
© Copyright IBM Corporation 2013 Trademarks
Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 1 of 31

Advanced security hardening in WebSphere
Application Server V7, V8 and V8.5, Part 2: Advanced
security considerations
Martin Lansche
Keys Botzum

March 20, 2013

Security consists of more than just some firewalls at the edge of your network protecting
you from the outside. It is a difficult and complex set of actions and procedures that strive to
strengthen your systems as much as is appropriate. Part 1 of this two-part article discussed
many aspects of security in general, with an emphasis on hardening an IBM® WebSphere®
Application Server environment. Part 2 covers even more ground, including application-based
preventative measures, cell trust, cross-cell trust, administrative and application isolation,
identity propagation, desktop development security, and more. This revision of an earlier article
has been significantly updated for WebSphere Application Server V7, V8.0 and V8.5. This is
part 2 of 2.

View more content in this series

Introduction

Part 1 left off explaining how IBM WebSphere Application Server V7.0 and later versions were
designed with the security principle of secure by default. While not perfectly achieved, the goal
was to release a product whereby, in the most common configurations and simpler environments,
the product is configured reasonably securely by default. The previous article ended after
describing many significant infrastructure-based preventative security measures that have been
incorporated into WebSphere Application Server. This article continues with a description of
additional preventative measures that are application-based, and then continues by describing
some critical advanced considerations.

While the information in this article is based on IBM WebSphere Application Server V7, V8.0
and V8.5, most of the issues discussed here apply equally to V6.1. Where an issue is unique to
a specific version, it will be identified as such. If you are using an earlier version of WebSphere
Application Server, refer to the earlier article, as there are significant version differences, which
in turn results in differences between the articles.

http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/developerworks/websphere/techjournal/1210_lansche/1210_lansche.html
http://www.ibm.com/developerworks/websphere/techjournal/1005_botzum/1005_botzum.html
https://www.ibm.com/developerworks/library?series_title_by=advanced+security+hardening+in+WebSphere+Application+Server+V7,+V8+and+V8.5
http://www.ibm.com/developerworks/websphere/techjournal/1210_lansche/1210_lansche.html
http://www.ibm.com/developerworks/websphere/techjournal/1005_botzum/1005_botzum.html

developerWorks® ibm.com/developerWorks/

Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 2 of 31

A note about profiles

If you are familiar with WebSphere Application Server prior to V8.5 you know you must create one
or more profiles. This could be an Application Server (or Base) profile, a Deployment Manager
profile, and so on. For the remainder of this article these will be called “full” profiles. This distinction
is made to contrast these profiles to a new addition in V8.5: the Liberty profile. This article also
calls out recommendations specific to the new Liberty profile.

Application-based preventative measures

Configuration measures

Up to this point, the focus of these articles has been on the basic steps you can take to ensure that
you create a secure IBM WebSphere Application Server infrastructure. This is obviously important,
but focusing on the infrastructure alone it is not sufficient. Now that the infrastructure has been
hardened, you must now examine the things that applications need to do in order to be secure. Of
course, applications must leverage the infrastructure provided by WebSphere Application Server,
but there are several other actions that application developers must take (or not take) to make
them as secure as possible:

1. Never set Web server document root to WAR
2. Carefully verify that every servlet alias is secure
3. Do not serve servlets by classname
4. Do not place sensitive information in WAR root
5. Define a default error handler
6. Consider disabling file serving and directory browsing
7. Enable session security
8. Beware of custom JMX network access

To help you tie these actions back to specific classes of attack, each item will use the key
presented in Part 1 to represent these vulnerabilities

1. Never set Web server document root to WAR

WAR files contain application code and lots of sensitive information. Only some of that information
is Web-servable content, and so it is inappropriate to set the Web server document root to the
WAR root. If you do this, the Web server will serve up all the content of the WAR file without
interpretation, resulting in code, raw JSPs, and more being served up to your users. (This action
is only relevant when a Web server is co-located with an application server, which typically doesn’t
occur, if you’ve followed the guidance in presented in Part 1.)

