external backups to initialize High-Availability Data Replication (HDR).

Part VI: Administering 1665

To initialize HDR with an external backup and restore:

1. Block the source database server with the onmode -c block command.
2. Externally back up all chunks on the source database server.
3. When the backup completes, unblock the source database server with the onmode -c unblock command.
4. Make the source database server the primary server with the following command: onmode -d primary secondary_servername
5. On the target database server, restore the data from the external backup with a copy or file-backup program.
6. On the target database server, restore the external backup of all chunks with the onbar -r -e -p command. On HDR, secondary server can restore only level-0

archives.
7. Make the target database server the secondary server with the following command: onmode -d secondary primary_servername
8. If the logical-log records written to the primary database server since step 1 still reside on the primary database server disk, the secondary database server reads

these records to perform the logical recovery. Otherwise, perform the logical recovery with the onbar -r -l command.
The database server operational messages appear in the message log on the primary and secondary servers.

Customize and maintain ON-Bar

These topics discuss the following:

Customizing ON-Bar and storage-manager commands with the onbar script
Starting onbar-worker processes manually
Expiring and synchronizing the backup history

Customizing ON-Bar and storage-manager commands
 You can edit the script that is installed with ON-Bar to customize backup and restore commands, and storage manager commands.

Expire and synchronize the backup catalogs
 Monitor the performance of ON-Bar and the storage managers

Customizing ON-Bar and storage-manager commands

You can edit the script that is installed with ON-Bar to customize backup and restore commands, and storage manager commands.

On UNIX operating systems, the onbar shell script is in the $INFORMIXDIR/bin directory. On Windows operating systems, the onbar.bat batch script is in the
%INFORMIXDIR%\bin directory.

Edit the script and backup a copy of the original file in case you need to revert to it.

Important: Edit the script with caution and test your changes. Do not change the cleanup code at the bottom of the script. Doing so might result in unexpected behavior,
for example, leftover temporary files during backup verification.
The script contains the following sections:

Add startup processing here
Use this section to initialize the storage manager, if necessary, and set environment variables.

End startup processing here
This section starts the onbar_d driver and checks the return code. Use this section for onbar_d and storage-manager commands.

Add cleanup processing here
This section removes the archecker temporary files.

End cleanup processing here
Use this section to return onbar_d error codes.

Updating the ON-Bar script during reinstallation
 After you reinstall the database server, you might need to update the script that is installed with ON-Bar. Existing customized scripts were backed up by the

installation process so that you can reuse the content.
Print the backup boot files

 Migrate backed-up logical logs to tape

Related reference:
 Back up with ON-Bar

Updating the ON-Bar script during reinstallation

After you reinstall the database server, you might need to update the script that is installed with ON-Bar. Existing customized scripts were backed up by the installation
process so that you can reuse the content.

The installation program installs the default onbar shell script on UNIX and the default onbar.bat batch script on Windows. If the default script differs from the local
script, the installation program backs up the local script and issues a message to inform you that the local script was renamed. The naming convention of the renamed file
is onbar.date, where date is the date when the file was renamed. For example, the file onbar.2012.05.15 was renamed on May 15, 2012.

You can update the default script by adding information to it from the renamed script.

Print the backup boot files

1666 Part VI: Administering

Use the following examples of what to add to the onbar script to print the emergency boot file if the backup is successful. Each time that you issue the onbar -b command,
the emergency boot file is printed.

The following example is for UNIX:

onbar_d "$@" # receives onbar arguments from command line return_code = $?
check return code

if backup (onbar -b) is successful, prints emergency boot file
if [$return_code -eq 0 -a "$1" = "-b"]; then
 servernum=‘awk '/^SERVERNUM/ {print $2}' $INFORMIXDIR/etc/$ONCONFIG '
 lpr \$INFORMIXDIR/etc/ixbar.$servernum
fi
exit $return_code

The following example is for Windows:

@echo off
%INFORMIXDIR%\bin\onbar_d %*
set onbar_d_return=%errorlevel%

if "%onbar_d_return%" == "0" goto backupcom
goto skip

REM Check if this is a backup command

:backupcom
if "%1" == "-b" goto printboot
goto skip

REM Print the onbar boot file

:printboot
print %INFORMIXDIR%\etc\ixbar.???

REM Set the return code from onbar_d (this must be on the last line of the script)

:skip
%INFORMIXDIR%\bin\set_error %onbar_d_return%
:end

Migrate backed-up logical logs to tape

You can set up your storage manager to back up logical logs to disk and then write a script to automatically migrate the logical logs from disk to tape for off-site storage.
Edit the onbar script to call this migration script after the onbar_d process completes. The following example shows a script that calls the migration script:

The following example is for UNIX:

onbar_d "$@" # starts the backup or restore
EXIT_CODE=$? # any errors?

PHYS_ONLY=false #if it's physical-only, do nothing
for OPTION in $*; do
 if [$OPTION = -p]; then
 PHYS_ONLY = true

 fi
done
if ! PHYS_ONLY; then # if logs were backed up, call another
 migrate_logs # program to move them to tape
fi

This example for Windows invokes the migration script:

%INFORMIXDIR%\bin\onbar_d %*
set onbar_d_return=%errorlevel%

if "%onbar_d_return%" == "0" goto backupcom
goto skip

REM Check if the command is a backup command

:backupcom
if "%1" == "-b" goto m_log
if "%1" == "-l" goto m_log
goto skip

REM Invoke the user-defined program to migrate the logs

:m_log
migrate_log

REM Set the return code from onbar_d (this must be on the last line of the script)

:skip
%INFORMIXDIR%\bin\set_error %onbar_d_return%

:end

Part VI: Administering 1667

Expire and synchronize the backup catalogs

ON-Bar maintains a history of backup and restore operations in the sysutils database and an extra copy of the backup history in the emergency boot file. ON-Bar uses the
sysutils database in a warm restore when only a portion of the data is lost. ON-Bar uses the emergency boot file in a cold restore because the sysutils database cannot be
accessed. You can use the onsmsync utility to regenerate the emergency boot file and expire old backups.

Depending on the command options you supply, the onsmsync utility can remove the following items from the sysutils database and the emergency boot file:

Backups that the storage manager has expired
Old backups based on the age of backup
Old backups based on the number of times they have been backed up

Use onsmsync with the database server online or in quiescent mode to synchronize both the sysutils database and the emergency boot file.

To synchronize the sysutils database:

1. Bring the database server online or to quiescent mode.
2. Run the onsmsync utility without any options.

The onsmsync utility synchronizes the sysutils database, the storage manager, and the emergency boot file as follows:

Adds backup history to sysutils that is in the emergency boot file but is missing from the sysutils database.
Removes the records of restores, whole-system restores, fake backups, successful and failed backups from the sysutils database.
Expires old logical logs that are no longer needed.
Regenerates the emergency boot file from the sysutils database.

Choose an expiration policy
 The onsmsync utility

Use the onsmsync utility to synchronize the sysutils database and emergency boot file with the storage manager catalog.

Choose an expiration policy

You can choose from the following three expiration policies:

Retention date (-t)
Deletes all backups before a particular date and time.

Retention interval (-i)
Deletes all backups older than a specified period.

Retention generation (-g)
Keeps a certain number of versions of each backup.

ON-Bar always retains the latest level-0 backup for each storage space. It expires all level-0 backups older than the specified time unless they are required to restore from
the oldest retained level-1 backup.

ON-Bar expires all level-1 backups older than the specified time unless they are required to restore from the oldest retained level-2 backup.

ON-Bar retains a whole-system backup that starts before the specified retention time and ends after the specified retention time.

The onsmsync utility

Use the onsmsync utility to synchronize the sysutils database and emergency boot file with the storage manager catalog.

If your storage manager is the Informix® Primary Storage Manager, you can also use the export and import options of the onsmsync utility to export Informix Primary
Storage Manager backup objects to an external device and import objects from an external device to a device that is managed by the Informix Primary Storage Manager.
You cannot use the export and import options with other storage managers.

>>-onsmsync--->

>--+-+-----------------+--+-----+--+-----+--+---------------+--+-------------+-+-->
 | +- -g--generation-+ '- -s-' '- -O-' +- -f--filename-+ '- -cf--value-' |
 | +- -t--timestamp--+ | .---------. | |
 | '- -i--interval---' | V | | |
 | '---dbspace-+---' |
 '- -b---'

>--+-------------------------------+---------------------------><
 '-| Export and import options |-'

Export and import options (to use only with the Primary Storage Manager)

|--+- -E-- -p--prefix--+-----------------+-+--------------------|
 | +- -g--generation-+ |
 | +- -t--timestamp--+ |
 | '- -l--log_ID-----' |
 '- -I-- -p--prefix----------------------'

1668 Part VI: Administering

The following table lists all onsmsync command elements, except the elements you use to import and export backup generations. The command elements that you use
for importing and exporting are listed in Table 2.

Table 1. Elements for onsmsync commands

Element Purpose Key considerations

-b Regenerates the emergency boot file
(ixbar.servernum) and the sysutils database
from each other.

If the ixbar file is empty or does not exist, onsmsync -b re-creates the ixbar file and
populates it from the sysutils tables.
If the ixbar file is not empty and contains object data, onsmsync -b updates the sysutils
database and the ixbar file so that they are in sync.

If the ixbar file has entries and the sysutils database was rebuilt, but is empty because it
does not contain data, onsmsync -b recreates the sysutils data from the ixbar file.

Do not use the -b element with the other onsmsync options.

The -b element does not synchronize with the storage manager.

dbspace Specifies the storage space or storage
spaces to expire

If you enter the name of more than one storage space, use a blank space to separate the
names.

-f filename Specifies the path name of a file that
contains a list of storage spaces to expire

Use this option to avoid entering a long list of storage spaces. The file name can be any valid
UNIX or Windows file name.

-g generation Specifies the number of versions of each
level-0 backup to retain

The latest generation of backups is retained and all earlier ones are expired.

-i interval Specifies the time interval for retaining
backups.

The utility:

Retains backups that were created after this interval.
Expires backups that were created before this interval and removes the backups if
expired objects are also removed.

Backups older than interval are not expired if they are needed to restore from other backups
after that interval. Use the ANSI or GLS format for the interval: YYYY-MM or DD HH:MM:SS

-O Overrides internal error checks and enforces
expiration policy

If used with the -t, -g, or -i option, expires all levels of a backup, even if some of them are
needed to restore from a backup that occurred after the expiration date. The -O option does
not affect logical-log expiration. See Expire all backups.

-s Skips synchronizing expired backups The object expiration is based on other arguments if the -s option is provided.

-t timestamp Expires all backups before a particular date
and time

Retains backups that completed after the specified timestamp. Backups that occurred before
the timestamp are not expired if they are needed to restore from other backups that occurred
after the timestamp.
Use the ANSI or GLS_DATETIME format for the timestamp.

-cf Specifies whether to expire the critical files.
When used with the -g, -i, or -t, deletes
critical file backups from the Informix
Primary Storage Manager

The critical files are the onconfig file, the sqlhosts file (on UNIX), the
oncfg_servername.servernum file, and the ixbar.servernum file. Valid values are:

yes = Deletes backups of the critical files.
no = Does not delete backups of the critical files.
only = Deletes only the backups of critical files.

Table 2. Elements for onsmsync export and import commands

Element Purpose Key considerations

-E Exports a single backup generation to the
Informix Primary Storage Manager external
pool

Use this option only if you set up a Informix Primary Storage Manager external pool.
If you export a backup generation, you must specify a prefix, which identifies the exported
backup. The onsmsync utility creates a subdirectory that includes the prefix in the external
pool, and deposits the exported objects in that directory.

-g generation Specifies the backup generation to export. The default value is the current backup.

-I Imports a single backup generation from
the external Informix Primary Storage
Manager pool.

If you import a backup generation from an external pool, you must specify the prefix for
exported backup. The prefix identifies the backup generation that you want to import.

-l log_ID Exports the backup generation that includes
a logical log ID.

-p prefix Specifies the prefix that you are assigning to
a backup generation that you are exporting
or are using to identify the backup that you
want to import.

When the onsmsync utility exports a backup generation, it uses the prefix as the name of the
subdirectory in which it places the backup.

-t timestamp Specifies a backup generation that includes
a particular date and time (used only for
exporting).

Use the ANSI or GLS_DATETIME format.
You might want to include the date and time when you roll out a new version of an
application.

Usage
If no options are specified, the onsmsync command synchronizes the sysutils database and emergency boot file with the storage-manager catalog. The onsmsync utility
compares the backups in the sysutils database and emergency boot file with the backups in the storage-manager catalog and then removes all backups that are not in the
storage manager catalog from the sysutils database and emergency boot file.

Part VI: Administering 1669

Tip: To control whether the sysutils database maintains a history for expired backups and restores, use the BAR_HISTORY configuration parameter. For information, see
BAR_HISTORY configuration parameter.
The order of the commands does not matter except:

The storage-space names or file name must come last.
When exporting or importing, the -E or -I option must be first. For example, specify onsmsync -E -g 2, not onsmsync -g 2 -E.

Prerequisites for importing and exporting backup generations on different computers:

You must have the same version of Informix on the source and target computers and the computers must use the same operating system.
You must set up the Informix Primary Storage Manager and create an external pool on the source and target computers.

When you use the -E or -I options to export or import a backup generation, you must specify the prefix that identifies the subdirectory where the backup generation is
placed.

If you use the -E or -I options to export or import a backup generation, you cannot use any onsmsync command options that are not related to the export or import
operation. For example, you cannot export a backup generation and regenerate the emergency boot file at the same time.

The onsmsync -I command renames your current ixbar file and creates a new file hat contains only the information that is necessary to restore the imported backup

You can use the -cf option with the -g, -i, or -t option to delete critical file backups from the storage manager.

If you apply the -g option and the onsmsync utility list of objects contains only logical logs and no space backups, the log backups are not expired. In this situation, use
the -t or -i option to expire logical log backups.

Examples
The following example expires backups that started before November 30, 2012:

onsmsync -t "2012-11-30 00:00:00""

The following command exports the last backup generation to the directory call gen in the external pool:

onsmsync -E -p gen -g 1

The following command exports the fourth most recent backup generation to the directory called gen in the external pool:

onsmsync -E -p gen -g 4

The following command exports the current backup generation to the directory called gen in the external pool:

onsmsync -E -p gen

The following command exports all backup objects in generation 2 to the directory called gen in the external pool:

onsmsync -E -p gen -g 2

The following command exports all backup objects that have a timestamp of 2012-12-31 12:00:00 to the directory called gen in the external pool:

onsmsync -E -p gen -t “2012-12-31 12:00:00“

The following command imports all objects in the subdirectory that is identified by the prefix gen:

onsmsync -I -p gen

The following command imports all backup objects that were exporting using the prefix gen and the timestamp of 2012-12-31 12:00:00. Because the prefix identifies
the backup generation, you do not specify a timestamp.

onsmsync -I -p gen

The following command deletes all but the last two generations of critical file backups:

onsmsync -g 2 -cf yes

Regenerate the emergency boot file
 Regenerate the sysutils database

 Delete a bad backup
 Expire backups based on the retention date

 Expire a generation of backups
 Expire backups based on the retention interval

 Expire backups with multiple point-in-time restores
 Expire all backups

Related concepts:

 Managing storage devices
Informix Primary Storage Manager file-naming conventions
Related tasks:

 Examples: Manage storage devices with Informix Primary Storage Manager
Restoring when a backup is missing data
Performing a cold restore
Related reference:

 ON-Bar script

Regenerate the emergency boot file

1670 Part VI: Administering

To regenerate the emergency boot file only, use the onsmsync -b command.

The onsmsync -b command saves the old emergency boot file as ixbar.server_number.system_time and regenerates it as ixbar.server_number.

Regenerate the sysutils database

If you lose the sysutils database, use the bldutil utility in $INFORMIXDIR/etc on UNIX or %INFORMIXDIR%\etc on Windows to recreate the sysutils database with
empty tables.

Then use the onsmsync utility to recreate the backup and restore data in sysutils.
Restriction: If both the sysutils database and emergency boot file are missing, you cannot regenerate them with onsmsync. Be sure to back up the emergency boot file
with your other operating-system files.

Delete a bad backup

The onsmsync utility cannot tell which backups failed verification. If the latest backup failed verification but an earlier one was successful, you must manually delete the
failed backup records from the storage manager and then run onsmsync with no options to synchronize ON-Bar. For more information, see onbar -v syntax: Verifying
backups.

Expire backups based on the retention date

The following example expires backups that started before November 24, 2006, and all fake backups, failed backups, and restores:

onsmsync -t "2006-11-24 00:00:00"

Expire a generation of backups

The following example retains the latest three sets of level-0 backups and the associated incremental backups, and expires all earlier backups and all restores, fake
backups, and failed backups: onsmsync -g 3

Expire backups based on the retention interval

The following example expires all backups that are older than three days and all fake backups, failed backups, and restores:

onsmsync -i "3 00:00:00"

The following example expires all backups older than 18 months (written as 1 year + 6 months):

onsmsync -i "1-6"

Expire backups with multiple point-in-time restores

If you perform more than one point-in-time restores, multiple timelines for backups exist.

The following figure shows three timelines with their backups.

Figure 1. Multiple timelines for backups

In this example, the second timeline begins with a point-in-time restore to backup 1. The second timeline consists of backups 1, 5, 6, 7, and 8. The third timeline (in bold)
consists of backups 1, 5, and 9. The third timeline is considered the current timeline because it contains the latest backup.

When you run the onsmsync utility to expire old backups, onsmsync removes the old backups from the current timeline, and make sure that the current timeline is
restorable from the backup objects that are retained. All other backups that are not in the current timeline are also expired but onsmsync does not make sure that the
other timelines are restorable from the objects retained.

The onsmsync utility applies expiration policies in the following order to make sure that objects from current timeline are expired according to the specified expiration
policy and that the current timeline is restorable:

Part VI: Administering 1671

Apply the expiration policy on all sets of backup objects.
Unexpire backup objects that belong to the current timeline.
Apply the expiration policy on the current timeline to ensure that the current timeline is restorable.

At the same time, the expiration policy is applied to backups in other timelines.

For example, if you execute the onsmsync -g 2 command on the example in the previous figure, backup 1 from the current timeline is expired, and backups 2, 3, 4, 6, and
7 from the first and second timelines are expired. Backups 1, 5, and 9 from the current timeline are retained. Backup 8 is retained from other timelines.

Expire all backups

The onsmsync utility retains the latest level-0 backup unless you use the -O option. If you use the -O and -t options, all backups from before the specified time are
removed even if they are needed for restore. If you use the -O and -i options, all backups from before the specified interval are removed even if they are needed for
restore.

For example, to expire all backups, specify the following:

onsmsync -O -g 0

Important: If you use the -O option with the -t, -i, or -g options, you might accidentally delete critical backups, making restores impossible.

Monitor the performance of ON-Bar and the storage managers

You can monitor the performance of ON-Bar and your storage manager. You can specify the level of performance monitoring and have the statistics print to the ON-Bar
activity log. The BAR_PERFORMANCE configuration parameter specifies whether to gather statistics. The following statistics are gathered:

Total time spent in XBSA calls.
Total time spent in Archive API calls.
Time spent by ON-Bar in transferring data to and from XBSA (storage manager calls).
Time spent by ON-Bar in transferring data between ON-Bar to IBM® Informix®.
Amount of data transferred to or from the XBSA API.
Amount of data transferred to or from the Archive API.

Set ON-Bar performance statistics levels
 To specify the level of performance statistics that are printed to the ON-Bar activity log, set the BAR_PERFORMANCE configuration parameter in the onconfig file.

View ON-Bar backup and restore performance statistics
 To view ON-Bar performance results, open the ON-Bar activity log file, bar_act.log.

Set ON-Bar performance statistics levels

To specify the level of performance statistics that are printed to the ON-Bar activity log, set the BAR_PERFORMANCE configuration parameter in the onconfig file.

For example, the BAR_PERFORMANCE 1 setting displays the time spent transferring data between the IBM® Informix® instance and the storage manager.

See BAR_PERFORMANCE configuration parameter for information about the options for this parameter.

View ON-Bar backup and restore performance statistics

To view ON-Bar performance results, open the ON-Bar activity log file, bar_act.log.

The location of the bar_act.log file is set by the BAR_ACT_LOG configuration parameter.

When the BAR_PERFORMANCE configuration parameter is set to 1 or 3, the activity report shows a transfer rate report.
Figure 1. Sample transfer rate performance in the ON-Bar activity log

 2013-06-03 15:38:02 8597 8595 Begin restore logical log 310 (Storage Manager
 copy ID: 28206 0).
 2013-06-03 15:38:03 8597 8595 Completed restore logical log 310.
 2013-06-03 15:38:08 8597 8595 Completed logical restore.
 2013-06-03 15:38:19 8597 8595 PERFORMANCE INFORMATION

 TRANSFER RATES
--
| OBJECT | XBSA API | SERVER API |
| NAME | xfer-kbytes xfer-time RATIO(kb/s) API-TIME | xfer-kbytes xfer-time RATIO(kb/s) API-TIME |
--
309	62 0.479 129 1.078	62 0.019 3310 0.310
310	62 0.407 152 1.098	62 0.025 2522 0.025
rootdbs	5828 0.618 9436 1.864	5828 8.922 653 8.931
datadbs01	62 0.488 127 1.768	62 0.004 17174 0.004
datadbs02	62 0.306 203 1.568	62 0.008 8106 0.008
datadbs03	62 0.304 204 1.574	62 0.007 8843 0.007
datadbs04	62 0.306 202 1.563	62 0.007 8664 0.007
datadbs05	62 0.315 197 1.585	62 0.007 8513 0.007
datadbs06	62 0.310 200 1.583	62 0.002 25348 0.002
---------------- ----------------------------------- ... ---

1672 Part VI: Administering

| PID = 8597 | 14722 26.758 550 107.476 | 14756 10.678 1382 15.829 |
--
 2013-06-03 15:38:19 8597 8595 PERFORMANCE INFORMATION

 PERFORMANCE CLOCKS
--
| ITEM DESCIRPTION | TIME SPENT |
--
| Time to Analyze ixbar file | 0.000 |
-------------------------------- ---

When the BAR_PERFORMANCE configuration parameter is set to 2 or 3, the activity report has microsecond timestamps.
Figure 2. Sample processing rates, in microseconds, in the ON-Bar activity log

 2013-06-03 16:34:04 15272 15270 /usr/informix/bin/onbar_d complete,
 returning 0 (0x00)
 2013-06-03 16:45:11.608424 17085 17083 /usr/informix/bin/onbar_d -r -w
 2013-06-03 16:46:07.926097 17085 17083 Successfully connected to Storage Manager.
 2013-06-03 16:46:08.590675 17085 17083 Begin salvage for log 311.
 2013-06-03 16:48:07.817487 17085 17083 Completed salvage of logical log 311.
 2013-06-03 16:48:08.790782 17085 17083 Begin salvage for log 312.
 2013-06-03 16:48:10.129534 17085 17083 Completed salvage of logical log 312.
 2013-06-03 17:06:00.836390 17085 17083 Successfully connected to Storage Manager.
 ...
 2013-06-03 17:07:26.357521 17085 17083 Completed cold level 0 restore datadbs07.
 2013-06-03 17:07:28.268562 17085 17083 Begin cold level 0 restore datadbs08
 (Storage Manager copy ID: 28122 0).
 2013-06-03 17:07:29.378405 17085 17083 Completed cold level 0 restore datadbs08.

Related concepts:
 bar_act.log file: ON-Bar activity log

Related reference:
 BAR_ACT_LOG configuration parameter

BAR_PERFORMANCE configuration parameter

ON-Bar catalog tables

These topics describe the ON-Bar tables that are stored in the sysutils database.

ON-Bar uses these tables for tracking backups and performing restores.

You can query these tables for backup and restore data to evaluate performance or identify object instances for a restore.

The bar_action table
 The bar_action table lists all backup and restore actions that are attempted against an object, except during certain types of cold restores. Use the information in

this table to track backup and restore history.
The bar_instance table

 The bar_instance table contains descriptions of each object that is backed up.
The bar_ixbar table

 The bar_ixbar table, which stores a history of all unexpired successful backups in all timelines, is maintained and used by the onsmsync utility only.
The bar_object table

 The bar_object table contains descriptions of each backup object. This table is a list of all storage spaces and logical logs from each database server for which at
least one backup attempt was made.
The bar_server table

 The bar_server table lists the database servers in an installation. This table is used to ensure that backup objects are returned to their proper places during a
restore.
The bar_syncdeltab table

 The bar_syncdeltab table is maintained and used by the onsmsync utility only. This table is empty except when onsmsync is running.
ON-Bar catalog map

 This topic contains an example mapping between ON-Bar tables.

The bar_action table

The bar_action table lists all backup and restore actions that are attempted against an object, except during certain types of cold restores. Use the information in this
table to track backup and restore history.

Table 1. bar_action table columns

Column name Type Explanation

act_aid SERIAL Action identifier. A unique number within the table. Can be used with act_oid column to join with the
bar_instance table.

act_oid INTEGER Object identifier. Identifies the backup object against which a backup or restore attempt is made. Can
be used with act_aid to join with bar_instance. The act_oid column of the bar_action table equals the
obj_oid column of the bar_object table.

act_type SMALLINT Identifies the attempted action: 1 for backup, 2 for restore, 3 for a foreign or imported restore, 4 for a
fake backup, 5 for a whole-system backup, 6 for a whole-system restore, 7 for expired or deleted
objects, 8 for an external restore.

Part VI: Administering 1673

Column name Type Explanation

act_status INTEGER Identifies the result of the action: 0 if successful, otherwise an ON-Bar-specific error code. For more
information, see ON-Bar messages and return codes.

act_start DATETIME YEAR TO SECONDS The date and time when the action began.

act_end DATETIME YEAR TO SECONDS The date and time when the action finished.

The bar_instance table

The bar_instance table contains descriptions of each object that is backed up.

ON-Bar writes a record to the bar_instance table for each successful backup. ON-Bar might later use the information for a restore operation. For example, if you specify a
level-2 backup, ON-Bar uses this table to ensure that a level-1 backup was done previously.

Table 1. bar_instance table columns

Column name Type Explanation

ins_aid INTEGER Action identifier. Identifies the successful action that created this instance of the backup
object. Combined with ins_oid, can be used to join with the bar_action table.

ins_oid INTEGER Object identifier. Identifies the affected object. Can be used to join with the bar_object
table. Combined with ins_aid, can be used to join with the bar_action table.

ins_time INTEGER Timestamp (real clock time). The database server uses this value when it creates the next-
level backup. Value represents the number of seconds since midnight, January 1, 1970,
Greenwich mean time.
The ins_time value is 0.

rsam_time INTEGER The backup checkpoint time stamp. Not a clock time. The database server uses this value
when it creates the next level backup.

seal_time INTEGER The time that the log file was sealed after a backup completed.

prev_seal_time INTEGER The time that the previous log file was sealed.

ins_level SMALLINT Level of the backup action: 0 for a complete backup, 1 for a backup of any changes to this
object since its last level-0 backup, 2 for a backup of any changes since the last level-1
backup. This value is always 0 for logical-log backups.

ins_copyid_hi INTEGER The high bits of the instance copy identifier. Combined with ins_copyid_lo, it is a unique
value that the storage manager assigns to link the ON-Bar object identifier with the storage-
manager object identifier.

ins_copyid_lo INTEGER The low bits of the instance copy identifier. Combined with ins_copyid_hi, it is a unique
value that the storage manager assigns to link the ON-Bar object identifier with the storage-
manager object identifier.

ins_req_aid INTEGER Stores the required action ID for a backup object. Used in a restore to determine which
level-0 backup goes with the level-1 backup, and which level-1 backup goes with the level-
2 backup. For a level-0 backup, the value of ins_req_aid is the same as ins_aid in this table.
For example, if this backup is level-1, ins_req_aid holds the action ID of the corresponding
level-0 backup of this object.

ins_logstream INTEGER Not used.

ins_first_log INTEGER In a standard backup, identifies the first logical log required to restore from this backup.

ins_chpt_log INTEGER The logical log that contains the archive checkpoint in the dbspace backup.

ins_last_log INTEGER In a standard backup, identifies the last logical log required to restore from this backup.

ins_partial INTEGER Partial flag from salvage.

ins_sm_id INTEGER Not used.

ins_sm_name CHAR(128) Not used.

ins_verify INTEGER Value is 1 if the backup is verified. Value is 0 if the backup is not verified.

ins_verify_date DATETIME YEAR TO SECOND The current date is inserted when a backup is verified. If this backup has not been not
verified, a dash represents each date and time.

ins_backup_order INTEGER The order in which backups occur.

The bar_ixbar table

The bar_ixbar table, which stores a history of all unexpired successful backups in all timelines, is maintained and used by the onsmsync utility only.

The schema of the bar_ixbar table is identical to the schema of the bar_syncdeltab table, except for its primary key.
Table 1. bar_ixbar table columns

Column name Type Explanation

ixb_sm_id INTEGER Storage-manager instance ID. Created from BAR_SM in $ONCONFIG or %ONCONFIG%.

1674 Part VI: Administering

Column name Type Explanation

ixb_copyid_hi INTEGER The high bits of the instance copy identifier. Combined with ixb_copyid_lo, it is a unique value that
the storage manager assigns to link the ON-Bar object identifier with the storage-manager object
identifier.

ixb_copyid_lo INTEGER The low bits of the instance copy identifier. Combined with ixb_copyid_hi, it is a unique value that
the storage manager assigns to link the ON-Bar object identifier with the storage-manager object
identifier.

ixb_aid INTEGER Action identifier, Identifies the successful action that created this instance of the backup object.

ixb_old INTEGER Object identifier. Identifies the affected object.

ixb_time INTEGER Time stamp (real clock time). The database server uses this value when it creates the next-level
backup. Value represents the number of seconds since midnight, January 1, 1970, Greenwich
mean time.

ixb_prevtime INTEGER Time stamp (real clock time). This value specifies the time stamp of the previous object. Value
represents the number of seconds since midnight, January 1, 1970 Greenwich mean time.

ixb_rsam_time INTEGER The backup checkpoint time stamp. Not a clock time. The database server uses this value when it
creates the next level backup.

ixb_act_start datetime year to second The date and time when the action began.

ixb_act_end datetime year to second The date and time when the action finished.

ixb_level SMALLINT Level of the backup action: 0 for a complete backup, 1 for a backup of any changes to this object
since its last level-0 backup, 2 for a backup of any changes since the last level-1 backup. This
value is always 0 for logical-log backups.

ixb_req_aid INTEGER Stores the required action ID for a backup object. Used in a restore to determine which level-0
backup Goes with the level-1 backup, and which level-1 backup goes with the level-2 backup. For
a level-0 backup, the value of ixb_req_aid is the same as ixb_aid in this table. For example, if this
backup is level-1, ixb_req_aid holds the action ID of the corresponding level-0 backup of this
object.

ixb_first_log INTEGER In a standard backup, identifies the first logical log. Required to restore from this backup.

ixb_chpt_log INTEGER The ID of the log that contains the rsam_time checkpoint. Used during back up to verify that logs
needed for restore are backed up.

ixb_last_log INTEGER Log ID of the last log needed during logical restore for this storage space to restore it to the time of
the backup.

ixb_lbuflags INTEGER Flags describing log backup.

ixb_verify INTEGER Value is 1 if the backup is verified. Value is 0 if the backup is not verified.

ixb_verify_date datetime year to second The current date is inserted when a backup is verified. If this backup has not been verified, a dash
represents each date and time.

ixb_sm_name VARCHAR(128) Storage-manager instance name. Created from the BAR_SM_NAME parameter in the onconfig file.

ixb_srv_name VARCHAR(128) The database server name. Used to ensure that objects are restored to the correct database
server. Used when multiple database servers are on the node to ensure that objects are restored in
the database server instance to which the object belongs. The database server name can be up to
128 characters.

ixb_obj_name VARCHAR(128) The user name for the object. The name can be up to 128 characters.

ixb_obj_type CHAR(2) Backup object type:

CD
critical dbspace

L
logical log

ND
noncritical dbspace or sbspace

R
rootdbs

B
blobspace

Related reference:
 The bar_syncdeltab table

The bar_object table

The bar_object table contains descriptions of each backup object. This table is a list of all storage spaces and logical logs from each database server for which at least one
backup attempt was made.

Table 1. bar_object table columns

Column name Type Explanation

Part VI: Administering 1675

Column name Type Explanation

obj_srv_name VARCHAR(128,0) The database server name. Used to ensure that objects are restored to the correct database
server. Used when multiple database servers are on the node to ensure that objects are
restored in the database server instance to which the object belongs.
The database server name can be up to 128 characters.

obj_oid SERIAL The object identifier. A unique number within the table. Can be used to join with the bar_action
and bar_instance tables.

obj_name VARCHAR(128,0) The user name for the object.
The name can be up to 128 characters.

obj_type CHAR(2) Backup object type:

CD
critical dbspace

L
logical log

ND
noncritical dbspace or sbspace

R
rootdbs

B
blobspace

The bar_server table

The bar_server table lists the database servers in an installation. This table is used to ensure that backup objects are returned to their proper places during a restore.

Table 1. bar_server table columns
Column name Type Explanation

srv_name VARCHAR(128,0) DBSERVERNAME value specified in the onconfig file.
Database server name can be up to 128 characters.

srv_node CHAR(256) Host name of the computer where the database server
resides.
The host name can be up to 256 characters.

srv_synctime INTEGER The time onsmsync was run.

The bar_syncdeltab table

The bar_syncdeltab table is maintained and used by the onsmsync utility only. This table is empty except when onsmsync is running.

The schema of the bar_syncdeltab table is identical to the schema of the bar_ixbar table, except for its primary key.

Related reference:
 The bar_ixbar table

ON-Bar catalog map

This topic contains an example mapping between ON-Bar tables.

The following figure maps the ON-Bar tables on IBM® Informix®. In this figure, the gray lines show the relations between tables. The arrows show that the ins_req_aid
value must be a valid ins_aid value.
Figure 1. ON-Bar catalog map on

1676 Part VI: Administering

ON-Bar messages and return codes

ON-Bar prints informational, progress, warning, and error messages to the ON-Bar activity log file. ON-Bar return codes indicate the status of the command.

For a description of an error message, use the finderr utility or go to Error messages.

Message format in the ON-Bar message log
 Messages in the ON-Bar activity log file contain timestamps, process IDs, and explanatory text.

Message numbers
 The ON-Bar message numbers range from -43000 to -43421.

ON-Bar return codes
 You can troubleshoot problems by viewing activity log messages that are applicable for particular return codes.

Related concepts:
 bar_act.log file: ON-Bar activity log

Related reference:
 onbar -m syntax: Monitoring recent ON-Bar activity

Message format in the ON-Bar message log

Messages in the ON-Bar activity log file contain timestamps, process IDs, and explanatory text.

A message in the ON-Bar activity log file, bar_act.log, has the following format:

timestamp process_id parent_process_id message

The following table describes each field in the message. No error message numbers appear in the ON-Bar activity log.
Table 1. ON-Bar message format

Message field Description

timestamp Date and time when ON-Bar writes the message.

process_id The number that the operating system uses to identify this instance of ON-Bar.

parent_process_id The number that the operating system uses to identify the process that executed this instance of ON-
Bar.

message The ON-Bar message text.

The following example illustrates a typical entry in the ON-Bar activity log:

1999-08-18 10:09:59 773 772 Completed logical restore.

Important: If you receive an XBSA error message, consult the storage-manager logs for more details.

Timestamps when storage managers hang
If a storage manager process hangs, the timestamp for the process in the ON-Bar activity log is inaccurate. An asterisk symbol is appended to the timestamp and the
message indicates how long the storage manager process hung. The following example shows that the storage manager process hung for two minutes starting at 10:27. At
10:29, the storage manager completed the backup.

2013-02-26 10:27:10* 13410 25695 (-43085) WARNING: BAR_TIMEOUT Storage
 Manager Progress may be stalled for at least 2 minutes.

2013-02-26 10:29:12 13410 25695 Completed level 0 backup dbspace1 (Storage Manager
 copy ID: 1509564809 0).

Related reference:
 onbar -m syntax: Monitoring recent ON-Bar activity

Message numbers

The ON-Bar message numbers range from -43000 to -43421.

The following table lists the ON-Bar message groups. Because message numbers do not display in the activity log, the best way to find information about ON-Bar
messages is to search for the message text in the error messages file, which is in the subdirectory for your locale under the $INFORMIXDIR/msg directory.

ON-Bar message type Message numbers

ON-Bar usage -43000 to -43007 and
-43357

Options checking -43010 to -43034

Permission checking -43035 to -43039

Emergency boot file interface -43040 to -43059

onconfig file interface -43060 to -43074

Operating system interface -43075 to -43099

Part VI: Administering 1677

ON-Bar message type Message numbers

Database server interface -43100 to -43229

Back up and restore status -43230 to -43239

onbar-worker processes -43240 to -43254

XBSA interface -43255 to -43301

onsmsync -43302 to -43319

archecker -43320 to -43334

ondblog -43400 to -43424

ON-Bar return codes

You can troubleshoot problems by viewing activity log messages that are applicable for particular return codes.

The following table shows the ON-Bar return codes for all IBM® Informix® database servers. These return codes are accompanied by messages in the ON-Bar activity log.
For details about an error, review the activity log before you call Technical Support.

Table 1. Common ON-Bar return codes
Decimal value ON-Bar return code description

2 through 34 These return codes are produced by XBSA. For more information, consult your storage-manager documentation and log files.

100 ON-Bar cannot find something in sysutils, the emergency boot file, or storage-manager catalogs that it needs for processing.
Check the ON-Bar activity log for messages that say what could not be found and try to resolve that problem. If the problem recurs, contact
Technical Support.

104 Adstar Distributed Storage Manager (ADSM) is in generate-password mode.
ON-Bar does not support ADSM running in generate-password mode. For information about changing the ADSM security configuration, refer to
your ADSM manual.

115 A critical dbspace is not in the set of dbspaces being cold-restored.

116 The onsmsync utility is already running.

117 The information contained in the sysutils database and the emergency boot file are inconsistent.

118 An error in tenant restore occurred since another tenant restore was in progress.

119 An error in tenant restore occurred since another restore was in progress.

120 An internal On-Bar error occurred when starting a tenant restore.

121 ON-Bar was unable to determine the list of dbspaces.

122 Deadlock detected.
The ON-Bar command is contending with another process. Try the ON-Bar command again.

123 The root dbspace was not in the cold restore.
You cannot perform a cold restore without restoring the root dbspace. To resolve the problem, try one of the following procedures:

Bring the database server to quiescent or online mode and restore just the storage spaces that need to be restored.
If the database server is offline, issue the onbar -r command to restore all the storage spaces.
Make sure that the root dbspace and other critical dbspaces are listed on the command line or in the -f filename.

124 The buffer had an incomplete page during the backup.
For assistance, contact Technical Support.

126 Error processing the emergency boot file.
Check the ON-Bar activity log for descriptions of the problem and the emergency boot file for corruption such as non-ASCII characters or lines
with varying numbers of columns. If the source of the problem is not obvious, contact Technical Support.

127 Could not write to the emergency boot file.
Often, an operating-system error message accompanies this problem. Check the permissions on the following files and directories:

$INFORMIXDIR/etc on UNIX or %INFORMIXDIR%\etc on Windows
The emergency boot file

128 Data is missing in the object description.
For assistance, contact Technical Support.

129 ON-Bar received a different object for restore than it had expected. (The backup object did not match.) The requested backup object might
have been deleted or expired from the storage manager.
Run onsmsync to synchronize the sysutils database, emergency boot file, and storage-manager catalogs. For assistance, contact Technical
Support.

130 Database server is not responding.
The database server probably failed during the backup or restore. Run the onstat - command to check the database server status and then:

If the operation was a cold restore, restart it.
If the operation was a backup or warm restore, restart the database server and try the backup or warm restore again.

1678 Part VI: Administering

Decimal value ON-Bar return code description

131 A failure occurred in the interface between ON-Bar and the database server.
For assistance, contact Technical Support.

132 Function is not in the XBSA shared library.
Verify that you are using the correct XBSA for the storage manager. For information, consult your storage-manager manual.

133 Failed to load the XBSA library functions.
Verify that you are using the correct XBSA for the storage manager. Ensure that the BAR_BSALIB_PATH value in the onconfig file points to the
correct location of the XBSA shared library. For information, consult your storage-manager manual.

134 User wants to restore a logical-log file that is too early.
You probably tried a point-in-log restore (onbar -r -l -n) after performing a separate physical restore. The specified logical log is too old to
match the backups used in the physical restore. Perform either of the following steps:

Rerun the physical restore from an older set of physical backups.
Specify a later logical log in the -n option when you rerun the point-in-log restore. To find the earliest logical log that you can use, look at
the emergency boot file. For assistance, contact Technical Support.

136 ON-Bar cannot warm restore the critical dbspaces.
Perform either of the following steps:

Reissue the warm-restore command without listing any critical dbspaces.
Shut down the database server and perform a cold restore.

137 The MAX_DBSPACE_COUNT was exceeded.
For assistance, contact Technical Support.

138 An XBSA error occurred.
Verify that you are using the correct XBSA for the storage manager. Also check the bar_act.log for XBSA error messages. For information,
consult your storage-manager manual.

139 Either the XBSA version is missing from the sm_versions file or the incorrect XBSA version is in the sm_versions file.
Insert the correct XBSA version into the sm_versions file. For more information, consult your storage-manager manual.

140 A fake backup failed.
Try the fake backup with the onbar -b -F command again. Only IBM Informix supports fake backups. If the fake backup fails again, contact
Technical Support.

141 ON-Bar received an operating-system signal. Most likely, the user entered the Ctrl-C command to stop an ON-Bar process.
Fix the cause of the interruption and then try the ON-Bar command again.

142 ON-Bar was unable to open a file.
Verify that the named file exists and that the permissions are correct. Check the ON-Bar activity log for an operating-system error message.

143 ON-Bar was unable to create a child process.
If BAR_MAX_BACKUP is not 0, ON-Bar could not create child processes to perform the parallel backup or restore. The operating system
probably ran out of resources. Either not enough memory is available to start a new process or no empty slot exists in the process table.

Check the operating-system logs, the ON-Bar activity log, or the console.

144 The log backup was stopped because one or more blobspaces were down.
Attempt to restore the blobspace. If the restore fails, try the log backup with the onbar -l -O command again. Executing this command might
make the blobspace unrestorable.

145 ON-Bar was unable to acquire more memory space.
Wait for system resources to free up and try the ON-Bar command again.

146 ON-Bar was unable to connect to the database server.
The network or the database server might be down. For assistance, contact Technical Support.

147 ON-Bar was unable to discover any storage spaces or logical logs to back up or restore.
For example, if you specify a point-in-time restore but use a datetime value from before the first standard backup, ON-Bar cannot build a list of
storage spaces to restore. This return code also displays if you specify a whole-system restore without having performed a whole-system
backup.

Verify that the database server and the storage spaces are in the correct state for the backup or restore request. Contact Technical Support.

148 An internal SQL error occurred.
Provide Technical Support with the information from the ON-Bar activity log.

149 Either you entered the wrong ON-Bar syntax on the command line or entered an invalid or incorrect datetime value for your GLS environment.
Check the command that you tried against the usage message in the ON-Bar activity log. If that does not help, then try the command with
quotes around the datetime value again. If your database locale is not English, use the GL_DATE or GL_DATETIME environment variables to set
the date and time format.

150 Error collecting data from the onconfig file.
Check the permissions, format, and values in the onconfig file. Check that the ONCONFIG environment variable is set correctly.

Part VI: Administering 1679

Decimal value ON-Bar return code description

151 The database server is in an incorrect state for this backup or restore request, or an error occurred while determining the database server
state.
Either you attempted an operation that is not compatible with the database server mode or ON-Bar is unable to determine the database server
state. For example, you cannot do a physical backup with the database server in recovery mode.

Check the error message in the ON-Bar activity log. If an ASF error occurred, the following message displays in the ON-Bar activity log:

Fatal error initializing ASF; asfcode = code

To determine the cause of the ASF error, refer to the ASF error code in this message and repeat the backup or restore command. If an ASF error
did not occur, change the database server state and repeat the backup or restore command.

152 ON-Bar cannot back up the logical logs.
The logical logs are not backed up for either of the following reasons:

If another log backup is currently running.
If you perform a logical-log backup with the LTAPEDEV parameter set to /dev/null (UNIX) or NUL (Windows).

You receive this return code when no log backups can be done.

To enable log backups, change the LTAPEDEV parameter to a valid value.

153 ON-Bar cannot set the process group ID. If BAR_MAX_BACKUP is set to any value other than 1 and ON-Bar encounters an error setting the
process group ID, this value is returned.
This message is a warning of a possible operating-system problem.

154 The ON-Bar user does not have the correct permissions.
You must be user root or informix or a member of the bargroup group on UNIX or a member of the Informix-Admin group on Windows to
execute ON-Bar commands.

155 The INFORMIXSERVER environment variable is not set.
Set the INFORMIXSERVER environment variable to the correct database server name.

156 Backup or restore was not performed because the LTAPEDEV parameter value is not valid.
If LTAPEDEV is not set or /dev/null on UNIX, or if it is NUL on Windows, the logical logs are not backed up, and ON-Bar returns warning 152.

157 Error attempting to set the INFORMIXSHMBASE environment variable to -1.
ON-Bar could not set INFORMIXSHMBASE to -1. For assistance, contact either the system administrator or Technical Support.

158 An internal ON-Bar error occurred.
Contact Technical Support.

159 An unexpected error occurred.
Contact Technical Support.

160 External restore failed.
To determine what went wrong with the external restore, look at the bar_act.log and the online.log files. Ensure that you already performed the
manual part of the external restore before you try the onbar-r -e command again to complete the external restore. If that does not work, try
the external restore from a different external backup.

161 Restarted restore failed.
Verify that RESTARTABLE_RESTORE is set to ON and try the original restore again. For more information, check the ON-Bar activity log and
database server message logs.

162 The ON-Bar log file cannot be a symbolic link.
Remove the symbolic link or change the onconfig file so that the ON-Bar parameters BAR_DEBUG_LOG or BAR_ACT_LOG point to non-
symbolic linked files.

163 The ON-Bar log file must be owned by user informix.
Change the ownership of the log file to be owned by user informix or change the BAR_ACT_LOG or BAR_DEBUG_LOG values in the onconfig file
to point to different log files.

164 Unable to open file.
The file or its directory permissions prevent it from being created or opened. Verify the permissions on the file and its directory.

177 An online dbspace was restored. This return code notifies the user that the -O option overrode the internal checks in ON-Bar.
You do not need to take any action.

178 The logical log was backed up while one or more blobspaces were down. This return code notifies the user that the -O option overrode the
internal checks in ON-Bar.
Examine the data in the blobspace to determine which simple large objects you need to recreate. These blobspaces might not be restorable.
For assistance, contact Technical Support.

179 ON-Bar created the chunk needed to restore the dbspace. This return code notifies the user that the -O option overrode the internal checks in
ON-Bar.
You do not need to take any action.

180 ON-Bar could not create the chunk needed to restore the dbspace.
Create the chunk file manually. Try the restore without the -O option again.

181 ON-Bar expired an object that was needed for a backup or restore.
The onsmsync utility expired an object that might be needed for a restore. You probably specified onsmsync with the -O option. If you used
the -O option by mistake, contact Technical Support to recover the object from the storage manager.

183 ON-Bar could not obtain the logical-log unique ID from the storage manager.
The backup of the specified logical log is missing. Query your storage manager to determine if the backup of the specified logical-log file exists
and if it is restorable.

1680 Part VI: Administering

Decimal value ON-Bar return code description

247 On UNIX, look in /tmp/bar_act.log and the file that the BAR_ACT_LOG parameter points to for clues. (The onbar-merger writes to
/tmp/bar_act.log until it has enough information to read the onconfig file.) Resolve the problems that the bar_act.log describes and try the cold
restore again. If the cold restore still fails, contact Technical Support.

252 For assistance, contact Technical Support.

ontape backup and restore system

Configure ontape
 You configure the ontape utility by setting configuration parameters for backups of storage spaces and logical logs.

Back up with ontape
 Restore with ontape
 Perform an external backup and restore

 These topics discuss performing an external backup and recovering data by restoring it with the ontape utility.

Related reference:
LTAPEBLK configuration parameter
LTAPEDEV configuration parameter
LTAPESIZE configuration parameter
TAPEBLK configuration parameter
TAPEDEV configuration parameter
TAPESIZE configuration parameter

Configure ontape

You configure the ontape utility by setting configuration parameters for backups of storage spaces and logical logs.

You can also set the IFX_BAR_USE_DEDUP environment variable to optimize the backup images for deduplication devices.

Set configuration parameters for the ontape utility
 The ontape utility uses eight configuration parameters in the onconfig file. Two of the configuration parameters specify filter programs for transforming data during

backup and restore; the other six are used to create storage-space and logical-log backups.
Changing your ontape configuration

 You can change the values of the TAPEDEV, TAPEBLK, and TAPESIZE or LTAPEDEV, LTAPEBLK, and LTAPESIZE configuration parameters after performing a backup
and reviewing the current and new parameter values.

Related reference:
 IFX_BAR_USE_DEDUP environment variable

Comparison of the ON-Bar and ontape utilities

Set configuration parameters for the ontape utility

The ontape utility uses eight configuration parameters in the onconfig file. Two of the configuration parameters specify filter programs for transforming data during backup
and restore; the other six are used to create storage-space and logical-log backups.

The onconfig file is located in the $INFORMIXDIR/etc directory. You specify that file in the ONCONFIG environment variable. For a description of the ONCONFIG
environment variable and instructions on how to set it, see the IBM® Informix® Guide to SQL: Reference.

Data transformation filter parameters for ontape
 The BACKUP_FILTER and RESTORE_FILTER configuration parameters specify the names of external programs that you can use to transform data before backup

and after a restore.
Tape and tape device parameters for ontape

 The first set of configuration parameters specifies the characteristics of the tape device and tapes for storage-space backups; the second set specifies the
characteristics of the tape device and tapes for logical-log backups.
Set the tape-device parameters

 Specify the tape-block-size
 Use the TAPEBLK and LTAPEBLK configuration parameters to set the largest block size, in kilobytes, that your tape device permits.

Specify the tape size
 Use the TAPESIZE and LTAPESIZE configuration parameter parameters to specify the maximum amount of data that you can write to a tape.

Data transformation filter parameters for ontape

The BACKUP_FILTER and RESTORE_FILTER configuration parameters specify the names of external programs that you can use to transform data before backup and after
a restore.

BACKUP_FILTER
Specifies the location and name of an external filter program used in data transformation. This filter transforms data before backing it up, such as compressing it.
The transformed data is then backed up and stored as a single file. The filter path points to the $INFORMIXDIR/bin directory by default, or an absolute path of the
program

Part VI: Administering 1681

RESTORE_FILTER
Specifies the location and name of an external filter program used in data transformation. This filter transforms data back to its original state before the backup,
such as extracting it, before returning the data to the server. The filter path points to the $INFORMIXDIR/bin directory by default, or an absolute path of the
program
Prerequisite: The data must have previously been transformed with the BACKUP_FILTER parameter.

See BACKUP_FILTER configuration parameter and RESTORE_FILTER configuration parameter for syntax and usage information, which is the same for ON-Bar and ontape.

Tape and tape device parameters for ontape

The first set of configuration parameters specifies the characteristics of the tape device and tapes for storage-space backups; the second set specifies the characteristics
of the tape device and tapes for logical-log backups.

The following list shows backup tape devices and their associated tape parameters.

TAPEDEV
The absolute path name of the tape device or directory file system that is used for storage-space backups. Specify the destination where ontape writes storage
space data during an archive and the source from which ontape reads data during a restore.
To configure ontape to use stdio, set TAPEDEV to STDIO.

When backing up to or restoring from a cloud environment, use the following syntax for the TAPEDEV configuration parameter:

TAPEDEV 'local_path, keep=option, cloud=cloud_vendor, url=url'

local_path is the complete path name of the directory where storage spaces backup objects are stored temporarily.
option can be set to yes or no. If keep is set to yes, the ontape utility retains the backup objects in the local directory. If keep is set to no, the backup objects
are deleted after they are transferred to or from the cloud storage location.
cloud_vendor is the name of the cloud storage vendor.
url is the cloud storage location where the storage space backup data is stored persistently.

TAPEBLK
The block size of the tapes used for storage-space backups, in kilobytes.

TAPESIZE
The size of the tapes used for storage-space backups, in kilobytes.

The following list shows the logical-log tape devices and their associated tape parameters.

LTAPEDEV
The logical-log tape device or a directory of a file system.
When backing up to or restoring from a cloud environment, use the following syntax for the LTAPEDEV configuration parameter:

LTAPEDEV 'local_path, keep=option, cloud=cloud_vendor, url=url'

local_path is the complete path name of the directory where log backup objects are stored temporarily.
option can be set to yes or no. If keep is set to yes, the ontape utility retains the backup objects in the local directory. If keep is set to no, the backup objects
are deleted after they are transferred to or from the cloud storage location.
cloud_vendor is the name of the cloud storage vendor.
url is the cloud storage location where the log backup data is stored persistently.

LTAPEBLK
The block size of tapes used for logical-log backups, in kilobytes.

LTAPESIZE
The size of tapes used for logical-log backups, in kilobytes.

The following topics contain information about how to set the tape-device, tape-block-size, and tape-size parameters for both storage-space and logical-log backups.

Related tasks:
 Back up to Amazon Simple Storage Service

Set the tape-device parameters

Specify values for TAPEDEV and LTAPEDEV in the following ways:

Use separate tape devices, when possible.
Use symbolic links.
Specify a directory of a file system.
For tape devices, specify /dev/null.
Rewind tape devices.
Configure parameters to perform backup to a cloud.

The following sections explain each of these points.

Specify separate devices for storage-space and logical-log backups
 Specify tape devices as symbolic links

 Specify a file system directory
 Specify a remote device

 You can perform a storage-space or logical-log backup across your network to a remote device attached to another host computer on UNIX and Linux platforms.
Specify /dev/null for a tape device

 A best practice is to not use /dev/null as the device when backing up. However, if you decide that you do not need to recover transactions from the logical log, you

1682 Part VI: Administering

can specify /dev/null as a tape device for logical-log backups
Set TAPEDEV to stdio
To configure the ontape utility to read from standard input or write to standard output, set the TAPEDEV configuration parameter to stdio.
Rewind tape devices before opening and on closing

Related tasks:
 Back up to Amazon Simple Storage Service

Specify separate devices for storage-space and logical-log backups

When backing up to a tape device, specify different devices for the LTAPEDEV and TAPEDEV parameters in the onconfig file. You can schedule these backups
independently of each other. You can create a backup on one device at the same time you continuously back up the logical-log files on the other.

If you specify the same device for the LTAPEDEV and TAPEDEV, the logical log can fill, which causes the database server to stop processing during a backup. When this
happens, you have two options.

Stop the backup to free the tape device and back up the logical-log files.
Leave normal processing suspended until the backup completes.

Precautions to take when you use one tape device
When only one tape device exists and you want to create backups while the database server is online, take the following precautions:

Configure the database server with a large amount of logical-log space through a combination of many or large logical-log files. (See your IBM® Informix®
Administrator's Guide.)
Store all explicitly created temporary tables in a dedicated dbspace and then drop the dbspace before backing up.
Create the backup when low database activity occurs.
Free as many logical-log files as possible before you begin the backup.

The logical log can fill up before the backup completes. The backup synchronizes with a checkpoint. A backup might wait for a checkpoint to synchronize activity, but the
checkpoint cannot occur until all virtual processors exit critical sections. When database server processing suspends because of a full logical-log file, the virtual
processors cannot exit their critical sections and a deadlock results.

Specify tape devices as symbolic links

You can specify the values of LTAPEDEV and TAPEDEV as symbolic links. Using symbolic links enables you to switch to other tape or tape-compatible devices without
changing the path name in the onconfig file. For example, you can specify the following symbolic link for tape device /dev/rst0:

ln -s /dev/rst0 /dbfiles/logtape

When you set the LTAPEDEV configuration parameter, as the following example shows, you can switch to a different device without changing the LTAPEDEV parameter:

LTAPEDEV /dbfiles/logtape

You only need to change the symbolic link, as the following example shows:

ln -s /usr/backups /dbfiles/logtape

A user with one tape device could redirect a logical-log back up to a disk file while using the tape device for a backup.

Specify a file system directory

You can perform a storage-space (level 0, 1, or 2) archive, or a logical-log backup to a directory in the file system by using the ontape utility. For each storage-space
archive and logical-log backup, ontape creates a file in the specified directory.

To specify a file system directory, set the LTAPEDEV and TAPEDEV configuration parameters to the absolute path name for the directory.

When ontape repeats an archive operation, it renames the existing files so that old files are not rewritten. A timestamp is added to the file name, which provides a way for
related storage space or logical log files to be organized together.

To learn about the file naming schema, see Rename existing files.

Specify a remote device

You can perform a storage-space or logical-log backup across your network to a remote device attached to another host computer on UNIX and Linux platforms.

You should not do a continuous backup to a remote device.

The remote device and the database server computer must have a trusted relationship so that the rsh or the rlogin utility can connect from the database server computer
to the remote device computer without asking for password. You can establish a trusted relationship by configuring the /etc/hosts.equiv file, the ~/.rhosts file, or any
equivalent mechanism for your system on the remote device computer. If you want to use a different utility to handle the remote session than the default utility used by
your platform, you can set the DBREMOTECMD environment variable to the specific utility that you want to use.

Part VI: Administering 1683

To specify a tape device on another host computer, use the following syntax to set the TAPEDEV or LTAPEDEV configuration parameter:

host_machine_name:tape_device_pathname

The following example specifies a tape device on the host computer kyoto:

kyoto:/dev/rmt01

For information about the tape size for remote devices, see Tape size for remote devices.

Related information:
 DBREMOTECMD environment variable (UNIX)

Specify /dev/null for a tape device

A best practice is to not use /dev/null as the device when backing up. However, if you decide that you do not need to recover transactions from the logical log, you can
specify /dev/null as a tape device for logical-log backups

When you specify /dev/null as a backup tape device, you can avoid the overhead of a level-0 backup that is required after some operations, such as changing the logging
status of a database. Obviously, you cannot restore storage spaces from a backup to /dev/null.
When you specify the tape device as /dev/null, block size and tape size are ignored. If you set the LTAPEDEV configuration parameter either to or from /dev/null, you must
restart the database server for the new setting to take effect.
Important: When you set the LTAPEDEV configuration parameter to /dev/null, the database server marks the logical-log files as backed up as soon as they become full,
effectively discarding logical-log information.

Set TAPEDEV to stdio

To configure the ontape utility to read from standard input or write to standard output, set the TAPEDEV configuration parameter to stdio.

Rewind tape devices before opening and on closing

With ontape, you must use rewindable tape devices. Before reading from or writing to a tape, the database server performs a series of checks that require the rewind.

Specify the tape-block-size

Use the TAPEBLK and LTAPEBLK configuration parameters to set the largest block size, in kilobytes, that your tape device permits.

When you set the tape parameter to /dev/null, the corresponding block size is ignored.

The ontape utility does not check the tape device when you specify the block size. Verify that the tape device can read the block size that you specified. If not, you cannot
restore the tape.

Specify the tape size

Use the TAPESIZE and LTAPESIZE configuration parameter parameters to specify the maximum amount of data that you can write to a tape.

To write or read the tape to the end of the device, set TAPESIZE and LTAPESIZE to 0. You cannot use this option for remote devices.

When you specify the tape device as /dev/null, the corresponding tape size is ignored.

Tape size for remote devices
 You can estimate the amount of continuous logical-log backup data that can be stored on tape on remote devices.

Related reference:
 TAPESIZE configuration parameter

LTAPESIZE configuration parameter

Tape size for remote devices

You can estimate the amount of continuous logical-log backup data that can be stored on tape on remote devices.

When you perform a continuous logical-log backup to a remote device, the amount of data written to the tape is the smaller of LTAPESIZE and the following formula:

(sum of space occupied by all logical-log files on disk) -
(largest logical-log file)

The I/O to the remote device completes and the database server frees the logical-log files before a log-full condition occurs.

1684 Part VI: Administering

Restriction: You cannot set tape size to 0 for remote devices.

Changing your ontape configuration

You can change the values of the TAPEDEV, TAPEBLK, and TAPESIZE or LTAPEDEV, LTAPEBLK, and LTAPESIZE configuration parameters after performing a backup and
reviewing the current and new parameter values.

Prerequisites: Before you change the parameters for ontape:

Perform a level-0 backup.
Examine your configuration file (the file specified in $INFORMIXDIR/etc/$ONCONFIG) by executing onstat -c while the database server is running.
If you plan to change TAPEDEV or LTAPEDEV to a different tape device, verify that the tape device can read the block size that you specify with the TAPEBLK or
LTAPEBLK configuration parameter. If not, you cannot restore the tape. (The ontape utility does not check the tape device when you specify the block size.)
Be sure that you are logged in as user root or informix.

You can change the values of parameters for ontape while the database server is online.

To change the value of TAPEDEV, TAPEBLK, and TAPESIZE or LTAPEDEV, LTAPEBLK, and LTAPESIZE:

1. From the command line, use a text editor to edit your onconfig file.
2. Save the file.

The change takes effect immediately. However, if you set either the TAPEDEV parameter or the LTAPEDEV parameter to /dev/null, you must restart the database server.

Related reference:
 LTAPEBLK configuration parameter

LTAPEDEV configuration parameter
LTAPESIZE configuration parameter
TAPEBLK configuration parameter
TAPEDEV configuration parameter
TAPESIZE configuration parameter

Back up with ontape

These topics describe how to use the ontape utility to back up storage spaces and logical-log files, and how to change the database logging status. The ontape utility can
back up and restore the largest chunk files that your database server supports. The ontape utility cannot back up temporary dbspaces and temporary sbspaces.

Summary of ontape tasks
 Change database logging status

 You can use the ontape utility to change the logging status of a database. Most changes in logging mode require a full level-0 backup.
Create a backup

 Back up logical-log files with ontape
 You must only use ontape to back up logical-log files when you use ontape to make your backup tapes.

Summary of ontape tasks

The ontape utility lets you complete a wide variety of tasks:

Change database logging status
Create a backup
Starting a continuous logical-log file backup
ontape utility syntax: Perform a restore
Use external restore commands

Start ontape
 Exit codes for ontape

Start ontape

When you need more than one tape during a backup, the ontape utility prompts for each additional tape.

If the database server is in maintenance mode, for example, during a conversion, then the ontape utility can only be started by one of the following users:

root
informix
The user who started the database server (if not the user root or informix)

Restriction: Do not start the ontape utility in background mode (that is, with the UNIX & operator on the command line). You could also need to provide input from the
terminal or window. When you execute ontape in background mode, you can miss prompts and delay an operation.
The ontape utility does not include default values for user interaction, nor does it support attempts to retry. When ontape expects a yes-or-no response, it assumes that
any response not recognized as a “yes” is “no”.

Part VI: Administering 1685

Exit codes for ontape

The ontape utility has the following two exit codes:

0
Indicates a normal exit from ontape.

1
Indicates an exception condition.

Change database logging status

You can use the ontape utility to change the logging status of a database. Most changes in logging mode require a full level-0 backup.

You cannot change the logging mode of an ANSI-compliant database.

You can change an unbuffered logged or buffered logged database to an unlogged database without making a backup.

You can make the following logging modes changes with a level-0 backup:

An unbuffered logged or buffered logged database to an ANSI database
An unbuffered logged database to a buffered logged database
A buffered logged database to an unbuffered logged database

Examples
The following command changes the logging mode of a database named stores7 to unbuffered logging:

ontape -s -L 0 -U stores7

The following command changes the logging mode of a database to ANSI-compliant logging:

ontape -s -L 0 -A stores7

The following command changes the logging mode of a database to unlogged:

ontape -N stores7

Related reference:
 ontape utility syntax: Perform a backup

Related information:
 Database-logging status

Create a backup

These topics explain how to plan for and create backups of your database server data.

Backup levels that ontape supports
 The ontape utility supports level-0, level-1, and level-2 backups.

Back up after changing the physical schema
 You must perform a level-0 backup to ensure that you can restore the data after change the physical schema.

Prepare for a backup
 ontape utility syntax: Perform a backup

 Use ontape utility command options to back up to tape.
Back up to Amazon Simple Storage Service

 You can use the ontape utility to back up and restore data to or from the Amazon Simple Storage Service (S3). You are responsible for terms and any charges
associated with your use of the Amazon Simple Storage Service.
When the logical-log files fill during a backup

 When the logical log fills during a backup, the console displays a message and the backup suspends normal processing. How you handle the logical-log filling
depends on whether you can use one or two tape devices.
When a backup terminates prematurely

 Monitor backup history by using oncheck
 You can monitor the history of your last full-system backup by using oncheck.

Backup levels that ontape supports

The ontape utility supports level-0, level-1, and level-2 backups.

For information about scheduling backups, see Plan a recovery strategy.
Tip: Establish a backup schedule that keeps level-1 and level-2 backups small. Schedule frequent level-0 backups to avoid restoring large level-1 and level-2 backups or
many logical-log backups.

Level-0 backup

1686 Part VI: Administering

When a fire or flood, for example, completely destroys a computer, you need a level-0 backup to completely restore database server data on the replacement
computer. For online backups, the data on the backup tape reflects the contents of the storage spaces at the time the level-0 backup began. (The time the backup
started could reflect the last checkpoint before the backup started.)
A level-0 backup can consume lots of time because ontape must write all the pages to tape.

Level-1 backup
A level-1 backup usually takes less time than a level-0 backup because you copy only part of the database server data to the backup tape.

Level-2 backup
A level-2 backup after a level-1 backup usually takes less time than another level-1 backup because only the changes made after the last level-1 backup (instead of
the last level-0) get copied to the backup tape.

Back up after changing the physical schema

You must perform a level-0 backup to ensure that you can restore the data after change the physical schema.

Perform a level-0 backup after you make the following administrative changes:

Changing the TAPEDEV or LTAPEDEV configuration parameter from /dev/null
Adding logging to a database
Adding a dbspace, blobspace, or sbspace before you can restore it with anything less than a full-system restore
Starting mirroring for a dbspace that contains logical-log files
Dropping a logical-log file
Moving one or more logical-log files
Changing the size or location of the physical log and after you set up shared memory
Dropping a chunk before you can reuse the dbspace that contains that chunk
Renaming a chunk during a cold restore

Consider waiting to make these changes until your next regularly scheduled level-0 backup.

Tip: Although you no longer need to back up immediately after adding a logical-log file, your next backup should be level-0 because the data structures have changed.

Prepare for a backup

When you create a backup, take the following precautions:

Avoid temp tables during heavy activity.
Make sure enough logical-log space exists.
Keep a copy of your configuration file.
Verify consistency before a level-0 backup.
Run the database server in the appropriate mode.
Plan for operator availability.
Synchronize with other administrative tasks.
Do not use background mode.
If necessary, label tapes appropriately.
If necessary, prepare for writing to standard output.

Avoid temp tables during heavy activity
 Make sure enough logical-log space exists

 Keep a copy of your configuration file
 Verify consistency before a level-0 backup

 Online and quiescent backups
 Back up to tape

 When you back up to tape, you must ensure that an operator is available and that you have sufficient media.
Back up to standard output

 A backup to standard output creates an archive in the memory buffer provided by the operating system. If you choose to back up to standard output, you do not
need to provide tapes or other storage media.
Back up to a directory

 If you choose to back up to a directory, you do not need to provide tapes. Instead, you back up the data to a directory of a local file system or a directory that has
been mounted on the local system.

Avoid temp tables during heavy activity

When you create a temp table during a backup while using the ontape utility, that table is placed in DBSPACETEMP. When heavy activity occurs during the backup process,
the temp table can keep growing and can eventually fill up DBSPACETEMP. When this situation occurs, the backup stops and your monitor displays a NO FREE DISK error
message.

Make sure enough logical-log space exists

When the total available space in the logical log amounts to less than half a single logical-log file, the database server does not create a backup. You must back up the
logical-log files and attempt the backup again.

Part VI: Administering 1687

You cannot add mirroring during a backup.
Important: When you use only one available tape device, make sure you back up all your logical-log files before you start your backup to reduce the likelihood of filling the
logical log during the backup.

Keep a copy of your configuration file

Keep a copy of the current onconfig file when you create a level-0 backup. You need this information to restore database server data from the backup tape.

Verify consistency before a level-0 backup

To ensure the integrity of your backups, periodically verify that all database server data and overhead information is consistent before you create a full-system level-0
backup. You do not check this information before every level-0 backup, but we recommend that you keep the necessary tapes from the most recent backup created
immediately after the database server was verified as consistent. For information about consistency checking, see your IBM® Informix® Administrator's Guide.

Online and quiescent backups

You can create a backup while the database server is online or in quiescent mode. The terminal you use to initiate the backup command is dedicated to the backup
(displaying messages) until the backup completes. Once you start a backup, the database server must remain in the same mode until the backup finishes; changing the
mode terminates the backup activity.

Online backup
You can use an online backup when you want your database server accessible while you create the backup.

Some minor inconveniences can occur during online backups. An online backup can slow checkpoint activity, and that can contribute to a loss in performance. However,
this decline in performance is far less costly than the time that you lose when users were denied access to the database server during a backup.

During an online backup, allocation of some disk pages in storage spaces can temporarily freeze. Disk-page allocation is blocked for one chunk at a time until you back up
the used pages in the chunk.

Quiescent backup
You create a quiescent backup while the database server is quiescent. Use quiescent backups when you want to eliminate partial transactions in a backup.

Do not use quiescent backups when users need continuous access to the databases.

Back up to tape

When you back up to tape, you must ensure that an operator is available and that you have sufficient media.

Keep an operator available during a backup to mount tapes as prompted. A backup could take several reels of tape. When an operator is not available to mount a new tape
when one becomes full, the backup waits. During this wait, when the backup is an online backup, the physical log space could fill up, and that causes the database server
to stop the backup. Thus, make sure that an operator is available.

After a tape fills, the ontape utility rewinds the tape, displays the tape number for labeling, and prompts the operator to mount the next tape when you need another one.
Follow the prompts for labeling and mounting new tapes. A message informs you when the backup is complete.

Label tapes created with ontape

Label tapes created with ontape

When you label tapes created with the ontape utility, the label must include the following information:

Backup level
Date and time
Tape number that ontape provides

The following example shows what a label can look like:

Level 1: Wed Nov 27, 2001 20:45 Tape # 3 of 5

Each backup begins with its first tape reel numbered 1. You number each additional tape reel consecutively thereafter. You number a five-tape backup 1 through 5. (Of
course, it is possible that you could not know that it is a five-tape backup until it is finished.)

Back up to standard output

1688 Part VI: Administering

A backup to standard output creates an archive in the memory buffer provided by the operating system. If you choose to back up to standard output, you do not need to
provide tapes or other storage media.

Backing up to standard output has the following advantages:

There are no expensive write and read operations to disk or tape.
You can use operating system utilities to compress or otherwise process the data.
You can use the archive to create a duplicate of the server by immediately restoring the data onto another database server.

If you back up to standard output, you must also restore from standard input.
When ontape performs a backup to standard output, the data is written to an output file. The directory of the output must have enough disk space to hold the backed-up
data. You can use operating system utilities to compress the data. In addition, the user executing the backup command must have write permission to the file to which the
backup is diverted or permission to create the file.

When you back up to standard output, ontape does not prompt for user interaction. Error and information messages are written to stderr instead of being directed to
standard output.

The TAPESIZE configuration parameter is not used because the capacity of standard output is assumed to be unlimited. The TAPEBLK configuration parameter, however, is
valid because it defines the size of the transport buffer between the backend server and the ontape client. You can optimize throughput by setting TAPEBLK to an
appropriate value.

You can simultaneously back up and restore a database server to clone it or set up High-Availability Data Replication. For more information, see Simultaneous backup and
restore by using standard I/O.

Related reference:
 Restore from standard input

Back up to a directory

If you choose to back up to a directory, you do not need to provide tapes. Instead, you back up the data to a directory of a local file system or a directory that has been
mounted on the local system.

The person who runs the backup must have write permission to the directory. The directory must have enough disk space to hold the backed-up data. You can use
operating system utilities to compress the data after it is backed up.

Backing up to a directory has the following advantages:

Multiple instances can simultaneously back up to the same directory file system.
You can use operating system utilities to compress or otherwise process the data.
You can easily configure your system to automatically back up a log file when the file is full.

Set the file directory path
 Rename existing files

 When ontape repeats an archive operation, it renames the existing files so that old files are not rewritten. A timestamp is added to the file name, which provides a
way for related storage space or logical log files to be organized together.
Override the default name of the archive files

Set the file directory path

Use the TAPEDEV configuration parameter to specify the absolute path name on a directory of a file system to use for the storage-space archive file. This is the destination
where ontape writes storage space data during an archive and the source from which ontape reads data during a restore. You specify the directory where the logical log
backup files are written with the LTAPEDEV configuration parameter.

Tip: When you back up to a directory file system, specify the -d option to turn off ontape interactive prompts.

Rename existing files

When ontape repeats an archive operation, it renames the existing files so that old files are not rewritten. A timestamp is added to the file name, which provides a way for
related storage space or logical log files to be organized together.

Renaming conventions:

Storage-space archive files
The archive checkpoint time is added, and has the format servername_YYYYMMDD_hhmmss_archive-level.

Logical log backup files
The backup time is added, and has the format servername_YYYYMMDD_hhmmss.

For example, the file My_instance_L0 is renamed to My_instance_20080913_091527_L0

When restoring from a file system directory, ontape requires that storage-space archive and logical-log backup files be named as specified by the TAPEDEV and LTAPEDEV
parameters. If files have been renamed, including by ontape because of repeated archives and backups, files must be manually renamed to their original file names.

Override the default name of the archive files

Part VI: Administering 1689

You can override the default name of the archive files. When TAPEDEV or LTAPEDEV is a directory path, the default permanent file name consists of
hostname_servernum_Ln (for levels), and hostname_servernum_Lognnnnnnnnnn (for log files). You can override the prefix part of the permanent file name,
hostname_servernum, by setting the environment variable IFX_ONTAPE_FILE_PREFIX.

For example, if you set IFX_ONTAPE_FILE_PREFIX to “My_Instance”, then during archive, the files are named My_Instance_L0, My_Instance_L1, My_Instance_L2, and,
My_Instance_Log0000000001, My_Instance_Log0000000002, and so on. During restore, ontape searches for files in the TAPEDEV directory with file names like
My_Instance_L0, and searches for files in the LTAPEDEV directory with file names like My_Instance_Log0000000001.

ontape utility syntax: Perform a backup

Use ontape utility command options to back up to tape.

Pre-requisites: Before you begin a backup, perform the following steps:

If necessary, place a write-enabled tape on the tape-drive device that TAPEDEV specifies.
If you set TAPEDEV to STDIO, ensure that there is enough memory for the backup data.

If you are using a tape device, put the device online with the appropriate operating-system command.
Place the database server in online or quiescent mode.
Log in as the owner of the database server: user informix or root for a standard installation, or the owner of the non-root installation.

If you are using TAPE devices, do not store more than one backup on the same tape. The tape devices must be of the rewindable type. Begin every backup with a different
tape. (Often, a backup spans more than one tape.)

To create a backup, use the -s option of the ontape command.

Syntax

Create a backup

>>-ontape--+-------------------------+--+-----+----------------->
 | (1) | '- -v-'
 '-| -FILE option |-----'

>--+- -s--+-------------------------------+--+-----+--+----------------------+-+-->
 | +- -L--+-0-+--------------------+ '- -F-' '- -t--+-------------+-' |
 | | +-1-+ | +-tape_device-+ | |
 | | '-2-' | '-STDIO-------' |
 | | .----------. | |
 | | V | | |
 | '- -L--0--+- -B-+----database-+-' |
 | +- -U-+ |
 | +- -A-+ |
 | '- -N-' |
 | .----------. |
 | V | |
 '- -N----database-+---'

>--+-----+---><
 '- -d-'

Notes:

1. See The -FILE option.

Element Purpose Key considerations

-A Directs ontape to change the status of the specified
database to ANSI-compliant logging.

A database that has ANSI-compliant logging cannot be changed to a different logging
mode. A level-0 backup is required to make this logging mode change.

-B Directs ontape to change the status of the specified
database to buffered logging.

A level-0 backup is required to make this logging mode change.

-d Directs ontape to proceed without interactive
prompts.

You can turn off the prompts if you are backing up to or restoring from a directory of a
file system. This option does not apply to tape devices, which must pause the backup
while you change tapes.

database The name of the database to change the logging
mode.

The database name cannot include a database server name. More than one database
name can be specified in the same command.

-F Directs ontape to perform a fake backup. A fake backup is only applicable during a backup to standard output.
A fake backup is useful for cloning the data in a server. For example, to populate the
secondary server in a high-availability cluster.

To avoid compromising the normal backup activities, do not keep a record of a fake
backup

Alternatively, you can use the SQL administration API equivalent: ARCHIVE FAKE.
See IBM® Informix® Administrator's Reference for more information.

1690 Part VI: Administering

Element Purpose Key considerations

-L Directs ontape to create a backup of the level
specified.

If you are backing up to tape, use the -L option to specify the backup level as part of
the command, you can avoid being prompted for it.
If you are backing up to standard output, and do not specify a backup level, ontape
performs and level-0 backup.

-N Directs ontape to end logging for the specified
database.

A backup is optional with this logging mode change.

-s Directs ontape to create a backup. ontape prompts you to supply the backup level (0, 1, or 2) that you want to create if
you do not supply a value using the -L option.

-t Directs ontape to use a different tape device for the
current backup or restore.

The -t option overrides the value of the TAPEDEV configuration parameter for the
current backup or restore. The -t STDIO option directs ontape to back up to standard
output or restore from standard input.

tape_device The name of the tape device on which to store the
backup.

-U Directs ontape to change the status of the specified
database to unbuffered logging.

A level-0 backup is required to make this logging mode change.

-v Directs ontape to write informational message to
stderr during a backup to standard output.

Verbose mode is useful for monitoring the progress of a backup to standard output.

The ontape utility backs up the storage spaces in the following order: root dbspaces, blobspaces, sbspaces, and dbspaces.

Backup examples
 Back up raw tables

Related reference:

 Change database logging status

Backup examples

Execute the following command to start a backup to tape without specifying a level: ontape -s

You can use the -L option to specify the level of the backup as part of the command, as the following example shows: ontape -s -L 0

Use the -d option to avoid interactive prompts when you are backing up to or restoring from a directory: ontape -s -L 0 -d

When you do not specify the backup level on the command line, ontape prompts you to enter it. The following figure illustrates a simple ontape backup session.
Figure 1. Example of a simple backup created with ontape

ontape -s
Please enter the level of archive to be performed (0, 1, or 2) 0

Please mount tape 1 on /dev/rst0 and press Return to continue ...
16:23:13 Checkpoint Completed: duration was 2 seconds
16:23:13 Level 0 Archive started on rootdbs
16:23:30 Archive on rootdbs Completed.
16:23:31 Checkpoint Completed: duration was 0 seconds

Please label this tape as number 1 in the arc tape sequence.
This tape contains the following logical logs:

 3

Program over.

The following example shows how to create a level-0 archive of all storage spaces to standard output, which is diverted to a file named level_0_archive in the directory
/home:

ontape -s -L 0 >/home/level_0_archive -t STDIO

The following example assumes TAPEDEV STDIO in onconfig and creates a level-1 archive to standard output , which is diverted to a pipe:

ontape -v -s -L 1|compress -c >/home/compressed/level_1_archive

The compress system utility reads from the pipe as input, compresses the data, and writes the data to the file level_1_archive in the /home/compressed directory. The
ontape information messages are sent to stderr.

Back up raw tables

You can use ontape to back up a raw table, however, raw tables are not logged. Therefore, when you restore a raw table, any changes that occurred since the last backup
cannot be restored. It is recommended that you use raw tables only for initial loading of data and then alter raw tables to standard tables before performing transactions.
For more information, see the IBM® Informix® Administrator's Guide.

Back up to Amazon Simple Storage Service

Part VI: Administering 1691

You can use the ontape utility to back up and restore data to or from the Amazon Simple Storage Service (S3). You are responsible for terms and any charges associated
with your use of the Amazon Simple Storage Service.

Prerequisites:

You must have an Amazon account to perform cloud storage backups. See the Amazon website for instructions about setting up an account.
Java™ version 1.5 or later is required.
Backup objects must be 5 GB or smaller.

The following steps show how to back up data to the Amazon Simple Storage Service (S3) System and restore from it by using ontape backup and restore utility. In this
context, cloud storage refers to an online storage service over the Internet. If you choose to back up to cloud storage, you do not need to provide tapes. Instead, you back
up the data to a virtual device, most likely located on the Internet.

1. Configure the online storage device.
a. Using a web browser, navigate to the Amazon S3 website and log on.
b. Obtain an access key ID and a secret access key.
c. Store the access credentials in a file. Set the permissions on the file to allow access only to user executing the ontape utility.

On UNIX systems, store the values in the file: $INFORMIXDIR/etc/ifxbkpcloud.credentials
On Windows systems, store the values in: %INFORMIXDIR%\etc\ifxbkpcloud.credentials

The file must have the following format:

secretKey=secret_access_key
accessKey=access_key_ID

d. Use the ifxbkpcloud.jar utility to create and name a storage device in the region where you intend to store data. Amazon uses the term bucket to describe
the container for backup data. The storage device name you choose has the same restrictions as those for the bucket name in Amazon S3 and must be
unique.
For example, the following command creates a storage device named mytapedevice at a US Standard region on Amazon S3. Run the command from the
$INFORMIXDIR/bin directory on UNIX systems, or from %INFORMIXDIR%\bin on Windows systems.

java -jar ifxbkpcloud.jar CREATE_DEVICE amazon mytapedevice US_Standard

2. Set the TAPEDEV and LTAPEDEV configuration parameters in the onconfig file to point to the cloud storage location. For example:

TAPEDEV '/opt/IBM/informix/tapedev_dir, keep = yes, cloud = amazon,
 url = https://mytapedevice.s3.amazonaws.com'
LTAPEDEV '/opt/IBM/informix/ltapedev_dir, keep = yes, cloud = amazon,
 url = https://mylogdevice.s3.amazonaws.com'

3. Back up data to the online storage device by using the ontape utility.

ontape -s -L 0

You can restore data from the cloud storage by using the following command:

ontape -r

You should use https secure data transmission when transferring data to cloud storage. You should encrypt data before transferring data to a cloud image. To
encrypt data, use the BACKUP_FILTER and RESTORE_FILTER configuration parameters to call an external encryption program. The archecker utility does not
support table-level restore of data from cloud storage.

The ifxbkpcloud.jar utility
 Use the ifxbkpcloud.jar utility to configure an online storage device for the Amazon Simple Storage Service.

Cloud storage file naming conventions
 Files associated with cloud storage backups have unique file names.

Related reference:
 Tape and tape device parameters for ontape

Set the tape-device parameters
Cloud storage file naming conventions
The ifxbkpcloud.jar utility

The ifxbkpcloud.jar utility

Use the ifxbkpcloud.jar utility to configure an online storage device for the Amazon Simple Storage Service.

The following options are supported by the ifxbkpcloud.jar utility:

CREATE_DEVICE provider device [region]
DELETE_DEVICE provider device
LIST_DEVICES provider
DELETE_FILE provider device file
LIST_FILES provider device

The parameters for the ifxbkpcloud.jar commands are defined as follows:

provider is amazon.
device is the name of the storage device.
region is one of the following: US_Standard, US_West, EU_Ireland or AP_Singapore.
file is the name of backup object (key) stored on Amazon S3.

Error messages from ifxbkpcloud.jar are written to $INFORMIXDIR/ifxbkpcloud.log on UNIX machines and to %INFORMIXDIR%\ifxbkpcloud.log on Windows machines.

Related tasks:

1692 Part VI: Administering

Back up to Amazon Simple Storage Service

Cloud storage file naming conventions

Files associated with cloud storage backups have unique file names.

Data space backup files are saved by using the following format:

hostname_servernum_Larchive_level

Log backup file names are saved by using the following format:

hostname_servernum_lognnnnnnnnnn

If the object exists at the cloud storage location, the file is renamed to avoid overwriting old object. Renaming the file adds a timestamp to the object name.

Data space backup files are saved by using the following format:

hostname_servernum_YYYYMMDD_hhmmss_Larchive_level

Log backup file names are saved by using the following format:

hostname_servernum_lognnnnnnnnnn_YYYYMMDD_hhmmss

Related tasks:
 Back up to Amazon Simple Storage Service

When the logical-log files fill during a backup

When the logical log fills during a backup, the console displays a message and the backup suspends normal processing. How you handle the logical-log filling depends on
whether you can use one or two tape devices.

When you can use two tape devices
When you can use two tape devices with the database server, log in as the owner of the database server: user informix or root for a standard installation, or the owner of
the non-root installation.

Verify that LTAPEDEV and TAPEDEV specify different path names that correspond to separate tape devices. When they do, back up the logical-log files. See Create a
backup.

When LTAPEDEV and TAPEDEV are identical, assign a different value to the logical-log tape device (LTAPEDEV) and initiate a logical-log-file backup. Otherwise, your
options are to either leave normal database server processing suspended until the backup completes or cancel the backup.

When only one tape device is available
When you create a backup with the only available tape device, you cannot back up any logical-log files until you complete the backup. When the logical-log files fill during
the backup, normal database server processing halts. You can either stop the backup (by using Ctrl-C only) to free the tape device and back up the logical logs to continue
processing, or leave normal processing suspended until the backup completes.

You can take steps to prevent this situation. The section Start an automatic logical-log backup describes these steps.

When a backup terminates prematurely

When you cancel or interrupt a backup, sometimes the backup progresses to the point where you can consider it complete. When listed in the monitoring information, as
described in Monitor backup history by using oncheck, you know the backup completed.

Monitor backup history by using oncheck

You can monitor the history of your last full-system backup by using oncheck.

Execute the oncheck -pr command to display reserved-page information for the root dbspace. The last pair of reserved pages contains the following information for the
most recent backup:

Backup level (0, 1, or 2)
Effective date and time of the backup
Time stamp describing when the backup began (expressed as a decimal)
ID number of the logical log that was current when the backup began
Physical location in the logical log of the checkpoint record (that was written when the backup began)

The effective date and time of the backup equals the date and time of the checkpoint that this backup took as its starting point. This date and time could differ markedly
from the time when the backup process was started.

Part VI: Administering 1693

For example, when no one accessed the database server after Tuesday at 7 P.M., and you create a backup Wednesday morning, the effective date and time for that backup
is Tuesday night, the time of the last checkpoint. In other words, when there has been no activity after the last checkpoint, the database server does not perform another
checkpoint at the start of the backup.

Back up logical-log files with ontape

You must only use ontape to back up logical-log files when you use ontape to make your backup tapes.

In addition to backing up logical-log files, you can use ontape to switch to the next log file, move logical-log files to other dbspaces, or change the size of the logical log.
Instructions for those tasks appear in your IBM® Informix® Administrator's Guide.

Before you back up the logical-log files
 When to back up logical-log files

 Start an automatic logical-log backup
 Starting a continuous logical-log file backup

 When you do not want to monitor the logical-log files and start backups when the logical-log files become full, you can start a continuous backup.
End a continuous logical-log backup

 Devices that logical-log backups must use

Before you back up the logical-log files

Before you back up the logical-log files, you need to understand the following issues:

Whether you need to back up the logical-log files
When you need to back up the logical-log files
Whether you want to perform an automatic or continuous backup

For more information about these issues, see Logical-log backup.

Use blobspace TEXT and BYTE data types and logical-log files
 Use /dev/null when you do not need to recover

Use blobspace TEXT and BYTE data types and logical-log files

You must keep in mind the following two points when you use TEXT and BYTE data types in a database that uses transaction logging:

To ensure timely reuse of blobpages, back up logical-log files. When users delete TEXT or BYTE values in blobspaces, the blobpages do not become freed for reuse
until you free the log file that contains the delete records. To free the log file, you must back it up.
When you must back up an unavailable blobspace, ontape skips it and makes it impossible to recover the TEXT or BYTE values when it becomes necessary.
(However, blobpages from deleted TEXT or BYTE values do become free when the blobspace becomes available even though the TEXT or BYTE values were not
backed up.)

In addition, regardless of whether the database uses transaction logging, when you create a blobspace or add a chunk to a blobspace, the blobspace or new chunk is not
available for use until the logical-log file that records the event is not the current logical-log file. For information about switching logical-log files, see your IBM® Informix®
Administrator's Guide.

Use /dev/null when you do not need to recover

When you decide that you do not need to recover transactions or administrative database activities between backups, you can set the database server configuration
parameter LTAPEDEV to /dev/null.
Important: When you set LTAPEDEV to /dev/null, it has the following implications:

You can only restore the data that your database server manages up to the point of your most recent backup and any previously backed-up logical-log files.
When you perform a recovery, you must always perform a full-system restore. (See Full-system restore.) You cannot perform partial restores or restore when the
database server is online.

When you set LTAPEDEV to /dev/null, the database server marks a logical-log file as backed up (status B) as soon as it becomes full. The database server can then reuse
that logical-log file without waiting for you to back it up. As a result, the database server does not preserve any logical-log records.

Fast recovery and rolling back transactions are not impaired when you use /dev/null as your log-file backup device. For a description of fast recovery, see your IBM®
Informix® Administrator's Guide. For information about rolling back transactions, see the ROLLBACK WORK statement in the IBM Informix Guide to SQL: Syntax.

When to back up logical-log files

You must attempt to back up each logical-log file as soon as it fills. You can tell when you can back up a logical-log file because it has a used status. For more information
about monitoring the status of logical-log files, see your IBM® Informix® Administrator's Guide.

1694 Part VI: Administering

Start an automatic logical-log backup

The database server can operate online when you back up logical-log files. To back up all full logical-log files, use the -a option of the ontape command.

Request a logical-log backup

>>-ontape -a---><

The -a option backs up all full logical-log files and prompts you with an option to switch the logical-log files and back up the formerly current log.

When the tape mounted on LTAPEDEV becomes full before the end of the logical-log file, ontape prompts you to mount a new tape.

When you press the Interrupt key while a backup occurs, the database server finishes the backup and then returns control to you. Any other full logical-log files receive a
used status.

To back up all full logical-log files, execute the ontape -a command.

Starting a continuous logical-log file backup

When you do not want to monitor the logical-log files and start backups when the logical-log files become full, you can start a continuous backup.

When you start a continuous backup, the database server automatically backs up each logical-log file as it becomes full. When you perform continuous logical-log file
backups, the database server protects you against ever losing more than a partial logical-log file, even in the worst case media failure when a chunk that contains logical-
log files fails.

To start a continuous backup of the logical-log files, use the ontape -c command. The -c option initiates continuous backup of logical-log files. The database server backs
up each logical-log file as it becomes full. Continuous backup does not back up the current logical-log file. The database server can operate in online mode when you start
continuous backups.

Whether the logical-log files are backed up to tapes or a directory depends on the setting of the LTAPEDEV configuration parameter:

If the LTAPEDEV configuration parameter is set to a tape device, someone must always make media available for the backup process. When the specified mounted
tape becomes full before the end of the logical-log file, the database server prompts the operator for a new tape. Also, you must dedicate the backup device to the
backup process.
If the LTAPEDEV configuration parameter is set to a directory, logical-log files can be backed up unattended. Logical logs are backed up as they fill and a new file is
created in the directory for each logical log. Backup is limited by space available for new files.

To back up to a directory, as an alternative to using the ontape -c command, you can call the ontape -a -d automatic logical log backup command from a script specified
by the ALARMPROGRAM configuration parameter. You can use either the alarmprogram or script or the log_full script, both of which are found in the $INFORMIXDIR/etc
directory.

To use the alarmprogram script to back up logical logs to a directory:

1. Set the LTAPEDEV parameter to an existing directory. Make sure that this directory is owned by informix and group informix.
2. Edit the ALARMPROGRAM script ($INFORMIXDIR/etc/alarmprogram.sh on UNIX or Linux or %INFORMIXDIR%\etc\alarmprogram.bat on Windows), as follows:

a. Set the BACKUPLOGS parameter within the file to Y.
b. Change the backup program from onbar -b -l to ontape -a -d.

3. Restart the database server.

End a continuous logical-log backup

To end continuous logical-log backup, press the Interrupt key (CTRL-C).

When you press the Interrupt key while the database server backs up a logical-log file to a local device, all logs that were backed up before the interrupt are captured on
the tape and are marked as backed up by the database server.

When you press the Interrupt key while the database server waits for a logical-log file to fill (and thus is not backing up any logical-log files), all logs that were backed up
before the interrupt reside on the tape and are marked as backed up by the database server.

When you press the Interrupt key while the database server performs a continuous backup to a remote device, any logical-log files that were backed up during this
operation can or cannot reside on the tape, and are not marked as backed up by the database server (a good reason why you should not do continuous remote backups).

After you stop continuous logging, you must start a new tape for subsequent log backup operations.

You must explicitly request logical-log backups (by using ontape -a) until you restart continuous logging.

Devices that logical-log backups must use

The ontape utility uses parameters defined in the onconfig file to define the tape device for logical-log backups. However, consider the following issues when you choose a
logical-log backup device:

When the logical-log device differs from the backup device, you can plan your backups without considering the competing needs of the backup schedule.

Part VI: Administering 1695

When you specify /dev/null as the logical-log backup device in the configuration parameter LTAPEDEV, you avoid having to mount and maintain backup tapes.
However, you can only recover data up to the point of your most recent backup tape. You cannot restore work done after the backup. See the warning about setting
LTAPEDEV to /dev/null in Use /dev/null when you do not need to recover.
If the log backup device on any server node in a high-availability cluster is set to /dev/null (on Linux or UNIX) or NUL (on Windows), then the backup device for all of
the other servers within the cluster (including the primary server and any HDR, RSS or SDS secondary servers) must also be set to /dev/null (or NUL).

When your tape device runs slow, the logical log could fill up faster than you can copy it to tape. In this case, you could consider performing the backup to disk and
then copying the disk backup to tape.

Restore with ontape

These topics provide instructions for restoring data with the ontape utility for the following procedures:

A whole-system restore
A restore of selected dbspaces, blobspaces, and sbspaces

Before you start restoring data, you must understand the concepts in Restore systems. As explained in that section, a complete recovery of database server data generally
consists of a physical restore and a logical restore.

Types of physical restore
 Cold, warm, or mixed restores

 ontape utility syntax: Perform a restore
 Use the -r option to perform a full physical and logical restore of the database server data with ontape. Use the -D option to restore selected storage spaces. Use

the -rename option to rename chunks during the restore.
Restore the whole system

 This section outlines the prerequisites and steps you need to complete to restore your entire database server with ontape.
Configuring continuous log restore with ontape

 Rename chunks during a restore
 Restore from standard input

 You can perform a restore from standard input, you must first have performed a backup to standard output.
Restore data to a remote server

 You can restore data to a remote server with the ontape utility.
Simultaneous backup and restore by using standard I/O

Types of physical restore

If a failure causes the database server to go offline, you must restore all the database server data. This type of restore is a full-system restore. You can only restore data to
the same version of IBM® Informix®. When the failure did not cause the database server to go offline, you can restore only the storage spaces that failed. For illustrations
of the restore types, see Warm, cold, and mixed restores.

Full-system restore
 Restores of dbspaces, blobspaces, and sbspaces

Full-system restore

When your database server goes offline because of a disk failure or corrupted data, it means that a critical dbspace was damaged. The following list shows critical
dbspaces:

The root dbspace
The dbspace that contains the physical log
A dbspace that contains logical-log files

When you need to restore any critical dbspace, you must perform a full system restore to restore all the data that your database server manages. You must start a full-
system restore with a cold restore. See Cold, warm, or mixed restores.

Restores of dbspaces, blobspaces, and sbspaces

When your database server does not go offline because of a disk failure or corrupted data, the damage occurred to a noncritical dbspace, blobspace, or sbspace.

When you do not need to restore a critical dbspace, you can restore only those storage spaces that contain a damaged chunk or chunks. When a media failure occurs in
one chunk of a storage space that spans multiple chunks, all active transactions for that storage space must terminate before the database server can restore it. You can
start a restore operation before the database server finishes the transactions, but the restore becomes delayed until the database server verifies that you finished all
transactions that were active at the time of the failure.

Cold, warm, or mixed restores

When you restore the database server data, you must decide whether you can do it while the database server is offline or online. This decision depends in part on the data
that you intend to restore.

1696 Part VI: Administering

Cold restores
Warm restores
Mixed restores

Cold restores

Perform a cold restore while the database server is offline. It consists of both a physical restore and a logical restore. You must perform a cold restore to restore any critical
dbspaces.

The database server is offline when you begin a cold restore but it goes into recovery mode after it restores the reserved pages. From that point on it stays in recovery
mode until either a logical restore finishes (after which it works in quiescent mode) or you use the onmode utility to shift it to another mode.

You can rename chunks by specifying new chunks paths and offsets during a cold restore. This option is useful if you need to restore storage spaces to a different disk
from the one on which the backup was made. You can rename any type of chunk, including critical chunks and mirror chunks. For more information, see Rename chunks
during a restore. You can also rename chunks for an external cold restore; see Rename chunks for more information.

A cold restore can be performed after a dbspace has been renamed and a level-0 backup or a backup of the rootdbs and renamed dbspace is performed.

Warm restores

A warm restore restores noncritical storage spaces while the database server is in online or quiescent mode. It consists of one or more physical restore operations (when
you restore multiple storage spaces concurrently), a logical-log backup, and a logical restore.

During a warm restore, the database server replays backed-up logical-log files for the storage spaces that you restore. To avoid overwriting the current logical log, the
database server writes the logical-log files that you designate for replay to temporary space. Therefore, a warm restore requires enough temporary space to hold the
logical log or the number of log files being replayed, whichever is smaller. For information about how the database server looks for temporary space, see the discussion of
DBSPACETEMP in the IBM® Informix® Administrator's Guide.

Important: Make sure that enough temporary space exists for the logical-log portion of the warm restore; the maximum amount of temporary space that the database
server needs equals the size of all the logical-log files.
A warm restore can be performed after a dbspace has been renamed and a level-0 archive of the rootdbs and renamed dbspace is taken.

Mixed restores

A mixed restore is a cold restore followed by a warm restore. A mixed restore restores some storage spaces during a cold restore (the database server is offline) and some
storage spaces during a warm restore (the database server is online). You could do a mixed restore when you perform a full-system restore, but you need to provide
access to a particular table or set of tables as soon as possible. In this case, perform a cold restore to restore the critical dbspaces and the dbspaces that contain the
important tables.

A cold restore takes less total time to restore all your data than a mixed restore, even though the database server is online during part of a mixed restore because a mixed
restore requires two logical restores (one for the cold restore and one for the warm restore). A mixed restore, however, requires the database server to go offline for less
time than a cold restore.

The dbspaces not restored during the cold restore do not become available until after the database server restores them during a warm restore, even though a critical
dbspace possibly did not damage them.

ontape utility syntax: Perform a restore

Use the -r option to perform a full physical and logical restore of the database server data with ontape. Use the -D option to restore selected storage spaces. Use the -
rename option to rename chunks during the restore.

You must run the ontape command as the owner of the database server: user informix or root for a standard installation, or the owner of the non-root installation. The
owner of the database server for the restore must be the same as the owner of the database server for the backup.

Run a full or physical restore

>>-ontape--+------------------------+--+- -r----------+--------->
 | (1) | '- -p--+-----+-'
 '-| -FILE option |-----' '- -e-'

>--+-----------+---------+----------------------+--------------->
 +- -encrypt-+ '- -pw-+------------+--'
 '- -decrypt-' '--filename--'

>--+--+-->
 | .--. |
 | V | |
 '- -rename--+--- -p--old_path-- -o--old_offset-- -n--new_path-- -o--new_offset-+-+-'
 '- -f--filename--'

>--+------------------+--+--------------------+----------------><
 | .---------. | '- -t STDIO--+-----+-'
 | V | | '- -v-'
 '- -D----dbspace-+-'

Part VI: Administering 1697

Run a logical restore

>>-ontape--+- -l--+- -C-+-+------------------------------------><
 | '- -X-' |
 '- -S----------'

Element Purpose Key considerations

-C Restores logs from the current logical log tape
without sending prompts to mount the tape.

The server is placed in suspend log restore state, and the command exits after the
last applicable log is restored. The server sends a prompt if a log spans tapes.

-D Directs ontape to restore only the storage spaces
you specify.

The database server must go into online or quiescent mode to do a warm restore.
When you use the -D option, you can restore selected storage spaces.
When you do not specify the -D option, ontape performs a full-system restore. The
database server must go offline to do a full-system restore. For more information,
see Restore selected storage spaces.

dbspace Is the name of a storage space to restore. You can specify multiple storage spaces, but you must include the root dbspace.

-decrypt Specifies to decrypt any encrypted storage spaces
during the physical restore of the spaces.

For more information about storage space encryption, see Changing storage space
encryption during a restore.

-e Directs ontape to perform an external restore For more information, see Perform an external backup and restore.
This option is compatible with renaming chunks for external cold restores.

-encrypt Specifies to encrypt storage spaces during the
physical restore of the spaces.

Storage space encryption must be enabled by the DISK_ENCRYPTION configuration
parameter. Otherwise, storage spaces are not encrypted during the restore.
For more information about storage space encryption, see Changing storage space
encryption during a restore.

-f filename Specifies a file containing the names and offsets of
chunks to be renamed and their new locations. Use
to rename many chunks at one time.

The file name can be any valid UNIX or Windows file name, including simple
(listfile_1), relative (../backup_lists/listfile_2 or ..\backup_lists\listfile2), and absolute
(/usr/informix/backup_lists/listfile3 or c:\informix\backup_lists\listfile3) file names.
In the file, list the old chunk path name and offset and the new chunk path name and
offset, with a blank space or a tab between each item. Put information for each
chunk on a separate line. Blank lines are ignored. Begin comment lines with a #
symbol.

-l Directs ontape to perform a logical restore. The -l option restores data from the logical-log backup tapes you created after (and
including) your last level-0 backup.

-p Directs ontape to perform a physical data restore. The -p option restores data from the backup tape you created after (and including)
your last level-0 backup. During the restore, the database server is in single-user
mode.

-p old_path

-o old_offset-n new_path

-o new_offset

Specifies the chunk to be renamed and its new
location. Use to rename one or more chunks at one
time.

The variables for this element are:

old_path
The current path and file name of the chunk.

old_offset
The current offset of the chunk, in kilobytes.

new_path
The new path and file name of the chunk.

new_offset
The new offset of the chunk.

-r Directs ontape to perform a data restore (both
physical and logical).

The -r option restores data from the backup tape and the logical-log backup tapes
you created after (and including) your last level-0 backup.

-rename Directs ontape to rename the specified chunks. For more information about renaming chunks during a restore, see Rename chunks
during a restore.

-S Directs ontape to perform a logical log salvage. If you want to salvage logical logs, you must use the -S option before performing a
restore from standard input. The LTAPEDEV configuration parameter must be set to
the logical log tape device.

-t STDIO Directs ontape to restore from standard input. The -t option overrides the value of the TAPEDEV configuration parameter for the
current restore.

-v Directs ontape to write informational message to
stderr during a restore from standard input.

Verbose mode is useful for monitoring the progress of a restore from standard input.

-X Quiesces a server in logical restore suspend state
without restoring additional logs.

Include this option with -r -l to end continuous log restore of logical logs.

Note: The -pw option is required only when the Storage space encryption feature is enabled and no stash file is in use. Supply an optional path to a file containing the
keystore password, otherwise ontape will prompt for a password before performing the restore.

Restore the whole system

This section outlines the prerequisites and steps you need to complete to restore your entire database server with ontape.

The following list summarizes the main steps in a full-system restore:

1. Gather the appropriate backup and logical log tapes.

1698 Part VI: Administering

2. Decide on a complete cold or a mixed restore.
3. Verify your database server configuration.
4. Perform a cold restore.

Familiarize yourself with these instructions before you attempt a full-system restore.

Gather backup and logical-log tapes before restoring
 Before you restore an entire database system, you must gather backup and logical log tapes. If you changed the names of backup and logical log files, you must

also manually rename the files to their original file names.
Decide on a complete cold or a mixed restore

 Verify your database server configuration
Perform a cold restore

 To perform a cold restore with ontape, the database server must be offline.
Restore selected storage spaces

 Restore raw tables

Gather backup and logical-log tapes before restoring

Before you restore an entire database system, you must gather backup and logical log tapes. If you changed the names of backup and logical log files, you must also
manually rename the files to their original file names.

Backup tapes
Gather all the tapes from your latest level-0 backup that contain the storage spaces you are restoring and any subsequent level-1 or level-2 backups.
Identify the tape that has the latest level-0 backup of the root dbspace on it; you must use this tape first.

Logical-log tapes
If at the time of the archive checkpoint, an open transaction started, gather all logical-log tapes before you perform the level-0 backup.
Gather all the logical-log tapes from the backup after the latest level-0 backup of the storage spaces you are restoring.

When using ontape to create an archive backup of the system, a snapshot of the logical logs is included with the archive. At the end of the archive, the system displays a
message that indicates what logical logs are included in the archive. The snapshot is included in the archive so that if any open transactions exist at the time of the backup,
those transactions can be reconciled when the archive is restored. Then:

If you decide not to replay any logical logs, the system can be brought to a consistent state.
If you decide to replay logical logs, the logs contained within the archive backup are discarded and you must replay transactions from the logical log backups.
The starting log file is the oldest log file containing an open transaction at the time of the last restored archive. You can identify that log file from the message that
was displayed when the last archive was restored.

Example:

The ontape -s -L 0 command performs a level-0 backup of the system and displays a message that states that the archive contains logs 2-4.
The ontape -s -L 1 command performs a level 1 incremental backup of the system and displays a message that states that the archive contains logs 8-9.

If you restore only the level-0 archive and want to replay logs, you need log backups starting with log 2. If you restore the level-0 and level-1 archives and want to replay
logs, you need log backups starting with log 8.
The restore of the logical log files uses an archive format, not a log file format. However, the logs contained within the restored archive are in log file format, not an archive
format.

File names when restoring from directory
When restoring from a file system directory, ontape requires that storage-space archive and logical-log backup files be named as specified by the TAPEDEV and LTAPEDEV
configuration parameters. If files were renamed, including by ontape because of repeated archives and backups, you must manually rename the files to their original file
names. To learn about the naming conventions for storage-space archive files and logical-log backup files, see Back up to a directory for the naming conventions of these
files.

Decide on a complete cold or a mixed restore

As mentioned in Cold, warm, or mixed restores, when you restore your entire database server, you can restore the critical dbspaces (and any other storage spaces you
want to come online quickly) during a cold restore, and then restore the remaining storage spaces during a warm restore. Decide before you start the restore if you want a
cold restore or a mixed restore.

Verify your database server configuration

During a cold restore, you cannot set up shared memory, add chunks, or change tape devices. Thus, when you begin the restore, the current database server configuration
must remain compatible with, and accommodate, all parameter values assigned after the time of the most recent backup.

For guidance, use the copies of the configuration file that you create at the time of each backup. However, do not set all current parameters to the same values as were
recorded at the last backup. Pay attention to the following three groups of parameters:

Shared-memory parameters
Mirroring parameters
Device parameters

Set shared-memory parameters to maximum assigned value

Part VI: Administering 1699

Set mirroring configuration to level-0 backup state
Verify that the raw devices or files are available

Set shared-memory parameters to maximum assigned value

Make sure that you set your current shared-memory parameters to the maximum value assigned after the level-0 backup. For example, if you decrease the value of
USERTHREADS from 45 to 30 sometime after the level-0 backup, you must begin the restore with USERTHREADS set at 45, and not at 30, even though the configuration
file copy for the last backup could register the value of USERTHREADS set at 30. (When you do not possess a record of the maximum value of USERTHREADS after the
level-0 backup, set the value as high as you think necessary. You could reassign values to BUFFERPOOL, LOCKS, and TBLSPACES as well because the minimum values for
these three parameters are based on the value of USERTHREADS.)

Set mirroring configuration to level-0 backup state

Verify that your current mirroring configuration matches the configuration that was in effect at the time of the last level-0 backup. Because it is recommended that you
create a level-0 backup after each change in your mirroring configuration, this creates no problems. The most critical parameters are the mirroring parameters that appear
in the configuration file, MIRRORPATH and MIRROROFFSET.

Verify that the raw devices or files are available

Verify that the raw devices or files that you used for storage (of the storage spaces being restored) after the level-0 backup are available.

For example, if you drop a dbspace or mirroring for a dbspace after your level-0 backup, you must make the dbspace or mirror chunk device available to the database
server when you begin the restore. When the database server attempts to write to the chunk and cannot find it, the restore does not complete. Similarly, if you add a chunk
after your last backup, you must make the chunk device available to the database server when it begins to roll forward the logical logs.

Perform a cold restore

To perform a cold restore with ontape, the database server must be offline.

You must run the ontape command as the owner of the database server: user informix or root for a standard installation, or the owner of the non-root installation. The
owner of the database server for the restore must be the same as the owner of the database server for the backup.

Run the following ontape command to restore all the storage spaces: ontape -r

When you perform a mixed restore, you restore only some of the storage spaces during the cold restore. You must restore at least all the critical dbspaces, as the following
example shows:

ontape -r -D rootdbs llogdbs plogdbs

Salvage logical-log files
 Mount tapes during the restore

 Restore logical log files
 Bring the database server online when the restore is over

Salvage logical-log files

Before the cold restore starts, the console prompts you to salvage the logical-log files on disk. To salvage the logical-log files, use a new tape. It saves log records that you
did not back up and enables you to recover your database server data up to the point of the failure.

The following example shows a log salvage:

...
Continue restore? (y/n) y
Do you want to back up the logs? (y/n) y

Please mount tape 1 on /dev/ltapedev and press Return to continue.
Would you like to back up any of logs 31 - 32? (y/n) y
Logical logs 31 - 32 may be backed up.
Enter the id of the oldest log that you would like to backup? 31

Please label this tape as number 1 in the log tape sequence.

This tape contains the following logical logs:
 31-32
Log salvage is complete, continuing restore of archive.
Restore a level 1 archive (y/N) y
Ready for level 1 tape
...

1700 Part VI: Administering

Mount tapes during the restore

During the cold restore, ontape prompts you to mount tapes with the appropriate backup files.

When restoring from a directory, the prompt specifies the absolute path name of the directory. Before responding to the prompt, you can copy or rename the file in the
directory.

You can avoid the prompt by using the ontape -d option. When using this option, ensure that storage-space archive and logical-log backup files exist in the directory, as
specified by the TAPEDEV and LTAPEDEV parameters. The ontape utility scans the directories for the files and uses them for the restore. After restoring the newest
applicable logical-log backup file, ontape automatically commits the restore and brings the IBM® Informix® instance into quiescent mode.

Restore logical log files

When you perform a mixed restore, you must restore all the logical-log files backed up after the last level-0 backup.

When you perform a full restore, you can choose not to restore logical-log files. When you do not back up your logical-log files or choose not to restore them, you can
restore your data only up to the state it was in at the time of your last backup. For more information, see Back up logical-log files with ontape.

To restore the logical logs, use the ontape -l command.

Bring the database server online when the restore is over

At the end of the cold restore, the database server is in quiescent mode. You can bring the database server online and continue processing as usual.

When you restore only some of your storage spaces during the cold restore, you can start a warm restore of the remaining storage spaces after you bring the database
server online.

Restore selected storage spaces

These topics outline the steps that you must perform during a restore of selected storage spaces with ontape while the database server is in online or quiescent mode (a
warm restore). During a warm restore, you do not need to worry about shared-memory parameters as you do for cold restores.

Before you attempt a restore, familiarize yourself with these instructions.

The following list describes the main steps in a warm restore:

1. Gather the appropriate tapes
 2. Ensure that needed device are available

 3. Back up logical-log files
 4. Perform a warm restore
 To perform a warm restore with ontape, the database server must operate in online or quiescent mode.

Gather the appropriate tapes

Gather the appropriate backup and logical-log tapes.

Backup tapes
Before you start your restore, gather together all the tapes from your latest level-0 backup that contain the storage spaces you are restoring and any subsequent level-1 or
level-2 backups.

Logical-log tapes
Gather together all the logical-log tapes from the logical-log backup after the latest level-0 backup of the storage spaces you are restoring.

Next topic: Ensure that needed device are available

Ensure that needed device are available

Verify that storage devices and files are available before you begin a restore. For example, when you drop a dbspace or mirroring for a dbspace after your level-0 backup,
you must ensure that the dbspace or mirror chunk device is available to the database server when you begin the restore. If the storage device is not available, the
database server cannot write to the chunk and the restore fails.

When you add a chunk after your last backup, you must ensure that the chunk device is available to the database server when it rolls forward the logical logs.

Previous topic: Gather the appropriate tapes

Part VI: Administering 1701

Next topic: Back up logical-log files

Back up logical-log files

Before you start a warm restore (even when you perform the warm restore as part of a mixed restore), you must back up your logical-log files. See Back up logical-log files
with ontape.

After the warm restore, you must roll forward your logical-log files to bring the dbspaces that you are restoring to a state of consistency with the other dbspaces in the
system. Failure to roll forward the logical log after restoring a selected dbspace results in the following message from ontape:

Partial system restore is incomplete.

Previous topic: Ensure that needed device are available
Next topic: Perform a warm restore

Perform a warm restore

To perform a warm restore with ontape, the database server must operate in online or quiescent mode.

You must run the ontape command as the owner of the database server: user informix or root for a standard installation, or the owner of the non-root installation. The
owner of the database server for the restore must be the same as the owner of the database server for the backup.

To restore selected storage spaces, run the ontape command, with the options that the following example shows:

ontape -r -D dbspace1 dbspace2

You cannot restore critical dbspaces during a warm restore; you must restore them as part of a cold restore, described in Restore the whole system.

During the restore, ontape prompts you to mount tapes with the appropriate backup files.

At the end of the warm restore, the storage spaces that were down go online.

Previous topic: Back up logical-log files

Restore raw tables

When you use ontape to restore a raw table, it contains only data that existed on disk at the time of the backup. Because raw tables are not logged, any changes that
occurred since the last backup cannot be restored. For more information, see Back up raw tables and the IBM® Informix® Administrator's Guide.

Configuring continuous log restore with ontape

Ensure that the version of IBM® Informix® is identical on both the primary and secondary systems.
Use continuous log restore to restart a log restore with newly available logs after all currently available logs have been restored. For more information, see Continuous log
restore.

To configure continuous log restore with ontape:

1. On the primary system, perform a level-0 archive with the ontape -s -L 0 command.
2. On the secondary system, copy the files or mount the tape (as assigned by LTAPEDEV) and perform a physical restore with the ontape -p command.
3. Respond to the following prompts:

Continue restore? Y
Do you want to back up the logs? N
Restore a level 1 archive? N

After the physical restore completes, the database instance waits in fast recovery mode to restore logical logs.

4. On the primary system, back up logical logs with the ontape -a command.
5. On the secondary system, copy the files or mount the tape that contains the backed up logical logs from the primary system. Perform a logical log restore with the

ontape -l -C command.
6. Repeat steps 4 and 5 for all logical logs that are available to back up and restore.
7. If you are doing continuous log restore on a secondary system as an emergency standby, run the following commands to complete restoring logical logs and

quiesce the server
If logical logs are available to restore, use the ontape -l command.
After all available logical logs are restored, use the ontape -l -X command.

Related concepts:
 Continuous log restore

Rename chunks during a restore

1702 Part VI: Administering

You can rename chunks during a cold restore with ontape. This option is useful if you need to restore storage spaces to a different disk from the one on which the backup
was made. You can rename any type of chunk, including critical chunks and mirror chunks.

The ontape rename chunk restore only works for cold restores.

The critical dbspaces (for example, the rootdbs) must be restored during a cold restore. If you do not specify the list of dbspaces to be restored, then the server restores
the critical dbspaces and all the other dbspaces. But if you specify the list of dbspaces to be restored, then the critical dbspaces must be included in the list.

For the syntax of renaming chunks with ontape, see ontape utility syntax: Perform a restore.

Tip: If you use symbolic links to chunk names, you might not need to rename chunks; you need only edit the symbolic name definitions. For more information, see the
IBM® Informix® Administrator's Guide.
You can rename chunks during an external cold restore. See Rename chunks for more information.

Validation sequence for renaming chunks
 New chunk requirements

 Rename chunks with command-line options
 Rename chunks with a file

 Rename chunks while specifying other options
 Rename a chunk to a nonexistent device

Validation sequence for renaming chunks

During a cold restore, ontape performs the following validations to rename chunks:

It validates that the old chunk path names and offsets exist in the archive reserved pages.
It validates that the new chunk path names and offsets do not overlap each other or existing chunks.
If renaming the primary root or mirror root chunk, it updates the onconfig file parameters ROOTPATH and ROOTOFFSET, or MIRRORPATH, and MIRROROFFSET. The
old version of the onconfig file is saved as $ONCONFIG.localtime.
It restores the data from the old chunks to the new chunks (if the new chunks exist).
It writes the rename information for each chunk to the online log.

If either of the validation steps fails, the renaming process stops and ontape writes an error message to the ontape activity log.
Important:

Perform a level-0 archive after you rename chunks; otherwise your next restore fails.
If you add a chunk after performing a level-0 archive, that chunk cannot be renamed during a restore. Also, you cannot safely specify that chunk as a new path in
the mapping list.
Renaming chunks for database servers participating in HDR involves a significant amount of offline time for both database servers. For more information, see the
IBM® Informix® Administrator's Guide.

New chunk requirements

To rename a chunk, follow these guidelines for new chunks:

The new chunk does not need to exist
You can install the new chunk later and perform a warm restore of a storage space containing it. If you specify a nonexistent chunk, ontape records the rename
information in the chunk reserved pages, but does not restore the data. The renamed (but not restored) chunks have a status of offline, designated by D, in the
onstat -d chunk status command output.

New chunks must have the proper permissions.
Rename operations fail unless the chunks have the proper permissions. For more information, see the IBM® Informix® Administrator's Guide.

Rename chunks with command-line options

To rename the chunks by supplying information about the command line, use this command:

ontape -r -rename -p /chunk1 -o 0 -n /chunk1N -o 20000
 -rename -p /chunk2 -o 10000 -n /chunk2N -o 0

Perform a level-0 archive after the rename and restore operation is complete.

Rename chunks with a file

To rename the chunks by supplying a file named listfile, use the following command: ontape -r -rename -f listfile

The contents of the listfile file are:

/chunk1 0 /chunk1N 20000
/chunk2 10000 /chunk2N 0

Perform a level-0 archive after the rename and restore operation is complete.

Part VI: Administering 1703

Rename chunks while specifying other options

To rename the chunks with command-line options while performing a restore of dbspace1 and dbspace2 where the rootdbs is the rootdbs, use the following command:

ontape -r -rename -p /chunk1 -o 0 -n /chunk1N -o 20000
 -rename -p /chunk2 -o 10000 -n /chunk2N -o 0
 -D rootdbs dbspace1 dbspace2

Alternatively, to rename the chunks by using file while performing a restore of dbspace1 and dbspace2, use the following command:

ontape -r -rename -f listfile -D rootdbs dbspace1 dbspace2

Perform a level-0 archive after the rename and restore operation is complete.

Rename a chunk to a nonexistent device

To rename a chunk to a device that does not yet exist, you specify the new path name, but you do not restore its storage spaces until after you install the physical device.
This option is useful if you need to rename a chunk and it is convenient to perform a cold restore before you install the new device. When the new chunk device is ready,
you can perform a warm restore of a storage space onto it.

You can combine renaming chunks with existing devices and renaming chunks with nonexistent devices in the same rename operation. This example shows how to
rename a single chunk to a nonexistent device name.

The following table lists example values for the chunks used in this example.

Storage space Old chunk path Old offset New chunk path New offset

sbspace1 /chunk3 0 /chunk3N 0

Renaming a chunk to a nonexistent device

Renaming a chunk to a nonexistent device

To rename a chunk to a nonexistent device:

1. Rename the chunk: using the following command: ontape -r -rename -p /chunk3 -o 0 -n /chunk3N -o 0
2. When the following prompt appears, enter y to continue:

The chunk /chunk3N does not exist. If you continue, the restore
may fail later for the dbspace which contains this chunk.
Continue without creating this chunk? (y/n)

The chunk /chunk3 is renamed to /chunk3N, but the data has not yet been restored to /chunk3N.

3. Perform a level-0 archive.
4. Add the physical device for /chunk3N.
5. Perform a warm restore of sbspace1 with the ontape -r -D sbspace1 command.
6. Perform a level-0 archive.

Restore from standard input

You can perform a restore from standard input, you must first have performed a backup to standard output.

When you perform a restore from standard input, ontape does not prompt you for options or information. If ontape cannot perform the operation with the information you
provided in the restore command, ontape exits with an appropriate error. Restoring from standard input differs from restoring from tapes in the following ways:

No logical restore or logical log salvage occurs.
To perform a logical restore, use the ontape -l command after the physical restore.

To salvage logical logs, use the ontape -S command before the physical restore.

You are not prompted to confirm the restore. Informational messages about the archive are sent to stderr.
If you detect a problem, you can interrupt the restore during the 10 second delay between the completion of the archive information and starting the database
server.

Examples
In the following example, ontape performs a physical restore from the file level_0_archive, which contains the archive previously performed to standard output:

cat /home/level_0_archive | ontape -p

In the following example, ontape performs a restore of a level-0 archive, followed by a restore of a level-1 archive:

cat /home/level_0_archive /home/level_1_archive | ontape -r

In the following example, ontape performs a restore of sbspace1:

1704 Part VI: Administering

cat/home/level_0_archive | ontape -r -D spspace1 -t STDIO

When these restores are completed, the database server is left in single-user mode.

Related reference:
 Back up to standard output

Restore data to a remote server

You can restore data to a remote server with the ontape utility.

The remote server must have the following characteristics:

Identical hardware and operating systems
Identical database server versions and editions
The same configuration and ROOTPATH information, although the server names and numbers can differ.

You can restore data to a remote server with the following command:

ontape -s -L 0 -F | rsh remote_server "ontape -p"

However, the process might hang after completing successfully. You have three primary options:

Terminate the remote shell process
Execute the remote shell from the remote server with the following command:

rsh local_server "ontape -s -L 0 -F" | ontape -p

Redirect the standard output (stdout) and standard error (stderr) on the remote server with the following command from the sh or bash shell:

ontape -p >/dev/null 2>&1

You can simplify this redirection by placing it in a shell script, ontape.sh, on the remote server. You can issue the following command from the local server:

ontape -s -L 0 -F | rsh remote_server /my/path/ontape.sh

The shell script ontape.sh contains the following text:

#!/bin/sh
#define some environment variables, such as

INFORMIXDIR=/... ; export INFORMIXDIR
INFORMIXSQLHOSTS=/...; export
INFORMIXSQLHOSTS ONCONFIG=/...; export ONCONFIG
INFORMIXSERVER=/...; export INFORMIXSERVER
PATH=/...; export PATH
invoke ontape with stdout/stderr redirection

ontape -p >/dev/null 2>&1

Simultaneous backup and restore by using standard I/O

To clone a database server or quickly set up High-Availability Data Replication (HDR), you can perform a simultaneous backup to standard output and restore from
standard input. If you perform the backup and restore solely to duplicate a database server, use the -F option to prevent the archive from being saved.

On HDR, the secondary server can restore only level-0 archives.

To use standard I/O to perform the backup and restore, set the TAPEDEV configuration parameter to STDIO, or you can specify -t STDIO from the command line.

For example, if the TAPEDEV configuration parameter is set to STDIO, the following command loads data into the secondary server on an HDR pair (named
secondary_host).

ontape -s -L 0 -F | rsh secondary_host "ontape -p"

In the next example, assume that the TAPEDEV configuration parameter is not set. The following command loads data into the secondary server of an HDR pair (named
secondary_host):

ontape -s -L 0 -F -t STDIO | rsh secondary_host "ontape -t STDIO -p"

The examples perform a fake level-0 archive of the database server on the local computer, pipe the data to the remote computer by using the rsh system utility, and
perform a physical restore on the remote computer by reading the data directly from the pipe.
Important: The previous examples require that the INFORMIXDIR, INFORMIXSERVER, INFORMIXSQLHOSTS, and ONCONFIG environment variables be set in the default
environment for the user on the remote computer on which the command is executed. The user must be informix or root.

Perform an external backup and restore

These topics discuss performing an external backup and recovering data by restoring it with the ontape utility.

Recover data by using an external backup and restore
 You can perform an external backup and restore, which eliminates the downtime of systems because the backup and restore operations are performed external to

Part VI: Administering 1705

the IBM® Informix® system.
Data that is backed up in an external backup
Prepare for an external backup
Data that is restored in an external restore

Recover data by using an external backup and restore

You can perform an external backup and restore, which eliminates the downtime of systems because the backup and restore operations are performed external to the
IBM® Informix® system.

The ontape utility does not move the data during the backup or physical restore. An external backup allows you to copy disks that contain storage-space chunks without
using ontape. When disks fail, replace them and use vendor software to restore the data, then use ontape for the logical restore. For more information, see Data that is
restored in an external restore.

The following are typical scenarios for external backup and restore:

Availability with disk mirroring
If you use hardware disk mirroring, you can get your system online faster with external backup and restore than with conventional ontape commands.

Cloning
You can use external backup and restore to clone an existing production system for testing or migration without disturbing the production system.

Data that is backed up in an external backup

Before you begin an external backup, block the database server. Blocking forces a checkpoint, flushes buffers to disk, and blocks user transactions that involve temporary
tables. During the blocking operation, users can access that database server in read-only mode. Then you can physically back up or copy the data to another set of disks or
storage media by using operating-system or third-party tools. When you complete the external backup, unblock the database server so that transactions can resume. You
should include all the chunk files in each storage space and administrative files, such as onconfig, in an external backup.
Important: To make tracking backups easier, it is recommended that you back up all storage spaces in each external backup.
The ontape utility treats an external backup as equivalent to a level-0 backup. You cannot perform an external backup and then use ontape to perform a level-1 backup,
or vice versa because ontape does not have any record of the external backup. For more information, see Performing a cold external restore.

Rules for an external backup
 Performing an external backup

Rules for an external backup

Before you begin an external backup, keep in mind the following rules:

The database server must be online or quiescent during an external backup.
Use ontape to back up all logical logs including the current log so that you can restore the logical logs at the end of the external restore.
Suspend continuous logical-log backups before you block the database server for an external backup. After the external backup is complete, resume the continuous
logical-log backup.
Wait until all ontape backup sessions have completed before you block the database server. If any backup sessions are active, the block command displays an error
message.
Any OLTP work or queries are suspended while the database server is blocked. They resume after the database server is unblocked.
All critical dbspaces of the database server instance must be backed up together simultaneously within the same command bracket of onmode -c block … onmode
-c unblock. Backups of different critical dbspaces done at different times cannot be restored to a consistent system.

Important: Because the external backup is outside the control of ontape, you must track these backups manually. For more information, see Track an external backup.

Performing an external backup

The database server must be online or in quiescent mode during an external backup.

To perform an external backup without disk mirroring:

1. To obtain an external backup, block the database server with the onmode -c block command. The system takes a checkpoint and suspends all update transactions.
Users can access the database server in read-only mode.

2. To back up the storage spaces and administrative files, use a copy command, such as cp, dd, or tar on UNIX or copy on Windows, or a file-backup program.
You must back up all chunks in the storage spaces.

3. To allow normal operations to resume, unblock the database server with the onmode -c unblock command.
4. Back up all the logical logs including the current log so that checkpoint information is available for the external restore.

Important: Because external backup is not done through ontape, you must ensure that you have a backup of the current logical log from the time when you execute
the onmode -c block command. Without a backup of this logical-log file, the external backup is not restorable.

5. After you perform an external backup, back up the current log. using the ontape -a command.

If you lose a disk or the whole system, you are now ready to perform an external restore.

1706 Part VI: Administering

Prepare for an external backup

These topics describe the commands used to prepare for an external backup. For the procedure, see Performing an external backup.

Block and unblock the database server
 This section shows the syntax of the block and unblock commands.

Track an external backup

Block and unblock the database server

This section shows the syntax of the block and unblock commands.

>>-onmode-- -c--+---------+------------------------------------><
 +-block---+
 '-unblock-'

Element Purpose Key considerations

-c Performs a checkpoint and blocks or unblocks the database server None.

block Blocks the database server from any transactions Sets up the database server for an external backup. While the database
server is blocked, users can access it in read-only mode. Sample command:
onmode -c block

unblock Unblocks the database server, allowing data transactions and
normal database server operations to resume

Do not unblock until the external backup is finished. Sample command:
onmode -c unblock

Track an external backup

The database server and ontape do not track external backups. To track the external backup data, use a third-party storage manager or track the data manually. The
following table shows the items we recommend that you track in an external backup.

Table 1. Items to track when you use external backup and restore
Items to track Examples

Full path names of each chunk file for each backed up storage space UNIX: /work/dbspaces/rootdbs
Windows: c:\work\dbspaces\rootdbs

Object type Critical dbspaces, noncritical storage spaces

ins_copyid_hi and ins_copyid_lo Copy ID that the storage manager assigns to each backup object

Backup date and time The times that the database server was blocked and unblocked

Backup media Tape volume number or disk path name

Database server version Version 14.10

Data that is restored in an external restore

If you lose a disk or the whole system, you can externally restore data only if it was externally backed up. You must use the same third-party utility for both the external
backup and restore. To externally restore the storage spaces, copy the backed up data to disk. Use the ontape -p -e command to mark the storage spaces as physically
restored, replay the logical logs with the ontape -l command, and bring the storage spaces back online. If you do not specify an external restore command, the database
server cannot update the status of these storage spaces to online.

You can only perform a cold external restore with ontape. A cold external restore marks storage spaces as physically restored, then performs a logical restore of all
storage spaces.

When you perform a cold external restore, ontape does not first attempt to salvage logical-log files from the database server because the external backup has already
copied over the logical-log data.

To salvage logical logs, perform ontape -S before you copy the external backup and perform the external restore (ontape -p -e).

Use external restore commands
 Rules for an external restore

 Before you begin an external restore, know what you can and cannot restore from an external backup and be aware of the rules for an external restore.
Rename chunks

 You can rename chunks in an external cold restore by using the rename options syntax for other restores.
Performing a cold external restore

 Initializing HDR with an external backup and restore

Part VI: Administering 1707

Use external restore commands

Use the ontape -p -e command to perform a cold external restore. This command marks the storage spaces as physically restored. The following diagram shows the
external physical restore syntax.

Perform an external physical restore

>>- -p-- -e--><

Element Purpose Key considerations

-e Specifies an external restore Must be used with the -p option.

-p Specifies a physical restore In a cold restore, if you do not specify storage space names, all of them are marked as
restored. After the physical restore completes, you must perform a logical restore.

Use the ontape -l command to perform a logical restore. For more information, see ontape utility syntax: Perform a restore.

Rules for an external restore

Before you begin an external restore, know what you can and cannot restore from an external backup and be aware of the rules for an external restore.

These requirements and rules are:

You must externally restore from an external backup. Although the external backup is treated as a level-0 backup, it might actually be an incremental backup that
was created by another source than Informix®.
You cannot externally restore temporary dbspaces.
You cannot externally restore from regular ontape backups.
You cannot verify that you are restoring from the correct backup and that the storage media is readable with ontape.
If the external backups are from different times, the external restore uses the beginning logical log from the oldest backup.
Salvage the logical logs (ontape -l) before you switch the disks that contain the critical storage spaces.
If you are restoring critical dbspaces, the database server must be offline.
If you are restoring the rootdbs, disable mirroring during the restore.
The external backups of all critical dbspaces of the database server instance must have been simultaneous. All critical dbspaces must have been backed up within
the same onmode -c block … onmode -c unblock command bracket.

Rename chunks

You can rename chunks in an external cold restore by using the rename options syntax for other restores.

Use the following commands to rename chunks during an external cold restore:

ontape -p -e -rename -f filename

or

ontape -p -e -rename -p old_path -o old_offset-n new_path-o new_offset

Performing a cold external restore

If you specify the ontape -p -e command in a cold restore, you must restore all storage spaces. Use the ontape -p -e command to restore all storage spaces.

To perform a cold external restore:

1. Shut down the database server with the onmode -ky command.
2. To restore the storage spaces from an external backup, use a copy command, such as cp, dd, or tar on UNIX or a file-backup program.

You must restore the storage spaces to the same path as the original data.

3. To perform an external restore of all storage spaces followed by a logical restore, use the following commands:
ontape -p -e
ontape -l

Examples of external restore commands

Examples of external restore commands

The following table contains an example of external restore commands.

External restore command Action Comments

1708 Part VI: Administering

External restore command Action Comments

ontape -p -e
ontape -l

Physical external restore and logical restore The system restores the logical logs from the oldest external
backup.

ontape -p -e -rename -f External cold restore with renamed chunks

Initializing HDR with an external backup and restore

You can use external backups to initialize High-Availability Data Replication (HDR).

To initialize HDR with an external backup and restore:

1. Block the source database server with the onmode -c block command.
2. Externally back up all chunks on the source database server.
3. When the backup completes, unblock the source database server with the onmode -c unblock command.
4. Make the source database server the primary server with the following command: onmode -d primary secondary_servername
5. On the target database server, restore the data from the external backup with a copy or file-backup program.
6. On the target database server, restore the external backup of all chunks with the ontape -p -e command.
7. Make the target database server the secondary server with the following command: onmode -d secondary primary_servername
8. If the logical-log records written to the primary database server since step 1 still reside on the primary database server disk, the secondary database server reads

these records to perform the logical recovery. Otherwise, perform the logical recovery with the ontape -l command.
The database server operational messages appear in the message log on the primary and secondary servers.

Backup and restore a Remote Secondary Server(RSS)

It is possible to archive a Remote Secondary Server and to back up logical logs on that node, using onbar or ontape. This archive may then be used to rebuild the RSS if
necessary, saving time over using an archive that is taken on the primary and copied to the secondary machine.

Although an archive and log backups taken on an RSS node may be used to restore a primary node, they are recommended for this purpose only when no other archive
exists. The logical log position on the secondary is often several logs behind that of the primary, which means the last logical logs backed up on the RSS may not be the
last log completed on the primary. This is not a problem when the archive is used to recreate the RSS, because once reconnected to the primary the logs will be
resynchronized and no transactions will be lost.

Prerequisites for taking archives and log backups on an RSS node are as follows:

1. Enable the feature by setting the BAR_SEC_ALLOW_BACKUP configuration parameter to 1 and restarting the RSS. This parameter may not be tuned dynamically.
2. Ensure that the RSS node has one or more active temporary dbspaces, and that they are listed in the DBSPACETEMP configuration parameter. Once an archive

begins, all pages physically logged for a particular space will need to be stored until that space has been archived. The temporary dbspaces listed in DBSPACETEMP
are used for this before-image storage. The total amount of temporary space required will vary according to the update load on the RSS during the archive, which
will fail to complete if it runs out of temporary space.

3. Set the TAPEDEV, LTAPEDEV, and BAR-related configuration parameters to appropriate values depending on your preferred backup utility.
4. The primary node must not contain any of the following non-logged objects:

1) BLOB spaces

2) Non-logged smartblobs

3) No-log databases

4) Raw tables

If any of these unlogged objects are present in the instance, an archive taken on the RSS node will fail because the archive would be incomplete and therefore
unusable for restoration on a primary node.

5. In order to back up logical logs on an RSS node the LTAPEDEV configuration parameter must not be set to the Null device. If logical logs will not be backed up on the
RSS node, LTAPEDEV must be set to the Null device. Note that these two rules apply on an RSS node only when BAR_SEC_ALLOW_BACKUP is set to 1. When
BAR_SEC_ALLOW_BACKUP is set to 0 the setting of LTAPEDEV on the RSS node must be in sync with that of the primary, and no logical log backups will be allowed
or required on the RSS node regardless of the LTAPEDEV setting.

If it becomes necessary to recreate the RSS node from an archive and log backups taken on that node, the same procedures used for restoring archives taken on the
primary may be used with the local archive. No new configuration changes or steps are required.

Even when taking archives and log backups on an RSS node, it is recommended that archives and log backups be taken on the primary as well, because restoration of the
primary is likely to be faster with a local backup and there is a greater chance that all committed transactions will be salvaged and restored. Again, the risk of lost
transactions is not an issue when recreating the RSS from a local backup as long as the primary node can forward all missing logs to the RSS during synchronization.

In an emergency it is possible to perform a cold restore of a primary node using an archive taken on an RSS and log backups taken either on the RSS or the primary. This
process is made simpler with the ontape utility but is also feasible with onbar.

If using ontape, simply restore the archive and roll forward the log backups as usual, regardless of the origin of these backup elements.
If using onbar the storage manager containing all backup objects must be available on the primary, and you must replace the ixbar file on the primary with the ixbar
file from the RSS node before performing the restore.

Using an archive taken on an RSS node for a warm restore on the primary node is not recommended.

Related reference:
 BAR_SEC_ALLOW_BACKUP configuration parameter

Part VI: Administering 1709

Integrated Backup Encryption

These topics provide information about Integrated Backup Encryption.

Although it is possible to encrypt backups since version 11.10.xC1 using Backup Filters, the process of setting up encryption keys and keeping track of all the elements
necessary for the encryption and decryption of backups is neither short or easy, and so, the Backup filter functionally has been mostly relegated to compress/decompress
backups, which can be achieved more easily.

Note: Encrypting backups is risky. If you misplace your encryption key or delete a remote master encryption key, you can render any number of backups unusable. If you
misplace the encryption key for a backup or lose access to the Remote Master Key, there is no way for anybody, including technical support, to restore those backups, they
are lost forever.
Although there is a way to encrypt the backups using a local encryption key provided by the operator, Integrated backup Encryption was designed to work mainly with
Remote Key Servers because they offer the flexibility and reliability needed to minimized the likelihood of rendering backups unusable due misplaced/missing encryption
keys.

Integrated Backup Encryption does not reuse the encryption keys used for Storage Space Encryption. When a backup is performed, the engine decrypts the pages before
sending them to the backup client and the On-Bar/ontape utilities receive a stream of unencrypted pages.

The backup client then generates an encryption key called Backup Encryption Key (Depending on the capabilities of the RKS, the backup encryption key can be generated
locally, or at the RKS). The backup encryption key is then used to encrypt the backup data.

The backup client also encrypts the backup encryption key using a Remote Master Encryption Key (RMEK) to generate an Encrypted Backup Encryption Key (EBEK) and
stores the identification of the Remote Master Key, the Encrypted Backup Encryption Key, and other relevant information necessary to decrypt the data in a structure
called the Encryption Envelope (envelope for simplicity). The envelope structure is stored together with the encrypted backup data and therefore it is impossible to lose or
misplace the backup encryption key since it is always stored together with the data that it protects.

As long as there is access to the RKS and the Remote Master Encryption Key is not deactivated, the backup will be decryptable.

The process of encrypting a backup, as already described above, requires the generation of a backup encryption key for each backup session. All backup objects
generated in that session will share the same BEK (For On-Bar, this means that each storage space and log file backed up will share the same BEK. For ontape, it means
that every volume generated will be encrypted with the same BEK).

Depending on the capabilities of the RKS, there are two ways in which this BEK can be generated:

Method 1: The RKS is capable of generating symmetric encryption keys. In this case the RKS will generate the BEK and provide the backup client with both the BEK
and the product of encrypting the BEK with the Remote Master Encryption Key (EBEK).

Figure 1. Method 1 to generate BEK

Method 2:If the Remote Key Server does not support the creation of symmetric encryption keys, the BEK is locally generated, the BEK is then transferred to the RKS where
it is encrypted using the RMEK, then RKS returns the EBEK to generate the encryption envelope.
Figure 2. Method 2 to generate BEK

Note: In both methods, it is necessary that the RKS has cryptographic capabilities, meaning that the RKS has to be capable of encrypting and decrypting data using the
RMEK. If the RKS is not capable of providing cryptographic operations (which is the case of some KMIP-enabled servers) it is not possible to use Integrated Backup
Encryption with that server. This is done to minimize the risk of key exposure/leakage (since the RMEK never leaves the RKS, the chances of compromising the key are
minimized).
Once the BEK is generated and the backup client has the RMEK Id, the BEK, and the EBEK, it can generate the encryption envelope, encrypt the backup data and send the
encrypted data to the backup medium/server.
Figure 3. Backup Encryption

1710 Part VI: Administering

The BAR_ENCRYPTION configuration parameter
In order to use Integrated Backup Encryption, you must setup either a local key file or access to a remote keys server. Then you need to set the BAR_ENCRYPTION
configuration parameter to let know the backup client that you want to use Integrated Backup Encryption and which method you want to use.

Using a Remote Key Server
 These topics provide information about Remote Key Server.

Using a Local Encryption Key
 These topics provide information about Local Encryption Key

Using a Remote Key Server

These topics provide information about Remote Key Server.

The usage of a remote key server allows you to work with Integrated Backup Encryption.

We currently support:

1. KMIP complaint servers that support the ENCRYPT and DECRYPT cryptographic operations.
2. The Amazon Web Services Key Management Service (AWS-KMS).
3. The Microsoft Azure Key Vault service.

In order to use a remote key server, you must provide the appropriate credentials to connect to it. The credentials to access the server are stored in a keystore generated
by the onkstore utility.

The credential types supported by Integrated backup encryption are KMIP (for KMIP servers), “aws-bar” for AWS-KMS and “azure-bar” for Azure KeyVault. Any keystore
with other types of credentials (ie AWS-EAR) are not supported and its usage will result in an error.

The parameters required to create each type of credentials vary depending from the provider, you will need to understand the meaning of this parameters and how to
request/generate them. For example, what we describe in this document as Remote Master Encryption Key (RMEK) is known as “Azure Key Name” for Azure KeyVault or
“AWS CMD Id” (AWS Customer Master Key Id) for AWS KMS.

For more information, see The onkstore Utility

Using a Local Encryption Key

These topics provide information about Local Encryption Key

To use a local encryption key, the operator must manually generate an encryption key of the appropriate size for the cipher you want to use (ie a 192-bit, or 24 byte long
encryption key). Then store it in a text file in base64 format. The file must have 600 permissions in UNIX/Linux and must be readable only the DBSA. In Windows the file
must be owned by the Administrators group or the Informix user and readable only by the owner.

Once the file has been created the full path to the file must be set in the BAR_ENCRYPTION configuration parameter together with the cipher to use.

Note: It is not recommended to use local encryption keys, however they are necessary in certain scenarios. If you misplace your encryption key, there is no way for
anybody, including technical support, to recover that backup.
Example to create the local encryption file for aes192 using the openssl utility:

openssl rand -base64 24 > /home/informix/etc/l_key192

Example to create the local encryption file for aes128 using the openssl and base64 utilities:

openssl rand 16 | base64 > /home/informix/etc/l_key128

Example on how the BAR_ENCRYPTION configuration parameter will look for the first example:

BAR_ENCRYPTION keyfile=/home/informix/etc/l_key192,cipher=aes192

The keystore used to hold local Master Encryption Keys for Storage Space Encryption is not supported by Integrated Backup Encryption.

Informix Primary Storage Manager

Part VI: Administering 1711

The IBM® Informix® Primary Storage Manager manages storage for ON-Bar backup and restore operations, including parallel backups, that use file devices (disks).

IBM Informix Primary Storage Manager
 IBM Informix Primary Storage Manager is an application that manages storage devices used for backup and restore requests that are issued by ON-Bar. This

storage manager supports both serial and parallel processing for backup and restore requests.

IBM Informix Primary Storage Manager

IBM® Informix® Primary Storage Manager is an application that manages storage devices used for backup and restore requests that are issued by ON-Bar. This storage
manager supports both serial and parallel processing for backup and restore requests.

Informix Primary Storage Manager consists of the following components:

onpsm utility
A command-line utility that you can use to perform the following tasks:

Create, modify, and delete storage devices
Define and modify the maximum sizes for devices
Move backup information from one device to another within a device pool
Determine whether volumes, storage objects, and devices are locked or busy
Release locked volumes, storage objects, and devices
Verify volume names and labels

XBSA shared library
A unique version of the X/Open Backup Services API (XBSA) shared library that ON-Bar and the Informix Primary Storage Manager use to communicate with each
other. When ON-Bar stores or retrieves data that is stored on storage devices, the storage manager coordinates the request through the XBSA interface at the
device level. You specify the location of the XBSA shared library with the BAR_BSALIB_PATH configuration parameter.

Storage catalog tables
A set of flat files that track information about all storage objects, devices, and device pools. These files are required to restore backup objects that are created by
Informix Primary Storage Manager. By default, these files are stored in the $INFORMIXDIR/etc/psm directory. You can use the PSM_CATALOG_PATH configuration
parameter to specify another location for the storage catalog tables.
Important:

Back up the storage catalog tables with your operating system tools as part of a disaster recovery strategy. The storage catalog tables are not backed up with
the database instance and they are not associated with system catalog tables.
To prevent the storage catalog tables from getting too large, delete old generations of backups regularly. Use the onsmsync utility to manage expiration
policies.

The configuration parameters that you use to configure the Informix Primary Storage Manager are in the onconfig file.

You define and maintain storage devices with the onpsm command-line utility. You can configure one device at a time or generate a device-configuration file to configure
multiple devices. During backups, Informix Primary Storage Manager selects a device from a pool of available devices. If the device becomes full or fails, the storage
manager automatically moves to another device in the same pool.

Informix Primary Storage Manager writes informational, warning and error messages to the storage manager activity log. You can use the PSM_ACT_LOG configuration
parameter to specify the location of the activity log. If the PSM_ACT_LOG configuration parameter does not contain information, the storage manager puts activity
information in the directory specified with the BAR_ACT_LOG configuration parameter.

Figure 1. Components of Informix Primary Storage Manager

Features of Informix Primary Storage Manager

Storage manager feature Explanation

Storage devices to use with the
storage manager

File devices only
The storage manager automatically creates a default device when a catalog is created. The default device is $INFORMIXDIR/backups.
You can remove the default device.

Buffer transfer size Unlimited

Encryption and compression Achieved with BACKUP_FILTER, RESTORE_FILTER FILTERS in ON-Bar (The storage manager does not provide encryption or
compression.)

1712 Part VI: Administering

Storage manager feature Explanation

Expiration policies of the
storage manager

No expiration policies. (You manually expire backup objects from the storage manager with the onsmsync utility. The onsmsync object
expiration commands remove objects from the storage manager.)

You can perform an imported restore with ON-Bar and the Informix Primary Storage Manager. In an imported restore, you back up the Informix instance on one machine
and restore the instance on a different machine. Use the onsmsync export and import options to export the backup objects from the storage manager on the backup
machine and import the backup objects into the storage manager on the restore machine.

Backups to Cloud and STDIO devices
Using STDIO devices for backup and restore:

PSM will write/read a stream of data to an external utility (i.e. sftp or curl)
Operator to provide parameters to invoke the utility for read/write/drop operations
Transfer of data to the third party program will happen using STDIO, PSM will write to the standard input of the utility and will read from its standard output
The Operator do not have direct access to the stream of data
In order to use this feature the operator must create a PSM device of type "STDIO"
A device of type STDIO will require you provide the path to the program to be executed as the device name (i.e. /usr/bin/curl)
Also you must provide the arguments to call the program during backup, restore and drop
You can optionally provide the maximum size of a file, if the backup is bigger than this size, it will be broken up in pieces of this size

The new command line is:

onpsm -D -add /usr/bin/sftp.sh -t STDIO --stdio_warg "BACKUP @obj_name1@.@obj_id@.@obj_part@" --stdio_rarg "RESTORE
@obj_name1@.@obj_id@.@obj_part@"
--stdio_darg "DELETE @obj_name1@.@obj_id@.@obj_part@" --max_part_size <size in KB>

Examples: Manage storage devices with Informix Primary Storage Manager
 Learn how to set up and use Informix Primary Storage Manager to manage storage devices that the onbar utility uses for backing up and restoring instances. Each

example shows how you can use the storage manager for a specific backup strategy.
Setting up Informix Primary Storage Manager

 Setting up involves gathering and specifying information about your storage devices and, if necessary, changing the default configuration of the storage manager.
Managing storage devices

 Use the onpsm utility to add, monitor, and remove storage devices and to manage IBM Informix Primary Storage Manager catalogs, locks, and objects. Use the
onsmsync utility to export ON-Bar backups to and import them from external pools and to expire backups.
The onpsm utility for storage management

 Use the onpsm utility to manage the IBM Informix Primary Storage Manager catalogs, devices, locks, and objects.
Device pools

 The IBM Informix Primary Storage Manager pool is a named group of disk devices that you use as a repository for backups.
Device-configuration file for the Informix Primary Storage Manager

 The onpsm utility can generate a device-configuration file, which is a text file that contains information about a storage device. The utility uses this information to
re-create the devices.
Informix Primary Storage Manager file-naming conventions

 When creating files that store your backup data, the IBM Informix Primary Storage Manager uses specific file-naming conventions.
Message logs for Informix Primary Storage Manager

 The Informix Primary Storage Manager writes messages to a storage manager activity log and debug log.

Related concepts:
 Backup Services API (XBSA)

Device pools
Related tasks:

 Examples: Manage storage devices with Informix Primary Storage Manager
Related reference:

 Configure a storage manager
The onpsm utility for storage management
Informix Primary Storage Manager configuration parameters

Examples: Manage storage devices with Informix Primary Storage Manager

Learn how to set up and use Informix® Primary Storage Manager to manage storage devices that the onbar utility uses for backing up and restoring instances. Each
example shows how you can use the storage manager for a specific backup strategy.

Prerequisites:

14.10 is installed with the ON-Bar utility.
Environment variable INFORMIXDIR is set to the path where the database server is installed.
Environment variable ONCONFIG is set to the file in $INFORMIXDIR/etc that contains the configuration parameters for your database. The name of the file must be
unique for each database server instance.
User informix or root privileges.

Example 1: Storing backups for an instance
Example 2: Storing backups for two instances
Example 3: Exporting backups to and restoring them from another directory
Example 4: Exporting a backup from one server and importing it into another server

Part VI: Administering 1713

In these examples, storage manager refers to Informix Primary Storage Manager.

Related concepts:
 IBM Informix Primary Storage Manager

Related reference:
 Informix Primary Storage Manager configuration parameters

The onpsm utility for storage management
The onsmsync utility

Example 1: Storing backups for an instance
This example shows how to set up and use Informix Primary Storage Manager to back up the data and logical logs for a single database server instance to a directory:
$INFORMIXDIR/backups.

In this example, you update the configuration file so that the Informix Primary Storage Manager can communicate with ON-Bar and you specify the directory where you
want backups stored. Then you use the onbar utility to perform a standard, level-0 backup of all online storage spaces and used logical logs. You validate the backup by
checking the messages that were logged and by using the onpsm utility to confirm that storage objects were created.

1. Set the BAR_BSALIB_PATH configuration parameter to the full path and name of the shared library for the storage manager.
For example, on Linux, Solaris:

BAR_BSALIB_PATH $INFORMIXDIR/lib/libbsapsm.so

You must use the version of the XBSA shared library that is provided for Informix Primary Storage Manager. If you do not specify the path with the
BAR_BSALIB_PATH configuration parameter, you must ensure that the XBSA library is in the default location on your operating system.

2. If needed, create the directory in which to store the backup objects.
By default, the storage manger includes the default pools LOGPOOL and DBSPOOL, with the default directory $INFORMIXDIR/backups in each pool.

If you want to use the default backup directory, verify that the $INFORMIXDIR/backups directory exists.
If you want to use a different backup directory, use the onpsm -D add command to add a new backup directory for LOGPOOL and DBSPOOL. For example,
run the following commands to add different backup directories for the LOGPOOL and DBSPOOL pools:

onpsm -D add /backups/infx/logs -g LOGPOOL -p HIGHEST -t FILE
onpsm -D add /backups/infx/spaces -g DBSPOOL -p HIGHEST -t FILE

Use the HIGHEST priority for the device that should be filled first. Only one device in a pool can have the priority setting of HIGHEST.

3. Run the onbar utility to perform a standard, level-0 backup of all online storage spaces and used logical logs.

onbar -b -L 0

If the storage catalog tables do not exist, they are created in the $INFORMIXDIR/etc/psm directory.
4. Validate that the storage manager is set up and that the backup objects are created.

a. Look in the ON-Bar activity log to confirm that the storage manager is ready and that ON-Bar recognizes the storage manager.
For example, the first message is from the storage manager and the second message is from the backup utility:

2012-01-03 15:51:23 11193 2569 Informix PSM is ready.
2012-01-03 15:51:23 11193 2569 Using Informix PSM version 14.10.FC1
as the Storage Manager. XBSA API version is 1.0.3.

By default, the storage manager posts messages to the ON-Bar activity log. The location of the activity log is set by the BAR_ACT_LOG configuration
parameter. If you want the storage manager messages to be logged separately, you must set the PSM_ACT_LOG configuration parameter.

b. Run the onpsm -O list command to list the storage objects that were created:
The list, as shown in the following example, includes the storage object IDs, the date the storage objects were created, the size of the storage objects, and
where the storage objects are in the storage device. The object IDs are also stored in the ixbar file and are used by ON-Bar to locate the objects.

============================
Object List Report

 Logical Path
Obj ID Date Created Size (MB) Name.Version (omits piece #)

 1 2012-08-06 12:02:10 12.5 /serv1/rootdbs/0/serv1.1
 2 2012-08-06 12:02:12 0.1 /serv1/logdbs/0/serv1.1
 3 2012-08-06 12:02:12 0.1 /serv1/dbs2/0/serv1.1
 4 2012-08-06 12:02:12 0.1 /serv1/dbs1/0/serv1.1
 5 2012-08-06 12:02:13 0.1 /serv1/physdbs/0/serv1.1
 6 2012-08-06 12:02:14 0.3 /serv1/10/9/serv1.1
 7 2012-08-06 12:02:14 0.0 /serv1/crit_files/ixbar/serv1.1
 8 2012-08-06 12:02:14 0.0 /serv1/crit_files/oncfg/serv1.1
 9 2012-08-06 12:02:14 0.1 /serv1/crit_files/onconfig/serv1.1
 10 2012-08-06 12:02:14 0.0 /serv1/crit_files/sqlhosts/serv1.1
============================

c. Run the onpsm -D list command to display a list that shows that the device was added to the DBSPOOL and LOGPOOL pools. The following example shows
output of the command:

Type Prio Block/Size (MB) Pool Name Device Name---
FILE HIGHEST --/-- DBSPOOL /backups/infx/logs

FILE HIGHEST --/-- LOGPOOL /backups/infx/spaces

With a few simple steps, you configured the storage manager and performed a full backup of an instance to a file device. Very little configuration was required because the
storage manager uses the default settings for various ON-Bar configuration parameters.

Storage catalog tables are not included in a backup. Be sure to back up the storage catalog tables with your operating system tools as part of a disaster recovery strategy.
If the storage catalog tables are lost, the onbar utility cannot restore the backup objects that Informix Primary Storage Manager created. The location of the storage

1714 Part VI: Administering

catalog tables is set by the PSM_CATALOG_PATH configuration parameter (default = $INFORMIXDIR/etc/psm).

To restore the instance from the backup objects, use the onbar utility. The storage manager tracks the backup objects and storage devices for you.

Example 2: Storing backups for two instances
This example shows how to configure one instance of Informix Primary Storage Manager to manage the storage devices for two database server instances in a multiple
residency environment.

In this example, you set up two independent database server environments on the same computer. Each database server is installed in a separate directory:
(/usr/informix/ids1210fc1 and /usr/informix/ids1210fc1b) and has a database server instance. Storage for backup operations on both database server instances is
managed by one instance of Informix Primary Storage Manager. Pools of storage devices for physical and logical data are configured for each instance.

1. For each instance, edit the onconfig file to configure storage management for ON-Bar.
Table 1. Configuration parameters and their associated values

Configuration parameter Value

BAR_BSALIB_PATH
Specify the full path and name of the shared library for the storage manager.

/usr/informix/ids1210fc1b/lib/libbsapsm.so

PSM_CATALOG_PATH
Specify the path of the storage catalog tables.

/usr/informix/ids1210fc1b/etc/psm

PSM_DBS_POOL
Specify the name for a group of devices for storing online data (dbspace) backups.

FC1: DBSPOOL_FC1

FC1B: DBSPOOL_FC1B

PSM_LOG_POOL
Specify the name for a group of devices for storing online logical log backups.

FC1: LOGPOOL_FC1

FC1B: LOGPOOL_FC1B

2. For each instance, create a directory in which to store the backup objects.

mkdir $INFORMIXDIR/backups/dev_for_1201fc1
mkdir $INFORMIXDIR/backups/dev_for_1201fc1b

3. Run the onpsm utility to create device pools for each instance. For example, specify:

onpsm -P add DBSPOOL_FC1
onpsm -P add LOGPOOL_FC1
onpsm -P add DBSPOOL_FC1B
onpsm -P add LOGPOOL_FC1B

4. Run the onpsm utility to add the storage devices.

onpsm -D add $INFORMIXDIR/backups/dev_for_1201fc1 -t FILE -g DBSPOOL_FC1
onpsm -D add $INFORMIXDIR/backups/dev_for_1201fc1 -t FILE -g LOGPOOL_FC1
onpsm -D add $INFORMIXDIR/backups/dev_for_1201fc1b -t FILE -g DBSPOOL_FC1B
onpsm -D add $INFORMIXDIR/backups/dev_for_1201fc1b -t FILE -g LOGPOOL_FC1B

5. For each instance, run the onbar utility to perform a standard, level-0 backup of all online storage spaces and used logical logs.

onbar -b -L 0

6. Validate that the storage manager is set up and that the backup objects are created.
a. For each instance, look in the ON-Bar activity log to confirm that the storage manager is ready and that ON-Bar recognizes the storage manager. For example,

look for this information:

2012-01-03 15:51:23 11193 2569 Informix PSM is ready.
2012-01-03 15:51:23 11193 2569 Using Informix PSM version 14.10.FC1
as the Storage Manager. XBSA API version is 1.0.3.

b. Use the onpsm utility to list the storage objects that were created:

onpsm -O list

The report includes the storage object IDs, the date the storage objects were created, the size of the storage objects, and the location of the storage objects
in the storage device.

Example 3: Exporting backups to and restoring them from another directory
This example shows how to export backups to a new directory and import the backup objects from that directory.

Suppose that you keep five generations of backups. As an added precaution, you also keep copies of the most recent backups in a separate directory. In this example, you
use the onsmsync utility to export your most recent backup to and import it from the Informix Primary Storage Manager external pool in a separate directory.

The storage manager tracks devices in the external device pool (EXTPOOL) so it can copy objects to and from external devices. (Although the storage manager tracks
devices, it does not track files and objects that are inside the EXTPOOL pool in the storage manager catalogs.)

1. Store backups for an instance, following the steps in Example 1: Storing backups for an instance.
2. Run the onpsm -D list command to check that there is a device in the EXTPOOL pool.

a. If there is no device in the EXTPOOL pool, add one using the onpsm -D add command.
The following example shows how to add a device with the path /export/informix/psm_exportdir to the EXTPOOL pool.

$ onpsm -D add /export/informix/psm_exportdir -g EXTPOOL -t FILE

Part VI: Administering 1715

3. Run the onsmsync command to export all backup objects in the generation 1 level-0 backup, using prefix pw_sept5, which becomes the name of the subdirectory
in which the utility places the backup:

onsmsync -E -p pw_sept5 -g 1

After you run the onsmsync -E command to export the backup objects, you will see a subdirectory in the EXTPOOL directory that includes a directory holding the
backup objects and a file called export.bom.

Suppose that something happens to the backup generation stored in your primary backup directory and you want to import the pw_sept5 backup generation from the
second directory. To import the backup generation:

1. Run the onsmsync command to import all backup objects in the pw_sept5 subdirectory:

onsmsync -I -p pw_sept5

Use your own file-transfer methods to move the exported backups, as needed, to other machines.

Example 4: Exporting a backup from one server and importing it into another server
This example shows how to use the onsmsync utility to export a backup from a database server that has the name informix_serv1. Then the example shows how to
use the onsmsync utility to import the data into a server that has the name informix_serv2.

1. Set up and export files on database server informix_serv1:
a. Set the INFORMIXDIR, INFORMIXSERVER, ONCONFIG, PATH, INFORMIXSQLHOSTS environment variables for informix_serv1.
b. Run the onpsm -D list command to check that there is a device in the EXTPOOL pool. If there is no device in the EXTPOOL pool, add one using the onpsm -D

add command.
c. Run the onsmsync command to export all backup objects in the generation 1 level-0 backup, using prefix serv1_20120810, which becomes the name of the

subdirectory in which the utility places the backup:

$ onsmsync -E -p serv1_20120810 -g 1

2. Prepare to import files on the second database server, informix_serv2, as follows:
a. Set the INFORMIXDIR, INFORMIXSERVER, ONCONFIG, PATH, INFORMIXSQLHOSTS environment variables for informix_serv2.
b. Run the onpsm -D list command to determine if the EXTPOOL has the same device that you viewed or added in step 1b. (This could occur for shared

devices). If there is no device in the EXTPOOL pool, add one using the onpsm -D add command.
c. Copy the previously exported backup objects (for example, subdirectory serv1_20120810) into the EXTPOOL device from which you will import the backup

objects.
d. Run the following command to import backup objects from EXTPOOL device:

$ onsmsync -I -p serv1_20120810

After you run the onsmsync -I command to import the backup objects, the objects are stored in the new LOGPOOL and DBSPOOL pools.
e. Run the onpsm -O list command to view the imported objects. Notice that the import command also creates a new ixbar file in $INFORMIXDIR/etc/

directory.

$ ls -l $INFORMIXDIR/etc/*ixbar*

-rw-rw-- 1 informix informix 0 Aug 10 19:44
 /usr/informix/etc/ixbar.12.20120810.194441
-rw-rw-- 1 informix informix 2704 Aug 10 19:44
 /usr/informix/etc/ixbar.12

The new ixbar file lists the imported backup objects so that you can perform an ON-BAR cold restore to restore the informix_serv1 instance from the first
database server to the informix_serv2 instance on the second database server.

Setting up Informix Primary Storage Manager

Setting up involves gathering and specifying information about your storage devices and, if necessary, changing the default configuration of the storage manager.

Collecting information about file directories and devices
 You must gather information about and configure at least one file directory or device for each of the DBSPOOL and LOGPOOL pools before ON-Bar can use the IBM

Informix Primary Storage Manager.
Configuring Informix Primary Storage Manager

 By default, the IBM Informix Primary Storage Manager is automatically configured with the information specified in the storage manager and with some ON-Bar
configuration parameters. It is also automatically configured when you use the onpsm utility. You can change the configuration.

Related reference:
 Configure a storage manager

The onpsm utility for storage management
Informix Primary Storage Manager configuration parameters

Collecting information about file directories and devices

You must gather information about and configure at least one file directory or device for each of the DBSPOOL and LOGPOOL pools before ON-Bar can use the IBM®
Informix® Primary Storage Manager.

Before defining directories or devices, gather the following information:

The full path names and types of the devices that you plan to use for your backup storage.
The amount of space that you want to commit to ON-Bar backups.

1716 Part VI: Administering

Configuring Informix Primary Storage Manager

By default, the IBM® Informix® Primary Storage Manager is automatically configured with the information specified in the storage manager and with some ON-Bar
configuration parameters. It is also automatically configured when you use the onpsm utility. You can change the configuration.

The Informix Primary Storage Manager uses file devices (disks) only, not tapes. You cannot configure the storage manager to use tapes.

