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Evolution to agile integration – high level view
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Evolution to agile integration – detail view
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Creating truly independent digital applications requires 
asynchronous communication as well as APIs
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Creating truly independent digital applications requires 
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Comparing messaging and events

Stream 
History

Scalable 
Subscription

Fine grained
messaging

Assured 
Delivery✔

Messaging 
Focused on message exchange and transactions

Events (e.g. Kafka) 
Focused on streaming of events

Supported 
connectivity

Topics and 
Subscriptions

Critical data exchange Event driven Event streaming

Strengths
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Example of complementary use of messaging and events
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Event driven architecture 
patterns that build on one another

Event stream data distribution: Event distribution with history
Event stream projections: Consumer specific data views
Event sourcing: Using an event log as a data master
CQRS: Command Query Responsibility Segregation
Event processing: Evaluating events over time
Saga: Combining multiple actions together

Supporting/related patterns: 
change data capture, event connectors (source/sink), function as a service…

https://ibm-cloud-architecture.github.io/refarch-eda 
© 2021 IBM Corporation
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Event Log

Event streams for data distribution
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Event Log (Topic A)

Event processing

Event

Event stream

Event 
Propagator

… 42 43 44 45 46

Publish

… 4 5 6 7 8 … 172 173 174 175

Event Log (Topic B)

… 4 5 6 7

Event 
processor

… 44 456 7 8 46

Event pattern matched

Subscribe 
and 

consume

Publish

4

5

Event processing could involve:
• Filtering
• Redaction
• Routing
• Event pattern matching
• Real-time analytics
• Machine learning model* 

(training and/or using)

* Note that event processing can be 
re-run over the event stream history 
in order to gain new insights as the 
learning improves
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Event Log

Event stream projections
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• Back-end datastores provide a stream of events 
as changes to their data occur, using change data 
capture or other techniques.

• Those events are published to an event log (such 
as Kafka) in order to provide a topic-based event 
stream for applications to listen to.

• These event streams are consumed by 
applications, to populate their own local data 
store, with the data optimized into the form they 
need it.

• These applications’ user interfaces (UIs) can 
query their local data store rather than putting 
pressure on the back end data store.

© 2021 IBM Corporation
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Event sourcing
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read-optimized datastore
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Event sourcing/CQRS within a bounded context

CQRS and Event Sourcing patterns are typically scoped to 
within a bounded context. From outside the context, the event 
sourced nature of the implementation should be hidden. 

Bounded Context

Event Log
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Bounded Context
Only selected events (and for that matter APIs) should 
be exposed across bounded contexts. Their data models 
should be decoupled from the internal model. 

Internal 
events

(inter) domain events

API Management
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The maturing space of event endpoint management

Easily found, 
quickly consumed

• Described
• Catalogued and 

discoverable
• Policy controlled 

access

Completely 
De-coupled

• Self-service 
consumption

• No technology ties 
between provider 
and consumers

• No operational ties

Consumed 
reliably

• Consumption 
options suitable for 
many application 
types

• Replay history, 
durable subs, 
horizontal scale

Delivered in time 
to be useful

• Latency measured 
in seconds not 
minutes

• Delivered rather 
than polled

15
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On premises

synchronous (rest/http, soap/http, …
)

asynchronous (m
essaging, events, …

)

A target high level architecture for enterprise integration

bulk  (bulk A
P

Is, file transfer, …
)

Systems of 
Record

Systems of
Engagement

Mobile Partners
API
Economy IoT

SaaS

SaaS
SaaS

SaaS

IaaS

PaaS

PaaS PaaS

SaaS
Cloud platform
• SaaS = Software as a service
• PaaS = Platform as a service
• IaaS = Infrastructure as a service

Polyglot (e.g. microservice application)
• Language runtimes
• Specialist runtimes (e.g. integration)

Exposure points
• APIs
• Events

Key features

• Technology layering has been removed. 
• Grouping is based on business 

domains/functions 
• Applications are self-contained, including their 

integration needs. 
• Events have become more a first class citizen 

rather than just a transport
• Well defined application boundaries, breached 

only by governed APIs and Events
• Cloud platform type (IaaS/PaaS etc.) is hidden 

when looking from the outside of an 
application. 

• Architecture balances isolation (decoupling), 
and interaction (defined interfaces). 

Caveats

• Represents an idealized target integration 
architecture. Most organizations do not have 
this level of clarity in the separations of their 
applications. 

• Describes how the things within the enterprise 
communicate with one another. It does not 
show the enterprise in the context of its 
broader ecosystem (e.g. with partners).
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Or how I learned to build a complete 
streaming app with four simple SQL 
statements in ksqlDB.