2. Carefully verify that every servlet alias is secure

http://www.ibm.com/developerworks/websphere/techjournal/1210_lansche/1210_lansche.html#sec3
http://www.ibm.com/developerworks/websphere/techjournal/1210_lansche/1210_lansche.html#step1

ibm.com/developerWorks/ developerWorks®

Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 3 of 31

WebSphere Application Server secures servlets by URL. Each URL that is to be secured must be
specified in the web.xml file describing the application. If a servlet has more than one alias (that is,
multiple URLs access the same servlet class) or there are many servlets, it is easy to accidentally
forget to secure an alias. Be cautious. Since WebSphere Application Server secures URLs and
not the underlying classes, if just one servlet URL is insecure, an intruder might be able to bypass
your security. To alleviate this, use wildcards to secure servlets wherever possible. If that is not
appropriate, carefully doublecheck your web.xml file before deployment.

APAR PK83258 (in WebSphere Application Server Versions 7.0.0.7 and 6.1.0.27) closes
part of this vulnerability by checking the authorization on a HEAD request as if it was a GET
request.

Related to this, make sure that when you specify authorization constraints for servlets that you
either list no methods, or very carefully list (likely in multiple constraints) ALL the methods for a
servlet (GET, POST, PUT, HEAD, and so on). Per the Java™ EE specification, if an authorization
constraint lists methods explicitly, other unmentioned methods have NO authorization constraint!
This is particularly dangerous with methods such as HEAD that default to calling GET to obtain
the needed headers -- effectively calling the GET method without checking its authorization
constraints. The web.xml code section in Listing 1 is considered unsafe, while that shown in Listing
2 is safe.

Listing 1. web.xml – unsafe
<security-constraint>
 <web-resource-collection>
 <web-resource-name>myservlet</web-resource-name>
 <url-pattern>/myservlet</url-pattern>
 <http-method>GET</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>arole</role-name>
 </auth-constraint>
</security-constraint>

Listing 2. web.xml – safe
<security-constraint>
 <web-resource-collection>
 <web-resource-name>myservlet</web-resource-name>
 <url-pattern>/myservlet</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>arole</role-name>
 </auth-constraint>
</security-constraint>

The following approach can be taken within every web.xml to ensure that permissions are
restrictive:

1. Define an initial security constraint such as that shown in Listing 3. This says all URLs (unless
overridden with more specific patterns) are restricted to the NoAccess role. The NoAccess
role name can be pre-bound to the None special role.

developerWorks® ibm.com/developerWorks/

Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 4 of 31

Listing 3
<security-constraint>
 <web-resource-collection>
 <web-resource-name>DefaultDeny</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>NoAccess</role-name>
 </auth-constraint>
</security-constraint>

2. If you are using a Form-based login, define the permissive constraint to allow the web
container to display the Login page (and necessary graphics, and so on) to any user, even
those who are not authenticated (Listing 4). AllUsers role name can be pre-bound to the
Everyone special role.
Listing 4
<security-constraint>
 <web-resource-collection>
 <web-resource-name>LoginForm</web-resource-name>
 <url-pattern>/Login.jsp</url-pattern>
 <url-pattern>/images/*.gif</url-pattern>
 <url-pattern>/css/*.css</url-pattern>
 <http-method>GET</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>AllUsers</role-name>
 </auth-constraint>
</security-constraint>

3. After the above two “default” constraints are added, add the “real” security constraint element
for each servlet added to the application that is appropriate for that URI .

The advantage of this approach is that new end-points added to the web application are
unreachable by default. If a new servlet is added, you will have to add a security constraint for
the new URL in order for anyone to use it. Such a “default-to-deny” design is a cornerstone of
developing secure applications.

If you are using Java annotations to define your security constraints, you can leverage the
ServletSecurity.EmptyRoleSemantic.DENY constraint. For example, the /simple URL is allowed for
POST and GET methods for the AnyUser role, but the remaining methods are Denied (Listing 5).