To manually configure the Informix Primary Storage Manager:

1. Update the BAR_BSALIB_PATH configuration parameter to point to the storage manager library.
For example, on Linux or Solaris, specify:

BAR_BSALIB_PATH $INFORMIXDIR/lib/libbsapsm.so

2. Specify the destination and source devices for backup and restore operations by using the onpsm utility.
3. Change the default configuration for the storage manager if necessary for your environment:

a. To override the default values for the location of storage manager log files and catalogs, debugging activity, and pool names, specify new values in the
Informix Primary Storage Manager configuration parameters.

b. To specify a larger transfer buffer with ON-Bar and the Informix Primary Storage Manager, increase the size in the BAR_XFER_BUF_SIZE configuration
parameter.

c. To change the frequency of the progress messages in the ON-Bar activity log, update the value specified in the BAR_PROGRESS_FREQ configuration
parameter.

d. To change the number of processes that ON-Bar runs concurrently, update the value specified in the BAR_MAX_BACKUP configuration parameter.

Related reference:
 Informix Primary Storage Manager configuration parameters

ON-Bar and ontape configuration parameters and environment variable
The onpsm utility for storage management

Managing storage devices

Use the onpsm utility to add, monitor, and remove storage devices and to manage IBM® Informix® Primary Storage Manager catalogs, locks, and objects. Use the
onsmsync utility to export ON-Bar backups to and import them from external pools and to expire backups.

Related reference:
 The onpsm utility for storage management

The onsmsync utility

The onpsm utility for storage management

Use the onpsm utility to manage the IBM® Informix® Primary Storage Manager catalogs, devices, locks, and objects.

Pre-requisite: To run the onpsm utility, you must be user root or informix.

Syntax

>>-onpsm--+-+-| Catalog options |-+-+--------------------------><
 | +-| Device options |--+ |
 | +-| Object options |--+ |
 | '-| Pool options |----' |
 +--- -h ------------------+
 '-+---------------+-------'
 +- -V ----------+
 +- -version-----+
 '- -version all-'

Catalog options

|-- -C -+-check--+-----+-----------+----------------------------|
 | +- -l + |
 | '- -n ' |
 +-+---------+--------------+
 | '- detail-' |
 +-+---------+--+---------+-+
 | '- export-' +- import + |
 | '- -y ----' |
 +-+----------+-------------+
 | +- init ---+ |
 | +- init -d + |
 | '- -y -----' |
 '-+---------+--------------'
 '- unlock '

Device options

|-- -D -+-add--path-- -p -priority-- -g -pool_name-- -t -type--+-----------+-- -b -block_size-+--|
 | '- -s -size-' |
 +-del--path--+- -g -pool_name--+-----+-+--+

Part VI: Administering 1717

 | | '- -y ' | |
 | '- -d -+-----+------------' |
 | '- -y ' |
 +-list--+- -u ------------------+---+
 | '- -l -dev_def_file.txt-' |
 +-purge--path---+
 +-scan--path--+
 '-update--path--+---------------+--+-----------+--------------------------------------'
 '- -p -priority-' '- -s -size-'

Object options

|-- -O -+-del-- -o -object_id--+-----+-+------------------------|
 | '- -y ' |
 +-detail-- -o -object_id-------+
 +-dump-- -o -object_id---------+
 '-list-------------------------'

Pool options

|-- P -+-add--pool_name----------+------------------------------|
 +-del--pool_name--+-----+-+
 | '- -y ' |
 '-list--------------------'

Table 1. onpsm utility catalog options

Element Purpose Key Considerations

-C check Checks storage manager catalog tables, which store
metadata about the pools and devices that the storage
manager manages

This command identifies files that have problems.

-C check -l Displays index keys while checking the catalog tables

-C check -n Indicates that the storage manager does not fix errors
that are found

-C detail Shows details about the storage manager catalog tables

-C export Exports the Informix Primary Storage Manager catalog
tables to a directory called psm_catalog.exp

-C import Replaces the current Informix Primary Storage Manager
catalog with a catalog that is recreated from files that
are in the psm_catalog.exp directory

Only import the catalog if you have a system problem, lost your current catalog,
and need to revert to the exported catalog. If you need to import a catalog, run the
onpsm -C init command before you run the onpsm -C import command.

-C init Deletes storage manager catalog tables

-C init -d Deletes storage manager catalog table and the backup
objects in file devices

-C unlock Unlocks the storage manager catalog If the storage manager exits abnormally from a backup or restore session because
a failure occurred, storage manager catalog tables might remain locked. If catalog
tables are locked, you can release the locks.

-y Specifies to not to ask for confirmation before deleting
catalog tables

Table 2. onpsm utility device options

Element Purpose Key Considerations

-D add Adds a device to the pool specified with the -g option Before adding devices, gather information about the device. See Collecting
information about file directories and devices.

-D del Removes a device:

If you use the -g option, removes a device from
the pool specified with the -g option, while
retaining the device objects in the Informix
Primary Storage Manager catalog.
If you use the -d option, removes the device from
all pools and removes all backup objects from the
file system in that device

If you delete the device using -g option, you can restore the objects if necessary.
If you remove a device, the storage manager cannot add new objects to the
device.

-D list Displays a list of all devices in the system

-D purge Removes missing storage manager objects from the
Informix Primary Storage Manager catalog

1718 Part VI: Administering

Element Purpose Key Considerations

-D scan Scans objects in the device to verify that the objects exist
in the Informix Primary Storage Manager catalog so the
objects can be restored if necessary
If an object is not in the catalog, this command adds the
object to the catalog.

If the command cannot add an object to the catalog, the command ignores the
missing file.
Before a missing object can be added to a catalog, the following conditions must
occur:

The object ID must not be assigned to any other object in the storage
manager.
Files must not be renamed or relocated to different directories inside the
device
The object version must not be assigned to any other object in the storage
manager.

-D update Modifies information about a device If you want to modify information about more than one device, run a separate
command for each device.

path Full name and path to the device (for TAPE devices) or to
a directory (for FILE devices)

The path must be in the format appropriate to the operating system to which the
device is attached .
The name of the device must be unique within a pool.

You can include the same device in multiple pools.

If you are deleting, listing, purging, scanning, or updating information, the path
must be to an existing device.

-b block_size For tape devices only, the minimum number of bytes of
data that need to accrue before the data is written to the
device

The block size is required for tape devices.

-d Deletes the pool from all pools and deletes backup
objects

The block size is required for tape devices.

-g pool_name The pool in which to add the device, either DBSPOOL,
LOG POOL, or EXTPOOL

Information about pools is stored in the Informix Primary Storage Manager
catalog.
If you do not provide a pool name, the command fails.

Specify:

DBSPOOL for backups of dbspaces, blobspaces, and sbspaces
LOGPOOL for backups of logical logs
EXTPOOL that serves as a staging area from which you can move specific
backups or backup generations to permanent storage or onto a different
computer.

-l dev_def_file.txt Loads information about the device from a device-
definition file

-p priority Priority of the device, either HIGHEST, HIGH, LOW, or
READ-ONLY

The storage manager fills high-priority devices in a pool before placing data into
low-priority devices in that pool. If the high-priority devices are busy at the
moment when the storage manager is ready to fill a pool, the storage manager
uses low priority devices.
Only one device in a pool can have the priority of HIGHEST.

If multiple devices have the same priority in the same pool, the storage manager
determines which device to use first.

When a device becomes full, the storage manager changes the priority to READ-
ONLY. You can change the priority after you add more space to the device.

-s size For tape devices only, the maximum storage capacity of
the device in kilobytes

The size is optional for tape devices. If a size is not specified, or if you specify 0,
the storage manager interprets the size as unlimited. When the size is unlimited,
the device is not considered full until it returns an error that specifies that the
device is full.
To specify the size enter the numeric value of the size followed by the suffix B, K,
M, G, T, or P (for bytes, kilobytes, megabytes, gigabytes, terabytes, or petabytes).
The suffix can be upper or lowercase.

- t type Type of device, either FILE or TAPE Information about devices is stored in the Informix Primary Storage Manager
catalog,

-u Unloads information about the device to a device-
definition file

The device definition file is a text file with a specific format. The storage manager
uses the file to recreate the information when you run an onpsm command with
the load option.

-y Specifies not to ask for confirmation to complete the
requested action

Table 3. onpsm object options

Element Purpose Key Considerations

-O del Deletes physical objects from a pool

-O detail Displays details about the specified object. Details
include the location of the object.

-O dump Extracts the object data to a file in the current directory

Part VI: Administering 1719

Element Purpose Key Considerations

- o object_id Identifies the particular object You can delete or dump one or more objects with a single command, as shown in
Usage.

-O list Displays all objects in a pool For each object, the list includes the date and time the object was created, the size
of the object, and the path name of the object.

-y Specifies not to ask for confirmation to complete the
requested action.

Table 4. onpsm pool options

Element Purpose Key Considerations

-P add pool_name Adds a new pool

-P del pool_name Deletes the specified pool

-P list Lists all pools in the system

-y Specifies not to ask for confirmation to complete the
requested action.

Table 5. onpsm utility general options
Element Purpose Key Considerations

-h Displays help information

-V Displays the software version number and the serial
number

For more details about the standard -V and -version options, see Obtaining utility
version information.

-version Displays the software version number, serial number,
and additional information such as the host, operating
system, build date, and the Global Language Support
(GLS) version

For more details about the standard -V and -version options, see Obtaining utility
version information.

-version all Displays onpsm version information and information
about the PSM shared library

Usage
When you run an onpsm command to define a device, the storage manager automatically creates storage manager catalogs if they do not exist.

The default device for the storage manager is $INFORMIXDIR/backups. The device, which is low priority, is automatically created when the catalog is created. You can
remove the default device.

When you create a device, the storage manager automatically creates the directory for the device if the directory does not exist. The storage manager uses the directory
path that you specify in the onpsm -D add command.

You can delete one or more objects with a single command, for example, by running a command that has this format:

onpsm _O del -o obj_1 -o obj_2

You can also dump one or more objects with a single command, for example, by running a command that has this format:

onpsm _O dump -o obj_1 -o obj_2

If the data is not needed, run the onsmsync utility to delete backup objects from the Informix Primary Storage Manager.

Some third-party storage managers do not allow the onsmsync utility to delete backup objects from the storage manager. If you have a third-party storage manager, you
might need to manually delete backup objects that you no longer need.

Examples
The following command adds a file device with the path name $INFORMIXDIR/backups in the DBSPOOL pool:

onpsm -D add $INFORMIXDIR/backups -g DBSPOOL -t FILE -p HIGH

The following command checks Informix Primary Storage Manager catalog tables and indicates that the storage manager does not fix any errors found during the check:

onpsm -C check -n

The following command lists objects in pools, including the date and time the object was created, the size of the object, and the path name of the object.

onpsm -O list

onpsm -C detail output
 Use the onpsm -C detail command to view details about the storage manager catalog tables.

onpsm -D list output
 The onpsm -D list command displays information about all of the devices in each IBM Informix Primary Storage Manager pool. You can use this list to determine

whether you need to change information about your devices.
onpsm -O list output

 The onpsm -O list command displays all of the objects stored in a pool.

Related concepts:
 IBM Informix Primary Storage Manager

Setting up Informix Primary Storage Manager
Managing storage devices

1720 Part VI: Administering

Device pools
Related tasks:
Configuring Informix Primary Storage Manager
Examples: Manage storage devices with Informix Primary Storage Manager

onpsm -C detail output

Use the onpsm -C detail command to view details about the storage manager catalog tables.

Sample onpsm -C detail command output
D:\IFMXDATA\gacpsm>onpsm -C detail

Informix Primary Storage Manager State:

 PSM Unique ID : 1358735848
 Catalog Location : D:\database\1210\etc\psm\
 Catalog State : Locked
 Catalog Owner : 2
 Catalog Lock Mode: Regular

Sessions:
 Session ID Process ID
 2 1576
 3 4556
 4 5555

Informix PSM Locked Objects

Session Object Id Date Time Server Object Name

 3 116 2012-12-09 20:54:34 /gacpsm_tcp /gacpsm_tcp/168/242
 4 117 2012-12-09 21:07:44 /gacpsm_tcp /gacpsm_tcp/168/242

The output contains the following sections:

Informix® Primary Storage Manager State
Shows general information about all of the sessions that are active in the system and whether the catalog is locked.

PSM Unique ID
ID for the catalog

Catalog Location
Path to the catalog

Catalog State
Indicates whether the catalog is locked

Catalog Owner
Informix Primary Storage Manager session ID

Catalog Lock Mode
Lock category
For example, Regular means that the lock is a user lock.

Sessions
Lists all of the sessions that are active in the system and the process IDs that match the sessions.

Session ID
ID of the session. This is the same ID that appears in the Catalog Owner field.

Process ID
Internal ID for the ON-Bar, archecker, or storage manager process that is locking the catalog.

Informix PSM Locked Objects
Shows the locks in devices or objects that are held by storage manager sessions. For each lock, the output shows the session number, the object ID, the date and
time that the lock was placed, the server, and the object name.

onpsm -D list output

The onpsm -D list command displays information about all of the devices in each IBM® Informix® Primary Storage Manager pool. You can use this list to determine
whether you need to change information about your devices.

Sample onpsm -D list command output
Type Prio Block/Size (MB) Pool Name Device Name
----- ------- --------------- ------------ ----------------------------
FILE LOW --/-- DBSPOOL /informix/backups

FILE LOW --/-- LOGPOOL /informix/backups

Type
Type of device, either FILE or TAPE (Currently only the FILE type is supported.)

Part VI: Administering 1721

Prio
Priority of the device, either HIGH, HIGHEST, LOW, or READ-ONLY
HIGH is the default priority if a priority is not specified. Only one device in a pool can have a priority of HIGHEST.

Block Size
Size of the device (only applies to devices of the TAPE type)

Pool Name
The name of the pool (DBSPOOL, LOGPOOL, or EXTPOOL)
In the example output above, there are no EXTPOOL devices.

Device Name
Complete path name for the device

onpsm -O list output

The onpsm -O list command displays all of the objects stored in a pool.

Sample onpsm -O list command output
Object List Report
 Logical Path
Obj ID Date Created Size (MB) Name.Version (omits piece #)
------ ------------------- --------- ------------------------------------
 1 2012-07-06 14:39:47 12.0 /gacpsm_tcp/rootdbs/0/gacpsm_tcp.1
 2 2012-07-06 14:41:18 12.0 /gacpsm_tcp/rootdbs/0/gacpsm_tcp.2
 3 2012-07-11 13:42:10 3.9 /gacpsm_tcp/160/14/gacpsm_tcp.1
 4 2012-07-11 13:42:13 3.9 /gacpsm_tcp/160/15/gacpsm_tcp.1
 5 2012-07-11 13:42:15 3.9 /gacpsm_tcp/160/16/gacpsm_tcp.1
 6 2012-07-11 13:42:15 3.9 /gacpsm_tcp/160/17/gacpsm_tcp.1
 7 2012-07-11 13:42:15 3.9 /gacpsm_tcp/160/18/gacpsm_tcp.1
 8 2012-07-11 13:42:15 3.9 /gacpsm_tcp/160/19/gacpsm_tcp.1
 9 2012-07-11 13:42:16 3.9 /gacpsm_tcp/160/20/gacpsm_tcp.1
 10 2012-07-11 13:42:16 3.9 /gacpsm_tcp/160/21/gacpsm_tcp.1

Obj ID
The ID of the stored object

Date Created
The date and time when the object was created

Size
The size of the object in megabytes

Name.Version
The path name of the object followed by . and the version of the object (for example, .2 to indication version 2)

Device pools

The IBM® Informix® Primary Storage Manager pool is a named group of disk devices that you use as a repository for backups.

When storing backup objects, the Informix Primary Storage Manager selects particular devices from the pool and moves automatically from one device to another when
devices are full or when they fail. You maintain pools by using the onpsm utility to add, modify, view, and drop devices in the pool.

Three pools are available:

DBSPOOL
Holds online backups of dbspaces, blobspaces, and sbspaces

LOGPOOL
Holds online backups of logical logs

EXTPOOL
Serves as a staging area for exporting a backup set of objects to a single large, external logical object or for importing the backed up objects. You can move specific
backups or backups generations in this pool to permanent storage or onto a different computer. Files in the EXTERNAL pool are offline. The files are not visible to
ON-Bar, and the Informix Primary Storage Manager does not track them.

Related concepts:
 IBM Informix Primary Storage Manager

Informix Primary Storage Manager file-naming conventions
Related reference:

 PSM_DBS_POOL configuration parameter
PSM_LOG_POOL configuration parameter
The onpsm utility for storage management

Device-configuration file for the Informix Primary Storage Manager

The onpsm utility can generate a device-configuration file, which is a text file that contains information about a storage device. The utility uses this information to re-
create the devices.

1722 Part VI: Administering

The configuration file contains the following information about each device:

DEVICE
The complete path to the device

TYPE
Type of device

FILE = file directory on a disk device

POOL
The pool that contains the device, either DBSPOOL, LOGPOOL, or EXTPOOL

BLOCKSIZE
Not applicable for disk devices.

SIZE
Not applicable for disk devices.

PRIORITY
The priority of the device

For example, the device-configuration file might contain the following information

DEVICE=/vobs/tristarm/sqldist/psm_backup/dbspace
TYPE=FILE
POOL=DBSPOOL
BLOCKSIZE=0
SIZE=0
PRIORITY=HIGH

Informix Primary Storage Manager file-naming conventions

When creating files that store your backup data, the IBM® Informix® Primary Storage Manager uses specific file-naming conventions.

For the DBSPOOL and LOGPOOL device pools, the path name of the storage file consists of:

1. Category information:
For space backups, the category consists of the device name, the database server name, and the space name
For log backups, the category consists of the device name, the database server name, server number, and a log file number

2. For space backups, the backup level, either: 0, 1, or 2
3. A version number, which is an integer that starts at 1 for an object of that category and is incremented for each subsequent backup of an object of that category.
4. An ID that identifies a piece of the backed up object

For space backups, file names have this format:

/device/DBSERVERNAME/dbspace/backup_level/DBSERVERNAME.version.piece

For example, the name of the file for the third piece of a second level 0 backup of the dbspace rootdbs for the server named SERVER1 is:

/my_device/SERVER1/rootdbs/0/SERVER1.2.3

For log backups, file names have this format:

/device/DBSERVERNAME/SERVERNUM/LOG_UNIQUE_ID/DBSERVERNAME.version.piece

If you use the onsmsync utility with the -E option to export a backup generation in the Informix Primary Storage Manager, the onsmsync utility creates and places the
backup files in a subdirectory of the storage manager EXTPOOL device. You must provide a prefix (the name of a subdirectory) when you use the onsmsync utility with the
-E or -I options. ON-Bar uses the specified path as a key to communication with the storage manager to store and retrieve objects.

Related concepts:
 Device pools

Related reference:
 The onsmsync utility

Message logs for Informix Primary Storage Manager

The Informix® Primary Storage Manager writes messages to a storage manager activity log and debug log.

The message logs are stored in the directories specified in the BAR_DEBUG_LOG or BAR_ACT_LOG configuration parameters. You can use the PSM_ACT_LOG and
PSM_DEBUG_LOG configuration parameters to specify another directory for each of these logs.

The PSM_DEBUG configuration parameter specifies the level of debugging activity that is captured in the debug log.

Related reference:
 PSM_ACT_LOG configuration parameter

PSM_DEBUG_LOG configuration parameter
PSM_DEBUG configuration parameter

archecker table level restore utility

Part VI: Administering 1723

archecker table level restore utility
You can use the archecker utility to perform point-in-time table-level restores that extract tables or portion of tables from archives and logical logs.

archecker table level restore utility

You can use the archecker utility to perform point-in-time table-level restores that extract tables or portion of tables from archives and logical logs.

The archecker utility restores tables by specifying the source table to be extracted, the destination table where the data is placed, and an INSERT statement that links the
two tables.

For information about using the archecker utility to verify backups, see onbar -v syntax: Verifying backups.

Overview of the archecker utility
 The archecker utility is useful where portions of a database, a table, a portion of a table, or a set of tables need to be recovered. It is also useful in situations where

tables need to be moved across server versions or platforms.
Data restore with archecker

 Use the archecker utility to perform to types of restore operations.
Syntax for archecker utility commands

 The archecker utility provides a command-line interface for restoring data from an archive. To use archecker, you must specify both a configuration file and a
schema command file.
The archecker schema reference

 The topics in this section describe the SQL-like statements used by the archecker schema command file. This file provides information that the archecker utility
uses to perform data recovery.

Related reference:
 The archecker utility configuration parameters and environment variable

Overview of the archecker utility

The archecker utility is useful where portions of a database, a table, a portion of a table, or a set of tables need to be recovered. It is also useful in situations where tables
need to be moved across server versions or platforms.

Use archecker utility in the following situations:

Restore data
You can use the archecker utility to restore a specific table or set of tables that have previously been backed up with ON-Bar or ontape. These tables can be
restored to a specific point in time. This is useful, for example, to restore a table that has accidentally been dropped.

The following restrictions, however, limit the functionality of the archecker utility in some table-level restore operations:
The archecker utility is not JSON compatible. If you try to use the utility with target tables that contain columns of JSON or BSON (binary JSON) data types,
the utility will abort and return an error message. (Besides data-restore contexts, this limitation affects all archecker operations on tables with JSON or
BSON columns.)
You cannot logically restore a table when restoring smart large objects. Only a physical restore of BLOB or CLOB objects is supported for table-level restore
operations using the archecker utility.
You cannot restore data from a remote device.
You cannot use a shared memory connection when performing a table-level restore.

Copy data
The archecker utility can also be used as a method of copying data. For example, you can move a table from the production system to another system.

The archecker utility is more efficient than other mechanisms for copying data. Because archecker extracts data as text, it can copy data between platforms or
server versions.

Migrate data
You can also use the archecker utility as a migration tool to move a table to other IBM® Informix® servers.

The archecker utility is designed to recover specific tables or sets of tables. Other situations require that you use different utilities. For example, use ON-Bar or ontape in
the following data recovery scenarios:

Full system restore
Recovery from disk failure

To configure the behavior of the archecker utility, use the archecker configuration file. To define the schema of the data that archecker recovers, use the archecker
schema command file. These files are described in the following sections.

The archecker configuration file
 The archecker utility uses a configuration file to set certain parameters.

Schema command file
 Table-level restore and locales

Related reference:

 ON-Bar script

The archecker configuration file

The archecker utility uses a configuration file to set certain parameters.

1724 Part VI: Administering

Set the AC_CONFIG environment variable to the full path name of the archecker configuration file. By default, the AC_CONFIG environment variable is set to
$INFORMIXDIR/etc/ac_config.std. If you set AC_CONFIG to a user-defined file, you must specify the entire path including the file name.

For information about the configuration parameters used in this file, see The archecker utility configuration parameters and environment variable.

Schema command file

The archecker utility uses a schema command file to specify the following:

Source tables
Destination tables
Table schemas
Databases
External tables
Point in time the table is restored to
Other options

This file uses an SQL-like language to provide information archecker uses to perform data recovery. For complete information about the supported statements and syntax,
see The archecker schema reference.

There are two methods to set the schema command file:

Set the AC_SCHEMA configuration parameter in the archecker configuration file. For more information, see AC_SCHEMA configuration parameter.
Use the -f cmdname command-line option. For more information, see Syntax for archecker utility commands.

If both methods are specified, the -f command-line option takes precedence.

Table-level restore and locales

For table-level restore, if the table being restored (table on the archive) has a locale code set different from the default locale (en_US.8859-1) the DB_LOCALE
environment variable must be set to have the same code set as the locale of the archived table being restored.

No code set conversion is performed during a table-level restore; the locale code set of the database or table being restored must match the locale code set of the
database or table that the data is being restored to. In addition, the same DB_LOCALE information is used for all of the tables being restored by using the same table-level
restore command schema file.

Data restore with archecker

Use the archecker utility to perform to types of restore operations.

The two types of restores that the archecker utility performs are:

A physical restore that is based on a level-0 archive.
A physical restore followed by a logical restore, which uses both a level-0 archive and logical logs to restore data to a specific point in time.

When reading the command file, archecker determines whether to perform a physical restore only or a physical restore followed by a logical restore. By default,
archecker performs a physical and logical restore. If you use the WITH NO LOG clause, archecker does not perform a logical restore.

The procedures and resources that archecker uses differ between a physical-only restore and a physical and logical restore. These procedures are outlined in the
following sections.

Physical restore
 When the archecker utility performs a physical restore, the utility extracts data from a level-0 archive.

Logical restore
 After a physical restore, logical recovery can further restore tables to a user-specified point in time. To do this, the archecker utility reads backed-up logical logs,

converts them to SQL statements, and then replays these statements to restore data.

Physical restore

When the archecker utility performs a physical restore, the utility extracts data from a level-0 archive.

When performing a physical restore, archecker performs the following tasks:

Disables all constraints (including foreign constraints that reference the target table), indexes, and triggers until the data is restored. Restore performance is better
if the table has no constraints, indexes, or triggers.
Reads the schema command file to determine the following:

The source tables
The destination tables
The schema of all tables
The dbspace names of where tables are located
The specific archive to extract data from

Scans the archive for pages belonging to the tables being restored

Part VI: Administering 1725

Processes each row from the data page and determines if the row is complete or partial.
If the row is a partial row, then archecker determines if the remaining portion of the row has been staged, and if not, it stages the row for later processing.

For a physical-only restore, applies filters to the row and rejects rows that are not required.
Inserts the row into the destination table.

To restore a table with the original schema, the source schema must be specified. To restore a table with a different schema, the table name in the target schema must be
different from the table name in the source schema. After restoring by using a different schema, the table can be renamed with the rename table statement.

Logical restore

After a physical restore, logical recovery can further restore tables to a user-specified point in time. To do this, the archecker utility reads backed-up logical logs, converts
them to SQL statements, and then replays these statements to restore data.

Before performing a logical recovery, ensure that all transactions you want to restore are contained in backed-up logical logs. The archecker utility cannot replay
transactions from the current log. You cannot perform a logical restore on an external table.

If a table is altered, dropped, or truncated during a logical restore, the restore terminates for that table. Termination occurs at the point that the alter was performed. A
message in the archecker message log file records that an alter operation occurred.

The archecker utility cannot process compression dictionaries during a logical restore of compressed tables in non-logged databases. A logical restore stops for a table if
it finds that a new compression dictionary was created for that table.

When performing a logical restore, archecker uses two processes that run simultaneously:

Stager
Assembles the logical logs and saves them in tables.

Applier
Converts the log records to SQL statements and executes the statements.

The stager
The applier

The stager

To collect the pertinent logical log records, the stager performs the following steps:

1. Scans only the backed-up logical logs
The stager reads the backed-up logical log files and assembles complete log records.

2. Tests the logical log records
Any log record that is not applicable to the tables being restored is rejected.

3. Inserts the logical log information in to a table
If the logical log record is not rejected, it is inserted into a stage table.

The applier

The applier reads data from the control table created by the stager. It begins processing the required transaction and updates the control table to show that this
transaction is in process. Next, it operates on each successive log record, row by row, until the transaction commits.

All updates to the control table occur in the same transaction as the log record modification. This allows all work to be completed or undone as a single unit, maintaining
integrity at all times. If an error occurs, the transaction is rolled back and the error is recorded in the control table entry for this transaction.

When data is being restored and the DBA has elected to include a logical restore, two additional work columns and an index are added to the destination table. These
columns contain the original rowid and original part number. These columns provide a unique key which identifies the location of the row on the original source archive. To
control the storage of the index, use the SET WORKSPACE command (see The SET statement). Otherwise, the index is stored in the same space as the table.

After the applier has finished and the restore is complete, these columns, and any indexes created on them, are dropped from the destination table.

Syntax for archecker utility commands

The archecker utility provides a command-line interface for restoring data from an archive. To use archecker, you must specify both a configuration file and a schema
command file.

>>-archecker-->

>--+-+-+- -b-+--| Table-level restore |--+-----+-+--+-----+--+-----+-+-><
 | | '- -t-' '- -d-' | '- -v-' '- -s-' |
 | +- -D---------------------------------------+ |
 | '- -i---------------------------------------' |
 +- -V---+
 '- -version---'

1726 Part VI: Administering

Table-level restore

|--+--+-----------|
 '- -X--+---------------------------------------+-'
 +-+---------------+--+----------------+-+
 | '- -f--cmd_file-' '- -l--+-phys--+-' |
 | +-stage-+ |
 | '-apply-' |
 '- -D-----------------------------------'

Table 1. Options for the archecker command

Element Description

-b Provides direct XBSA access for backups created with ON-Bar.

-d Deletes previous archecker restore files, except the archecker message log. For more information, see When to delete restore files.

-D Deletes previous archecker restore files, except the archecker message log, and then exits.
The -D option can be used with the -X option to delete previous restore files plus any table-level-restore working tables in the sysutils database. For
more information, see When to delete restore files.

-f cmdfile Specifies that archecker use the command file specified by cmdfile. This option overrides the value of the AC_SCHEMA configuration parameter. For
more information, see Schema command file.

-i Manually initializes the system.

-
lphys,stage,app
ly

Specifies the level of logical restore:

phys
Starts a logical restore of the system, but stops after physical recovery is complete. The backed up logical logs must be available.

stage
After physical recovery is complete, extracts the logical logs from the storage manager and stages them in their corresponding tables, and
starts the stager.

apply
Starts the applier. The applier takes the transactions stored in the stage tables and converts them to SQL and replays the operations.

The default level of logical restore if -l is not listed is -lphys,stage,apply. You can specify any combination of the logical restore levels, separated with
commas. Spaces are not allowed between -l and levels.

For more information, see Manually control a logical restore.

-s Prints a status message to the screen.

-t Specifies ontape as the backup utility.

-v Specifies verbose mode.

-X Specifies a table-level restore.

-V Displays IBM® Informix® version information.

-version Displays additional version information about the build operation system, build number, and build date for IBM Informix.

When you use ON-Bar, you can use an ON-Bar command to access archecker information to verify a backup. For information on the syntax for this command, see onbar -v
syntax: Verifying backups.

Manually control a logical restore
 Performing a restore with multiple storage managers

 Perform a parallel restore
 Restore tables with large objects

 When to delete restore files

Manually control a logical restore

You can manually control the stager and applier with the -l command-line option.

The following examples show how to perform a logical restore. In all examples, the name of the schema command file is cmdfile.

The following example is a typical usage:

archecker -bvs -f cmdfile

This command is equivalent to the following command:

archecker -bvs -f cmdfile -lphys,stage,apply

After the physical restore is complete, the archecker utility starts the stager. After the stager has started, the applier is automatically started.

In the following example, the -lphys option performs a physical-only restore:

archecker -bvs -f cmdfile -lphys

In the following example, the -lstage option starts the archecker stager. The stager extracts the logical log records from the storage manager and saves the applicable
records to a table.

archecker -bvs -f cmdfile -lstage

The stager should only be started after physical recovery has completed.

Part VI: Administering 1727

In the following example, the -lapply option starts the archecker applier. It looks in the acu_control table for the transaction to recover. The applier should only be started
after the stager has been started.

archecker -bvs -f cmdfile -lapply

Performing a restore with multiple storage managers

If you use multiple storage managers, you can perform a table-level restore with archecker by configuring archecker on every node.

To perform a table-level restore that involves multiple storage managers:

1. Create an archecker configuration file on every node.
2. Create a schema command file on every node.
3. Remove old restores by executing the archecker -DX command on a single node.
4. Start the physical restore by executing the archecker -bX -lphys command on each node.

Restriction: Do not use the -d option.
5. After the physical restore completes, start the logical restore by executing the archecker -bX -lstage command on each node that contains logical log records.

Restriction: Do not use the -d option.
6. After starting all stagers, complete the restore by executing the archecker -bX -lapply command on a single node.

Perform a parallel restore

If you have a fragmented table that resides in separate dbspaces, you can perform a physical table-level restore in parallel by executing multiple archecker commands
with different schema command files for each dbspace.

During a level-0 archive, there cannot be any open transactions that would change the schema of the table. The table or table fragments being recovered must exist in the
level-0 archive. The table or fragment cannot be created or added during the logical recovery. Tables created or fragments added during the logical recovery are ignored.

Because a detached fragment is no longer part of the original table, the applier does not process the detached fragment log record or any other log records for this
fragment from this point forward. A message in the archecker message log file indicates a detach occurred.

In this example, the table is fragmented across three dbspaces. The corresponding schema command files are named cmdfile1, cmdfile2, cmdfile3. The following
commands delete previous restores and then perform physical restores on each dbspace in parallel:

archecker -DX
archecker -bvs -f cmdfile1 -lphys
archecker -bvs -f cmdfile2 -lphys
archecker -bvs -f cmdfile3 -lphys

You cannot perform a logical restore in parallel.

Restore tables with large objects

ON-Bar supports table-level restores of smart large objects and binary large objects.

Smart large objects
Table-level restore also supports smart large objects for physical restore only (restore from level-0 archive).

The storage location of the smart large object columns being restored must be specified with the PUT clause in the CREATE TABLE statement. The restored smart
large objects are created with the create-time flags LO_NOLOG and LO_NOKEEP_LASTACCESS_TIME. These flags override the LOG and KEEP ACCESS TIME column
attributes if they are specified in the target table for the smart large object column.

Binary large objects
Table-level restore supports restoring tblspace binary large objects, but not blobspace binary large objects. If you attempt to restore a blobspace binary large
object, the value is set to NULL and a warning is issued.

When to delete restore files

If you repeatedly run the same archecker table-level restore, you must clean up the archecker table-level restore working files and tables from the previous runs. These
working tables refer to acu_ tables in the sysutils database that are created during an archecker table-level restore. The archecker table-level restore working files and
tables are kept after an archecker table-level restore completes in case these files and tables are needed for diagnosing problems.

You can remove the working files and tables by explicitly running the command archecker -DX or by using the -d option when you run the next archecker table-level
restore command. The -d option indicates that all files and tables from the previous run of archecker table-level restore are removed before the new restore begins.

ontape example: archecker -tdvs -fschema_command_file
onbar example: archecker -bdvs -fschema_command_file

The archecker schema reference

1728 Part VI: Administering

The topics in this section describe the SQL-like statements used by the archecker schema command file. This file provides information that the archecker utility uses to
perform data recovery.

Use the schema command file to specify the source and destination tables and to define the table schema.

For information about specifying which command file archecker uses, see Schema command file.

The following are statements supported by archecker:

CREATE TABLE
DATABASE
INSERT INTO
RESTORE
SET

Important: Standard SQL comments are allowed in the archecker utility file and are ignored during processing.
The syntax of these statements is described in the following topics.

The CREATE TABLE statement
 The CREATE EXTERNAL TABLE statement

 The DATABASE statement
 In the archecker utility, the DATABASE statement sets the current database.

The INSERT statement
 The INSERT statement tells the archecker utility what tables to extract and where to place the extracted data.

The RESTORE statement
 The RESTORE statement is an optional command to restore tables to a specific point in time.

The SET statement
 Schema command file examples

 This section contains examples that show different command file syntax for different data recovery scenarios.

The CREATE TABLE statement

The CREATE TABLE statement describes the schema of the source and target tables. If the target table is external, use the CREATE EXTERNAL TABLE statement described
in the section The CREATE EXTERNAL TABLE statement.

Syntax
The syntax of the CREATE TABLE used in the archecker schema command file is identical to the corresponding IBM® Informix® SQL statement. For a description of this
syntax, see the IBM Informix Guide to SQL: Syntax.

Usage
You must include the schema for the source table in the archecker schema command file. This schema must be identical to the schema of the source table at the time the
archive was created.

The schema of the source table is not validated by archecker. Failing to provide an accurate schema leads to unpredictable results.

The source table cannot be a synonym or view. The schema of the source table only needs the column list and storage options. Other attributes such as extent sizes, lock
modes, and so on are ignored. For an ON-Bar archive, archecker uses the list of storage spaces for the source table to create its list of objects to retrieve from the storage
manager. If the source table is fragmented, you must list all dbspaces that contain data for the source table. The archecker utility only extracts data from the dbspaces
listed in the schema command file.

If the source table contains constraints, indexes, or triggers, they are automatically disabled during the restore. Foreign constraints that reference the target table are also
disabled. After the restore is complete, the constraints, indexes, and triggers are enabled. For better performance, remove constraints, indexes, and triggers prior to
performing a restore.

You must also include the schema of the target table in the command file. If the target table does not exist at the time the restore is performed, it is created using the
schema provided.

If the target table exists, its schema must match the schema specified in the command file. Data is then appended to the existing table.

Examples
The schema of the source and target tables do not have to be identical. The following example shows how you can repartition the source data after performing the data
extraction:

CREATE TABLE source (col1 integer, ...) IN dbspace1;
CREATE TABLE target (col1 integer, ...)
 FRAGMENT BY EXPRESSION
 MOD(col1, 3) = 0 in dbspace3,
 MOD(col1, 3) = 1 in dbspace4,
 MOD(col1, 3) = 2 in dbspace5;
INSERT INTO target SELECT * FROM source;

The CREATE EXTERNAL TABLE statement

The CREATE EXTERNAL TABLE statement describes the schema of an external target table.

Part VI: Administering 1729

Syntax
The syntax of the CREATE EXTERNAL TABLE statement for the archecker schema file is not identical to the SQL CREATE EXTERNAL TABLE statement.

 .-,-----------------.
 V |
>>-CREATE EXTERNAL TABLE--name--(----column--data_type-+--)----->

>--USING--(--“filename“--+------------------+--)--;------------><
 '-,--+-DELIMITED-+-'
 '-INFORMIX--'

Element Description

column The name of the column. Must conform to SQL identifier syntax rules. For more information, see the IBM® Informix® Guide to SQL:
Syntax.

data_type The built-in data type of the column. For more information about data types, see the IBM Informix Guide to SQL: Reference.

filename Either the name of the file in which to place the data or a pipe device. The pipe device must exist before starting the archecker utility.

name The name of the table to store the external data. Must be unique among names of tables, views, and synonyms in the current
database. Must conform to SQL database object name rules. For more information, see the IBM Informix Guide to SQL: Syntax.

Usage
When you use the CREATE EXTERNAL TABLE statement to send data to an external table, the data is only extracted from a level-0 archive. Logical logs are not rolled
forward on an external table.

You can specify either of the following formats for external files:

DELIMITED: ASCII delimited file. This is the default format.
INFORMIX: internal binary representation. To optimize performance, filters are not applied to external tables. If filters exist, a warning indicates that they are
ignored.

For an example of using the CREATE EXTERNAL TABLE statement, see Restore to an external table.

The DATABASE statement

In the archecker utility, the DATABASE statement sets the current database.

Syntax

>>-DATABASE--dbname--+---------------+--;----------------------><
 '-LOG MODE ANSI-'

Element Description

dbname The name of the current database.

Usage
Multiple DATABASE statements can be used. All table names referenced following this statement are associated with the current database.

If the logging mode of the source database is ANSI and default decimal columns are used in the table schemas, then the logging mode of the database must be declared.

If the logging mode of the source database is not declared no error will be returned, but unexpected results and data can occur.

Examples
In the following example, both the source and target tables reside in the same database dbs.

DATABASE dbs;
CREATE TABLE source (...);
CREATE TABLE target (...);
INSERT INTO target SELECT * from source;

You can use multiple database statements to extract a table from one database into another database.

DATABASE dbs1;
CREATE TABLE source (...) IN dbspace1;
DATABASE dbs2;
CREATE TABLE target (...) IN dbspace2;
INSERT INTO dbs2:target SELECT * FROM dbs1:source;

The INSERT statement
1730 Part VI: Administering

The INSERT statement tells the archecker utility what tables to extract and where to place the extracted data.

Syntax

>>-INSERT INTO--target_table--+-----------------------+--------->
 | .-,-------------. |
 | V | |
 '-(---target_column-+-)-'

 .-,----------.
 V |
>--SELECT--+---src_column-+-+--FROM--src_table------------------>
 '-*--------------'

>--+---------------+---><
 '-WHERE--filter-'

Element Description

filter The following filters are supported by the INSERT statement:

=, !=, <>
>, >=, <, <=
[NOT] MATCHES, [NOT] LIKE
IS [NOT] NULL
AND, OR
TODAY, CURRENT

The following operators are not supported by the archecker utility:

Aggregates
Functions and procedures
Subscripts
Subqueries
Views
Joins

Filters can only be applied to physical-only restore.

src_column A list of columns to be extracted.

src_table The source table on the archive where the data is restored from.

target_column The destination column or columns where the data will be restored.

target_table The destination table where the data will be restored.

Examples
The following example demonstrates the simplest form of the INSERT statement. This statement extracts all rows and columns from the source to the target table.

INSERT INTO target SELECT * FROM source;

You can also extract a subset of columns. In the following example, only two columns from the source table are inserted into the destination table.

CREATE TABLE source (col1 integer, col2 integer, col3 integer, col4 integer);
CREATE TABLE target (col1 integer, col2 integer);
INSERT INTO target (col1, col2) SELECT col3, col4 FROM source;

The RESTORE statement

The RESTORE statement is an optional command to restore tables to a specific point in time.

Syntax

>>-RESTORE--+----------------------------------+---------------><
 '-TO--+-“time“--+--+-------------+-'
 '-CURRENT-' '-WITH NO LOG-'

Element Description

"time" The date and time the table is to be restored to.

Usage
The TO clause is used to restore the table to a specific point in time, which is specified by a date and time or the reserved word CURRENT.

Only one RESTORE statement can be specified in a command file. If this statement is not present in the command file, then the system will be restored to the most current
time using logical logs.

Part VI: Administering 1731

If the WITH NO LOG clause is present, only a physical restore is performed. In addition, the two extra columns and the index are not added to the destination table.
Physical-only restores are based on level-0 archives only.

Tip: Use this option when you do not have logical logs. You will not receive any messages about logical recovery.

Example
RESTORE TO CURRENT WITH NO LOG;

The SET statement

The SET statement controls the different features in the table-level unload library.

Syntax

>>-SET--+-COMMIT TO--number-------------+----------------------><
 | .-,-----------. |
 | V | |
 '-WORKSPACE TO------dbspace---+-'

Element Description

number Sets the number of records to insert before committing during a physical restore. The default is 1000.

dbspace The dbspaces to use for the working storage space. The default is the root dbspace. You cannot use temporary dbspaces for the
working storage space.

The archecker utility creates several tables for the staging of logical log records during a logical restore. These tables are created in the sysutils database and stored in
the working storage space.

Examples
SET COMMIT TO 20000;
SET WORKSPACE to dbspace1;

Schema command file examples

This section contains examples that show different command file syntax for different data recovery scenarios.

Simple schema command file
 Restore a table from a previous backup

Restore to a different table
 Extract a subset of columns
 Use data filtering

 Restore to an external table
 Restore multiple tables

 Perform a distributed restore

Simple schema command file

The schema command file in this example extracts a table from the most recent level-0 backup of dbspace1. The data is placed in the table test1:tlr and the logs are
applied to bring the table tlr to the current point in time.

database test1;
create table tlr (
 a_serial serial,
 b_integer integer,
 c_char char,
 d_decimal decimal
) in dbspace1;
insert into tlr select * from tlr;

Restore a table from a previous backup

The schema command file in this example extracts a table from the level-0 backup of dbspace1. The logical logs are used to bring the table to the time of "2003-01-01
01:01:01". The data is placed in the table test1:tlr.

database test1;
create table tlr (
 a_serial serial,
 b_integer integer,

1732 Part VI: Administering

 c_char char,
 d_decimal decimal
) in dbspace1;
insert into tlr select * from tlr;
restore to '2003-01-01 01:01:01';

Restore to a different table

The schema command file in this example extracts a table called test1:tlr from the most recent backup of dbspace1 and places the data in the table test1:tlr_dest.

database test1;
create table tlr (
 a_serial serial,
 b_integer integer,
 c_char char(20),
 d_decimal decimal,
) in dbspace1;
create table tlr_dest (
 a_serial serial,
 b_integer integer,
 c_char char(20),
 d_decimal decimal
) in dbspace2;
insert into tlr_dest select * from tlr;

Extract a subset of columns

The schema command file in this example extracts a table test1:tlr from the most recent backup of dbspace1 and places a subset of the data into the table
test1:new_dest

database test1;
create table tlr (
 a_serial serial,
 b_integer integer,
 c_char char(20),
 d_decimal decimal
) in dbspace1;
create table new_dest (
 X_char char(20),
 Y_decimal decimal,
 Z_name char(40)
) in dbspace2;
insert into new_dest (X_char, Y_decimal) select c_char,d_decimal from tlr;

Use data filtering

The schema command file in this example extracts a table test1:tlr from the most recent backup of dbspace1 and places the data in the table test1:tlr only where the list
conditions are true.
Important: Filters can only be applied to a physical restore.

database test1;
create table tlr (
 a_serial serial,
 b_integer integer,
 c_char char(20),
 d_decimal decimal,
) in dbspace1;
insert into tlr
 select * from tlr
 where c_char matches ‘john*'
 and d_decimal is NOT NULL
 and b_integer > 100;
restore to current with no log;

Restore to an external table

The schema command file in this example extracts a table called test1:tlr from the most recent backup of dbspace1 and places the data in a file called /tmp/tlr.unl.

database test1;
create table tlr
(a_serial serial,
 b_integer integer
) in dbspace1;
create external table tlr_dest
 (a_serial serial,
 b_integer integer
) using ("/tmp/tlr.unl", delimited);
insert into tlr_dest select * from tlr;
restore to current with no log;

Part VI: Administering 1733

Restore multiple tables

The schema command file in this example extracts a table test1:tlr_1 and test1:tlr_2 from the most recent backup of dbspace1 and places the data in test1:tlr_1_dest
and test1:tlr_2_dest. This is an efficient way of restoring multiple tables because it requires only one scan of the archive and logical log files.

database test1;
create table tlr_1
 (columns) in dbspace1;
create table tlr_1_dest (columns);
create table tlr_2
 (columns) in dbspace1;
create table tlr_2_dest (columns);
insert into tlr_1_dest select * from tlr_1;
insert into tlr_2_dest select * from tlr_2;

Perform a distributed restore

The schema command file in this example extracts a table test:tlr_1 from the most recent backup of dbspace1 and places the data on the database server rem_srv in the
table rem_dbs:tlr_1.

database rem_dbs
create table tlr_1
 (columns);
database test1;
create table tlr_1
 (columns) in dbspace1;
insert into rem_dbs@rem_srv.tlr_1
 select * from tlr_1;

Backup and restore configuration parameter reference

Backup and restore configuration parameters
 These topics describe the configuration parameters that you use with the ON-Bar, ontape, and archecker utilities.

Backup and restore configuration parameters

These topics describe the configuration parameters that you use with the ON-Bar, ontape, and archecker utilities.

You set most of these configuration parameters in the onconfig file. However, you set some of the archecker configuration parameters in the AC_CONFIG file.

Be sure to configure your storage manager. Depending on the storage manager that you choose, you might set different ON-Bar configuration parameters. If you are using
a third-party storage manager, see Configuring a third-party storage manager, before you start ON-Bar.

The following table describes the following attributes (if relevant) for each parameter.

Attribute Description

ac_config.std
value

For archecker configuration variables. The default value that appears in the ac_config.std file.

onconfig.std
value

For onconfig configuration variables. The default value that appears in the onconfig.std file.

if value not
present

The value that the database server supplies if the parameter is missing from your onconfig file.
If this value is present in onconfig.std, the database server uses the onconfig.std value. If this value is not present in onconfig.std, the database server
uses this value.

units The units in which the parameter is expressed

range of values The valid values for this parameter

takes effect The time at which a change to the value of the parameter affects ON-Bar operation.
Except where indicated, you can change the parameter value between a backup and a restore.

refer to Cross-reference to further discussion

ON-Bar and ontape configuration parameters and environment variable
 Many properties of the ON-Bar and ontape utilities are controlled by configuration parameters in the onconfig file. ON-Bar also has an environment variable.

The archecker utility configuration parameters and environment variable
 These topics describe the AC_CONFIG environment variable and the configuration parameters that you use with the archecker utility.

Informix Primary Storage Manager configuration parameters
 The IBM® Informix® Primary Storage Manager uses the information in some specific configuration parameters.

Event alarm configuration parameters
 When you set configuration parameters for use with the ON-Bar and ontape utilities, also determine if you need to adjust the ALARMPROGRAM and

ALRM_ALL_EVENTS configuration parameters.

Related reference:
 ON-Bar backup and restore system

1734 Part VI: Administering

ON-Bar and ontape configuration parameters and environment variable

Many properties of the ON-Bar and ontape utilities are controlled by configuration parameters in the onconfig file. ON-Bar also has an environment variable.

Important: ON-Bar does not use the TAPEDEV, TAPEBLK, TAPESIZE, LTAPEBLK, and LTAPESIZE configuration parameters. ON-Bar checks if LTAPEDEV is set to /dev/null
on UNIX or NUL on Windows.

BACKUP_FILTER configuration parameter
 Use the BACKUP_FILTER configuration parameter to specify the path name and any options for an external filter program that you use with the ON-Bar or ontape

utility.
BAR_ACT_LOG configuration parameter

 Use the BAR_ACT_LOG configuration parameter to specify the full path name of the ON-Bar activity log.
BAR_BSALIB_PATH configuration parameter

 Use the BAR_BSALIB_PATH configuration parameter to specify the path name and file name of the XBSA shared library for the storage manager that you use.
BAR_CKPTSEC_TIMEOUT configuration parameter

 The BAR_CKPTSEC_TIMEOUT configuration parameter specifies the amount of time, in seconds, that an RS secondary server should wait for a checkpoint to arrive
from the primary server while performing an external backup.
BAR_DEBUG configuration parameter

 Use the BAR_DEBUG configuration parameter to specify the amount of debugging information that the database server captures in the ON-Bar activity log.
BAR_ENCRYPTION configuration parameter

 Use the BAR_ENCRYPTION parameter to encrypt the backups.
BAR_DECRYPTION configuration parameter

 Use the BAR_DECRYPTION parameter to decrypt the backups.
BAR_DEBUG_LOG configuration parameter

 Use the BAR_DEBUG_LOG parameter to specify the location and name of the ON-Bar debug log.
BAR_HISTORY configuration parameter

 Use the BAR_HISTORY configuration parameter to specify whether the sysutils database maintains a backup history when you use onsmsync to expire old
backups.
BAR_IXBAR_PATH configuration parameter

 Use the BAR_IXBAR_PATH configuration parameter to change the path and name of the ON-Bar boot file.
BAR_MAX_BACKUP configuration parameter

 Use the BAR_MAX_BACKUP parameter to specify the maximum number of parallel processes that are allowed for each ON-Bar command.
BAR_MAX_RESTORE configuration parameter

 Use the BAR_MAX_RESTORE parameter to specify the maximum number of parallel restore processes that are allowed during an ON-Bar restore operation.
BAR_NB_XPORT_COUNT configuration parameter

 Use the BAR_NB_XPORT_COUNT configuration parameter to specify the number of data buffers that each onbar_d process can use to exchange data with the
database server.
BAR_PERFORMANCE configuration parameter

 Use the BAR_PERFORMANCE configuration parameter to specify the type of performance statistics to report to the ON-Bar activity log for backup and restore
operations.
BAR_PROGRESS_FREQ configuration parameter

 Use the BAR_PROGRESS_FREQ configuration parameter to specify, in minutes, the frequency of the progress messages in the ON-Bar activity log for backup and
restore operations.
BAR_RETRY configuration parameter

 Use the BAR_RETRY configuration parameter to specify how many times onbar should try a data backup, logical-log backup, or restore operation if the first attempt
fails.
BAR_SEC_ALLOW_BACKUP configuration parameter

 Use the BAR_SEC_ALLOW_BACKUP configuration parameter on an RSS node to enable the taking of archives and log backups on that node using either onbar or
ontape.
BAR_SIZE_FACTOR configuration parameter

 Use the BAR_SIZE_FACTOR configuration parameter to augment the estimate for the size of a backup object, before the backup.
BAR_XFER_BUF_SIZE configuration parameter

 Use the BAR_XFER_BUF_SIZE configuration parameter to specify the size of each transfer buffer.
IFX_BAR_NO_BSA_PROVIDER environment variable

 Set the IFX_BAR_NO_BSA_PROVIDER environment variable to force ON-Bar to use the sm_versions file as the source of information about the XBSA library for the
storage manager.
IFX_BAR_NO_LONG_BUFFERS environment variable

 Set the IFX_BAR_NO_LONG_BUFFERS environment variable to prevent the size of transfer buffers from exceeding 64 KB when the BAR_XFER_BUF_SIZE
configuration parameter is set to a long transfer buffer size value.
IFX_BAR_USE_DEDUP environment variable

 Set the IFX_BAR_USE_DEDUP environment variable to optimize the deduplication capabilities of storage managers.
IFX_TSM_OBJINFO_OFF environment variable

 Set the IFX_TSM_OBJINFO_OFF environment variable to disable support for restoring backup objects that are replicated, imported, or exported between IBM®
Spectrum Protect servers.
LTAPEBLK configuration parameter

 Use the LTAPEBLK configuration parameter to specify the block size of the device to which the logical logs are backed up when you use ontape for dbspace
backups.
LTAPEDEV configuration parameter

 Use the LTAPEDEV configuration parameter to specify the device or directory file system to which the logical logs are backed up when you use ontape for backups.
LTAPESIZE configuration parameter

 Use the LTAPESIZE configuration parameter to specify the maximum tape size of the device to which the logical logs are backed up when you use ontape for
backups.
RESTARTABLE_RESTORE configuration parameter

 Use the RESTARTABLE_RESTORE configuration parameter to enable or disable restartable restores.
RESTORE_FILTER configuration parameter

 Use the RESTORE_FILTER configuration parameter to specify the path name of a filter program, and any options.
TAPEBLK configuration parameter

 Use the TAPEBLK configuration parameter to specify the block size of the device to which ontape writes during a storage-space backup.

Part VI: Administering 1735

TAPEDEV configuration parameter
Use the TAPEDEV configuration parameter to specify the device or directory file system to which the ontape utility backs up storage spaces.
TAPESIZE configuration parameter
Use the TAPESIZE parameter specifies the size of the device to which the ontape utility backs up storage spaces.

Related tasks:
 Configuring Informix Primary Storage Manager

BACKUP_FILTER configuration parameter

Use the BACKUP_FILTER configuration parameter to specify the path name and any options for an external filter program that you use with the ON-Bar or ontape utility.

onconfig.std value
Not set. Backup data is not filtered.

values
The path name of a command and any options. By default, the path name is relative to the $INFORMIXDIR/bin directory, otherwise, the path name must be the
absolute path of the program. If you include command-line options, both the filter name and the options must be surrounded by single quotation marks.

takes effect
After you edit your onconfig file and ON-Bar or ontape starts.

Usage
This filter transforms data before backing it up, such as compressing it. The transformed data is then backed up and stored as a single file. When you perform a restore,
you must transform the data back to its original format. Specify the appropriate program to transform data before a restore by setting the RESTORE_FILTER configuration
parameter.

For security purposes, filters should not have write permission to non-privileged users. Permission on the filters is the same as that of permission on other executable files
that are called by the IBM® Informix® server or utilities.

Note: If the BACKUP_FILTER parameter is set in the onconfig file, the LTAPESIZE configuration parameter cannot be set to 0. Otherwise the ON-Bar or ontape utility
returns an error when backing up logical logs to a directory on disk. The error message is:

The LTAPESIZE configuration parameter cannot be set to 0 when the BACKUP_FILTER
configuration parameter is set; change the value of LTAPESIZE.
Program over.

A workaround is to set the LTAPESIZE configuration parameter to a high value. Log files are not much higher than the LOGSIZE configuration parameter. Use the value in
the LOGSIZE as the upper limit for this database.

When you specify filter information in the BACKUP_FILTER configuration parameter, specify the path name of a filter program, and any options, as shown in this example:

BACKUP_FILTER /bin/compress

Output produced by this filter is saved as a single object in the storage manager.

The BACKUP_FILTER configuration parameter can include command-line options as well as the filter name. For example, specify:

BACKUP_FILTER 'my_encrypt -file /var/adm/encryption.pass'

Related reference:
 RESTORE_FILTER configuration parameter

BAR_ACT_LOG configuration parameter

Use the BAR_ACT_LOG configuration parameter to specify the full path name of the ON-Bar activity log.

onconfig.std value
UNIX: BAR_ACT_LOG $INFORMIXDIR/tmp/bar_act.log
Windows: BAR_ACT_LOG %INFORMIXDIR%\tmp\bar_act.log

range of values
Full path name

takes effect
When onbar-driver starts
When you reset the value dynamically in your onconfig file by running the onmode -wf or equivalent SQL administration API command.

Usage
You should specify a path to an existing directory with an appropriate amount of space available or use $INFORMIXDIR/bar_act.log.

Whenever a backup or restore activity or error occurs, ON-Bar writes a brief description to the activity log. The format of the file resembles the format of the database
server message log. You can examine the activity log to determine the results of ON-Bar actions.

The file specified by the BAR_ACT_LOG configuration parameter is created if it does not exist. If the ON-Bar command (or any ON-Bar-related utility such as the onsmsync
utility) never ran on the system, then the file does not exist.

The sysbaract_log table is a system monitoring interface pseudo table that reads data from the file specified by BAR_ACT_LOG. The following errors are returned if you
attempt to query the sysbaract_log on a system where the BAR_ACT_LOG file does not exist:

1736 Part VI: Administering

244: Could not do a physical-order read to fetch next row.
101: ISAM error: file is not open.

Usage when you specify a file name only
If you specify a file name only in the BAR_ACT_LOG configuration parameter, ON-Bar creates the ON-Bar activity log in the working directory in which you started ON-Bar.
For example, if you started ON-Bar from /usr/mydata on UNIX, the activity log is written to that directory.

For UNIX, if the database server launches a continuous logical-log backup, ON-Bar writes to the ON-Bar activity log in the working directory for the database server.

For Windows, if the database server launches a continuous logical-log backup, ON-Bar writes to the activity log in the %INFORMIXDIR%\bin directory instead.

Related concepts:
 bar_act.log file: ON-Bar activity log

Related reference:
 View ON-Bar backup and restore performance statistics

PSM_ACT_LOG configuration parameter
Related information:

 onmode -wf, -wm: Dynamically change certain configuration parameters

BAR_BSALIB_PATH configuration parameter

Use the BAR_BSALIB_PATH configuration parameter to specify the path name and file name of the XBSA shared library for the storage manager that you use.

default value
UNIX: $INFORMIXDIR/lib/ibsad001.extension
Windows: %INFORMIXDIR%\lib\ibsad001.extension
The extension is platform specific.

onconfig.std value
Not set.

takes effect
When onbar-driver starts
When you reset the value dynamically in your onconfig file by running the onmode -wf or equivalent SQL administration API command.

Usage
ON-Bar and the storage manager rely on a shared library to integrate with each other. Configure the BAR_BSALIB_PATH configuration parameter for your storage-manager
library. Support for BAR_BSALIB_PATH is platform-specific. Check your machine notes to determine whether you can use this configuration parameter with your operating
system. You can change the value of BAR_BSALIB_PATH between a backup and restore.

To ensure that this integration takes place, specify the shared-library path name. Set one of the following options:

UNIX:

Place the storage-manager library in the default directory.
For example, the suffix for Solaris is so, so you specify $INFORMIXDIR/lib/libbsapsm.so on a Solaris system.

Place the storage-manager library in any directory and create a symbolic link from $INFORMIXDIR/lib/ibsad001.platform_extension to it.
Set the LD_LIBRARY_PATH environment variable. For example, set LD_LIBRARY_PATH to $INFORMIXDIR/lib.

Windows:

Place the storage-manager library in the default directory.

If the parameter BAR_BSALIB_PATH is missing or has no value and the database server cannot open the XBSA shared library for your platform, ON-BAR tries to use the
IBM® Informix® Primary Storage Manager as the storage manager in all platforms.

Tip: Be sure that the shared library can access the backup data in the storage manager in a restore. You cannot back up on to one storage manager and restore from a
different storage manager.
Related information:

 onmode -wf, -wm: Dynamically change certain configuration parameters

BAR_CKPTSEC_TIMEOUT configuration parameter

The BAR_CKPTSEC_TIMEOUT configuration parameter specifies the amount of time, in seconds, that an RS secondary server should wait for a checkpoint to arrive from
the primary server while performing an external backup.

onconfig.std value

UNIX: 15
Windows: 16

default value

UNIX: 15
Windows: 16

units

Part VI: Administering 1737

seconds
range of values

5 through twice the value of the CKPTINTVL configuration parameter
takes effect

After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
When an external backup is performed on an RS secondary server, the secondary server must wait until a checkpoint arrives in the logical logs from the primary server. A
checkpoint flushes buffers to disk, and blocks user transactions that involve temporary tables. If the checkpoint on the primary does not complete in the time-out period,
the backup on the RS secondary server fails. You can set the BAR_CKPTSEC_TIMEOUT configuration parameter to a longer amount of time, in seconds, that an RS
secondary server should wait for a checkpoint to arrive from the primary server while performing an external backup.

Related information:
 onmode -wf, -wm: Dynamically change certain configuration parameters

CKPTINTVL configuration parameter

BAR_DEBUG configuration parameter

Use the BAR_DEBUG configuration parameter to specify the amount of debugging information that the database server captures in the ON-Bar activity log.

onconfig.std value
BAR_DEBUG 0

values
0 = Do not display debugging information.
1 = Print a small amount of information
2 = Print a message every time ON-Bar:

Enters a function.
Exits a function. The message includes the return code for the function.

3 = Print exit and entry information with additional details.
4 = Also print information about ON-Bar parallel operations.
5 = Also print information about:

Objects that are being backed up or restored.
The act_node structure corresponding with the bar_action table.

6 = Print additional information about:

Objects that are being backed up or restored.
The act_node structure corresponding with the bar_action table.

7 = Also print:

Information about the contents of the ins_node structure corresponding with the bar_instance table.
Information about modifications to the bar_action table.
Information about logical logs and objects that are restored.
SQL statements done on the sysutils database and SQLCODES that were returned.

8 = Also print page headers of all pages archived and restored. This setting requires a large amount of space.
9 = Print the contents of:

The bar_ins structure after it was initialized.
The object descriptors that are cold restored.

takes effect
Immediately after you edit your onconfig file for any currently executing ON-Bar command and any subsequent commands. Any ON-Bar command that is currently
executing when you update BAR_DEBUG reads the new value of BAR_DEBUG and prints debug messages at the new level.
When you reset the value dynamically in your onconfig file by running the onmode -wf or equivalent SQL administration API command.

Usage
The default value of 0 displays no debugging information. Set the BAR_DEBUG configuration parameter to a higher value to display more detailed debugging information in
the ON-Bar activity log.

You can dynamically update the value of BAR_DEBUG in the onconfig file during a session.

Related reference:
 BAR_DEBUG_LOG configuration parameter

Related information:
 onmode -wf, -wm: Dynamically change certain configuration parameters

BAR_ENCRYPTION configuration parameter

1738 Part VI: Administering

Use the BAR_ENCRYPTION parameter to encrypt the backups.

onconfig.std value
Not set. Backup data is not encrypted.

takes effect
When ON-Bar or ontape starts.

Usage
Use the BAR_ENCRYPTION configuration parameter to enable backup encryption, set the path to the keystore containing the credentials to access a remote key server or
the path of a keyfile containing the backup encryption key, and specify the encryption cipher.

Syntax for the BAR_ENCRYPTION configuration parameter

>>-BAR_ENCRYPTION--keystore--=--keystore_name------------------>
 '--keyfile---=--keyfile_name--'
>--+--------------------------+--------------------------------->
 '-,--cipher--=--+-aes128-+-'
 +-aes192-+
 '-aes256-'

Table 1. Options for the BAR_ENCRYPTION configuration parameter value

Field Value

keystore The keystore specifies the name of the keystore and stash file names. The files are
created in the INFORMIXDIR/etc directory:

keystore.p12 = The keystore file that contains the security certificates.
keystore.sth = The stash file that contains the encryption password.

You must manually back up the keystore and password stash files. These files are
not backed up when you run a back up with the ON-Bar or ontape utilities.

keyfile The keyfile specifies the full path of a text file that contains a backup encryption key
of suitable size for the cipher chosen. The key must be encoded in base64 format.

cipher Specifies the encryption cipher:

aes128 = Default. Advanced Encryption Standard cipher with 128-bit keys.
aes192 = Advanced Encryption Standard cipher with 192-bit keys.
aes256 = Advanced Encryption Standard cipher with 256-bit keys.

BAR_DECRYPTION configuration parameter

Use the BAR_DECRYPTION parameter to decrypt the backups.

onconfig.std value
Not set. If BACKUP_DECRYPTION is not set, backup data that will not be decrypted.

takes effect
When ON-Bar, ontape, onlog and archecker starts.

Usage
Use the BAR_DECRYPTION to override the BAR_ENCRYPTION configuration parameter during a restore. Like with BAR_DECRYPTION, you can set the path to a keystore or
to a keyfile. You cannot set the cipher in this parameter as the cipher is set by the object to be restored.

Syntax for the BAR_DECRYPTION configuration parameter

>>-BAR_DECRYPTION--keystore--=--keystore_name------------------>
 '--keyfile---=--keyfile_name--'

Table 1. Option for the BAR_DECRYPTION configuration parameter value
Field Value

keystore The keystore specifies the name of the keystore and stash file names. The files are
created in the INFORMIXDIR/etc directory:

keystore.p12 = The keystore file that contains the security certificates.
keystore.sth = The stash file that contains the decryption password.

You must manually back up the keystore and password stash files. These files are
not backed up when you run a back up with the ON-Bar or ontape utilities.

keyfile The keyfile specifies the full path of a text file that contains a backup decryption
key. The key must be encoded in base64 format.

Part VI: Administering 1739

BAR_DEBUG_LOG configuration parameter

Use the BAR_DEBUG_LOG parameter to specify the location and name of the ON-Bar debug log.

onconfig.std value
/usr/informix/bar_dbug.log

if value not present
UNIX: /tmp/bar_dbug.log
Windows: \tmp\bar_dbug.log

takes effect
When ON-Bar starts
When you reset the value dynamically in your onconfig file by running the onmode -wf or equivalent SQL administration API command.

Usage
For security reasons, set the BAR_DEBUG_LOG configuration parameter to a directory with restricted permissions, such as the $INFORMIXDIR directory.

Related reference:
 BAR_DEBUG configuration parameter

PSM_DEBUG_LOG configuration parameter
Related information:

 onmode -wf, -wm: Dynamically change certain configuration parameters

BAR_HISTORY configuration parameter

Use the BAR_HISTORY configuration parameter to specify whether the sysutils database maintains a backup history when you use onsmsync to expire old backups.

onconfig.std value
Not in the onconfig.std file.

default value
0

range of values
0 = Remove records for expired backup objects from the sysutils database
1 = Keep records for expired backup objects in the sysutils database

takes effect
When onsmsync starts
When you reset the value dynamically in your onconfig file by running the onmode -wf or equivalent SQL administration API command.

Usage
If you set the value to 0, onsmsync removes the bar_object, bar_action, and bar_instance rows for the expired backup objects from the sysutils database. If you set the
value to 1, onsmsync sets the act_type value to 7 in the bar_action row and keeps the bar_action and bar_instance rows for expired backup objects in the sysutils
database. If you do not set BAR_HISTORY to 1, the restore history is removed.

Regardless of the value of BAR_HISTORY, onsmsync removes the line that describes the backup object from the emergency boot file and removes the object from the
storage manager when the storage manager expires the object.

For more information about onsmsync, see The onsmsync utility.

Related information:
 onmode -wf, -wm: Dynamically change certain configuration parameters

BAR_IXBAR_PATH configuration parameter

Use the BAR_IXBAR_PATH configuration parameter to change the path and name of the ON-Bar boot file.

onconfig.std value
Not set in onconfig.std.

default value
UNIX or Linux: $INFORMIXDIR/etc/ixbar.servernum
Windows: %INFORMIXDIR%\etc\ixbar.servernum

range of values
Full path name for the ON-Bar boot file

takes effect
When ON-Bar or onsmsync starts
When you reset the value dynamically in your onconfig file by running the onmode -wf or equivalent SQL administration API command.

Usage
By default, the ON-Bar boot file is created in the %INFORMIXDIR%\etc folder on Windows and in the $INFORMIXDIR/etc folder on UNIX or Linux. The default name for
this file is ixbar.servernum, where servernum is the value of the SERVERNUM configuration parameter.

1740 Part VI: Administering

For example, in an instance with the SERVERNUM configuration parameter equal to 41, the ON-Bar boot file is created by default with this path and name in UNIX:

BAR_IXBAR_PATH $INFORMIXDIR/etc/ixbarboot.41

You can change the path to create the file in another location. For example, if you want to create the ON-Bar boot file in the directory /usr/informix with the name
ixbar.new, specify:

BAR_IXBAR_PATH=/usr/informix/ixbar.new

Related information:
 onmode -wf, -wm: Dynamically change certain configuration parameters

BAR_MAX_BACKUP configuration parameter

Use the BAR_MAX_BACKUP parameter to specify the maximum number of parallel processes that are allowed for each ON-Bar command.

onconfig.std value
0

if value not present
4

units
ON-Bar processes

values
0 = Maximum number of processes allowed on system
1 = Serial backup or restore
n = Specified number of processes created

takes effect
When ON-Bar starts
When you reset the value dynamically in your onconfig file by running the onmode -wf or equivalent SQL administration API command.

Although the database server default value for BAR_MAX_BACKUP is 4, the onconfig.std value is 0.

Both UNIX and Windows support parallel backups.

Specify serial backups and restores
To perform a serial backup or restore, including a serial whole system backup or restore, set BAR_MAX_BACKUP to 1.

Specify parallel backups and restores
To specify parallel backups and restores, including parallel whole system backups and restores, set BAR_MAX_BACKUP to a value higher than 1. For example, if you set
BAR_MAX_BACKUP to 5 and execute an ON-Bar command, the maximum number of processes that ON-Bar creates concurrently is 5. Configure BAR_MAX_BACKUP to
any number up to the maximum number of storage devices or the maximum number of streams available for physical backups and restores. ON-Bar groups the dbspaces
by size for efficient use of parallel resources.

If you set BAR_MAX_BACKUP to 0, the system creates as many ON-Bar processes as needed. The number of ON-Bar processes is limited only by the number of storage
spaces or the amount of memory available to the database server, whichever is less.

The amount of memory available is based on SHMTOTAL. ON-Bar performs the following calculation where N is the maximum number of ON-Bar processes that are
allowed:

N = SHMTOTAL / (# transport buffers * size of transport buffers / 1024)

If SHMTOTAL is 0, BAR_MAX_BACKUP is reset to 1. If N is greater than BAR_MAX_BACKUP, ON-Bar uses the BAR_MAX_BACKUP value. Otherwise, ON-Bar starts N
backup or restore processes.

Related information:
 onmode -wf, -wm: Dynamically change certain configuration parameters

BAR_MAX_RESTORE configuration parameter

Use the BAR_MAX_RESTORE parameter to specify the maximum number of parallel restore processes that are allowed during an ON-Bar restore operation.

onconfig.std value
0

if value not present
The value of the BAR_MAX_BACKUP configuration parameter

units
ON-Bar processes

values
0 = Maximum number of restore processes allowed on system
1 = Serial restore
n = Specified number of restore processes created

takes effect
When ON-Bar starts
When you reset the value dynamically in your onconfig file by running the onmode -wf or equivalent SQL administration API command.

Part VI: Administering 1741

Both UNIX and Windows support parallel restores.

Specify serial restores
To perform a serial restore, including a serial whole system restore, set BAR_MAX_RESTORE to 1.

Specify parallel restores
To specify parallel restores, including parallel whole system restores, set BAR_MAX_RESTORE to a value higher than 1. For example, if you set BAR_MAX_RESTORE to 5
and start a restore, the maximum number of restore processes that ON-Bar creates concurrently is 5. Configure BAR_MAX_RESTORE to any number up to the maximum
number of storage devices or the maximum number of streams available for physical restores. ON-Bar groups the dbspaces by size for efficient use of parallel resources.

If you set BAR_MAX_RESTORE to 0, the system creates as many ON-Bar restore processes as needed. The number of restore processes is limited only by the number of
storage spaces or the amount of memory available to the database server, whichever is less.

The amount of memory available is based on SHMTOTAL. ON-Bar performs the following calculation where N is the maximum number of ON-Bar processes that are
allowed:

N = SHMTOTAL / (# transport buffers * size of transport buffers / 1024)

If SHMTOTAL is 0, BAR_MAX_RESTORE is reset to 1. If N is greater than BAR_MAX_RESTORE, ON-Bar uses the BAR_MAX_RESTORE value. Otherwise, ON-Bar starts N
restore processes.

Related information:
 onmode -wf, -wm: Dynamically change certain configuration parameters

BAR_NB_XPORT_COUNT configuration parameter

Use the BAR_NB_XPORT_COUNT configuration parameter to specify the number of data buffers that each onbar_d process can use to exchange data with the database
server.

onconfig.std value
20

if value not present
20

units
Buffers

range of values
3 to unlimited

takes effect
When ON-Bar starts
When you reset the value dynamically in your onconfig file by running the onmode -wf or equivalent SQL administration API command.

The value of this parameter affects ON-Bar performance. For example, if you set BAR_NB_XPORT_COUNT to 5 and then issue five ON-Bar commands, the resulting 25 ON-
Bar processes use a total of 125 buffers.

To calculate the amount of memory that each onbar_d process requires, use the following formula. For information about the page size for your system, see the release
notes:

required_memory = (BAR_NB_XPORT_COUNT * BAR_XFER_BUF_SIZE
 * page_size) + 5 MB

Related information:
 onmode -wf, -wm: Dynamically change certain configuration parameters

BAR_PERFORMANCE configuration parameter

Use the BAR_PERFORMANCE configuration parameter to specify the type of performance statistics to report to the ON-Bar activity log for backup and restore operations.

onconfig.std value
0

units
Levels of statistics

values
0 = Does not collect performance statistics
1 = Reports time spent transferring data between the database server and the storage manager.
2 = Reports ON-Bar processing performance, in microseconds, in the timestamps in the activity log and the error log
3 = Reports both microsecond timestamps and transfer statistics.

takes effect
When ON-Bar starts
When you reset the value dynamically in your onconfig file by running the onmode -wf or equivalent SQL administration API command.

Usage
For example, if you set BAR_PERFORMANCE to 3, ON-Bar reports the time spent transferring data between the IBM® Informix® instance and the storage manager, in the
activity log. If you set BAR_PERFORMANCE to 0 or do not set it, ON-Bar does not report performance statistics.

1742 Part VI: Administering

To turn performance monitoring off, set the value to 0. This is the default.
To display the time spent transferring data between the instance and the storage manager, set the parameter to 1.
To display timestamps in microseconds, set the parameter to 2.
To display both timestamps and transfer statistics, set the parameter to 3.

Related reference:
 View ON-Bar backup and restore performance statistics

Related information:
 onmode -wf, -wm: Dynamically change certain configuration parameters

BAR_PROGRESS_FREQ configuration parameter

Use the BAR_PROGRESS_FREQ configuration parameter to specify, in minutes, the frequency of the progress messages in the ON-Bar activity log for backup and restore
operations.

onconfig.std value
0

if value not present
0

units
minutes

range of values
0, then 5 to unlimited

takes effect
When ON-Bar starts
When you reset the value dynamically in your onconfig file by running the onmode -wf or equivalent SQL administration API command.

Usage
Example: If you set BAR_PROGRESS_FREQ to 5, ON-Bar reports the percentage of the object backed up or restored every 5 minutes. If you set BAR_PROGRESS_FREQ to
0 or do not set it, ON-Bar does not write any progress messages to the activity log.

Specify a value 5 minutes or over. Do not set BAR_PROGRESS_FREQ to 1, 2, 3, or 4, ON-Bar automatically resets it to 5 to prevent overflow in the ON-Bar activity log.

If ON-Bar cannot determine the size of the backup or restore object, it reports the number of transfer buffers sent to the database server instead of the percentage of the
object backed up or restored.

Related information:
 onmode -wf, -wm: Dynamically change certain configuration parameters

BAR_RETRY configuration parameter

Use the BAR_RETRY configuration parameter to specify how many times onbar should try a data backup, logical-log backup, or restore operation if the first attempt fails.

onconfig.std value
1

if value not present
1

units
integer

range of values
0 = BAR_ABORT, stop the rest of the backup/restore
1 = BAR_CONT, continue the rest of the backup/restore
n = 2 to 32766

takes effect
When ON-Bar starts
When you reset the value dynamically in your onconfig file by running the onmode -wf or equivalent SQL administration API command.

Usage
The setting of the BAR_RETRY parameter determines ON-Bar behavior in the following ways:

If set to 0 (BAR_ABORT), ON-Bar stops the backup or restore session when an error occurs for a storage space or logical log, returns an error, and quits. If ON-Bar is
running in parallel, the already running processes finish but no new ones are started.
If set to 1 (BAR_CONT), ON-Bar stops the backup or restore attempt for that particular storage space, returns an error, and attempts to back up or restore any
storage spaces or logical logs that remain.
If set to a specific number (retry backup and restore operations 2 to 32766 times), ON-Bar attempts to back up or restore this storage space or logical log the
specified number of times before it gives up and moves on to the next one.

Related reference:
 onbar -RESTART syntax: Restarting a failed restore

Resolve a failed restore
Related information:

 onmode -wf, -wm: Dynamically change certain configuration parameters

Part VI: Administering 1743

BAR_SEC_ALLOW_BACKUP configuration parameter

Use the BAR_SEC_ALLOW_BACKUP configuration parameter on an RSS node to enable the taking of archives and log backups on that node using either onbar or ontape.

onconfig.std value
0

default value
0

range of values
0 = Do not allow archives or log backups to be taken on this RSS node.
1 = Allow archives and log backups to be taken on this RSS node.

takes effect
When the RSS starts

Usage
The setting of the BAR_SEC_ALLOW_BACKUP parameter on an RSS node determines whether the ontape or onbar utilities may take archives or log backups on that node.

If set to 0, ontape and onbar will return an error if one attempts to archive spaces or back up logical logs.
If set to 1 and the RSS node has been properly configured, either ontape or onbar may be used to take archives and log backups locally.

The value of BAR_SEC_ALLOW_BACKUP is ignored on any non-RSS node.

Related concepts:
 Backup and restore a Remote Secondary Server(RSS)

BAR_SIZE_FACTOR configuration parameter

Use the BAR_SIZE_FACTOR configuration parameter to augment the estimate for the size of a backup object, before the backup.

onconfig.std value
Not in onconfig.std.

default value
0

range of values
0 = The estimated size of the backup is not augmented.
Positive integers = The percentage of the original backup size.

takes effect
When the database server starts
When you reset the value dynamically in your onconfig file by running the onmode -wf or equivalent SQL administration API command.

Usage
The estimate is handled before the backup and is calculated so that the storage manager can allocate the storage media appropriately. Because the backup is done online,
the number of pages to back up can change during the backup. Some storage managers are strict and if the backup estimate is too low, the backup results in an error.

The value of BAR_SIZE_FACTOR is taken as percentage of the original backup object size, and then added to the estimate, before communicating it to the storage
manager. BAR_SIZE_FACTOR is used only for dbspace backup objects, not for logical log backup objects.

The formula used for calculating the new estimated backup object size is:

new_estimate = original_estimate x (1 + (BAR_SIZE_FACTOR / 100))

The value to which you set this parameter in a specific server environment depends on the activity on the system during backup or archive. Therefore, determining the
value needs to be based on the individual experience with that system.
Related information:

 onmode -wf, -wm: Dynamically change certain configuration parameters

BAR_XFER_BUF_SIZE configuration parameter

Use the BAR_XFER_BUF_SIZE configuration parameter to specify the size of each transfer buffer.

onconfig.std value
31 if the page size is 2 KB
15 if the page size is 4 KB

units
pages

range of values
For storage managers that support long transfer buffers:

1 - 16383 pages when the page size is 4 KB
1 - 32766 pages when the page size is 2 KB

For storage managers that do not support long transfer buffers:

1744 Part VI: Administering

1 - 15 if the database server base page size is 4 KB
1 - 31 if the database server base page size is 2 KB

takes effect
When ON-Bar starts
When you reset the value dynamically in your onconfig file by running the onmode -wf or equivalent SQL administration API command.

Usage
The database server passes the transfer buffer to ON-Bar and the storage manager.

The value of BAR_XFER_BUF_SIZE is in database server base page sizes. For Linux, Solaris, and HP, the database server base page size is 2 KB; and for AIX®, Windows,
and Mac, the database server base page size is 4 KB. To calculate the size of the transfer buffer in a storage space or logical-log backup, multiply the value of the
BAR_XFER_BUF_SIZE configuration parameter by the system page size, as shown in the following formula:

one transfer buffer KB = BAR_XFER_BUF_SIZE * pagesize

You can determine the system page size by running the onstat -b command.
The maximum size of the transfer buffer for many storage managers is 64 KB. IBM® Spectrum Protect and IBM Informix® Primary Storage Manager support long transfer
buffer sizes of up to 65532 KB.

To calculate how much memory, in KB, the database server needs for each transfer buffer, use the following formula:

memory KB = (BAR_XFER_BUF_SIZE * pagesize) + 500 bytes/1028

The extra 500 bytes is for system use. For example, if BAR_XFER_BUF_SIZE is 15, the transfer buffer can be 66,292 bytes, or 64.5 KB.

The number of transfer buffers per backup stream is specified by the value of the BAR_NB_XPORT_COUNT configuration parameter, and the number of parallel backup
streams is specified by the BAR_MAX_BACKUP configuration parameter.

Restriction: You cannot change the buffer size between a backup and restore. The values of the AC_TAPEBLOCK and AC_LTAPEBLOCK configuration parameters must be
the same value as the value of the BAR_XFER_BUF_SIZE configuration parameter was at the time of backup.

Example
For example, for a transfer buffer size of 128*2 KB (a value of 256 KB) on Linux, specify:

BAR_XFER_BUF_SIZE 128

Related concepts:
 Configuring ON-Bar for optional Spectrum Protect features

Related information:
 onmode -wf, -wm: Dynamically change certain configuration parameters

onstat -b command: Print buffer information for buffers in use

IFX_BAR_NO_BSA_PROVIDER environment variable

Set the IFX_BAR_NO_BSA_PROVIDER environment variable to force ON-Bar to use the sm_versions file as the source of information about the XBSA library for the
storage manager.

>>-setenv--IFX_BAR_NO_BSA_PROVIDER--1--------------------------><

By default, ON-Bar communicates directly with the XBSA library for some storage managers. ON-Bar does not require that the sm_versions file is updated to contain
information about the XBSA library for those storage managers.

Set the IFX_BAR_NO_BSA_PROVIDER environment variable if you are instructed to do so by Software Support.

To unset the IFX_BAR_NO_BSA_PROVIDER environment variable, run the following command:

unset IFX_BAR_NO_BSA_PROVIDER

IFX_BAR_NO_LONG_BUFFERS environment variable

Set the IFX_BAR_NO_LONG_BUFFERS environment variable to prevent the size of transfer buffers from exceeding 64 KB when the BAR_XFER_BUF_SIZE configuration
parameter is set to a long transfer buffer size value.

>>-setenv--IFX_BAR_NO_LONG_BUFFERS--1--------------------------><

IBM® Spectrum Protect and IBM Informix® Primary Storage Manager support long transfer buffer sizes of up to 65532 KB.

Set the IFX_BAR_NO_LONG_BUFFERS environment variable if you are instructed to do so by Software Support.

To unset the IFX_BAR_NO_LONG_BUFFERS environment variable, run the following command:

unset IFX_BAR_NO_LONG_BUFFERS

Part VI: Administering 1745

Related concepts:
Configuring ON-Bar for optional Spectrum Protect features

IFX_BAR_USE_DEDUP environment variable

Set the IFX_BAR_USE_DEDUP environment variable to optimize the deduplication capabilities of storage managers.

>>-setenv--IFX_BAR_USE_DEDUP-----------------------------------><

You are not required to set the IFX_BAR_USE_DEDUP environment variable to a value. You can set it to any value or to no value.

Deduplication is a storage manager feature that reduces the size of backups by removing data that exists in older backups. To use deduplication, enable deduplication for
your storage manager and set the IFX_BAR_USE_DEDUP environment variable in the database server environment and then restart the database server. When you set the
IFX_BAR_USE_DEDUP environment variable, the backup format has fewer unique pages, which optimizes the deduplication process.

Deduplication is incompatible with incremental backups. Do not make incremental backups while the IFX_BAR_USE_DEDUP environment variable is set.

Important: Backups that you take while the IFX_BAR_USE_DEDUP environment variable is set must be restored while the IFX_BAR_USE_DEDUP environment variable is
set.
IBM® Informix® Primary Storage Manager does not support deduplication.

To unset the IFX_BAR_USE_DEDUP environment variable, run the following command:

unset IFX_BAR_USE_DEDUP

After you unset the IFX_BAR_USE_DEDUP environment variable, you must perform a level-0 backup.

Related concepts:
 Configuring ON-Bar for optional Spectrum Protect features

Related tasks:
 Configuring a third-party storage manager

Related reference:
 Editing the Spectrum Protect client system options file

Configure ontape

IFX_TSM_OBJINFO_OFF environment variable

Set the IFX_TSM_OBJINFO_OFF environment variable to disable support for restoring backup objects that are replicated, imported, or exported between IBM® Spectrum
Protect servers.

>>-setenv--IFX_TSM_OBJINFO_OFF--1------------------------------><

By default, ON-Bar stores unique IDs in the metadata of backup objects that are created by Spectrum Protect. During a restore, ON-Bar checks the metadata to identify
the object. Therefore, ON-Bar can restore a backup whose original ID, which is stored as CopyID columns in the ON-Bar catalog, changed because the object was
replicated, exported, or imported between Spectrum Protect servers. To prevent the ability to restore backup objects that are moved between Spectrum Protect servers,
set the IFX_TSM_OBJINFO_OFF environment variable to 1.

To unset the IFX_TSM_OBJINFO_OFF environment variable, run the following command:

unset IFX_TSM_OBJINFO_OFF

Related concepts:
 Configuring ON-Bar for optional Spectrum Protect features

LTAPEBLK configuration parameter

Use the LTAPEBLK configuration parameter to specify the block size of the device to which the logical logs are backed up when you use ontape for dbspace backups.

LTAPEBLK also specifies the block size for the device to which data is loaded or unloaded when you use the -l option of onload or onunload. If you are using onload or
onunload, you can specify a different block size at the command line.

onconfig.std value

On UNIX: 32
On Windows: 16

units
Kilobytes

range of values
Values greater than (page size/1024)
To obtain the page size, run the onstat -b command.

takes effect
For ontape:

1746 Part VI: Administering

When you execute ontape.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.

For onload and onunload: When the database server is shut down and restarted

Usage
Specify LTAPEBLK as the largest block size permitted by your tape device. The database server does not check the tape device when you specify the block size. Verify that
the LTAPEDEV tape device can read the block size that you specify. If not, you might not be able to read from the tape.

UNIX only: The UNIX dd utility can verify that the LTAPEDEV tape device can read the block size. It is available with most UNIX systems.

If you specify a LTAPEBLK value, ON-Bar ignores the value.

Related reference:
 Changing your ontape configuration

LTAPEDEV configuration parameter
LTAPESIZE configuration parameter
ontape backup and restore system
TAPEBLK configuration parameter
Related information:

 onmode -wf, -wm: Dynamically change certain configuration parameters
The onunload and onload utilities

LTAPEDEV configuration parameter

Use the LTAPEDEV configuration parameter to specify the device or directory file system to which the logical logs are backed up when you use ontape for backups.

The LTAPEDEV configuration parameter also specifies the device to which data is loaded or unloaded when you use the -l option of onload or onunload. If you are using
LTAPEDEV to specify a device for onunload or onload, the same information for TAPEDEV is relevant for LTAPEDEV.

onconfig.std value
On UNIX: /dev/tapedevOn Windows: NUL

if not present
On UNIX: /dev/nullOn Windows:NUL

takes effect
For ontape:

When you execute ontape, if set to a tape device.
When the database server is shut down and restarted, if set to /dev/null on UNIX or nul on Windows.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

For onload and onunload: When the database server is shut down and restarted

Usage
Warning: Do not set LTAPEDEV to /dev/null or nul when you use ON-Bar to back up logical logs.
If you specify a tape device in the LTAPEDEV configuration parameter, ON-Bar ignores the value.
Important: Set LTAPEDEV to /dev/null or leave it blank on UNIX or NUL on Windows only if you do not want to back up the logical logs. You must take the database server
offline before you change the value of LTAPEDEV to /dev/null.
When you set LTAPEDEV to /dev/null:

The database server frees the logical logs without requiring that you back up those logs. The logical logs do not get marked as free, but the database server can
reuse them.
The ON-Bar activity log shows a warning and return code 152. Because the database server marks the logical logs as backed up when they are no longer current,
ON-Bar cannot find logical logs to back up. All transactions in those logs are lost, and you are not able to restore them.

If you performed a whole-system backup with LTAPEDEV set to null, you must use the onbar -r -w -p command during restore to notify ON-Bar that you do not want to
restore the logs. .

Related reference:
 Changing your ontape configuration

LTAPEBLK configuration parameter
ontape backup and restore system
TAPEDEV configuration parameter
Related information:

 onmode -wf, -wm: Dynamically change certain configuration parameters
The onunload and onload utilities

LTAPESIZE configuration parameter

Use the LTAPESIZE configuration parameter to specify the maximum tape size of the device to which the logical logs are backed up when you use ontape for backups.

The LTAPESIZE configuration parameter also specifies the maximum tape size of the device to which data is loaded or unloaded when you use the -l option of the onload
or onunload utility. If you are using onload or onunload, you can specify a different tape size on the command line. If you want to use the full capacity of a tape, set

Part VI: Administering 1747

LTAPESIZE to 0.

onconfig.std value
LTAPESIZE 0

units
KB

range of values
0 - 9223372036854775807 (9 ZB)

takes effect
For the ontape utility:

When you run an ontape command.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.

For the onload and onunload utilities: When the database server is shut down and restarted

Usage
LTAPESIZE specifies the maximum tape size of the device to which the logical logs are backed up when you run the ontape utility for backups. LTAPESIZE also specifies
the maximum tape size of the device to which data is loaded or unloaded when you use the -l option of the onload or onunload utility. If you are using the onload or
onunload utility, you can specify a different tape size on the command line. If you want to use the full capacity of a tape, set LTAPESIZE to 0.

Note: If the BACKUP_FILTER parameter is set in the ONCONFIG file, the LTAPESIZE cannot be set to 0. Otherwise the ontape utility returns an error when backing up
logical logs to a directory on disk. The error message is:

The LTAPESIZE configuration parameter cannot be set to 0 when the BACKUP_FILTER
configuration parameter is set; change the value of LTAPESIZE.
Program over.

A workaround is to set the LTAPESIZE configuration parameter to a very high value. Log files are not much higher than the LOGSIZE configuration parameter. Use the value
in the LOGSIZE as the upper limit for this database.

If you specify a LTAPESIZE value, ON-Bar ignores the value.

Related reference:
 Changing your ontape configuration

Specify the tape size
LTAPEBLK configuration parameter
ontape backup and restore system
TAPESIZE configuration parameter
Related information:

 onmode -wf, -wm: Dynamically change certain configuration parameters
The onunload and onload utilities

RESTARTABLE_RESTORE configuration parameter

Use the RESTARTABLE_RESTORE configuration parameter to enable or disable restartable restores.

onconfig.std value
RESTARTABLE_RESTORE ON

values

OFF
Disables restartable restore. If a restore fails and RESTARTABLE_RESTORE is OFF, you are not able to restart it.

ON
Enables restartable restore. Set RESTARTABLE_RESTORE to ON before you begin a restore. Otherwise, you will be unable to restart the restore after a failure.

takes effect
After you edit your onconfig file. If you need to restart a physical restore, you do not need to restart the database server before you can use
RESTARTABLE_RESTORE. If you need to restart a logical restore, you must restart the database server before you can use restartable restore.

Turning on RESTARTABLE_RESTORE slows down logical restore performance. For more information, see onbar -RESTART syntax: Restarting a failed restore.

Related reference:
 onbar -RESTART syntax: Restarting a failed restore

Resolve a failed restore

RESTORE_FILTER configuration parameter

Use the RESTORE_FILTER configuration parameter to specify the path name of a filter program, and any options.

onconfig.std value
Not set. Restored data is not filtered.

values
The path name of a command and any options. By default, the path name is relative to the $INFORMIXDIR/bin directory, otherwise, the path name must be the
absolute path of the program. If you include command-line options, both the filter name and the options must be surrounded by single quotation marks.

takes effect
After you edit your onconfig file and ON-Bar or ontape starts.

1748 Part VI: Administering

Usage
This filter transforms data that was transformed during backup to its original format prior to a restore. The filter specified by the RESTORE_FILTER configuration parameter
must match the filter specified by the BACKUP_FILTER configuration parameter. For example, if data was compressed during backup, data must be uncompressed during a
restore.

For security purposes, filters should not have write permission to non-privileged users. Permission on the filters are the same as that of permission on other executable
files that are called by the IBM® Informix® server or utilities.

For example, if you want to compress backed up data, you could set the BACKUP_FILTER and RESTORE_FILTER configuration parameters to the following values:

BACKUP_FILTER /bin/compress
RESTORE_FILTER /bin/uncompress

The RESTORE_FILTER configuration parameter can include command-line options as well as the filter name. For example, specify:

RESTORE_FILTER ‘my_decrypt –file /var/adm/encryption.pass'

In this example, the command in quotation marks is used as the filter.

Related reference:
 BACKUP_FILTER configuration parameter

TAPEBLK configuration parameter

Use the TAPEBLK configuration parameter to specify the block size of the device to which ontape writes during a storage-space backup.

onconfig.std value

On UNIX: 32
On Windows: 16

units
Kilobytes

range of values
Values greater than pagesize/1024
To obtain the page size, run the onstat -b command.

takes effect
For ontape:

When you execute ontape.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

For onload and onunload: When the database server is shut down and restarted

Usage
TAPEBLK also specifies the default block size of the device to which data is loaded or unloaded when you use the onload or onunload utilities. If you are using onload or
onunload, you can specify a different block size on the command line.

The database server does not check the tape device when you specify the block size. Verify that the TAPEBLK tape device can read the block size that you specify. If not,
you might not able to read from the tape.

If you specify a TAPEBLK value, ON-Bar ignores the value.

Related reference:
 Changing your ontape configuration

TAPEDEV configuration parameter
TAPESIZE configuration parameter
LTAPEBLK configuration parameter
ontape backup and restore system
Related information:

 onmode -wf, -wm: Dynamically change certain configuration parameters
The onunload and onload utilities

TAPEDEV configuration parameter

Use the TAPEDEV configuration parameter to specify the device or directory file system to which the ontape utility backs up storage spaces.

onconfig.std value
On UNIX: /dev/tapedev
On Windows: \\.\TAPE0

if not present
On UNIX: /dev/null
On Windows: NUL

Part VI: Administering 1749

units
Path name

takes effect
For the ontape utility:

If it is set to /dev/null on UNIX or NUL on Windows, when the database server is shut down and restarted
If it is set to a tape device, when you run the ontape utility
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

For the onload and onunload utilities: When the database server is shut down and restarted

Usage
The ontape utility reads the value of the TAPEDEV parameter at the start of processing. If you set TAPEDEV to /dev/null, you must do it before you start ontape to request
the backup. When you set TAPEDEV to /dev/null and request a backup, the database server bypasses the backup but still updates the dbspaces with the new backup time
stamps.

You can set the TAPEDEV configuration parameter to STDIO to direct ontape utility back up and restore operations to standard I/O instead of to a device.

The TAPEDEV configuration parameter also specifies the default device to which data is loaded or unloaded when you use the onload or onunload utilities. However, if
TAPEDEV is set to STDIO, the onunload utility will not be able to unload data.

If you change the tape device, verify that the TAPEBLK and TAPESIZE configuration parameter values are correct for the new device.

If you specify a TAPEDEV value, ON-Bar ignores the value.

Remote devices (UNIX)
You can perform a storage-space backup across your network to a remote device attached to another host computer on UNIX and Linux platforms. The remote device and
the database server computer must have a trusted relationship so that the rsh or the rlogin utility can connect from the database server computer to the remote device
computer without asking for password. You can establish a trusted relationship by configuring the /etc/hosts.equiv file, the user's ~/.rhosts files, or any equivalent
mechanism for your system on the remote device computer. If you want to use a different utility to handle the remote session than the default utility used by your
platform, you can set the DBREMOTECMD environment variable to the specific utility that you want to use.

Symbolic links to remote devices (UNIX)
The TAPEDEV configuration parameter can be a symbolic link, enabling you to switch between tape devices without changing the path name that the TAPEDEV
configuration parameter specifies.

Use the following syntax to specify a tape device attached to another host computer:

host_machine_name:tape_device_pathname

The following example specifies a tape device on the host computer kyoto:

kyoto:/dev/rmt01

Rewinding tape devices before opening and on closing
The tape device that The TAPEDEV configuration parameter specifies must perform a rewind before it opens and when it closes. The database server requires this action
because of a series of checks that it performs before it writes to a tape.

When the database server attempts to write to any tape other than the first tape in a multivolume dbspace or logical-log backup, the database server first reads the tape
header to make sure that the tape is available for use. Then the device is closed and reopened. The database server assumes the tape was rewound when it closed, and
the database server begins to write.

Whenever the database server attempts to read a tape, it first reads the header and looks for the correct information. The database server does not find the correct header
information at the start of the tape if the tape device did not rewind when it closed during the write process.

Related reference:
 Changing your ontape configuration

TAPEBLK configuration parameter
LTAPEDEV configuration parameter
ontape backup and restore system
Related information:

 onmode -wf, -wm: Dynamically change certain configuration parameters
The onunload and onload utilities

TAPESIZE configuration parameter

Use the TAPESIZE parameter specifies the size of the device to which the ontape utility backs up storage spaces.

onconfig.std value
TAPESIZE 0

units
KB

range of values

1750 Part VI: Administering

0 - 9223372036854775807 (9 ZB)
takes effect

For ontape:

When you run an ontape command.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

For the onload and onunload utilities: When the database server is shut down and restarted.

Usage
The TAPESIZE also specifies the size of the default device to which data is loaded or unloaded when you use the onload or onunload utility. When you run the onload or
onunload utility, you can specify a different tape size on the command line. If you want to use the full physical capacity of a tape, set TAPESIZE to 0.

Note: Tape size is irrelevant if TAPEDEV is set to STDIO.
If you specify a TAPESIZE value, ON-Bar ignores the value.

Related reference:
 Changing your ontape configuration

Specify the tape size
TAPEBLK configuration parameter
ontape backup and restore system
LTAPESIZE configuration parameter
Related information:

 onmode -wf, -wm: Dynamically change certain configuration parameters
The onunload and onload utilities

The archecker utility configuration parameters and environment variable

These topics describe the AC_CONFIG environment variable and the configuration parameters that you use with the archecker utility.

The archecker utility uses the configuration parameters in the ac_config.std template to verify a backup or perform a table-level restore. If you need to change these
parameters, copy the ac_config.std template to the AC_CONFIG file. The AC_CONFIG environment variable specifies the location of the AC_CONFIG file.

Because ON-Bar calls the archecker utility to verify backups, you must configure the archecker environment variable and parameters before you can use the onbar -v
option.

You can also use other archecker configuration parameters that do not have default have default values in the ac_config.std file, but are valid in that file.

Table 1. Configuration parameters that the archecker utility uses

Configuration parameter Description

AC_DEBUG Prints debugging messages in the archecker message log.

AC_IXBAR Specifies the path name to the IXBAR file.
If not set in the ac_config file, the value of the BAR_IXBAR_PATH configuration parameter is used.

AC_LTAPEBLOCK Specifies the ontape block size for reading logical logs.
If not set in the ac_config file, the value of the LTAPEBLOCK configuration parameter is used.

AC_LTAPEDEV Specifies the local device name used by ontape for reading logical logs.
If not set in the ac_config file, the value of the LTAPEDEV configuration parameter is used.

AC_MSGPATH Specifies the location of the archecker message log.
This configuration parameter is in the default ac_config file.

AC_SCHEMA Specifies the path name to the archecker schema command file.

AC_STORAGE Specifies the location of the temporary files that archecker builds.
This configuration parameter is in the default ac_config file.

AC_TAPEBLOCK Specifies the tape block size in kilobytes.
If not set in the ac_config file, the value of the TAPEBLOCK configuration parameter is used.

AC_TAPEDEV Specifies the local device name used by the ontape utility.
If not set in the ac_config file, the value of the TAPEDEV configuration parameter is used.

AC_TIMEOUT Specifies the timeout value for the onbar and the archecker processes if one of them exits
prematurely.

AC_VERBOSE Specifies either verbose or terse mode for archecker messages.
This configuration parameter is in the default ac_config file.

BAR_BSALIB_PATH Identical to the BAR_BSALIB_PATH server configuration parameter that is in the onconfig.std file.
For more information, see BAR_BSALIB_PATH configuration parameter.

If you use the ontape utility and the AC_TAPEDEV, AC_TAPEBLK, AC_LTAPEDEV and AC_LTAPEBLK configuration parameters are not set in the AC_CONFIG file, the
archecker utility will use the values specified in the TAPEDEV, TAPEBLK, LTAPEDEV, LTAPEBLK configuration parameters specified in the onconfig file.

AC_CONFIG file environment variable
 Set the AC_CONFIG environment variable to the full path name for the archecker configuration file (either ac_config.std or user defined).

AC_DEBUG configuration parameter
 The AC_DEBUG configuration parameter causes debugging messages to be printed in the archecker message file. Use this parameter only as directed by technical

support.

Part VI: Administering 1751

AC_IXBAR configuration parameter
Use the AC_IXBAR configuration parameter to specify the location of the IXBAR file.
AC_LTAPEBLOCK configuration parameter
Use the AC_LTAPEBLOCK configuration parameter to the ontape block size for reading logical logs.
AC_LTAPEDEV parameter
Use the AC_LTAPEDEV configuration parameter to specify the local device name that is used by the ontape utility.
AC_MSGPATH configuration parameter
Use the AC_MSGPATH parameter in the AC_CONFIG file to specify the location of the archecker message log (ac_msg.log).
AC_SCHEMA configuration parameter
Use the AC_SCHEMA configuration parameter to specify the path name to the archecker schema command file.
AC_STORAGE configuration parameter
Use the AC_STORAGE configuration parameter in the AC_CONFIG file to specify the location of the directory where archecker stores its temporary files.
AC_TAPEBLOCK configuration parameter
Use the AC_TAPEBLOCK configuration parameter to specify the size of the tape block in kilobytes when an archive is performed either the onbar -b command or the
ontape -t command.
AC_TAPEDEV configuration parameter
Use the AC_TAPEDEV configuration parameter to specify the local device name that is used by the ontape utility.
AC_TIMEOUT configuration parameter
Use the AC_TIMEOUT configuration parameter to specify the timeout value for the onbar and the archecker processes if one of them exits prematurely.
AC_VERBOSE configuration parameter
Use the AC_VERBOSE parameter in the AC_CONFIG file to specify either verbose or terse output in the archecker message log (ac_msg.log).

Related reference:
 archecker table level restore utility

AC_CONFIG file environment variable

Set the AC_CONFIG environment variable to the full path name for the archecker configuration file (either ac_config.std or user defined).

>>-setenv--AC_CONFIG -pathname---------------------------------><

default value
UNIX: $INFORMIXDIR/etc/ac_config.std
Windows: %INFORMIXDIR%\etc\ac_config.std

takes effect
When ON-Bar starts

The following are examples of valid AC_CONFIG path names:

UNIX: /usr/dbserver/etc/ac_config.std and /usr/local/my_ac_config.std
Windows: c:\dbserver\etc\ac_config.std and c:\dbserver\etc\my_ac_config.std

If AC_CONFIG is not set, the archecker utility sets the default location for the archecker configuration file to $INFORMIXDIR/etc/ac_config.std on UNIX or
%INFORMIXDIR%\etc\ac_config.std on Windows.

Important: If you do not specify the entire path, including the configuration file name in the AC_CONFIG file, the archecker utility might not work correctly.

AC_DEBUG configuration parameter

The AC_DEBUG configuration parameter causes debugging messages to be printed in the archecker message file. Use this parameter only as directed by technical
support.

The use of this configuration parameter can cause the archecker message log file to grow very large and can substantially slow down archecker processing.

Default value
Off

Range
1-16

AC_IXBAR configuration parameter

Use the AC_IXBAR configuration parameter to specify the location of the IXBAR file.

Default value
None

Range
Any valid path name

AC_LTAPEBLOCK configuration parameter

1752 Part VI: Administering

Use the AC_LTAPEBLOCK configuration parameter to the ontape block size for reading logical logs.

Default value
32 kilobytes

Range
0 - 2,000,000,000

Usage
When you perform an archive with:

onbar -b, the value of AC_TAPEBLOCK should be the value the BAR_XFER_BUF_SIZE configuration parameter multiplied by the current page size. For more
information, see BAR_XFER_BUF_SIZE configuration parameter.
ontape -t, the value of AC_LTAPEBLOCK should be the value that the TAPEBLK ONCONFIG configuration parameter was set to at the time of the archive. For more
information, see Specify the tape-block-size.

AC_LTAPEDEV parameter

Use the AC_LTAPEDEV configuration parameter to specify the local device name that is used by the ontape utility.

If the tape device is set to STDIO, archecker receives input from standard input.

Default value
None

Range
Any valid path name or STDIO

AC_MSGPATH configuration parameter

Use the AC_MSGPATH parameter in the AC_CONFIG file to specify the location of the archecker message log (ac_msg.log).

ac_config.std value
UNIX: AC_MSGPATH /tmp/ac_msg.log
Windows: AC_MSGPATH c:\temp\ac_msg.log

takes effect
When ON-Bar starts

Usage
You must specify the entire path of the message log in the AC_CONFIG file or else the archecker utility might not work correctly.

When you verify backups with onbar -v, the archecker utility writes summary messages to the bar_act.log and indicates whether the verification succeeded or failed. It
writes detailed messages to the ac_msg.log. If the backup fails verification, discard the backup and try another backup, or give the ac_msg.log to Software Support. For
sample messages, see onbar -v syntax: Verifying backups.

AC_SCHEMA configuration parameter

Use the AC_SCHEMA configuration parameter to specify the path name to the archecker schema command file.

Default value
None

Range
Any valid path name

This configuration parameter is overridden by the -f cmdfile command line option.

AC_STORAGE configuration parameter

Use the AC_STORAGE configuration parameter in the AC_CONFIG file to specify the location of the directory where archecker stores its temporary files.

ac_config.std value
UNIX: /tmp
Windows: c:\temp

takes effect
When ON-Bar starts

Usage
You must specify the entire path of the storage location in the AC_CONFIG file or else the archecker utility might not work correctly.

Part VI: Administering 1753

The following table lists the directories and files that archecker builds. If verification is successful, these files are deleted.
Table 1. The archecker temporary files

Directory Files

CHUNK_BM Bitmap information for every backed up storage space.

INFO Statistical analysis and debugging information for the backup.

SAVE Partition pages in the PT.######## file.
Chunk-free pages in the FL.######## file.

Reserved pages in the RS.######## file.

Blob-free map pages in the BF.######## file

To calculate the amount of free space that you need, see Temporary space for backup verification. It is recommended that you set AC_STORAGE to a location with plenty
of free space.

AC_TAPEBLOCK configuration parameter

Use the AC_TAPEBLOCK configuration parameter to specify the size of the tape block in kilobytes when an archive is performed either the onbar -b command or the
ontape -t command.

Default value
32 kilobytes

Range
0 - 2,000,000,000

Usage
When you perform an archive with:

onbar -b, the value of AC_TAPEBLOCK should be the value the BAR_XFER_BUF_SIZE configuration parameter multiplied by the current page size. For more
information, see BAR_XFER_BUF_SIZE configuration parameter.
ontape -t, the value of AC_TAPEBLOCK should be the value that the TAPEBLK ONCONFIG configuration parameter was set to at the time of the archive. For more
information, see Specify the tape-block-size.

AC_TAPEDEV configuration parameter

Use the AC_TAPEDEV configuration parameter to specify the local device name that is used by the ontape utility.

If the tape device is set to STDIO, archecker receives input from standard input.

Default value
None

Range
Any valid path name or STDIO

AC_TIMEOUT configuration parameter

Use the AC_TIMEOUT configuration parameter to specify the timeout value for the onbar and the archecker processes if one of them exits prematurely.

ac_config.std value
UNIX: 300
Windows: 300

units
seconds

takes effect
When the onbar-v command starts

The AC_TIMEOUT configuration parameter was introduced to avoid onbar and archecker processes waiting for each other indefinitely if one of them exits prematurely,
thus avoiding the creation of an orphan and zombie process during data server initialization.

AC_VERBOSE configuration parameter

Use the AC_VERBOSE parameter in the AC_CONFIG file to specify either verbose or terse output in the archecker message log (ac_msg.log).

ac_config.std value
1

range of values
1 = verbose messages in ac_msg.log
0 = terse messages in ac_msg.log

1754 Part VI: Administering

takes effect
When ON-Bar starts

Informix Primary Storage Manager configuration parameters

The IBM® Informix® Primary Storage Manager uses the information in some specific configuration parameters.

PSM_ACT_LOG configuration parameter
 Use the PSM_ACT_LOG configuration parameter to specify the location of the IBM Informix Primary Storage Manager activity log if you do not want the log

information included in the ON-Bar activity log.
PSM_CATALOG_PATH configuration parameter

 Use the PSM_CATALOG_PATH configuration parameter to specify the full path to the directory that contains the IBM Informix Primary Storage Manager catalog
tables. These catalog tables contain information about the pools, devices, and objects managed by the storage manager.
PSM_DBS_POOL configuration parameter

 Use the PSM_DBS_POOL configuration parameter to change the name of the pool in which the IBM Informix Primary Storage Manager places backup and restore
dbspace data.
PSM_DEBUG configuration parameter

 Use the PSM_DEBUG configuration parameter to specify the amount of debugging information that prints in the Informix Primary Storage Manager debug log if you
want to use a debug level that is different from the one used by ON-Bar.
PSM_DEBUG_LOG configuration parameter

 Use the PSM_DEBUG_LOG configuration parameter to specify the location of the debug log to which the IBM Informix Primary Storage Manager writes debugging
messages if you do not want the log information included in the ON-Bar debug log.
PSM_LOG_POOL configuration parameter

 Use the PSM_LOG_POOL configuration parameter to change the name of the pool in which the IBM Informix Primary Storage Manager places backup and restore
log data.

Related concepts:
 IBM Informix Primary Storage Manager

Setting up Informix Primary Storage Manager
Related tasks:

 Configuring Informix Primary Storage Manager
Examples: Manage storage devices with Informix Primary Storage Manager

PSM_ACT_LOG configuration parameter

Use the PSM_ACT_LOG configuration parameter to specify the location of the IBM® Informix® Primary Storage Manager activity log if you do not want the log information
included in the ON-Bar activity log.

onconfig.std value
none

if value not present
The value of the BAR_ACT_LOG configuration parameter is used

range of values
Full path name

takes effect
When the onpsm utility starts
When you reset the value dynamically in your onconfig file by running the onmode -wf command.

Usage
Specify a path to an existing directory with an appropriate amount of space available or use $INFORMIXDIR/psm_act.log. If you specify a file name only, the storage
manager creates the activity log in the working directory in which you started the storage manager.

If the PSM_ACT_LOG configuration parameter is not set, the Informix Primary Storage Manager puts activity information in the directory specified with the BAR_ACT_LOG
configuration parameter. To clearly distinguish ON-Bar and Informix Primary Storage Manager activity information, use the PSM_ACT_LOG to specify a different location
for the storage manager activity log.

The format of the file resembles the format of the database server message log. You can examine the activity log to determine the results of storage manager actions.

The file specified by the PSM_ACT_LOG configuration parameter is created if it does not exist.

You can also use the PSM_ACT_LOG environment variable to specify the location of the Informix Primary Storage Manager activity log for your environment, for example,
for a single session.

Related reference:
 Message logs for Informix Primary Storage Manager

BAR_ACT_LOG configuration parameter
Related information:

 PSM_ACT_LOG environment variable
onmode -wf, -wm: Dynamically change certain configuration parameters

PSM_CATALOG_PATH configuration parameter

Part VI: Administering 1755

Use the PSM_CATALOG_PATH configuration parameter to specify the full path to the directory that contains the IBM® Informix® Primary Storage Manager catalog tables.
These catalog tables contain information about the pools, devices, and objects managed by the storage manager.

onconfig.std value
Not set. The default value is used.

default value
UNIX or Linux: $INFORMIXDIR/etc/psm
Windows: %INFORMIXDIR%\etc\psm

range of values
Full path name for the directory that contains the Informix Primary Storage Manager catalog tables

takes effect
When the ON-Bar or onpsm utility starts
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
You can change the default path to another location. The Informix Primary Storage Manager places the file that information about the devices and objects in whatever
directory you specify.

If you move the backup file to another location, change the value of the PSM_CATALOG_PATH configuration parameter.

You can back up the contents of the file whenever you want.

If you have multiple instances, all instances contain the same catalog tables if the PSM_CATALOG_PATH in each instance is set to the same path. You can specify a
different path for each instance.

The storage manager automatically creates the catalog tables the first time you run an onpsm utility command or the first time that the XBSA shared library is used.

You can also use the PSM_CATALOG_PATH environment variable to specify the location of the Informix Primary Storage Manager catalog tables for your environment, for
example, for a single session.

Related information:
 PSM_CATALOG_PATH environment variable

onmode -wf, -wm: Dynamically change certain configuration parameters

PSM_DBS_POOL configuration parameter

Use the PSM_DBS_POOL configuration parameter to change the name of the pool in which the IBM® Informix® Primary Storage Manager places backup and restore
dbspace data.

onconfig.std value
DBSPOOL

takes effect
When the onpsm utility starts
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
The storage manager automatically places the dbspace data in the DBSPOOL or the pool you specify. You can use any combination of letters and digits.

You can also use the PSM_DBS_POOLenvironment variable to change the name of the pool for your environment, for example, for a single session.

Related concepts:
 Device pools

Related information:
 PSM_DBS_POOL environment variable

onmode -wf, -wm: Dynamically change certain configuration parameters

PSM_DEBUG configuration parameter

Use the PSM_DEBUG configuration parameter to specify the amount of debugging information that prints in the Informix® Primary Storage Manager debug log if you want
to use a debug level that is different from the one used by ON-Bar.

onconfig.std value
Not set. The default value is used.

default value
The value of the BAR_DEBUG configuration parameter is used.

units
One digit to represent the level of debugging information that you want

range of values
0 = No debugging messages.
1 = Prints only internal errors.
2 = Prints information about the entry and exit of functions and prints internal errors.
3 = Prints the information specified by 1-2 with additional details.

1756 Part VI: Administering

4 = Prints information about parallel operations and the information specified by 1-3.
5 = Prints information about internal states in the Informix Primary Storage Manager.
6 = Prints the information specified by 1-5 with additional details.
7 = Prints information specified by 1-6 with additional details.
8 = Prints information specified by 1-7 with additional details.
9 = Prints all debugging information.

takes effect
When the onpsm utility starts
When the ON-Bar utility executes commands and reads information that is specified in the BAR_DEBUG configuration parameter
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
If you set the PSM_DEBUG configuration parameter to a valid value that is higher than 0, the Informix Primary Storage Manager logs debug messages to its debug log.

You can experiment with the debug values to find the right amount of information. Generally, if the PSM_DEBUG configuration parameter is set to 5, the storage manager
prints enough information for tracing and debugging purposes.

Settings of 8 and 9 require a large amount of space.

You can also use the PSM_DEBUG environment variable to specify the amount of debugging information that prints in the storage manager debug log for your
environment, for example, for a single session.

Related reference:
 Message logs for Informix Primary Storage Manager

Related information:
 PSM_DEBUG environment variable

onmode -wf, -wm: Dynamically change certain configuration parameters

PSM_DEBUG_LOG configuration parameter

Use the PSM_DEBUG_LOG configuration parameter to specify the location of the debug log to which the IBM® Informix® Primary Storage Manager writes debugging
messages if you do not want the log information included in the ON-Bar debug log.

onconfig.std value
Not set. The default value is used.

default value
The value of the BAR_DEBUG_LOG configuration parameter is used.

takes effect
When the onpsm utility starts
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
If the PSM_DEBUG_LOG configuration parameter is not set, the Informix Primary Storage Manager puts activity information in the directory specified with the
BAR_DEBUG_LOG configuration parameter. To clearly distinguish ON-Bar and Informix Primary Storage Manager activity information, use the PSM_DEBUG_LOG to specify
a different location for the Informix Primary Storage Manager activity log.

For security reasons, set the PSM_DEBUG_LOG configuration parameter to a directory with restricted permissions, such as the $INFORMIXDIR directory.

If the directory that holds the debug file becomes too large, you can erase the file. You need to retain information only if there are problems that need to be debugged.

You can also use the PSM_DEBUG_LOG environment variable to specify the location of the debug log for your environment, for example, for a single session.

Related reference:
 Message logs for Informix Primary Storage Manager

BAR_DEBUG_LOG configuration parameter
Related information:

 PSM_DEBUG_LOG environment variable
onmode -wf, -wm: Dynamically change certain configuration parameters

PSM_LOG_POOL configuration parameter

Use the PSM_LOG_POOL configuration parameter to change the name of the pool in which the IBM® Informix® Primary Storage Manager places backup and restore log
data.

onconfig.std value
LOGPOOL

takes effect
When the onpsm utility starts
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Part VI: Administering 1757

Usage
The storage manager automatically places the log data in the LOGPOOL or the pool you specify. You can use any combination of letters and digits.

You can also use the PSM_LOG_POOL environment variable to change the name of the pool for your environment, for example, for a single session.

Related concepts:
 Device pools

Related information:
 PSM_LOG_POOL environment variable

onmode -wf, -wm: Dynamically change certain configuration parameters

Event alarm configuration parameters

When you set configuration parameters for use with the ON-Bar and ontape utilities, also determine if you need to adjust the ALARMPROGRAM and ALRM_ALL_EVENTS
configuration parameters.

Use the ALARMPROGRAM configuration parameter to set the log_full.sh script to automatically back up log files when they become full.

Use the ALRM_ALL_EVENTS configuration parameter to cause ALARMPROGRAM to execute every time an alarm event is invoked.

Cloud Backup

These topics provide information about storing and retrieving the backups directly to the ecosystem of selected cloud providers, namely Amazon S3 and Softlayer Object
Storage.

Back up to Amazon Simple Storage Service using ON-Bar and the PSM
 You can use ON-Bar and the Primary Storage Manager to back up and restore data to or from the Amazon Simple Storage Service (S3). You are responsible for

terms and any charges associated with your use of the Amazon Simple Storage Service.
Back up to Softlayer using ON-Bar and the PSM

 You can use ON-Bar and the Primary Storage Manager to back up and restore data to or from the Softlayer Object Storage. You are responsible for terms and any
charges associated with your use of the Softlayer.

Back up to Amazon Simple Storage Service using ON-Bar and the PSM

You can use ON-Bar and the Primary Storage Manager to back up and restore data to or from the Amazon Simple Storage Service (S3). You are responsible for terms and
any charges associated with your use of the Amazon Simple Storage Service.

Prerequisites:

You must have an Amazon account to perform cloud storage backups. See the Amazon website for instructions about setting up an account.

The following steps show how to back up data to the Amazon Simple Storage Service (S3) System and restore from it by using ON-Bar and the PSM. In this context, cloud
storage refers to an online storage service over the Internet. If you choose to back up to cloud storage, you do not need to provide local devices. Instead, you back up the
data to a virtual device, most likely located on the Internet.

1. Create a group to access S3
a. Using a web browser, navigate to the Amazon S3 website and log on.
b. Select Groups tab and click Create New Group.
c. Specify the Group name and click Next Step.
d. In the Attach Policy page, attach a policy to the group. In this case we will select AmazonS3FullAccess . As the name implies, this policy will allow any

member of this group to do anything in all the containers in S3. Click Next Step.
Note:
If you want to use S3 for other purposes or for multiple instances, you can change this by going in to the Policies tab before creating the group and creating a
customized policy that suits your needs. Ensure to be careful before granting full access to the Amazon S3, as it will provide the user to access all the S3 data
in the account .

e. In the Review page, review your entries and click Create Group.
The new group is created.

2. Create a User to Access S3
a. Select Users tab and click Create New Users.
b. Specify the User name and select Generate and access key for each user.
c. Click Create.

Access Key and the Secret Access Key are generated. These keys are equivalent to username and password that can be used to store and retrieve data from
S3 using APIs.

Note: Only authorized user can access these keys. You need to download these credentials into a text file and store in a safe location. If you lose them, you
need to create a new user again.

d. Click Close.
User page with newly created user will be displayed.

3. Assign the user to the group.
a. Click the check box next to the user and select User Actions.
b. Click Add User to Groups.

1758 Part VI: Administering

4. Create a bucket.
a. Select Services tab and click Amazon S3.
b. Click Create Bucket.
c. Specify a bucket name and select the appropriate region.

5. Configure Primary Storage Manager to use the Bucket and Credentials you just created.
Create a device in PSM of type CLOUD using S3 as provider.

onpsm -D add S3_CLOUD_DEV \
-g DBSPOOL \
-p HIGHEST \
-t CLOUD \
--url https://ifmx-s3-dev.s3.amazonaws.com \
--provider S3 \
--user AKIAIT1111155555X4PA \
--password A2nB21111155555nvTI0X9ZxGzUJNJivoBQY9MrD \
--container ifmx-s3-dev \
--region us-east-1
--max_part_size 25600

In this command line:
a. S3_CLOUD_DEV, is the arbitrary name given to this device. With FILE type devices, this is actually the full path of the directory that will store the data, but in

the case of CLOUD type devices, it is just any name that will help you organize your devices. This name and the pool (DBSPOOL in this case) must be unique.
b. ‘-t CLOUD’, is the device type that enable PSM to store/retrieve the data to/from a CLOUD infrastructure.
c. ‘--provider S3’, is the target cloud provider (Amazon S3) in this case. At present, only S3 and SWIFT (OpenStack SWIFT) are supported.
d. ‘--url https://ifmx-s3-dev.s3.amazonaws.com is the URL where your backups will go. In the specific case of S3, the bucket name is part of the URL provided.
e. --user AKIAIT1111155555X4PA, for S3 is the Access Key provided to you when your user was created.
f. --password A2nB21111155555nvTI0X9ZxGzUJNJivoBQY9MrD, for S3 is the Secret Key provided to you when the user was created.
g. --container ifmx-s3-dev is the amazon bucket.
h. --region us-east-1 is used for V4 authentication.

Note: If --region is not specified, PSM will use V2 authentication.
i. —-max_part_size 25600 will fragment your objects in 25MB pieces, in the case of S3, size between 25 and 100 MB is recommended.

6. Check the created device:

$ onpsm -D list

Informix Primary Storage Manager Device List

Type Prio Block/Size (MB) Pool Name Device Name
CLOUD HIGHEST --/-- DBSPOOL S3_CLOUD_DEV

CLOUD HIGHEST --/-- LOGPOOL S3_CLOUD_DEV

7. Take a Level Zero Backup:

$ onbar -b -L 0 -w

$ echo $?

$ 0

8. Check Backup Data in your Bucket using S3 management console.

Back up to Softlayer using ON-Bar and the PSM

You can use ON-Bar and the Primary Storage Manager to back up and restore data to or from the Softlayer Object Storage. You are responsible for terms and any charges
associated with your use of the Softlayer.

Prerequisites:

You must have a Softlayer account to perform cloud storage backups. See the Softlayer website for instructions about setting up an account.

The following steps show how to back up data to the Softlayer System and restore from it by using ON-Bar and the PSM. In this context, cloud storage refers to an online
storage service over the Internet. If you choose to back up to cloud storage, you do not need to provide tapes. Instead, you back up the data to a virtual device, most likely
located on the Internet.

1. Create an Account Name.
a. Using a web browser, navigate to the Softlayer website and log on.
b. Select Storage tab and click Object Storage.
c. Click Order Object Storage.
d. Select Storage type and click Continue.
e. In the Confirm Order page, accept the Master Service Agreement and click Place Order.

The account is created. Now, you can retrieve the credentials which will include an authentication endpoint (URL) both private and public, a username, and a Key or
password.
Note: If you have a machine with access to the internal private network to Softlayer, you should use the private URL if not, you should use the public one.

2. The PSM command line will request you to provide a container, you can provide any name you want, the container does not need to be created in the SOFTLAYER
GUI, it will be created automatically by PSM.

3. Configure Primary Storage Manager.
Create a device in PSM of type CLOUD using SWIFT as provider.

onpsm -D add SOFTLAYER1 \
-g DBSPOOL \
-p HIGHEST \
-t CLOUD \
--url https://dal05.objectstorage.softlayer.net/auth/v1.0 \
--provider SWIFT \

Part VI: Administering 1759

https://ifmx-s3-dev.s3.amazonaws.com/

--user IBM33456-2:arturo_cavero \
--password bc076837ba9959859c306051c1cda7fb2fe3f012cba15a60c \
--container ifmx_dev \
--max_part_size 25600

In this command line:
a. SOFTLAYER1, is the arbitrary name given to this device. With FILE type devices, this is actually the full path of the directory that will store the data, but in the

case of CLOUD type devices, it is just any name that will help you organize your devices. This name and the pool (DBSPOOL in this case) must be unique.
b. ‘-t CLOUD’, is the device type that enable PSM to store/retrieve the data to/from a CLOUD infrastructure.
c. ‘--provider SWIFT’, is the target cloud provider (Softlayer) in this case. At present, only SWIFT (OpenStack SWIFT) is supported.
d. ‘--url https://dal05.objectstorage.softlayer.net/auth/v1.0 is the URL where your backups will go.
e. --user IBM33456-2:arturo_cavero, for SWIFT is the User Name provided to you when your user was created.
f. --password bc076837ba9959859c306051c1cda7fb2fe3f012cba15a60c, for SWIFT is the Secret Key provided to you when the user was created.
g. --container ifmx_-dev is the Softlayer container.
h. —-max_part_size 25600 will fragment your objects in 25MB pieces, in the case of SWIFT, size between 25 and 100 MB is recommended.

4. Check the created device:

$ onpsm -D list

Informix Primary Storage Manager Device List

Type Prio Block/Size (MB) Pool Name Device Name
CLOUD HIGHEST --/-- DBSPOOL SOFTLAYER1

CLOUD HIGHEST --/-- LOGPOOL SOFTLAYER1

5. Take a Level Zero Backup:

$ onbar -b -L 0 -w

$ echo $?

$ 0

6. Check Backup Data in your Bucket using Softlayer management console.

Appendixes

Troubleshooting some backup and restore errors
 This appendix lists some error and informational messages that you can receive during a backup or restore, describes under what circumstances the errors might

occur or the message might appear, and provides possible solutions or workarounds.
Migrate data, servers, and tools

 GLS support
 This appendix contains information about using Global Language Support (GLS) with ON-Bar.

Troubleshooting some backup and restore errors

This appendix lists some error and informational messages that you can receive during a backup or restore, describes under what circumstances the errors might occur or
the message might appear, and provides possible solutions or workarounds.

Find errors by viewing the ON-Bar activity log
The database server does not show errors in standard output (stdout) if an error occurs when you use onbar -b to back up storage spaces or onbar -r to restore storage
spaces. Therefore, when you use onbar -b or onbar -r, you must check information in the ON-Bar activity log (bar_act_log). As ON-Bar backs up and restores data, it
writes progress messages, warnings, and error messages to the bar_act.log.

Corrupt page during an archive
 The message Archive detects that page is corrupt indicates that page validation failed. If you receive this message, you can identify the table that has

the corrupt page.
Log backup already running

 When using ON-Bar to create a backup, the informational messages log backup is already running in the bar_act.log file and Process exited with
return code 152 in the online.log file might appear under some circumstances.
No server connection during a restore

 During a whole system restore with ON-Bar, the error archive api error: no server connection might appear in the bar_act.log file. ON-Bar then connects
to the storage manager successfully, but eventually fails with the error archive api error: not yet open. If you receive these message, you can take steps to
solve the problem.
Drop a database before a restore

 If you perform a level-0 archive using ON-Bar and a storage manager, then drop a database, and then perform a restore with the onbar -r command, the database
remains dropped. The restore salvages the logs and the logs contains the DROP DATABASE statement. When the logs are salvaged, or replayed, the database is
dropped. If you receive these message, you can take steps to solve the problem.
No dbspaces or blobspaces during a backup or restore

 If the emergency boot file, ixbar.servernum, does not have the correct entries for objects in the backup, the message There are no DB/BLOBspaces to
backup/restore appears in bar_act.log file during a restore started with the onbar -r or onbar -r -w command.
Changing the system time on the backup system

 In some circumstances when there is a problem with the system time, ON-Bar fails with the message There are no storage spaces or logical logs to
backup or restore. If this occurs, you can take steps to solve the problem.

1760 Part VI: Administering

https://dal05.objectstorage.softlayer.net/auth/v1.0

Corrupt page during an archive

The message Archive detects that page is corrupt indicates that page validation failed. If you receive this message, you can identify the table that has the
corrupt page.

During an archive, the database server validates every page before writing it to the archive device. This validation checks that the elements on the page are consistent with
the expected values. When a page fails this validation, a message similar to the following is written to the online.log file:

16:27:49 Assert Warning: Archive detects that page 1:10164 is corrupt.
16:27:49 Who: Session(5, informix@cronus, 23467, 10a921048)
Thread(40, arcbackup1, 10a8e8ae8, 1)
File: rsarcbu.c Line: 2915
16:27:49 stack trace for pid 23358 written to /tmp/af.41043f4
16:27:49 See Also: /tmp/af.41043f4
16:27:49 Archive detects that page 1:10164 is corrupt.
16:27:50 Archive on rootdbs Completed with 1 corrupted pages detected.

The archive stops after detecting 10 corrupt pages. The online.log file displays the full error message, including the page address, for the first 10 errors. Subsequently,
only the count of the number of corrupt pages is put in to the online.log.

After you receive this message, identify which table the corrupt page belongs to by examining the output of the oncheck –pe command. To determine the extent of the
corruption, execute the oncheck –cID command for that table.

A corrupt page is saved onto the backup media. During a restore, the corrupt page is returned in its corrupt form. No errors messages are written to the online.log when
corrupt pages are restored, only when they are archived.

Log backup already running

When using ON-Bar to create a backup, the informational messages log backup is already running in the bar_act.log file and Process exited with return
code 152 in the online.log file might appear under some circumstances.

These messages can appear under the following circumstances:

When the ALARMPROGRAM configuration parameter is set to log_full.sh.
Periodically, events cause log_full.sh to trigger the onbar -b -l command. If a log fills while the onbar -b -l command is running, then ON-Bar backs up that log as
well. If the backup has not completed by the time of the next event trigger, it generates a warning in the bar_act.log file. At the time of the next event trigger, the log
backup can continue.

When the onbar -b -l command is started automatically.
A level-0 archive (especially when started with the -w option) first archives the database and then automatically start the onbar -b -l command to back up any
logical logs that are currently full and not yet backed up. There might not be a log_full.sh message in online.log, because the onbar -b -l command is started
directly.

When you mount a new tape after filling a previous tape, a log_full.sh event is scheduled but not triggered.
As soon as the next log fills and generates an event trigger in the log_full.sh file, all available logs are archived.

You can force the archive by running onbar -b -l or force log_full.sh to be triggered by running onmode -l.

No server connection during a restore

During a whole system restore with ON-Bar, the error archive api error: no server connection might appear in the bar_act.log file. ON-Bar then connects to the
storage manager successfully, but eventually fails with the error archive api error: not yet open. If you receive these message, you can take steps to solve the
problem.

The bar_act.log file contains information similar to the following messages:

2000-03-09 10:51:06 19304 19303 /usr/informix/bin/onbar_d -r -w
2000-03-09 10:51:09 19304 19303 ERROR: Unable to start the physical restore:
Archive API error: no server connection.
2000-03-09 10:51:09 19304 19303 Successfully connected to Storage Manager.
2000-03-09 10:51:36 19304 19303 Process 19304 received signal 3. Process will
exit after cleanup.
2000-03-09 10:59:13 19811 19810 /usr/informix/bin/onbar_d -r -w
2000-03-09 10:59:16 19811 19810 ERROR: Unable to start the physical restore:
Archive API error: no server connection.
2000-03-09 10:59:16 19811 19810 Successfully connected to Storage Manager.
2000-03-09 11:01:12 19811 19810 Begin cold level 0 restore llog1.
2000-03-09 11:01:12 19811 19810 ERROR: Unable to write restore data to the
database server: Archive API error: not yet open.

To solve this problem, check if the database server is still running. If it is, shut down the database server and run the command again.

Drop a database before a restore

If you perform a level-0 archive using ON-Bar and a storage manager, then drop a database, and then perform a restore with the onbar -r command, the database remains
dropped. The restore salvages the logs and the logs contains the DROP DATABASE statement. When the logs are salvaged, or replayed, the database is dropped. If you

Part VI: Administering 1761

receive these message, you can take steps to solve the problem.

To prevent this situation, perform a physical restore using the onbar -r -p command, and then a logical restore using the onbar -r -l command. This sequence does not
salvage the logs and does restore the database.

No dbspaces or blobspaces during a backup or restore

If the emergency boot file, ixbar.servernum, does not have the correct entries for objects in the backup, the message There are no DB/BLOBspaces to
backup/restore appears in bar_act.log file during a restore started with the onbar -r or onbar -r -w command.

This error can appear under the following circumstances:

During an external restore, if the emergency boot file was not copied from the source system.
If the emergency boot file was recreated after the archive backup was made. The previous file is saved in the form: ixbar.xx.xxxx.
An attempt to execute the onbar -r -w command with a backup that is not a full system backup.

Restore blobspace BLOBs
You can use table-level restore to restore a BLOB that is stored in a table. However, restoring a BLOB that is stored in a blobspace is not supported. If you attempt to
restore a blobspace BLOB, the column is set to NULL.

Restore blobspace BLOBs

You can use table-level restore to restore a BLOB that is stored in a table. However, restoring a BLOB that is stored in a blobspace is not supported. If you attempt to
restore a blobspace BLOB, the column is set to NULL.

Changing the system time on the backup system

In some circumstances when there is a problem with the system time, ON-Bar fails with the message There are no storage spaces or logical logs to
backup or restore. If this occurs, you can take steps to solve the problem.

Time lines use the UNIX time as the archive checkpoint time for dbspaces and the closing time for logical logs. If logs are not automatically backed up and the system
clock is changed, the time line can get corrupted.

For example, if you have logical logs that were closed before the archive checkpoint time, they have a timestamp that is higher than the archive checkpoint time. The
dbspace does not need the logs and ON-Bar will try to restore the backup immediately. if a log cannot be found, ON-Bar fails with the following message: There are no
storage spaces or logical logs to backup or restore.

To restore the storage space and logical logs:

1. Change the clock back to its original value.
2. Recover the system from backup.
3. Change the clock back to the new time.

Migrate data, servers, and tools

Backing up before a database server or storage-manager upgrade
 Before you upgrade to a new version of the database server, you must perform a complete backup.

Upgrading a third-party storage manager
If you upgrade a third-party storage manager vendors, do not remove the old storage manager until you verify that the new storage manager works for both backup
and restore operations.
Changing storage-manager vendors

 If you change storage manager vendors, do not remove the old storage manager until you have proof that the new storage manager works for both backup and
restore operations. You can use the old storage manager as a backup storage manager to use in case the new storage manager does not meet your needs.
Switching from ontape to ON-Bar

 You cannot back up data with ontape and restore it with ON-Bar, or conversely because the data storage formats and backup capabilities are different. However,
you can back up data with ontape, prepare to use ON-Bar, and then back up with ON-Bar.

Backing up before a database server or storage-manager upgrade

Before you upgrade to a new version of the database server, you must perform a complete backup.

Important: The database server conversion software automatically recreates the sysutils database when you upgrade to the latest version of the database server. All
backup and restore information from the old database server version is lost. Backups that you make under the older version of the database server are not compatible
with the newer version of the database server.
To prepare for an upgrade:

1. Use ON-Bar to perform a level-0 backup of all your data before you upgrade your database server or change storage managers.
2. Save these backups so that you can restore the data in case you need to revert to the old database server version.
3. Before you upgrade, back up the administrative files.

1762 Part VI: Administering

4. After you upgrade the database server, back up all storage spaces and logical logs.
For complete information about database server migration, see the IBM® Informix® Migration Guide.

If you change storage manager vendors, do not remove the old storage manager until you verify that the new storage manager works for both backup and restore
operations.

Related reference:
 Upgrading a third-party storage manager

Changing storage-manager vendors

Upgrading a third-party storage manager

If you upgrade a third-party storage manager vendors, do not remove the old storage manager until you verify that the new storage manager works for both backup and
restore operations.

Prerequisite: Before upgrading, perform a complete backup of the database server.

To use a new version of a third-party storage manager with the database server:

1. Install the new storage manager before you bring up the database server.
2. Update the sm_versions file with the new storage-manager definition.

Verify that the new storage manager operates correctly before you use it in a production environment:

Make sure that the storage manager can find the backup objects that ON-Bar requests.
Make sure that the new storage-manager version is able to read media written with your old version.

If you have continuous logical-log backup set up on the database server, ON-Bar can start backing up the logical logs soon after the database server comes online.

Use the onsmsync utility to expire old backup history in the sysutils database and emergency boot files.

Related tasks:
 Backing up before a database server or storage-manager upgrade

Changing storage-manager vendors

If you change storage manager vendors, do not remove the old storage manager until you have proof that the new storage manager works for both backup and restore
operations. You can use the old storage manager as a backup storage manager to use in case the new storage manager does not meet your needs.

ON-Bar supports working with multiple storage managers at the same time. To set up to test one storage manager and keep the other as a backup storage manager,
specify information for both of the storage managers in the BAR_BSALIB_PATH configuration parameter and in the $INFORMIXDIR/etc/sm_versions file.

If you cannot use the old and new storage managers at the same time, use ON-Bar and the IBM® Informix® Primary Storage Manager or ontape as an alternative for
backups while you check that backup and restore operations work correctly with the new storage manager. Until you confirm that the new storage manager works
correctly, perform all your backups as whole system level-0 backups (onbar -b -L 0 -w)

If you change physical connectivity, such as moving a storage device from a local connection to a network server, make sure the new storage manager can move the data
across the network. Also ensure that the new storage manager can send multiple data streams to storage devices. It also might use a different version of XBSA.

Related tasks:
 Backing up before a database server or storage-manager upgrade

Switching from ontape to ON-Bar

You cannot back up data with ontape and restore it with ON-Bar, or conversely because the data storage formats and backup capabilities are different. However, you can
back up data with ontape, prepare to use ON-Bar, and then back up with ON-Bar.

To switch from ontape to ON-Bar:

1. Use ontape to perform a full backup.
2. Take the backup media offline to prevent possible reuse or erasure.
3. Configure the storage manager to be used with ON-Bar.
4. Configure your environment:

a. Set the configuration parameters that you use with ON-Bar and the storage manager.
b. If you use a storage manager other than the IBM® Informix® Primary Storage Manager, create the sm_versions file with the storage-manager definition. The

Informix Primary Storage Manager does not use the sm_versions.std file.
5. Use ON-Bar (onbar -b or onbar -b -w) to perform a full backup.
6. Verify the backup with the onbar -v command.

GLS support

This appendix contains information about using Global Language Support (GLS) with ON-Bar.

Part VI: Administering 1763

Use GLS with the ON-Bar utility
The ON-Bar utility supports Global Language Support (GLS), which allows users to work in their native language. The language that the client application uses is
called the client locale. The language that the database uses for its server-specific files is called the server locale.
Use the GL_DATETIME environment variable with ON-Bar
The database server must know how to interpret and convert the end-user formats when they appear in date or time data that the client application sends. You can
use the GL_DATE and GL_DATETIME environment variables to specify alternative date and time formats.
Use GLS with the ontape utility
The ontape utility supports GLS in the same way as ON-Bar does. You can specify the database name in the national locale.

Use GLS with the ON-Bar utility

The ON-Bar utility supports Global Language Support (GLS), which allows users to work in their native language. The language that the client application uses is called the
client locale. The language that the database uses for its server-specific files is called the server locale.

ON-Bar must run on the same computer as the database server. However, you can run ON-Bar in any locale for which you have the supporting message and globalization
files. For example, if the server locale is English and the client locale is French, you can issue ON-Bar commands in French.

The following command performs a level-0 backup of the dbspaces specified in the file, tomb: onbar -b -L 0 -f tomb

On Windows, you cannot use multibyte file names in backup or restore commands because they are not supported.

The sysutils database, the emergency boot files, and the storage-manager boot file are created with the en_us.8859-1 (default English) locale. The ON-Bar catalog tables
in the sysutils database are in English. Change the client and database locales to en_us.8859-1 before you attempt to connect to the sysutils database with DB-Access or
third-party utilities.

Identifiers that support non-ASCII characters
 You can use non-ASCII characters in the database names and filenames with the ON-Bar and ondblog commands, and for file names in the onconfig file.

Identifiers that require 7-bit ASCII characters
 You must use 7-bit ASCII characters for storage space names and database server names.

Locale of ON-Bar messages
 All ON-Bar messages appear in the activity log in the client locale except the messages that the database server issues.

Identifiers that support non-ASCII characters

You can use non-ASCII characters in the database names and filenames with the ON-Bar and ondblog commands, and for file names in the onconfig file.

The IBM® Informix® GLS User's Guide describes the SQL identifiers that support non-ASCII characters. Non-ASCII characters include both 8-bit and multibyte characters.

For example, you can specify a non-ASCII file name for the ON-Bar activity login BAR_ACT_LOG and a non-ASCII path name for the storage-manager library in
BAR_BSALIB_PATH.

Identifiers that require 7-bit ASCII characters

You must use 7-bit ASCII characters for storage space names and database server names.

Locale of ON-Bar messages

All ON-Bar messages appear in the activity log in the client locale except the messages that the database server issues.

For example, the part of the message that tells you that a database server error occurred appears in the client locale, and the server-generated part appears in the server
locale.

Use the GL_DATETIME environment variable with ON-Bar

The database server must know how to interpret and convert the end-user formats when they appear in date or time data that the client application sends. You can use
the GL_DATE and GL_DATETIME environment variables to specify alternative date and time formats.

If you do not set these environment variables, ON-Bar uses the date and time format of the client locale.

If you perform a point-in-time restore, enter the date and time in the format specified in the GL_DATETIME environment variable if it is set.

Use GLS with the ontape utility

The ontape utility supports GLS in the same way as ON-Bar does. You can specify the database name in the national locale.

1764 Part VI: Administering

Replication

The topics in this group contain information about replicating data in IBM® Informix® databases by using Enterprise Replication.

Enterprise Replication is a good solution if you have geographically dispersed servers and you do not want to replicate all data. You specify what data is replicated
between servers, how data conflicts are handled, and how servers are connected. Enterprise Replication servers can be on heterogeneous hardware and database server
versions. If a server fails, Enterprise Replication stores the data from other servers that is not yet replicated until the network or system is operational. You can also
configure a grid to simplify administration by propagating SQL statements and files from one server to all other servers in the grid.

Tip: If you want to replicate data only for high-availability, you do not need to use Enterprise Replication. You can use high-availability clusters to provide one or more
copies of the primary database server. See High availability and scalability.

Enterprise Replication
 These topics describe the concepts of data replication using IBM Informix Enterprise Replication, including how to design your replication system, as well as

administer and manage data replication throughout your enterprise.

Enterprise Replication

These topics describe the concepts of data replication using IBM® Informix® Enterprise Replication, including how to design your replication system, as well as administer
and manage data replication throughout your enterprise.

These topics are for database server administrators with the following background:

A working knowledge of your computer, your operating system, and the utilities that your operating system provides
Some experience working with relational databases or exposure to database concepts
Some experience with database server administration, operating- system administration, and network administration

These topics are taken from IBM Informix Enterprise Replication Guide.

About Enterprise Replication
 IBM Informix Enterprise Replication generates and manages multiple copies of data at one or more sites, which allows an enterprise to share corporate data

throughout its organization.
Planning and designing for Enterprise Replication

 Before you set up your replication system, plan how to include Enterprise Replication into your database server environment, design your database schema by
following Enterprise Replication requirements, and then design your replication system between database servers.
Setting up and managing Enterprise Replication

 After you design your replication system, you define it and start replication.
Push data feature

 Loopback Replication
 Appendixes

Copyright© 2020 HCL Technologies Limited

About Enterprise Replication

IBM® Informix® Enterprise Replication generates and manages multiple copies of data at one or more sites, which allows an enterprise to share corporate data throughout
its organization.

These topics provide an overview of IBM Informix Enterprise Replication and how to administer it.

IBM Informix Enterprise Replication technical overview
 IBM Informix Enterprise Replication is an asynchronous, log-based tool for replicating data between IBM Informix database servers. Enterprise Replication on the

source server captures transactions to be replicated by reading the logical log, storing the transactions, and reliably transmitting each transaction as replication
data to the target servers.
How Enterprise Replication Replicates Data

Copyright© 2020 HCL Technologies Limited

IBM Informix Enterprise Replication technical overview

IBM® Informix® Enterprise Replication is an asynchronous, log-based tool for replicating data between IBM Informix database servers. Enterprise Replication on the
source server captures transactions to be replicated by reading the logical log, storing the transactions, and reliably transmitting each transaction as replication data to
the target servers.

At each target server, Enterprise Replication receives and applies each transaction contained in the replication data to the appropriate databases and tables as a normal,
logged transaction.

Enterprise Replication Terminology
 You must understand Enterprise Replication terminology.

Asynchronous Data Replication
 Log-Based Data Capture

 High Performance

Part VI: Administering 1765

https://www.hcltech.com/
https://www.hcltech.com/

High Availability
Consistent Information Delivery
Repair and Initial Data Synchronization
Enterprise Replication provides initial data synchronization and multiple methods to repair replicated data.
Flexible Architecture
Enterprise Replication allows replications based on specific business and application requirements and does not impose model or methodology restrictions on the
enterprise.
Centralized Administration
Ease of Implementation
Network Encryption
Enterprise Replication supports the same network encryption options that you can use with communications between server and clients to provide complete data
encryption.

Related concepts:
 How Enterprise Replication Replicates Data

Copyright© 2020 HCL Technologies Limited

Enterprise Replication Terminology

You must understand Enterprise Replication terminology.

The following terms define the data in an Enterprise Replication system and how it is treated:

Enterprise Replication server
Shard server
Replication key
Replicate
Master Replicate
Shadow Replicate
Participant
Replicate Set
Template
Global Catalog
Grid

Enterprise Replication server
An Enterprise Replication server, or replication server, is the IBM® Informix® database server that participates in data replication.

The replication server maintains information about the replication environment, which columns are replicated, and the conditions under which the data is replicated. This
information is stored in a database, syscdr, that the database server creates when it is initialized. Multiple database servers can be on the same physical computer, and
each database server can participate in Enterprise Replication.

Shard server
A shard server is a database server that participates in data replication and receives horizontally partitioned (sharded) data. A shard cluster is the group of database
servers over which a table or collection is partitioned.

Replication key
A replication key consists of one or more columns that uniquely identifies each replicated row. The replication key must be the same on all servers that participate in the
replicate. Typically, the replication key is a primary key constraint. Otherwise, you can specify ERKEY shadow columns or another unique index as the replication key.

The replication key for a shard cluster consists of a single column, and is called a shard key.

Replicate
A replicate defines the replication participants and various attributes of how to replicate the data, such as frequency and how to handle any conflicts during replication.

For more information, see Define a replicate and cdr define replicate.

Master replicate
A master replicate is a replicate that guarantees data integrity by verifying that replicated tables on different servers have consistent column attributes. Master replicates
also support alter operations on replicated tables.

Shadow replicate
A shadow replicate is a copy of an existing (primary) replicate. Shadow replicates allow Enterprise Replication to manage alter and repair operations on replicated tables.

Participant
A participant specifies the data (database, table, and columns) to replicate and the database servers to which the data replicates.

1766 Part VI: Administering

https://www.hcltech.com/

Replicate set
A replicate set combines several replicates to form a set that can be administered together as a unit.

Template
A template provides a mechanism to set up and deploy replication for a group of tables on one or more servers. A template is especially useful if you have many tables to
replicate between many servers. A template defines a group of master replicates and a replicate set for a specified group of tables that are based on attributes such as
database, tables, columns, and primary keys from the master node.

You create a template by running the cdr define template command and then instantiate, or realize, it on servers with the cdr realize template command.

Global catalog
Each database server that participates in Enterprise Replication maintains tables in the syscdr database to track Enterprise Replication configuration information and
state. For all root and nonroot replication servers, this catalog is a global catalog that maintains a global inventory of Enterprise Replication configuration information. The
global catalog is created when you define the server for replication.

The global catalog includes the following information:

Enterprise Replication server definitions and state
Routing and connectivity information
Replicate definitions and state
Participant definitions and state
Replicate set definitions and state
Conflict detection and resolution rules and any associated SPL routines

Grid
A grid is a set of replication servers that you can administer as a unit. When you run SQL data definition statements from within a grid context on one server in the grid,
they are propagated to all other servers in the grid. You can run SQL data manipulation statements and routines through grid routines. You can propagate external files to
other servers in the grid. You can run grid queries to consolidate data from multiple grid servers.

Related concepts:
 Connect Option

Related tasks:
 Customizing the Replication Server Definition

Connect to another replication server

Copyright© 2020 HCL Technologies Limited

Asynchronous Data Replication

Enterprise Replication uses asynchronous data replication to update the databases that reside at a replicated site after the primary database has committed a change.

With asynchronous replication, the delay to update the replicated-site databases can vary depending on the business application and user requirements. However, the
data eventually synchronizes to the same value at all sites. The major benefit of this type of data replication is that if a particular database server fails, the replication
process can continue and all transactions in the replication system will be committed.

In contrast to this, synchronous data replication replicates data immediately when the source data is updated. Synchronous data replication uses the two-phase commit
technology to protect data integrity. In a two-phase commit, a transaction is applied only if all interconnected distributed sites agree to accept the transaction.
Synchronous data replication is appropriate for applications that require immediate data synchronization. However, synchronous data replication requires that all
hardware components and networks in the replication system be available at all times. For more information about synchronous replication, refer to the discussion of two-
phase commit in your IBM Informix Administrator's Guide.

Asynchronous replication is often preferred because it allows for system and network failures.

Asynchronous replication allows the following replication models:

Primary-target (Primary-Target Replication System)
All database changes originate at the primary database and are replicated to the target databases. Changes at the target databases are not replicated to the
primary.

Update-anywhere (Update-Anywhere Replication System)
All databases have read and write capabilities. Updates are applied at all databases.

The update-anywhere model provides the greater challenge in asynchronous replication. For example, if a replication system contains three replication sites that all have
read and write capabilities, conflicts occur when the sites try to update the same data at the same time. Conflicts must be detected and resolved so that the data elements
eventually have the same value at every site. For more information, see Conflict Resolution.

Copyright© 2020 HCL Technologies Limited

Log-Based Data Capture

Part VI: Administering 1767

https://www.hcltech.com/
https://www.hcltech.com/

Enterprise Replication uses log-based data capture to gather data for replication. Enterprise Replication reads the logical log to obtain the row images for tables that
participate in replication and then evaluates the row images.

Log-based data capture takes changes from the logical log and does not compete with transactions for access to production tables. Log-based data-capture systems
operate as part of the normal database-logging process and thus add minimal overhead to the system.

Two other methods of data capture, which Enterprise Replication does not support, include:

Trigger-based data capture
A trigger is code in the database that is associated with a piece of data. When the data changes, the trigger activates the replication process.

Trigger-based transaction capture
A trigger is associated with a table. Data changes are grouped into transactions and a single transaction might trigger several replications if it modifies several
tables. The trigger receives the whole transaction, but the procedure that captures the data runs as a part of the original transaction, thus slowing down the original
transaction.

Copyright© 2020 HCL Technologies Limited

High Performance

Enterprise Replication provides high performance by not overly burdening the data source and by using networks and all other resources efficiently.

Because Enterprise Replication captures changes from the logical log instead of competing with transactions that access production tables, Enterprise Replication
minimizes the effect on transaction performance. Because the capture mechanism is internal to the database, the database server implements this capture mechanism
efficiently. For more information, see Log-Based Data Capture.

All Enterprise Replication operations are performed in parallel, which further extends the performance of Enterprise Replication.

Copyright© 2020 HCL Technologies Limited

High Availability

Because Enterprise Replication implements asynchronous data replication, network and target database server outages are tolerated. In the event of a database server or
network failure, the local database server continues to service local users. The local database server stores replicated transactions in persistent storage until the remote
server becomes available.

If high availability is critical, you can use high-availability clusters in conjunction with Enterprise Replication. High-availability clusters support synchronous data
replication between database servers: a primary server, which can participate in Enterprise Replication, and one or more secondary servers, which do not participate in
Enterprise Replication. If a primary server in a high-availability cluster fails, a secondary server can take over the role of the primary server, allowing it to participate in
Enterprise Replication. Client connections to the original primary server can be automatically switched to the new standard server.

For more information on using high-availability clusters with Enterprise Replication, see Using High-Availability Clusters with Enterprise Replication.

Copyright© 2020 HCL Technologies Limited

Consistent Information Delivery

IBM® Informix® Enterprise Replication protects data integrity. All IBM Informix Enterprise Replication transactions are stored in a reliable queue to maintain the
consistency of transactions.

IBM Informix Enterprise Replication uses a data-synchronization process to ensure that transactions are applied at the target database servers in any order equivalent to
the order that they were committed on the source database server. If Enterprise Replication can preserve the consistency of the database, Enterprise Replication might
commit transactions in a slightly different order on the target database.

If update conflicts occur, IBM Informix Enterprise Replication provides built-in automatic conflict detection and resolution. You can configure the way conflict resolution
behaves to meet the needs of your enterprise. For more information, see Conflict Resolution.

Copyright© 2020 HCL Technologies Limited

Repair and Initial Data Synchronization

Enterprise Replication provides initial data synchronization and multiple methods to repair replicated data.

You can easily bring a new table up-to-date with replication when you start a new replicate, or when you add a new participant to an existing replicate, by specifying an
initial synchronization. Initial synchronization can be run online while replication is active.

If replication has failed for some reason, you can repair replicated data by running the cdr sync replicate or cdr sync replicateset command to resynchronize data and
correct data mismatches between replicated tables. You can repair data while replication is active.

You can also repair data after replication has failed by using ATS and RIS files.Enterprise Replication examines the specified ATS or RIS file and attempts to reconcile the
rows that failed to be applied.

1768 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Related concepts:
Resynchronizing Data among Replication Servers
Related tasks:
Initially Synchronizing Data Among Database Servers
Repairing Failed Transactions with ATS and RIS Files

Copyright© 2020 HCL Technologies Limited

Flexible Architecture

Enterprise Replication allows replications based on specific business and application requirements and does not impose model or methodology restrictions on the
enterprise.

Enterprise Replication supports both primary-target and update-anywhere replication models.

Enterprise Replication supports the following network topologies:

Fully connected
Continuous connectivity between all participating database servers.

Hierarchical tree
A parent-child configuration that supports continuous and intermittent connectivity.

Forest of trees
Multiple hierarchical trees that connect at the root database servers.

You can add High-Availability Data Replication to any of these topologies.

Enterprise Replication supports all built-in IBM® Informix® data types, as well as extended and user-defined data types.

Enterprise Replication operates in LAN, WAN, and combined LAN/WAN configurations across a range of network transport protocols.

Enterprise Replication supports the Global Language Support (GLS) feature, which allows IBM Informix products to handle different languages, regional conventions, and
code sets.

Related concepts:
 Primary-Target Replication System

Update-Anywhere Replication System
Choosing a Replication Network Topology
Replication and data types
Global language support for replication

Copyright© 2020 HCL Technologies Limited

Centralized Administration

Enterprise Replication allows administrators to easily manage all the distributed components of the replication system from a single point of control.

You can use the command-line utility (CLU) to administer the replication system from your system command prompt and connect to other servers involved in replication,
as necessary. For information, see The cdr utility.

Copyright© 2020 HCL Technologies Limited

Ease of Implementation

Enterprise Replication provides templates to allow easy set up and deployment of replication for clients with large numbers of tables to replicate. Administrators of
Enterprise Replication can use templates to develop scripts and with only a few commands can set up replication over a large number of server nodes. Without using
templates, many individual commands must be run. Using templates, you can also easily add a new server into your replication environment and optionally create and
populate new database tables.

First, you create a template using the cdr define template command. This defines the database, tables, and columns and the characteristics of the replicates that will be
created. You can view information about a template by using the cdr list template command from a non-leaf node.

Second, you instantiate the template on the servers where you want to replicate this data by running the cdr realize template command. If the table already exists on a
node, Enterprise Replication verifies it matches the template definition. If the table does not exist on a node, Enterprise Replication can optionally create the table.
Enterprise Replication can also optionally perform an initial data synchronization on all servers where you realize the template.

You can delete templates that you no longer need using the cdr delete template command.

See Set up replication through templates for more information. All replication commands mentioned in this section are described in detail in The cdr utility.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1769

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Network Encryption

Enterprise Replication supports the same network encryption options that you can use with communications between server and clients to provide complete data
encryption.

You can use the Secure Sockets Layer (SSL) protocol, a communication protocol that ensures privacy and integrity of data transmitted over the network, for connections
between Enterprise Replication servers. For information on using the SSL protocol, see Secure sockets layer protocol.

You can use encryption configuration parameters to provide data encryption with a standard cryptography library. A message authentication code (MAC) is transmitted as
part of the encrypted data transmission to ensure data integrity. This is the same type of encryption provided by the ENCCSM communications support module for non-
replication communication. Enterprise Replication shares the same ENCRYPT_CIPHERS, ENCRYPT_MAC, ENCRYPT_MACFILE, and ENCRYPT_SWITCH configuration
parameters with high availability clusters. Enterprise Replication encryption configuration parameters are documented in Enterprise Replication configuration parameter
and environment variable reference.

Enterprise Replication cannot accept a connection that is configured with a communications support module. To combine client/server network encryption with Enterprise
Replication encryption, configure two network connections for each database server, one with CSM and one without. For more information, see Configuring network
encryption for replication servers.

Copyright© 2020 HCL Technologies Limited

How Enterprise Replication Replicates Data

Before you can replicate data, you must declare a database server for replication and define the replicates (the data to replicate and the database servers that participate
in replication). To declare a database server for replication, see Defining Replication Servers. To define replicates, see Define a replicate. Replication Examples, has simple
examples of declaring replication servers and defining replicates.

After you define the servers and replicates, Enterprise Replication replicates data in three phases:

1. Data Capture
2. Data Transport
3. Applying replicated data

The following diagram shows these three phases of replication and the Enterprise Replication components that perform each task.

Figure 1. The Life Cycle of a Replicated Transaction

As shown in the diagram, the following process describes how Enterprise Replication replicates a transaction:

1. A client application performs a transaction in a database that is defined as a replicate.
2. The transaction is put into the logical log.
3. The log capture component, also known as the snoopy component, reads the logical log and passes the log records onto the grouper component.
4. The grouper component evaluates the log records for replication and groups them into a message that describe the operations that were in the original transaction.
5. The grouper component places the message in the send queue. Under certain situations, the send queue spools messages to disk for temporary storage.
6. The send queue transports the replication message across the Enterprise Replication network to the target server.
7. The replication message is placed in the receive queue at the target server.
8. The data sync component applies the transaction in the target database. If necessary, the data sync component performs conflict resolution.
9. An acknowledgment that the message was successfully applied is placed in the acknowledgment queue.

10. The acknowledgment message is sent back to the source server.

Data Capture
 As the database server writes rows to the logical log, it marks rows that should be replicated. Later, Enterprise Replication reads the logical log to obtain the row

images for tables that participate in replication.
Data Transport

1770 Part VI: Administering

https://www.hcltech.com/

Applying replicated data
IBM Informix Enterprise Replication uses a data-synchronization process to apply the replicated data to target database servers.

Related concepts:
 IBM Informix Enterprise Replication technical overview

Copyright© 2020 HCL Technologies Limited

Data Capture

As the database server writes rows to the logical log, it marks rows that should be replicated. Later, Enterprise Replication reads the logical log to obtain the row images
for tables that participate in replication.

IBM® Informix® database servers manage the logical log in a circular fashion; the most recent logical-log entries write over the oldest entries. Enterprise Replication must
read the logical log quickly enough to prevent new logical-log entries from overwriting the logs Enterprise Replication has not yet processed.

If the database server comes close to overwriting a logical log that Enterprise Replication has not yet processed, by default, user transactions are blocked until Enterprise
Replication advances. You can specify other responses to the potential for overwriting the Enterprise Replication replay position.

The row images that participate in replication are passed to Enterprise Replication for further evaluation.

Row Images
 Enterprise Replication evaluates the initial and final images of a row and any changes that occur between the two row images to determine which rows to replicate.

Each row image contains the data in the row and the action that is performed on that row.
Evaluate rows for updates

 Enterprise Replication evaluates rows for replication-key updates, for WHERE-clause column updates, and for multiple updates to the same row.
Send queues and receive queues

 Enterprise Replication uses send and receive queues to receive and deliver replication data to and from database servers that participate in a replicate.
Data Evaluation Examples

Copyright© 2020 HCL Technologies Limited

Row Images

Enterprise Replication evaluates the initial and final images of a row and any changes that occur between the two row images to determine which rows to replicate. Each
row image contains the data in the row and the action that is performed on that row.

A row might change more than once in a particular transaction. For example, a transaction might insert and then update a row before committing. Enterprise Replication
evaluates the net effect (final state) of a transaction based on the row buffers in the log. Enterprise Replication then determines what must be replicated, based on the net
effect, the initial state of the row, and whether the replicate definition (in particular, the WHERE clause) applies to the initial and final state. Enterprise Replication
evaluates the row-image type (INSERT, UPDATE, DELETE), the results of evaluating the replicate WHERE clause for both the initial and final image, and whether the
replication key changes as a result of the transaction.

The following table shows the logic that determines which rows are candidates for replication. The source and destination tables are assumed to be initially synchronized
(identical before replication begins). If the tables were not synchronized, anomalous behavior might result.

Table 1. Enterprise Replication Evaluation Logic
Initial Image Replicate

Evaluates
Final Image Replicate

Evaluates
Replication-Key
Changed?

Send to Destination
Database Server

Comments

INSERT T or F DELETE T or F Yes or no Nothing Net change of transaction results in
no replication

INSERT T or F UPDATE T Yes or no INSERT with final row
image

Inserts final data of transaction

INSERT T or F UPDATE F Yes or no Nothing Final evaluation determines no
replication

UPDATE T DELETE T or F Yes or no DELETE with initial row
image

Net result of transaction is delete

UPDATE F DELETE T or F Yes or no Nothing Net change of transaction results in
no replication

UPDATE T UPDATE T Yes DELETE with initial row
image and INSERT with
final row image

Ensures old replication key does not
replicate

UPDATE T UPDATE T No UPDATE with final row
image

Simple update

UPDATE T UPDATE F Yes or no DELETE with initial row
image

Row no longer matches replicate
definition

UPDATE F UPDATE T Yes or no INSERT with final row
image

Row now matches replicate
definition

UPDATE F UPDATE F Yes or no Nothing No match exists, and therefore, no
replication

Part VI: Administering 1771

https://www.hcltech.com/
https://www.hcltech.com/

The following rules apply to the information in the table:

The initial image is the before image of the transaction in the logical log.
The replicate evaluates to T (true) or F (false).
The final image is the image of the transaction that is replicated.

