
Building event-driven applications with
Confluent Platform for Cloud Pak for Integration
Technical Overview

Kim Clark
Integration Architect

Jeremy Hogan
Cloud Partner Solution Architect

© 2021 IBM Corporation

Evolution to agile integration – high level view

APIM
APIM

API Management

APIM
API Management

APIM

Gateway

Integration
Integration Int.

2

En
ga

ge
m

en
t

ap
pl

ic
at

io
ns

Sy
st

em
s

of

re
co

rd

API Management

Socialization/monetization Re-platforming Application autonomy

API Management

Centralized
ESB

Fine-grained
integration
deployment

Decentralized
integration
ownershipSocialized APIs

Webinar http://ibm.biz/agile-integration-webinar eBooklet http://ibm.biz/agile-integration IBM Redbook http://ibm.biz/agile-integration-redbook

APIM
APIM

http://ibm.biz/agile-integration-webinar
http://ibm.biz/agile-integration
http://ibm.biz/agile-integration-redbook

Evolution to agile integration – detail view

3

Integration Integration

Socialization/monetization Re-platforming Application autonomy

API & Event Management

Ev
en

t
st

re
am

En
ga

ge
m

en
t

ap
pl

ic
at

io
ns

Sy
st

em
s

of

re
co

rd

Centralized
ESB

Fine-grained
integration
deployment

Decentralized
integration
ownership

Socialized APIs

Integration Integration Int.

Gateway API Management

API Management API & Event Management

Webinar http://ibm.biz/agile-integration-webinar eBooklet http://ibm.biz/agile-integration IBM Redbook http://ibm.biz/agile-integration-redbook

http://ibm.biz/agile-integration-webinar
http://ibm.biz/agile-integration
http://ibm.biz/agile-integration-redbook

Creating truly independent digital applications requires
asynchronous communication as well as APIs

4© 2021 IBM Corporation

Microservice Application

µService

µServiceµService

µService µService

µService µServiceµService

µService
Agility

Innovate rapidly
without
affecting other
components

Truly independent, decoupled microservice components enable

Scalability

Scale only what
you need, and
only when you
need to

Resilience

Fail fast, return
fast, without
affecting other
components

Creating truly independent digital applications requires
asynchronous communication as well as APIs

5© 2021 IBM Corporation

Microservice Application

Agility

Innovate rapidly
without
affecting other
components

APIs

Are simplest to use, but
create a real-time
dependency on the
underlying system of record

Truly independent, decoupled microservice components enable

To provide those benefits they need to be independent
of one another, and from the systems of record

Scalability

Scale only what
you need, and
only when you
need to

Resilience

Fail fast, return
fast, without
affecting other
components

Event streams

Enable microservices to
build decoupled views of
the data and respond to
real time events

µService

µService

µService

µService

µService

µService

µService

µService µService

http://ibm.biz/eda-resurgence-slides

http://ibm.biz/eda-resurgence-slides

Creating truly independent digital applications requires
asynchronous communication as well as APIs

6© 2021 IBM Corporation

SoR SoR SoRSoR

AP
I

co
ns

um
pt

io
n

Ev
en

t S
tr

ea
m

co
ns

um
pt

io
n

Agility

Innovate rapidly
without
affecting other
components

APIs

Are simplest to use, but
create a real-time
dependency on the
underlying system of record

Truly independent, decoupled microservice components enable

To provide those benefits they need to be independent
of one another, and from the systems of record

Scalability

Scale only what
you need, and
only when you
need to

Resilience

Fail fast, return
fast, without
affecting other
components

Event streams

Enable microservices to
build decoupled views of
the data and respond to
real time events