Listing 5. Example of using annotations to provide secure defaults for HTTP
methods.
@WebServlet(description = "Returns msg and user info", urlPatterns = { "/simple*" })
@ServletSecurity(
 value = @HttpConstraint(ServletSecurity.EmptyRoleSemantic.DENY),
 httpMethodConstraints =
 {@HttpMethodConstraint (value = "GET", rolesAllowed = "AnyUser"),
 @HttpMethodConstraint (value = "POST", rolesAllowed = "AnyUser")})
public class Simple extends HttpServlet {
…

According to the Java Servlet Specification 3.0 (Dec, 2009), Section 13.4.1, the value attribute of
HttpConstraint(ServletSecurity.EmptyRoleSemantic.DENY) has this affect:

http://download.oracle.com/otndocs/jcp/servlet-3.0-fr-oth-JSpec/

ibm.com/developerWorks/ developerWorks®

Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 5 of 31

“[The] HttpConstraint that defines the protection to be applied to all HTTP methods that are NOT
represented in the array returned by httpMethodConstraints.”

3. Do not serve servlets by classname

Servlets can be served by classname or via a normal URL alias. Typically, applications choose
the latter. That is, developers define a precise mapping from each URL to each servlet class in
the web.xml file either by hand or by using one of the various WebSphere Application Server
development tools.

However, WebSphere Application Server also lets you serve servlets by classname. Instead
of defining a mapping for each servlet, a single generic URL (such as /servlet) serves all
servlets. The component of the path after the base is assumed to be the classname for
the servlet. For example, "/servlet/com.ibm.sample.MyServlet" refers to the servlet class
"com.ibm.sample.MyServlet."

Serving servlets by classname is accomplished by setting the
serveServletsByClassnameEnabled property to true in the ibm-web-ext.xmi file or by selecting
serve servlets by classname in the WAR editor in IBM Rational® Application Developer. Do not
enable this feature — Rational Application Developer enables it by default, so you must explicitly
disable it if you are using Rational Application Developer (Figure 1).

Figure 1. Do not serve servlets by classname

This feature makes it possible for anyone that knows the classname of any servlet to invoke it
directly. Even if your servlet URLs are secured, an attacker might be able to bypass the normal
URL-based security. Further, depending on the classloader structure, an attacker might be able
to invoke servlets outside of your Web application, such as IBM provided servlets. (Note that not
installing the sample applications in production is noted here as a first step to prevent this.)

As an administrator, you might be uncertain as to the setting of various applications with respect
to whether they have erroneously enabled serve servlets by classname. You can configure the
application server to ignore the setting within the application (thus disabling serving by classname)

http://www.ibm.com/developerworks/websphere/techjournal/1210_lansche/1210_lansche.html-#step15

developerWorks® ibm.com/developerWorks/

Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 6 of 31

by setting a custom property com.ibm.ws.webcontainer.disallowAllFileServing on the JVM. The
Liberty profile equivalent construct is given in Listing 6.

Listing 6
<webcontainer disallowAllFileServing=”true”/>

4. Do not place sensitive information in WAR root

WAR files contain servable content. The Web container will serve any files found in the root
of the WAR file. This is fine as long as you place only servable content in the root. Thus, you
should never place content that shouldn't be shown to users in the root of the WAR. For example,
don't put property files, class files, or other important information there. If you must place such
information in the WAR file, place it within the WEB-INF directory, as permitted by the servlet
specification. Information there is never served by the Web container.

5. Define a default error handler

When errors occur in a Web application -- or even before the application dispatch (for example,
if WebSphere Application Server can’t find the target servlet) -- an error message is displayed
to the user. By default, WebSphere Application Server will display a raw exception stack dump
of the error. Not only is this incredibly unfriendly to the user, it also reveals information about the
application (names of classes and methods are in the stack information). The exception message
text is also displayed, which could contain sensitive information.

It is best to ensure that users never see a raw error message by defining a default error page
that displays whenever an unhandled exception occurs. This page can be a user friendly error
message rather than a stack trace. The default error page is defined in ibm-web-ext.xmi using
the defaultErrorPage attribute, or it can be set in Rational Application Developer using the Web
deployment descriptor editor (Extensions tab).

Figure 2. Define default error page

6. Consider disabling file serving and directory browsing

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.soafep.multiplatform.doc/info/ae/ae/rweb_custom_props.html#disallowserveletsbyclassname

ibm.com/developerWorks/ developerWorks®

Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 7 of 31

You can further limit the risk of serving inappropriate content by disabling file serving and directory
browsing in your Web applications.