After Enterprise Replication identifies transactions that qualify for replication, Enterprise Replication transfers the transaction data to a queue.

Related concepts:
 Evaluate rows for updates

Send queues and receive queues
Related reference:

 Data Evaluation Examples

Copyright© 2020 HCL Technologies Limited

Evaluate rows for updates

Enterprise Replication evaluates rows for replication-key updates, for WHERE-clause column updates, and for multiple updates to the same row.

The following list describes an occurrence in a transaction and the Enterprise Replication action:

Replication-key updates
Enterprise Replication translates an update of the replication key into a delete of the original rows and an insert of the row images with the new replication key. If
triggers are enabled on the target system, insert triggers are run.

WHERE-clause column updates
If a replicate includes a WHERE clause in its data selection, the WHERE clause imposes selection criteria for rows in the replicated table.

If an update changes a row so that it no longer passes the selection criteria on the source, it is deleted from the target table. Enterprise Replication translates
the update into a delete and sends it to the target.
If an update changes a row so that it passes the selection criteria on the source, it is inserted into the target table. Enterprise Replication translates the
update into an insert and sends it to the target.

Multiple-row images in a transaction
Enterprise Replication compresses multiple-row images and only sends the net change to the target. Because of this, triggers might not execute on the target
database. For more information, see Triggers.

Enterprise Replication supports the replication of BYTE and TEXT data types (simple large objects) and BLOB and CLOB data types (smart large objects), and opaque user-
defined data types, as well as all built-in IBM® Informix® data types. However, Enterprise Replication implements the replication of these types of data somewhat
differently from the replication of other data types. For more information, see Replication of large objects, and Replication of opaque user-defined data types.

Related concepts:
 Send queues and receive queues

Related reference:
 Row Images

Data Evaluation Examples

Copyright© 2020 HCL Technologies Limited

Send queues and receive queues

Enterprise Replication uses send and receive queues to receive and deliver replication data to and from database servers that participate in a replicate.

Send queue
Enterprise Replication stores replication data in memory to be delivered to target database servers that participate in a replicate. If the send queue fills, Enterprise
Replication spools the send-queue transaction records to a dbspace and the send-queue row data to an sbspace.

Receive queue
Enterprise Replication stores replication data in memory at the target database server until the target database server acknowledges receipt of the data. If the
receive queue fills as a result of a large transaction, Enterprise Replication spools the receive queue transaction header and replicate records to a dbspace and the
receive queue row data to an sbspace.

The data contains the filtered log records for a single transaction. Enterprise Replication stores the replication data in a stable (recoverable) send queue on the source
database server. Target sites acknowledge receipt of data when it is applied to or rejected from the target database.

If a target database server is unreachable, the replication data remains in a stable queue at the source database server. Temporary failures are common, and no
immediate action is taken by the source database server; it continues to queue transactions. When the target database server becomes available again, queued
transactions are transmitted and applied.

If the target database server is unavailable for an extended period, the send queue on the source database server might use excessive resources. In this situation, you
might not want to save all transactions for the target database server. To prevent unlimited transaction accumulation, you can remove the unavailable target database
server from the replicate. Before the database server that is removed rejoins any replicate, however, you must synchronize (bring tables to consistency) with the other
database servers.

Related concepts:
 Evaluate rows for updates

Transaction processing impact
Setting Up Send and Receive Queue Spool Areas
Applying replicated data

1772 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Related tasks:
Preventing Memory Queues from Overflowing
Related reference:
Row Images
Data Evaluation Examples

Copyright© 2020 HCL Technologies Limited

Data Evaluation Examples

Figure 1, Figure 2, and Figure 3 show three examples of how Enterprise Replication uses logic to evaluate transactions for potential replication.
Figure 1. Insert Followed by a Delete

Figure 1 shows a transaction that takes place at the Dallas office. Enterprise Replication uses the logic in Table 1 to evaluate whether any information is sent to the
destination database server at the Phoenix office.

Table 1. Insert Followed by a Delete Evaluation Logic

Initial Image Replicate Evaluates Final Image Replicate Evaluates Primary-Key Changed? Send to Destination Database
Server

INSERT T or F DELETE T or F Yes or no Nothing

Enterprise Replication determines that the insert followed by a delete results in no replication operation; therefore, no replication data is sent.

In Figure 2, Enterprise Replication uses the logic in Table 2 to evaluate whether any information is sent to the destination database server.
Figure 2. Insert Followed by an Update

Table 2. Insert Followed by An Update Evaluation Logic

Initial Image Replicate Evaluates Final Image Replicate Evaluates Primary-Key Changed? Send to Destination Database Server

INSERT T or F UPDATE T Yes or no INSERT with final row image

The replicate WHERE clause imposes the restriction that only rows are replicated where the exempt column contains a value of "N." Enterprise Replication evaluates the
transaction (an insert followed by an update) and converts it to an insert to propagate the updated (final) image.

In Figure 3, Enterprise Replication uses the logic in Table 3 to evaluate whether any information is sent to the destination database server.
Figure 3. Update; Not Selected to Selected

Table 3. Update; Not Selected to Selected Evaluation Logic

Initial Image Replicate Evaluates Final Image Replicate Evaluates Primary-Key Changed? Send to Destination Database Server

UPDATE F UPDATE T Yes or no INSERT with final row image

Part VI: Administering 1773

https://www.hcltech.com/

The example shows a replicate WHERE clause column update. A row that does not meet the WHERE clause selection criteria is updated to meet the criteria. Enterprise
Replication replicates the updated row image and converts the update to an insert.

Related concepts:
 Evaluate rows for updates

Send queues and receive queues
Related reference:

 Row Images

Copyright© 2020 HCL Technologies Limited

Data Transport

Enterprise Replication ensures that all data reaches the appropriate server, regardless of a network or system failure. In the event of a failure, Enterprise Replication
stores data until the network or system is operational. Enterprise Replication replicates data efficiently with a minimum of data copying and sending.

Copyright© 2020 HCL Technologies Limited

Applying replicated data

IBM® Informix® Enterprise Replication uses a data-synchronization process to apply the replicated data to target database servers.

The target database servers acknowledge receipt of data when the data is applied to the target database. Data modifications that results from synchronization, including
modifications that result from trigger invocation, are not replicated. The data-synchronization process ensures that transactions are applied at the target database servers
in an order equivalent to the order that they were committed on the source database server. If consistency can be preserved, Enterprise Replication might commit
transactions out of order on the target database.

When Enterprise Replication applies replication data, it checks to make sure that no collisions exist. A collision occurs when two database servers update the same data
simultaneously. Enterprise Replication reviews the data one row at a time to detect a collision.

If Enterprise Replication finds a collision, it must resolve the conflict before applying the replication data to the target database server.
Figure 1. Collision Example

The previous illustration shows a situation that yields a conflict. Pakistan updates the row two seconds before Bangkok updates the same row. The Bangkok update arrives
at the India site first, and the Pakistan update follows. The Pakistan time is earlier than the Bangkok time. Because both updates involve the same data and a time
discrepancy exists, Enterprise Replication detects a collision.

For more information, see Conflict Resolution.

Enterprise Replication scans to see if the same replication key exists in the target table or in the associated delete table, or if a replication order error is detected. A delete
table stores the row images of deleted rows. A replication order error is the result of replication data that arrives from different database servers with one of the following
illogical results:

A replicated DELETE that finds no row to DELETE on the target
An UPDATE that finds no row to UPDATE on the target
An INSERT that finds a row that exists on the target

Related concepts:
 Send queues and receive queues

Copyright© 2020 HCL Technologies Limited

Planning and designing for Enterprise Replication

Before you set up your replication system, plan how to include Enterprise Replication into your database server environment, design your database schema by following
Enterprise Replication requirements, and then design your replication system between database servers.

Plan for Enterprise Replication
 Before you design a replication system, you must understand how Enterprise Replication interacts with the database server and the other requirements of

Enterprise Replication. Many aspects of the Informix database server can affect how you deploy Enterprise Replication.
Schema design for Enterprise Replication

 When you design the database and tables for replication, you must follow the requirements and restrictions for Enterprise Replication.

1774 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Replication system design
When you design a replication system, you make three main decisions: how the information flows between servers, how to resolve conflicts between replicated
data, and the topology of the network of servers.

Copyright© 2020 HCL Technologies Limited

Plan for Enterprise Replication

Before you design a replication system, you must understand how Enterprise Replication interacts with the database server and the other requirements of Enterprise
Replication. Many aspects of the Informix® database server can affect how you deploy Enterprise Replication.

Enterprise Replication Server administrator
 You need special privileges to run most Enterprise Replication commands.

Asynchronous propagation conflicts
 Enterprise Replication asynchronously propagates many control operations through the Enterprise Replication network. Avoid operations that might conflict during

propagation.
Back up and restore of replication servers

 You can back up and restore database servers that participate in Enterprise Replication.
Compression of replicated data

 You can compress and uncompress data in replicated tables to reduce the amount of needed disk space.
Transaction processing impact

 Many variables affect the impact that replicating data has on your transaction processing.
SQL statements and replication

 You can run most SQL statements while replication is active. For some statements, however, you must set alter mode or stop replication.
Global language support for replication

 You can replicate data in non-default locales.
Replication between multiple server versions

 You can set up Enterprise Replication across servers of different version levels.

Copyright© 2020 HCL Technologies Limited

Enterprise Replication Server administrator

You need special privileges to run most Enterprise Replication commands.

To configure and manage Enterprise Replication, you must have one of the following roles or privileges:

Be the owner of a non-root server
Have the Database Server Administrator (DBSA) privilege
Be user informix (UNIX) or a be a member of the Informix-Admin group (Windows)

All servers in the replication domain must have the same owner.

Related concepts:
 Interpret the cdr utility syntax

Related tasks:
 Defining Replication Servers

Related information:
 grant admin argument: Grant privileges to run SQL administration API commands

Copyright© 2020 HCL Technologies Limited

Asynchronous propagation conflicts

Enterprise Replication asynchronously propagates many control operations through the Enterprise Replication network. Avoid operations that might conflict during
propagation.

When you perform administrative functions using Enterprise Replication, the status that returns from those operations indicates the success or failure of the operation at
the database server to which you are directly connected. The operation might still be propagating through the other Enterprise Replication database servers in the
network at that time. It might take a significant amount of time before the operation is propagated to database servers that are not connected to the Enterprise
Replication network at all times.

Due to this asynchronous propagation, avoid performing control operations in quick succession that might directly conflict with one another without verifying that the first
operation was successfully propagated through the entire enterprise network. Specifically, avoid deleting Enterprise Replication objects such as replicates, replicate sets,
and Enterprise Replication servers, and immediately recreating those objects with the same name. Doing so can cause failures in the Enterprise Replication system at the
time of the operation or later. These failures might manifest themselves in ways that do not directly indicate the source of the problem.

If you must recreate a deleted definition with the same name, run the cdr check queue command to make sure that the command is complete on all servers before
recreating the definition.

You can also use a different name for the new object (for example, delete replicate a.001 and recreate it as a.002) or wait until the delete action was successfully
propagated through the entire Enterprise Replication system before you recreate the object.

Part VI: Administering 1775

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Back up and restore of replication servers

You can back up and restore database servers that participate in Enterprise Replication.

Do not stop Enterprise Replication before performing a backup on database servers that participate in replication.

Warm restores are not permitted. You must perform a cold restore up to the current log of all relevant dbspaces on Enterprise Replication servers before resuming
replication.

If the restore did not include all the log files from the replay position, or the system was not restored to the current log file, you must advance the log file unique ID past
the latest log file unique ID prior to the restore, and then run the cdr cleanstart command followed by the cdr sync replicate command to synchronize the server.

Copyright© 2020 HCL Technologies Limited

Compression of replicated data

You can compress and uncompress data in replicated tables to reduce the amount of needed disk space.

You can also consolidate free space in a table or fragment and you can return this free space to the dbspace. Performing these operations on one Enterprise Replication
server does not affect the data on any other Enterprise Replication server.

Attention: After you uncompress data on one server, do not remove any compression dictionaries that another Enterprise Replication server needs.
Related information:

 Compression

Copyright© 2020 HCL Technologies Limited

Transaction processing impact

Many variables affect the impact that replicating data has on your transaction processing.

Replication volume
To determine replication volume, you must estimate how many data rows change per day. For example, an application issues a simple INSERT statement that
inserts 100 rows. If this table is replicated, Enterprise Replication must propagate and analyze these 100 rows before applying them to the targets.

Distributed transactions
A distributed transaction is a transaction that commits data in a single transaction over two or more database servers.
Outside of the replication environment, Informix® uses a two-phase commit protocol to ensure that the transaction is either committed completely across all
servers involved or is not committed on any server. For more information about the two-phase commit protocol, see the IBM® Informix Administrator's Guide.

In a replication environment, when a distributed transaction is committed across the source servers, each part of the transaction that applies to the local server is
written to the local logical logs. When Enterprise Replication retrieves the transaction from the logical logs and forms its transaction data, it is unable to identify the
separate transaction data as the original single transaction.

This situation might result in Enterprise Replication applying one transaction successfully while aborting another. Another result might be a time lapse between the
application of one transaction and another (depending on how much transaction data is in each server's send queue and the state of the server).

Large transactions
While Enterprise Replication is able to handle large transactions, it is optimized for small transactions. For best performance, avoid replicating large transactions.
Large transactions are handled with a grouper paging file in temporary smart large objects. Enterprise Replication can process transactions up to 4 TB in size. For
more information, see Setting Up the Grouper Paging File. You can view Enterprise Replication grouper paging statistics with the onstat -g grp pager command (see
onstat -g grp: Print grouper statistics).

Instead of using Enterprise Replication to perform a batch job, use BEGIN WORK WITHOUT REPLICATION to run the batch job locally on each database server. For
more information, see Blocking Replication.

Related concepts:
 Send queues and receive queues

Related tasks:
 Preventing Memory Queues from Overflowing

Copyright© 2020 HCL Technologies Limited

SQL statements and replication

You can run most SQL statements while replication is active. For some statements, however, you must set alter mode or stop replication.

You can run the following SQL statements with no limitations while Enterprise Replication is active:

ADD INDEX
ALTER INDEX . . . TO CLUSTER

1776 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

ALTER FRAGMENT
ALTER INDEX
ALTER TABLE (except for the replication key)
CREATE CLUSTER INDEX
CREATE SYNONYM
CREATE TRIGGER
CREATE VIEW
DROP INDEX
DROP SYNONYM
DROP TRIGGER
DROP VIEW
RENAME COLUMN
RENAME DATABASE
RENAME TABLE
SET object mode (no disabling of replication key constraint)
START VIOLATIONS TABLE
STOP VIOLATIONS TABLE
TRUNCATE TABLE

After you define Enterprise Replication on a table by including that table as a participant in a replicate, you cannot exclusively lock a database that is involved in replication
(or perform operations that require an exclusive lock). However, you can exclusively lock a table in a database.

You can rename both dbspaces and sbspaces while IBM® Informix® Enterprise Replication is active.

You cannot use the DROP TABLE SQL statement against a table that is included in a replicate.

You must first set alter mode with the cdr alter command before you can make these changes:

Add shadow columns:
ALTER TABLE ... ADD CRCOLS;
ALTER TABLE ... ADD REPLCHECK;
ALTER TABLE ... ADD ERKEY

Remove or disable the replication key constraint.
Modify the replication key columns. For example, alter a column to add default values or other integrity constraints.
Change the replication key from one or more columns to others. For example, if a replication key is defined on col1, you can change the replication key to col2.

You must stop replication before you make these changes:

Drop conflict resolution shadow columns with ALTER TABLE ... DROP CRCOLS.
Add or drop rowids.

SQL statements are limited to a maximum of 15000 bytes.

Related concepts:
 Preparing Tables for a Consistency Check Index

Preparing Tables for Conflict Resolution
Alter, rename, or truncate operations during replication
Related tasks:

 Changing or re-creating primary key columns
Preparing tables without primary keys
Related reference:

 cdr alter
Related information:

 Enterprise Replication shadow columns

Copyright© 2020 HCL Technologies Limited

Global language support for replication

You can replicate data in non-default locales.

An Enterprise Replication system can include databases in different locales, with the following restrictions:

When you define a database server for Enterprise Replication, that server must be running in the U. S. English locale.
The syscdr database on every Enterprise Replication server must be in the English locale.

Replicate names can be in the locale of the database.

Code-set conversion with the GLS library requires only those code-set conversion files found in the $INFORMIXDIR/gls/cv9 directory.

For U.S. English, locales are handled automatically by the installation and setup.
For non-U.S. English locales, you might need to explicitly provide the locale and conversion files.

For information about how to specify a nondefault locale and other considerations related to GLS locales, see the IBM® Informix GLS User's Guide.

Related concepts:
 Flexible Architecture

Related tasks:
 Enabling code set conversion between replicates

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1777

https://www.hcltech.com/
https://www.hcltech.com/

Replication between multiple server versions

You can set up Enterprise Replication across servers of different version levels.

Enterprise Replication stores an internal version number that it communicates to other servers on initiating a connection with them. Each Enterprise Replication server
instance can only use the features supported by its version level. Attempts to use features from later releases with previous versions of Enterprise Replication raise errors.

Copyright© 2020 HCL Technologies Limited

Schema design for Enterprise Replication

When you design the database and tables for replication, you must follow the requirements and restrictions for Enterprise Replication.

Unbuffered Logging
 Table Types

 Enterprise Replication has restrictions on the types of tables that can participate in replication.
Label-based access control

 You cannot apply label-based access control (LBAC) to a table participating in Enterprise Replication. Nor can you define an Enterprise Replication replicate on a
table that is protected by LBAC.
Out-of-Row Data

 Shadow columns
 Shadow columns are hidden columns on replicated tables that contain values that are supplied by the database server. The database server uses shadow columns

to perform internal operations.
Unique key for replication
All tables that are replicated must have a replication key that is composed of one or more columns that uniquely identifies each row. The replication key must be
the same on all servers that participate in the replicate. Typically, the replication key is a primary key constraint.
Cascading Deletes

 If a table includes a cascading delete, when a parent row is deleted, the children are also deleted. If both the parent and child tables participate in replication, the
deletes for both the parent and child are replicated to the target servers.
Triggers

 A trigger is a database object that automatically sets off a specified set of SQL statements when a specified event occurs.
Constraint and replication

 When you use constraints, ensure that the constraints you add at the target server are not more restrictive than the constraints at the source server. Discrepancies
between constraints at the source and target servers can cause some rows to fail to be replicated.
Sequence Objects

 The NLSCASE database property
 Enterprise Replication supports both case-sensitive databases and NLSCASE INSENSITIVE databases. (Databases created with the NLSCASE INSENSITIVE option

ignore letter case in operations on NCHAR and NVARCHAR strings, and on strings of other character data types that are cast explicitly or implicitly to NCHAR or
NVARCHAR data types.)
Replicating Table Hierarchies

 To replicate tables that form a hierarchy, you must define a separate replicate for each table.
Replication and data types

 Enterprise Replication supports built-in data types and user-defined data types, including row types and collection types.

Copyright© 2020 HCL Technologies Limited

Unbuffered Logging

Databases on all server instances involved in replication must be created with logging.

Enterprise Replication evaluates the logical log for transactions that modify tables defined for replication. If a table defined for replication resides in a database that uses
buffered logging, the transactions are not immediately written to the logical log, but are instead buffered and then written to the logical log in a block of logical records.
When this occurs, IBM® Informix® Enterprise Replication evaluates the buffer of logical-log records all at once. Buffered logging can require more time to flush the logs to
disk. When you define a table for replication in a database created with unbuffered logging, Enterprise Replication can evaluate the transactions as they are produced.

Unlogged changes to a table, such as when data is added by a light append, can be replicated to other tables.

To create a database with unbuffered logging, use:

CREATE DATABASE db_name WITH LOG

To minimize impact on the system, IBM Informix Enterprise Replication uses buffered logging whenever possible, even if the database is defined as unbuffered. For more
information, see the section on CREATE DATABASE in the IBM Informix Database Design and Implementation Guide.

Copyright© 2020 HCL Technologies Limited

Table Types

Enterprise Replication has restrictions on the types of tables that can participate in replication.

The following table types are not supported by Enterprise Replication:

1778 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

RAW tables
Temporary tables
Because the database server deletes temporary tables when an application terminates or closes the database, do not include these tables in your replication
environment.

Enterprise Replication imposes the following operational limitations:

Replication is restricted to base tables. That is, you cannot define a replicate on a view or synonym. A view is a synthetic table, a synthesis of data that exists in real
tables and other views. A synonym is an alternative name for a table or a view. For more information about views and synonyms, see the IBM® Informix® Database
Design and Implementation Guide.
Replication is not inherited by any child tables in a typed hierarchy.

For more information about table types, see IBM Informix Database Design and Implementation Guide.

Copyright© 2020 HCL Technologies Limited

Label-based access control

You cannot apply label-based access control (LBAC) to a table participating in Enterprise Replication. Nor can you define an Enterprise Replication replicate on a table that
is protected by LBAC.

Copyright© 2020 HCL Technologies Limited

Out-of-Row Data

Enterprise Replication collects out-of-row data for transmission after the user transaction has committed. Due to activity on the replicated row, the data might not exist at
the time Enterprise Replication collects it for replication. In such cases, Enterprise Replication normally applies a NULL on the target system, unless the data is a smart
large object. Therefore, you should avoid placing a NOT NULL constraint on any replicated column that includes out-of-row data.

If a column has smart large objects and the smart large object data does not exist when Enterprise Replication collects it for replication, then Enterprise Replication
creates smart large objects with no data and zero size.

Copyright© 2020 HCL Technologies Limited

Shadow columns

Shadow columns are hidden columns on replicated tables that contain values that are supplied by the database server. The database server uses shadow columns to
perform internal operations.

You can add shadow columns to your replicated tables with the CREATE TABLE or ALTER TABLE statement. To view the contents of shadow columns, you must explicitly
specify the columns in the projection list of a SELECT statement; shadow columns are not included in the results of SELECT * statements.

The CRCOLS shadow columns, cdrserver and cdrtime, support conflict resolution. These two columns are hidden shadow columns because they cannot be indexed and
cannot be viewed in the system catalog tables. In an update-anywhere replication environment, you must provide for conflict resolution using a conflict resolution rule.
When you create a table that uses the time stamp, time stamp plus SPL, or delete wins conflict resolution rule, you must define the shadow columns, cdrserver and
cdrtime on both the source and target replication servers. If you plan to use only the ignore or always-apply conflict resolution rule, you do not need to define the
cdrserver and cdrtime shadow columns for conflict resolution.

The REPLCHECK shadow column, ifx_replcheck, supports faster consistency checking. This column is a visible shadow column because it can be indexed and can be
viewed in the system catalog table. If you want to improve the performance of the cdr check replicate or cdr check replicateset commands, you can add the
ifx_replcheck shadow column to the replicate table, and then create an index that includes the ifx_replcheck shadow column and your replication key columns.

The ERKEY shadow columns, ifx_erkey1, ifx_erkey2, and ifx_erkey3, are used as the replication key on replicated tables. If you create replicated tables through a grid,
these ERKEY columns are automatically added.

Related concepts:
 Conflict Resolution

Preparing Tables for Conflict Resolution
Shadow column disk space
Preparing Tables for a Consistency Check Index
Load and unload data

Copyright© 2020 HCL Technologies Limited

Unique key for replication

All tables that are replicated must have a replication key that is composed of one or more columns that uniquely identifies each row. The replication key must be the same
on all servers that participate in the replicate. Typically, the replication key is a primary key constraint.

Replicated tables must use a primary key constraint, a unique index or constraint, or the ERKEY shadow columns as the replication key. If your table does not have a
primary key or you want to change primary key values while replication is active, you can specify a different key as the replication key. Specify an existing unique index or

Part VI: Administering 1779

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

constraint, or the ERKEY shadow columns as the replication key when you create a replicate. A unique index and a unique constraint are equivalent as replication keys.

If you specify ERKEY columns as the replication key, Enterprise Replication creates a unique index and a unique constraint on the ERKEY columns. The ERKEY columns
require storage space.

Important: Because primary key updates are sent as DELETE and INSERT statement pairs, avoid changing the primary key and updating data in the same transaction.
Related tasks:

 Preparing tables without primary keys
Changing the replication key of a replicate

Copyright© 2020 HCL Technologies Limited

Cascading Deletes

If a table includes a cascading delete, when a parent row is deleted, the children are also deleted. If both the parent and child tables participate in replication, the deletes
for both the parent and child are replicated to the target servers.

If the same table definition exists on the target database, Enterprise Replication attempts to delete the child rows twice. Enterprise Replication usually processes
deletions on the parent tables first and then the children tables. When Enterprise Replication processes deletions on the children, an error might result, because the rows
were already deleted when the parent was deleted. The table in Table 1 indicates how IBM® Informix® Enterprise Replication resolves cascading deletes with conflict
resolution scopes and rules.

For more information on cascading deletes, see the ON DELETE CASCADE section in the IBM Informix Guide to SQL: Syntax.

Table 1. Resolving Cascade Deletes

Conflict-Resolution Rule Conflict-Resolution Scope Actions on Delete Errors

Time stamp Row-by-row or transaction Continue processing rest of the
transaction

Delete wins Row-by-row or transaction Continue processing rest of the
transaction

Ignore Transaction Abort entire transaction

Ignore Row-by-row Continue processing rest of the
transaction

Copyright© 2020 HCL Technologies Limited

Triggers

A trigger is a database object that automatically sets off a specified set of SQL statements when a specified event occurs.

If the --firetrigger option is enabled on a replicate, any triggers defined on a table that participates in replication are invoked when transactions are processed on the
target server. However, because Enterprise Replication only replicates the final result of a transaction, triggers execute only once on the target regardless of how many
triggers execute on the source. In cases where the final evaluation of the transaction results in no replication (for example, an INSERT where the final row image is a
DELETE, as shown in Table 1), no triggers execute on the target database.

If the same triggers are defined on both the source and target tables, any insert, update, or delete operation that the triggers generate are also sent to the target database
server. For example, the target table might receive replicate data caused by a trigger that also executes locally. Depending on the conflict-resolution rule and scope, these
operations can result in errors. To avoid this problem, define the replicate to not fire triggers on the target table.

You might want to design your triggers to take different actions depending on whether a transaction is being performed as part of Enterprise Replication. Use the
'cdrsession' option of the DBINFO() function to determine if the transaction is a replicated transaction. The DBINFO('cdrsession') function returns 1 if the thread
performing the database operation is an Enterprise Replication apply or sync thread; otherwise, the function returns 0.

For more information on triggers, see Enabling Triggers and the CREATE TRIGGER section in IBM® Informix® Guide to SQL: Syntax.

Related information:
 DBINFO Function

Copyright© 2020 HCL Technologies Limited

Constraint and replication

When you use constraints, ensure that the constraints you add at the target server are not more restrictive than the constraints at the source server. Discrepancies
between constraints at the source and target servers can cause some rows to fail to be replicated.

If your replicated tables that have referential integrity constraints between them, synchronization the data through the replicate set. For replicate sets, Enterprise
Replication synchronizes tables in an order that preserves referential integrity constraints (for example, child tables are synchronized after parent tables).

When you synchronize data, rows that fail to be repaired due to discrepancies between constraints are recorded in the ATS and RIS files.

Copyright© 2020 HCL Technologies Limited

1780 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Sequence Objects

In bi-directional Enterprise Replication, if you replicate tables using sequence objects for update, insert, or delete operations, the same sequence values might be
generated on different servers at the same time, leading to conflicts.

To avoid this problem, define sequence objects on each server so that the ranges of generated sequence values are distinct. For more information about the CREATE
SEQUENCE and ALTER SEQUENCE statements of SQL, see the IBM® Informix® Guide to SQL: Syntax.

Copyright© 2020 HCL Technologies Limited

The NLSCASE database property

Enterprise Replication supports both case-sensitive databases and NLSCASE INSENSITIVE databases. (Databases created with the NLSCASE INSENSITIVE option ignore
letter case in operations on NCHAR and NVARCHAR strings, and on strings of other character data types that are cast explicitly or implicitly to NCHAR or NVARCHAR data
types.)

The database server does not prevent a case-sensitive database from being replicated by a database that has the NLSCASE INSENSITIVE property, nor the replication of
an NLSCASE INSENSITIVE database by a case-sensitive database. No warning or exception is issued by the database server in either of these cases when you define
replication participants.

These two types of database behave differently, however, in operations that classify NCHAR and NVARCHAR strings as duplicates or as distinct values, if the character
strings that are being compared differ only in letter case. It is the user's responsibility to make sure that replication participants with different NLSCASE attributes will not
cause exceptions or unexpected behavior when replicating the results of operations like the following on NCHAR or NVARCHAR data:

sorting and collation
foreign key and primary key dependencies
enforcing unique constraints
clustered indexes
access-method optimizer directives
queries with WHERE predicates
queries with UNIQUE or DISTINCT specifications in the projection clause
queries with ORDER BY clauses
queries with GROUP BY clauses
cascading DELETE operations
table or index storage fragmentation BY EXPRESSION
table or index storage fragmentation BY LIST
data distributions from UPDATE STATISTICS operations

To avoid the risk of consistency problems that can result from differences in case-sensitivity, the following policy might be useful when you define replication pairs:

Replicate case-sensitive databases only with case-sensitive databases.
Replicate NLSCASE INSENSITIVE databases only with NLSCASE INSENSITIVE databases.

Related information:
 Duplicate rows in NLSCASE INSENSITIVE databases

Copyright© 2020 HCL Technologies Limited

Replicating Table Hierarchies

To replicate tables that form a hierarchy, you must define a separate replicate for each table.

If you define a replicate on a super table, Enterprise Replication does not automatically create implicit replicate definitions on the subordinate tables.
Tip: Enterprise Replication does not require that the table hierarchies be identical on the source and target servers.
You must use conflict resolution uniformly for all tables in the hierarchy. In other words, either no conflict resolution for all tables or conflict resolution for all tables.

Copyright© 2020 HCL Technologies Limited

Replication and data types

Enterprise Replication supports built-in data types and user-defined data types, including row types and collection types.

If you use SERIAL, SERIAL8, or BIGSERIAL data types, you must be careful when defining serial columns.

For non-master replicates, Enterprise Replication does not verify the data types of columns in tables that participate in replication. The replicated column in a table on the
source database server must have the same data type as the corresponding column on the target server. The exception to this rule is cross-replication between simple
large objects and smart large objects. By using master replicates, you can verify that all participants in a replicate have columns with matching data types. Master
replicates also allow verification that each participant contains all replicated columns, and optionally that column names are the same on each participant.

Replicating on Heterogeneous Hardware
 Serial data types and replication keys

 You can use a serial data type as a replication key, but you must ensure that the values are unique across all replication servers.

Part VI: Administering 1781

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Replication of TimeSeries data types
You can replicate tables that have columns with TimeSeries data types. You must prepare all replication servers and create time series instances before you create
replicates that include TimeSeries columns.
Replication of large objects
How Enterprise Replication handles simple and smart large objects depends on how the objects are stored.
Replication of opaque user-defined data types
Opaque data types can be replicated, but have certain restrictions.

Related concepts:
 Flexible Architecture

Serial data types and replication keys

Copyright© 2020 HCL Technologies Limited

Replicating on Heterogeneous Hardware

Enterprise Replication supports all primitive data types across heterogeneous hardware. If you define a replicate that includes non-primitive data types (for example,
BYTE and TEXT data), the application must resolve data-representation issues that are architecture dependent.

If you use floating-point data types with heterogeneous hardware, you might need to use IEEE floating point or canonical format for the data transfers. For more
information, see Using the IEEE Floating Point or Canonical Format.

Copyright© 2020 HCL Technologies Limited

Serial data types and replication keys

You can use a serial data type as a replication key, but you must ensure that the values are unique across all replication servers.

If you plan to use serial data types (SERIAL, SERIAL8, or BIGSERIAL) as the replication key for a table, the same serial value might be generated on two servers at the
same time. Use the CDR_SERIAL configuration parameter to generate non-overlapping values for serial columns across all database servers in your replication
environment. Set CDR_SERIAL in the onconfig file for each primary source database server in the replication system.

You do not need to set the CDR_SERIAL configuration parameter if your replication key has multiple columns and the other columns identify the server on which each row
is created.

Related concepts:
 Replication and data types

Related reference:
 Set configuration parameters for replication

CDR_SERIAL Configuration Parameter

Copyright© 2020 HCL Technologies Limited

Replication of TimeSeries data types

You can replicate tables that have columns with TimeSeries data types. You must prepare all replication servers and create time series instances before you create
replicates that include TimeSeries columns.

Server preparation
All database servers must run Informix® version 12.10 or later.

Before you create a replicate, do the following tasks on all replication servers that will participate in replicating time series data:

1. Set the CDR_TSINSTANCEID configuration parameter to a different value on every replication server to ensure that time series instance IDs do not overlap. You
cannot replicate time series instances that were created before you set the CDR_TSINSTANCEID configuration parameter.

2. Create containers that have the same names on all replication servers. You cannot use containers that are created automatically or rolling window containers. If you
add containers after replication is set up, add containers with the same names on all replication servers at the same time. The containers can be in different
locations on each server.

3. Create the same time series calendars that have the same names on all replication servers.
4. Create time series tables on all replication servers. You cannot use the option to automatically create replicated tables when you define a replicate or template. You

cannot nest a TimeSeries data type within a TimeSeries data type.
5. Create time series instances. You must specify the container name.

Tip: You can quickly set up your replication servers by doing all but the first of these steps through a grid, however, all grid servers must be running Informix version 12.10
or later.

Rules for defining a replicate
You must follow these rules when you define a replicate for a table that contains a TimeSeries column:

The replicate must be a mastered replicate.
The Projection list in the participant definition must include all columns in the table.

1782 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The WHERE clause in the participant definition cannot include a TimeSeries column.
You cannot define a participant as send-only.
The conflict resolution rule must be always-apply.
The replication key cannot include an opaque data type.
You cannot enable conversion to and from UTF-8 (Unicode) when you replicate data between servers that use different code sets.
You cannot use the --autocreate option to create tables that have TimeSeries columns. You must create time series tables on all servers before you define
replicates.
You cannot generate ATS or RIS files in XML format. ATS and RIS files must be in text format.

Restrictions
You cannot run a shared query on a table that includes a TimeSeries column. You can, however, run grid queries on a virtual table that is based on a table that has a
TimeSeries column.

You cannot use the following commands on replicates that include TimeSeries columns:

cdr alter
cdr remaster
cdr start sec2er
cdr swap shadow

You cannot use the following options when you check or repair inconsistencies on a replicate that includes a TimeSeries column:

The --deletewins option in the cdr check replicate or cdr check replicateset command
The --extratargetrows=merge option in the cdr sync replicate, cdr sync replicateset, cdr check replicate, or cdr check replicateset command
The --since option in the cdr check replicate or cdr check replicateset command
The --timestamp option in the cdr check replicate or cdr check replicateset command
The --where option with a TimeSeries column in the WHERE clause in the cdr check replicate command

Although you can add and index an ifx_replcheck column on a replicated table that includes a TimeSeries column, the speed of consistency checking is not affected.

Related reference:
 cdr define replicate

Copyright© 2020 HCL Technologies Limited

Replication of large objects

How Enterprise Replication handles simple and smart large objects depends on how the objects are stored.

Enterprise Replication replicates the following types of large objects:

Simple large object data types (TEXT and BYTE)
You can store simple large objects either in the tblspace with the rest of the table columns (in a dbspace) or in a blobspace. Simple large objects in tblspaces are
logged in the logical log and therefore, Enterprise Replication can evaluate the data for replication directly.

Smart large object data types (BLOB and CLOB)
You must store smart large objects in sbspaces. Enterprise Replication cannot evaluate large object data that is stored in a blobspace or sbspace; instead,
Enterprise Replication uses information about the large object that is stored in the row to evaluate whether the objects need to be replicated.

By default, Enterprise Replication does not include columns that contain unchanged large objects in replicated rows.

Enterprise Replication allows cross-replication between simple large objects and smart large objects. For example, you can replicate a simple large object on the source
database server to a smart large object on the target server or vice versa.

If Enterprise Replication processes a row and discovers undeliverable large object columns, the following actions can occur:

Any undeliverable columns are set to NULL if the replication operation is an INSERT and the row does not already exist at the target.
The old value of the local row is retained if the replication operation is an UPDATE or if the row already exists on the target.

Replicating Simple Large Objects from Tblspaces
 Enterprise Replication evaluates simple large object data that is stored in a tblspace independently from the rest of its row.

Replication of large objects from blobspaces or sbspaces
 Enterprise Replication retrieves the large object data directly from the blobspace or sbspace and then sends the data to the target database server.

Copyright© 2020 HCL Technologies Limited

Replicating Simple Large Objects from Tblspaces

Enterprise Replication evaluates simple large object data that is stored in a tblspace independently from the rest of its row.

Simple large object data that is stored in tblspaces (rather than in blobspaces) is placed in the logical log. Enterprise Replication reads the logical log to capture and
evaluate the data for potential replication.

By default, Enterprise Replication performs time stamp and delete wins conflict detection and resolution at the row level. However, in some cases, simple large object
data that is stored in a tblspace (rather than in a blobspace) is accepted by the target server even if the row is rejected.

Part VI: Administering 1783

https://www.hcltech.com/
https://www.hcltech.com/

For simple large objects, if the column on the target database server is also stored in a tblspace, Enterprise Replication evaluates the values of the shadow columns,
cdrserver and cdrtime, in the source and target columns and uses the following logic to determine if the data is to be applied:

If the column of the replicated data has a time stamp that is greater than the time stamp of the column on the local row, the data for the column is accepted for
replication.
If the server ID and time stamp of the replicated column are equal to the server ID and time stamp on the column on the local row, the data for the column is
accepted for replication.
If there is no SPL conflict-resolution rule and the time stamps are equal, then Enterprise Replication applies the data to the row with the lowest CDR server ID.

If you use the SPL conflict resolution, simple large objects that are stored in tblspaces are handled differently than large objects in blobspaces.

Related concepts:
 Delete wins conflict resolution rule

Time stamp conflict resolution rule
SPL Conflict Resolution for Large Objects

Copyright© 2020 HCL Technologies Limited

Replication of large objects from blobspaces or sbspaces

Enterprise Replication retrieves the large object data directly from the blobspace or sbspace and then sends the data to the target database server.

It is possible that a transaction subsequent to the transaction that is being replicated can modify or delete a simple or smart large object that Enterprise Replication is
trying to retrieve. If Enterprise Replication encounters a row whose large object (simple or smart) was modified or deleted by a subsequent transaction, Enterprise
Replication does not send the data in the large object. In most cases, the subsequent transaction that modified or deleted the large object is also replicated, so the data
again becomes consistent when that transaction is replicated. The data in the large object is inconsistent for only a short time.

The following conditions apply to replicating large objects that are stored in blobspaces or sbspaces:

Enterprise Replication does not support replication of large object updates performed outside of a row update.
After you update a large object that is referenced explicitly in the table schema, you must update the referencing row before Enterprise Replication can replicate the
updated smart large object. For example:

UPDATE table_name SET large_object_column = x

Enterprise Replication replicates updates to in-place smart large objects by sending a new copy of the entire smart large object. Enterprise Replication does not
send only the logged changes to update smart large objects.
Enterprise Replication does not support sharing out-of-row data (multiple references to a large object) during replication. If you try to replicate multiple references
to the same large object on the source database server, Enterprise Replication does not re-create those references on the target database server. Instead,
Enterprise Replication creates multiple large objects on the target database server.

Related concepts:
 SPL Conflict Resolution for Large Objects

Copyright© 2020 HCL Technologies Limited

Replication of opaque user-defined data types

Opaque data types can be replicated, but have certain restrictions.

You must install and register UDTs and their associated support routines on all database servers that participate in Enterprise Replication before starting replication. If you
combine Enterprise Replication with high-availability clusters, you must install UDTs on both the primary and secondary database servers, but only register them on the
primary database server.

UDT support functions
If you plan to replicate opaque UDTs, the UDT designer must provide the following types of support functions:

The streamwrite() and streamread() functions
The purpose of these functions is similar to the existing send() and receive() functions provided for client/server transmissions. For information about writing these
support functions, see the section on Enterprise Replication stream support functions in the IBM® Informix® DataBlade API Programmer's Guide.

When a row that includes any UDT columns to queue to the target system is prepared for replication, Enterprise Replication calls the streamwrite() function on
each UDT column. The function converts the UDT column data from the in-server representation to a representation that can be sent over the network. Enterprise
Replication replicates the column without understanding the internal representation of the UDT.

On the target server, Enterprise Replication calls the streamread() function for each UDT column that it transmitted by the streamwrite() function.

The compare() function and its supporting greaterthan(), lessthan(), and equal() functions
Enterprise Replication uses comparison functions to determine whether a replicated column is altered. For example, the comparison functions are used when the
replicate definition specifies to replicate only changed columns instead of full rows.

When you define a compare() function, you must also define the greaterthan(), lessthan(), equal(), or other functions that use the compare() function.

For more information about writing these support functions, see the IBM Informix User-Defined Routines and Data Types Developer's Guide.

Requirements during replication

1784 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

The following requirements apply to replicating opaque data types:

The WHERE clause of the SELECT statement of the participant modifier can reference an opaque UDT if the UDT is always stored in row.
Any UDRs in a WHERE clause can use only parameters whose values can be extracted fully from the logged row images, plus any optional constants.
All of the columns in the SELECT statement of each participant definition must be actual columns in that table. Enterprise Replication does not support virtual
columns (results of UDRs on table columns).
You cannot use SPL routines for conflict resolution if the replicate includes any UDTs in the SELECT statement or if the replicate is defined to replicate only changed
columns.
You can define replicates on tables that contain one or more UDT columns as the replication key.

Copyright© 2020 HCL Technologies Limited

Replication system design

When you design a replication system, you make three main decisions: how the information flows between servers, how to resolve conflicts between replicated data, and
the topology of the network of servers.

Primary-Target Replication System
 Update-Anywhere Replication System

 In update-anywhere replication, changes made on any participating database server are replicated to all other participating database servers. This capability allows
users to function autonomously even when other systems or networks in the replication system are not available.
Conflict Resolution

 Choosing a Replication Network Topology

Copyright© 2020 HCL Technologies Limited

Primary-Target Replication System

In the primary-target replication system, the flow of information is in one direction.

In primary-target replication, all database changes originate at the primary database and are replicated to the target databases. Changes at the target databases are not
replicated to the primary.

A primary-target replication system can provide one-to-many or many-to-one replication:

One-to-many replication
In one-to-many (distribution) replication, all changes to a primary database server are replicated to many target database servers. Use this replication model when
information gathered at a central site must be disseminated to many scattered sites.

Many-to-one replication
In many-to-one (consolidation) replication, many primary servers send information to a single target server. Use this replication model when many sites are
gathering information (for example, local field studies for an environmental study) that needs to be centralized for final processing.

Primary-Target Data Dissemination
 Data dissemination supports business needs where data is updated in a central location and then replicated to servers that only receive data and do not update

data.
Data consolidation

 Businesses can choose to consolidate data into one or more central database servers.
Workload Partitioning

 Workload partitioning gives businesses the flexibility of assigning data ownership at the table-partition level, rather than within an application.
Workflow Replication

 Primary-Target Considerations

Related concepts:
 Flexible Architecture

Participant definitions
Related reference:

 Participant and participant modifier

Copyright© 2020 HCL Technologies Limited

Primary-Target Data Dissemination

Data dissemination supports business needs where data is updated in a central location and then replicated to servers that only receive data and do not update data.

This method of distribution can be useful for online transaction processing (OLTP) systems where data is required at several sites, but because of the large amounts of
data, read/write capabilities at all sites would slow the performance of the application. The following figure illustrates data dissemination.
Figure 1. Data Dissemination in a Primary-Target Replication System

Part VI: Administering 1785

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

You specify that a server only receives information when you define the participant for the server as part of the replicate definition. You can specify that all replicates on a
server only receive information when you modify the server definition.

Related reference:
 cdr modify server

Participant and participant modifier

Copyright© 2020 HCL Technologies Limited

Data consolidation

Businesses can choose to consolidate data into one or more central database servers.

Data consolidation allows the migration of data from several database servers to a central database server. For example, several retail stores can replicate inventory and
sales information to headquarters. The retail stores do not need information from other stores but headquarters needs the total inventory and sales of all stores.

In the following figure, the remote locations only send data while a single central database server only receives data.
Figure 1. Data Consolidation in a Primary-Target Replication System

You can also use data consolidation to replicate data from many database servers to more than one central database server. For example, a retail chain has two central
database servers, one for the eastern half of the United States, and one for the western half of the United States. The retail stores replicate data to their designated central
server and the two central servers replicate data to each other. In this configuration, the replication servers in the retail stores only send data to the central servers, but
the central servers both send and receive data.

Businesses can use data consolidation to replicate OLTP data to a dedicated computer for decision support (DSS) analysis. For example, data from several OLTP systems
can be replicated to a DSS system for read-only analysis.

The replication key for every replicated row must be unique among the multiple primary database servers.

You specify that a server only sends information when you define the participant for the server as part of the replicate definition. You can specify that all replicates on a
server only send information when you modify the server definition.

Related reference:
 cdr modify server

Participant and participant modifier

Copyright© 2020 HCL Technologies Limited

Workload Partitioning

Workload partitioning gives businesses the flexibility of assigning data ownership at the table-partition level, rather than within an application.

The following figure illustrates workload partitioning.
Figure 1. Workload Partitioning in a Primary-Target Replication System

1786 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

The replication model matches the partition model for the employee tables. The Asia-Pacific database server owns the partition and can therefore update, insert, and
delete employee records for personnel in its region. The changes are then propagated to the US and European regions. The Asia-Pacific database server can query or read
the other partitions locally, but cannot update those partitions locally. This strategy applies to other regions as well.

Copyright© 2020 HCL Technologies Limited

Workflow Replication

Unlike the data dissemination model, in a workflow-replication system, the data moves from site to site. Each site processes or approves the data before sending it on to
the next site.
Figure 1. A Workflow-Replication System Where Update Authority Moves From Site to Site

Figure 1 illustrates an order-processing system. Order processing typically follows a well-ordered series of steps: orders are entered, approved by accounting, inventory is
reconciled, and the order is finally shipped.

In a workflow-replication system, application modules can be distributed across multiple sites and databases. Data can also be replicated to sites that need read-only
access to the data (for example, if order-entry sites want to monitor the progress of an order).

A workflow-replication system, like the primary-target replication system, allows only unidirectional updates. Many facts that you need to consider for a primary-target
replication system should also be considered for the workflow-replication system.

However, unlike the primary-target replication system, availability can become an issue if a database server goes down. The database servers in the workflow-replication
system rely on the data updated at a previous site. Consider this fact when you select a workflow-replication system.

Related concepts:
 Controlling the replication of large objects

Copyright© 2020 HCL Technologies Limited

Primary-Target Considerations

Consider the following factors when you select a primary-target replication system:

Administration
Primary-target replication systems are the easiest to administer because all updates are unidirectional and therefore, no data update conflicts occur. Primary-target
replication systems use the ignore conflict-resolution rule. See Conflict resolution rule.

Capacity planning
All replication systems require you to plan for capacity changes. For more information, see Preparing Data for Replication.

High-availability planning
In the primary-target replication system, if a target database server or network connection goes down, Enterprise Replication continues to log information for the
database server until it becomes available again. If a database server is unavailable for some time, you might want to remove the database server from the
replication system. If the unavailable database server is the read-write database server, you must plan a course of action to change read-write capabilities on
another database server.

If you require a fail-safe replication system, you should select a high-availability replication system. For more information, see High-availability replication systems.

Copyright© 2020 HCL Technologies Limited

Update-Anywhere Replication System

In update-anywhere replication, changes made on any participating database server are replicated to all other participating database servers. This capability allows users
to function autonomously even when other systems or networks in the replication system are not available.

The following figure illustrates an update-anywhere replication system where the service centers in Washington, New York, and Los Angeles each replicate changes to the
other two servers.

Figure 1. Update-Anywhere Replication System

Part VI: Administering 1787

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Because each service center can update a copy of the data, conflicts can occur when the data is replicated to the other sites. To resolve update conflicts, Enterprise
Replication uses conflict resolution.

Review the following information before you select your update-anywhere replication system:

Administration
Update-anywhere replication systems allow peer-to-peer updates, and therefore require conflict-resolution. Update-anywhere replication systems require more
administration than primary-target replication systems.

Information consistency
Some risk is associated with delivering consistent information in an update-anywhere replication system. You determine the amount of risk based on the type of
conflict-resolution rules and routines you choose for resolving conflicts. You can configure an update-anywhere replication system where no data is ever lost;
however, you might find that other factors (for example, performance) outweigh your need for a fail-safe mechanism to deliver consistent information.

Capacity Planning
All replication systems require you to plan for capacity changes and prepare the data for replication. If you choose a time-based conflict resolution rule, you need to
provide space for delete tables and add shadow columns to replicated tables.

High Availability
If any of your database servers are critical, consider using high-availability clusters to provide backup servers.

Related concepts:
 Disk Space for Delete Tables

Shadow column disk space
Preparing Data for Replication
High-availability replication systems
Flexible Architecture
Related tasks:

 Specifying Conflict Resolution Rules and Scope

Copyright© 2020 HCL Technologies Limited

Conflict Resolution

When multiple database servers try to update the same row simultaneously (the time stamp for both updates is the same GMT time), a collision occurs. For more
information, see Applying replicated data. Enterprise Replication must determine which new data to replicate. To solve conflict resolution, you must specify the following
for each replicate:

A conflict-resolution rule
The scope of the rule

Conflict resolution rule
 The conflict resolution rule determines how conflicts between replicated transactions are resolved.

Conflict Resolution Scope
 Each conflict-resolution rule behaves differently depending on the scope.

Related concepts:
 Shadow columns

Time synchronization
Related reference:

 Replicate only changed columns
cdr define replicate

Copyright© 2020 HCL Technologies Limited

Conflict resolution rule

The conflict resolution rule determines how conflicts between replicated transactions are resolved.

Enterprise Replication supports the following conflict resolution rules.

Conflict Resolution Rule Effect

Ignore Enterprise Replication does not attempt to resolve conflicts.

Time stamp The row or transaction with the most recent time stamp is applied.

SPL routine Enterprise Replication uses a routine written in SPL (Stored Procedure Language) that you
provide to determine which data is applied.

Time stamp with SPL routine If the time stamps are identical, Enterprise Replication uses an SPL routine that you provide to
resolve the conflict.

Delete wins DELETE and INSERT operations win over UPDATE operations; otherwise the row or transaction
with the most recent time stamp is applied.

Always-apply Enterprise Replication does not attempt to resolve conflicts. You must use the always-apply rule
when you replicate TimeSeries data types.

Ignore Conflict-Resolution Rule
 The ignore conflict-resolution rule does not attempt to detect or resolve conflicts.

1788 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Time stamp conflict resolution rule
The time stamp rule evaluates the latest time stamp of the replication against the target and determines how to resolve any conflict.
SPL Conflict Resolution Rule
You can write an SPL routine as a primary conflict resolution rule or as secondary conflict resolution rule to the time stamp conflict resolution rule.
Delete wins conflict resolution rule
The delete wins rule ensures that DELETE and INSERT operations win over UPDATE operations and that all other conflicts are resolved by comparing time stamps.
Always-Apply Conflict-Resolution Rule
The always-apply conflict-resolution rule does not attempt to detect or resolve conflicts.

Related tasks:
 Specifying Conflict Resolution Rules and Scope

Creating replicated tables through a grid

Copyright© 2020 HCL Technologies Limited

Ignore Conflict-Resolution Rule

The ignore conflict-resolution rule does not attempt to detect or resolve conflicts.

A row or transaction either applies successfully or it fails. A row might fail to replicate because of standard database reasons, such as a deadlock situation, when an
application locks rows. Use the ignore conflict-resolution rule only with a primary-target replication system. If you use ignore with an update-anywhere replication system,
your data might become inconsistent.

The ignore conflict-resolution rule can be used only as a primary conflict- resolution rule and can have either a transaction or a row scope (as described in Conflict
Resolution Scope).

The following table describes how the ignore conflict resolution rule handles INSERT, UPDATE, and DELETE operations.

Table 1. Ignore Conflict-Resolution Rule

Row Exists in Target? INSERT UPDATE DELETE

No Apply row Discard row Discard row

Yes Discard row Apply row Apply row

When a replication message fails to apply to a target, you can spool the information to one or both of the following directories:

Aborted-transaction spooling (ATS)
If selected, all buffers in a failed replication message that compose a transaction are written to this directory.

Row-information spooling (RIS)
If selected, the replication message for a row that cannot be applied to a target is written to this directory.

For more information, see Failed Transaction (ATS and RIS) Files.

Copyright© 2020 HCL Technologies Limited

Time stamp conflict resolution rule

The time stamp rule evaluates the latest time stamp of the replication against the target and determines how to resolve any conflict.

All time stamps and internal computations are performed in Greenwich mean time (GMT). The time stamp conflict resolution rule assumes time synchronization between
cooperating Enterprise Replication servers.

The time stamp resolution rule behaves differently depending on which scope is in effect:

Row scope
Enterprise Replication evaluates one row at a time. The row with the most recent time stamp wins the conflict and is applied to the target database servers. If an
SPL routine is defined as a secondary conflict-resolution rule, the routine resolves the conflict when the row times are equal.

Transaction scope
Enterprise Replication evaluates the most recent row-update time among all the rows in the replicated transaction. This time is compared to the time stamp of the
appropriate target row. If the time stamp of the replicated row is more recent than the target, the entire replicated transaction is applied. If a routine is defined as a
secondary conflict resolution rule, it is used to resolve the conflict when the time stamps are equal.

A secondary routine is run only if Enterprise Replication evaluates rows and discovers equal time stamps.

If no secondary conflict-resolution rule is defined and the time stamps are equal, the transaction from the database server with the lower value in the cdrserver shadow
column wins the conflict.

The following table shows how a conflict is resolved based on the latest time stamp with row scope. The time stamp Tlast_update (the time of the last update) represents
the row on the target database server with the last (most recent) update. The time stamp Trepl (the time when replication occurs) represents the time stamp on the
incoming row.

Enterprise Replication first checks to see whether a row with the same replication key exists in either the target table or its corresponding delete table.

If the row exists, Enterprise Replication uses the latest time stamp to resolve the conflict.

The following table describes how the time stamp conflict resolution rule handles INSERT, UPDATE, and DELETE operations.

Part VI: Administering 1789

https://www.hcltech.com/
https://www.hcltech.com/

Table 1. Conflict Resolution Based on the Time Stamp

Row Exists on
Target?

Time Stamp INSERT UPDATE DELETE

No n/a Apply row Apply row (Convert UPDATE to
INSERT)

Apply row (INSERT into Enterprise
Replication delete table)

Yes Tlast_update < Trepl Apply row (Convert INSERT to
UPDATE)

Apply row Apply row

Yes Tlast_update > Trepl Discard row Discard row Discard row

Yes Tlast_update = Trepl Apply row if no routine is
defined as a secondary
conflict resolution rule.
Otherwise, run the routine.

Apply row if no routine is
defined as a secondary conflict
resolution rule. Otherwise, run
the routine.

Apply row if no routine is defined as a
secondary conflict resolution rule.
Otherwise, run the routine.

Important: Do not remove the delete tables that are created by Enterprise Replication. The delete table is automatically removed when the last replicate defined with
conflict resolution is deleted.
To use time stamp conflict resolution for repairing inconsistencies with the cdr check replicate or cdr check replicateset command, include the --timestamp option with
the --repair option. If you temporarily stop replication on a server whose replicates use the time stamp conflict resolution rule, disable the replication server with the cdr
disable server command. When you disable a server, information about deleted rows is kept in the delete tables to be used during the time stamp repair after the server is
enabled.

Related concepts:
 Conflict Resolution Scope

Time synchronization
Delete wins conflict resolution rule
Replicating Simple Large Objects from Tblspaces
Repair inconsistencies by time stamp
Related reference:

 cdr disable server

Copyright© 2020 HCL Technologies Limited

SPL Conflict Resolution Rule

You can write an SPL routine as a primary conflict resolution rule or as secondary conflict resolution rule to the time stamp conflict resolution rule.

You have complete flexibility to determine which row prevails in the database when you create an SPL routine for conflict resolution. However, for most users, the time
stamp conflict resolution rule provides sufficient conflict resolution. You can also use SPL routine to save information about the transactions that were discarded during
conflict resolution.

SPL routines must follow the following guidelines:

The owner of an SPL routine that is used for conflict resolution must be the same as the owner of the replicated table.
Routines for conflict resolution must be in SPL. Enterprise Replication does not allow user-defined routines in C or in Java™.
You cannot use an SPL routine or a time stamp with an SPL routine if the replicate is defined to replicate only changed columns or the replicated table contains any
extensible data types. See Replicate only changed columns.

Enterprise Replication passes the following information to an SPL routine as arguments.

Argument Description

Server name [CHAR(18)] From the local target row NULL if local target row does not exist

Time stamp (DATETIME YEAR TO SECOND) From the local target row NULL if local target row does not exist

Local delete-table indicator [CHAR(1)] or Local key delete-row indicator
[CHAR(1)]

Y indicates that the origin of the row is the delete table. K indicates that the origin of the row
is the replicate-key delete row.
If a conflict occurs while a replication key row is being deleted, because the local row with
the old key no longer exists, the received key delete row is passed as the local row (using
the seventh argument, local row data). The received key insert row is passed to the stored
procedure as the replicated row using the eighth argument.

Server name [CHAR(18)] Of the replicate source

Time stamp (DATETIME YEAR TO SECOND) From the replicated row

Replicate action type [CHAR(1)] I - insert

D - delete

U - update

Local row data that is returned in regular SQL format Where the regular SQL format is taken from the SELECT clause of the participant list

Replicate row data after-image that is returned in regular SQL format Where the regular SQL format is taken from the SELECT clause of the participant list

The routine must set the following arguments before the routine can be applied to the replication message.

Argument Description

1790 Part VI: Administering

https://www.hcltech.com/

Argument Description

An indicator of the database operation to be performed [CHAR(1)] Same as the replicate action codes with the following additional codes

A - Accept the replicated row and apply the column values returned by the SPL
routine.

For example, if Enterprise Replication receives an insert and the row exists locally, the insert
is converted to an update

S - Accept the replicated row and apply the column values as received from the other
site.

For example, if Enterprise Replication receives an insert and the row exists locally, the insert
fails at the time Enterprise Replication tries to apply the transaction to the database, and
the transaction aborts with an SQL error.

O - Discard the replicated row.
X - Abort the transaction.

A non-zero integer value to request logging of the conflict resolution and
the integer value in the spooling files (INTEGER)

Logging value takes effect only if logging is configured for this replicate.

The columns of the row to be applied to the target table replicate action
type in regular SQL format

This list of column values is not parsed if the routine returns one of the following replicate
action types: S, O, or X.

You can use the arguments to develop application-specific routines. For example, you can create a routine in which a database server always wins a conflict regardless of
the time stamp.

The following list includes some items to consider when you use an SPL routine for conflict resolution:

Any action that a routine takes as a result of replication does not replicate.
You cannot use an SPL routine to start another transaction.
Frequent use of routines might affect performance.

In addition, you must determine when the SPL routine runs:

An optimized SPL routine is called only when a collision is detected and the row to be replicated fails to meet one of the following two conditions:
It is from the same database server that last updated the local row on the target table.
It has a time stamp greater than or equal to that of the local row.

A nonoptimized SPL routine runs every time Enterprise Replication detects a collision. By default, SPL routines are nonoptimized.

For information on specifying that the SPL routine is optimized, see Conflict Options.
Tip: Do not assign a routine that is not optimized as a primary conflict resolution rule for applications that usually insert rows successfully.

SPL Conflict Resolution for Large Objects
 If the replicate is defined with an SPL conflict-resolution rule, the SPL routine must return the desired action for each smart large object (BLOB or CLOB) and simple

large object (BYTE or TEXT) column.

Copyright© 2020 HCL Technologies Limited

SPL Conflict Resolution for Large Objects

If the replicate is defined with an SPL conflict-resolution rule, the SPL routine must return the desired action for each smart large object (BLOB or CLOB) and simple large
object (BYTE or TEXT) column.

When the routine is invoked, information about each large object column is passed to the routine as five separate fields. The following table describes the fields.

Argument Description

Column size (INTEGER) The size of the column (if data exists for this column). NULL if the column is NULL.

BLOB flag [CHAR(1)] For the local row, the field is always NULL.
For the replicated row:

D indicates that the large object data is sent from the source database server.
U indicates that the large object data is unchanged on the source database
server.

Column type [CHAR(1)] P indicates tblspace data.
B indicates blobspace data.
S indicates sbspace data.

ID of last update server [CHAR(18)] The ID of the database server that last updated this column for tblspace data.
For blobspace data: NULL

For sbspace data: NULL

Last update time (DATETIME YEAR TO SECOND) For tblspace data: The date and time when the data was last updated.
For blobspace data: NULL

For sbspace data: NULL

Part VI: Administering 1791

https://www.hcltech.com/

If the routine returns an action code of A, D, I, or U, the routine parses the return values of the replicated columns. Each large object column can return a two-character
field.

The first character defines the desired option for the large object column, as the following table shows.

Value Function

C Performs a time-stamp check for this column as used by the time-stamp rule.

N Sets the replicate column to NULL.

R Accepts the replicated data as it is received.

L Retains the local data.

The second character defines the desired option for blobspace or sbspace data if the data is found to be undeliverable, as the following table shows.

Value Function

N Sets the replicated column to NULL.

L Retains the local data (default).

O Aborts the row.

X Aborts the transaction.

Related concepts:
 Replicating Simple Large Objects from Tblspaces

Replication of large objects from blobspaces or sbspaces

Copyright© 2020 HCL Technologies Limited

Delete wins conflict resolution rule

The delete wins rule ensures that DELETE and INSERT operations win over UPDATE operations and that all other conflicts are resolved by comparing time stamps.

All time stamps and internal computations are performed in Greenwich mean time (GMT). The delete wins conflict-resolution rule assumes time synchronization between
cooperating Enterprise Replication servers.

The delete wins rule is similar to the time stamp rule except that it prevents upsert operations and does not use a secondary conflict resolution rule. The delete wins rule
prevents upsert operations that results from an UPDATE operation that is converted to an INSERT operation because the row to update was not found on the target server.
An upsert operation can occur if a row is deleted from a target server before an UPDATE operation is processed on that target server or if an UPDATE operation was
processed by the target server before the INSERT operation for that row. Depending on your business logic, upsert operations might violate referential integrity.

The delete wins rule prevents upsert operations in the following ways:

If a row is deleted on a replication server, that row is deleted on all other replication servers, regardless of whether an UPDATE operation to that row occurred after
the delete.
If an UPDATE operation to a row is received before its INSERT operation, the UPDATE operation fails and generates and ATS or RIS file. The INSERT operation
succeeds, but results in data inconsistency. To repair the inconsistency, run the cdr check replicate command with the --repair option.

The delete wins rule handles time stamp conflicts differently depending on which scope is in effect:

Row scope
Enterprise Replication evaluates one row at a time. The row with the most recent time stamp wins the conflict and is applied to the target database servers.

Transaction scope
Enterprise Replication evaluates the most recent row-update time among all the rows in the replicated transaction. This time is compared to the time stamp of the
appropriate target row. If the time stamp of the replicated row is more recent than the target, the entire replicated transaction is applied.

If the time stamps are equal, the transaction from the database server with the lower value in the cdrserver shadow column wins the conflict.

The following table shows how a conflict is resolved with the delete wins rule with row scope. The time stamp Tlast_update (the time of the last update) represents the row
on the target database server with the last (most recent) update. The time stamp Trepl (the time when replication occurs) represents the time stamp on the incoming row.

Enterprise Replication first checks to see if a row with the same replication key exists in either the target table or its corresponding delete table. If the row exists,
Enterprise Replication uses the latest time stamp to resolve the conflict.

The following table describes how the delete wins conflict resolution rule handles INSERT, UPDATE, and DELETE operations that are performed on the source server.

Table 1. Conflict Resolution Based on the Time Stamp

Row Exists on
Target?

Time Stamp INSERT UPDATE DELETE

No n/a Apply row Discard row and generate and
ATS or RIS file

Apply row (INSERT into Enterprise
Replication delete table)

Yes Tlast_update < Trepl Apply row (Convert INSERT to
UPDATE)

Apply row Apply row

Yes Tlast_update > Trepl Discard row Discard row Apply row

Yes Tlast_update = Trepl The server with the lower
value in the cdrserver shadow
column wins the conflict.

The server with the lower value
in the cdrserver shadow column
wins the conflict.

The server with the lower value in the
cdrserver shadow column wins the
conflict.

Important: Do not remove the delete tables that are created by Enterprise Replication. The delete table is automatically removed when the last replicate defined with
conflict resolution is deleted.

1792 Part VI: Administering

https://www.hcltech.com/

To use delete wins conflict resolution for repairing inconsistencies with the cdr check replicate or cdr check replicateset command, include the --timestamp and --
deletewins options with the --repair option. Also set the CDR_DELAY_PURGE_DTC configuration parameter to the maximum age of modifications to rows that are being
actively updated. If you temporarily stop replication on a server whose replicates use the delete wins conflict resolution rule, disable the replication server with the cdr
disable server command. When you disable a server, information about deleted rows is kept in the delete tables to be used during the time stamp repair after the server is
enabled.

Related concepts:
 Replicating Simple Large Objects from Tblspaces

Time synchronization
Time stamp conflict resolution rule
Repair inconsistencies by time stamp
Related reference:

 cdr disable server
CDR_DELAY_PURGE_DTC configuration parameter

Copyright© 2020 HCL Technologies Limited

Always-Apply Conflict-Resolution Rule

The always-apply conflict-resolution rule does not attempt to detect or resolve conflicts.

Unlike with the ignore conflict-resolution rule, replicated changes are applied even if the operations are not the same on the source and target servers. If a conflict occurs,
the current row on the target is deleted and replaced with the replicated row from the source. Use the always-apply conflict-resolution rule only with a primary-target
replication system. If you use always-apply with an update-anywhere replication system, your data might become inconsistent.

The following table describes how the always-apply conflict-resolution rule handles INSERT, UPDATE, and DELETE operations.
Table 1. Always-Apply Conflict-Resolution Rule

Row exists in target? INSERT UPDATE DELETE

No Apply row Apply row (convert UPDATE to
INSERT)

Apply row (no error returned)

Yes Apply as an UPDATE (overwrite
the existing row)

Apply row Deletes the row

Copyright© 2020 HCL Technologies Limited

Conflict Resolution Scope

Each conflict-resolution rule behaves differently depending on the scope.

Enterprise Replication uses the following scopes:

Row scope
When you choose a row scope, Enterprise Replication evaluates one row at a time. Only replicated rows that win the conflict resolution with the target rows are
applied. If an entire replicated transaction receives row-by-row evaluation, some replicated rows are applied while other replicated rows might not be applied. Row
scope can result in fewer failures than transaction scope.

Transaction scope
When you choose a transaction scope, Enterprise Replication applies the entire transaction if the replicated transaction wins the conflict resolution. If the target
wins the conflict (or other database errors are present), the entire replicated transaction is not applied.

A transaction scope for conflict resolution guarantees transactional integrity.

Enterprise Replication defers some constraint checking on the target tables until the transaction commits. If a unique constraint or foreign-key constraint violation is
found on any row of the transaction at commit time, the entire transaction is rejected (regardless of the scope) and, if you have ATS set up, written to the ATS directory.

Transaction and row scopes are only applicable for apply failure related to conflict resolution, such as missing rows or newer local rows. For other errors, such as lock
timeouts, constraint problems, lack of disk space, and so on, the whole incoming transaction is aborted, rolled back, and spooled to ATS or RIS files if so configured,
regardless of whether row scope is defined.

Related concepts:
 Failed Transaction (ATS and RIS) Files

Time stamp conflict resolution rule
Related tasks:

 Specifying Conflict Resolution Rules and Scope
Related reference:

 cdr define replicate

Copyright© 2020 HCL Technologies Limited

Choosing a Replication Network Topology

Enterprise replication topology describes connections that replication servers make to interact with each other. This topology is the route of replication data (message)
transfer from server to server over the network. The replication topology is not synonymous with the physical network topology. Replication server definitions create the

Part VI: Administering 1793

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

replication topology, whereas replicate definitions determine data to be replicated and the sources and destinations within the topology.

The topology that you choose influences the types of replication that you can use. These topics describe the topologies that Enterprise Replication supports.

Fully Connected Topology
 Hierarchical Routing Topology Terminology

 Hierarchical Tree Topology
 A hierarchical tree consists of a root database server and one or more database servers organized into a tree topology.

Forest of trees topology

Related concepts:
 Flexible Architecture

Related tasks:
 Defining Replication Servers

Customizing the Replication Server Definition

Copyright© 2020 HCL Technologies Limited

Fully Connected Topology

Fully connected replication topology indicates that all database servers connect to each other and that Enterprise Replication establishes and manages the connections.
Replication messages are sent directly from one database server to another. No additional routing is necessary to deliver replication messages. Figure 1 shows a fully
connected replication topology. Each database server connects directly to every other database server in the replication environment.
Figure 1. Fully Connected Topology

If necessary, you can also add high-availability clusters and a backup server to any server to provide high availability. For more information, see High-availability
replication systems.

Related concepts:
 Hierarchical Routing Topology Terminology

Hierarchical Tree Topology
Forest of trees topology

Copyright© 2020 HCL Technologies Limited

Hierarchical Routing Topology Terminology

Enterprise Replication uses the terms in the Table 1 to describe Hierarchical Routing topology.
Table 1. Replication Topology Terms

Term Definition

Root server An Enterprise Replication server that is the uppermost level in a hierarchically organized set of information
The root is the point from which database servers branch into a logical sequence. All root database servers within
Enterprise Replication must be fully interconnected.

Nonroot server An Enterprise Replication server that is not a root database server but has a complete global catalog and is connected
to its parent and to its children

Tree A data structure that contains database servers that are linked in a hierarchical manner
The topmost node is called the root. The root can have zero or more child database servers; the root is the parent
database server to its children.

Parent-child A relationship between database servers in a tree data structure in which the parent is one step closer to the root
than the child.

Leaf server A database server that has a limited catalog and no children.

A root server is fully connected to all other root servers. It has information about all other replication servers in its replication environment. Figure 1 shows an environment
with four root servers.

A nonroot server is similar to a root server except that it forwards all replicated messages for other root servers (and their children) through its parent. All nonroot servers
are known to all root and other nonroot servers. A nonroot server might or might not have children. All root and nonroot servers are aware of all other servers in the
replication environment.
Important: In Hierarchical Routing topologies, Enterprise Replication specifies the synchronization server as the new server's parent in the current topology. For more
information, see Customizing the Replication Server Definition and cdr define server.
Related concepts:

 Fully Connected Topology
Hierarchical Tree Topology
Forest of trees topology
Creating sqlhost group entries for replication servers

1794 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Related reference:
The syscdrs Table

Copyright© 2020 HCL Technologies Limited

Hierarchical Tree Topology

A hierarchical tree consists of a root database server and one or more database servers organized into a tree topology.

The tree contains only one root, which has no parent. Each database server within the tree references its parent. A database server that is not a parent is a leaf. Figure 1
illustrates a replication tree.
Figure 1. Hierarchical Tree Topology

In Figure 1, the parent-child relationship within the tree is as follows:

Asia is the parent of China and Japan.
China is the child of Asia and the parent of Beijing, Shanghai, and Guangzhou.
Guangzhou is the child of China and the parent of Chengdu.

Asia is the root database server. Japan, China, and Guangzhou are nonroot database servers. You can define Beijing, Shanghai, and Chengdu as either nonroot database
servers or leaf database servers, depending on how you plan to use them. The dashed connection from China to Shanghai indicates that Shanghai is a leaf server.

You can define a replicate that replicates data exclusively between Shanghai and Japan. However, the transaction data would must go through China and Asia. If either
China or Asia is offline replication is suspended. Similarly, a replicate defined between Japan and China would require Asia to be functioning, even though both Japan
and China, as nonroot servers, have entries in their sqlhosts files for each other.

Parent servers are good candidates for using high-availability clusters to provide backup servers.

Related concepts:
 Fully Connected Topology

Hierarchical Routing Topology Terminology
Forest of trees topology

Copyright© 2020 HCL Technologies Limited

Forest of trees topology

A forest of trees consists of several hierarchical trees whose root database servers are fully connected. Each hierarchical tree starts with a root database server. The root
database servers transfer replication messages to the other root servers for delivery to its child database servers. Figure 1 shows a forest of trees.
Figure 1. Forest-of-Trees Topology

In Figure 1, North America, Asia, and Europe are root database servers. That is, they are fully connected with each other. France and Germany are in a tree whose root is
Europe. Asia is the root for the six database servers in its tree.

In a forest of trees, all replication messages from one tree to another must pass through their roots. For example, a replication message from Beijing to France must pass
through China, Asia, and Europe.

Organizing the database servers in a hierarchical tree or a forest of trees greatly reduces the number of physical connections that are required to make a replication
system. If all the database servers in Figure 1 were fully connected, instead of being organized in trees, 55 connections would be required.

To ensure that all servers retain access to the replication system, use high-availability clusters on parent servers. For more information, see Using high-availability clusters
in a forest of trees topology.

Related concepts:
 Fully Connected Topology

Hierarchical Routing Topology Terminology

Part VI: Administering 1795

https://www.hcltech.com/
https://www.hcltech.com/

Hierarchical Tree Topology

Copyright© 2020 HCL Technologies Limited

Setting up and managing Enterprise Replication

After you design your replication system, you define it and start replication.

To set up replication:

1. Select the Enterprise Replication system and network topology to use for your replication environment.
2. Prepare the replication environment.
3. Define database servers for replication.
4. Define a grid and create replicated tables.

After you define and start your replication system, you can monitor and maintain it.

Instead of creating a grid, you can create a replicate set by defining and realizing a template, or you can define replicates and participants and then create a replicate set
and start replication.

Preparing the Replication Environment
 The following topics explain the steps that are required for setting up Enterprise Replication.

Using High-Availability Clusters with Enterprise Replication
 Defining Replication Servers, Replicates, Participants, and Replicate Sets

 These topics describe the steps defining and starting Enterprise Replication.
Grid setup and management

 A grid is a set of replication servers that are configured to simplify administration. When you run SQL data definition statements from within a grid context on a grid
server, the statements propagate to all servers in the grid. You can run SQL data manipulation statements and routines through grid routines. You can choose to set
up replication automatically when you create a table through a grid. You can propagate external files to other servers in the grid.
Shard cluster setup

 Sharding is a way to horizontally partition a single table across multiple database servers in a shard cluster. Enterprise Replication moves the data from the source
server to the appropriate target server as specified by the sharding method. You query a sharded table as if the entire table is on the local server. You do not need to
know where the data is. Queries that are performed on one shard server retrieve the relevant data from other servers in a shard cluster. Sharding reduces the index
size on each shard server and distributes performance across hardware. You can add shard servers to the shard cluster as your data grows.
Managing Replication Servers and Replicates

 Monitor and troubleshooting Enterprise Replication
 You can monitor and diagnose problems with the Enterprise Replication system by using several different methods, depending on your needs.

Copyright© 2020 HCL Technologies Limited

Preparing the Replication Environment

The following topics explain the steps that are required for setting up Enterprise Replication.

The cdr autoconfig serve command can auto-configure Enterprise Replication for a database server that has a configured storage pool, and propagate connectivity
information between the database servers in an Enterprise Replication domain. Complete the following steps to auto-configure Enterprise Replication:

1. Verify that the CDR_AUTO_DISCOVER configuration parameter is set to 1 on all database servers.
2. Verify that the storage pool is configured on any database server that you are adding to the Enterprise Replication Domain.
3. Choose a database server to be your source server for propagating configuration changes to other servers, and for replicating date to a newly added replication

server.
4. On the source server, set trusted-host information for all database servers by running the admin() or task() function with the cdr add trustedhost argument.
5. Verify that all replication servers are active.
6. On the source server, run the cdr autoconfig serve command. Alternatively, you can run the cdr autoconfig serve command on a different database server, but you

must specify the source server's information in the command.

Preparing the Network Environment
 You must prepare the network environment for each database server in an Enterprise Replication domain.

Preparing the Disk
 These topics describe how to prepare your disk for Enterprise Replication.

Preparing the Database Server Environment
 To prepare the database server environment, set database server environment variables and configuration parameters, and synchronize the operating system time

on all participating database servers.
Preparing Data for Replication

 Load and unload data
 You can load data into or unload data out of tables in your replication environment in various ways, depending on your circumstances.

Data Preparation Example

Related concepts:
 Using High-Availability Clusters with Enterprise Replication

Grid setup and management
Shard cluster setup
Managing Replication Servers and Replicates
Monitor and troubleshooting Enterprise Replication
Related tasks:

 Defining Replication Servers, Replicates, Participants, and Replicate Sets

1796 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Creating a new domain by cloning a server
Related information:
Trusted-host information
cdr autoconfig serv argument: Autoconfigure connectivity and replication (SQL administration API)

Copyright© 2020 HCL Technologies Limited

Preparing the Network Environment

You must prepare the network environment for each database server in an Enterprise Replication domain.

The following files are involved in configuring the replication network:

sqlhosts: Specifies replication connectivity, including server groups, connection security, and network security.
hosts: Specifies hosts names if you are not using Domain Name Service (DNS).
services: Specifies the service name that is associated with a port number.
The trusted-hosts file. You specify this file by setting the REMOTE_SERVER_CFG configuration parameter. This file specifies the host names for trusted replication
servers.
If you use Connection Managers for managing connectivity, you must create a Connection Manager configuration file.

You can manually specify sqlhost and trusted-host file information to each database server, or you can run the admin() or task() function with the cdr add trustedhost
argument to add entries to the trusted host files, and then run the cdr autoconfig serv command to propagate sqlhost and trusted-host file entries to other database
servers in an Enterprise Replication domain.

To prepare your network environment, configure the following for each replication server:

1. If you are not using DNS, configure replication-server host information in the hosts file.
2. Configure port information in the services files and the sqlhosts files.
3. Create group entries for each replication servers in the sqlhosts file.
4. If necessary, configure secure ports for replication servers in the sqlhosts file.
5. If necessary, configure network security for client/server communications in the sqlhosts files.
6. Create a trusted-host file and add entries for each trusted hosts.

Configuring hosts information for replication servers
 If you are not using Domain Name Service (DNS) to identify IP addresses and system names, you do need to configure the hosts file on each replication server to

add the IP addresses and system names for all other replication servers in the domain.
Configuring ports and service names for replication servers

 Replication servers must know the port numbers for each of the other replication servers in the domain.
Creating sqlhost group entries for replication servers

 The sqlhosts file on the host of each replication server must specify a group entry for each replication server in an Enterprise Replication domain. You can manually
specify sqlhost file information, or run the cdr autoconfig serv command to add entries to a database server's sqlhost file, and then propagate the entries to other
database servers in an Enterprise Replication domain. However, if you are configuring secure ports, you cannot use the cdr autoconfig serv command.
Configuring secure ports for connections between replication servers

 If database servers in your Enterprise Replication environment are on a network that is not trusted, you can configure secure ports and an encrypted password file
to enable secure connections.
Configuring network encryption for replication servers

 You encrypt client/server network communication by specifying the ENCCSM module with the communications support module (CSM) option in the sqlhosts file.
You encrypt Enterprise Replication communication by setting encryption configuration parameter ENCRYPT_SMX or by configuring ER group option for onsocssl port
in sqlhosts file. Unless onsocssl port is used for communicating with peer ER servers, for communicating with older server versions before 14.10xC6, Enterprise
Replication requires configuring ENCRYPT_CDR instead of ENCRYPT_SMX.
Testing the replication network

 After you set up the network environment, test the connections between the replication servers. You cannot test a connection that uses the s=6 option in the
sqlhosts file.
Testing the password file

 You create and encrypt a password file to allow the CDR utility to access to a secure network environment. Use these steps to test that the encrypted password file
is correctly configured.

Related concepts:
 Replication Examples

Related reference:
 cdr autoconfig serv

CDR_AUTO_DISCOVER configuration parameter
Related information:

 The syncsqlhosts utility
Client/server communication
Trusted-host information
cdr autoconfig serv argument: Autoconfigure connectivity and replication (SQL administration API)

Copyright© 2020 HCL Technologies Limited

Configuring hosts information for replication servers

If you are not using Domain Name Service (DNS) to identify IP addresses and system names, you do need to configure the hosts file on each replication server to add the
IP addresses and system names for all other replication servers in the domain.

The hosts file is in the following location.

Part VI: Administering 1797

https://www.hcltech.com/
https://www.hcltech.com/

Operating System FileOperating System File

UNIX /etc/hosts

Windows %WINDIR%\system32\drivers\etc\hosts

Important: Leave a blank line at the end of the hosts file on Windows.
For example, your hosts file might look like the following:

192.168.0.1 ny.usa.com
192.168.0.2 tokyo.japan.com
192.168.0.3 rome.italy.com
192.168.0.4 perth.australia.com

Copyright© 2020 HCL Technologies Limited

Configuring ports and service names for replication servers

Replication servers must know the port numbers for each of the other replication servers in the domain.

Configure port numbers for replication servers in one of the following ways:

Specify the port numbers in the sqlhosts file. This method risks conflicting with port numbers being used by other applications.
Specify the service names in the sqlhosts file and specify the port numbers for each service name in the services file.

The services file is in the following location.

Operating System File

UNIX /etc/services

Windows %WINDIR%\system32\drivers\etc\services

Important: Leave a blank line at the end of the services file on Windows.
For example, your services file might look like the following:

sydney 5327/tcp
melbourne 5327/tcp

If the database servers reside on the same system, you must provide unique port numbers for each.

Related reference:
 cdr start sec2er

Copyright© 2020 HCL Technologies Limited

Creating sqlhost group entries for replication servers

The sqlhosts file on the host of each replication server must specify a group entry for each replication server in an Enterprise Replication domain. You can manually specify
sqlhost file information, or run the cdr autoconfig serv command to add entries to a database server's sqlhost file, and then propagate the entries to other database
servers in an Enterprise Replication domain. However, if you are configuring secure ports, you cannot use the cdr autoconfig serv command.

Typically, a server group includes only one database server. However, if the computer has multiple network protocols or network interface cards, the server group includes
all aliases for the database server. Enterprise Replication treats the server group as one object, whether it includes one or several database server names.
The following example shows sqlhosts file entries for four Enterprise Replication servers:

serv1
serv2
serv3
serv4

#dbservername nettype hostname servicename options
 g_serv1 group - - i=143
 serv1 ontlitcp ny.usa.com 1230 g=g_serv1

 g_serv2 group - - i=144
 serv2 ontlitcp tokyo.japan.com 1231 g=g_serv2

 g_serv3 group - - i=145
 serv3 ontlitcp rome.italy.com 1232 g=g_serv3

 g_serv4 group - - i=146
 serv4 ontlitcp perth.australia.com 1233 g=g_serv4

Each server has two entries of information:

A group definition, which specifies a group name and unique ID for the replication server
Connectivity information for the database server

All Enterprise Replication commands and options use the name of the database server group or the more familiar database server name (that is, the name that is specified
by the INFORMIXSERVER environment variable) for all references to database servers. The exception is the --connect option, which can use either a server name or a
group name.

Leaf servers in hierarchical routing topologies do not require connectivity information for all replication servers. A leaf server requires connectivity information for only
itself and its parent.

1798 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Related concepts:
Connect Option
Hierarchical Routing Topology Terminology
Setting Up Database Server Groups for High-Availability Cluster Servers
Related reference:
cdr autoconfig serv
Related information:
The sqlhosts information
sqlhosts connectivity information
The syncsqlhosts utility

Copyright© 2020 HCL Technologies Limited

Configuring secure ports for connections between replication servers

If database servers in your Enterprise Replication environment are on a network that is not trusted, you can configure secure ports and an encrypted password file to
enable secure connections.

The secure ports that are listed in the sqlhosts files can be used only for communication between database servers. You must configure a separate port for local
client/server communications.
To configure a secure port for replication:

1. In the sqlhosts file on each server, create a group entry with two connections for the local server:
a. Create one connection entry without the s=6 option to configure local communication with utilities, such as the cdr utility and Connection Managers.
b. Create one connection entry with the s=6 option to configure communication between servers.

In the following example, the value of the DBSERVERNAME configuration parameter is serv1:

#dbservername nettype hostname servicename options
serv1 ontlitcp ny.usa.com ertest1
g_serv1 group - - i=143
serv1_s6 ontlitcp ny.usa.com ertest10 g=g_serv1,s=6

Note: Do not use the cdr autoconfig serv command if you configure secure ports. sqlhosts file entries must be manually added if any entries include the s=6 option.
2. In the sqlhosts file on each server's host, add entries for each of the other servers in the domain. Use the server names that are associated with the s=6 options.
3. Create a trusted-host file that includes the host names of the other replication servers in the domain, each on a separate line. You can manually create the trusted-

host file in $INFORMIXDIR/etc, and then set the REMOTE_SERVER_CFG configuration parameter to the name of the trusted-host file. Alternatively, you can run the
admin() or task() function with the cdr add trustedhost argument to set a replication server's REMOTE_SERVER_CFG configuration parameter and add entries to
the server's trusted-host file. If the replication server is part of a high-availability cluster, running the admin() or task() function with the cdr add trustedhost
argument propagates trusted-host entries to other database servers in a high-availability cluster.
Note: You cannot use the hosts.equiv trusted-host file when you configure secure ports.
The following example trusted-host file has entries for three hosts, and specifies both host names and domain names:

#hostname
tokyo.japan.com
tokyo

rome.italy.com
rome

perth.australia.com
perth

A database server on a listed host connects to the local database server instance through the sqlhosts file entry with the s=6 option.
4. Set the S6_USE_REMOTE_SERVER_CFG configuration parameter to 1 in the onconfig file.
5. Using a text editor, create and save a password file. The password file includes the host name, alternative server name, user ID, and password for each server and

the server group. For example, if the user ID for server serv1 is informix, the alias for the database server that uses a secure port is serv1_s6, and the password
was informix_pw, use the following password file entries:

serv1_s6 serv1 informix informix_pw
g_serv1 serv1 informix informix_pw

6. Encrypt the password file by running the onpassword utility. For example, if you named the text file in step 5 $INFORMIXDIR/etc/server_passwords, and you
wanted the file encrypted with a key called access_key, use the following command:

onpassword -k access_key -e $INFORMIXDIR/etc/server_passwords

The encrypted file is saved as: $INFORMIXDIR/etc/passwd_file.

Important: To prevent unauthorized access to the server passwords, remove the unencrypted password file, $INFORMIXDIR/etc/server_passwords after you create
the encrypted file.

If you do not configure a password file, you must run the cdr utility on the local computer, for example:

cdr list server --connect=serv1

Because secure ports can be used only for replication communication, you cannot test the connections until you start replication.

Related tasks:
 Testing the replication network

Configuring secure connections for grid queries
Related information:

 S6_USE_REMOTE_SERVER_CFG configuration parameter
The onpassword utility
The sqlhosts file and the SQLHOSTS registry key

Part VI: Administering 1799

https://www.hcltech.com/

DBSERVERALIASES configuration parameter
REMOTE_SERVER_CFG configuration parameter

Copyright© 2020 HCL Technologies Limited

Configuring network encryption for replication servers

You encrypt client/server network communication by specifying the ENCCSM module with the communications support module (CSM) option in the sqlhosts file. You
encrypt Enterprise Replication communication by setting encryption configuration parameter ENCRYPT_SMX or by configuring ER group option for onsocssl port in
sqlhosts file. Unless onsocssl port is used for communicating with peer ER servers, for communicating with older server versions before 14.10xC6, Enterprise Replication
requires configuring ENCRYPT_CDR instead of ENCRYPT_SMX.

You cannot configure an Enterprise Replication connection with a CSM.

To combine client/server network encryption with Enterprise Replication encryption, configure two network connections for each database server. The configuration in the
SQLHOSTS file would look like the following example.

#dbservername nettype hostname servicename options
 gserv1 group - - i=143
 serv1 ontlitcp ny.usa.com ertest1 g=gserv1
 c_serv1 ontlitcp ny.usa.com ertest10 csm=(ENCCSM)

In this example, serv1 and c_serv1 are two connection ports on the same database server. Encrypted client/server communication uses the c_serv1 port, while encrypted
Enterprise Replication uses the serv1 port.

For more information on encrypting client/server network communications, see the IBM® Informix® Administrator's Guide.

Related reference:
 Set configuration parameters for replication

Enterprise Replication configuration parameter and environment variable reference

Copyright© 2020 HCL Technologies Limited

Testing the replication network

After you set up the network environment, test the connections between the replication servers. You cannot test a connection that uses the s=6 option in the sqlhosts file.

To test the network environment:

1. Verify the network connection. Use the ping command to test the connection between two systems. For example, from ny.usa.com, test the connection to
tokyo.japan.com:

ping tokyo.japan.com

2. Test the trusted environment:
a. Run dbaccess as user informix or as the owner if it is a non-root server.
b. Select the Connection menu option.
c. Select the Connect menu option.
d. Connect to the server group name and the server name of the other hosts.

For example, if you are running dbaccess on ny.usa.com, and you are testing the connection to a database server on tokyo.japan.com, select serv2 and
g_serv2.

e. When prompted for the USER NAME, press Enter.
If you can connect to the host database server, the host server trusts the connection from the remote host as user informix or as the owner if the remote host is a
non-root server.

For more information, see the IBM® Informix® DB-Access User's Guide.

Related tasks:
 Configuring secure ports for connections between replication servers

Copyright© 2020 HCL Technologies Limited

Testing the password file

You create and encrypt a password file to allow the CDR utility to access to a secure network environment. Use these steps to test that the encrypted password file is
correctly configured.

To test the password file configuration:

Use the cdr view state -c remote_server_group_name command to verify that the password file supplies the correct password to the CDR command. For example, if your
remote server group was named g_serv2, specify the following command:

cdr view state -c g_serv2

The state of all configured enterprise replication servers is returned. If enterprise replication is not defined, but the password file is set up correctly, the following message
is returned:

1800 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

ERROR:ER not defined on g_serv2

If the CDR utility is unable to connect to the server or if the following error is returned then verify that $INFORMIXDIR/etc/passwd_file is correctly configured.

25539: Invalid connection-type

The following is an example of command output returned when Enterprise Replication and the password file are correctly configured:

$ cdr view state -c g_serv2
STATE
Source ER Capture Network Apply
 State State State State

g_serv2 Active Running Running Running
g_serv1 Active Running Running Running

Copyright© 2020 HCL Technologies Limited

Preparing the Disk

These topics describe how to prepare your disk for Enterprise Replication.

Logical Log Configuration Disk Space
 Logical Log Configuration Guidelines
 Logical logs must be configured correctly for Enterprise Replication.

Disk Space for Delete Tables
 If you use the time stamp, time stamp and SPL routine, or delete wins conflict resolution rules, you must provide enough disk space for the delete tables that

Enterprise Replication creates to keep track of modified rows for conflict resolution.
Shadow column disk space

 If you plan to use shadow columns, make sure to allow additional disk space for their values.
Setting Up Send and Receive Queue Spool Areas

 Setting Up the Grouper Paging File
 Creating ATS and RIS directories

 You can create directories for Aborted Transactions Spooling (ATS) and Row Information Spooling (RIS) files instead of using the default directories.

Copyright© 2020 HCL Technologies Limited

Logical Log Configuration Disk Space

The database server uses the logical log to store a record of changes to the data since the last archive. Enterprise Replication requires the logical log to contain entire row
images for updated rows, including deleted rows.

The database server normally logs only columns that have changed. This behavior is called the logical-log record reduction option. Enterprise Replication deactivates this
option for tables that participate in replication. (The logical-log record reduction option remains enabled for tables that do not participate in Enterprise Replication.)
Enterprise Replication logs all columns, not only the columns that have changed, which increases the size of your logical log.

To determine the size of your logical log, examine your data activity for normal operations and for the replication system you defined. Keep in mind that defining replication
on a table causes Enterprise Replication to deactivate log reduction for that table, and that your transactions might log more data.
Important: Enterprise Replication performs internal cleanup tasks based on how often the log files switch. If the log files switch too frequently, Enterprise Replication
might perform excessive cleanup work.

Copyright© 2020 HCL Technologies Limited

Logical Log Configuration Guidelines

Logical logs must be configured correctly for Enterprise Replication.

Use the following guidelines when configuring your logical log files:

Make sure that all logical log files are approximately the same size.
Make the size of the logical log files large enough so that the database server switches log files no more than once every 15 minutes during normal processing.
Plan to have sufficient logical-log space to hold at least four times the maximum transaction size.
Set LTXEHWM (long-transaction, exclusive-access, high-watermark) 30 percent larger than LTXHWM (long-transaction high-watermark).

Important: If you specify that the database server allocate logical log files dynamically (DYNAMIC_LOGS), it is recommended that you set LTXEHWM to no higher than 70
when using Enterprise Replication.
For more information about logical logs and these configuration parameters, see IBM® Informix® Administrator's Reference and IBM Informix Administrator's Guide.

The database server can add logs dynamically when Enterprise Replication approaches a potential log wrap situation if the CDR_MAX_DYNAMIC_LOGS configuration
parameter is set to a non-zero integer.

Related concepts:
 Handle potential log wrapping

Related tasks:
 Preventing Memory Queues from Overflowing

Part VI: Administering 1801

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Disk Space for Delete Tables

If you use the time stamp, time stamp and SPL routine, or delete wins conflict resolution rules, you must provide enough disk space for the delete tables that Enterprise
Replication creates to keep track of modified rows for conflict resolution.

Delete tables handle conflicts such as when a DELETE or UPDATE operation finds no corresponding row on the target. The DTCleaner thread removes a row from the
delete tables after all the servers have progressed beyond that row. Enterprise Replication does not create delete tables for tables that have replicates defined with a
conflict resolution rule of ignore or always-apply.

Delete tables are created on the database server where the data originates and on all the database servers to which data gets replicated. Delete tables are stored in the
same dbspaces, using the same fragmentation strategy, as their base tables.

To determine the disk space requirements to accommodate delete tables, estimate how many rows will be deleted or modified. For example, if the base table has 100
megabytes of data, but only half the rows might be deleted or modified, then 50 megabytes is a reasonable estimate for the size of the delete table.
Important: Do not remove the delete tables created by Enterprise Replication. The delete table is automatically removed when the last replicate defined with conflict
resolution is deleted.
Related concepts:

 Update-Anywhere Replication System
Related reference:

 Replicate only changed columns

Copyright© 2020 HCL Technologies Limited

Shadow column disk space

If you plan to use shadow columns, make sure to allow additional disk space for their values.

If you plan to use any conflict-resolution rule except ignore or always-apply, you must allow for an additional 8 bytes for the CRCOLS shadow columns, cdrserver and
cdrtime, which store the server and time stamp information that Enterprise Replication uses for conflict resolution.

If you want to speed consistency checking by indexing the REPLCHECK shadow column, you must allow for an additional 8 bytes for the ifx_replcheck shadow column.

If you want to use ERKEY shadow columns as the replication key, or you create your replicated tables through a grid, you must allow of an additional 10 bytes for the
ERKEY shadow columns, ifx_erkey_1, ifx_erkey_2, and ifx_erkey_3. When you create replicated tables through a grid, these ERKEY columns are automatically
added.ERKEY columns also require disk space for the index that is created on them. In addition to the standard partition and page overhead, for each row in the table the
ERKEY index uses 14 bytes for non-fragmented tables and 18 bytes for fragmented tables for each row in the table.

The following table shows the amount of space used by each shadow column.

Table 1. Shadow column size
Shadow column name Data type Size

cdrserver INTEGER 4 bytes

cdrtime INTEGER 4 bytes

ifx_replcheck BIGINT 8 bytes

ifx_erkey_1 INTEGER 4 bytes

ifx_erkey_2 INTEGER 4 bytes

ifx_erkey_3 SMALLINT 2 bytes

The shadow columns claim disk space immediately, except when CRCOLS and ERKEY columns are added to an existing table.

Related concepts:
 Update-Anywhere Replication System

Shadow columns
Preparing Tables for Conflict Resolution
Preparing Tables for a Consistency Check Index

Copyright© 2020 HCL Technologies Limited

Setting Up Send and Receive Queue Spool Areas

The term data queue refers to both the send queue and the receive queue. Enterprise Replication collects information from the logical logs and places the data to be
transferred in the send queue. Then Enterprise Replication transfers the contents of the send queue to the receive queue on the target server. Enterprise Replication on
the target reads the data from the receive queue and applies the changes to the tables on the target server.

The send and receive queues reside in memory and are managed by the Reliable Queue Manager (RQM). The CDR_QUEUEMEM configuration parameter (CDR_QUEUEMEM
Configuration Parameter) specifies the amount of memory space that is available for the data queues.

When a queue in memory fills (for the receive queue, this only occurs with large transactions), the transaction buffers are written (spooled) to disk. Spooled transactions
consist of transaction records (headers that contain internal information for Enterprise Replication), replicate information (summaries of the replication information for

1802 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

each transaction), and row data (the actual replicated data). Spooled transaction records and replication records are stored in transaction tables and replication tables in a
single dbspace. Spooled row data is stored in one or more sbspaces.
Important: To prevent the send and receive queues from spooling to disk, see Preventing Memory Queues from Overflowing.

Row Data sbspaces
 Replicated data might include UDT and CLOB or BLOB data types. Therefore, the spooled row data is stored as smart large objects in one or more sbspaces.

Related concepts:
 Send queues and receive queues

Related tasks:
 Preventing Memory Queues from Overflowing

Copyright© 2020 HCL Technologies Limited

Row Data sbspaces

Replicated data might include UDT and CLOB or BLOB data types. Therefore, the spooled row data is stored as smart large objects in one or more sbspaces.

The CDR_QDATA_SBSPACE configuration parameter accepts multiple sbspaces, up to a maximum of 32 sbspaces. Enterprise Replication can support a combination of
logging and non-logging sbspaces for storing spooled row data. If CDR_QDATA_SBSPACE is configured for multiple sbspaces, then Enterprise Replication uses all
appropriate sbspaces in round-robin order.

You can have Enterprise Replication automatically configure disk space from the storage pool and set the CDR_QDATA_SBSPACE configuration parameter when defining a
replication server. If the CDR_QDATA_SBSPACE configuration parameter is not set and the database server has a storage pool with sufficient space, the cdr define
command performs the following tasks:

Creates a new sbspace using one or more new chunks from the storage pool
Sets the CDR_QDATA_SBSPACE configuration parameter both in memory and in the onconfig file to the newly defined sbspace.

For clusters, the cdr define command creates new sbspaces and sets the CDR_QDATA_SBSPACE configuration parameters in all secondary database servers, as well.
Note: A database server's storage pool must have 500 MB of free space for sbspaces, and chunk sizes of 100 MB or greater for the database server to use automatic
storage provisioning.

Creating sbspaces for Spooled Row Data
 You must create dedicated sbspaces for spooled row data.

Logging Mode for sbspaces
 Dropping a Spooled Row Data sbspace

Related tasks:

 Defining Replication Servers
Related reference:

 Set configuration parameters for replication

Copyright© 2020 HCL Technologies Limited

Creating sbspaces for Spooled Row Data

You must create dedicated sbspaces for spooled row data.

Follow these guidelines when creating sbspaces for spooled row data:

Create all the sbspaces of same default log mode type with the same size.
Do not use Enterprise Replication row data sbspaces for non-Enterprise Replication activity.
Ensure that the sbspaces are sufficiently large.
To determine the size of your spooled row data sbspaces, determine your log usage and then consider how much data you can collect if your network goes down.
For example, assume that you usually log 40 megabytes of data each day, but only 10 percent of that is replicated data. If your network is down for 24 hours and
you estimate that 4 MB of replicated data are logged each day, the size of the sbspaces you identify for the spooled row data must be a total of at least 4 MB.

Windows Only
On Windows, increase the resulting size of the sbspace by approximately a factor of two. (The default page size, the way that data maps onto a page, and the
number of pages written to disk differs on Windows.)

Important: When the row data sbspaces fill, Enterprise Replication hangs until you either resolve the problem that is causing Enterprise Replication to spool or allocate
additional disk space to the sbspaces. For more information, see Preventing Memory Queues from Overflowing.
To create row data sbspaces, use the onspaces -c utility. For example, to create a 4-megabyte sbspace, called er_sbspace, using raw disk space on UNIX with an offset of
0, enter:

onspaces -c -S er_sbspace -p /dev/rdsk/c0t1d0s4 -o 0 -s 4000\
 -m /dev/rdsk2/c0t1d0s4 0 \
 -Df "AVG_LO_SIZE=2,LOGGING=OFF"

The path name for an sbspace cannot be longer than 256 bytes.

The -m option specifies the location and offset of the sbspace mirror. The -Df option specifies default behavior of the smart large objects stored in the sbspace:

AVG_LO_SIZE (average large object size)
Set this parameter to the expected average transaction size (in KB). The database server uses this value to calculate the metadata size. The minimum value for
AVG_LO_SIZE is 2 KB, which is appropriate for Enterprise Replication in most cases. (The default value of AVG_LO_SIZE is 32 KB.) If you set AVG_LO_SIZE to larger

Part VI: Administering 1803

https://www.hcltech.com/
https://www.hcltech.com/

than the expected transaction size, you might run out of metadata space. If you set AVG_LO_SIZE too small, you might waste space on metadata.

LOGGING
Set this parameter to OFF to create an sbspace without logging. Set this parameter to ON to create an sbspace with logging. Use a combination of logging and non-
logging sbspaces for Enterprise Replication. For more information, see Logging Mode for sbspaces.

Set the CDR_QDATA_SBSPACE configuration parameter in the ONCONFIG file to the location of the row data sbspace (er_sbspace, in this example). For more information,
see CDR_QDATA_SBSPACE Configuration Parameter.

Copyright© 2020 HCL Technologies Limited

Logging Mode for sbspaces

Enterprise Replication uses the default log mode that the sbspace was created with for spooling row data.

Create sbspaces with a default logging mode of ON or OFF according to the types of transactions Enterprise Replication replicates:

LOGGING=ON
Create sbspaces with LOGGING set to ON to support these situations:

Replicated systems with high-availability clusters
Enterprise Replication must use logging sbspaces for transactions involved in high-availability clusters.

Small transactions
Enterprise Replication uses logging sbspaces for transactions that are less than a page size (2K or 4K) of replicated data.

For logging sbspaces, performance might be enhanced because logging mode enables asynchronous IO. However, a logging sbspace consumes additional logical-
log space.

LOGGING=OFF
Create sbspaces with LOGGING set to OFF to support replication of large transactions (greater than a page size of replicated data).

It is recommended that you mirror non-logging sbspaces. For more information, see the chapter on managing disk space in the IBM® Informix® Administrator's
Guide and the IBM Informix Administrator's Reference.

For non-logging sbspaces, performance is enhanced on the database server when Enterprise Replication spools to disk because Enterprise Replication writes less
data to disk.

Important: Do not change the Enterprise Replication sbspace default log mode while Enterprise Replication is running. To change the default log mode, follow the
procedure below.
You can change the default logging mode of the row data sbspace if you have more than one sbspace specified by the CDR_QDATA_SBSPACE configuration parameter.

To change the default logging mode of a row data sbspace:

1. Shut down the database server.
2. Remove the sbspace from the CDR_QDATA_SBSPACE configuration parameter value list.
3. Start the database server in recovery mode.
4. Wait for all the smart large objects to get deleted from the sbspace. Use the onstat -g smb lod command to check for smart large objects stored in an sbspace.
5. Change the default logging mode for the sbspace.
6. Add the sbspace name to the CDR_QDATA_SBSPACE configuration parameter value list.
7. Shut down and restart the database server using the onmode -ky and oninit commands.

Copyright© 2020 HCL Technologies Limited

Dropping a Spooled Row Data sbspace

Important: Do not drop an Enterprise Replication row data sbspace using the onspaces -d -f (force) command.
You can drop a row data sbspace if you have more than one sbspace specified by the CDR_QDATA_SBSPACE configuration parameter.

To drop a row data sbspace

1. Shutdown the database server.
2. Remove the sbspace from the CDR_QDATA_SBSPACE configuration parameter value list.
3. Start the database server in recovery mode.
4. Wait for all the smart large objects to get deleted from the sbspace. Use the onstat -g smb lod command to check for smart large objects stored in a sbspace.
5. If the sbspace was added from the storage pool, use the drop sbspace to storagepool argument with the admin() or task() function to return the empty sbspace to

the storage pool.

Related information:
 drop sbspace to storagepool argument: Return space from an empty sbspace to the storage pool (SQL administration API)

Copyright© 2020 HCL Technologies Limited

Setting Up the Grouper Paging File

1804 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Enterprise Replication uses a grouper paging mechanism for evaluating large transactions. A transaction is large if the portion to be replicated meets at least one of the
following conditions:

It has greater than 5,000 log records.
It exceeds one fifth the size of the value of the CDR_QUEUEMEM ONCONFIG variable.
It exceeds one tenth the size of the value of the SHMVIRTSIZE configuration variable.

The location of the sbspace used for the paging file is determined by the first of the following ONCONFIG configuration parameters that is set:

SBSPACETEMP
SBSPACENAME
CDR_QDATA_SBSPACE

The best solution is to set up an unlogged sbspace, as specified by the SBSPACETEMP configuration parameter. All updates to the paging files are unlogged.

The size of the paging sbspace should be at least three times the size of the largest transaction to be processed. This sbspace is also used by the database server for other
tasks; consider its overall usage when determining size requirements.
Important: If the paging sbspace fills, Enterprise Replication hangs until you allocate additional disk space to the sbspace. If additional space is unavailable, use the cdr
stop command to stop replication.

Copyright© 2020 HCL Technologies Limited

Creating ATS and RIS directories

You can create directories for Aborted Transactions Spooling (ATS) and Row Information Spooling (RIS) files instead of using the default directories.

ATS and RIS files contain information about failed transactions and aborted rows. You can repair data after a replicated transaction fails by applying ATS and RIS files.
Enterprise Replication examines the specified ATS or RIS file and attempts to reconcile the rows that failed to be applied. ATS and RIS files are relevant only if you specify
a conflict resolution role other than ignore or always-apply.

The default location for ATS and RIS directories is /tmp (UNIX) or \tmp (Windows).

If you want to use non-default directories, create the ATS or RIS directories before you define the server for replication. The path names for the ATS and RIS directories
cannot be longer than 256 characters.

Create RIS directories on all replication servers in the domain.
Create ATS directories on all replication servers in the domain, if you are using update-anywhere replication.
Create the ATS directory on the target system, if you are using primary-target replication.

Related concepts:
 Failed Transaction (ATS and RIS) Files

Related tasks:
 Enabling ATS and RIS File Generation

Customizing the Replication Server Definition
Setting Up Failed Transaction Logging

Copyright© 2020 HCL Technologies Limited

Preparing the Database Server Environment

To prepare the database server environment, set database server environment variables and configuration parameters, and synchronize the operating system time on all
participating database servers.

If you are using high-availability clusters with Enterprise Replication, set up your servers according to the instructions in Setting Up Database Server Groups for High-
Availability Cluster Servers.

Setting Database Server Environment Variables
 Certain environment variables must be set in a replication environment.

Set configuration parameters for replication
 You must set certain configuration parameters before you start Enterprise Replication. You can set other configuration parameters to customize the behavior of

Enterprise Replication.
Time synchronization

 Whenever you use replication that requires time stamp, time stamp with a stored procedure, or delete wins conflict resolution, you must synchronize the operating
system times of the database servers that participate in the replicate.

Copyright© 2020 HCL Technologies Limited

Setting Database Server Environment Variables

Certain environment variables must be set in a replication environment.

To configure the database server environment, verify that the following environment variables are set correctly:

INFORMIXDIR is set to the full path of the IBM® Informix® directory.
INFORMIXSERVER is set to the name of the default database server.

Part VI: Administering 1805

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

INFORMIXSQLHOSTS is set to the full path to the SQLHOSTS file.
DELIMIDENT is not set or set to n. Enterprise Replication does not allow delimited identifiers.

Copyright© 2020 HCL Technologies Limited

Set configuration parameters for replication

You must set certain configuration parameters before you start Enterprise Replication. You can set other configuration parameters to customize the behavior of Enterprise
Replication.

Parameters to set before you start replication
Set the following configuration parameters in the onconfig file on each database server that you want to include in the replication domain before you start replication:

DBSERVERNAME specifies the name of the database server. If you use both the DBSERVERNAME and DBSERVERALIASES configuration parameters, set the
DBSERVERNAME configuration parameter to the TCP connection and not to a shared-memory connection.
CDR_QUEUEMEM specifies the maximum amount of memory to be used for the send and receive queues.
CDR_SERIAL specifies how to generate non-overlapping (unique) values for serial columns across all database servers in the replication domain.
CDR_TSINSTANCEID specifies how to generate unique identifiers for time series instances across all database servers in the replication domain.

Logging parameters
By default, if Enterprise Replication detects the potential for a log wrap situation when replication log processing lags behind the current log position, user transactions are
blocked. You can configure Enterprise Replication to prevent the blocking of user transactions. Depending on the solutions you need, you might set the following
configuration parameters in the onconfig file for each database server:

CDR_LOG_LAG_ACTION specifies the actions that Enterprise Replication during a potential log wrap situation.
LOG_STAGING_DIR specifies a directory in which compressed log files are staged.
CDR_LOG_STAGING_MAXSIZE specifies the maximum size that Enterprise Replication can use to stage log files.
CDR_MAX_DYNAMIC_LOGS specifies the number of dynamic log file requests that Enterprise Replication can make in one server session.
DYNAMIC_LOGS specifies that logical logs can be added dynamically.

Encryption parameters
If you want to encrypt network communications, set the following configuration parameters in the onconfig file for each database server:

ENCRYPT_CDR specifies whether to enable encryption. The default value is 0, which prevents encryption.
ENCRYPT_CIPHERS specifies which ciphers and cipher modes are used for encryption.
ENCRYPT_MAC controls the level of Message Authentication Code (MAC) used to ensure message integrity.
ENCRYPT_MACFILE specifies the full path and file names of the MAC files.
ENCRYPT_SWITCH specifies the number of minutes between automatic renegotiations of ciphers and keys. (The cipher is the encryption methodology. The secret
key is the key that is used to build the encrypted data using the cipher.)

Other parameters
Set the following optional configuration parameters to customize your replication environment:

CDR_DSLOCKWAIT specifies the number of seconds the data sync component waits for the database locks to be released. When replication is active on an
instance, you can increase the amount of time to wait for lock resources to accommodate transactions on replicated tables.
CDR_SUPPRESS_ATSRISWARN suppresses certain data sync error and warning codes from appearing in ATS and RIS files.
CDR_DELAY_PURGE_DTC specifies how long to retain rows in delete tables to support the delete wins conflict resolution rule.
GRIDCOPY_DIR specifies the default directory that is used by the ifx_grid_copy procedure.
CDR_MAX_FLUSH_SIZE specifies the number of replicated transactions that are applied before the logs are flushed to disk.

Related concepts:
 Row Data sbspaces

Serial data types and replication keys
Configuring network encryption for replication servers
Related tasks:

 Managing Replication Servers
Adding a server to the domain by cloning a server
Related reference:

 Enterprise Replication configuration parameter and environment variable reference
Related information:

 DBSERVERNAME configuration parameter
DBSERVERALIASES configuration parameter

Copyright© 2020 HCL Technologies Limited

Time synchronization

Whenever you use replication that requires time stamp, time stamp with a stored procedure, or delete wins conflict resolution, you must synchronize the operating system
times of the database servers that participate in the replicate.

1806 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

All timestamps and internal computations are performed in Greenwich Mean Time (GMT) and have an accuracy of plus or minus one second.

Important: Enterprise Replication does not manage clock synchronization between database servers that participate in a replicate. You should use a product that supplies
a network time protocol to ensure that times remain synchronized. For information on tools for synchronizing the times, refer to your operating system documentation.
To synchronize the time on one database server with the time on another database server, use one of the following commands, where hostname or servername is the
name of the remote database server computer.

UNIX
rdate hostname

Windows
net time \\servername /set
net time /domain:servername /set

Important: These commands do not guarantee the times will remain synchronized. If the operating system times of the database servers do become out of sync or if their
times move backward, time stamp or stored procedure conflict resolution might produce failures caused by incorrect time stamps.
Related concepts:

 Conflict Resolution
Delete wins conflict resolution rule
Time stamp conflict resolution rule
Related tasks:

 Adding a server to the domain by cloning a server

Copyright© 2020 HCL Technologies Limited

Preparing Data for Replication

The goal of data replication is to provide identical, or at least consistent, data on multiple database servers. This section describes how to prepare the information in your
databases for replication.

When you define a new replicate on tables with existing data on different database servers, the data might not be consistent. Similarly, if you add a participant to an
existing replicate, you must ensure that all the databases in the replicate have consistent values.

For more information, see Data Preparation Example.

Preparing Consistent Data
 Blocking Replication

 You might need to block replication so that you can put data into a database that you do not want replicated, perhaps for a new server or because you had to drop
and re-create a table.
Preparing to Replicate User-Defined Types

 Preparing to Replicate User-Defined Routines
 Preparing Tables for Conflict Resolution

 To use any conflict-resolution rule other than ignore or always-apply, you must define the shadow columns, cdrserver and cdrtime in the tables on both the source
and target servers involved in replication.
Preparing Tables for a Consistency Check Index

 To improve the speed of consistency checking with an index, you must define the ifx_replcheck shadow column in the tables on both the source and target servers
involved in replication.
Preparing tables without primary keys

 The data columns in your table might not need a primary key. To replicate tables that do not have primary keys, you can specify a unique index or add the ERKEY
shadow columns.
Preparing Logging Databases

 Preparing for Role Separation (UNIX)
 You can use role separation to allow members of the DBSA group to run Enterprise Replication commands, in addition to the user informix. For some Enterprise

Replication commands, you must grant the DBSA user additional permissions on tables or files. For non-root servers, role separation is not supported. Only the
owner of a non-root server is allowed to run the Enterprise Replication commands that require additional permissions for a DBSA.

Related concepts:
 Update-Anywhere Replication System

Copyright© 2020 HCL Technologies Limited

Preparing Consistent Data

In most cases, preparing consistent data simply requires that you decide which of your databases has the most accurate data and then that you copy that data onto the
target database. If the target database already has data, for data consistency, you must remove that data before adding the copied data. For information on loading the
data, see Load and unload data.

Copyright© 2020 HCL Technologies Limited

Blocking Replication

You might need to block replication so that you can put data into a database that you do not want replicated, perhaps for a new server or because you had to drop and re-
create a table.

Part VI: Administering 1807

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

To block replication while you prepare a table, use the BEGIN WORK WITHOUT REPLICATION statement. This starts a transaction that does not replicate to other
database servers.

The following code fragment shows how you might use this statement:

BEGIN WORK WITHOUT REPLICATION
LOCK TABLE office
DELETE FROM office WHERE description = 'portlandR_D'
COMMIT WORK

Using DB-Access to Begin Work Without Replication
 Using ESQL/C to Begin Work Without Replication

Related concepts:

 Load and unload data

Copyright© 2020 HCL Technologies Limited

Using DB-Access to Begin Work Without Replication

The following example shows how to use DB-Access to begin work without replication:

DATABASE adatabase;
BEGIN WORK WITHOUT REPLICATION
insert into mytable (col1, col2,)
 values (value1, value2,);
COMMIT WORK

Copyright© 2020 HCL Technologies Limited

Using ESQL/C to Begin Work Without Replication

The following example shows how to use Informix® ESQL/C to begin work without replication as well as update the Enterprise Replication shadow columns cdrserver and
cdrtime:

MAIN (argc, argv)
 INT argc;
 CHAR *argv[];
{
 EXEC SQL CHAR stmt[256];
 EXEC SQL database mydatabase;

 sprintf(stmt, “BEGIN WORK WITHOUT REPLICATION”);
 EXEC SQL execute immediate :stmt;

 EXEC SQL insert into mytable (col1, col2, ...)
 values (value1, value2, ...);
 EXEC SQL commit work;
}

Important: You must use the following syntax when you issue the BEGIN WORK WITHOUT REPLICATION statement from Informix ESQL/C programs. Do not use the ‘$'
syntax.

sprintf(stmt, “BEGIN WORK WITHOUT REPLICATION”);
EXEC SQL execute immediate :stmt;

Copyright© 2020 HCL Technologies Limited

Preparing to Replicate User-Defined Types

You must install and register user-defined types on all database servers prior to starting replication.

For Enterprise Replication to be able to replicate opaque user-defined types (UDTs), the UDT designer must provide two support functions, streamwrite() and
streamread(). For more information, see Replication of opaque user-defined data types.

Copyright© 2020 HCL Technologies Limited

Preparing to Replicate User-Defined Routines

You must install and register user-defined routines on all database servers prior to starting replication.

Copyright© 2020 HCL Technologies Limited

1808 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Preparing Tables for Conflict Resolution

To use any conflict-resolution rule other than ignore or always-apply, you must define the shadow columns, cdrserver and cdrtime in the tables on both the source and
target servers involved in replication.

To define the cdrserver and cdrtime shadow columns when you create a new table, use the WITH CRCOLS clause. For example, the following statement creates a new
table named customer with a data column named id and the two shadow columns:

CREATE TABLE customer(id int) WITH CRCOLS;

To add the cdrserver and cdrtime shadow columns to an existing replicated table:

1. Set alter mode on the table by running the cdr alter --on command.
2. Alter the table using the ADD CRCOLS clause.
3. Unset alter mode on the table by running the cdr alter --off command.

Adding CRCOLS columns to an existing table can result in a slow alter operation if any of the table columns have data types that require a slow alter. If a slow alter
operation is necessary, make sure you have disk space at least twice the size of the original table, plus extra log space.

For example, the following statement adds the shadow columns to an existing table named customer:

ALTER TABLE customer ADD CRCOLS;

You cannot drop conflict resolution shadow columns while replication is active. To drop the cdrserver and cdrtime shadow columns, stop replication and then use the
DROP CRCOLS clause with the ALTER TABLE statement. For example, the following statement drops the two shadow columns from a table named customer:

ALTER TABLE customer DROP CRCOLS;

Related concepts:
 Shadow columns

Shadow column disk space
SQL statements and replication
Related information:

 Enterprise Replication shadow columns
Using the WITH CRCOLS Option

Copyright© 2020 HCL Technologies Limited

Preparing Tables for a Consistency Check Index

To improve the speed of consistency checking with an index, you must define the ifx_replcheck shadow column in the tables on both the source and target servers
involved in replication.

To define the ifx_replcheck shadow column when you create a new table, use the WITH REPLCHECK clause. For example, the following statement creates a new table
named customer with a data column named id and the ifx_replcheck shadow column:

CREATE TABLE customer(id int) WITH REPLCHECK;

To add the ifx_replcheck shadow column to an existing replicated table:

1. Set alter mode on the table by running the cdr alter --on command.
2. Alter the table using the ADD REPLCHECK clause.
3. Unset alter mode on the table by running the cdr alter --off command.

Because altering a table to add the ifx_replcheck shadow column is a slow alter operation, make sure you have disk space at least twice the size of the original table plus
log space.

For example, the following statements add the ifx_replcheck shadow column to an existing table named customer:

ALTER TABLE customer ADD REPLCHECK;

To drop the ifx_replcheck shadow column, use the DROP REPLCHECK clause with the ALTER TABLE statement. For example, the following statements drop the
ifx_replcheck shadow column from a table named customer:

ALTER TABLE customer DROP REPLCHECK;

For more information on the CREATE TABLE and ALTER TABLE statements, see the sections in the IBM® Informix® Guide to SQL: Syntax.

Related concepts:
 Shadow column disk space

Shadow columns
SQL statements and replication
Related tasks:

 Indexing the ifx_replcheck Column
Related information:

 Enterprise Replication shadow columns
Using the WITH REPLCHECK Keywords

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1809

https://www.hcltech.com/
https://www.hcltech.com/

Preparing tables without primary keys

The data columns in your table might not need a primary key. To replicate tables that do not have primary keys, you can specify a unique index or add the ERKEY shadow
columns.

You can specify an existing unique index or unique constraint as the replication key when you define the replicate. Use the --key or --anyUniqueKey option with the cdr
define replicate or cdr define template commands.

If you create a replicated table through a grid, the ERKEY shadow columns are automatically created and included in the replicate definition.

To add ERKEY shadow columns:

1. Add the ERKEY shadow columns when you create at table by using the WITH ERKEY keywords with the CREATE TABLE statement. For example, the following
statement adds the ERKEY shadow columns to a table named customer:

CREATE TABLE customer (id int) WITH ERKEY;

The ERKEY shadow columns are named ifx_erkey_1, ifx_erkey_2, and ifx_erkey_3.
2. Define the replicate. If you define a replicate by using the cdr define replicate command, include the --erkey option. If you define a template by using the cdr

define template command, the ERKEY columns are included in the replicate definition automatically.

To add the ERKEY shadow columns to an existing table that you want to start replicating:

1. Run the ALTER TABLE statement with the ADD ERKEY clause. For example, the following statement adds the ERKEY shadow columns to an existing table named
customer:

ALTER TABLE customer ADD ERKEY;

Occasionally, you might need to drop the ERKEY shadow columns; for example, if you are reverting to an earlier version of the database server.

To drop the ERKEY shadow columns from a replicated table:

1. Run the cdr remaster command without the --erkey option.
2. Run the DROP ERKEY clause with the ALTER TABLE statement.

For example, the following statement drops the ERKEY shadow columns from a table named customer:

ALTER TABLE customer DROP ERKEY;

Related concepts:
 Unique key for replication

SQL statements and replication
Related tasks:

 Creating replicated tables through a grid
Attaching a New Fragment to a Replicated Table
Related reference:

 cdr define replicate
cdr remaster
cdr change replicate
cdr define template
Related information:

 Using the WITH ERKEY Keywords
Enterprise Replication shadow columns

Copyright© 2020 HCL Technologies Limited

Preparing Logging Databases

Databases on all server instances involved in replication must be created with logging. For best results, use unbuffered logging. For more information, see Unbuffered
Logging.

Related reference:
 cdr start sec2er

Copyright© 2020 HCL Technologies Limited

Preparing for Role Separation (UNIX)

You can use role separation to allow members of the DBSA group to run Enterprise Replication commands, in addition to the user informix. For some Enterprise
Replication commands, you must grant the DBSA user additional permissions on tables or files. For non-root servers, role separation is not supported. Only the owner of a
non-root server is allowed to run the Enterprise Replication commands that require additional permissions for a DBSA.

The DBSA user who runs Enterprise Replication commands must be a member of the DBSA group on all of the replication servers in the domain.

The following table describes the permissions that are needed for each command.

Table 1. Permissions for the DBSA user

1810 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Command Type of Permission Tables, Files, or DatabaseCommand Type of Permission Tables, Files, or Database

cdr check replicate

cdr check replicateset

cdr define replicate

cdr define replicateset

cdr define template

cdr realize template

cdr sync replicate

cdr sync replicateset

INSERT

UPDATE

DELETE

The tables that participate in replication. Must be granted on all replication
servers in the domain.

The following commands with the --
background option:

cdr check replicate
cdr check replicateset
cdr sync replicate
cdr sync replicateset

CONNECT or INSERT, depending on the
object

sysadmin database: CONNECT

ph_task table in the sysadmin database: INSERT

Must be granted on the database server from which the command is run.

cdr define repair

cdr start repair

cdr stop repair

cdr delete repair

The following commands with the --
syncdatasource option:

cdr realize template
cdr start replicate
cdr start replicateset

INSERT, UPDATE, or DELETE, depending
on the table

The following syscdr tables:

rsncjobdef_tab: INSERT, UPDATE, DELETE
rsncjobdef: UPDATE
rsncprocnames_tab: INSERT
rsncjobdeps: INSERT

Must be granted on all replication servers in the domain.

cdr repair

cdr view atsdir

cdr view risdir

read ATS and RIS files
Must be granted on the database server on which the files are located.

To update the permissions on a table or database, use the GRANT statement. For example, the following statement grants INSERT and UPDATE permissions on the
rsncjobdef_tab table to the DBSA member with the user name of carlo:

GRANT INSERT, UPDATE ON rsncjobdef_tab TO carlo;

For more information about the GRANT statement, see the IBM® Informix® Guide to SQL: Syntax.

To update the permissions on ATS and RIS files, use an operating system command, such as the chown UNIX command.

Related reference:
 cdr check replicate

cdr check replicateset
cdr sync replicate
cdr sync replicateset
cdr repair
cdr view
cdr realize template
cdr define replicate
cdr define replicateset
cdr start replicate
cdr start replicateset
cdr define template

Copyright© 2020 HCL Technologies Limited

Load and unload data

You can load data into or unload data out of tables in your replication environment in various ways, depending on your circumstances.

If you have not yet set up your replication environment, for loading data, you can use the following tools:

High-Performance Loader
onunload and onload Utilities
dbexport and dbimport utilities
UNLOAD and LOAD statements
External tables

Part VI: Administering 1811

https://www.hcltech.com/

When you unload and load data, you must use the same type of utility for both the unload and load operations. For example, you cannot unload data with the onunload
utility and then load the data with a LOAD statement.

Existing replication environment
If you are adding a table to your already existing replication environment, Enterprise Replication provides an initial synchronization feature that allows you to easily bring a
new table up-to-date with replication. You can synchronize the new table with data on the source server you specify when you start the new replicate, or when you add a
new participant to an existing replicate. You do not need to suspend any servers that are replicating data while you add the new replicate and synchronize it.

If you want to use load and unload tools on tables that are already being replicated, you should block replication while you prepare the table. Unlogged changes to a table,
such as data added by a light append, can be replicated to other tables.

If a table that you plan to replicate includes the CRCOLS or REPLCHECK shadow columns, the statements that you use for unloading the data must explicitly name the
shadow columns. If you use the SELECT statement with * FROM table_name to the data to unload, the data from the shadow columns is not unloaded. To include the
shadow columns in the unloaded data, explicitly name them. For example, use a statement like the following:

SELECT cdrserver, cdrtime, ifx_replcheck, * FROM table_name

If a table that you plan to replicate includes ERKEY shadow columns, you cannot unload and then load the data from these columns and preserve the original values. If
you need to preserve the values of the ERKEY shadow columns, use synchronization to propagate the values.

High-Performance Loader
 The High-Performance Loader (HPL) provides a high-speed tool for moving data between databases.

onunload and onload Utilities
 You can use the onunload and onload utilities to unload and load an entire table.

dbexport and dbimport Utilities
 UNLOAD and LOAD Statements
 The UNLOAD and LOAD statements allow you to move data within the context of an SQL program.

Related concepts:
 Blocking Replication

Setting Up Database Server Groups for High-Availability Cluster Servers
Shadow columns
Related tasks:

 Initially Synchronizing Data Among Database Servers
Related information:

 Moving data with external tables

Copyright© 2020 HCL Technologies Limited

High-Performance Loader

The High-Performance Loader (HPL) provides a high-speed tool for moving data between databases.

How you use the HPL depends on how you defined the tables to replicate.

If the table contains shadow columns, you must:

Include all the shadow column names in your map when you load the data.
Use express mode to load data that contains shadow columns. You must perform a level-0 archive after completion.

You can also use deluxe mode without replication to load data. After a deluxe mode load, you do not need to perform a level-0 archive. Deluxe mode also allows you to
load TEXT and BYTE data and opaque user-defined types.

For information about HPL, refer to the IBM® Informix® High-Performance Loader User's Guide.

Copyright© 2020 HCL Technologies Limited

onunload and onload Utilities

You can use the onunload and onload utilities to unload and load an entire table.

If you want to unload selected columns of a table, you must use either the UNLOAD statement or the HPL.

Restriction: You can only use the onunload and onload utilities in identical (homogeneous) environments.
If you use the onload utility while replication is active, you must synchronize the data after you finish loading the data.

Related information:
 The onunload and onload utilities

Copyright© 2020 HCL Technologies Limited

dbexport and dbimport Utilities

1812 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

If you need to copy an entire database for replication, you can use the dbexport and dbimport utilities. These utilities unload an entire database, including its schema,
and then re-create the database. If you want to move selected tables or selected columns of a table, you must use some other utility.

Related information:
 The dbexport and dbimport utilities

Copyright© 2020 HCL Technologies Limited

UNLOAD and LOAD Statements

The UNLOAD and LOAD statements allow you to move data within the context of an SQL program.

If the table contains shadow columns, you must:

Include all shadow columns in your map when you unload the data.
List the columns that you want to load in the INSERT statement and explicitly include the shadow columns in the list when you load your data.

For more information about the UNLOAD and LOAD statements, see the IBM® Informix® Guide to SQL: Syntax.

Copyright© 2020 HCL Technologies Limited

Data Preparation Example

The following examples show how to add a new participant (delta) to an existing replicate by two different methods:

Using the cdr start replicate command
This method is simple and can be done while replication is online.

Using the LOAD, UNLOAD, and BEGIN WORK WITHOUT REPLICATION statements.
If you use HPL, this method can be faster for a large table.

Replicate zebra replicates data from table table1 for the following database servers: alpha, beta, and gamma.

The servers alpha, beta, and gamma belong to the server groups g_alpha, g_beta, and g_gamma, respectively. Assume that alpha is the database server from which you
want to get the initial copy of the data.

Using the cdr start replicate Command
 Using LOAD, UNLOAD, and BEGIN WORK WITHOUT REPLICATION

 When you add a new participant to an existing replicate, you can unload and load data without replication.

Copyright© 2020 HCL Technologies Limited

Using the cdr start replicate Command

To add a new participant to an existing replicate

1. Declare server delta to Enterprise Replication. For example:

cdr def ser -c delta -I -S g_alpha g_delta

At the end of this step, all servers in the replication environment include information in the syscdr database about delta, and delta has information about all other
servers.

2. Add delta as a participant to replicate zebra. For example:

cdr cha rep -a zebra "dbname@g_delta:owner.table1"

This step updates the replication catalog. The servers alpha, beta, and gamma do not queue any qualifying replication data for delta because the replicate on
delta, although defined, has not been started.

3. Start replication for replicate zebra on delta.

cdr sta rep zebra g_delta -S g_alpha -e delete

The -S g_alpha option specifies that the server alpha be used as the source for data synchronization.

The -e delete option indicates that if there are rows on the target server, delta, that are not present on the synchronization data server (alpha) then those rows are
deleted

Do not run any transactions on delta that affect table table1 until you finish the synchronization process.

Copyright© 2020 HCL Technologies Limited

Using LOAD, UNLOAD, and BEGIN WORK WITHOUT REPLICATION

Part VI: Administering 1813

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

When you add a new participant to an existing replicate, you can unload and load data without replication.

To add a new participant to an existing replicate

1. Add the server delta to the Enterprise Replication domain. For example:

cdr def ser -c delta -I -S g_alpha g_delta

At the end of this step, all servers in the replication environment include information in the syscdr database about delta, and delta has information about all other
servers.

2. Add delta as a participant to replicate zebra. For example:

cdr cha rep -a zebra "P dbname@g_delta:owner.table1" \
"select * from table1"

This step updates the replication catalog. The servers alpha, beta, and gamma do not queue any qualifying replication data for delta because the replicate on
delta, although defined, has not been started.

3. Suspend server delta on alpha, beta, and gamma.

cdr sus ser g_delta g_alpha g_beta g_gamma

As a result of this step, replication data is queued for delta, but no data is delivered.

4. Start replication for replicate zebra on delta.

cdr sta rep zebra g_delta

This step causes servers alpha, beta, and gamma to start queuing data for delta. No data is delivered to delta because delta is suspended. Then, delta queues
and delivers qualifying data (if any) to the other servers.

Do not run any transactions on delta that affect table table1 until you finish the synchronization process.

5. Unload data from table table1 using the UNLOAD statement or the unload utility on HPL.
6. Copy the unloaded data to delta.
7. Start transactions with BEGIN WORK WITHOUT REPLICATION, load the data using the LOAD statement, and commit the transactions. If you used the HPL to unload

the data in step 5, then use the HPL Deluxe load without replication to load the data into table1 on delta.
8. Resume server delta on alpha, beta, and gamma.

cdr res ser g_delta g_alpha g_beta g_gamma

This step starts the flow of data from alpha, beta, and gamma to delta.
At this point, you might see some transactions aborted because of conflict. Transactions can abort because alpha, beta, and gamma started queuing data from
delta in step 4. However, those same transactions might have been moved in steps 5 and 7.

You must declare replication on server delta and then immediately suspend replication because, while you are preparing the replicates and unloading and loading files,
the other servers in the replicate (alpha, beta, and gamma) might be collecting information that needs to be replicated. After you finish loading the initial data to delta
and resume replication, the information that was generated during the loading process can be replicated.

Copyright© 2020 HCL Technologies Limited

Using High-Availability Clusters with Enterprise Replication

In This Chapter
This chapter covers how to include other data replication solutions, such as high-availability data replication, in your Enterprise Replication system. The following topics
are covered:

The design of a high-availability cluster replication system
Preparing a high-availability cluster database server
Managing Enterprise Replication with a high-availability cluster

For a complete description of data replication, see the IBM Informix Administrator's Guide.

High-availability replication systems
 You can combine IBM® Informix® Enterprise Replication and high-availability clusters to create a high-availability replication system.

Managing Enterprise Replication with High-Availability Clusters

Related concepts:
 Preparing the Replication Environment

Grid setup and management
Shard cluster setup
Managing Replication Servers and Replicates
Monitor and troubleshooting Enterprise Replication
Related tasks:

 Defining Replication Servers, Replicates, Participants, and Replicate Sets

Copyright© 2020 HCL Technologies Limited

High-availability replication systems

1814 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

You can combine IBM® Informix® Enterprise Replication and high-availability clusters to create a high-availability replication system.

A high-availability cluster consists of two types of database servers:

A primary database server, which receives updates, and can participate in Enterprise Replication.
Secondary servers, which mirror the primary server and are perpetually applying logical-log records from the primary server, and cannot participate in Enterprise
Replication.

A minimal high-availability cluster consists of a primary server and a HDR secondary server that are tightly coupled. Transactions on the primary server are not committed
until the log records containing the transactions are sent to the HDR secondary server.

High-availability clusters can also contain shared-disk (SD) secondary servers and remote standalone (RS) secondary servers. A SD secondary server does not maintain a
copy of the physical database on its own disk space; it shares disks with the primary server. An RS secondary servers maintains a copy of the physical database on its own
disk space.

If the primary server in a high-availability cluster becomes unavailable, one of the secondary servers takes over the role of the primary server. In a high-availability
replication system, if the primary server fails, a secondary database is promoted to primary server, and Enterprise Replication can continue with the new primary server.

You can configure Connection Managers to direct client requests to replication servers, and to control which secondary server takes over if the primary server becomes
unavailable.

A high-availability replication system is effective when you use a hierarchical or a forest of trees topology.

High-Availability Clusters in a Hierarchical Tree Topology
 With a hierarchical tree topology, parent servers are good candidates for using high-availability clusters to provide backup servers.

Using high-availability clusters in a forest of trees topology
 Setting Up Database Server Groups for High-Availability Cluster Servers

 When defining a high-availability cluster within Enterprise Replication, the cluster must appear to be a single logical entity within the replication domain. Define the
servers within the same database server group in the sqlhosts file.

Related concepts:
 Update-Anywhere Replication System

Related information:
 The sqlhosts information

Copyright© 2020 HCL Technologies Limited

High-Availability Clusters in a Hierarchical Tree Topology

With a hierarchical tree topology, parent servers are good candidates for using high-availability clusters to provide backup servers.

The following example is based on the example in Figure 1.

If China fails, then Beijing and Shanghai can no longer replicate with other servers in the replication system; Guangzhou and Chengdu can replicate only with each other.
However, if China was part of a high-availability cluster, when it failed, the secondary server would replace it and replication would continue, as illustrated in Figure 1.
Figure 1. Hierarchical Tree Topology with HDR

In this example, Asia and Guangzhou, which are also parent servers, might also benefit from using a high-availability cluster to ensure high availability.

Copyright© 2020 HCL Technologies Limited

Using high-availability clusters in a forest of trees topology

Use a high-availability cluster to ensure that all servers retain access to the replication system in a forest of trees topology.

For example, in Figure 1, Asia, Europe, China, and Guangzhou should use high-availability clusters to provide backup servers, as illustrated in Figure 1.
Figure 1. High-Availability Clusters in a Forest-of-Trees Topology

Part VI: Administering 1815

https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Setting Up Database Server Groups for High-Availability Cluster Servers

When defining a high-availability cluster within Enterprise Replication, the cluster must appear to be a single logical entity within the replication domain. Define the
servers within the same database server group in the sqlhosts file.

For example, Figure 1 illustrates two Enterprise Replication nodes, one of which is an HDR pair.
Figure 1. Database Server Groups for Enterprise Replication with HDR

In this example, the HDR pair consists of the primary server, serv1, and the secondary server, serv1_sec. These two servers belong to the same database server group,
g_serv1. The non-HDR server, serv2, belongs to the database server group g_serv2. The following example displays the sqlhosts file for this configuration:

#dbservername nettype hostname servicename options
 g_serv1 group - - i=1
 serv1 ontlitcp machine1pri port1 g=g_serv1
 serv1_sec ontlitcp machine1sec port1 g=g_serv1
 g_serv2 group - - i=2
 serv2 ontlitcp machine2 port1 g=g_serv2

Important: If you use the g=server option in the group member definition, you can put the definition anywhere in the sqlhosts file.
Either HDR or Enterprise Replication can be set up first on the HDR pair serv1 and serv1_sec, but Enterprise Replication cdr commands must be run only on the primary
server. If any cdr commands are attempted on the secondary server, a –117 error is returned: Attempting to process a cdr command on an HDR secondary
server.

Related concepts:
 Load and unload data

Creating sqlhost group entries for replication servers
Related information:

 sqlhosts connectivity information

Copyright© 2020 HCL Technologies Limited

Managing Enterprise Replication with High-Availability Clusters

This section describes how to manage Enterprise Replication with HDR in the following areas:

Failure of the primary server in a high-availability cluster
Performance considerations

Failover for High-availability clusters in an Enterprise Replication environment
 Replication latency for secondary servers

 When you combine Enterprise Replication with high-availability clusters, replication latency can increase.

Copyright© 2020 HCL Technologies Limited

1816 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Failover for High-availability clusters in an Enterprise Replication environment

If you configure connection management for failover, Connection Managers can promote a secondary server to the primary-server if the primary server fails. If connection
management is not configured to control failover, the onmode -d make primary command can promote a secondary server to the primary-server role. In either of these
cases, Enterprise Replication automatically connects to the new primary server.

If the primary server fails, and you manually change a secondary server to a standard server, you must complete the following steps to prevent Enterprise Replication from
starting on all servers in cluster.

Run the following commands on the secondary server:

1. onmode -s
2. onmode -d standard
3. cdr start

If Enterprise Replication is running on the secondary server, and you want to restart the server that was the primary server, but without Enterprise Replication and high-
availability cluster replication, run the oninit -D command. You can then stop Enterprise Replication on the standard server and reestablish the primary server.

First, run the following commands on the standard server:

1. cdr stop
2. onmode -d secondary primary_ha_alias

Second, run the following commands on the primary server:

1. oninit
2. cdr start

To split an active cluster into two standalone servers, you must restart the database servers with the oninit -D command to prevent Enterprise Replication from starting on
either server after they are split.

To remove a server from a cluster, run the cdr delete server –force ha_alias command, where ha_alias is an Enterprise Replication group name, to remove Enterprise
Replication from that server. For example, the two HDR servers are being split and the secondary server is to be used for reporting purposes. After the report processing is
complete, HDR can be reestablished. cdr delete server shows how to remove a secondary server from a high-availability cluster and Enterprise Replication.

Table 1. Removing the Secondary Server from a cluster and ER

Step On the Primary On the Secondary

1. onmode -d standard secondary_ha_alias

2. Run onmode -d standard

3. Run cdr delete server -f ha_alias

If the HDR primary server has problems communicating to its secondary server, Enterprise Replication is in a suspended state until one of the following actions is taken:

Resolve the connection problem between HDR pairs.
Convert the primary server to standard mode.

Related reference:
 cdr delete server

Related information:
 Connection management through the Connection Manager

Copyright© 2020 HCL Technologies Limited

Replication latency for secondary servers

When you combine Enterprise Replication with high-availability clusters, replication latency can increase.

When Enterprise Replication is running on a high-availability cluster, some operations cannot be performed until the logs are shipped to the secondary server. By default,
the logs are shipped to secondary servers after 50 replicated transactions are applied, or 5 seconds elapse. This delay prevents possible inconsistency within the
Enterprise Replication domain during a failover to a secondary server.

You can control replication latency for high-availability data replication (HDR) servers in one of the following ways

Set HDR replication to fully synchronous, nearly synchronous, or asynchronous mode.
Set HDR replication to HDR SYNC.
Adjust the DRINTERVAL configuration parameter to specify a different interval between flushing the high-availability data-replication buffer.

If you combine Enterprise Replication with shared-disk secondary servers, you can reduce replication latency by setting the CDR_MAX_FLUSH_SIZE configuration
parameter to 1 to flush the logs after each replicated transaction.

Related reference:
 CDR_MAX_FLUSH_SIZE configuration parameter

Related information:
 DRINTERVAL configuration parameter

HDR_TXN_SCOPE configuration parameter
Replication of primary-server data to secondary servers
Fully synchronous mode for HDR replication
Nearly synchronous mode for HDR replication

Part VI: Administering 1817

https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Defining Replication Servers, Replicates, Participants, and Replicate Sets

These topics describe the steps defining and starting Enterprise Replication.

To define and start replication:

1. Initialize the database server.
2. Create a replication domain by defining replication servers.
3. Configure replication by defining replicates, and optionally grouping replicates into a replicate set. The replicate definition includes information about the

participants, replication options, frequency, and conflict-resolution rules and scope.
4. Specify the data to replicate by defining participants. A participant definition specifies the data (database, table, and columns) that should be replicated.
5. Synchronize the data among the replicates.

Starting Database Servers
 The database server must be online before you can define it as a replication server.

Defining Replication Servers
 You must define a replication server to create a replication domain or to add a server to an existing domain.

Define a replicate
 To define a replicate, use the cdr define replicate command.

Define replicate sets
 When you define a replicate set, you specify the type of replicate set, the replicates that belong to the replicate set, and the frequency of replication for the member

replicates.
Initially Synchronizing Data Among Database Servers

 Set up replication through templates
 Enterprise Replication provides templates to allow easy setup and deployment of replication for clients with large numbers of tables to replicate. A template uses

schema information about a database, a group of tables, columns, and replication keys to define a group of master replicates and a replicate set.

Related concepts:
 Preparing the Replication Environment

Using High-Availability Clusters with Enterprise Replication
Grid setup and management
Shard cluster setup
Managing Replication Servers and Replicates
Monitor and troubleshooting Enterprise Replication

Copyright© 2020 HCL Technologies Limited

Starting Database Servers

The database server must be online before you can define it as a replication server.

To bring the server from offline to online, issue the following command for your operating system.

Operating System Command

UNIX oninit

Windows start dbservername

To bring the server from quiescent mode to online on either UNIX or Windows, enter onmode -m.

For more information on initializing the database server, see the chapter on database server operating modes in the IBM® Informix® Administrator's Guide.

Copyright© 2020 HCL Technologies Limited

Defining Replication Servers

You must define a replication server to create a replication domain or to add a server to an existing domain.

The database server must be online.

You must be the Enterprise Replication server administrator to define the replication server.

You can define replication servers using two different methods:

The cdr utility
Cloning

To define the replication server in a new domain by using the cdr utility, use the cdr define server command to connect to the database server and specify the database
server group name. For example, the following command connects to a server called stan and creates a domain containing the database server group g_stan:

cdr define server --connect=stan --init g_stan

The --init option specifies the database server group to add to the replication domain. If the INFORMIXSERVER environment variable is not set to the server that you are
defining, specify the --connect=server_name option. You can also configure replication attributes for the server.

1818 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

To define a replication server in an existing domain by using the cdr utility, include the --sync=sync_server option with the cdr define server command to synchronize the
global catalog with an existing server. For example, the following command adds a server group named g_oliver to the domain created in the previous command, using
g_stan as the synchronization server:

cdr define server --connect=oliver --init g_oliver --sync=g_stan

You can specify any existing server in the domain, however, if you define a server as a nonroot or a leaf server, then the synchronization server becomes the parent of the
new server. For example, if you add a server kauai as a leaf server and want its parent to be hawaii, then specify hawaii with the --sync option.

You can have Enterprise Replication automatically configure disk space from the storage pool and set the appropriate configuration parameters when defining a replication
server. If the CDR_QDATA_SBSPACE or the CDR_DBSPACE configuration parameter is not set and the server has a storage pool with sufficient space, the cdr define server
command automatically creates the necessary disk space and sets the configuration parameters to appropriate values.

The maximum number of replication servers that you can define is 32767.

Creating a new domain by cloning a server
 You can create a new replication domain by cloning a server and then converting the two database servers to replication servers. Use cloning and conversion if you

want to set up replication based on the data on a source server that is not yet running Enterprise Replication.
Adding a server to the domain by cloning a server

 You can add a replication server to an existing replication domain by using the ifxclone utility to clone an existing replication server onto a target database server.
Customizing the Replication Server Definition

 You can specify replication attributes of a server when you define it.

Related concepts:
 Row Data sbspaces

Choosing a Replication Network Topology
Enterprise Replication Server administrator
Modify server attributes
Related tasks:

 Setting Up Failed Transaction Logging
Related reference:

 cdr define server
cdr define replicate

Copyright© 2020 HCL Technologies Limited

Creating a new domain by cloning a server

You can create a new replication domain by cloning a server and then converting the two database servers to replication servers. Use cloning and conversion if you want to
set up replication based on the data on a source server that is not yet running Enterprise Replication.

Because the source server does not have Enterprise Replication defined, you use the ifxclone utility to create a cluster containing a primary server and remote stand-
alone (RS) secondary server. The conversion process converts the cluster to a pair of replication servers in a new domain.
To create a new domain with two replication servers:

1. On the source server, prepare the server environment for Enterprise Replication, such as configuring sqlhosts information and setting the necessary configuration
parameters.

2. On both servers, complete the ifxclone prerequisites for all servers, such as setting the required configuration parameters and environment variables.
3. On the target server, complete the ifxclone prerequisites for an RS secondary server, such as creating all of the chunks that exist on the source server. You can use

the --createchunkfile option (-k) of the ifxclone utility to automatically create cooked chunks on the target server.
4. On the target server, run the ifxclone command with the --disposition=RSS option to clone the data and the configuration of the source server onto the target

server. Do not include the --useLocal option.
5. On the source server, run the cdr check sec2er command to determine if conversion to replication servers is possible.
6. Solve any error conditions identified by the cdr check sec2er command and rerun it until its output indicates that conversion will be successful. You can also solve

warning conditions.
7. On the source server, run the cdr start sec2er command to convert both servers to replication servers and create a new replication domain.

To add other servers to the domain, you can clone a replication server.

Example of creating a new replication domain by cloning
 This is an example of creating a new replication domain based on the data and configuration on a source database server that does not have replication defined.

The three additional replication servers in the domain are added by cloning the source server.

Related concepts:
 Preparing the Replication Environment

Related tasks:
 Adding a server to the domain by cloning a server

Related information:
 The ifxclone utility

Copyright© 2020 HCL Technologies Limited

Example of creating a new replication domain by cloning

This is an example of creating a new replication domain based on the data and configuration on a source database server that does not have replication defined. The three
additional replication servers in the domain are added by cloning the source server.

Part VI: Administering 1819

https://www.hcltech.com/
https://www.hcltech.com/

This example creates a replication domain and grid that contain four replication servers: serv1, serv2, serv3, serv4. Each server computer has the Informix® database
server installed. The source server contains the stores_demo database.

1. On the serv1 server, set the CDR_QDATA_SBSPACE configuration parameter.
2. On the serv1 server, set the value of the ENABLE_SNAPSHOT_CLONE configuration parameter to 1 in the onconfig file.
3. On the serv1 server, add the following sqlhosts information about serv1 and serv2:

gserv1 group - - i=143
serv1 ontlitcp ny.usa.com 1230 g=gserv1
gserv2 group - - i=144
serv2 ontlitcp tokyo.japan.com 1231 g=gserv2

4. On both the serv1 and serv2 servers, complete the ifxclone prerequisites for all servers, such as setting the required configuration parameters and environment
variables.
Set these environment variables:

INFORMIXDIR
INFORMIXSERVER
INFORMIXSQLHOSTS
ONCONFIG

Set these configuration parameters to the same values on both servers:

DRAUTO
DRINTERVAL
DRTIMEOUT
LOGBUFF
LOGFILES
LOGSIZE
LTAPEBLK
LTAPESIZE
ROOTNAME
ROOTSIZE
PHYSBUFF
PHYSFILE
STACKSIZE
TAPEBLK
TAPESIZE

5. On the serv2 server, create all of the chunks that exist on the serv1 server. You can use the --createchunkfile option (-k) of the ifxclone utility to automatically
create cooked chunks on the target server.

6. On the serv2 server, run the ifxclone command with the --disposition=RSS option to clone the data and the configuration of the serv1 server onto the serv2
server:

ifxclone --trusted --source=serv1 --sourceIP=192.168.0.1
--sourcePort=1230 --target=serv2 --targetIP=192.168.0.2
--targetPort=1231 --disposition=RSS --createchunkfile

7. On the serv1 server, run the cdr check sec2er command to determine if conversion to replication servers is possible:

$cdr check sec2er -c gserv1 gserv2
Secondary conversion to ER is possible.

8. On the serv1 server, run the cdr start sec2er command to convert both servers to replication servers, create a new replication domain, create and start replicates
based on all the tables on the serv1 server:

cdr start sec2er -c gserv1 gserv2

9. On the serv3 and serv4 servers, provision chunk paths and other storage to the same paths and at least the same sizes as on the serv1 server.
10. On the serv3 server, run the ifxclone command with the --disposition=ER option to clone the data and the configuration of the serv1 server onto the serv3 server:

ifxclone --trusted --source=serv1 --sourceIP=192.168.0.1
--sourcePort=1230 --target=serv3 --targetIP=192.168.0.3
--targetPort=1232 --disposition=ER

11. On the serv4 server, run the ifxclone command with the --disposition=ER option to clone the data and the configuration of the serv1 server onto the serv4 server:

ifxclone --trusted --source=serv1 --sourceIP=192.168.0.1
--sourcePort=1230 --target=serv4 --targetIP=192.168.0.4
--targetPort=1233 --disposition=ER

12. Edit the sqlhosts files on all four servers so that they each have the following information:

gserv1 group - - i=143
serv1 ontlitcp ny.usa.com 1230 g=gserv1
gserv2 group - - i=144
serv2 ontlitcp tokyo.japan.com 1231 g=gserv2
gserv3 group - - i=145
serv3 ontlitcp rome.italy.com 1232 g=gserv3
gserv4 group - - i=146
serv4 ontlitcp perth.australia.com 1233 g=gserv4

Related reference:
 cdr start sec2er

cdr check sec2er
Related information:

 The ifxclone utility

Copyright© 2020 HCL Technologies Limited

1820 Part VI: Administering

https://www.hcltech.com/

Adding a server to the domain by cloning a server

You can add a replication server to an existing replication domain by using the ifxclone utility to clone an existing replication server onto a target database server.

Enterprise Replication must be active on the source server. The source server should not have any stopped or suspended replicates or any shadow replicates defined.
You must be user informix or member of the informix group to run the ifxclone utility.

IBM® Informix® database software must be installed on the target server.

Cloning a server defines replication on the target server, copies the data, and adds the target server to all replicates in which the source server participates. The onconfig
file and the sqlhosts file are copied from the source server to the target server and updated with the target server information.
To clone a replication server by using the ifxclone utility:

1. On the source server, set the value of the ENABLE_SNAPSHOT_COPY configuration parameter to 1 in the onconfig file.
2. On the target server, create the following directories, if they exist on the source server. The directories must be the same on both servers:

ATS and RIS directories
Log staging directory

3. On the target server, synchronize the system clock with the source server.
4. On the target server, provision chunk paths and other storage to the same paths and at least the same sizes as on the source server. Ensure that the target server

has at least as much memory and disk space resources as the source server. You can use the --createchunkfile option (-k) of the ifxclone utility to automatically
create cooked chunks on the target server.

5. On the target server, run the ifxclone command. You must provide the following information to the ifxclone utility:
Source server name
Source IP address
Source port
Target server name
Target IP address
Target port

Include the --disposition=ER option.

Optional: Include the --createchunkfile option.

If the source server replicates serial columns, use the --configParam option to set the value of the CDR_SERIAL configuration parameter to ensure that serial
values do not conflict between replication servers.

The ifxclone utility has the following format for cloning a replication server:

ifxclone --source=source_name --sourceIP=source_IP
--sourcePort=source_port --target=target_name
 --targetIP=target_IP --targetPort=target_port
--disposition=ER --createchunkfile

6. On all other replication servers in the domain, edit the sqlhosts file to add entries for the new replication server.

Related concepts:
 Time synchronization

Related tasks:
 Creating a new domain by cloning a server

Adding a replication server to a grid by cloning
Related reference:

 Set configuration parameters for replication
Related information:

 The ifxclone utility

Copyright© 2020 HCL Technologies Limited

Customizing the Replication Server Definition

You can specify replication attributes of a server when you define it.

When you define a replication server, you can specify the following attributes in the cdr define server command:

Set the idle timeout.
To specify the time (in minutes) that you want to allow the connection between two Enterprise Replication servers to remain idle before disconnecting, use the --
idle=timeout option.

You can later change the values of this attribute with the cdr modify server command.

Specify the location of the ATS and RIS directories.
To use ATS, specify the directory for the Aborted Transaction Spooling (ATS) files for the server using --ats=dir or--ris=dir . To prevent either ATS or RIS file
generation, set the directory to /dev/null (UNIX) or NUL (Windows).

You can later change the values of these attributes with the cdr modify server command.

Specify the format of the ATS and RIS files.
Use the –atsrisformat=type option to specify whether the ATS and RIS files are generated in text format, XML format, or both formats.

You can later change the values of this attribute with the cdr modify server command.

Specify the type of server if you are using hierarchical replication:

Part VI: Administering 1821

https://www.hcltech.com/

To specify the server as a nonroot server, use the --nonroot option.
To specify the server as a leaf server, use the --leaf option.

If neither --leaf nor --nonroot is specified, the server is defined as a root server. The parent server is the server specified by the --sync=sync_server option.

Related concepts:
 Choosing a Replication Network Topology

Enterprise Replication Terminology
Related tasks:

 Creating ATS and RIS directories
Related reference:

 cdr define server
cdr modify server

Copyright© 2020 HCL Technologies Limited

Define a replicate

To define a replicate, use the cdr define replicate command.

You can provide the following information in the replicate definition:

Participants
Create as a master replicate
Conflict resolution rules and scope
Replication frequency
Error logging
Replicate full rows or only changed columns
IEEE or canonical message formats
Database triggers
Code set conversion between replicates
Replication key
Serial or parallel processing

After you define the replicate and participants, you must manually start the replicate by running the cdr start replicate command.

The maximum number of replicates that you can define as participants on a particular replication server is 32767.

Participant definitions
 You must define a participant for each server that is involved in the replicate definition by running the cdr define replicate command. Each participant in a replicate

must specify a different database server.
Replicate types

 You can choose a replicate type depending on whether you want the schema definitions on all participants to be the same. A master replicate enforces consistency
between the schema definitions of the participants and the schema definition on a designated server. A classic replicate does not check the schema definitions of
the participants.
Defining Shadow Replicates
Specifying Conflict Resolution Rules and Scope

 You specify the conflict resolution rule in the replicate definition.
Specifying Replication Frequency

 Setting Up Failed Transaction Logging
 The Aborted Transaction Spooling (ATS) files and Row Information Spooling (RIS) files contain information about failed transactions and aborted rows. You can use

this information to help you diagnose problems that arise during replication.
Replicate only changed columns

 You can choose to replicate only those columns that have changes instead of entire rows.
Using the IEEE Floating Point or Canonical Format

 You can specify how the FLOAT and SMALLFLOAT data types are handled, depending on your platform.
Enabling Triggers

 By default, when a replicate causes an insert, update, or delete on a target table, triggers associated with the table are not executed. However, you can specify that
triggers are executed when the replicate data is applied by enabling triggers in the replicate definition.
Enabling code set conversion between replicates

 You can enable code set conversion to allow replication of data between servers that use different code sets.
Replication to SPL routine

Copyright© 2020 HCL Technologies Limited

Participant definitions

You must define a participant for each server that is involved in the replicate definition by running the cdr define replicate command. Each participant in a replicate must
specify a different database server.

Each participant definition includes the following information:

Database server group name
Database in which the table to be replicated resides
Table name
Table owner
Participant type

1822 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

For a primary-target replication system, you can specify the participant type as primary, receive-only, or send-only. If you do not specify the participant type,
Enterprise Replication defines the participant as update-anywhere, by default.

SELECT statement and optional WHERE clause

Restriction: Do not create more than one participant definition for each row and column to replicate. If the participant is the same, Enterprise Replication attempts to
insert or update duplicate values during replication. For example, if one participant modifier includes WHERE x < 50 and another includes WHERE x < 100, Enterprise
Replication sends the data for when x is between 50 and 100 twice.

Defining Replicates on Table Hierarchies

Related concepts:
 Primary-Target Replication System

Related reference:
 Participant and participant modifier

Copyright© 2020 HCL Technologies Limited

Defining Replicates on Table Hierarchies

When you define replicates on inherited table hierarchies, use the following guidelines to replicate operations:

For both the parent and child tables, define a replicate on each table.
For only the parent table (not the child table), define a replicate on the parent table only.
For only the child table (not the parent table), define a replicate on the child table only.

Copyright© 2020 HCL Technologies Limited

Replicate types

You can choose a replicate type depending on whether you want the schema definitions on all participants to be the same. A master replicate enforces consistency
between the schema definitions of the participants and the schema definition on a designated server. A classic replicate does not check the schema definitions of the
participants.

By default, replicates are master replicates. If you do not specify a master server, the master replicate is based on the first participant. Dictionary information is then
stored about replicated column attributes for the participant you specify. Enterprise Replication checks for consistency between the master definition and local participant
definitions. Checks are run when the replicate is defined and each time a new participant is added to the replicate, thus avoiding runtime errors. Verification also occurs
each time that the master replicate is started on a server.

If you do not want to verify the schema, create a classic replicate. For example, if you want to create a data consolidation system in which one server only receives data
from other servers that only send data, create a classic replicate.

Defining a replicate as a master replicate provides several advantages:

Ensures data integrity by verifying that all participants in the replicate have table and replicated column attributes that match the master replicate definition.
Provides automatic table generation on participants that do not already contain the table that is specified in the master replicate. However, Enterprise Replication
cannot create tables with user-defined data types.
Allows alter operations on the replicated tables.

When you define a master replicate, you can specify a participant that is on the server for which you are running the command. By default, the first participant that you list
in the cdr define replicate command is the used to create the dictionary information for the master replicate. The additional participants in the cdr define replicate
command are verified against the master definition and added to the replicate if they pass validation. If any participant fails validation, the cdr define replicate command
fails and that participant is disabled.

Master Replicate Verification
 Creating Strict Master Replicates

 Creating Empty Master Replicates

Related reference:
 cdr define template

cdr define replicate

Copyright© 2020 HCL Technologies Limited

Master Replicate Verification

Enterprise Replication verifies the following information about a participant when the participant is added to the master replicate:

The participant contains all replicated columns.
The replicated columns in the participant have the correct data types. For columns that are user-defined data types, only the names of the data types are verified.
Optionally, the replicated columns in the participant have the same column names as the master replicate.

Related tasks:
 Creating Strict Master Replicates

Creating Empty Master Replicates

Part VI: Administering 1823

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Creating Strict Master Replicates

You can create a strict master replicate in which all participants have the same replicated column names by using the --name=y option. This option specifies that when
the master replicate verification is done for a new participant, that the column names on the participant must be identical to the column names of the master replicate.
Strict master replicates allow you to perform the following tasks:

Alter operations on replicated tables. For more information, see Alter, rename, or truncate operations during replication.
Remastering by using the cdr remaster command. For more information, see Remastering a Replicate.

You can modify an existing master replicate to remove name verification by using the --name=n option of the cdr modify replicate command.

Related tasks:
 Master Replicate Verification

Creating Empty Master Replicates
Related reference:

 cdr modify replicate

Copyright© 2020 HCL Technologies Limited

Creating Empty Master Replicates

You can create an empty master replicate by using the --empty option. This option allows you to specify a participant as the basis of the master replicate but not include
that participant in the replicate. Creating an empty replicate can be convenient in large environments in which you later add all participants using scripts.

When you define an empty master replicate, you must specify only one participant in the cdr define replicate command. This participant is used to create the master
dictionary information but is not added to the replicate.

The --empty option is only supported for master replicates, you cannot use it without the --master option.

Related tasks:
 Master Replicate Verification

Creating Strict Master Replicates

Copyright© 2020 HCL Technologies Limited

Defining Shadow Replicates

A shadow replicate is a copy of an existing, or primary, replicate. Enterprise Replication uses shadow replicates to manage alter and repair operations on replicated tables.
You must create a shadow replicate to perform a manual remastering of a replicate that was defined with the -n option. See Resynchronize data manually for information
about how you can repair, or remaster, your replicated data. After creating the shadow replicate, the next step in manual remastering is to switch the primary replicate and
the shadow replicate using the cdr swap shadow command.

You create a shadow replicate using the cdr define replicate command with the --mirrors option, as described in cdr define replicate.

When you define a shadow replicate, its state is always set to the same state as the primary replicate. If you change the state of the primary replicate, all its shadow
replicates’ states are also changed to the same state.

You cannot delete a primary replicate if it has any shadow replicates defined. You must first delete the shadow replicates, and then the primary replicate.

You cannot modify a primary replicate (using the cdr modify replicate command) if it has any shadow replicates defined. Also, you cannot modify shadow replicates
directly.

You cannot suspend or resume a primary replicate (using the cdr suspend replicate or cdr resume replicate command) if it has any shadow replicates defined. Also, you
cannot suspend or resume shadow replicates directly. If the primary replicate and its shadow replicates are part of an exclusive replicate set, you can suspend or resume
the entire replicate set using the cdr suspend replicate or cdr resume replicate command.

You cannot add a participant to a shadow replicate:

If the participant is not part of the primary replicate’s definition
After remastering the replicate

If the primary replicate is part of an exclusive replicate set, any shadow replicates you define are automatically added to that replicate set.

If you add a primary replicate to an exclusive replicate set, all its shadow replicates are also automatically added. If you delete a primary replicate from an exclusive
replicate set, all its shadow replicates are also automatically deleted.

Copyright© 2020 HCL Technologies Limited

Specifying Conflict Resolution Rules and Scope

You specify the conflict resolution rule in the replicate definition.

1824 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

For update-anywhere replication systems, you must specify the conflict-resolution rules in the replicate definition using the --conflict=rule option to the cdr define
replicate command. The conflict resolution rule option names are:

always
deletewins
ignore
timestamp
routine_name
If you use an SPL routine for your conflict-resolution rule, you can also use the --optimize option to specify that the routine is optimized.

You can also specify the scope using the --scope=scope option:

transaction (default)
row

Related concepts:
 Update-Anywhere Replication System

Conflict resolution rule
Conflict Resolution Scope
Related reference:

 cdr define replicate

Copyright© 2020 HCL Technologies Limited

Specifying Replication Frequency

The replication frequency options allow you to specify the interval between replications, or the time of day when an action should occur. If you do not specify the
frequency, the default action is that replication always occurs immediately when data arrives.