API and Event management

http://ibm.biz/eda-resurgence-slides

Microservice Application

µService

µService

µService

µService

µService

µService

µService

µService µService

http://ibm.biz/eda-resurgence-slides

Comparing messaging and events

Stream
History

Scalable
Subscription

Fine grained
messaging

Assured
Delivery✔

Messaging
Focused on message exchange and transactions

Events (e.g. Kafka)
Focused on streaming of events

Supported
connectivity

Topics and
Subscriptions

Critical data exchange Event driven Event streaming

Strengths

© 202! IBM Corporation

Example of complementary use of messaging and events

Event Log

Event Log

Replication

Cloud

On-Premise

Data
Warehouse

/ Lake
App App

App App App

SaaS

SaaS

SaaS

App

App

App

App

M
essaging

Store

M
essaging

Device Device Device

App

M
essaging

Store

M
essaging

Device Device Device

App

Store

M
essaging

Device Device Device

App

Messaging

Event Log

Integration Engine

Messaging Provider

Event Log

API Management

App

Application

App

App

App

App

Microservice
application

Messaging
network

© 2021 IBM Corporation

Event driven architecture
patterns that build on one another

Event stream data distribution: Event distribution with history
Event stream projections: Consumer specific data views
Event sourcing: Using an event log as a data master
CQRS: Command Query Responsibility Segregation
Event processing: Evaluating events over time
Saga: Combining multiple actions together

Supporting/related patterns:
change data capture, event connectors (source/sink), function as a service…

https://ibm-cloud-architecture.github.io/refarch-eda
© 2021 IBM Corporation

http://ibm.biz/eda-resurgence-slides

https://ibm-cloud-architecture.github.io/refarch-eda
http://ibm.biz/eda-resurgence-slides

Event Log

Event streams for data distribution

External
website

application

Partner
website

application

Mobile
application

Subscribe
and

consume

Event stream

Back end
datastore

… 4 5 6 7 …

Subscribe
and

consume
Subscribe

and
consume

Publish
(change events)

© 2021 IBM Corporation

Event Log (Topic A)

Event processing

Event

Event stream

Event
Propagator

… 42 43 44 45 46

Publish

… 4 5 6 7 8 … 172 173 174 175

Event Log (Topic B)

… 4 5 6 7

Event
processor

… 44 456 7 8 46

Event pattern matched

Subscribe
and

consume

Publish

4

5

Event processing could involve:
• Filtering
• Redaction
• Routing
• Event pattern matching
• Real-time analytics
• Machine learning model*

(training and/or using)

* Note that event processing can be
re-run over the event stream history
in order to gain new insights as the
learning improves

© 2021 IBM Corporation

Event Log

Event stream projections

Local read-optimized
datastore

External
website

application

Partner
website

application

Mobile
application

Local datastore Local datastore Local datastore

Subscribe
and

consume

Direct invocation

Event stream

Back end
datastore

… 4 5 6 7 …

Subscribe
and

consume
Subscribe

and
consume

Publish
(change events)

https://developer.ibm.com/articles/event-stream-projections

• Back-end datastores provide a stream of events
as changes to their data occur, using change data
capture or other techniques.

• Those events are published to an event log (such
as Kafka) in order to provide a topic-based event
stream for applications to listen to.

• These event streams are consumed by
applications, to populate their own local data
store, with the data optimized into the form they
need it.

• These applications’ user interfaces (UIs) can
query their local data store rather than putting
pressure on the back end data store.

© 2021 IBM Corporation

https://developer.ibm.com/articles/event-stream-projections

Event sourcing

Local “event sourced”
read-optimized datastore

Read
implementation

A

Read
implementation

B

Local datastore Local datastore

Subscribe
and

consume

Direct invocation

Event streamSubscribe
and

consume

“Event Sourced” implies the use of an
event log as the primary datastore

Application/Context
boundary

Event Log

… 4 5 6 7 …

Command
implementation

CO
M

M
AN

D

Q
UE

RY

Exposed API

, and CQRS

© 2021 IBM Corporation

Event sourcing/CQRS within a bounded context

CQRS and Event Sourcing patterns are typically scoped to
within a bounded context. From outside the context, the event
sourced nature of the implementation should be hidden.