Data In Motion
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The Rise of Data in Motion
Data as a continuous stream of events

80%
Fortune 100 Companies
Using Apache Kafka
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Transforming our customers’ apps and data architecture 

Auto / Transport

Without Event 
Streaming

With Event Streaming

Batch-driven scheduling Real-time ETA

Banking Nightly credit-card fraud checks Real-time credit card fraud prevention

Retail Batch inventory updates Real-time inventory management

Healthcare Batch claims processing Real-time claims processing

Media
Batch data pipelines - production 
supply chain Real-time data pipeline

Manufacturing Scheduled equipment maintenance Automated, predictive maintenance

Defense Reactive cyber-security forensics Automated SIEM and Anomaly Detection

U.S. Defense 
Agencies
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Confluent Transforms Data Usage Throughout 
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Confluent Customers by Industry 
FINANCIAL SERVICES INSURANCE TECH HEALTHCARE

COMMUNICATIONS & MEDIA AUTOMOTIVE/TRANSPORTATION CONSUMER/RETAIL TRAVEL



Kafka is powerful … but hard

Install

Configure

Make secure Build apps

DebugFind data

Get data in/out

Monitor 
pipelines

?
Upgrade

Monitor apps

Alert errors
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Enterprise Data Architecture is a Giant Mess
LINE OF BUSINESS 01 LINE OF BUSINESS 02 PUBLIC CLOUD
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Service Oriented Architecture
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Service Oriented Architecture

?
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Most stream processing architectures are 
complex
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Manage

Make changes to Kafka 
objects and services and 
see real-time statuses. 

● Create/edit topics
● Change cluster 

settings
● Manage connectors
● Manage ksqlDB

Monitor

See metrics data for 
Kafka and connected 
services over a period of 
time.

● Broker throughput
● Topic throughput
● Under Replicated 

Partitions
● Disk usage over 

time

Deploy

Manage Kafka and 
connected services at 
scale. 

● Upgrade a cluster
● Restart a cluster
● Add a new broker
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Confluent Products
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Complete Technology Ecosystem
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Confluent Delivers A Complete Event Streaming 
Platform
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Most stream processing architectures are 
complex
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Most stream processing architectures are 
complex
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Our unfair advantage
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Data in motion with Confluent
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Stream processing approach comparison

Kafka producer/consumer Kafka Streams ksqlDB

ConsumerRecords<String, String> records = consumer.poll(100);

Map<String, Integer> counts = new DefaultMap<String, 

Integer>();

for (ConsumerRecord<String, Integer> record : records) {

  String key = record.key();

  int c = counts.get(key)

  c += record.value()

  counts.put(key, c)

}

for (Map.Entry<String, Integer> entry : counts.entrySet()) {

  int stateCount;

  int attempts;

  while (attempts++ < MAX_RETRIES) {
   try {

     stateCount = stateStore.getValue(entry.getKey())

     stateStore.setValue(entry.getKey(), entry.getValue() + 

stateCount)

     break;

   } catch (StateStoreException e) {

     RetryUtils.backoff(attempts);

   }

 }

}

builder
    .stream("input-stream",
             Consumed.with(Serdes.String(), Serdes.String()))
    .groupBy((key, value) -> value)
    .count()
    .toStream()
    .to("counts", Produced.with(Serdes.String(), Serdes.Long()));

   SELECT x, count(*) FROM stream GROUP BY x EMIT CHANGES;
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Stream processing technology organization

ksqlDB
Kafka 
producer/consumer

Kafka Streams

ksqlDB

Each layer encapsulates 
and uses the layer 
beneath it
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An architecture fewer moving parts
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An architecture fewer moving parts
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Build a complete streaming app with 4 SQL 
statements

Serve lookups against
materialized views

Create
materialized views

Perform continuous
transformations

CREATE SOURCE CONNECTOR jdbcConnector WITH (
  ‘connector.class’ = '...JdbcSourceConnector',
  ‘connection.url’ = '...',
  …);

CREATE STREAM purchases AS
  SELECT viewtime, userid,pageid,
         TIMESTAMPTOSTRING(viewtime, 'yyyy-MM-dd HH:mm:ss.SSS')
  FROM pageviews;

 CREATE TABLE orders_by_country AS
   SELECT country, COUNT(*) AS order_count, SUM(order_total) AS order_total
   FROM purchases
   WINDOW TUMBLING (SIZE 5 MINUTES)
   LEFT JOIN purchases ON purchases.customer_id = user_profiles.customer_id
   GROUP BY country
   EMIT CHANGES;

SELECT * FROM orders_by_country WHERE country='usa';

Capture data
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