Figure 3. Disable file serving and directory browsing

Of course, if the WAR contains servable static content, file serving will have to be enabled. There
is rarely reason to enable Directory browsing.

7. Enable session security (Applies only to V7.0 only)

Unlike WebSphere Application Server V8.0 (and later), WebSphere Application Server V7.0 does
not normally enforce any authorization for HTTP session access. As a result, any request with
a valid session identifier can access any session. While session identifiers aren’t likely to be
guessable, it might be possible to obtain session identifiers through other means. As such, users
migrating from earlier versions of WebSphere Application Server who had not enabled session
security might see breakage in their applications. Note that this is also the default behavior for the
Liberty profile.

To reduce the risk of this form of attack, you should consider enabling session security. This setting
is configured by navigating to the Application server > <server name> > Web container >
Session management panel. Simply select the Security integration option, shown in Figure 4.

developerWorks® ibm.com/developerWorks/

Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 8 of 31

Figure 4. Session security integration

WebSphere Application Server will then track which user (as determined by the LTPA credential
that the user presents) owns a specific session and will ensure that only requests for that user can
access that session.

In rare cases, this setting can break Web applications. If the application contains a mixture of
secure (those with authorization constraints) and insecure servlets, the insecure servlets will not
be able to access the session object. Once a secure servlet accesses the session, it is marked as
“owned” by that user. Insecure servlets that run as anonymous will receive an authorization failure
if they try to access those pages. As of WebSphere Application Server V6.1, the authentication
behavior can be changed to ensure that servlets without an authorization constraint inherit the
current user identity if one has already been established, thus addressing this issue. Figure 5
shows how you can set this feature.

ibm.com/developerWorks/ developerWorks®

Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 9 of 31

Figure 5. Preserve existing identity

In WebSphere Application Server V8.0 the server defaults have been changed two-fold. It is the
combination of enabling session security integration and the “use available authentication data
when an unprotected URI is accessed” that avoids the secure/unsecure servlet breakage scenario
described earlier.

Preventing an attack

Enabling session security actually prevents one type of attack. Suppose your Web site establishes
an HTTP session before the user authenticates and before the use of HTTPS (as with most sites).
In this case, the session cookie (JSESSIONID) is exposed in the clear, making it easy for an
attacker to capture it. Later, when the user authenticates, you should of course switch to SSL and
ensure that the LTPA cookie flows only over SSL, as discussed earlier. The trouble is the attacker
already has the JSESSIONID cookie. Depending on how your application is written, he might be
able to use that cookie and a different LTPA cookie (perhaps one for his own user identity) to then
access the application as the first user. This is a very serious attack and one that is quite easy
to implement if an open wireless network is in use. By enabling session security, this attack is
blocked because the application server will block access to a session that is not owned by the
current user.

8. Beware of custom JMX network access

JMX and custom MBeans make it possible to support powerful remote customized administration
of your applications. Be aware, however, that JMX MBeans are network accessible. If you choose
to deploy them, do so carefully and ensure that they have proper authorization on their operations.
WebSphere Application Server will automatically provide default authorization restrictions for

developerWorks® ibm.com/developerWorks/

Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 10 of 31

MBeans based on information in the descriptor in the MBean JAR file. Whether this is appropriate
or not will depend on your application. See the book IBM WebSphere: Deployment and Advanced
Configuration for more information.

Design and implementation measures
Next, let’s turn our attention to the actions that application developers and designers must take in
order to build a secure application. These steps are crucial and, sadly, often overlooked.

9. Use WebSphere Application Server security to secure applications
10. Do not rely on HTTP session for user identity
11. Secure every layer of the application
12. Validate all user input
13. Write secure applications
14. Store information securely
15. Be sensitive to auditing and tracing
16. Avoid the use of basic authentication for browser clients
17. Avoid widget jacking: Use SSL if you build your browser UI using GETs from third party sites

9. Use WebSphere Application Server security to secure applications

Application teams usually recognize that their applications need some amount of security. This
is often a business requirement. Unfortunately, many teams decide to develop their own security
infrastructure. While it is possible to do this well, it is also very difficult to do so, and as a result
most teams do not succeed. Instead, there is the illusion of strong security when in fact the
system security is quite weak. Security is simply a difficult problem. There are subtle issues
of cryptography, replay attacks, and various other forms of attack that are easily overlooked.
The message here is that WebSphere Application Server security should be used. It was
recommended earlier that you enable application security; here, it is recommended that you
actually use it in your applications.