Bounded Context

Event Log

C
O

M
M

A
N

D

Q
U

E
R

Y

Bounded Context
Only selected events (and for that matter APIs) should
be exposed across bounded contexts. Their data models
should be decoupled from the internal model.

Internal
events

(inter) domain events

API Management

© 2021 IBM Corporation

API & Event Management

vs (inter) domain events

The maturing space of event endpoint management

Easily found,
quickly consumed

• Described
• Catalogued and

discoverable
• Policy controlled

access

Completely
De-coupled

• Self-service
consumption

• No technology ties
between provider
and consumers

• No operational ties

Consumed
reliably

• Consumption
options suitable for
many application
types

• Replay history,
durable subs,
horizontal scale

Delivered in time
to be useful

• Latency measured
in seconds not
minutes

• Delivered rather
than polled

15

Event Distribution Event Endpoint Management

© 2021 IBM Corporation

On premises

synchronous (rest/http, soap/http, …
)

asynchronous (m
essaging, events, …

)

A target high level architecture for enterprise integration

bulk (bulk A
P

Is, file transfer, …
)

Systems of
Record

Systems of
Engagement

Mobile Partners
API
Economy IoT

SaaS

SaaS
SaaS

SaaS

IaaS

PaaS

PaaS PaaS

SaaS
Cloud platform
• SaaS = Software as a service
• PaaS = Platform as a service
• IaaS = Infrastructure as a service

Polyglot (e.g. microservice application)
• Language runtimes
• Specialist runtimes (e.g. integration)

Exposure points
• APIs
• Events

Key features

• Technology layering has been removed.
• Grouping is based on business

domains/functions
• Applications are self-contained, including their

integration needs.
• Events have become more a first class citizen

rather than just a transport
• Well defined application boundaries, breached

only by governed APIs and Events
• Cloud platform type (IaaS/PaaS etc.) is hidden

when looking from the outside of an
application.

• Architecture balances isolation (decoupling),
and interaction (defined interfaces).

Caveats

• Represents an idealized target integration
architecture. Most organizations do not have
this level of clarity in the separations of their
applications.

• Describes how the things within the enterprise
communicate with one another. It does not
show the enterprise in the context of its
broader ecosystem (e.g. with partners).

© 2021 IBM Corporation

Or how I learned to build a complete
streaming app with four simple SQL
statements in ksqlDB.