The frequency options are:

--immed
--every=interval
--at=time

For more information, see Frequency Options.
Important: If you use time-based replication and two tables have referential constraints, the replicates must belong to the same exclusive replicate set. For more
information, see Exclusive Replicate Sets.

Copyright© 2020 HCL Technologies Limited

Setting Up Failed Transaction Logging

The Aborted Transaction Spooling (ATS) files and Row Information Spooling (RIS) files contain information about failed transactions and aborted rows. You can use this
information to help you diagnose problems that arise during replication.

To configure your replicate to use ATS and RIS

1. Set up the ATS and RIS directories.
2. Specify the location of the ATS and RIS directories when you define your server.
3. Specify that the replicate use ATS and RIS when you define the replicate by including the --ats and --ris options in the replicate definition.

Tip: Until you become thoroughly familiar with the behavior of the replication system, select both ATS and RIS options.
Related concepts:

 Monitor and troubleshooting Enterprise Replication
Related tasks:

 Creating ATS and RIS directories
Defining Replication Servers
Related reference:

 Replicate only changed columns
cdr define replicate

Copyright© 2020 HCL Technologies Limited

Replicate only changed columns

You can choose to replicate only those columns that have changes instead of entire rows.

By default, even if only one column changes, Enterprise Replication replicates the entire row, except columns that contain unchanged large objects.

You can change the default behavior to replicate only the columns that changed. To replicate only changed columns, include the --fullrow=n option in the replicate
definition. Enterprise Replication always sends the replication key columns, even if you specify to replicate only changed columns.

Replicating only the columns that changed has the following advantages:

Sends less data, because only the modified data is sent

Part VI: Administering 1825

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Uses less Enterprise Replication resources, such as memory

If Enterprise Replication replicates an entire row from the source, and the corresponding row does not exist on the target, Enterprise Replication applies the update as an
insert, also known as an upsert, on the target (unless you are using the delete wins conflict resolution rule). By replicating the entire row, Enterprise Replication corrects
any errors during replication. If any errors occur in an update of the target database server (for example, a large object is deleted before Enterprise Replication can send
the data), the next update from the source database server (a complete row image) corrects the data on the target server.

Replicating only the columns that changed has the following disadvantages:

Enterprise Replication does not apply upserts.
If the row to replicate does not exist on the target, Enterprise Replication does not apply it. If you set up error logging, Enterprise Replication logs this information
as a failed operation.

You cannot use the SPL routine or time stamp with SPL routine conflict-resolution rules.
You cannot use update-anywhere replication; doing so can result in inconsistent conflict resolution.

Enterprise Replication logs bitmap information about the updated columns in the logical-log file. For more information, see the CDR record type in the logical-logs chapter
in the IBM® Informix® Administrator's Reference.

Related concepts:
 Controlling the replication of large objects

Conflict Resolution
Disk Space for Delete Tables
Related tasks:

 Setting Up Failed Transaction Logging
Related reference:

 cdr define replicate

Copyright© 2020 HCL Technologies Limited

Using the IEEE Floating Point or Canonical Format

You can specify how the FLOAT and SMALLFLOAT data types are handled, depending on your platform.

You can specify sending this data in either IEEE floating point format or machine-independent decimal representation:

Enable IEEE floating point format to send all floating point values in either 32-bit (for SMALLFLOAT) or 64-bit (for FLOAT) IEEE floating point format.
To use IEEE floating point format, include the --floatieee option in your replicate definition.

It is recommended that you define all new replicates with the --floatieee option.

Enable canonical format to send floating-point values in a machine-independent decimal representation when you replicate data between dissimilar hardware
platforms.
To use canonical format, include the --floatcanon option in your replicate definition. The --floatcanon option is provided for backward compatibility only; it is
recommended that you use the --floatieee option when defining new replicates.

If you specify neither IEEE or canonical formats, Enterprise Replication sends FLOAT and SMALLFLOAT data types as a straight copy of machine representation. If
you are replicating across different platforms, replicated floating-point numbers will be incorrect.

For more information, see Special Options.
Important: You cannot modify the replicate to change the --floatieee or --floatcanon options.
Related reference:

 cdr define replicate

Copyright© 2020 HCL Technologies Limited

Enabling Triggers

By default, when a replicate causes an insert, update, or delete on a target table, triggers associated with the table are not executed. However, you can specify that
triggers are executed when the replicate data is applied by enabling triggers in the replicate definition.

To enable triggers, include the --firetrigger option in your replicate definition.

When you design your triggers, you can use the 'cdrsession' option of the DBINFO() function to determine if the transaction is a replicated transaction.

For information, refer to Triggers and Special Options.

Related reference:
 cdr define replicate

Copyright© 2020 HCL Technologies Limited

Enabling code set conversion between replicates

You can enable code set conversion to allow replication of data between servers that use different code sets.

1826 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Prerequisites:
The table and column names must contain ASCII characters to convert a non-master replicate to a master replicate.

The servers must have UTF-8 code set transaction support enabled to replicate between server versions.

The target schema must allow for expansion due to code set conversion. For example, a CHAR(10) column in one code set might require 40 bytes in the converted code
set.

When code set conversion is enabled, character columns of the following data types are converted to UTF-8 (Unicode) when the row is copied into the transmission queue.

CHAR
VARCHAR
NCHAR
NVARCHAR
LVARCHAR
TEXT
CLOB

When the replicated row is applied on the target server, the data is converted from UTF-8 to the code set that is used on the target server. No attempt is made to convert
character data contained within opaque data types, such as TimeSeries data types, user-defined data types, or DataBlade module data types.

To enable code set conversion between replicates, include the --UTF8=y option in your replicate definition.

To use the latest version of the Unicode library, set the GL_USEGLU environment variable in your server environment. The GL_USEGLU environment variable must be set to
a value of 1 (one) in the database server environment before the server is started, and before the database is created.

If your table names or column names contain non-ASCII characters, you must manually create a shadow replicate and then swap the shadow replicate with the primary
replicate using the cdr swap shadow command.

The autocreate option is not supported for replicates defined with --UTF8=y option when using the cdr realize template or cdr change replicate commands.

Code set conversion with the GLS library requires only those code set conversion files found in the INFORMIXDIR/gls/cv9 directory.

For US English, locales are handled automatically by the IBM® Informix® Client Software Development Kit installation and setup.
For other locales, you might need to explicitly provide the locale and conversion files.

Configuring code set conversion between replicates
 The examples in this topic show how to create replicate and template definitions while replicating data between databases that use different code sets.

Code set conversion errors
 You can use the ATS and RIS files to identify problems that occur during code set conversion.

Controlling the replication of large objects
 You can control whether columns that contain unchanged large objects are always included in replicated rows.

Related concepts:
 Global language support for replication

Related reference:
 cdr swap shadow

Related information:
 GL_USEGLU environment variable

Copyright© 2020 HCL Technologies Limited

Configuring code set conversion between replicates

The examples in this topic show how to create replicate and template definitions while replicating data between databases that use different code sets.

When non-English characters are used for database, table, column, or owner names, each server must be added to the UTF-8 realize template definition by connecting to
the server locally. Only one server at a time should be added to the replicate definition using the change replicate command. You cannot add multiple servers to a
replication definition using the define repl command unless the database code set number is the same for all servers. The CLIENT_LOCALE environment variable must be
set unless the database locale is en_us.819. Replicate and template names must be in English.

This example shows how to create and realize a template on two servers, named node_1 and node_2. For this example, assume that node_1 uses de_de.819 locale and
node_2 uses de_de.utf8 locale:

1. On node_1, run the following commands:

export DB_LOCALE=de_de.819
export CLIENT_LOCALE=de_de.819
cdr define template set1 -C always -M g_node1 -S row -d testdb -a -A -R --UTF8=y
cdr realize template set1 g_node1

2. On node_1 run the following command and wait for the Txns in queue count to go to zero.

onstat -g rqm cntrlq

3. On node_2, run the following commands:

export DB_LOCALE=de_de.utf8
export CLIENT_LOCALE=de_de.utf8
cdr realize template set1 g_node2

The following steps show how to define a replicate when non-ASCII characters are used for table, column, owner, or database names. Before starting, ensure that the
replicate name uses English ASCII characters and that the DB_LOCALE environment variable on the server is set to the same value as the locale of the participant being
added.

Part VI: Administering 1827

https://www.hcltech.com/

1. Define the replicate with the first participant and then connect to the participant.
2. Add and connect to each additional participant, one participant at a time.
3. When all of the participants have been added, ensure that the control queue is empty and start the replicate definition.

You can check the control queue message count using the onstat -g rqm cntrlq. Wait for the Txns in queue count to go zero.

The following example shows how to create a replicate definition between two servers to replicate data between de_de.819 and de_de.utf8 databases:

1. On server node_1, run the following commands:

export DB_LOCALE=de_de.819
export CLIENT_LOCALE=de_de.819
cdr define repl german_repl -M g_node1 -C always -S transaction
 -A -R -I --UTF8=y "testdb@g_node1:user1.table1" "select * from table1"

2. On node_1 run the following command and wait for the Txns in queue count to go to zero.

onstat -g rqm cntrlq

3. On node_2, run the following commands:

export DB_LOCALE=de_de.utf8
export CLIENT_LOCALE=de_de.utf8
cdr change repl -c node2 -a german_repl
 "testdb@g_node2:user1.table1" "select * from table1"

4. On node_2 run the following command and wait for the Txns in queue count to go to zero.

onstat -g rqm cntrlq

5. Run the following command on either server:

cdr start repl german_repl

Copyright© 2020 HCL Technologies Limited

Code set conversion errors

You can use the ATS and RIS files to identify problems that occur during code set conversion.

To specify which warnings and errors to suppress, use the CDR_SUPPRESS_ATSRISWARN configuration parameter. For more information, see
CDR_SUPPRESS_ATSRISWARN Configuration Parameter

Each column in the RIS file begins with (W) if substitute characters were added to the column data or (E) if data was rejected because of a UTF-8 conversion failure.

Examples of conversion errors:

On the source server, a row of data fails conversion to UTF-8 code set.
Data sync error 63 is stored in an RIS file on the source server. The RIS file contains the row that failed to convert; the failed row is not converted and is not
replicated on the target server. A list of column names that failed to convert is also stored in the RIS file. Example RIS file:

TXH Source ID:0 / Name:*UNKNOWN* / CommitTime:
TXH Target ID:1 / Name:utm_group_1 / ReceiveTime:11-05-10 13:35:22

RRH Row:1 / Replicate Id: 65540 / Table: testdb@usr1.utf8tab / DbOp:Update
RRH CDR:63 (Error while converting data from local database codeset to
 UTF8.) / SQL:0 / ISAM:0
LRH Failed column list: charcol (W), ncharcol (E)
LRD 3|Lkqy|jvdHj@ifcjuWg|biLs|uk|RwvCZOpfpqruLAA|JloY|<27, TEXT,
 PB 1 (utm_group_1) 1305051204 (11/05/10 13:13:24)>|<4, TEXT, BB>|
 <18, CLOB, SB 1305051204 (11/05/10 13:13:24)>
RRD ||||||||
==========
TXH Transaction committed
TXH Total number of rows in transaction:1

On the source server, conversion from the local code set to UTF-8 resulted in the substitution of one or more characters in the row.
Data sync error 65 is stored in an RIS file on the source server, and the row is replicated. A list of column names that failed to convert is also stored in the RIS file.
Example RIS file:

TXH Source ID:0 / Name:*UNKNOWN* / CommitTime:
TXH Target ID:1 / Name:utm_group_1 / ReceiveTime:11-05-10 13:32:14

RRH Row:1 / Replicate Id: 65540 / Table: testdb@usr1.utf8tab / DbOp:Update
RRH CDR:65 (Substitute characters added while converting data from local
 database codeset to UTF8.) / SQL:0 / ISAM:0
LRH Failed column list: charcol (W), ncharcol (W), vchar (W), nvchar (W),
 lvchar (W)
LRD 2|iU\VoJMZ|axhGRxKmDW|e@Xv|biLs|pyqasjUpAc{wCu|efM@}Vd|<22, TEXT,
 PB 1 (utm_group_1) 1305051204 (11/05/10 13:13:24)>|<36, TEXT, BB>
 |<15, CLOB, SB 1305051204 (11/05/10 13:13:24)>
RRD ||||||||
==========
TXH Transaction committed
TXH Total number of rows in transaction:1

On the target server, a row of data failed to convert from UTF-8 format to the local database code set.

1828 Part VI: Administering

https://www.hcltech.com/

Data sync error 64 is stored in an ATS/RIS file on the target server, and the row or transaction is aborted depending on the replicate scope. A list of column names
that failed to convert is also stored in the RIS file. Example RIS file:

TXH Source ID:1 / Name:utm_group_1 / CommitTime:11-05-10 13:40:19
TXH Target ID:3 / Name:utm_group_3 / ReceiveTime:11-05-10 13:40:19

RRH Row:1 / Replicate Id: 65540 / Table: testdb@usr1.utf8tab / DbOp:Update
RRH CDR:64 (Error while converting data from UTF8 to local database
 codeset.) / SQL:0 / ISAM:0
RRH Failed column list: vchar (E)
RRD 3||jdicW|?|?|?|?|?|?
==========
TXH Transaction aborted
TXH ATS file:/usr4/nagaraju/utm/tmp/ats.utm_group_3.utm_group_1.D_3
 .110510_13:40:19.2 has also been created for this transaction

On the target server, conversion from UTF-8 to the local server code set resulted in the substitution of one or more characters in the row.
Data sync error 66 is stored in a warning RIS file on the target server, and the row is applied. A list of column names that failed to convert is also stored in the RIS
file. Example RIS file:

TXH Source ID:3 / Name:utm_group_3 / CommitTime:11-05-10 13:13:58
TXH Target ID:1 / Name:utm_group_1 / ReceiveTime:11-05-10 13:13:58

RRH Row:1 / Replicate Id: 65540 / Table: testdb@usr1.utf8tab / DbOp:Insert
RRH CDR:66 (Substitute characters added while converting data
 from UTF8 to local database codeset.) / SQL:0 / ISAM:0
RRH Failed column list: charcol (W), ncharcol (W), vchar (W),
 nvchar (W), lvchar (W), textcol (W), textbcol (W), clobcol (W)
RRD 99||keI||m||<46, TEXT, PB 3 (utm_group_3) 1305051238
 (11/05/10 13:13:58)>|<68, TEXT, BB>|<13, CLOB, SB>
==========
TXH Transaction committed
TXH Total number of rows in transaction:1

Text and CLOB data conversion failures
If the conversion of text or CLOB data to UTF-8 fails on the source server then the blob buffer is marked with the appropriate error and the target servers create
ATS/RIS files for these blob data conversion failures. Example text column conversion error:

TXH Source ID:1 / Name:utm_group_1 / CommitTime:11-05-10 12:26:30
TXH Target ID:3 / Name:utm_group_3 / ReceiveTime:11-05-10 12:28:15

RRH Row:1 / Replicate Id: 65540 / Table: testdb@usr1.utf8tab / DbOp:Update
RRH CDR:65 (Substitute characters added while converting data from local
 database codeset to UTF8.) / SQL:0 / ISAM:0
RRH Failed column list: textcol (W)
LRD 2|<46, TEXT, PB 1 (utm_group_1) 1305048215 (11/05/10 12:23:35)
 >|<40, CLOB, SB 1305048215 (11/05/10 12:23:35)>
RRD 2|<44, TEXT, PB 1 (utm_group_1) 1305048390 (11/05/10
 12:26:30)>|<0(NoChange), CLOB, SB>
==========
TXH Transaction committed
TXH Total number of rows in transaction:1

Copyright© 2020 HCL Technologies Limited

Controlling the replication of large objects

You can control whether columns that contain unchanged large objects are always included in replicated rows.

By default, columns that contain unchanged large objects are not included in replicated rows. Large object columns are transmitted only when the data is changed.

You can specify to replicate columns that contain unchanged large objects by including the --alwaysRepLOBS=y option in the replicate definition. For example, if your
replication system is designed for as a workflow, you must replicate all columns when you move data to the next site in the workflow.

If you want to change how large objects are replicated for an existing replicate, you must delete the replicate and then re-create the replicate.

Related concepts:
 Workflow Replication

Related reference:
 Replicate only changed columns

Copyright© 2020 HCL Technologies Limited

Replication to SPL routine

At target participant, ‘replication to SPL routine’ type replicate definition causes SPL routine to be executed instead of applying data to target table. Target participant for
“replication to SPL routine” replicate definition can be configured to be same as source database, different database on the same server, or remote peer Enterprise
Replication server. “Replication to SPL routine” replicate definition does not enforce the requirement to have primary key, unique index or ER key on the replicated table.
Note: Even though data is applied to stored procedure routine, target table definition must exist.

|--+--splname=spl_routine_name----+-------+---------------------+--------->
 | | | .-y-. |

'--'--jsonsplname=spl_routine_name-' '- -- cascaderepl=-+-n-+-'

Part VI: Administering 1829

https://www.hcltech.com/
https://www.hcltech.com/

Long Form Meaning

--splname Stored procedure routine name to apply data to. SPL routine must exist at all participants. Column list for SPL routine extracted
from replicate participant select statement column projection list.

--jsonsplname Stored procedure routine name to apply data to. SPL routine and table definition must exist at all participants. Input argument for
SPL routine must be a JSON document. --jsonsplname option is mutually exclusive to --splname option.

--cascaderepl Enable cascade replication. Required if replication to SPL needs to be executed for the data applied through Enterprise
Replication.

--splname option stored procedure argument list:
Optype char(1) – operation type. Values include

I – Insert
U – Update
D – Delete

Soucre_id integer – Source server id. Same as group id.
Committime integer – Transaction commit time.
Txnid bigint – Transaction id.
userid - Userid of the user executing the IUD operation.
session_id - Session id of the session executing the IUD operation.
Before value column list.
After value column list.

Note: Column list for SPL routine extracted from select statement projection list

--jsonsplname option SPL routine json argument
Attribute Name Description

operation Operation type: Insert/Delete/Update

table Table name

owner Table owner

database Database name

txnid 8 byte unique id. Higher order 4 bytes: commit work log id, lower order 4
bytes: commit work log position.

operation_owner_id User id of the user executing the IUD operation

operation_session_id Session id of the session executing the IUD operation

commit_time Transaction commit time for the event data.

rowdata Row data in JSON document format. Data is returned in column name as key
and column data as value.

before_rowdata Before row data for “update” operation.

Example: JSON Document format
{“operation”:"insert",”table”:"creditcardtxns",”owner”:"informix",”database”:"creditdb",”txnid”:2250573177224,
”operation_owner_id”:201,”operation_session_id”:200,”commit_time”:1488243530,rowdata”:{“uid”:22,”cardid”:"6666-6666-6666-6666",
”carddata”:{"Merchant":"Sams Club","Amount":200,"Date":2017-05-01T10:35:10.000Z } }}

{“opertion”:"update",table:"creditcardtxns",”owner”:"informix",”database”:"creditdb”,”txnid”:2250573308360,
”operation_owner_id”:201,”operation_session_id”:202,”commit_time”:1488243832,”rowdata”:{uid:21,cardid:"7777-7777-7777-7777",
”carddata”:{"Merchant":"Sams Club","Amount":200,"Date":"25-Jan-2017 16:15"} },
”before_rowdata”:{“uid”:21,”cardid”:"6666-6666-6666-6666",”carddata”:{"Merchant":"Sams Club","Amount":200,"Date":2017-05-
01T10:35:10.000Z } }}

{“opertion”:"delete",”table”:"creditcardtxns",”owner”:"informix",”database”:"creditdb",”txnid”:2250573287760,
”operation_owner_id”:201,”operation_session_id”:203,”commit_time”:1488243797,rowdata”:{“uid”:22,”cardid”:"6666-6666-6666-6666",
”carddata”:{"Merchant":"Sams Club","Amount":200,"Date":2017-05-01T13:35:06.000Z } }}

Asynchronous post commit trigger support
Define loopback replication server. For more information, see Loopback Replication
Create ‘replication to SPL’ type replicate with same “database and table” information for both source and target participants. Loopback server group name shall be
specified with target participant definition

Example
cdr define replicate txn_repl -C always -S row -M group_1 -A -R --splname=logger4repl2spl
"stores@group_1:informix.transactions" "select * from transactions" "test@lb_group_1:informix.transactions" "select * from
transactions”

Note: group_1 is the local server ER group, and lb_group_1 is the pseudo ER server group for loop back replication.

Prerequisites

1830 Part VI: Administering

Enable Login for the tables.
Ensure not to combine participant definitions that include table as the target, and SPL routine as the target.
Define target table.
Out-of-row data datatypes, TEXT, BYTE, BLOB, CLOB are not supported.

Example 1: build staging table for data changes using --splname replicate attribute
create database storesdb with log;

create table transaction (uid int, bill_amount int);

create table changelog (optype int, srcdir int, committime int, txnid bigint, userid int, session_id int, uid_bef int,
 bill_amount_bef int, uid int, bill_amount int);

create procedure logger4repl2spl (opType char(1), srcid int, committime int, txnid bigint, userid int, session_id int,
uid_bef int, bill_amount_bef int, uid int, bill_amount_bef int)

insert into changelog values (opType, srcid, committime, txnid, userid, session_id, uid_bef, bill_amount_bef, uid,
bill_amount);

end procedure;

Note: Require new code section for these shell commands:

$ cdr define replicate txn_repl -C always -S row -M group_1 -A -R --splname=logger4repl2spl
"storesdb@group_1:informix.transaction" "select * from transaction"
"storesdb@lb_group_1:informix.transaction" "select * from transaction”

$ cdr start replicate txn_repl

Example 2: build staging table for data changes using --jsonsplname replicate attribute
create database storesdb with log;

create table transaction (uid int, bill_amount int);

create table inventory (inv_id int, inv_count int);

create table staging (data json);

create procedure logger4repl2spl (data json)
 insert into staging values (data);
end procedure;

$ cdr define replicate inv_repl -C always -S row -M group_1 -A -R --jsonsplname=logger4repl2spl
"storesdb@group1:informix.inventory" "select * from inventory" "storesdb@lb_group_1:informix.inventory" "select * from
inventory”

$ cdr start replicate inv_repl

$ cdr define replicate txn_repl -C always -S row -M group_1 -A -R --jsonsplname=logger4repl2spl
"storesdb@group_1:informix.transaction" "select * from transaction"
"storesdb@lb_group_1:informix.transaction" "select * from transaction”

$ cdr start replicate txn_repl

Example 3: Realtime aggregation framework
create database retaildb with log;

create table sales (customerid int, storeid int, bill_amount float);

create table sales_summary(storeid int , s_count int, s_sum float, s_avg float, s_min float, s_max float);

create procedure store_agg(opType char(1), srcid int, committime int, txnid bigint, userid int, session_id int,
customerid_bef int, storeid_bef int, bill_amount_bef float, customerid int, storeid_aft int, bill_amount float)
---- -----
---- ----
end procedure;

$ cdr define replicate sale_repl -C always -S row -M group_1 -A -R --serial --splname=store_agg
"retaildb@group_1:informix.sales" "select * from sales"
"retaildb@lb_group_1:informix.sales" "select * from sales"

$ cdr start replicate sale_repl

Note: For streaming aggregation, make sure to define replicate with –serial option to avoid executing multiple instances of the same SPL routine in parallel.

Example 4: Calculate leader board on the fly based on changes to scores table
create table scores (playerid int, score int);
create table leaderboard(playerid int, score int);

create procedure leaderboard_spl(opType char(1), srcid int, committime int, txnid bigint, userid int, session_id int,
playerid_bef int, score_bef int, playerid_aft int, score_aft int)
… ….
end procedure;

$ cdr define replicate game_repl -C always -S row -M group_1 -A -R --serial --splname=leaderboard_spl

Part VI: Administering 1831

"gamedb@group_1:informix.scores" "select * from scores" "gamedb@lb_group_1:informix.scores" "select * from scores"

$ cdr start replicate game_repl

Define smart trigger on leaderboard table(mentioned in the example given above) and push out changes to application layer.

Note: For more information, see Smart Trigger.

Copyright© 2020 HCL Technologies Limited

Define replicate sets

When you define a replicate set, you specify the type of replicate set, the replicates that belong to the replicate set, and the frequency of replication for the member
replicates.

To create a replicate set, use the cdr define replicateset command.

Enterprise Replication supports these types of replicate sets:

exclusive
Replicates can belong to only one replicate set. Include the --exclusive option in the cdr define replicateset command.

non-exclusive
Default. Replicates can belong to one or more non-exclusive replicate sets.

derived
A replicate set that is derived from an existing replicate set. For example, you can create a derived replicate set that contains replicates that must be remastered.

Exclusive Replicate Sets
 If your replicated tables use referential integrity and are defined with time-based replication, you must create an exclusive replicate set. If your replicates use

referential integrity and you plan to stop and start the replicate set, use an exclusive replicate set.
Non-Exclusive Replicate Sets

 Customizing the Replicate Set Definition

Related reference:
 cdr define replicateset

Copyright© 2020 HCL Technologies Limited

Exclusive Replicate Sets

If your replicated tables use referential integrity and are defined with time-based replication, you must create an exclusive replicate set. If your replicates use referential
integrity and you plan to stop and start the replicate set, use an exclusive replicate set.

An exclusive replicate set has the following characteristics:

All replicates in an exclusive replicate set have the same state and frequency settings. For more information, see cdr list replicateset.
When you create the replicate set, Enterprise Replication sets the initial state of the replicate set to active.
You can manage the replicates in an exclusive replicate set only as part of the set. Enterprise Replication does not support the following actions for the individual
replicates in an exclusive replicate set:

Starting a Replicate
Stopping a Replicate
Suspending a Replicate
Resuming a Suspended Replicate

Replicates that belong to an exclusive replicate set cannot belong to any other replicate sets.

To create an exclusive replicate set, use the --exclusive option with cdr define replicateset.
Important: You cannot change an exclusive replicate set to non-exclusive.
Related tasks:

 Non-Exclusive Replicate Sets
Customizing the Replicate Set Definition
Related reference:

 cdr define replicateset
cdr define template
cdr resume replicate

Copyright© 2020 HCL Technologies Limited

Non-Exclusive Replicate Sets

By default, the cdr define replicateset command creates non-exclusive replicate sets.

A non-exclusive replicate set has the following characteristics:

You can manage replicates that belong to a non-exclusive replicate set both individually and as part of the set.
Because individual replicates in a non-exclusive replicate set can have different states, the non-exclusive replicate set itself has no state.
You should not use non-exclusive replicate sets for replicates that include tables that have referential constraints placed on columns.
A replicate can belong to more than one non-exclusive replicate set.

1832 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Important: You cannot change a non-exclusive replicate set to exclusive.
Use non-exclusive replicate sets if you want to add a replicate to more than one replicate set. For example, you might want to create replicate sets to manage replicates
on the target server, table, or entire database. To do this, create three non-exclusive replicate sets:

A set that contains the replicates that replicate to the target server
A set that contains the replicates on a particular table
A set that contains all the replicates

In this scenario, each replicate belongs to three non-exclusive replicate sets.

Related tasks:
 Exclusive Replicate Sets

Customizing the Replicate Set Definition

Copyright© 2020 HCL Technologies Limited

Customizing the Replicate Set Definition

You can specify the replication frequency (Specifying Replication Frequency) for all the replicates when you define the replicate set. For example, to define the non-
exclusive replicate set sales_set with the replicates sales_fiji and sales_tahiti and specify that the members of sales_set replicate at 4:00 a.m. every day, enter:

cdr define replicateset --at 4:00 sales_set sales_fiji \
 sales_tahiti

To define the exclusive replicate set dev_set with the replicates dev_pdx and dev_lenexa and specify that the members of dev_set replicate at 5:00 p.m. every day, enter:

cdr define replicateset -X --at 17:00 dev_set dev_pdx\
 dev_lenexa

Important: For replicates that belong to an exclusive replicate set, you cannot specify the frequency individually for replicates in the set.
For more information, see cdr define replicateset.

Related tasks:
 Exclusive Replicate Sets

Non-Exclusive Replicate Sets

Copyright© 2020 HCL Technologies Limited

Initially Synchronizing Data Among Database Servers

Enterprise Replication provides an initial synchronization feature that allows you to easily bring a new table up-to-date with replication when you start a new replicate, or
when you add a new participant to an existing replicate.

You do not need to suspend any servers that are replicating data while you add the new replicate and synchronize it.

The cdr start replicate and cdr start replicateset commands provide options to perform an initial synchronization for the replicates you are starting. All of the rows that
match the replication criteria will be transferred from the source server to the target servers. If you are starting a replicate set, Enterprise Replication synchronizes tables
in an order that preserves referential integrity constraints (for example, child tables are synchronized after parent tables).

Use the --syncdatasource (-S) option of the cdr start replicate or cdr start replicateset command to specify the source server for synchronization. Any existing rows in
the specified replicates are deleted from the remote tables and replaced by the data from the node you specify using -S.

The --extratargetrows option of the cdr start replicate or cdr start replicateset commands specifies how to handle rows found on the target servers that are not present
on the source server. You can specify to remove rows from the target, keep extra rows on the target, or replicate extra rows from the target to other participants.

If you use the cdr start replicate or cdr start replicateset command to specify a subset of servers on which to start the replicate (or replicate set), that replicate (or
replicate set) must already be active on the source server. The source server is the server you specify with the -S option. For example, for the following command, repl1
must already be active on serv1:

cdr start repl repl1 ... -S serv1 serv2 serv3

When you start a replicate (or replicate set) for participants on all servers, the replicate does not need to be active on the source server. So, for the following command,
repl1 does not need to be active:

cdr start repl1 ... -S serv1

When Enterprise Replication performs initial data synchronization, it keeps track of discrepancies between the constraints set up on source and target server tables. Rows
that fail to be repaired due to these discrepancies are recorded in the ATS and RIS files.

If replication fails for some reason and data becomes inconsistent, there are different ways to correct data mismatches between replicated tables while replication is
active. The recommended method is direct synchronization. You can also repair data based on an ATS or RIS file. Both of these methods are described in Resynchronizing
Data among Replication Servers.

Related concepts:
 Repair and Initial Data Synchronization

Load and unload data

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1833

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Set up replication through templates

Enterprise Replication provides templates to allow easy setup and deployment of replication for clients with large numbers of tables to replicate. A template uses schema
information about a database, a group of tables, columns, and replication keys to define a group of master replicates and a replicate set.

Do not use a template if you want to use time-based replication.

You create a template by running the cdr define template command and then you instantiate the template on the servers where you want to replicate data by running the
cdr realize template command.

Templates set up replication for all the columns in the table. Templates are useful for setting up large-scale replication environments. If you want a participant to contain a
partial row (just some columns in the table), you can either set up replication manually, or, after you realize a template you can run the cdr remaster command to restrict
the query.

Defining Templates
 Realizing Templates

Copyright© 2020 HCL Technologies Limited

Defining Templates

You define a template using the cdr define template command, with which you can specify which tables to use, the database and server they are located in, and whether
to create an exclusive or non-exclusive replicate set. Table names can be listed on the command line or accessed from a file using the --file option, or all tables in a
database can be selected.

Important: A template cannot define tables from more than one database.
Specify that the replicate set is exclusive if you have referential constraints on the replicated columns. Also, if you create an exclusive replicate set using a template, you
do not need to stop the replicate set to add replicates. For more information about exclusive replicate sets, see Define replicate sets.

A template defines a group of master replicates and a replicate set.

You can use the cdr list template command from a non-leaf node to view details about the template, including the internally generated names of the master replicates.
These are unique names based on the template, the server, and table names.

Copyright© 2020 HCL Technologies Limited

Realizing Templates

After you define a template using the cdr define template command, use the cdr realize template command to instantiate the template on your Enterprise Replication
database servers. The cdr realize template command first verifies that the tables on each node match the master definition used to create the template. Then, on each
node, it adds the tables defined in the template as participants to master replicates created by the template.

If a table on a server has additional columns to those defined in the template, those columns are not considered part of the replicate.

If a table does not already exist on a server where you realize the template, you can choose to create it, and it is also added to the replicate.

Also, at realization time, you can also choose to synchronize data among all servers.

Verifying Participants without Applying the Template
 Synchronizing Data Among Database Servers

 Create tables automatically
 You automatically create tables in the template definition if they do not exist on a server.

Other synchronization options
 Several other options to the cdr realize template command can affect how synchronization occurs.

Changing Templates
 Template Example

 This example illustrates a scenario in which one template is created and realized on two servers, then realized on a third server.

Copyright© 2020 HCL Technologies Limited

Verifying Participants without Applying the Template

The --verify option allows you to check that a template’s schema information is correct on all servers before actually instantiating the template.

Copyright© 2020 HCL Technologies Limited

Synchronizing Data Among Database Servers

1834 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Use the --syncdatasource option to specify a server to act as the source for data synchronization on all servers where you are realizing the template. The server listed
with this option must either be listed as one of the servers on which to realize the template, or it must already have the template.

Improve Performance During Synchronization
 You can speed up a synchronization operation by temporarily increasing the size of the send queue.

Copyright© 2020 HCL Technologies Limited

Improve Performance During Synchronization

You can speed up a synchronization operation by temporarily increasing the size of the send queue.

Enterprise Replication uses the value of the CDR_QUEUEMEM configuration parameter as the size of the send queue during a synchronization operation. To increase the
size of the send queue during a particular synchronization operation, use the --memadjust option.

In addition to controlling memory during initial synchronization, you can also control memory consumption when you realize a template and perform a direct
synchronization.

Copyright© 2020 HCL Technologies Limited

Create tables automatically

You automatically create tables in the template definition if they do not exist on a server.

Include the --autocreate option in the cdr realize template command to automatically create tables. You cannot use the --autocreate option for tables that contain user-
defined data types.

Use the --dbspace option to specify a dbspace for table creation.

Note: Tables that are created by --autocreate option do not automatically include non-replicate key indexes, defaults, constraints (including foreign constraints), triggers,
or permissions. You must manually create these objects.

Copyright© 2020 HCL Technologies Limited

Other synchronization options

Several other options to the cdr realize template command can affect how synchronization occurs.

You can use the --applyasowner option to realize a table by its owner rather than the user informix.

The --extratargetrows option specifies whether to delete, keep, or merge rows found on target servers that are not present on the source server during the
synchronization operation.

The --mode option defines whether servers only receive or only send data.

Copyright© 2020 HCL Technologies Limited

Changing Templates

You cannot update a template. To adjust a template, you must delete it with the cdr delete template command and then re-create it with the cdr define template
command.

Copyright© 2020 HCL Technologies Limited

Template Example

This example illustrates a scenario in which one template is created and realized on two servers, then realized on a third server.

The template Replicateset1 is defined on three tables in the college database: staff, students, and schedule. The template is first realized on the servers g_cdr_ol_1 and
g_cdr_ol_2.

This procedure is performed as follows:

1. Define the template Replicateset1 on the staff, students, and schedule tables of the college database:

cdr define template -c g_cdr_ol_1 Replicateset1 -M g_cdr_ol_1\
 -C "timestamp" -A -R -d college testadm.staff testadm.students\
 testadm.schedule

Part VI: Administering 1835

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

This command also creates the replicate set Replicateset1.

2. Realize the template on the server g_cdr_ol_1:

cdr realize template -c g_cdr_ol_1 Replicateset1 "college@g_cdr_ol_1"

3. Realize the template on server g_cdr_ol_2 and synchronize the data with server g_cdr_ol_1:

cdr realize template -c g_cdr_ol_2 -u -S g_cdr_ol_1 \
Replicateset1 "college@g_cdr_ol_2"

4. Realize the Replicateset1 template on a new server g_cdr_ol_3 and synchronize the data with server g_cdr_ol_1. The g_cdr_ol_3 server participant is
automatically added to all replicates within the Replicateset1 template:

cdr realize template -c g_cdr_ol_1 -u -S g_cdr_ol_1\
 Replicateset1 "g_cdr_ol_3"

Copyright© 2020 HCL Technologies Limited

Grid setup and management

A grid is a set of replication servers that are configured to simplify administration. When you run SQL data definition statements from within a grid context on a grid server,
the statements propagate to all servers in the grid. You can run SQL data manipulation statements and routines through grid routines. You can choose to set up replication
automatically when you create a table through a grid. You can propagate external files to other servers in the grid.

SQL statements are not replicated by Enterprise Replication. Enterprise Replication replicates the row images that are the results from SQL statements. The grid
propagates SQL statements, but does not, by default, propagate the results of propagated SQL statements. The following illustration shows three replication servers,
named Cdr1, Cdr2, and Cdr3, that replicate row images between each other, while the grid propagates SQL statements and administration commands.

Figure 1. Replication of rows as a grid propagates SQL statements to each server.

A grid can be useful if you have multiple replication servers and you often perform the same tasks on every replication server. The following types of tasks can be run
through the grid:

Creating replicated tables. When you create a replicated table through a grid, the other tasks for setting up replication are completed automatically: a replicate is
created for the table, participants are defined for each replication server, and the replicate is added to the grid replicate set.
Administering servers, for example, adding chunks, removing logical logs, or changing configuration parameter settings
Updating the database schema, for example, altering, adding, or removing tables
Running or creating stored procedures or user-defined routines
Updating data, for example, purging old data or updating values that are based on conditions
Altering a replicate definition when you alter a replicated table
Copying external files to grid servers

For example, suppose that you have 100 replication servers and must create a table. You must fragment the table into two new dbspaces. You also must create a new
stored procedure to run on the table. With a grid, you would run four commands to perform these tasks on all 100 replication servers, instead of running 400 commands.
The command to create the table can also specify that the data in that table is replicated.

You can control the security of the grid by authorizing which users can run grid routines on which servers. You can monitor the results of grid routines and rerun any failed
routines on the appropriate servers.

You can configure Connection Managers to route client connection requests to the replication servers of a grid, based on one of the following redirection policies:

FAILURE: Connection requests are directed to the replication server that has the fewest apply failures.
LATENCY: Connection requests are directed to the replication server that has the lowest transaction latency.
ROUNDROBIN: Connection requests are directed in a repeating, ordered fashion (round-robin) to a group of replication servers.
WORKLOAD: Connection requests are directed to the replication server that has the lowest workload.

Example of setting up a replication system with a grid
 This comprehensive example sets up a replication domain, creating a grid, creating a database, creating a replicated table, and loading data.

Example of rolling out schema changes in a grid
 You can roll out schema changes to replicated tables through a grid without shutting down your applications.

Creating a grid
 You can create a grid based on an existing replication domain. You must authorize users who can run grid routines, and designate a server from which to run grid

routines.
Grid maintenance

 You can adjust grid membership, change user or server authorization to run grid routines, and delete grid-routine history from the syscdr database.
Adding replication servers to a grid

 There are multiple ways to add a replication server to a grid.

1836 Part VI: Administering

https://www.hcltech.com/

Adding an externally created replicate into a grid replicate set
If a replicate is created external to a grid, it can still be added to a grid replicate set.
Creating replicated tables through a grid
You can automatically create a replicate and start replication when you create a table through the grid.
Enabling replication within a grid transaction
You can enable replication within a transaction that is run in the context of the grid.
Propagating updates to data
You can change your data through a grid routine and propagate the changes to all the servers in the grid.
Administering servers in the grid with the SQL administration API
You can run SQL administration API commands in grid routines to perform administrative tasks on all servers in the grid.
Propagating database object changes
You can create or alter database objects by running DDL statements while connected to the grid and propagate the changes to all the servers in the grid.
Propagating external files through a grid
You can copy non-database, external files to the servers within a grid.
Rerunning failed grid routines
You can rerun a grid routine that failed on one or more servers in the grid.
Connection management for client connections to participants in a grid
You can configure Connection Managers to route connection requests from clients to the replication servers of a grid.
Grid queries
If you have a table that is the same on multiple servers in a grid, but whose data is not replicated, you can run a grid query to return the consolidated data from the
multiple servers.

Related concepts:
 Preparing the Replication Environment

Using High-Availability Clusters with Enterprise Replication
Shard cluster setup
Managing Replication Servers and Replicates
Monitor and troubleshooting Enterprise Replication
Related tasks:

 Defining Replication Servers, Replicates, Participants, and Replicate Sets
Related information:

 Connection management through the Connection Manager

Copyright© 2020 HCL Technologies Limited

Example of setting up a replication system with a grid

This comprehensive example sets up a replication domain, creating a grid, creating a database, creating a replicated table, and loading data.

This example creates a replication domain and grid that contain four replication servers: serv1, serv2, serv3, serv4. Each server computer has the Informix® database
server installed, but no databases defined.

1. On all servers, set the CDR_QDATA_SBSPACE configuration parameter.
2. Edit the sqlhosts files on all four servers so that they each have the following information:

#dbservername nettype hostname servicename options
gserv1 group - - i=143
serv1 ontlitcp ny.usa.com 1230 g=gserv1
gserv2 group - - i=144
serv2 ontlitcp tokyo.japan.com 1231 g=gserv2
gserv3 group - - i=145
serv3 ontlitcp rome.italy.com 1232 g=gserv3
gserv4 group - - i=146
serv4 ontlitcp perth.australia.com 1233 g=gserv4

3. Define each server as a replication server by running the cdr define server command:

cdr define server -c gserv1 -I gserv1
cdr define server -c gserv2 -S gserv1 -I gserv2
cdr define server -c gserv3 -S gserv1 -I gserv3
cdr define server -c gserv4 -S gserv1 -I gserv4

4. Create a grid that includes all replication servers in the domain as members of the grid:

cdr define grid grid1 --all

5. Authorize the user bill to run commands on the grid and designate the server gserv1 as the source server from which grid commands can be run:

cdr enable grid --grid=grid1 --user=bill --node=gserv1

Tip: User informix does not have permission to run grid operations unless you include it in the user list.
6. Run cdr list grid to see the grid configuration:

Grid Node User
------------------ ------------------ ----------------
grid1 gserv1* bill
 gserv2
 gserv3
 gserv4

The asterisk indicates that gserv1 is the source server for the grid.
7. Run the cdr list replicateset command to see the grid replicate set information:

Part VI: Administering 1837

https://www.hcltech.com/

Ex T REPLSET PARTICIPANTS

Y Y grid1

The replicate set has the same name as the grid. It does not yet contain any participants.
8. Create two dbspaces named dbsp2 and dbsp3 in which to fragment a table:

database sysmaster;

EXECUTE FUNCTION ifx_grid_function('grid1',
 'task("create dbspace","dbsp2",
 "/db/chunks/dbsp2","2G","0")');

EXECUTE FUNCTION ifx_grid_function('grid1',
 'task("create dbspace","dbsp3",
 "/db/chunks/dbsp3","8G","0")');

The dbspaces are created on all four servers.
9. Create database named retail and a table named special_offers with replication enabled:

database sysmaster;

EXECUTE PROCEDURE ifx_grid_connect('grid1', 1);

CREATE DATABASE retail WITH LOG;

CREATE TABLE special_offers(
 offer_description varchar(255),
 offer_startdate date,
 offer_enddate date,
 offer_rules lvarchar,
 offer_type char(16))
 WITH CRCOLS
FRAGMENT BY EXPRESSION
 offer_type = "GOLD" IN dbsp2,
 REMAINDER IN dbsp3;

EXECUTE PROCEDURE ifx_grid_disconnect();

10. Run the cdr list grid --verbose grid1 command to see information about the statements on each server:

Grid Node User
------------------ ------------------ ----------------
grid1 gserv1* bill
 gserv2
 gserv3
 gserv4
Details for grid grid1

Node:gserv1 Stmtid:1 User:bill Database:retail 2010-05-27 15:21:57
CREATE DATABASE retail WITH LOG;
ACK gserv1 2010-05-27 15:21:57
ACK gserv2 2010-05-27 15:21:58
ACK gserv3 2010-05-27 15:21:59
ACK gserv4 2010-05-27 15:21:59

Node:gserv1 Stmtid:1 User:bill Database:retail 2010-05-27 15:21:57
CREATE TABLE special_offers(
 offer_description varchar(255),
 offer_startdate date,
 offer_enddate date,
 offer_rules lvarchar
 offer_type char(16))
 WITH CRCOLS
FRAGMENT BY EXPRESSION
 offer_type = "GOLD" IN dbsp2
 REMAINDER IN dbsp3;
ACK gserv1 2010-05-27 15:21:57
ACK gserv2 2010-05-27 15:21:58
ACK gserv3 2010-05-27 15:21:59
ACK gserv4 2010-05-27 15:21:59

Both statements succeeded on all four servers.
11. Run cdr list replicate to see the replicate information:

CURRENTLY DEFINED REPLICATES

REPLICATE: gserv1_1
STATE: Active
CONFLICT: Timestamp
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: retail:bill.special_offers
OPTIONS:
REPLTYPE: Master,Grid

The replicate was created and is active.
12. Run the cdr list replicate brief gserv1_1 command to see the participants:

REPLICATE TABLE SELECT
--
gserv1_1 retail@gserv1:bill.special_offers select * from
 bill.special_offers
gserv1_1 retail@gserv2:bill.special_offers select * from
 bill.special_offers

1838 Part VI: Administering

gserv1_1 retail@gserv2:bill.special_offers select * from
 bill.special_offers
gserv1_1 retail@gserv2:bill.special_offers select * from
 bill.special_offers

13. Load data onto one of the replication servers and Enterprise Replication replicates the data to the other servers. For more information, see Load and unload data.

Related concepts:
 Connection management for client connections to participants in a grid

Related tasks:
 Adding a replication server to a grid by cloning

Related reference:
 cdr enable grid

cdr list grid
cdr list replicateset
Related information:

 sqlhosts connectivity information

Copyright© 2020 HCL Technologies Limited

Example of rolling out schema changes in a grid

You can roll out schema changes to replicated tables through a grid without shutting down your applications.

Suppose that you have a grid replicate set named gridset that contains 12 replicates, each of which represents a different table. You want to alter the data types of
columns in five tables. The grid contains four servers.

To roll out schema changes without application downtime:

1. Change any connections from the original application to the replication server named cdr1 to connect to the replication server named cdr2.
2. On the cdr1 server, connect to the stores_demo database, connect to the grid, and alter the five tables:

dbaccess stores_demo -
EXECUTE PROCEDURE ifx_grid_connect('grid1', 'gridset', 4);
SET LOCK MODE TO WAIT 120;
ALTER TABLE customer ADD prefix (char15);
ALTER TABLE items MODIFY order_num (bigint);
ALTER TABLE stock MODIFY description (lvarchar);
ALTER TABLE cust_calls ADD call_descr2 (lvarchar);
ALTER TABLE manufact MODIFY manu_name (char32);

The ifx_grid_connect() procedure changes the tables on cdr1 but delays the propagation of the changes to the other replication servers.

3. Update the application to reflect the new schema for the five tables and connect to the server cdr1.
4. Close the connections from the original application.
5. On the server cdr1, propagate schema changes to the other replication servers by running the following statement:

EXECUTE FUNCTION ifx_grid_release('grid1', 'gridset');

6. On the server cdr1, create a derived replicate set named alterSet that contains the altered tables by running the following command:

cdr define replicateset --needRemaster=gridset alterSet

7. From the server cdr1, remaster the altered tables on all replication servers by running the following command:

cdr remaster replicateset --master=cdr1 alterSet

8. From the server cdr1, synchronize the data on all replication servers by running the following command:

cdr check replicateset --replset=alterSet --repair --master=cdr1 --all

9. On the server cdr1, drop the derived replicate set by running the following command:

cdr delete replicateset alterSet

Related tasks:
 Altering multiple tables in a replicate set

Propagating database object changes

Copyright© 2020 HCL Technologies Limited

Creating a grid

You can create a grid based on an existing replication domain. You must authorize users who can run grid routines, and designate a server from which to run grid routines.

You must be connected to a replication server in the domain that contains the servers that you want to include in the grid.
To create a grid:

1. Specify a name for the grid and the servers to include in the grid by running the cdr define grid command. For example, the following command creates a grid
named grid1 and adds all replication servers in the domain as members of the grid:

cdr define grid grid1 --all

Part VI: Administering 1839

https://www.hcltech.com/
https://www.hcltech.com/

2. Authorize users to run commands on the grid and designate a server from which grid commands can be run by running the cdr enable grid command. For example,
the following command authorizes the user bill to run commands on the server gserv1:

cdr enable grid --grid=grid1 --user=bill --node=gserv1

Only authorized users can run grid routines on authorized servers. User informix does not have permission to perform grid operations unless you include it in the
user list.

Related reference:
 cdr define grid

cdr enable grid

Copyright© 2020 HCL Technologies Limited

Grid maintenance

You can adjust grid membership, change user or server authorization to run grid routines, and delete grid-routine history from the syscdr database.

To see information about the grid, such as, which servers can run grid routines and the status of routines that are run on the grid servers, run the cdr list grid command.

If you remove a server from your replication domain, remove the server from your grid. The following example removes a replication server named gserv1 from the grid
grid_1:

cdr change grid grid_1 --delete gserv1

You cannot drop a replicated column through a grid. To drop a replicated column, you must manually remaster the replicate and then drop the column.

You cannot rename a replicated database. You must manually rename the database on each participant server by using the cdr remaster command.

To change which users can run routines on the grid or which servers are authorized to run grid routines, run the cdr enable grid and cdr disable grid commands. For
example, to change the authorized server from gserv1 to gserv2 and authorize the user srini, run the following commands:

cdr disable grid --grid=grid1 --node=gserv1
cdr enable grid --grid=grid1 --node=gserv2 --user=srini

To delete the history of grid routines, run the ifx_grid_purge() procedure. You must occasionally purge information about completed grid routines to prevent the syscdr
database from growing too large.

Viewing grid information
 You can view information about a grid and whether a replicate or replicate set belongs to a grid.

Related reference:
 cdr change grid

cdr disable grid
cdr enable grid
cdr list grid
ifx_grid_purge() procedure

Copyright© 2020 HCL Technologies Limited

Viewing grid information

You can view information about a grid and whether a replicate or replicate set belongs to a grid.

To view information about a grid:

Run the cdr list grid command. For example, the following command shows the servers and authorized users for a grid named grid1:

cdr list grid grid1

The output for this command might be:

Grid Node User
------------------ ------------------ ----------------
grid1 gserv1* bill
 gserv2
 gserv3
 gserv4

The user bill is authorized to run grid commands on the server gserv1.

You can see whether a replicate is a member of a grid replicate set by running the cdr list replicate command or the onstat -g cat repls command. You can also query the
syscdrrepl SMI table. The following example output of the cdr list replicate command shows that the replicate is a master replicate and a member of a grid replicate set:

CURRENTLY DEFINED REPLICATES

REPLICATE: grid_6553604_100_3
STATE: Active ON:g_delhi
CONFLICT: Always Apply
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: tdb:nagaraju.t1
OPTIONS: row,ris,fullrow

1840 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

REPLID: 6553605 / 0x640005
REPLMODE: PRIMARY ON:gserv1
APPLY-AS: INFORMIX ON:gserv1
REPLTYPE: Master,Grid

Related reference:
 cdr list replicateset

cdr list replicate
onstat -g cat: Print ER global catalog information
The syscdrrepl Table

Copyright© 2020 HCL Technologies Limited

Adding replication servers to a grid

There are multiple ways to add a replication server to a grid.

You can add a replication server to a grid in the following ways:

Run the cdr change grid command.
Clone an existing replication server in the grid.

Adding a replication server to a grid by running cdr change grid
 You can add a replication server to a grid by running the cdr change grid command.

Adding a replication server to a grid by cloning
 You can add a new server to a grid by cloning an existing replication server in the grid.

Copyright© 2020 HCL Technologies Limited

Adding a replication server to a grid by running cdr change grid

You can add a replication server to a grid by running the cdr change grid command.

To add a replication server to a grid:

Run the cdr change grid command. For example, to add a replication server named gserv3 to the grid grid1, run the following command:

cdr change grid grid1 --add=gserv3

To see information about the grid, such as, which servers can run grid routines and the status of routines that are run on the grid servers, run the cdr list grid command.
Related reference:

 cdr change grid

Copyright© 2020 HCL Technologies Limited

Adding a replication server to a grid by cloning

You can add a new server to a grid by cloning an existing replication server in the grid.

The server you are adding to the grid must have the same hardware and operating system as the source server that you are cloning.
To add a server to a grid:

Clone an existing replication server in the grid by using the ifxclone utility with the --disposition=ER option. This process is described in Adding a server to the domain by
cloning a server.
The following example adds a fifth server, named serv5, to an existing replication domain and to a grid named grid1. The server serv1 is used as the source server.

1. On the serv1 server, set the value of the ENABLE_SNAPSHOT_COPY configuration parameter to 1 in the onconfig file.
2. On the serv5 servers, complete the ifxclone prerequisites for all servers, such as setting the required configuration parameters and environment variables.

Set these environment variables:

INFORMIXDIR
INFORMIXSERVER
INFORMIXSQLHOSTS
ONCONFIG

Set these configuration parameters to the same values on the serv5 server as on the serv1 server:

DRAUTO
DRINTERVAL
DRTIMEOUT
LOGBUFF
LOGFILES
LOGSIZE
LTAPEBLK
LTAPESIZE
ROOTNAME
ROOTSIZE

Part VI: Administering 1841

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

PHYSBUFF
PHYSFILE
STACKSIZE
TAPEBLK
TAPESIZE

3. On the serv5 server, run the ifxclone command with the --disposition=ER option to clone the data and the configuration of the serv1 server onto the serv5 server
and the --createchunkfile command to create the necessary chunks:

ifxclone --trusted --source=serv1 --sourceIP=111.222.333.444
--sourcePort=1230 --target=serv5 --targetIP=111.222.333.777
--targetPort=1234 --disposition=ER --createchunkfile

4. Edit the sqlhosts files on all five servers in the domain so that they each have the following information:

#dbservername nettype hostname servicename options
gserv1 group - - i=143
serv1 ontlitcp ny.usa.com 1230 g=gserv1
gserv2 group - - i=144
serv2 ontlitcp tokyo.japan.com 1231 g=gserv2
gserv3 group - - i=145
serv3 ontlitcp rome.italy.com 1232 g=gserv3
gserv4 group - - i=146
serv4 ontlitcp perth.australia.com 1233 g=gserv4
gserv5 group - - i=147
serv5 ontlitcp helsinki.finland.com 1234 g=gserv5

The server serv5 is automatically added to the grid grid1.

Related concepts:
 Example of setting up a replication system with a grid

Related tasks:
 Adding a server to the domain by cloning a server

Related reference:
 cdr change grid

Related information:
 onconfig Portal: Configuration parameters by functional category

ENABLE_SNAPSHOT_COPY configuration parameter
The ifxclone utility

Copyright© 2020 HCL Technologies Limited

Adding an externally created replicate into a grid replicate set

If a replicate is created external to a grid, it can still be added to a grid replicate set.

You can add an existing replicate to a grid replicate set in the following ways:

Run the cdr change replicateset command.
Alter a replicate through a grid.

Adding an existing replicate to a grid replicate set by using cdr change replicateset
 You can use the cdr change replicateset command to add replicates created outside of a grid environment to a grid replicate set.

Adding an existing replicate to a grid replicate set by altering a table
 You can alter replicated tables through a grid even if the replicate was not created through a grid. Altering a replicated table through a grid adds the replicate to the

grid replicate set.

Copyright© 2020 HCL Technologies Limited

Adding an existing replicate to a grid replicate set by using cdr change replicateset

You can use the cdr change replicateset command to add replicates created outside of a grid environment to a grid replicate set.

Before you begin, you must verify the following items:

All the replicate participants are members of the grid. Replicate participants must include every member node of the grid, and no additional participants.
Each replicate participant's information refers to the same database, owner, table name and SELECT statement.
The replicated table schema is the same among all participants.
The replicate does not belong to an exclusive replicate set.

To add a replicate to a grid replicate set by using the cdr remaster command:

1. Use the cdr remaster command to convert the replicate to a mastered replicate.
2. Run the cdr change replicateset command with the --add option and specifying the grid replicate set. For example, the following command adds a replicate named

vendors to the grid1 grid replicate set:

cdr change replicateset --add grid1 vendors

When you run the cdr list replicate command, the REPLTYPE field shows Grid.
Related tasks:

 Adding an existing replicate to a grid replicate set by altering a table

1842 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Related reference:
cdr change replicateset
cdr list replicate
Related information:
sqlhosts connectivity information

Copyright© 2020 HCL Technologies Limited

Adding an existing replicate to a grid replicate set by altering a table

You can alter replicated tables through a grid even if the replicate was not created through a grid. Altering a replicated table through a grid adds the replicate to the grid
replicate set.

Before you begin, you must verify the following items:

All the replicate participants are members of the grid. Replicate participants must include every member node of the grid, and no additional participants.
Each replicate participant's information refers to the same database, owner, table name and SELECT statement.
The replicated table schema is the same among all participants.
The replicate does not belong to an exclusive replicate set.

To alter a replicated table through a grid:

1. Connect to the grid by running the ifx_grid_connect() procedure with the ER_enable argument set to 1.
2. Run an ALTER TABLE statement.
3. Disconnect from the grid by running the ifx_grid_disconnect() procedure.

The replicate is automatically remastered.
The following example adds a new column to the special_offers table and remasters the replicate on all participants that are members of the grid:

EXECUTE PROCEDURE ifx_grid_connect('grid1', 1);

ALTER TABLE special_offers ADD (
 offer_exceptions varchar(255));

EXECUTE PROCEDURE ifx_grid_disconnect();

Related tasks:
 Removing replicated columns

Adding an existing replicate to a grid replicate set by using cdr change replicateset
Related reference:

 ifx_grid_connect() procedure

Copyright© 2020 HCL Technologies Limited

Creating replicated tables through a grid

You can automatically create a replicate and start replication when you create a table through the grid.

If the table you are creating is a typed table, you must define a primary key.
If you plan to create a table with a TimeSeries column, all grid servers must be running Informix® version 12.10 or later.

When you enable replication while creating a table through a grid, replication is set up in the following way:

A replicate is created for the table. The replicate name is based on the name of the source server. Use the cdr list replicate command to see the name.
All servers that are members of the grid are included as participants in the replicate.
The replicate is included in a replicate set that has the same name as the grid.
The conflict resolution rule for the replicate is time stamp if you include the WITH CRCOLS clause. Otherwise, the conflict resolution rule is always apply.
The ERKEY shadow columns are automatically added to the table.
All other replicate properties are the same as the default properties of a replicate created through a template.

To set up replication:

1. Connect to the grid by running the ifx_grid_connect() procedure with the ER_enable argument set to 1.
2. Run a CREATE TABLE statement. Include the WITH CRCOLS clause if you want time stamp conflict resolution.
3. Disconnect from the grid by running the ifx_grid_disconnect() procedure.

The following example creates a table with replication enabled that uses the time stamp conflict resolution rule:

EXECUTE PROCEDURE ifx_grid_connect('grid1', 1);

CREATE TABLE special_offers(
 offer_description varchar(255),
 offer_startdate date,
 offer_enddate date,
 offer_rules lvarchar)
 WITH CRCOLS;

EXECUTE PROCEDURE ifx_grid_disconnect();

If you need to alter or delete a database object that you created through a grid, perform those operation from within a grid context. For example, do not create a table from
within a grid and then delete the table on one of the replication servers outside of a grid context. Instead, delete the table through the grid.

Part VI: Administering 1843

https://www.hcltech.com/
https://www.hcltech.com/

Related concepts:
Conflict resolution rule
Related tasks:
Preparing tables without primary keys
Related reference:
ifx_grid_connect() procedure
cdr define template

Copyright© 2020 HCL Technologies Limited

Enabling replication within a grid transaction

You can enable replication within a transaction that is run in the context of the grid.

By default, the results of transactions run in the context of the grid are not also replicated by Enterprise Replication. In certain situations you might want to both propagate
a transaction to the servers in the grid and replicate the results of the transaction.
To enable replication within a transaction:

1. Connect to the grid with the ifx_grid_connect() procedure.
2. Create a procedure that performs the following tasks:

a. Defines a data variable for the Enterprise Replication state information.
b. Runs the ifx_get_erstate() function and save its result in the data variable.
c. Enables replication by running the ifx_set_erstate() procedure with an argument of 1.
d. Runs the statements that you want to replicate.
e. Resets the replication state to the previous value by running the ifx_set_erstate() procedure with the name of the data variable.

3. Disconnect from the grid with the ifx_grid_disconnect() procedure.
4. Run the newly-defined procedure by using the ifx_grid_procedure() procedure.

Example
Suppose that a retail chain wants to run a procedure to create a report that populates a summary table of each store's current inventory and then replicates that summary
information to a central server. A stored procedure named low_inventory() that creates a low inventory report exists on all the servers in the grid named grid1. The
following example creates a new procedure named xqt_low_inventory() that enables replication for the low_inventory() procedure, and then runs the low_inventory()
procedure:

EXECUTE PROCEDURE ifx_grid_connect('grid1');
CREATE PROCEDURE xqt_low_inventory()
 DEFINE curstate integer;
 EXECUTE FUNCTION ifx_get_erstate() INTO curstate;
 EXECUTE PROCEDURE ifx_set_erstate(1);
 EXECUTE PROCEDURE low_inventory();
 EXECUTE PROCEDURE ifx_set_erstate(curstate);
END PROCEDURE;
EXECUTE PROCEDURE ifx_grid_disconnect();
EXECUTE PROCEDURE ifx_grid_procedure('grid1', 'xqt_low_inventory()');

The following events occur in this example:

1. The ifx_grid_connect() procedure connects to the grid1 grid so that the xqt_low_inventory() procedure is propagated to all the servers in the grid1 grid.
2. The xqt_low_inventory() procedure defines a data variable called curstate to hold the Enterprise Replication state information.
3. The ifx_get_erstate() function obtains the Enterprise Replication state and stores it in the curstate variable. The ifx_set_state() procedure enables replication.
4. The low_inventory() procedure is run.
5. The replication state is reset back to its original value.
6. The connection to the grid is closed by the ifx_grid_disconnect() procedure.
7. The ifx_grid_procedure() procedure runs the xqt_low_inventory() procedure on all the servers in the grid and the result of the low_inventory() procedure is

replicated like any normal updating activity.

Related reference:
 ifx_set_erstate() procedure

ifx_get_erstate() function

Copyright© 2020 HCL Technologies Limited

Propagating updates to data

You can change your data through a grid routine and propagate the changes to all the servers in the grid.

You can propagate updates to data on servers in the grid. By default, changes to data that are propagated through the grid are treated the same as changes to data that
are made by Enterprise Replication apply threads: they are not replicated again. For example, if you propagate a DELETE statement through the grid to remove old data,
you would not want the resulting deleted rows to be replicated as well. Although you can use the grid to run a DML statement, in general, use Enterprise Replication to
replicate changes to replicated data.

The grid must exist and you must run the grid routines as an authorized user from an authorized server.

To propagate an SQL statement or a stored procedure that updates data, run the ifx_grid_execute() procedure with the DML statements or the stored procedure as the
second argument.

1844 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Examples
Example 1: Reduce the price of products with low sales

In the following example, the ifx_grid_execute() procedure runs SQL statements that reduce the price of wool overcoats in stores that did not sell an overcoat in the last
week:

EXECUTE PROCEDURE ifx_grid_execute('grid1',
 'UPDATE price_table SET price = price * 0.75
 WHERE item =
 (SELECT item FROM inventory i, sales s
 WHERE i.description = "Wool Overcoat"
 AND i.item = s.item
 AND s.recent_sale_date <
 extend (current – Interval(7) DAY))');

Example 2: Purge old data

The following example purges all sales records before 2010:

Database retail_db;
 EXECUTE PROCEDURE ifx_grid_execute('grid1',
 'DELETE FROM sales WHERE sales_year < 2010');

Example 3: Run a low inventory report

The following example runs an existing stored procedure named low_inventory():

EXECUTE PROCEDURE ifx_grid_procedure('grid1', 'low_inventory()');

Related reference:
 ifx_grid_execute() procedure

Copyright© 2020 HCL Technologies Limited

Administering servers in the grid with the SQL administration API

You can run SQL administration API commands in grid routines to perform administrative tasks on all servers in the grid.

The grid must exist and you must run the grid routines as an authorized user from an authorized server and while connected to the sysadmin database.

To propagate an SQL administration API command:

1. Run the ifx_grid_function() function with the SQL administration API command as the second argument.
2. Check the return code of the SQL administration API command to determine if it succeeded by running the cdr list grid command. The cdr list grid command

shows the return code. The status of the ifx_grid_function() function can be ACK, which indicates success, even if the SQL administration API command failed.

Examples
The following examples must be run in the sysadmin database.

Example 1: Change a configuration parameter setting

The following example sets the maximum size of the log staging directory to 100 KB on all the servers in the grid:

EXECUTE FUNCTION ifx_grid_function('grid1',
 'admin("set onconfig permanent",
 "CDR_LOG_STAGING_MAXSIZE","100")');

The output of the cdr list grid command shows that the admin() function succeeded because the return codes are positive numbers:

Grid Node User
------------------ ------------------ ----------------
grid1 cdr1* bill
 cdr2
 cdr3
Details for grid grid1

Node:cdr1 Stmtid:1 User:dba1 Database:tstdb 2010-05-27 15:21:57
Tag:test
admin("set onconfig permanent",
 "CDR_LOG_STAGING_MAXSIZE","100")
ACK cdr1 2010-05-27 15:21:57
 '110'
ACK cdr2 2010-05-27 15:21:58
 '111'
ACK cdr3 2010-05-27 15:21:58
 '112'

Example 2: Create a new dbspace

The following example creates a new dbspace on all the servers in the grid1 grid:

EXECUTE FUNCTION ifx_grid_function('grid1',
 'task("create dbspace","dbsp2",
 "/db/chunks/dbsp2","2G","0")');

Part VI: Administering 1845

https://www.hcltech.com/

The output of the cdr list grid command shows that the task() function failed:

Grid Node User
------------------ ------------------ ----------------
grid1 cdr1* bill
 cdr2
 cdr3
Details for grid grid1

Node:cdr1 Stmtid:1 User:dba1 Database:tstdb 2010-05-27 15:21:57
Tag:test
task("create dbspace","dbsp2",
 "/db/chunks/dbsp2","2G","0"
ACK cdr1 2010-05-27 15:21:57
 'Unable to create file /db/chunks/dbsp2'
ACK cdr2 2010-05-27 15:21:58
 'Unable to create file /db/chunks/dbsp2'
ACK cdr3 2010-05-27 15:21:58
 'Unable to create file /db/chunks/dbsp2'

Related reference:
 ifx_grid_function() function

ifx_grid_execute() procedure

Copyright© 2020 HCL Technologies Limited

Propagating database object changes

You can create or alter database objects by running DDL statements while connected to the grid and propagate the changes to all the servers in the grid.

You can propagate creating, altering, and dropping database objects to servers in the grid. For example, you can create a database or table or alter an existing database or
table. You can also create stored procedures and user-defined routines.

You can choose to run the DDL statements on the local server and defer the propagation of the DDL statements to the other grid servers. Deferred propagation of DDL
statements can be useful when you are rolling out schema changes or performing a rolling upgrade.

The grid must exist and you must run the grid routines as an authorized user from an authorized server.

To propagate DDL statements:

1. Connect to the grid by running the ifx_grid_connect() procedure.
2. Run one or more SQL DDL statements.
3. Disconnect from the grid by running the ifx_grid_disconnect() procedure.

If you deferred the propagation of DDL statements, you can propagate them by running the ifx_grid_release() function, or remove them by running the ifx_grid_remove()
function.

Example
Suppose that you have a retail shop with a website. You replicate your data to several other locations for web applications. You want to be able to quickly and easily
create, drop, and update tables. You create a grid named grid1, from which you can update the database schema for all servers in one step. The following example creates
a table for special offers in the prod_db database:

Database prod_db;

 EXECUTE PROCEDURE ifx_grid_connect('grid1');

 CREATE TABLE special_offers(
 offer_description varchar(255),
 offer_startdate date,
 offer_enddate date,
 offer_rules lvarchar);
 EXECUTE PROCEDURE ifx_grid_disconnect();

Related reference:
 Example of rolling out schema changes in a grid

ifx_grid_connect() procedure
ifx_grid_disconnect() procedure

Copyright© 2020 HCL Technologies Limited

Propagating external files through a grid

You can copy non-database, external files to the servers within a grid.

The ifx_grid_copy() procedure copies files from a directory on the source server to a specified destination on all servers in a grid. You specify the source directory on the
source server by setting the GRIDCOPY_DIR configuration parameter to the location of the file to copy. You also set the GRIDCOPY_DIR configuration parameters on each
of the destination servers to specify the directory to which the file is copied. The source directory can be different than the destination directory.

The file is copied to all of the servers within the grid with the same permissions, owner, and group. The names of the group and owner are transmitted along with the file
rather than the group ID and User ID because user and group names might have different group ID and User ID values on different servers.

1846 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

The grid must exist and you must run the grid routines as an authorized user from an authorized server. Wildcard characters in file names are not supported.

1. On the source server, set the GRIDCOPY_DIR configuration parameter to the location of the file to copy.
2. On the destination servers, set the GRIDCOPY_DIR configuration parameter to the location of the destination of the file to copy.
3. Run the ifx_grid_copy() procedure specifying the grid name, the name of the file to send, and, optionally, the file destination.

Examples
Example 1: Copy a file to servers in a grid

The following example copies the file $INFORMIXDIR/tmp/myfile to the other nodes within grid grid1.

EXECUTE PROCEDURE ifx_grid_copy("grid1", "tmp/myfile")

Example 2: Copy a file to servers in a grid and change the name on the destination servers

In the following example, assume that the GRIDCOPY_DIR configuration parameter is set to $INFORMIXDIR/tmp on the source server and on the destination server. The
following example copies the file $INFORMIXDIR/tmp/bin/sales-010512.exe on the source server to $INFORMIXDIR/tmp/bin/sales.exe on all servers within the grid
mygrid.

EXECUTE PROCEDURE ifx_grid_copy ("mygrid", "bin/sales-010512.exe", "bin/sales.exe");

Related reference:
 ifx_grid_copy() procedure

GRIDCOPY_DIR Configuration Parameter

Copyright© 2020 HCL Technologies Limited

Rerunning failed grid routines

You can rerun a grid routine that failed on one or more servers in the grid.

If a grid routine failed on one or more servers in the grid, you can run the cdr list grid command with the --nacks option to see the details of why it failed. If a server in the
grid is offline or is not connected to the network, then a grid routine will be pending on that server and will be run when the server is reconnected to the grid.
In some cases, you should not rerun a failed routine, because the failure is expected. For example, if a server already has the database object that a grid routine is
creating, then that routine fails on that server. If a command failed on all grid servers, you can run the original command again instead of running the ifx_grid_redo()
procedure.

The grid must exist and you must run the grid routine as an authorized user from an authorized server.

To rerun a grid routine, run the ifx_grid_redo() procedure.
If you run the ifx_grid_redo() procedure without additional arguments besides the grid name, all routines that failed are re-attempted on all the servers on which they
failed. You can specify on which server to rerun routines and which routines to rerun.

Example
Suppose you have a grid, named grid1, that contains the servers gserv_1 and gserv_2, which have a database named db1.

You create a dbspace named dbsp2 on the server gserv_1 and then create a table in that dbspace in a grid context with the following commands:

$ dbaccess db1 -
execute procedure ifx_grid_connect('grid1');
create table t100 (c1 int primary key) in dbsp2;
execute procedure ifx_grid_disconnect();

The cdr list grid command shows that the command failed on the server gserv_2:

$ cdr list grid grid1 --nack
Grid Node User
------------------------ ------------------------ ------------------------
grid1 gserv_1* user1
 gserv_2
Details for grid grid1

Node:gserv_1 Stmtid:4 User:user1 Database:db1 2011-02-24 09:27:44
create table t100 (c1 int primary key) in dbsp2
NACK gserv_2 2011-02-24 09:27:45 SQLERR:-261 ISAMERR:-130
 Grid Apply Transaction Failure

The error indicates that the table could not be created because the specified dbspace does not exist.

You create a dbspace named dbsp2 on the server gserv_2 and run the ifx_grid_redo() procedure to rerun the original command on gserv_2:

$ dbaccess db1 –
execute procedure ifx_grid_redo('grid1');

The output of the cdr list grid command shows that the command succeeded on both servers:

$ cdr list grid grid1 -v
Grid Node User
------------------------ ------------------------ ------------------------
grid1 gserv_1* user1
 gserv_2
Details for grid grid1
...

Part VI: Administering 1847

https://www.hcltech.com/

Node:gserv_1 Stmtid:4 User:user1 Database:db1 2011-02-24 09:27:44
create table t100 (c1 int primary key) in dbsp2
ACK gserv_1 2011-02-24 09:27:44
ACK gserv_2 2011-02-24 09:31:09

Related reference:
 ifx_grid_redo() procedure

cdr list grid

Copyright© 2020 HCL Technologies Limited

Connection management for client connections to participants in a grid

You can configure Connection Managers to route connection requests from clients to the replication servers of a grid.

Connection requests can be directed to replication servers based on Connection Manager service-level agreements (SLAs). You can configure Connection Manager SLAs to
redirect connection requests based on various redirection policies. Connection Managers support the following redirection policies:

FAILURE: Connection requests are directed to the replication server that has the fewest apply failures.
LATENCY: Connection requests are directed to the replication server that has the lowest transaction latency.
ROUNDROBIN: Connection requests are directed in a repeating, ordered fashion (round-robin) to a group of replication servers.
WORKLOAD: Connection requests are directed to the replication server that has the lowest workload.

Related concepts:
 Example of setting up a replication system with a grid

Related information:
 Connection management through the Connection Manager

Example of configuring connection management for a grid or replicate set

Copyright© 2020 HCL Technologies Limited

Grid queries

If you have a table that is the same on multiple servers in a grid, but whose data is not replicated, you can run a grid query to return the consolidated data from the
multiple servers.

For example, suppose that you have a chain of retail stores. Each store has a database with the same schema. The database contains tables for inventory, customer data,
and sales transactions. You set up a grid because you want to replicate the inventory tables to a central server. You want the tables for sales transactions to be the same
on every server, but you do not want to replicate all the sales transactions to the central server. You do, however, want a monthly report that shows the total sales per
store. You run a grid query on the central server that aggregates the sales data for the last month for each store and returns results that are grouped by store.

To run a grid query, you include the GRID clause in the SELECT statement. The GRID clause specifies the grid, or subset of the grid, on which to run the query. The GRID
clause has requirements and restrictions for the tables and other SQL constructs that you can include in the query.

Before you can run a grid query, you must define the table that you want to query as a grid table. If you use secure connections between your grid servers, you must
configure secure connections on the grid server from which you want to run grid queries.

Planning for grid queries
Consider the following options when you plan grid queries.

Before you run a grid query, you can configure the following options for the queries:

Whether to run the grid query on all the servers in the grid or a subset of grid servers. To define subsets of grid servers, create regions by running the cdr define
region command. You can create as many grid regions as you need. Grid regions can overlap or be divided into smaller grid regions. A grid server can be a member
of multiple grid regions.
Whether to make all SELECT statements that are run in the current session run as grid queries by default. Run the SET ENVIRONMENT SELECT_GRID or the SET
ENVIRONMENT SELECT_GRID_ALL statements to specify the grid or region name for every query. Leave the GRID clause out of SELECT statements.
Whether to skip grid servers that are not available when you run the grid query. By default, the grid query runs only if all servers are available. Run the SET
ENVIRONMENT GRID_NODE_SKIP ON statement to run the query on the available servers and skip the unavailable servers.

While you run a grid query, besides choosing the tables and the grid or region to include in the query, you can include the following options:

Whether to return all qualifying rows, including duplicate rows. By default, grid queries return only unique rows. Include the ALL keyword in the GRID clause to
return all rows.
Whether to return information about which server the results are from. Include the ifx_node_id() or ifx_node_name() function to return a column that identifies the
grid server from which each row originates. You can use the server ID or name to group the results.

After you run a grid query, you can find out which servers were skipped for a grid query, if the GRID_NODE_SKIP option was set to ON. Run the
ifx_gridquery_skipped_node_count() and ifx_gridquery_skipped_nodes() functions to return the grid servers that were unavailable during the grid query.

Defining tables for grid queries
 Define the tables that you want to include in grid queries as grid tables.

Configuring secure connections for grid queries
 If the sqlhosts files on the grid servers include the s=6 option, you must define alternate connections for grid queries. On the grid server from which you want to run

grid queries, create a grid.servers file that lists the server group names and aliases for the other grid servers.
Examples of grid queries

 These examples show some of the options that you have when you run grid queries.

1848 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Related reference:
ifx_grid_connect() procedure
cdr define region
cdr delete region
cdr change gridtable
cdr remaster gridtable
ifx_node_id() function
ifx_node_name() function
ifx_gridquery_skipped_nodes() function
ifx_gridquery_skipped_node_count() function
ifx_grid_release() function
ifx_grid_remove() function
Related information:
SELECT_GRID session environment option
SELECT_GRID_ALL session environment option
GRID_NODE_SKIP session environment option
GRID clause

Copyright© 2020 HCL Technologies Limited

Defining tables for grid queries

Define the tables that you want to include in grid queries as grid tables.

The only prerequisite for defining a table as a grid table is that the table must have the same name, column names, and data types on multiple grid servers. However, the
GRID clause has other restrictions and requirements for running grid queries.

You can include system catalog and sysmaster databases tables in grid queries without defining them as grid tables.
To define a table as a grid table, run the cdr change gridtable command. The cdr change gridtable command verifies that the tables have matching column names and
data types across the grid.
For example, the following command defines the items, orders, and customer tables in the stores_demo database for the grid named grid1:

cdr change gridtable -–grid=grid1 -–database=stores_demo -–add items orders customer

If you want to alter a grid table, you must run the alter operation through the grid. You cannot run a grid query on the table during an alter operation. After the alter
operation is complete, the database server verifies that the table is consistent across grid servers.

Related reference:
 cdr change gridtable

cdr remaster gridtable
Related information:

 GRID clause

Copyright© 2020 HCL Technologies Limited

Configuring secure connections for grid queries

If the sqlhosts files on the grid servers include the s=6 option, you must define alternate connections for grid queries. On the grid server from which you want to run grid
queries, create a grid.servers file that lists the server group names and aliases for the other grid servers.

You do not need to encrypt the file. Authentication is done through normal authentication methods.
To configure secure connections for grid queries:

On the grid server from which you want to run grid queries, create a text file named grid.servers in the INFORMIXDIR/etc directory. List each grid server group name and
alias on a separate line.
For example, the following sqlhosts file for a grid uses the s=6 option for secure connections:

#dbservers nettype hostname servicename options

g_ca_sf group - - i=100
san_francisco ontlitcp computer1 sf_alt g=g_ca_sf,s=6

g_ca_sj group - - i=200
san_jose ontlitcp computer2 sj_alt g=g_ca_sj,s=6

g_ca_okl group - - i=300
oakland ontlitcp computer3 okl_alt g=g_ca_okl,s=6

g_ca_yk group - - i=400
yreka ontlitcp computer4 yk_alt g=g_ca_yk,s=6

g_ca_sac group - - i=500
sacramento ontlitcp computer5 sac_alt g=g_ca_sac,s=6

g_ca_stk group - - i=600
stockton ontlitcp computer6 stk_alt g=g_ca_stk,s=6

The corresponding grid.servers file has the following contents:

#group alias
g_ca_sf sf_alt

Part VI: Administering 1849

https://www.hcltech.com/
https://www.hcltech.com/

g_ca_sj sj_alt
g_ca_okl okl_alt
g_ca_yk yk_alt
g_ca_sac sac_alt
g_ca_stk stk_alt

Related tasks:
 Configuring secure ports for connections between replication servers

Related reference:
 ifx_grid_connect() procedure

ifx_grid_release() function
ifx_grid_remove() function
Related information:

 GRID clause

Copyright© 2020 HCL Technologies Limited

Examples of grid queries

These examples show some of the options that you have when you run grid queries.

The following examples are based on the stores_demo database. A grid named grid1 has eight servers, named store1 through store8. The examples assume that you
defined the items, orders, and customer tables as grid tables.

Example 1: Return chunk information about grid servers
Suppose you want to know about the chunks on all your grid servers. You want to know the number of chunks, which dbspaces each chunk is in, the total size of each
chunk, and the amount of free space in each chunk.

You run the following grid query to return chunk information for each grid server. The tables in the sysmaster database are grid tables by default.

database sysmaster;

SELECT ifx_node_name()::char(12) AS node, chknum, dbsnum, nfree, chksize
FROM syschunks GRID ALL 'grid1';

The grid query returns the following results:

node chknum dbsnum nfree chksize

store1 1 1 1777275 2000000
store1 2 2 5025 100000
store1 3 3 24974 100000
store2 1 1 1775579 2000000
store2 2 2 5025 100000
store2 3 3 24974 100000
store3 1 1 1769260 2000000
store3 2 2 5025 100000
store3 3 3 24974 100000

. . .

Example 2: Aggregate results by server and find skipped servers
Suppose you want a list of the orders by customer for each store in the grid named grid1. A store is represented by its grid server name. You want to return all results,
including duplicate rows. You do not want the query to fail if any of the grid servers are unavailable, but you want to know which servers were skipped.

Before you run the grid query, you run the following statement to run the query on available grid servers and skip any unavailable grid servers:

SET ENVIRONMENT GRID_NODE_SKIP ON;

You run the following grid query to return the outstanding orders by customer for each store:

SELECT c.fname, c.lname, ifx_node_name() AS node
 SUM(i.total_price) AS tot_amt, SUM(i.quantity) AS tot_cnt
 FROM items i, orders o, customer c GRID ALL 'grid1'
 WHERE i.order_num = o.order_num
 AND o.customer_num = c.customer_num
 GROUP BY 1,2
 ORDER BY 2,1,3;

The grid query returns the following results:

fname Alfred
lname Grant
node store1
tot_amt $84.00
tot_cnt 2

fname Alfred
lname Grant
node store2
tot_amt $84.00
tot_cnt 4

. . .

1850 Part VI: Administering

https://www.hcltech.com/

You run the following statement to find how many grid servers were skipped:

EXECUTE FUNCTION ifx_gridquery_skipped_node_count();

2

Two servers were skipped. You run the ifx_gridquery_skipped_nodes() statement for each of the skipped servers:

EXECUTE FUNCTION ifx_gridquery_skipped_nodes();

store5

EXECUTE FUNCTION ifx_gridquery_skipped_nodes();

store8

Example 3: Query a region of the grid
Suppose you want to know the total sales and number of sales per person for each store in Kansas. Kansas has two stores whose grid servers are named store3 and
store4. You want all queries during your database session to be run as grid queries for the Kansas stores.

You run the following command to define a grid region named region1 that contains the servers store3 and store4:

cdr define region --grid=grid1 region1 store3 store4

You run the following statement to set all SELECT statements during the session as grid queries for the region region1:

SET ENVIRONMENT SELECT_GRID_ALL region1

You run the following statement to return the total sales and number of sales per person for each store. The GRID clause is not necessary because you set the
SELECT_GRID_ALL option.

SELECT fname[1,10], lname[1,10], ifx_node_id() AS storenum,
 SUM(quantity) AS tot_cnt, SUM(total_price) AS tot_amt
 FROM items i, orders o, customer c
 WHERE i.order_num = o.order_num
 AND o.customer_num = c.customer_num
 GROUP BY 2,1
 ORDER BY 2,1,3;

The query returns the following results:

fname lname storenum tot_cnt tot_amt

Alfred Grant 3 8 $84.00
Alfred Grant 4 6 $84.00
Marvin Hanlon 3 12 $438.00
Marvin Hanlon 4 10 $438.00
Anthony Higgins 3 45 $1451.80
Anthony Higgins 4 36 $1451.80
Roy Jaeger 3 16 $1390.00
Roy Jaeger 4 13 $1390.00
Fred Jewell 3 16 $584.00
Fred Jewell 4 13 $584.00
Frances Keyes 3 4 $450.00
Frances Keyes 4 3 $450.00

. . .

Example 4: Use a grid query as a subquery
Suppose you want the total sales and number of sales for each customer across all stores. You use the same query that you use in example 2 as the subquery to return
information by grid server. The main query aggregates the results of the subquery.

You run the following statement to return the total sales and number of sales per person:

SELECT fname, lname,
 SUM(tot_amt) AS amt_by_person, SUM(tot_cnt) AS tot_by_person
 FROM
 (
 SELECT c.fname, c.lname, ifx_node_name() AS node,
 SUM(i.total_price) AS tot_amt, SUM(i.quantity) AS tot_cnt
 FROM items i, orders o, customer c GRID ALL 'grid1'
 WHERE i.order_num = o.order_num
 AND o.customer_num = c.customer_num
 GROUP BY 1,2
)
 GROUP BY fname, lname
 ORDER BY 2, 1;

The query returns the following results:

fname lname amt_by_person tot_by_person

Alfred Grant $336.00 20
Marvin Hanlon $1752.00 40
Anthony Higgins $5807.20 135
Roy Jaeger $5560.00 50
Fred Jewell $2336.00 50
Frances Keyes $1800.00 10
Margaret Lawson $1792.00 110

Part VI: Administering 1851

. . .

Related reference:
 ifx_grid_connect() procedure

cdr define region
cdr delete region
cdr change gridtable
cdr remaster gridtable
ifx_node_id() function
ifx_node_name() function
ifx_gridquery_skipped_nodes() function
ifx_gridquery_skipped_node_count() function
ifx_grid_release() function
ifx_grid_remove() function
Related information:

 SELECT_GRID session environment option
SELECT_GRID_ALL session environment option
GRID_NODE_SKIP session environment option
GRID clause

Copyright© 2020 HCL Technologies Limited

Shard cluster setup

Sharding is a way to horizontally partition a single table across multiple database servers in a shard cluster. Enterprise Replication moves the data from the source server
to the appropriate target server as specified by the sharding method. You query a sharded table as if the entire table is on the local server. You do not need to know where
the data is. Queries that are performed on one shard server retrieve the relevant data from other servers in a shard cluster. Sharding reduces the index size on each shard
server and distributes performance across hardware. You can add shard servers to the shard cluster as your data grows.

Prerequisites
Before you create a shard cluster, the following system must be in place:

You must have an Enterprise Replication domain that is composed of two or more nodes.
On one of the Enterprise Replication nodes, you must have a table or collection to shard that conforms to the following requirements:

The table must have a dedicated column or field for tracking row or document versions.
The table cannot include data types that are not supported in sharded queries.
The databases on all shard servers must have same locale type.

Shard cluster architecture
Shard servers are uniquely identified by the SHARD_ID configuration parameter that you must set on each shard server. Because shard servers have unique IDs,
Enterprise Replication can efficiently communicate between shard servers:

Client connections are multiplexed over a common pipe and authenticated only on the local shard server.
Sharded queries are run in parallel on all shard servers and their high-availability secondary servers.
For insert, update, and delete operations, if you set the USE_SHARDING session environment option, transactions use the two-phase commit protocol to move data
to appropriate shard server. Otherwise, changes are moved to appropriate shard server using the eventually consistent model after the transaction is committed.
For select operations, if you set the USE_SHARDING session environment option, queries are run on all shard servers in the cluster instead of on only the local
database server.
The consistency of the sharded table is enforced on all shard servers. Shard servers do not need to transfer table information between each other. Data definition
language statements that you run on a sharded table are propagated to all shard servers.

Creating a shard cluster
 To create a shard cluster, prepare the shard servers and specify the sharding definition.

Sharded queries
 You can query a sharded table as if it is a single table on one database server. However, restrictions for distributed queries between database servers and

restrictions specific to sharded queries apply.
Shard cluster management and monitoring

 You can scale out a shard cluster by adding new shard servers. You can also change the shard cluster's definition to change where rows or documents are
distributed to.
Shard edge server

 Shard edge server simplifies the administration of large shard cluster when shard cluster is only used for shard query functionality.

Related concepts:
 Preparing the Replication Environment

Using High-Availability Clusters with Enterprise Replication
Grid setup and management
Managing Replication Servers and Replicates
Monitor and troubleshooting Enterprise Replication
Related tasks:

 Defining Replication Servers, Replicates, Participants, and Replicate Sets
Related information:

 JSON data sharding
Components supporting high availability and scalability

Copyright© 2020 HCL Technologies Limited

1852 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Creating a shard cluster

To create a shard cluster, prepare the shard servers and specify the sharding definition.

All shard servers must belong to the same Enterprise Replication domain.

To create a shard cluster:

1. On each shard server, set the SHARD_ID configuration parameter to a positive integer value that is unique in the shard cluster by running the following command:

onmode -wf SHARD_ID=unique_positive_integer

If the SHARD_ID configuration parameter is already set to a positive integer, you can change the value by editing the onconfig file and then restarting the database
server. You can also set the SHARD_MEM configuration parameter to customize the number of memory pools that are used during shard queries.

2. On the shard server that contains the table to shard, run the cdr define shardCollection command.

When applications connect to shard servers, enable sharded queries to run against data across all shard servers by setting the USE_SHARDING session environment
variable:

SET ENVIRONMENT USE_SHARDING ON;

Shard cluster definitions
 The definition for a shard cluster includes information about the shard servers, the data to shard, and the sharding method.

Related reference:
 cdr define shardCollection

SHARD_ID configuration parameter
Related information:

 onmode -wf, -wm: Dynamically change certain configuration parameters
USE_SHARDING session environment option

Copyright© 2020 HCL Technologies Limited

Shard cluster definitions

The definition for a shard cluster includes information about the shard servers, the data to shard, and the sharding method.

To run the cdr define shardCollection command, which creates a sharding definition for partitioning your table data, you must specify the following information:

A name for the sharding definition
The name of the database that contains the table that is being sharded
The name of the user that owns the table that is being sharded
The sqlhosts file group name for each database server in the shard cluster
The column that is used as a shard key
Which sharding method the database server uses for determining where rows are distributed to:

With consistent hash-based sharding, the data is automatically distributed between shard servers in a way that minimizes the data movement when you add
or remove shard servers.
With hash-based sharding, the data is automatically divided between shard servers, but when you change the shard cluster, all data is redistributed.
With expression-based sharding, you specify how the data is divided between shard servers. You must also specify the shard server to receive the data that
is outside the scope of the expression.

How you want to distribute the data:
Insert rows on any shard server, replicate the rows to the appropriate shard server, and then delete duplicate rows from the original server. The delete
method is the default method and is the same behavior as when you define sharding with MongoDB commands.
Insert rows on any shard server, replicate the rows to the appropriate shard server, but then keep duplicate rows on the original server. The keep method is
similar to a data dissemination system.
Insert rows on the appropriate shard server and do not replicate rows. The informational method is useful if you want to query across multiple servers that
have the same table, but you do not need to shard the data during loading. For example, you have a different database server for each of your three stores.
The data from each store is always inserted in the appropriate server. You set up the sharding definition with an expression that matches database servers
with their store identifiers. Then you can run sharded queries to aggregate data from all three stores.

The table column or collection field for tracking row updates

Consistent hash-based sharding
When you create a consistent hash-based sharding definition, IBM® Informix® uses a hash value of a specific column or field to distribute data to the servers of a shard
cluster in a consistent pattern. When you add or remove a shard server, the consistent hashing algorithm redistributes a fraction of the data. You specify how many
hashing partitions to create on each shard server. The default number of hashing partitions is three. The more hashing partitions, the more evenly the data is distributed
among shard servers. However, if you specify more than 10 hashing partitions, the resulting SQL statement to create the sharded table might fail because it exceeds the
maximum character limit for an SQL statement.

For example, the following command creates a consistent hashing index that has three partitions on each shard server:

cdr define shardCollection collection_1 db_1:john.customers
 --type=delete --key=b --strategy=chash --partitions=3 --versionCol=column_3
 g_shard_server_1 g_shard_server_2 g_shard_server_3

You can dynamically change the number of hashing partitions per shard server by running the cdr change shardCollection command.

Hash-based sharding

Part VI: Administering 1853

https://www.hcltech.com/

When you create a hash-based sharding definition, IBM Informix uses a hash value of a specific column or field to distribute data to the servers of a shard cluster. When
you add or remove a shard server, the hashing algorithm redistributes all the data.

For example, the following command creates a hashed index that is based on shard key values, and then the Enterprise Replication determines where rows with specific
hashed index values are distributed to:

cdr define shardCollection collection_1 db_1:john.customers
 --type=delete --key=state --strategy=hash --versionCol=version
 g_shard_server_A g_shard_server_B g_shard_server_C g_shard_server_D

Expression-based sharding
When you create an expression-based sharding definition, IBM Informix uses WHERE-clause syntax on a specific column or field to distributes data to the servers of a
shard cluster.

For example, the following command sends rows with a shard-key value of NV to g_shard_server_B:

cdr define shardCollection collection_1 db_1:joe.clients
--type=delete --key=state --strategy=expression --versionCol=version
 g_shard_server_A "IN ('WA','OR','ID')"
 g_shard_server_B "IN ('CA','NV','UT','AZ')"
 g_shard_server_C "IN ('TX','OK','NM','AR','LA')"
 g_shard_server_D REMAINDER

Sharding definitions must include the REMAINDER expression for rows or documents that have values that are not accounted for by the other expressions. For example,
the previous sharding definition sends rows with a shard-key value of 'NY' to g_shard_server_D.

Expressions that are used for sharding data cannot overlap. For example, a sharding definition that is created with the following command is not valid because rows or
documents with shard key values 40 to 60 would be sent to both g_shard_server_A and g_shard_server_B.

cdr define shardCollection collection_1 db_1:joe.clients)
--type=delete --key=age --strategy=expression --versionCol=version
 g_shard_server_A "BETWEEN 0 AND 60"
 g_shard_server_B "BETWEEN 40 AND 100"
 g_shard_server_C REMAINDER

Copyright© 2020 HCL Technologies Limited

Sharded queries

You can query a sharded table as if it is a single table on one database server. However, restrictions for distributed queries between database servers and restrictions
specific to sharded queries apply.

When you run a sharded query, do not include server name qualifications for remote servers.

If the SHARD_ID configuration parameter is set to unique values on each shard server in the shard cluster, sharded queries are run in parallel on each shard server.

If you set the USE_SHARDING session environment option, insert, update, and delete operations on shard tables use the two-phase commit protocol. Otherwise, sharded
insert, update, and delete operations follow the eventually consistency model where data is moved to the appropriate shard server after the transaction is committed.

If your shard servers have high-availability secondary servers, you can run sharded queries from the secondary servers.

Data types
A sharded query can return the following data types: non-opaque atomic built-in data types, LVARCHAR, Boolean, BSON, and JSON. Sharded queries cannot return
distinct data types.

To run sharded queries on time series data in a TimeSeries data type, shard a virtual table that is based on the time series table.

Restrictions
You cannot include the following SQL syntax elements in a query that includes a sharded table:

DataBlade API routines
Java user-defined routines
Triggers
A FOR UPDATE clause in a SELECT statement

You cannot run an EXECUTE FUNCTION or EXECUTE PROCEDURE statement for a routine to operate on a sharded table.

You cannot run a statement that contains an update to a shard key that requires the row to move to another shard server. To update the shard key of a row, delete the row
and then insert it with the new values.

You cannot shard data in an XA environment.

Sharded Table Joins
IBM® Informix® supports joining between multiple sharded tables with parallel execution. However, such parallel joins between two shard tables are allowed ONLY when
the following conditions are met:

both the tables must have the joining column as key

1854 Part VI: Administering

https://www.hcltech.com/

both the tables must have exactly the same strategy defined on the key
both the tables must have exact partitioning conditions defined using the key
both the tables must have same set of the participating nodes
only equi-joins are allowed in case of other non-expression strategies

All the table filters on the sharded tables will be pushed to their respective participants

When the shard-join is rejected due to any restriction, Informix server will attempt a fall back mechanism.

Shard join fallback is enabled using the following command:

SET ENVIRONMENT SHARDJOIN_FALLBACK ON. For more information, see SHARDJOIN_FALLBACK session environment option.

Performance tips
You can improve the speed of sharded queries by customizing how shared memory for sharded queries is allocated. You can control shared memory allocation by setting
the SHARD_MEM configuration parameter on each shard server.

If your sharded queries frequently include joins to another table, replicate that table to all the shard servers to improve query performance.

If your sharded queries included stored routines as a filter, define the routines on all the shard servers. Queries run faster when the data is filtered on each shard server
before being returned.

If the SHARD_ID configuration parameter is set on all shard servers, the shard servers use server multiplexer group (SMX) connections. You can reduce latency between
shard servers by increasing the number of pipes that are used for the SMX connections. Set the SMX_NUMPIPES configuration parameter to the number of pipes.

Related reference:
 SHARD_MEM configuration parameter

Copyright© 2020 HCL Technologies Limited

Shard cluster management and monitoring

You can scale out a shard cluster by adding new shard servers. You can also change the shard cluster's definition to change where rows or documents are distributed to.

Modifying a shard-cluster and adding or removing shard servers
To modify the servers in a shard cluster, run the cdr change shardCollection command on one of the shard servers. The cdr change shardCollection command performs
the following actions:

1. A new sharding definition is created.
2. Using the new sharding definition, existing data is distributed across the shard servers.
3. The original sharding definition is deleted.

Note: You can add new servers, remove existing servers, or modify the sharding definition, but you cannot change the type of sharding definition. A hash-based sharding
definition cannot change to an expression-based sharding definition, and an expression-based sharding definition cannot change to a hash-based sharding definition.
The following example shows how to add capacity to a shard cluster that uses a hash-based sharding definition. The original shard cluster was defined with the following
command:

cdr define shardCollection collection_1 db_1:john.customers
 --type=delete --key=identifier --strategy=hash --versionCol=version
 g_shard_server_1
 g_shard_server_2

Run the following command to add g_shard_server_3 to the shard cluster:

cdr change shardCollection collection_1 --add g_shard_server_3

The following example shows how to add a new region-specific server to a shard cluster that uses an expression-based sharding definition. The original shard cluster was
created with the following command:

cdr define shardCollection collection_2 db_2:john.clients
 --type=delete --key=state --strategy=expression –-versionCol=version
 g_shard_server_1 "IN ('WA','OR')"
 g_shard_server_2 "IN ('CA','NV')"
 g_shard_server_3 remainder

Run the following command to add g_shard_server_4 to the shard cluster:

cdr change shardCollection collection_2 --add
 g_shard_server_4 "IN ('UT','ID')"

A new sharding definition is created. Any rows or documents that have a shard key of UT or ID are moved from g_shard_server_3 to g_shard_server_4, and all future
inserts are distributed according to the new sharding definition.
You can remove servers from a shard cluster using the --drop option or entirely replace a sharding definition with the --replace option.

Monitoring a shard cluster
To see the current definition for a shard cluster, you can run the cdr list shardCollection command on one of the shard servers, and specify the definition's name. For
example:

cdr list shardCollection my_collection

Part VI: Administering 1855

https://www.hcltech.com/

To see information on the shard cache, run the onstat -g shard command on one of the shard servers.

Stopping data distribution and deleting a sharding definition
To stop data distribution and delete the sharding definition, run the cdr delete shardCollection on one of the shard servers, and specify the definition's name. For
example:

cdr delete shardCollection my_collection

Related reference:
 cdr change shardCollection

cdr delete shardCollection
cdr list shardCollection
Related information:

 onstat -g shard command: Print information about the shard cache

Copyright© 2020 HCL Technologies Limited

Shard edge server

Shard edge server simplifies the administration of large shard cluster when shard cluster is only used for shard query functionality.

If you do not require automatic data partitioning, then you can designate one or more servers as shard edge servers so that you only need to define Enterprise replication
at the shard coordinator server. Shard edge servers are standard Informix servers and you cannot start shard query from shard edge server.

Use the SHARD_EDGE_NODE configuration parameter to enable shard server as a edge server. For more information, see SHARD_EDGE_NODE configuration parameter.

Example
This example shows how to configure shard cluster between three servers: server1, server2 and server3. We will make server1 as our shard coordinator and server2 and
server3 as shard edge servers.

1. Configure SQLHOSTS

SQLHOSTS file for server1:

group1 group - - i=1
server1 onsoctcp host1 10000 g=group1
group2 group - - i=2
server2 onsoctcp host2 10000 g=group2
group3 group - - i=3
server3 onsoctcp host3 10000 g=group3

Note: Even though we do not require Enterprise Replication defined for server2 and server3, server1 sqlhosts file need to be configured with group entries for server2 and
server3.
SQLHOSTS file for server2:

SQLHOSTS file for server2:
server2 onsoctcp host2 10000
server1 onsoctcp host1 10000

SQLHOSTS file for server3:

SQLHOSTS file for server3:
server3 onsoctcp host3 10000
server1 onsoctcp host1 10000

2. Establish trusted host relationship between server1 and server2, and between server1 and server3

3. Define Enterprise replication for server1

cdr define server —connect server -I group1

4. Update server2 and server3 config file to set SHARD_EDGE_NODE config value to 1

5. For parallel shard query function, make sure to set unique value to SHARD_ID config parameter at server1, server2 and server3

6. Create shard definition one or more tables to run shard queries

cdr define shardCollection —connect server1 customer_shard stores_demo:usr1.sales_bson --type informational_noer --key
 bson_value_lvarchar(sales_data, 'amount') --strategy hash group group group

Copyright© 2020 HCL Technologies Limited

Managing Replication Servers and Replicates

These topics cover how to manage your Enterprise Replication system, including managing replication servers, replicates and participants, replicate sets, templates,
replication server network connections, and resynchronizing data, and performing alter operations on replicated tables.

Managing Replication Servers

1856 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Managing Replicates
Managing Replicate Sets
Managing Templates
Managing Replication Server Network Connections
Resynchronizing Data among Replication Servers
If replication has failed for some reason and data is not synchronized, there are different ways to correct data mismatches between replicated tables.
Alter, rename, or truncate operations during replication
When Enterprise Replication is active and data replication is in progress, you can perform many types of alter, rename, or truncate operations on replicated tables
and databases.
Recapture replicated transactions
If you want a transaction to continue to be replicated after it reaches the target replication servers, you can use the ifx_set_erstate() procedure.

Related concepts:
 Preparing the Replication Environment

Using High-Availability Clusters with Enterprise Replication
Grid setup and management
Shard cluster setup
Monitor and troubleshooting Enterprise Replication
Related tasks:

 Defining Replication Servers, Replicates, Participants, and Replicate Sets

Copyright© 2020 HCL Technologies Limited

Managing Replication Servers

You manage replication servers with the cdr commands.

The state of the server refers to the relationship between the source server and the target server. To determine the current state of the server, use the cdr list server
server_name command. For more information about the possible server states, see cdr list server.

Note: When switching a server to administration mode to perform administrative tasks, be aware that any Enterprise Replication on the server will be started (or continue
to run normally if already started). In this situation data on which you might be relying may change as other users modify it, and concurrency problems may arise as others
access the same data. To avoid this problem, launch the server using the oninit -Dj command; if the server is already running, use the cdr stop command to shut down any
currently running replications.

Modify server attributes
 You modify replication server attributes by running the cdr modify server command.

Dynamically Modifying Configuration Parameters for a Replication Server
 You can alter the settings for Enterprise Replication configuration parameters and environment variables on a replication server while replication is active.

Viewing Replication Server Attributes
 Connect to another replication server
 By default, when you view information about a server, Enterprise Replication connects to the global catalog of the database server specified by the

INFORMIXSERVER environment variable. You can connect to the global catalog of another database server by using the --connect option.
Temporarily stopping replication on a server

 You can temporarily stop replication on a server to perform maintenance tasks in several different ways.
Restarting Replication on a Server

 You can restart replication after Enterprise Replication was temporarily stopped.
Suspending Replication for a Server

 Resuming a Suspended Replication Server
 Deleting a Replication Server

 You can remove Enterprise Replication from a database server and then remove the database server from an Enterprise Replication domain.

Related reference:
 Set configuration parameters for replication

Copyright© 2020 HCL Technologies Limited

Modify server attributes

You modify replication server attributes by running the cdr modify server command.

You can change the following attributes of the server:

Idle timeout
Whether Aborted Transaction Spooling (ATS) files or Row Information Spooling (RIS) files are generated
Location of the directory for the ATS or RIS files
The format of the ATS files: text, XML, or both
The mode of all the participants on the server: primary, receive-only, or send-only

Related tasks:
 Defining Replication Servers

Related reference:
 cdr modify server

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1857

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Dynamically Modifying Configuration Parameters for a Replication Server

You can alter the settings for Enterprise Replication configuration parameters and environment variables on a replication server while replication is active.

Use the following commands to dynamically update values of most Enterprise Replication configuration parameters:

cdr add onconfig
Adds a value. This option is available only for configuration parameters and environment variables that allow multiple values.

cdr change onconfig
Replaces the existing value. This option is available for all Enterprise Replication configuration parameters and environment variables.

cdr remove onconfig
Removes a specific value. This option is available only for configuration parameters and environment variables that allow multiple values.

The commands change configuration parameters in the onconfig file. To update environment variables, use the CDR_ENV configuration parameter.

To dynamically update the value of the CDR_DELAY_PURGE_DTC configuration parameter, use the onmode -wf command.

The following table shows which changes are valid for Enterprise Replication configuration parameters.

Table 1. Options for dynamically updating Enterprise Replication configuration parameters

Configuration Parameter cdr add onconfig cdr change onconfig
cdr remove
onconfig

CDR_APPLY No No No

CDR_DBSPACE No Yes No

CDR_DSLOCKWAIT No Yes No

CDR_ENV CDR_ALARMS No No No

CDR_ENV CDR_LOGDELTA No Yes No

CDR_ENV CDR_PERFLOG No Yes No

CDR_ENV CDR_RMSCALEFACT No Yes No

CDR_ENV CDR_ROUTER No Yes No

CDR_ENV CDRSITES_731 Yes Yes Yes

CDR_ENV CDRSITES_92X Yes Yes Yes

CDR_ENV CDRSITES_10X Yes Yes Yes

CDR_EVALTHREADS No Yes No

CDR_LOG_LAG_ACTION Yes Yes Yes

CDR_LOG_STAGING_MAXSIZE Yes Yes Yes

CDR_MAC_DYNAMIC_LOGS No Yes No

CDR_NIFCOMPRESS No Yes No

CDR_QDATA_SBSPACE Yes Yes Yes

CDR_QUEUEMEM No Yes No

CDR_SERIAL No Yes No

CDR_SUPPRESS_ATSRISWARN Yes Yes Yes

ENCRYPT_CDR No Yes No

ENCRYPT_CIPHERS No Yes No

ENCRYPT_MAC Yes Yes Yes

ENCRYPT_MACFILE Yes Yes Yes

ENCRYPT_SWITCH No Yes No

You can view the setting of Enterprise Replication configuration parameters and environment variables with the onstat -g cdr config command.

Related reference:
 onstat -g cdr config: Print ER settings

cdr add onconfig
cdr change onconfig
cdr remove onconfig
Enterprise Replication configuration parameter and environment variable reference

Copyright© 2020 HCL Technologies Limited

Viewing Replication Server Attributes

After you define a server for replication, you can view information about the server using the cdr list server command. If you do not specify the name of a defined server
on the command line, Enterprise Replication lists all the servers that are visible to the current server. If you specify a server name, Enterprise Replication displays
information about the current server, including server ID, server state, and attributes.

1858 Part VI: Administering

https://www.hcltech.com/

For more information, see cdr list server.

Copyright© 2020 HCL Technologies Limited

Connect to another replication server

By default, when you view information about a server, Enterprise Replication connects to the global catalog of the database server specified by the INFORMIXSERVER
environment variable. You can connect to the global catalog of another database server by using the --connect option.

For example, to connect to the global catalog of the database server idaho, enter: cdr list server --connect=idaho

Related concepts:
 Enterprise Replication Terminology

Connect Option

Copyright© 2020 HCL Technologies Limited

Temporarily stopping replication on a server

You can temporarily stop replication on a server to perform maintenance tasks in several different ways.

You can stop Enterprise Replication on a server by shutting down the database server. Replication begins again when you restart the database server.

However, you might want to temporarily stop the Enterprise Replication threads without stopping the database server.

You can temporarily stop replication by running the cdr stop command. The stopped server does not capture data to be replicated. Other replication servers in the domain
continue to queue replicated data for the stopped server in their send queues. Replication threads remain stopped (even if the database server is stopped and restarted)
until you run the cdr start command. When you restart replication on the server, it receives and applies the replicated data from the other replication servers. However, if
replication is stopped for long enough, the replay position on the logical log on the stopped server can be overrun and the send queues on the active replication servers
can fill up. If either of these situations happens, you must synchronize the server that was stopped.

If your replicates use time stamp or delete wins conflict resolution rules, you should temporarily stop replication on the server by using the cdr disable server command.
Disabling a replication server is also appropriate if you do not have enough disk space to avoid overrunning the replay position. Replication servers do not queue replicated
transactions for the disabled replication server, nor does the disabled replication server queue its transactions. Therefore, you must synchronize the replication server that
was disabled after you enable replication on it by using the cdr check replicateset command. However, because information about deleted rows on the disabled
replication server is saved in delete tables, you can take advantage of a time stamp repair.

Related reference:
 cdr stop

cdr disable server

Copyright© 2020 HCL Technologies Limited

Restarting Replication on a Server

You can restart replication after Enterprise Replication was temporarily stopped.

If replication was stopped by the cdr disable server command, you can restart it by running the cdr check replicateset command with the --repair and the --enable
options or by running the cdr enable server command. If you use the cdr enable server command, you must subsequently synchronize the server.

If replication stopped due to an error, you can restart replication by shutting down and restarting the database server or by running the cdr start command.

If replication was stopped by the cdr stop command, restart replication by running the cdr start command.

When you run the cdr start command, Enterprise Replication resumes evaluating the logical logs at the replay position (where Enterprise Replication stopped evaluating
the logical log when the server was stopped). If the replay position was overwritten in the logical log, replication cannot restart and event alarm 75 is raised. In this
situation, run the cdr cleanstart command to restart Enterprise Replication and then synchronize the data.

Related reference:
 cdr start

cdr enable server

Copyright© 2020 HCL Technologies Limited

Suspending Replication for a Server

If you do not want to completely shut down the Enterprise Replication threads, you can suspend replication of data to the server using the cdr suspend server command.
When replication is suspended to the server, the source server queues replicated data but suspends delivery of replicated data to the target server. Note that this
command does not affect the network connection to the suspended server. The source server continues to send other messages, such as acknowledgment and control
messages.

For example, to suspend replication of data to the server group g_papeete from the server group g_raratonga, enter: cdr suspend server g_papeete g_raratonga

Part VI: Administering 1859

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

To suspend replication to g_papeete from all servers in the enterprise, enter:

cdr suspend server g_papeete

Important: When you suspend replication on a server, you must ensure that the send queues on the other Enterprise Replication servers participating in replication do not
fill.
For more information, see cdr suspend server.

Copyright© 2020 HCL Technologies Limited

Resuming a Suspended Replication Server

To resume replication to a suspended server, use the cdr resume server command, specifying which server you want to resume. When you resume the server, the queued
data is delivered.

For example, to resume replication to the g_papeete server group, enter:

cdr resume server g_papeete

For more information, see cdr resume server.

Copyright© 2020 HCL Technologies Limited

Deleting a Replication Server

You can remove Enterprise Replication from a database server and then remove the database server from an Enterprise Replication domain.

Run the cdr delete server command two times to remove Enterprise Replication from a database server, and then remove the database server from an Enterprise
Replication domain. The first time, run the command on the server you want to remove Enterprise Replication from. The second time, connect to a different server in the
Enterprise Replication domain and run the command, specifying the server you ran the first command on.

To remove Enterprise Replication from an inactive database server, use the cdr delete server command with the --force option.

To restart Enterprise Replication on a disabled database server, define the server again with the cdr define server command and then synchronize data. Row history is
deleted when a server has Enterprise Replication removed, so the history is not recoverable if Enterprise Replication is restarted.

Important: If you are creating a replicate to replace the one you deleted, use the cdr check queue --qname=ctrlq command to make sure that the delete operation
propagated to all the servers.

Examples
To remove Enterprise Replication from local database server reynolds, and then remove database server reynolds from the Enterprise Replication domain it shares with
database server stimpson, run the following commands:

cdr delete server reynolds
cdr delete server --connect=stimpson reynolds

The first command removes Enterprise Replication from the local database server, reynolds. The second command connects to database server stimpson, which is
another server in the Enterprise Replication domain, and then removes database server reynolds from the shared domain.

Related reference:
 cdr delete server

cdr check queue

Copyright© 2020 HCL Technologies Limited

Managing Replicates

You can perform the following tasks on existing replicates:

Modify replicate attributes or participants
View replicate properties and state
Change the state of a replicate (whether replication is being performed)
Delete a replicate

Modify replicates
 You can modify replicates while replication is active to add or remove participants, or to change some replicate attributes.

Viewing Replicate Properties
 Starting a Replicate

 Stopping a Replicate
 You can temporarily stop replication for administrative purposes.

Suspending a Replicate
 Resuming a Suspended Replicate

 Deleting a Replicate
 To delete a replicate from the global catalog, use the cdr delete replicate command.

1860 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

Modify replicates

You can modify replicates while replication is active to add or remove participants, or to change some replicate attributes.

To change other attributes of replicates, you create a new replicate and then delete the original replicate.

Adding or Deleting Participants
 Change replicate attributes

You can change many replicate attributes by running the cdr modify replicate command.
Changing the replication key of a replicate

 You can change the replication key of a replicate from the primary key, a unique index or constraint, or the ERKEY shadow columns to another unique index or
constraint on your table.

Copyright© 2020 HCL Technologies Limited

Adding or Deleting Participants

To be useful, a replicate must include at least two participants. You can define a replicate that has fewer than two participants, but before you can use that replicate, you
must add more participants.

To add a participant to an existing replicate, use the cdr change replicate --add command. For example, to add two participants to the sales_data replicate, enter:

cdr change replicate --add sales_data \
 "db1@hawaii:jane.table1" "select * from table1" \
 "db2@maui:john.table2" "select * from table2"

To delete a participant from the replicate, use the cdr change replicate --delete command.

For example, to delete these two participants from the replicate, enter:

cdr change replicate --delete sales_data \
 "db1@hawaii:jane.table1" "db2@maui:john.table2"

For more information, see cdr change replicate.

Related concepts:
 Change replicate attributes

Related tasks:
 Changing the replication key of a replicate

Copyright© 2020 HCL Technologies Limited

Change replicate attributes

You can change many replicate attributes by running the cdr modify replicate command.

You can change the following attributes of a replicate:

Conflict-resolution rules and scope
Replication frequency
Error logging
Replication of full rows or only changed columns
Database triggers
Participant type
Code set conversion
Serial processing
Replication of unchanged large objects

You cannot change the conflict resolution from ignore to a non-ignore option (time stamp, SPL routine, or time stamp and SPL routine). You cannot change a non-ignore
conflict resolution option to ignore.

For example, to change the replication frequency for the sales_data replicate to every Sunday at noon, enter:

cdr modify replicate sales_data Sunday.12:00

Related tasks:
 Adding or Deleting Participants

Changing the replication key of a replicate
Related reference:

 cdr modify replicate

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1861

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Changing the replication key of a replicate

You can change the replication key of a replicate from the primary key, a unique index or constraint, or the ERKEY shadow columns to another unique index or constraint
on your table.

To change the replication key of a replicate:

1. Define a new replicate by running the cdr define replicate command. Include the --key option to specify the new replication key. Do not include the --erkey option.
2. Start the new replicate by running the cdr start replicate command.
3. Stop the original replicate by running the cdr stop replicate command.
4. Delete the original replicate by running the cdr delete replicate command.

Related concepts:
 Change replicate attributes

Unique key for replication
Related tasks:

 Adding or Deleting Participants
Changing or re-creating primary key columns
Related reference:

 cdr define replicate

Copyright© 2020 HCL Technologies Limited

Viewing Replicate Properties

After you define a replicate, you can view the properties of the replicate using the cdr list replicate command. If you do not specify the name of a defined replicate on the
command line, Enterprise Replication lists detailed information on all the replicates defined on the current server. If you use the brief option, Enterprise Replication lists
participant information about all the replicates. If you specify a replicate name, Enterprise Replication displays participant information about the replicate.

For information about this command, see cdr list replicate.

Copyright© 2020 HCL Technologies Limited

Starting a Replicate

When you define a replicate, the replicate does not begin until you explicitly change its state to active. When a replicate is active, Enterprise Replication captures data from
the logical log and transmits it to the active participants. At least two participants must be active for data replication to occur.
Important: You cannot start replicates that have no participants.
To change the replicate state to active, use the cdr start replicate command. For example, to start the replicate sales_data on the servers server1 and server23, enter:

 sales_data server1 server23

This command causes server1 and server23 to start sending data for the sales_data replicate.

If you omit the server names, this command starts the replicate on all servers that are included in that replicate.

When you start a replicate, you can choose to perform an initial data synchronization, as described in Initially Synchronizing Data Among Database Servers.

Warning: Run the cdr start replicate command on an idle system (no transactions are occurring) or use the BEGIN WORK WITHOUT REPLICATION statement until after
you successfully start the replicate.
When replication is active on an instance, you may need to double the amount of lock resources, to accommodate transactions on replicated tables.

If a replicate belongs to an exclusive replicate set, you must start the replicate set to which the replicate belongs. For more information, see Starting a Replicate.

For more information, see cdr start replicate.

Copyright© 2020 HCL Technologies Limited

Stopping a Replicate

You can temporarily stop replication for administrative purposes.

To stop the replicate, use the cdr stop replicate command. This command changes the replicate state to inactive and deletes any data in the send queue for that replicate.
When a replicate is inactive, Enterprise Replication does not transmit or process any database changes.

In general, you should only stop replication when no replication activity is likely to occur for that table or on the advice of Software Support. If database activity does occur
while replication is stopped for a prolonged period of time, the replay position in the logical log might be overrun. If a message that the replay position is overrun appears
in the message log, you must resynchronize the data on the replication servers. For more information on resynchronizing data, see Resynchronizing Data among
Replication Servers.

You cannot stop replicates that have no participants.

For example, to stop the sales_data replicate on the servers server1 and server23, enter:

1862 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

cdr stop replicate sales_data server1 server23

This command causes server1 and server23 to purge any data in the send queue for the sales_data replicate and stops sending data for that replicate. Any servers not
listed on the command line continue to capture and send data for the sales_data replicate (even to server1 and server23).

If you omit the server names, this command stops the replicate on all servers that are included in that replicate.

If a replicate belongs to an exclusive replicate set, you must stop the replicate set to which the replicate belongs. For more information, see Exclusive Replicate Sets and
Stopping a Replicate Set.

Stopping a replicate set also stops any direct synchronization or consistency checking that are in progress. To complete synchronization or consistency checking, you must
rerun the cdr sync replicateset or cdr check replicateset command.

For more information, see cdr stop replicate.

Copyright© 2020 HCL Technologies Limited

Suspending a Replicate

If you do not want to completely halt all processing for a replicate, you can suspend a replicate using the cdr suspend replicate command. When a replicate is in a
suspended state, the replicate captures and accumulates changes to the source database, but does not transmit the captured data to the target database.
Warning: Enterprise Replication does not support referential integrity if a replicate is suspended. Instead, you should suspend a server. For more information, see
Suspending Replication for a Server.
For example, to suspend the sales_data replicate, enter:

cdr suspend replicate sales_data

If a replicate belongs to an exclusive replicate set, you must suspend the replicate set to which the replicate belongs. For more information, see Exclusive Replicate Sets
and Suspending a Replicate Set.

For more information, see cdr suspend replicate.

Copyright© 2020 HCL Technologies Limited

Resuming a Suspended Replicate

To return the state of a suspended replicate to active, use the cdr resume replicate command. For example:

cdr resume replicate sales_data

If a replicate belongs to an exclusive replicate set, you must resume the replicate set to which the replicate belongs. For more information, see Exclusive Replicate Sets
and Resuming a Replicate Set.

For more information, see cdr resume replicate.

Copyright© 2020 HCL Technologies Limited

Deleting a Replicate

To delete a replicate from the global catalog, use the cdr delete replicate command.

When you delete a replicate, Enterprise Replication purges all replication data for the replicate from the send queue at all participating database servers.

For example, to delete the sales_data replicate from the global catalog, enter:

cdr delete replicate sales_data

Important: If you are creating a replicate to replace the one you deleted, use the cdr check queue --qname=ctrlq command to make sure that the delete operation
propagated to all the servers.
Related reference:

 cdr check queue
cdr delete replicate

Copyright© 2020 HCL Technologies Limited

Managing Replicate Sets

When you create a replicate set, you can manage the replicates that belong to that set together or individually. If the replicate set is exclusive, you can only manage the
individual replicates as part of the set.

Performing an operation on a replicate set (except cdr delete replicateset) is equivalent to performing the operation on each replicate in the replicate set individually.

For more information, see Managing Replicates.

Part VI: Administering 1863

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Connection management for client connections to participants in a replicate set
You can configure Connection Managers to route connection requests from clients to the replication servers of a replicate set.
Modifying Replicate Sets
Viewing Replicate Sets
Starting a Replicate Set
Stopping a Replicate Set
Suspending a Replicate Set
Resuming a Replicate Set
Deleting a Replicate Set
To delete a replicate set, use the cdr delete replicateset command.

Copyright© 2020 HCL Technologies Limited

Connection management for client connections to participants in a replicate set

You can configure Connection Managers to route connection requests from clients to the replication servers of a replicate set.

Connection requests can be directed to replication servers based on Connection Manager service-level agreements (SLAs). You can configure Connection Manager SLAs to
redirect connection requests based on various redirection policies. Connection Managers support the following redirection policies:

FAILURE: Connection requests are directed to the replication server that has the fewest apply failures.
LATENCY: Connection requests are directed to the replication server that has the lowest transaction latency.
ROUNDROBIN: Connection requests are directed in a repeating, ordered fashion (round-robin) to a group of replication servers.
WORKLOAD: Connection requests are directed to the replication server that has the lowest workload.

Related information:
 Connection management through the Connection Manager

Example of configuring connection management for a grid or replicate set

Copyright© 2020 HCL Technologies Limited

Modifying Replicate Sets

You can modify replicate sets in two ways:

Add or Delete Replicates
Change Replication Frequency

Adding or Deleting Replicates From a Replicate Set
 Changing Replication Frequency For the Replicate Set

Copyright© 2020 HCL Technologies Limited

Adding or Deleting Replicates From a Replicate Set

To add a replicate to an existing replicate set, use the command cdr change replicateset --add. For example, to add two replicates to sales_set, enter:

cdr change replicateset --add sales_set sales_kauai \
 sales_moorea

The state of the replicate when you add it to a replicate set depends on the type of replicate set:

For a non-exclusive replicate set, the state of the new replicate remains as it was when you added it to the set. To bring all the replicates in the non-exclusive set to
the same state, use one of the commands described in Managing Replicate Sets.
For an exclusive replicate set, Enterprise Replication changes the existing state and replication frequency settings of the replicate to the current properties of the
exclusive replicate set.

To delete a replicate from the replicate set, use cdr change replicate --delete.

For example, to delete the two replicates, sales_kauai and sales_moorea, from the replicate set, enter:

cdr change replicateset --delete sales_set sales_kauai\
 sales_moorea

When you add or remove a replicate from an exclusive replicate set that is suspended or that is defined with a frequency interval, Enterprise Replication transmits all the
data in the queue for the replicates in the replicate set up to the point when you added or removed the replicate. For more information, see Suspending a Replicate Set
and Frequency Options.

For more information, see cdr change replicateset.

Related tasks:
 Changing Replication Frequency For the Replicate Set

Copyright© 2020 HCL Technologies Limited

1864 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Changing Replication Frequency For the Replicate Set

You can change the replication frequency for the replicates in an exclusive or non-exclusive replicate set using the cdr modify replicateset command. For more
information, see Specifying Replication Frequency.

For example, to change the replication frequency for each of the replicates in the sales_set to every Monday at midnight, enter:

cdr modify replicateset sales_set Monday.24:00

For more information, see cdr change replicateset.

Related tasks:
 Adding or Deleting Replicates From a Replicate Set

Copyright© 2020 HCL Technologies Limited

Viewing Replicate Sets

To view the properties of the replicate set, use the cdr list replicateset command. The cdr list replicateset command displays the replicate set name and a list of the
replicates that are members of the set. To find out more about each replicate in the replicate set, see Viewing Replicate Properties.

For more information, see cdr list replicateset.

Copyright© 2020 HCL Technologies Limited

Starting a Replicate Set

To change the state of all the replicates in the replicate set to active, use the cdr start replicateset command. For example, to start the replicate set sales_set, enter:

set sales_set

When you start a replicate set, you can choose to perform an initial data synchronization, as described in Initially Synchronizing Data Among Database Servers.

Warning: Run the cdr start replicateset command on an idle system (when no transactions are occurring) or use the BEGIN WORK WITHOUT REPLICATION statement
after you successfully start the replicate.
For more information, see cdr start replicateset and cdr start replicate.

Copyright© 2020 HCL Technologies Limited

Stopping a Replicate Set

To stop the replicates in the replicate set, use the cdr stop replicateset command. This command changes the state of all the replicates in the set to inactive.

For example, to stop the sales_set replicate set, enter:

cdr stop replicateset sales_set

Stopping a replicate set also stops any direct synchronization or consistency checking that are in progress. To complete synchronization or consistency checking, you must
rerun the cdr sync replicateset or cdr check replicateset command.

For more information, see cdr stop replicateset and cdr stop replicate.

Copyright© 2020 HCL Technologies Limited

Suspending a Replicate Set

If you do not want to completely halt all processing for the replicates in a replicate set, you can suspend the replicates in the set using the cdr suspend replicateset
command.

For example, to suspend the sales_set replicate set, enter:

cdr suspend replicateset sales_set

For more information, see cdr suspend replicateset and cdr suspend replicate.

Related reference:
 cdr change replicateset

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 1865

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Resuming a Replicate Set

To return the suspended replicates in the replicate set to active, use the cdr resume replicateset command. For example:

cdr resume replicateset sales_set

For more information, see cdr resume replicateset and cdr resume replicate.

Copyright© 2020 HCL Technologies Limited

Deleting a Replicate Set

To delete a replicate set, use the cdr delete replicateset command.

Tip: When you delete a replicate set, Enterprise Replication does not delete the replicates that are members of the replicate set. The replicates remain in the state they
were in when the set was deleted.
For example, you can connect to the default database server specified by the INFORMIXSERVER environment variable and delete the sales_set replicate set by using
running the following command:

cdr delete replicateset sales_set

Important: If you are creating a replicate to replace the one you deleted, use the cdr check queue --qname=ctrlq command to make sure that the delete operation
propagated to all the servers.
Related reference:

 cdr check queue
cdr delete replicateset

Copyright© 2020 HCL Technologies Limited

Managing Templates

You can use the cdr list template and cdr delete template commands to view information about your templates and to clean up obsolete templates. The commands are
described in detail, including examples and sample output, in The cdr utility.

You cannot update a template. To modify a template, you must delete it with the cdr delete template command and then re-create it with the cdr define template
command.

Viewing Template Definitions
 Deleting Templates

Copyright© 2020 HCL Technologies Limited

Viewing Template Definitions

Use the cdr list template command to view detailed information about the template and the servers, databases and tables for which the template defines replication.

Related tasks:
 Deleting Templates

Copyright© 2020 HCL Technologies Limited

Deleting Templates

Use the cdr delete template command to delete any templates that you no longer want to use to set up replication. The command also deletes any replicate sets
associated with the template which exist if the template has been realized.

Important: Deleting a template does not delete replicates that have been created by realizing a template.
Related tasks:

 Viewing Template Definitions

Copyright© 2020 HCL Technologies Limited

Managing Replication Server Network Connections

This section explains how you can view network connections status, drop network connections, and reestablish dropped network connections.

Viewing Network Connection Status

1866 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Dropping the Network Connection
Reestablishing the Network Connection

Copyright© 2020 HCL Technologies Limited

Viewing Network Connection Status

To determine the current status of the network connection to each of the servers participating in replication, use the cdr list server command and look at the STATUS
column of the output.

For more information, see cdr list server.

Copyright© 2020 HCL Technologies Limited

Dropping the Network Connection

To drop the Enterprise Replication network connection for a server, use the cdr disconnect server command. When you drop the connection, Enterprise Replication
continues to function and queue transactions. For example, to disconnect the network connection between the current replication server and the server g_papeete, enter:

cdr disconnect server g_papeete

Warning: When you disconnect a server from Enterprise Replication, you must ensure that the send queues on all other Enterprise Replication servers participating in
replication do not fill.
For more information, see cdr disconnect server.

Copyright© 2020 HCL Technologies Limited

Reestablishing the Network Connection

To reestablish a dropped network connection, use the cdr connect server command.

For example, to reestablish the network connection between the current replication server and the server g_papeete, enter:

cdr connect server g_papeete

The following conditions can cause reestablishing a network connection to fail:

A network outage
A server is offline
The cdr stop, cdr disconnect server, or cdr delete server commands were run on a server
The system clock times on the servers differ by more than 900 seconds

For more information, see cdr connect server.

Copyright© 2020 HCL Technologies Limited

Resynchronizing Data among Replication Servers

If replication has failed for some reason and data is not synchronized, there are different ways to correct data mismatches between replicated tables.

The following table compares each of the methods. All methods except manual table unloading and reloading can be performed while replication is active.

Table 1. Resynchronization methods

Method Description

Direct synchronization Replicates all rows from the specified reference server to all specified target servers for a replicate or replicate set.
Runs as a foreground process by default, but can run as a background process.
Populates tables in a new participant.
Quickly synchronizes significantly inconsistent tables when used with the TRUNCATE statement.

Checking consistency and then repairing
inconsistent rows

Compares all rows from the specified target servers with the rows on the reference server, prepares a consistency
report, and optionally repairs inconsistent rows.
Runs as a foreground process by default, but can run as a background process.

ATS or RIS file repairs Used to repair rows that other synchronization methods could not repair.
Repairs a single transaction at a time.
Replicates or replication server must have been configured with the ATS or RIS option.

Part VI: Administering 1867

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Method Description

Manual table unloading and reloading Manual process of unloading the target table, copying the reference table, and then loading the reference table into
the target database.
Requires that replication be suspended.

Performing Direct Synchronization
 Direct synchronization replicates every row in the specified replicate or replicate set from the reference server to all the specified target servers. You can use direct

synchronization to populate a new target server, or an existing target server that has become severely inconsistent.
Checking Consistency and Repairing Inconsistent Rows

 A consistency check compares the data between a reference server and one or more target servers and then generates a report that describes any inconsistencies.
You can choose to repair inconsistent rows during a consistency check.
Repairing Failed Transactions with ATS and RIS Files

 You can repair failed or inconsistent transactions using an ATS or RIS file if you defined the replicate or replication server with the –ats or –ris option and the ATS or
RIS files are being generated in text format.
Resynchronize data manually

 Manual resynchronization involves replacing the inconsistent table in the target database with a copy of the correct table from the reference database.

Related concepts:
 Repair and Initial Data Synchronization

Related reference:
 cdr stop

cdr stop replicate

Copyright© 2020 HCL Technologies Limited

Performing Direct Synchronization

Direct synchronization replicates every row in the specified replicate or replicate set from the reference server to all the specified target servers. You can use direct
synchronization to populate a new target server, or an existing target server that has become severely inconsistent.

The Enterprise Replication network connection must be active between the Connect server, reference server and the target servers while performing direct
synchronization.
The replicate must not be in a suspended or stopped state during direct synchronization.
The replicate must not be set up for time based replication.

You can synchronize a single replicate or a replicate set. When you synchronize a replicate set, Enterprise Replication synchronizes tables in an order that preserves
referential integrity constraints (for example, child tables are synchronized after parent tables). You can choose how to handle extra target rows and whether to enable
trigger firing on target servers.

Important: Running direct synchronization can consume a large amount of space in your log files. Ensure you have sufficient space before running this command.
To perform direct synchronization, use the cdr sync replicate or cdr sync replicateset command.

You can monitor the progress of a synchronization operation with the cdr stats sync command if you provide a progress report task name in the cdr sync replicate or cdr
sync replicateset command.

You can run a synchronization operation as a background operation as an SQL administration API command if you include the --background option. This option is useful if
you want to schedule regular synchronization operations with the Scheduler. If you run a synchronization operation in the background, you should provide a name for the
progress report task by using the --name option so that you can monitor the operation with the cdr stats sync command. You can also view the command and its results
in the command_history table in the sysadmin database.

You can significantly improve the performance of synchronizing a replicate set by synchronizing the member replicates in parallel. You specify the number of parallel
processes with the --process option. For best performance, specify the same number of processes as the number of replicates in the replicate set. However, replicates
with referential integrity constraints cannot be processed in parallel.

If direct synchronization cannot repair a row, the inconsistent row is recorded in an ATS or RIS file.

Synchronizing Significantly Inconsistent Tables
 If your target tables are significantly inconsistent, you can speed the synchronization process by truncating the target tables before you perform direct

synchronization.

Related tasks:
 Repairing Failed Transactions with ATS and RIS Files

Related reference:
 cdr sync replicate

cdr sync replicateset
cdr stats sync

Copyright© 2020 HCL Technologies Limited

Synchronizing Significantly Inconsistent Tables

If your target tables are significantly inconsistent, you can speed the synchronization process by truncating the target tables before you perform direct synchronization.

When you truncate a table by using the TRUNCATE statement, you remove all rows from the table while replication is active. After the tables on the target servers are
empty, direct synchronization efficiently applies data from the source server to the target servers.

1868 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

If you use the TRUNCATE statement on the supertable in a hierarchy, by default, rows in all the subtables are deleted as well. You can use the ONLY keyword to limit the
truncate operation to the supertable. For more information on the TRUNCATE statement, see the IBM® Informix® Guide to SQL: Syntax.

To synchronize tables in conjunction with truncation:

1. Run the TRUNCATE statement on the tables to be synchronized on the target servers.
2. Run the cdr sync replicate or cdr sync replicateset command.

For the syntax of these commands, see cdr sync replicate and cdr sync replicateset.

Copyright© 2020 HCL Technologies Limited

Checking Consistency and Repairing Inconsistent Rows

A consistency check compares the data between a reference server and one or more target servers and then generates a report that describes any inconsistencies. You
can choose to repair inconsistent rows during a consistency check.

The following conditions apply when you check consistency:

Running a consistency check can consume a large amount of space in your log files. Ensure you have sufficient space before checking consistency.
The Enterprise Replication network connection must be active between the Connect server, reference server and the target servers while performing consistency
checking and repair.
The replicate must not be in a suspended or stopped state during consistency checking.
The replicate must not be set up for time based replication.

You can perform a consistency check and optional synchronization on a single replicate or a replicate set. When you synchronize a replicate set, Enterprise Replication
synchronizes tables in an order that preserves referential integrity constraints (for example, child tables are synchronized after parent tables). You can choose how to
handle extra target rows and whether to enable trigger firing on target servers.

To perform a consistency check, use the cdr check replicate or cdr check replicateset command. Use the --repair option to repair the inconsistent rows. A consistency
report is displayed for your review.

You can monitor the progress of a consistency check with the cdr stats check command if you provide a progress report task name in the cdr check replicate or cdr
check replicateset command.

You can run a consistency check as a background operation as an SQL administration API command if you include the --background option. This option is useful if you
want to schedule regular consistency checks with the Scheduler. If you run a consistency check in the background, provide a name for the progress report task by using
the --name option so that you can monitor the check with the cdr stats check command. You can also view the command and its results in the command_history table in
the sysadmin database. If you use the --background option as a DBSA, you must have CONNECT privilege on the sysadmin database and INSERT privilege on the
ph_task table.

Interpreting the Consistency Report
 The consistency report displays information about differences in replicated data within the replicate or replicate set.

Increase the speed of consistency checking
 You can increase the speed of checking the consistency of replicates or replicate sets with the cdr check replicate or cdr check replicateset commands in several

ways.
Repair inconsistencies by time stamp

 You can repair inconsistencies based on the latest time stamps among the participants instead of specifying a master server.
Repairing inconsistencies while enabling a replication server

 If a replication server is in disabled mode, you can enable it and repair inconsistencies with the cdr check replicateset command.
Implementing a custom checksum function

 You can implement a custom checksum function for consistency checking if you do not want to use the checksum function that is included with the database server.

If synchronization during a consistency check cannot repair a row, the inconsistent row is recorded in an ATS or RIS file.

Related tasks:
 Repairing Failed Transactions with ATS and RIS Files

Indexing the ifx_replcheck Column
Related reference:

 cdr check replicate
cdr check replicateset
cdr stats check

Copyright© 2020 HCL Technologies Limited

Interpreting the Consistency Report

The consistency report displays information about differences in replicated data within the replicate or replicate set.

Inconsistencies listed in the consistency report do not necessarily indicate a failure of replication. Data on different database servers is inconsistent while replicated
transactions are in progress. For example, the following consistency report indicates that two rows are missing on the server g_serv2:

Jan 17 2009 15:46:45 ------ Table scan for repl1 start --------

------ Statistics for repl1 ------
Node Rows Extra Missing Mismatch Processed
---------------- --------- --------- --------- --------- ---------
g_serv1 67 0 0 0 0
g_serv2 65 0 2 0 0

Part VI: Administering 1869

https://www.hcltech.com/
https://www.hcltech.com/

WARNING: replicate is not in sync

Jan 17 2009 15:46:50 ------ Table scan for repl1 end ---------

The missing rows could be in the process of being replicated from g_serv1 to g_serv2.
If you choose to repair inconsistent rows during a consistency check, the report shows the condition of the replicate at the time of the check, plus the actions taken to
make the replicate consistent. For example, the following report shows two missing rows on g_serv2 and that two rows were replicated from g_serv1 to correct this
inconsistency:

Jan 17 2009 15:46:45 ------ Table scan for repl1 start --------

------ Statistics for repl1 ------
Node Rows Extra Missing Mismatch Processed
---------------- --------- --------- --------- --------- ---------
g_serv1 67 0 0 0 2
g_serv2 65 0 2 0 0

Validation of repaired rows failed.
WARNING: replicate is not in sync

Jan 17 2009 15:46:50 ------ Table scan for repl1 end ---------

The warning indicates that inconsistencies were discovered.
The report indicates whether the replicate became consistent after the repair process. In this example, the Validation of repaired rows failed. message
indicates that the replicate is not consistent. This might occur because some replicated transactions were still being replicated. Use the --inprogress option to extend the
validation time.

The verbose form of the consistency report also displays the differing values for each inconsistent row.

For more information about the contents of the consistency report, see cdr check replicate.

Related reference:
 cdr check replicate

Copyright© 2020 HCL Technologies Limited

Increase the speed of consistency checking

You can increase the speed of checking the consistency of replicates or replicate sets with the cdr check replicate or cdr check replicateset commands in several ways.

To increase the speed of consistency checking of replicate sets by checking the member replicates in parallel, use the --process option to set the number of parallel
processes equal to the number of replicates.

To increase the speed of consistency checking by limiting the amount of data that is checked, use one or more of the following options:

Skip the checking of large objects with the --skipLOB option. If you find that your large objects do not change as much as other types of data, then skipping them
can make a consistency check quicker.
Check from a specific time with the --since option. If the replicate uses the time stamp or delete wins conflict resolution rule and you regularly check consistency,
you can limit the data that is checked to the data that was updated since the last consistency check.
When checking a replicate, you can check a subset of the data with the --where option.

If you have large tables, you can index the ifx_replcheck shadow column.

Indexing the ifx_replcheck Column
 You can index the ifx_replcheck shadow column to increase the speed of consistency checking.

Related reference:
 cdr check replicateset

cdr check replicate

Copyright© 2020 HCL Technologies Limited

Indexing the ifx_replcheck Column

You can index the ifx_replcheck shadow column to increase the speed of consistency checking.

If you have a large replicated table, you can add the ifx_replcheck shadow column and then create a new unique index on that column and the existing replication key
columns. The index on the ifx_replcheck shadow column allows the database server to determine whether rows in different tables have different values without
comparing the values in those rows. You must create the index on the table in each database server that participates in the replicate.

Before you can create an index on the ifx_replcheck shadow column and the replication key columns, you must prepare the replicated table by adding the ifx_replcheck
shadow column. You can add the ifx_replcheck shadow column when you create the table with the WITH REPLCHECK clause, or you can alter an existing table to add the
ifx_replcheck shadow column with the ADD REPLCHECK clause.

You can create the index while replication is active.
To index the ifx_replcheck shadow column, create a unique index based on the existing replication key columns and the ifx_replcheck column. The ifx_replcheck
shadow column must be the last column in the index.
For example, the following statement creates an index on a table named customer on the primary key column id and ifx_replcheck:

CREATE UNIQUE INDEX customer_index ON customer(id, ifx_replcheck);

1870 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Related concepts:
Preparing Tables for a Consistency Check Index
Related tasks:
Checking Consistency and Repairing Inconsistent Rows
Related reference:
cdr check replicate
cdr check replicateset

Copyright© 2020 HCL Technologies Limited

Repair inconsistencies by time stamp

You can repair inconsistencies based on the latest time stamps among the participants instead of specifying a master server.

If your replicates use the time stamp or delete wins conflict resolution rule, you can repair inconsistencies between the participants based on the latest time stamp on any
participant. If you run a time stamp repair, you do not specify a master server whose data is considered correct and to which all the other participants are matched.

To ensure that a time stamp repair is accurate, follow these guidelines:

When you need to temporarily stop replication on a server, disable it with the cdr disable server command instead of stopping it with cdr stop command.
If you are using the delete wins conflict resolution rule, set the CDR_DELAY_PURGE_DTC configuration parameter on all replication servers to the maximum age of
modifications to rows that are being actively updated.

To run a time stamp repair, use the cdr check replicate or cdr check replicateset command with the --repair and --timestamp options. If your replicates use the delete
wins conflict resolution rule, also include the --deletewins option.

If a time stamp repair finds an extra row on any participant, the result depends on the conflict resolution rule and the last transaction for that row:

If the conflict rule is time stamp and the most recent time stamp for the row is a delete transaction, the row will be deleted on all servers.
If the conflict rule is time stamp and a participant has a deleted row but the most recent time stamp for that row is an update transaction, the updated row is
replicated to all servers.
If the conflict rule is delete wins and any participant has deleted that row, the row is deleted from all servers, regardless of any later update transactions.

If a time stamp repair finds mismatched rows on different servers, then the most recent update transaction for that row is replicated to the other server.

Related concepts:
 Time stamp conflict resolution rule

Delete wins conflict resolution rule
Related reference:

 CDR_DELAY_PURGE_DTC configuration parameter

Copyright© 2020 HCL Technologies Limited

Repairing inconsistencies while enabling a replication server

If a replication server is in disabled mode, you can enable it and repair inconsistencies with the cdr check replicateset command.

The server must have been put in disabled mode with the cdr disable server command.
To enable a disabled server and synchronize it, run the cdr check replicateset command with the --repair and --enable options.
By default, the enable process times out after 128 seconds if the disabled replication server cannot be enabled and repaired during that time. You can specify a shorter
time out period by setting the --timeout option to a value less than or equal to 60 seconds.

To repair all replicate sets on the disabled server, also include the --allrepl option and omit the --replset option.

Related reference:
 cdr check replicateset

Copyright© 2020 HCL Technologies Limited

Implementing a custom checksum function

You can implement a custom checksum function for consistency checking if you do not want to use the checksum function that is included with the database server.

The $INFORMIXDIR/extend/checksum directory contains sample checksum function code and registration statements.
To implement a custom checksum function:

1. Using the idschecksum.c file in the $INFORMIXDIR/demo/checksum directory as a template, write a C language function that creates a checksum. Overload the
function for each of the supported data types.

2. Compile the function code into a shared object file.
3. Save a copy of the shared object file in the $INFORMIXDIR/extend/checksum directory on all replication servers.
4. To register the function:

a. Modify the idschecksum.sql file in the $INFORMIXDIR/demo/checksum directory to include the name of your function.
b. Run the SQL statements on each replication server.

Specify your checksum function name with the --checksum option when you run the cdr check replicate or cdr check replicateset command.
If the cdr check replicate or cdr check replicateset command fails with return code 172, your checksum function is not installed and registered on all replication servers.

Part VI: Administering 1871

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Rules for custom checksum functions
The idschecksum.c file in the $INFORMIXDIR/demo/checksum directory contains code that you can use for your checksum functions. You can replace the
checksum generation portion of the code with your custom code.

Copyright© 2020 HCL Technologies Limited

Rules for custom checksum functions

The idschecksum.c file in the $INFORMIXDIR/demo/checksum directory contains code that you can use for your checksum functions. You can replace the checksum
generation portion of the code with your custom code.

A checksum function summarizes the data in a replicated row. During consistency checking, the checksum values of corresponding rows on different replication servers
are compared to determine whether the rows are consistent.

A checksum function runs recursively through every column in the replicated table to generate a checksum value for a replicated row. A checksum value is generated for
the last column in the table. The checksum value is used to calculate the checksum value for the previous column, and so on. The checksum value that is calculated for
the first column in the table is based on the accumulated checksum value of all the other columns.

Custom checksum functions must conform to the following rules:

The first parameter of the function is the data type of a column.
The second parameter of the function is an integer that is the checksum value of the previous column.
The function returns an integer.
The function is a DBA function.
The function attributes include NOT VARIANT, HANDLESNULLS, and PARALLELIZABLE.

You must register a checksum function for each of the following data types, regardless of whether the data types are used in your replicated tables. All other data types
are ignored by checksum functions.

BLOB
BYTE
CLOB
DATE
DATETIME YEAR TO FRACTION
DATETIME YEAR TO MONTH
DECIMAL
FLOAT
INT8
INTEGER
LIST
LVARCHAR (includes all character data types)
MONEY
MULTISET
REAL
ROW
SET
SMALLINT
TEXT

However, if you do not want to create a checksum value for certain data types, you can provide non-operative function definitions. For example, you might not want to
create checksum values for BLOB columns. The following statement registers a checksum function for the BLOB data type that returns the previous checksum value
instead of calculating an accumulated checksum value:

CREATE DBA FUNCTION ercheck_checksum(p1 blob, p2 integer)
 RETURNS integer;
RETURN p2;
END FUNCTION;

Copyright© 2020 HCL Technologies Limited

Repairing Failed Transactions with ATS and RIS Files

You can repair failed or inconsistent transactions using an ATS or RIS file if you defined the replicate or replication server with the –ats or –ris option and the ATS or RIS
files are being generated in text format.

A repair using an ATS or RIS file repairs the rows associated with the single transaction that is recorded in the specified ATS or RIS file. To apply repairs based on an ATS or
RIS file, use the cdr repair command.

Note: The cdr repair command is not supported for replicates that are defined with the --UTF8=y option. For replicates that are defined with the --UTF8=y option, use
the cdr check replicate --repair or cdr check replicateset --repair command to repair data.
The cdr repair command processes one ATS or RIS file each time you specify the command. The following table shows how failed operations are handled.

Failed Operation Action Taken

Delete Delete on the target server

1872 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Failed Operation Action Taken

Insert or Update If the row is found on the source server, does an update
If the row is not found on the source server, but is found on the target server, does a delete on the target
server. If the row is not found on either server, performs no action.

Each operation is displayed to stderr, unless you use the –quiet option with the cdr repair command. You can preview the operations without performing them by using
the –check option with the cdr repair command.

Related concepts:
 Failed Transaction (ATS and RIS) Files

The cdr utility
Repair and Initial Data Synchronization
Related tasks:

 Performing Direct Synchronization
Checking Consistency and Repairing Inconsistent Rows

Copyright© 2020 HCL Technologies Limited

Resynchronize data manually

Manual resynchronization involves replacing the inconsistent table in the target database with a copy of the correct table from the reference database.

Important: Manual resynchronization is not recommended for repairing your replicated tables because you must suspend replication to avoid producing further
inconsistencies.
The following example shows how to manually resynchronize two replication database servers.

To synchronize the replication server g_papeete with the server g_raratonga:

1. Suspend replication to the replication server group g_papeete.
See Suspending Replication for a Server.

2. Unload the table from the server group g_raratonga.
See Load and unload data.

3. Load the table on g_papeete and specify BEGIN WORK WITHOUT REPLICATION.
See Load and unload data and Blocking Replication.

4. Resume replication to g_papeete.
See Resuming a Suspended Replication Server.

Copyright© 2020 HCL Technologies Limited

Alter, rename, or truncate operations during replication

When Enterprise Replication is active and data replication is in progress, you can perform many types of alter, rename, or truncate operations on replicated tables and
databases.

Most of the supported operations do not require any special steps when performed on replicated tables or databases; some, however, do require special steps. None of
the supported alter, rename, or truncate operations are replicated. You must perform these operations on each replicate participant.

You can run the alter, rename, and truncate operations that are listed in the following table on active, replicated tables or databases without performing extra steps.
Table 1. Requirements for operations on replicated tables

Operation Requirements

Add or drop default values and SQL checks None

Add or drop fragments Requires mastered replicate to be defined

Add or drop unique, distinct, and foreign keys None

Alter the locking granularity None

Alter the next extent size None

Change an existing fragment expression on an existing dbspace Requires mastered replicate to be defined

Convert a fragmented table to a non-fragmented table Requires mastered replicate to be defined

Convert a non-fragmented table to a fragmented table Requires mastered replicate to be defined

Convert from one fragmentation strategy to another Requires mastered replicate to be defined

Create a clustered index Requires mastered replicate to be defined

Modify the data type of a replicated column Requires mastered replicate to be defined

Modify the data type of a replicated column in a multiple-column replication key Requires mastered replicate to be defined

Move a fragment expression from one dbspace to another dbspace Requires mastered replicate to be defined

Move a non-fragmented table from one dbspace to another dbspace Requires mastered replicate to be defined

Part VI: Administering 1873

https://www.hcltech.com/
https://www.hcltech.com/

Operation Requirements

Recluster an existing index Requires mastered replicate to be defined

Rename a database None

Rename a replicated column Requires non-strict mastered replicate to be defined

Rename a table Requires non-strict mastered replicate to be defined

Truncate a replicated table Requires mastered replicate to be defined

You can perform the following alter operations on active, replicated tables, but you must perform extra steps, which are described in following sections:

Add a column to a replicated table
Remove a column from replication
Attach a fragment to a replicated table
Change or recreate a replication key

Enterprise Replication uses shadow replicates to manage alter operations on replicated tables without causing any interruption to replication. By using shadow replicates,
the replicate participants SELECT clause can be modified while replication is active. For example, a new column can be brought into the replicate definition, an existing
replicated column can be removed from the replicate definition and the data type or size of a replicated column can be changed without interrupting replication. See
Defining Shadow Replicates for more information about shadow replicates.

Before altering a replicated table, ensure that you have sufficient log space allocated for long transactions, a sufficient number of locks available, and sufficient space
available for the queue sbspace.

When you issue a command to alter a replicated table, Enterprise Replication places the table in alter mode before performing the alter operation. Alter mode is a state in
which only DDL (data-definition language) and SELECT operations are allowed but DML (data-manipulation language) operations are not allowed. After the transaction that
initiated the alter operation completes, Enterprise Replication unsets alter mode. Any schema changes are automatically applied to any delete tables.

The following restrictions apply when you use alter operations on replicated tables.

Enterprise Replication must be in an active state, unless you are only adding or dropping check constraints and default values.
Tables must have a master replicate defined.
The DROP TABLE statement is not supported.

Recommendation: If you need to perform more than one alter operation, enclose them in a single transaction so that alter mode only needs to be set and unset one time.
For a list of common alter operation problems and how to solve them, see Troubleshooting Tips for Alter Operations.

Altering multiple tables in a replicate set
 You can alter multiple replicated tables for replicates that belong to the same replicate set and then remaster those tables as a group.

Adding a Replicated Column
 Removing replicated columns

 You can alter replicated tables to remove columns from replication.
Modifying the data type or size of a replicated column

 You can modify the size or type of a replicated column for all basic data types and for the BOOLEAN and LVARCHAR extended types. Modifying the data type or size
of columns of other extended types is not supported. The replicate must be a master replicate.
Changing the Name of a Replicated Column, Table, or Database

 Changing or re-creating primary key columns
 You can change or re-create the primary key columns definition of a replicated table while replication is active.

Attaching a New Fragment to a Replicated Table
 You can attach a new fragment to a replication table while replication is active.

Remastering a Replicate
 You must remaster a replicate if you add a replicated column, drop a replicated column, or change a classic replicate into a mastered replicate. If you modify a

replicated column, you can remaster, but remastering is not mandatory.

Related concepts:
 SQL statements and replication

Related reference:
 cdr alter

Copyright© 2020 HCL Technologies Limited

Altering multiple tables in a replicate set

You can alter multiple replicated tables for replicates that belong to the same replicate set and then remaster those tables as a group.

Instead of remastering the replicates individually for each table that you alter, you create a derived replicate set that contains only the replicates that must be remastered.
You do not specify the names of the replicates. The server identifies which replicates have tables that must be remastered and adds them to the derived set for you. After
you remaster and synchronize the derived replicate set, you delete it.
To alter replicated tables in a replicate set:

1. Run the ALTER operation on the tables on all replication servers. If the replicate set is included in a grid, you can alter the tables on one server and propagate the
changes to all other servers.

2. Create a derived replicate set by running the cdr define replicateset command with the --needRemaster option.
3. Remaster the tables in the derived replicate set by running the cdr remaster replicateset command. The replicate definitions are updated in the global catalogs of

the replication servers.
4. Synchronize the derived replicate set by running the cdr check replicateset with the --repair option or by running the cdr sync replicateset command.
5. Drop the derived replicate set by running the cdr delete replicateset command.

Related reference:
 Example of rolling out schema changes in a grid

1874 Part VI: Administering

https://www.hcltech.com/

cdr define replicateset
cdr check replicateset
cdr sync replicateset
cdr remaster replicateset
cdr delete replicateset

Copyright© 2020 HCL Technologies Limited

Adding a Replicated Column

You can alter a replicated table to add a new column to be replicated. The replicate must be a master replicate.

To add a new replicated column

1. Use the ALTER TABLE statement to add the column to the replicated table at all participating nodes.
2. Remaster the replicate to include the newly added column in the replicate definition, as described in Remastering a Replicate.

Copyright© 2020 HCL Technologies Limited

Removing replicated columns

You can alter replicated tables to remove columns from replication.

The replicates must be master replicates.
To remove one or more replicated columns from one or more replicates, run the cdr remaster command with the --remove option. You specify the database, table, and
column names instead of the replicate names.

After you remove columns from replication, you can drop the columns.
Related tasks:

 Adding an existing replicate to a grid replicate set by altering a table
Related reference:

 cdr remaster

Copyright© 2020 HCL Technologies Limited

Modifying the data type or size of a replicated column

You can modify the size or type of a replicated column for all basic data types and for the BOOLEAN and LVARCHAR extended types. Modifying the data type or size of
columns of other extended types is not supported. The replicate must be a master replicate.

When you modify a replicated column, do not insert data into the modified column that does not fit into the old column definition until all participants are altered, because
the data might be truncated or data conversion to and from the master dictionary format to the local dictionary format might fail. Enterprise Replication handles the data
type mismatch by having the source server convert data that is in the local dictionary format to the master dictionary format, and the target server convert data from the
master dictionary format to the local dictionary format. If Enterprise Replication detects a mismatch in data type or size between the master replicate definition and the
local table definition, a warning is printed in the log file.

If Enterprise Replication is not able to convert the replicated row data into the master dictionary format on the source server while queuing replicated data into the send
queue, the replicate is stopped for the local participant. If the replicate is stopped, you must correct the problem and then restart the replicate from the local participant
with the --syncdatasource option. If the correction is to delete the problematic row data, delete the row by running the BEGIN WORK WITHOUT REPLICATION statement.
Otherwise, the deleted row is moved from the replicated table to the associated delete table, which might cause problems for the subsequent alter operation on the
replicated table.

If Enterprise Replication cannot convert row data from the master dictionary format to local table dictionary format at the target server after receiving replicated data, the
replicated transaction is spooled to ATS and RIS files. For example, if you modify a SMALLINT column to an INTEGER column, make sure that you do not insert data that is
too large for the SMALLINT data type until the alter operation is performed at all replicate participants, and remastering is performed so that the master dictionary reflects
the INTEGER data type.

Important: While modifying a replicated column, sometimes it is possible that the alter operation on the base table succeeds, but the delete table modification might fail
when Enterprise Replication unsets alter mode. If the delete modification fails, you see a message similar to the following in the server message log file:

 CDRGC: cannot populate data into the new delete table
 SQL error=-1226, ISAM error=0

This situation can happen while modifying a replicated column from a data type larger in length or size to a data type smaller in length or size, for example, from an
INTEGER column to a SMALLINT column, and if the delete table has data which cannot fit in the new type column.
To avoid this situation, do not convert between data types that cause data truncation or produce cases where data cannot fit into the new type. If the above situation has
already occurred, carefully update or delete the problematic rows from the delete table and attempt to unset alter mode manually by using the cdr alter command. If you
cannot resolve the problem, contact Software Support.

To modify a replicated column:

1. Issue the alter command to modify the replicated column.
2. Perform the alter operation at all the replicate participants.
3. Optionally remaster the replicate to update the column definition in the replicate definition, as described in Remastering a Replicate.

Part VI: Administering 1875

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

After an alter operation, the master dictionary no longer matches the replicated table dictionary. Because data transfer is always done in master dictionary format, data
conversion between the local dictionary format and the master dictionary format is performed. Data conversion can slow the performance of your replication system. The
remastering process changes the master dictionary to match the altered replicated table dictionary. Therefore, after remastering, data conversion is not necessary.

Replication keys have special considerations. For more information, see Changing or re-creating primary key columns.

Copyright© 2020 HCL Technologies Limited

Changing the Name of a Replicated Column, Table, or Database

You can change the name of a replicated column, table, or database while replication is active. The replicate must be a master replicate.

To change the name of a replicated column, table, or database, run the SQL statement RENAME COLUMN, RENAME TABLE, or RENAME DATABASE on all participants in the
replicate.

Related information:
 RENAME TABLE statement

RENAME COLUMN statement
RENAME DATABASE statement

Copyright© 2020 HCL Technologies Limited

Changing or re-creating primary key columns

You can change or re-create the primary key columns definition of a replicated table while replication is active.

You can change the primary key columns without restriction if either of the following conditions are true:

The table uses ERKEY shadow columns or another unique index or constraint as the replication key.
The primary key contains multiple columns. The column modification implicitly re-creates the primary key.

To change a primary key column if the primary key is a single column, enclose the primary key column modification and the primary key recreation operations in a single
transaction. If you frequently update a primary key that is a single column, consider changing the replication key to another unique index or constraint.

To drop and re-create a primary key:

1. Set alter mode by running the cdr alter on command.
2. Drop the primary key columns.
3. Create the new primary key columns.
4. Unset alter mode by running the cdr alter off command.

Related concepts:
 SQL statements and replication

Related tasks:
 Changing the replication key of a replicate

Copyright© 2020 HCL Technologies Limited

Attaching a New Fragment to a Replicated Table

You can attach a new fragment to a replication table while replication is active.

Enterprise Replication cannot automatically set alter mode for this operation because of an SQL restriction that requires attaching a fragment to be performed in multiple
steps.

To attach a new fragment to a replicated table:

1. Set alter mode on the replicate by running the cdr alter on command.
2. Drop the replication key of the table.
3. Attach the new fragment.
4. Re-create the replication key.
5. Unset alter mode by running the cdr alter off command.

Related tasks:
 Preparing tables without primary keys

Copyright© 2020 HCL Technologies Limited

Remastering a Replicate

You must remaster a replicate if you add a replicated column, drop a replicated column, or change a classic replicate into a mastered replicate. If you modify a replicated
column, you can remaster, but remastering is not mandatory.

1876 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

To redefine an existing master replicate that is defined with name verification, or turn an existing classic replicate into a master replicate, run the cdr remaster command.

If the master replicate does not include name verification, you manually remaster the replicate.

Remastering replicates without name verification
 You manually remaster replicates if the participants to not have matching column names and replicate has name verification turned off by the --name=n option of

the cdr define replicate command.

Related reference:
 cdr remaster

Copyright© 2020 HCL Technologies Limited

Remastering replicates without name verification

You manually remaster replicates if the participants to not have matching column names and replicate has name verification turned off by the --name=n option of the cdr
define replicate command.

To manually remaster a replicate:

1. Use the cdr define replicate command to create a shadow replicate with the same attributes as the primary replicate and with the --mirrors option, but with a
SELECT statement that is correct for the table after the alter operation. The SELECT statement can include newly added columns or omit newly dropped columns.

2. Use the cdr swap shadow command to exchange the existing primary replicate and the newly created shadow replicate.

While performing the cdr swap shadow operation, Enterprise Replication stores the BEGIN WORK position of the last known transaction sent to the grouper as a swap log
position for the current swap operation. Any transaction that is begun before the swap log position uses the original replicate definition. Any transaction that is begun after
the swap log position uses the new replicate definition.

The old replicate definition is deleted automatically after the replicate definition is no longer required by Enterprise Replication.

Related reference:
 cdr swap shadow

Copyright© 2020 HCL Technologies Limited

Recapture replicated transactions

If you want a transaction to continue to be replicated after it reaches the target replication servers, you can use the ifx_set_erstate() procedure.

By default, when Enterprise Replication reads the logical logs to capture transactions, replicated transactions are ignored. For example, if a transaction is replicated from
serv1 to serv2, that transaction is not captured for replication on serv2 because it has already been replicated. Replication stops when transactions reach target servers,
but you can configure a transaction to be recaptured and continue to be replicated. You must reset the replication state back to the default at the end of the transaction or
replication loops indefinitely.

Example
Suppose that a retail chain wants to run a procedure to create a report that populates a summary table of each store's current inventory and then replicates that summary
information to a central server. A stored procedure named low_inventory() that creates a low inventory report exists on all replications servers. The following example
creates a new procedure named xqt_low_inventory() that enables replication for the low_inventory() procedure, and then runs the low_inventory() procedure:

CREATE PROCEDURE xqt_low_inventory()
 DEFINE curstate integer;
 EXECUTE FUNCTION ifx_get_erstate() INTO curstate;
 EXECUTE PROCEDURE ifx_set_erstate(1);
 EXECUTE PROCEDURE low_inventory();
 EXECUTE PROCEDURE ifx_set_erstate(curstate);
END PROCEDURE;

The following events occur in this procedure:

1. The xqt_low_inventory() procedure defines a data variable called curstate to hold the Enterprise Replication state information.
2. The ifx_get_erstate() function obtains the Enterprise Replication state and stores it in the curstate variable. The ifx_set_state() procedure enables replication.
3. The low_inventory() procedure is run.
4. The replication state is reset back to its original value.

When a transaction runs the xqt_low_inventory() procedure, the execution of the procedure is replicated to all replication servers and the result of the low_inventory()
procedure is then replicated like any normal updating activity.

Related reference:
 ifx_set_erstate() procedure

ifx_get_erstate() function

Copyright© 2020 HCL Technologies Limited

Monitor and troubleshooting Enterprise Replication

Part VI: Administering 1877

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

You can monitor and diagnose problems with the Enterprise Replication system by using several different methods, depending on your needs.

You can monitor the status of Enterprise Replication servers in the following ways:

Use the cdr view command. Specify one or more subcommands, depending on what information you want to monitor.
Use SQL queries on the system monitoring tables.
Run onstat commands to view local server information.
Run the cdr check queue --qname=cntrlq command to determine whether the operation is finished propagating to all servers.
Run the DBINFO(’cdrsession’) function to determine if a session thread is performing an Enterprise Replication apply or sync operation.

Set the ALARMPROGRAM script to capture event alarms for the following situations:

Enterprise Replication errors
The Aborted Transaction Spooling (ATS) and Row Information Spooling (RIS) files
Dropped connections between replication servers
Replication state changes caused by Enterprise Replication commands, if state change event alarms are enabled

Solve Replication Processing Problems
 Diagnose, monitor, and solve possible problems that can occur while Enterprise Replication is running.