Perhaps the most common complaint about the Java EE-defined declarative security model is that
it is not sufficiently granular. For example, you can only perform authorization at the method level
of an EJB or servlet (in this context, a method on a servlet is one of the HTTP methods, such as
GET, POST, PUT, and so on), not at the instance level. Thus, for example, all bank accounts have
the same security restrictions, but you would prefer that certain users have special permissions on
their own accounts.

This problem is addressed by Java EE security APIs isCallerInRole and getCallerPrincipal. By
using these APIs, applications can develop their own powerful and flexible authorization rules but
still drive those rules from information that is known to be accurate: the security attributes from
the WebSphere Application Server runtime. If this is still not sufficient, you can build (or buy) a
more elaborate authorization framework that leverages the existing security information already
maintained by the application server (such as groups). If even that is not sufficient, the security

http://www.amazon.com/exec/obidos/tg/detail/-/0131468626/ref=cm_ea_pl_prod_15/104-1896463-2823144
http://www.amazon.com/exec/obidos/tg/detail/-/0131468626/ref=cm_ea_pl_prod_15/104-1896463-2823144

ibm.com/developerWorks/ developerWorks®

Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 11 of 31

infrastructure is highly customizable. Leveraging what exists and works (extending where needed)
is the right approach, rather than discarding what you have and attempting to build a secure
infrastructure from scratch.

An example of weak security

The WebSphere Application Server security infrastructure can be integrated with other
authentication or authorization products. For example, IBM Tivoli® Access Manager can
provide authentication and authorization support, and IBM Tivoli Security Policy Manager can
provide additional authorization capabilities.

Here is one quick example of a weak security system. Applications that don't use WebSphere
Application Server security tend to create their own security tokens and pass them within the
application. These tokens typically contain the user's name and some security attributes, such
as their group memberships. It is not at all uncommon for these security tokens to have no
cryptographically-verifiable information. The presumption is that security decisions can be made
based on the information in these tokens. This is false. The tokens simply assert user privileges.
The problem here is that any Java program can forge one of these security objects and then
possibly sneak into the system through a back door. The best example of this is when the
application creates these tokens in the servlet layer and then passes them to an EJB layer. If the
EJB layer is not secured (see step 11), intruders can call an EJB directly with forged credentials,
rendering the application's security meaningless. Thus, without substantial engineering efforts, the
only reliable secure source of user information is the WebSphere Application Server infrastructure.

10. Do not rely on HTTP session for user identity

This recommendation is closely related to the previous topic. Far too many applications that
implement their own security track the user's authentication session through the use of the HTTP
Session. This is dangerous. The session is tracked via a session ID (on the URL or in a cookie).
While the ID is randomly generated, it is still subject to replay attacks because it does not have a
specific absolute timeout. A timeout only occurs after a period of inactivity -- if the session cookie is
intercepted, there is a potentially unlimited time to misuse the cookie. On the other hand, the LTPA
token, which is created when WebSphere Application Server security is used by the application,
is designed to provide a stronger authentication token. In particular, LTPA tokens have limited
lifetimes, use strong encryption, and the security subsystem audits the receipt of potentially forged
LTPA tokens.

An even more dangerous yet subtle problem with using the HTTP session for security is that the
session cookie (JSESSIONID) is usually created before a user authenticates -- typically when they
first access the site. At this point, the cookie is often sent in the clear over HTTP. Once the user
authenticates, most applications will switch to HTTPS for all future traffic (protecting cookies and
content) -- but the JSESSIONID cookie could already have been stolen because an attacker could
have captured the cookie when it was initially sent over HTTP. In addition to the obvious point of

developerWorks® ibm.com/developerWorks/

Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 12 of 31

not using the HTTP session for security, the risk of stealing an HTTP session can be reduced by
enabling session security and restricting the LTPA cookie to HTTPS, as discussed earlier.