Data In Motion

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

The Rise of Data in Motion
Data as a continuous stream of events

80%
Fortune 100 Companies
Using Apache Kafka

19

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

Transforming our customers’ apps and data architecture

Auto / Transport

Without Event
Streaming

With Event Streaming

Batch-driven scheduling Real-time ETA

Banking Nightly credit-card fraud checks Real-time credit card fraud prevention

Retail Batch inventory updates Real-time inventory management

Healthcare Batch claims processing Real-time claims processing

Media
Batch data pipelines - production
supply chain Real-time data pipeline

Manufacturing Scheduled equipment maintenance Automated, predictive maintenance

Defense Reactive cyber-security forensics Automated SIEM and Anomaly Detection

U.S. Defense
Agencies

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

Confluent Transforms Data Usage Throughout
Enterprises

Retail
Drive consumer
analytics & streamline
operations

Healthcare
Provide patients better
choices & doctors
better insight

Capital Markets
Combat fraud &
remain competitive

Automotive
Amplify vehicle
intelligence & safety

Inventory
Management

Personalized
Promotions

Product
Development
& Introduction

Sentiment
Analysis

Streaming
Enterprise
Messaging

Systems of
Scale for High
Traffic Periods

Connected
Health

Records

Data
Confidentiality
& Accessibility

Dynamic Staff
Allocation

Optimization

Integrated
Treatment

Proactive
Patient Care

Real-Time
Monitoring

Capital
Management

Early-On
Fraud

Detection

Market Risk
Recognition &
Investigation

Preventive
Regulatory
Scanning

Real-Time
What-If
Analysis

Trade Flow
Monitoring

Advanced
Navigation

Environmental
Factor

Processing

Fleet
Management

Predictive
Maintenance

Threat
Detection &
Real-Time
Response

Traffic
Distribution

Optimization

Common In All
Industries
Infrastructure Use
Cases

Data Pipelines Messaging Microservice/
Event Sourcing

Stream
Processing

Data
Integration Streaming ETL

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

Confluent Customers by Industry
FINANCIAL SERVICES INSURANCE TECH HEALTHCARE

COMMUNICATIONS & MEDIA AUTOMOTIVE/TRANSPORTATION CONSUMER/RETAIL TRAVEL

Kafka is powerful … but hard

Install

Configure

Make secure Build apps

DebugFind data

Get data in/out

Monitor
pipelines

?
Upgrade

Monitor apps

Alert errors

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

Enterprise Data Architecture is a Giant Mess
LINE OF BUSINESS 01 LINE OF BUSINESS 02 PUBLIC CLOUD

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

Service Oriented Architecture

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

Service Oriented Architecture

?

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

Most stream processing architectures are
complex

DB CONNECTOR

CONNECTOR

APP

APP

DB

STREAM
PROCESSING

CONNECTOR APPDB

Manage

Make changes to Kafka
objects and services and
see real-time statuses.

● Create/edit topics
● Change cluster

settings
● Manage connectors
● Manage ksqlDB

Monitor

See metrics data for
Kafka and connected
services over a period of
time.

● Broker throughput
● Topic throughput
● Under Replicated

Partitions
● Disk usage over

time

Deploy

Manage Kafka and
connected services at
scale.

● Upgrade a cluster
● Restart a cluster
● Add a new broker

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

Confluent Products

Performance & Elasticity
Auto Data Balancer | Tiered Storage

Flexible DevOps Automation
Operator | Ansible

GUI-driven Mgmt & Monitoring
Control Center

Efficient
Operations at Scale

Freedom of Choice

Committer-driven Expertise

Event Streaming Database
ksqlDB

Rich Pre-built Ecosystem
Connectors | Hub | Schema Registry

Multi-language Development
Non-Java Clients | REST Proxy

Global Resilience
Multi-region Clusters | Replicator

Data Compatibility
Schema Registry | Schema Validation

Enterprise-grade Security
RBAC | Secrets | Audit Logs

ARCHITECTOPERATORDEVELOPER

Open Source | Community licensed

Unrestricted
Developer Productivity

Production-stage
Prerequisites

Fully Managed Cloud ServiceSelf-managed Software

Training PartnersEnterprise
Support

Professional
Services

 Apache Kafka

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

Complete Technology Ecosystem

30

Data Diode

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

Confluent Delivers A Complete Event Streaming
Platform

Apache Kafka®

Core | Connect API | Streams API

Performance & Scalability
Tiered Storage | Self-Balancing Clusters | k8s Operator

Database
Changes Log Events IoT Data Web Events Other Events

DATA
INTEGRATION

REAL-TIME
APPLICATIONS

Datacenter Public Cloud Confluent Cloud

Confluent Platform
Security & Resiliency

RBAC | Audit Logs | Schema Validation | Multi-Region Clusters | Replicator | Cluster Linking

Development & Connectivity
Connectors | Non-Java Clients | REST Proxy | Schema Registry | ksqlDB