Failed Transaction (ATS and RIS) Files
 Aborted Transaction Spooling (ATS) and Row Information Spooling (RIS) files can be generated when replicated transactions fail.

Preventing Memory Queues from Overflowing
 In a well-tuned Enterprise Replication system, the send queue and receive queue do not regularly overflow from memory to disk. However, if the queues in memory

fill, the transaction buffers are written (spooled) to disk. Spooled transactions consist of transaction records, replicate information, and row data. Spooled
transaction records and replicate information are stored in the transaction tables and the replicate information tables in a single dbspace. Spooled row data is
stored in one or more sbspaces.
Common configuration problems

 If you experience problems setting up Enterprise Replication, check the configuration of your environment and database.
Troubleshooting Tips for Alter Operations

 Alter operations on replicated tables might result in errors.
Enterprise Replication Event Alarms

 Certain Enterprise Replication errors and other actions generate event alarms. You can use event alarms specific to Enterprise Replication to automate many
administrative tasks.

Related concepts:
 Preparing the Replication Environment

Using High-Availability Clusters with Enterprise Replication
Grid setup and management
Shard cluster setup
Managing Replication Servers and Replicates
Related tasks:

 Defining Replication Servers, Replicates, Participants, and Replicate Sets
Setting Up Failed Transaction Logging
Related reference:

 cdr view
SMI Tables for Enterprise Replication Reference
onstat -g commands for Enterprise Replication
Enterprise Replication Event Alarms
cdr check queue
cdr define server
cdr modify server
Related information:

 DBINFO Function

Copyright© 2020 HCL Technologies Limited

Solve Replication Processing Problems

Diagnose, monitor, and solve possible problems that can occur while Enterprise Replication is running.

You should understand the typical behavior of your Enterprise Replication system. There are many factors that contribute to the performance and other behaviors,
including: hardware configuration, network load and speed, type of replication, and number of replicated transactions.

Use the cdr view command or the SMI tables to understand the typical behavior of your system, establish benchmarks, and track trends. Deviations from typical behavior
do not necessarily indicate a problem. For example, transactions might take longer to replicate during peak usage times or during end-of-month processing.

The following table describes some replication processing problems that might occur.

Table 1. Potential Replication Problems and Solutions

Problem How to diagnose How to solve

Enterprise Replication is not running Run the cdr view state command
Query the syscdr_state SMI table
Examine event alarms captured by the alarm program

Start replication with the cdr start
command.

1878 Part VI: Administering

https://www.hcltech.com/

Problem How to diagnose How to solve

One or more Enterprise Replication servers are not
running or connected to the network

Run the cdr view servers command
Run the cdr view nif command
Query the syscdr_nif SMI table
Examine event alarms captured by the alarm program

Start the database server or fix the
connection problem.

Replicated transactions failed Determine if there are ATS or RIS files:

Look at the ATS and RIS directories on the local server for the
existence of ATS or RIS files
Run the cdr view atsdir risdir command to see the number of
ATS and RIS files for each server
Query the syscdr_atsdir or syscdr_risdir SMI table for a specific
server
Examine event alarms captured by the alarm program

Run one of the following commands:

cdr repair
cdr check replicate --repair
cdr check replicateset --repair

See cdr repair, cdr check replicate, and
cdr check replicateset.

Transactions are spooling to disk Determine how much spool memory is being used:

Run the cdr view profile command to see the status of all
queues on all servers
Run the cdr view sendq command to see the status of the send
queue on all servers
Run the cdr view rcv command to see the status of the receive
queue on all servers

See Increasing the Sizes or Numbers
of Storage Spaces.

Potential log wrap situation Determine how many log pages must be used before Enterprise
Replication reacts a potential log wrap situation:

Run the cdr view ddr command to see the number of unused
log pages for all servers
Query the syscdr_ddr SMI table to see the number of unused
log pages for a specific server

See Handle potential log wrapping.

If you do need to call Software Support, find the version of the database server that is running Enterprise Replication with the cdr -V command.

Copyright© 2020 HCL Technologies Limited

Failed Transaction (ATS and RIS) Files

Aborted Transaction Spooling (ATS) and Row Information Spooling (RIS) files can be generated when replicated transactions fail.

You can use the ATS and RIS files to identify problems or as input to the cdr repair command or custom utilities that extract or reapply the aborted rows.

When ATS or RIS file generation is enabled for a replicate, all failed replication transactions are recorded in ATS or RIS files. Each ATS file contains all the information
pertinent to a single failed transaction, while each RIS file contains information about a single failed row. If a replicated transaction fails for any reason (constraint
violation, duplication, and so forth), all the buffers in the replication message that compose the transaction are written to a local file.

ATS file generation occurs if the entire transaction is aborted. Transactions defined with row scope that have aborted rows but are successfully committed on the target
tables are not logged. All rows that fail conflict resolution for a transaction that has row scope defined are also written to the RIS file, if RIS is enabled.

RIS files can contain the following types of information:

Individual aborted row errors
Replication exceptions (such as when a row is converted by Enterprise Replication from insert to update, or from update to insert, and so forth)
Special SPL routine return codes, as defined by the application (if an SPL routine is called to resolve a conflict)

In some cases, such as with long transactions, the database server itself aborts transactions. In these cases, Enterprise Replication does not generate an ATS or RIS file.

ATS and RIS files can be generated under the following circumstances:

ATS or RIS generation is enabled for a replicate, the replicate uses a conflict resolution rule other than ignore or always-apply, and a conflict is detected on a target
server.
Under some error conditions, ATS or RIS files can be generated on a source server, regardless if ATS or RIS generation is enabled or the conflict resolution rule.

When an ATS or RIS file is generated, an event alarm with a class ID for 48 is also generated. You can use event alarms to send notifications to a database administrator.

Enabling ATS and RIS File Generation
 You can enable the generation of ATS and RIS files when you define a replicate.

ATS and RIS File Names
 Each ATS and RIS file has a unique name based on the conditions under which it was generated.

ATS and RIS File Formats
 You can choose to generate ATS and RIS files in text format, XML format, or both formats.

Disabling ATS and RIS File Generation
 You can prevent the generation of ATS or RIS files, or both.

Suppressing Data Sync Errors and Warnings
 You prevent certain data sync errors and warnings from appearing in ATS and RIS files by using the CDR_SUPPRESS_ATSRISWARN configuration parameter.

Related concepts:
 Conflict Resolution Scope

Part VI: Administering 1879

https://www.hcltech.com/

Related tasks:
Creating ATS and RIS directories
Repairing Failed Transactions with ATS and RIS Files
Related reference:
cdr view
CDR_DISABLE_SPOOL Environment Variable
cdr define replicate

Copyright© 2020 HCL Technologies Limited

Enabling ATS and RIS File Generation

You can enable the generation of ATS and RIS files when you define a replicate.

Failed transactions are not automatically recorded in ATS and RIS files. You can choose to generate either ATS or RIS files, or both.
You should create a separate directory to store ATS and RIS files. If you do not create a separate directory and specify it when you define the replication server, Enterprise
Replication stores the ATS and RIS files in the /tmp directory on UNIX and the %INFORMIXDIR%\tmp directory on Windows.

To collect ATS and RIS information

1. Create a directory for Enterprise Replication to store ATS and RIS files. You can create two directories if you want to generate both types of file and store them in
separate directories.

If you are using primary-target replication, create the directory on the target system.
If you are using update-anywhere replication and have a conflict resolution rule other than ignore or always-apply enabled, create the directory on all
participating replication systems.

2. When you define or modify a replication server, specify the location of the ATS and RIS directory by using the --ats and --ris options of the cdr define server
command or the cdr modify server command.

3. When you define or modify a replicate, specify that ATS and RIS file generation is enabled by using the --ats and --ris options of the cdr define replicate command
or the cdr modify replicate command.

Related tasks:
 Creating ATS and RIS directories

Related reference:
 cdr define server

cdr define replicate
cdr modify server
cdr modify replicate

Copyright© 2020 HCL Technologies Limited

ATS and RIS File Names

Each ATS and RIS file has a unique name based on the conditions under which it was generated.

The following table provides the naming convention for ATS and RIS files:

type.target.source.threadID.timestamp.sequence.extension

Table 1. ATS and RIS file naming conventions
Name Description

type The format of the file: ats or ris.

target The name of the database server receiving this replicate transaction.

source The name of the database server that originated the transaction.

threadID The identifier of the thread that processed this transaction.

timestamp The value of the internal time stamp at the time that this ATS or RIS file was
generated.

sequence A unique integer, incremented each time an ATS or RIS file is generated.

extension The file type. No extension indicates a text file; xml indicates an XML file.

The naming convention ensures that all ATS and RIS file names that are generated are unique. However, when an ATS or RIS file is opened for writing, any previous file
contents are overwritten. (Enterprise Replication does not append to a spool file; if a name collision does occur with an existing file, the original contents of the file are
lost.)

The default delimiter for the timestamp portion of text file names is a colon (:) on UNIX and a period (.) on Windows. You can define the delimiter between the hour,
minute, and second values with the CDR_ATSRISNAME_DELIM environment variable. XML files always use a period (.) delimiter between the hour, minute, and second
values.

The following is an example of a name of an ATS file in text format on UNIX for a transaction sent by server g_amsterdam to server g_beijing:

ats.g_beijing.g_amsterdam.D_2.000529_23:27:16.6

The following is an example of the same ATS file name in XML format:

ats.g_beijing.g_amsterdam.D_2.000529_23.27.16.6.xml

1880 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

The following is an example of a similar RIS file name in XML format:

ris.g_beijing.g_amsterdam.D_2.000529_23.27.16.5.xml

Related reference:
 CDR_ATSRISNAME_DELIM Environment Variable

Copyright© 2020 HCL Technologies Limited

ATS and RIS File Formats

You can choose to generate ATS and RIS files in text format, XML format, or both formats.

The format of ATS and RIS files is part of the server definition that you create with the cdr define server command:

Text (Default)
ATS and RIS files are generated as text files that Enterprise Replication can process during a repair operation. Text format is useful if you intend to use the cdr
repair command to repair inconsistencies.

XML
ATS and RIS files are generated as XML files that you can use if you write your own custom repair scripts. You cannot use ATS or RIS files in XML format with the cdr
repair command.

Both
ATS and RIS files are generated in both text and XML format so that you can choose how to process failed transactions.

Enterprise Replication raises event alarms when ATS and RIS files are generated regardless of format.

XML File Format
 The information in ATS and RIS files that are in XML format is organized in specific XML tags.

ATS and RIS Text File Contents
 The information about failed replicated transactions that are shown in ATS and RIS text files is listed in rows that are prefaced by information labels.

Copyright© 2020 HCL Technologies Limited

XML File Format

The information in ATS and RIS files that are in XML format is organized in specific XML tags.

The XML format uses an XML schema that is stored in the INFORMIXDIR/etc directory.

Data in XML files uses the UTF-8 encoding format.

Columns that appear empty could contain a null value or an empty string. The XML format differentiates between null data and empty strings by setting the isNull="true"
attribute of the COLUMN tag for null data.

Data Types That are Not Shown
The values of the following data types are not shown in XML files:

Smart large objects
Simple large objects
User-defined data types

For these data types, the following attributes are set for the COLUMN tag:

isLOBorUDT="true"
dataExists="false"

Special Symbols
The following symbols are replaced if they exist in row data:

< is replaced by <
> is replaced by >
& is replaced by &
" is replaced by "
' is replaced by '

Example
The following example shows an ATS file displaying a transaction with two failed insert operations. The third column in each row contains a data type that is not shown.

<?xml version="1.0" encoding="UTF-8"?>
<ERFILE version="1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="/usr/informix/etc/idser.xsd">
 <ATS version="1">
 <TRANSACTION RISFile="/tmp/ris.g_cdr_ol_3.g_cdr_ol_2.D_5.080411_14.08.57.3.xml"

Part VI: Administering 1881

https://www.hcltech.com/
https://www.hcltech.com/

 generateRISFile="true" processedRows="2">
 <SOURCE id="_dcs_markdown_workspace_Transform_htmlout_0_com.ibm.erep.doc_ids_erp_515_20" name="g_cdr_ol_2"
commitTime="2008-04-11T14:08:57"/>
 <TARGET id="_dcs_markdown_workspace_Transform_htmlout_0_com.ibm.erep.doc_ids_erp_515_30" name="g_cdr_ol_3"
receiveTime="2008-04-11T14:08:57"/>
 <MESSAGE>All rows in a transaction defined with row scope were rejected</MESSAGE>
 </TRANSACTION>
 <ATSROWS>
 <ATSROW num="1" replicateID="655362" database="bank" owner="testadm" table="customer"
 operation="Insert">
 <REPLICATED>
 <SHADOWCOLUMNS serverID="20" serverName="g_cdr_ol_2" cdrTimeInt="1207940937"
 cdrTimeString="2008-04-11T14:08:57"/>
 <DATA>
 <COLUMN name="col1" dataExists="true" isHex="false" isLOBorUDT="false"
 isNull="false">261</COLUMN>
 <COLUMN name="col2" dataExists="true" isHex="false" isLOBorUDT="false"
 isNull="false">cdr_ol_2</COLUMN>
 <COLUMN name="col3" dataExists="false" isHex="false" isLOBorUDT="true"
 isNull="false"></COLUMN>
 </DATA>
 </REPLICATED>
 </ATSROW>
 <ATSROW num="2" replicateID="655362" database="bank" owner="testadm" table="customer"
 operation="Insert">
 <REPLICATED>
 <SHADOWCOLUMNS serverID="20" serverName="g_cdr_ol_2" cdrTimeInt="1207940937"
 cdrTimeString="2008-04-11T14:08:57"/>
 <DATA>
 <COLUMN name="col1" dataExists="true" isHex="false" isLOBorUDT="false"
 isNull="false">262</COLUMN>
 <COLUMN name="col2" dataExists="true" isHex="false" isLOBorUDT="false"
 isNull="false">cdr_ol_2</COLUMN>
 <COLUMN name="col3" dataExists="false" isHex="false" isLOBorUDT="true"
 isNull="false"></COLUMN>
 </DATA>
 </REPLICATED>
 </ATSROW>
 </ATSROWS>
 </ATS>
</ERFILE>

The following example shows the corresponding RIS file for the failed transaction shown in the ATS example.

<?xml version="1.0" encoding="UTF-8"?>
<ERFILE version="1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="/usr/informix/etc/idser.xsd">
 <RIS version="1">
 <SOURCE id="_dcs_markdown_workspace_Transform_htmlout_0_com.ibm.erep.doc_ids_erp_515_20" name="g_cdr_ol_2"
commitTime="2008-04-11T14:08:57"/>
 <TARGET id="_dcs_markdown_workspace_Transform_htmlout_0_com.ibm.erep.doc_ids_erp_515_30" name="g_cdr_ol_3"
receiveTime="2008-04-11T14:08:57"/>
 <RISROWS>
 <RISROW num="1" replicateID="655362" database="bank" owner="testadm" table="customer"
 operation="Insert">
 <CDRERROR num="0"/>
 <SQLERROR num="-668"/>
 <ISAMERROR num="-1"/>
 <SPLCODE num="63"/>
 <LOCAL>
 <SHADOWCOLUMNS serverID="20" serverName="g_cdr_ol_2" cdrTimeInt="1206852121"
 cdrTimeString="2008-04-11T12:08:57"/>
 <DATA>
 <COLUMN name="col1" dataExists="true" isHex="false" isLOBorUDT="false"
 isNull="false">261</COLUMN>
 <COLUMN name="col2" dataExists="true" isHex="false" isLOBorUDT="false"
 isNull="false">cdr_ol_2</COLUMN>
 <COLUMN name="col3" dataExists="false" isHex="false" isLOBorUDT="true"
 isNull="false"></COLUMN>
 </DATA>
 </LOCAL>
 <REPLICATED>
 <SHADOWCOLUMNS serverID="20" serverName="g_cdr_ol_2" cdrTimeInt="1207940937"
 cdrTimeString="2008-04-11T14:08:57"/>
 <DATA>
 <COLUMN name="col1" dataExists="true" isHex="false" isLOBorUDT="false"
 isNull="false">261</COLUMN>
 <COLUMN name="col2" dataExists="true" isHex="false" isLOBorUDT="false"
 isNull="false">cdr_ol_2</COLUMN>
 <COLUMN name="col3" dataExists="false" isHex="false" isLOBorUDT="true"
 isNull="false"></COLUMN>
 </DATA>
 </REPLICATED>
 </RISROW>
 </RISROWS>
 <TXNABORTED ATSFile="/tmp/ats.g_cdr_ol_3.g_cdr_ol_2.D_5.080411_14.08.57.4.xml"
 generateATSFile="true"/>
 </RIS>
</ERFILE>

XML Tags
 XML tags are used in ATS and RIS files that are generated in XML format.

Copyright© 2020 HCL Technologies Limited

1882 Part VI: Administering

https://www.hcltech.com/

XML Tags

XML tags are used in ATS and RIS files that are generated in XML format.

Table 1. XML tags in ATS and RIS files

Tag name Description Attributes Parent tag Child tags

ERFILE Top level tag for ATS and RIS
files

version: XML file format version
number.

None ATS
RIS

ATS Parent tag for ATS files version: ATS file format version
number.

ERFILE TRANSACTION

ATSROWS

RIS Parent tag for RIS files version: RIS file format
version number.
fromSource: Set to true if
the RIS file is generated at
the source server.

ERFILE SOURCE

TARGET

RISROWS

TXNABORTED

TXNCOMMITTED

TRANSACTION Contains the name of the RIS
file (if it exists) and the number
of rows processed before the
transaction was aborted.

RISFile: The name of the
RIS file, if it was created.
generateRISFile: Set to
true if an RIS file exists for
this aborted transaction.
processedRows: Number of
rows processed before the
transaction was aborted.

ATS SOURCE

TARGET

MESSAGE

CDRERROR

SQLERROR

ISAMERROR

SPLCODE

ATSROWS Contains the replicated aborted
rows

None ATS ATSROW

SOURCE Contains source server
information

id: Server ID.
name: Server group name.
commitTime: Transaction
commit time.

TRANSACTION

RIS

None

TARGET Contains target server
information

id: Server ID.
name: Server group name.
receiveTime: Transaction
receive time.

TRANSACTION

RIS

None

SQLERROR Contains the SQL error code num: Error number. TRANSACTION

RISROW

None

ISAMERROR Contains the ISAM error code num: Error number. TRANSACTION

RISROW

None

CDRERROR Contains the data sync error
code

num: Error number.
description: Error
description.

TRANSACTION

RISROW

None

MESSAGE Contains the notification
message

None TRANSACTION

RISROW

None

SPLCODE Contains the SPL code number
if a stored procedure conflict
rule is being used

num: SPL code number. TRANSACTION

RISROW

None

RISROWS Contains the local and
replicated aborted rows

None RIS RISROW

Part VI: Administering 1883

Tag name Description Attributes Parent tag Child tags

RISROW Contains information about
local or replicated row data for
one aborted row

num: Row sequence number.
replicateID: Replicate ID.
database: Database name.
owner: Table owner name.
table: Table name.
operation: DML operation
type.

RISROWS MESSAGE

CDRERROR

SQLERROR

ISAMERROR

SPLCODE

MESSAGE

LOCAL

REPLICATED

LOCAL Contains the local row data for
an aborted row

None RISROW SHADOWCOLUMNS

DATA

REPLICATED Contains replicated row data for
an aborted row

None ATSROW

RISROW

SHADOWCOLUMNS

DATA

ATSROW Contains information for one
replicated aborted row

num: Row sequence number.
replicateID: Replicate ID.
database: Database name.
owner: Table owner name.
table: Table name.
operation: DML operation
type.

ATSROWS REPLICATED

SHADOWCOLUMNS Optional shadow column values
for local and replicated rows

serverID: Server ID.
serverName: Server group
name.
cdrTimeInt: The cdrtime
column value in integer
format (GMT time).
cdrTimeString: Time in
string format. For example:
2008-11-08T20:16:25.

LOCAL

REPLICATED

None

DATA Contains aborted row data dataExists: Identifies whether
data exists for this row or not.

ATSROW

RISROW

COLUMN

COLUMN Contains column data for an
aborted row

name: The column name.
dataExists: Identifies
whether data is displayed for
this column or not.
isLOBorUDT: Set to true if
the column is of type UDT,
smart large object or simple
large object. If set to true,
data for the column is
skipped and the dataExists
value is set to false.
isHex: Set to true if column
data is displayed in hex
format because Enterprise
Replication does not have
enough information to
interpret the row data.
isNull: Set to true if the
column value is NULL. Set to
false if the column has a
valid value or an empty
string.

DATA None

TXNABORTED Indicates that the replicated
transaction was aborted

ATSFile: The name of the
ATS file if the transaction was
aborted and an ATS file was
created for this aborted row.
generateATSFile: Set to
true if an ATS file was
created.
TxnErr: Error description for
the aborted transaction.

RIS None

1884 Part VI: Administering

Tag name Description Attributes Parent tag Child tags

TXNCOMMITTED Indicates that the replicated
transaction was committed

totalRows: Total number of rows
processed.

RIS None

Copyright© 2020 HCL Technologies Limited

ATS and RIS Text File Contents

The information about failed replicated transactions that are shown in ATS and RIS text files is listed in rows that are prefaced by information labels.

The first three characters in each line of the ATS and RIS file describe the type of information for the line, as the following table defines. The first four labels apply to both
ATS and RIS files. The last three labels apply to only RIS files.

Table 1. Information labels

Label Name Description

TXH Transaction heading This line contains information from the transaction header, including the sending server ID and the commit time, the
receiving server ID and the received time, and any Enterprise Replication, SQL, or ISAM error information for the
transaction.

RRH Replicated row heading This line contains header information from the replicated rows, including the row number within the transaction, the
group ID, the replicate ID (same as replicate group ID if replicate is not part of any replicate group), the database,
owner, table name, and the database operation.

RRS Replicated row shadow
columns

This line contains shadow column information from replicated rows, including the source server ID and the time
when the row was updated on the source server. This line is printed only if the replicate is defined with a conflict-
resolution rule.

RRD Replicated row data This line contains the list of replicated columns in the same order as in the SELECT statement in the cdr define
replicate command. Each column is separated by a pipe character (|) and displayed in ASCII format. When the
spooling program encounters severe errors (for example: cannot retrieve the replicate ID for the replicated row;
unable to determine the replicated column type, size, or length), it displays this row data in hexadecimal format. The
spooling program also displays the row data in hexadecimal format if a row includes replicated UDT columns.

LRH Local-row header RIS only. Indicates if the local row is found in the delete table and not in the target table

LRS Local-row shadow columns RIS only. Contains the server ID and the time when the row was updated on the target server This line is printed only
if the replicate is defined with a conflict resolution rule.

LRD Local-row data RIS only. Contains the list of replicated columns extracted from the local row and displayed in the same order as the
replicated row data. Similar to the replicated row data, each column is separated by a ‘|' and written in ASCII format.
When the spooling program encounters severe errors (for example: cannot retrieve the replicate ID for the replicated
row; unable to determine the replicated column type, size, or length) or the table includes UDT columns (whether
defined for replication or not), it displays the replicated row data in hexadecimal format. In this case, the local row
data is not spooled.

Changed Column Information
If you define a replicate to only replicate columns that changed, the RRD entry in the ATS and RIS file shows a ? for the value of any columns that are not available. For
example:

RRD 427|amsterdam|?|?|?|?|?|?|?|?|?|?|?

For more information, see Replicate only changed columns.

BLOB and CLOB Information
If a replicate includes one or more BLOB or CLOB columns, the RRD entry in the ATS and RIS file displays the smart large object metadata (the in-row descriptor of the
data), not the smart large object itself, in hexadecimal format.

BYTE and TEXT Information
When the information recorded in the ATS or RIS file includes BYTE or TEXT data, the replicated row data (RRD) information is reported, as the following examples show.

Example 1

<1200, TEXT, PB 877(necromsv) 840338515(00/08/17 20:21:55)>

In this example:

1200 is the size of the data.
TEXT is the data type (it is either BYTE or TEXT).
PB is the storage type (PB when the BYTE or TEXT is stored in the tblspace, BB for blobspace storage).
The next two fields are the server identifier and the time stamp for the column if the conflict-resolution rule is defined for this replicate and the column is stored in a
tblspace.

<500 (NoChange), TEXT, PB 877(necromsv) 840338478(00/08/17 20:21:18)>

Example 2

Part VI: Administering 1885

https://www.hcltech.com/

In this example, 500 (NoChange) indicates that the TEXT data has a size of 500, but the data is not changed on the source server. Therefore, the data is not sent from the
source server.

Example 3

<(Keep local blob),75400, BYTE, PB 877(necromsv) 840338515(00/08/17 20:21:55)>”)

In this example, (Keep local blob) indicates that the replicated data for this column is not applied on the target table, but instead the local BYTE data was kept. This
usually happens when time stamp conflict resolution is defined and the local column has a time stamp greater than the replicated column.

UDT Information
If a replicate includes one or more UDT columns, the RRD entry in the ATS and RIS files displays the row data in delimited format as usual, except the string <skipped> is
put in place of UDT column values. For example, the following row shows information about a table with columns of type INTEGER, UDT, CHAR(10), and UDT:

RRD 334|<skipped>|amsterdam|<skipped>

TimeSeries information
If a replicate includes a TimeSeries column, an RTS row displays the time series instance ID and the timestamp of the element. If the failed replicated transaction
includes a TimeSeries routine that affects a range of elements, both the starting and ending timestamps are shown. The following example shows three failed replication
transactions that include a TimeSeries column:

TXH Source ID:100 / Name:g_delhi / CommitTime:12-01-27 12:27:39
TXH Target ID:200 / Name:g_bombay / ReceiveTime:12-01-27 12:27:39

RRH Row:1 / Replicate Id: 6553638 / Table: test@tstr1.tpk / DbOp:TSInsert
RRH CDR:2 (ERROR DESCRIPTION) / SQL:0 / ISAM:0
RTS Instance id=100, Timestamp=12-01-27 12:27:39

RRH Row:2 / Replicate Id: 6553638 / Table: test@tstr1.tpk / DbOp:TSDelete
RRH CDR:2 (ERROR DESCRIPTION) / SQL:0 / ISAM:0
RTS Instance id=100, Timestamp=12-01-27 12:27:39

RRH Row:2 / Replicate Id: 6553638 / Table: test@tstr1.tpk / DbOp:TSDelRange
RRH CDR:2 (ERROR DESCRIPTION) / SQL:0 / ISAM:0
RTS Instance id=100, Begin Timestamp=12-01-27 12:27:39, End Timestamp=12-01-27 12:27:39
==========
TXH Transaction committed
TXH Total number of rows in transaction:1

Copyright© 2020 HCL Technologies Limited

Disabling ATS and RIS File Generation

You can prevent the generation of ATS or RIS files, or both.

To prevent the generation of both ATS and RIS files, set the CDR_DISABLE_SPOOL environment variable to 1.
To prevent the generation of either ATS or RIS files, set the ATS or RIS directory to /dev/null (UNIX) or NUL (Windows) with the cdr define server or cdr modify server
commands.

Related reference:
 cdr modify server

cdr define server
CDR_DISABLE_SPOOL Environment Variable

Copyright© 2020 HCL Technologies Limited

Suppressing Data Sync Errors and Warnings

You prevent certain data sync errors and warnings from appearing in ATS and RIS files by using the CDR_SUPPRESS_ATSRISWARN configuration parameter.

For more information on the CDR_SUPPRESS_ATSRISWARN configuration parameter, see CDR_SUPPRESS_ATSRISWARN Configuration Parameter.

For a list of error and warning messages that you can suppress, see Data sync warning and error messages.

Copyright© 2020 HCL Technologies Limited

Preventing Memory Queues from Overflowing

In a well-tuned Enterprise Replication system, the send queue and receive queue do not regularly overflow from memory to disk. However, if the queues in memory fill,
the transaction buffers are written (spooled) to disk. Spooled transactions consist of transaction records, replicate information, and row data. Spooled transaction records
and replicate information are stored in the transaction tables and the replicate information tables in a single dbspace. Spooled row data is stored in one or more sbspaces.

The following situations can cause Enterprise Replication to spool to disk:

1886 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Receiving server is down or suspended.
Network connection is down.
If the receiving server or network connection is down or suspended, Enterprise Replication might spool transaction buffers to disk.

To check for a down server or network connection, run cdr list server on a root server. This command shows all servers and their connection status and state.

Replicate is suspended.
If a replicate is suspended, Enterprise Replication might spool transaction buffers to disk.

To check for a suspended replicate, run cdr list replicate. This command shows all replicates and their state.

Enterprise Replication is replicating large transactions.
Enterprise Replication is optimized to handle small transactions efficiently. Very large transactions or batch jobs force Enterprise Replication into an exceptional
processing path that results in spooling. For best results, avoid replicating these types of transactions.

Logical log files are too small or too few.
If the logical log files are too small or the number of logical log files is too few, Enterprise Replication is more likely to spool transaction buffers to disk.

Server is overloaded.
If a server is low on resources, Enterprise Replication might not be able to hold all transactions that are replicating from a source server in memory during
processing, and the transactions spool to disk.

If transactions spool to disk, check the system resources; in particular, check disk speed, RAM, and CPU resources.

Handle potential log wrapping
 The potential for log wrap occurs when Enterprise Replication log processing lags behind the current log and the Enterprise Replication replay position is in danger

of being overrun.
Monitoring Disk Usage for Send and Receive Queue Spool

 Periodically monitor disk usage for the dbspace.
Increasing the Sizes or Numbers of Storage Spaces
Recovering when Storage Spaces Fill

Related concepts:

 Send queues and receive queues
Setting Up Send and Receive Queue Spool Areas
Transaction processing impact
Logical Log Configuration Guidelines
Related reference:

 cdr list server
cdr list replicate

Copyright© 2020 HCL Technologies Limited

Handle potential log wrapping

The potential for log wrap occurs when Enterprise Replication log processing lags behind the current log and the Enterprise Replication replay position is in danger of
being overrun.

There are two log positions you should be aware of: the snoopy log position, which is the log position that keeps track of transactions being captured for replication, and
the log replay position, which is the log position that keeps track of which transactions have been applied.

A potential log wrap situation is usually caused by the logical logs being misconfigured for the current transaction activity or by the Enterprise Replication system having to
spool more than usual. More-than-usual spooling could be caused by one of the following situations:

A one-time job might be larger than normal and thus require more log space.
One of the target servers is currently unavailable and more spooling of replicated transactions is required.
The spool file or paging space could be full and needs to be expanded.

You can configure how Enterprise Replication responds to a potential log wrap situation by specifying one or more of the following solutions, in order of priority, with the
CDR_LOG_LAG_ACTION configuration parameter:

Block user transactions until Enterprise Replication log processing advances far enough that the danger of log wrapping is diminished. Blocking user transactions
prevents the current log position from advancing. This solution increases user response time. When user transactions are blocked, event alarm 30 unique ID 30002
is raised and the following message appears in the online log:

DDR Log Snooping - DDRBLOCK phase started, userthreads blocked

Compress the logical logs and save them to a log staging directory. Log files in the staging directory are deleted after they are no longer required by Enterprise
Replication. You must specify the location and maximum size of the log staging directory. This solution uses very little additional disk space to temporarily save log
files until the danger of log wrapping is over. The staged log files are deleted after advancing the log replay position.
If log staging is configured, Enterprise Replication monitors the log lag state and stages log files even when Enterprise Replication is inactive.

Dynamically add logical logs. This solution requires enough free space to be available in the logical log dbspace to add dynamic logs. You can specify how many
dynamic logical logs to add. You must manually drop the dynamic log files when the danger for log wrapping is over.
Ignore the potential for log wrap. This solution shuts down Enterprise Replication when an overrun of the snoopy log replay position is detected. Enterprise
Replication continues to function if the log replay position is overrun. If the snoopy replay position is overrun, Enterprise Replication is stopped, event alarm 47 is
raised, and the following message appears in the message log file:

WARNING: The replay position was overrun, data may not be replicated.

If the replay position is overrun, restart Enterprise Replication with the cdr cleanstart command to reset replay position to current log position and synchronize the
data.

Part VI: Administering 1887

https://www.hcltech.com/

Stop Enterprise Replication on the affected server as soon as it is detected that the log replay position is running behind. When you are ready to restart Enterprise
Replication it is necessary to run the cdr cleanstart command only if the log replay position was overrun.

For example, you can specify that during a potential log wrap situation, Enterprise Replication stages compressed logical logs. If the log staging directory reaches its
maximum size, then logical logs are added. If the maximum number of logical logs are added, then Enterprise Replication blocks user transactions. Not all options can be
combined together in every possible priority order. For example, specifying to stop Enterprise Replication, to ignore the potential for log wrap, or to block user actions
must always be either the only option or the last option in the list.

Related concepts:
 Recovering when Storage Spaces Fill

Logical Log Configuration Guidelines
Related tasks:

 Monitoring Disk Usage for Send and Receive Queue Spool
Increasing the Sizes or Numbers of Storage Spaces
Related reference:

 CDR_LOG_LAG_ACTION configuration parameter
CDR_LOG_STAGING_MAXSIZE Configuration Parameter
CDR_MAX_DYNAMIC_LOGS Configuration Parameter

Copyright© 2020 HCL Technologies Limited

Monitoring Disk Usage for Send and Receive Queue Spool

Periodically monitor disk usage for the dbspace.

The sbspace that Enterprise Replication uses to spool the queues to disk is specified by the CDR_QDATA_SBSPACE configuration parameter.

To check disk usage for the spooling sbspace, run one or more of the following commands:

onstat -g rqm SBSPACES
onstat -d
Tip: When you use the onstat -d command to monitor disk usage, the S flag in the Flags column indicates an sbspace. For each sbspace chunk, the first row
displays information about the whole sbspace and user-data area. The second row displays information about the metadata area.
The oncheck command with the -cs,-cS, -ce, -pe, -ps, and -pS options

Related concepts:
 Handle potential log wrapping

Recovering when Storage Spaces Fill
Related tasks:

 Increasing the Sizes or Numbers of Storage Spaces
Related reference:

 onstat -g rqm: Prints statistics for RQM queues
CDR_QDATA_SBSPACE Configuration Parameter
Related information:

 Manage sbspaces
onstat -d command: Print chunk information
The oncheck Utility

Copyright© 2020 HCL Technologies Limited

Increasing the Sizes or Numbers of Storage Spaces

If you notice that the Enterprise Replication dbspace or sbspace is running out of disk space, you can increase the size of the space by adding chunks to the space. You can
also add additional sbspaces for Enterprise Replication.

To add a chunk to a dbspace, use onspaces -a. For example, to add a 110 kilobyte chunk with an offset of 0 to the er_dbspace dbspace, enter:

onspaces -a er_dbspace -p /dev/raw_dev2 -o 0 -s 110

To add a chunk to an sbspace, use the same onspaces command above, however you can specify more information about the chunk that you are adding. After you add a
chunk to the sbspace, you must perform a level-0 backup of the root dbspace and the sbspace.

See the sections on adding chunks to dbspaces and sbspaces in the IBM® Informix® Administrator's Guide and the IBM Informix Administrator's Reference for more
information.

To increase the number of sbspaces that can be used for Enterprise Replication, create new sbspaces with the onspaces -c -S command and then add their names to the
CDR_QDATA_SBSPACE configuration parameter with the cdr add onconfig command. For more information, see cdr add onconfig.

Related concepts:
 Handle potential log wrapping

Recovering when Storage Spaces Fill
Related tasks:

 Monitoring Disk Usage for Send and Receive Queue Spool

Copyright© 2020 HCL Technologies Limited

1888 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Recovering when Storage Spaces Fill

When the Enterprise Replication dbspace runs out of disk space, Enterprise Replication raises an alarm and writes a message to the log. When the sbspace runs out of disk
space, Enterprise Replication hangs. In either case, you must resolve the problem that is causing Enterprise Replication to spool (Preventing Memory Queues from
Overflowing) or you must allocate additional disk space (Increasing the Sizes or Numbers of Storage Spaces) before you can continue replication.

Related concepts:
 Handle potential log wrapping

Related tasks:
 Monitoring Disk Usage for Send and Receive Queue Spool

Increasing the Sizes or Numbers of Storage Spaces

Copyright© 2020 HCL Technologies Limited

Common configuration problems

If you experience problems setting up Enterprise Replication, check the configuration of your environment and database.

To solve configuration problems:

Make sure that you created an sbspace for the row data and set the CDR_QDATA_SBSPACE in the onconfig file.
For more information, see Setting Up Send and Receive Queue Spool Areas and CDR_QDATA_SBSPACE Configuration Parameter.

Verify that the trusted environment is set up correctly.
For more information, see Configuring secure ports for connections between replication servers.

Verify that your sqlhosts file is set up properly on each server that participates in replication. You must set up database server groups in the sqlhosts file.
For more information, see Creating sqlhost group entries for replication servers.

Verify the format of the sqlhosts file.
The network connection (not the shared memory connection) entry must be immediately after the database server group definition. If the network connection entry
is not immediately after the database server group definition, you might see the following error when you run cdr define server:

command failed -- unable to connect to server specified (5)

You might also see a message like the following in the message log for the target server:

Reason: ASF connect error (-25592)

Make sure that the unique identifier for each database server (i= in the options field of the sqlhosts information) is consistent across all nodes in the domain.
For more information, see Creating sqlhost group entries for replication servers.

Verify that the operating system times of the database servers that participate in the replicate are synchronized.
For more information, see Time synchronization.

Make sure that the database server has adequate logical log disk space. If the database server does not have enough logical log space at initialization, you see the
following error:

command failed -- fatal server error (100)

Check the files in the $INFORMIXDIR directory to see if a problem occurred when the database server built the SMI tables.
Make sure that the databases on all database server instances that are involved in replication are set to logging (unbuffered logging is recommended).
For more information, see Unbuffered Logging.

For replicates that use any conflict-resolution rule except ignore and always-apply, make sure that you define shadow columns (CRCOLS) for each table that is
involved in replication.
For more information, see Preparing Tables for Conflict Resolution.

If you defined a participant using SELECT * from table_name statement, make sure that the tables are identical on all database servers that are defined for the
replicate.
For more information, see Participant definitions and Participant and participant modifier.

Verify that each replicated column in a table on the source database server has the same data type as the corresponding column on the target server.
Enterprise Replication does not support replicating a column with one data type to a column on another database server with a different data type.

The exception to this rule is cross-replication between simple large objects and smart large objects.

For more information, see Replication and data types.

Verify that all tables defined in a replicate have a replication key.
For more information, see Unique key for replication.

If high-availability clusters are also in use in the domain, then all row data sbspaces must be created with logging by using the -Df "LOGGING=ON" option of the
onspaces command.
For more information, see Row Data sbspaces and the IBM® Informix® Administrator's Guide.

Copyright© 2020 HCL Technologies Limited

Troubleshooting Tips for Alter Operations
Part VI: Administering 1889

https://www.hcltech.com/
https://www.hcltech.com/

Alter operations on replicated tables might result in errors.

The following problems illustrate common issues with performing alter operations on replicated tables:

Problem: You receive an error that the replicate is not defined after running the following command:

cdr alter -o test:tab
Error:Replicate(s) not defined on table test:.tab

The owner name is missing from the table name, test:tab.

Solution: Include the table owner name, for example:

cdr alter -o test:user1.tab

Problem: You receive an error that the replicated table is in alter mode after running the following command:

> insert into tab values(1,1);

19992: Cannot perform insert/delete/update operations on a replicated table
while the table is in alter mode
Error in line 1 Near character position 27
>

The table (tab) is in alter mode. DML operations cannot be performed while the table is in alter mode.

Solution: Wait for the table to be altered and then issue the DML operation. If no alter statement is in progress against the table, then unset alter mode on the table
using the cdr alter --off command. For example:

cdr alter --off test:user1.tab

You can check the alter mode status using the oncheck -pt command. For example:

$ oncheck -pt db1:user1.t1

TBLspace Report for db1:user1.t1

 Physical Address 1:63392
 Creation date 02/01/2011 16:02:00
 TBLspace Flags 400809 Page Locking
 TBLspace flagged for replication
 TBLspace flagged for CDR alter mode
 TBLspace use 4 bit bit-maps
 Maximum row size 4
...

Problem: How can you tell if a replicate is a mastered replicate?
Solution: You can check the alter mode status using the oncheck -pt command. For example:

oncheck -pt test:nagaraju.tab

Problem: How can you tell if a replicate is a mastered replicate?
Solution: When you execute the cdr list repl command, it shows that the REPLTYPE is Master for master replicates. For example:

$cdr list repl
CURRENTLY DEFINED REPLICATES

REPLICATE: rep2
STATE: Active ON:delhi
CONFLICT: Timestamp
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: test:nagaraju.tab12
OPTIONS: transaction,ris,ats,fullrow
REPLTYPE: Master

REPLICATE: rep1
STATE: Active ON:delhi
CONFLICT: Timestamp
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: test:nagaraju.tab
OPTIONS: transaction,ris,ats,fullrow

In the above output, rep1 is defined as a non-master replicate and rep2 is defined as master replicate.
Problem: An alter operation on a replicated table fails.
For example:

$dbaccess test -

Database selected.

> alter table tab add col4 int;

19995: Enterprise Replication error encountered while setting alter mode. See
message log file to get the Enterprise Replication error code
Error in line 1Near character position 27
>

The message log output is:

12:36:09 CDRGC: Classic replicate rep1 found on the table test:nagaraju.tab
12:36:09 CDRGC:Set alter mode for replicate rep1

1890 Part VI: Administering

12:36:09 GC operation alter mode set operation on a replicated table failed:
Classic replicate(s) (no mastered dictionary) found on the table.

Solution: The above message shows that there is a classic replicate, rep1, defined on the table (tab). Adding a new column to a replicated table is allowed when
only master replicates are defined for the table.

To perform the above alter operation, first convert the classic replicate to a master replicate. You can convert the replicate definition of rep1 to a master replicate by
issuing the following command:

cdr remaster -M g_delhi rep1 "select * from tab"

Now look at the cdr list repl output:

$cdr list repl
CURRENTLY DEFINED REPLICATES

REPLICATE: rep1
STATE: Active ON:delhi
CONFLICT: Timestamp
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: test:nagaraju.tab
OPTIONS: transaction,ris,ats,fullrow
REPLTYPE: Master

REPLICATE: rep2
STATE: Active ON:delhi
CONFLICT: Timestamp
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: test:nagaraju.tab12
OPTIONS: transaction,ris,ats,fullrow
REPLTYPE: Master

REPLICATE: Shadow_4_rep1_GMT1112381058_GID100_PID29935
STATE: Active ON:delhi
CONFLICT: Timestamp
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: test:nagaraju.tab
OPTIONS: transaction,ris,ats,fullrow
REPLTYPE: Shadow
PARENT REPLICATE: rep1

You can see that repl1 has been converted to a master replicate. You can also see that a new replicate definition,
Shadow_4_rep1_GMT1112381058_GID100_PID29935, was also created against the table (tab1). Notice the last two fields of the output for
Shadow_4_rep1_GMT1112381058_GID100_PID29935:

REPLTYPE: Shadow
PARENT REPLICATE: rep1

The Shadow attribute indicates that this replicate is a shadow replicate, and PARENT REPLICATE: rep1 shows that this is a shadow replicate for the primary
replicate rep1. Notice that the Master attribute is not present for this replicate definition. This shadow replicate is actually the old non-master replicate. The cdr
remaster command created a new master replicate, rep1, for the table tab and converted the old non-master replicate (rep1) to a shadow replicate for the new
master replicate.
This table is not yet ready to be altered because there is still a non-master replicate, Shadow_4_rep1_GMT1112381058_GID100_PID29935, defined for the
table, tab. You must wait for Shadow_4_rep1_GMT1112381058_GID100_PID29935 to be deleted automatically by Enterprise Replication after all the data
queued for this shadow replicate is applied at all the replicate participants. This process can take some time. Alternatively, if you are sure that there is no data
pending for this old non-master replicate, then you can issue the cdr delete repl command against Shadow_4_rep1_GMT1112381058_GID100_PID29935.

After making sure that Shadow_4_rep1_GMT1112381058_GID100_PID29935 no longer exists, you can attempt the ALTER TABLE tab add col4 int; statement
against the table.

Copyright© 2020 HCL Technologies Limited

Enterprise Replication Event Alarms

Certain Enterprise Replication errors and other actions generate event alarms. You can use event alarms specific to Enterprise Replication to automate many
administrative tasks.

You can set your alarm program script to capture Enterprise Replication class IDs and messages and initiate corrective actions or notifications for each event. For example,
you can add a chunk to the queue data sbspace or dbspace if you detect (using class ID 31) that the storage space is full.

Most event alarms operate in the background. For events that operate in the foreground, the session that triggered the alarm is suspended until the alarm program
execution completes. For information on setting alarm program scripts to capture events, see Event Alarms.

Many Enterprise Replication event alarms are enabled by default, but most state change event alarms are disabled by default. You can control which Enterprise
Replication event alarms are enabled with the CDR_ALARMS environments variable.

The following table lists the information about Enterprise Replication event alarms:

The class ID is an integer value identifying the category of the event.
The event ID is a unique identifier for the specific message.
The class message provides general information about the event.
The specific message provides detailed information about the event.
The severity describes the seriousness of the event on a scale from 1 to 5, where 5 is the most serious.

Part VI: Administering 1891

https://www.hcltech.com/

Whether the event operates in the foreground and explanations for the events.
Whether the event is disabled by default.

Table 1. Enterprise Replication Event Alarms

Class ID
and Event ID

Class and Specific Messages Severity Explanation

Class ID:

30

Event ID:

30002

Class message:
DDR subsystem notification

Specific message:

DDR Log Snooping - Catchup phase started,
userthreads blocked

3 User transactions are being blocked to prevent the database server from
overwriting a logical log that Enterprise Replication has not yet processed.
Online log: The following message appears in the online log:

DDR Log Snooping - DDRBLOCK phase started, userthreads
blocked

ER state: Active and replicating data. User transactions are temporarily
blocked.

User action: None.

For information about preventing this situation, see Handle potential log
wrapping.

Class ID:

30

Event ID:

30003

Class message:
DDR subsystem notification

Specific message:

DDR Log Snooping - Catchup phase completed,
userthreads unblocked

3 User transactions are no longer blocked.
Online log: The specific message also appears in the online log.

ER state: Active and replicating data.

User action: None.

Class ID:

30

Event ID:

30004

Class message:
DDR subsystem failure

Specific message:

WARNING: The replay position was overrun, data
may not be replicated.

4 The log replay position was overwritten.
Online log: The following message appears in the online log:

WARNING: The replay position was overrun, data may not be
replicated.

ER state: Active and replicating data. Enterprise Replication shuts down if
the log read position also gets overwritten. If Enterprise Replication shuts
down, event alarm 47 is raised.

User action: For information about preventing this situation, see Handle
potential log wrapping.

Class ID:

30

Event ID:

30005

Class message:
DDR Subsystem notification

Specific message:

CDR DDR: Log staging disk space usage reached its
allowed configured maximum size size (KB).
Temporarily disabling log staging.

3 The disk space where logs are stored reached its maximum size.
Online log: The following message appears in the online log:

CDR DDR: Log staging disk space usage reached its allowed
configured maximum size size (KB). Temporarily disabling
log staging.

ER state: Active and running. Enterprise Replication uses the next configured
logical log lag action to protect the replay position. If no other log lag action
is configured, the replay position can be overrun. If Enterprise Replication
shuts down due to replay position being overrun, restart Enterprise
Replication using cdr cleanstart command and resynchronize the data.

User action: Consider increasing the maximum disk space configured for log
staging using the CDR_LOG_STAGING_MAXSIZE configuration parameter.
The value for the CDR_LOG_STAGING_MAXSIZE configuration parameter can
be updated while the server is active using the following command:

onmode -wf CDR_LOG_STAGING_MAXSIZE=size

Class ID:

30

Event ID:

30006

Class message:
DDR Subsystem notification

Specific message:

CDR: Created staging file filename for log unique id
unique_log_id

3 The log staging file was created.
Online log: The following message appears in the online log:

CDR: Created staging file filename for log unique id
uniqui_log_id

ER state: Enterprise Replication is active and staging log files because a log
lag state was detected.

User action: If high-availability secondary servers are configured, consider
copying log files to the secondary server. See Transferring log files to a high-
availability cluster secondary server when using ER.

Class ID:

30

Event ID:

30007

Class message:
DDR Subsystem notification

Specific message:

CDR: Completed processing log unique id
unique_log_id. Deleted log staging file filename

2 A log staging file was deleted.
Online log: The following message appears in the online log:

CDR: Completed processing log unique id unique_log_id.
Deleted log staging file filename

ER state: Active and replicating data.

User action: If staged log files are being copied to high-availability secondary
servers, consider deleting the log staged log file name specified in the alarm
message and the related token log file. See Transferring log files to a high-
availability cluster secondary server when using ER.

1892 Part VI: Administering

Class ID
and Event ID

Class and Specific Messages Severity Explanation

Class ID:

30

Event ID:

30008

Class message:
DDR Subsystem notification

Specific message:

CDR: Deleted all staging files from log staging
directory.

2 The staging files were deleted from the log staging directory.
Online log: The following message appears in the online log:

CDR: Deleted all staging files from log staging directory.

ER state: Active or deleted. Enterprise Replication deletes all files in the log
staging directory when they are no longer required. The log files are deleted
when any of the following occur:

Enterprise Replication is deleted on the local server.
After the cdr cleanstart command is run.
When the value of the LOG_STAGING_DIR configuration parameter is
changed (any log files that exist in the previous directory are also
deleted).
When Enterprise Replication is defined.

User action: If staged log files are being manually copied to high-availability
secondary server then delete all staged log files on the secondary servers.
See Transferring log files to a high-availability cluster secondary server when
using ER.

Class ID:

31

Event ID:

31001

Class message:
ER stable storage pager sbspace is full

Specific message:

CDR Pager: Paging File full: Waiting for additional
space in sbspace_name

4 This event runs in the foreground.
The grouper paging sbspace ran out of space.

ER state: Active and waiting for the space to be added to the sbspace name
specified in alarm-specific message.

User action: Add a chunk to the specified sbspace.

For information about preventing this situation, see Increasing the Sizes or
Numbers of Storage Spaces.

Class ID:

31

Event ID:

31002

Class message:
ER stable storage queue sbspace is full

Specific message:

CDR QUEUER: Send Queue space is FULL - waiting
for space in sbspace_name.

CDR QUEUER: Send Queue space is FULL - waiting
for space in CDR_QDATA_SBSPACE

4 This event runs in the foreground.
The storage space of a queue is full.

Online log: The specific message also appears in the online log.

ER state: Active and waiting for space to be added to the sbspace listed.

User action: Add a chunk to the specified sbspace. If the message specifies
CDR_QDATA_SBSPACE, add a chunk to one or more of the sbspaces specified
by the CDR_QDATA_SBSPACE configuration parameter.

For information about preventing this situation, see Recovering when Storage
Spaces Fill.

Class ID:

31

Event ID:

31003

Class message:
ER stable storage queue dbspace is full

Specific message:

CDR QUEUER: Send Queue space is FULL - waiting
for space in CDR_QHDR_DBSPACE..

4 This event runs in the foreground.
The storage space of a queue is full.

Online log: The specific message also appears in the online log.

ER state: Active and waiting for space to be added to the dbspace specified
by the CDR_DBSPACE configuration parameter.

User action: Add a chunk to the dbspace specified by the CDR_DBSPACE
configuration parameter.

For information about preventing this situation, see Recovering when Storage
Spaces Fill.

Class ID:

32

Event ID:

32002

Class message:
ER: error detected in grouper sub component

Specific message:

CDR Grouper Fanout thread is aborting.

4 The grouper fanout thread is quitting.
ER state: Enterprise Replication was shut down internally. Event alarm 47 is
also raised.

User action: Restart Enterprise Replication using the cdr start command.

Class ID:

32

Event ID:

32003

Class message:
ER: error detected in grouper sub component

Specific message:

CDR Grouper Evaluator thread is aborting.

4 The grouper evaluator thread is quitting.
ER state: Active and replicating transactions.

User action: Stop Enterprise Replication with the cdr stop command and
restart it using the cdr start command.

Class ID:

32

Event ID:

32004

Class message:
ER: error detected in grouper sub component

Specific message:

CDR: Could not copy transaction at log id
log_unique_id position log_position. Skipped.

4 The grouper subcomponent cannot copy the transaction into the send queue.
ER state: Active and replicating transactions.

User action: Shut down Enterprise Replication by running the cdr stop
command, clear the receive queue and restart replication by running the cdr
cleanstart command, and then synchronize the data by running the cdr
check replicateset command with the --repair option.

Part VI: Administering 1893

Class ID
and Event ID

Class and Specific Messages Severity Explanation

Class ID:

32

Event ID:

32005

Class message:
ER: error detected in grouper sub component

Specific message:

CDR: Paging error detected.

4 The grouper subcomponent detected a paging error.
ER state: Inactive.

User action: Restart Enterprise Replication by running the cdr start
command.

Class ID:

32

Event ID:

32006

Class message:
ER: error detected in grouper sub component

Specific message:

CDR Grouper: Local participant (participant_name)
stopped for the replicate replicate_name (or
exclusive replicate set), table
(database:owner.table). Data may be out of sync. If
replicated column definition was modified then
please perform the alter operation at all the
replicate participants, remaster the replicate
definition then restart the replicate (or exclusive
replicate set) definition for the local participant with
the data sync option (-S).

4 If the grouper subcomponent is not able to convert the replicated row data
from the local dictionary format to the master dictionary format, the grouper
stops the local participant from the corresponding replicate (or exclusive
replicate set) definition and invokes this event alarm.

Class ID:

32

Event ID:

32007

Class message:
ER: error detected in grouper sub component

Specific message:

CDR CDR_subcomponent_name: Could not apply
undo properly. SKIPPING TRANSACTION.

TX Begin Time: datetime

TX Restart Log Id: log_id

TX Restart Log Position: log_position

TX Commit Time: datetime

TX End Log Id: log_id

TX End Log Position: log_position

3 The grouper subcomponent did not roll back a transaction to a savepoint.
ER state: Active and replicating transactions.

User action: Run the cdr check replicateset command with the --repair
option to make sure that the data is consistent.

Class ID:

33

Event ID:

33001

Class message:
ER: error detected in data sync sub component

Specific message:

Received aborted transaction, no data to spool.

2 Data sync received a transaction that was aborted in the first buffer, so the
transaction cannot be spooled to an ATS or RIS file.
ER state: Active and replicating transactions.

User action: Run the cdr check replicateset command with the --repair
option to make sure that the data is consistent.

Class ID:

33

Event ID:

33002

Class message:
ER: error detected in data sync sub component

Specific message:

CDR DS thread_name thread is aborting.

4 The data sync thread is quitting.
ER state: Active and replicating transactions.

User action: Run the cdr check replicateset command with the --repair
option to make sure that the data is consistent.

Class ID:

33

Event ID:

33002

Class message:
ER: error detected in data sync sub component

Specific message:

Table in alter mode is blocking application of
transactions. Table: dbname:'owner'.tabname.

3 A table in alter mode is blocking the application of transactions. While the
table is in alter mode, Enterprise Replication cannot apply transactions that
involve this table or are in a referential relationship with this table. Enterprise
Replication also cannot apply subsequent transactions from the site where
the failed transaction originated.
User action: Run cdr alter --off dbname:owner.tabname.

Class ID:

34

Event ID:

34001

Class message:
ER: error detected in queue management sub
component

Specific message:

CDR CDR_subcomponent_name: bad replicate ID
replicate_id

3 This event runs in the foreground.
RQM cannot find the replicate in the global catalog for which it has a
transaction.

ER state: Active and replicating transactions.

User action: Run the cdr check replicateset command with the --repair
option to make sure that the data is consistent.

Class ID:

35

Event ID:

35001

Class message:
ER: error detected in global catalog sub component

Specific message:

CDR GC peer request failed: command:
command_string, error error_code, CDR server
CDR_server_ID

3 Execution of the control command requested by the peer server failed at the
local server.
ER state: Active and replicating transactions.

User action: Correct the problem identified by the error code. Make sure that
the replicate object is the same across all participating servers.

1894 Part VI: Administering

Class ID
and Event ID

Class and Specific Messages Severity Explanation

Class ID:

35

Event ID:

35002

Class message:

ER: error detected in global catalog sub component

Specific message:

CDR GC peer processing failed: command:
command_string, error error_code, CDR server
CDR_server_ID

3 Control command execution at the peer server failed.

ER state: Active and replicating transactions.

User action: Correct the problem identified by the error code. Make sure that
the replicate object is the same across all participating servers.

Class ID:

35

Event ID:

35004

Class message:
ER: error detected in global catalog sub component

Specific message:

CDR: Could not drop delete table. SQL code
sql_error_code, ISAM code isam_error_code. Table
'database:table'. Please drop the table manually.

3 The delete table was not dropped while the replicate was being deleted from
the local participant.
ER state: Active and replicating transactions.

User action: Manually drop the delete table.

Class ID:

36

Event ID:

36001

Class message:
ER: enterprise replication network interface sub
component notification

Specific message:

Enterprise Replication: Connection to
servergroupname closed. Reason: connection
request received from an unknown server.

3 Enterprise Replication received a reconnect connection request from an
unknown server.
ER state: Active.

User action: Check the connection requester server definition in the local
server. If the definition is not available on the local server, the remote server
definition was probably deleted on the local server by running the cdr delete
server command, but the cdr delete server command was not run on the
remote server. In this case, run the cdr delete server command on the
remote server and, if necessary, redefine the server.

Class ID:

37

Event ID:

37001

Class message:
ER: error detected while recovering Enterprise
Replication

Specific message:

CDR CDR_subcomponent_name: bad replicate ID
replicate_id

3 This event runs in the foreground; Enterprise Replication is blocked until this
issue is resolved.
ER state: Active and replicating transactions.

User action: If the replicate ID is still valid and exists in syscdr catalog
tables, run the cdr check replicateset command with the --repair option to
make sure that the data is consistent.

Class ID:

38

Event ID:

38001

Class message:
ER: resource allocation problem detected

Specific message:

CDR CDR_subcomponent_name memory allocation
failed (reason).

2 The specified Enterprise Replication component did not allocate memory.
ER state: Active.

User action: Perform these actions:

1. Correct the resource issue.
2. Stop replication by running the cdr stop command.
3. Restart replication by running the cdr start command.
4. Make sure that the data is consistent by running the cdr check

replicateset command with the --repair option.

Class ID:

39

Event ID:

39001

Class message:
Please notify IBM® Informix® Technical Support

Specific message:

Log corruption detected or read error occurred
while snooping logs.

4 A logical log is corrupted and cannot be processed by the log capture
component. Event alarm 47 is also raised in this situation.
Online log: The following message appears in the online log:

Log corruption detected while snooping logs,
logid=log_unique_id logpos=log_position.

ER state: Inactive.

User action: Clear the receive queue and restart replication by running the
cdr cleanstart command, and then synchronize the data by running the cdr
check replicateset command with the --repair option.

Class ID:

39

Event ID:

39002

Class message:
Please notify IBM Informix Technical Support

Specific message:

CDR: Unexpected log record type record_type for
subsystem subsystem passed to DDR.

4 A log record of unexpected type was passed to the log capture component.
ER state: Active and replicating transactions.

User action: Contact Software Support.

Part VI: Administering 1895

Class ID
and Event ID

Class and Specific Messages Severity Explanation

Class ID:

47

Event ID:

47001

Class message:
CDR is shutting down due to internal error: failure

Specific message:

CDR is shutting down due to internal error: Memory
allocation failed

4 Data sync threads encountered a memory allocation error while replaying
replicated transactions and replication is stopped.
Online Log: When the memory allocation error is discovered, the following
message appears in the online log:

CDR DS processes is aborting. Signaling CDR system to
shutdown as it is low on resources.

When Enterprise Replication is shutting down and the event alarm is being
raised, the following message appears in the online log:

CDR is shutting down due to internal error: Memory
allocation failed

ER State: No replicated transactions are lost while replication is stopped.

User Action: To resume replication, solve the memory issue and run the cdr
start command or shut down and restart the database server.

If the replay position was overrun while replication was stopped, event alarm
75 is raised.

Class ID:

47

Event ID:

47005

Class message:
CDR is shutting down due to internal error: failure

Specific message:

CDR is shutting down due to an internal error.

4 Enterprise Replication stopped.
ER state: Inactive.

User action: Try restarting Enterprise Replication using the cdr start
command. If replay position overrun is detected and the cdr start command
fails with error code 214 and raises alarm class ID 75, restart Enterprise
Replication using the cdr cleanstart command and synchronize the data.

Class ID:

47

Event ID:

47006

Class message:
CDR is shutting down due to internal error: log lag
state

Specific message:

CDR DDR: Shutting down ER to avoid a DDRBLOCK
situation.

4 Enterprise Replication stopped.
ER state: Inactive.

User action: If replay position overrun was detected then restart Enterprise
Replication using cdr cleanstart command and synchronize the data. If the
replay position was not overrun then restart Enterprise Replication using cdr
start command; there is no need to synchronize the data. If replay position
overrun is detected and the cdr start command fails with error code 214 and
raises alarm class ID 75, restart Enterprise Replication using the cdr
cleanstart command and synchronize the data.

Class ID:

48

Event ID:

48001

Class message:
ATS and/or RIS files spooled to disk.

Specific message:

file name|file name.

3 One or more failed transactions caused the generation of one or more ATS or
RIS files. The generated file names are listed in the specific message,
separated with a pipe (|) character.
ER State: Replication is continuing normally.

User Action: To process the failed transactions, run the cdr repair command
for each file, or run the cdr check replicateset command with the --repair
option.

Class ID:

49

Event ID:

49001

Class message:
A replication state change event has happened.

Specific message:

Enterprise Replication is started on server
server_name.

3 This event alarm is disabled by default.

The cdr start command was run.

Class ID:

50

Event ID:

50001

Class message:
A replication state change event has happened.

Specific message:

Enterprise Replication is stopped on server
server_name.

3 The cdr stop command was run.

Class ID:

51

Event ID:

51001

Class message:
A replication state change event has happened.

Specific message:

Enterprise Replication is suspended on server
server_name

.

3 This event alarm is disabled by default.

The cdr suspend server command was run.

Class ID:

52

Event ID:

52001

Class message:
A replication state change event has happened.

Specific message:

Enterprise Replication is resumed on server
server_name.

3 This event alarm is disabled by default.

The cdr resume server command was run.

1896 Part VI: Administering

Class ID
and Event ID

Class and Specific Messages Severity Explanation

Class ID:

53

Event ID:

53001

Class message:
A replication state change event has happened.

Specific message:

Server server_name is connected.

3 This event alarm is disabled by default.

The cdr connect server command was run.

Class ID:

54

Event ID:

54001

Class message:
A replication state change event has happened.

Specific message:

Server server_name is disconnected.

3 This event alarm is disabled by default.

The cdr disconnect server command was run.

Class ID:

55

Event ID:

55001

Class message:
A replication state change event has happened.

Specific message:

Replication is suspended on replicate
replicate_name on server server_name

.

3 This event alarm is disabled by default.

The cdr suspend replicate command was run.

Class ID:

56

Event ID:

56001

Class message:
A replication state change event has happened.

Specific message:

Replication is suspended on replicate set
replicateset_name on server server_name.

3 This event alarm is disabled by default.

The cdr suspend replicateset command was run.

Class ID:

57

Event ID:

57001

Class message:
A replication state change event has happened.

Specific message:

Replication is resumed on replicate replicate_name
on server server_name

.

3 This event alarm is disabled by default.

The cdr resume replicate command was run.

Class ID:

58

Event ID:

58001

Class message:
A replication state change event has happened.

Specific message:

Replication is resumed on replicate set
replicateset_name on server server_name.

3 This event alarm is disabled by default.

The cdr resume replicateset command was run.

Class ID:

59

Event ID:

59001

Class message:
A replication state change event has happened.

Specific message:

Replication is started on replicate replicate_name
on server server_name

.

3 This event alarm is disabled by default.

The cdr start replicate command was run.

Class ID:

60

Event ID:

60001

Class message:
A replication state change event has happened.

Specific message:

Replication is started on replicate set
replicateset_name on server server_name.

3 This event alarm is disabled by default.

The cdr start replicateset command was run.

Class ID:

61

Event ID:

61001

Class message:
A replication state change event has happened.

Specific message:

Replication is stopped on replicate replicate_name
on server server_name.

3 This event alarm is disabled by default.

The cdr stop replicate command was run.

Class ID:

62

Event ID:

62001

Class message:
A replication state change event has happened.

Specific message:

Replication is stopped on replicate set
replicateset_name on server server_name.

3 This event alarm is disabled by default.

The cdr stop replicateset command was run.

Part VI: Administering 1897

Class ID
and Event ID

Class and Specific Messages Severity Explanation

Class ID:

63

Event ID:

63001

Class message:
A replication state change event has happened.

Specific message:

Replication attribute is modified on replicate
replicate_name on server server_name

.

3 This event alarm is disabled by default.

The cdr modify replicate command was run.

Class ID:

64

Event ID:

64001

Class message:
A replication state change event has happened.

Specific message:

Replication attribute is modified on replicate set
replicateset_name on server server_name.

3 This event alarm is disabled by default.

The cdr modify replicateset command was run.

Class ID:

65

Event ID:

65001

Class message:
A replication state change event has happened.

Specific message:

Change in replicate replicate_name on server
server_name: operation action, node[s]
participant_name.

3 This event alarm is disabled by default.

The cdr change replicate command was run to add or delete one or more
participants.

Class ID:

66

Event ID:

66001

Class message:
A replication state change event has happened.

Specific message:

Change in replicateset replicateset_name on server
server_name: operation action, member[s]
replicate_name.

3 This event alarm is disabled by default.

The cdr change replicateset command was run to add or delete one or more
replicates.

Class ID:

67

Event ID:

67001

Class message:
A replication state change event has happened.

Specific message:

Server server_name is deleted.

3 This event alarm is disabled by default.

The cdr delete server command was run.

Class ID:

68

Event ID:

68001

Class message:
A replication state change event has happened.

Specific message:

Replicate replicate_name is deleted on server
server_name.

3 This event alarm is disabled by default.

The cdr delete replicate command was run.

Class ID:

69

Event ID:

69001

Class message:
A replication state change event has happened.

Specific message:

Replicate set replicateset_name is deleted on
server server_name.

3 This event alarm is disabled by default.

The cdr delete replicateset command was run.

Class ID:

70

Event ID:

70001

Class message:
A replication state change event has happened.

Specific message:

Server server_name is modified.

3 This event alarm is disabled by default.

The cdr modify server command was run.

1898 Part VI: Administering

Class ID
and Event ID

Class and Specific Messages Severity Explanation

Class ID:

71

Event ID:

71001

Class message:
ER: Network connection disconnected.

Specific message:

Network connection was dropped from the server
server_name to the server server_name. Connection
closed due to an Enterprise Replication
administrative activity.

3 The connection was closed as the result of an Enterprise Replication
command, such as cdr stop, cdr disconnect server, or cdr delete server.
This event alarm appears on the database server on which the command was
run and might or might not appear on the peer server. The peer server might
receive event alarm 71 with the specific message that the connection closed
for an unknown reason because the administrative control message might
not reach the peer server before the connection is closed.

Online Log: A message appears stating: CDR connection to server
lost, with the server ID, server name, and that an administrative command
was run.

ER State: How replication is affected and how to reestablish the connection
depends on which command closed the connection.

If the cdr stop command was run, replicated transactions are no
longer being captured from this database server.
If the cdr disconnect server command was run, replicated
transactions continue to be captured and queued.
If the cdr delete server command was run, the database server is no
longer a participant in the replication domain and no replicated data is
captured on or for this database server.

User Action: Solve the issue that prompted the running of the administrative
command and reestablish the connection between the servers.

Class ID:

71

Event ID:

71002

Class message:
ER: Network connection disconnected.

Specific message:

Network connection was dropped from the server
server_name to the server server_name. Connection
closed due to the idle time-out set for the
replication server.

3 An idle timeout occurs when there are no replication messages sent between
the replication servers for the number of seconds specified as the idle
timeout period. The connection is reestablished automatically when
replication messages are ready to be sent.
This event alarm appears on both database servers affected by the dropped
connection.

Online Log: A message appears stating: CDR connection to server
lost, with the server ID, server name, and the reason of idle timeout.

ER State: Replication continues normally.

User Action: None. Replication resumes automatically.

You can increase or eliminate the idle timeout period by using the cdr modify
server command.

Class ID:

71

Event ID:

71003

Class message:
ER: Network connection disconnected.

Specific message:

Network connection was dropped from the server
server_name to the server server_name. Connection
unexpectedly closed for an unknown reason.

3 This event alarm occurs when there is a connection problem not related to
Enterprise Replication, such as a network outage or one of the database
servers shutting down.
This event alarm might appear on both database servers affected by the
dropped connection. This alarm does not appear on a database server that
shut down. This alarm might appear when a peer server closed the
connection with an administrative activity, in which case that server receives
event alarm 71 with the specific message that an administrative activity
closed the connection.

Online Log: A message appears stating: CDR connection to server
lost, with the server ID, server name.

ER State: Replicated transactions continue to be captured and queued,
except on database servers that are shut down. Replicated transactions to
and from the affected servers are not transmitted.

User Action: Examine both servers to determine the cause of the dropped
connection.

If there was a network problem, solve it and restart any database
servers that might be shut down. The Enterprise Replication
connection reconnects automatically.
If there was an administrative action, solve the issue that prompted
the running of the administrative command and reestablish the
connection between the servers.

Part VI: Administering 1899

Class ID
and Event ID

Class and Specific Messages Severity Explanation

Class ID:

73

Event ID:

73001

Class message:
Enterprise replication NIF connection terminated.

Specific message:

Enterprise Replication: Connection to server_name
closed. Reason: CDR server server_name not found.

3 The remote server initiated a connection request that was not completed by
the local server.
This alarm appears when the remote server has an sqlhosts entry for the
local server, but the local server does not have a corresponding sqlhosts
entry for the remote server.

This situation can occur when a new server is added to the domain but the
local server does not have an entry for that server in its sqlhosts file.

Online Log: The specific message also appears in the online log.

ER State: The new server cannot participate in replication until the sqlhosts
entries are correct. Replication between the established replication servers
continues normally.

User Action: To solve this issue, update the sqlhosts entry on the local server
with the appropriate entry for the remote server. Make sure that all the
sqlhosts files are consistent on all replication servers in domain.

Class ID:

74

Event ID:

74001

Class message:
Enterprise replication recovery failed

Specific message:

Server name/id mismatch in sqlhosts file while
recovery, recovered name = server_name, id = ID,
current name = server_name, id = ID

3 The server information in the sqlhosts file was updated after the server was
defined for replication.
This alarm can appear after the following sequence of events:

1. Replication is stopped on a server because the cdr stop command
was run or the server was shut down.

2. The sqlhosts file was updated.
3. Replication was attempted to be restarted by running the cdr start

command or by starting the server.

Online Log: The specific message also appears in the online log.

ER State: Replication is stopped on this server.

User Action: Update the sqlhosts file to restore the original server
information and then restart replication by running the cdr start command or
restarting the database server.

Class ID:

75

Event ID:

75001

Class message:
ER: the logical log replay position is not valid.
Restart ER with the cdr cleanstart command, and
then synchronize the data with the cdr check --
repair command.

Specific message:

The replay position (logical log ID log_number and
log position log_position) has been overwritten.

4 This event alarm occurs if a database server was shut down or replication
was stopped for long enough to fill a logical log. When the database server
was restarted or the cdr start command was run, replication failed.
Online Log: The specific message also appears in the online log.

ER State: Replication is stopped on this server.

User Action: Clear the receive queue and restart replication by running the
cdr cleanstart command and then synchronize the data by running the cdr
check replicateset command with the --repair option.

Class ID:

75

Event ID:

75002

Class message:
ER: the logical log replay position is not valid.
Restart ER with the cdr cleanstart command, and
then synchronize the data with the cdr check --
repair command.

Specific message:

The replay position (logical log ID log_number and
log position log_position) is later than the current
position.

4 This event alarm can occur after a point in time restore was performed on the
database server. The point in time restore applied log records beyond the
current replay position.

Online Log: The specific message also appears in the online log.

ER State: Replication is stopped on this server.

User Action: Clear the receive queue and restart replication by running the
cdr cleanstart command and then synchronize the data by running the cdr
check replicateset command with the --repair option.

Class ID:

76

Event ID:

76001

Class message:
A replication state change event has happened.

Specific message:

Server server_name is disabled.

3 This event alarm is disabled by default.
The cdr disable server command was run.

Class ID:

77

Event ID:

77001

Class message:
A replication state change event has happened.

Specific message:

Server server_name is enabled.

3 This event alarm is disabled by default.
The cdr enable server command or the cdr check replicateset command
with the --enable option was run.

Enabling or Disabling Enterprise Replication Event Alarms
 You can control which Enterprise Replication event alarms can be raised.

Related concepts:
 Monitor and troubleshooting Enterprise Replication

Related reference:
 cdr delete replicate

cdr delete replicateset

1900 Part VI: Administering

cdr delete server
cdr change replicate
cdr change replicateset
cdr connect server
cdr start
cdr stop
cdr suspend server
cdr resume server
cdr delete template
cdr suspend replicate
cdr suspend replicateset
cdr resume replicate
cdr resume replicateset
cdr start replicate
cdr start replicateset
cdr stop replicate
cdr stop replicateset
cdr modify replicate
cdr modify replicateset
cdr modify server

Copyright© 2020 HCL Technologies Limited

Enabling or Disabling Enterprise Replication Event Alarms

You can control which Enterprise Replication event alarms can be raised.

By default, Enterprise Replication event alarms are enabled, except most of the state change event alarms that are raised by specific cdr commands. You might want to
enable state change event alarms to track which cdr commands are being run, but if you are setting up your replication system and running many cdr commands, the
resulting large number of event alarms might affect system performance.

To change which Enterprise Replication event alarms are enabled, reset the values of the CDR_ENV configuration parameter for the CDR_ALARMS environment variable:

1. Add a new line or update the existing line for CDR_ENV CDR_ALARMS in the onconfig file. List all the Enterprise Replication event alarms that you want to be
enabled.

2. Restart the database server.

Example
The following example shows the CDR_ENV value in the onconfig file for the CDR_ALARMS environment variable with event alarm 49 enabled in addition to the default
event alarms:

CDR_ENV CDR_ALARMS=30-39,47-50,71,73-75

Related reference:
 CDR_ALARMS Environment Variable

CDR_ENV Configuration Parameter

Copyright© 2020 HCL Technologies Limited

Push data feature

Push data feature lets clients register for changes in a dataset using simple SELECT statements and WHERE clauses. Once the server captures data for push data event
conditions which evaluates to true for WHERE clause condition, the server pushes committed data to the client, based on registered events. Scaling is achieved by clients
not having to poll for data, and not having to parse, prepare, and execute SQL queries. Database servers with parallel architecture – Enterprise Replication log snooper and
grouper -- feed the data to all clients by asynchronously reading logical log file changes. This design lets client applications scale linearly without adding significant
overhead to the database server or any OLTP applications making changes to the database. Data that is returned to the client is in a developer-friendly JSON format.

Table 1. . JSON attributes for registering new event conditions:

Input attribute
name Description

table Table name to be registered

owner Table owner

database Database name

query SELECT statement including projection list and WHERE clause to register for changes in a data set.

label User defined string to be returned along with an event document. This attribute is useful to differentiate between events when more than one push-
data event is registered within the same session

Part VI: Administering 1901

https://www.hcltech.com/
https://www.hcltech.com/

Input attribute
name Description

timeout The amount of time a client is blocked in the smartblob read API for an event data. The server returns timeout json document when a timeout
condition is triggered.

Supported range of values are:

-1 to wait forever

>=0 to wait for a specified amount of time in seconds.

commit_time Returns event data that is committed after the stated transaction commit time.

txnid A unique 8 byte ID:

Higher order 4 bytes: commit work log ID
Lower order 4 bytes: commit work log position

max_pending_o
ps

Maximum number of event records to be kept in the pending session .

maxrecs Maximum number of records to be returned by the smartblob API read call.

Grant replication permission on sysadmin database for the user registering push data events:

execute function task('grant admin', 'user1', 'replication');

Register client as a push data session by using the sysadmin task command:

execute function informix.task('pushdata open')

The above command registers the client as a push-data session, and returns a unique session ID. This ID is needed for reading event documents using the smartblob
readAPI.

This command also auto-registers enterprise replication, when it has not been defined earlier.

To internally define enterprise replication automatically, the pushdata open command relies on the existence of at least one storagepool entry to create the dbspace and
subspace required for defining enterprise replication. You must create a storagepool entry using the task API.

For example:

Execute function task('storagepool add', '/informix/storage', '0', '0', '20000', '1');

Registering one or more push data event conditions using the sysadmin task command:

execute function informix.task('pushdata register', {table:"creditcardtxns",owner:"informix",database:"creditdb",query:"select
uid, cardid,
 carddata from creditcardtxns where carddata.Amount::int >= 100",label:"card txn alert"})

Registering session-specific attributes, like timeout, using the pushdata register task command:

execute function informix.task('pushdata register', { timeout:"60",max_pending_ops:"0",maxrecs:"1"})

De-registering one or more registered event conditions using the pushdata deregister command:

To de-register one or more event conditions for the given table:
execute function informix.task('pushdata deregister', {table:"usertable",owner:"informix",database:"ycsb”})

To de-register all event conditions with the same label attribute tag:

execute function informix.task('pushdata deregister', { label:"card txns"})

Note: To deregister a specific event condition, either use the label attribute, or specify a query attribute, along with the table, owner and database attributes.
API to read event data:
The client must invoke the smartblob read API to read an event data. Input for the smartblob read API must include:

The session ID returned from running the pushdata open task command.
The input buffer pointer
The input buffer size—this should be at least equal to the sum of the before image size, the after image size, and 1024 bytes. If multiple records are expected from
one read call, then the input buffer size should be equal to the sum of the before image size, the after image size, and 1024, multiplied by the number of records.
The error code pointer.

ESQLC READ API Example:

/*
 * Read data into the buffer
 */
 bytesread = ifx_lo_read(sessionid, databuf, bytes_per_read, &loreaderr);

Table 2. . Event data JSON attributes

Attribute name Description

operation Operation type: Insert/Delete/Update

table Table name

owner Table owner

1902 Part VI: Administering

Attribute name Description

database Database name

label Optional user-specified data for the event condition

txnid 8 byte unique ID:

higher order 4 bytes: commit work log ID
lower order 4 bytes: commit work log position.

operation_owner
_id

User id of the user executing the IUD operation.

operation_sessi
on_id

Session id of the session executing the IUD operation

commit_time Transaction commit time for the event data.

op_num Increasing sequence number for the event document within a given transaction. If the transaction generates 10 events, then each document returned
will have an incremental op_num value, starting from 1 to 10.

restart_logid Restart (replay) position logical log unique id. This position may be used to reset Enterprise replication capture position upon server failure using ‘
"pushdata reset_capture’ ADMIN/TASK API.

restart_logpos Restart (replay) position logical log position within the given log unique id. This position may be used to reset Enterprise replication capture position
upon server failure using ‘ "pushdata reset_capture’ ADMIN/TASK API.

rowdata Row data in JSON document format. Data is returned using the column name as key and the column data as value.

before_rowdata Before row data for an Update operation.

ifx_isTimeout Document with this attribute is returned with its value set to true if no event gets triggered within the timeout interval that is specified by the client.

ifx_warn_total_s
kipcount

A warning document with this attribute is returned, containing the cumulative number of events that are discarded, from exceeding the
max_pending_ops attribute threshold.

Sample output from the smartblob read API for an Insert operation:

{“operation”:"insert",”table”:"creditcardtxns",”owner”:"informix",
”database”:"creditdb",”label”:"card txn alert",”txnid”:2250573177224,”operation_owner_id”:201,”operation_session_id”:200,
”commit_time”:1488243530,”op_num”:1,”restart_logid”:31,”restart_logpos”:24,”rowdata”:{“uid”:22,
”cardid”:"6666-6666-6666-6666",”carddata”:{"Merchant":"Sams Club","Amount":200,"Date":2017-05-01T10:35:10.000Z } }}

Sample output from the smartblob read API for Update operation:

{“opertion”:"update",table:"creditcardtxns",”owner”:"informix",”database
”:"creditdb",”label”:"card txn alert",”txnid”:2250573308360, ”operation_owner_id”:201,”operation_session_id”:205,
”commit_time”:1488243832,”op_num”:1,”restart_logid”:31,”restart_logpos”:24,”rowdata”:{uid:21,cardid:"7777-7777-7777-7777",
”carddata”:{"Merchant":"Sams Club","Amount":200,"Date":"25-Jan-2017 16:15"} },”before_rowdata”:{“uid”:21,
”cardid”:"6666-6666-6666-6666",”carddata”:{"Merchant":"Sams Club","Amount":200,"Date":2017-05-01T10:35:10.000Z } }}

Sample output from the smartblob read API for Delete operation:

{“opertion”:"delete",”table”:"creditcardtxns",”owner”:"informix",”database”:"creditdb",”label”:"card txn alert",
”txnid”:2250573287760,”operation_owner_id”:201,
”operation_session_id”:209,”commit_time”:1488243797,”op_num”:1,”restart_logid”:31,”restart_logpos”:24,
”rowdata”:{“uid”:22,”cardid”:"6666-6666-6666-6666",”carddata”:{"Merchant":"Sams Club","Amount":200,"Date":2017-05-
01T13:35:06.000Z } }}

Sample output from the smartblob read API for a multi-row buffer, when the maxrecs input attribute is set to greater than 1:

{[
{“operation”:"insert",”table”:"creditcardtxns",”owner”:"informix",”database”:"creditdb",”label”:"card txn alert",
“txnid”:2250573309999, ,”operation_owner_id”:201,”operation_session_id”:212,”commit_time”:1487781325,”op_num”:1,
”rowdata”:{uid:"7",”cardid”:"6666-6666-6666-6666",”carddata”:{"Merchant":"Sams Club","Amount":200,"Date":2017-05-
01T15:10:10.000Z } }},
{“operation”:"insert",table:"creditcardtxns",”owner”:"informix",”database”:"creditdb",”label”:"card txn
alert",”txnid”:2250573177224,
”operation_owner_id”:201,”operation_session_id”:215,”commit_time”:1488243530,”op_num”:1,”restart_logid”:31,”restart_logpos”:24,
”rowdata”:{“uid”:22,”cardid”:"6666-6666-6666-6666",”carddata”:{"Merchant":"Sams Club","Amount":200,"Date":2017-05-
01T16:20:10.000Z } }}
]}

Using the sample pushdata ESQL/C program
You can run the pushdata ESQL/C program to safely preview the process of registering event triggers with your Informix server, to retrieve event data in JSON format.

The program file, pushdata.ec, can be found in the $INFORMIXDIR/demo/cdc folder of your Informix installation folder.

Push data session survival
 Detach trigger

Copyright© 2020 HCL Technologies Limited

Push data session survival

By default, if client gets disconnected from server, server deletes push-data event conditions for the session, and server no longer capture the event data. The following
APIs allow server to capture the event data for the push-data client if client is temporarily disconnected from the server.

Part VI: Administering 1903

https://www.hcltech.com/

Detachable sessions can survive from server failure. Client can re-attach to detachable sessions after bouncing the server or after primary server failover operation in a
cluster environment with secondary servers. After bouncing server, it is possible for the pushdata client to get duplicate records. Client need to save last received record
txnid and op_num and discard the processed records. restart_logid and restart_logpos are added to INSER, UPDATE and DELETE records returned to the push data
sessions. After server failover or upon restarting Informix server, client can re-attach to the detached session and reset Enterprise replication capture position back to
restart_logid and restart_logpos using ‘pushdata reset_capture’ sysadmin task/admin API.

Sample record for Insert operation:

{"operation":"insert","table":"t1","owner":"informix","database":"testdb","txnid":133151498608,
"operation_owner_id":37188,"operation_session_id":67,"commit_time":1568823415,"op_num":4,"restart_logid":31,
"restart_logpos":24,"rowdata":{"c1":4001,"c2":4001 }}

To mark a session as a detachable session:

execute function informix.task('pushdata setdetach') into :retvalstr;

This API returns unique session id.
Optional command to recapture data from a previous log position after bouncing server or primary server failover operation:

execute function admin("pushdata reset_capture", '{"logid”:”%d”, "logpos”:”%d”}’);

This command API stops Enterprise Replication(ER) and restarts ER with the given log position set to replay position. This API impacts all pushdata sessions and
existing replicate definitions in Enterprise Replication.

Note: Care must be taken to set logical log unique id and position to the last known restart_logid and restart_logpos returned to push data session.
restart_logid and restart_logpos are added to INSERT, UPDATE and DELETE records returned to the push data sessions. After server failover or upon restarting
Informix server, user can attach back to the detached session and reset Enterprise replication capture position back to restart_logid and restart_logpos.
To re-join a detached session after reconnecting to server:

execute function informix.task('pushdata join', "{session_id:"245"}) into :retvalstr;

Returns smartblob file descriptor to read event data. Unique session id returned from 'pushdata setdetach' API is used as input to 'pushdata join' API. 'pushdata
join' returns smartblob file descriptor -- same as 'pushdata open'.
Note: 'pushdata open' and 'pushdata join' APIs should not be called in the same session.
'pushdata open' is used to establish new push-data session, and 'pushdata join' API is used to join existing detached push-data session.
To delete "detachable" push-data session information from the server:

To delete currently attached push-data session:

execute function informix.task('pushdata delete') into :retvalstr;

This is only required if the push-data session is marked as a detachable session using API 'pushdata setdetach'.
To delete a specific unique session id currently not attached to any client application:

execute function task('pushdata delete', '{session_id:"12"}') ;

To delete all push-data sessions that are not attached to any client applications:

execute function task('pushdata delete', '{delete_all:"1"}');

Copyright© 2020 HCL Technologies Limited

Detach trigger

Using the detach trigger methods in IfmxThreadedSmartTrigger, you can declare a Smart Trigger to be 'detachable'. A detachable trigger has an unique identifier which
allows you to reconnect to the session on the server.

/* Detach a trigger */
IfxSmartTrigger push = new IfxSmartTrigger("jdbc-url-here");
push.detachable(true); //Set the trigger as detachable
push.open();
String session1 = push.getDetachableSessionID(); //Get the session id
//Closes the JDBC connection and returns the session ID
//This is the same session id as you get from the call above
Session1 = push.detach();

On detaching from the session, you can create a new Smart Trigger object and pass in the session ID.

push = new IfxSmartTrigger(“jdbc-url-here”);
//Assign the session ID before you start the smart trigger
push.sessionID(sessionID);
TestPushCallback callback1 = new TestPushCallback();
push.registerCallback("test-label-pushtest", callback1);
push.start();
//You pick up where you left off, retrieving any messages you missed from the server

Copyright© 2020 HCL Technologies Limited

Loopback Replication

You can setup replication between tables within the same Informix server with loopback replication. Source and target tables can be in the same database or on two
different databases within the same server.

This section discusses the intended audience and the associated software products that you must have to use Enterprise Replication.

1904 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Loopback Configuration
Replication definition between primary and pseudo groups

Copyright© 2020 HCL Technologies Limited

Loopback Configuration

To setup loopback replication, define pseudo ER group in SQLHOSTS, and define new service within DBSERVERALIAS other than the one used for primary ER group name.
Service name added for loopback pseudo group should appear after service name used for primary Enterprise Replication group.

SQLHOSTS file example:

g_er_server group - - i=1
er_server onsoctcp *myhost 17001 g=g_er_server
g_loopback group - - i=2
loopback onsoctcp *myhost 17002 g= g_loopback

DBSERVERALIAS example:

DBSERVERALIAS er_server,loopback

where g_er_server is the primary group name for the local server, g_loopback is the pseudo ER group name for the local server.

Copyright© 2020 HCL Technologies Limited

Replication definition between primary and pseudo groups

Replicate is defined only using primary->target configuration, and replication definition should include only primary group and pseudo group participants.

Note: Only ignore and always apply conflict resolutions rules are supported for loopback replication.

$ cdr define repl --connect=g_er_server test_t1 --conflict=always --scope=row --ats --ris --floatieee --master=g_er_server
"P test@g_er_server:informix.t1" "select * from t1" "R test@g_loopback:informix.t2" "select * from t2"

In the above replicate definition is established between table t1 and table2 in test database on the same server
All ER commands including ‘cdr sync’, ‘cdr check’, template commands work with pseudo group. The only restriction is that pseudo ER group cannot be added to grid
definition, and grid commands are not supported with pseudo ER group.

Template example
Template can be used to define replication across multiple tables from two different databases.

$ cdr define template --connect=g_er_server ifxt_test_test --conflict=always --scope=row --ats --ris --floatieee --
master=g_er_server --database=test --all
$ cdr realize template --connect=g_er_server ifxt_test_test "test@g_er_server"
$ cdr realize template --connect=g_loopback ifxt_test_test --target "test2@g_loopback"

The above commands define replication between tables in test and test2 databases on the same server
‘cdr list replicate’ command show ‘loopback’ replication attribute

REPLICATE: rep1
STATE: Active ON:g_informix
CONFLICT: Always Apply
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: ycsb:informix.usertable
OPTIONS: row,ris,ats,fullrow,loopback
REPLID: 65537 / 0x10001
REPLMODE: PRIMARY ON:g_informix
APPLY-AS: INFORMIX ON:g_informix
REPLTYPE: Master

Sample procedure to reorg table online
1. Create RAW table with appropriate fragmentation strategy

Note: Create standard table if you have secondary servers.
2. Initial data load -- Unload and load data from old table to new table
3. Create indexes
4. Convert table type to “standard"
5. Define replication and repair data using ‘cdr check --repair’ command

Note: Define replicate with --name=n option, if you plan to rename table while replication is still active.
6. Use rename table DDL or synonym to point applications to new table
7. Drop replicate once queues are empty

Sample procedure for online migration of database codeset
1. Create new database with target codeset and schema
2. Unload data from old database using appropriate CLIENT and DB locales, and load data into new database use CLIENT_LOCALE set to unloaded data codeset

format, and DB_LOCALE set to target database codeset

Part VI: Administering 1905

https://www.hcltech.com/
https://www.hcltech.com/

3. Define replication using –utf8 option and execute data re-synchronization task using cdr check –repair or cdr sync replset commands
4. Use rename database DDL to point applications to new database

Copyright© 2020 HCL Technologies Limited

Appendixes

The cdr utility
 You use the cdr utility to configure and control Enterprise Replication from the command line on your UNIX or Windows operating system.

Enterprise Replication configuration parameter and environment variable reference
 You can use configuration parameters and environment variables to configure the behavior of Enterprise Replication.

Grid routines
 Grid routines are used to create and maintain the grid and to administer servers in the grid by propagating commands from a source server to all other servers in the

grid.
Enterprise Replication routines

 Enterprise Replication routines used to control if a replicated transaction is recaptured.
onstat -g commands for Enterprise Replication
You can monitor and debug Enterprise Replication activity using onstat -g commands.
syscdr Tables

 These tables in the syscdr database contain progress information about consistency checking and synchronization operations.
SMI Tables for Enterprise Replication Reference

 The system-monitoring interface (SMI) tables in the sysmaster database provide information about the state of the database server. Enterprise Replication uses
the following SMI tables.
Replication Examples

 This appendix contains simple examples of replication using the command-line utility (CLU).
Data sync warning and error messages

 Data sync warning and error messages describe problems with replicated transactions.

Copyright© 2020 HCL Technologies Limited

The cdr utility

You use the cdr utility to configure and control Enterprise Replication from the command line on your UNIX or Windows operating system.

You must be the Enterprise Replication server administrator to run any of the cdr commands except the cdr list commands, unless otherwise noted.

The cdr utility requires a certain amount of memory resources. If you encounter out-of-memory errors for cdr commands, your operating system limits on memory use
might be set too low. For example, you can run the ulimit command in a UNIX environment to configure limits on memory resources. Increase the values for memory
resources to avoid out-of-memory errors.

You can run cdr commands from within SQL statements by using the SQL administration API. Most cdr commands that perform actions are supported by the SQL
administration API; cdr commands that show information are not supported.

Interpret the cdr utility syntax
 The cdr utility uses specific terminology and conventions.

cdr add onconfig
 The cdr add onconfig command adds one or more values to a configuration parameter in the ONCONFIG file.

cdr alter
 The cdr alter command puts the specified tables in alter mode.

cdr autoconfig serv
 The cdr autoconfig serv command can autoconfigure connectivity for servers in a high-availability cluster or Enterprise Replication domain, and can automatically

configure replication.
cdr change grid

 The cdr change grid command adds or deletes replication servers to or from a grid.
cdr change gridtable

 The cdr change gridtable command has multiple uses. It can verify that specific tables can be used in gird queries and then add the tables to a list of verified
tables, and it can delete tables from the list of verified tables.
cdr change onconfig

 The cdr change onconfig command replaces the existing value of a configuration parameter with a new value in the ONCONFIG file.
cdr change replicate

 The cdr change replicate command modifies an existing replicate by adding or deleting one or more participants.
cdr change replicateset

 The cdr change replicateset command changes a replicate set by adding or deleting replicates.
cdr change shardCollection

 The cdr change shardCollection command changes the sharding definition that determines which database servers are part of the shard cluster.
cdr check catalog

 The cdr check catalog command compares the metadata information related to servers, replicates and replicate sets on replication servers for any inconsistency.
cdr check queue

 Use the cdr check queue command to check the consistency of Enterprise Replication metadata, and to check the consistency of user data before running critical
tasks in the Enterprise Replication domain. The command returns successfully when all of the commands that were queued when cdr check queue was run are
complete.
cdr check replicate

 The cdr check replicate command compares the data on replication servers to create a report that lists data inconsistencies and can optionally repair the
inconsistent data within a replicate.

1906 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

cdr check replicateset
The cdr check replicateset command compares the data on replication servers to create a report listing data inconsistencies. Optionally you can use the command
to repair the inconsistent data within a replicate.
cdr check sec2er
The cdr check sec2er command determines whether a high availability cluster can be converted to replication servers.
cdr cleanstart
The cdr cleanstart command starts an Enterprise Replication server with empty queues.
cdr connect server
The cdr connect server command reestablishes a connection to a database server that has been disconnected with a cdr disconnect server command.
cdr define grid
The cdr define grid command creates a named grid of replication servers to simply administration.
cdr define qod
The cdr define qod command defines a master server for monitoring the quality of data (QOD) for replication servers.
cdr define region
The cdr define region command creates a region that contains a subset of the servers in a grid.
cdr define replicate
The cdr define replicate command defines a replicate on the specified replication servers.
cdr define replicateset
The cdr define replicateset command defines a replicate set on all the servers that are included as participants in the replicates. A replicate set is a collection of
several replicates to be managed together.
cdr define server
The cdr define server command defines a replication server in an Enterprise Replication domain. You can add a replication server to an existing domain or create a
new domain.
cdr define shardCollection
The cdr define shardCollection command creates a sharding definition for distributing a table or collection across multiple shard servers.
cdr define template
The cdr define template command creates a template for replicates and a replicate set.
cdr delete grid
The cdr delete grid command deletes the specified grid.
cdr delete region
The cdr delete region command deletes a region from a grid.
cdr delete replicate
The cdr delete replicate command deletes a replicate.
cdr delete replicateset
The cdr delete replicateset command deletes an exclusive or non-exclusive replicate set from the global catalog.
cdr delete server
The cdr delete server disables a database server from participating in Enterprise Replication.
cdr delete shardCollection
The cdr delete shardCollection command deletes a sharding definition, and then stops data sharding.
cdr delete template
The cdr delete template command deletes a template from the replication domain. It also deletes any underlying replicate sets associated with the template
(these will exist if the template has been realized). No replicates are deleted.
cdr disable grid
The cdr disable grid command removes the authorization to run grid routines from users or servers.
cdr disable server
The cdr disable server command disables replication on a server.
cdr disconnect server
The cdr disconnect server command stops a server connection.
cdr enable grid
The cdr enable grid command authorizes users to run commands on the grid and designates servers from which grid commands can be run.
cdr enable server
The cdr enable server command enables replication on a replication server that was disabled by the cdr disable server command.
cdr error
The cdr error command manages the syscdrerror table and provides convenient displays of errors.
cdr finderr
The cdr finderr command looks up a specific Enterprise Replication return code and displays the corresponding error text.
cdr list grid
The cdr list grid command shows information about a grid.
cdr list replicate
The cdr list replicate command displays information about the replicates on the current server.
cdr list replicateset
The cdr list replicateset command displays information about the replication sets defined on the current server.
cdr list server
The cdr list server command displays a list of the Enterprise Replication servers that are visible to the server on which the command is run.
cdr list shardCollection
The cdr list shardCollection command displays the sharding definition for all database servers in a shard cluster.
cdr list catalog
The cdr list catalog command lists the commands that created the specified replication objects.
cdr list template
The cdr list template command displays information about the templates on the server on which the command is run.
cdr migrate server
The cdr migrate server command automates data migration task between two or more servers. This command also automates setting up of Enterprise Replication
between two Informix server instances.
cdr modify grid
The cdr modify grid command modifies grid attributes.
cdr modify replicate
The cdr modify replicate command modifies replicate attributes.
cdr modify replicateset
The cdr modify replicateset command modifies all the replicates in a replicate set.

Part VI: Administering 1907

cdr modify server
The cdr modify server command modifies the Enterprise Replication attributes of a database server.
cdr realize template
The cdr realize template command creates the replicates, replicate set, and participant tables as specified in a template, and then synchronizes data on all or a
subset of the database servers within the replication domain.
cdr remaster
The cdr remaster command changes the SELECT clause or the server from which to base the master replicate definition of an existing master replicate. This
command can also convert a classic (non-master) replicate to a master replicate.
cdr remaster gridtable
The cdr remaster gridtable command validates tables in a grid after an alter operation.
cdr remaster replicateset
The cdr remaster replicateset command updates the definitions of the set of replicates whose participants were changed by ALTER operations.
cdr remove onconfig
The cdr remove onconfig command removes the specified value from a configuration parameter in the ONCONFIG file.
cdr repair
The cdr repair command synchronizes data based on ATS or RIS files.
cdr reset qod
The cdr reset qod command resets failed-transaction counts for replicates on replicate servers. Connection Manager service-level agreements (SLA) that contains
a FAILURE or LATENCY redirection policy use failed-transaction counts to determine where to route client requests.
cdr resume replicate
The cdr resume replicate command resumes delivery of replication data.
cdr resume replicateset
The cdr resume replicateset command resumes delivery of replication data for all the replicates in a replicate set.
cdr resume server
The cdr resume server command resumes delivery of replication data to a suspended database server.
cdr start
The cdr start command starts Enterprise Replication processing.
cdr start qod
The cdr start qod command starts quality of data (QOD) monitoring for replication servers.
cdr start replicate
The cdr start replicate command starts the capture and transmittal of replication transactions.
cdr start replicateset
The cdr start replicateset command starts the capture and transmittal of replication transactions for all the replicates in a replicate set.
cdr start sec2er
The cdr start sec2er command converts a high availability cluster to replication servers.
cdr stats rqm
The cdr stats rqm command displays information about the reliable queue manager (RQM) queues used for Enterprise Replication.
cdr stats recv
The cdr stats recv command displays receiver parallelism statistics and latency statistics by source node.
cdr stats check
The cdr stats check command displays the progress of a consistency check that specified a progress report task name.
cdr stats sync
The cdr stats sync command displays the progress of a synchronization operation that specified a progress report task name.
cdr stop
The cdr stop command stops replication on the server to which you are connected without shutting down the database server.
cdr stop qod
The cdr stop qod command stops quality of data (QOD) monitoring for replication servers.
cdr stop replicate
The cdr stop replicate command stops the capture, transmittal, and reception of transactions for replication.
cdr stop replicateset
The cdr stop replicateset command stops capture and transmittal transactions for all the replicates in a replicate set.
cdr suspend replicate
The cdr suspend replicate command suspends delivery of replication data.
cdr suspend replicateset
The cdr suspend replicateset command suspends delivery of replication data for all the replicates in a replicate set.
cdr suspend server
The cdr suspend server command suspends the delivery of replication data to a database server from either a specified list of database servers or from all
database servers in the domain.
cdr swap shadow
The cdr swap shadow command switches a replicate with its shadow replicate during manual remastering.
cdr sync replicate
The cdr sync replicate command synchronizes data among replication servers to repair inconsistent data within a replicate.
cdr sync replicateset
ASDF The cdr sync replicateset command synchronizes data among replication servers to repair inconsistent data within a replicate set.
cdr -V
The cdr -V command displays the version of Informix® that is currently running.
cdr view
The cdr view command shows information about every Enterprise Replication server in the domain.

Related tasks:
 Repairing Failed Transactions with ATS and RIS Files

Related information:
 cdr argument: Administer Enterprise Replication (SQL administration API)

Copyright© 2020 HCL Technologies Limited

Interpret the cdr utility syntax

1908 Part VI: Administering

https://www.hcltech.com/

The cdr utility uses specific terminology and conventions.

Each cdr command follows the same approximate format, with the following components:

Command and its variation
The command specifies the action that is taken.

Options
The options modify the action of the command. Each option starts with a minus (-) or a double-minus (--).

Target
The target specifies the Enterprise Replication object that is acted upon.

Other objects
Other objects specify objects that are affected by the change to the target.

If you enter an incorrect cdr command at the command-line prompt, the database server returns a usage message that summarizes the cdr commands. For a more
detailed usage message, enter cdr variation -h. For example, cdr list server -h.

Command Abbreviations
 For most commands, each of the words that make up a cdr command variation can be abbreviated to three or more characters.

Option Abbreviations
 Each option for a cdr command has a long form and a short form. You can use either form, and you can mix long and short forms within a single command.

Option Order
 You can specify the options of the cdr commands in any order. Some of the syntax diagrams show the options in a specific order because it makes the diagram

easier to read.
Long Command-Line Examples

 The examples in this guide use the convention of a backslash (\) to indicate that a long command line continues on the next line.
Long Identifiers

 Identifier names used in cdr commands follow the guidelines of SQL syntax.
Connect Option

 Most cdr commands allow a connect option to specify the database server to connect to for performing the command.
Participant and participant modifier

 A participant defines the data (database, table, and columns) to be replicated on a specific database server. You can choose whether to allow the participant to both
send and receive replicated data, or to only receive or only send replicated data. You can choose to check for table owner permissions when applying operations. By
default, permissions are not checked. The participant modifier is a restricted SELECT statement that specifies the rows and columns that are replicated.
Return Codes for the cdr Utility

 If a cdr command encounters an error, the database server returns an error message and a return code value.
Frequency Options

 You can specify the interval between replications or the time of day when replication occurs for a replicate.

Related concepts:
 Enterprise Replication Server administrator

Copyright© 2020 HCL Technologies Limited

Command Abbreviations

For most commands, each of the words that make up a cdr command variation can be abbreviated to three or more characters.

For example, the following commands are all equivalent:

cdr define replicate
cdr define repl
cdr def rep

The exceptions to this rule are the replicateset commands, which can be abbreviated to replset. For example, the following commands are equivalent:

cdr define replicateset
cdr def replset

Command abbreviations are not allowed when you run cdr commands within SQL statements using the SQL administration API. For more information, see the IBM®
Informix® Administrator's Reference.

Related concepts:
 Option Abbreviations

Option Order
Long Command-Line Examples
Long Identifiers
Connect Option
Return Codes for the cdr Utility
Frequency Options
Related reference:

 Participant and participant modifier

Copyright© 2020 HCL Technologies Limited

Option Abbreviations

Part VI: Administering 1909

https://www.hcltech.com/
https://www.hcltech.com/

Each option for a cdr command has a long form and a short form. You can use either form, and you can mix long and short forms within a single command.

On UNIX, a long form example might look like:

cdr define server --connect=ohio --idle=500 \
 --ats=/cdr/ats --initial utah

On WINDOWS, the same long form example would look like:

cdr define server --connect=ohio --idle=500 \
 --ats=D:\cdr\ats --initial utah

Using short forms, you can write the previous examples as follows:

UNIX:

cdr def ser -c ohio -i 500 -A /cdr/ats -I utah

WINDOWS:

cdr def ser -c ohio -i 500 -A D:\cdr\ats -I utah

The long form is always preceded by a double minus (--). Most (but not all) long forms require an equal sign (=) between the option and its argument. The short form is
preceded by a single minus (-) and is usually the first letter of the long form. The short form never requires an equal sign. However, sometimes the short form is capitalized
and sometimes it is not. To find the correct syntax for the short form, check the table that accompanies each command variation.
Tip: Use the long forms of options to increase readability.
With the exception of the keyword transaction, all keywords (or letter combinations) that modify the command options must be written as shown in the syntax diagrams.
For example, in the Conflict Options, the option conflict can be abbreviated, but the keyword ignore cannot be abbreviated. Both of the following forms are correct:

--conflict=ignore
-C ignore

Related concepts:
 Command Abbreviations

Option Order
Long Command-Line Examples
Long Identifiers
Connect Option
Return Codes for the cdr Utility
Frequency Options
Related reference:

 Participant and participant modifier

Copyright© 2020 HCL Technologies Limited

Option Order

You can specify the options of the cdr commands in any order. Some of the syntax diagrams show the options in a specific order because it makes the diagram easier to
read.

Do not repeat any options. The following fragment is incorrect because -c appears twice. In most cases, if you duplicate an option you will receive an error. However, if no
error is given, the database server uses the last instance of the option. In the following example, the database server uses the value -c utah:

-c ohio -i 500 -c utah

Tip: For ease of maintenance, always use the same order for your options.
Related concepts:

 Command Abbreviations
Option Abbreviations
Long Command-Line Examples
Long Identifiers
Connect Option
Return Codes for the cdr Utility
Frequency Options
Related reference:

 Participant and participant modifier

Copyright© 2020 HCL Technologies Limited

Long Command-Line Examples

The examples in this guide use the convention of a backslash (\) to indicate that a long command line continues on the next line.

The following two commands are equivalent. The first command is too long to fit on a single line, so it is continued on the next line. The second example, which uses short
forms for the options, fits on one line.

On UNIX, the command line might look like:

cdr define server --connect=katmandu --idle=500 \
 --ats=/cdrfiles/ats

1910 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

cdr def ser -c katmandu -i 500 -A /cdrfiles/ats

On Windows, these command lines might look like:

cdr define server --connect=honolulu --idle=500 \
 --ats=D:\cdrfiles\ats

cdr def ser -c honolulu -i 500 -A D:\cdr\ats

For information on how to manage long lines at your command prompt, check your operating system documentation.

Related concepts:
 Command Abbreviations

Option Abbreviations
Option Order
Long Identifiers
Connect Option
Return Codes for the cdr Utility
Frequency Options
Related reference:

 Participant and participant modifier

Copyright© 2020 HCL Technologies Limited

Long Identifiers

Identifier names used in cdr commands follow the guidelines of SQL syntax.

Identifiers are the names of objects, such as database servers, databases, columns, replicates, replicate sets, and so on, that Informix® and Enterprise Replication use.

An identifier is a character string that must start with a letter or an underscore. The remaining characters can be letters, numbers, or underscores. On IBM® Informix, all
identifiers, including replicates and replicate sets, can be 128 bytes long. However, if you have any database servers in your replication environment that are an earlier
version, you must follow the length restrictions for that version.

For more information about identifiers, see the IBM Informix Guide to SQL: Syntax.

The length of a path and file name, such as the names of ATS files, can be 256 bytes.

User login IDs can be a maximum of 32 bytes. The owner of a table is derived from a user ID and is thus limited to 32 bytes.

Related concepts:
 Command Abbreviations

Option Abbreviations
Option Order
Long Command-Line Examples
Connect Option
Return Codes for the cdr Utility
Frequency Options
Related reference:

 Participant and participant modifier

Copyright© 2020 HCL Technologies Limited

Connect Option

Most cdr commands allow a connect option to specify the database server to connect to for performing the command.

The --connect option causes the command to use the global catalog that is on the specified server. If you do not specify this option, the connection defaults to the
database server specified by the INFORMIXSERVER environment variable.

Connect Option

|--+- -c -server-------------+----------------------------------|
 +- --connect=server-------+
 +- -c -server_group-------+
 '- --connect=server_group-'

Element Purpose Restrictions Syntax

server Name of the database server to connect to The name must be the name of a database server or
server connection.

Long Identifiers

server_group Name of the database server group that includes
the database server to connect to

The name must be the name of an existing database
server group.

Long Identifiers

You must use the --connect option when you add a database server to your replication environment with the cdr define server command.

You might use the --connect option if the database server to which you would normally attach is unavailable.

Part VI: Administering 1911

https://www.hcltech.com/
https://www.hcltech.com/

If your replication domain contains database servers that are running different server versions, cdr commands must connect to the server running the latest version of
IBM® Informix®. If you are connected to a database server running an older version of IBM Informix, you cannot run a cdr command on a database server running a later
version of IBM Informix.

If the database server uses trusted connections between replication servers by including the s=6 option in the sqlhosts entries, you configure a regular connection to an
alias of the server for the cdr utility to use. In a trusted connection environment, the cdr utility can only connect to the local replication server.

Related concepts:
 Command Abbreviations

Option Abbreviations
Option Order
Long Command-Line Examples
Long Identifiers
Return Codes for the cdr Utility
Frequency Options
Enterprise Replication Terminology
Creating sqlhost group entries for replication servers
Related tasks:

 Connect to another replication server
Configuring secure ports for connections between replication servers
Related reference:

 Participant and participant modifier
Related information:

 The onpassword utility

Copyright© 2020 HCL Technologies Limited

Participant and participant modifier

A participant defines the data (database, table, and columns) to be replicated on a specific database server. You can choose whether to allow the participant to both send
and receive replicated data, or to only receive or only send replicated data. You can choose to check for table owner permissions when applying operations. By default,
permissions are not checked. The participant modifier is a restricted SELECT statement that specifies the rows and columns that are replicated.

Syntax

Participant

 .-P-. .-I-.
|--"-+---+-+---+-database@server_group:owner.table-"------------|
 +-R-+ '-O-'
 '-S-'

Participant Modifier

 .-,----------.
 V |
|--"SELECT--+-----column---+-+--FROM--table--WHERE_Clause"------|
 '-*--------------'

Element Purpose Restrictions Syntax

column Name of a column in the table that is specified by
the participant.
The replication key columns must be included.

The column must exist. Long Identifiers

database Name of the database that includes the table to
be replicated.

The database server must be registered with
Enterprise Replication.

Long Identifiers

owner User ID of the owner of the table to be replicated. Long Identifiers

server_group Name of the database server group that includes
the server to connect to.

The database server group name must be the name
of an existing Enterprise Replication server group in
the sqlhosts information and must be used only
once in the same replicate.

Long Identifiers

table Name of the table to be replicated. Must be the
same table name in the participant and
participant modifier.

The table must be an actual table. It cannot be a
synonym or a view.

Long Identifiers

WHERE_Clause Clause that specifies a subset of table rows to be
replicated.

Can include opaque user-defined types that are
always stored in row.
Cannot contain a column of a TimeSeries data type.

WHERE Clause of SELECT

The following table describes the participant options.

Option Meaning

I Default. Disables the table-owner option (O).

1912 Part VI: Administering

https://www.hcltech.com/

Option Meaning

O Enables permission checks for table owner that is specified in the participant to be applied to the operation (such as INSERT or
UPDATE) that is to be replicated and to all actions fired by any triggers. When the O option is omitted, all operations are run with
the privileges of user informix or the server owner.

On UNIX, if a trigger requires any system-level commands (as specified by the system() command in an SPL statement), the
system-level commands are run as the table owner, if the participant includes the O option.

On Windows, if a trigger requires any system-level commands, the system-level commands are run as a less privileged user
because you cannot impersonate another user without having the password, whether the participant includes the O option.

P For primary-target replicates, specifies that the participant is a primary participant, which both sends and receives replicated
data.
Do not use for an update-anywhere replicate. Enterprise Replication defines all the participant as primary in an update-anywhere
replication system.

R For primary-target replicates, specifies that the participant is a receive-only target participant, which only receives data from
primary participants.

S For primary-target replicates, specifies that the participant is a send-only primary participant, which only sends data to target
participants.
You cannot use this option for replicates that include TimeSeries columns.

Usage
Each participant in a replicate must specify a different database server. The participant definition includes the following information:

Database in which the table is located
Table name
Table owner
Participant type
Participant modifier with a SELECT statement

You must include the server group, database, table owner, and table name when you define a participant, and enclose the entire participant definition in quotation marks.

If you use a SELECT * FROM table_name statement, the tables must be identical on all database servers that are defined for the replicate, unless you implement a data
consolidation system by defining one server to receive data and several other servers that only send data.

Restriction: Do not create more than one replicate definition for each row and column combination to replicate. If the participant overlaps, Enterprise Replication attempts
to insert duplicate values during replication.
You can define participants with the following commands:

cdr define replicate
cdr modify replicate
cdr change replicate
cdr define template

The following restrictions apply to a SELECT statement that is used as a participant modifier:

The statement cannot include a join or a subquery.
The statement cannot run operations on the selected columns.
The statement cannot exceed 15 000 ASCII characters in length.
For tables that have TimeSeries columns, all columns must be included.

Replicate only between like data types. For example, do not replicate between the following combinations of data types:

CHAR(40) to CHAR(20)
INT to FLOAT

You can replicate between the following types with caution:

SERIAL and INT
BYTE and TEXT
BLOB and CLOB

Note: The ERKEY shadow columns are not included in the participant definition if you use SELECT * in your participant modifier. To include the ERKEY shadow columns in
the participant definition, use the --erkey option with the cdr define replicate, cdr change replicate, or cdr remaster commands.

Example 1: Defining update-anywhere participants
If you do not specify the participant type, Enterprise Replication defines the participant as update-anywhere by default. For example:

“db1@g_hawaii:informix.mfct” “select * from mfct” \
“db2@g_maui:informix.mfct” “select * from mfct”

Example 2: Defining a primary server
For example, in the following participant definition, the P indicates that in this replicate, hawaii is a primary server:

“P db1@g_hawaii:informix.mfct” “select * from mfct”

If any data in the selected columns changes, that changed data is sent to the secondary servers.

Part VI: Administering 1913

Example 3: Defining a server that only receives data
In the following example, the R indicates that in this replicate, maui is a server that only receives data:

“R db2@g_maui:informix.mfct” “select * from mfct”

The specified table and columns receive information that is sent from the primary server. Changes to those columns on maui are not replicated.

Example 4: Defining a data consolidation system with servers that only send data
To implement a data consolidation system, you can define one server to receive and consolidate the data and configure several other servers that only send data. In the
following example, the S options indicate that the rome, tokyo, perth, and ny servers can only send data:

"db0@london:user.world_sales" "select * from world_sales"\
"S db1@rome:user1.sales_rome" "select * from sales_rome"\
"S db2@tokyo:user2.sales_tokyo" "select * from sales_tokyo"\
"S db3@perth:user3.sales_perth" "select * from sales_perth"\
"S db4@ny:user4.sales_ny" "select * from sales_ny"\

The central server, london, is a standard replication server without restrictions on sending or receiving data.

Related concepts:
 Command Abbreviations

Option Abbreviations
Option Order
Long Command-Line Examples
Long Identifiers
Connect Option
Return Codes for the cdr Utility
Frequency Options
Primary-Target Replication System
Participant definitions
Data consolidation
Primary-Target Data Dissemination
Related reference:

 cdr define replicate
cdr modify replicate
cdr change replicate
cdr define template
cdr swap shadow

Copyright© 2020 HCL Technologies Limited

Return Codes for the cdr Utility

If a cdr command encounters an error, the database server returns an error message and a return code value.

The message briefly describes the error. For information about interpreting the return code, use the cdr finderr command.

The following table lists the return codes.

Table 1. Return codes for the cdr utility

Return code Error text Explanation

0 Command successful.

1 A connection does not yet exist for the
given server.

A replication server involved in the command is not connected to the server that is running the command.
This error code can be returned when a cdr sync or cdr check task cannot switch connections between task
participants.

User action: Establish connections between all necessary replication servers and rerun the command.

3 Table column undefined. A column name listed in the SELECT statement of the replicate participant definition is not found in the
table dictionary.
This error code can be returned if a shadow column name is included in the SELECT statement of the
replicate definition.

User action: Correct the SELECT statement of the participant definition.

4 Incompatible server version. A cdr command originating on a database server running an older version of attempted to run on a database
server running a later version of .
User action: Run the command from the replication server running the most recent version of .

1914 Part VI: Administering

https://www.hcltech.com/

Return code Error text Explanation

5 Unable to connect to server specified. A replication server involved in the command is not available for one of the following reasons:

The server disconnected from the domain.
Replication is no longer active on the server.
The server is offline.
The --connect option was not used and the INFORMIXDIR environment variable for the current
server is not set.

This error code can be returned if one of the cdr sync or cdr check task participants cannot be accessed or
if a task participant became inactive or went offline while a sync or check task is in progress.

This error code can be returned if the user running the cdr define replicate or cdr change replicate
command does not have Connect privilege on the database specified for the replicated table.

User action: Check the status of all participating servers and rerun the command when all servers are
active.

6 Database does not exist. The database name specified for the replicate in the command does not exist.
User action: Verify the spelling of the database names and that they exist on each participant and rerun the
command.

This error code can be returned if the cdr view command is run and the sysadmin database does not exist.

7 Database not logged. The database specified for the replicate in the command is a non-logging database. Replicated databases
must be logged.
User action: Change the database logging mode to buffered logging and rerun the command.

8 Invalid or mismatched frequency
attributes.

The value for the --at or --every option is not within the range of valid values or is formatted incorrectly.
User action: Rerun the command with valid and correctly formatted frequency values.

9 A connection already exists for the given
server.

This error code can be returned if the cdr connect server command is run for a server that already has an
active connection.

10 Invalid replicate set state change. The replicate set specified in the command is not in the appropriate state for the command. This error code
is returned in the following situations:

The cdr stop replicateset command is run but all replicates in the replicate set are not active.
The cdr start replicateset command is run but all replicates in the replicate set are already active.
The cdr suspend replicateset command is run but all replicates in the replicate set are not active.
The cdr resume replicateset command is run but all replicates in the replicate set are already active.

User action: Run the cdr list replicateset and cdr list replicate commands to see the status of each
replicate.

11 Undefined replicate set. The specified replicate set does not exist or the replicate set is empty. The replicate set name might be
incorrectly specified in the command.
User action: Rerun the command with the correct replicate set name, or add replicates to the replicate set
and then rerun the command.

12 Replicate set name already in use. The replicate set name specified in the command is already being used. Replicate set names must be
unique in the domain.
User action: Run the cdr list replicateset command to view a list of replicate set names and then rerun the
original command with a different replicate set name.

13 Invalid idle time specification. The value for the --idle option is not within the range of valid values or is formatted incorrectly.
User action: Rerun the command with a valid and correctly formatted value.

14 Invalid operator or specifier. Both the --ignoredel y and the deletewins options were used in the same command. These options cannot
be used together.
User action: Rerun the command with only one of these options.

15 Invalid length. The ATS or RIS directory path specified in the command exceeds 256 characters.
This error can be returned if the server group name exceeds 127 characters.

User action: Rerun the command with a shorter directory path or server group name.

16 Replicate is not a member of the
replicate set.

The replicate specified to be deleted from the replicate set is not a member of the replicate set.
User action: Run the cdr list replicateset command for the replicate set to view a list of replicates in the
replicate set and then rerun the original command with the correct replicate name.

17 Participants required for operation
specified.

One or more of the participants necessary for this command were not specified.
This error code is returned if the sync source server or the target server is not defined as a participant for
the cdr sync or cdr check task. This error code is also returned if the target participant list is empty.

User action: Rerun the command with the required participants.

18 Table does not contain primary key. The table specified in the command does not have a replication key.
This error is returned if the cdr sync or cdr check task cannot find the replication key for the table being
repaired.

User action: Add a primary key constraint or the ERKEY shadow columns to the table and rerun the
command. If you have another unique index on the replicated table, you can specify to use the columns in
that index as the replication key when you define the replicate.

Part VI: Administering 1915

Return code Error text Explanation

19 Table does not exist. The table owner name specified in the command is not correct.
This error is also returned if the table owner name is not specified for a table in an ANSI database.

User action: Rerun the command with the correct table owner name.

20 Server already participating in replicate. The participant specified in the command is already a participant in the replicate.

21 Command timed out The command timed out while waiting for queue monitoring to complete.
User action: Check the server and connection status using the cdr list server command and, if needed,
rerun the command and specify a longer timeout period.

22 Primary key not contained in select
clause.

The replicate participant SELECT statement did not include the replication key columns.
User action: Rerun the command including the replication key columns in the participant SELECT
statement.

25 Replicate already participating in a
replicate set.

The replicate specified to be added to the replicate set is already a member of the replicate set.
User action: Run the cdr list replicateset command to view a list of replicates in the replicate set.

26 Replicate set operation not permitted on
replicate.

The replicate specified to be deleted from the replicate set does not have a valid name.
User action: Run the cdr list replicateset command to view a list of replicates in the replicate set and then
rerun the original command with the correct replicate name.

28 Replicate name already in use. The replicate name specified in the command is already being used. Replicate names must be unique in the
domain.
User action: Run the cdr list replicate command to view a list of replicate names and then rerun the
original command with a different replicate name.

29 Table does not exist . The table name specified in the command does not exist.
User action: Rerun the command with an existing table name.

30 Invalid replicate state change. The replicate specified in the command is not in the appropriate state for the command. This error code is
returned in the following situations:

The cdr stop replicate command is run but the replicate is not active.
The cdr start replicate command is run but the replicate is already active.
The cdr suspend replicate command is run but the replicate is not active.
The cdr resume replicate command is run but the replicate is already active.

User action: Run the cdr list replicate command to see the status of the replicate.

31 Undefined replicate. The replicate name cannot be found in Enterprise Replication catalog tables. The name of the replicate
might be incorrectly specified in the command.
User action: Rerun the command with the correct replicate name.

32 sbspace specified for the send/receive
queue does not exist

The CDR_QDATA_SBSPACE configuration parameter is not set to a valid sbspace name.
User action: Set the CDR_QDATA_SBSPACE configuration parameter to a valid sbspace name in the
onconfig file.

33 Server not participant in
replicate/replicate set.

The server name specified in the command is not a participant in the replicate or replicate set.
This error is returned if a server name is not valid.

User action: To see a list of all participants for each replicate, query the syscdrpart view in the sysmaster
database.

35 Server not defined in sqlhosts. The server group name specified in the command is not defined in the sqlhosts file specified by the
INFORMIXSQLHOSTS environment variable.
User action: Check the sqlhosts file for the correct spelling of the server group name, or, if necessary,
update the sqlhosts file to add the server group, and then rerun the original command.

37 Undefined server. The target participant cannot be found in the Enterprise Replication catalog tables. The name of the server
might be incorrectly specified in the command.
User action: Rerun the command with the correct server name.

38 SPL routine does not exist. The SPL routine specified with the --conflict option does not exist on one or more participants.
User action: Make sure that the SPL routine exists on all participants and rerun the command.

39 Invalid select syntax. The SELECT statement included in the command is not valid or is missing from the command.
User action: Rerun the command with the correct SELECT statement.

40 Unsupported SQL syntax (join, etc.). The SELECT statement contains syntax that is not supported for replicate participants. Syntax such as
subqueries in the WHERE clause or selecting from multiple tables with a JOIN clause is not supported.
User action: Rerun the command with the correct SELECT statement.

41 GLS files required for data conversion
are not installed.

The GLS files required for data conversion to or from UTF-8 are not installed.
Code set conversion files are installed with the Client SDK and are in the $INFORMIXDIR/gls/cv9 directory.

42 Invalid time range. The time range does not have valid values or is formatted incorrectly.
User action: Rerun the command with a valid and correctly formatted time range.

43 Participants required for specified
operation.

The command did not include the required participant information.
User action: Rerun the command with participant information.

44 Invalid name syntax. The name of a replicate or server in the command is not valid, for example, the name might be too long.
User action: Rerun the command with a valid name.

45 Invalid participant. The participant syntax is not valid.
User action: Rerun the command with a valid participant syntax.

1916 Part VI: Administering

Return code Error text Explanation

47 Invalid server. A connection between the current server and the specified server is not allowed. This error code is returned
if a server attempts to connect to a leaf server that has a different parent server.
This error code is also returned if the server specified in the cdr repair command does not exist in the
Enterprise Replication catalog.

48 Out of memory. Enterprise Replication cannot allocate enough memory for this command.

49 Maximum number of replicates
exceeded.

The maximum number of replicates that can be defined from a particular server is exceeded.
User action: Rerun the command while connected to a peer replication server.

52 Server name already in use. A replication server with this group ID exists.
User action: Run the cdr list server command to see a list of all replication server names and group IDs

53 Duplicate server or replicate. A replication server or replicate name is listed more than once in the command.
This error code is returned if the sync source server is also specified as a sync target server or if the same
server is listed multiple times as a sync target participant.

This error code is returned if the same group name is defined more than once in the sqlhosts file.

User action: Rerun the command specifying each server and replicate one time.

54 Invalid conflict rule specified. The conflict resolution rule is not correctly specified.
This error code is returned for the cdr define replicate or cdr modify replicate command under the
following circumstances:

A stored procedure is specified as the conflict resolution rule but the table has user-defined data
types or collection data types.
A secondary conflict resolution rule is specified that is not a stored procedure conflict resolution rule.
A secondary conflict resolution rule is specified but the primary conflict resolution rule is not time
stamp or delete wins.

This error code is returned if the --timestamp option is used in a cdr check command and the replicate
specified in the command does not use the time stamp or the delete wins conflict resolution rule. This error
code is also returned when the cdr check command includes the --deletewins option but the specified
replicate does not use the delete wins conflict resolution rule.

User action: Correct the conflict resolution rule issue and rerun the command.

55 Resolution scope not specified. The conflict resolution scope (row or transaction) is required for ER to resolve conflicts between replicated
transactions. Scope is not required if the conflict resolution rule is ignore, in which case ER does not
attempt to resolve conflicts.
User action: Rerun the command with a conflict resolution scope.

56 Shadow columns do not exist for table. A conflict resolution rule requires the cdrtime and cdrserver shadow columns but those columns do not
exist in the replicated table.
User action: Alter the replicated table to add the shadow columns by using the ADD CRCOLS clause and
rerun the original command.

57 Error creating delete table. The delete table corresponding to the replicated table was not created.
User action: Check the server message log file for additional error messages.

58 No conflict resolution rule specified. A conflict resolution rule was not specified in the command.
User action: Rerun the command with the --conflict option to specify a conflict resolution rule.

61 User does not have permission to issue
command.

The user running this command does not have the DBSA privilege at one of the participants in the
command.
User action: Acquire the DBSA privilege on all participants and rerun the command, or rerun the command
as a user that has the DBSA privilege at all participants.

62 Enterprise Replication not active. The command cannot run because Enterprise Replication is not active on the server.
User action: Run the cdr list server command to see the status of the server.

63 Enterprise Replication already active. The command cannot make Enterprise Replication active because ER is already active on the server.
User action: Run the cdr list server command to see the status of the server.

64 Remote/cyclic synchronization not
allowed.

The command to define a replication server was attempted on a remote server.
User action: Rerun the command on the server that is being defined.

65 Server identifier already in use. The server group ID is not unique.
User action: Rerun the command with a unique server group ID.

66 No upper time for prune error. The ending date value for the error pruning range was not specified.
User action: Rerun the command with a valid ending date.

67 Error not found for delete or update. The error sequence number does not exist in the errors table.
User action: Run the cdr error command to see a list of error sequence numbers and then rerun the
command with an existing number.

68 Invalid participant mode. The participant type value is not valid.
User action: Rerun the command with a valid participant type.

69 Conflict mode for replicate not ignore or
always apply.

One or more replicate participants specified in the command is defined as receive-only and must use a
conflict resolution rule of ignore or always.
User action: Rerun the command with the --conflict option set to ignore or always.

70 Connect/disconnect to/from same
server.

The command attempted to connect the local server to itself.
User action: Rerun the command with a different server name.

Part VI: Administering 1917

Return code Error text Explanation

72 Cannot delete server with children. The command did not delete the hub server because the hub server still has child servers.
User action: Delete the child servers and then delete the hub server.

75 Request denied on limited server. The command is not allowed on leaf servers. It is also not allowed on replication servers that are disabled.
User action: If the server is in disabled mode, wait until the server is active and rerun the command.

77 Could not drop the Enterprise
Replication database.

The syscdr database was not deleted because a client is accessing it.
User action: Wait for the client to unlock the syscdr database and then rerun the command. If necessary,
use the --force option to drop the syscdr database if Enterprise Replication was partially deleted.

78 Invalid ATS directory. The ATS directory path specified in the command was not valid for one of the following reasons:

The path does not exist.
The path is not a directory.
The path is /dev/null (UNIX) or NUL (Windows).

User action: Rerun the command with a valid ATS directory path.

79 Invalid RIS directory. The RIS directory path specified in the command was not valid for one of the following reasons:

The path does not exist.
The path is not a directory.
The path is /dev/null (UNIX) or NUL (Windows).

User action: Rerun the command with a valid RIS directory path.

80 Invalid conflict resolution change. The conflict resolution rule of a replicate cannot be changed to ignore or from ignore.

84 No sync server. A synchronization server must be specified if the replication server being defined is a non-root or leaf
server. The first server in a replication domain must be a root server.
User action: Rerun the command with the --sync option.

85 Incorrect participant flags. The participant type or owner option included in the command was not valid.
User action: Rerun the command with valid participant options.

86 Conflicting leaf server flags. The --nonroot and --leaf options cannot be used together.
User action: Rerun the command with only one of the options.

90 CDR connection to server lost, id
group_id, name groupname. Reason:
System clocks off by %d seconds.

The system clock times on the servers differ by more than 900 seconds.

91 Invalid server state change. The server is already in the state indicated by the command.
This error code can be returned if the cdr suspend server command is run on a server that is suspended or
if the cdr resume server command is run on a server that is active.

User action: Run the cdr list server command to see the status of the server.

92 CDR is already defined. Enterprise Replication is already defined on this server.

93 Enterprise Replication is currently
initializing.

Enterprise Replication cannot be stopped on the server because replication is in the process of being
initialized.
User action: Run the cdr list server command to see the status of the server. Rerun the command when
replication is active.

94 Enterprise Replication is currently
shutting down.

Enterprise Replication cannot be stopped on the server because replication is already in the process of
being stopped.
User action: Run the cdr list server command to see the status of the server. If necessary, rerun the
command.

99 Invalid options or arguments passed to
command.

One or more of the options included with this command are not valid options.
User action: Rerun the command with valid options.

100 Fatal server error. The command was not completed because of an unrecoverable error condition.

101 This feature of Enterprise Replication is
not yet supported.

One of the participants included with this command is running a version of that does not support this
command.
User action: Rerun the command with valid options.

102 Root server cannot sync with non root or
leaf servers.

The synchronization server must be a root server. The --sync option cannot specify a non-root or leaf server.
User action: Rerun the command specifying a root server with the --sync option.

103 Invalid server to connect. A non-root server can connect only to its parent or children servers.
User action: Rerun the command specifying to connect to the parent or a child server.

105 UDR needed for replication was not
found.

A user-defined type listed in the SELECT statement of the participant definition does not have one or more
of the streamread(), streamwrite(), or compare() support routines.
User action: Create the required routines for the user-defined type and rerun the command.

106 Setup necessary for UDR invocation
could not be completed.

The set-up process necessary to run the streamread(), streamwrite(), or compare() routine for a user-
defined type included in the participant definition failed.
User action: Check to be sure that the required routines for the user-defined type exist. Create them if
necessary and rerun the command.

107 Sbspace specified for the send/receive
queue does not exist.

The sbspace specified for the CDR_QDATA_SBSPACE configuration parameter is not a valid name or does
not exist.
User action: Correct the value of the CDR_QDATA_SBSPACE configuration parameter or create the sbspace
and rerun the command.

1918 Part VI: Administering

Return code Error text Explanation

110 Data types with out of row or multi-
representational data are not allowed in
a replicate where clause.

A replicate participant WHERE clause cannot include a data type that has out-of-row data, such as, a
collection data type, a user-defined type, or a large object type.
User action: Remove the column with out-of-row data from the participant WHERE clause and rerun the
command.

111 Cannot have Full Rows off and use
stored procedure conflict resolution.

The stored procedure conflict resolution rule requires full row replication.
User action: Rerun the command without the --fullrow=n option.

112 The replicate set command could only
be partially executed. Please run cdr list
replset ReplSetName to check results.

The command was successful on some, but not all, of the replicates in the replicate set.
User action: Run the cdr list replicate command to see the status of each replicate and run the appropriate
command on each of the remaining replicates.

113 Exclusive Replset violation. The specified replicate is a member of an exclusive replicate set, which requires this operation to be
performed for the replicate set instead of for individual replicates.
User action: Run the equivalent command for the replicate set.

115 The syscdr database is missing. The syscdr database cannot be opened.
User action: Check server message log file for any additional error messages.

If you received this error code after running the cdr delete server --force command, no action is required
on the server being deleted. Run the cdr delete server command to delete that server on all peer
replication servers in the domain.

If you receive this error after running the cdr start command, make sure that Enterprise Replication is
defined on the local server, and if necessary, define it by running the cdr define server command.

116 Dbspace indicated by CDR_DBSPACE is
invalid.

The dbspace specified as the value of the CDR_DBSPACE configuration parameter does not exist.
User action: Correct the value of the CDR_DBSPACE configuration parameter or create the dbspace and
rerun the command.

117 Enterprise Replication operation
attempted on HDR secondary server.

Enterprise Replication commands are not valid on high-availability secondary servers.
User action: Rerun the command on a high-availability primary server.

118 SQLHOSTS file has multiple entries
either at group ID or group name.

There are multiple group definitions for the same group name in the sqlhosts file.
User action: Update the sqlhosts file to make all group entries unique.

119 SQLHOSTS file has a problem with (g=)
or (i=) option.

The group name specified in the command is not found in the sqlhosts file.
User action: Rerun the command with a valid group name or update the sqlhosts file and then rerun the
command.

120 Cannot execute this command while ER
is active.

Enterprise Replication cannot be deleted on this server because replication is still active.
User action: Run the cdr stop command and then rerun the cdr delete server --force command.

121 Master participant not found. The replication server that is specified as the master server in the command does not exist or is not a
participant in the specified replicate.
User action: Rerun the command with the correct master server name.

122 Attempt to perform invalid operation
including shadow replicates.

The replicate specified in the command has shadow replicates, which prevent the command from
completing.
User action: Run the cdr list replicate command to see shadow replicate information. Wait for the shadow
replicate to be deleted and then rerun the original command. If you are deleting the replicate, delete the
shadow replicate and then rerun the original command.

123 Attempt to include an invalid participant
in a shadow replicate.

The command attempted to add a participant to a shadow replicate that does not exist in the primary
replicate.
User action: Rerun the command with a valid participant.

124 Invalid command passed to cdrcmd
function.

An argument that is not valid was passed to an internal routine.
User action: Contact Software Support.

125 An error occurred concerning a mastered
replicate.

The server specified as the master server in the command is not included as a participant in the replicate.
This error code is returned if the mastered dictionary verification fails when adding a participant to a
mastered replicate.

This error code is returned if Enterprise Replication encounters an internal error during master replicate
definition.

User action: Rerun the command with the master server included in the participant list or check the table
dictionary.

126 Invalid template participant. The same table name was specified more than once in the cdr define template command, or a participant
name in the cdr realize template command is not valid.
User action: Rerun the command with unique table names or with valid participant names.

127 Template name already in use. A replication template with this name exists.
User action: Rerun the command with a unique template name.

128 Undefined template. The template name specified in the command does not exist.
User action: Rerun the command with an existing template name.

129 Cannot delete specified replset as it is a
template.

The replicate set specified in the command is a part of a template and cannot be deleted with this
command.
User action: Run the cdr delete template command to delete a template.

131 Sync server not specified. The synchronization server specified in the command must be the same server that was specified in the cdr
define repair command.
User action: Rerun the command with the correct synchronization server.

Part VI: Administering 1919

Return code Error text Explanation

132 Invalid sync server specified. Server is
not yet defined in ER topology.

The synchronization server specified in the command is not a replication server.
User action: Rerun the command with an existing replication server as the synchronization server.

134 Cannot lock the replicated table in
exclusive mode. For more information
see message log file.

The command cannot obtain an exclusive lock on the table to set alter mode.
User action: See the online message log file for other errors.

135 Replicate/table is not in alter mode. The table specified in the command is not in alter mode and therefore alter mode cannot be turned off.

136 Snoopy sub-component is down. Alter mode cannot be set because the log capture thread was not active.

137 Mismatch between local table dictionary
and master dictionary.

The master dictionary does not match the local participant dictionary.
User action: Check the replicated table definitions on all participants.

138 Replicates not found for table. For more
information see message log file.

Alter mode was not turned off because the replicate definitions for the specified table cannot be found.
User action: Check the spelling of the table name and rerun the command.

139 Mismatch in replicate names or states.
Primary and shadow replicate states
must match. See the message log file for
more information.

The primary and shadow replicates are not in the same state.
User action: Run the cdr list replicate command to see the replicate state. When the primary and shadow
replicates have the same state, rerun the original command.

140 Primary and shadow replicate
participant verification failure.

The primary and shadow replicate information does not match.

141 Table is already in alter mode. For more
information see message log file.

Alter mode cannot be turned on because the table is already in alter mode.

142 Classic replicates (no mastered
dictionary) defined on the table. See
message log file for more information.

One or more non-mastered replicates are defined on the specified table. Alter mode requires mastered
replicates.

146 Resynchronize error, job name is already
in use.

The job name must be unique.
User action: Rerun the command with a unique job name.

147 Resynchronize error, specified replicate
is a shadow repl.

The replicate specified in the command is a shadow replicate. The operation cannot be performed on a
shadow replicate.
User action: Run the cdr list replicate command to see a list of replicate names and rerun the original
command with a primary replicate.

148 Only either participant list or target
server can be given for a define repair
command.

Both the target server name and a participant list were included in the command.
User action: Rerun the command with either a target server name or a participant list.

151 Resynch job can be started or stopped
only at the source server.

This command must be run from the server specified as the synchronization data source.
User action: Rerun the command while connected to the synchronization data source server.

154 The replicate being repaired must be in
active state.

The replicate specified in the command cannot be repaired because it is not active.
User action: Run the cdr list replicate command to see the states of replicates.

156 Cannot perform auto remastering
process. Replicate is not defined with
column name verification option (–
name=y). Perform manual remastering
process.

Automatic remastering is not possible for the specified replicate.
User action: Manually remaster the replicate. For instructions, see Remastering replicates without name
verification.

157 CDR: Cannot verify/block grouper
evaluation blocking condition.

The specified table cannot be set in alter mode because the grouper component is not active.
User action: Run the onstat -g grp and onstat -g ddr commands to check the status of the grouper and log
capture.

158 CDR: Cannot unblock grouper
evaluation.

Alter mode cannot be turned off for the table because the grouper component is not active.
User action: Run the onstat -g grp and onstat -g ddr commands to check the status of the grouper and log
capture.

159 CDR: Grouper evaluation was already
blocked in the same transaction. Commit
the previous alter statement then re-
execute the current alter statement.

More than one alter statement for replicated tables was included in a single transaction.
User action: Rerun each alter statement in its own transaction.

160 The specified table was not found in the
database. The table specified is either a
view or an internally created cdr system
table and replicate cannot be defined on
views and internally created cdr system
tables.

A table name specified in the command was not found or is not a type of table that can be replicated.
User action: Rerun the command with valid table names.

161 Specified file to read table participants
filename could not be opened. Please
check. Template could not be defined.

The file name specified in the command does not exist.
User action: If necessary, create the file. Rerun the command with the correct file path and name for the
table list.

162 CDR: Local group name not defined in
ATS/RIS file.

The ATS or RIS file content is not in the correct format. The file might be corrupted.

163 Error detected while checking replicate
attributes on the given table.

The specified table cannot be set to alter mode because the table does not have any master replicates
defined. Alter mode requires master replicates.
User action: Run the cdr list replicate command to see the replicates that are defined for the table.

164 Cannot repair - ATS/RIS repair failed. The ATS or RIS file content is not in the correct format. The file might be corrupted.

1920 Part VI: Administering

Return code Error text Explanation

165 Cannot suspend replicate/replset
because of dependent repair jobs.

The replicate or replicate set cannot be suspended until the active repair jobs are complete.
User action: Wait for the repair jobs to complete. Run the cdr list replicate command to see if the shadow
replicates associated with the repair jobs still exist. After the shadow replicates are automatically deleted,
rerun the original command.

166 Replicate set does not have any
replicates.

The replicate set specified in the commands does not contain replicates.
This error code is also returned when no replicates are found for a cdr check repair task when the --allrepl
option is used.

User action: Run the cdr list replicateset command for the replicate set to see its replicates.

167 Enterprise Replication is not supported
in Express Edition server.

Enterprise Replication commands cannot be run on servers running Express Edition.

168 The specified table is actually a view,
replicate definition on view is not
supported.

Replicates cannot be defined on views.
User action: Rerun the command specifying standard table names.

169 Cannot realize an empty template/ The template cannot be instantiated because it does not contain any replicates.
User action: Run the cdr list template command to see if the template contains replicates.

170 Template is not yet defined that does not
have any replicates.

The template cannot be instantiated because it is not defined.
User action: Run the cdr list template command to see the names of defined templates.

171 Classic replicates do not support --verify
(-v) and/or --autocreate (-u) options.

The --verify and --autocreate options are valid only for master replicates.
User action: Verify the replicate definition by running the cdr list replicate command.

172 Checksum libraries not installed. Enterprise Replication cannot find the checksum function for the cdr check replicate or cdr check
replicateset command. This error can occur if a replication server is running a version of that does not
support the cdr check replicate or cdr check replicateset command.
This error can also occur if the custom checksum function that is specified by the --checksum option is not
installed and registered on all replication servers.

User action: If the replication server is running version 10.00, make sure that the checksum routines are
registered. On version 10.00, checksum routines must be registered manually.

If you specified a custom checksum function, make sure that it is installed and registered on all replication
servers.

173 External Sync shutdown requested. The synchronization task is not active.
This error code is returned when Enterprise Replication is being shut down on a replication server
participating in a synchronization task started by the cdr sync or cdr checkcommand.

User action: Run the cdr list server or cdr view servers command to see the status of the participating
server and when all servers are active, rerun the original command.

174 External Sync abort required. The synchronization or repair task did not complete in the timeout period. This error can occur if the
replicate being synchronized or the shadow replicate that was created to resynchronize the data is not
active at all the participants specified in the command.
This error code is also returned when the cdr check replicate or cdr check replicateset command is run
with the --enable option and the target server cannot be enabled and repaired in the timeout period. The
timeout period is 128 seconds or the value you set with the --timeout option.

User action: Run the cdr list replicate command to check the replicate status. If all participants are active,
try running the command again.

If the server was being enabled, run the cdr list server command to check the server status. If all
participants are active, try running the command again with an increased timeout value.

175 Sync has received a request to stop. The synchronization or check command was stopped.

176 Sync attempted on replicate which is not
active.

The synchronization or check command was stopped because one of the replicates specified is not active.

178 WARNING: Replicate is not in sync. The replicate is not in sync.
This error can be returned after running cdr check replicate or cdr check replicateset.

This error can be returned after running cdr check replicate or cdr check replicateset with the --repair
option if there are pending transactions that are not yet applied or if transactions were aborted.

User action: If you receive this error after running a consistency check, repair the data. For more
information, see Resynchronizing data among replication servers.

If you receive this error code after repairing data, look for ATS or RIS files at target participants. If you see
ATS or RIS files, look at the SQL and ISAM error code for the failures and if necessary repair the transactions
by using the cdr repair command. If there are no ATS or RIS files at the target participants, rerun the
original command with the --inprogress option to control how long check task rechecks inconsistent rows
that might be in process of being applied at target servers.

181 Value specified cannot be set in-
memory, for more information see
message log file.

The specified configuration parameter was not modified for the current session.
User action: For more information, see the server online message log file.

182 Warning: Value specified was adjusted
before setting it in-memory, for more
information see message log file.

The value of the configuration parameter specified in the command was adjusted and then the configuration
parameter was reset for the current session.
User action: For more information, see the server online message log file.

Part VI: Administering 1921

Return code Error text Explanation

183 Operation not supported for the
specified onconfig variable.

The specified configuration parameter cannot be dynamically updated while the server is running.
User action: Edit the onconfig file and then shut down and restart the server.

184 onconfig text is specified in wrong
format.

The value specified for the configuration parameter is not valid.
User action: For more information, see the server online message log file.

185 Specified variable is an unsupported or
unknown ER onconfig or CDR_ENV
variable.

The specified configuration parameter or environment variable is not valid in this command.
User action: Check the spelling of the configuration parameter or environment variable.

186 Value of onconfig variable cannot be
changed when ER is defined.

The specified configuration parameter cannot be changed after Enterprise Replication is initialized.
User action: For more information, see the server online message log file.

187 Value of onconfig variable cannot be
changed when HDR is defined.

The specified configuration parameter cannot be changed while the server is participating in a high-
availability cluster.

188 WARNING: The onconfig variable is not
modified as the specified value is same
as stored in the memory.

The value specified for the configuration parameter is the same as its current value for the session.

189 Replicate cannot be defined or modified
since the participant table is protected
using Label Based Access Control.

The table specified in the command is using label-based access control (LBAC), which is not supported with
Enterprise Replication.
User action: Rerun the command with a different table name, or remove LBAC from the table and then
rerun the command.

190 Code sets specified by CLIENT_LOCALE
and DB_LOCALE must be identical.

The ATS or RIS file repair operation requires that the CLIENT_LOCALE and DB_LOCALE environment
variables be set to the same value.
User action: Reset the value of one of the environment variables to that it matches the other and then rerun
the original command.

191 Cannot determine connection server ID
for server.

The command cannot obtain the group ID for the server being connected to.

192 Unable to find or connect to a syscdr
database at a non-leaf server.

The repair command canot find a root server from which to obtain the Enterprise Replication catalog
information.

193 SQL failure due to server resource
limitations.

An SQL statement failed with memory or lock resource-related error codes.

194 SQL failure due to loss of network
connection to server.

An SQL query failed with a network error.

195 SQL failure. This error code is returned when a command fails due to an SQL error code other than SQL resource
limitations-related error codes.

196 Encountered an SQL error. The command was stopped because an SQL statement failed.

200 Unexpected Internal Error with cdr
check or cdr sync.

An internal UDR routine execution might have returned an unexpected error.
User action: Look at the additional error messages printed on the screen to get more details about this
error.

201 Sync/Check encountered an unexpected
column type.

The data type of one of the columns being synchronized or checked cannot be resolved for data
comparison.

202 Source and Target do not have the same
data type.

Corresponding columns on the source server and the target server have different data types.

203 Data for row or column not found. Enterprise Replication cannot display the column value of a mismatched column on the screen.

204 Table could not be found. The table that is being synchronized or repaired is not found on one of the participants. This error code is
also returned if the participant being deleted cannot be found in the Enterprise Replication catalog tables.

205 Undefined server group. The server group specified in the command was not found in the Enterprise Replication catalog tables.
User action: Rerun the command with an existing server group name.

206 Template not realized at sync data
source.

The template cannot be realized on the specified servers because it is not yet realized on the
synchronization server.
User action: Rerun the cdr realize template command specifying the synchronization source server as a
participant.

207 Template already realized at one or more
of requested servers.

One or more of the participants specified in the command already has the template instantiated on it.
User action: Run the cdr list replicate command to check the status of the participants and then rerun the
original command with the correct list of participants.

208 Server unknown at remote server. Information about the local server is not available at the remote server.

209 A byte sequence that is not a valid
character in the specified locale was
encountered

One or more characters in a name specified in the command is not valid.

210 Parameter passed to command (or
internally, routine) is invalid.

An argument specified in the command does not have a valid value.

211 Command is too large to be executed as
a background task.

The command specified as a background task exceeded 2048 bytes.
User action: Rerun the command without the --background option.

212 Sync/Check subtask aborted. One of the tasks that was being performed in parallel was stopped.
User action: Check the command output to determine which task was stopped.

1922 Part VI: Administering

Return code Error text Explanation

213 WARNING: set is not in sync. At least one of the replicates in the specified replicate set is not in sync.
This error can be returned after running cdr check replicateset.

This error can be returned after running cdr check replicateset with the --repair option if there are pending
transactions that are not yet applied or if transactions were aborted.

User action: If you receive this error after running a consistency check, repair the data. For more
information, see Resynchronizing data among replication servers.

If you receive this error code after repairing data, look for ATS or RIS files at target participants. If you see
ATS or RIS files, look at the SQL and ISAM error code for the failures and if necessary repair the transactions
by using the cdr repair command. If there are no ATS or RIS files at the target participants, rerun the
original command with the --inprogress option to control how long the check task rechecks inconsistent
rows that might be in process of being applied at target servers.

214 ER: The logical log replay position is not
valid. Restart ER with the cdr cleanstart
command, and then synchronize the
data with the cdr check --repair
command.

Enterprise Replication cannot start because the logical log replay position is not valid.
User action: Run the cdr cleanstart command and then the cdr check replicateset command with the --
repair option.

215 Command failed -- The specified table is
an external table. You cannot include an
external table in a replicate.

Tables created with the CREATE EXTERNAL TABLE statement cannot be included in a replicate.

217 Error with Quality of Data command. This error can be returned after running the cdr define qod command if the quality of data master server is
already defined.
This error can be returned after running the cdr start qod command or the cdr stop qod command if the
quality of data master server is not defined or the command was run from a different server.

User action: If the quality of data master does not exist, run the cdr define qod command and then rerun
the original command. If the command was run on a different server, rerun the command from the quality of
data master server, as indicated in the error message.

220 A node included in the list is not valid. The server group specified in the grid command was not found in the Enterprise Replication catalog tables.
User action: Rerun the command with an existing server group name.

221 The grid name is not unique. Grid names must be unique among grids and among replicate sets.
User action: Run the cdr list grid command to see existing grid names and run the cdr list replicateset
command to see existing replicate set names. Rerun the original command with a unique grid name.

222 The grid does not exist. The grid name specified in the command is not the name of an existing grid.
User action: Run the cdr list grid command to see existing grid names. Rerun the original command with an
existing grid name.

223 grid enable user failed The user name specified in the command does not exist.
User action: Rerun the command with an existing user name.

224 grid enable node failed The server name specified in the command is not the name of an existing replication server.
User action: Rerun the command with an existing replication server name.

225 sec2er failure The cdr start sec2er command failed.
User action: Following the instructions in the command output to perform all necessary prerequisites.

227 Region Command Failed The cdr define region or cdr delete region command failed.
User action: Review the specific error message and make the appropriate corrections to the command.

228 Grid Table Command Failed. The cdr change gridtable command failed.
User action: Review the specific error message and make the appropriate corrections to the command.

Related concepts:
 Command Abbreviations

Option Abbreviations
Option Order
Long Command-Line Examples
Long Identifiers
Connect Option
Frequency Options
Related reference:

 Participant and participant modifier
cdr finderr
cdr check queue

Copyright© 2020 HCL Technologies Limited

Frequency Options

You can specify the interval between replications or the time of day when replication occurs for a replicate.

Frequency Options

Part VI: Administering 1923

https://www.hcltech.com/

 .- --immed----------.
|--+-------------------+--|
 +- --every=interval-+
 '- --at=time--------'

Element Purpose Restrictions

interval Time interval for replication The smallest interval in minutes, in one of the following formats:

The number of minutes, as an integer value 1 - 1966020,
inclusive.
The number of hours and minutes separated by a colon. The
minimum value is 0:01. The maximum value is 32767:59

time Specific time for replication Time is given as a 24-hour clock.

The following table describes the frequency options.

Long Form Short Form Meaning

--immed -i Default. Replication occurs immediately.

--every= -e Replication occurs immediately and repeats at the frequency that is specified by
interval.

--at= -a Replication occurs at the specified day and time.

Usage
The frequency of replication is a property of a replicate. You can set the frequency of replication for a replicate when you define it or modify it. You can reset the frequency
of all replicates in a replicate set when you define or modify a replicate set or define a template. For non-exclusive replicate sets, you can update the frequency of
individual replicates separately.

If you do not specify a time, replication occurs immediately.

Important: When you use time-based replication by including the --every or the --at option, replicated transactions are split into multiple transactions and referential
integrity is not supported. If you want to replicate data intermittently, you can specify the --immed and then disconnect the servers until you want to replicate the data.

Intervals
The --every=interval option specifies the interval between actions. The interval of time between replications can be either of the following formats:

The number of minutes
To specify the number of minutes, specify an integer value greater than 0. For example, -e 60 indicates 60 minutes between replications.

If you specify the interval of time between replications in minutes, the longest interval is 1966020.

The number of hours and minutes
To specify hours and minutes, give the number of hours, followed by a colon, and then the number of minutes. For example, -e 5:45 indicates 5 hours and 45
minutes between replications.

If you specify the length of time in hours and minutes, the longest interval is 32767:59.

Time of Day
Enterprise Replication always gives the time of day in 24-hour time. For example, 19:30 is 7:30 P.M. Enterprise Replication always gives time as the local time, unless the
TZ environment variable is set. However, Enterprise Replication stores times in the global catalog in Greenwich Mean Time (GMT).

The --at=time option specifies the day on which replication occurs. The string time can have the following formats:

Day of week
To specify a specific day of the week, give either the long or short form of the day, followed by a period and then the time. For example, --at=Sunday.18:40 or -a
Sun.18:40 specifies that replication occurs every Sunday at 6:40 P.M.

The day of the week is given in the locale of the client. For example, with a French locale, you might have --at=Lundi.3:30 or -a Lun.3:30. The time and day
are in the time zone of the server.

Day of month
To specify a specific day in the month, give the date, followed by a period, and then the time. For example, 1.3:00 specifies that replication occurs at 3:00 A.M. on
the first day of every month.

The special character L represents the last day of the month. For example, L.17:00 is 5:00 P.M. on the last day of the month.

Daily
To specify that replication occurs each day, give only the time. For example, 4:40 specifies that replication occurs every day at 4:40 A.M.

Related concepts:
 Command Abbreviations

Option Abbreviations
Option Order
Long Command-Line Examples
Long Identifiers
Connect Option
Return Codes for the cdr Utility

1924 Part VI: Administering

Related reference:
Participant and participant modifier
cdr change replicateset
cdr define replicate
cdr define replicateset
cdr define template
cdr modify replicate
cdr modify replicateset

Copyright© 2020 HCL Technologies Limited

cdr add onconfig

The cdr add onconfig command adds one or more values to a configuration parameter in the ONCONFIG file.

Syntax

>>-cdr add onconfig--+--------------------------+--------------->
 | (1) |
 '-| Connect Option |-----'

>--“--parameter name--value--“---------------------------------><

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

parameter name The name of the configuration
parameter to set.

You can add values to the following Enterprise Replication
configuration parameters:

CDR_LOG_LAG_ACTION
CDR_LOG_STAGING_MAXSIZE
CDR_QDATA_SBSPACE
CDR_SUPPRESS_ATSRISWARN
ENCRYPT_MAC
ENCRYPT_MACFILE
CDR_ENV:

CDRSITES_731
CDRSITES_92X
CDRSITES_10X

value The value of the configuration
parameter.

Must be a valid value for the configuration parameter. Follows the syntax rules for the specific
configuration parameter.

Usage
Use the cdr add onconfig command to add one or more values to an Enterprise Replication configuration parameter while replication is active. The ONCONFIG file is
updated. You can set environment variables by using the CDR_ENV configuration parameter.

You can run this command from within an SQL statement by using the SQL administration API.

Examples
The following example adds an sbspace to the existing list of sbspaces for holding spooled transaction row data:

cdr add onconfig "CDR_QDATA_SBSPACE sbspace_11"

The following example adds the cdrIDs for two version 7.x servers to the existing list of servers:

cdr add onconfig "CDR_ENV CDRSITES_731=1,3"

Related concepts:
 Enterprise Replication Server administrator

Related tasks:
 Dynamically Modifying Configuration Parameters for a Replication Server

Related reference:
 cdr change onconfig

cdr remove onconfig

Copyright© 2020 HCL Technologies Limited

cdr alter

Part VI: Administering 1925

https://www.hcltech.com/
https://www.hcltech.com/

The cdr alter command puts the specified tables in alter mode.

Syntax

>>-cdr alter--+--------------------------+--+- --on--+---------->
 | (1) | '- --off-'
 '-| Connect Option |-----'

 .----------------------.
 V |
>----database:owner.table-+------------------------------------><

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

database The name of the database that contains the table The database server must be registered with
Enterprise Replications.

Long Identifiers

owner User ID of the owner of the table Long Identifiers

table Specifies the name of the table to put in alter mode The table must be an actual table. It cannot be a
synonym or a view.

Long Identifiers

The following table describes the options to cdr alter.

Long Form Short Form Meaning

--on -o Sets alter mode on.

--off -f Unsets alter mode.

Usage
Use this command to place a table in or out of alter mode. Use alter mode when you need to alter an attached fragment to the table or you want to perform other alter
operations manually.

You can run this command from within an SQL statement by using the SQL administration API.

Examples
The following example puts table1 and table2 in alter mode:

cdr alter --on db1:owner1.table1 db2:owner2.table2

Related concepts:
 Alter, rename, or truncate operations during replication

SQL statements and replication
Enterprise Replication Server administrator
Related reference:

 cdr swap shadow
cdr remaster

Copyright© 2020 HCL Technologies Limited

cdr autoconfig serv

The cdr autoconfig serv command can autoconfigure connectivity for servers in a high-availability cluster or Enterprise Replication domain, and can automatically
configure replication.

Syntax

>>-cdr autoconfig serv--+--------------------------+------------>
 | (1) |
 '-| Connect Option |-----'

>--+--+--------------><
 '-+-| Source options |---------------------+-'
 +-| Target options |---------------------+
 '-| Source options |--| Target options |-'

Source options

|-- --sourcehost--host-- --sourceport--port---------------------|

Target options

1926 Part VI: Administering

https://www.hcltech.com/

|-- --targethost--host-- --targetport--port---------------------|

Notes:

1. See Connect Option.

Element Purpose Restrictions

host The name of a database server host.

port The port number that is used for communication

The following table describes the options to cdr autoconfig serv.

Long Form Short Form Meaning

--sourcehost -H The host of the database server that is sending autoconfiguration information. If --
sourcehost and --sourceport are not specified, the database server where the
command is run is considered the source database server.

--sourceport -P The port that is used by the database server that is sending autoconfiguration
information.

--targethost -h The host of the database server that is receiving autoconfiguration information.

--targetport -p The port that is used by the database server that is receiving autoconfiguration
information.

Usage
Run the cdr autoconfig serv command to autoconfigure connectivity for servers in a high-availability cluster or Enterprise Replication domain, and to autoconfigure
replication if you are adding database servers to an Enterprise Replication domain. The CDR_AUTO_DISCOVER configuration parameter must be set to 1 on all database
servers that are participating in an Enterprise Replication domain or high-availability cluster, before you can run the cdr autoconfig serv command. A newly installed
database severs that is added to an Enterprise Replication domain through the cdr autoconfig serv command must have a configured storage pool.

If the source server is already configured for Enterprise Replication, the command performs the following actions:

1. The source server propagates its trusted-host file to target server.
2. The target server adds entries for itself and all other replication servers to its sqlhosts file.
3. The source server updates its sqlhost file with entries for the target server.
4. Each replication server updates its sqlhost file and trusted-host file with entries for the target server.
5. The target server sets its CDR_DBSPACE configuration parameter and creates the dbspace that is required for Enterprise Replication.
6. The target server sets its CDR_QDATA_SBSPACE configuration parameter and creates the sbspace that is required for Enterprise Replication.
7. The aborted transactions spooling (ATS) file directory $INFORMIXDIR/tmp/ats_dbservername is created on the target server.
8. The row information spooling (RIS) file directory $INFORMIXDIR/tmp/ris_dbservername is created on the target server.
9. Replication of the domain information in the syscdr catalog to the target server starts.

If the source server is not configured for Enterprise Replication, the command performs the additional actions:

1. The source server adds entries for itself to its sqlhosts file.
2. The source server sets its CDR_DBSPACE configuration parameter and creates the dbspace that is required for Enterprise Replication.
3. The source server sets its CDR_QDATA_SBSPACE configuration parameter and creates the sbspace that is required for Enterprise Replication.
4. The aborted transactions spooling (ATS) file directory $INFORMIXDIR/tmp/ats_dbservername is created on the source server.
5. The row information spooling (RIS) file directory $INFORMIXDIR/tmp/ris_dbservername is created on the source server.

The following restrictions apply to the cdr autoconfig serv command:

All replication servers must be active, or the cdr autoconfig serv command fails.
Do not run the cdr autoconfig serv command if you have configured trusted-host information, manually, rather than through running the admin() or task() function
with the cdr add trustedhost argument.
Do not run the cdr autoconfig serv command if your replication servers have secure ports configured.
The cdr autoconfig serv command does not copy hosts.equiv information to the trusted-host file that is set by the REMOTE_SERVER_CFG configuration parameter.
Run the admin() or task() function with the cdr add trustedhost argument if you must add information from the hosts.equiv file to the trusted-host file that is set by
the REMOTE_SERVER_CFG configuration parameter.

Database servers are configured serially. Parallel configuration is not supported.

You can run this command from within an SQL statement by using the SQL administration API.

Example 1: Define Enterprise Replication on a database server
For this example, you have one database server that is not configured for Enterprise Replication:

server_1 on host_1

The following command is run on server_1.

cdr autoconfig serv

The command defines Enterprise Replication on server_1.

Example 2: Configure connectivity and ER between two stand-alone servers by using source
syntax

Part VI: Administering 1927

For this example, you have two stand-alone database servers:

server_1 on host_1
server_2 on host_2

The following command is run on server_1:

cdr autoconfig serv -c server_2 --sourcehost host_1 --sourceport 9000

The command performs the following actions:

1. The command connects to server_2.
2. Enterprise Replication is defined on server_1.
3. Enterprise Replication is defined on server_2.
4. server_1 replicates the domain data to server_2.

Example 3: Configure connectivity and ER between two stand-alone servers using target
syntax

For this example, you have two stand-alone database servers:

server_1 on host_1
server_2 on host_2

The following command is run on server_2:

cdr autoconfig serv -c server_1 --targethost host_2 –targetport 9002

The command performs the following actions:

1. The command connects to server_1.
2. Enterprise Replication is defined on server_1.
3. Enterprise Replication is defined on server_2.
4. server_1 replicates the domain data to server_2.

Example 4: Configure connectivity and ER between two stand-alone servers
For this example, you have three stand-alone database servers:

server_1 on host_1
server_2 on host_2
server_3 on host_3

The following commands are run on server_1:

cdr autoconfig serv --targethost hos_t2 –targetport 9002
cdr autoconfig serv --targethost host_3 –targetport 9003

The commands perform the following actions:

1. The first command connects to server_1.
2. Enterprise Replication is defined on server_1.
3. Enterprise Replication is defined on server_2.
4. server_1 replicates its data to server_2.
5. The second command connects to server_1.
6. Enterprise Replication is defined on server_3.
7. server_1 replicates the domain data to server_3.