In addition, cookies created by your applications should be Secure (restricted to HTTPS), and all
cookies should be marked HTTPOnly, with a possible exception (which needs to documented,
and signed off in a design review) where an application explicitly requires it to function because of
client side JavaScript needing access to the cookie.

11. Secure every layer of the application

All too often, Web applications are deployed with some degree of security (home-grown or
WebSphere Application Server-based) at the servlet layer, but the other layers that are part of the
application are left unsecured. This is done under the false assumption that only servlets need
to be secured in the application because they are the front door to the application. But, as any
police officer will tell you, you have to lock the back door and the windows to your home as well.
There are many ways this can occur, but this is most commonly seen when remotely accessible
components (such as EJBs accessible via IIOP or Web services) are used as part of a multi-tier
architecture when Java clients aren't part of the application. In this case, developers often assume
that the remotely callable components do not need to be secured because they are not "user-
accessible" in their application design, but this assumption is dangerously wrong. This is frequently
described, tongue firmly in cheek, as “security by obscurity.” An intruder can bypass the servlet
interfaces, go directly to the services layer, and wreak havoc if you have no security enforcement
at that layer.

Often, the first reaction to this problem is to secure the services via some trivial means, perhaps
by marking them accessible to all authenticated users. But, depending on the registry, "all
authenticated users" might be every employee in a company. Some take this a step further
and restrict access to members of a certain group that means roughly "anyone that can access
this application." That's better, but it's usually not sufficient, as everyone that can access the
application shouldn't necessarily be able to perform all the operations in the application. The right
way to address this is to implement authorization checks in the services. In the case of EJBs, you
might also consider implementing EJB components with only local interfaces, making it impossible
to connect to them remotely.

12. Validate all user input

Cross-site scripting is a fairly insidious attack that takes advantage of the flexibility and power
of Web browsers. Most Web browsers can interpret various scripting languages, such as
JavaScript™. The browser knows it is looking at something executable based upon a special

ibm.com/developerWorks/ developerWorks®

Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 13 of 31

sequence of escape characters. Therein lies the power -- and the dangerous flaw -- of the Web
browser security model.

Intruders take advantage of this hole by tricking a Web site into displaying a script that the intruder
wants the site to execute. This is accomplished fairly easily on sites that permit arbitrary user input.
For example, if a site includes a form for entering an address, a user can instead input JavaScript.
When the site displays the address later, the Web browser will execute the script. That script, since
it is running inside the Web browser from the site, has access to secure information, such as the
user's cookies.

So far, this doesn't seem terribly dangerous, but intruders can take this one step further and trick
a user into going to a Web site and entering the intruding script, perhaps by sending the user an
innocent URL in an e-mail or posting it to a public blog. The intruder can now run arbitrary code
within the user’s browser, typically with access to cookies, and can see all keyboard events and
any pages displayed. This is all an intruder needs to do irreparable harm to that user.

This problem is actually a special case of a much larger class of problems related to user input
validation. Whenever you permit a user to type in free text, you must ensure that the text doesn't
contain special characters that could cause harm. For example, if a user were to type in a string
that is used to search some index, it might be important to filter the string for improper wildcard
characters that might cause unbounded searches. In the case of cross-site scripting prevention,
you need to filter out the escape characters for the scripting languages supported by the browser.
The message here is that all external input should be considered suspect and should be carefully
validated. A discussion of all the issues that must be addressed is well beyond the scope of this
paper.