Confluent fully-managedCustomer self-managed

Hadoop

Database

Data Warehouse

CRM

Other

Customer 360

Fraud Detection

Inventory
Management

Analytics & ML

Other

Management & Monitoring
Control Center | Proactive Support

COMMUNITY FEATURES

COMMERCIAL FEATURES

OPEN SOURCE FEATURES

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

Most stream processing architectures are
complex

DB CONNECTOR

CONNECTOR

APP

APP

DB

STREAM
PROCESSING

CONNECTOR APPDB

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

Most stream processing architectures are
complex

DB CONNECTOR

CONNECTOR

APP

APP

DB

STREAM
PROCESSING

CONNECTOR APPDB

1
2

3

4

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

Our unfair advantage

ConfluentProcessing
Runtime SchemaKafka

Streams

Confluent
Schema
Registry

Query

Event
Capture

Replication

Event
Storage

Kafka
Core

Cluster
Linking

Kafka
Connect

State
Stores

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

Data in motion with Confluent

Kafka
producer/
consumer

Kafka
Streams ksqlDB

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

Stream processing approach comparison

Kafka producer/consumer Kafka Streams ksqlDB

ConsumerRecords<String, String> records = consumer.poll(100);

Map<String, Integer> counts = new DefaultMap<String,

Integer>();

for (ConsumerRecord<String, Integer> record : records) {

 String key = record.key();

 int c = counts.get(key)

 c += record.value()

 counts.put(key, c)

}

for (Map.Entry<String, Integer> entry : counts.entrySet()) {

 int stateCount;

 int attempts;

 while (attempts++ < MAX_RETRIES) {
 try {

 stateCount = stateStore.getValue(entry.getKey())

 stateStore.setValue(entry.getKey(), entry.getValue() +

stateCount)

 break;

 } catch (StateStoreException e) {

 RetryUtils.backoff(attempts);

 }

 }

}

builder
 .stream("input-stream",
 Consumed.with(Serdes.String(), Serdes.String()))
 .groupBy((key, value) -> value)
 .count()
 .toStream()
 .to("counts", Produced.with(Serdes.String(), Serdes.Long()));

 SELECT x, count(*) FROM stream GROUP BY x EMIT CHANGES;

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

Stream processing technology organization

ksqlDB
Kafka
producer/consumer

Kafka Streams

ksqlDB

Each layer encapsulates
and uses the layer
beneath it

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

An architecture fewer moving parts

DB

APP

APP

DB

APP
PULL

PUSH

CONNECTORS

STREAM PROCESSING

STATE STORES

ksqlDB

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

An architecture fewer moving parts

DB

APP

APP

DB

APP
PULL

PUSH

CONNECTORS

STREAM PROCESSING

STATE STORES

ksqlDB

1
2

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

Build a complete streaming app with 4 SQL
statements

Serve lookups against
materialized views

Create
materialized views

Perform continuous
transformations

CREATE SOURCE CONNECTOR jdbcConnector WITH (
 ‘connector.class’ = '...JdbcSourceConnector',
 ‘connection.url’ = '...',
 …);

CREATE STREAM purchases AS
 SELECT viewtime, userid,pageid,
 TIMESTAMPTOSTRING(viewtime, 'yyyy-MM-dd HH:mm:ss.SSS')
 FROM pageviews;

 CREATE TABLE orders_by_country AS
 SELECT country, COUNT(*) AS order_count, SUM(order_total) AS order_total
 FROM purchases
 WINDOW TUMBLING (SIZE 5 MINUTES)
 LEFT JOIN purchases ON purchases.customer_id = user_profiles.customer_id
 GROUP BY country
 EMIT CHANGES;

SELECT * FROM orders_by_country WHERE country='usa';

Capture data

IBM Cloud / © 2020 IBM Corporation

Learn more

IBM Cloud Pak for Integration

ibm.com/cloud/cloud-pak-for-integration

Confluent

confluent.io

Agile integration

ibm.biz/agile-integration
ibm.biz/agile-integration-webinar

ibm.biz/eda-resurgence

https://www.ibm.com/cloud/cloud-pak-for-integration
https://www.confluent.io/
http://ibm.biz/agile-integration
http://ibm.biz/agile-integration-webinar
http://ibm.biz/eda-resurgence

Thank you!

IBM Cloud / 28th May 2020 / © 2020 IBM Corporation

Kim Clark
kim.clark@uk.ibm.com