Related concepts:
 Creating sqlhost group entries for replication servers

Related tasks:
 Preparing the Network Environment

Related reference:
 cdr autoconfig serv

CDR_AUTO_DISCOVER configuration parameter
Related information:

 cdr autoconfig serv argument: Autoconfigure connectivity and replication (SQL administration API)
cdr add trustedhost argument: Add trusted hosts (SQL administration API)
Trusted-host information
Client/server communication

Copyright© 2020 HCL Technologies Limited

cdr change grid

The cdr change grid command adds or deletes replication servers to or from a grid.

Syntax

1928 Part VI: Administering

https://www.hcltech.com/

>>-cdr change grid--+--------------------------+--grid_name----->
 | (1) |
 '-| Connect Option |-----'

 .--------------.
 V |
>--+- --add----+----server_group-+-----------------------------><
 '- --delete-'

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

grid_name Name of the grid. Must be the name of an existing grid. Long Identifiers

server_group Name of a database server group to add to, or
remove from, the grid.

Must be the name of an existing database server
group in SQLHOSTS.

Long Identifiers

The following table describes the cdr change grid options.

Long Form Short Form Meaning

--add -a Add the specified replication servers to the grid.

--delete -d Delete the specified replication servers from the grid.

Usage
Use the cdr change grid command to add a new replication server to an existing grid or to remove a replication server from an existing grid.

Return codes
A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 5, 220, 222.

For information on these error codes, see Return Codes for the cdr Utility.

Examples
The following example adds two servers to a grid named grid_1:

cdr change grid grid_1 --add gserv3 gserv4

The following example removes a server from a grid named grid_1:

cdr change grid grid_1 --delete gserv1

Related concepts:
Grid maintenance
Enterprise Replication Server administrator
Related tasks:
Adding a replication server to a grid by cloning
Adding a replication server to a grid by running cdr change grid
Related reference:
cdr define grid
cdr list grid

Copyright© 2020 HCL Technologies Limited

cdr change gridtable

The cdr change gridtable command has multiple uses. It can verify that specific tables can be used in gird queries and then add the tables to a list of verified tables, and it
can delete tables from the list of verified tables.

Syntax

>>-cdr change gridtable--+--------------------------+----------->
 | (1) |
 '-| Connect Option |-----'

>-- --grid--=--grid_name-- --database--=--database-------------->

>--+- --add----+--+- --all----+--------------------------------><
 '- --delete-' | .-------. |
 | V | |
 '---table-+-'

Part VI: Administering 1929

https://www.hcltech.com/

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

database The name of the database. Must be in a server that is in the specified grid. Long Identifiers

grid_name Name of the grid. Must be the name of an existing grid. Long Identifiers

table The name of the table. The table cannot be a synonym or a view. Long Identifiers

The following table describes the cdr change gridtable options.

Long Form Short Form Meaning

--add -a Add the specified tables to the grid.

--all -A Specifies to add or delete all the tables in the database.

--database= -D Specifies the database in which the tables are located.

--delete -d Delete the specified tables from the grid.

--grid= -g Specifies the grid to which to add or delete tables.

Usage
Use the cdr change gridtable command with the --add option to add one or more tables to an existing grid. You add a table to a grid when you want to include the table in
grid queries. System tables are automatically included in the grid. When you add a table to a grid, the cdr change gridtable command ensures that every table with that
name has the same schema on every grid server. Every table must have the same columns, column names, and data types. The specified database must use the same
locale on every grid server.

Use the cdr change gridtable command with the --delete option to remove one or more tables from an existing grid. The specified tables cannot be included in grid
queries.

Return codes
A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 5, 228.

For information about these error codes, see Return Codes for the cdr Utility.

Examples
The following example adds all tables in the stores database to the grid named grid1:

cdr change gridtable -–grid=grid1 -–database=stores -–add -–all

The following example removes the table named customer in the stores database from the grid named grid1:

cdr change gridtable -–grid=grid1 -–database=stores -–delete=customer

Related concepts:
Grid queries
Related tasks:
Defining tables for grid queries
Related reference:
cdr remaster gridtable
Related information:
GRID clause

Copyright© 2020 HCL Technologies Limited

cdr change onconfig

The cdr change onconfig command replaces the existing value of a configuration parameter with a new value in the ONCONFIG file.

Syntax

>>-cdr change onconfig--+--------------------------+------------>
 | (1) |
 '-| Connect Option |-----'

>--“--parameter name--value--“---------------------------------><

Notes:

1. See Connect Option.

1930 Part VI: Administering

https://www.hcltech.com/

Element Purpose Restrictions SyntaxElement Purpose Restrictions Syntax

parameter name The name of the configuration parameter to change. None. All Enterprise Replication configuration
parameters and environment variables can be
changed with this command.

value The value of the configuration parameter. Must be a valid value for the configuration parameter. Follows syntax rules for the
specific configuration parameter.

Usage
Use the cdr change onconfig command to replace the existing value of an Enterprise Replication configuration parameter with a new value in the ONCONFIG file. You can
set Enterprise Replication environment variables by using the CDR_ENV configuration parameter.

You can run this command from within an SQL statement by using the SQL administration API.

Examples
Suppose the CDR_SUPPRESS_ATSRISWARN configuration parameter is set to suppress the generation of error and warning messages 1, 2, and 10, so that it appears in
the ONCONFIG file as: CDR_SUPPRESS_ATSRISWARN 1,2,10. The following command changes the suppressed error and warning messages to 2, 3, 4, 5, and 7:

cdr change onconfig "CDR_SUPPRESS_ATSRISWARN 2-5,7"

Suppose the CDR_RMSCALEFACT environment variable is set to the value of 4. The following example sets the number of data sync threads started for each CPU VP to 3:

cdr change onconfig "CDR_ENV CDR_RMSCALEFACT=3"

Related concepts:
 Enterprise Replication Server administrator

Related tasks:
 Dynamically Modifying Configuration Parameters for a Replication Server

Related reference:
 cdr add onconfig

cdr remove onconfig

Copyright© 2020 HCL Technologies Limited

cdr change replicate

The cdr change replicate command modifies an existing replicate by adding or deleting one or more participants.

Syntax

>>-cdr change replicate--+--------------------------+----------->
 | (1) |
 '-| Connect Option |-----'

 .-----------------------.
 V |
>--+- --add--replicate----participant--modifier-+-+------------->
 | .-------------. |
 | V | |
 '- --delete--replicate----participant-+--------'

>--+---------------+--+----------+-----------------------------><
 +- --verify-----+ '- --erkey-'
 '- --autocreate-'

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

modifier Specifies the rows and columns to replicate. Participant and participant
modifier

participant Specifies the database server and table for
replication.

The participant must exist. Participant and participant
modifier

replicate Name of the replicate to change. The replicate must exist. Long Identifiers

The following table describes the options to cdr change replicate.

Long Form Short Form Meaning

--add -a Adds participants to a replicate.

Part VI: Administering 1931

https://www.hcltech.com/

Long Form Short Form Meaning

--autocreate -u For use with master replicates only. Specifies that if the tables in the master replicate definition do not
exist in the databases on the target servers, then they are created automatically. However, the table
cannot contain columns with user-defined data types. The tables are created in the same dbspace as the
database.
Note: Tables that are created with the --autocreate option do not automatically include non-replication
key indexes, defaults, constraints (including foreign constraints), triggers, or permissions. If the tables
you create with the --autocreate option require the use of these objects you must explicitly create the
objects by hand.

--delete -d Removes participants from a replicate.

--erkey -K Includes the ERKEY shadow columns, ifx_erkey_1, ifx_erkey_2, and ifx_erkey_3, in the replicate
definition, if the table being replicated has the ERKEY shadow columns. The ERKEY shadow columns are
used as the replication key.

--verify -v For use with master replicates only. Specifies that the cdr change template command verifies the
database, tables, and column data types against the master replicate definition on all listed servers

Usage
Use this command to add or delete a participant from a replicate. You can define a replicate that has zero or one participants, but to be useful, a replicate must have at
least two participants. You cannot start and stop replicates that have no participants. All participants for the replicate must be online and the cdr utility must be able to
connect to each participant.

Important: Enterprise Replication adds the participant to the replicate in an inactive state, regardless of the state of the replicate. To activate the new participant, run cdr
start replicate with the name of the server group. See cdr start replicate.
When you run the cdr change replicate command, an event alarm with a class ID of 65 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL administration API.

Example 1: Add two participants
The following example adds two participants to the replicate named repl_1: db1@server1:antonio.table with the modifier select * from table1, and
db2@server2:carlo.table2 with the modifier select * from table2:

cdr change repl -a repl_1 \
 "db1@server1:antonio.table1" "select * from table1" \
 "db2@server2:carlo.table2" "select * from table2"

Example 2: Remove two participants
The following example removes the same two participants from replicate repl_1:

cdr change repl -d repl_1 \
 "db1@server1:antonio.table1" \
 "db2@server2:carlo.table2"

Example 3: Add a participant that includes ERKEY shadow columns
The following example adds a participant and includes the ERKEY shadow columns from the table table1:

cdr change repl -a repl_1 --erkey\
 "db1@server1:antonio.table1" "select * from table1"

Related concepts:
 Enterprise Replication Server administrator

Related tasks:
 Preparing tables without primary keys

Related reference:
 cdr define replicate

cdr delete replicate
cdr list replicate
cdr modify replicate
cdr resume replicate
cdr start replicate
cdr stop replicate
cdr suspend replicate
Enterprise Replication Event Alarms
Participant and participant modifier

Copyright© 2020 HCL Technologies Limited

cdr change replicateset

The cdr change replicateset command changes a replicate set by adding or deleting replicates.

1932 Part VI: Administering

https://www.hcltech.com/

Syntax

>>-cdr change replicateset--+--------------------------+-------->
 | (1) |
 '-| Connect Option |-----'

 .-----------.
 V |
>--+- --add----+--repl_set----replicate-+----------------------><
 '- --delete-'

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

repl_set Name of the replicate set to change. The replicate set must exist. Long Identifiers

replicate Name of the replicates to add to or delete from the
set.

The replicates must exist. Long Identifiers

The following table describes the options to cdr change replicateset

Long Form Short Form Meaning

--add -a Add replicates to a replicate set.

--delete -d Remove replicates from a replicate set.

Usage
Use this command to add replicates to a replicate set or to remove replicates from an exclusive or non-exclusive replicate set:

If you add a replicate to an exclusive replicate set, Enterprise Replication changes the existing state and replication frequency settings of the replicate to the
current properties of the exclusive replicate set.
If you remove a replicate from an exclusive replicate set, the replicate retains the properties of the replicate set at the time of removal (not the state the replicate
was in when it joined the exclusive replicate set).

When you add or remove a replicate from an exclusive replicate set that is suspended or that is defined with a frequency interval, Enterprise Replication transmits
all the data in the queue for the replicates in the replicate set up to the point when you added or removed the replicate.

If you add or remove a replicate to a non-exclusive replicate set, the replicate retains its individual state and replication frequency settings.

Use this command to add or remove replicates from a grid replicate set. You can only add replicates that were created outside of a grid environment to a grid replicate set
if the following conditions are met:

The participant servers must be the same as the servers in the grid.
The replicated table schema must be the same among all participants.
The entire replicated table is replicated. Using a SELECT statement in the participant definition that does not include all the columns in the table or includes a
WHERE clause is not allowed.
The replicate must not belong to an exclusive replicate set.
The replicate must not include TimeSeries columns.

When you run the cdr change replicateset command, an event alarm with a class ID of 66 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL administration API.

Examples
The following example adds the replicates house and barn to replicate set building_set:

cdr change replicateset --add building_set house barn

The following example removes the replicates teepee and wigwam from replicate set favorite_set:

cdr change replset --delete favorite_set teepee wigwam

Related concepts:
 Frequency Options

Enterprise Replication Server administrator
Related tasks:

 Suspending a Replicate Set
Adding an existing replicate to a grid replicate set by using cdr change replicateset
Related reference:

 cdr define replicate
cdr delete replicateset
cdr list replicateset
cdr modify replicateset
cdr resume replicateset
cdr start replicateset
cdr stop replicateset
cdr suspend replicateset

Part VI: Administering 1933

cdr define replicateset
Enterprise Replication Event Alarms

Copyright© 2020 HCL Technologies Limited

cdr change shardCollection

The cdr change shardCollection command changes the sharding definition that determines which database servers are part of the shard cluster.

Syntax

>>-cdr change shardCollection--definition_name------------------>

>--+------------------------+----------------------------------->
 | (1) |
 '-| Connect Option |-----'

 .----------.
 V |
>--+- --add--+---ER_group-+-------------------+------------------------------+-><
 | | .----------------------------. | |
 | | V | | |
 | '---ER_group--"--expression--"-+-' |
 | .----------. |
 | V | |
 +- --drop----ER_group-+---+
 | .----------. |
 | V | |
 +-+------------+--+---ER_group-+--+-+
 | '- --replace-' | .----------------------------. | |
 | | V | | |
 | '---ER_group--"--expression--"-+--ER_group--REMAINDER-' |
 '- --partitions--=--partitions--'

Notes:

1. See Connect Option.

Element Description Restrictions

ER_group The ER-group name of a database server that receives
sharded data.

Must be the ER-group name of an existing database server.

definition_name The name of the sharding definition that is modified. Must be the name of an existing definition.

expression The WHERE-clause expression that is used to select rows
or documents by shard key or shard column value.

partitions The number of hashing partitions on each shard server. Must be a positive integer.

REMAINDER Specifies the database server that receives rows or
documents with shard key values that are not selected by
other expressions.

Use only if the sharding definition uses an expression for
distributing data.

The following table describes the cdr change shardCollection options.

Long Form Short Form Description

--add -a Adds a database server to a sharding definition.

--drop -d Removes a database server from a sharding definition.
If the database server that is removed uses an expression for sharding, the expression is not included
in the cdr change shardCollection command.

--partitions= -p Changes the number of hashing partitions on each shard server when the sharding strategy is
consistent hashing. The more hashing partitions, the more evenly the data is distributed among shard
servers. However, if you specify more than 10 hashing partitions, the resulting SQL statement to
create the sharded table might fail because it exceeds the maximum character limit for an SQL
statement.

--replace -r Replaces a sharding definition when the sharding strategy is expression.

Usage
The cdr change shardCollection command can change the database servers that are part of a shard cluster. You cannot use the cdr change shardCollection command to
change the sharding strategy of a shard cluster. To change the sharding strategy, you must remove the shard cluster and then re-create it with a different sharding
strategy. However, you can change certain properties of the following sharding strategies:

Consistent hash: You can change the number of hashing partitions on each shard server.
Expression: You can change the expression that is used for distributing data.

The cdr change shardCollection command creates a new sharding definition, moves existing data to appropriate shard servers, and then removes the original sharding
definition.

1934 Part VI: Administering

https://www.hcltech.com/

To delete a shard server from Enterprise Replication, remove the database server from its shard cluster by running the cdr change shardCollection command and then
run the cdr delete server command.

Return codes
A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 39, 99, 196, 229.

For information about these error codes, see Return Codes for the cdr Utility.

Example: Adding a database server to a sharding definition that uses a hash algorithm
For this example, you have a sharding definition that is created by the following command:

cdr define shardCollection collection_1 db_1:john.customers_1
 --type=delete --key=state --strategy=hash --versionCol=version
 g_shard_server_A
 g_shard_server_B
 g_shard_server_C

The following command adds g_shard_server_D to collection_1:

cdr change shardCollection collection_1 --add g_shard_server_D

A new sharding definition is created for collection_1. All data is redistributed to the database servers in the new sharding definition. The old sharding definition is deleted.

Example: Changing the number of hashing partitions on shard servers
For this example, you have a sharding definition with a consistent hashing strategy that is created by the following command:

cdr define shardCollection collection_1 db_1:john.customers
 --type=delete --key=b --strategy=chash --partitions=3 --versionCol=column_3
 g_shard_server_1
 g_shard_server_2
 g_shard_server_3

The following command changes the number of hashing partitions on each shard server to 4:

cdr change shardCollection collection_1 --partitions=4

The data on each shard server is redistributed into four partitions. A small amount of data might be moved between shard servers.

Example: Adding multiple database servers to a sharding definition that uses an expression
For this example, you have a sharding definition that is created by the following command:

cdr define shardCollection collection_2 db_2:joe.clients
 --type=delete --key=state --strategy=expression --versionCol=version
 g_shard_server_A "IN ('TX','OK')"
 g_shard_server_B "IN ('NY','NJ')"
 g_shard_server_C "IN ('AL','GA')"
 g_shard_server_D REMAINDER

The following command adds the shard servers g_shard_server_E and g_shard_server_F to collection_2:

cdr change shardCollection collection_2 --add
 g_shard_server_E "IN ('CA','AZ')"
 g_shard_server_F "IN ('WA','ID')"

A new sharding definition is created for collection_2. The appropriate data from g_shard_server_D is redistributed to the new shard servers. The old sharding definition is
deleted.

Example: Removing a database server from a sharding definition
For this example, you have a sharding definition that is created by the following command:

cdr define shardCollection collection_3 db_3:john.customers
 --type=delete --key=state --strategy=hash --versionCol=version
 g_shard_server_A
 g_shard_server_B
 g_shard_server_C
 g_shard_server_D

The following command removes g_shard_server_B from collection_3:

cdr change shardCollection collection_3 --drop g_shard_server_B

A new sharding definition is created for collection_3. The data is removed from g_shard_server_B. All the data is redistributed to the database servers in the new
sharding definition. The old sharding definition is deleted.

Example: Replacing shard servers
For this example, you have a sharding definition that is created by the following command:

Part VI: Administering 1935

cdr define shardCollection collection_4 db_4:john.customers
 --type=delete --key=state --strategy=hash --versionCol=version
 g_shard_server_A
 g_shard_server_B
 g_shard_server_C
 g_shard_server_D

The following command changes the shard servers for collection_4 to g_shard_server_A, g_shard_server_C, g_shard_server_E, and g_shard_server_F:

cdr change shardCollection collection_4 --replace
 g_shard_server_A
 g_shard_server_C
 g_shard_server_E
 g_shard_server_F

A new sharding definition is created for collection_4. The data is removed from g_shard_server_B and g_shard_server_D. All the data is redistributed to the database
servers in the new sharding definition. The old sharding definition is deleted.

Example: Replacing a sharding definition that uses an expression
For this example, you have a sharding definition that is created by the following command:

cdr define shardCollection collection_5 db_5:joe.clients
 -t delete -k unit_number -s expression -v version
 g_shard_server_A "BETWEEN 0 and 100"
 g_shard_server_B "BETWEEN 101 and 200"
 g_shard_server_C "BETWEEN 201 and 300"
 g_shard_server_D REMAINDER

The following command changes the shard servers and the expression for collection_5:

cdr change shardCollection collection_5 -r
 g_shard_server_E "BETWEEN 0 and 100"
 g_shard_server_F "BETWEEN 101 and 200"
 g_shard_server_G "BETWEEN 201 and 200"
 g_shard_server_C "BETWEEN 301 and 400"
 g_shard_server_D REMAINDER

A new sharding definition is created for collection_5. The data is removed from g_shard_server_A and g_shard_server_B. All the data is redistributed to the appropriate
database servers in the new sharding definition. The old sharding definition is deleted.
Related concepts:

 Shard cluster management and monitoring
Related reference:

 cdr define shardCollection
cdr delete shardCollection
cdr list shardCollection
Related information:

 Enabling sharding for JSON or relational data
Changing the definition for a shard cluster
onstat -g shard command: Print information about the shard cache

Copyright© 2020 HCL Technologies Limited

cdr check catalog

The cdr check catalog command compares the metadata information related to servers, replicates and replicate sets on replication servers for any inconsistency.

Syntax
>>-cdr check catalog--+--------------------+------------->
 | (1) |
 '-| Connect Option |-----'

>--+- --master=data_server-----+---------------------------------->

 .--------------.
 V |
>--+---target_server-+-+-->
 '- --all---------'

>--+------------+--->
 '- --verbose-'

Note:

1. See Connect Option.

Element Purpose Restrictions Syntax

target_server Name of a database server group to check. Must be the name of an existing database server
group in the sqlhosts file.

Long identifiers

The following table describes the options to cdr check catalog.

Long Form Short Form Meaning

1936 Part VI: Administering

https://www.hcltech.com/

Long Form Short Form Meaning

--all -a Specifies that master server metadata info is compared to metadata info on all servers in ER
domain.

--master= -m Specifies the database server to use as the reference copy of the data.

--verbose -v Specifies that the consistency report shows all comparisons.

Usage
Use cdr check catalog command to compare the metadata information related to servers, replicates and replicate sets on replication servers for any inconsistency. If you
include the --verbose option, the report lists every comparison for metadata between the master server and target servers. If the servers specified for --connect or --
master options are leaf servers, parent servers are used instead.

You can run this command from within an SQL statement by using the SQL administration API.

Return codes
A return code of 0 indicates that the command was successful. If the command is not successful, one of the following error codes is returned: 1, 5, 21, 37, 48, 53, 61, 62,
99, 121, 193, 194, 195, 205. For information about these error codes, see Return Codes for the cdr Utility.

Examples
The following command generates a consistency report comparing the metadata on the master server g_serv1 with the metadata on the server g_serv2:

cdr check catalog --master=g_serv1 g_serv2

The summary consistency report shows that the metadata is consistent:

Verifying server definitions...
Server definitions...OK

Verifying replicate definitions...
Replicate definitions...OK

Verifying replicate participant definitions...
Replicate participant definitions...OK

Verifying replicate participants...
Replicate participants...OK

Verifying replicate set definitions...
Replicate set definitions...OK

Verifying replicate set participants...
Replicate set participants...OK

This report indicates that the metadata is consistent on these servers.

Related reference:
 cdr check replicate

cdr check replicateset

Copyright© 2020 HCL Technologies Limited

cdr check queue

Use the cdr check queue command to check the consistency of Enterprise Replication metadata, and to check the consistency of user data before running critical tasks in
the Enterprise Replication domain. The command returns successfully when all of the commands that were queued when cdr check queue was run are complete.

Syntax

>>-cdr check queue--+------------------------+------------------>
 | (1) |
 '-| Connect Option |-----'

>-- --qname=-+-cntrlq-+-queue_name------------------------------>
 +-sendq--+
 '-recvq--'

 .---------------.
 V |
>--+--------------------------+--+---target_server-+------+----><
 | .-0-----. .-M-. | +- --all-----------------+
 '- --wait=-+- -1---+-+---+-' '- --grid -=-- grid_name-'
 '- time-' +-H-+
 '-S-'

Notes:

Part VI: Administering 1937

https://www.hcltech.com/

1. See Connect Option.

Element Purpose Restrictions Syntax

grid_name Name of the grid Must be the name of an existing grid. Long Identifiers

target_server Name of a database server group on which to
check the queue

The following table describes the cdr check queue options.

Long Form Short Form Meaning

--all -a Specifies that all servers defined for the Enterprise Replication are checked

--grid -g Specifies the grid name

--qname -q Specifies the name of the queue to monitor:

cntrlq = Control queue
sendq = Send queue
recvq = Receive queue

--wait -w Specifies the amount of time to wait for queues to complete before returning.
Minutes are used if the time unit is not specified.

-1 = Wait until all queued elements are complete

0 (default) = Do not wait for queued elements to complete; return immediately

Positive integer = Number of hours, minutes, or seconds to wait, depending on the time unit
specified:

H or h = Hours
M or m = Minutes (default)
S or s = Seconds

Usage
The cdr check queue command is used to monitor control, send, and receive queues on one or more Enterprise Replication servers and can optionally wait for queues to
empty before returning.

The Enterprise Replication queues are checked at the time that the cdr check queue command runs. The time is displayed in the command output. For control and receive
queues, any messages queued after the command runs are not included in the output. For the send queue, any transactions committed after the cdr check queue
command runs are not included in the output.

If a leaf server name is specified with the --connect option, the system connects to the parent server to read information from the syscdr database.

Only a DBSA can run the cdr check queue command. With a non-root installation, the user who installs the server is the equivalent of the DBSA, unless the user delegates
DBSA privileges to a different user.

Return codes
A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 5, 17, 21, 48, 62, 94, 99, 100, 196, 222.

Example 1: Control queue report for all servers
The following command waits up to 10 seconds for the control queues on all replication servers to complete before generating a report.

cdr check queue -q cntrlq -w 10s -a

The queue report for the previous command might be:

Checking cntrlq queue status for server g_madras ...
cntrlq queue status for g_madras as of Mon Dec 5 12:03:19 2011: COMPLETE
Checking cntrlq queue status for server g_delhi ...
cntrlq queue status for g_delhi as of Mon Dec 5 12:03:19 2011: COMPLETE
Checking cntrlq queue status for server g_bombay ...
cntrlq queue status for g_bombay as of Mon Dec 5 12:03:19 2011: COMPLETE

This report indicates that all of the queue items in the control queue at the time the cdr check queue command was issued are complete.

Example 2: Send queue report for all servers
The following command waits up to 10 seconds for the send queues on all replication servers to complete before generating a report.

cdr check queue -q sendq -w 10s -a

The queue report for the previous command might be:

Checking sendq queue status for server g_madras ...
Checking sendq queue status for server g_delhi ...
sendq queue status for g_delhi as of Mon Dec 5 12:04:00 2011: COMPLETE

1938 Part VI: Administering

sendq queue status for g_madras as of Mon Dec 5 12:04:00 2011: COMPLETE
Checking sendq queue status for server g_bombay ...
sendq queue status for g_bombay as of Mon Dec 5 12:04:01 2011: COMPLETE

This report indicates that all of the queue items in the send queue at the time the cdr check queue command was issued are complete.

Example 3: Send queue report that shows timeout
The following command waits up to 10 seconds for the send queues on all replication servers to complete before generating a report.

cdr check queue -q sendq -w 10s -a

The queue report for the previous command might be:

Checking sendq queue status for server g_madras ...
sendq queue status for g_madras as of Mon Dec 5 12:04:54 2011: COMPLETE
Checking sendq queue status for server g_delhi ...
sendq queue status for g_delhi as of Mon Dec 5 12:04:54 2011: INCOMPLETE
 Operation timed out.
command failed -- Command timed out. (21)

This report indicates that the send queue for server g_delhi had commands that did not complete before the timeout period of 10 seconds elapsed.
Related concepts:

 Monitor and troubleshooting Enterprise Replication
Return Codes for the cdr Utility
Enterprise Replication Server administrator
Related tasks:

 Deleting a Replication Server
Deleting a Replicate
Deleting a Replicate Set
Related reference:

 cdr delete replicate
cdr delete replicateset
cdr delete server
cdr delete grid

Copyright© 2020 HCL Technologies Limited

cdr check replicate

The cdr check replicate command compares the data on replication servers to create a report that lists data inconsistencies and can optionally repair the inconsistent
data within a replicate.

Syntax

>>-cdr check replicate--+--------------------------+------------>
 | (1) |
 '-| Connect Option |-----'

 (2)
>--+- --master=data_server-----+-- --repl=repl_name------------->
 '- --nomaster---------------'

 .---------------.
 V |
>--+---target_server-+-+--+-------------------+----------------->
 '- --all------------' '- --name=task_name-'

>--+------------+--->
 '- --verbose-'

>--+--+----------->
 '- --repair--+---------------------------------+-'
 | .-delete-. |
 +- --extratargetrows= -+-keep---+-+
 | '-merge--' |
 '- --timestamp--+---------------+-'
 '- --deletewins-'

>--+-----------------------------+------------------------------>
 | .-off----. |
 '- --firetrigger= -+-on-----+-'
 '-follow-'

>--+----------------------------+--+---------------+------------>
 '- --inprogress=recheck_time-' '- --background-'

>--+------------+--+---------------------+---------------------->
 '- --skipLOB-' '- --since=start_time-'

>--+-----------------------+--+----------------------+---------->
 '- --where=WHERE_Clause-' '- --excludeTimeSeries-'

>--+---------------------------+-------------------------------->

Part VI: Administering 1939

https://www.hcltech.com/

 '- --ignoreHiddenTSElements-'

>--+-------------------------------+---------------------------><
 '- --checksum=checksum_function-'

Notes:

1. See Connect Option.
2. Omit if you include the --timestamp option.

Element Purpose Restrictions Syntax

checksum_function Name of the checksum function to use during
consistency checking.

The function must be installed and registered on all
replication servers.

Long Identifiers

data_server Name of the database server to use as the
reference copy of the data.

Must be the name of an existing database server
group in SQLHOSTS.

Long Identifiers

recheck_time The number of seconds to spend rechecking
transactions that might be listed as inconsistent
because they are not yet applied on the target
server.

Must be a positive integer.

repl_name Name of the replicate to check. Must be an existing replicate. Long Identifiers

start_time The time from which to check updated rows. Can have one the following formats:

numberM = Include rows updated in the last
specified number of minutes.
numberH = Include rows updated in the last
specified number of hours.
numberD = Include rows updated in the last
specified number of days.
numberW = Include rows updated in the last
specified number of weeks.
"YYYY-MM-DD hh:mm:ss" = Include rows
updated since this time stamp.

The time stamp format follows
the convention of the DBTIME
environment variable.

target_server Name of a database server group to check. Must be the name of an existing database server
group in the sqlhosts file.

Long Identifiers

task_name The name of the progress report task. If you use an existing task name, the information for
that task is overwritten.
Maximum name length is 127 bytes.

Long Identifiers

WHERE_Clause Clause that specifies a subset of table rows to
be checked.

You cannot include a TimeSeries column in the
WHERE clause.

WHERE clause syntax

The following table describes the options for the cdr check replicate command.

Long Form Short Form Meaning

--all -a Specifies that all servers defined for the replicate are checked.

--background -B Specifies that the operation is run in the background as an SQL administration API command.
The command and its result are stored in the command_history table in the sysadmin database, under
the name that is specified by the --name= option, or the time stamp for the command if --name= is not
specified.

--checksum= Specifies the name of an existing checksum function to use during consistency checking. By default,
the checksum function that is provided with the database server is run.

--deletewins -d Specifies that the replicate uses the delete wins conflict resolution rule.
You cannot use this option for replicates that include TimeSeries columns.

--excludeTimeSeries Specifies to prevent the checking of time series data.

--extratargetrows= -e Specifies how to handle rows that are found on the target servers that are not present on the server
from which the data is being copied (data_server):

delete: (default) remove rows and dependent rows, based on referential integrity constraints,
from the target servers
keep: retain rows on the target servers
merge: retain rows on the target servers and replicate them to the data source server. You
cannot use this option for replicates that include TimeSeries columns.

Note: When cdr check replicate is used with -extratargetrows (or - e) option for SEND-ONLY replicate,
server displays the following warning and continue the operation:

WARNING: Extra row option is not applicable to Send-Only participant.
'--extratargetrows' option is ignored

Note: When cdr check replicate is used with -extratargetrows (or -e) option for RECV-ONLY
participant as a MASTER node, server displays the following error and operation is aborted:

Error: Receive only participant '%s’ can not be a master
node in data synchronization task

1940 Part VI: Administering

Long Form Short Form Meaning

--firetrigger= -T Specifies how to handle triggers at the target servers while data is synchronizing:

off: (default) do not fire triggers at target servers during synchronization

on: always fire triggers at the target servers even if the replicate definition does not have the --
firetrigger option
follow: fire triggers at target servers only if the replicate definition has the --firetrigger option

--ignoreHiddenTSElements Specifies to avoid checking time series elements that are marked as hidden.

--inprogress= -i Specifies to spend more than the default time to recheck inconsistent rows that might be in the process
of being applied on target servers. If the --inprogress= option is not set, inconsistent rows are
rechecked for up to five seconds.

--master= -m Specifies the database server to use as the reference copy of the data.
You cannot use the --master option with the --timestamp option.

--name= -n Specifies that the progress of this command can be monitored. Information about the operation is
stored under the specified progress report task name on the server on which the command was run.

--nomaster -N Specifies that the replicate is configured as a data consolidation system in which the multiple primary
servers only send data and the single target server only receives data.

--repair -R Specifies that rows that are found to be inconsistent are repaired.

--repl= -r Specifies the name of the replicate to check.

--since= -S Specifies the time from which to check updated rows. The replicate must be using the time stamp or
delete wins conflict resolution rule.
You cannot use this option for replicates that include TimeSeries columns.

--skipLOB -L Specifies that large objects are not checked.

--timestamp -t Specifies to repair inconsistent rows based on the latest time stamp among all the participants. The
replicate must use the time stamp or delete wins conflict resolution rule.
You cannot use the --master option with the --timestamp option.

You cannot use this option for replicates that include TimeSeries columns.

--verbose -v Specifies that the consistency report shows specific inconsistent values.

--where= -w Specifies what data to check with a WHERE clause.
You cannot include a TimeSeries column in the WHERE clause.

Usage
Use the cdr check replicate command to check the consistency of data between multiple database servers for a specific replicate. The cdr check replicate command
compares all rows on all specified database servers against the data in the reference server and produces a consistency report. If you include the --verbose option, the
report lists every inconsistent row value; otherwise, the report summarizes inconsistent rows.

If you run this command as a DBSA instead of as user informix, you must have INSERT, UPDATE, and DELETE permission on the replicated tables on all the replication
servers in the domain.

If you want to monitor the progress of the check operation, include the --name option and specify a name for the progress report task. Then, run the cdr stats check
command and specify the progress report task name.

Depending on the state of the data in your database when you run the cdr check command, the system might also run an UPDATE STATISTICS command.

If replicated transactions are active when the cdr check replicate command is running, the consistency report might include rows that are temporarily inconsistent until
those transactions are applied at the target server. By default, the cdr check replicate command rechecks inconsistent rows for up to five seconds after the initial check is
completed. If you find your transaction latency is longer than five seconds, you can extend the recheck time period by using the --inprogress option to specify a longer
interval. After the initial recheck, inconsistent transactions are rechecked until there are no inconsistent transactions or the number of seconds specified by the --
inprogress option elapses. In general, set the recheck time to a little longer than your average transaction latency because if repairing inconsistencies causes spooling in
the send queue, transaction latency might increase during a repair. View your transaction latency with the cdr view apply command.

You can improve the performance of consistency checks by limiting the amount of data that is checked by using one or more of the following options:

Check from a specific time with the --since option. If the replicate uses the time stamp or delete wins conflict resolution rule and you regularly check consistency,
you can limit the data that is checked to the data that was updated since the last consistency check.
Check a subset of the data with the --where option. For example, if you have a corrupted table fragment on a server, you can specify to check only the data in that
fragment.
Skip the checking of large objects with the --skipLOB option. If you find that your large objects do not change as much as other types of data, then skipping them
can make a consistency check quicker.

You can run a consistency check as a background operation as an SQL administration API command if you include the --background option. This option is useful if you
want to schedule regular consistency checks with the Scheduler. If you run a consistency check in the background, provide a name for the progress report task by using
the --name option so that you can monitor the check with the cdr stats check command. You can also view the command and its results in the command_history table in
the sysadmin database. If you use the --background option as a DBSA, you must have CONNECT privilege on the sysadmin database and INSERT privilege on the
ph_task table.

If you have large tables, you can speed consistency checking by indexing the ifx_replcheck shadow column.

If your replication system is configured for data consolidation and the primary servers include the S option in their participant definitions, you must include the --
nomaster option.

Part VI: Administering 1941

If you include the --repair option, the cdr check replicate command repairs inconsistent rows so that they match the rows on the reference server. The cdr check
replicate command uses direct synchronization as a foreground process when repairing inconsistent rows. The cdr check replicate command with the--repair option
does the following tasks:

1. Creates a shadow replicate with the source server and target server as participants. The conflict resolution rule for the shadow replicate is always apply.
2. Performs an index scan on the replication key index at both the source server and the target server to create a checksum and identify inconsistent rows.
3. Replicates inconsistent rows from the source server to the target server by doing a dummy update of the source server, which might result in increased logging

activity. Rows are not replicated to participants that include the S option in the participant definition because those participants only send data.
4. Runs a check to determine whether any rows remain inconsistent. Rows can be temporarily inconsistent if not all transactions are complete on the target server.
5. If any rows are inconsistent, reruns the check for up to five seconds, or for up to the number of seconds specified by the --inprogress option.
6. Deletes the shadow replicate.
7. Displays the consistency report.

To repair replicate sets based on the latest time stamps among the participants instead of based on a master server, use the --repair option with the --timestamp option.
If your replicates use the delete wins conflict resolution rule, also include the --deletewins option. A time stamp repair evaluates extra and mismatched rows according to
the rules of the time stamp or delete wins conflict resolution rules. The reference server in a time stamp repair is the server with the lowest replication key.

The following table describes the columns of the consistency report.
Table 1. Consistency Report Description

Column name Description

Node The name of the replication server.

Rows The number of rows that are checked in the participant.
If you included the --since or --where options, this number indicates the number of rows that fit the filter conditions. The number of
rows that are checked with the --since option might be different on different servers, because of replication latency. Some rows might
be checked on a source server to verify target server rows even if those rows on the source server did not originally fit the filter
conditions.

Elements For replicates that include TimeSeries columns the Elements column is shown instead of the Rows column. The Elements column
shows the number of time series elements that are checked in the participant.

Extra The number of rows on the target server that do not exist on the reference server.
For the reference server, this number is always 0.

Missing The number of rows on the reference server that do not exist on the target server.
For the reference server, this number is always 0.

Mismatch The number of rows on the target server that are not consistent with the corresponding rows on the reference server.
For the reference server, this number is always 0.

Total Mismatch For replicates that include TimeSeries columns the Total Mismatch column is shown instead of the Mismatch column. The Total
Mismatch column shows the number of rows on the target server that are not consistent with the corresponding rows on the reference
server. If the number in this column is greater than the number in the TmSr Rltd Mismatch column, the additional rows are inconsistent
in a way that does not involve a TimeSeries column.
For the reference server, this number is always 0.

TmSr Rltd Mismatch For replicates that include TimeSeries columns the TmSr Rltd Mismatch column shows the number rows on the target server that do not
have the same time series properties as the corresponding rows on the reference server because of time series properties. The
following time series properties are checked:

Whether the TimeSeries column is NULL
The origin of the time series
The calendar definition
Whether the time series is regular or irregular
The time series instance ID
The time series threshold

For the reference server, this number is always 0.

Other Mismatch For replicates that include TimeSeries columns the Other Mismatch column shows the number of elements that are in mismatched
rows on the target server.
For the reference server, this number is always 0.

Processed The number of rows that are processed to correct inconsistent rows.
The number of processed rows on the reference server is equal to the number of mismatched rows plus missing rows on the target
servers.

The number of processed rows for a target server is usually equal to the number of extra rows it has. If a row has child rows, then the
number of processed rows can be greater than the number of extra rows because the child rows must be deleted as well.

If the --extratargetrows option is set to keep, then extra rows are not deleted from the target and those rows are not added to the
Processed column. If the --extratargetrows option is set to merge, then those rows are replicated to the reference server and are listed
in the Processed column for the target server.

For a time stamp repair, the time stamp or delete wins conflict resolution rule is used to determine how to process the row.

You can run this command from within an SQL statement by using the SQL administration API.

Return codes
A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 1, 5, 17, 18, 31, 37, 48, 53, 54, 61, 75, 99, 101, 121, 172, 174, 178, 193, 194, 195, 200,
203, 204.

For information about these error codes, see Return Codes for the cdr Utility

1942 Part VI: Administering

Example 1: Summary consistency report
The following command generates a consistency report for a replicate named repl1, comparing the data on the server serv2 with the data on the server serv1:

cdr check replicate --master=g_serv1 --repl=repl1 g_serv2

The summary consistency report shows that the servers are consistent:

 ------ Table scan for repl1 start --------

------ Statistics for repl1 ------
Node Rows Extra Missing Mismatch Processed
---------------- --------- --------- --------- --------- ---------
g_serv1 52 0 0 0 0
g_serv2 52 0 0 0 0

 ------ Table scan for repl1 end ---------

This report indicates that the replicate is consistent on these servers.

Example 2: Summary consistency report with repair
The following command generates a consistency report and repairs inconsistent rows on all servers for a replicate named repl1:

cdr check replicate --master g_serv1 --repl=repl1 --all --repair

The consistency report shows that the target server has extra rows:

 ------ Table scan for repl1 start --------

------ Statistics for repl1 ------
Node Rows Extra Missing Mismatch Processed
---------------- --------- --------- --------- --------- ---------
g_serv1 67 0 0 0 2
g_serv2 67 2 2 0 2
g_serv3 67 0 0 0 0

Validation of repaired rows failed.
WARNING: replicate is not in sync

 ------ Table scan for repl1 end ---------

This report indicates that g_serv2 has two extra rows and is missing two rows. Two rows were processed on g_serv1 to replicate the missing rows to g_serv2. Also, two
rows were processed on g_serv2 to delete the extra rows. Because the --extratargetrows option was not specified, the default behavior of deleting rows on the target
servers that are not on the reference server occurred.
In this example, not all repaired rows were validated. Some rows might be still in the process of being applied on the target servers. Using the --inprogress option to
extend the time of the validation check after the repair might prevent validation failures.

Example 3: Verbose consistency report with repair
The following command generates a verbose consistency report, creates a progress report task, and repairs inconsistent rows on all servers for a replicate named repl1:

cdr check replicate --master=g_srv1 --replicate=repl1 --all --name=task1 \
 --verbose --repair

The verbose consistency report shows details of the repaired rows:

 ------ Table scan for repl1 start --------

------ Statistics for repl1 ------
Creating Shadow Repl sync_20104_1310721_1219952381
Node Rows Extra Missing Mismatch Processed
---------------- --------- --------- --------- --------- ---------
g_srv1 424 0 0 0 11
g_srv2 416 3 11 0 3

The repair operation completed. Validating the repaired rows ...
Validation failed for the following rows:

row missing on <g_srv2>
key:c1:424
--
row missing on <g_srv2>
key:c1:425
--
row missing on <g_srv2>
key:c1:426
--
marking completed on g_srv1 status 0

 ------ Table scan for repl1 end ---------

This report indicates that the first check found three extra rows and 11 missing rows on the server g_srv2. After the repair operation and subsequent recheck, three rows
were still missing on g_srv2. The progress report information can be accessed with the cdr stats check task1 command.

Example 4: Repeating verbose consistency report without repair
The following command generates a verbose consistency report for a replicate named repl1, comparing the data on the server serv2 with the data on the server serv1,
and rechecks inconsistent rows for up to 20 seconds:

Part VI: Administering 1943

cdr check replicate --master g_serv1 --repl=repl_1 g_serv2 --all \
--verbose --inprogress=20

The verbose consistency report shows details for the inconsistent rows:

 ------ Table scan for repl1 start --------

------ Statistics for repl1 ------
data mismatch between g_serv1 and g_serv2
item_num:1
order_num:1011
 lname
g_serv1 Pauly
g_serv2 Pauli
--
row missing on g_serv2
item_num:1
order_num:1014
--
row missing on g_serv2
item_num:2
order_num:1014
--
Node Rows Extra Missing Mismatch Processed
---------------- --------- --------- --------- --------- ---------
g_serv1 67 0 0 0 0
g_serv2 65 0 2 1 0

WARNING: replicate is not in sync

 ------ Table scan for repl1 end ---------

This report indicates that there is one inconsistent row on g_serv2. The replication key for that row is the combination of the item_num column and the order_num
column. The row that is inconsistent is the one that has the item number 1 and the order number 1011. There are two rows that are missing on g_serv2, each identified by
its replication key value.

Example 5: Summary consistency report with time filter
The following command generates a summary consistency report for the data that was updated in the last five minutes:

cdr check replicate --master=g_serv1 --repl=repl1 g_serv2 --since=5M

The consistency report shows that the servers are consistent:

 ------ Table scan for repl1 start --------

------ Statistics for repl1 ------
Node Rows Extra Missing Mismatch Processed
---------------- --------- --------- --------- --------- ---------
g_serv1 2 0 0 0 0
g_serv2 2 0 0 0 0

 ------ Table scan for repl1 end ---------

Only two rows were checked on each server (the Rows column) because only two rows were updated in the last five minutes.

Example 6: Consistency check and repair with time filter
The following command generates a summary consistency report for the data that was updated since July 4, 2008 at 12:30:00 local time:

cdr check replicate --master=g_serv1 --repl=repl1 g_serv2 \
--since="2008-07-04 12:30:00"

Example 7: Summary consistency report and repair with data filters
The following command generates a consistency report and repairs the data where the region column equals East:

cdr check replicate --master=g_serv1 --repl=repl1 --repair g_serv2 \
--where="region = 'East'"

Example 8: Repair inconsistencies based on time stamp
The following command repairs inconsistencies based on the most recent time stamps for the repl1 replicate on all replication servers:

cdr check replicate --repl=repl1 --all --repair --timestamp

The master server is not specified because the --timestamp option is used.

The consistency report shows that the three servers are not consistent:

 ------ Table scan for repl1 start --------

------ Statistics for repl1 ------
Node Rows Extra Missing Mismatch Processed
---------------- --------- --------- --------- --------- ---------
g_serv1 67 0 0 4 10
g_serv2 67 0 2 3 0
g_serv3 67 0 5 0 4

1944 Part VI: Administering

WARNING: replicate is not in sync

 ------ Table scan for repl1 end ---------

The value in the Extra column is always 0. In this example, seven rows are replicated from the g_serv1 server to fix missing rows. The g_serv1 server also replicated three
rows to fix mismatched rows on the g_serv2 server. The g_serv3 server replicated four rows to resolve mismatched rows on the g_serv1 server.

Example 9: Check a replicate that includes a TimeSeries column
The following command checks the replicate named repl2, which includes a TimeSeries column:

cdr check replicate --repl=repl2 --master=g_3 --all

The following consistency report shows that the source server, g_3, has more elements than the target server, g_4:

 ------ Table scan for repl2 start --------

 Total TmSr Rltd
Node Rows Extra Missing Mismatch Mismatch Processed
---------------- --------- --------- --------- --------- --------- ---------
g_3 1 0 0 0 0 0
g_4 1 0 0 0 0 0

TimeSeries Column: raw_reads
 Other
Node Elements Extra Missing Mismatch Mismatch Processed
---------------- --------- --------- --------- --------- --------- ---------
g_3 2 0 0 0 0 0
g_4 1 0 1 0 0 0

WARNING: replicate is not in sync
 ------ Table scan for repl2 end ---------

Related concepts:
 Interpreting the Consistency Report

Preparing for Role Separation (UNIX)
Enterprise Replication Server administrator
Related tasks:

 Checking Consistency and Repairing Inconsistent Rows
Indexing the ifx_replcheck Column
Increase the speed of consistency checking
Related reference:

 cdr sync replicate
cdr check replicateset
cdr stats check

Copyright© 2020 HCL Technologies Limited

cdr check replicateset

The cdr check replicateset command compares the data on replication servers to create a report listing data inconsistencies. Optionally you can use the command to
repair the inconsistent data within a replicate.

Syntax

>>-cdr check replicateset--+--------------------------+--------->
 | (1) |
 '-| Connect Option |-----'

 (2) (3)
>--+- --master=data_server-----+-- --replset=repl_set----------->
 '- --nomaster---------------'

 .---------------.
 V |
>--+---target_server-+-+--+-------------------+----------------->
 '- --all------------' '- --name=task_name-'

>--+------------+--+-----------------------------+-------------->
 '- --verbose-' | .-off----. |
 '- --firetrigger= -+-on-----+-'
 '-follow-'

>--+----------------------------+--+---------------+------------>
 '- --inprogress=recheck_time-' '- --background-'

>--+------------+--+---------------------+---------------------->
 '- --skipLOB-' '- --since=start_time-'

>--+-----------------------------+--+----------------------+---->
 '- --process=number_processes-' '- --excludeTimeSeries-'

>--+---------------------------+-------------------------------->
 '- --ignoreHiddenTSElements-'

Part VI: Administering 1945

https://www.hcltech.com/

>--+-------------------------------+--+--------------------+---><
 '- --checksum=checksum_function-' '-| Repair Options |-'

Repair Options

|-- --repair--+---------------------------------+--------------->
 | .-delete-. |
 +- --extratargetrows= -+-keep---+-+
 | '-merge--' |
 '- --timestamp--+---------------+-'
 '- --deletewins-'

>--+------------------------------------+--+------------+-------|
 '- --enable--+---------------------+-' '- --allrepl-'
 '- --timeout =seconds-'

Notes:

1. See Connect Option.
2. Omit if you include the --timestamp option.
3. Omit if you include the --allrepl option.

Element Purpose Restrictions Syntax

checksum_function Name of the checksum function to use during
consistency checking.

The function must be installed and registered on all
replication servers.

Long Identifiers

data_server Name of the database server to use as the
reference copy of the data.

Must be the name of an existing database server
group in SQLHOSTS.

Long Identifiers

number_processes The number of parallel processes to use for the
command.

The maximum number of processes Enterprise
Replication can use is equal to the number of
replicates in the replicate set.

recheck_time The number of seconds to spend rechecking
transactions that might be listed as inconsistent
because they are not yet applied on the target
server.

Must be a positive integer.

repl_set Name of the replicate set. Can be the name of a
derived replicate set.

 Long Identifiers

seconds The number of seconds to wait for a disabled
replication server to be recognized as active by
other replication servers in the domain and how
long to wait for control messages queued at
peer servers to be applied at newly-enabled
server.

Must be an integer value from 0 to 60.

start_time The time from which to check updated rows. Can have one the following formats:

numberM = Include rows updated in the last
specified number of minutes.
numberH = Include rows updated in the last
specified number of hours.
numberD = Include rows updated in the last
specified number of days.
numberW = Include rows updated in the last
specified number of weeks.
"YYYY-MM-DD hh:mm:ss" = Include rows
updated since this time stamp.

The time stamp format follows
the convention of the DBTIME
environment variable.

target_server Name of a database server group to check. Must be the name of an existing database server
group in SQLHOSTS.

Long Identifiers

task_name The name of the progress report task. If you use an existing task name, the information for
that task is overwritten.
Maximum name length is 127 bytes.

Long Identifiers

The following table describes the cdr check replicateset options.

Long Form Short Form Meaning

--all -a Specifies that all servers defined for the replicate are checked.

--allrepl -A Specifies that all replicates, whether they are in a replicate set or not, are repaired.
You cannot use the --replset option with the --allrepl option.

--background -B Specifies that the operation is run in the background as an SQL administration API command.
The command and its result are stored in the command_history table in the sysadmin database, under
the name that is specified by the --name= option, or the time stamp for the command if --name= is not
specified.

--checksum= Specifies the name of an existing checksum function to use during consistency checking. By default,
the checksum function that is provided with the database server is run.

--enable -E Enables replication on the target server if it was disabled by the cdr disable server command.

1946 Part VI: Administering

Long Form Short Form Meaning

--deletewins -d Specifies that the replicate uses the delete wins conflict resolution rule.
You cannot use this option for replicates that include TimeSeries columns.

--excludeTimeSeries Specifies to prevent the checking of time series data.

--extratargetrows= -e Specifies how to handle rows that are found on the target servers that are not present on the server
from which the data is being copied (data_server):

delete: (default) remove rows and dependent rows, based on referential integrity constraints,
from the target servers
keep: retain rows on the target servers
merge: retain rows on the target servers and replicate them to the data source server. You
cannot use this option for replicates that include TimeSeries columns.

Note: When cdr check replicate set is used with -extratargetrows (or -e) option for SEND-ONLY
replicate, server displays the following warning and continue the operation:

WARNING: Extra row option isn't applicable to Send-Only participant.
'--extratargetrows' option is ignored

Note: When cdr check replicate set is used with -extratargetrows (or -e) option for RECV-ONLY
participant as a MASTER node, server displays the following error and operation is aborted:

Error: Receive only participant '%s’ can not be a master
node in data synchronization task

--firetrigger= -T Specifies how to handle triggers at the target servers while data is synchronizing:

off: (default) do not fire triggers at target servers during synchronization
on: always fire triggers at the target servers even if the replicate definition does not have the --
firetrigger option
follow: fire triggers at target servers only if the replicate definition has the --firetrigger option

--ignoreHiddenTSElements Specifies to avoid checking time series elements that are marked as hidden.

--inprogress= -i Specifies to spend more than the default time to recheck inconsistent rows that might be in the process
of being applied on target servers. If the --inprogress= option is not set, inconsistent rows are
rechecked for up to five seconds.

--master= -m Specifies the database server to use as the reference copy of the data.
You cannot use the --master option with the --timestamp option.

--name= -n Specifies that the progress of this command can be monitored. Information about the operation is
stored under the specified progress report task name on the server on which the command was run.

--nomaster -N Specifies that the replicate is configured as a data consolidation system in which the multiple primary
servers only send data and the single target server only receives data.

--process= -p Specifies to run the command in parallel, using the specified number of processes. At most, Enterprise
Replication can use one process for each replicate in the replicate set. If you specify more processes
than replicates, the extra processes are not used.
Not all replicates can be processed in parallel. For example, if replicates have referential integrity rules,
the replicates with the parent tables must be processed before the replicates with the child tables.

--repair -R Specifies that rows that are found to be inconsistent are repaired.

--replset -s Specifies the name of the replicate set to check.
You cannot use the --replset option with the --allrepl option.

--skipLOB -L Specifies that large objects are not checked.

--since= -S Specifies the time from which to check updated rows. The replicate must be using the time stamp or
delete wins conflict resolution rule.
You cannot use this option for replicates that include TimeSeries columns.

--timeout= -w Specifies the time to wait for a disabled server to be enabled.

--timestamp -t Specifies to repair inconsistent rows based on the latest time stamp among all the participants. The
replicate must use the time stamp or delete wins conflict resolution rule.
You cannot use the --master option with the --timestamp option.

You cannot use this option for replicates that include TimeSeries columns.

--verbose -v Specifies that the consistency report shows specific values that are inconsistent instead of a summary
of inconsistent rows.

Usage
Use the cdr check replicateset command to check the consistency of data between multiple database servers for a replicate set. The cdr check replicateset command
compares all rows on all specified database servers against the data in the reference server and produces a consistency report. If you include the --verbose option, the
report lists every inconsistent value; otherwise, the report summarizes inconsistent rows.

If you run this command as a DBSA instead of as user informix, you must have INSERT, UPDATE, and DELETE permission on the replicated tables on all the replication
servers in the domain.

If you want to monitor the progress of the check operation, include the --name option and specify a name for the progress report task. Then, run the cdr stats check
command and specify the progress report task name.

Part VI: Administering 1947

Depending on the state of the data in your database when you run the cdr check command, the system might also run an UPDATE STATISTICS command.

If replicated transactions are active when the cdr check replicateset command is running, the consistency report might include rows that are temporarily inconsistent
until those transactions are applied at the target server. By default, the cdr check replicateset command rechecks inconsistent rows for up to five seconds after the initial
check is completed. If you find your transaction latency is longer than five seconds, you can extend the recheck time period by using the --inprogress option to specify a
longer interval. After the initial recheck, inconsistent transactions are rechecked until there are no inconsistent transactions or the number of seconds specified by the --
inprogress option elapses. In general, set the recheck time to a little longer than your average transaction latency because if repairing inconsistencies causes spooling in
the send queue, transaction latency might increase during a repair. View your transaction latency with the cdr view apply command.

You can improve the performance of consistency checks by limiting the amount of data that is checked by using one or more of the following options:

Skip the checking of large objects with the --skipLOB option. If you find that your large objects do not change as much as other types of data, then skipping them
can make a consistency check quicker.
Check from a specific time with the --since option. If the replicate uses the time stamp or delete wins conflict resolution rule and you regularly check consistency,
you can limit the data that is checked to the data that was updated since the last consistency check.

You can significantly improve the performance of checking a replicate set by checking the member replicates in parallel. You specify the number of parallel processes with
the --process option. For best performance, specify the same number of processes as the number of replicates in the replicate set. However, replicates with referential
integrity constraints cannot be processed in parallel.

You can run a consistency check as a background operation as an SQL administration API command if you include the --background option. This option is useful if you
want to schedule regular consistency checks with the Scheduler. If you run a consistency check in the background, provide a name for the progress report task by using
the --name option so that you can monitor the check with the cdr stats check command. You can also view the command and its results in the command_history table in
the sysadmin database. If you use the --background option as a DBSA, you must have CONNECT privilege on the sysadmin database and INSERT privilege on the
ph_task table.

If you have large tables, you can speed consistency checking by indexing the ifx_replcheck shadow column.

If your replication system is configured for data consolidation and the primary servers include the S option in their participant definitions, you must include the --
nomaster option.

The cdr check replicateset command repairs inconsistent rows so that they match the rows on the reference server. During a repair of inconsistent rows, the cdr check
replicateset command uses direct synchronization as a foreground process when repairing inconsistent rows. The cdr check replicateset command with the --repair
option performs the following tasks:

1. Determines the order in which to repair tables if they have referential relationships.
2. Creates a shadow replicate with the source server and target server as participants. The conflict resolution rule for the shadow replicate is always apply.
3. Performs an index scan on the replication key index at both the source server and the target server to create a checksum and identify inconsistent rows.
4. Replicates inconsistent rows from the source server to the target server by doing a dummy update of the source server, which might result in increased logging

activity. Rows are not replicated to participants that include the S option in the participant definition because those participants only send data.
5. Runs a check to determine whether any rows remain inconsistent. Rows can be temporarily inconsistent if not all transactions are complete on the target server.
6. If any rows are inconsistent, reruns the check for up to five seconds, or for up to the number of seconds specified by the --inprogress option.
7. Deletes the shadow replicate.
8. Repeats steps 2 through 7 for each replicate in the replicate set.
9. Displays the consistency report.

If you have disabled a server with the cdr disable server command, you can enable it and synchronize it by using the --enable option with the --repair option. You can
optionally specify a timeout period with the --timeout option.

To repair all replicates, use the --allrepl option with the --repair option.

To repair replicate sets based on the latest time stamps among the participants instead of based on a master server, use the --repair option with the --timestamp option.
If your replicates use the delete wins conflict resolution rule, also include the --deletewins option. A time stamp repair evaluates extra and mismatched rows according to
the rules of the time stamp or delete wins conflict resolution rules.

You can run this command from within an SQL statement by using the SQL administration API.

Return codes
A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 1, 5, 11, 17, 18, 31, 37, 48, 53, 54, 61, 75, 99, 101, 121, 166, 172, 174, 193, 194, 195,
200, 203, 204, 213.

For information about these error codes, see Return Codes for the cdr Utility

Example 1: Generate a consistency report
The following command uses two processes to generate a consistency report for each of the two replicates in the set in parallel for a replicate set named replset1,
comparing the data on the server serv2 with the data on the server serv1:

cdr check replicateset --master=g_serv1 --replset=replset_1 g_serv2 \
--process=2

The summary consistency report for the previous command might be:

Jan 17 2010 15:46:45 ------ Table scan for repl1 start --------

------ Statistics for repl1 ------
Node Rows Extra Missing Mismatch Processed
---------------- --------- --------- --------- --------- ---------
g_serv1 52 0 0 0 0
g_serv2 52 0 0 0 0

Jan 17 2010 15:46:55 ------ Table scan for repl1 end ---------

1948 Part VI: Administering

Jan 17 2010 15:46:46 ------ Table scan for repl2 start --------

------ Statistics for repl2 ------
Node Rows Extra Missing Mismatch Processed
---------------- --------- --------- --------- --------- ---------
g_serv1 48 0 0 0 0
g_serv2 48 0 0 0 0

Jan 17 2010 15:47:05 ------ Table scan for repl2 end ---------

This report indicates that the replicate set is consistent on these servers.

The consistency report for replicate sets shows a series of consistency reports for individual replicates that has the same format as the reports run with the cdr check
replicate command.

Example 2: Enable and synchronize a replication server
The following command enables a replication server named g_serv2 and repairs inconsistencies by time stamp on all of its replicate sets:

cdr check replicateset --repair --enable\
--timestamp --allrepl g_serv2

The master server is not specified because the --timestamp option is used. The replicate set name is not specified because the --allrepl option is used.

Example 3: Repair inconsistencies based on time stamp
The following command repairs inconsistencies based on the most recent time stamps for all replicate on all replication servers:

cdr check replicateset --all --repair --timestamp --allrepl

Related concepts:
 Preparing for Role Separation (UNIX)

Enterprise Replication Server administrator
Related tasks:

 Altering multiple tables in a replicate set
Checking Consistency and Repairing Inconsistent Rows
Indexing the ifx_replcheck Column
Increase the speed of consistency checking
Repairing inconsistencies while enabling a replication server
Related reference:

 cdr sync replicateset
cdr check replicate
cdr stats check
cdr disable server

Copyright© 2020 HCL Technologies Limited

cdr check sec2er

The cdr check sec2er command determines whether a high availability cluster can be converted to replication servers.

Syntax

>>-cdr check sec2er--+--------------------------+--secondary---->
 | (1) |
 '-| Connect Option |-----'

>---- --print--><

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

secondary Name of the secondary server in the
cluster.

 Long Identifiers

The following table describes the cdr check sec2er option.

Long Form Short Form Meaning

--print -p Shows the commands that would be run by the cdr start sec2er command during a
conversion.

Usage

Part VI: Administering 1949

https://www.hcltech.com/

You must run the cdr check sec2er command from a primary server in a cluster with a high-availability data replication secondary or a remote stand-alone secondary
server. The output of the cdr check sec2er command can show warning messages and error messages:

Warning messages indicate possible problems for replication after the conversion. You can solve these problems after converting the cluster to replication servers.
Error messages indicate problems preventing the conversion to replication server. You must solve all error conditions before you run the cdr start sec2er command
to convert a cluster to replication servers.

Use the --print option to display the commands that are run during a conversion.

Depending on the state of the data in your database when you run the cdr check command, the system might also run an UPDATE STATISTICS command.

Return codes
A return code of 0 indicates that the command was successful.

If the command is not successful, the following error code is returned: 225.

For information about these error codes, see Return Codes for the cdr Utility.

Examples
The following example checks if a cluster consisting of a primary server named priserv and a secondary server named secserv can be converted to replication servers:

cdr check sec2er -c priserv secserv

The following output of the cdr check sec2er command indicates that conversion would be successful, but that several issues should be addressed either before or after
conversion:

WARNING:CDR_SERIAL value on priserv can cause collisions.
WARNING:Dbspace is becoming full.
WARNING:Using the same values for CDR_SERIAL can cause collisions.

Secondary conversion to ER is possible.
Errors:0000 Warnings:0003

The following output of the cdr check sec2er command indicates that conversion will not be successful until the CDR_QDATA_SBSPACE configuration parameter is set in
the onconfig file on both the primary and the secondary servers:

WARNING:CDR_SERIAL value on priserv can cause collisions.
WARNING:Dbspace is becoming full.
WARNING:Using the same values for CDR_SERIAL can cause collisions.
ERROR:ER sbspace not correctly set up (CDR_QDATA_SBSPACE).

Secondary conversion to ER is not possible.
Errors:0001 Warnings:0003

The following output of the cdr check sec2er command indicates that conversion will not be successful until the sqlhosts files on both the primary and the secondary
servers are correctly configured for Enterprise Replication:

WARNING:CDR_SERIAL value on serv1 can cause collisions.
ERROR:Server priserv and server secserv belong to the same group.
WARNING:Dbspace is becoming full.
ERROR:Server priserv and server secserv belong to the same group.
WARNING:Using the same values for CDR_SERIAL can cause collisions.
FATAL:SQLHOSTS is not set up correctly for ER.
ERROR:SQLHOSTS is not set up correctly for ER.
ERROR:ER sbspace not correctly set up (CDR_QDATA_SBSPACE).

Secondary conversion to ER is not possible.
Errors:0004 Warnings:0003

The following example shows the output of the --print option, which describes the commands that will be run when the cdr start sec2er command is run on the priserv
server. The servers are defined as replication servers. Any tables that do not have a primary key are altered to add ERKEY shadow columns. A replicate is created and
started for each user table on the priserv server.

$cdr check sec2er --print serv2
Secondary conversion to ER is possible.

Errors:0000 Warnings:0000
--
-- Define ER for the first time
--
cdr define serv -c cdr1 -I cdr1

--
-- Creating Replication Key
--
dbaccess - - <<EOF
database stores_demo;
alter table 'mpruet'.classes add ERKEY;
EOF

--
-- Define the replicates
--
--
-- Defining Replicates for Database stores_demo
--
cdr define repl --connect=cdr1 sec2er_1_1282611664_call_type --master=cdr1 \
 --conflict=always --scope=row \

1950 Part VI: Administering

 "stores_demo@cdr1:'mpruet'.call_type" \
 "select * from 'mpruet'.call_type"
cdr start repl --connect=cdr1 sec2er_1_1282611664_call_type

cdr define repl --connect=cdr1 sec2er_4_1282611664_cust_calls --master=cdr1 \
 --conflict=always --scope=row \
 "stores_demo@cdr1:'mpruet'.cust_calls" \
 "select * from 'mpruet'.cust_calls"
cdr start repl --connect=cdr1 sec2er_4_1282611664_cust_calls

cdr define repl --connect=cdr1 sec2er_5_1282611664_customer --master=cdr1 \
 --conflict=always --scope=row \
 "stores_demo@cdr1:'mpruet'.customer" \
 "select * from 'mpruet'.customer"
cdr start repl --connect=cdr1 sec2er_5_1282611664_customer

cdr define repl --connect=cdr1 sec2er_3_1282611664_classes --master=cdr1 \
 --conflict=always --scope=row \
 "stores_demo@cdr1:'mpruet'.classes" \
 "select * from 'mpruet'.classes"
cdr start repl --connect=cdr1 sec2er_3_1282611664_classes
--
-- Starting RSS to ER conversion
--
--
-- WARNING:
--
-- DDL statements will not be automatically propagated to the ER server
-- after converting the secondary server into an ER server. If you
-- create or alter any objects, such as databases, tables, indexes, and
-- so on, you must manually propagate those changes to the ER node and
-- change any replication rules affecting those objects.
--

Related concepts:
 Enterprise Replication Server administrator

Related reference:
 cdr start sec2er

Example of creating a new replication domain by cloning

Copyright© 2020 HCL Technologies Limited

cdr cleanstart

The cdr cleanstart command starts an Enterprise Replication server with empty queues.

Syntax

>>-cdr cleanstart--+--------------------------+----------------><
 | (1) |
 '-| Connect Option |-----'

Notes:

1. See Connect Option.

Usage
The cdr cleanstart command starts an Enterprise Replication server, but first empties replication queues of pending transactions. Use this command if synchronizing the
server using the cdr sync command would be quicker than letting the queues process normally.

If an Enterprise Replication server was restored from a backup, but the restore did not include all log files from the replay position, or the system was not restored to the
current log file, advance the log file unique ID past the latest log file unique ID prior to the restore, and then run the cdr cleanstart command followed by the cdr sync
command to synchronize the server.

You can run this command from within an SQL statement by using the SQL administration API.

Related concepts:
 Enterprise Replication Server administrator

Related reference:
 cdr start

Copyright© 2020 HCL Technologies Limited

cdr connect server

The cdr connect server command reestablishes a connection to a database server that has been disconnected with a cdr disconnect server command.

Part VI: Administering 1951

https://www.hcltech.com/
https://www.hcltech.com/

Syntax

>>-cdr connect server--+--------------------------+------------->
 | (1) |
 '-| Connect Option |-----'

>----server_group--><

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

server_group Name of database server group to resume. The database server group must be defined for
replication and be disconnected.

Long Identifiers

Usage
When you run the cdr connect server command, an event alarm with a class ID of 53 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL administration API.

Related concepts:
 Enterprise Replication Server administrator

Related reference:
 cdr define server

cdr delete server
cdr disconnect server
cdr list server
cdr modify server
cdr resume server
cdr suspend server
Enterprise Replication Event Alarms

Copyright© 2020 HCL Technologies Limited

cdr define grid

The cdr define grid command creates a named grid of replication servers to simply administration.

Syntax

>>-cdr define grid--+--------------------------+--grid_name----->
 | (1) |
 '-| Connect Option |-----'

>--+- --all-----------+--><
 | .-,------------. |
 | V | |
 '---server_group-+-'

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

grid_name Name of the grid. Must be unique among grid names and replicate set
names.

Long Identifiers

server_group Name of a database server group to add to the grid. Must be the name of an existing database server
group in SQLHOSTS.

Long Identifiers

The following table describes the cdr define grid option.

Long Form Short Form Meaning

--all -a Include all replication servers in the domain.

Usage
You must run the cdr define grid command from a replication server that is a member of an Enterprise Replication domain.

Use the --all to include all replication servers in the domain in the grid.

1952 Part VI: Administering

https://www.hcltech.com/

Return codes
A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 5, 220, 221.

For information on these error codes, see Return Codes for the cdr Utility.

Examples
The following example defines a grid named grid1 and adds two replication servers to it:

cdr define grid grid1 gserv1, gserv2

The following example defines a grid named grid1 and adds all replication servers in the current domain to it:

cdr define grid grid1 --all

Related concepts:
 Enterprise Replication Server administrator

Related tasks:
 Creating a grid

Related reference:
 cdr change grid

cdr list grid
cdr delete grid

Copyright© 2020 HCL Technologies Limited

cdr define qod

The cdr define qod command defines a master server for monitoring the quality of data (QOD) for replication servers.

Syntax

>>-cdr define qod--+--------------------------+--+----------+--><
 | (1) | '- --start-'
 '-| Connect Option |-----'

Notes:

1. See Connect Option.

The following table describes the cdr define qod option.

Long Form Short Form Meaning

--start -s Specifies to start quality of data monitoring.

Usage
If Connection Manager service-level agreements (SLAs) use a apply-failure or transaction-latency policy, the Connection Manager uses QOD information to decide where
to route client connection requests.

Quality of data information is used for the following SLA policies:

FAILURE: Connection requests are directed to the replication server that has the fewest apply failures.
LATENCY: Connection requests are directed to the replication server that has the lowest transaction latency.

You can start monitoring by including the --start option or by running the cdr start qod command after the cdr define qod command.

If the monitoring of data quality is already enabled, running the cdr define qod command changes the master server.

You must run the cdr define qod command from a root server.

You can run this command from within an SQL statement by using the SQL administration API.

Return codes
A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 5, 217.

For information on error codes, see Return Codes for the cdr Utility.

Example 1: Defining a master server

Part VI: Administering 1953

https://www.hcltech.com/

The following command defines server_1 as the master server for quality of data monitoring:

cdr define qod server_1

After you have defined server_1 as the master server, you must run cdr define qod on server_1 to begin quality of data monitoring.

Example 2: Defining a master server and starting quality of data monitoring
The following command connects to server_2, defines server_2 as the master server, and then starts quality of data monitoring:

cdr define qod -c server_2 --start

Related concepts:
 Enterprise Replication Server administrator

Related reference:
 cdr start qod

cdr stop qod
cdr reset qod
Related information:

 SLA Connection Manager configuration parameter

Copyright© 2020 HCL Technologies Limited

cdr define region

The cdr define region command creates a region that contains a subset of the servers in a grid.

Syntax

>>-cdr define region--+--------------------------+-------------->
 | (1) |
 '-| Connect Option |-----'

 .--------------.
 V |
>-- --grid--=--grid_name--region_name----server_group-+--------><

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

grid_name Name of the grid. Must be the name of a defined grid. Long Identifiers

region_name Name of the region. Must be unique among region names, grid names,
and replicate set names.

Long Identifiers

server_group Name of a database server group to add to the
region.

Must be the name of a defined grid server. Long Identifiers

The following table describes the cdr define region option.

Long Form Short Form Meaning

--grid -g Specifies the grid that contains the servers to include in the region.

Usage
Use the cdr define region command to define a region of a grid. You can use a region name in a grid query to limit the servers on which the query is run. Regions contain
servers from a single grid. You can define multiple regions for the same grid. Regions can overlap or be contained by another region. You can create an unlimited number
of regions in a grid.

You cannot change a region. If you want to add or remove a grid server from a region, delete and re-create the region. Delete the region by running the cdr delete region
command. Re-create the region with a different set of grid servers by running the cdr define region command.

Return codes
A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 5, 227.

For information about these error codes, see Return Codes for the cdr Utility.

Examples
The following command creates a region that contains two servers and is named northwest. The region is created in the grid named mygrid1.

cdr define region --grid=mygrid1 northwest server_or server_wa

1954 Part VI: Administering

https://www.hcltech.com/

Related concepts:
Grid queries
Related tasks:
Defining tables for grid queries
Related reference:
ifx_grid_connect() procedure
cdr define region
cdr change gridtable
cdr remaster gridtable
ifx_node_id() function
ifx_node_name() function
Related information:
SELECT_GRID session environment option
SELECT_GRID_ALL session environment option
GRID clause

Copyright© 2020 HCL Technologies Limited

cdr define replicate

The cdr define replicate command defines a replicate on the specified replication servers.

Syntax

>>-cdr define replicate--+--------------------------+----------->
 | (1) |
 '-| Connect Option |-----'

 (3)
>--+--------------------------+--| Conflict Options |--------->
 | (2) |
 '-| Replicate Types |-----'

>--+------------------------------------+----------------------->
 | (4) |
 '-| Replication to SPL Options |-----'

>--+-------------------------+---------------------------------->
 | (5) |
 '-| Scope Options |-----'

>--+-----------------------------+------------------------------>
 | (6) |
 '-| Frequency Options |-----'

>--+---------------------------+-------------------------------->
 | (7) |
 '-| Special Options |-----'

>--+-replicate--------------------------+----------------------->
 | (8) |
 '-| Shadow Replicate Options |-----'

 .---------------------------.
 V |
>----+-----------------------+-+-------------------------------><
 '-participant--modifier-'

Notes:

1. See Connect Option.
2. See Replicate Types.
3. See Conflict Options.
4. See Replication to SPL routine.
5. See Scope Options.
6. See Frequency Options.
7. See Special Options.
8. See Shadow Replicate Options.

Element Purpose Restrictions Syntax

modifier Specifies the rows and columns to replicate. Participant and participant
modifier

participant Name of a participant in the replication. The participant must exist. Participant and participant
modifier

replicate Name of the new replicate. The replicate name must be unique. Long Identifiers

Usage

Part VI: Administering 1955

https://www.hcltech.com/

All servers that are specified as participants for the replicate must be online and the cdr utility must be able to connect to each participant.

To be useful, a replicate must include at least two participants. You can define a replicate that has one or no participant, but before you can use that replicate, you must
use the cdr change replicate command to add more participants. You cannot start and stop replicates that have no participants.

If you run this command as a DBSA instead of as user informix, you must have INSERT, UPDATE, and DELETE permission on the replicated tables on all the replication
servers in the domain.

When you define a replicate, the replicate does not begin until you explicitly change its state to active by running the cdr start replicate command.
Important: Do not create more than one replicate definition for each row and column combination to replicate. If the participant is the same, Enterprise Replication
attempts to insert duplicate values during replication.
The maximum number of replicates that you can define as participants on a particular replication server is 32767.

You can run this command from within an SQL statement by using the SQL administration API.

Replicate Types
By default, replicates are master replicates. If you do not specify a master server, the master replicate is based on the first participant. A master replicate uses saved
dictionary information about the attributes of replicated columns to verify that participants conform to the specified schema. You must specify at least one participant
when you create a master replicate. All participants that are specified are verified when the cdr define replicate or cdr change replicate command is run. If any
participant does not conform to the master definition, the command fails and that local participant is disabled. If a participant you specify does not contain the master
replicate table, Enterprise Replication automatically creates the table on the participant, based on the master replicate dictionary information. All database servers that
have master replicates must be able to establish a direct connection with the master replicate database server.

When you create a master replicate and do not include a participant modifier, the database server internally generates a participant modifier with SELECT statement that
lists each column name in the table. The database server requires the individual column names to verify the schema. If the length of the SELECT statement exceeds 15
000 ASCII characters, replicate creation fails. If your column names are too long, you can create a classic replicate, which has a generated participant modifier of SELECT
*.

If you do not want to verify the schema, create a classic replicate. For example, if you want to create a data consolidation system in which one server only receives data
from other servers that only send data, create a classic replicate by including the --classic option.

Replicate Types

|--+- --classic-------------------+-----------------------------|
 '-| Master Replicate Options |-'

Master Replicate Options

|-- --master=server--+----------+--+----------------+----------->
 '- --empty-' | .-y-. |
 '- --name=-+-n-+-'

>--+---------------+--|
 +- --verify-----+
 '- --autocreate-'

Element Purpose Restrictions Syntax

server Name of the database server group from which to
base the master replicate definition.

The name must be the name of a database server
group.

Long Identifiers

The following table describes the replicate type options.

Long Form Short Form Meaning

--autocreate -u Specifies that if the tables in the master replicate definition do not exist in the databases on the target
servers, they are created automatically. However, the tables cannot contain columns with user-defined
data types. The tables are created in the same dbspace as the database.
Note: Tables that are created with the --autocreate option do not automatically include indexes that are
not based on the replication key, defaults, constraints (including foreign constraints), triggers, or
permissions. If the tables you create with the --autocreate option require the use of these objects you
must manually create those objects.
You cannot use this option for replicates that include TimeSeries columns.

--classic Specifies that the replicate being created is a classic replicate.

--empty -t Specifies that the participant on the server that is specified with the --master option is used as the basis of
the master replicate, but is not added to the replicate.

--master= -M Specifies that the replicate being created is a master replicate.
If you omit this option, the master replicate is based on the first participant.

--name= -n Specifies whether the master replicate has column name verification in addition to column data type
verification. Valid values are:

--name=y = Default. Column names are verified to be the same on all participants.
--name=n = Column names are not verified and discrepancies can exist.

--verify -v Specifies that the cdr define replicate command verifies the database, tables, and column data types
against the master replicate definition on all listed servers.

Replication to SPL routine

1956 Part VI: Administering

At target participant, ‘replication to SPL routine’ type replicate definition causes SPL routine to be executed instead of applying data to target table. Target participant for
“replication to SPL routine” replicate definition can be configured to be same as source database, different database on the same server, or remote peer Enterprise
Replication server. “Replication to SPL routine” replicate definition does not enforce the requirement to have primary key, unique index or ER key on the replicated table.
Note: Even though data is applied to stored procedure routine, target table definition must exist.
For more information see, Replication to SPL routine

|--+--splname=spl_routine_name----+-------+---------------------+--------->
 | | | .-y-. |

'--'--jsonsplname=spl_routine_name-' '- -- cascaderepl=-+-n-+-'

Long Form Meaning

--splname Stored procedure routine name to apply data to. SPL routine must exist at all participants. Column list for SPL routine extracted
from replicate participant select statement column projection list.

--jsonsplname Stored procedure routine name to apply data to. SPL routine and table definition must exist at all participants. Input argument for
SPL routine must be a JSON document. --jsonsplname option is mutually exclusive to --splname option.

--cascaderepl Enable cascade replication. Required if replication to SPL needs to be executed for the data applied through Enterprise
Replication.

--splname option stored procedure argument list:
Optype char(1) – operation type. Values include

I – Insert
U – Update
D – Delete

Soucre_id integer – Source server id. Same as group id.
Committime integer – Transaction commit time.
Txnid bigint – Transaction id.
Before value column list.
After value column list.

Note: Column list for SPL routine extracted from select statement projection list

Conflict Options
The --conflict options specify how Enterprise Replication resolves data conflicts at the database server.

Conflict Options

|-- --conflict=--->

>--+-always---+-----------|
 +-ignore---+
 +-SPL_routine--+-------------+-------------------+
 | '- --optimize-' |
 +-timestamp--+---------------------------------+-+
 | '-,--SPL_routine--+-------------+-' |
 | '- --optimize-' |
 '-deletewins-------------------------------------'

Element Purpose Restrictions Syntax

SPL_routine SPL routine for conflict resolution The SPL routine must exist. Long Identifiers

The following table describes the --conflict options.

Long Form Short Form Meaning

--conflict= -C Specifies the rule that is used for conflict resolution.

Use the always option if you do not want Enterprise Replication to resolve conflicts, but you do want
replicated changes to be applied even if the operations are not the same on the source and target
servers. Use the always-apply conflict resolution rule only with a primary-target replication system.
If you use always-apply with an update-anywhere replication system, your data might become
inconsistent. You must use the always-apply rule if your replicate includes TimeSeries data types.
Use the ignore option if you do not want Enterprise Replication to resolve conflicts.
Use the timestamp option to have the row or transaction with the most recent time stamp take
precedence in a conflict.
Use the deletewins option to have the row or transaction with a DELETE operation, or otherwise
with the most recent time stamp, take precedence in a conflict. The delete wins conflict resolution
rule prevents upserts.

The action that Enterprise Replication takes depends on the scope.

Part VI: Administering 1957

Long Form Short Form Meaning

--optimize -O Specifies that the SPL routine is optimized. An optimized SPL routine is called only when a collision is
detected and the row to be replicated fails to meet one of the following two conditions:

It is from the same database server that last updated the local row on the target table.
It has a time stamp greater than or equal to that of the local row.

When this option is not present, Enterprise Replication always calls the SPL routine that is defined for the
replicate when a conflict is detected.

Scope Options
The --scope options specify the scope of Enterprise Replication conflict resolution.

Scope Options

 .-transaction-.
|-- --scope=--+-row---------+-----------------------------------|

The following table describes the --scope option.

Long Form Short Form Meaning

--scope= -S Specifies the scope that is used when Enterprise Replication encounters a problem with data or a conflict
occurs.

--scope=row = Evaluate one row at a time and apply the replicated rows that win the conflict
resolution with the target rows.
--scope=transaction = Default. Apply the entire transaction if the replicated transaction wins the
conflict resolution.

When you specify the scope, you can abbreviate transaction to tra.

Special Options

Special Options

 .---.
 V |
|----+---+-+--------|
 +- --ats--+
 +- --ris--+
 +- --floatieee----------------------------------+
 +- --floatcanon---------------------------------+
 +- --firetrigger--------------------------------+
 | .-y-. |
 +- --fullrow=-+-n-+-----------------------------+
 | .-n-. |
 +- --ignoredel=-+-y-+---------------------------+
 +-+-+----------+--+-------------------------+-+-+
 | | '- --erkey-' | .-,-----------. | | | |
 | | | V | | | |
 | | '- --key----column_name-+-' | |
 | '- --anyUniqueKey---------------------------' |
 | .-n-. |
 +- --UTF8=-+-y-+--------------------------------+
 +- --serial-------------------------------------+
 | .-n-. |
 '- --alwaysRepLOBs=-+-y-+-----------------------'

Element Purpose Restrictions Syntax

column_name The name of a column that is included in a unique
index or constraint

The column must exist. Long Identifiers

The following table describes the special options to the cdr define replicate command.

Long Form Short Form Meaning

--alwaysRepLOBS= Specifies whether columns that contain unchanged large objects are included in replicated rows:

--alwaysRepLOBS=n: Default. Columns that contain unchanged large objects are not
replicated.
--alwaysRepLOBS=y: Columns that contain large objects are always included in replicated
rows.

1958 Part VI: Administering

Long Form Short Form Meaning

--anyUniqueKey -U Specifies that the replication key is detected automatically from the following sources in the
follow order:

A primary key that is defined on the table
ERKEY shadow columns that are included in the table
Any unique key or unique constraint that is defined on the table

The replicate must be a strictly mastered replicate.

If the table includes ERKEY shadow columns, those columns are included in the participant
definition only if the table does not have a primary key.

--ats -A Activates aborted transaction spooling for replicate transactions that fail to be applied to the
target database.

--erkey -K Adds the ERKEY shadow columns, ifx_erkey_1, ifx_erkey_2, and ifx_erkey_3, to the participant
definition, if the table includes the ERKEY shadow columns. An index that is created on the ERKEY
shadow columns is used as the replication key, unless the --key option is included.

--firetrigger -T Specifies that the rows that the replicate inserts fire triggers at the destination.

--floatieee -I Transfers replicated floating-point numbers in either 32-bit (for SMALLFLOAT) or 64-bit (for
FLOAT) IEEE floating-point format. Use this option for all new replicate definitions.

--floatcanon -F Transfers replicated floating-point numbers in machine-independent decimal representation. This
format is portable, but can lose accuracy. This format is provided for compatibility with earlier
versions only; use --floatieee for all new replicate definitions.

--fullrow= -f Specifies whether to replicate full rows or only the changed columns:

--fullrow=y = Default. Indicates to replicate the full row and to enable upserts. If you also
specify deletewins as the conflict resolution rule, upserts are disabled.
--fullrow=n = Indicates to replicate only changed columns and disable upserts.

--ignoredel= -D Specifies whether to retain deleted rows on other nodes:

--ignoredel=y = Indicates that rows are retained if they are deleted on other nodes in the
Enterprise Replication domain. You cannot use this option if you specify deletewins as the
conflict resolution rule.

--ignoredel=n = Default. Indicates that deleted rows are deleted on all nodes in the
Enterprise Replication domain.

--key= -k Specifies the columns that are included in an existing unique index or unique constraint to use as
the replication key. All the columns that are included in the unique index or constraint must be
listed, in the same order as the columns are listed in the index or constraint definition. The
replicate must be a strictly mastered replicate.
The unique index or constraint that the --key option specifies is used as the replication key even if
the table has an existing primary key or ERKEY columns.

--ris -R Activates row-information spooling for replicate row data that fails conflict resolution or
encounters replication order problems.

--serial -s Specifies that replicated transactions for the replicate are applied serially instead of in parallel.

--UTF8= None Specifies whether to enable conversion to and from UTF-8 (Unicode) when you replicate data
between servers that use different code sets.

--UTF8=y Default. Indicates that character columns are converted to UTF-8 when the row
is copied into the transmission queue. When the replicated row is applied on the target
server, the data is converted from UTF-8 to the code set used on the target server. No
attempt is made to convert character data that is contained within opaque data types. You
cannot use --UTF8=y for replicates that contain TimeSeries data types, user-defined data
types, or DataBlade module data types.
–UTF8=n Indicates that code set conversion is ignored.

Shadow Replicate Options
A shadow replicate is a copy of an existing, or primary, replicate. You must create a shadow replicate to manually remaster of a replicate that is defined with the -n option.
After you create the shadow replicate, the next step in manual remastering is to switch the primary replicate and the shadow replicate by running the cdr swap shadow
command.

Shadow Replicate Options

|--+---+----------|
 '- --mirrors--primary_replicate--shadow_replicate-'

Element Purpose Restrictions Syntax

Part VI: Administering 1959

Element Purpose Restrictions Syntax

primary_replicate Name of the replicate on which to base the
shadow replicate.

The replicate must exist. The replicate name
must be unique.

Long Identifiers

shadow_replicate Name of the shadow replicate to create. The replicate name must be unique. Long Identifiers

The following table describes the shadow replicate option to cdr define replicate.

Long Form Short Form Meaning

--mirrors -m Specifies that the replicate created is a shadow replicate based on an existing primary replicate.

Example 1: Define a replicate with two participants
The following example defines a replicate with two participants:

cdr define repl --conflict=timestamp,sp1 \
--scope=tran --ats --fullrow=n --floatieee newrepl \
“db1@iowa:antonio.table1” “select * from table1” \
“db2@utah:carlo.table2” “select * from table2”

Line 1 of the example specifies a primary conflict resolution rule of timestamp. If the primary rule fails, the SPL routine sp1 is run to resolve the conflict. Because no
database server is specified here (or on any later line), the command connects to the database server named in the INFORMIXSERVER environment variable.

Line 2 specifies that the replicate has a transaction scope for conflict resolution scope and enables aborted transaction spooling. Enterprise Replication replicates only the
rows that changed and uses the IEEE floating point format to send floating-point numbers across dissimilar platforms. The final item specifies the name of the replicate,
newrepl.

Line 3 defines the first participant, "db1@iowa:antonio.table1", with the SELECT statement "select * from table1".

Line 4 defines a second participant, "db2@utah:carlo.table2", with the SELECT statement "select * from table2".

Example 2: Define a replicate with a frequency of every five hours
This example is the same as the preceding example with the following exceptions:

Line 1 instructs Enterprise Replication to use the global catalog on database server ohio.
Line 2 specifies that the data is replicated every five hours.

cdr def repl -c ohio -C timestamp,sp1 \
-S tran -A -e 5:00 -I newrepl \
"db1@iowa:antonio.table1" "select * from table1" \
"db2@utah:carlo.table2" "select * from table2"

Example 3: Define a master replicate
The following example defines a master replicate:

cdr def repl -c iowa -M iowa \
-C deletewins -S tran newrepl \
"db1@iowa:antonio.table1" "select * from table1"

Line 1 instructs Enterprise Replication to create a master replicate based on the replicate information from the database server iowa. Line 2 specifies the delete wins
conflict resolution rule, a transaction scope, and that the name of the replicate is newrepl. Line 3 specifies the table and columns included in the master replicate.

Example 4: Define a master replicate and create a table on a participant
This example is the same as the previous example except that it specifies a second participant in Line 4. The second participant (utah) does not have the table table1
specified in its participant and modifier syntax. The -u option specifies to create the table table1 on the utah server.

cdr def repl -c iowa -M iowa \
-C deletewins -S tran newrepl -u\
"db1@iowa:antonio.table1" "select * from table1 \
"db2@utah:carlo.table1" "select * from table1"

Example 5: Define a replicate with the ERKEY shadow columns
This example defines a master replicate similar to the one in example 3, and includes the ERKEY shadow columns for the replication key.

cdr def repl -c iowa -M iowa \
-C deletewins -S tran newrepl --erkey\
"db1@iowa:antonio.table1" "select * from table1"

Example 6: Define a data consolidation system
This example defines a replicate for a data consolidation system in which one target server receives replicated data from four primary servers.

cdr def repl -c london \
sales -C always\
"db0@london:user.world_sales" "select * from world_sales"\
"S db1@rome:user1.sales_rome" "select * from sales_rome"\
"S db2@tokyo:user2.sales_tokyo" "select * from sales_tokyo"\
"S db3@perth:user3.sales_perth" "select * from sales_perth"\
"S db4@ny:user4.sales_ny" "select * from sales_ny"\

1960 Part VI: Administering

The S options in the participant definitions indicate that the rome, tokyo, perth, and ny servers can only send replicated data to the london server.

Related concepts:
 Replicate types

Conflict Resolution
Conflict Resolution Scope
Failed Transaction (ATS and RIS) Files
Frequency Options
Preparing for Role Separation (UNIX)
Replication of TimeSeries data types
Enterprise Replication Server administrator
Related tasks:

 Enabling ATS and RIS File Generation
Specifying Conflict Resolution Rules and Scope
Enabling Triggers
Using the IEEE Floating Point or Canonical Format
Defining Replication Servers
Setting Up Failed Transaction Logging
Preparing tables without primary keys
Related reference:

 cdr change replicate
cdr change replicateset
cdr delete replicate
cdr list replicate
cdr modify replicate
cdr resume replicate
cdr start replicate
cdr stop replicate
cdr suspend replicate
cdr swap shadow
cdr define template
cdr delete replicateset
cdr list replicateset
cdr modify replicateset
cdr resume replicateset
cdr start replicateset
cdr stop replicateset
cdr suspend replicateset
Replicate only changed columns
Participant and participant modifier

Copyright© 2020 HCL Technologies Limited

cdr define replicateset

The cdr define replicateset command defines a replicate set on all the servers that are included as participants in the replicates. A replicate set is a collection of several
replicates to be managed together.

Syntax

>>-cdr define replicateset--+--------------------------+-------->
 | (1) |
 '-| Connect Option |-----'

>--+-----------------------------+--+--------------+------------>
 | (2) | '- --exclusive-'
 '-| Frequency Options |-----'

 .---------------.
 V |
>--+-repl_set----+-----------+-+-----------------+-------------><
 | '-replicate-' |
 '- --needRemaster=--original_set--derived_set-'

Notes:

1. See Connect Option.
2. See Frequency Options.

Element Purpose Restrictions Syntax

derived_set Name of a temporary replicate set to create that
contains only replicates that must be remastered.

The name must be unique and cannot be the same as
a replicate name.

Long Identifiers

original_set Name of an existing replicate set that contains
replicates that must be remastered.

The replicate set must exist. Long Identifiers

repl_set Name of replicate set to create. The name must be unique and cannot be the same as
a replicate name.

Long Identifiers

Part VI: Administering 1961

https://www.hcltech.com/

Element Purpose Restrictions Syntax

replicate Name of a replicate to be included in the replicate
set.

The replicate must exist. Long Identifiers

The following table describes the options to the cdr define replicateset command.

Long Form Short Form Meaning

--exclusive -X Creates an exclusive replicate set. Replicates that belong to this replicate set
cannot belong to any other replicate sets.

--needRemaster= -n Creates a derived replicate set that contains replicates that have schema changes
and must be remastered, and any classic replicates. All classic replicates are
converted to master replicates regardless of whether they have schema changes.

Usage
All servers that are specified as participants for all the specified replicates must be online and the cdr utility must be able to connect to each participant.

If you run this command as a DBSA instead of as user informix, you must have INSERT, UPDATE, and DELETE permission on the replicated tables on all the replication
servers in the domain.

Any valid replicate can be defined as part of a replicate set. A replicate can belong to more than one non-exclusive replicate set, but to only one exclusive replicate set.

When you create an exclusive replicate set, the state is initially set to active.

To create an exclusive replicate set and make it active

1. Create an empty replicate set.
2. Stop the replicate set.
3. Add replicates to the replicate set.
4. Set the state of the replicate set to active by running cdr start replicateset.

Because individual replicates in a non-exclusive replicate set can have different states, the non-exclusive replicate set itself has no state. You cannot change whether a
replicate set is exclusive or not.

If you change the schema of multiple replicated tables for replicates that belong to the same replicate set, you can create a derived replicate set so that you can remaster
all the replicates with one command. Use the --needRemaster option to specify the existing replicate set and the name of the derived replicate set. Then run the cdr
remaster replicateset command.

You can run this command from within an SQL statement by using the SQL administration API.

Example: Define a non-exclusive replicate set
The following command connects to the default server and defines the non-exclusive replicate set accounts_set with replicates repl1, repl2, and repl3:

cdr def replset accounts_set repl1 repl2 repl3

Example: Define an exclusive replicate set
The following command connects to the server olive and defines the exclusive replicate set market_set with replicates basil and thyme:

cdr def replset --connect=olive --exclusive market_set basil thyme

Example: Define a derived replicate set
The following command defines a derived replicate set named derived_accounts that is based on the replicate set accounts_set:

cdr define replicateset --needRemaster=accounts_set derived_accounts

Related concepts:
 Define replicate sets

Frequency Options
Preparing for Role Separation (UNIX)
Enterprise Replication Server administrator
Related tasks:

 Altering multiple tables in a replicate set
Exclusive Replicate Sets
Related reference:

 cdr change replicateset
cdr delete replicateset
cdr list replicateset
cdr modify replicateset
cdr resume replicateset
cdr start replicateset
cdr stop replicateset
cdr suspend replicateset

Copyright© 2020 HCL Technologies Limited

1962 Part VI: Administering

https://www.hcltech.com/

cdr define server

The cdr define server command defines a replication server in an Enterprise Replication domain. You can add a replication server to an existing domain or create a new
domain.

Syntax

>>-cdr define server--+--------------------------+-------------->
 | (1) |
 '-| Connect Option |-----'

>--+---------------------+-------------------------------------->
 '-| Dynamic Options |-'

>--+------------------------------------+-- --init-------------->
 '- --sync=sync_server-+------------+-'
 +- --nonroot-+
 '- --leaf----'

>--server_group--><

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

server_group Name of a database server group to add to an
Enterprise Replication domain.

Must be the name of an existing database server
group in the sqlhosts information.

sync_server Name of a replication server that is a member of
the domain into which you are adding a server.

Must be an existing replication server. The server
must be online.

Long Identifiers

The following table describes the options to cdr define server.

Long Form Short Form Meaning

--init -I Adds server_group to the replication domain.

--leaf -L Defines the server as a leaf server in an existing domain. The server that is specified by
the --sync option becomes the parent of the leaf server.

--nonroot -N Defines the server as a nonroot server in an existing domain. The server that is specified
by the --sync option becomes the parent of the nonroot server.

--sync= -S Adds a server to the existing domain of which the sync_server is a member. Uses the
global catalog on sync_server as the template for the global catalog on the new
replication server, server_group. For Hierarchical Routing topologies, Enterprise
Replication also uses the sync_server as the parent of the new server in the current
topology.

Dynamic Options
Use the dynamic options to modify the default behavior of cdr define server. You can change these options with the cdr modify server command while replication is
active.

Options

|--+-----------------+--+----------------+--+----------------------------+--+-----------------+--|
 '- --ats=ats_dir -' '- --ris=ris_dir-' | .-text-. | '- --idle=timeout-'
 '- --atsrisformat=--+-xml--+-'
 '-both-'

Element Purpose Restrictions Syntax

ats_dir Name of the directory for Aborted Transaction
Spooling files. The default is /tmp.

Must be a full path name. The path for the directory
can be no longer than 256 bytes.
A value of /dev/null (UNIX) or NUL (Windows)
prevents ATS file generation.

Follows naming conventions on
your operating system

ris_dir Name of the directory for Row Information Spooling
files. The default is /tmp.

Must be a full path name. The path for the directory
can be no longer than 256 characters.
A value of /dev/null (UNIX) or NUL (Windows)
prevents RIS file generation.

Follows naming conventions on
your operating system

timeout Idle timeout for this replication server. Default value of 0 indicates no timeout. Must be an
integer number of minutes. The maximum value is
32767.

Integer

The following table describes the options to cdr define server that you can change with the cdr modify server command while replication is active.

Long Form Short Form Meaning

Part VI: Administering 1963

Long Form Short Form Meaning

--ats= -A Specifies the directory to store aborted transaction spooling files for replicate
transactions that fail to be applied.

--atsrisformat= -X Specifies the format of ATS and RIS files:

text indicates that ATS and RIS files are generated in standard text format.
xml indicates that ATS and RIS files are generated in XML format.
both indicates that ATS and RIS files are generated in both standard text
format and XML format.

If you omit the --atsrisformat= option, ATS and RIS files are created in text format.

--ris= -R Specifies the directory to store row information spooling files for replicate row data
that fails conflict resolution or encounters replication-order problems.

--idle= -i The default value is 0. Set the number of minutes after which an inactive
connection is closed after timeout minutes. If timeout is 0, the connection does not
time out.

Usage
Run the cdr define server command on the database server that you want to define as a replication server. To create the replication server in an existing domain, specify a
synchronization server that belongs to that domain with the --sync= option. To create a replication server in a new domain, omit the --sync= option. The cdr define server
command creates the Enterprise Replication global catalog on the specified server.

If the CDR_QDATA_SBSPACE and CDR_DBSPACE configuration parameters are not set and the database server has a storage pool with sufficient space, the cdr define
server command automatically performs the following tasks:

Creates an sbspace and a dbspace from chunks from the storage pool. The spaces have the same characteristics and storage-pool behavior as other spaces created
from the storage pool. The storage pool must have at least 500 MB of free space for the sbspace and 200 MB of free space for the dbspace. These spaces must be
composed of chunks of size 100 MB or greater.
Sets the values of the CDR_QDATA_SBSPACE and CDR_DBSPACE configuration parameters to the space names both in memory and in the onconfig file.
Shows the names of the spaces that are created.

You can run this command from within an SQL statement by using the SQL administration API.

The maximum number of replication servers that you can define is 32767.

Examples
The following example defines the first database server in a replication domain. The command specifies the following actions:

Connect to the database server stan.
Initialize Enterprise Replication.
Set the /cdr/ats directory for generated ATS files.
Set the /cdr/ris directory for generated RIS files.
Set the format of ATS and RIS files to text.

cdr define server --connect=stan \
--ats=/cdr/ats --ris=/cdr/ris \
--atsrisformat=text --init g_stan

The following example adds a database server to the replication domain that was created in the previous example. The command specifies the following actions:

Connect to the database server oliver.
Initialize Enterprise Replication.
Synchronize the catalogs on database server oliver with the catalogs on database server stan.
Set the /cdr/ats directory for generated ATS files.
Specify that RIS files are not generated.
Set the file format of ATS files to XML.

cdr define server -c oliver \
-A /cdr/ats -R /dev/null -X xml \
-S g_stan -I g_oliver

Related concepts:
 Monitor and troubleshooting Enterprise Replication

Enterprise Replication Server administrator
Related tasks:

 Enabling ATS and RIS File Generation
Disabling ATS and RIS File Generation
Defining Replication Servers
Customizing the Replication Server Definition
Related reference:

 cdr connect server
cdr delete server
cdr disconnect server
cdr list server
cdr modify server
cdr resume server
cdr suspend server
cdr realize template

1964 Part VI: Administering

Copyright© 2020 HCL Technologies Limited

cdr define shardCollection

The cdr define shardCollection command creates a sharding definition for distributing a table or collection across multiple shard servers.

Syntax
>>-cdr define shardCollection----------------------------------->

>--definition_name--database--:--user--.--+-collection-+-------->
 '-table------'

 .-delete--------.
>--+------------------------+-- --type--=--+-keep----------+---->
 | (1) | '-informational-'
 | | '-informational_noer-'
 '-| Connect Option |-----'

>-- --key--=--+-column-----------+------------------------------>
 '-"--expression--"-'

>--+------------------------------+----------------------------->
 '- --versionCol--=--+-field--+-'
 '-column-'

 .----------------------------------.
 V |
>-- --strategy--=--+-expression----ER_group--"--WHERE_expression--"-+--ER_group--REMAINDER-+-><
 | .----------. |
 | V | |
 +- chash----ER_group-+--+------------------------------+----------------+
 | '- --partitions--=--partitions-' |
 | .----------. |
 | V | |
 '- hash----ER_group-+---'

Element Description Restrictions

collection The name of the collection that is distributed across
database servers.

Must be the name of an existing collection.

column The name of a table column. Must be the name of an existing column.

database The name of the database that contains the table or
collection that is distributed across database servers.

Must be the name of an existing database.

definition_name The name of the sharding definition that is created.

ER_group The ER-group name of a database server that receives
sharded data.

Must be the ER-group name of an existing database server.

expression The WHERE-clause expression that is used to select rows
or documents by shard key value.

field The name of a collection field. Must be the name of an existing field.

REMAINDER Specifies the database server that receives rows or
documents with shard key value that is not selected by the
other expressions.

partitions The number of hashing partitions to create on each shard
server.

Must be a positive integer.

table The name of the table that is distributed across database
servers.

Must be the name of an existing table.

user The owner of the table or collection that is distributed
across database servers.

Must be the name of an existing user.

The following table describes the cdr define shardCollection parameters.

Long Form Short Form Description

--key= -k Defines the shard key on all database servers.
Possible values are:

A column name
An expression

All database servers in a shard cluster must use the same column or expression as the shard key.

--partitions= -p Specifies the number of hashing partitions to create on each shard server when the sharding strategy
is consistent hashing. Default is 3. The more hashing partitions, the more evenly the data is
distributed among shard servers. However, if you specify more than 10 hashing partitions, the
resulting SQL statement to create the sharded table might fail because it exceeds the maximum
character limit for an SQL statement.

Part VI: Administering 1965

https://www.hcltech.com/

Long Form Short Form Description

--strategy= -s Specifies the method for determining which database server an inserted row or document is
distributed to.
Possible values are:

expression: The expression that is defined in the server statement is used.
chash: A consistent hash algorithm is used. When you add or remove a shard server, the
consistent hashing algorithm redistributes a fraction of the data.
hash: A hash algorithm is used. When you add or remove a shard server, the hashing algorithm
redistributes all the data.

--type= -t Specifies action on the shard server where a row or document was inserted:

delete (default): The row or document is deleted from the source shard server after it is
replicated to the target shard server. If you do not set --versionCol=column, changes made
to rows and documents can be lost during the replication process.
keep: The row or document is not deleted on the source shard server after the row or
document is replicated to the source shard serverso that two copies of the data exist in the
shard cluster.
informational: Data is not replicated. You can run sharded queries but the data is not sharded
during loading. You must load the data on the appropriate shard server according to the
sharding definition.
informational_noer: You can use with shard edge servers without having to define Enterprise
Replication at edge servers.

--versionCol= -v When --type=delete is specified in the sharding definition, Enterprise Replication must verify that a
source row or document was not updated before it can delete the row or document on the shard
server.
Possible values are:

A table column name
A field name

If --type=delete is set in the sharding definition, but --versionCol=column is not, changes made
to rows and documents can be lost during the replication process.

This parameter is required if any rows have out-of-row data, such as data stored in smart large object,
or if collections have BSON documents that have sizes larger than 4 KB.

Usage
Use the cdr define shardCollection command to create a sharding definition for distributing a table or document across multiple shard servers. The replicates that are
created as part of the cdr define shard command are mastered and use always apply and row scope. You cannot specify that triggers fire.

Multiple sharding definitions are not allowed on the same table or collection.

You cannot manually define an Enterprise Replication replicate for a table that is sharded.

Return codes
A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 3, 18, 39, 52, 83, 99, 125, 196, 215, 229.

For information about these error codes, see Return Codes for the cdr Utility.

Example: Creating a sharding definition that uses a consistent hash algorithm
The following example creates a sharding definition that is named collection_1. Rows that are inserted on any of the shard servers are distributed, based on a consistent
hash algorithm, to the appropriate shard server. Enterprise Replication must verify that a replicated row or document was not updated before the row or document can be
deleted on the source server. The b column in the customers table that is owned by user john is the shard key. Each shard server has three hashing partitions.

cdr define shardCollection collection_1 db_1:john.customers
 --type=delete --key=b --strategy=chash --partitions=3 --versionCol=column_3
 g_shard_server_1 g_shard_server_2 g_shard_server_3

The partition range for each shard server is calculated based on the server group name. The data is distributed according to the following sharding definition:

g_shard_server_1 (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 4019 and 5469)
 or (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 5719 and 6123)
 or (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 2113 and 2652)
g_shard_server_2 (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 6124 and 7415)
 or (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 5470 and 5718)
 or (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 7416 and 7873)
g_shard_server_3 (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 2653 and 3950)
 or mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) >= 7874
 or mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) < 2113
 or (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 3951 and 40

Example: Creating a sharding definition that uses a hash algorithm

1966 Part VI: Administering

The following example creates a sharding definition that is named collection_1. Rows that are inserted on any of the shard servers are distributed, based on a hash
algorithm, to the appropriate shard server. Enterprise Replication must verify that a replicated row or document was not updated before the row or document can be
deleted on the source server. The state column in the customers table that is owned by user john is the shard key.

cdr define shardCollection collection_1 db_1:john.customers
 --type=delete --key=state --strategy=hash --versionCol=version
 g_shard_server_A g_shard_server_B g_shard_server_C g_shard_server_D

Example: Creating a sharding definition that uses an IN expression
The following example creates a sharding definition that is named collection_2. The state column in the clients table that is owned by user joe is the shard key. Rows that
are inserted on any of the shard servers are distributed, based on the defined expression, to the appropriate shard server. Replication acknowledgment must verify that a
replicated row or document was not updated before the row or document can be deleted on the source shard server.

cdr define shardCollection collection_2 db_2:joe.clients
--type=delete --key=state --strategy=expression –-versionCol=version
 g_shard_server_A "IN ('TX','OK')"
 g_shard_server_B "IN ('NY','NJ')"
 g_shard_server_C "IN ('AL','GA')"
 g_shard_server_D REMAINDER

In the previous example:

Inserted rows that have a value of AL in the state column are sent to g_shard_server_C.
Inserted rows that have a value of NJ in the state column are sent to g_shard_server_B.
Inserted rows that have a value of CA in the state column are sent to g_shard_server_D.

Example: Creating a sharding definition that uses a BETWEEN expression
The following example creates a definition that is named collection_3. The age column in the users table that is owned by user charles is the shard key. Rows that are
inserted on any of the shard servers are distributed, based on the defined expression, to the appropriate shard server. Replication acknowledgment must verify that a
replicated row or document was not updated before the row or document can be deleted on the source shard server.

cdr define shardCollection collection_3 db_3:charles.users
--type=delete --key=age --strategy=expression –-versionCol=version
 g_shard_server_A "BETWEEN 0 and 20"
 g_shard_server_B "BETWEEN 21 and 62"
 g_shard_server_C "BETWEEN 63 and 100"
 g_shard_server_D REMAINDER

In the previous example:

Inserted rows that have a value of 35 in the age column are sent to g_shard_server_B.
Inserted rows that have a value of 102 in the age column are sent to g_shard_server_D.
Inserted rows that have a value of 15 in the age column are sent to g_shard_server_A.

Example: Creating a sharding definition that defines a shard key by function
The following example creates a sharding definition that is named collection_4. The COLOR shard key in the cars collection that was owned by user mike is the shard key.
Documents that are inserted on any of the shard servers are distributed, based on the defined expression, to the appropriate shard server.

cdr define shardCollection collection_4 db_4:mike.cars
 –t delete -k "bson_value_lvarchar(data,'COLOR')" -s expression –v version
 g_shard_server_E "IN ('blue','green')"
 g_shard_server_F "IN ('black','white')"
 g_shard_server_G "IN ('brown','gray')"
 g_shard_server_H "IN ('red','yellow')"
 g_shard_server_I REMAINDER

In the previous example:

Inserted documents that have a value of yellow in the COLOR key are sent to g_shard_server_H.
Inserted documents that have a value of blue in the COLOR key are sent to g_shard_server_E.
Inserted documents that have a value of pink in the COLOR key are sent to g_shard_server_I.

Related tasks:
 Creating a shard cluster

Related reference:
 cdr change shardCollection

cdr delete shardCollection
cdr list shardCollection
Related information:

 Enabling sharding for JSON or relational data
Creating a shard cluster by running the addShard command in the MongoDB shell
Creating a shard cluster by running the addShard command through db.runCommand in the MongoDB shell
Creating a shard-cluster definition that uses a hash algorithm for distributing data across database servers
onstat -g shard command: Print information about the shard cache

Copyright© 2020 HCL Technologies Limited

cdr define template

Part VI: Administering 1967

https://www.hcltech.com/

The cdr define template command creates a template for replicates and a replicate set.

Because templates define replicates, many of the syntax options for the cdr define template command are the same as for the cdr define replicate command.

Syntax

>>-cdr define template--template-------------------------------->

 (2)
>--+--------------------------+--| Conflict Options |--------->
 | (1) |
 '-| Connect Option |-----'

>--+-------------------------+--+---------------------------+--->
 | (3) | | (4) |
 '-| Scope Options |-----' '-| Special Options |-----'

 .-------.
 V |
>-- --master=server_group--+--------------+-- --database=database--+---table-+--------+-><
 '- --exclusive-' +- --all-----------+
 '- --file=filename-'

Notes:

1. See Connect Option.
2. See Conflict Options.
3. See Scope Options.
4. See Special Options.

Element Purpose Restrictions Syntax

template Name of the template to create. The template name must be unique and cannot be
the same as a replicate or replicate set name.

Long Identifiers

database Name of the database that is used to define the
template attributes.

The database server must be registered with
Enterprise Replication.

Long Identifiers

table Name of the table to be included in the template. The table must be an actual table. It cannot be a
synonym or a view. For ANSI databases, you must
specify owner.tablename.

Long Identifiers

filename The directory and file name of the file that contains
a list of tables to be included in the template.

Must be a full path name and file name. The path
and file name can be no longer than 256 bytes.
Within the file, the table names can be separated by
a space or placed on different lines.

Follows naming conventions on
your operating system.

server_group Name of a database server group to declare for
Enterprise Replication.

Must be the name of an existing database server
group in SQLHOSTS.

Long Identifiers

The following table describes the options to cdr define template.

Long Form Short Form Meaning

--all -a Specifies that all tables in the database are included in the template.

--database= -d Specifies which database the template is based on. If no tables or table list file name are listed after this
option, then all tables in the database are included in the template.

--exclusive -X Creates an exclusive replicate set. The state of the replicate set is inactive until you apply the template.
This option is required if you have referential integrity constraints on a table.

--file= -f Specifies the path and file name of a file that lists the tables to be included in the template. The file must
contain only table names, either separated by spaces or each on its own line.

--master= -M Specifies the server that contains the database to be used as the basis of the template. If this option is not
specified, then the server that is specified in the connect option is used.

Special Options

Special Options

 .-----------------------------.
 V |
|----+-------------------------+-+------------------------------|
 +- --ats------------------+
 +- --ris------------------+
 +- --floatieee------------+
 +- --floatcanon-----------+
 +- --firetrigger----------+
 | .-y-. |
 +- --fullrow=-+-n-+-------+
 | .-n-. |
 +- --ignoredel=-+-y-+-----+
 +--- --anyUniqueKey-------+
 | .-n-. |
 +- --UTF8=-+-y-+----------+

1968 Part VI: Administering

 | .-n-. |
 '- --alwaysRepLOBs=-+-y-+-'

The following table describes the special options to the cdr define template command.

Long Form Short Form Meaning

--alwaysRepLOBS= Specifies whether columns that contain unchanged large objects are included in replicated rows:

--alwaysRepLOBS=n: Default. Columns that contain unchanged large objects are not
replicated.
--alwaysRepLOBS=y: Columns that contain large objects are always included in replicated
rows.

--anyUniqueKey -U Specifies that the replication key is detected automatically from the following sources in the
follow order:

A primary key that is defined on the table
ERKEY shadow columns that are included in the table
Any unique key or unique constraint that is defined on the table

The replicate must be a strictly mastered replicate.

If the table includes ERKEY shadow columns, those columns are included in the participant
definition only if the table does not have a primary key.

--ats -A Activates aborted transaction spooling for replicate transactions that fail to be applied to the
target database.

--firetrigger -T Specifies that the rows that the replicate inserts fire triggers at the destination.

--floatieee -I Transfers replicated floating-point numbers in either 32-bit (for SMALLFLOAT) or 64-bit (for
FLOAT) IEEE floating-point format. Use this option for all new replicate definitions.

--floatcanon -F Transfers replicated floating-point numbers in machine-independent decimal representation. This
format is portable, but can lose accuracy. This format is provided for compatibility with earlier
versions only; use --floatieee for all new replicate definitions.

--fullrow= -f Specifies whether to replicate full rows or only the changed columns:

--fullrow=y = Default. Indicates to replicate the full row and to enable upserts. If you also
specify deletewins as the conflict resolution rule, upserts are disabled.
--fullrow=n = Indicates to replicate only changed columns and disable upserts.

--ignoredel= -D Specifies whether to retain deleted rows on other nodes:

--ignoredel=y = Indicates that rows are retained if they are deleted on other nodes in the
Enterprise Replication domain. You cannot use this option if you specify deletewins as the
conflict resolution rule.

--ignoredel=n = Default. Indicates that deleted rows are deleted on all nodes in the
Enterprise Replication domain.

--ris -R Activates row-information spooling for replicate row data that fails conflict resolution or
encounters replication order problems.

--UTF8= None Specifies whether to enable conversion to and from UTF-8 (Unicode) when you replicate data
between servers that use different code sets.

--UTF8=y Default. Indicates that character columns are converted to UTF-8 when the row
is copied into the transmission queue. When the replicated row is applied on the target
server, the data is converted from UTF-8 to the code set used on the target server. No
attempt is made to convert character data that is contained within opaque data types. You
cannot use --UTF8=y for replicates that contain TimeSeries data types, user-defined data
types, or DataBlade module data types.
–UTF8=n Indicates that code set conversion is ignored.

Usage
A template consists of schema information about a database, a group of tables, column attributes, and the replication keys that identify rows. A template defines a group
of master replicates and a replicate set. Templates are an alternative to using the cdr define replicate and cdr start replicate commands for each table and manually
combining the replicates into a replicate set by using the cdr define replicateset command.

The replicate set can be exclusive or non-exclusive. Specify that the replicate set is exclusive if you have referential constraints that are placed on the replicated columns.
If you create an exclusive replicate set using a template, you do not stop the replicate set to add replicates. The cdr define template command performs this task
automatically.

If your tables include the ERKEY shadow columns, they are automatically added to replicate definition when you define a template. The --erkey option is not needed with
the cdr define template command.

You cannot specify an SPL routine for conflict resolution when you define a template.

Part VI: Administering 1969

After you define a template by running the cdr define template command, use the cdr realize template command to apply the template to your Enterprise Replication
database servers.

You cannot update a template. To modify a template, you must delete it and then re-create it with the cdr define template command.

You can run this command from within an SQL statement by using the SQL administration API.

Examples
The following example illustrates the cdr define template command:

cdr define template tem1 -c detroit\
-C timestamp -S tran \
--master=chicago\
--database=new_cars table1 table2 table3

Line 1 of the example specifies a template name of tem1 and that the connection is made to the server detroit. Line 2 specifies a conflict-resolution rule of timestamp
and a transaction scope for conflict resolution. Line 3 specifies that the master replicate information is obtained from the server chicago. Line 4 specifies to use the
new_cars database on the chicago server and to include only the tables table1, table2, and table3.
The next example is the same as the first except that it has additional options and uses a file instead of a list of tables:

cdr define template tem1 -c detroit\
-C timestamp -S tran --master=chicago\
--ignoredel=y\
--database=new_cars --file=tabfile.txt

Line 3 indicates that delete operations are not replicated. Retaining deleted rows on target servers is useful for consolidation models.
Line 4 specifies a file name for a file that contains a list of tables to include in the template. The tabfile.txt file has the following contents:

table1
table2
table3
table4

Related concepts:
 Replicate types

Frequency Options
Preparing for Role Separation (UNIX)
Enterprise Replication Server administrator
Related tasks:

 Exclusive Replicate Sets
Preparing tables without primary keys
Creating replicated tables through a grid
Related reference:

 cdr list template
cdr realize template
cdr delete template
cdr define replicate
Participant and participant modifier

Copyright© 2020 HCL Technologies Limited

cdr delete grid

The cdr delete grid command deletes the specified grid.

Syntax

>>-cdr delete grid--+--------------------------+--grid_name----><
 | (1) |
 '-| Connect Option |-----'

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

grid_name Name of the grid. Must be the name of an existing grid. Long Identifiers

Usage
Use the cdr enable grid command to delete an existing grid.

Return codes
A return code of 0 indicates that the command was successful.

1970 Part VI: Administering

https://www.hcltech.com/

If the command is not successful, one of the following error codes is returned: 5, 222.

For information about these error codes, see Return Codes for the cdr Utility.

Examples
The following example deletes the grid named grid1:

cdr delete grid grid1

Related concepts:
 Enterprise Replication Server administrator

Related reference:
 ifx_grid_connect() procedure

cdr define grid
cdr check queue

Copyright© 2020 HCL Technologies Limited

cdr delete region

The cdr delete region command deletes a region from a grid.

Syntax

>>-cdr delete region--+--------------------------+-------------->
 | (1) |
 '-| Connect Option |-----'

>-- --region--=--region_name-----------------------------------><

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

region_name Name of the region. Must be the name of a defined region. Long Identifiers

The following table describes the cdr delete region option.

Long Form Short Form Meaning

--region -r Specifies the region to delete.

Usage
Use the cdr delete region command to remove a region from a grid. Delete a region that is no longer valid, for example, if you remove a grid server that is included in the
region from the grid. If you need to change the list of grid servers in a region, you delete the region and then re-create it with the new server list.

Return codes
A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 5, 227.

For information about these error codes, see Return Codes for the cdr Utility.

Examples
The following command deletes the region that is named northwest:

cdr delete region --region=northwest

Related concepts:
 Grid queries

Related tasks:
 Defining tables for grid queries

Related reference:
 ifx_grid_connect() procedure

cdr delete region
cdr change gridtable
cdr remaster gridtable
ifx_node_id() function
ifx_node_name() function
Related information:

 SELECT_GRID session environment option

Part VI: Administering 1971

https://www.hcltech.com/

SELECT_GRID_ALL session environment option
GRID clause

Copyright© 2020 HCL Technologies Limited

cdr delete replicate

The cdr delete replicate command deletes a replicate.

Syntax

>>-cdr delete replicate--+------------------------+------------->
 | (1) |
 '-| Connect Option |-----'

 .----------------.
 V |
>----replicate_name-+--><

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

replicate_name Name of the replicate to delete. Long Identifiers

Usage
The cdr delete replicate command deletes the replicate repl_name from the global catalog. All replication data for the replicate is purged from the send queue at all
participating database servers. You can run this command from within an SQL statement by using the SQL administration API.

Important: If you are creating a replication server to replace the one you deleted, use the cdr check queue --qname=ctrlq command to make sure that the delete
operation propagated to all the servers.
When you run the cdr delete replicate command, an event alarm with a class ID of 68 is generated, if that event alarm is enabled.

Example 1: Deleting a single replicate
The following command connects to the default database server specified by the INFORMIXSERVER environment variable and deletes the replicate reynolds:

cdr delete replicate reynolds

Example 2: Deleting multiple replicates
The following command connects to database server hoek and deletes the replicates reynolds and stimpson:

cdr del rep -c hoek reynolds stimpson

Related concepts:
 Enterprise Replication Server administrator

Related tasks:
 Deleting a Replicate

Related reference:
 cdr change replicate

cdr define replicate
cdr list replicate
cdr modify replicate
cdr resume replicate
cdr start replicate
cdr stop replicate
cdr suspend replicate
cdr check queue
Enterprise Replication Event Alarms

Copyright© 2020 HCL Technologies Limited

cdr delete replicateset

The cdr delete replicateset command deletes an exclusive or non-exclusive replicate set from the global catalog.

Syntax

1972 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

>>-cdr delete replicateset--+------------------------+---------->
 | (1) |
 '-| Connect Option |-----'

 .----------.
 V |
>----repl_set-+--><

Notes:

1. See Connect Option.

Element Description Restrictions Syntax

repl_set Name of replicate set to delete. Can be the name of a
derived replicate set.

 Long Identifiers

Usage
The cdr delete replicateset command deletes the exclusive or non-exclusive replicate set repl_set from the global catalog.

The cdr delete replicateset command does not affect the replicates or associated data. When a replicate set is deleted, the individual replicates within the replicate set
are unchanged.

Attention: Do not delete time-based exclusive replicate sets. Doing so might result in inconsistent data.
Important: If you are creating a replicate set to replace the one you deleted, use the cdr check queue -qname=ctrlq command to make sure that the delete operation
propagated to all the servers.
When you run the cdr delete replicateset command, an event alarm with a class ID of 69 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL administration API.

Example 1: Deleting a single replicate set
The following example connects to the database server specified by the INFORMIXSERVER environment variable and deletes the replicate set accounts_set:

cdr delete replset accounts_set

Example 2: Deleting multiple replicate sets
The following example connects to database server hoek and deletes the replicate sets accounts1_set and accounts2_set:

cdr del replset -c hoek accounts1_set accounts2_set

Related concepts:
 Enterprise Replication Server administrator

Related tasks:
 Altering multiple tables in a replicate set

Deleting a Replicate Set
Related reference:

 cdr change replicateset
cdr define replicateset
cdr define replicate
cdr list replicateset
cdr modify replicateset
cdr resume replicateset
cdr start replicateset
cdr stop replicateset
cdr suspend replicateset
cdr check queue
Enterprise Replication Event Alarms

Copyright© 2020 HCL Technologies Limited

cdr delete server

The cdr delete server disables a database server from participating in Enterprise Replication.

Syntax

>>-cdr delete server--+------------------------+---------------->
 | (1) |
 '-| Connect Option |-----'

>--+----------+--server_group----------------------------------><
 '- --force-'

Part VI: Administering 1973

https://www.hcltech.com/

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

server_group A database server's group entry in its
INFORMIXSQLHOSTS file and the global catalog.

 Long Identifiers

The following table describes the option to the cdr delete server command.

Long Form Short Form Purpose

--force -f Remove an inactive Enterprise Replication server from the global catalog. You must use this
option for standard servers that were converted from high-availability cluster servers.

Usage
The cdr delete server command disables a database server from to participating in Enterprise Replication. Use the --force option to disable an inactive replication server
or to remove Enterprise Replication from a standard server that has been converted from a high-availability cluster server by the oninit -d standard command. You cannot
delete a server that has non-root or leaf children under it. You must delete the children of a server before deleting the parent server.

The cdr delete server command generates event alarms with class IDs of 67 and 71, if the alarms are enabled.

You can run this command from within an SQL statement by using the SQL administration API.

To remove a server from an Enterprise Replication domain, run the cdr delete server command two times:

1. Run the command on the database server being removed, to disable it. This command does not propagate to other database servers in the domain.
2. Run the same command on a different server within the Enterprise Replication domain. This removes the disabled database server from the domain.

To remove an entire Enterprise Replication domain, run the cdr delete server command once on each replication server. The cdr delete server command performs the
following tasks on each server:

1. Drops the Enterprise Replication connection to other hosts in the domain. A 25582 error and an operating system error might be printed to the online log.
2. Removes Enterprise Replication information, including delete tables and shadow columns.
3. Shuts down Enterprise Replication, if it is running.
4. Drops the local copy of the global catalog.

When you run the cdr delete server command on a different root server within an Enterprise Replication domain, the command performs the following tasks:

1. Deletes the command-specified database server from the global catalogs of all other servers in the domain.
2. Removes the command-specified database server from all participating replicates.
3. Purges all replication data destined for the command-specified database server from the send queues of all other servers in the domain.

Important: If you are creating a replication server to replace the one you deleted, use the cdr check queue --qname=ctrlq command to make sure that the delete
operation propagated to all the servers.

Example 1: Removing a single database server from the domain
This example removes the database server g_italy from the Enterprise Replication environment. The commands are issued from g_usa:

cdr delete server -c italy g_italy
cdr delete server -c usa g_italy

The first command connects to database server g_italy and disables Enterprise Replication by removing the syscdr database and removing or stopping other Enterprise
Replication components.

The second command performs the following actions:

Removes g_italy from the g_usa global catalog
Drops the connection between g_usa andg_italy
Removes g_italy from all participating replicates
Purges the replication data destined for g_italy from send queues
Broadcasts the delete command to all the other database servers in the Enterprise Replication domain so that the other servers can perform the same actions

Example 2: Removing the whole domain
The following illustration shows a replication environment with three replication servers, g_usa, g_italy, and g_japan.
Figure 1. Three Replication Servers

To remove Enterprise Replication from every server in the domain, issue the cdr delete server command while connecting to each server. For example, from the computer
containing the g_usa replication server, run these commands to remove Enterprise Replication and eliminate the domain:

cdr delete server -c italy g_italy
cdr delete server -c japan g_japan
cdr delete server g_usa

1974 Part VI: Administering

Example 3: Removing Enterprise Replication from a high-availability server
In this example, the replication server group g_usa contains two servers that participate in a high-availability cluster: a primary (usa_p) and a secondary (usa_s). After
usa_s is converted to a stand-alone server, the following command removes Enterprise Replication from it:

cdr delete server -c usa_s -f g_usa

Related concepts:
 Enterprise Replication Server administrator

Related tasks:
 Failover for High-availability clusters in an Enterprise Replication environment

Deleting a Replication Server
Related reference:

 cdr connect server
cdr define server
cdr disconnect server
cdr list server
cdr modify server
cdr resume server
cdr suspend server
cdr check queue
Enterprise Replication Event Alarms

Copyright© 2020 HCL Technologies Limited

cdr delete shardCollection

The cdr delete shardCollection command deletes a sharding definition, and then stops data sharding.

Syntax

>>-cdr delete shardCollection--definition_name--+------------------------+-><
 | (1) |
 '-| Connect Option |-----'

Notes:

1. See Connect Option.

Element Description Restrictions

definition_name The name of the sharding definition that is used for
distributing data across multiple database servers.

Must be the name of an existing definition.

Usage
Use the cdr delete shardCollection command to delete a sharding definition, and then stop data sharding.

Return codes
A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 99, 196, 229.

For information about these error codes, see Return Codes for the cdr Utility.

Example
For this example, you have a sharding definition that was created by the following command:

cdr define shardCollection collection_1 db_1:john.customers_1
 --type=delete --key=col2 --strategy=hash --versionCol=version
 shard_server_A
 shard_server_B
 shard_server_C

The following example deletes collection_1, and stops the sharding of table customers_1:

cdr delete shardCollection collection_1

Related concepts:
 Shard cluster management and monitoring

Related reference:
 cdr define shardCollection

cdr change shardCollection
cdr list shardCollection
Related information:

Part VI: Administering 1975

https://www.hcltech.com/

onstat -g shard command: Print information about the shard cache
Enabling sharding for JSON or relational data

Copyright© 2020 HCL Technologies Limited

cdr delete template

The cdr delete template command deletes a template from the replication domain. It also deletes any underlying replicate sets associated with the template (these will
exist if the template has been realized). No replicates are deleted.

Syntax

>>-cdr delete template--+--------------------------+--template-><
 | (1) |
 '-| Connect Option |-----'

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

template Name of the template to delete. The template must exist. Long Identifiers

Usage
Use the cdr delete template command to delete the template definition and the replicate set realized from the template. Any replicates created by realizing the template
to a database server are unaffected by this command.

You can run this command from within an SQL statement by using the SQL administration API.

Examples
The following command deletes the template and replicate set tem1:

cdr delete template tem1

Related concepts:
 Enterprise Replication Server administrator

Related reference:
 cdr define template

cdr realize template
Enterprise Replication Event Alarms

Copyright© 2020 HCL Technologies Limited

cdr disable grid

The cdr disable grid command removes the authorization to run grid routines from users or servers.

Syntax

>>-cdr disable grid--+--------------------------+--------------->
 | (1) |
 '-| Connect Option |-----'

 .---------------------------.
 V |
>-- --grid--=--grid_name----+-----------------------+-+--------->
 '- --user--=--user_name-'

 .------------------------------.
 V |
>----+--------------------------+-+----------------------------><
 '- --node--=--server_group-'

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

grid_name Name of the grid. Must be the name of an existing grid. Long Identifiers

1976 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Element Purpose Restrictions Syntax

server_group Name of a database server group in the grid. Must be the name of an existing database server
group in SQLHOSTS.

Long Identifiers

user_name Name of the user. Must be a user with authorization to run grid routines. Long Identifiers

The following table describes the cdr disable grid options.

Long Form Short Form Meaning

--grid= -g Specifies the grid for which to revoke privileges.

--node= -n Specifies the servers on which to revoke privileges.

--user= -u Specifies the users to revoke privileges.

Usage
Use the cdr disable grid command to revoke the permission to run routines on the specified grid from the specified user or server that were granted by the cdr enable
grid command.

Return codes
A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 5, 220, 222.

For information on these error codes, see Return Codes for the cdr Utility.

Examples
The following example revokes privileges from user bill on the grid1 grid:

cdr disable grid --grid=grid1 --user=bill

The following example shows how to change the authorized server on the grid1 grid from gserv1 to gserv2:

cdr disable grid --grid=grid1 --node=gserv1
cdr enable grid --grid=grid1 --node=gserv2

Related concepts:
 Grid maintenance

Enterprise Replication Server administrator

Copyright© 2020 HCL Technologies Limited

cdr disable server

The cdr disable server command disables replication on a server.

Syntax

>>-cdr disable server--+--------------------------+------------->
 | (1) |
 '-| Connect Option |-----'

>--+----------+--server_group----------------------------------><
 '- --local-'

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

server_group Name of the database server on which to
disable replication.

Must be the name of an existing database server
group in sqlhosts.

Long Identifiers

The following table describes the cdr disable server option.

Long Form Short Form Meaning

--local -l Disables the specified replication server. Must be run on both the replication server to disable and
another replication server in the domain. Use this option if the connection is down between the
replication server to disable and other replication servers.

Usage
Use the cdr disable server command when you need to temporarily stop replication and your replicates use the time stamp or delete wins conflict resolution rule.

Part VI: Administering 1977

https://www.hcltech.com/

When you run the cdr disable server command, the replication server is disabled and the rest of the replication domain is notified that the server is disabled.

If the replication server that you want to disable is not connected to the replication domain, you must run the cdr disable server command with the --local option on both
the replication server to disable and another replication server in the domain. If the server on which you need to disable replication is currently offline, then run the cdr
disable server command with the --local option on it after you restart it.

Disabling replication has the following effects:

There is no connection between the disabled replication server and active replication servers.
Transactions on the disabled replication server are not queued for replication
Transactions on active replication servers are not queued for the disabled replication server.
Control messages on active replication server are queued for the disabled replication server.
Information about deleted rows on the disabled replication server is saved in delete tables.
You can run only the following Enterprise Replication commands on the disabled replication server:

cdr enable server
cdr stop server
cdr delete server
cdr check replicateset with the --repair and the --enable options

You must synchronize the server after you enable replication on it. Shutting down and restarting the disabled replication server does not enable replication. You can both
enable and synchronize a disabled replication server by running the cdr check replicateset command with the --repair and the --enable options. Alternatively, you can
run the cdr enable server command and then synchronize the server.

Example 1: Stopping replication on a connected server
The following command disables the server, g_cdr1, which is connected to the replication domain:

cdr disable server -c g_cdr1 g_cdr1

Example 2: Stopping replication on a disconnected server
The following commands disable the replication server, g_cdr1, which is not connected to the replication domain:

cdr disable server -c g_cdr1 --local g_cdr1
cdr disable server -c g_cdr2 --local g_cdr1

The first command runs on the server g_cdr1 and disables replication on it. The second command runs on the server g_cdr2 and stops the other servers in the replication
domain from queuing transactions for the server g_cdr1.

Related concepts:
 Time stamp conflict resolution rule

Delete wins conflict resolution rule
Enterprise Replication Server administrator
Related tasks:

 Temporarily stopping replication on a server
Related reference:

 cdr enable server
cdr check replicateset

Copyright© 2020 HCL Technologies Limited

cdr disconnect server

The cdr disconnect server command stops a server connection.

Syntax

>>-cdr disconnect server--+--------------------------+---------->
 | (1) |
 '-| Connect Option |-----'

>--server_group--><

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

server_group Name of the database server group to disconnect. The database server group must be currently active
in Enterprise Replication.

Long Identifiers

Usage
The cdr disconnect server command drops the connection (for example, for a dialup line) between server_group and the server specified in the --connect option. If the --
connect option is omitted, the command drops the connection between server_group and the default database server (the one specified by the INFORMIXSERVER
environment variable).

1978 Part VI: Administering

https://www.hcltech.com/

When you run the cdr disconnect server command, event alarms with class IDs of 54 and 71 are generated, if those event alarms are enabled.

You can run this command from within an SQL statement by using the SQL administration API.

Examples
The following example drops the connection between the default database server (the one specified by the INFORMIXSERVER environment variable) and the server
group g_store1:

cdr disconnect server g_store1

Related concepts:
 Enterprise Replication Server administrator

Related reference:
 cdr connect server

cdr define server
cdr delete server
cdr list server
cdr modify server
cdr resume server
cdr suspend server

Copyright© 2020 HCL Technologies Limited

cdr enable grid

The cdr enable grid command authorizes users to run commands on the grid and designates servers from which grid commands can be run.

Syntax

>>-cdr enable grid--+--------------------------+---------------->
 | (1) |
 '-| Connect Option |-----'

 .---------------------------.
 V |
>-- --grid--=--grid_name----+-----------------------+-+--------->
 '- --user--=--user_name-'

 .------------------------------.
 V |
>----+--------------------------+-+----------------------------><
 '- --node--=--server_group-'

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

grid_name Name of the grid. Must be the name of an existing grid. Long Identifiers

server_group Name of a database server group in the grid. Must be the name of an existing database server
group in SQLHOSTS.

Long Identifiers

user_name Name of the user. Must have Connect privilege for databases on all the
replication servers in the grid.

Long Identifiers

The following table describes the cdr enable grid options.

Long Form Short Form Meaning

--grid= -g Specifies the grid for which to provide privileges.

--node= -n Specifies the servers on which to provide privileges.

--user= -u Specifies the users to provide privileges.

Usage
Use the cdr enable grid command to control who can perform grid operations from which server in the grid. All the authorized users can run grid commands on all the
authorized servers. The users must have Connect privilege for all databases on which they run grid routines on all the servers in the grid. You must authorize at least one
user and one server to be able to run commands from the grid. User informix does not have permission to perform grid operations unless you include it in the user list.

Authorizing more than one server from which to run grid commands can lead to conflicts between grid commands.

After you initially enable a grid, you can add authorized users and servers by running the cdr enable grid command with the appropriate options.

Return codes

Part VI: Administering 1979

https://www.hcltech.com/

A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 5, 220, 222.

For information on these error codes, see Return Codes for the cdr Utility.

Examples
The following example authorizes the users bill and tom and the server gserv1 to run grid routines on the grid named grid1:

cdr enable grid --grid=grid1 --user=bill --user=tom --node=gserv1

The following example adds the user srini to the list of authorized users for the grid1 grid:

cdr enable grid --grid=grid1 --user=srini

The following example adds the server gserv2 to the list of authorized servers for the grid1 grid:

cdr enable grid --grid=grid1 --node=gserv2

Related concepts:
 Grid maintenance

Example of setting up a replication system with a grid
Enterprise Replication Server administrator
Related tasks:

 Creating a grid
Related reference:

 ifx_grid_connect() procedure

Copyright© 2020 HCL Technologies Limited

cdr enable server

The cdr enable server command enables replication on a replication server that was disabled by the cdr disable server command.

Syntax

>>-cdr enable server--+--------------------------+-------------->
 | (1) |
 '-| Connect Option |-----'

>--+--------+--server_group------------------------------------><
 '- --hub-'

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

server_group Name of the database server to enable. Must be the name of an existing database server
group in SQLHOSTS.

Long Identifiers

The following table describes the cdr enable server option.

Long Form Short Form Meaning

--hub -h Specifies that when replication on a hub server is enabled, replication on all its child servers is also
enabled.

Usage
Use the cdr enable server command when you are ready to restart replication on a disabled replication server. After you enable replication, you must synchronize the
server with the rest of the replication domain. Before synchronization is complete, the replicates on the newly enabled replication server have the Pending Sync attribute.
For replicates with the Pending Sync attribute, ATS and RIS files are not created if transactions are aborted on this server. You can see the Pending Sync attribute of a
replicate in the OPTIONS field of the output of the cdr list replicate command.

Examples
The following command enables the disabled replication server, g_cdr1:

cdr enable server -c g_cdr1 g_cdr1

The following command enables the disabled replication server, g_cdr1, and its child servers:

cdr enable server -c g_cdr1 --hub g_cdr1

Related concepts:
 Enterprise Replication Server administrator

Related tasks:

1980 Part VI: Administering

https://www.hcltech.com/

Restarting Replication on a Server
Related reference:
cdr disable server

Copyright© 2020 HCL Technologies Limited

cdr error

The cdr error command manages the syscdrerror table and provides convenient displays of errors.

Syntax

>>-cdr error--+--------------------------+---------------------->
 | (1) |
 '-| Connect Option |-----'

>--+------------------------------------+----------------------><
 +- --seq=err_server:seqno------------+
 +- --prune--"--+----------+--last--"-+
 | '-first--,-' |
 +- --zap-----------------------------+
 | .-------------------. |
 | V | |
 '-----+- --follow-+---+--------------'
 +- --all----+
 '- --nomark-'

Notes:

1. See Connect Option.

Table 1. Elements for the cdr error command

Element Purpose Restrictions Syntax

err_server Name of database server group that holds the
error table.

The server must be registered for Enterprise
Replication.

Long Identifiers

first Start date for a range. You must provide a valid date and time. Frequency Options

last Ending date for range. You must provide a later date and time than first. Frequency Options

seqno Sequence number of a specific error. You must provide the number of an error in the error
table.

Integer

Table 2. Options for the cdr error command
Long Form Short Form Meaning

(no options specified) Print the current list of errors and then mark them as reviewed. Enterprise Replication does not display
errors marked as reviewed.

--all -a Print all errors, including those already reviewed.

--follow -f Continuously monitor the error table.

--nomark -n Do not mark errors as reviewed.

--prune -p Prune the error table to those times in the range from first to last. If first is omitted, then all errors earlier
than last are removed.

--seq -s Remove the (single) error specified by server:seqno from the error table.

--zap -z Remove all errors from the error table.

Usage
Run the cdr error command to examine replication errors. Sometimes a command succeeds on the server on which it is run but fails on one of the remote servers. For
example, if you run the cdr define replicate command on server1, but the table name is misspelled on server2, the command succeeds on server1 and seems to
complete successfully. You can use cdr error -c server2 to see why replication is failing.

The cdr error command also allows you to administer the syscdrerror table remotely. The syscdrerror table on each replication server contains errors for all replication
servers, unless the replication server is a leaf node. The syscdrerror tables on leaf nodes do not contain errors for other replication servers. The reviewed flag indicates
which errors are new errors while keeping the old errors in the table. For example, you can run cdr error periodically and append the output to a file.

You can run this command from within an SQL statement by using the SQL administration API.

Examples
The following command shows the current list of errors on database server hill:

cdr error --connect=hill

After the errors are shown, Enterprise Replication marks the errors as reviewed.

Part VI: Administering 1981

https://www.hcltech.com/

The following command connects to the database server lake and removes from the error table all errors that occurred before the time when the command was issued:

cdr error -c lake --zap

The following command deletes all errors from the error table that occurred at or before 2:56 in the afternoon on May 1, 2008:

cdr error -p “2008-05-01 14:56:00”

The following command deletes all errors from the error table that occurred at or after noon on May 1, 2008 and before or at 2:56 in the afternoon on May 1, 2008:

cdr error -p “2008-05-01 14:56:00,2008-05-01 12:00:00”

Related concepts:
 Enterprise Replication Server administrator

Copyright© 2020 HCL Technologies Limited

cdr finderr

The cdr finderr command looks up a specific Enterprise Replication return code and displays the corresponding error text.

Syntax

>>-cdr finderr--ER_return_code---------------------------------><

Element Purpose Restrictions

ER_return_code Enterprise Replication return code to look up. Must be a positive integer.

You can also view the Enterprise Replication return codes in the file $INFORMIXDIR/incl/esql/cdrerr.h.

You can run this command from within an SQL statement by using the SQL administration API.

Related concepts:
 Return Codes for the cdr Utility

Enterprise Replication Server administrator

Copyright© 2020 HCL Technologies Limited

cdr list grid

The cdr list grid command shows information about a grid.

Syntax

>>-cdr list grid--+--------------------------+------------------>
 | (1) |
 '-| Connect Option |-----'

>--+---+-----><
 | .--------------------------------------. |
 | V | |
 '---+----------------------------------+-+--grid_name-'
 +- --command=command_ID --verbose--+
 +- --source=server_group --verbose-+
 +- --summary-----------------------+
 +- --verbose-----------------------+
 +- --nacks-------------------------+
 +- --acks--------------------------+
 '- --pending-----------------------'

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

command_ID The ID of a specific command that was run from
the grid.

 An integer.

grid_name Name of the grid. Must be the name of an existing grid. Long Identifiers

server_group Name of a database server group from which the
command was run.

Must be the name of an existing database server
group in SQLHOSTS.

Long Identifiers

The following table describes the cdr list grid options.

Long Form Short Form Meaning

1982 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Long Form Short Form Meaning

--acks -a Displays the servers in the grid and the commands that succeeded on one or more servers.

--command= -C Displays the servers in the grid and the specified command.

--nacks -n Displays the servers in the grid and the commands that failed on one or more servers.

--pending -p Displays the servers in the grid and the commands that are in progress. A command can be pending
because the transaction has not completed processing on the target server, the target server is down,
or the target server was added to the grid after the command was run.

--source= -S Displays the servers in the grid and the commands that were run from the specified server.

--summary -s Displays the servers in the grid and the commands that were run on the grid.

--verbose -v Displays the servers in the grid, the commands that were run on the grid, and the results of the
commands on each server in the grid.

Usage
Use the cdr list grid command to view information about servers in the grid, and about the commands that were run on servers in the grid.

If you run the cdr list grid command without any options or without a grid name, the output shows the list of grids.

Servers in the grid on which users are authorized to run grid commands are marked with an asterisk (*).

When you add a server to the grid, any commands that were previously run through the grid have a status of PENDING for that server. If you want to run previous grid
commands on a new grid server, use the ifx_grid_redo() procedure. If you do not want to run previous grid commands on a new server, you can purge the commands by
running the ifx_grid_purge() procedure.

When you run an SQL administration API command, the status of the grid command does not necessarily reflect whether the SQL administration API command
succeeded. The grid command can have a status of ACK even if the SQL administration API command failed. The cdr list grid command shows the return codes of the SQL
administration API commands. The task() function returns a message indicating whether the command succeeded. The admin() function returns an integer which if it is a
positive number indicates that the command succeeded.

Return codes
A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 5, 220, 222.

For information on these error codes, see Return Codes for the cdr Utility.

Examples
The examples in this section show the output of the cdr list grid command on a grid grid1 that contains three servers: cdr1, cdr2, and cdr3.

Example 1: Display grid members
The following command displays the members of the grid1 grid:

cdr list grid grid1

The output of the previous command is:

Grid Node User
------------------ ------------------ ----------------
grid1 cdr1* bill
 cdr2
 cdr3

This output shows that the grid contains three member servers and that the authorized user bill can run grid routines from the server cdr1.

Example 2: Display verbose information about commands
The following command displays verbose information about a series of commands and their results on each server in the grid:

cdr list grid --verbose grid1

The output of the previous command is:

Grid Node User
------------------ ------------------ ----------------
grid1 cdr1* bill
 cdr2
 cdr3
Details for grid grid1

Node:cdr1 Stmtid:1 User:dba1 Database:tstdb 2010-05-27 15:21:57
Tag:test
create database tstdb with log
ACK cdr1 2010-05-27 15:21:57
ACK cdr2 2010-05-27 15:21:58
PENDING cdr3

Part VI: Administering 1983

Node:cdr1 Stmtid:2 User:dba1 Database:tstdb 2010-05-27 15:21:57
Tag:test
create table tab1 (col1 int, col2 int)
ACK cdr1 2010-05-27 15:21:57
ACK cdr2 2010-05-27 15:21:58
PENDING cdr3

Node:cdr1 Stmtid:3 User:dba1 Database:tstdb 2010-05-27 15:21:57
Tag:test
create procedure load(maxnum int)
define tnum int;
for tnum = 1 to maxnum
 insert into tab1 values (tnum, 1);
end for;
end procedure;
ACK cdr1 2010-05-27 15:21:57
ACK cdr2 2010-05-27 15:21:58
PENDING cdr3

This output shows each command and that all commands succeeded on servers cdr1 and cdr2 but are pending on the cdr3 server because it is offline.

Example 3: Display errors
In this example, the cdr3 server already has a database with the same name as the database in the CREATE DATABASE statement: therefore, the CREATE DATABASE and
CREATE TABLE statements fail. The following command displays information about commands run within the grid that resulted in an error:

cdr list grid --nacks grid1

The output of the previous command is:

Grid Node User
------------------ ------------------ ----------------
grid1 cdr1* bill
 cdr2
 cdr3
Details for grid grid1

Node:cdr1 Stmtid:1 User:dba1 Database:tstdb 2010-05-27 15:21:57
Tag:test
create database tstdb with log
NACK cdr3 2010-05-27 15:39:21 SQLERR:-330 ISAMERR:-100

Node:cdr1 Stmtid:2 User:dba1 Database:tstdb 2010-05-27 15:21:57
Tag:test
create table tab1 (col1 int, col2 int)
NACK cdr3 2010-05-27 15:39:21 SQLERR:-310 ISAMERR:0
 Grid Apply Transaction Failure

This output shows the SQL and ISAM error codes associated with the failed statements.

Related concepts:
 Grid maintenance

Example of setting up a replication system with a grid
Enterprise Replication Server administrator
Related tasks:

 Rerunning failed grid routines
Related reference:

 cdr define grid
cdr change grid

Copyright© 2020 HCL Technologies Limited

cdr list replicate

The cdr list replicate command displays information about the replicates on the current server.

Syntax

>>-cdr list replicate--+--------------------------+------------->
 | (1) |
 '-| Connect Option |-----'

 .---------------.
 .-full--. V |
>--+-------+----+-----------+-+--------------------------------><
 '-brief-' '-replicate-'

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

replicate Name or ID of the replicates. The replicates must exist. Long Identifiers

1984 Part VI: Administering

https://www.hcltech.com/

Usage
The cdr list replicate command displays information about replicates (the full option). If no replicates are named, the command lists all replicates on the current server. If
one or more replicates are named, the command displays detailed information about those replicates.

To display only replicate names and participant information, use the brief option.

You do not need to be user informix to use this command; any user can run it.

In hierarchical topology, leaf servers obtain limited information about other database servers in the Enterprise Replication domain. Therefore, when cdr list replicate is
run on a leaf server, it displays incomplete information about the other database servers.

The cdr list replicate command can be used while the replication server is in DDRBLOCK mode. Before you use the cdr list replicate command, you must set the
DBSPACETEMP configuration parameter and create a temporary dbspace with the onspaces utility.

Output Description
The STATE field can include the following values.

Table 1. Values of the STATE field
Value Description

Active Specifies that Enterprise Replication captures data from the logical log and transmits it to participants

Definition Failed Indicates that the replication definition failed on a peer server

Inactive Specifies that no database changes are captured, transmitted, or processed

Pending Indicates that a cdr delete replicate command ran and the replicate is waiting for acknowledgment from the participants

Quiescent Specifies that no database changes are captured for the replicate or participant

Suspended Specifies that the replicate captures and accumulates database changes but does not transmit any of the captured data

The CONFLICT field can include the following values.

Table 2. Values of the CONFLICT field
Value Description

Deletewins Specifies that the replicate uses the delete wins conflict-resolution rule

Ignore Specifies that the replicate uses the ignore conflict-resolution rule

Timestamp Specifies that the replicate uses the time stamp conflict-resolution rule

Procedure Specifies that the replicate uses an SPL routine as the conflict-resolution rule

The FREQUENCY field can include the following values.

Table 3. Values of the FREQUENCY field

Value Description

immediate Specifies that replication occurs immediately

every hh:mm Specifies that replications occur at intervals (for example, 13:20 specifies every thirteen hours and 20 minutes)

at day.hh:mm Specifies that replications occur at a particular time on a particular day (for example, 15.18:30 specifies on the 15th day of the month at 6:30 P.M.)

The OPTIONS field can include the following values.

Table 4. Values of the OPTIONS field

Value Description

ats Indicates that ATS files are generated if transactions fail to be applied at the target server.

firetrigger Indicates that the rows that this replicate inserts fire triggers at the destination.

floatcanon Indicates that floating-point numbers are replicated in machine-independent decimal representation.

floatieee Indicates that floating-point numbers are replicated in either 32-bit (for SMALLFLOAT) or 64-bit (for FLOAT) IEEE floating-point format.

fullrow Indicates to replicate only changed columns and disable upserts.

ignoredel Indicates that rows are retained if they are deleted on other nodes in the domain.

pendingsync Indicates that the replication server was enabled with the cdr enable server command but that the participant is not yet synchronized with the rest of
the domain. ATS and RIS files for this participant are not created if transactions are aborted.

ris Indicates that RIS files are generated if transactions fail to be applied at the target server.

row Indicates that the replicate uses row scope.

transaction Indicates that the replicate uses transaction scope.

UTF8 Indicates that code set conversion between replicates is enabled.

TimeSeries Indicates that the replicate includes a TimeSeries column.

alwaysRepLOBs Indicates that large object columns are always included in replicated rows regardless of whether the large objects changed.

The REPLTYPE field can include the following values. If the REPLTYPE field does not show, the replicate is a classic replicate.

Table 5. Values of the REPLTYPE field

Part VI: Administering 1985

Value DescriptionValue Description

Master Indicates that the replicate is defined as a master replicate.

Shadow Indicates that the replicate is a shadow replicate. A shadow replicate can also be a master replicate.

Grid Indicates that the replicate belongs to a grid replicate set.

Sendonly Indicates that the participant only sends data.

The PARENT REPLICATE field shows only for shadow replicates. It shows the name of the replicate on which the shadow replicate is based.

Examples
The following example displays a list of the replicates on the current server with full details:

cdr list replicate

The output from the command shows two replicates:

CURRENTLY DEFINED REPLICATES

REPLICATE: Repl1
STATE: Inactive
CONFLICT: Ignore
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: bank:joe.teller
OPTIONS: row,ris,ats
REPLTYPE: Master

REPLICATE: Repl2
STATE: Inactive
CONFLICT: Deletewins
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: bank:joe.account
OPTIONS: row,ris,ats
REPLTYPE: Master,Shadow
PARENT REPLICATE: Repl1

If the replicate belongs to a grid replicate set, the REPLTYPE field includes the value Grid.

CURRENTLY DEFINED REPLICATES

REPLICATE: grid_6553604_100_3
STATE: Active ON:g_delhi
CONFLICT: Always Apply
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: tdb:nagaraju.t1
OPTIONS: row,ris,fullrow
REPLID: 6553605 / 0x640005
REPLMODE: PRIMARY ON:g_delhi
APPLY-AS: INFORMIX ON:g_delhi
REPLTYPE: Master,Grid

The PARENT REPLICATE field only shows if the replicate is a shadow replicate.

The following example displays a list of the replicates on the current server with brief details:

cdr list replicate brief

The output from the command shows the replicates:

REPLICATE TABLE SELECT
--
Repl1 bank@g_newyork:joe.teller select * from joe.teller
Repl1 bank@g_sanfrancisco:joe.teller select * from joe.teller
Repl2 bank@g_portland:joe.teller select * from joe.teller
Repl2 bank@g_atlanta:joe.teller select * from joe.teller

The following example specifies the names of replicate:

cdr list repl brief Repl1

The output from the command shows information for the replicate:

REPLICATE TABLE SELECT
--
Repl1 bank@g_newyork:joe.teller select * from joe.teller
Repl1 bank@g_sanfrancisco:joe.teller select * from joe.teller

Related tasks:
 Adding an existing replicate to a grid replicate set by using cdr change replicateset

Viewing grid information
Preventing Memory Queues from Overflowing
Related reference:

 cdr change replicate
cdr define replicate
cdr delete replicate
cdr modify replicate
cdr resume replicate

1986 Part VI: Administering

cdr start replicate
cdr stop replicate
cdr suspend replicate
cdr swap shadow
cdr list replicateset

Copyright© 2020 HCL Technologies Limited

cdr list replicateset

The cdr list replicateset command displays information about the replication sets defined on the current server.

Syntax

>>-cdr list replicateset--+--------------------------+---------->
 | (1) |
 '-| Connect Option |-----'

 .--------------.
 V |
>----+----------+-+--><
 '-repl_set-'

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

repl_set Name of the replicate set. The replicate set must exist. Long Identifiers

Usage
The cdr list replicateset command displays a list of the replicate sets that are currently defined. To list the information about each of the replicates within the replicate
set, use cdr list replicateset repl_set.

You do not need to be user informix to use this command; any user can run it.

In hierarchical topology, leaf servers have limited information about other database servers in the Enterprise Replication domain. Therefore, when cdr list replicateset is
executed against a leaf server, it displays incomplete information about the other database servers.

If you specify the name of a grid replicate set, the command displays the names of the replicates that were automatically created through the grid and any replicates
manually added to the grid replicate set. The name of the grid replicate set is the same as the name of the grid.

The cdr list replicateset command can be used while the replication server is in DDRBLOCK mode. Before using the cdr list replicateset command you must set the
DBSPACETEMP configuration parameter and create a temporary dbspace with the onspaces utility.

Examples
The following example displays a list of the replicate sets on the current server:

cdr list replicateset

The following output might result from the previous command:

Ex T REPLSET PARTICIPANTS

N Y g1 Repl1, Repl4
N Y g2 Repl2, Repl3, Repl5

The Ex field shows whether the replicate set is exclusive. The T field shows whether the replicate set was created from a template.

This example displays information for all the replicates in the replicate set g1:

cdr list replset g1

The following output might result from the previous command:

REPLICATE SET:g1 [Exclusive]
CURRENTLY DEFINED REPLICATES
--
REPLICATE: Repl1
STATE: Inactive
CONFLICT: Ignore
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: bank:arthur.account
OPTIONS: row,ris,ats
REPLTYPE: Master

REPLICATE: Repl4
STATE: Inactive

Part VI: Administering 1987

https://www.hcltech.com/

CONFLICT: Deletewins
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: bank:arthur.teller
OPTIONS: row,ris,ats
REPLTYPE: Master

The information supplied for each replicate is the same as the information provided by the cdr list replicate command.
Related concepts:

 Example of setting up a replication system with a grid
Related tasks:

 Viewing grid information
Related reference:

 cdr change replicateset
cdr define replicateset
cdr delete replicateset
cdr define replicate
cdr modify replicateset
cdr resume replicateset
cdr start replicateset
cdr stop replicateset
cdr suspend replicateset
cdr list replicate

Copyright© 2020 HCL Technologies Limited

cdr list server

The cdr list server command displays a list of the Enterprise Replication servers that are visible to the server on which the command is run.

Syntax

>>-cdr list server--+--------------------------+---------------->
 | (1) |
 '-| Connect Option |-----'

 .------------------.
 V |
>----+--------------+-+--><
 '-server_group-'

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

server_group Name of the server group. The database server groups must be defined for
Enterprise Replication.

Usage
The cdr list server command displays information about servers. You do not need to be user informix to use this command; any user can run it.

The cdr list server command can be used while the replication server is in DDRBLOCK mode. Before using the cdr list server command you must set the DBSPACETEMP
configuration parameter and create a temporary dbspace with the onspaces utility.

When no server-group name is given, the cdr list server command lists all database server groups that are visible to the current replication server.

In hierarchical topology, leaf servers only have information about their parent database servers in the Enterprise Replication domain. Therefore, when cdr list server is
executed against a leaf server, it displays incomplete information about the other database servers.

Output Description
The SERVER and ID columns display the name and unique identifier of the Enterprise Replication server group.

The STATE column can have the following values.

Value Description

Active The server is active and replicating data.

Deleted The server has been deleted; it is not capturing or delivering data and the queues are being drained.

Disabled The server is disabled. It is not capturing or delivering data, but its delete tables are being
maintained.

Quiescent The server is in the process of being defined.

Suspended Delivery of replication data to the server is suspended.

1988 Part VI: Administering

https://www.hcltech.com/

The STATUS column can have the following values.

Value Description

Connected The connection is active.

Connecting The connection is being established.

Disconnect The connection was explicitly disconnected.

Disconnected will attempt
reconnect

The connection was disconnected but is being reattempted.

Dropped The connection was disconnected due to a network error because the server is unavailable.

Error The connection was disconnected due to an error (check the log and contact customer support, if necessary).

Failed The connection attempt failed.

Local Identifies that this server is the local server as opposed to a remote server.

Timeout The connection attempt has timed out, but will be reattempted.

The QUEUE column displays the size of the queue for the server group.

The CONNECTION CHANGED column displays the most recent time that the status of the server connection was changed.

Examples
In the following examples, usa, italy, and france are root servers, denver is a nonroot server, and miami is a leaf server. The usa server is the parent of denver, and
denver is the parent of miami.
Figure 1. cdr list server example

When the cdr list server command includes the name of a database server group, the output displays the attributes of that database server. The following commands and
example output illustrate how the cdr list server command displays server information.

In this example, the server g_usa generates ATS and RIS files in XML format, has an idle time out of 15 seconds, and is a hub server.

cdr list server g_usa

NAME ID ATTRIBUTES

g_usa 1 atsrisformat=xml timeout=15 hub

In this example, the g_denver server shows the g_usa server as its root server.

cdr list server -c denver g_denver
NAME ID ATTRIBUTES

g_denver 27 root=g_usa

In this example, the attributes of the g_denver server are shown from the perspective of the italy server. The g_denver server has the g_usa server as its root server and
uses the g_usa server to forward replicated transactions between it and the italy server.

cdr list server -c italy g_denver

NAME ID ATTRIBUTES

g_denver 27 root=g_usa forward=g_usa

In this example, the g_miami server shows the g_denver server as its root server and that it is a leaf server.

cdr list server g_miami

NAME ID ATTRIBUTES

g_miami 4 root=g_denver leaf

The following example shows possible output for the cdr list server command if no server groups are specified:

cdr list server
SERVER ID STATE STATUS QUEUE CONNECTION CHANGED
--
g_denver 1 Active Local 0
g_miami 2 Active Connected 0 Mar 19 13:48:44
g_usa 3 Active Connected 0 Mar 19 13:48:40
g_france 4 Active Connected 0 Mar 19 13:48:41
g_italy 5 Active Connected 0 Mar 19 13:48:45

Related tasks:
 Preventing Memory Queues from Overflowing

Related reference:
 cdr connect server

Part VI: Administering 1989

cdr define server
cdr delete server
cdr disconnect server
cdr modify server
cdr resume server
cdr start
cdr suspend server
cdr view
cdr resume replicate
cdr resume replicateset

Copyright© 2020 HCL Technologies Limited

cdr list shardCollection

The cdr list shardCollection command displays the sharding definition for all database servers in a shard cluster.

Syntax

>>-cdr list shardCollection--definition_name--+------------------------+-><
 | (1) |
 '-| Connect Option |-----'

Notes:

1. See Connect Option.

Element Description Restrictions

definition_name The name of the sharding definition that is used for distributing
data across multiple database servers.

Must be the name of an existing definition.

Usage
The cdr list shardCollection command displays the sharding definition for database servers in a shard cluster.

Return codes
A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 99, 196, 229.

For information on these error codes, see Return Codes for the cdr Utility.

Example: Output for a sharding definition that uses consistent hash-based sharding
For this example, you have a sharding definition that is created by the following command:

cdr define shardCollection collection_1 db_1:john.customers
 --type=delete --key=b --strategy=chash --partitions=3 --versionCol=column_3
 g_shard_server_1 g_shard_server_2 g_shard_server_3

The following example shows output when the cdr list shardCollection command is run on a database server in the shard cluster. Each shard server has three hashing
partitions.

Figure 1. Output when the cdr list shardCollection is run on a shard server that uses consistent hash-based sharding.

Shard Collection:shrdb Version:0 type:consistent hash key:b
Version Column:column_3
Table:db_1:john.customers
g_shard_server_1 (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 4019 and 5469)
 or (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 5719 and 6123)
 or (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 2113 and 2652)
g_shard_server_2 (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 6124 and 7415)
 or (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 5470 and 5718)
 or (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 7416 and 7873)
g_shard_server_3 (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 2653 and 3950)
 or mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) >= 7874
 or mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) < 2113
 or (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 3951 and 40

Example: Output for a sharding definition that uses hash-based sharding
For this example, you have a sharding definition that is created by the following command:

cdr define shardCollection collection_1 database_1:john.customers_1
 --type=delete --key=col2 --strategy=hash --versionCol=column_3
 g_shard_server_A
 g_shard_server_B

1990 Part VI: Administering

https://www.hcltech.com/

 g_shard_server_C
 g_shard_server_D

The following example shows output when the cdr list shardCollection command is run on a database server in the shard cluster.

Figure 2. Output when the cdr list shardCollection is run on a shard server that uses hash-based sharding.

Shard Collection:collection_1 Version:0 type:hash key:col2
Version Column:column_3
Table:database_1:john.customers_1
g_shard_server_A mod(ifx_checksum(col2::LVARCHAR, 0), 4) = 0
g_shard_server_B mod(ifx_checksum(col2::LVARCHAR, 0), 4) in (1, -1)
g_shard_server_C mod(ifx_checksum(col2::LVARCHAR, 0), 4) in (2, -2)
g_shard_server_D mod(ifx_checksum(col2::LVARCHAR, 0), 4) in (3, -3)

Example: Output for a sharding definition that uses an expression
For this example, you have a sharding definition that is created by the following command:

cdr define shardCollection collection_2 database_2:joe.customers_2
 -t delete -k state -s expression -v column_3
 g_shard_server_F "IN ('AL','MS','GA')"
 g_shard_server_G "IN ('TX','OK','NM')"
 g_shard_server_H "IN ('NY','NJ')"
 g_shard_server_I remainder

The following example shows output when the cdr list shardCollection command is run on a database server in the shard cluster.

Figure 3. Output when the cdr list shardCollection is run on a shard server that uses expression-based sharding.

Shard Collection:collection_2 Version:0 type:expression key:state
Version Column:column_3
Table:database_2:joe.customers_2
g_shard_server_F state IN ('AL','MS','GA')
g_shard_server_G state IN ('TX','OK','NM')
g_shard_server_H state IN ('NY','NJ')
g_shard_server_I not ((state IN ('AL','MS','GA')) or (state
IN ('TX','OK','NM')) or (state IN ('NY','NJ')))

Example: Output for a sharding definition that was modified
For this example, you have a sharding definition that is created by the following command:

cdr define shardCollection collection_3 database_3:tony.customers_3
 -t keep -k bson_value_lvarchar(data,'year') -s expression -v column_3
 g_shard_server_J "BETWEEN 1970 and 1979"
 g_shard_server_K "BETWEEN 1980 and 1989"
 g_shard_server_L "BETWEEN 1990 and 1999"
 g_shard_server_M remainder

The sharding definition is then modified by the following command:

cdr change shardCollection collection_3 -a
 g_shard_server_N "BETWEEN 2000 and 2009"

The sharding definition is then modified a second time:

cdr change shardCollection collection_3 -d g_shard_server_J

The following example shows output when the cdr list shardCollection command is run on a database server in the shard cluster. The Version value increments with
each cdr change shardCollection command that successfully runs on collection_3.

Figure 4. Output when the cdr list shardCollection is run on a shard server that has a modified sharding definition.

Shard Collection:collection_3 Version:2 type:expression
key:bson_value_lvarchar(data,'year') Version Column:column_3
Table:database_3:tony.customers_3
g_shard_server_K bson_value_lvarchar(data,'year') BETWEEN 1980 and 1989
g_shard_server_L bson_value_lvarchar(data,'year') BETWEEN 1990 and 1999
g_shard_server_N bson_value_lvarchar(data,'year') BETWEEN 2000 and 2009
g_shard_server_M not((bson_value_lvarchar(data,'year') BETWEEN 1980 and 1989)
or (bson_value_lvarchar(data,'year') BETWEEN 1990 and 1999) or (bson_value_lvarchar
(data,'year') BETWEEN 2000 and 2009))

Related concepts:
 Shard cluster management and monitoring

Related reference:
 cdr define shardCollection

cdr change shardCollection
cdr delete shardCollection
Related information:

 onstat -g shard command: Print information about the shard cache
Enabling sharding for JSON or relational data
Viewing shard-cluster participants

Copyright© 2020 HCL Technologies Limited

cdr list catalog
Part VI: Administering 1991

https://www.hcltech.com/

The cdr list catalog command lists the commands that created the specified replication objects.

Syntax

>>-cdr list catalog--+-------------------------+---------------->
 | (1) |
 '-| Connect Option |-----'

 .- --all----------------------.
>--+----------+--+-----------------------------+---------------><
 '- --quiet-' | .-------------------------. |
 | V | |
 '---+- --servers----------+-+-'
 +- --replicates-------+
 +- --replicatesets----+
 +- --templates--------+
 +- --realizetemplates-+
 '- --grids------------'

Notes:

1. See Connect Option.

The following table describes the options to the cdr list catalog command.

Long Form Short Form Meaning

--all -a Lists all definition commands. Default.

--grids -g Lists cdr create grid commands.

--quiet -q Lists the commands without headings.

--realizetemplates -z Lists cdr realize template commands.

--replicates -r Lists cdr define replicate commands.

--replicatesets -e Lists cdr define replicateset commands.

--servers -s Lists cdr define server commands.

--templates -t Lists cdr define template commands.

Usage
Run the cdr list catalog command to show replication definition commands. You can use the list of commands to easily duplicate a system for troubleshooting or moving a
test system into production.

Example: List template commands
The following command lists the cdr define template and the cdr realize template commands:

$ cdr list cat -t

cdr define template commands.

cdr define template temp1 --conflict=ignore --master=g_cat_cdr1
 --database=catdb informix.tab1 informix.tab2 informix.tab4

cdr define template temp2 --conflict=always --master=g_cat_cdr1
 --database=catdb informix.tab1 informix.tab2 informix.tab4

cdr define template temp3 --conflict=timestamp --master=g_cat_cdr1
 --database=catdb informix.tab1 informix.tab2 informix.tab4

cdr define template temp4 --conflict=timestamp --floatieee --ats --ris
 --alwaysRepLOBs=y --UTF8=y --master=g_cat_cdr1 --database=catdb
 informix.tab1 informix.tab2 informix.tab4

Example: List server commands
The following command lists the cdr define server commands:

$ cdr list cat -s

cdr define server commands.

cdr define server --init g_cat_cdr1

cdr define server --connect=g_cat_cdr2 --sync=g_cat_cdr1 --init g_cat_cdr2

cdr define server --connect=g_cat_cdr3 --ats=/usr/informix/ats
 --ris=/usr/informix/ris --sync=g_cat_cdr1 --init g_cat_cdr3

1992 Part VI: Administering

cdr define server --connect=g_cat_cdr4 --sync=g_cat_cdr1
 --init g_cat_cdr4

Copyright© 2020 HCL Technologies Limited

cdr list template

The cdr list template command displays information about the templates on the server on which the command is run.

Syntax

>>-cdr list template--+--------------------------+-------------->
 | (1) |
 '-| Connect Option |-----'

 .--------------.
 V | .-BRIEF-.
>----+----------+-+--+-------+---------------------------------><
 '-template-' '-FULL--'

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

template Name of the template. The template must exist. Long Identifiers

Usage
The cdr list template command displays information about templates. If no templates are named, the command lists all templates in the Enterprise Replication domain.
If one or more templates are named, the command displays the names, database names, and table names for those templates.

To display detailed information for your templates, use the FULL option.

You do not need to be user informix to use this command; any user can run it.

In hierarchical topology, leaf servers have limited information about other database servers in the Enterprise Replication domain. Therefore, when cdr list template is
executed against a leaf server, it displays incomplete information about the other database servers.

The cdr list template command can be used while the replication server is in DDRBLOCK mode. Before using the cdr list template command you must set the
DBSPACETEMP configuration parameter and create a temporary dbspace with the onspaces utility.

Examples
The following example displays detailed information about the templates on the current server:

cdr list template

The output from the previous command might be the following:

TEMPLATE DATABASE TABLES
==
tem1 newcars table1
 newcars table2
 newcars table3
tem2 carparts table1
 carparts table3

The following example displays detailed information about the template tem1:

cdr list template tem1

The output from the previous command might be the following:

CURRENTLY DEFINED TEMPLATES
===========================
TEMPLATE: tem1
TEMPLATE ID: 6553605
SERVER: utah
DATABASE: newcars
REPLICATE: tem1_utah_2_1_table1
OWNER: pravin
TABLE: table1

TEMPLATE: tem1
TEMPLATE ID: 6553605
SERVER: utah
DATABASE: newcars
REPLICATE: tem1_utah_2_2_table2
OWNER: pravin
TABLE: table2

Part VI: Administering 1993

https://www.hcltech.com/

TEMPLATE: tem1
TEMPLATE ID: 6553605
SERVER: utah
DATABASE: newcars
REPLICATE: tem1_utah_2_3_table3
OWNER: pravin
TABLE: table3

Related reference:
 cdr define template

cdr realize template

Copyright© 2020 HCL Technologies Limited

cdr migrate server

The cdr migrate server command automates data migration task between two or more servers. This command also automates setting up of Enterprise Replication
between two Informix server instances.

Data migration options
Static mode-offline data migration

Create storage spaces using storage pool
Migrate schema (except referential integrity) and data in parallel
Build referential integrity

Dynamic mode – online data migration
Create storage spaces using storage pool
Migrate schema (except referential integrity) and data in parallel
Resynchronize data using Enterprise Replication
Build referential integrity

The cdr migrate server command automates tasks such as:

Define Enterprise Replication domain between the two servers.
Add ERKEY columns for the tables that does not have primary key or unique index columns.
Create required storage spaces for the databases
Apply database schema from source server to target server
Create replicate definitions
Synchronize data between source and target server instances
Build referential integrity

Supported phases
1. define_er: Define ER
2.

a. add_erkey: Add ERKEY to source schema
b. add_replcheck : Add REPLCHECK column and index to source schema

3. create_spaces: Create storage spaces using storagepool
4.

a. create_schema_loaddata: Multi phase replay of schema and data
Phased migration of schema and data:

Phase 1:
Migrate database schema except indexes, primary key, unique and referential constraints
Create all tables as “RAW” tables

Phase 2:
Start multiple parallel jobs for data load and index builds
Each job includes: make sure table is a raw table, Load data using “insert into … select * from …” ISTAR query, Build indexes, primary key
and unique key constraints

Phase 3:
Build referential constraints

b. create_schema_nodata : Create database schema
c. create_schema_loaddata_nori : Create database schema without referential integrity and load data

5. create_replicates: Create replicate, replicate set and grid definitions
6. sync_data: Synchronize data
7. add_ri: Add referential integrity
8. all: Execute all phases (with phase create_schema_loaddata_nori)
9. static: Execute create_spaces and create_schema_loaddata phases

10. dynamic: Execute all phases similar to ‘all’

If you decide to execute the above phases individually, then phase order need to be maintained.

Prerequisites to run cdr migrate server command
1. To auto create required storage spaces, storage pool is a requirement at source and target servers.
2. SQLHOSTS files at both source and target server must be already configured with ER group information.
3. Trusted host configuration must be already established between source and target servers.
4. Source server must be 11.70xC1 or higher version.

1994 Part VI: Administering

https://www.hcltech.com/

Restrictions
1. Cannot mix multiple database code-sets in same data migration command.
2. Parallel data load using ISTAR query do not support tables with smart large objects(BLOB and CLOB), user created UDTs and collection datatypes.

Requires customization to unload/load data using external tables or using any other supported unload/load commands.
3. Tenant databases and database sharding are not supported.
4. Cannot use this tool for database code-set migration

Command syntax
cdr migrate server -s source -t target -p phase [-d database] [--exec]

-s --source Source server name

-t --target Target server name

-p --phase migration phase

-e --exec Execute commands. Default: print only.

-d --database Database to replicate

-T --receiveonly Setup oneway replication from source to target

('create_replicates' phase)

-r --checkrepair Synchronize data using 'cdr check'

instead of 'cdr sync'('sync_data' phase)

-g --grid Y/N Enable/Disable grid. Default:Y('create_replicates' phase)

-A --atsdir ATS files directory path('define_er' phase)

-R --risdir ATS files directory path('define_er' phase)

-P --parallelsync Number of table sync jobs to run

in parallel('sync_data' phase)

-f --outfile <file path> Output file for commands

-E --exclude db:owner.tab specify table to exclude

Examples
To print commands to stdout:

cdr migrate server -s cdr_utm_nag_1 -t cdr_utm_nag_2 --phase all

To execute commands:

cdr migrate server -s cdr_utm_nag_1 -t cdr_utm_nag_2 --phase all --exec

To run 'define_er' phase:

cdr migrate server -s cdr_utm_nag_1 -t cdr_utm_nag_2 --phase define_er --atsdir=/work --risdir=/work

Copyright© 2020 HCL Technologies Limited

cdr modify grid

The cdr modify grid command modifies grid attributes.

Syntax

>>-cdr modify grid--+--------------------------+---------------->
 | (1) |
 '-| Connect Option |-----'

 .------------.
 V |
>--grid_name-+- --enablegridcopy--+---+--------+-+-------------><
 '- --disablegridcopy-' '-Server-'

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

Part VI: Administering 1995

https://www.hcltech.com/

Element Purpose Restrictions Syntax

grid_name Name of a grid to modify

Server Name of a server to modify

The following table describes the options to cdr modify grid.

Long Form Short Form Meaning

--enablegridcopy -E Enables the specified server to perform grid copy functions.

--disablegridcopy -D Disables the specified server from performing grid copy
functions.

Usage
The cdr modify grid command modifies the attributes of one or more servers in a grid. If the command does not specify a server, the changes apply to all servers in the
grid.

The --enablegridcopy option is used only if a grid was created using Informix® version 11.70 and then upgraded to Informix version 12.10 or later.

Grids created using Informix version 11.70 and earlier cannot copy external files to a grid. If you upgrade servers in a grid from 11.70 to 12.10, and you want to copy
external files to servers in the grid, you must enable the ability to copy external files by running the cdr modify grid command with the --enablegridcopy option. Similarly,
before reverting from Informix version 12.10 to an earlier version of Informix, you must disable the ability to copy external files by running the cdr modify grid command
with the --disablegridcopy option.

It is not necessary to run the cdr modify grid command if your grid was created using Informix version 12.10 or later.

You can run this command from within an SQL statement by using the SQL administration API.

Examples
The following example enables copying external files on all servers in the grid named grid1:

cdr modify grid grid1 --enablegridcopy

The following example enables copying external files on the server g_serv1 in the grid named grid1:

cdr modify grid grid1 --enablegridcopy g_serv1

The following example disables copying external files on all servers in the grad named grid1:

cdr modify grid grid1 --disablegridcopy

The following example disables copying external files for the server g_serv1 in the grid named grid1:

cdr modify grid grid1 --disablegridcopy g_serv1

Related concepts:
 Enterprise Replication Server administrator

Copyright© 2020 HCL Technologies Limited

cdr modify replicate

The cdr modify replicate command modifies replicate attributes.

Syntax

>>-cdr modify replicate--+--------------------------+----------->
 | (1) |
 '-| Connect Option |-----'

 .---------------------------------.
 V |
>--+-----------+----+-----------------------------+-+----------->
 '- --name=n-' | (2) |
 +-| Conflict Options |------+
 | (3) |
 +-| Scope Options |---------+
 | (4) |
 +-| Frequency Options |-----+
 | (5) |
 '-| Special Options |-------'

 .-----------------.
 V |
>--replicate----+-------------+-+------------------------------><
 '-participant-'

Notes:

1996 Part VI: Administering

https://www.hcltech.com/

1. See Connect Option.
2. See Conflict Options.
3. See Scope Options.
4. See Frequency Options.
5. See Special Options.

Element Purpose Restrictions Syntax

participant Name of a participant in the replication. The participant must be a member of the replicate. Participant and participant
modifier

replicate Name of the replicate to modify. The replicate name must exist. Long Identifiers

The following table describes the option to cdr modify replicate.

Long Form Short Form Meaning

--name=n -n n Removes the name verification attribute from a master replicate.

Special Options

Special Options

 .-----------------------------.
 V |
|----+-------------------------+-+------------------------------|
 +- --ats--+-y-+-----------+
 | '-n-' |
 +- --ris--+-y-+-----------+
 | '-n-' |
 +- --firetrigger--+-y-+---+
 | '-n-' |
 +- --fullrow--+-y-+-------+
 | '-n-' |
 | .-n-. |
 +- --ignoredel=-+-y-+-----+
 +- --serial---------------+
 | .-n-. |
 +- --UTF8=-+-y-+----------+
 | .-n-. |
 '- --alwaysRepLOBs=-+-y-+-'

Table 1. Special options for cdr modify replicate.

Long Form Short Form Meaning

--
alwaysRepLOB
S=

 Specifies whether columns that contain unchanged large objects are included in replicated rows:

--alwaysRepLOBS=n: Default. Columns that contain unchanged large objects are not replicated.
--alwaysRepLOBS=y: Columns that contain large objects are always included in replicated rows.

--ats y or --ats
n

-A y or -A n Activates (y) or deactivates (n) aborted-transaction spooling for replicate transactions that fail to be applied to the target database.

--firetrigger y or
--firetrigger n

-T y or -T n Causes the rows that are inserted by the replicate to fire (y) or not fire (n) triggers at the destination.

--fullrow y or --
fullrow n

-f y or -f n Specifies to (y) replicate the full row and enable upserts or (n) replicate only changed columns and disable upserts.

--ignoredel= -D Specifies whether to retain deleted rows on other nodes:

--ignoredel=y = Indicates that rows are retained if they are deleted on other nodes in the Enterprise Replication domain. You
cannot use this option if you specify deletewins as the conflict resolution rule.

--ignoredel=n = Default. Indicates that deleted rows are deleted on all nodes in the Enterprise Replication domain.

--ris y or --ris n -R y or -R n Activates (y) or deactivates (n) row-information spooling for replicate row data that fails conflict resolution or encounters
replication-order problems.

--serial -s Specifies that replicated transactions for the replicate are applied serially instead of in parallel.

--UTF8= Specifies whether to enable conversion to and from UTF-8 (Unicode) when you replicate data between servers that use different
code sets.

--UTF8=y Default. Indicates that character columns are converted to UTF-8 when the row is copied into the transmission
queue. When the replicated row is applied on the target server, the data is converted from UTF-8 to the code set used on the
target server. No attempt is made to convert character data that is contained within opaque data types. You cannot use --
UTF8=y for replicates that contain TimeSeries data types, user-defined data types, or DataBlade module data types.
–UTF8=n Indicates that code set conversion is ignored.

Usage
The cdr modify replicate command modifies the attributes of a replicate or of one or more participants in the replicate. You can also change the mode of a participant. If
the command does not specify participants, the changes apply to all participants in the replicate.

Part VI: Administering 1997

To add or delete a participant, use the cdr change replicate command.

If you change the conflict resolution rule with cdr modify replicate, you must also specify the scope with the --scope option, even if you are not changing the scope.

The attributes for cdr modify replicate are the same as the attributes for cdr define replicate, with the following exceptions:

You cannot change the machine-independent decimal representation (--floatcanon) or IEEE floating point (--floatieee) formats.
You cannot change the conflict resolution from ignore to a non-ignore option (time stamp, SPL routine, or time stamp and SPL routine). You cannot change a non-
ignore conflict resolution option to ignore.
However, you can change from time stamp resolution to SPL routine resolution or from SPL routine resolution to time stamp.

The --ats, --ris, --firetrigger, and --fullrow options require a yes (y) or no (n) argument.

When you run the cdr modify replicate command, an event alarm with a class ID of 63 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL administration API.

Examples
The following example modifies the frequency attributes of replicate smile to replicate every five hours:

cdr modify repl --every=300 smile

The following example modifies the frequency attributes of replicate smile to replicate daily at 1:00 A.M.:

cdr modify repl -a 01:00 smile

The following example modifies the frequency attributes of replicate smile to replicate on the last day of every month at 5:00 A.M., to generate ATS files, and not to fire
triggers:

cdr modify repl -a L.5:00 -A y -T n smile

The following example changes the mode of the first participant that is listed to receive-only and the mode of the second to primary:

cdr mod repl smile “R db1@server1:antonio.table1” \
 “P db2@server2:carlo.table2”

Related concepts:
 Frequency Options

Enterprise Replication Server administrator
Change replicate attributes
Related tasks:

 Enabling ATS and RIS File Generation
Creating Strict Master Replicates
Related reference:

 cdr change replicate
cdr define replicate
cdr delete replicate
cdr list replicate
cdr resume replicate
cdr start replicate
cdr stop replicate
cdr suspend replicate
Enterprise Replication Event Alarms
Participant and participant modifier

Copyright© 2020 HCL Technologies Limited

cdr modify replicateset

The cdr modify replicateset command modifies all the replicates in a replicate set.

Syntax

>>-cdr modify replicateset-------------------------------------->

 .---------------------------------.
 V |
>----+-----------------------------+-+--repl_set---------------><
 | (1) |
 +-| Connect Option |--------+
 | (2) |
 '-| Frequency Options |-----'

Notes:

1. See Connect Option.
2. See Frequency Options.

Element Purpose Restrictions Syntax

1998 Part VI: Administering

https://www.hcltech.com/

Element Purpose Restrictions Syntax

repl_set Name of replicate set to modify. The replicate set must exist. Long Identifiers

Usage
The cdr modify replicateset command modifies the attributes of all the replicates in the replicate set repl_set. To add or delete replicates from a replicate set, use the cdr
change replicateset command.

You cannot change whether a replicate set is exclusive or not.

When you run the cdr modify replicateset command, an event alarm with a class ID of 64 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL administration API.

Examples
The following example connects to the default server (the server specified by the INFORMIXSERVER environment variable) and modifies the replicate set sales_set to
process replication data every hour:

cdr mod replset --every=60 sales_set

Related concepts:
 Frequency Options

Enterprise Replication Server administrator
Related reference:

 cdr change replicateset
cdr define replicateset
cdr delete replicateset
cdr list replicateset
cdr define replicate
cdr resume replicateset
cdr start replicateset
cdr stop replicateset
cdr suspend replicateset
Enterprise Replication Event Alarms

Copyright© 2020 HCL Technologies Limited

cdr modify server

The cdr modify server command modifies the Enterprise Replication attributes of a database server.

Syntax

>>-cdr modify server--+--------------------------+-------------->
 | (1) |
 '-| Connect Option |-----'

>--+-----------------+--+-----------------------+--------------->
 '- --idle=timeout-' '- --mode--+-primary--+-'
 +-readonly-+
 '-sendonly-'

>--+----------------+--+----------------+----------------------->
 '- --ats=ats_dir-' '- --ris=ris_dir-'

>--+------------------------------+--server_group--------------><
 | .-text-. |
 '- --atsrisformat--=--+-xml--+-'
 '-both-'

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

server_group Name of a database server group to modify. The database server group must be defined in
Enterprise Replication.

timeout Idle timeout for this server. Must be an integer number of minutes. 0 indicates
no timeout. The maximum value is 32,767.

Integer.

ats_dir Name of Aborted Transaction Spooling directory. Must be a full path name. The path for the directory
can be no longer than 256 bytes.
A value of /dev/null (UNIX) or NUL (Windows)
prevents ATS file generation.

Follows naming conventions on
your operating system.

Part VI: Administering 1999

https://www.hcltech.com/

Element Purpose Restrictions Syntax

ris_dir Name of the Row Information Spooling directory. Must be a full path name. The path for the directory
can be no longer than 256 bytes.
A value of /dev/null (UNIX) or NUL (Windows)
prevents RIS file generation.

Follows naming conventions on
your operating system.

The following table describes the options to cdr modify server.

Long Form Short Form Meaning

--ats= -A Activates aborted-transaction spooling for replicate transactions that fail to be applied to the target
database.

–atsrisformat= -X Specifies the format of ATS and RIS files:

text: ATS and RIS files are generated in standard text format.
xml: ATS and RIS files are generated in XML format.
both: ATS and RIS files are generated in both standard text format and XML format.

--idle= -i Causes an inactive connection to be terminated after timeout minutes. If time-out is 0, the connection does
not time out. The default value is 0.

--mode -m Changes the mode of all replicates using this server:

primary: The participant both receives and sends replicated data.
readonly: The participant only receives replicated data and does not send replicated data.
sendonly: The participant only sends replicated data and does not receive replicated data.

Note: The -m option only affects replicates whose conflict resolution is ignore.

--ris= -R Activates row-information spooling for replicate-row data that fails conflict resolution or encounters
replication-order problems.

Usage
The cdr modify server command modifies the replication server server_group.

When you run the cdr modify server command, an event alarm with a class ID of 70 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL administration API.

Examples
The following example connects to the database server paris and modifies the idle time-out of server group g_rome to 10 minutes. ATS files are generated into the
directory /cdr/atsdir in both text and XML format.

cdr modify server -c paris -i 10 -A /cdr/atsdir \
-X both g_rome

The following example connects to the default database server and sets the modes of all participants on g_geometrix to primary:

cdr mod ser -m p g_geometrix

Related concepts:
 Monitor and troubleshooting Enterprise Replication

Enterprise Replication Server administrator
Data consolidation
Primary-Target Data Dissemination
Modify server attributes
Related tasks:

 Enabling ATS and RIS File Generation
Disabling ATS and RIS File Generation
Customizing the Replication Server Definition
Related reference:

 cdr connect server
cdr define server
cdr delete server
cdr disconnect server
cdr list server
cdr resume server
cdr suspend server
Enterprise Replication Event Alarms

Copyright© 2020 HCL Technologies Limited

cdr realize template

The cdr realize template command creates the replicates, replicate set, and participant tables as specified in a template, and then synchronizes data on all or a subset of
the database servers within the replication domain.

2000 Part VI: Administering

https://www.hcltech.com/

Syntax

>>-cdr realize template--+--------------------------+----------->
 | (1) |
 '-| Connect Option |-----'

>--template--->

>--+--+-->
 '- --syncdatasource=data_server--+-----------------------------+-'
 '-| Synchronization Options |-'

>--+---------------------------------------+-------------------->
 +- --verify-----------------------------+
 '- --autocreate--+--------------------+-'
 '- --dbspace=dbspace-'

>--+------------------------------+----------------------------->
 '- --mode--=--+-send_only----+-'
 '-receive_only-'

 .----------------------------.
 V |
>----+-----------+-server_group-+--+-----------------+---------><
 '-database@-' '- --applyasowner-'

Synchronization Options

|--+--------------------------------+--------------------------->
 '- --extratargetrows=-+-delete-+-'
 +-keep---+
 '-merge--'

>--+--+---------------|
 '- --foreground--+-------------------------+-'
 '- --memadjust=size-+-K-+-'
 '-M-'

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

database Name of the database that includes the table to be
replicated.

The database server must be in an Enterprise
Replication domain.

Long Identifiers

data_server The database server from which the data is copied to
all other database servers listed.

The database server must be in an Enterprise
Replication domain.

dbspace The name of the dbspace for tables. The dbspace must exist on all the database servers
listed. If you do not specify a dbspace name and new
tables are created, they are created in the default
dbspace.

server_group Name of the database server group that includes the
server to connect to.

The database server group name must be the name
of an existing Enterprise Replication server group in
sqlhosts.

Long Identifiers

sizeK or size M Size, in either kilobytes (K) or megabytes (M), of the
send queue during synchronization.

Must be a positive integer and must not be greater
than the amount of available memory.

template The name of the template. The template must exist. Use the cdr define
template command to create the template.

Long Identifiers

The following table describes the special options to cdr realize template.

Long Form Short Form Meaning

--applyasowner -o Specifies that any tables created when you realize the template are owned by the owner of the
source tables. By default, the tables are owned by the user informix.

--autocreate -u Specifies that if the tables in the template definition do not exist in the databases on the target
servers, they are created automatically. However, the tables cannot contain columns with user-
defined data types.
Note: Tables that are created with autocreate do not automatically include non-replicate key
indexes, defaults, constraints (including foreign constraints), triggers, or permissions. You must
manually create these objects.

--dbspace= -D Specifies the dbspace in which the automatically created objects are placed. If not specified,
then the default dbspace is used.

Part VI: Administering 2001

Long Form Short Form Meaning

--extratargetrows= -e Specifies how to handle rows that are found on the target servers that are not present on the
data source server from which the data is being copied (data_server):

delete: (default) remove rows and dependent rows, based on referential integrity
constraints, from the target servers
keep: retain rows on the target servers
merge: retain rows on the target servers and replicate them to the data source server

This option applies to the initial data synchronization operation only; it does not affect the
behavior of the replicate.

--foreground -F Specifies that the synchronization operation is performed as a foreground process.

--memadjust= -J Increases the size of the send queue during synchronization to the number of kilobytes or
megabytes specified by the size element.

--mode= -m Specifies whether the participant either only sends or only receives replicated data:

send_only (S): The participant only sends replicated data and does not receive replicated
data.
receive_only (R): The participant only receives replicated data and does not send
replicated data.

--syncdatasource= -S Specifies which server is the source of the data that is used to synchronize all the other servers
that are listed in the cdr realize template command.
The server that is listed with this option must either be listed as one of the servers on which to
realize the template, or it must already have the template.

--target -t Specifies that all of the servers that are listed in the command become receive-only servers,
including the source server, unless the template is already realized on the source server.

If you use this option, you must run the cdr realize template command twice: once to realize the
template on the source server and other primary servers, and again to realize the template on
receive-only servers.

--verify -v Specifies that the cdr realize template command verifies that the database, tables, column data
types are correct on all listed servers, but does not realize the template.

Usage
Before you can use the cdr realize template command, you must define Enterprise Replication servers by running the cdr define server command and define the
template by running the cdr define template command. Create the database to be replicated on all database servers in the replication domain. However, only the
database on the synchronization data source server must be populated with data.

All specified servers must be online and the cdr utility must be able to connect to each server.

If you run this command as a DBSA instead of as user informix, you must have INSERT, UPDATE, and DELETE permission on the replicated tables on all the replication
servers in the domain.

The cdr realize template command performs the following tasks:

If you specify the --autocreate option, creates database tables on the target servers.
Recommendation: If you use --autocreate, specify a dbspace name. If you do not specify a dbspace name, tables are created in the root dbspace, which is not
recommended.
If you specify the --verify option, verifies the database, tables, column data types, and replication keys on all participating servers; however, the template is not
realized.
If you specify the --syncdatasource option, synchronizes the data from the source database with the databases specified by this command. If you specify the --
foreground option, runs synchronization as a foreground process. If you specify the --memadjust option, increases the size of the send queue from the value of the
CDR_QUEUEMEM configuration parameter.
If you are running this command with the --syncdatasource option as a DBSA, you must have certain permissions granted to you on several system tables in the
syscdr database. For more information, see Preparing for Role Separation (UNIX).

Verifies the database and table attributes to ensure that replication can be performed on each database.
Creates replicates as master replicates on all servers.
Creates a replicate set for the new replicates.
Starts the replicates on all servers.

The replicates and replicate set created from a template have generated names. Use the cdr list template command to see the names of the replicates and replicate set
associated with a particular template.

You can run this command from within an SQL statement by using the SQL administration API.

You can run the cdr check queue --qname=cntrlq command to wait for the cdr realize template command to be applied at all Enterprise Replication servers before you
run the data synchronization task.

Examples
The following example illustrates the cdr realize template command:

cdr realize template tem1 -c detroit\
new_cars@detroit new_cars0@chicago new_cars1@newark\
new_cars2@columbus

2002 Part VI: Administering

Line 1 specifies that the template name is tem1 and the server to which to connect is the detroit server. Lines 2 and 3 list the names of the databases and database
servers on which to realize the template.
The following example illustrates realizing the template on the source server, and then, creating the databases and tables, and loading data on the target database
servers:

cdr realize template tem1 -c detroit\
--syncdatasource=detroit --extratargetrows=keep\
--foreground --memadjust=50M\
--mode=receive_only chicago newark columbus

Line 1 realizes the template on the detroit server, as a primary server by default.
Line 2 specifies to use the detroit server as the source of the data to replicate to all other participating servers. If Enterprise Replication encounters any rows on the
chicago, newark, or columbus servers that do not exist on the detroit server, those rows are kept.

Line 3 specifies that the synchronization operation is done in the foreground, and the size of the send queue is set to 50 MB.

Line 4 specifies the participant type for each server. The --mode=receive_only option makes each server a receive-only participant.

The following example verifies the database and table attributes on the chicago, newark, and columbus servers; the template is not realized on these servers:

cdr realize template tem1 -c detroit\
--verify chicago newark columbus

Related concepts:
 Preparing for Role Separation (UNIX)

Enterprise Replication Server administrator
Related reference:

 cdr define template
cdr delete template
cdr list template
cdr define server

Copyright© 2020 HCL Technologies Limited

cdr remaster

The cdr remaster command changes the SELECT clause or the server from which to base the master replicate definition of an existing master replicate. This command
can also convert a classic (non-master) replicate to a master replicate.

Syntax

>>-cdr remaster--+--------------------------+------------------->
 | (1) |
 '-| Connect Option |-----'

>--+- --master=server--replicate--+----------+--+----------+-+-><
 | '-modifier-' '- --erkey-' |
 '-| Removing columns |------------------------------------'

Removing columns

|-- --remove-->

 .--.
 | .----------------------------. |
 | | .--------. | |
 V V V | | |
>---- --database=database---- --table=table----column-+-+-+----->

>--+-------------------------+----------------------------------|
 '- --wait--=--+-seconds-+-'
 '- -1-----'

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

column Name of the column to remove from replication. The column must exist and be a replicated column.

database Name of the database from which to remove one or
more columns from replication.

The database must exist and contain replicated
tables.

modifier Specifies the rows and columns to replicate. Participant and participant
modifier

replicate Name of the replicate to be mastered. The replicate must exist. Long Identifiers

server Name of the database server group from which to
base the master replicate definition.

The name must be the database server group name. Long Identifiers

table Name of the table from which to remove one or more
columns from replication.

The table must exist and belong to a replicate.

Part VI: Administering 2003

https://www.hcltech.com/

The following table describes the options to the cdr remaster command.

Long Form Short Form Meaning

--database= -d Specifies the database name from which to delete replicated columns.

--erkey -K Includes the ERKEY shadow columns, ifx_erkey_1, ifx_erkey_2, and ifx_erkey_3, in the
participant definition, if the table that is being replicated has the ERKEY shadow columns.
The ERKEY shadow columns are used as the replication key.

--master= -M Specifies that the replicate being created is a master replicate.

--remove -r Removes the specified columns from replicate definitions.

--table= -t Specifies the table name from which to remove one or more replicated columns.

--wait= -w Specifies how long to wait for remastering to complete. Default is -1: wait indefinitely until all
replicates are finished being remastered.
If the remaster operation is not complete at the end of the waiting time, the operation is rolled
back and the columns are not removed.

Usage
Remastering updates the replicate definition in the global catalogs of the replication servers. Use the cdr remaster command to perform one of the following tasks:

Convert a classic replicate to a master replicate. Master replicates ensure schema consistency among the participants in the replicates.
Update the definition of a master replicate whose participant was changed in an alter operation. You can change the SELECT clause or the server from which to base
the master replicate definition.
Remove one or more replicated columns from one or more replicates. The columns can belong to different replicates. You do not need to know the names of the
replicates.

To use the cdr remaster command, the master replicate definition must be created with name verification turned on, by using the cdr define replicate command with the
--name=y option.

Use the --erkey option if you are adding ERKEY columns to the participant definition, or if you are changing a participant definition that contains the ERKEY shadow
columns.

You can run this command from within an SQL statement by using the SQL administration API.

The remastering operation creates temporary shadow replicates that are deleted when the remastering operation is complete. If shadow replicates exist, the remastering
operation is in progress. You can run the cdr list replicate command to determine if the shadow replicate exists. An example of a shadow replicate name is:

Shadow_4_Repl1_GMT1090373046_GID10_PID28836

Shadow replicate names have the following format:

Shadow_4_basereplicatename_GMTtime_GIDgroupID_PIDpid

basereplicatename
The name of the replicate that is being remastered. If the replicate name is longer than 64 characters, only the first 64 characters are included.

time
The time stamp of when the shadow replicate was created, in GMT.

groupID
The group ID of the server. The group ID is the number that is specified by the -i option in the group definition in the sqlhosts file.

pid
The process ID of the client computer.

Example: Add columns to a replicate definition
The following command shows the original definition of the master replicate before the alter operation:

cdr define repl --master=delhi -C timestamp\
newrepl "test@delhi.tab" "select col1, col2 from tab"\

The following command shows the cdr remaster command adding a column, col3, in the newrepl participant:

cdr remaster --master=delhi newrepl\
"select col1, col2, col3 from tab"

The following command shows adding the ERKEY shadow columns after the table was altered to include them:

cdr remaster --master=delhi newrepl --erkey\
"select col1, col2, col3 from tab"

The following command shows changing the participant in the previous example to add another column and to continue to include the ERKEY shadow columns:

cdr remaster --master=delhi newrepl --erkey\
"select col1, col2, col3, col4 from tab"

Example: Remove columns from replicate definitions
The following command removes three columns from the database mydb: the column prefix from the table customer and the columns discount and season from the
table sales:

cdr remaster --remove --database=mydb --table=customer prefix \
--table=sales discount season

2004 Part VI: Administering

The following command removes one column each from the databases mydb1, mydb2, and mydb3:

cdr remaster --remove --database=mydb1 --table=customer prefix \
--database=mydb2 --table=cars brand \
--database=mydb3 --table=regions northwest

Related concepts:
 Enterprise Replication Server administrator

Related tasks:
 Remastering a Replicate

Removing replicated columns
Preparing tables without primary keys
Related reference:

 cdr alter

Copyright© 2020 HCL Technologies Limited

cdr remaster gridtable

The cdr remaster gridtable command validates tables in a grid after an alter operation.

Syntax

>>-cdr remaster gridtable--------------------------------------><

Usage
You can run the cdr remaster gridtable command to check whether tables in a grid have consistent metadata. The cdr remaster gridtable command checks every table
in a grid on every grid server. The cdr remaster gridtable command is run automatically after a grid table is altered.

Return codes
A return code of 0 indicates that the command was successful.

Examples
The following command checks all grid tables for consistency:

cdr remaster gridtable

Related concepts:
 Grid queries

Related tasks:
 Defining tables for grid queries

Related reference:
 cdr change gridtable

Related information:
 GRID clause

Copyright© 2020 HCL Technologies Limited

cdr remaster replicateset

The cdr remaster replicateset command updates the definitions of the set of replicates whose participants were changed by ALTER operations.

Syntax

>>-cdr remaster replicateset--+--------------------------+------>
 | (1) |
 '-| Connect Option |-----'

>-- --master=server--derived_set--+-------------------------+--><
 '- --wait--=--+-seconds-+-'
 '- -1-----'

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

derived_set Name of the derived replicate set to be mastered. The derived replicate set must exist. Long Identifiers

Part VI: Administering 2005

https://www.hcltech.com/
https://www.hcltech.com/

Element Purpose Restrictions Syntax

seconds Number of seconds to wait for remastering to
complete.

The number must be -1 or a positive integer.

server Name of the database server group from which to
base the replicate definitions.

The name must be the database server group name. Long Identifiers

The following table describes the options to the cdr remaster replicateset command.

Long Form Short Form Meaning

--master= -M Specifies the server from which to base the definitions of the replicates.

--wait= -w Specifies how long to wait for remastering to complete. Default is -1: wait indefinitely until all
replicates are finished being remastered.
If you specify a waiting time, but the remaster operation is not complete at the end of the waiting
time, the operation is rolled back and the replicate definitions are not updated.

Usage
All participant servers in the derived replicate set must be online and the cdr utility must be able to connect to each participant.

If you run this command as a DBSA instead of as user informix, you must have INSERT, UPDATE, and DELETE permission on the replicated tables on all the replication
servers in the domain.

When you change replicate participants by running ALTER operations, you must remaster the replicate. Remastering updates the replicate definition in the global catalogs
of the replication servers. Before you can run the cdr remaster replicateset command, you must run the cdr define replicateset command with the --needRemaster
option to create a derived replicate set.

You can run this command from within an SQL statement by using the SQL administration API.

The remastering operation creates temporary shadow replicates that are deleted when the remastering operation is complete. If shadow replicates exist, the remastering
operation is in progress. You can run the cdr list replicate command to determine if the shadow replicate exists. An example of a shadow replicate name is:

Shadow_4_Repl1_GMT1090373046_GID10_PID28836

Shadow replicate names have the following format:

Shadow_4_basereplicatename_GMTtime_GIDgroupID_PIDpid

basereplicatename
The name of the replicate that is being remastered. If the replicate name is longer than 64 characters, only the first 64 characters are included.

time
The time stamp of when the shadow replicate was created, in GMT.

groupID
The group ID of the server. The group ID is the number that is specified by the -i option in the group definition in the sqlhosts file.

pid
The process ID of the client computer.

Example
The following command remasters a derived replicate set named derived_accounts and sets the replication server named server1 as the master server:

cdr remaster replicateset --master=server1 derived_accounts

Related tasks:
 Altering multiple tables in a replicate set

Copyright© 2020 HCL Technologies Limited

cdr remove onconfig

The cdr remove onconfig command removes the specified value from a configuration parameter in the ONCONFIG file.

Syntax

>>-cdr remove onconfig--“--parameter name--value--“------------><

Element Purpose Restrictions Syntax

2006 Part VI: Administering

https://www.hcltech.com/

Element Purpose Restrictions Syntax

parameter name The name of the
configuration parameter
from which to remove the
value.

Not all configuration parameters can be changed with this command. Only
the following parameters can be changed:

CDR_LOG_LAG_ACTION
CDR_LOG_STAGING_MAXSIZE
CDR_QDATA_SBSPACE
CDR_SUPRESS_ATSRISWARN
ENCRYPT_CIPHERS
ENCRYPT_MAC
ENCRYPT_MACFILE
CDR_ENV:

CDRSITES_731
CDRSITES_92X
CDRSITES_10X

value The value of the
configuration parameter to
remove.

Must be an existing value of the configuration parameter. Follows the syntax rules for the specific
configuration parameter.

Usage
Use the cdr remove onconfig command to replace the existing value of an Enterprise Replication configuration parameter with a new value in the ONCONFIG file. You can
set environment variables by using the CDR_ENV configuration parameter.

You can run this command from within an SQL statement by using the SQL administration API.

Examples
Suppose the ENCRYPT_MAC configuration parameter is set to allow medium and high encryption levels, so that it appears in the ONCONFIG file as: ENCRYPT_MAC
medium,high. The following command removes the medium encryption level and retains only the high encryption level:

cdr remove onconfig "ENCRYPT_MAC medium"

Suppose the CDR_SITES_92X environment variable specifies the cdrIDs of 3, 4, and 5, so that it appears in the ONCONFIG file as: CDR_ENV CDR_SITES_92X=3,4,5. The
following command removes the cdrID of 3 from the list of supported version 9.2x servers:

cdr remove onconfig "CDR_ENV CDR_SITES_92X=3"

Related concepts:
 Enterprise Replication Server administrator

Related tasks:
 Dynamically Modifying Configuration Parameters for a Replication Server

Related reference:
 cdr add onconfig

cdr change onconfig

Copyright© 2020 HCL Technologies Limited

cdr repair

The cdr repair command synchronizes data based on ATS or RIS files.

Syntax

>>-cdr repair--+----------------+--+-ats--ats_file-+-----------><
 +- --check-------+ '-ris--ris_file-'
 | .- --verbose-. |
 '-+- --quiet---+-'

Element Purpose Restrictions Syntax

ats_file Name of the file for Aborted Transaction Spooling. Must be a full path name and file name. The path for
the directory can be no longer than 256 bytes.
The file must be in text format; it cannot be in XML
format.

Follows naming conventions on
your operating system.

ris_file Name of the file for Row Information Spooling. Must be a full path name and file name. The path for
the directory can be no longer than 256 characters.
The file must be in text format; it cannot be in XML
format.

Follows naming conventions on
your operating system.

The following table describes the option to cdr repair.

Long Form Short Form Meaning

Part VI: Administering 2007

https://www.hcltech.com/

Long Form Short Form Meaning

--check -C Check the consistency between the database server and the ATS or RIS file. Display repair
operations to stderr, but do not perform the repair operations.
In an active system, operations displayed with this option will not necessarily match those
performed later during an actual repair.

--quiet -q Quiet mode. Repair operations are not displayed to stderr.

--verbose -v Verbose mode (default). All repair operations are displayed to stderr.

Usage
The cdr repair command reconciles rows that failed to be applied based on the information in the specified ATS or RIS file. If a row exists on the source database server, it
is replicated again. If a row does not exist on the source database server, but does exist on the target server, then it is deleted from the target database server. By default,
each of the repair operations is displayed to stderr.

If you are running this command as a DBSA, you must have read permission on the ATS and RIS files. Permissions on ATS and RIS files can be set with the chown
operating system command.

The ATS or RIS file you specify in the cdr repair command must be in text format, which is the default format. You cannot specify the XML format of an ATS or RIS in the
cdr repair command.

Before you run a repair, preview the repair to make sure the operations that would be performed are correct. To preview the repair operations, use the –check option. All
repair operations are displayed to stderr, but not performed. In an active system, however, the operations displayed by the –check option might not be the same as the
operations performed when you later run the repair.

The server on which you run the cdr repair command must have a copy of the ATS or RIS file and be able to connect to the source and target database servers involved in
the failed transaction. In a hierarchical routing environment where the source and target database servers are not directly connected you might need to run the cdr repair
command from an intermediate server. If necessary, copy the ATS or RIS file to the intermediate server.

ATS and RIS files do not include code set information, therefore, the code sets associated with the locales specified by the DB_LOCALE and CLIENT_LOCALE environment
variables must be the same.

You can run this command from within an SQL statement by using the SQL administration API.

Note: The cdr repair command is not supported for replicates that are defined with the --UTF8=y option. For replicates that are defined with the --UTF8=y option, use
the cdr check replicate --repair or cdr check replicateset --repair command to repair data.

Examples
The following example repairs inconsistencies between the g_beijing and g_amsterdam servers resulting from an aborted transaction:

% cdr repair ats ats.g_beijing.g_amsterdam.D_2.070827_12:58:55.1
Attempting connection to syscdr@amsterdam...
Using syscdr@amsterdam.
Source ID:10 / Name:g_amsterdam
Target ID:20 / Name:g_beijing
(1) [s = "1"]: Row will be updated on the source for replicate <655361>
(2) [s = "2"]: Row not found on the source for replicate <655361>
(2) [s = "2"]: Row not found on the target for replicate <655361>
(2) [s = "2"]: No operation will be performed.
(3) [s = "3"]: Row will be updated on the source for replicate <655361>
(4) [s = "4"]: Row will be updated on the source for replicate <655361>
(5) [s = "5"]: Row will be updated on the source for replicate <655361>
(6) [s8 = "1911"]: Row will be updated on the source for replicate <655362>
(7) [s8 = "1912"]: Row will be updated on the source for replicate <655362>
(8) [s8 = "1913"]: Row will be updated on the source for replicate <655362>
(9) [s8 = "1914"]: Row will be updated on the source for replicate <655362>
(10) [s8 = "1915"]: Row will be updated on the source for replicate <655362>

Related concepts:
 Preparing for Role Separation (UNIX)

Enterprise Replication Server administrator
Related reference:

 cdr view

Copyright© 2020 HCL Technologies Limited

cdr reset qod

The cdr reset qod command resets failed-transaction counts for replicates on replicate servers. Connection Manager service-level agreements (SLA) that contains a
FAILURE or LATENCY redirection policy use failed-transaction counts to determine where to route client requests.

Syntax

>>-cdr reset qod--+--------------------------+------------------>
 | (1) |
 '-| Connect Option |-----'

 .----------------------------. .-----------------.

2008 Part VI: Administering

https://www.hcltech.com/

 V | V |
>--+--- --repl--=--replicate_name-+---+----+-------------+-+---->
 | .------------------------------. | '-server_name-'
 | V | |
 +--- --replset--=--repl_set_name-+-+
 '- --allrepl-----------------------'

>--+------------+--><
 '- --verbose-'

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

replicate_name The name of the replicate. The replicate must exist. Long Identifiers

repl_set_name The name of the replicate set. The replicate set must exist. Long Identifiers

server_name The name of the server. Must be the name of an existing database server
group in SQLHOSTS. Cannot be a leaf server.

Long Identifiers

The following table describes the options to the cdr reset qod command.

Long Form Short Form Meaning

--allrepl -A Resets the failed-transaction count on all replicates.

--repl= -r Specifies the replicate for which to reset the failed-transaction count.

--replset= -s Specifies the replicate set for which to reset the failed-transaction
count.

--verbose -v Displays details of the operations the command is performing

Usage
Use the cdr reset qod command to reset the failed-transaction count to zero for replicates or replicate sets on specified replication servers. Run the cdr reset qod
command before you repair inconsistent data, so that you can count failures that occur after the repair.

You must run the cdr reset qod command from a non-leaf server. If you do not specify any servers to reset, the current server to which you are connected is reset. If you
specify one or more servers to reset, you must explicitly include the server to which you are connected if you want to reset it.

You can run this command from within an SQL statement by using the SQL administration API.

Return codes
A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 5, 44, 217.

For information on error codes, see Return Codes for the cdr Utility.

Example 1: Resetting failed-transaction counts for a specific replicate on a specific replication
server

The following example resets the failed-transaction count for replicate_1 on server_1:

cdr reset qod --repl=replicate_1 server_1

Example 2: Resetting failed-transaction counts for all replicates on specific replication servers
The following example resets the failed-transaction count for all replicates on server_2 and server_3:

cdr reset qod --allrepl server_2 server_3

Example 3: Resetting failed-transaction counts for all replicates in a specific replicate set on a
specific replication server

The following example resets the failed-transaction count for all replicates in replicate_set_1 on server_4.

cdr reset qod --replset=replicate_set_1 server_4

Example 4: Resetting failed-transaction counts for all replicates in specific replicate sets on a
specific replication server

The following example resets the failed-transaction count for all replicates in replicate_set_2 and replicate_set_4 on server_5.

cdr reset qod -s replicate_set_2 -s replicate_set_4 server_5

Part VI: Administering 2009

Example 5: Resetting failed-transaction counts for all replicates on a specific replication
server, and displaying operation details

The following example connects to server_6, and then resets the failed-transaction count for all of replicates on server_6. The command displays details of the operations
that are performed:

cdr reset qod -c -A server_6 -v

Figure 1. Output of cdr reset qod with verbose details.

Resetting Quality of Data on server_6
 Resetting replicate replicate_1
 Resetting replicate replicate_2
 Resetting replicate replicate_3
 Resetting replicate replicate_4
 Resetting replicate replicate_5
 Resetting replicate replicate_6

Related concepts:
 Enterprise Replication Server administrator

Related reference:
 cdr define qod

cdr start qod
cdr stop qod
Related information:

 SLA Connection Manager configuration parameter

Copyright© 2020 HCL Technologies Limited

cdr resume replicate

The cdr resume replicate command resumes delivery of replication data.

Syntax

>>-cdr resume replicate--+--------------------------+----------->
 | (1) |
 '-| Connect Option |-----'

 .-----------.
 V |
>----repl_name-+---><

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

repl_name Name of the replicate to change to active state. The replicate must be suspended. Long Identifiers

Usage
The cdr resume replicate command causes all participants in the replicate repl_name to enter the active state.

If a replicate belongs to an exclusive replicate set, you cannot run cdr resume replicate to resume that individual replicate. You must use cdr resume replicateset to
resume all replicates in the exclusive replicate set. If a replicate belongs to a non-exclusive replicate set, you can resume the individual replicates in the set.

When you run the cdr resume replicate command, an event alarm with a class ID of 57 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL administration API.

Examples
The following example connects to the default database server (the one specified by the INFORMIXSERVER environment variable) and resumes the replicate smile:

cdr res repl smile

Related concepts:
 Enterprise Replication Server administrator

Related tasks:
 Exclusive Replicate Sets

Related reference:
 cdr change replicate

cdr define replicate
cdr delete replicate
cdr list replicate
cdr modify replicate

2010 Part VI: Administering

https://www.hcltech.com/

cdr start replicate
cdr stop replicate
cdr suspend replicate
Enterprise Replication Event Alarms
cdr list server
cdr resume replicateset

Copyright© 2020 HCL Technologies Limited

cdr resume replicateset

The cdr resume replicateset command resumes delivery of replication data for all the replicates in a replicate set.

Syntax

>>-cdr resume replicateset--+--------------------------+-------->
 | (1) |
 '-| Connect Option |-----'

 .----------.
 V |
>----repl_set-+--><

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

repl_set Name of replicate set to resume. None. Long Identifiers

Usage
The cdr resume replicateset command causes all replicates contained in the replicate set repl_set to enter the active state for all participants.

If not all the replicates in a non-exclusive replicate set are suspended, the cdr resume replicateset command displays a warning and only resumes the replicates that are
currently suspended.

When you run the cdr resume replicateset command, an event alarm with a class ID of 58 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL administration API.

Examples
The following example connects to the default database server (the one specified by the INFORMIXSERVER environment variable) and resumes the replicate set
accounts_set:

cdr res replset accounts_set

Related concepts:
 Enterprise Replication Server administrator

Related reference:
 cdr change replicateset

cdr define replicateset
cdr delete replicateset
cdr list replicateset
cdr modify replicateset
cdr define replicate
cdr start replicateset
cdr stop replicateset
cdr suspend replicateset
Enterprise Replication Event Alarms
cdr resume replicate
cdr list server

Copyright© 2020 HCL Technologies Limited

cdr resume server

The cdr resume server command resumes delivery of replication data to a suspended database server.

Syntax

Part VI: Administering 2011

https://www.hcltech.com/
https://www.hcltech.com/

>>-cdr resume server--+--------------------------+-------------->
 | (1) |
 '-| Connect Option |-----'

 .-----------------------.
 V |
>--to_server_group----+-------------------+-+------------------><
 '-from_server_group-'

Notes:

1. See Connect Option.

Element Purpose Restrictions

to_server_group Name of the database server group to which to resume delivery of
replication data.

The database server group must be currently active in
Enterprise Replication.

from_server_group Name of the database server group from which to resume sending
data to to_server_group.

The database server group must be currently active in
Enterprise Replication.

Usage
The cdr resume server command resumes delivery of replication data to the to_server_group database server from the database servers included in the
from_server_group list. If the from_server_group list is omitted, the command resumes replication of data from all database servers participating in the Enterprise
Replication system to the to_server_group. Replication data must have previously been suspended to the server with the cdr suspend server command.

When you run the cdr resume server command, an event alarm with a class ID of 52 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL administration API.

Examples
The following example connects to the default server (the one specified by the INFORMIXSERVER environment variable) and resumes replication of data to the server
g_iowa from the servers g_ohio and g_utah:

cdr res serv g_iowa g_ohio g_utah

Related concepts:
 Enterprise Replication Server administrator

Related reference:
 cdr connect server

cdr define server
cdr delete server
cdr disconnect server
cdr list server
cdr modify server
cdr suspend server
Enterprise Replication Event Alarms

Copyright© 2020 HCL Technologies Limited

cdr start

The cdr start command starts Enterprise Replication processing.

Syntax

>>-cdr start--+--------------------------+---------------------><
 | (1) |
 '-| Connect Option |-----'

Notes:

1. See Connect Option.

Usage
Use cdr start to restart Enterprise Replication after you stop it with the cdr stop command or replication stops for another reason, such as memory allocation problems.
When you issue cdr start, Enterprise Replication activates all connections to other connected replication servers. Replication servers, replicates, and replicate sets that
were suspended before the cdr stop command was issued remain suspended; no data is sent for the suspended servers, replicates, or sets.

Enterprise Replication resumes evaluation of the logical log (if required for the instance of Enterprise Replication) at the replay position. The replay position is the position
where Enterprise Replication stops evaluating the logical log when replication is stopped. When replication resumes, all appropriate database transactions that occurred
while replication was stopped are replicated. If replication is stopped for a prolonged period of time, the replay position in the logical log might be overwritten. If the

2012 Part VI: Administering

https://www.hcltech.com/

replay position is not available, the cdr start command fails with return code 214 and event alarm 75 is raised. In this situation, you must empty the send queues and
reset the replay position by running the cdr cleanstart command, and then synchronize the data.

When you run the cdr start command, event alarm 49 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL administration API.

Important: Whenever replication is stopped, data can become inconsistent. Therefore, issue cdr start and cdr stop with extreme caution.

Examples
The following example restarts Enterprise Replication processing on database server utah:

cdr start -c utah

Related concepts:
 Enterprise Replication Server administrator

Related tasks:
 Restarting Replication on a Server

Related reference:
 cdr cleanstart

cdr list server
cdr stop
Enterprise Replication Event Alarms

Copyright© 2020 HCL Technologies Limited

cdr start qod

The cdr start qod command starts quality of data (QOD) monitoring for replication servers.

Syntax

>>-cdr start qod--+--------------------------+-----------------><
 | (1) |
 '-| Connect Option |-----'

Notes:

1. See Connect Option.

Usage
Use the cdr start qod command to start monitoring the quality of data for replications servers. If Connection Manager service-level agreements (SLAs) use a apply-failure
or transaction-latency redirection policy, the Connection Manager uses quality of data information to decide where to route client connections.

Quality of data information is used for the following SLA redirection policies:

FAILURE: Connection requests are directed to the replication server that has the fewest apply failures.
LATENCY: Connection requests are directed to the replication server that has the lowest transaction latency.

You must run the cdr define qod command to define a master server before you can run the cdr start qod command. The cdr start qod command must be run on the
master server.

You can run this command from within an SQL statement by using the SQL administration API.

Return codes
A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 5, 217.

For information on error codes, see Return Codes for the cdr Utility.

Example
The following command starts quality of data monitoring when it is run on the master server:

cdr start qod

Related concepts:
 Enterprise Replication Server administrator

Related reference:
 cdr define qod

cdr stop qod
cdr reset qod
Related information:

Part VI: Administering 2013

https://www.hcltech.com/

SLA Connection Manager configuration parameter

Copyright© 2020 HCL Technologies Limited

cdr start replicate

The cdr start replicate command starts the capture and transmittal of replication transactions.

Syntax

>>-cdr start replicate--+--------------------------+------------>
 | (1) |
 '-| Connect Option |-----'

 .------------------.
 V |
>--repl_name----+--------------+-+------------------------------>
 '-server_group-'

>--+--+-><
 '- --syncdatasource=data_server--+-----------------------------+-'
 '-| Synchronization Options |-'

Synchronization Options

|--+--------------------------------+--------------------------->
 '- --extratargetrows=-+-delete-+-'
 +-keep---+
 '-merge--'

>--+--+---------------|
 '- --foreground--+-------------------------+-'
 '- --memadjust=size-+-K-+-'
 '-M-'

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

data_server The database server from which the data is copied
to all other database servers listed.

The database server must be in an Enterprise
Replication domain.

repl_name Name of the replicate to start. The replicate must exist. Long Identifiers

server_group Name of database server groups on which to start
the replicate.

The database server must be in an Enterprise
Replication domain.

sizeK or sizeM Size, in either kilobytes (K) or megabytes (M), of
the send queue during synchronization.

Must be a positive integer and must not be greater
than the amount of available memory.

The following table describes the cdr start replicate options.

Long Form Short Form Meaning

--extratargetrows= -e Specifies how to handle rows found on the target servers that are not present on the data source server
from which the data is being copied (data_server):

delete: (default) remove rows and dependent rows, based on referential integrity constraints,
from the target servers
keep: retain rows on the target servers
merge: retain rows on the target servers and replicate them to the data source server

This option applies to the initial data synchronization operation only; it does not affect the behavior of
the replicate.

--foreground -F Specifies that the synchronization operation is performed as a foreground process.

--memadjust= -J Increases the size of the send queue during synchronization to the number of kilobytes or megabytes
specified by the size element.

--syncdatasource= -S Specifies the name of the database server to use as the reference copy of the data. This server is
started even if it is not listed as one of the servers to start.

Usage
The cdr start replicate command causes the replicate to enter the active state (capture-send) on the specified database servers and the source database server specified
by the --syncdatasource option.

If you are running this command with the --syncdatasource option as a DBSA, you must have certain permissions granted to you on several system tables in the syscdr
database. For more information, see Preparing for Role Separation (UNIX).

If you would like the synchronization operation to be run in the foreground, use the --foreground option.

2014 Part VI: Administering

https://www.hcltech.com/

The size of the send queue is specified by the value of the CDR_QUEUEMEM configuration parameter. You can increase the amount of memory that the send queue can use
during this synchronization operation by using the --memadjust option to specify the size of the send queue.

If no server is specified, the repl_name starts on all servers that are included in the replicate. A replicate can have both active and inactive participants. When at least one
participant is active, the replicate is active, however, replication does not start until at least two participants are active. You cannot start replicates that have no
participants.

If a replicate belongs to an exclusive replicate set, you cannot run cdr start replicate to start that individual replicate. You must use cdr start replicateset to start all
replicates in the exclusive replicate set.

Because Enterprise Replication does not process log records that were produced before the cdr start replicate command was run, transactions that occur during this
period might be partially replicated. To avoid problems, either issue the cdr start replicate command on an idle system (no transactions are occurring) or use the BEGIN
WORK WITHOUT REPLICATION statement until after you successfully start the replicate.

You can run the cdr check queue --qname=cntrlq command to wait for the cdr start replicate command to be applied at all Enterprise Replication servers before running
the data synchronization task.

When you run the cdr start replicate command, an event alarm with a class ID of 59 is generated, if that event alarm is enabled.

Examples
The following command starts the replicate accounts on the server groups g_svr1 and g_svr2:

cdr sta rep accounts g_svr1 g_svr2

The following example starts the replicate named accounts on the server g_svr1 with g_svr2 as the source server:

cdr start replicate accounts g_svr1 --syncdatasource=g_svr2\
--foreground --memadjust=50M

The second line indicates that the synchronization happens in the foreground and the size of the send queue is 50 MB.

Related concepts:
 Preparing for Role Separation (UNIX)

Enterprise Replication Server administrator
Related reference:

 cdr change replicate
cdr define replicate
cdr delete replicate
cdr list replicate
cdr modify replicate
cdr resume replicate
cdr stop replicate
cdr suspend replicate
Enterprise Replication Event Alarms

Copyright© 2020 HCL Technologies Limited

cdr start replicateset

The cdr start replicateset command starts the capture and transmittal of replication transactions for all the replicates in a replicate set.

Syntax

>>-cdr start replicateset--+--------------------------+--------->
 | (1) |
 '-| Connect Option |-----'

 .------------------.
 V |
>--repl_set----+--------------+-+------------------------------->
 '-server_group-'

>--+--+-><
 '- --syncdatasource=data_server--+-----------------------------+-'
 '-| Synchronization Options |-'

Synchronization Options

|--+--------------------------------+--------------------------->
 '- --extratargetrows=-+-delete-+-'
 +-keep---+
 '-merge--'

>--+--+---------------|
 '- --foreground--+-------------------------+-'
 '- --memadjust=size-+-K-+-'
 '-M-'

Notes:

1. See Connect Option.

Part VI: Administering 2015

https://www.hcltech.com/

Element Purpose Restrictions Syntax

data_server The database server from which the data is
copied to all other database servers listed.

The database server must be defined in Enterprise
Replication.

repl_set Name of replicate set to start. The replicate set must exist. Long Identifiers

server_group Names of database server groups on which to
start the replicate set.

The database server groups must be defined for
Enterprise Replication.

sizeK or sizeM Size, in either kilobytes (K) or megabytes (M), of
the send queue during synchronization.

Must be a positive integer and must not be greater
than the amount of available memory.

The following table describes the cdr start replicateset options.

Long Form Short Form Meaning

--extratargetrows= -e Specifies how to handle rows found on the target servers that are not present on the data source server
from which the data is being copied (data_server):

delete: (default) remove rows and dependent rows, based on referential integrity constraints,
from the target servers
keep: retain rows on the target servers
merge: retain rows on the target servers and replicate them to the data source server

This option applies to the initial data synchronization operation only; it does not affect the behavior of
the replicate.

--foreground -F Specifies that the synchronization operation is performed as a foreground process

--memadjust= -J Increases the size of the send queue during synchronization to the number of kilobytes or megabytes
specified by the size element

--syncdatasource= -S Specifies the name of the database server to use as the reference copy of the data. This server is
started even if it is not listed as one of the servers to start.

Usage
The cdr start replicateset command causes the replicates defined in the specified replicate set to enter the active state (capture-send) on the specified database servers
and the source database server specified by the --syncdatasource option.

If you are running this command with the --syncdatasource option as a DBSA, you must have certain permissions granted to you on several system tables in the syscdr
database. For more information, see Preparing for Role Separation (UNIX).

If you would like the synchronization operation to be run as in the foreground, use the --foreground option.

The size of the send queue is specified by the value of the CDR_QUEUEMEM configuration parameter. You can increase the amount of memory that the send queue can use
during this synchronization operation by using the --memadjust option to specify the size of the send queue.

If the server_group list is omitted, the replicate set repl_set enters the active state for all database servers participating in the replicate set.

Because Enterprise Replication does not process log records that were produced before the cdr start replicateset command took place, transactions that occur during
this period might be partially replicated. To avoid problems, either issue the cdr start replicateset command on an idle system (no transactions are occurring) or use the
BEGIN WORK WITHOUT REPLICATION statement until after you successfully start the replicates in the replicate set.

If not all the replicates in a non-exclusive replicate set are inactive, the cdr start replicateset command displays a warning and only starts the replicates that are currently
inactive.

When you run the cdr start replicateset command, an event alarm with a class ID of 60 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL administration API.

Examples
The following example connects to the default database server specified by the INFORMIXSERVER environment variable and starts the replicate set accounts_set on the
server groups g_hill and g_lake:

cdr sta replset accounts_set g_hill g_lake

The following example starts the replicate set accounts_set on the server g_hill with g_lake as the source server:

cdr start replicateset accounts_set g_hill --syncdatasource=g_lake\
--foreground --memadjust=50M

The second line indicates that the synchronization happens in the foreground and the size of the send queue is 50 MB.

Related concepts:
 Preparing for Role Separation (UNIX)

Enterprise Replication Server administrator
Related reference:

 cdr change replicateset
cdr define replicateset
cdr delete replicateset
cdr list replicateset
cdr modify replicateset
cdr resume replicateset
cdr define replicate

2016 Part VI: Administering

cdr stop replicateset
cdr suspend replicateset
Enterprise Replication Event Alarms

Copyright© 2020 HCL Technologies Limited

cdr start sec2er

The cdr start sec2er command converts a high availability cluster to replication servers.

Syntax

>>-cdr start sec2er--+--------------------------+--secondary---><
 | (1) |
 '-| Connect Option |-----'

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

secondary Name of the secondary server in the
cluster.

 Long Identifiers

Usage
You must run the cdr start sec2er command from a primary server in a cluster with a high-availability data replication secondary or a remote stand-alone secondary
server. The cdr start sec2er command converts the two cluster servers into replication servers.

The following conditions must be met on both the primary and secondary cluster servers before running the cdr start sec2er command:

The sqlhosts files must be configured for Enterprise Replication:
Each server must belong to a different group.
The group identifier for each server must be different.
The sqlhosts files on each server must contain a server and a group entry for the other server.

All databases and tables must be logged.
No tables can be defined with label-based access control.
Typed tables must have primary keys.
User-defined types must support Enterprise Replication.
The CDR_QDATA_SBSPACE configuration parameter must be set.
Both server must be running version 11.10 or later.
If the servers are running database software prior to 11.70, Enterprise Replication cannot be defined.
Enterprise Replication must be active if it is already defined on either of the servers.

The cdr start sec2er command performs the following tasks:

The servers are defined as replication servers.
Any tables on the primary server that do not have a primary key are altered to add ERKEY shadow columns.
A replicate is created and started for each user table on the primary server.

If the cdr start sec2er command fails or is interrupted, you might see the following error message:

ERROR: Command cannot be run on pre-11.70 instance if ER is already running.

If you receive this error, remove replication by running the cdr delete server command for both servers and then run the cdr start sec2er command again.

Return codes
A return code of 0 indicates that the command was successful.

If the command is not successful, the following error codes is returned: 225.

For information on these error codes, see Return Codes for the cdr Utility.

Example
The following example converts a cluster consisting of a primary server named priserv and a secondary server named secserv into replication servers. The output of the
cdr start sec2er command shows the commands that are run.

$cdr start sec2er secserv
--
-- Define ER for the first time
--
cdr define serv -c priserv -I priserv

--
-- Creating Replication Key

Part VI: Administering 2017

https://www.hcltech.com/

--
dbaccess - - <<EOF
database stores_demo;
alter table 'bill'.classes add ERKEY;
EOF

--
-- Define the replicates
--
--
-- Defining Replicates for Database stores_demo
--
cdr define repl --connect=priserv sec2er_1_1282611664_call_type --master=priserv \
 --conflict=always --scope=row \
 "stores_demo@priserv:'bill'.call_type" \
 "select * from 'bill'.call_type"
cdr start repl --connect=priserv sec2er_1_1282611664_call_type

cdr define repl --connect=priserv sec2er_2_1282611664_cust_calls --master=priserv \
 --conflict=always --scope=row \
 "stores_demo@priserv:'bill'.cust_calls" \
 "select * from 'bill'.cust_calls"
cdr start repl --connect=priserv sec2er_2_1282611664_cust_calls

. . .

cdr define repl --connect=priserv sec2er_5_1282611664_customer --master=priserv \
 --conflict=always --scope=row \
 "stores_demo@priserv:'bill'.customer" \
 "select * from 'bill'.customer"
cdr start repl --connect=priserv sec2er_5_1282611664_customer

cdr define repl --connect=priserv sec2er_6_1282611664_classes --master=priserv \
 --conflict=always --scope=row \
 "stores_demo@priserv:'bill'.classes" \
 "select * from 'bill'.classes"
cdr start repl --connect=priserv sec2er_6_1282611664_classes
--
-- Starting RSS to ER conversion
--
--
-- WARNING:
--
-- DDL statements will not be automatically propagated to the ER server
-- after converting the secondary server into an ER server. If you
-- create or alter any objects, such as databases, tables, indexes, and
-- so on, you must manually propagate those changes to the ER node and
-- change any replication rules affecting those objects.
--

Related concepts:
 Preparing Logging Databases

Enterprise Replication Server administrator
Related tasks:

 Configuring ports and service names for replication servers
Related reference:

 CDR_QDATA_SBSPACE Configuration Parameter
cdr check sec2er
Example of creating a new replication domain by cloning

Copyright© 2020 HCL Technologies Limited

cdr stats rqm

The cdr stats rqm command displays information about the reliable queue manager (RQM) queues used for Enterprise Replication.

Syntax

>>-cdr stats rqm--+--------------------------+--+-----------+--><
 | (1) | +- --ackq---+
 '-| Connect Option |-----' +- --cntrlq-+
 +- --recvq--+
 +- --syncq--+
 '- --sendq--'

Notes:

1. See Connect Option.

The following table describes the cdr stats rqm options.

Long Form Short Form Meaning

--ackq -A Prints the statistics for the acknowledgment send queue.

--cntrlq -C Prints the statistics for the control send queue.

2018 Part VI: Administering

https://www.hcltech.com/

Long Form Short Form Meaning

--recvq -R Prints the statistics for the receive queue.

--syncq -S Prints the statistics for the sync send queue.

--sendq -T Prints the statistics for the send queue.

Usage
The cdr stats rqm command displays the RQM (reliable queue manager) statistics for the queues used by Enterprise Replication. These queues are the ack send, control
send, send, sync send, and the receive queue. If no queue is specified, the cdr stats rqm command displays statistics for all Enterprise Replication queues.

The cdr stats rqm command shows, among other things, how many transactions are currently queued in memory and spooled, the size of the data in the queue, how
much real memory is being used, pending transaction buffers and data, the maximum memory used for data and headers (overhead), and totals for the number of
transactions queued, the number of transactions, the number of deleted transactions, and the number of transaction lookups that have occurred.

If the Connect option is specified, Enterprise Replication connects to the specified remote server and retrieves the statistics for its Enterprise Replication queues.

Examples
The following example shows the output for cdr stats rqm --ackq:

RQM Statistics for Queue number: 1 name: ack_send
 Flags: ACKSEND_Q, SENDQ_MASK
 Txns in queue: 0
 Txns in memory: 0
 Txns in spool only: 0
 Txns spooled: 0
 Unspooled bytes: 0
 Size of Data in queue: 0 Bytes
 Real memory in use: 0 Bytes
 Pending Txn Buffers: 0
 Pending Txn Data: 0 Bytes
 Max Real memory data used: 44 Bytes
 Max Real memory hdrs used: 320 Bytes
 Total data queued: 120 Bytes
 Total Txns queued: 0
 Total Txns 3
 Total Txns spooled: 0
 Total Txns restored: 0
 Total Txns recovered: 0
 Spool Rows read: 0
 Total Txns deleted: 3
 Total Txns duplicated: 0
 Total Txn Lookups: 8

The following example shows the output for cdr stats rqm --cntrlq:

RQM Statistics for Queue number: 2 name: control_send
 Transaction Spool Name: control_send_stxn
 Flags: CTRL_SEND_Q, STABLE, USERTXN, PROGRESS_TABLE,
 NEED_ACK, SENDQ_MASK
 Txns in queue: 0
 Txns in memory: 0
 Txns in spool only: 0
 Txns spooled: 0
 Unspooled bytes: 0
 Size of Data in queue: 0 Bytes
 Real memory in use: 0 Bytes
 Pending Txn Buffers: 0
 Pending Txn Data: 0 Bytes
 Max Real memory data used: 185 Bytes
 Max Real memory hdrs used: 320 Bytes
 Total data queued: 185 Bytes
 Total Txns queued: 0
 Total Txns 1
 Total Txns spooled: 1
 Total Txns restored: 0
 Total Txns recovered: 0
 Spool Rows read: 0
 Total Txns deleted: 1
 Total Txns duplicated: 0
 Total Txn Lookups: 4

The following example shows the output for cdr stats rqm --recvq:

RQM Statistics for Queue number: 4 name: trg_receive
 Transaction Spool Name: trg_receive_stxn
 Flags: RECV_Q, SPOOLED, PROGRESS_TABLE
 Txns in queue: 0
 Txns in memory: 0
 Txns in spool only: 0
 Txns spooled: 0
 Unspooled bytes: 0
 Size of Data in queue: 0 Bytes
 Real memory in use: 0 Bytes
 Pending Txn Buffers: 0
 Pending Txn Data: 0 Bytes
 Max Real memory data used: 0 Bytes
 Max Real memory hdrs used: 0 Bytes
 Total data queued: 0 Bytes

Part VI: Administering 2019

 Total Txns queued: 0
 Total Txns 0
 Total Txns spooled: 0
 Total Txns restored: 0
 Total Txns recovered: 0
 Spool Rows read: 0
 Total Txns deleted: 0
 Total Txns duplicated: 0
 Total Txn Lookups: 0

The following example shows the output for cdr stats rqm --syncq:

RQM Statistics for Queue number: 3 name: sync_send
 Flags: SYNC_Q, NEED_ACK, SENDQ_MASK
 Txns in queue: 0
 Txns in memory: 0
 Txns in spool only: 0
 Txns spooled: 0
 Unspooled bytes: 0
 Size of Data in queue: 0 Bytes
 Real memory in use: 0 Bytes
 Pending Txn Buffers: 0
 Pending Txn Data: 0 Bytes
 Max Real memory data used: 0 Bytes
 Max Real memory hdrs used: 0 Bytes
 Total data queued: 0 Bytes
 Total Txns queued: 0
 Total Txns 0
 Total Txns spooled: 0
 Total Txns restored: 0
 Total Txns recovered: 0
 Spool Rows read: 0
 Total Txns deleted: 0
 Total Txns duplicated: 0
 Total Txn Lookups: 1131

The following example shows the output for cdr stats rqm --sendq:

RQM Statistics for Queue number: 0 name: trg_send
 Transaction Spool Name: trg_send_stxn
 Flags: SEND_Q, SPOOLED, PROGRESS_TABLE, NEED_ACK,
 SENDQ_MASK, SREP_TABLE
 Txns in queue: 12
 Txns in memory: 12
 Txns in spool only: 0
 Txns spooled: 0
 Unspooled bytes: 24960
 Size of Data in queue: 24960 Bytes
 Real memory in use: 24960 Bytes
 Pending Txn Buffers: 0
 Pending Txn Data: 0 Bytes
 Max Real memory data used: 24960 Bytes
 Max Real memory hdrs used: 22080 Bytes
 Total data queued: 27560 Bytes
 Total Txns queued: 0
 Total Txns 14
 Total Txns spooled: 0
 Total Txns restored: 0
 Total Txns recovered: 0
 Spool Rows read: 0
 Total Txns deleted: 2
 Total Txns duplicated: 0
 Total Txn Lookups: 28

Related concepts:
 Enterprise Replication Server administrator

Copyright© 2020 HCL Technologies Limited

cdr stats recv

The cdr stats recv command displays receiver parallelism statistics and latency statistics by source node.

Syntax

>>-cdr stats recv--+--------------------------+----------------><
 | (1) |
 '-| Connect Option |-----'

Notes:

1. See Connect Option.

Usage

2020 Part VI: Administering

https://www.hcltech.com/

The cdr stats recv command displays the parallelism statistics for the receiver, including transaction count, number of pending and active transactions, the maximum that
have been pending and active, the average number of pending and active transactions, and the commit rate. Totals and averages are calculated for pending and active
transactions for the servers listed.

The Statistics by Source report shows the breakdown of transactions (number of inserts, updates, and deletes) and the latest source commit time and target apply time
per server. The replication latency is the difference between the time when the transaction was committed on the source server and the time when the same transaction is
applied on the target.

If the Connect option is specified, Enterprise Replication connects to the specified remote server and retrieved the statistics from it.

Examples
The following output is an example of the cdr stats recv command:

cdr stats recv

Receive Parallelism Statistics
Server Tot.Txn. Pending Active MaxPnd MaxAct AvgPnd AvgAct CommitRt
 144 11 0 0 3 2 1.27 1.36 0.01

Tot Pending:0 Tot Active:0 Avg Pending:0.00 Avg Active:0.00

Avg Commit Rate:0.01

Statistics by Source

Server Repl Txn Ins Del Upd Last Target Apply Last Source Commit
144 9371650 11 0 0 220 2005/03/30 09:36:25 2005/03/30 09:36:25

Related concepts:
 Enterprise Replication Server administrator

Copyright© 2020 HCL Technologies Limited

cdr stats check

The cdr stats check command displays the progress of a consistency check that specified a progress report task name.

>>-cdr stats check--+--------------------------+---------------->
 | (1) |
 '-| Connect Option |-----'

>--+----------------+--+------------+--------------------------->
 '- --repeat=time-' '- --verbose-'

 .-----------.
 V |
>--+---------------------+----task_name-+----------------------><
 '- --delete=task_name-'

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

task_name The name of the progress report task to display. Must be an existing named task. Long Identifiers

time The number of seconds between progress
reports.

Must be a positive integer.

The following table describes the options to the cdr stats check command.

Long Form Short Form Meaning

--delete= -d Specifies to delete the specified named task information from the replcheck_stat and
replcheck_stat_node tables.

--repeat= -r Specifies to repeat the progress report every specified interval of seconds.

--verbose -v Specifies that the consistency report shows specific values that are inconsistent instead of a summary
of inconsistent rows.

Usage
Use the cdr stats check command to display the progress of a consistency check operation while the cdr check replicate or cdr check replicateset command is running.
You must have specified a task name in the cdr check replicate or cdr check replicateset command. You must be connected to the same server on which the cdr check
replicate or cdr check replicateset command was run when you run the cdr stats check command.

The cdr stats check command displays a snapshot of the consistency report and an estimate of the time remaining to complete the consistency check. If you use the --
repeat option, the consistency report is displayed every specified time interval.

You can view the progress of previously run consistency checks that have named tasks, if those progress report tasks have not been overwritten or deleted.

Part VI: Administering 2021

https://www.hcltech.com/

If you want to see the detailed progress report, include the --verbose option. The format of the verbose progress report is the same as the verbose consistency report
generated by the cdr check replicate and cdr check replicateset commands.

If you want to delete a named task, use the --delete option.

Examples
The following example checks a replicate named repl1, creates a task named tst, and then displays a progress report every two seconds.

cdr check repl –r repl1 –m cdr1 –a --name=tst
cdr stats check –-repeat=2 tst

The progress report from the previous command might look like this:

 Job tst
 repl1 Started Jan 17 16:10:59
 *********+----+----+----+----+----+----+----+----+ Remaining 0:00:08

 Job tst
 repl1 Started Jan 17 16:10:59
 **********************--+----+----+----+----+----+ Remaining 0:00:04

 Job tst
 repl1 Started Jan 17 16:10:59
 ***********************************----+----+----+ Remaining 0:00:02

 Job tst
 repl1 Started Jan 17 16:10:59
 ***+ Remaining 0:00:01

 Job tst
 repl1 Completed
 Started Jan 17 16:10:59, Elapsed Time 0:00:07

The following example checks and repairs the replicate, creates a task named tst, and displays a verbose progress report every four seconds.

cdr check repl –r repl1 –m cdr1 –a --name=tst --repair
cdr stats check –-repeat=4 –-verbose tst

The progress report from the previous command might look like this:

 Job tst
 repl1 Started Jan 17 16:34:42
 *******--+----+----+----+----+----+----+----+----+ Remaining 0:00:12

 Node Total Extra Missing Mismatch Child Processed
 ---------------- --------- --------- --------- --------- --------- ---------
 cdr1 9000 0 0 0 0 0
 cdr2 9000 0 0 99 0 99
 cdr3 9000 0 0 0 0 0

 Job tst
 repl1 Started Jan 17 16:34:42
 *********************************-+----+----+----+ Remaining 0:00:02

 Node Total Extra Missing Mismatch Child Processed
 ---------------- --------- --------- --------- --------- --------- ---------
 cdr1 43000 0 0 0 0 0
 cdr2 43000 0 0 99 0 99
 cdr3 43000 0 0 0 0 0

 Job tst
 repl1 Started Jan 17 16:34:42
 ***+ Remaining 0:00:01

 Node Total Extra Missing Mismatch Child Processed
 ---------------- --------- --------- --------- --------- --------- ---------
 cdr1 39000 0 0 0 0 99
 cdr2 38901 0 99 99 0 99
 cdr3 39000 0 0 0 0 0

 Job tst
 repl1 Completed
 Started Jan 17 16:34:42, Elapsed Time 0:00:11

 Node Total Extra Missing Mismatch Child Processed
 ---------------- --------- --------- --------- --------- --------- ---------
 cdr1 64099 0 0 0 0 99
 cdr2 64000 0 99 99 0 99
 cdr3 64099 0 0 0 0 0

The following example checks a replicate set named set, creates a task named tst, and displays a progress report every five seconds:

cdr check replset –s set –m cdr1 –a –n tst
cdr stats check –r 5 tst

2022 Part VI: Administering

The progress report from the previous command might look like this:

 Job tst
 repl3 Started Jan 17 16:41:19
 *****----+----+----+----+----+----+----+----+----+ Remaining 0:00:16
 repl2 Pending
 repl1 Pending
 Estimated time remaining for job tst 0:00:52

 Job tst
 repl3 Started Jan 17 16:41:19
 ***************************************+----+----+ Remaining 0:00:01
 repl2 Pending
 repl1 Pending
 Estimated time remaining for job tst 0:00:19

 Job tst
 repl3 Completed
 Started Jan 17 16:41:19, Elapsed Time 0:00:08
 repl2 Started Jan 17 16:41:27
 *******************+----+----+----+----+----+----+ Remaining 0:00:06
 repl1 Pending
 Estimated time remaining for job tst 0:00:13

 Job tst
 repl3 Completed
 Started Jan 17 16:41:19, Elapsed Time 0:00:08
 repl2 Completed
 Started Jan 17 16:41:27, Elapsed Time 0:00:08
 repl1 Started Jan 17 16:41:35
 ----+----+----+----+----+----+----+----+----+----+ Remaining 0:01:08
 Estimated time remaining for job tst 0:01:08

 Job tst
 repl3 Completed
 Started Jan 17 16:41:19, Elapsed Time 0:00:08
 repl2 Completed
 Started Jan 17 16:41:27, Elapsed Time 0:00:08
 repl1 Started Jan 17 16:41:35
 *********************************-+----+----+----+ Remaining 0:00:02
 Estimated time remaining for job tst 0:00:02

 Job tst
 repl3 Completed
 Started Jan 17 16:41:19, Elapsed Time 0:00:08
 repl2 Completed
 Started Jan 17 16:41:27, Elapsed Time 0:00:08
 repl1 Completed
 Started Jan 17 16:41:35, Elapsed Time 0:00:11
 Run time for job tst 0:00:27

Related concepts:
 Enterprise Replication Server administrator

Related tasks:
 Checking Consistency and Repairing Inconsistent Rows

Related reference:
 The replcheck_stat Table

The replcheck_stat_node Table
cdr check replicate
cdr check replicateset

Copyright© 2020 HCL Technologies Limited

cdr stats sync

The cdr stats sync command displays the progress of a synchronization operation that specified a progress report task name.

>>-cdr stats sync--+--------------------------+----------------->
 | (1) |
 '-| Connect Option |-----'

>--+----------------+--+------------+--------------------------->
 '- --repeat=time-' '- --verbose-'

 .-----------.
 V |
>--+---------------------+----task_name-+----------------------><
 '- --delete=task_name-'

Notes:

1. See Connect Option.

Part VI: Administering 2023

https://www.hcltech.com/

Element Purpose Restrictions SyntaxElement Purpose Restrictions Syntax

task_name The name of the progress report task to display. Must be an existing named task. Long Identifiers

time The number of seconds between progress
reports.

Must be a positive integer.

The following table describes the options to the cdr stats sync command.

Long Form Short Form Meaning

--delete= -d Specifies to delete the specified named task information from the replcheck_stat and
replcheck_stat_node tables.

--repeat= -r Specifies to repeat the progress report every specified interval of seconds.

--verbose -v Specifies that the consistency report shows specific values that are inconsistent instead of a summary
of inconsistent rows.

Usage
Use the cdr stats sync command to display the progress of a synchronization operation (cdr sync replicate or cdr sync replicateset). You must be connected to the same
server on which the cdr sync replicate or cdr sync replicateset command was run when you run the cdr stats sync command. The cdr stats sync command displays a
snapshot of the progress report and an estimate of the time remaining to complete the synchronization operation. If you use the --repeat option, the progress report is
displayed every specified time interval.

You can view the progress of previously run synchronization operations that have named tasks, if those progress report tasks have not been overwritten or deleted.

If you want to see the detailed progress report, include the --verbose option. The format of the verbose progress report is the same as the verbose consistency report
generated by the cdr check replicate and cdr check replicateset commands.

If you want to delete a named task, use the --delete option.

Examples
The following example synchronizes a replicate named repl1, creates a task named tst, and then displays a progress report every two seconds.

cdr sync repl –r repl1 –m cdr1 –a --name=tst
cdr stats sync –-repeat=2 tst

The progress report from the previous command might look like this:

 Job tst
 repl1 Started Jan 17 16:10:59
 *********+----+----+----+----+----+----+----+----+ Remaining 0:00:08

 Job tst
 repl1 Started Jan 17 16:10:59
 **********************--+----+----+----+----+----+ Remaining 0:00:04

 Job tst
 repl1 Started Jan 17 16:10:59
 ***********************************----+----+----+ Remaining 0:00:02

 Job tst
 repl1 Started Jan 17 16:10:59
 ***+ Remaining 0:00:01

 Job tst
 repl1 Completed
 Started Jan 17 16:10:59, Elapsed Time 0:00:07

The following example synchronizes the replicate, creates a task named tst, and displays a verbose progress report every four seconds.

cdr sync repl –r repl1 –m cdr1 –a --name=tst
cdr stats sync –-repeat=4 –-verbose tst

The progress report from the previous command might look like this:

 Job tst
 repl1 Started Jan 17 16:34:42
 *******--+----+----+----+----+----+----+----+----+ Remaining 0:00:12

 Node Total Extra Missing Mismatch Child Processed
 ---------------- --------- --------- --------- --------- --------- ---------
 cdr1 9000 0 0 0 0 0
 cdr2 9000 0 0 99 0 99
 cdr3 9000 0 0 0 0 0

 Job tst
 repl1 Started Jan 17 16:34:42
 *********************************-+----+----+----+ Remaining 0:00:02

 Node Total Extra Missing Mismatch Child Processed
 ---------------- --------- --------- --------- --------- --------- ---------
 cdr1 43000 0 0 0 0 0

2024 Part VI: Administering

 cdr2 43000 0 0 99 0 99
 cdr3 43000 0 0 0 0 0

 Job tst
 repl1 Started Jan 17 16:34:42
 ***+ Remaining 0:00:01

 Node Total Extra Missing Mismatch Child Processed
 ---------------- --------- --------- --------- --------- --------- ---------
 cdr1 39000 0 0 0 0 99
 cdr2 38901 0 99 99 0 99
 cdr3 39000 0 0 0 0 0

 Job tst
 repl1 Completed
 Started Jan 17 16:34:42, Elapsed Time 0:00:11

 Node Total Extra Missing Mismatch Child Processed
 ---------------- --------- --------- --------- --------- --------- ---------
 cdr1 64099 0 0 0 0 99
 cdr2 64000 0 99 99 0 99
 cdr3 64099 0 0 0 0 0

The following example synchronizes a replicate set named set, creates a task named tst, and displays a progress report every five seconds:

cdr sync replset –s set –m cdr1 –a –n tst
cdr stats sync –r 5 tst

The progress report from the previous command might look like this:

 Job tst
 repl3 Started Jan 17 16:41:19
 *****----+----+----+----+----+----+----+----+----+ Remaining 0:00:16
 repl2 Pending
 repl1 Pending
 Estimated time remaining for job tst 0:00:52

 Job tst
 repl3 Started Jan 17 16:41:19
 ***************************************+----+----+ Remaining 0:00:01
 repl2 Pending
 repl1 Pending
 Estimated time remaining for job tst 0:00:19

 Job tst
 repl3 Completed
 Started Jan 17 16:41:19, Elapsed Time 0:00:08
 repl2 Started Jan 17 16:41:27
 *******************+----+----+----+----+----+----+ Remaining 0:00:06
 repl1 Pending
 Estimated time remaining for job tst 0:00:13

 Job tst
 repl3 Completed
 Started Jan 17 16:41:19, Elapsed Time 0:00:08
 repl2 Completed
 Started Jan 17 16:41:27, Elapsed Time 0:00:08
 repl1 Started Jan 17 16:41:35
 ----+----+----+----+----+----+----+----+----+----+ Remaining 0:01:08
 Estimated time remaining for job tst 0:01:08

 Job tst
 repl3 Completed
 Started Jan 17 16:41:19, Elapsed Time 0:00:08
 repl2 Completed
 Started Jan 17 16:41:27, Elapsed Time 0:00:08
 repl1 Started Jan 17 16:41:35
 *********************************-+----+----+----+ Remaining 0:00:02
 Estimated time remaining for job tst 0:00:02

 Job tst
 repl3 Completed
 Started Jan 17 16:41:19, Elapsed Time 0:00:08
 repl2 Completed
 Started Jan 17 16:41:27, Elapsed Time 0:00:08
 repl1 Completed
 Started Jan 17 16:41:35, Elapsed Time 0:00:11
 Run time for job tst 0:00:27

Related concepts:
 Enterprise Replication Server administrator

Related tasks:
 Performing Direct Synchronization

Related reference:
 The replcheck_stat Table

The replcheck_stat_node Table

Part VI: Administering 2025

cdr sync replicate
cdr sync replicateset

Copyright© 2020 HCL Technologies Limited

cdr stop

The cdr stop command stops replication on the server to which you are connected without shutting down the database server.

Syntax

 (1)
>>-cdr stop--| Connect Option |--------------------------------><

Notes:

1. See Connect Option.

Usage
Generally, to stop replication on a server, you should shut down the database server. Under rare conditions, you might want to temporarily stop the Enterprise Replication
processing without shutting down the database server.

The cdr stop command shuts down replication in an orderly manner; however no data to be replicated is captured. When the shutdown of Enterprise Replication is
complete, the message CDR shutdown complete appears in the database server log file.

Stopping replication has the following effects:

There is no connection between the stopped server and active replication servers.
Transactions on the stopped server are not captured for replication. However, after restarting replication, transaction capture restarts at the replay position. If
replication is stopped for long enough that the replay position is overwritten, you must restart replication with the cdr cleanstart command. If the
CDR_LOG_LAG_ACTION configuration parameter is set to logstage, logs are staged to protect the replay position.
Transactions on active replication servers are queued for the stopped server, but there is the possibility of filling up the send queues.
Control messages on active replication servers are queued for the stopped server.
The only Enterprise Replication commands you can run on the stopped server are cdr start, cdr cleanstart, and cdr delete server with the --force option.

To ensure consistency, prevent database update activity while Enterprise Replication is stopped. Replication threads remain stopped until you issue a cdr start command.
Shutting down and restarting the stopped database server does not restart replication.

If you plan to stop replication for a long period of time and your replicates use time stamp or delete wins conflict resolution rules, consider using the cdr disable server
command instead of the cdr stop command.

When you run the cdr stop command, event alarms with class IDs of 50 and 71 are generated, if those event alarms are enabled.

You can run this command from within an SQL statement by using the SQL administration API.

Return Codes
0

The command was successful.
5

Enterprise Replication cannot connect to the specified server.
48

There is not enough memory to perform the operation.
62

Enterprise Replication is not active.
93

Enterprise Replication is in the process of starting.
94

Enterprise Replication is already in the process of stopping.

Examples
The following example stops Enterprise Replication processing on database server paris. Processing does not resume until a cdr start command restarts it:

cdr stop -c paris

Related concepts:
 Resynchronizing Data among Replication Servers

Enterprise Replication Server administrator
Related tasks:

 Temporarily stopping replication on a server
Related reference:

 cdr start
Enterprise Replication Event Alarms

2026 Part VI: Administering

https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

cdr stop qod

The cdr stop qod command stops quality of data (QOD) monitoring for replication servers.

Syntax

>>-cdr stop qod--+--------------------------+------------------><
 | (1) |
 '-| Connect Option |-----'

Notes:

1. See Connect Option.

Usage
Use the cdr stop qod command to stop monitoring quality of data for the replication servers.

The cdr stop qod command must be run on the master server defined by the cdr define qod command.

You can run this command from within an SQL statement by using the SQL administration API.

Return codes
A return code of 0 indicates that the command was successful.

If the command is not successful, the following error code is returned: 217.

For information on this error code, see Return Codes for the cdr Utility.

Example 1: Stopping quality of data monitoring from a master server
The following example stops quality of data monitoring:

cdr stop qod

This command must be run on the master server that was defined by the cdr define qod command.

Example 2: Connecting to a master server, and then stopping quality of data monitoring
For the following example, server_1 was defined as the master server by the cdr define qod command. The following example connects to server_1, and then stops
quality of data monitoring:

cdr stop qod -c server_1

Related concepts:
 Enterprise Replication Server administrator

Related reference:
 cdr define qod

cdr start qod
cdr reset qod
Related information:

 SLA Connection Manager configuration parameter

Copyright© 2020 HCL Technologies Limited

cdr stop replicate

The cdr stop replicate command stops the capture, transmittal, and reception of transactions for replication.

Syntax

>>-cdr stop replicate--+--------------------------+------------->
 | (1) |
 '-| Connect Option |-----'

 .---------------------.
 V |
>--repl_name----+-----------------+-+--------------------------><
 '-at_server_group-'

Part VI: Administering 2027

https://www.hcltech.com/
https://www.hcltech.com/

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

repl_name Name of the new replicate. The replicate must be active and not in an
exclusive replicate set.

Long Identifiers

at_server_group List of database server groups on which to stop
the replicate.

The database server groups must be defined for
Enterprise Replication.

Usage
The cdr stop replicate command changes the state of the replicate repl_name to inactive (no replicated data is captured, sent or received) on the replication servers in
the specified at_server_group list. In addition, this command deletes any data in the send queue for the stopped replicate. You cannot stop replicates that have no
participants.

If you omit the at_server_group list, the replicate enters the inactive state on all database servers participating in the replicate and all send queues for the replicate are
deleted.

If a replicate belongs to an exclusive replicate set, you cannot run cdr stop replicate to stop that individual replicate. You must use cdr stop replicateset to stop all
replicates in the exclusive replicate set.

If you run this command while direct synchronization or consistency checking with repair is in progress, that repair process will stop. (Consistency checking continues;
only the repair stops.) Direct synchronization and consistency checking repair cannot be resumed; you must rerun cdr sync replicate or cdr check replicate command
with the --repair option.

When you run the cdr stop replicate command, an event alarm with a class ID of 61 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL administration API.

Examples
The following command connects to the database server lake and stops the replicate aRepl on server groups g_server1 and g_server2:

cdr sto rep -c lake aRepl g_server1 g_server2

Related concepts:
 Resynchronizing Data among Replication Servers

Enterprise Replication Server administrator
Related reference:

 cdr change replicate
cdr define replicate
cdr delete replicate
cdr list replicate
cdr modify replicate
cdr resume replicate
cdr start replicate
cdr suspend replicate
Enterprise Replication Event Alarms

Copyright© 2020 HCL Technologies Limited

cdr stop replicateset

The cdr stop replicateset command stops capture and transmittal transactions for all the replicates in a replicate set.

Syntax

>>-cdr stop replicateset--+--------------------------+---------->
 | (1) |
 '-| Connect Option |-----'

 .------------------.
 V |
>--repl_set----+--------------+-+------------------------------><
 '-server_group-'

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

repl_set Name of replicate set to stop. The replicate set must exist Long Identifiers

server_group Name of database server group on which to stop the
replicate group.

The database server groups must be defined for
Enterprise Replication.

2028 Part VI: Administering

https://www.hcltech.com/

Usage
The cdr stop replicateset command causes all replicates in the replicate set repl_set to enter the inactive state (no capture, no send) on the database servers in the
server_group list.

If the server_group list is omitted, the replicate set repl_set enters the inactive state for all database servers participating in the replicate set.

If not all the replicates in the non-exclusive replicate set are active, the cdr stop replicateset command displays a warning and only stops the replicates that are currently
active.

If you run this command while direct synchronization or consistency checking with repair is in progress, that repair process will stop. (Consistency checking continues;
only the repair stops.) Direct synchronization and consistency checking repair cannot be resumed; you must rerun cdr sync replicate or cdr check replicate command.

When you run the cdr stop replicateset command, an event alarm with a class ID of 62 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL administration API.

Examples
The following example connects to the database server paris and stops the replicate set accounts_set on server groups g_utah and g_iowa:

cdr sto replset --connect=paris accounts_set g_utah g_iowa

Related concepts:
 Enterprise Replication Server administrator

Related reference:
 cdr change replicateset

cdr define replicateset
cdr delete replicateset
cdr list replicateset
cdr modify replicateset
cdr resume replicateset
cdr start replicateset
cdr define replicate
cdr suspend replicateset
Enterprise Replication Event Alarms

Copyright© 2020 HCL Technologies Limited

cdr suspend replicate

The cdr suspend replicate command suspends delivery of replication data.

Syntax

>>-cdr suspend replicate--+--------------------------+---------->
 | (1) |
 '-| Connect Option |-----'

 .-----------.
 V |
>----repl_name-+---><

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

repl_name Name of the replicate. The replicate must be active. Long Identifiers

Usage
The cdr suspend replicate command causes the replicate repl_name to enter the suspend state (capture, no send) for all participants.

Attention: When a replicate is suspended, Enterprise Replication holds the replication data in the send queue until the replicate is resumed. If a large amount of data is
generated for the replicate while it is suspended, the send queue space can fill, causing data to be lost. Enterprise Replication does not synchronize transactions if a
replicate is suspended. For example, a transaction that updates tables X and Y will be split if replication for table X is suspended.
If a replicate belongs to an exclusive replicate set, you cannot run cdr suspend replicate to suspend that individual replicate. You must use cdr suspend replicateset to
suspend all replicates in the exclusive replicate set.

When you run the cdr suspend replicate command, an event alarm with a class ID of 55 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL administration API.

Examples

Part VI: Administering 2029

https://www.hcltech.com/

The following example connects to the database server stan and suspends the replicate house:

cdr sus repl --connect=stan house

Related concepts:
 Enterprise Replication Server administrator

Related reference:
 cdr change replicate

cdr define replicate
cdr delete replicate
cdr list replicate
cdr modify replicate
cdr resume replicate
cdr start replicate
cdr stop replicate
Enterprise Replication Event Alarms
cdr suspend replicateset

Copyright© 2020 HCL Technologies Limited

cdr suspend replicateset

The cdr suspend replicateset command suspends delivery of replication data for all the replicates in a replicate set.

Syntax

>>-cdr suspend replicateset--+--------------------------+------->
 | (1) |
 '-| Connect Option |-----'

 .----------.
 V |
>----repl_set-+--><

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

repl_set Name of replicate set to suspend. The replicate set must exist. Long Identifiers

Usage
The cdr suspend replicateset command causes all the replicates in the replicate set repl_set to enter the suspend state. Information is captured, but no data is sent for
any replicate in the set. The data is queued to be sent when the set is resumed.

Attention: When a replicate set is suspended, Enterprise Replication holds the replication data in the send queue until the set is resumed. If a large amount of data is
generated for the replicates in the set while it is suspended, the send queue space can fill, causing data to be lost. Enterprise Replication does not synchronize
transactions if a replicate in a replicate set is suspended. For example, a transaction that updates tables X and Y will be split if replication for table X is suspended.
If not all the replicates in the non-exclusive replicate set are active, the cdr suspend replicateset command displays a warning and only suspends the replicates that are
currently active.

When you run the cdr suspend replicateset command, an event alarm with a class ID of 56 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL administration API.

Examples
The following example connects to the default database server specified by $INFORMIXSERVER and suspends the replicate set accounts_set:

cdr sus replset account_set

Related concepts:
 Enterprise Replication Server administrator

Related reference:
 cdr change replicateset

cdr define replicateset
cdr delete replicateset
cdr list replicateset
cdr modify replicateset
cdr resume replicateset
cdr start replicateset
cdr stop replicateset
cdr define replicate
Enterprise Replication Event Alarms
cdr suspend replicate

2030 Part VI: Administering

https://www.hcltech.com/

Copyright© 2020 HCL Technologies Limited

cdr suspend server

The cdr suspend server command suspends the delivery of replication data to a database server from either a specified list of database servers or from all database
servers in the domain.

Syntax

>>-cdr suspend server--+--------------------------+------------->
 | (1) |
 '-| Connect Option |-----'

 .-----------------------.
 V |
>--to_server_group----+-------------------+-+------------------><
 '-from_server_group-'

Notes:

1. See Connect Option.

Element Purpose Restrictions

to_server_group Name of database server group to which to suspend
delivery of replication data.

The database server group must be currently active in
Enterprise Replication.

from_server_group Name of the database server group from which to stop
sending data to to_server_group.

The database server group must be currently active in
Enterprise Replication.

Usage
The cdr suspend server command suspends delivery of replication data to the to_server_group database server from the database servers included in the
from_server_group list. If the from_server_group list is omitted, the command suspends replication of data from all database servers participating in the replication domain
to the to_server_group.

Suspending replication has the following effects:

The connections between the suspended server and active replication servers remain active.
Transactions on the suspended replication server are sent to the active replication servers.
Transactions on active replication servers are queued for the suspended replication server.
Control messages on active replication servers are sent to the suspended replication server.
Control messages on the suspended replication server are sent to the active replication servers.

To restart replication on a suspended replication server, run the cdr resume server command. Shutting down and restarting the suspended database server does not
resume replication.

When you run the cdr suspend server command, an event alarm with a class ID of 51 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL administration API.

Examples
The following example connects to the default server (the one specified by the INFORMIXSERVER environment variable) and suspends replication of data to the server
g_iowa from the servers g_ohio and g_utah:

cdr sus serv g_iowa g_ohio g_utah

Related concepts:
 Enterprise Replication Server administrator

Related reference:
 cdr connect server

cdr define server
cdr delete server
cdr disconnect server
cdr list server
cdr modify server
cdr resume server
Enterprise Replication Event Alarms

Copyright© 2020 HCL Technologies Limited

cdr swap shadow

The cdr swap shadow command switches a replicate with its shadow replicate during manual remastering.

Part VI: Administering 2031

https://www.hcltech.com/
https://www.hcltech.com/

Syntax

>>-cdr swap shadow--+--------------------------+---------------->
 | (1) |
 '-| Connect Option |-----'

>-- --primaryname=repl_name-- --primaryid=repl_ID--------------->

>-- --shadowname=shadow_name-- --shadowid=shadow_ID------------><

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

repl_name Name of the primary replicate. The primary replicate participant attributes state,
type (P or R), and table owner (O or I) must match
the shadow replicate participant attributes.

Long Identifiers

repl_ID Internal Enterprise Replication identification
code for the primary replicate.

shadow_name Name of the shadow replicate. The shadow replicate state must match the primary
replicate state. Shadow replicate participants must
match the primary replicate participants.

Long Identifiers

shadow_ID Internal Enterprise Replication identification
code for the shadow replicate.

The following table describes the cdr swap shadow options.

Long Form Short Form Meaning

--primaryname= -p Specifies the name of the primary replicate.

--primaryid= -P Specifies the ID of the primary replicate.

--shadowname= -s Specifies the name of the shadow replicate.

--shadowid= -S Specifies the ID of the shadow replicate.

Usage
Use the cdr swap shadow command to switch a replicate with its shadow replicate as the last step in manually remastering a replicate that was created with the --
name=n option. You create a shadow replicate using the cdr define replicate command with the --mirrors option.

Use the onstat -g cat repls command to obtain the repl_ID and shadow_ID. Alternatively, you can query the syscdrrepl view in the sysmaster database.

You can run this command from within an SQL statement by using the SQL administration API.

Related concepts:
 Enterprise Replication Server administrator

Related tasks:
 Remastering replicates without name verification

Enabling code set conversion between replicates
Related reference:

 cdr alter
cdr define replicate
cdr list replicate
Participant and participant modifier
onstat -g rep: Prints the schedule manager queue

Copyright© 2020 HCL Technologies Limited

cdr sync replicate

The cdr sync replicate command synchronizes data among replication servers to repair inconsistent data within a replicate.

Syntax

>>-cdr sync replicate--+--------------------------+------------->
 | (1) |
 '-| Connect Option |-----'

>-- --master=data_server-- --repl=repl_name--------------------->

 .---------------.
 V |
>--+---target_server-+-+--+-------------------+----------------->
 '- --all------------' '- --name=task_name-'

2032 Part VI: Administering

https://www.hcltech.com/

>--+---------------------------------+-------------------------->
 | .-delete-. |
 '- --extratargetrows=--+-keep---+-'
 '-merge--'

>--+-----------------------------+------------------------------>
 | .-off----. |
 '- --firetrigger=--+-on-----+-'
 '-follow-'

>--+-------------------------+--+---------------+--------------->
 '- --memadjust=size-+-K-+-' '- --background-'
 '-M-'

>--+----------------------+--+---------------------------+-----><
 '- --excludeTimeSeries-' '- --ignoreHiddenTSElements-'

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

data_server Name of the database server to use as the
reference copy of the data.

Must be the name of an existing database server
group in SQLHOSTS.

Long Identifiers

repl_name Name of the replicate to synchronize. Long Identifiers

sizeK or sizeM Size, in either kilobytes (K) or megabytes (M), of
the send queue during synchronization.

Must be a positive integer and must not be greater
than the amount of available memory.

target_server Name of a database server group on which to
perform synchronization.

Must be the name of an existing database server
group in SQLHOSTS.

Long Identifiers

task_name The name of the progress report task. If you use an existing task name, the information for
that task is overwritten.
Maximum name length is 127 bytes.

Long Identifiers

The following table describes the cdr sync replicate options.

Long Form Short Form Meaning

--all -a Specifies that all servers defined for the replicate are checked.

--background -B Specifies that the operation is run in the background as an SQL administration API
command.
The command and its result are stored in the command_history table in the
sysadmin database, under the name that is specified by the --name= option, or the
time stamp for the command if --name= is not specified.

--excludeTimeSeries Specifies to prevent the checking of time series data.

--extratargetrows= -e Specifies how to handle rows that are found on the target servers that are not present
on the server from which the data is being copied (data_server):

delete: (default) remove rows and dependent rows, based on referential
integrity constraints, from the target servers
keep: retain rows on the target servers
merge: retain rows on the target servers and replicate them to the data source
server. You cannot use this option for replicates that include TimeSeries
columns.

Note: When cdr sync replicate is used with -extratargetrows (or -e) option for SEND-
ONLY replicate, server displays the following warning and continue the operation:

WARNING: Extra row option isn't applicable to Send-Only
participant.
'--extratargetrows' option is ignored

Note: When cdr syn replicate is used with -extratargetrows (or -e) option for RECV-
ONLY participant as a MASTER node, server displays the following error and operation
is aborted:

Error: Receive only participant '%s’ can not be a master
node in data synchronization task

--firetrigger= -T Specifies how to handle triggers at the target servers while data is synchronizing:

off: (default) do not fire triggers at target servers during synchronization
on: always fire triggers at the target servers even if the replicate definition does
not have the --firetrigger option
follow: fire triggers at target servers only if the replicate definition has the --
firetrigger option

--ignoreHiddenTSElements Specifies to avoid checking time series elements that are marked as hidden.

--master= -m Specifies the database server to use as the reference copy of the data.

--memadjust= -J Increases the size of the send queue during synchronization to the number of
kilobytes or megabytes specified by the size element.

Part VI: Administering 2033

Long Form Short Form Meaning

--name= -n Specifies that the progress of this command can be monitored. Information about the
operation is stored under the specified progress report task name on the server on
which the command was run.

--repl= -r Specifies the name of the replicate to synchronize.

Usage
Use the cdr sync replicate command to synchronize data between multiple database servers for a specific replicate. This command performs direct synchronization as a
foreground process.

If you run this command as a DBSA instead of as user informix, you must have INSERT, UPDATE, and DELETE permission on the replicated tables on all the replication
servers in the domain.

The size of the send queue is specified by the value of the CDR_QUEUEMEM configuration parameter. You can increase the amount of memory that the send queue can use
during this synchronization operation by using the --memadjust option to specify the size of the send queue.

If you want to monitor the progress of the synchronization operation, include the --name option and specify a name for the progress report task. Then run the cdr stats
sync command and specify the progress report task name.

You can run a synchronization operation as a background operation as an SQL administration API command if you include the --background option. This option is useful if
you want to schedule regular synchronization operations with the Scheduler. If you run a synchronization operation in the background, you should provide a name for the
progress report task by using the --name option so that you can monitor the operation with the cdr stats sync command. You can also view the command and its results
in the command_history table in the sysadmin database.

The cdr sync replicate command performs the following tasks:

1. Creates a shadow replicate with the source server and target server as participants. The conflict resolution rule for the shadow replicate is always apply.
2. Performs a sequential scan of the replicated table on the source server.
3. Replicates the all rows in the table from the source server to the target server by copying the data directly into the send queue, bypassing the logical logs. Rows are

not replicated to participants that include the S option in the participant definition because those participants only send data.
4. Deletes the shadow replicate.

You can run this command from within an SQL statement by using the SQL administration API.

Return codes
A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 1, 5, 17, 18, 31, 37, 48, 53, 61, 75, 99, 101, 121, 172, 174, 178, 193, 194, 195, 200, 203,
204.

For information on these error codes, see Return Codes for the cdr Utility

Example 1: Synchronize all servers
The following example illustrates synchronizing all replication servers for the replicate named repl_1:

cdr sync replicate --master=g_serv1 --repl=repl_1\
--all --extratargetrows=keep\
--firetrigger=on

The data on the server group g_serv1 is used as the reference for correcting the data on the other servers. Line 2 indicates that all servers associated with the replicate
are synchronized and that if the synchronization operation detects rows on the target servers that do not exist on the reference server (g_serv1), that those rows should
remain on the other servers. Line 3 indicates that triggers should be fired on the target servers even if the replicate definition does not include the --firetrigger option.

Example 2: Synchronize three servers
The following example illustrates synchronizing three servers for the replicate named repl_2:

cdr sync replicate -m g_serv1 -r repl_2\
g_serv2 g_serv3

The reference server is g_serv1 and the target servers are g_serv2 and g_serv3. Because the --extratargetrows option is not specified, the default behavior occurs:
rows, and any dependent rows that are based on referential integrity constraints, that are on the target servers but not on the reference server, are deleted.

Example 3: Synchronize in the background and set the send queue size
The following example illustrates synchronizing in the background and setting the size of the send queue to 50 MB:

cdr sync replicate --master=g_serv1 --repl=repl_1\
--memadjust=50M --background

Related concepts:
 Preparing for Role Separation (UNIX)

Enterprise Replication Server administrator
Related tasks:

 Performing Direct Synchronization
Related reference:

 cdr check replicate

2034 Part VI: Administering

cdr stats sync

Copyright© 2020 HCL Technologies Limited

cdr sync replicateset

ASDF The cdr sync replicateset command synchronizes data among replication servers to repair inconsistent data within a replicate set.

Syntax

>>-cdr sync replicateset--+--------------------------+---------->
 | (1) |
 '-| Connect Option |-----'

>-- --master=data_server--+- --replset=repl_set-+--------------->
 '- --allrepl----------'

 .---------------.
 V |
>--+---target_server-+-+--+-------------------+----------------->
 '- --all------------' '- --name=task_name-'

>--+---------------------------------+-------------------------->
 | .-delete-. |
 '- --extratargetrows= -+-keep---+-'
 '-merge--'

>--+-----------------------------+------------------------------>
 | .-off----. |
 '- --firetrigger= -+-on-----+-'
 '-follow-'

>--+-------------------------+--+---------------+--------------->
 '- --memadjust=size-+-K-+-' '- --background-'
 '-M-'

>--+-----------------------------+--+----------------------+---->
 '- --process=number_processes-' '- --excludeTimeSeries-'

>--+---------------------------+-------------------------------><
 '- --ignoreHiddenTSElements-'

Notes:

1. See Connect Option.

Element Purpose Restrictions Syntax

data_server Name of the database server to use as the
reference copy of the data.

Must be the name of an existing database server
group in SQLHOSTS.

Long Identifiers

number_processes The number of parallel processes to use for the
command.

The maximum number of processes Enterprise
Replication can use is equal to the number of
replicates in the replicate set.

repl_set Name of the replicate set. Can be the name of a
derived replicate set.

 Long Identifiers

seconds The number of seconds to wait for a disabled
replication server to be recognized as active by
other replication servers in the domain and how
long to wait for control messages queued at
peer servers to be applied at newly-enabled
server.

Must be an integer value from 0 to 60.

target_server Name of a database server group to check. Must be the name of an existing database server
group in SQLHOSTS.

Long Identifiers

task_name The name of the progress report task. If you use an existing task name, the information for
that task is overwritten.
Maximum name length is 127 bytes.

Long Identifiers

The following table describes the cdr sync replicateset options.

Long Form Short Form Meaning

--all -a Specifies that all servers defined for the replicate are checked.

--allrepl -A Specifies that all replicates are synchronized.

--excludeTimeSeries Specifies to prevent the checking of time series data.

Part VI: Administering 2035

https://www.hcltech.com/

Long Form Short Form Meaning

--extratargetrows= -e Specifies how to handle rows that are found on the target servers that are not
present on the server from which the data is being copied (data_server):

delete: (default) remove rows and dependent rows, based on referential
integrity constraints, from the target servers

keep: retain rows on the target servers
merge: retain rows on the target servers and replicate them to the data
source server. You cannot use this option for replicates that include
TimeSeries columns.

Note: When cdr sync replicateset is used with -extratargetrows (or -e) option
for SEND-ONLY replicate, server displays the following warning and continue the
operation:

WARNING: Extra row option isn't applicable to Send-Only
participant.
'--extratargetrows' option is ignored

Note: When cdr syn replicateset is used with -extratargetrows (or -e) option
for RECV-ONLY participant as a MASTER node, server displays the following
error and operation is aborted:

Error: Receive only participant '%s’ can not be a master
node in data synchronization task

--firetrigger= -T Specifies how to handle triggers at the target servers while data is synchronizing:

off: (default) do not fire triggers at target servers during synchronization
on: always fire triggers at the target servers even if the replicate definition
does not have the --firetrigger option
follow: fire triggers at target servers only if the replicate definition has the
--firetrigger option

--ignoreHiddenTSElements Specifies to avoid checking time series elements that are marked as hidden.

--master= -m Specifies the database server to use as the reference copy of the data.

--memadjust= -J Increases the size of the send queue during synchronization to the number of
kilobytes or megabytes specified by the size element.

--name= -n Specifies that the progress of this command can be monitored. Information
about the operation is stored under the specified progress report task name on
the server on which the command was run.

--process= -p Specifies to run the command in parallel, using the specified number of
processes. At most, Enterprise Replication can use one process for each
replicate in the replicate set. If you specify more processes than replicates, the
extra processes are not used.
Not all replicates can be processed in parallel. For example, if replicates have
referential integrity rules, the replicates with the parent tables must be
processed before the replicates with the child tables.

--replset -s Specifies the name of the replicate set to synchronize.

Usage
Use the cdr sync replicateset command to synchronize data between multiple database servers for a replicate set. This command performs direct synchronization as a
foreground process.

If you run this command as a DBSA instead of as user informix, you must have INSERT, UPDATE, and DELETE permission on the replicated tables on all the replication
servers in the domain.

The size of the send queue is specified by the value of the CDR_QUEUEMEM configuration parameter. You can increase the amount of memory that the send queue can use
during this synchronization operation by using the --memadjust option to specify the size of the send queue.

You can significantly improve the performance of synchronizing a replicate set by synchronizing the member replicates in parallel. You specify the number of parallel
processes with the --process option. For best performance, specify the same number of processes as the number of replicates in the replicate set. However, replicates
with referential integrity constraints cannot be processed in parallel.

If you want to monitor the progress of the synchronization operation, include the --name option and specify a name for the progress report task. Then run the cdr stats
sync command and specify the progress report task name.

You can run a synchronization operation as a background operation as an SQL administration API command if you include the --background option. This option is useful if
you want to schedule regular synchronization operations with the Scheduler. If you run a synchronization operation in the background, you should provide a name for the
progress report task by using the --name option so that you can monitor the operation with the cdr stats sync command. You can also view the command and its results
in the command_history table in the sysadmin database.

To synchronize all replicates at once, use the --allrepl option.

The cdr sync replicateset command performs the following tasks:

1. Determines the order in which to repair tables if they have referential relationships.
2. Creates a shadow replicate with the source server and target server as participants. The conflict resolution rule for the shadow replicate is always apply.

2036 Part VI: Administering

3. Performs a sequential scan of the replicated table on the source server.
4. Replicates the all rows in the table from the source server to the target server by copying the data directly into the send queue, bypassing the logical logs. Rows are

not replicated to participants that include the S option in the participant definition because those participants only send data.
5. Deletes the shadow replicate.
6. Repeats steps 2 through 5 for each replicate in the replicate set.

You can run this command from within an SQL statement by using the SQL administration API.

Return codes
A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 1, 5, 11, 17, 18, 31, 37, 48, 53, 61, 75, 99, 101, 121, 166, 172, 174, 193, 194, 195, 200,
203, 204, 213.

For information on these error codes, see Return Codes for the cdr Utility

Example 1: Synchronize all servers
The following example illustrates synchronizing all replication servers for the replicate set replset_1 using g_serv1 as the reference server:

cdr sync replicateset --master=g_serv1 --replset=replset_1\
--all --extratargetrows=keep

Line 2 indicates that all servers associated with the replicate set are synchronized and that if the synchronization process detects rows on the target servers that do not
exist on the reference server (g_serv1), that those rows should remain on the other servers.

Example 2: Synchronize three servers in parallel
The following example illustrates synchronizing three servers for the replicate set named replset_2 and using two processes to synchronize each of the two replicates in
the set in parallel:

cdr sync replicateset -m g_serv1 -s replset_2\
g_serv2 g_serv3 --process=2

The reference server is g_serv1 and the target servers are g_serv2 and g_serv3. Because the --extratargetrows option is not specified, the default behavior occurs:
rows, and any dependent rows that are based on referential integrity constraints, that are on the target servers but not on the reference server, are deleted.

Example 3: Synchronize in the background and set the send queue size
The following example illustrates synchronizing in the background and setting the size of the send queue to 50 MB:

cdr sync replicateset --master=g_serv1 --replset=replset_1\
--memadjust=50M --background

Example 4: Synchronize all replicate sets on a replication server
The following command synchronizes all replicate sets on a replication server named g_serv2:

cdr sync replicateset --allrepl g_serv2

The replicate set name is not specified because the --allrepl option is used.

Related concepts:
 Preparing for Role Separation (UNIX)

Enterprise Replication Server administrator
Related tasks:

 Altering multiple tables in a replicate set
Performing Direct Synchronization
Related reference:

 cdr check replicateset
cdr stats sync

Copyright© 2020 HCL Technologies Limited

cdr -V

The cdr -V command displays the version of Informix® that is currently running.

Syntax

>>-cdr -V--><

Usage

Part VI: Administering 2037

https://www.hcltech.com/

Use the cdr -V command if you need to obtain the version of the database server, usually at the request of Software Support.

Examples
The following example shows an example output of the cdr -V command:

IBM Informix Version 11.70.UC1 Software Serial Number RDS#N000000

Related concepts:
 Enterprise Replication Server administrator

Copyright© 2020 HCL Technologies Limited

cdr view

The cdr view command shows information about every Enterprise Replication server in the domain.

Syntax

>>-cdr view--+--------------------------+----------------------->
 | (1) |
 '-| Connect Option |-----'

 .---------------------------------------.
 V |
>--+-----+-state-----------------------------+-+--+----------------+---+-><
 | +-profile---------------------------+ '- --repeat=time-' |
 | +-ddr--+-------------+--------------+ |
 | | '- --logstage-' | |
 | +-servers---------------------------+ |
 | +-sendq-----------------------------+ |
 | +-rcv-------------------------------+ |
 | +-apply-----------------------------+ |
 | +-nif-------------------------------+ |
 | +-ats-------------------------------+ |
 | +-ris-------------------------------+ |
 | '-| ATS and RIS Directory Options |-' |
 '-+---------+---'
 '- --help-'

ATS and RIS Directory Options

 .---------------.
 V |
|----+- --atsdir-+-+-->
 '- --risdir-'

>--+--+---------------|
 | .- --verbose---. |
 +- --repair--+-+----------+-+--+-----------+-+
 | '- --quiet-' '- --delete-' |
 '- --check-----------------------------------'

Notes:

1. See Connect Option.

Element Purpose Restrictions

time The number of seconds before the cdr view command is
repeated.

Must be a positive integer.

The following table describes the cdr view subcommands.

Long Form Meaning

apply Show a summary of how data is being applied on each of the target servers, including the latency of each target server.

ats Show a portion of each ATS file that is in text format.

atsdir Show the names of the files in the ATS directory that are in text format and optionally run repair operations that are
based on those files.
If you are running this command as a DBSA, you must have read permission on the ATS files. Permissions on ATS files
can be set with the chown operating system command.

ddr Show the state, key log positions, and the proximity to transaction blocking for each server in the replication domain.

nif Show information about the network connections between Enterprise Replication servers, including the number of
transactions that are waiting to be transmitted to target servers.

profile Show a summary of the state, data capture, data apply, errors, connectivity, queues, and the size of spooling files for
every Enterprise Replication server.

rcv Show information about the receive statistics for each target server, including the number of transaction failures and the
rate at which transactions are applied.

2038 Part VI: Administering

https://www.hcltech.com/

Long Form Meaning

ris Show a portion of each RIS file that is in text format.

risdir Show the names of the files in the RIS directory that are in text format and optionally run repair operations that are
based on those files.
If you are running this command as a DBSA, you must have read permission on the RIS files. Permissions on RIS files
can be set with the chown operating system command.

sendq Show information about the send queues for each Enterprise Replication server.

servers Show information about the state, connection status to each peer server, and queue size for each Enterprise Replication
server.

state Show the Enterprise Replication state and the state of data capture, network connections, and data apply for each
Enterprise Replication server.

The following table describes the cdr view options.

Long Form Short Form Meaning

--check -C Check the consistency between the database server and the ATS or RIS file. Send repair operations to
stderr, but do not perform the repair operations.

--delete -d Delete ATS or RIS files after processing them with the repair operation.

--help -h Show the cdr view command usage.

–logstage -l Show log staging statistics.

--quiet -q Quiet mode. Repair operations are not sent to stderr.

--repair -R Synchronize data based on ATS or RIS files in text format.

--repeat= -r Repeat the cdr view command after the number of seconds specified by the time element.

--verbose -v Verbose mode (default). All repair operations are sent to stderr.

Usage
Use the cdr view command to monitor the Enterprise Replication domain. Each subcommand results in different output information.

You can choose to show the output of multiple subcommands sequentially by including them in the same cdr view command. You can choose to automatically repeat the
command by using the --repeat option to specify the seconds in between commands.

You can repair inconsistencies that are listed in ATS or RIS files on every server by using the --repair option. Use the --delete option to delete the ATS or RIS files after the
repair is complete.

Tip: Using the --repair option is equivalent to running the cdr repair command. The --check option is equivalent to the cdr repair --check command.

The cdr view state Command Output
The following example of the output of the cdr view state command shows the state of Enterprise Replication and each of its main components for every server in the
Enterprise Replication domain.

STATE
Source ER Capture Network Apply
 State State State State

cdr1 Active Running Running Running
cdr2 Active Running Running Running
cdr3 Active Running Running Running
cdr4 Active Running Running Running

In this example, Enterprise Replication is active and running normally on all servers.

Possible values in the ER State column include:

Abort
Enterprise Replication is aborting on this server.

Active
Enterprise Replication is running normally.

Down
Enterprise Replication is stopped.

Dropped
The attempt to drop the syscdr database failed.

Init Failed
The initial start of Enterprise Replication on this server failed, most likely because of a problem on the specified global catalog synchronization server.

Initializing
Enterprise Replication is being defined.

Initial Startup
Enterprise Replication is starting for the first time on this server.

Shutting Down
Enterprise Replication is stopping on this server.

Startup Blocked
Enterprise Replication cannot start because the server was started with the oninit -D command.

Synchronizing Catalogs
The server is receiving a copy of the syscdr database.

Part VI: Administering 2039

Uninitialized
The server does not have Enterprise Replication defined on it.

Possible values in the Capture State, Network State, and Apply State columns include:

Running
The Enterprise Replication component is running normally.

Down
The Enterprise Replication component is not running.

Uninitialized
The server is not a source server for replication.

The cdr view profile Command Output
The following example of the output of the cdr view profile command shows a summary of the other cdr view commands and information about the sbspaces that are
designated for spooled transaction data.

ER PROFILE for Node cdr2 ER State Active

DDR - Running SPOOL DISK USAGE
 Current 4:16879616 Total 100000
 Snoopy 4:16877344 Metadata Free 5025
 Replay 4:24 Userdata Free 93193
 Pages from Log Lag State 43879
 RECVQ
SENDQ Txn In Queue 0
 Txn In Queue 0 Txn In Pending List 0
 Txn Spooled 0
 Acks Pending 0 APPLY - Running
 Txn Processed 1838
NETWORK - Running Commit Rate 76.58
 Currently connected to 3 out of 3 Avg. Active Apply 1.16
 Msg Sent 1841 Fail Rate 0.00
 Msg Received 5710 Total Failures 0
 Throughput 1436.94 Avg Latency 0.00
 Pending Messages 0 Max Latency 0
 ATS File Count 0
 RIS File Count 0

In this example, only the output for a single server, cdr2, is shown. The actual output of the cdr view profile command includes a similar profile for every server.

The DDR section is a summary of the cdr view ddr command.

The SPOOL DISK USAGE section shows the total amount of memory, in bytes, in the sbspaces that Enterprise Replication uses to store spooled transaction row data, and
the amount of available metadata and user data space.

The SENDQ section is a summary of the cdr view sendq command.

The RECVQ section is a summary of the cdr view rcv command.

The NETWORK section is a summary of the cdr view nif command.

The APPLY section is a summary of the cdr view apply command.

The cdr view ddr Command Output
The following example of the output of the cdr view ddr command shows the status of log capture.

Server Snoopy Replay Current total log pages to LogLag Cur LogLag
 log page log page log page log pages LogLag State State Action

g_bombay 16:133 16:0 16:134 30000 17866 Off dlog
g_delhi 30:490 30:0 30:491 5000 3508 Off logstage

The following example of the output of the cdr view ddr -l command shows the status of log capture.

Server Disk Space Max allowed Max disk Cur Staged
 Usage(%) Space(KB) ever used(KB) log file cnt

g_bombay 0.00 0 0.00 0
g_delhi 0.00 1048576 0.00 0

The columns in the output of the cdr view ddr command provide the following information:

Server
The name of the Enterprise Replication server.

Snoopy log page
The current log ID and position at which transactions are being captured for replication.

Replay log page
The current log ID and position at which transactions have been applied. This is the position from which the log would must be replayed to recover Enterprise
Replication if Enterprise Replication or the database server shut down.

Current® log page
The log page on which replicated transactions are being captured.

total log pages
The total number of log pages on the server.

log pages to LogLag State
The number of log pages that must be used before transaction blocking occurs.

2040 Part VI: Administering

LogLag State
The state of DDR log lag: on or off.

Cur LogLag Action
The action being taken to catch up logs.

For more information on interpreting this output, see onstat -g ddr: Print status of ER log reader.

The cdr view servers Command Output
The following example of the output of the cdr view servers command shows the state of the Enterprise Replication servers and their connections to each other.

SERVERS
Server Peer ID State Status Queue Connection Changed

cdr1 cdr1 1 Active Local 0
 cdr2 2 Active Connected 0 Apr 15 10:46:16
 cdr3 3 Active Connected 0 Apr 15 10:46:16
 cdr4 4 Active Connected 0 Apr 15 10:46:15
cdr2 cdr1 1 Active Connected 0 Apr 15 10:46:16
 cdr2 2 Active Local 0
 cdr3 3 Active Connected 0 Apr 15 10:46:16
 cdr4 4 Active Connected 0 Apr 15 10:46:16
cdr3 cdr1 1 Active Connected 0 Apr 15 10:46:16
 cdr2 2 Active Connected 0 Apr 15 10:46:16
 cdr3 3 Active Local 0
 cdr4 4 Active Connected 0 Apr 15 10:46:16
cdr4 cdr1 1 Active Connected 0 Apr 15 10:46:16
 cdr2 2 Active Connected 0 Apr 15 10:46:16
 cdr3 3 Active Connected 0 Apr 15 10:46:16
 cdr4 4 Active Local 0

In this example, each of the four servers is connected to each other.

The output of this command is similar to the output of the cdr list server command, except that the cdr view server command shows all servers in the Enterprise
Replication domain, not just the servers connected to the one from which the command is run. For information about the columns in this output, see cdr list server.

The cdr view sendq Command Output
The following example of the output of the cdr view sendq command shows information about the send queue for each server.

RQM SENDQ
Server Trans. Trans. Trans. Data Memory ACKS
 in que in mem spooled in queue in use pending

cdr1 594 594 0 49896 49896 0
cdr2 0 0 0 0 0 0
cdr3 0 0 0 0 0 0
cdr4 0 0 0 0 0 0

In this example, only the server cdr1 has transactions in the send queue, all of which are in memory.

The columns of the cdr view sendq command provide the following information in addition to the server name:

Trans. in que
The number of transactions in the send queue.

Trans. in mem
The number of transactions in the send queue that are currently in memory.

Trans. spooled
The number of transactions in the send queue that have been spooled to disk.

Data in queue
The number of bytes of data in the send queue, including both in-memory and spooled transactions.

Memory in use
The number of bytes of data in the send queue that resides in memory.

ACKS pending
The number of acknowledgments that have been received but have not yet been processed.

The cdr view rcv Command Output
The following example of the output of the cdr view rcv command shows information about the receive queue for each server.

RCV
Server Received Spooled Memory Pending Waiting
 Txn. Txn. In Use Txn. Txn.

cdr1 0 0 0 0 0
cdr2 372 0 871164 372 0
cdr3 220 0 18480 220 0
cdr4 0 0 0 0 0

In this example, the servers cdr2 and cdr3 have transactions in the receive queue, all of which have been preprocessed and are in the pending state waiting to be applied.

The columns of the cdr view rcv command provide the following information in addition to the server name:

Received Txn.
The number of transactions in the receive queue.

Spooled Txn.
The number of transactions in the receive queue that have been spooled to disk.

Part VI: Administering 2041

Memory In Use
The size, in bytes, of the receive queue.

Pending Txn.
The number of transactions that have been preprocessed but not yet applied.

Waiting Txn.
The number of acknowledgments waiting to be sent back to the source server.

The cdr view apply Command Output
The following example of the output of the cdr view apply command shows how replicated data is being applied.

APPLY
Server Pl Failure Num Num Apply --Latency-- ATS RIS
 Rate Ratio Run Failed Rate Max Avg. # #

cdr1 0 0.000 0 0 0.000 0 0.000 0 0
cdr2 0 0.000 10001 0 0.112 0 0.000 0 0
cdr3 0 0.000 10001 0 0.112 0 0.000 0 0
cdr4 0 0.000 10001 0 0.112 0 0.000 0 0

In this example, the servers cdr2, cdr3, and cdr4 each applied 10 001 transactions.

The columns of the cdr view apply command provide the following information in addition to the server name:

Pl Rate
Indicates the degree of parallelism used when data is being applied. Zero indicates the highest possible rate of parallelism.

Failure Ratio
The ratio of the number of times data could not be applied in parallel because of deadlocks or lock time outs.

Num Run
The number of transactions processed.

Num Failed
The number of failed transactions because of deadlocks or lock time outs.

Apply Rate
The number of transactions that have been applied divided by the amount of time that replication has been active. The Apply Rate is equal to the Commit Rate in
the cdr view profile command.

Max. Latency
The maximum number of seconds for processing any transaction.

Avg. Latency
The average number of seconds of the lifecycle of a replicated transaction.

ATS #
The number of ATS files.

RIS #
The number of RIS files.

The cdr view nif Command Output
The following example of the output of the cdr view nif command shows the status and statistics of connections between servers.

NIF
Source Peer State Messages Messages Messages Transmit
 Sent Received Pending Rate

cdr1 cdr2 Connected 24014 372 6 21371.648
 cdr3 Connected 24020 17 0 20527.105
 cdr4 Connected 24014 23 6 21925.727
cdr2 cdr1 Connected 392 24015 0 21380.879
 cdr3 Connected 14 14 0 10.857
 cdr4 Connected 14 14 0 11.227
cdr3 cdr1 Connected 17 24021 0 20310.611
 cdr2 Connected 14 14 0 10.739
 cdr4 Connected 14 14 0 11.227
cdr4 cdr1 Connected 236 24015 0 21784.225
 cdr2 Connected 14 14 0 11.101
 cdr3 Connected 14 14 0 11.101

In this example, all servers are connected to each other. The server cdr1 has six messages that have not yet been sent to server cdr2 and server cdr4.

The columns of the cdr view nif command provide the following information in addition to the source server name:

Peer
The name of the server to which the source server is connected.

State
The connection state. Values include:

Connected
The connection is active.

Disconnected
The connection was explicitly disconnected.

Timeout
The connection attempt has timed out, but will be reattempted.

Logic error
The connection disconnected due to an error during message transmission.

Start error
The connection disconnected due to an error while starting a thread to receive remote messages.

Admin close

2042 Part VI: Administering

Enterprise Replication was stopped by a user issuing the cdr stop command.
Connecting

The connection is being established.
Never Connected

The servers have never had an active connection.

Messages Sent
The number of messages sent from the source server to the target server.

Messages Received
The number of messages received by the source server from the target server.

Messages Pending
The number of messages that the source server must send to the target server.

Transmit Rate
The total bytes of messages sent and received by the server divided by the amount of time that Enterprise Replication has been running. Same as the Throughput
field in the cdr view profile command.

The cdr view ats and cdr view ris Command Output
The following example of the output of the cdr view ats command shows that there are no ATS files in text format.

ATS for cdr1 - no files

ATS for cdr2 - no files

ATS for cdr3 - no files

ATS for cdr4 - no files

The following example of the cdr view ris command shows two RIS files in text format.

RIS for cdr1 - no files

RIS for cdr2 - 1 files
Source Txn. Commit Receive
 Time Time

cdr1 08-04-15 11:56:13 | 08-04-15 11:56:14
File:ris.cdr2.cdr1.D_4.080415_11:56:14.1

Row:2 / Replicate Id: 262146 / Table: stores_demo@user.customer / DbOp:Update
CDR:6 (Error: Update aborted, row does not exist in target table) / SQL:0 / ISAM:0

RIS for cdr3 - no files

RIS for cdr4 - 1 files
Source Txn. Commit Receive
 Time Time

cdr1 08-04-15 11:56:13 | 08-04-15 11:56:14
File:ris.cdr4.cdr1.D_1.080415_11:56:14.1

Row:3 / Replicate Id: 262146 / Table: stores_demo@user.customer / DbOp:Update
CDR:6 (Error: Update aborted, row does not exist in target table) / SQL:0 / ISAM:0

In this example, the servers cdr2 and cdr4 each have one RIS file.

The cdr view atsdir and cdr view risdir Command Output
The cdr view atsdir command and cdr view risdir command outputs have the same format. The following example of the output of the cdr view risdir command shows
the names of two RIS files.

RISDIR
Server File Size Create
 Name Time

cdr2 ris.cdr2.cdr1.D_4.080415_11:56:14.1 465 2008-04-15 11:56:15
cdr4 ris.cdr4.cdr1.D_1.080415_11:56:14.1 475 2008-04-15 11:56:15

In this example, both server cdr2 and server cdr4 have a single RIS file. The Size column shows the size of the file, in bytes.

Examples
The following command would show information about the send queue and the network every 10 seconds:

cdr view sendq nif --repeat=10

The following command can be used in a daemon or script that runs every five minutes to check all servers for ATS and RIS files, repair inconsistencies, and delete the
processed ATS and RIS files:

cdr view atsdir risdir --repair --delete --repeat=300

Related concepts:

Part VI: Administering 2043

Failed Transaction (ATS and RIS) Files
Monitor and troubleshooting Enterprise Replication
Preparing for Role Separation (UNIX)
Enterprise Replication Server administrator
Related reference:
cdr list server
cdr repair
onstat -g ddr: Print status of ER log reader

Copyright© 2020 HCL Technologies Limited

Enterprise Replication configuration parameter and environment variable reference

You can use configuration parameters and environment variables to configure the behavior of Enterprise Replication.

The database server onconfig configuration file includes the configuration parameters that affect the behavior of Enterprise Replication. If you use both the
DBSERVERNAME and DBSERVERALIASES configuration parameters, the DBSERVERNAME configuration parameter must specify the network connection and not to a
shared-memory connection. For information about database server aliases, see the IBM® Informix® Administrator's Guide.

Use the CDR_ENV configuration parameter to set the environment variables that affect the behavior of Enterprise Replication.

You can view the setting of Enterprise Replication configuration parameters and environment variables with the onstat -g cdr config command. See onstat -g cdr config:
Print ER settings.

CDR_APPLY Configuration Parameter
 Specifies the minimum and maximum number of data sync threads. The value is updated dynamically as needed.

CDR_AUTO_DISCOVER configuration parameter
 Use the CDR_AUTO_DISCOVER configuration parameter to enable connectivity autoconfiguration for a high-availability cluster or Enterprise Replication domain, or

to autoconfigure replication.
CDR_DBSPACE Configuration Parameter

 Specifies the dbspace where the syscdr database is created.
CDR_DELAY_PURGE_DTC configuration parameter

 Specifies how long to retain rows in delete tables to support the delete wins conflict resolution rule.
CDR_DSLOCKWAIT Configuration Parameter
Specifies the number of seconds the data sync component waits for the database locks to be released.
CDR_ENV Configuration Parameter

 Sets the Enterprise Replication environment variables CDR_ALARMS, CDR_LOGDELTA, CDR_PERFLOG, CDR_ROUTER, or CDR_RMSCALEFACT.
CDR_EVALTHREADS Configuration Parameter

 Specifies the number of group evaluator threads to create when Enterprise Replication starts, and enables parallelism.
CDR_LOG_LAG_ACTION configuration parameter

 Specifies how Enterprise Replication responds to a potential log wrap situation.
CDR_LOG_STAGING_MAXSIZE Configuration Parameter

 Specifies the maximum amount of space that Enterprise Replication uses to stage compressed log files in the directory specified by the LOG_STAGING_DIR
configuration parameter.
CDR_MAX_DYNAMIC_LOGS Configuration Parameter

 Specifies the number of dynamic log file requests that Enterprise Replication can make in one server session.
CDR_MAX_FLUSH_SIZE configuration parameter

 Specifies the maximum number of replicated transactions that are applied before the logs are flushed.
CDR_MEM configuration parameter

 The CDR_MEM configuration parameter is used to specify Enterprise Replication's method for memory-pool allocation.
CDR_NIFCOMPRESS Configuration Parameter

 Specifies the level of compression the database server uses before sending data from the source database server to the target database server.
CDR_QDATA_SBSPACE Configuration Parameter

 Specifies the list of up to 32 names of sbspaces that Enterprise Replication uses to store spooled transaction row data.
CDR_QUEUEMEM Configuration Parameter

 Specifies the maximum amount of memory that is used for the send and receive queues.
CDR_SERIAL Configuration Parameter

 Enables control over generating values for serial columns in tables that are defined for replication.
CDR_SUPPRESS_ATSRISWARN Configuration Parameter

 Specifies the data sync error and warning code numbers to be suppressed in ATS and RIS files.
CDR_TSINSTANCEID configuration parameter

 Specifies how to generate unique identifiers for time series instances across replication servers. If a replicate includes a column with a TimeSeries column, the
CDR_TSINSTANCEID configuration parameter must be set to a different value on every participating replication server before you create any time series instances.
ENCRYPT_CDR Configuration Parameter

 Use the ENCRYPT_CDR configuration parameter to set the level of encryption for Enterprise Replication.
ENCRYPT_SMX Configuration Parameter

 Use the ENCRYPT_SMX configuration parameter to set the level of encryption for high-availability configurations on secondary servers and between Enterprise
Replication servers.
GRIDCOPY_DIR Configuration Parameter

 Specifies the default directory used by the ifx_grid_copy procedure.
SHARD_EDGE_NODE configuration parameter

 Specifies how to allocate shared memory for sharded queries on a shard server.
SHARD_ID configuration parameter

 Sets the unique ID for a shard server in a shard cluster.
SMX_COMPRESS Configuration Parameter

 Use the SMX_COMPRESS configuration parameter to specify the level of compression that the database server uses before sending data from the source database
server to the target database server.

2044 Part VI: Administering

https://www.hcltech.com/

SMX_NUMPIPES Configuration Parameter
The SMX_NUMPIPES configuration parameter sets the number of pipes for server multiplexer group (SMX) connections.
CDR_ALARMS Environment Variable
Enables Enterprise Replication event alarms.
CDR_ATSRISNAME_DELIM Environment Variable
Specifies the delimiter to use to separate the parts of the time portion of ATS and RIS file names that are in text format.
CDR_DISABLE_SPOOL Environment Variable
Controls the generation of ATS and RIS files.
CDR_LOGDELTA Environment Variable
Determines when the send and receive queues are spooled to disk as a percentage of the logical log size.
CDR_PERFLOG Environment Variable
Enables queue tracing.
CDR_RMSCALEFACT Environment Variable
Sets the number of data sync threads started for each CPU VP.
CDR_ROUTER Environment Variable
Disables intermediate acknowledgments of transactions in the hierarchical topologies.
CDRSITES_10X Environment Variable
Works around a malfunction in version reporting for fix pack versions of 10.00 servers.
CDRSITES_731 Environment Variable
Works around a malfunction in version reporting for post-7.3x, 7.20x, or 7.24x version servers.
CDRSITES_92X Environment Variable
Works around a malfunction in version reporting for 9.21 or 9.20 servers.

Related concepts:
 Configuring network encryption for replication servers

Related tasks:
 Dynamically Modifying Configuration Parameters for a Replication Server

Related reference:
 Set configuration parameters for replication

Copyright© 2020 HCL Technologies Limited

CDR_APPLY Configuration Parameter

Specifies the minimum and maximum number of data sync threads. The value is updated dynamically as needed.

onconfig.std value
Not in the onconfig.std file.

range of values
Two positive integers that are separated by a comma and that represent the minimum and maximum number of threads per CPU virtual processor. If only one value
is specified, that value is the maximum and the minimum is set to 1.

If you do not set the CDR_APPLY configuration parameter explicitly, Enterprise Replication automatically allocates data sync threads for each CPU VP based on need:

The minimum number of data sync threads is the number of available CPU VPs.
The maximum number of data sync threads is four times the number of available CPU VPs.

You can set the CDR_APPLY configuration parameter to control the minimum and maximum configurable data sync apply threads irrespective of the CPU VP configuration.

Copyright© 2020 HCL Technologies Limited

CDR_AUTO_DISCOVER configuration parameter

Use the CDR_AUTO_DISCOVER configuration parameter to enable connectivity autoconfiguration for a high-availability cluster or Enterprise Replication domain, or to
autoconfigure replication.

onconfig.std value
CDR_AUTO_DISCOVER 0

default value if you created a server during installation
CDR_AUTO_DISCOVER 1

values
0 = Disable connectivity and Enterprise Replication autoconfiguration.

1 = Enable connectivity and Enterprise Replication autoconfiguration.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.
After you run the SQL administration API task() or admin() function with the -wf CDR_AUTO_DISCOVER=value or -wm CDR_AUTO_DISCOVER=value arguments.

Usage
When the CDR_AUTO_DISCOVER configuration parameter is set to 1, the following commands are enabled:

cdr autoconfig serv, which autoconfigures connectivity for servers in a high-availability cluster or Enterprise Replication domain, and can autoconfigure replication.

Part VI: Administering 2045

https://www.hcltech.com/
https://www.hcltech.com/

ifxclone with the --autoconf option, which autoconfigures connectivity information between a newly added server and the other servers of a high-availability
cluster or Enterprise Replication domain. If you use the ifxclone utility to create an Enterprise Replication server, the --autoconf option can autoconfigure
replication.

Related tasks:
 Preparing the Network Environment

Related reference:
 cdr autoconfig serv

Related information:
 cdr autoconfig serv argument: Autoconfigure connectivity and replication (SQL administration API)

The ifxclone utility

Copyright© 2020 HCL Technologies Limited

CDR_DBSPACE Configuration Parameter

Specifies the dbspace where the syscdr database is created.

onconfig.std value
none

units
any valid dbspace

takes effect
When the database server is shut down and restarted or immediately after the cdr change onconfig command is used

The CDR_DBSPACE configuration parameter specifies the dbspace where the syscdr database is created.

You can have Enterprise Replication automatically configure disk space from the storage pool and set the CDR_DBSPACE configuration parameter when defining a
replication server. If the CDR_DBSPACE configuration parameter is not set and the database server has a storage pool with sufficient space, the cdr define command
performs the following tasks:

Creates a new dbspace using one or more new chunks from the storage pool
Sets the CDR_DBSPACE configuration parameter both in memory and in the onconfig file to the newly defined dbspace.

For clusters, the cdr define command creates new dbspaces and sets the CDR_DBSPACE configuration parameters in all secondary database servers, as well.
Note: A database server's storage pool must have 200 MB of free space for the dbspace, and chunk sizes of 100 MB or greater for the database server to use automatic
storage provisioning.
From 14.10xC6 onwards, row data for smaller transactions of size less than 26KB are stored in-line along with transaction header table trg_send_stxn. Row data for
transaction size above 26KB is still stored in ER queue smart blob space configured using CDR_QDATA_SBSPACE configuration parameter. Make sure to have enough
space allocated for storage space used to store trg_send_stxn table. trg_send_stxn table is created in space configured using CDR_DBSPACE configuration parameter. If
CDR_DBSPACE is not configured, then rootdbs will be used for syscdr database and transaction header table.

Copyright© 2020 HCL Technologies Limited

CDR_DELAY_PURGE_DTC configuration parameter

Specifies how long to retain rows in delete tables to support the delete wins conflict resolution rule.

onconfig.std value
0

default value if not present in the onconfig
0

syntax
CDR_DELAY_PURGE_DTC timeunit

range of values
The range of values for time are 0 and positive integers.
The range of values for unit are:

S = seconds (Default)
M = minutes
H = hours
D = days

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

By default, rows in delete tables are deleted when those rows are no longer required by the timestamp conflict resolution rule. If you want to perform time stamp repair
and your replicates use the delete wins conflict resolution rule, set the CDR_DELAY_PURGE_DTC configuration parameter to the maximum age of modifications to rows
that are being actively updated. The longer you retain rows in delete tables, the more accurate time stamp repairs are, but the more disk space the delete tables consume.

Tip: Right before you enable a disabled server, dynamically update the CDR_DELAY_PURGE_DTC configuration parameter to set it to a value slightly greater than the time
that the server was disabled plus the amount of time a repair takes.
Related concepts:

 Repair inconsistencies by time stamp
Delete wins conflict resolution rule

2046 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Related information:
onmode -wf, -wm: Dynamically change certain configuration parameters

Copyright© 2020 HCL Technologies Limited

CDR_DSLOCKWAIT Configuration Parameter

Specifies the number of seconds the data sync component waits for the database locks to be released.

onconfig.std value
5

units
seconds

takes effect
When the database server is shut down and restarted or immediately after the cdr change onconfig command is used

The CDR_DSLOCKWAIT configuration parameter specifies the number of seconds the data sync component waits for database locks to be released. The
CDR_DSLOCKWAIT parameter behaves similarly to the SET LOCK MODE statement. Although the SET LOCK MODE is set by the end user application, CDR_DSLOCKWAIT is
used by Enterprise Replication while applying data at the target database. This parameter is useful in conditions where different sources require locks on the replicated
table. These sources could be a replicated transaction from another server or a local application operating on that table.

Transactions that receive updates and deletes from another server in the replicate can abort because of locking problems. If you experience transaction aborts in the data
sync due to lock timeouts like this, you might want to increase the value of this parameter.

Copyright© 2020 HCL Technologies Limited

CDR_ENV Configuration Parameter

Sets the Enterprise Replication environment variables CDR_ALARMS, CDR_LOGDELTA, CDR_PERFLOG, CDR_ROUTER, or CDR_RMSCALEFACT.

Important: Use the CDR_LOGDELTA, CDR_PERFLOG, CDR_ROUTER, and CDR_RMSCALEFACT environment variables only if instructed to do so by Support.

units
Enterprise Replication environment variable name and value, separated by an equal sign

takes effect
When the database server is shut down and restarted or immediately for the following actions:

Adding a value using the cdr add onconfig command
Removing a value using the cdr remove onconfig command

The onconfig file can contain multiple entries for the CDR_ENV environment variable. You can specify only one environment variable per CDR_ENV entry.

The following line in the onconfig file sets the CDR_ALARMS environment variable to add event alarm 51 to the event alarms that are enabled by default:

CDR_ENV CDR_ALARMS=30-39,47,48,50,51,71,73-75

When you update the CDR_ALARMS environment variable in the onconfig file, you must list all the Enterprise Replication event alarms that you want to be enabled.

The following lines in the onconfig file set the CDR_LOGDELTA environment variable to 30 and the CDR_ROUTER environment variable to 1:

CDR_ENV CDR_LOGDELTA=30
CDR_ENV CDR_ROUTER=1

Related tasks:
 Enabling or Disabling Enterprise Replication Event Alarms

Copyright© 2020 HCL Technologies Limited

CDR_EVALTHREADS Configuration Parameter

Specifies the number of group evaluator threads to create when Enterprise Replication starts, and enables parallelism.

onconfig.std value
1,2

units
evaluator thread instances

range of values
first value: 0 or a positive integer representing the number of evaluator threads to create per CPU VP. Although evaluator threads are not assigned to specific CPU
VPs, you can create evaluator threads that are proportional in number to the number of CPU VPs.
second value: 0 or a positive integer representing the additional number of evaluator threads to create irrespective of the number of CPU VPs.

Do not set both CDR_EVALTHREADS values to 0.

takes effect
When the database server is shut down and restarted, or immediately after the cdr change onconfig command is used

Part VI: Administering 2047

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Enterprise Replication evaluates the images of a row in parallel to assure high performance. Figure 1 illustrates how Enterprise Replication uses parallel processing to
evaluate transactions for replication.
Figure 1. Processing in Parallel for High Performance

The CDR_EVALTHREADS configuration parameter specifies the number of grouper evaluator threads to create when Enterprise Replication starts and enables parallelism.
The format is:

(per-cpu-vp,additional)

The following table provides four examples of CDR_EVALTHREADS.

Number of Threads Explanation Example

1,2 1 evaluator thread per CPU VP, plus 2 For a 3 CPU VP server: (3 * 1) + 2 = 5

2 2 evaluator threads per CPU VP For a 3 CPU VP server: (3 * 2) = 6

2,0 2 evaluator threads per CPU VP For a 3 CPU VP server: (3* 2) +0 = 6

0,4 4 evaluator threads for any database server For a 3 CPU VP server: (3 * 0) +4 = 4

Attention: Do not configure the total number of evaluator threads to be smaller than the number of CPU VPs in the system. As noted above, do not set both
CDR_EVALTHREADS values to 0.

Copyright© 2020 HCL Technologies Limited

CDR_LOG_LAG_ACTION configuration parameter

Specifies how Enterprise Replication responds to a potential log wrap situation.

onconfig.std value
CDR_LOG_LAG_ACTION ddrblock

separators
+

range of values
See the Usage section.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
Use the CDR_LOG_LAG_ACTION configuration parameter to specify one or more actions, in priority order, that Enterprise Replication takes during a potential log wrap
situation.

Syntax for the CDR_LOG_LAG_ACTION configuration parameter

>>-CDR_LOG_LAG_ACTION--->

>--+-+-logstage--+---------+-+--+-------------+-+--------------><
 | | '-+--dlog-' | +-+--ignore---+ |
 | '-dlog--+-------------+-' +-+--ddrblock-+ |
 | '-+--logstage-' '-+--shutdown-' |
 '-+-ignore---+-------------------------------'
 +-ddrblock-+
 '-shutdown-'

Table 1. Options for the CDR_LOG_LAG_ACTION configuration parameter value
Option Description

2048 Part VI: Administering

https://www.hcltech.com/

Option Description

logstage Enables compressed logical log staging.
The following configuration parameters must also be set:

The LOG_STAGING_DIR configuration parameter must be set to a directory. The directory specified by the LOG_STAGING_DIR
configuration parameter must be secure. The directory must be owned by user informix, must belong to group informix, and must
not have public read, write, or execute permission.
The CDR_LOG_STAGING_MAXSIZE configuration parameter must be set to a positive number.

Log files are staged in the directory specified by the LOG_STAGING_DIR configuration parameter, until the maximum size specified by the
CDR_LOG_STAGING_MAXSIZE configuration parameter is reached. The staged log files are deleted after advancing the log replay
position.

If the amount of disk space specified by the CDR_LOG_STAGING_MAXSIZE configuration parameter is exceeded, event alarm 30005 is
raised.

If log staging is configured, Enterprise Replication monitors the log lag state and stages log files even when Enterprise Replication is
inactive.

dlog Enables the dynamic addition of logical logs. The following configuration parameters must be set:

The CDR_MAX_DYNAMIC_LOGS configuration parameter must be set to -1 or a positive number.
The DYNAMIC_LOGS configuration parameter must be set to 2.

ignore Ignore the potential for log wrapping. The Enterprise Replication replay position might be overrun. If the replay position is overrun, event
alarm 30 is raised. Restart Enterprise Replication using the cdr cleanstart command and synchronize the data.
The ignore option must be the only or the last option.

If the snoopy log position overrun is detected, Enterprise Replication shuts down with event alarm 47005.

ddrblock Default. Block client applications update activity.
The ddrblock option must be the only or the last option.

shutdown Shut down Enterprise Replication on the affected server. If replay position overrun is detected, restart Enterprise Replication using the
cdr cleanstart command and synchronize the data. If the replay position was not overrun, restart Enterprise Replication using the cdr
start command; there is no need to synchronize the data. If replay position overrun is detected and the cdr start command fails with
error code 214 and raises event alarm class 75, restart Enterprise Replication using the cdr cleanstart command and synchronize the
data.

The shutdown option must be the only or the last option.

If a log lag state is detected, Enterprise Replication is shut down and event alarm ID 47006 is raised.

Staged log file format
Enterprise Replication creates a directory named: ifmxddrlog_SERVERNUM in the directory specified by the LOG_STAGING_DIR configuration parameter. Log file names
are in the following format:

ifmxERDDRBLOCKUniqueLog_lf_used_loguniqueid.dat

Enterprise Replication also creates an empty token file for each staged log file. The token file is used to detect log files that are only partially written. If a token file is not
found then Enterprise Replication treats the staged log file as partially written log file and deletes it. The token log file format is:

ifmxERDDRBLOCKUniqueLog_lf_used_loguniqueid

Transferring log files to a high-availability cluster secondary server when using ER
If your configuration consists of an HDR, RSS, or SDS secondary server configured as an Enterprise Replication node, transfer staged log files to the secondary server using
the alarm program script. The staged log files are required by Enterprise Replication in case the primary server in a high-availability cluster fails and a secondary server
takes over the role of the primary server.

Enterprise Replication raises alarm class ID 30 and unique ID 30006 when a log is staged to the log staging directory. Enterprise Replication raises alarm class ID 30 and
unique ID 30007 after deleting a staged log file. Using these alarms, you can automate the transfer of staged log files to the high-availability cluster secondary server
using the alarm program script.

Ensure that the directory under the directory specified the LOG_STAGING_DIR configuration parameter exists and is named using the format ifmxddrlog_SERVERNUM.
The script copies the staged log files to ifmxddrlog_SERVERNUM and creates a token log file after copying the staged log file.

Example
Suppose that you want Enterprise Replication to handle potential log wrap situations by first staging compressed logs until they reach 1 MB in size, then dynamically add
up to two logical logs, and then block user transactions. Set the following configuration parameters:

CDR_LOG_LAG_ACTION logstage+dlog+ddrblock
LOG_STAGING_DIR $INFORMIXDIR/tmp
CDR_LOG_STAGING_MAXSIZE 1MB
CDR_MAX_DYNAMIC_LOGS 2
DYNAMIC_LOGS 2

Related concepts:
 Handle potential log wrapping

Related information:
 LOG_STAGING_DIR configuration parameter

Part VI: Administering 2049

onmode -wf, -wm: Dynamically change certain configuration parameters

Copyright© 2020 HCL Technologies Limited

CDR_LOG_STAGING_MAXSIZE Configuration Parameter

Specifies the maximum amount of space that Enterprise Replication uses to stage compressed log files in the directory specified by the LOG_STAGING_DIR configuration
parameter.

default value
0

onconfig.std value
CDR_LOG_STAGING_MAXSIZE 0

syntax
CDR_LOG_STAGING_MAXSIZE sizeunit

range of values
The range of values for size is:

0 = Default. Log staging is disabled.
Positive integers = The maximum size of the stage log files.

The range of value for unit is:

KB (default)
MB
GB
TB

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Use the CDR_LOG_STAGING_MAXSIZE configuration parameter to limit the size of the log staging directory. Logs are staged if all of the following conditions are true:

Enterprise Replication detects a potential for log wrapping.
The CDR_LOG_LAG_ACTION configuration parameter setting includes the logstage option.
The LOG_STAGING_DIR configuration parameter is set.
The directory specified by the LOG_STAGING_DIR configuration parameter must be secure. The directory must be owned by user informix, must belong to group
informix, and must not have public read, write, or execute permission.

When the contents of the staging directory reaches the maximum allowed size, Enterprise Replication stops staging log files. Enterprise Replication stops staging files only
at a log file boundary; that is, a file is not staged in the middle of a log file.

Example
Suppose that you want Enterprise Replication to handle potential log wrap situations by staging compressed logs until the staging directory reached 100 KB, you would
set the following configuration parameters:

CDR_LOG_STAGING_MAXSIZE 100
CDR_LOG_LAG_ACTION logstage
LOG_STAGING_DIR $INFORMIXDIR/tmp

Related concepts:
 Handle potential log wrapping

Related information:
 LOG_STAGING_DIR configuration parameter

onmode -wf, -wm: Dynamically change certain configuration parameters

Copyright© 2020 HCL Technologies Limited

CDR_MAX_DYNAMIC_LOGS Configuration Parameter

Specifies the number of dynamic log file requests that Enterprise Replication can make in one server session.

onconfig.std value
0

range of values

-1 add dynamic log files indefinitely
0 disable dynamic log addition
>0 number of dynamic logs that can be added

takes effect
when the database server is shut down and restarted, and the DYNAMIC_LOGS configuration parameter is set to 2 or when the cdr change onconfig command is
used. For more information on the DYNAMIC_LOGS configuration parameter, see the IBM® Informix® Administrator's Reference.

2050 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

The CDR_MAX_DYNAMIC_LOGS configuration parameter specifies the number of dynamic log file requests that Enterprise Replication can make in one server session.
The DYNAMIC_LOGS configuration parameter must be set to 2.

Related concepts:
 Handle potential log wrapping

Related information:
 DYNAMIC_LOGS configuration parameter

Copyright© 2020 HCL Technologies Limited

CDR_MAX_FLUSH_SIZE configuration parameter

Specifies the maximum number of replicated transactions that are applied before the logs are flushed.

onconfig.std value
CDR_MAX_FLUSH_SIZE 50

default value if not present in the onconfig file
50

range of values
A positive integer that represents the maximum number of transactions to apply before the logs are flushed.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.

By default, replication servers flush logs after 50 replicated transactions are applied, or after 5 seconds, whichever happens first.

If a replication server is a primary server for shared-disk secondary servers, you might want to reduce the replication latency. Set the CDR_MAX_FLUSH_SIZE
configuration parameter to 1 to flush the logs after each replicated transaction.

Related concepts:
 Replication latency for secondary servers

Related information:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Copyright© 2020 HCL Technologies Limited

CDR_MEM configuration parameter

The CDR_MEM configuration parameter is used to specify Enterprise Replication's method for memory-pool allocation.

onconfig.std value
CDR_MEM 0

values
0: Memory allocation from the generic pool is taken from the CDR pool. Memory allocation from the RQM pool is taken from the queue's memory pool.
1: Memory allocation pools are associated with specific CPU virtual processors. Enterprise Replication allocates memory to the CPU virtual processors based on
which CPU virtual processor the cdr thread is executing on.
2: Memory allocation pools are associated with specific block sizes, so that all allocations from a pool are the same size, and the first free block that is found can be
used.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.
After you run the SQL administration API task() or admin() function with the "onmode","-wf CDR_MEM=value" or "onmode","-wm CDR_MEM=value"
argument.

Usage
CDR_MEM 0 is the traditional method of memory-allocation. Use this setting when resource allocation is more important than performance.

CDR_MEM 1 prevents multiple threads from simultaneously accessing a memory pool. The performance of large-scale Enterprise Replication environments can improve,
because memory allocation is done by multiple threads that are working in parallel.

CDR_MEM 2 improves performance at the cost of increased memory usage. Memory allocation requests are increased to the closest fixed-block size, so that free memory
blocks can be found faster. Memory pools are not associated with specific CPU virtual processors, so memory can be freed directly to the memory pool.

Copyright© 2020 HCL Technologies Limited

CDR_NIFCOMPRESS Configuration Parameter

Specifies the level of compression the database server uses before sending data from the source database server to the target database server.

onconfig.std value
0

Part VI: Administering 2051

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

range of values

-1 specifies no compression
0 specifies to compress only if the target server expects compression
1 - 9 specifies increasing levels of compression

takes effect
When the database server is shut down and restarted or immediately after the cdr change onconfig command is used

The CDR_NIFCOMPRESS (network interface compression) configuration parameter specifies the level of compression that the database server uses before sending data
from the source database server to the target database server. Network compression saves network bandwidth over slow links but uses more CPU to compress and
decompress the data.

The values have the following meanings.

Value Meaning

-1 The source database server never compresses the data, regardless of whether or not the target site uses
compression.

0 The source database server compresses the data only if the target database server expects compressed data.

1 The database server performs a minimum amount of compression.

9 The database server performs the maximum possible compression.

When Enterprise Replication is defined between two database servers, the CDR_NIFCOMPRESS values of the two servers are compared and changed to the higher
compression values.

The compression values determine how much memory can be used to store information while compressing, as follows:

0 = no additional memory
1 = 128k + 1k = 129k
2 = 128k + 2k = 130k
...
6 = 128k + 32k = 160k
...
8 = 128k + 128k = 256k
9 = 128k + 256k = 384k

Higher levels of CDR_NIFCOMPRESS cause greater compression.

Different sites can have different levels. For example, Figure 1 shows a set of three root servers connected with LAN and a nonroot server connected over a modem. The
CDR_NIFCOMPRESS configuration parameter is set so that connections between A, B, and C use no compression. The connection from C to D uses level 6.
Figure 1. Database Servers with Different Compression Levels

Important: Do not disable NIF compression if the network link performs compression in hardware.
Note: From 14.10xC6 onwards, Enterprise Replication uses SMX connection for communicating with peer servers and SMX_COMPRESS shall be used to enable
compression. For communicating with older server versions before 14.10xC6, Enterprise Replication still require configuring CDR_NIFCOMPRESS.

Copyright© 2020 HCL Technologies Limited

CDR_QDATA_SBSPACE Configuration Parameter

Specifies the list of up to 32 names of sbspaces that Enterprise Replication uses to store spooled transaction row data.

onconfig.std value
none

separators
comma

range of values
up to 128 characters for each sbspace name; up to 32 sbspace names. Use a comma to separate each name in the list. At least one sbspace name must be
specified.

takes effect
when the database server is shut down and restarted or immediately for the following actions:

Adding a value using the cdr add onconfig command
Removing a value using the cdr remove onconfig command
Changing a value using the cdr change onconfig command

The CDR_QDATA_SBSPACE configuration parameter specifies the list of up to 32 names of sbspaces that Enterprise Replication uses to store spooled transaction row
data. Enterprise Replication creates one smart large object per transaction. The sbspaces must be used only for Enterprise Replication. If CDR_QDATA_SBSPACE is
configured for multiple sbspaces, then Enterprise Replication uses all appropriate sbspaces in round-robin order.

You can have Enterprise Replication automatically configure disk space from the storage pool and set the CDR_QDATA_SBSPACE configuration parameter when defining a
replication server. If the CDR_QDATA_SBSPACE configuration parameter is not set and the database server has a storage pool with sufficient space, the cdr define server
command automatically creates the necessary disk space and sets the configuration parameter to the appropriate value in memory and the onconfig file. For clusters, the
cdr define command creates new sbspaces and sets the CDR_QDATA_SBSPACE configuration parameters in all secondary database servers, as well.
Note: A database server's storage pool must have 500 MB of free space for the sbspace. The sbspace must be comprised of chunks of size 100 MB or greater for the
database server to use automatic storage provisioning.

2052 Part VI: Administering

https://www.hcltech.com/

Warning: Do not change the value of CDR_QDATA_SBSPACE while Enterprise Replication is running.
Related concepts:
Row Data sbspaces
Related tasks:
Monitoring Disk Usage for Send and Receive Queue Spool
Related reference:
cdr start sec2er

Copyright© 2020 HCL Technologies Limited

CDR_QUEUEMEM Configuration Parameter

Specifies the maximum amount of memory that is used for the send and receive queues.

onconfig.std value
131072

units
kilobytes

range of values
From 500 through 4194304

takes effect
When the database server is shut down and restarted or immediately after the cdr change onconfig command is used

The CDR_QUEUEMEM configuration parameter specifies the maximum amount of memory that the send and receive queues use for transaction headers and for
transaction data. The total size of the transaction headers and transaction data in a send or receive queue could be up to twice the size of that value of CDR_QUEUEMEM.
If your logical logs are large, the Enterprise Replication reads a large amount of data into queues in memory. You can use CDR_QUEUEMEM to limit the amount of memory
devoted to the queues.

When you increase the value of CDR_QUEUEMEM, you reduce the number of elements that must be written to disk, which can eliminate I/O overhead. Therefore, if
elements are frequently stored on disk, increase the value of CDR_QUEUEMEM. Conversely, if you set the value of CDR_QUEUEMEM too high, you might adversely impact
the performance of your system. High values for CDR_QUEUEMEM also increase the time necessary for recovery. Tune the value of CDR_QUEUEMEM for the amount of
memory available on your computer.

Copyright© 2020 HCL Technologies Limited

CDR_SERIAL Configuration Parameter

Enables control over generating values for serial columns in tables that are defined for replication.

onconfig.std value
CDR_SERIAL 0

range of values
0 = Default. Disable control of serial column value generation.
delta,offset = Enable control of serial column value generation:

delta
A positive integer that sets the incremental size of the serial column values. This value must be the same on all replication servers and must be at least the
number of expected servers in the Enterprise Replication domain.

offset
A positive integer that sets the offset of the serial value to be generated. This value must be different on all replication servers and must be between 0 and
one less than the value of delta, inclusive.

takes effect
After you edit your onconfig file and restart the database server.
After you run the cdr change onconfig command.

The CDR_SERIAL configuration parameter controls generating values for SERIAL, SERIAL8, and BIGSERIAL columns in replicated tables so that no conflicting values are
generated across multiple Enterprise Replication servers. You must set the CDR_SERIAL configuration parameter if the serial column is the replication key column and no
other replication key column, such as a server ID, guarantees the uniqueness of the replication key. If the serial column is not the replication key, you can set the
CDR_SERIAL configuration parameter to ensure that the serial values are unique across all servers. Only tables that are marked as the source of a replicate are controlled
by the CDR_SERIAL configuration parameter settings.

For example, suppose that you have two primary servers, g_usa and g_japan, and one read-only target server, g_italy. You plan to add three more servers in the future.
You might set CDR_SERIAL to the values shown in the following table.

Table 1. CDR_SERIAL Example Settings and Results

Server Example CDR_SERIAL Value Resulting Values for the Serial Column

g_usa 5,0 5, 10, 15, 20, 25, and so on

g_japan 5,1 1, 6, 11, 16, 21, 26, and so on

g_italy 0 no local inserts into the serial column

The following CDR_SERIAL settings are reserved for future servers:

5,2
5,3

Part VI: Administering 2053

https://www.hcltech.com/
https://www.hcltech.com/

5,4

If you must add more servers than the delta value of CDR_SERIAL, you must reset CDR_SERIAL on all servers simultaneously and ensure that the serial values on the new
servers are unique.

Related concepts:
 Serial data types and replication keys

Copyright© 2020 HCL Technologies Limited

CDR_SUPPRESS_ATSRISWARN Configuration Parameter

Specifies the data sync error and warning code numbers to be suppressed in ATS and RIS files.

onconfig.std value
none

units
numbers or hyphen-separated ranges of numbers

separator
commas

takes effect
when the database server is shut down and restarted or immediately for the following actions:

Adding a value using the cdr add onconfig command
Removing a value using the cdr remove onconfig command
Changing a value using the cdr change onconfig command

The CDR_SUPPRESS_ATSRISWARN configuration parameter specifies the data sync error and warning code numbers to be suppressed in ATS and RIS files. For example,
you can set CDR_SUPPRESS_ATSRISWARN to 2-5, 7 to suppress the generation of error and warning messages 2, 3, 4, 5, and 7. For a list of error and message numbers
see Data sync warning and error messages.

Copyright© 2020 HCL Technologies Limited

CDR_TSINSTANCEID configuration parameter

Specifies how to generate unique identifiers for time series instances across replication servers. If a replicate includes a column with a TimeSeries column, the
CDR_TSINSTANCEID configuration parameter must be set to a different value on every participating replication server before you create any time series instances.

onconfig.std value
CDR_TSINSTANCEID 0

range of values
0 = Default. Disable the replication of TimeSeries columns.
1 - 32768 = The number that is added to the time series instance identifiers.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

You set the value of CDR_TSINSTANCEID to a different value on each replication server that replicates a TimeSeries column. A time series instance identifier is
automatically generated when you create a time series instance. The unique values of CDR_TSINSTANCEID configuration parameter on each replication server ensures
that no time series instance identifiers overlap in the replication domain.

Related information:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Copyright© 2020 HCL Technologies Limited

ENCRYPT_CDR Configuration Parameter

Use the ENCRYPT_CDR configuration parameter to set the level of encryption for Enterprise Replication.

onconfig.std value
ENCRYPT_CDR 0

values
0 = Default. Do not encrypt.
1 = Encrypt when possible. Encryption is used for Enterprise Replication transactions only when the database server being connected to also supports encryption.

2 = Always encrypt. Only connections to encrypted database servers are allowed.

takes effect
After you edit your onconfig file and restart the database server.
After you run the cdr change onconfig command.

2054 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Usage
If you enable encryption with the ENCRYPT_CDR configuration parameter, you must also set the ENCRYPT_MAC, ENCRYPT_MACFILE, ENCRYPT_SWITCH, and
ENCRYPT_CIPHERS configuration parameter to configure encryption.

If you use both encryption and compression (by setting the CDR_NIFCOMPRESS configuration parameter), then compression occurs before encryption.

Note:
From 14.10xC6 onwards, Enterprise Replication uses SMX connection for communicating with peer servers and ENCRYPT_SMX or onsocssl shall be used to enable
encryption. For communicating with older server versions before 14.10xC6, Enterprise Replication still requires configuring ENCRYPT_CDR.

Related information:
 ENCRYPT_CIPHERS configuration parameter

ENCRYPT_MACFILE configuration parameter
ENCRYPT_SWITCH configuration parameter
ENCRYPT_MAC configuration parameter

Copyright© 2020 HCL Technologies Limited

ENCRYPT_SMX configuration parameter

Use the ENCRYPT_SMX configuration parameter to set the level of encryption for high-availability configurations on secondary servers and between Enterprise Replication
Servers.

onconfig.std value
Not set.

values
0 = Off. Do not encrypt.
1 = On. Encrypt where possible. Encrypt SMX transactions when the database server being connected to also supports encryption.

2 = On. Always encrypt. Only connections to encrypted database servers are allowed.

takes effect
After you edit your onconfig file and restart the database server.

Note: From 14.10xC6 onwards, Enterprise Replication uses SMX connection for communicating with peer servers.
Related information:

 Set the wait time for SMX activity between servers
Using High-Availability Clusters with Enterprise Replication

Copyright© 2020 HCL Technologies Limited

GRIDCOPY_DIR Configuration Parameter

Specifies the default directory used by the ifx_grid_copy procedure.

onconfig.std value
$INFORMIXDIR

default value if not present in the onconfig file
$INFORMIXDIR

values
pathname = $INFORMIXDIR or a valid file path that is relative to $INFORMIXDIR.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

The ifx_grid_copy() procedure copies files from a grid database server to the other nodes of the same grid. The GRIDCOPY_DIR value is the default directory of file paths
in the ifx_grid_copy() command:

On a database server running the ifx_grid_copy() procedure, the GRIDCOPY_DIR value and the ifx_grid_copy() command source_path_and_filename is the
location from which files are copied.
On a database server sharing the same grid with a node running the ifx_grid_copy() procedure, the GRIDCOPY_DIR value and the ifx_grid_copy() command's
target_path_and_filename is the location to which files are copied. If target_path_and_filename is not specified as part of the ifx_grid_copy() command, the
GRIDCOPY_DIR value and the ifx_grid_copy() command's source_path_and_filename is the location to which files are copied.

If a node directory specified by a GRIDCOPY_DIR value does not exist, the node directory is created by the ifx_grid_copy() procedure.

Example
To specify $INFORMIXDIR/usr/informix/copydir as a node's default directory for ifx_grid_copy() procedure actions, set the following value in the onconfig file:

GRIDCOPY_DIR usr/informix/copydir

Related tasks:
 Propagating external files through a grid

Related reference:

Part VI: Administering 2055

https://www.hcltech.com/
https://www.hcltech.com/

ifx_grid_copy() procedure

Copyright© 2020 HCL Technologies Limited

SHARD_EDGE_NODE configuration parameter

Specifies how to allocate shared memory for sharded queries on a shard server.

onconfig.std value
SHARD_EDGE_NODE

range of values
0: Default Value. Disable shard edge node functionality.
1: Enable shard edge node functionality.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
SHARD_EDGE_NODE configuration parameter controls the shard edge server behavior.

Copyright© 2020 HCL Technologies Limited

SHARD_ID configuration parameter

Sets the unique ID for a shard server in a shard cluster.

onconfig.std value
SHARD_ID 0

range of values
0 = Default. The database server cannot run parallel sharded queries.
1 - 65535 = The unique ID of the shard server.

takes effect
After you edit your onconfig file and restart the database server.
If the value is 0 or not set, you can set the value dynamically in your onconfig file by running the onmode -wf command.

You set the value of the SHARD_ID configuration parameter to a different number on each shard server in a shard cluster. If the value of the SHARD_ID configuration
parameter is unset or set to 0 on all shard servers in the shard cluster, the shard cluster performs poorly. If the values of the SHARD_ID configuration parameter are not
unique on all shard servers in a shard cluster, shard queries fail.

To reset the value if the SHARD_ID configuration parameter is set to a positive integer, edit the onconfig file and then restart the database server.

Related tasks:
 Creating a shard cluster

Related information:
 onmode -wf, -wm: Dynamically change certain configuration parameters

Copyright© 2020 HCL Technologies Limited

SMX_COMPRESS configuration parameter

Use the SMX_COMPRESS configuration parameter to specify the level of compression that the database server uses before sending data from the source database server
to the target database server.

Network compression saves network bandwidth over slow links but uses more CPU to compress and decompress the data. The SMX_COMPRESS configuration parameter
values of the two servers are compared and changed to the higher compression values.

onconfig.std value
SMX_COMPRESS 0

values
-1 = The source database server never compresses the data, regardless of whether or not the target site uses compression.
0 = The source database server compresses the data only if the target database server expects compressed data.

1 = The database server performs a minimum amount of compression.

9 = The database server performs the maximum possible compression.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Note: From 14.10xC6 onwards, Enterprise Replication uses SMX connection for communicating with peer servers.

2056 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Related reference:
onmode -wf, -wm: Dynamically change certain configuration parameters

Copyright© 2020 HCL Technologies Limited

SMX_NUMPIPES configuration parameter

The SMX_NUMPIPES configuration parameter sets the number of pipes for server multiplexer group (SMX) connections.

onconfig.std value
SMX_NUMPIPES 1

values
1 - 32767 = The number of network pipes for SMX connections.

takes effect
After you edit your onconfig file and restart the database server.
When you reset the value dynamically in your onconfig file by running the onmode -wf command.
When you reset the value in memory by running the onmode -wm command.

Usage
High-availability clusters and parallel sharded queries use SMX connections. If the lag time between servers is too long, increase the number of SMX pipes.

Note:
From 14.10xC6 onwards, Enterprise Replication uses SMX connection for communicating with peer servers.

Copyright© 2020 HCL Technologies Limited

CDR_ALARMS Environment Variable

Enables Enterprise Replication event alarms.

default value
30-39,47,48,50,71,73-75

range of values
integers in these ranges: 30-39, 47-71, 73-75

separator
comma (,) to separate individual numbers or hyphen (-) to separate a range of numbers

takes effect
When the database server is shut down and restarted.

Set the CDR_ALARMS environment variable to the Enterprise Replication event alarms that you want to receive. Enterprise Replication event alarms that are not set by
CDR_ALARMS are disabled.

Use the CDR_ENV configuration parameter to set this environment variable in the onconfig file.

Related tasks:
 Enabling or Disabling Enterprise Replication Event Alarms

Copyright© 2020 HCL Technologies Limited

CDR_ATSRISNAME_DELIM Environment Variable

Specifies the delimiter to use to separate the parts of the time portion of ATS and RIS file names that are in text format.

default value
On UNIX: a colon (:)
On Windows: a period (.)

range of values
a single character

takes effect
when Enterprise Replication is initialized

ATS and RIS files in XML format always use a period (.) as the delimiter.

For example, the default file name for an ATS file in text format on UNIX might look like this: ats.g_beijing.g_amsterdam.D_2.000529_23:27:16.6. If
CDR_ATSRISNAME_DELIM is set to a period (.), then the same file name would look like this: ats.g_beijing.g_amsterdam.D_2.000529_23.27.16.6.

Related concepts:
 ATS and RIS File Names

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 2057

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

CDR_DISABLE_SPOOL Environment Variable

Controls the generation of ATS and RIS files.

default value
0

range of values
0 Allow ATS and RIS file generation
1 Prevent ATS and RIS file generation

takes effect
when Enterprise Replication is initialized

The CDR_DISABLE_SPOOL environment variable controls whether ATS and RIS files are generated. Set CDR_DISABLE_SPOOL to 1 if you do not want ATS or RIS files to be
generated under any circumstances.

Related concepts:
 Failed Transaction (ATS and RIS) Files

Related tasks:
 Disabling ATS and RIS File Generation

Copyright© 2020 HCL Technologies Limited

CDR_LOGDELTA Environment Variable

Determines when the send and receive queues are spooled to disk as a percentage of the logical log size.

default value
30

range of values
positive numbers

takes effect
when Enterprise Replication is initialized or immediately after the cdr change onconfig command is used

The CDR_LOGDELTA environment variable determines when the send and receive queues are spooled to disk as a percentage of the logical log size. Use the CDR_ENV
configuration parameter to set this environment variable. For more information, see CDR_ENV Configuration Parameter.
Important: Do not use the CDR_LOGDELTA environment variable unless instructed to do so by Technical Support.

Copyright© 2020 HCL Technologies Limited

CDR_PERFLOG Environment Variable

Enables queue tracing.

default value
0

range of values
positive number

takes effect
when Enterprise Replication is initialized or immediately after the cdr change onconfig command is used

The CDR_PERFLOG environment variable enables queue tracing. Use the CDR_ENV configuration parameter to set this environment variable. For more information, see
CDR_ENV Configuration Parameter.
Important: Do not use the CDR_PERFLOG environment variable unless instructed to do so by Technical Support.

Copyright© 2020 HCL Technologies Limited

CDR_RMSCALEFACT Environment Variable

Sets the number of data sync threads started for each CPU VP.

default value
4

range of values
positive number

takes effect
when Enterprise Replication is initialized or immediately after the cdr change onconfig command is used

The CDR_RMSCALEFACT environment variable sets the number of data sync threads started for each CPU VP. Specifying a large number of threads can result in wasted
resources. Use the CDR_ENV configuration parameter to set this environment variable. For more information, see CDR_ENV Configuration Parameter.
Important: Do not use the CDR_RMSCALEFACT environment variable unless instructed to do so by Support.

Copyright© 2020 HCL Technologies Limited

2058 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

CDR_ROUTER Environment Variable

Disables intermediate acknowledgments of transactions in the hierarchical topologies.

default value
0

range of values
any number

takes effect
when Enterprise Replication is initialized or immediately after the cdr change onconfig command is used

When set to 1, the CDR_ROUTER environment variable disables intermediate acknowledgments of transactions in hierarchical topologies. The normal behavior for
intermediate servers is to send acknowledgments if they receive an acknowledgment from the next server in the replication tree (can be a leaf server) or if the transaction
is stored in the local queue. Use the CDR_ENV configuration parameter to set this environment variable. For more information, see CDR_ENV Configuration Parameter.

If CDR_ROUTER is set at the hub server, an acknowledgment will be sent only if the hub server receives acknowledgment from all of its leaf servers. Transactions will not
be acknowledged even if they are stored in the local queue of the hub server.

If CDR_ROUTER is not set at hub server, the hub server will send an acknowledgment if the transaction is stored in the local queue at the hub server or if the hub server
received acknowledgment from all of its leaf servers.

Important: Do not use the CDR_ROUTER environment variable unless instructed to do so by Technical Support.

Copyright© 2020 HCL Technologies Limited

CDRSITES_10X Environment Variable

Works around a malfunction in version reporting for fix pack versions of 10.00 servers.

units
cdrIDs, which are the unique identifiers for the database server in the Options field of the SQLHOSTS file (i =unique_ID)

range of values
positive numbers

takes effect
when Enterprise Replication is initialized and the CDR_ENV configuration parameter has a value for CDRSITES_10X in the ONCONFIG file, or immediately for the
following actions:

Adding a value using the cdr add onconfig command
Removing a value using the cdr remove onconfig command
Changing a value using the cdr change onconfig command

In mixed-version Enterprise Replication environments that involve Versions 10.00.xC1 or 10.00.xC3 servers, the NIF does not properly report its version when it responds
to a new server with a fix pack version of 10.00.xC4 or later. When a new server sends an initial protocol message to a sync server, the sync server, instead of properly
giving its version, gives back the version of the new server.

To prevent this malfunction, if you have Version 10.00.xC1 or 10.00.xC3 servers in your Enterprise Replication environment, set the CDRSITES_10X environment variable
with the CDR_ENV configuration parameter for these servers.

Note: You can only set the CDRSITES_10X environment variable by using the CDR_ENV configuration parameter. You cannot set CDRSITES_10X as a standard
environment variable.
The cdrID is the unique identifier for the database server in the Options field of the SQLHOSTS file (i = unique_ID).

For example, suppose that you have 5 database servers, Version 10.00.xC1, whose cdrID values range from 2 through 10 (cdrID = 2, 3, 8, 9, and 10).

If you upgrade database server cdrID 8 to Version 10.00.xC4, you must set the CDRSITES_10X environment variable for the other server cdrIDs by setting the CDR_ENV
configuration parameter in the ONCONFIG file before bringing the Version 10.00.xC4 database server online:

CDR_ENV CDRSITES_10x=2,3,9,10

Copyright© 2020 HCL Technologies Limited

CDRSITES_731 Environment Variable

Works around a malfunction in version reporting for post-7.3x, 7.20x, or 7.24x version servers.

units
cdrIDs, which are the unique identifiers for the database server in the Options field of the SQLHOSTS file (i =unique_ID)

range of values
positive numbers

takes effect
when Enterprise Replication is initialized and the CDR_ENV configuration parameter has a value for CDRSITES_731 in the ONCONFIG file, or immediately for the
following actions:

Adding a value using the cdr add onconfig command
Removing a value using the cdr remove onconfig command
Changing a value using the cdr change onconfig command

Part VI: Administering 2059

https://www.hcltech.com/
https://www.hcltech.com/

In mixed-version Enterprise Replication environments that involve post 7.3x, 7.20x, or 7.24x servers, the NIF does not properly report its version when it responds to a
new server. When a new server sends an initial protocol message to a sync server, the sync server, instead of properly giving its version, gives back the version of the new
server. If a 10.0, 9.40, or 9.30 server tries to synchronize with a 7.3x, 7.20x, or 7.24x server, the older server responds to the 10.0, 9.40, or 9.30 server that it is a 10.0,
9.40, or 9.30 server and will subsequently fail.

To prevent this malfunction, if you have Version 7.3x, 7.20x, or 7.24x servers in your Enterprise Replication environment, set the CDRSITES_731 environment variable
with the CDR_ENV configuration parameter for these servers.

Note: You can only set the CDRSITES_731 environment variable by using the CDR_ENV configuration parameter. You cannot set CDRSITES_731 as a standard
environment variable.
For example, suppose that you have 5 database servers, Version 7x servers whose cdrID values range from 1 through 7 (cdrID = 1, 4, 5, 6, and 7).

If you upgrade database server cdrID 6 to Version 10.0, 9.40, or 9.30, you must set the CDRSITES_731 environment variable for the other server cdrIDs by setting the
CDR_ENV configuration parameter in the ONCONFIG file before bringing the Version 10.0, 9.40, or 9.30 database server online:

CDR_ENV CDRSITES_731=1,4,5,7

Copyright© 2020 HCL Technologies Limited

CDRSITES_92X Environment Variable

Works around a malfunction in version reporting for 9.21 or 9.20 servers.

units
cdrIDs, which are the unique identifiers for the database server in the Options field of the SQLHOSTS file (i =unique_ID)

range of values
positive numbers

takes effect
when Enterprise Replication is initialized and the CDR_ENV configuration parameter has a value for CDRSITES_92X in the ONCONFIG file, or immediately for the
following actions:

Adding a value using the cdr add onconfig command
Removing a value using the cdr remove onconfig command
Changing a value using the cdr change onconfig command

In mixed-version Enterprise Replication environments that involve 9.21 or 9.20 servers, the NIF does not properly report its version when it responds to a new server.
When a new server sends an initial protocol message to a sync server, the sync server, instead of properly giving its version, gives back the version of the new server. If a
10.0/9.40/9.30 server tries to synchronize with a 9.21 or 9.20 server, the older server responds to the 10.0, 9.40, or 9.30 server that it is a 10.0, 9.40, or 9.30 server and
will subsequently fail.

To prevent this malfunction, if you have Version 9.21 or 9.20 servers in your Enterprise Replication environment, set the CDRSITES_92X environment variable

Note: You can only set the CDRSITES_92X environment variable by using the CDR_ENV configuration parameter. You cannot set CDRSITES_92X as a standard
environment variable.
For example, suppose that you have 5 database servers, Version 9.21 or 9.20 whose cdrID values range from 2 through 10 (cdrIDs = 2, 3, 8, 9, and 10).

If you upgrade database server cdrID 8 to Version 10.0, 9.40, or 9.30, you must set the CDRSITES_92X environment variable for the other server cdrIDs by setting the
CDR_ENV configuration parameter in the ONCONFIG file before bringing the Version 10.0, 9.40, or 9.30 database server online:

CDR_ENV CDRSITES_92x=2,3,9,10

Copyright© 2020 HCL Technologies Limited

Grid routines

Grid routines are used to create and maintain the grid and to administer servers in the grid by propagating commands from a source server to all other servers in the grid.

ifx_get_erstate() function
 The ifx_get_erstate() function indicates whether replication is enabled for the transaction in which it is run.

ifx_grid_connect() procedure
 The ifx_grid_connect() procedure opens a connection to the grid. Through an ifx_grid_connect() procedure, you can run routines and data definition language

(DDL) commands on a source server, and then propagate the routines or commands to the other grid servers.
ifx_grid_copy() procedure

 The ifx_grid_copy() procedure copies non-database, external files from a grid database server to other nodes in the same grid.
ifx_grid_disconnect() procedure

 The ifx_grid_disconnect() procedure closes a connection to the grid.
ifx_grid_execute() procedure

 The ifx_grid_execute() procedure propagates the execution of a routine or data manipulation language (DML) SQL statement to all servers in the grid.
ifx_grid_function() function

 The ifx_grid_function() function propagates the execution of a function to all servers in the grid.
ifx_grid_procedure() procedure
The ifx_grid_procedure() procedure propagates the execution of a procedure to all servers in the grid.
ifx_grid_redo() procedure

 The ifx_grid_redo() procedure reruns commands that were run through the grid and failed on one or more servers in the grid.
ifx_grid_release() function

 The ifx_grid_release() function propagates deferred DDL statements that were run on the local grid server, but deferred from running on the other grid servers.

2060 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

ifx_grid_remove() function
The ifx_grid_remove() function removes any DDL statements that are deferred from propagation to grid servers.
ifx_grid_purge() procedure
The ifx_grid_purge() procedure deletes metadata about commands that have been run through the grid.
ifx_gridquery_skipped_nodes() function
The ifx_gridquery_skipped_nodes() function returns the name of a server that was unavailable during a grid or shard query.
ifx_gridquery_skipped_node_count() function
The ifx_gridquery_skipped_node_count() function returns the number of servers that were unavailable during a grid or shard query.
ifx_node_id() function
The ifx_node_id() function returns the ID of the grid server on which the function is run.
ifx_node_name() function
The ifx_node_name() function returns the name of the grid server on which the function is run.

Copyright© 2020 HCL Technologies Limited

ifx_get_erstate() function

The ifx_get_erstate() function indicates whether replication is enabled for the transaction in which it is run.

Syntax

>>-EXECUTE FUNCTION--ifx_get_erstate--(--)--INTO--data_var--;--><

Element Purpose Restriction

data_var Variable to receive the value that the function returns

Usage
Use the ifx_get_erstate() function to obtain the state of replication within a transaction. You can use the state information saved in the variable as input to the
ifx_set_erstate() procedure.

Return value
A return value of 1 indicates that the current transaction is replicating data.

A return value of 0 indicates that the current transaction is not replicating data.

Example
The following example obtains the replication state and stores it in the curstate variable:

EXECUTE FUNCTION ifx_get_erstate() INTO curstate;

Related concepts:
 Recapture replicated transactions

Related tasks:
 Enabling replication within a grid transaction

Related reference:
 ifx_set_erstate() procedure

Copyright© 2020 HCL Technologies Limited

ifx_grid_connect() procedure

The ifx_grid_connect() procedure opens a connection to the grid. Through an ifx_grid_connect() procedure, you can run routines and data definition language (DDL)
commands on a source server, and then propagate the routines or commands to the other grid servers.

Syntax

>>-EXECUTE PROCEDURE--ifx_grid_connect--(--'--grid_name--'------>

>--+-+--------------+-+--------------+-+--)--;-----------------><
 | '-,--'--tag--'-' '-,--ER_enable-' |
 '-,--'--tag--'--,--defer------------'

Element Purpose Restrictions

grid_name Name of the grid. Must be the name of an existing grid.

Part VI: Administering 2061

https://www.hcltech.com/
https://www.hcltech.com/

Element Purpose Restrictions

ER_enable Enable or disable the creation of a replicate and replicate set and
starting replication for any tables that are created while the
connection to the grid is open. Optionally suppress any errors
that might be raised when the procedure is run.

Valid values are:

0 = Default. Enterprise Replication is disabled.

1 = Enterprise Replication is enabled.
2 = Enterprise Replication is disabled and errors are
suppressed.
3 = Enterprise Replication is enabled and errors are
suppressed.

defer Run DDL statements on the local server but delay the
propagation of the statements to other servers in the grid.
Optionally enable the creation of a replicate and replicate set and
starting replication.

Valid values are:

4 = Defer the propagation of DDL statements.
5 = Defer the propagation of DDL statements and enable
Enterprise Replication. Use this value when you run DDL
statements on existing replicated tables.

tag A character string to identify grid operations. Must be unique among grid sessions with deferred DDL statements
that are outstanding.

Usage
Use the ifx_grid_connect() procedure start a grid connection. All DDL SQL statements and routines that you run in the grid connect are propagated to all the servers in the
grid. Use the ifx_grid_disconnect() procedure to close the grid connect and disable grid propagation. If the databases on your replication servers have different schemas
or data, a DDL statement that is run through a grid might have different results on each server. In a replication system, when you run a statement locally, the results are
replicated to the other replication servers. When you run a statement through a grid, that statement is simultaneously run on each server.

You must run this routine as an authorized user on an authorized server, as specified by the cdr enable grid command.

You must connect to a database before you run the ifx_grid_connect() procedure. If you are planning to create a database, you can connect to the sysmaster database.

If you enable Enterprise Replication, when you create a table through the grid, a replicate is created that contains the newly created table with all the servers in the grid as
participants. The replicate belongs to a replicate set that has the same name as the grid. When you create a replicated table through the grid, the ERKEY shadow columns
are added automatically.

If you run the ifx_grid_connect() procedure automatically as part of the sysdbopen() procedure, set the ER_enable argument to 2 or 3 to suppresses errors that might
prevent the session from accessing the database.

You can defer the propagation of DDL statements to other servers in the grid by setting the defer argument. The DDL statements are queued for propagation but not sent to
other grid servers until you run the ifx_grid_release() function.

You cannot perform the following actions in the context a grid connection:

Propagate data manipulation language statements through a grid.
Replicate a database object that exists on a server in the grid.
Use the @servername syntax while connected to the grid.
Drop a replicated column through a grid. To drop a replicated column, you must manually remaster the replicate and then drop the column.
Renaming a replicated database. You must manually rename the database on each participant server.

Example 1: Create a table
In the following example, a grid connection is opened that enables the propagation of only DDL statements, a table is created on all servers in the grid, and then the grid
connection is closed:

database sales;

EXECUTE PROCEDURE ifx_grid_connect('grid1');

CREATE TABLE special_offers(
 offer_description varchar(255),
 offer_startdate date,
 offer_enddate date,
 offer_rules lvarchar);

EXECUTE PROCEDURE ifx_grid_disconnect();

In this example, the data in the special_offers table is not replicated.

Example 2: Create a replicated table
In the following example, a grid connection is opened that enables the propagation of DDL statements and the replication of data, a table is created on all servers in the
grid, and then the grid connection is closed:

database sales;

EXECUTE PROCEDURE ifx_grid_connect('grid1', 1);

CREATE TABLE special_offers(
 offer_description varchar(255),
 offer_startdate date,

2062 Part VI: Administering

 offer_enddate date,
 offer_rules lvarchar)
 WITH CRCOLS;

EXECUTE PROCEDURE ifx_grid_disconnect();

A replicate for the special_offers table is created with timestamp conflict resolution and replication of the data in the table is started.

Example 3: Alter a replicated table to add a column
The following example alters the special_offers table to add a column and remasters the replicate on all participants that are members of the grid:

database sales;

EXECUTE PROCEDURE ifx_grid_connect('grid1', 1);

ALTER TABLE special_offers ADD (
 offer_exceptions varchar(255));

EXECUTE PROCEDURE ifx_grid_disconnect();

Example 4: Alter a replicated table to add a column that is not replicated
The following example alters the special_offers table to add a column whose data is not replicated:

database sales;

EXECUTE PROCEDURE ifx_grid_connect('grid1', 0);

ALTER TABLE special_offers ADD (
 local_promotions varchar(255));

EXECUTE PROCEDURE ifx_grid_disconnect();

The column local_promotions is added to the special_offers table on all grid servers, but the data in the local_promotions column is not replicated.

Example 5: Defer propagation of a DDL statement
The following example defers propagation of the ALTER operation across grid1:

database sales;

EXECUTE PROCEDURE ifx_grid_connect('grid1','tag1',4);

ALTER TABLE special_offers ADD (
 local_restrictions varchar(255));

The column local_restrictions is added to the special_offers table on the local server only. The ALTER operation is queued for propagation to the other grid servers.

Related concepts:
 Grid queries

Related tasks:
 Propagating database object changes

Creating replicated tables through a grid
Adding an existing replicate to a grid replicate set by altering a table
Related reference:

 ifx_grid_disconnect() procedure
cdr enable grid
ifx_grid_release() function
ifx_grid_remove() function
cdr delete grid

Copyright© 2020 HCL Technologies Limited

ifx_grid_copy() procedure

The ifx_grid_copy() procedure copies non-database, external files from a grid database server to other nodes in the same grid.

Syntax

>>-EXECUTE PROCEDURE--ifx_grid_copy--(--'--grid_name--'--,--'--source_path_and_filename--'-->

>--+-----------------------------------+--)--;-----------------><
 '-,--'--target_path_and_filename--'-'

Element Purpose Restriction

grid_name The name of the database server's grid.

Part VI: Administering 2063

https://www.hcltech.com/

Element Purpose Restriction

source_path_and_filename The file path, relative to the value of the GRIDCOPY_DIR
configuration parameter on the source database server,
and name of the file you want to send to the other nodes
of the grid.

The file must be located relative to the directory specified
by the GRIDCOPY_DIR configuration parameter on the
source server. By default, the GRIDCOPY_DIR configuration
parameter is set to $INFORMIXDIR.

target_path_and_filename The file path, relative to values of the GRIDCOPY_DIR
configuration parameter on each other node of a grid,
and the name each file will have on the other nodes of
the grid.

If you do not specify target_path_and_filename, the file is
copied to source_path_and_filename on each node, relative
to the GRIDCOPY_DIR configuration parameter value on
that node.

Usage
The ifx_grid_copy() procedure copies a file, along with the file's permissions, group, and owner values, from a directory on a grid server to specified destinations on each
other node that is currently part of the grid. Group and owner values, rather than group ID and user ID values, are copied because group IDs and user IDs can have
different values on different servers. If the file's group or owner values have not been defined on a node receiving a copied file, the copy fails on that node.

You can run this procedure only on an authorized database server and as an authorized user, as specified by the cdr grid enable command.

Only nodes that are members of a grid at the time the ifx_grid_copy() is run receive the copied file. Grid nodes added after ifx_grid_copy() procedures complete are not
updated with files previously copied to other nodes.

Nonexistent directories that are specified by the source_path_and_filename or target_path_and_filename values of the ifx_grid_copy() command are created during the
ifx_grid_copy() procedure.

Wildcard characters in file names are not supported.

Example 1: Copying a file to the same location on database servers of a grid
The GRIDCOPY_DIR configuration parameter is set to $INFORMIXDIR/tmp on all database servers of a grid named grid1. The following command copies the file
script1.exe from $INFORMIXDIR/tmp/bin on the source database server to $INFORMIXDIR/tmp/bin on all other nodes of grid1.

EXECUTE PROCEDURE ifx_grid_copy ("grid1", "bin/script1.exe");

Example 2: Copying a file to the same relative locations on other database servers of a grid
The GRIDCOPY_DIR configuration parameter is set to $INFORMIXDIR/tmp on the source database server and $INFORMIXDIR/copies on each other node of a grid named
grid2. The following command copies the file script2.exe from $INFORMIXDIR/tmp/bin on the source database server to $INFORMIXDIR/copies/bin on all other nodes of
grid2.

EXECUTE PROCEDURE ifx_grid_copy ("grid2", "bin/script2.exe");

Example 3: Copying a file to different relative locations on the other database servers of a grid
The GRIDCOPY_DIR configuration parameter is set to $INFORMIXDIR/tmp on all database servers of a grid named grid3. The following command copies the file
script3.exe from $INFORMIXDIR/tmp/bin on the source server to $INFORMIXDIR/tmp/copies on all other nodes of grid3.

EXECUTE PROCEDURE ifx_grid_copy ("grid3", "bin/script3.exe", "copies/script3.exe");

Example 4: Changing the name of file copied throughout a grid
The GRIDCOPY_DIR configuration parameter is set to $INFORMIXDIR/tmp on all database servers of a grid named grid4. The following command copies the file
script4.exe in $INFORMIXDIR/tmp on the source server to $INFORMIXDIR/tmp on all other nodes of grid4. The copied file is named script4_copy.exe on the other nodes
of grid4.

EXECUTE PROCEDURE ifx_grid_copy ("grid4", "script4.exe", "script4_copy.exe");

Related tasks:
 Propagating external files through a grid

Related reference:
 GRIDCOPY_DIR Configuration Parameter

Copyright© 2020 HCL Technologies Limited

ifx_grid_disconnect() procedure

The ifx_grid_disconnect() procedure closes a connection to the grid.

Syntax

>>-EXECUTE PROCEDURE--ifx_grid_disconnect--(--)--;-------------><

Usage

2064 Part VI: Administering

https://www.hcltech.com/

Use the ifx_grid_disconnect() procedure to disable the propagation of DDL statements and commands to servers in the grid, which was enabled by the
ifx_grid_connect() procedure. If you do not use the ifx_grid_disconnect() procedure, propagation through the grid is stopped when the database is closed or the
connection is closed.

You must run this routine as an authorized user on an authorized grid server, as specified by the cdr grid enable command.

Example
The following example shows how to close a connection to the grid after opening a connection:

EXECUTE PROCEDURE ifx_grid_connect('grid1');
EXECUTE PROCEDURE ifx_grid_disconnect();

Related tasks:
 Propagating database object changes

Related reference:
 ifx_grid_connect() procedure

Copyright© 2020 HCL Technologies Limited

ifx_grid_execute() procedure

The ifx_grid_execute() procedure propagates the execution of a routine or data manipulation language (DML) SQL statement to all servers in the grid.

Syntax

>>-EXECUTE PROCEDURE--ifx_grid_execute--(--'--grid_name--'------>

>--,--'--statement_text--'--+--------------+--)--;-------------><
 '-,--'--tag--'-'

Element Purpose Restrictions

grid_name Name of the grid. Must be the name of an existing grid.

statement_text The text format of the routine or SQL statement to be run. Bound data items cannot be included in procedure text.

tag A character string to identify grid operations.

Usage
Use the ifx_grid_execute() procedure to run a routine or DML SQL statement on a source server and propagate it so that it is also run on the other servers in the grid. The
output of the routine, if any, is not returned to the client application. The results of routines or statements that are performed within the context of the ifx_grid_execute()
procedure are not replicated. The ifx_grid_execute() procedure effectively runs routines and statements with a BEGIN WORK WITHOUT REPLICATION statement. Do not
use the ifx_grid_execute() procedure to populate tables that are already involved in replication. Although you can use the ifx_grid_execute() procedure to run a DML
statement, for example, to delete many rows from a table, in general use Enterprise Replication to replicate changes to replicated data. You can run DML statements on
any type of table, including raw tables, virtual tables, and external tables.

You cannot run the ifx_grid_execute() procedure from within a transaction. When you run SQL administration API commands from the ifx_grid_execute() procedure, you
must use double quotation marks around the SQL administration API function arguments and single quotation marks around the ifx_grid_execute() procedure arguments.

You must run this routine as an authorized user on an authorized server, as specified by the cdr grid enable command.

Example
The following example, run from the sysadmin database, uses an SQL administration API command to create a dbspace on every server in the grid:

EXECUTE PROCEDURE ifx_grid_execute('grid1',
 'admin("create dbspace", "dbspace3",
 "$INFORMIXDIR/WORK/dbspace3", "500 M")');

The following example drops the logical logs from the chunk number 3 from all the servers in the grid:

EXECUTE PROCEDURE ifx_grid_execute('grid1', 'SELECT task("drop log", number) FROM
 sysmaster:syslogfil where chunk = 3;');

Related tasks:
 Administering servers in the grid with the SQL administration API

Propagating updates to data
Related reference:

 ifx_grid_procedure() procedure
ifx_grid_function() function

Copyright© 2020 HCL Technologies Limited

ifx_grid_function() function

Part VI: Administering 2065

https://www.hcltech.com/
https://www.hcltech.com/

The ifx_grid_function() function propagates the execution of a function to all servers in the grid.

Syntax

>>-EXECUTE FUNCTION--ifx_grid_function--(--'--grid_name--'------>

>--,--'--function_text--'--+--------------+--)--;--------------><
 '-,--'--tag--'-'

Element Purpose Restrictions

grid_name Name of the grid. Must be the name of an existing grid.

function_text The text format of the function to be run.

tag A character string to identify grid operations.

Usage
Use the ifx_grid_function() function to run a function or SQL statement on a source server and propagate it so that it is also run on the other servers in the grid. The
output of the function is returned to the client application as an LVARCHAR data type with comma-delimited text. You can also view the output with the cdr list grid
command with the --verbose option. You cannot run the ifx_grid_function() function from within a transaction.

You must run this routine as an authorized user on an authorized server, as specified by the cdr grid enable command.

Example
The following example runs a function named load_function():

EXECUTE FUNCTION ifx_grid_function('grid1', 'load_function(2000)');

Related tasks:
 Administering servers in the grid with the SQL administration API

Related reference:
 ifx_grid_execute() procedure

Copyright© 2020 HCL Technologies Limited

ifx_grid_procedure() procedure

The ifx_grid_procedure() procedure propagates the execution of a procedure to all servers in the grid.

Syntax

>>-EXECUTE PROCEDURE--ifx_grid_procedure--(--'--grid_name--'---->

>--,--'--procedure_text--'--+--------------+--)--;-------------><
 '-,--'--tag--'-'

Element Purpose Restrictions Syntax

grid_name Name of the grid. Must be the name of an existing grid.

procedure_text The text format of the procedure to be run. Bound data items cannot be included.

tag A character string to identify grid operations.

Usage
Use the ifx_grid_procedure() procedure to run a procedure or SQL statement on a source server and propagate it so that it is also run on the other servers in the grid. You
cannot run the ifx_grid_procedure() procedure from within a transaction.

You must run this routine as an authorized user on an authorized server, as specified by the cdr grid enable command.

Example
The following example runs a procedure named myloadprocedure():

EXECUTE PROCEDURE ifx_grid_procedure('grid1',
 'myloadprocedure(2000)', 'mytag');

Related reference:
 ifx_grid_execute() procedure

Copyright© 2020 HCL Technologies Limited

2066 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

ifx_grid_redo() procedure

The ifx_grid_redo() procedure reruns commands that were run through the grid and failed on one or more servers in the grid.

Syntax

>>-EXECUTE PROCEDURE--ifx_grid_redo--(--'grid_name'------------->

>--+---+-->
 '-,'source_server'-+--+-'
 '-,'target_server'-+---------------------------------------+-'
 '-,'tag'-+----------------------------+-'
 '-,'command_ID'-+----------+-'
 '-,'force'-'

>--)--;--><

Element Purpose Restrictions

grid_name Name of the grid. Must be the name of an existing grid.

command_ID One or more ID numbers of the command to rerun on the grid. Separate multiple ID numbers with a comma or specify a range
with a hyphen (-).
Can be NULL.

source_server The replication server from which the routine was run. Can be NULL.

tag A character string identifying the grid operations to rerun. Must be an existing tag.
Can be NULL.

target_server The replication server on which to rerun the routine. Can be NULL.

Usage
Commands that you run through the grid might fail on one or more servers in the grid. Use the ifx_grid_redo() procedure to rerun commands that failed. For example, if
you create a fragmented table through the grid and one of the grid servers does not have one of the dbspaces into which the table is fragmented, the command fails on
that server. After you add the required dbspace to the server, run the ifx_grid_redo() procedure to create the fragmented table on that server.

You can specify from which source server the commands were run, the command ID, the target server on which the commands failed, or the identifying tag for commands
that failed.

Use the force argument to rerun commands that succeeded.

You must run this routine as an authorized user on an authorized server, as specified by the cdr grid enable command.

Example
The following example reruns failed commands on every server in the grid on which those commands failed:

EXECUTE PROCEDURE ifx_grid_redo('grid1');

The following example reruns the command with the ID of 21 that originated server cdr1 on server cdr4:

EXECUTE PROCEDURE ifx_grid_redo('grid1', 'cdr1', 'cdr4', NULL, '21');

The following example reruns all commands that failed on server cdr4:

EXECUTE PROCEDURE ifx_grid_redo('grid1', NULL, 'cdr4');

Related tasks:
 Rerunning failed grid routines

Copyright© 2020 HCL Technologies Limited

ifx_grid_release() function

The ifx_grid_release() function propagates deferred DDL statements that were run on the local grid server, but deferred from running on the other grid servers.

Syntax

>>-EXECUTE FUNCTION--ifx_grid_release--(--'--grid_name--'--,--'--tag--'--)--;-><

Element Purpose Restrictions

grid_name The name of the grid that a DDL statement is queued to
propagates across

Must be the name of an existing grid.

Part VI: Administering 2067

https://www.hcltech.com/

Element Purpose Restrictions

tag A character string to identify grid operations. Must be the same value as the tag argument that was included in
the ifx_grid_connect() procedure with the defer argument.

Usage
If you deferred the propagation of DDL statements by running the ifx_grid_connect() procedure with the defer argument, DDL statements are run on the local server but
deferred from propagating across the grid. Run the ifx_grid_release() function to propagate the DDL statements to the other grid servers. You can run the
ifx_grid_release() command at any time after the grid session in which the statements were deferred.

You must run this routine as an authorized user on an authorized server, as specified by the cdr enable grid command.

Returns
The number of DDL statements that are released.

Example
The following example defers propagation of the ALTER operation across grid1:

database sales;

EXECUTE PROCEDURE ifx_grid_connect('grid1','tag1',4);

ALTER TABLE special_offers ADD (
 local_restrictions varchar(255));

The following statement releases the queued ALTER operation:

EXECUTE FUNCTION ifx_grid_release('grid1','tag1');

The local_restrictions column is added to the special_offers table on the other grid servers.

Related concepts:
 Grid queries

Related reference:
 ifx_grid_connect() procedure

ifx_grid_remove() function
Related information:

 SELECT_GRID session environment option
SELECT_GRID_ALL session environment option
GRID clause

Copyright© 2020 HCL Technologies Limited

ifx_grid_remove() function

The ifx_grid_remove() function removes any DDL statements that are deferred from propagation to grid servers.

Syntax

>>-EXECUTE FUNCTION--ifx_grid_remove--(--'--grid_name--'--,--'--tag--'--)--;-><

Element Purpose Restrictions

grid_name The name of the grid that has a deferred DDL statement. Must be the name of an existing grid.

tag A character string to identify grid operations. Must be the same value as the tag argument that was included in
the ifx_grid_connect() procedure with the defer argument.

Usage
If you deferred the propagation of DDL statements by running the ifx_grid_connect() procedure with the defer argument, DDL statements are run on the local server but
deferred from propagating across the grid. If you decide to not propagate the deferred DDL statements, run the ifx_grid_remove() function to remove the deferred DDL
statement. You can run the ifx_grid_remove() command at any time after the grid session in which the statements were deferred. The ifx_grid_remove() command does
not roll back the DDL statements on the local server.

You must run this routine as an authorized user on an authorized server, as specified by the cdr enable grid command.

Returns
The number of DDL statements that are removed.

2068 Part VI: Administering

https://www.hcltech.com/

Example
The following example defers propagation of the ALTER operation across grid1:

database sales;

EXECUTE PROCEDURE ifx_grid_connect('grid1','tag1',4);

ALTER TABLE special_offers ADD (
 local_restrictions varchar(255));

The following statement removes the queued ALTER operation:

EXECUTE FUNCTION ifx_grid_remove('grid1','tag1');

The local_restrictions column remains in the special_offers table on the local server but is not added to the special_offers tables on the other grid servers.

Related concepts:
 Grid queries

Related reference:
 ifx_grid_connect() procedure

ifx_grid_release() function
Related information:

 SELECT_GRID session environment option
SELECT_GRID_ALL session environment option
GRID clause

Copyright© 2020 HCL Technologies Limited

ifx_grid_purge() procedure

The ifx_grid_purge() procedure deletes metadata about commands that have been run through the grid.

Syntax

>>-EXECUTE PROCEDURE--ifx_grid_purge--(--'grid_name'------------>

>--+---+-->
 '-,'source_server'-+--+-'
 '-,'target_server'-+---------------------------------------+-'
 '-,'tag'-+----------------------------+-'
 '-,'command_ID'-+----------+-'
 '-,'force'-'

>--)--;--><

Element Purpose Restrictions

grid_name Name of the grid. Must be the name of an existing grid.

command_ID One or more ID numbers of the command to purge. Separate multiple ID numbers with a comma or specify a range
with a hyphen (-).
Can be NULL.

source_server The replication server on which the routine originated. Can be NULL.

tag A character string identifying the grid operations to purge. Must be an existing tag.
Can be NULL.

target_server The replication server on which the routine was run. Can be NULL.

Usage
Use the ifx_grid_purge() procedure to delete the history of commands successfully run from the grid. Accumulated command history can significantly increase the size of
the syscdr database.

Use the force argument to delete the history of all commands, including those that failed.

You must run this routine as an authorized user on an authorized server, as specified by the cdr grid enable command.

Example
The following example deletes the history for commands that ran successfully:

EXECUTE PROCEDURE ifx_grid_purge('grid1');

The following example deletes the history for commands, including those that failed:

EXECUTE PROCEDURE ifx_grid_purge('grid1', NULL, NULL, NULL, NULL, 'force');

The following example deletes the command history with the ID of 21 that originated server cdr1 and ran on server cdr4:

Part VI: Administering 2069

https://www.hcltech.com/

EXECUTE PROCEDURE ifx_grid_purge('grid1', 'cdr1', 'cdr4', NULL, '21');

The following example deletes all commands that ran successfully on server cdr4:

EXECUTE PROCEDURE ifx_grid_purge('grid1', NULL, 'cdr4');

Related concepts:
 Grid maintenance

Copyright© 2020 HCL Technologies Limited

ifx_gridquery_skipped_nodes() function

The ifx_gridquery_skipped_nodes() function returns the name of a server that was unavailable during a grid or shard query.

Syntax

>>-EXECUTE FUNCTION--ifx_gridquery_skipped_nodes--(--)--;------><

Usage
If you set the GRID_NODE_SKIP option of the SET ENVIRONMENT statement to ’on’, any servers that are unavailable when a grid or shard query is run are skipped. Run
the ifx_gridquery_skipped_nodes() function to return the name of a skipped server.

Use the ifx_gridquery_skipped_nodes() function with the ifx_gridquery_skipped_node_count() function. Run the ifx_gridquery_skipped_node_count() function to
determine how many servers were skipped, and then run the ifx_gridquery_skipped_nodes() function the same number of times as the number of skipped servers.

Return value
An LVARCHAR string that supplies the name of a skipped server.

A return value of 0 indicates no skipped servers.

Example
The following statement returns the number of skipped nodes in the grid or shard query:

EXECUTE FUNCTION ifx_gridquery_skipped_node_count();

2

The following statements return the names of the two skipped nodes:

EXECUTE FUNCTION ifx_gridquery_skipped_nodes();

server1

EXECUTE FUNCTION ifx_gridquery_skipped_nodes();

server2

Related concepts:
 Examples of grid queries

Grid queries
Related reference:

 ifx_gridquery_skipped_node_count() function
Related information:

 GRID_NODE_SKIP session environment option
GRID clause

Copyright© 2020 HCL Technologies Limited

ifx_gridquery_skipped_node_count() function

The ifx_gridquery_skipped_node_count() function returns the number of servers that were unavailable during a grid or shard query.

Syntax

>>-EXECUTE FUNCTION--ifx_gridquery_skipped_node_count--(--)--;-><

Usage

2070 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

If you set the GRID_NODE_SKIP option of the SET ENVIRONMENT statement to 'on', any servers that are unavailable when a grid or shard query is run are skipped. Run
the ifx_gridquery_skipped_node_count() function to return the number of a skipped servers.

Use the ifx_gridquery_skipped_node_count() function with the ifx_gridquery_skipped_nodes() function. Run the ifx_gridquery_skipped_node_count() function to
determine how many servers were skipped, and then run the ifx_gridquery_skipped_nodes() function the same number of times as the number of skipped servers.

After a grid or shard query is run, the next SELECT statement that is run resets skipped node count, so ifx_gridquery_skipped_node_count() must be used in an EXECUTE
FUNCTION statement.

Return value
An integer that indicates the number of skipped servers.

0 indicates that no grid or shard servers were skipped.

Example
The following statement returns the number of skipped nodes in the grid or shard query:

EXECUTE FUNCTION ifx_gridquery_skipped_node_count();

2

Related concepts:
 Examples of grid queries

Grid queries
Related reference:

 ifx_gridquery_skipped_nodes() function
Related information:

 GRID_NODE_SKIP session environment option
GRID clause

Copyright© 2020 HCL Technologies Limited

ifx_node_id() function

The ifx_node_id() function returns the ID of the grid server on which the function is run.

Syntax

>>-EXECUTE FUNCTION--ifx_node_id--(--)--;----------------------><

Usage
Use the ifx_node_id() function in the context of a grid query to return the ID of each server on which the grid query is run. Include the ifx_node_id() function in the
SELECT statement of a grid query. The server ID is returned as a result column to identify the origin of the other results of the query.

If you run the ifx_node_id() function outside of the context of a grid query, the function returns the ID of the local server, unless you prefix the remote database and server
name, for example: db@serv4:ifx_node_id().

Example
The following grid query selects the server ID and the total sales from a grid named SE_USA and groups the results by the server ID:

SELECT ifx_node_id() AS ifx_node_id, sum(amt) AS total_sales
FROM sales GRID ALL 'SE_USA'
GROUP BY ifx_node_id;

ifx_node_id total_sales

 1 $2100.00
 2 $2160.00
 3 $2000.00
 4 $2040.00

Related concepts:
 Examples of grid queries

Grid queries
Related reference:

 cdr define region
cdr delete region
ifx_node_name() function
Related information:

 GRID clause

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 2071

https://www.hcltech.com/
https://www.hcltech.com/

ifx_node_name() function

The ifx_node_name() function returns the name of the grid server on which the function is run.

Syntax

>>-EXECUTE FUNCTION--ifx_node_name--(--)--;--------------------><

Usage
Use the ifx_node_name() function in the context of a grid query to return the name of each server on which the grid query is run. Include the ifx_node_name() function in
the SELECT statement of a grid query. The server name is returned as a result column to identify the origin of the other results of the query.

If you run the ifx_node_name() function outside of the context of a grid query, the function returns the name of the local server, unless you prefix the remote database
and server name, for example: db@serv4:ifx_node_name().

Example
The following grid query selects the server name and the total sales from a grid named SE_USA and groups the results by the server name:

SELECT ifx_node_name() AS node, sum(amt) AS total_sales
FROM sales GRID ALL 'SE_USA'
GROUP BY node;

node Atlanta
total_sales $2100.00

node Birmingham
total_sales $2160.00

node Nashville
total_sales $2000.00

node Jacksonville
total_sales $2040.00

Related concepts:
 Examples of grid queries

Grid queries
Related reference:

 cdr define region
cdr delete region
ifx_node_id() function
Related information:

 GRID clause

Copyright© 2020 HCL Technologies Limited

Enterprise Replication routines

Enterprise Replication routines used to control if a replicated transaction is recaptured.

ifx_get_erstate() function
 The ifx_get_erstate() function indicates whether replication is enabled for the transaction in which it is run.

ifx_set_erstate() procedure
 The ifx_set_erstate() procedure controls whether database operations are replicated.

Copyright© 2020 HCL Technologies Limited

ifx_get_erstate() function

The ifx_get_erstate() function indicates whether replication is enabled for the transaction in which it is run.

Syntax

>>-EXECUTE FUNCTION--ifx_get_erstate--(--)--INTO--data_var--;--><

Element Purpose Restriction

data_var Variable to receive the value that the function returns

2072 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Usage
Use the ifx_get_erstate() function to obtain the state of replication within a transaction. You can use the state information saved in the variable as input to the
ifx_set_erstate() procedure.

Return value
A return value of 1 indicates that the current transaction is replicating data.

A return value of 0 indicates that the current transaction is not replicating data.

Example
The following example obtains the replication state and stores it in the curstate variable:

EXECUTE FUNCTION ifx_get_erstate() INTO curstate;

Related concepts:
 Recapture replicated transactions

Related tasks:
 Enabling replication within a grid transaction

Related reference:
 ifx_set_erstate() procedure

Copyright© 2020 HCL Technologies Limited

ifx_set_erstate() procedure

The ifx_set_erstate() procedure controls whether database operations are replicated.

Syntax

>>-EXECUTE PROCEDURE--ifx_set_erstate--(--+-1---------+--)--;--><
 +-0---------+
 +-'--on--'--+
 +-'--off--'-+
 '-data_var--'

Element Purpose Restriction

data_var Variable holding the value that a function returned

Usage
Use the ifx_set_erstate() procedure to enable or disable replication during a transaction. During normally replicated transactions, use the ifx_set_erstate() procedure to
enable the recapture of a transaction after it has been replicated. You must reset the replication state back to the default at the end of the transaction or replication loops
indefinitely.

Replication can only be enabled on tables that are participants in an existing replicate. To enable replication, set the ifx_set_erstate() procedure to 1 or 'on'. To disable
replication, set the ifx_set_erstate() procedure to 0 or 'off'. To set replication to a previous state that was saved by the ifx_get_erstate() function, set the
ifx_set_erstate() procedure to the name of the variable returned by the ifx_get_erstate() function.

Example
The following example enables replication in the transaction:

EXECUTE PROCEDURE ifx_set_erstate(1);

The following example resets the replication state to a previous state that was saved by the ifx_get_erstate() function in the curstate variable:

EXECUTE PROCEDURE ifx_set_erstate(curstate);

Related concepts:
 Recapture replicated transactions

Related tasks:
 Enabling replication within a grid transaction

Related reference:
 ifx_get_erstate() function

Copyright© 2020 HCL Technologies Limited

onstat -g commands for Enterprise Replication

Part VI: Administering 2073

https://www.hcltech.com/
https://www.hcltech.com/

You can monitor and debug Enterprise Replication activity using onstat -g commands.

The onstat utility reads shared-memory structures and provides statistics about the database server that are accurate at the instant that the command executes. The
system-monitoring interface (SMI) also provides information about the database server. For general information about onstat and SMI, refer to the IBM® Informix®
Administrator's Reference. For information on SMI tables specific to Enterprise Replication, see SMI Tables for Enterprise Replication Reference.

Threads shown by the onstat -g ath command
 The threads that Enterprise Replication uses are shown by the onstat -g ath command.

onstat -g cat: Print ER global catalog information
 Prints information from the Enterprise Replication global catalog.

onstat -g cdr: Print ER statistics
 Prints the output for all of the Enterprise Replication statistics commands.

onstat -g cdr config: Print ER settings
 Prints the settings of Enterprise Replication configuration parameters and environment variables that can be set with the CDR_ENV configuration parameter.

onstat -g ddr: Print status of ER log reader
 Prints the status of the Enterprise Replication database log reader.

onstat -g dss: Print statistics for data sync threads
 Prints detailed statistical information about the activity of individual data sync threads.

onstat -g dtc: Print statistics about delete table cleaner
 Prints statistics about the delete table cleaner.

onstat -g grp: Print grouper statistics
 Prints statistics about the grouper.

onstat -g nif: Print statistics about the network interface
 Prints statistics about the network interface.

onstat -g que: Print statistics for all ER queues
 Prints statistics that are common to all queues.

onstat -g rcv: Print statistics about the receive manager
 Prints statistics about the Enterprise Replication receive manager. The receive manager is a set of service routines between the receive queues and data sync. The

onstat -g rcv command is used primarily as a debugging tool and by Software Support. If you suspect that acknowledgment messages are not being applied, you
can run this command.
onstat -g rep: Prints the schedule manager queue

 Prints events that are in the queue for the schedule manager.
onstat -g rqm: Prints statistics for RQM queues

 Prints statistics and contents of the low-level queues (send queue, receive queue, ack send queue, sync send queue, and control send queue) managed by the
Reliable Queue Manager (RQM).
onstat -g sync: Print statistics about synchronization

 Prints statistics about the active synchronization process.

Related concepts:
 Monitor and troubleshooting Enterprise Replication

Related information:
 onstat -k command: Print active lock information

onstat -g ath command: Print information about all threads

Copyright© 2020 HCL Technologies Limited

Threads shown by the onstat -g ath command

The threads that Enterprise Replication uses are shown by the onstat -g ath command.

The following table summarizes the threads that Enterprise Replication uses. You can use this information about threads when you evaluate memory use.

Table 1. Enterprise Replication threads

Number of Threads Thread Name Thread Description

1 ddr_snoopy Performs physical I/O from logical log, verifies potential replication, and sends applicable log-record
entries to Enterprise Replication.

1 preDDR Runs during queue recovery to monitor the log and blocks user transactions if the log position advances
too far before replication resumes.

1 CDRGfan Receives log entries and passes entries to evaluator thread

n CDRGevaln Evaluates log entry to determine whether to replicated it. The value of n is the number of evaluator
threads specified by the CDR_EVALTHREADS configuration parameter. This thread also compresses
committed transactions and queues completed replication messages.

1 per large
transaction

CDRPager Performs the physical I/O for the temporary smart large object that holds paged transaction records.
Grouper paging is activated for a transaction when its size is 10 percent of the value of the SHMVIRTSIZE
or CDR_QUEUEMEM configuration parameters or when it includes more than 100,000 records.

1 CDRCparse Parses all SQL statements for replicate definitions.

1 per connection CDRNsTnCDRNsAn Sending thread for site.

1 per connection CDRNrn Receiving thread for site.

2...n CDRACK_n Accepts acknowledgments from site. At least 2, up to a maximum of the number of active connections.

CPUs... CDRD_n Replays transaction on the target system (data sync thread). At least one thread is created for each CPU
virtual processor (VP). The maximum number of threads is 4*(number of CPU VPs).

1 CDRSchedMgr Schedules internal Enterprise Replication events.

2074 Part VI: Administering

https://www.hcltech.com/

Number of Threads Thread Name Thread Description

0 or 1 CDRM_Monitor Monitors and adjusts data sync performance for optimum performance (on the target).

0 or 1 CDRDTCleaner Deletes rows from the deleted rows shadow table when they are no longer needed.

Related information:
 onstat -g ath command: Print information about all threads

Copyright© 2020 HCL Technologies Limited

onstat -g cat: Print ER global catalog information

Prints information from the Enterprise Replication global catalog.

 .-full-----.
>>-onstat -g cat--+----------+---------------------------------><
 +-replname-+
 +-repls----+
 '-servers--'

Modifier Description

replname The name of a replicate

Usage
The global catalog contains a summary of information about the defined servers, replicates, and replicate sets on each of the servers within the domain. If a replicated
table is undergoing an alter operation, the onstat -g cat command shows that it is in alter mode. For example, use this command to determine:

How many servers and how many replicates are configured
Which table matches a given replicate
Whether a server is a root or leaf server
The current bitmap mask for the specified server. You can use the bitmap mask with the output from the onstat -g rqm command to determine which server
Enterprise Replication is waiting on for an acknowledgment.

You can set the scope of the output by specifying one of the following options to onstat -g cat:

full: (Default) Prints expanded information for both replicate servers and replicates.
replname: Prints information about the specified replicate only.
repls: Prints information about replicates only.
servers: Prints information about servers only.

This sample output from the onstat -g cat repls command shows that the table tab is in alter mode. The replicate rep1 is defined on this table, its replicate ID is
6553601.

GLOBAL-CATALOG CACHE STATISTICS
REPLICATES

Parsed statements:
 Id 6553601 table tab
 Id 6553602 table tab12
Inuse databases: test(2)
 Name: rep1, Id: 6553601 State: ACTIVE Flags: 0x800000 ALTERMODE
 use 0 lastexec Wed Dec 31 18:00:00 1969
 Local Participant: test:nagaraju.tab
 Attributes: TXN scope, Enable ATS, Enable RIS, all columns
 sent in updates
 Conflict resolution: [TIMESTAMP]
 Column Mapping: ON, columns INORDER, offset 8, uncomp_len 12
 Column Name Verifcation: ON
 No Replicated UDT Columns
 Name: rep12, Id: 6553602 State: ACTIVE Flags: 0x800000 use 0
 lastexec Wed Dec 31 18:00:00 1969
 Local Participant: test:nagaraju.tab12
 Attributes: TXN scope, Enable ATS, Enable RIS, all columns
 sent in updates
 Conflict resolution: [TIMESTAMP]
 Column Mapping: ON, columns INORDER, offset 8, uncomp_len 2064
 Column Name Verifcation: ON
 No Replicated UDT Columns

The following replicate information shows that the replicate belongs to a grid replicate set. UTF8 indicates that code set conversion between replicates is enabled.

Name: grid_6553604_100_3, Id: 6553605 State: ACTIVE Flags: 0x900000 UTF8 GRID
 use 0 lastexec Wed Dec 31 18:00:00 1969

 Local Participant: tdb:nagaraju.t1
 Attributes: ROW scope, Enable RIS, all columns sent in updates
 Conflict resolution[Prim::Sec]: [ALWAYSAPPLY]
 Column Mapping: OFF
 Column Name Verifcation: ON
 No Replicated UDT Columns

Part VI: Administering 2075

https://www.hcltech.com/

This sample output from the onstat -g cat servers command shows that the server g_bombay and g_delhi are active; neither one is a hub or a leaf server, and both have
ATS and RIS files that are generated in XML format.

GLOBAL-CATALOG CACHE STATISTICS

SERVERS

 Current server : Id 200, Nm g_bombay
 Last server slot: (0, 2)
 # free slots : 0
 Broadcast map : <[0005]>
 Leaf server map : <[0000]>
 Root server map : <[0006]>
 Adjacent server map: <[0004]>
 Id: 200, Nm: g_bombay, Or: 0x0002, off: 0, idle: 0, state Active
 root Id: 00, forward Id: 00, ishub: FALSE, isleaf: FALSE
 subtree map: <empty>
 atsrisformat=xml

 Id: 100, Nm: g_delhi, Or: 0x0004, off: 0, idle: 0, state Active
 root Id: 00, forward Id: 100, ishub: FALSE, isleaf: FALSE
 subtree map: <empty>
 atsrisformat=xml

Related tasks:
 Viewing grid information

Related reference:
 onstat -g cdr: Print ER statistics

Copyright© 2020 HCL Technologies Limited

onstat -g cdr: Print ER statistics

Prints the output for all of the Enterprise Replication statistics commands.

>>-onstat-- -g--cdr--><

Usage
The output of the onstat -g cdr command is a combination of the following Enterprise Replication onstat command outputs:

onstat -g cat
onstat -g grp
onstat -g que
onstat -g rqm
onstat -g nif all
onstat -g rcv
onstat -g dss
onstat -g dtc
onstat -g rep

Related reference:
 onstat -g cat: Print ER global catalog information

onstat -g grp: Print grouper statistics
onstat -g que: Print statistics for all ER queues
onstat -g rqm: Prints statistics for RQM queues
onstat -g nif: Print statistics about the network interface
onstat -g rcv: Print statistics about the receive manager
onstat -g dss: Print statistics for data sync threads
onstat -g dtc: Print statistics about delete table cleaner
onstat -g rep: Prints the schedule manager queue

Copyright© 2020 HCL Technologies Limited

onstat -g cdr config: Print ER settings

Prints the settings of Enterprise Replication configuration parameters and environment variables that can be set with the CDR_ENV configuration parameter.

This command has the following formats:

onstat -g cdr config
onstat -g cdr config long
onstat -g cdr config parameter_name
onstat -g cdr config parameter_name long
onstat -g cdr config CDR_ENV
onstat -g cdr config CDR_ENV long
onstat -g cdr config CDR_ENV variable_name
onstat -g cdr config CDR_ENV variable_name long

2076 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

The long option prints additional information about settings that can be useful for Support.

The following table describes parameter_name and variable_name.

Modifier Description

parameter_name The name of an Enterprise Replication configuration parameter

variable_name The name of an Enterprise Replication environment variable

If you use onstat -g cdr config without any options, the settings of all Enterprise Replication configuration parameters and environment variables are included in the
output. If you specify the CDR_ENV configuration parameter without an environment variable name, all Enterprise Replication environment variables are included in the
output.

The following sample output of the onstat -g cdr config ENCRYPT_CDR command shows the setting of the ENCRYPT_CDR configuration parameter:

onstat -g cdr config ENCRYPT_CDR

ENCRYPT_CDR configuration setting: 0

The following sample output of the onstat -g cdr config CDR_ENV command shows the settings of all Enterprise Replication environment variables:

onstat -g cdr config CDR_ENV

CDR_ENV environment variable settings:
 CDR_LOGDELTA:
 CDR_LOGDELTA configuration setting: 0
 CDR_PERFLOG:
 CDR_PERFLOG configuration setting: 0
 CDR_ROUTER:
 CDR_ROUTER configuration setting: 0
 CDR_RMSCALEFACT:
 CDR_RMSCALEFACT configuration setting: 0
 CDRSITES_731:
 CDRSITES_731 configuration setting: [None configured]
 CDRSITES_92X:
 CDRSITES_92X configuration setting: [None configured]
 CDRSITES_10X:
 CDRSITES_10X configuration setting: [None configured]

The following sample output of the onstat -g cdr config command shows the settings of all Enterprise Replication configuration parameters and CDR_ENV environment
variables:

onstat -g cdr config

CDR_DBSPACE:
 CDR_DBSPACE configuration setting: rootdbs
CDR_DSLOCKWAIT:
 CDR_DSLOCKWAIT configuration setting: 5
CDR_EVALTHREADS:
 CDR_EVALTHREADS configuration setting: 1, 2
CDR_MAX_DYNAMIC_LOGS:
 CDR_MAX_DYNAMIC_LOGS configuration setting: 0
CDR_NIFCOMPRESS:
 CDR_NIFCOMPRESS configuration setting: 0
CDR_QDATA_SBSPACE:
 CDR_QDATA_SBSPACE configuration setting: cdrsbsp
CDR_QHDR_DBSPACE:
 CDR_QHDR_DBSPACE configuration setting: rootdbs
CDR_QUEUEMEM:
 CDR_QUEUEMEM configuration setting: 4096
CDR_SERIAL:
 CDR_SERIAL configuration setting: 0, 0
CDR_SUPPRESS_ATSRISWARN:
 CDR_SUPPRESS_ATSRISWARN configuration setting: [None suppressed]
ENCRYPT_CDR:
 ENCRYPT_CDR configuration setting: 0
ENCRYPT_CIPHERS:
 ENCRYPT_CIPHERS configuration setting: [None configured]
ENCRYPT_MAC:
 ENCRYPT_MAC configuration setting: [None configured]
ENCRYPT_MACFILE:
 ENCRYPT_MACFILE configuration setting: [None configured]
ENCRYPT_SWITCH:
 ENCRYPT_SWITCH configuration setting: 0,0
CDR_ENV environment variable settings:
 CDR_LOGDELTA:
 CDR_LOGDELTA configuration setting: 0
 CDR_PERFLOG:
 CDR_PERFLOG configuration setting: 0
 CDR_ROUTER:
 CDR_ROUTER configuration setting: 0
 CDR_RMSCALEFACT:
 CDR_RMSCALEFACT configuration setting: 0
 CDRSITES_731:
 CDRSITES_731 configuration setting: [None configured]
 CDRSITES_92X:
 CDRSITES_92X configuration setting: [None configured]
 CDRSITES_10X:
 CDRSITES_10X configuration setting: [None configured]

Related tasks:
 Dynamically Modifying Configuration Parameters for a Replication Server

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 2077

https://www.hcltech.com/

onstat -g ddr: Print status of ER log reader

Prints the status of the Enterprise Replication database log reader.

The ddr, or ddr_snoopy, is an internal component of Enterprise Replication that reads the log buffers and passes information to the grouper.

You can use the information from the onstat -g ddr command to monitor replay position in the log file and ensure replay position is never overwritten (which can cause
loss of data). The replay position is the point from where, if a system failure occurs, Enterprise Replication starts re-reading the log information into the log update buffers.
All the transactions generated before this position at all the target servers have been applied by Enterprise Replication or safely stored in stable queue space. As
messages are acknowledged or stored in the stable queue, the replay position should advance. If you notice that replay position is not advancing, this can mean that the
stable queue is full or a remote server is down.

The onstat -g ddr output shows you a snapshot of the replay position, the snoopy position, and the current position. The snoopy position identifies the position of the
ddr_snoopy thread in the logical logs. The ddr_snoopy has read the log records up until this point. The current position is the position where the server has written its last
logical log record.

If log reading is blocked, data might not be replicated until the problem is resolved. If the block is not resolved, the database server might overwrite the read (ddr_snoopy)
position, which means that data will not be replicated. If this occurs, you must manually resynchronize the source and target databases.

To avoid these problems, follow these guidelines:

Have 24 hours of online log space available.
Keep the log file size consistent. Instead of having a single large log file, implement several smaller ones.
Avoid switching logical logs more than once per hour.
Keep some distance between LTXHWM (long-transaction high-watermark) and LTXEHWM (long-transaction, exclusive-access, high-watermark).

You can configure one or more actions to occur if the current position reaches the log needs position by setting the CDR_LOG_LAG_ACTION configuration parameter.

The following sample output from the onstat ddr command shows the replay position, snoopy position, and current position highlighted.

DDR -- Running --

Event Snoopy Snoopy Replay Replay Current Current
Buffers ID Position ID Position ID Position
2064 35 2ae050 34 121018 55 290000

Log Pages Snooped:
 From From From Staging Tossed
 Cache Disk File (LBC full)
 0 0 19704 0

CDR log records ignored : 0
DDR log lag state : On
Current DDR log lag action : logstage
DDR log staging disk space usage :0.26%
Maximum disk space allowed for log staging :1048576 KB
Maximum disk space ever used for log staging :2746.98 KB
Current staged log file count :21
Total dynamic log requests: 0

DDR events queue

Type TX id Partnum Row id

Related reference:
 cdr view

Copyright© 2020 HCL Technologies Limited

onstat -g dss: Print statistics for data sync threads

Prints detailed statistical information about the activity of individual data sync threads.

The data sync thread applies the transaction on the target server. Statistics include the number of applied transactions and failures and when the last transaction from a
source was applied.

The onstat -g dss command has the following formats:

onstat -g dss
onstat -g dss modifier

The following table describes the values for modifier.

Modifier Action

UDR Prints summary information about any UDR invocations by the data sync threads.

UDRx Prints expanded information (including a summary of error information) about any UDR invocations by the data sync threads. The Procid
column lists the UDR procedure ID.

In the following example, only one data sync thread is currently processing the replicated data. It has applied a total of one replicated transaction and the transaction was
applied at 2004/09/13 18:13:10. The Processed Time field shows the time when the last transaction was processed by this data sync thread.

-- Up 00:00:28 -- 28672 Kbytes
DS thread statistic
cmtTime Tx Tx Tx Last Tx

2078 Part VI: Administering

https://www.hcltech.com/

Name < local Committed Aborted Processed Processed Time
---------- ------- --------- ------- --------- -----------------
CDRD_1 0 1 0 1 (1095117190) 2004/09/13
18:13:10
 Tables (0.0%):
 Databases: test
CDR_DSLOCKWAIT = 1
CDR_DSCLOSEINTERVAL = 60

Related reference:
 onstat -g cdr: Print ER statistics

Copyright© 2020 HCL Technologies Limited

onstat -g dtc: Print statistics about delete table cleaner

Prints statistics about the delete table cleaner.

The delete table cleaner removes rows from the delete table when they are no longer needed.

The onstat -g dtc command is used primarily as a debugging tool and by Software Support.

In the following example, the thread name of the delete table cleaner is CDRDTCleaner. The total number of rows deleted is 1. The last activity on this thread occurred at
2010/08/13 18:47:19. The delete table for replicate rep1 was last cleaned at 2010/08/13 18:28:25.

-- Up 00:59:15 -- 28672 Kbytes
-- Delete Table Cleanup Status as of (1095119368) 2010/08/13 18:49:28
thread = 49 <CDRDTCleaner>
 rows deleted = 1
 lock timeouts = 0
 cleanup interval = 300
 list size = 3
 last activity = (1095119239) 2010/08/13 18:47:19

Id Database Last Cleanup Time
 Replicate Server Last Log Change
===
000001 test (1095118105) 2010/09/13
 18:28:25
 rep1 g_bombay (1095118105) 2010
 /08/13 18:28:25
 rep1 g_delhi (1095118105) 2010
 /08/13 18:28:25
000002 test <never cleaned>

Related reference:
 onstat -g cdr: Print ER statistics

Copyright© 2020 HCL Technologies Limited

onstat -g grp: Print grouper statistics

Prints statistics about the grouper.

The grouper evaluates the log records, rebuilds the individual log records into the original transaction, packages the transaction, and queues the transaction for
transmission.

Theonstat -g grp command is used primarily as a debugging tool and by Software Support.

The onstat -g grp command can take an optional modifier. The following table describes the values for the modifier.
Table 1. Modifiers for the onstat -g grp command

Modifier Action

A Prints all the information printed by the G, T, P, E, R, and S modifiers

E Prints grouper evaluator statistics

Ex Prints grouper evaluator statistics, expands user-defined routine (UDR) environments

G Prints grouper general statistics

L Prints grouper global list

Lx Prints grouper global list, expands open transactions

M Prints grouper compression statistics

Mz Clears grouper compression statistics

P Prints grouper table partition statistics

pager Prints grouper paging statistics

R Prints grouper replicate statistics

Part VI: Administering 2079

https://www.hcltech.com/
https://www.hcltech.com/

Modifier Action

S Prints grouper serial list head (The serial list head is the first transaction in the list, that is, the next transaction that will be placed in the send
queue.)

Sl Prints grouper serial list (The serial list is the list of transactions, in chronological order.)

Sx Prints grouper serial list, expands open transactions

T Prints grouper transaction statistics

UDR Prints summary information about any UDR invocations by the grouper threads

UDRx Prints expanded information (including a summary of error information) about any UDR invocations by the grouper threads The Procid column
lists the UDR procedure ID.

The following sample shows output for the onstat -g grp command:

Grouper at 0xb014018:
Last Idle Time: (1095122236) 2010/09/13 19:37:16
RSAM interface ring buffer size: 528
RSAM interface ring buffer pending entries: 0
Eval thread interface ring buffer size: 48
Eval thread interface ring buffer pending entries: 0
Log update buffers in use: 0
Max log update buffers used at once: 5
Log update buffer memory in use: 0
Max log update buffer memory used at once: 320
Updates from Log: 16
Log update links allocated: 512
Blob links allocated: 0
Conflict Resolution Blocks Allocated: 0
Memory pool cache: Empty
Last Tx to Queuer began : (1095118105) 2010/09/13 18:28:25
Last Tx to Queuer ended : (1095118105) 2010/09/13 18:28:25
Last Tx to Queuer log ID, position: 12,23
Open Tx: 0
Serial Tx: 0
Tx not sent: 0
Tx sent to Queuer: 2
Tx returned from Queuer: 2
Events sent to Queuer: 7
Events returned from Queuer: 7
Total rows sent to Queuer: 2
Open Tx array size: 1024
Table 'tab' at 0xae8ebb0 [CDRShadow]
Table 'tab12' at 0xae445e0 [CDRShadow]

Grouper Table Partitions:
 Slot 312...
 'tab' 1048888
 Slot 770...
 'tab12' 3145730
 Slot 1026...
 'tab12' 4194306
Repl links on global free list: 2
Evaluators: 3
 Evaluator at 0xb03d030 ID 0 [Idle:Idle] Protection:unused
 Eval iteration: 1264
 Updates evaluated: 0
 Repl links on local free list: 256
 UDR environment table at 0xb03d080
 Number of environments: 0
 Table memory limit : 25165
 Table memory used : 0
 SAPI memory limit : 131072
 SAPI memory used : 0
 Count failed UDR calls: 0
 Evaluator at 0xb03d0d8 ID 1 [Idle:Idle] Protection:unused
 Eval iteration: 1265
 Updates evaluated: 2
 Repl links on local free list: 254
 UDR environment table at 0xb03d128
 Number of environments: 0
 Table memory limit : 25165
 Table memory used : 0
 SAPI memory limit : 131072
 SAPI memory used : 0
 Count failed UDR calls: 0
 Evaluator at 0xb03d180 ID 2 [Idle:Idle] Protection:unused
 Eval iteration: 1266
 Updates evaluated: 4
 Repl links on local free list: 256
 UDR environment table at 0xb03d1d0
 Number of environments: 0
 Table memory limit : 25165
 Table memory used : 0
 SAPI memory limit : 131072
 SAPI memory used : 0
 Count failed UDR calls: 0
 Total Free Repl links 768

Replication Group 6553601 at 0xb0a8360
 Replication at 0xb0a82b0 6553601:6553601 (tab) [NotifyDS FullRowOn]
 Column Information [CDRShadow VarUDTs InOrder Same]
 CDR Shadow: offset 0, size 8

2080 Part VI: Administering

 In Order: offset 8, size 10
Replication Group 6553602 at 0xb0a8480
 Replication at 0xb0a83d0 6553602:6553602 (tab12)[Ignore Stopped NotifyDS FullRowOn]
 Column Information [CDRShadow VarUDTs InOrder Same]
 CDR Shadow: offset 0, size 8
 In Order: offset 8, size 16

The following example shows output for the onstat -g grp E command. The field Evaluators: 4 indicates that there are four evaluation threads configured for the system.

Repl links on global free list: 0 Evaluators: 4
 Evaluator at 0xba71840 ID 0 [Idle:Idle] Protection: unused
 Eval iteration: 1007
 Updates evaluated: 0
 Repl links on local free list: 256
 UDR environment table at 0xba71890
 Number of environments: 0
 Table memory limit : 16777
 Table memory used : 0
 SAPI memory limit : 131072
 SAPI memory used : 0
 Count failed UDR calls: 0
 Evaluator at 0xba718f0 ID 1 [Idle:Idle] Protection: unused
 Eval iteration: 1007
 Updates evaluated: 0
 Repl links on local free list: 256
 UDR environment table at 0xba71940
 Number of environments: 0
 Table memory limit : 16777
 Table memory used : 0
 SAPI memory limit : 131072
 SAPI memory used : 0
 Count failed UDR calls: 0

 Evaluator at 0xba8c260 ID 2 [Idle:Idle] Protection: unused
 Eval iteration: 1007
 Updates evaluated: 0
 Repl links on local free list: 256
 UDR environment table at 0xba8c2b0
 Number of environments: 0
 Table memory limit : 16777
 Table memory used : 0
 SAPI memory limit : 131072
 SAPI memory used : 0
 Count failed UDR calls: 0
 Evaluator at 0xbaac2a0 ID 3 [Idle:Idle] Protection: unused
 Eval iteration: 1007
 Updates evaluated: 0
 Repl links on local free list: 256
 UDR environment table at 0xbaac2f0
 Number of environments: 0
 Table memory limit : 16777
 Table memory used : 0
 SAPI memory limit : 131072
 SAPI memory used : 0
 Count failed UDR calls: 0
Total Free Repl links 1024

The following example shows output for the onstat -g grp G command.

Grouper at 0xb8ab020:
Last Idle Time: (1095115397) 2010/09/13 17:43:17
RSAM interface ring buffer size: 1040
RSAM interface ring buffer pending entries: 0
Eval thread interface ring buffer size: 64
Eval thread interface ring buffer pending entries: 0
Log update buffers in use: 0
Max log update buffers used at once: 1
Log update buffer memory in use: 0
Max log update buffer memory used at once: 64
Updates from Log: 1
Log update links allocated: 512
Blob links allocated: 0
Conflict Resolution Blocks Allocated: 0
Memory pool cache: Empty

The following example shows output for the onstat -g grp P command. In the following example, the grouper is evaluating rows for the account, teller, and customer
tables.

Table 'teller' at 0xb851480 [CDRShadow VarChars]
Table 'account' at 0xb7faad8 [CDRShadow VarChars VarUDTs Floats
 Blobs]
Table 'customer' at 0xbbe67a8 [CDRShadow VarChars VarUDTs]
Grouper Table Partitions:
 Slot 387...
 'account' 1048707
 Slot 389...
 'teller' 1048709
 Slot 394...
 'customer' 1048714

The following example shows output for the onstat -g grp pager command. The sample output shows the grouper large transaction evaluation statistics.

Grouper Pager statistics:
Number of active big transactions: 0

Part VI: Administering 2081

Total number of big transactions processed: 0
Spool size of the biggest transaction processed: 0 Bytes

The following example shows output for the onstat -g grp R command. In this example, the grouper is configured to evaluate rows for replicates with IDs 6553601 and
6553602 (you can use the onstat -g cat repls command to obtain the replicate names). The Ignore attribute of replicate ID 6553602 shows that the grouper is currently
not evaluating rows for this replicate. This can happen if the replicate state is not ACTIVE. You can obtain the replicate state using the onstat -g cat repls command.

Replication Group 6553601 at 0xb0a8360
 Replication at 0xb0a82b0 6553601:6553601 (tab) [NotifyDS FullRowOn]
 Column Information [CDRShadow VarUDTs InOrder Same]
 CDR Shadow: offset 0, size 8
 In Order: offset 8, size 10
Replication Group 6553602 at 0xb0a8480
 Replication at 0xb0a83d0 6553602:6553602 (tab12)[Ignore Stopped NotifyDS FullRowOn]
 Column Information [CDRShadow VarUDTs InOrder Same]
 CDR Shadow: offset 0, size 8
 In Order: offset 8, size 16

The following example shows output for the onstat -g grp T command. In this example, the grouper evaluated and queued 1 transaction to the send queue. The Tx sent to
Queuer field shows the total number of transactions evaluated and queued to the send queue for propagating to all the replicate participants. The Total rows sent to
Queuer field shows the total number of rows queued to the send queue for propagating to all the replicate participants.

Last Tx to Queuer began : (1095116676) 2010/09/13 18:04:36
Last Tx to Queuer ended : (1095116676) 2010/09/13 18:04:36
Last Tx to Queuer log ID, position: 5,3236032
Open Tx: 0
Serial Tx: 0
Tx not sent: 0
Tx sent to Queuer: 1
Tx returned from Queuer: 0
Events sent to Queuer: 0
Events returned from Queuer: 0
Total rows sent to Queuer: 1
Open Tx array size: 1024

Related reference:
 onstat -g cdr: Print ER statistics

Copyright© 2020 HCL Technologies Limited

onstat -g nif: Print statistics about the network interface

Prints statistics about the network interface.

>>-onstat -g nif--+-----------+--------------------------------><
 +-all-------+
 +-sites-----+
 +-server_ID-+
 '-sum-------'

The output shows which sites are connected and provides a summary of the number of bytes sent and received by each site. This can help you determine if a site is not
sending or receiving bytes.

The onstat -g nif option is used primarily as a debugging tool and by Software Support.

The following table describes the options for onstat -g nif command:
Table 1. Options for the onstat -g nif command

Option Action

all Prints the sum and the sites.

sites Prints the NIF site context blocks.

server_ID Prints information about the replication server with that server ID.

sum Prints the sum of the number of buffers sent and received for each site.

Example Output
The following example shows output for the onstat -g nif command. In this example, the local server is connected to the server group g_bombay and its CDR ID is 200.
The connection status is running. The connection between the two servers is running, but the replication state on the g_bombay server is suspended. The server group
g_bombay internal NIF version is 9. The local server has sent three messages to the server g_bombay and it has received two messages from g_bombay.

$ onstat -g nif

NIF anchor Block: af01610
 nifGState RUN
 RetryTimeout 300

CDR connections:
 Id Name State Version Sent Received

 200 g_bombay RUN,SUSPEND 9 3 2

2082 Part VI: Administering

https://www.hcltech.com/

Output Description
NIF anchor Block

The address of the network storage block.
nifGState

The connection state.
RetryTimeout

The number of seconds before Enterprise Replication attempts to retry a dropped connection.
Id

The Enterprise Replication ID number for the server.
Name

The name of the server group.
State

The connection state between the local server and the listed server. If multiple states are shown the second state designates the replication state.
Version

The internal version number of the NIF component on the listed server.
Sent

The number of messages the local server has sent to the listed server.
Received

The number of messages received by the local server from the listed server.

Related reference:
 onstat -g cdr: Print ER statistics

Copyright© 2020 HCL Technologies Limited

onstat -g que: Print statistics for all ER queues

Prints statistics that are common to all queues.

The queuer manages the logical aspects of the queue. The RQM (reliable queue manager) manages the physical queue.

The onstat -g que command is used primarily as a debugging tool and by Software Support.

In the following example, Element high water mark shows the maximum size of the transaction buffer header data (metadata) allowed in memory, shown in kilobytes.
Data high water mark shows the maximum size of transactions for user data allowed in memory, shown in kilobytes.

CDR Queuer Statistics:
 Queuer state : 2
 Local server : 100
 Element high water mark : 131072
 Data high water mark : 131072
 # of times txns split : 0
 Total # of split txns : 0
 allowed log delta : 30
 maximum delta detected : 4
 Control Key : 0/00000007
 Synchronization Key : 0/00000003
Replay Table:
 Replay Posn (Disk value): 12/00000018 (12/00000018)
 Replay save interval : 10
 Replay updates : 10
 Replay # saves : 17
 Replay last save time : (1095118157) 2010/09/13 18:29:17
Send Handles
 Server ID : 200
 Send state,count : 0,0
 RQM hdl for trg_send: Traverse handle (0xaf8e018) for thread CDRACK_0 at Head_of_Q,
 Flags: None
 RQM hdl for control_send: Traverse handle (0xaf74018)
 for thread CDRACK_0 at Head_of_Q, Flags: None
 RQM hdl for sync_send: Traverse handle (0xadc6018) for thread CDRACK_0 at Head_of_Q,
 Flags: None
 Server ID : 200
 Send state,count : 0,0
 RQM hdl for trg_send: Traverse handle (0xac8b018) for thread CDRACK_1 at Head_of_Q,
 Flags: None
 RQM hdl for control_send: Traverse handle (0xb1ce018) for thread CDRACK_1 at Head_of_Q,
 Flags: None
 RQM hdl for sync_send: Traverse handle (0xadc5018) for thread CDRACK_1 at Head_of_Q,
 Flags: None
 Server ID : 200
 Send state,count : 0,0
 RQM hdl for trg_send: Traverse handle (0xaea71d8) for thread CDRNsA200 at Head_of_Q,
 Flags: None
 RQM hdl for ack_send: Traverse handle (0xae8c1d8) for thread CDRNsA200 at Head_of_Q,
 Flags: None
 RQM hdl for control_send: Traverse handle (0xae9e1d8) for thread CDRNsA200 at Head_of_Q,
 Flags: None

Related reference:
 onstat -g cdr: Print ER statistics

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 2083

https://www.hcltech.com/
https://www.hcltech.com/

onstat -g rcv: Print statistics about the receive manager

Prints statistics about the Enterprise Replication receive manager. The receive manager is a set of service routines between the receive queues and data sync. The onstat -
g rcv command is used primarily as a debugging tool and by Software Support. If you suspect that acknowledgment messages are not being applied, you can run this
command.

Syntax

>>-onstat -g--rcv--+----------+--------------------------------><
 +-serverid-+
 '-full-----'

The serverID option specifies a replication server.

The full option prints all statistics.

The following table describes the fields in the Receive Manager global section of the onstat -g rcv command output.
Table 1. Receive Manager section of the onstat -g rcv output

Field Description

cdrRM_DSParallelPL Shows the current level of Apply Parallelism, 0 (zero) being the highest

cdrRM_DSNumLockTimeout cdrRM_DSNumLockRB
cdrRM_DSNumDeadLocks

Indicate the number of collisions between various apply threads

cdrRM_acksinList Shows acknowledgments that are received but not yet processed

The Receive Parallelism Statistics section of the onstat -g rcv command output shows a summary of the data sync threads by source server.
Table 2. Receive Parallelism Statistics section of the onstat -g rcv output

Field Description

Server Source server ID

Concur Number of transactions currently being applied in parallel

Tot.Txn. Total number of transactions that are applied from this source server

Pending Number of current transactions in the pending list for this source server

Active Number of current transactions currently being applied from this source server

MaxPnd Maximum number of transactions in the pending list queue

MaxAct Maximum number of transactions in the active list queue

AvgPnd Average depth of the pending list queue

AvgAct Average depth of the active list queue

CommitRt Commit rate of transaction from this source server, based on transactions per
second

The Statistics by Source section of the onstat -g rcv command output shows the following information for each source server. For each replicate ID:

The number of transactions that are applied from the source servers
The number of inserts, deletes, and updates within the applied transactions
The timestamp of the most recently applied transaction on the target server
The timestamp of the commit on the source server for the most recently applied transaction

The following example shows output for the onstat -g rcv full command.

Receive Manager global block 0D452018
 cdrRM_inst_ct: 5
 cdrRM_State: 00000000
 cdrRM_numSleepers: 3
 cdrRM_DsCreated: 3
 cdrRM_MinDSThreads: 1
 cdrRM_MaxDSThreads: 4
 cdrRM_DSBlock 0
 cdrRM_DSParallelPL 0
 cdrRM_DSFailRate 0.000000
 cdrRM_DSNumRun: 35
 cdrRM_DSNumLockTimeout 0
 cdrRM_DSNumLockRB 0
 cdrRM_DSNumDeadLocks 0
 cdrRM_DSNumPCommits 0
 cdrRM_ACKwaiting 0
 cdrRM_totSleep: 77
 cdrRM_Sleeptime: 153
 cdrRM_Workload: 0
 cdrRM_optscale: 4
 cdrRM_MinFloatThreads: 2
 cdrRM_MaxFloatThreads: 7
 cdrRM_AckThreadCount: 2
 cdrRM_AckWaiters: 2
 cdrRM_AckCreateStamp:Wed Sep 08 11:47:49 2010
 cdrRM_DSCreateStamp: Wed Sep 08 14:16:35 2010
 cdrRM_acksInList: 0

2084 Part VI: Administering

 cdrRM_BlobErrorBufs: 0

 Receive Parallelism Statistics
 Server Concur Tot.Txn. Pending Active MaxPnd MaxAct AvgPnd AvgAct CommitRt
 1 8 1 0 0 1 1 1.00 1.00 0.06

 Tot Pending:0 Tot Active:0 Avg Pending:1.00 Avg Active:1.00
 Commit Rate:0.06

 Time Spent In RM Parallel Pipeline Levels
 Lev. TimeInSec Pcnt.
 0 40 100.00%
 1 0 0.00%
 2 0 0.00%

 Statistics by Source

 Server 1
 Repl Txn Ins Del Upd Last Target Apply Last Source Commit
 65551 1 0 0 2 2012/10/29 09:52:23 2012/10/29 09:52:22

 No Replicates Currently Being Throttled

If a replicate encounters a deadlock situation or otherwise reduces the degree of parallelism by which transactions are applied, the Statistics by Source section shows the
replicate and the maximum number of concurrent transactions that are possible.

 Statistics by Source

 Server 1
 Repl Txn Ins Del Upd Last Target Apply Last Source Commit
 65551 1 0 0 2 2012/10/29 09:52:23 2012/10/29 09:52:22

 Replicates Being Throttled
 Repid Max
 Concurrent
 65551 3

If the replicate includes a TimeSeries column, a TimeSeries Statistics by Source section shows statistics about the time series elements that are applied on target servers:

TimeSeries Statistics by Source

Server 100
Repl Txn TSIns TSDel TSCmd Last Target Apply Last Source Commit
65536 672 672 0 0 2012/08/27 15:04:33 2012/08/27 15:04:32

Related reference:
 onstat -g cdr: Print ER statistics

Copyright© 2020 HCL Technologies Limited

onstat -g rep: Prints the schedule manager queue

Prints events that are in the queue for the schedule manager.

The onstat -g rep command is used primarily as a debugging tool and by Software Support.

Theonstat -g rep command takes an optional replicate name to limit the output to those events originated by the specified replicate.

The following example shows sample output for the onstat -g rep command:

Schedule manager Cb: add7e18 State: 0x8100 <CDRINIT,CDRRUNNING>

Event Thread When
==
CDRDS CDREvent 00:00:20

Related reference:
 cdr swap shadow

onstat -g cdr: Print ER statistics

Copyright© 2020 HCL Technologies Limited

onstat -g rqm: Prints statistics for RQM queues

Prints statistics and contents of the low-level queues (send queue, receive queue, ack send queue, sync send queue, and control send queue) managed by the Reliable
Queue Manager (RQM).

The RQM manages the insertion and removal of items to and from the various queues. The RQM also manages spooling of the in-memory portions of the queue to and
from disk. The onstat -g rqm command displays the contents of the queue, size of the transactions in the queue, how much of the queue is in memory and on disk, the
location of various handles to the queue, and the contents of the various progress tables. You can choose to print information for all queues or for just one queue by using
one of the modifiers described below.

If a queue is empty, no information is printed for that queue.

The onstat -g rqm can take an optional modifier. The following table describes the values for the modifier.

Part VI: Administering 2085

https://www.hcltech.com/
https://www.hcltech.com/

Table 1. Values for the modifier to the onstat -g rqm command

Modifier Action

ACKQ Prints the ack send queue

CNTRLQ Prints the control send queue

RECVQ Prints the receive queue

SBSPACES Prints detailed statistical information about the sbspaces configured for CDR_QDATA_SBSPACE.

SENDQ Prints the send queue

SYNCQ Prints the sync send queue

FULL Prints full information about every in-memory transaction for every queue

BRIEF Prints a brief summary of the number of transactions in each of the queues and the replication servers for which the data is queued Use
this modifier to quickly identify sites where a problem exists. If large amounts of data are queued for a single server, then that server is
probably down or off the network.

VERBOSE Prints all the buffer headers in memory

When you specify a modifier to select a specific queue, the command prints all the statistics for that queue and information about the first and last in-memory
transactions for that queue. When you select the SBSPACES modifier, the command prints information about the sbspaces being used for replication, including how full
those sbspaces are.

The other modifiers of the onstat -g rqm command are used primarily as a debugging tool and by Technical Support.

The output for the SENDQ modifier contains the following sections:

The current statistics section (Transaction spool name through Pending Txn Data): Contains information about the current contents of the queue, such as
how many bytes are contained in the queue, how many transactions are in the queue, how many transactions are currently in memory, how many have been
spooled to disk, how many exist only on disk, and so on. The Insert Stamp field value is used to maintain the order of the transactions within the queue. The Size
of Data in queue field shows the size of the queue when combining the in-memory transactions with the spool-only transactions. The Pending Txn Buffers
field contains information about transactions that are in the process of being queued into the send queue.
The historical statistics section (Max Real memory data used through Total Txn Lookups): contains a summary of what has been placed in the queue in the
past. The Max Real memory data used field contains the largest in memory size of the queue. The Total Txn Recovered field shows the transactions that
existed only in the spool when the server was started. The Total Txns deleted field shows the number of transactions that have been removed from the queue.
The Total Txns duplicated field contains the number of times attempted to queue a transaction that had already been processed. The Total Txn Lookups
field is a counter of the number of times that an Enterprise Replication thread attempted to read a transaction.
The Progress Table section: contains information on what is currently queued, to which server it is queued for, and what has been acknowledged from each of
the participants of the replicate. The first part of the progress table section is a summary. Below the summary section is a list of the servers and group entries that
contain what is currently queued for each server, what has been sent to the remote server, and what has been acknowledged from the remote server. The contents
of the ACKed and Sent columns contains the key of the last transaction that was acknowledged from the remote server or sent to that server. The key is a multi-
part number consisting of source_node/unique_log_id/logpos/incremental number. The transaction section contains the first and last transaction in the queue that
are currently in memory. The NeedAck field shows from which server the transaction is waiting for an acknowledgment. You can use this bitmap mask with the
output from the onstat -g cat command to determine the name of the server which server Enterprise Replication is waiting on for an acknowledgment.
The Transverse handle section: contains the position within the queue that any thread is currently processing. Each thread that attempts to read a transaction
from the queue, or to place a transaction into the queue must first allocate a handle. This handle is used to maintain the positioning within the queue.

The following example shows output for the onstat -g rqm SENDQ command.

> onstat -g rqm SENDQ

CDR Reliable Queue Manager (RQM) Statistics:

RQM Statistics for Queue (0xb956020) trg_send
 Transaction Spool Name: trg_send_stxn
 Insert Stamp: 9/0
 Flags: SEND_Q, SPOOLED, PROGRESS_TABLE, NEED_ACK
 Txns in queue: 0
 Log Events in queue: 0
 Txns in memory: 0
 Txns in spool only: 0
 Txns spooled: 0
 Unspooled bytes: 0
 Size of Data in queue: 0 Bytes
 Real memory in use: 0 Bytes
 Pending Txn Buffers: 0
 Pending Txn Data: 0 Bytes
 Max Real memory data used: 385830 (4194304) Bytes
 Max Real memory hdrs used 23324 (4194304) Bytes
 Total data queued: 531416 Bytes
 Total Txns queued: 9
 Total Txns spooled: 0
 Total Txns restored: 0
 Total Txns recovered: 0
 Spool Rows read: 0
 Total Txns deleted: 9
 Total Txns duplicated: 0
 Total Txn Lookups: 54

 Progress Table:
 Progress Table is Stable
 On-disk table name............: spttrg_send
 Flush interval (time).........: 30
 Time of last flush............: 1207866706
 Flush interval (serial number): 1000
 Serial number of last flush...: 1
 Current serial number.........: 5

2086 Part VI: Administering

Server Group Bytes Queued Acked Sent
--
 20 0xa0002 12 efffffff/efffffff/efffffff/efffffff - a/e/1510a1/0
 20 0xa0003 0 a/e/4ca1b8/0 - a/e/4ca1b8/0
 30 0xa0004 0 a/e/4ca1b8/0 - a/e/4ca1b8/0
 20 0xa0004 0 a/e/4ca1b8/0 - a/e/4ca1b8/0
 20 0xa0001 0 a/d/6e81f8/0 - a/d/6e81f8/0

First Txn (0x0D60C018) Key: 1/9/0x000d4bb0/0x00000000
 Txn Stamp: 1/0, Reference Count: 0.
 Txn Flags: Notify
 Txn Commit Time: (1094670993) 2004/09/08 14:16:33
 Txn Size in Queue: 5908
 First Buf's (0x0D31C9E8) Queue Flags: Resident
 First Buf's Buffer Flags: TRG, Stream
 NeedAck: Waiting for Acks from <[0004]>
 No open handles on txn.

 Last Txn (0x0D93A098) Key: 1/9/0x00138ad8/0x00000000
 Txn Stamp: 35/0, Reference Count: 0.
 Txn Flags: Notify
 Txn Commit Time: (1094671237) 2004/09/08 14:20:37
 Txn Size in Queue: 6298
 First Buf's (0x0D92FFA0) Queue Flags: Resident
 First Buf's Buffer Flags: TRG, Stream
 NeedAck: Waiting for Acks from <[0004]>
 Traverse handle (0xbca1a18) for thread CDRGeval0 at Head_of_Q, Flags: None
 Traverse handle (0xb867020) for thread CDRACK_1 at Head_of_Q, Flags: None
 Traverse handle (0xbcbd020) for thread CDRGeval1 at Head_of_Q, Flags: None
 Traverse handle (0xbd08020) for thread CDRGeval3 at Head_of_Q, Flags: None
 Traverse handle (0xbe511c8) for thread CDRGeval2 at Head_of_Q, Flags: None
 Traverse handle (0xbe58158) for thread CDRACK_0 at Head_of_Q, Flags: None

The following output is an example of the onstat -g rqm SBSPACES command.

onstat -g rqm sbspaces

Blocked:DDR

RQM Space Statistics for CDR_QDATA_SBSPACE:

name/addr number used free total %full pathname
0x46581c58 5 311 1 312 100 /tmp/amsterdam_sbsp_base
amsterdam_sbsp_base5 311 1 312 100

0x46e54528 6 295 17 312 95 /tmp/amsterdam_sbsp_2
amsterdam_sbsp_26 295 17 312 95

0x46e54cf8 7 310 2 312 99 /tmp/amsterdam_sbsp_3
amsterdam_sbsp_37 310 2 312 99

0x47bceca8 8 312 0 312 100 /tmp/amsterdam_sbsp_4
amsterdam_sbsp_48 312 0 312 100

In this example, the sbspaces are all either full or nearly full.

Related tasks:
 Monitoring Disk Usage for Send and Receive Queue Spool

Related reference:
 onstat -g cdr: Print ER statistics

Copyright© 2020 HCL Technologies Limited

onstat -g sync: Print statistics about synchronization

Prints statistics about the active synchronization process.

The following example shows output for the onstat -g sync command.

Prim Sync St. Shadow Flag Stat Block EndBlk
Repl Source Repl Num Num

655361 20 0 1310729 2 0 592 600

Output Description
Prim Repl

Replicate number of the replicate being synchronized
Sync Source

Source server of the sync
St

Sync replicate state
Shadow Repl

The shadow replicate used to perform the sync

Part VI: Administering 2087

https://www.hcltech.com/

Flag
Internal flags:

0x02 = external sync
0x04 = shutdown request has been issued
0x08 = abort has occurred
0x010 = a replicate stop has been requested
0X020 = shadow or primary replicate has been deleted

Stat
Resync job state

Block num
Last block applied on targets (on source always 0)

EndBlock Num
Last block in resync process. Marks the end of the sync scan on the target. A value of' -2 indicates that the scan is still in progress, and the highest block number is
not yet known.

Additional fields for forwarded rows:

ServID
Server where forwarded row originated

fwdLog ID
Originator's log ID of the forwarded row

fwdLog POS
Originator's log position of the forwarded row

endLog ID
Operation switches back to normal at this point

endLog POS
Operation switches back to normal at this log position

complete flag
Set to 1 after normal processing resumes for the originating source

Copyright© 2020 HCL Technologies Limited

syscdr Tables

These tables in the syscdr database contain progress information about consistency checking and synchronization operations.

The replcheck_stat Table
 The replcheck_stat table contains the progress information for consistency check and synchronization operations that specified a progress report task name.

The replcheck_stat_node Table
 The replcheck_stat_node table contains the progress information for the consistency check and synchronization operations with progress report task names on a

particular replication server.

Copyright© 2020 HCL Technologies Limited

The replcheck_stat Table

The replcheck_stat table contains the progress information for consistency check and synchronization operations that specified a progress report task name.

Column Type Purpose

replcheck_id serial Unique key for the task and replicate combination.

replcheck_name varchar(32) The task name.

replcheck_replname varchar(128) The replicate name.

replcheck_type char(1) The task type:

C = consistency check
S = synchronization

replcheck_numrows integer The total number of rows in the table.

replcheck_rows_processed integer The number of rows that were processed to correct
inconsistent rows.

replcheck_status char(1) The status of this task:

A = Aborted
D = Defined
R = Running
C = Completed
F = Completed, but inconsistent
W = Pending complete

2088 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Column Type Purpose

replcheck_start_time datetime year to second The time that the sync or check task for the replicate
started running.

replcheck_end_time datetime year to second The time that sync or check task for the replicate
completed.

Related reference:
 The replcheck_stat_node Table

cdr stats check
cdr stats sync

Copyright© 2020 HCL Technologies Limited

The replcheck_stat_node Table

The replcheck_stat_node table contains the progress information for the consistency check and synchronization operations with progress report task names on a
particular replication server.

Column Type Purpose

replnode_replcheck_id integer Server group ID (CDR ID).

replcheck_node_id integer Unique key for the task, replicate, and server
combination.

replcheck_order integer A number to provide consistent ordering for display
purposes.

replcheck_node_name varchar(128) The name of the replication server.

replnode_table_owner varchar(128) The owner of table being synchronized or checked.

replnode_table_name varchar(128) The name of the table being synchronized or checked.

replnode_row_count integer The number of rows in the participant.

replnode_processed_rows integer The number of rows processed to correct inconsistent
rows.

replnode_missing_rows integer The number of rows on the reference server that do
not exist on the target server.

replnode_extra_rows integer The number of rows on the target server that do not
exist on the reference server.

replnode_mismatched_rows integer The number of rows on the target server that are not
consistent with the corresponding rows on the
reference server.

replnode_extra_child_rows integer The number of child rows that required processing on
the target nodes.

Related reference:
 The replcheck_stat Table

cdr stats check
cdr stats sync

Copyright© 2020 HCL Technologies Limited

SMI Tables for Enterprise Replication Reference

The system-monitoring interface (SMI) tables in the sysmaster database provide information about the state of the database server. Enterprise Replication uses the
following SMI tables.

The syscdr_ats Table
 The syscdr_ats table contains the first ten lines of the transaction header for each ATS file.

The syscdr_atsdir Table
 The syscdr_atsdir table contains information about the contents of the ATS directory.

The syscdr_ddr Table
 The syscdr_ddr table contains information about the status of log capture and the proximity or status of transaction blocking (DDRBLOCK) or transaction spooling.

The syscdr_nif Table
 The syscdr_nif table contains information about network connections and the flow of data between Enterprise Replication servers.

The syscdr_rcv Table
 The syscdr_rcv table contains information about transactions being applied on target servers and acknowledgments being sent from target servers.

The syscdr_ris Table
 The syscdr_ris table contains the first ten lines of the transaction header for each RIS file.

The syscdr_risdir Table
 The syscdr_risdir table contains information about the contents of the RIS directory.

The syscdr_rqm Table
 The syscdr_rqm table contains statistics and contents of the low-level queues (send queue, receive queue, ack send queue, sync send queue, and control send

queue) managed by the Reliable Queue Manager (RQM).

Part VI: Administering 2089

https://www.hcltech.com/
https://www.hcltech.com/

The syscdr_rqmhandle Table
The syscdr_rqmhandle table contains information about which transaction is being processed in each queue. The handle marks the position of the thread in the
queue.
The syscdr_rqmstamp Table
The syscdr_rqmstamp table contains information about which transaction is being added to each queue.
The syscdr_state Table
The syscdr_state table contains status on Enterprise Replication, data capture, data apply, and the network between the servers.
The syscdrack_buf Table
The syscdrack_buf table contains information about the buffers that form the acknowledgment queue.
The syscdrack_txn Table
The syscdrack_txn table contains information about the acknowledgment queue.
The syscdrctrl_buf Table
The syscdrctrl_buf table contains buffers that provide information about the control queue. The control queue is a stable queue that contains control messages for
the replication system.
The syscdrctrl_txn Table
The syscdrctrl_txn table contains information about the control queue. The control queue is a stable queue that contains control messages for the replication
system.
The syscdrerror Table
The syscdrerror table contains information about errors that Enterprise Replication has encountered.
The syscdrlatency Table
The syscdrlatency table contains statistics about Enterprise Replication latency (the time it takes to replicate transactions).
The syscdrpart Table
The syscdrpart table contains participant information.
The syscdrprog Table
The syscdrprog table lists the contents of the Enterprise Replication progress tables.
The syscdrq Table
The syscdrq table contains information about Enterprise Replication queues.
The syscdrqueued Table
The syscdrqueued table contains data-queued information.
The syscdrrecv_buf Table
The syscdrrecv_buf table contains buffers that provide information about the data-receive queue.
The syscdrrecv_stats Table
The syscdrrecv_stats table contains statistics about the receive manager. The receive manager is a set of service routines between the receive queues and data
sync.
The syscdrrecv_txn Table
The syscdrrecv_txn table contains information about the data receive queue. The receive queue resides in memory.
The syscdrrepl Table
The syscdrrepl table contains replicate information.
The syscdrreplset Table
The syscdrreplset table contains replicate set information.
The syscdrs Table
The syscdrs table contains information about database servers in an Enterprise Replication domain.
The syscdrsend_buf Table
The syscdrsend_buf table contains buffers that give information about the send queue.
The syscdrsend_txn Table
The syscdrsend_txn table contains information about the send queue.
The syscdrserver Table
The syscdrserver table contains information about database servers declared to Enterprise Replication.
The syscdrsync_buf Table
The syscdrsync_buf table contains buffers that give information about the synchronization queue. Enterprise Replication uses this queue only when defining a
replication server and synchronizing its global catalog with another replication server.
The syscdrsync_txn Table
The syscdrsync_txn table contains information about the synchronization queue. This queue is currently used only when defining a replication server and
synchronizing its global catalog with another replication server. The synchronization queue is an in-memory-only queue.
The syscdrtsapply table
The syscdrtsapply table lists statistics about the time series elements that are applied on target servers.
The syscdrtx Table
The syscdrtx table contains information about Enterprise Replication transactions.
Enterprise Replication Queues

Related concepts:
 Monitor and troubleshooting Enterprise Replication

Copyright© 2020 HCL Technologies Limited

The syscdr_ats Table

The syscdr_ats table contains the first ten lines of the transaction header for each ATS file.

Column Type Description

ats_ris integer Pseudo row ID.

ats_file char(128) ATS file name.

ats_sourceid integer CDRID of source server.

ats_source char(128) Source server name.

2090 Part VI: Administering

https://www.hcltech.com/

Column Type Description

ats_committime char(20) Time when the transaction was committed on the source server.

ats_targetid integer CDRID of the target server.

ats_target char(128) Target server name.

ats_receivetime char(20) Time when the transaction was received on the target server .

ats_risfile char(128) Corresponding RIS file name.

ats_line1 char(200) The first line of the transaction header information.

ats_line2 char(200) The second line of the transaction header information.

ats_line3 char(200) The third line of the transaction header information.

ats_line4 char(200) The fourth line of the transaction header information.

ats_line5 char(200) The fifth line of the transaction header information.

ats_line6 char(200) The sixth line of the transaction header information.

ats_line7 char(200) The seventh line of the transaction header information.

ats_line8 char(200) The eighth line of the transaction header information.

ats_line9 char(200) The ninth line of the transaction header information.

ats_line10 char(200) The tenth line of the transaction header information.

Copyright© 2020 HCL Technologies Limited

The syscdr_atsdir Table

The syscdr_atsdir table contains information about the contents of the ATS directory.

Column Type Description

atsd_rid integer Pseudo row ID

atsd_file char(128) ATS file name

atsd_mode integer File mode

atsd_size integer File size in bytes

atsd_atime datetime Last access time

atsd_mtime datetime Last modified time

atsd_ctime datetime Create time

Copyright© 2020 HCL Technologies Limited

The syscdr_ddr Table

The syscdr_ddr table contains information about the status of log capture and the proximity or status of transaction blocking (DDRBLOCK) or transaction spooling.

Column Type Description

ddr_state char(24) The current state of log capture:

Running = Log capture is running normally
Down = Log capture is not running
Uninitialized = The server is not a source server for replication

ddr_snoopy_loguniq integer The current log ID at which transactions are being captured for replication

ddr_snoopy_logpos integer The current log position at which transactions are being captured for replication

ddr_replay_loguniq integer The current log ID at which transactions have been applied

ddr_replay_logpos integer The current log position at which transactions have been applied. This is the position from which the log
would need to be replayed to recover Enterprise Replication if Enterprise Replication or the database
server shut down.

ddr_curr_loguniq integer The current log ID

ddr_curr_logpos integer The current log position

ddr_logsnoop_cached integer The number of log pages that log capture read from its cache

ddr_logsnoop_disk integer The number of times that log capture had to read log pages from disk

ddr_log_tossed integer The number of log pages that could not be stored in the cache because the log capture buffer cache was
full

Part VI: Administering 2091

https://www.hcltech.com/
https://www.hcltech.com/

Column Type Description

ddr_logs_ignored integer The number of log records that were ignored because they were extensible log records unknown to
Enterprise Replication

ddr_dlog_requests integer The number of times that a dynamic log was requested to be created to prevent DDRBLOCK state

ddr_total_logspace integer The total number of log pages in the replication system

ddr_logspace2wrap integer The number of log spaces until log capture runs into a log wrap

ddr_logpage2block integer The number of log pages until log capture runs into a DDRBLOCK state

ddr_logneeds integer The number of log pages necessary to prevent a log wrap to avoid a DDRBLOCK state

ddr_logcatchup integer The number of log pages necessary to process before going out of a DDRBLOCK state

ddr_loglag_state char(10) The state of DDR log lag: on or off

ddr_cur_loglag_act char(24) The action being taken to prevent log wrapping

ddr_logstage_diskusage float The amount of used log staging disk space as a percentage of the total space

ddr_logstage_hwm4disk integer The maximum allowable disk space for log staging in KB

ddr_logstage_maxused float The maximum disk space ever used for log staging in KB

ddr_logstage_lfile_cnt integer The number of staged log files

Copyright© 2020 HCL Technologies Limited

The syscdr_nif Table

The syscdr_nif table contains information about network connections and the flow of data between Enterprise Replication servers.

Column Type Description

nif_connid integer The CDRID of the peer node

nif_connname char(24) The name (group name) of the peer node

nif_state char(24) The status of the Enterprise Replication network:

Admin Close = Enterprise Replication was stopped by user by issuing the cdr stop command
Connected = The connection is active
Connecting = The connection is being established
Disconnected = The connection was explicitly disconnected
Local server = The connection is to the local server.
Logic Error = The connection disconnected due to an error during message transmission
Never Connected = The servers have never had an active connection
Start Error = The connection disconnected due to an error while starting a thread to receive remote
messages
Timeout = The connection attempt has timed out, but will be reattempted

nif_connstate char(24) The connection state:

ABORT = The connection is being aborted.
BLOCK = The connection has been blocked from transmitting data by the other server.
INIT = The connection is being initialized.
INTR = The connection has been interrupted.
RUN = The connection is active.
SHUT = The connection is shutting down in an orderly way.
SLEEP = The connection is waiting to receive data.
STOP = The connection is stopped.
SUSPEND = The connection has been suspended.
TIMEOUT = The connection has timed out.

nif_version integer The network protocol of this connection used to convert the message formats between dissimilar releases
of the server, for example, IBM® Informix® 7 and IBM Informix 9

nif_msgsent integer Number of messages sent to the peer server

nif_bytessent integer Number of bytes sent to the peer server

nif_msgrcv integer Number of messages received from the peer server

nif_bytesrcv integer Number of bytes received from the peer server

nif_compress integer Compression level for communications

-1 = no compression
0 = compress only if the target server expects compression
1 - 9 = increasing levels of compression

nif_sentblockcnt integer Number of times a flow block request was sent to the peer server to delay sending any further replicated
transactions for a short time because the receive queue on the target server is full

2092 Part VI: Administering

https://www.hcltech.com/

Column Type Description

nif_rcvblockcnt integer Number of times a flow block request was received from the peer server

nif_trgsend_stamp1 integer Stamp 1 of the last transaction sent to the peer server

nif_trgsend_stamp2 integer Stamp 2 of the last transaction sent to the peer server

nif_acksend_stamp1 integer Stamp 1 of the last acknowledgment sent to the peer server

nif_acksend_stamp2 integer Stamp 2 of last acknowledgment sent to the peer server

nif_ctrlsend_stamp1 integer Stamp 1 of the last control message sent to the peer server

nif_ctrlsend_stamp2 integer Stamp 2 of the last control message sent to the peer server

nif_syncsend_stamp1 integer Stamp 1 of the last sync message sent to the peer server

nif_syncsend_stamp2 integer Stamp 2 of the last sync message sent to the peer server

nif_starttime datetime Time that the connection was established

nif_lastsend datetime Time of the last message sent to the peer server

Copyright© 2020 HCL Technologies Limited

The syscdr_rcv Table

The syscdr_rcv table contains information about transactions being applied on target servers and acknowledgments being sent from target servers.

Column Type Description

rm_state char(100) The status of the receive manager and apply threads:

Running = Transaction apply is running normally
Down = Transaction apply is not running
Uninitialized = The server is not a source server for replication

rm_num_sleepers integer Number of data sync threads currently suspended

rm__num_dsthreads integer The current number of data sync threads

rm_min_dsthreads integer Minimum number of data sync threads

rm_max_dsthreads integer Maximum number of data sync threads

rm_ds_block integer If 1, the data sync is currently blocked to try to avoid causing a DDRBLOCK state

rm_ds_parallel integer The degree to which transactions are applied in parallel (0 through 3, inclusive):

0 = the highest degree of parallelism
3 = serial apply (no parallelism)

rm_ds_failrate float A computed weighted ratio that is used to determine when to change the degree of apply
parallelism based on the rate of transactions that could not be applied

rm_ds_numrun integer Number of transactions run

rm_ds_lockout integer Number of lock timeouts encountered

rm_ds_lockrb integer Number of forced rollbacks due to having to switch to serial apply

rm_ds_num_deadlocks integer Number of deadlocks encountered

rm_ds_num_pcommits integer Number of out-of-order commits that have occurred

rm_ack_waiting integer Number of acknowledgments that are waiting for a log flush to return to the source server

rm_tosleep integer Total times that the data sync threads have become suspended

rm_sleeptime integer Total time that the data sync threads have been suspended

rm_workload integer The current workload

rm_optscale integer Factor determining how many data sync threads will be allowed per CPU VP

rm_min_fthreads integer Minimum acknowledgment threads

rm_max_fthreads integer Maximum acknowledgment threads

rm_ack_start char(64) Time when the acknowledgment threads started

rm_ds_start char(64) Time when the data sync threads started

rm_pending_acks integer Number of acknowledgments on the source that have not yet been processed

rm_blob_error_bufs integer Number of smart large objects that could not be successfully applied

Copyright© 2020 HCL Technologies Limited

The syscdr_ris Table
Part VI: Administering 2093

https://www.hcltech.com/
https://www.hcltech.com/

The syscdr_ris table contains the first ten lines of the transaction header for each RIS file.

Column Type Description

ris_rid integer Pseudo row ID.

ris_file char(128) RIS file name.

ris_sourceid integer CDRID of source server.

ris_source char(128) Source server name.

ris_committime char(20) Time when the transaction was committed on the source server.

ris_targetid char(128) CDRID of the target server.

ris_target integer Target server name.

ris_receivetime char(20) Time when the transaction was received on the target server.

ris_atsfile char(128) Corresponding ATS file.

ris_line1 char(200) The first line of the transaction header information.

ats_line2 char(200) The second line of the transaction header information.

ats_line3 char(200) The third line of the transaction header information.

ats_line4 char(200) The fourth line of the transaction header information.

ris_line5 char(200) The fifth line of the transaction header information.

ris_line6 char(200) The sixth line of the transaction header information.

ris_line7 char(200) The seventh line of the transaction header information.

ris_line8 char(200) The eighth line of the transaction header information.

ris_line9 char(200) The ninth line of the transaction header information.

ris_line10 char(200) The tenth line of the transaction header information.

Copyright© 2020 HCL Technologies Limited

The syscdr_risdir Table

The syscdr_risdir table contains information about the contents of the RIS directory.

Column Type Description

risd_rid integer Pseudo row ID

risd_file char(128) RIS file name

risd_mode integer File mode

risd_size integer File size in bytes

risd_atime datetime Last access time

risd_mtime datetime Last modified time

risd_ctime datetime Create time

Copyright© 2020 HCL Technologies Limited

The syscdr_rqm Table

The syscdr_rqm table contains statistics and contents of the low-level queues (send queue, receive queue, ack send queue, sync send queue, and control send queue)
managed by the Reliable Queue Manager (RQM).

The RQM manages the insertion and removal of items to and from the various queues. The RQM also manages spooling of the in-memory portions of the queue to and
from disk.

Column Type Description

rqm_idx integer Index number

rqm_name char(128) Queue name

rqm_flags integer Flags

rqm_txn integer Transactions in queue

rqm_event integer Events in queue

rqm_txn_in_memory integer Transaction in memory

rqm_txn_in_spool_only integer Spool-only transactions

rqm_txn_spooled integer Spooled transactions

2094 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

Column Type Description

rqm_unspooled_bytes int8 Unspooled bytes

rqm_data_in_queue int8 Data in queue

rqm_inuse_mem int8 Real memory in use

rqm_pending_buffer integer Pending buffers

rqm_pending_data int8 Pending buffers

rqm_maxmemdata int8 Maximum memory in use by data

rqm_maxmemhdr int8 Maximum memory in use by headers

rqm_totqueued int8 Total data queued

rqm_tottxn integer Total transactions queued

rqm_totspooled integer Total transactions spooled

rqm_totrestored integer Total transactions stored

rqm_totrecovered integer Total transactions recovered

rqm_totspoolread integer Total rows read from spool

rqm_totdeleted integer Total transactions deleted

rqm_totduplicated integer Total transactions duplicates

rqm_totlookup integer Total transaction lookups

Copyright© 2020 HCL Technologies Limited

The syscdr_rqmhandle Table

The syscdr_rqmhandle table contains information about which transaction is being processed in each queue. The handle marks the position of the thread in the queue.

Column Type Description

rqmh_qidx integer The queue associated with this handle

rqmh_thread char(18) Thread owning the handle

rqmh_stamp1 integer Stamp 1 of the last transaction this handle accessed

rqmh_stamp2 integer Stamp 2 of the last transaction this handle accessed

rqmh_servid integer Part 1 of the transaction key

rqmh_logid integer Part 2 of the transaction key

rqmh_logpos integer Part 3 of the transaction key

rqmh_seq integer Part 4 of the transaction key

Copyright© 2020 HCL Technologies Limited

The syscdr_rqmstamp Table

The syscdr_rqmstamp table contains information about which transaction is being added to each queue.

Column Type Description

rqms_qidx integer Queue index corresponding to the queues:

0 = Transaction Send Queue
1 = Acknowledgment Send Queue
2 = Control Send Queue
3 = CDR Metadata Sync Send Queue
4 = Transaction Receive Queue

rqms_stamp1 integer Stamp 1 of the next transaction being put into the queue

rqms_stamp2 integer Stamp 2 of the next transaction being put into the queue

rqms_cstamp1 integer Communal stamp 1 used to identify the next transaction read from the receive queue

rqms_cstamp2 integer Communal stamp 2 used to identify the next transaction read from the receive queue

Copyright© 2020 HCL Technologies Limited

The syscdr_state Table

Part VI: Administering 2095

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The syscdr_state table contains status on Enterprise Replication, data capture, data apply, and the network between the servers.

Column Type Description

er_state char(24) The status of Enterprise Replication:

Abort = Enterprise Replication is aborting on this server.
Active = Enterprise Replication is running normally.
Down = Enterprise Replication is stopped on this server.
Dropped = The attempt to drop the syscdr database failed.
Init Failed = The initial start-up of Enterprise Replication on this server failed, most likely because of a
problem on the specified global catalog synchronization server.
Initializing = Enterprise Replication is being defined.
Initial Startup = Enterprise Replication is starting for the first time on this server.
Shutting Down = Enterprise Replication is shutting down on this server.
Startup Blocked = Enterprise Replication cannot start because the server was started with the oninit -D
command.
Synchronizing Catalogs = The server is receiving a copy of the syscdr database.
Uninitialized = The server does not have Enterprise Replication defined on it.

er_capture_state char(24) The current state of log capture:

Running = Log capture is running normally
Down = Log capture is not running
Uninitialized = The server is not a source server for replication

er_network_state char(64) The status of the Enterprise Replication network:

Running = Communication is running normally
Down = Communication is not running
Uninitialized = The server is not a source server for replication

er_apply_state char(24) The status of the receive manager and apply threads:

Running = Transaction apply is running normally
Down = Transaction apply is not running
Uninitialized = The server is not a source server for replication

Copyright© 2020 HCL Technologies Limited

The syscdrack_buf Table

The syscdrack_buf table contains information about the buffers that form the acknowledgment queue.

When the target database server applies transactions, it sends an acknowledgment to the source database server. When the source database server receives the
acknowledgment, it can then delete those transactions from its send queue.

For information on the columns of the syscdrack_buf table, refer to Columns of the Buffer Tables.

Copyright© 2020 HCL Technologies Limited

The syscdrack_txn Table

The syscdrack_txn table contains information about the acknowledgment queue.

When the target database server applies transactions, it sends an acknowledgment to the source database server. When the source database server receives the
acknowledgment, it can then delete those transactions from its send queue. The acknowledgment queue is an in-memory only queue. That is, it is a volatile queue that is
lost if the database server is stopped.

For information on the columns of the syscdrack_txn table, refer to Columns of the Transaction Tables.

Copyright© 2020 HCL Technologies Limited

The syscdrctrl_buf Table

The syscdrctrl_buf table contains buffers that provide information about the control queue. The control queue is a stable queue that contains control messages for the
replication system.

For information on the columns of the syscdrctrl_buf table, refer to Columns of the Buffer Tables.

Copyright© 2020 HCL Technologies Limited

2096 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The syscdrctrl_txn Table

The syscdrctrl_txn table contains information about the control queue. The control queue is a stable queue that contains control messages for the replication system.

For information on the columns of the syscdrctrl_txn table, refer to Columns of the Transaction Tables.

Copyright© 2020 HCL Technologies Limited

The syscdrerror Table

The syscdrerror table contains information about errors that Enterprise Replication has encountered.

Column Type Description

errornum integer Error number

errorserv char(128) Database server name where error occurred

errorseqnum integer Sequence number that can be used to prune single-error table

errortime datetime year to
second

Time error occurred

sendserv char(128) Database server name, if applicable, that initiated error behavior

reviewed char(1) Y if reviewed and set by DBA
N if not reviewed

errorstmnt text Error description

Copyright© 2020 HCL Technologies Limited

The syscdrlatency Table

The syscdrlatency table contains statistics about Enterprise Replication latency (the time it takes to replicate transactions).

Column Type Description

source integer Source of transaction (cdrid)

replid integer Replicate ID

txncnt integer The number of transactions on this source replicate

inserts integer Number of INSERT statements

deletes integer Number of DELETE statements

updates integer Number of UPDATE statements

last_tgt_apply integer The time of the last transaction to be applied to the target (cdrtime)

last_src_apply integer The time of the last transaction to be applied on the source (cdrtime)

Copyright© 2020 HCL Technologies Limited

The syscdrpart Table

The syscdrpart table contains participant information.

Column Type Description

replname lvarchar Replicate name

servername char(128) Database server name

partstate char(50) Participant state: ACTIVE, INACTIVE

partmode char(1) P = primary database server (read/write)
R = target database server (receive only)

dbsname lvarchar Database name

owner lvarchar Owner name

tabname lvarchar Table name

Part VI: Administering 2097

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Column Type Description

pendingsync integer 0 = the Pending Sync attribute is not set
1 = the Pending Sync attribute is set, indicating that the participant is waiting to be synchronized
after the replication server was enabled

Copyright© 2020 HCL Technologies Limited

The syscdrprog Table

The syscdrprog table lists the contents of the Enterprise Replication progress tables.

The progress tables keep track of what data has been sent to which servers and which servers have acknowledged receipt of what data. Enterprise Replication uses the
transaction keys and stamps to keep track of this information.

The progress table is two dimensional. For each server to which Enterprise Replication sends data, the progress tables keep progress information on a per-replicate basis.

Column Type Description

dest_id integer Server ID of the destination server

repl_id integer The ID that Enterprise Replication uses to identify the replicate for which this information is valid

source_id integer Server ID of the server from which the data originated

key_acked_srv integer Last key for this replicate that was acknowledged by this destination

key_acked_lgid integer Logical log ID

key_acked_lgpos integer Logical log position

key_acked_seq integer Logical log sequence

tx_stamp_1 integer Together with tx_stamp2, forms the stamp of the last transaction acknowledged for this replicate by
this destination

tx_stamp_2 integer Together with tx_stamp1, forms the stamp of the last transaction acknowledged for this replicate by
this destination

Copyright© 2020 HCL Technologies Limited

The syscdrq Table

The syscdrq table contains information about Enterprise Replication queues.

Column Type Description

srvid integer The identifier number of the database server

repid integer The identifier number of the replicate

srcid integer The server ID of the source database server In cases where a particular server is forwarding data to
another server, srvid is the target and srcid is the source that originated the transaction.

srvname char(128) The name of the database server

replname char(128) Replicate name

srcname char(128) The name of the source database server

bytesqueued integer Number of bytes queued

Copyright© 2020 HCL Technologies Limited

The syscdrqueued Table

The syscdrqueued table contains data-queued information.

Column Type Description

servername char(128) Sending to database server name

name char(128) Replicate name

bytesqueued decimal(32,0) Number of bytes queued for the server servername

Copyright© 2020 HCL Technologies Limited

The syscdrrecv_buf Table

2098 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The syscdrrecv_buf table contains buffers that provide information about the data-receive queue.

When a replication server receives replicated data from a source database server, it puts this data on the receive queue for processing. On the target side, Enterprise
Replication picks up transactions from this queue and applies them on the target.

For information on the columns of the syscdrrecv_buf table, refer to Columns of the Buffer Tables.

Copyright© 2020 HCL Technologies Limited

The syscdrrecv_stats Table

The syscdrrecv_stats table contains statistics about the receive manager. The receive manager is a set of service routines between the receive queues and data sync.

Column Type Description

source integer The source server (cdrid)

txncnt integer Number of transactions from this source

pending integer The transaction currently pending on this source

active integer The transaction currently active on this source

maxpending integer Maximum pending transactions on this source

maxactive integer Maximum active transactions on this source

avg_pending float Average pending transactions on this source

avg_active float Average active transactions on this source

cmtrate float Average commit rate from this source

Copyright© 2020 HCL Technologies Limited

The syscdrrecv_txn Table

The syscdrrecv_txn table contains information about the data receive queue. The receive queue resides in memory.

When a replication server receives replicated data from a source database server, it puts the data in the receive queue and then applies the transactions on the target.

For information on the columns of the syscdrrecv_txn table, refer to Columns of the Transaction Tables.

Copyright© 2020 HCL Technologies Limited

The syscdrrepl Table

The syscdrrepl table contains replicate information.

Column Type Description

replname lvarchar Replicate name.

replstate char(50) Replicate state.
For possible values, refer to cdr list server.

freqtype char(1) Type of replication frequency:

C = continuous
I = interval
T = time based
M = day of month
W = day of week

freqmin smallint The time for replication by minute:

Minutes after the hour that replication should occur.
Null if continuous.

freqhour smallint The time for replication by hour:

Hour that replication should occur.
Null if continuous.

freqday smallint Day of week or month replication should occur.

Part VI: Administering 2099

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Column Type Description

scope char(1) Replication scope:

T = transaction
R = row-by-row

invokerowspool char(1) Whether Row Information Spooling is enabled:

Y = row spooling is enabled.
N = row spooling is disabled.

invoke transpool char(1) Whether Aborted Transaction Spooling is enabled:

Y = transaction spooling is enabled.
N = transaction spooling is disabled.

primresolution char(1) Type of primary conflict resolution:

A = always apply
D = delete wins
I = ignore
T = timestamp.
S = SPL routine

secresolution char(1) Type of secondary conflict resolution:

S = SPL routine
Null = not configured

storedprocname lvarchar SPL routine:

Name of SPL routine for secondary conflict resolution.
Null if not defined.

floattype char(1) Type of floating point number conversion:

C= converts floating point numbers to canonical format.
I= converts floating point numbers to IEEE format.
N = does not convert floating point numbers (sends in native format).

istriggerfire char(1) Whether triggers are enabled:

Y = triggers are enabled.
N = triggers are disabled.

isfullrow char(1) Whether to replicate full rows or only the changed columns:

Y = sends the full row and enables upserts.
N = sends only changed columns and disables upserts.

isgrid char(1) Whether the replicate belongs to a grid replicate set:

Y = the replicate belongs to a grid replicate set.
N = the replicate does not belong to a grid replicate set.

Related tasks:
 Viewing grid information

Copyright© 2020 HCL Technologies Limited

The syscdrreplset Table

The syscdrreplset table contains replicate set information.

Column Type Description

replname lvarchar Replicate name

replsetname lvarchar Replicate set name

replsetattr integer Replicate set attributes:

0x00200000U = The replicate set was created with a template.
0x00000080U = The replicate set is exclusive.

Copyright© 2020 HCL Technologies Limited

2100 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/

The syscdrs Table

The syscdrs table contains information about database servers in an Enterprise Replication domain.

Column Type Description

servid integer Server identifier.

servname char(128) Database server name.

cnnstate char(1) Status of connection to this database server:

C = Connected
D = Connection disconnected (will be retried)
E = Error during connection
F = Connection failed
K = In the process of connecting
L = The connection is to the local server
R = Disconnected but will attempt to reconnect
T = Idle time-out caused connection to terminate
X = Connection closed by user command and unavailable until reset by user

cnnstatechg integer Time that connection state was last changed.

servstate char(1) Status of database server:

A = Active. The server is active and replicating data.
D = Deleted. The server has been deleted; it is not capturing or delivering data and the queues are
being drained.
S = Suspended. Delivery of replication data to the server is suspended.
Q = Quiescent. The server is in the process of being defined.
U = Disabled. Only delete shadow tables are populated in this state.

ishub char(1) Whether the server is a hub server that forwards information to another replication server:

Y = Server is a hub
N = Server is not a hub

isleaf char(1) Whether the server is a leaf or a nonleaf server:

Y = Server is a leaf server
N = Server is not a leaf server

rootserverid integer The identifier of the root server.

forwardnodeid integer The identifier of the parent server.

timeout integer The number of minutes of idle time between replication servers before the connection is timed out.

Although not directly connected, a nonroot server is similar to a root server except it forwards all replicated messages through its parent (root) server. All nonroot servers
are known to all root servers and other nonroot servers. A nonroot server can be a terminal point in a tree or it can be the parent for another nonroot server or a leaf server.
Nonroot and root servers are aware of all replication servers in the replication environment, including all the leaf servers.

A leaf server is a nonroot server that has a partial catalog. A leaf server has knowledge only of itself and its parent server. It does not contain information about replicates
of which it is not a participant. The leaf server must be a terminal point in a replication hierarchy.

Related concepts:
 Hierarchical Routing Topology Terminology

Copyright© 2020 HCL Technologies Limited

The syscdrsend_buf Table

The syscdrsend_buf table contains buffers that give information about the send queue.

When a user performs transactions on the source database server, Enterprise Replication queues the data on the send queue for delivery to the target servers.

For information on the columns of the syscdrsend_buf table, refer to Columns of the Buffer Tables.

Copyright© 2020 HCL Technologies Limited

The syscdrsend_txn Table

The syscdrsend_txn table contains information about the send queue.

When a user performs transactions on the source database server, Enterprise Replication queues the data on the send queue for delivery to the target servers.

Part VI: Administering 2101

https://www.hcltech.com/
https://www.hcltech.com/

For information on the columns of the syscdrsync_txn table, refer to Columns of the Transaction Tables.

Copyright© 2020 HCL Technologies Limited

The syscdrserver Table

The syscdrserver table contains information about database servers declared to Enterprise Replication.

Column Type Description

servid integer Replication server ID

servername char(128) Database server group name

connstate char(1) Status of connection to this database server:

C = Connected
D = Connection disconnected (will be retried)
T = Idle time-out caused connection to terminate
X = Connection closed by user command and unavailable until reset by user

connstatechange integer Time that connection state was last changed

servstate char(50) Status of this database server:

A = Active
D = Disabled
S = Suspended
Q = Quiescent (initial sync state only)

ishub char(1) Y = Server is a hub
N = Server is not a hub

isleaf char(1) Y = Server is a leaf server
N = Server connection is not a leaf server

rootserverid integer The identifier of the root server

forwardnodeid integer The identifier of the parent server

idletimeout integer Idle time-out

atsdir lvarchar ATS directory spooling name

risdir lvarchar RIS directory spooling name

Copyright© 2020 HCL Technologies Limited

The syscdrsync_buf Table

The syscdrsync_buf table contains buffers that give information about the synchronization queue. Enterprise Replication uses this queue only when defining a replication
server and synchronizing its global catalog with another replication server.

For information on the columns of the syscdrsync_buf table, refer to Columns of the Buffer Tables.

Copyright© 2020 HCL Technologies Limited

The syscdrsync_txn Table

The syscdrsync_txn table contains information about the synchronization queue. This queue is currently used only when defining a replication server and synchronizing its
global catalog with another replication server. The synchronization queue is an in-memory-only queue.

For information on the columns of the syscdrsync_txn table, refer to Columns of the Transaction Tables.

Copyright© 2020 HCL Technologies Limited

The syscdrtsapply table

The syscdrtsapply table lists statistics about the time series elements that are applied on target servers.

Table 1. The syscdrtsapply table

2102 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Column Type DescriptionColumn Type Description

source integer CDRID of source server.

replid integer Replicate ID.

txncnt integer The number of transactions from this source server and replicate.

tsinserts integer The number of time series elements that were inserted.

tsdeletes integer The number of time series elements that were deleted.

tscmd integer The number of TimeSeries routines that inserted or deleted elements that are
replicated.

last_tgt_apply integer The time when the most recent transaction was applied on a target server.

last_src_apply integer The time when the most recent transaction was applied on the source server.

Copyright© 2020 HCL Technologies Limited

The syscdrtx Table

The syscdrtx table contains information about Enterprise Replication transactions.

Column Type Description

srvid integer Server ID

srvname char(128) Name of database server from which data is received

txprocssd integer Transaction processed from database server srvname

txcmmtd integer Transaction committed from database server srvname

txabrtd integer Transaction aborted from database server srvname

rowscmmtd integer Rows committed from database server srvname

rowsabrtd integer Rows aborted from database server srvname

txbadcnt integer Number of transactions with source commit time (on database server srvname) greater than target commit
time

Copyright© 2020 HCL Technologies Limited

Enterprise Replication Queues

One group of sysmaster tables shows information about Enterprise Replication queues. The sysmaster database reports the status of these queues in the tables that
have the suffixes _buf and _txn.

The name of each table that describes an Enterprise Replication queue is composed of the following three pieces:

syscdr, which indicates that the table describes Enterprise Replication
An abbreviation that indicates which queue the table describes
A suffix, either _buf or _txn, which specifies whether the table includes buffers or transactions

Selecting from these tables provides information about the contents of each queue. For example, the following SELECT statement returns a list of all transactions queued
on the send queue:

SELECT * FROM syscdrsend_txn

The following example returns a list of all transactions queued on the in-memory send queue and returns the number of buffers and the size of each buffer for each
transaction on the send queue:

SELECT cbkeyserverid,cbkeyid,cbkeypos,count(*),sum(cbsize)
 from syscdrsend_buf
 group by cbkeyserverid, cbkeyid, cbkeypos
 order by cbkeyserverid, cbkeyid, cbkeypos

All queues are present on all the replication servers, regardless of whether the replication server is a source or a target for a particular transaction. Some of the queues are
always empty. For instance, the send queue on a target-only server is always empty.

Each queue is two-dimensional. Every queue has a list of transaction headers. Each transaction header in turn has a list of buffers that belong to that transaction.

Columns of the Transaction Tables
 The transaction tables contain information about transactions that are in memory. They do not contain information about transactions that are spooled to disk.

Columns of the Buffer Tables
 The buffer tables contain information about the buffers that form the transactions that are listed in the transaction tables.

Copyright© 2020 HCL Technologies Limited

Columns of the Transaction Tables
Part VI: Administering 2103

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

The transaction tables contain information about transactions that are in memory. They do not contain information about transactions that are spooled to disk.

The names of transaction tables end with _txn. All transaction tables have the same columns and the same column definitions.

The ctstamp1 and ctstamp2 columns combine to form the primary key for these tables.

Column Type Description

ctkeyserverid integer Server ID of the database server where this data originated. This server ID is the group ID from the
sqlhosts file.

ctkeyid integer Logical log ID.

ctkeypos integer Position in the logical log on the source server for the transaction that is represented by the buffer.

ctkeysequence integer Sequence number for the buffer within the transaction.

ctstamp1 integer Together with ctstamp2, forms an insertion stamp that specifies the order of the transaction in the queue.

ctstamp2 integer Together with ctstamp1, forms an insertion stamp that specifies the order of the transaction in the queue.

ctcommittime integer Time when the transaction represented by this buffer was committed.

ctuserid integer Login ID of the user who committed this transaction.

ctfromid integer Server ID of the server that sent this transaction. Used only in hierarchical replication.

Related reference:
 Columns of the Buffer Tables

Copyright© 2020 HCL Technologies Limited

Columns of the Buffer Tables

The buffer tables contain information about the buffers that form the transactions that are listed in the transaction tables.

The names of buffer tables end with _buf. All buffer tables contain the same columns and the same column definitions.

Column Type Description

cbflags integer Internal flags for this buffer.

cbsize integer Size of this buffer in bytes.

cbkeyserverid integer Server ID of the database server where this data originated. This server ID is the group ID from the
sqlhosts file.

cbkeyid integer Login ID of the user who originated the transaction that is represented by this buffer.

cbkeypos integer Log position on the source server for the transaction that is represented by this buffer.

cbkeysequence integer Sequence number for this buffer within the transaction.

cbreplid integer Replicate identifier for the data in this buffer.

cbcommittime integer Time when the transaction represented by this buffer was committed.

The following columns combine to form the primary key for this table: cbkeyserverid, cbkeyid, cbkeypos, cbkeysequence.

The columns cbkeyserverid, cbkeyid, and cbkeypos form a foreign key that points to the transaction in the _txn table that the buffer represents.

Related reference:
 Columns of the Transaction Tables

Copyright© 2020 HCL Technologies Limited

Replication Examples

This appendix contains simple examples of replication using the command-line utility (CLU).

The cdr utility documents the CLU.

Replication Example Environment
 To run the replication examples in this publication, you must set up IBM® Informix® database servers. Each database server must be in a database server group.

Primary-Target Example
 This is a simple example of primary-target replication.

Update-Anywhere Example
 This example builds on the primary-target example and creates a simple update-anywhere replication.

Hierarchy Example
 This example adds a replication tree to the fully-connected environment of the usa, italy, and japan replication servers.

Related tasks:
 Preparing the Network Environment

Copyright© 2020 HCL Technologies Limited

2104 Part VI: Administering

https://www.hcltech.com/
https://www.hcltech.com/
https://www.hcltech.com/

Replication Example Environment

To run the replication examples in this publication, you must set up IBM® Informix® database servers. Each database server must be in a database server group.

The replication environment for the examples consists of:

Three computers (s1, s2, and s3) that host the database servers usa, italy, and japan. Each computer has active network connections to the other two computers.
The database servers usa, italy, and japan are members of the database server groups g_usa, g_italy, and g_japan.

The sqlhosts file for each database server must contain the following connectivity information.

g_usa group - - i=1
usa ontlitcp s1 techpubs1 g=g_usa
g_italy group - - i=8
italy ontlitcp s2 techpubs2 g=g_ital
g_japan group - - i=6
japan ontlitcp s3 techpubs6 g=g_japan

You must create an sbspace for the row data and set the CDR_QDATA_SBSPACE parameter to the location of that sbspace. For more information, see Setting Up Send and
Receive Queue Spool Areas and CDR_QDATA_SBSPACE Configuration Parameter.

All commands in this example, except for creation of the sample databases on italy and japan, are issued from the computer s1.

The databases for the examples are identical to stores_demo databases with logging, as follows:

Create a database named stores on the usa database server:

s1> dbaccessdemo -log stores

Create a database named stores on the italy database server:

s1> rlogin s2
s2> dbaccessdemo -log stores

Create a database named stores on the japan database server:

s1> rlogin s3
s3> dbaccessdemo -log stores

For information about preparing data for replication, see Data Preparation Example.

Copyright© 2020 HCL Technologies Limited

Primary-Target Example

This is a simple example of primary-target replication.

In primary-target replication, only changes to the primary table are replicated to the other tables in the replicate. Changes to the secondary tables are not replicated.

In this example, define the g_usa and g_italy database server groups as Enterprise Replication servers and create a replicate, repl1.

To define the database server groups and create the replicate

1. Create and populate the database that defines the usa database server as a replication server:

cdr define server --init g_usa

Before replicating data, you must define the database servers as replication servers. A replication server is a database server that has an extra database that holds
replication information.

The --init option specifies that this server is a new replication server. When you define a replication server, you must use the name of the database server group
(g_usa) rather than the database server name.

2. Display the replication server that you defined to verify that the definition succeeded:

cdr list server

The command returns the following information:

SERVER ID STATE STATUS QUEUE CONNECTION CHANGED
--
g_usa 1 Active Local 0

3. Define the second database server, italy, as a replication server:

cdr define server --connect=italy --init \
--sync=g_usa g_italy

The --connect option allows you to define italy (on the s2 computer) while working at the s1 (usa) computer. The --sync option instructs the command to use the
already-defined replication server (g_usa) as a pattern for the new definition. The --sync option also links the two replication servers into a replication environment.
Tip: In all options except the --connect option, Enterprise Replication uses the name of the database server group to which a database server belongs, instead of
the name of the database server itself.

4. Verify that the second definition succeeded:

cdr list server

Part VI: Administering 2105

https://www.hcltech.com/

The command returns the following information:

SERVER ID STATE STATUS QUEUE CONNECTION CHANGED
--
g_italy 8 Active Connected 0 JUN 14 14:38:44 2000
g_usa 1 Active Local 0

5. Define the replicate repl1:

cdr define replicate --conflict=ignore repl1 \
"P stores@g_usa:informix.manufact" \
"select * from manufact" \
"R stores@g_italy:informix.manufact" \
"select * from manufact"

These lines are all one command. The backslashes (\) at the end of the lines indicate that the command continues on the next line.

This step specifies that conflicts should be ignored and describes two participants, usa and italy, in the replicate:

The P indicates that in this replicate usa is a primary server. That is, if any data in the selected columns changes, that changed data should be sent to the
secondary servers.
The R indicates that in this replicate italy is a secondary server (receive-only). The specified table and columns receive information that is sent from the
primary server. Changes to those columns on italy are not replicated.

6. Display the replicate that you defined, so that you can verify that the definition succeeded:

cdr list replicate

The command returns the following information:

CURRENTLY DEFINED REPLICATES
--
REPLICATE: repl1
STATE: Inactive
CONFLICT: Ignore
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: g_usa:informix.manufact
 g_italy:informix.manufact

Step 5 defines a replicate but does not make the replicate active. The output of step 6 shows that the STATE of the replicate is INACTIVE.

7. Make the replicate active:

 cdr start repl1

8. Display the replicate so that you can verify that the STATE has changed to ACTIVE:

cdr list replicate

The command returns the following information:

CURRENTLY DEFINED REPLICATES
--
REPLICATE: repl1
STATE: Active
CONFLICT: Ignore
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: g_usa:informix.manufact
 g_italy:informix.manufact

If any changes are made to the manufact table, the changes will be replicated to the other participants in the replicate.

Now you can modify the manufact table on the usa database server and see the change reflected in the manufact table on the italy database server.

To cause a replication

1. Use DB-Access to insert a value into the manufact table on usa:

INSERT INTO stores@usa:manufact \
VALUES ('AWN','Allwyn','8');

2. Observe the changes on usa and on italy:

SELECT * from stores@usa:manufact
SELECT * from stores@italy:manufact

In repl1, usa is the primary database server and italy is the target. Changes made to the manufact table on italy do not replicate to usa.

To not cause a replication

1. Use DB-Access to insert a value into the manufact table on italy:

INSERT INTO stores@italy:manufact \
VALUES ('ZZZ','Zip','9');

2. Verify that the change occurred on italy but did not replicate to the manufact table on usa:

SELECT * from stores@usa:manufact
SELECT * from stores@italy:manufact

Copyright© 2020 HCL Technologies Limited

2106 Part VI: Administering

https://www.hcltech.com/

Update-Anywhere Example

This example builds on the primary-target example and creates a simple update-anywhere replication.

In update-anywhere replication, changes to any table in the replicate are replicated to all other tables in the replicate. In this example, any change to the stock table of
the stores database on any database server in the replicate will be replicated to the stock table on the other database servers.

In this example, define the repl2 replicate.

To prepare for update-anywhere replication

1. Define the replicate, repl2:

cdr define replicate --conflict=ignore repl2 \
"stores@g_usa:informix.stock" "select * from stock" \
"stores@g_italy:informix.stock" "select * from stock"

These lines are all one command. The backslashes (\) at the end of the lines indicate that the command continues on the next line.

This step specifies that conflicts should be ignored and describes two participants, usa and italy (including the table and the columns to replicate) in the replicate.

Because neither P (primary) nor R (receive-only) is specified, the replicate is defined as update-anywhere. If any data in the selected columns changes, on either
participant, that changed data should be sent to the other participants in the replicate.

2. Display all the replicates so that you can verify that your definition of repl2 succeeded:

cdr list replicate

The command returns the following information:

CURRENTLY DEFINED REPLICATES

REPLICATE: repl1
STATE: Active
CONFLICT: Ignore
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: g_usa:informix.manufact
 g_italy:informix.manufact

REPLICATE: repl2
STATE: Inactive
CONFLICT: Ignore
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: g_usa:informix.stock
 g_italy:informix.manufact

Although this output shows that repl2 exists, it does not show the participant modifiers (the SELECT statements) for repl2.

3. Display the participant modifiers for repl2:

cdr list replicate repl2

This command returns the following information:

REPLICATE TABLE SELECT
--
repl2 stores@g_usa:informix.stock select * from stock
repl2 stores@g_italy:informix.stock select * from stock

4. Add the japan database server to the replication system already defined in the previous example:

cdr define server --connect=japan --init \
--sync=g_usa g_japan

You can use either g_usa or g_italy in the --sync option.

Enterprise Replication maintains identical information on all servers that participate in the replication system. Therefore, when you add the japan database server,
information about that server is propagated to all previously-defined replication servers (usa and italy).

5. Display the replication servers so that you can verify that the definition succeeded:

cdr list server

The command returns the following information:

SERVER ID STATE STATUS QUEUE CONNECTION CHANGED
--
g_italy 8 Active Connected 0 JUN 14 14:38:44 2000
g_japan 6 Active Connected 0 JUN 14 14:38:44 2000
g_usa 1 Active Local 0

6. Add the participant and participant modifier to repl2:

cdr change replicate --add repl2 \
"stores@g_japan:informix.stock" "select * from stock"

7. Display detailed information about repl2 after adding the participant in step 6:

cdr list replicate repl2

Part VI: Administering 2107

The command returns the following information:

REPLICATE TABLE SELECT
--
repl2 stores@g_usa:informix.stock select * from stock
repl2 stores@g_italy:informix.stock select * from stock
repl2 stores@g_japan:informix.stock select * from stock

8. Make the replicate active:

 cdr start repl2

9. Display a list of replicates so that you can verify that the STATE of repl2 has changed to ACTIVE:

cdr list replicate

The command returns the following information:

CURRENTLY DEFINED REPLICATES
--
REPLICATE: repl1
STATE: Active
CONFLICT: Ignore
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: g_usa:informix.manufact
 g_italy:informix.manufact

REPLICATE: repl2
STATE: Active
CONFLICT: Ignore
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: g_usa:informix.stock
 g_italy:informix.manufact
 g_japan:informix.manufact

Now you can modify the stock table on one database server and see the change reflected on the other database servers.

To cause a replication

1. Use DB-Access to insert a line into the stock table on usa:

INSERT INTO stores@usa:stock VALUES (401, “PRC”, “ski boots”, 200.00,
 “pair”, “pair”);

2. Observe the change on the italy and japan database servers:

SELECT * from stores@italy:stock;
SELECT * from stores@japan:stock;

To update the stock table on the japan database server

1. Use DB-Access to change a value in the stock table on japan:

UPDATE stores@japan:stock SET unit_price = 190.00
WHERE stock_num = 401;

2. Verify that the change has replicated to the stock table on usa and on italy:

SELECT * from stores@usa:stock WHERE stock_num = 401;
SELECT * from stores@italy:stock WHERE stock_num = 401;

Copyright© 2020 HCL Technologies Limited

Hierarchy Example

This example adds a replication tree to the fully-connected environment of the usa, italy, and japan replication servers.

The nonroot servers boston and denver are children of usa. (The leaf server miami is a child of boston.) Figure 1 shows the replication hierarchy.
Figure 1. Hierarchical Tree Example

To try this example, you need to prepare three additional database servers: boston, denver, and miami. To prepare the database servers, use the techniques described in
Replication Example Environment.

The following example defines a replication hierarchy that includes denver, boston, and miami and, whose root is usa.

2108 Part VI: Administering

https://www.hcltech.com/

To define a hierarchy

1. Add boston to the replication hierarchy as a nonroot server attached to the root server usa:

cdr define server --connect=boston --nonroot --init \
--sync g_usa g_boston

The backslash (\) indicates that the command continues on the next line.

2. Add denver to the replication hierarchy as a nonroot server attached to the root server usa:

cdr define server -c denver -I -N --ats=/ix/myats \
-S g_usa g_denver

This command uses short forms for the connect, init, and sync options. (For information about the short forms, refer to Option Abbreviations.) The command also
specifies a directory for collecting information about failed replication transactions, /ix/myats.

3. List the replication servers as seen by the usa replication server:

cdr list server

The root server usa is fully connected to all the other root servers. Therefore usa knows the connection status of all other root servers and of its two child servers,
denver and boston. The command returns the following information:

SERVER ID STATE STATUS QUEUE CONNECTION CHANGED

g_boston 3 Active Connected 0 Aug 19 14:20:03 2000
g_denver 27 Active Connected 0 Aug 19 14:20:03 2000
g_italy 8 Active Connected 0 Aug 19 14:20:03 2000
g_japan 6 Active Connected 0 Aug 19 14:20:03 2000
g_usa 1 Active Local 0

4. List the replication servers as seen by the denver replication server:

cdr list server --connect=denver

The nonroot server denver has a complete global catalog of replication information, so it knows all the other servers in its replication system. However, denver
knows the connection status only of itself and its parent, usa.

The command returns the following information:

SERVER ID STATE STATUS QUEUE CONNECTION CHANGED

g_boston 3 Active 0
g_denver 27 Active Local 0
g_italy 8 Active 0
g_japan 6 Active 0
g_usa 1 Active Connected 0 Aug 19 14:20:03 2000

5. Define miami as a leaf server whose parent is boston:

cdr define server -c miami -I --leaf -S g_boston g_miami

6. List the replication servers as seen by miami:

cdr list server -c miami

As a leaf replication server, miami has a limited catalog of replication information. It knows only about itself and its parent.

The command returns the following information:

SERVER ID STATE STATUS QUEUE CONNECTION CHANGED

g_boston 3 Active Connected 0 Aug19 14:35:17 2000
g_miami 4 Active Local 0

7. List details about the usa replication server:

cdr list server g_usa

The server is a hub; that is, it forwards replication information to and from other servers. It uses the default values for idle timeout, send queue, receive queue, and
ATS directory.

The command returns the following information:

NAME ID ATTRIBUTES
--
g_usa 1 timeout=15 hub sendq=rootdbs recvq=rootdbs atsdir=/tmp

Copyright© 2020 HCL Technologies Limited

Data sync warning and error messages

Data sync warning and error messages describe problems with replicated transactions.

You can suppress these messages from being written to the ATS and RIS files. You cannot suppress code 0, DSROWCOMMITTED, which indicates that the row was
committed, or code 1, DSEROW, which indicates that an error occurred.

Part VI: Administering 2109

https://www.hcltech.com/

To specify which warnings and errors to suppress, use the CDR_SUPPRESS_ATSRISWARN configuration parameter. For more information, see
CDR_SUPPRESS_ATSRISWARN Configuration Parameter.

Table 1. Data sync warning and error messages

Warning or Error Code Number Description

DSEReplInsertOrder 2 Warning: Insert exception, row already exists in target table, converted to update

DSEReplUpdateOrder 3 Warning: Update exception, row does not exist in target table, converted to insert

DSEReplDeleteOrder 4 Warning: Delete exception, row does not exist in target table, saved in delete table

DSEReplInsert 5 Error: Insert aborted, row already exists in target table

DSEReplUpdate 6 Error: Update aborted, row does not exist in target table

DSEReplDelete 7 Error: Delete aborted, row does not exist in target table

DSERowLength 8 Error: Length of replicated row is greater than row size in target table

DSEDbopType 9 Error: Unknown db operation

DSENoServerTimeCol 10 Error: Missing cdrserver and/or cdrtime columns in target table

DSEConflictRule 13 Error: Unknown conflict resolution rule defined

DSELostConflictRes 14 Error: Failed conflict resolution rule

DSENoServerName 15 Error: Global catalog cannot translate replicate server id to name

DSEColMap 16 Error: Unable to remap columns selected for replication

DSEColUncomp 17 Error: Invalid char/length in VARCHAR column

DSESPRetTypeOp 18 Error: Invalid data type or unknown operation returned by stored procedure

DSESPAbortRow 19 Error: Row aborted by stored procedure

DSESPSelCols 20 Error: Number of columns returned by stored procedure not equal to the number of columns in
select statement

DSESPColTypeLen 21 Error: Invalid data type or length for selected columns returned by stored procedure

DSESPError 22 Error: Error returned by user's stored procedure

DSESPInternal 23 Error: Internal error (buffer too small for stored procedure arguments

DSENoMatchKeyInsert 24 Error: No matching key delete row for key insert

DSESql 25 Error: SQL error encountered

DSEIsam 26 Error: ISAM error encountered

DSELocalDReExist 27 Warning: Local delete row has been reinserted on local server

DSELocalDOddState 28 Warning: Unable to determine if the local delete row should be updated to the delete table

DSELocalDInDelTab 29 Warning: Row already exists in delete table for the given local delete row

DSEBlobOrder 30 Warning: Row failed conflict resolution rule but one or more blob columns were accepted

DSEBlobSetToNull 31 Warning: One or more blob columns were set to NULL because data could not be sent

DSEBlobKeepLocal 32 Warning: One or more blob columns were not changed because data could not be sent

DSEBlobInvalidFlag 33 Error: Invalid user action defined for blob columns

DSEBlobAbortRow 34 Error: Row aborted by user's stored procedure due to unsent blobs

DSESPBlobRetOp 35 Error: Invalid action returned by user's stored procedure on blob columns

DSEReplDel 36

DSENoUDTHeader 37

DSENoUDTTrailer 38

DSEStreamHandle 39

DSEAttachUDREnv 40

DSECdrreceiveSetup 41

DSECdrreceiveCall 42

DSECdrreceiveRetCode 43 cdrreceive returned error

DSECdrreceiveRetGarbage 44 cdrreceive returned garbage

DSEStream 45 Error reading from stream

DSEStreamAborted 46 Stream aborted by sender

DSEValStore 47

DSECdrreceiveRetType 48 cdrreceive returned wrong type

DSEStreamOptType 49 Unrecognized stream option

DSEStreamOptLen 50 Stream option has bad length

DSEStreamOptBitmap 51 Error in changed col bitmap

DSEUnStreamColl 52 Error while unstreaming collection

2110 Part VI: Administering

Warning or Error Code Number Description

DSEUnStreamRowType 53 Error while unstreaming rowtype

DSEStreamFormat 54 Unexpected or invalid data in stream

DSEStack 55 Out of stack space

DSEInternal 56 Generic internal problem

DSESmartBlobCreate 57 Error creating sblob

DSESmartBlobWrite 58 Error writing sblob

DSEStreamColConv 59 Error converting column data from the master dictionary formats to the local dictionary format

DSE2UTF8CodeSetConvErr 63 Error converting data from local database code set to UTF-8

DSEFromUTF8CodeSetConvErr 64 Error converting data from UTF-8 to local database code set.

DSE2UTF8CodeSetConvWarn 65 One or more characters were substituted during conversion from the local database code set to
UTF-8.

DSEFromUTF8CodeSetConvWarn 66 One or more characters were substituted during conversion from UTF-8 to the local database
code set.

DSETSSetup 67 Failed to setup environment for processing time series elements.

DSETSDelOp 68 Failed to apply time series delete statement. Statements include DelClip(), DelRange(), and
DelTrim() operations.

DSETSElem 69 Failed to apply time series element.

DSEOpenTSCon 133 Failed to open time series container.

Copyright© 2020 HCL Technologies Limited

Part VI: Administering 2111

https://www.hcltech.com/