13. Write secure applications

Given space constraints and the intent of this article, it’s not possible here to enumerate all of the
application design and coding issues that might impact the security of an application. If you are
seriously interested in developing secure applications, see these excellent resources on secure
application design, development, and testing:

• Book: Writing Secure Code
• Book: Software Security: Building Security In
• OWASP, which has published these guides:

• Development Guide
• Code Review Guide
• Testing Guide

• Web Application Security Consortium
• Penetration testing frameworks

http://www.cert.org/tech_tips/malicious_code_mitigation.html
http://www.cert.org/tech_tips/malicious_code_mitigation.html
http://www.amazon.com/Writing-Secure-Second-Michael-Howard/dp/0735617228/
http://www.amazon.com/Software-Security-Building-Addison-Wesley/dp/0321356705/
http://www.owasp.org/
http://www.owasp.org/index.php/Category:OWASP_Guide_Project
http://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
http://www.owasp.org/index.php/Category:OWASP_Testing_Project
http://www.webappsec.org/
http://www.vulnerabilityassessment.co.uk/Penetration%20Test.html#

developerWorks® ibm.com/developerWorks/

Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 14 of 31

Also, a recently published IBM Redbook discusses using IBM Rational AppScan as a key element
of your development cycle to build secure Web applications.

14. Store information securely

To create a secure system, you must consider where information is stored or displayed.
Sometimes, fairly serious security leaks can be introduced by accident. For example, be cautious
about storing highly confidential information in the HTTP Session object, as this object might be
serialized to the database, making this object readable from there. If an intruder has access to
your database (or even raw machine-level access to the database volumes), he might be able to
see information in the session. Needless to say, such an attack would take a high degree of skill.

15. Be sensitive to auditing and tracing

Any non-trivial application will generate substantial logging and tracing information for business
purposes and debugging purposes. That’s all well and good. Just remember that information in
files has a tendency to end up in a lot of places (maybe outside your organization). Extremely
sensitive information should not be traced and you should try to avoid auditing it if you can. For
example, we’ve seen clients that print user passwords, driver’s license numbers, and even social
security numbers to a trace file. If that file is read by the wrong person (perhaps a consultant there
to help you), you have just revealed sensitive information. Any customer information system sent
from the system to anyone in electronic form (including backup images) MUST be encrypted. This
level of control does not apply only to user passwords, but to any and all customer information.

Just to be safe, limit and review what is logged.

16. Avoid the use of basic authentication for browser clients

The problem with basic authentication is that the Web browser caches the user ID and password,
and resends it automatically on future requests when needed. This means that it is impossible to
log off a user that has used basic authentication. For example, if a user’s LTPA cookie expires, the
application server challenges again for a user ID and password. The browser will helpfully resend
the basic authentication header – rendering timeouts useless.

This phenomenon of automatically resending the user credentials when needed is actually at the
heart of most Single Sign On solutions. This includes SSO based on SPNEGO, and also when
the user authenticates using Client SSL certificates. In other words, Basic Authentication is just

http://www.redbooks.ibm.com/abstracts/redp4530.html?Open

ibm.com/developerWorks/ developerWorks®

Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 15 of 31

another example where the user can easily log back in, without manually providing credentials.
However, it is different than these other authentications in that the user’s password is resent on
every request.

To make matters worse, if a request later occurs over HTTP (unencrypted), the browser will
happily send the password in the clear over the network.

Basic authentication is a sensible approach when the client is not a browser. For example, Web
services or REST clients often uses basic authentication safely. Of course, such requests should
flow over SSL.

17. Avoid widget jacking: Use SSL if you build your browser UI using GETs from third party
sites

Social media sites have infiltrated into “traditional” web applications, and have done so in a way
that exposes your users to identity theft with their social media credentials. This is called widget
jacking. The underlying scenario is the following:

• An end user logs into a social site, such as Facebook or Twitter, and does not logoff. He or
she might close the browser or reboot the computer.

• This user goes to a public wifi location and visits his bank (using the traditional web
application). That bank has recently added the ability to “like” the bank on Facebook, Twitter
and other social media sites. To help the user, the bank’s application user Interface includes
the ubiquitous Facebook and Twitter icons.

• The bank’s page is rendered over SSL, but the returned page includes the code in Listing 7.

Listing 7

<iframe src="http://www.facebook.com/plugins/like.php?href=YOUR_URL"
scrolling="no" frameborder="0" style="border:none; width:450px; height:80px">
</iframe>

• Notice how the iframe causes a GET to an unencrypted URL.
• All cookies for www.facebook.com are sent on that HTTP GET request, including the cookie

containing the user's authenticated identity to the facebook.com site.
• Eve, the eavesdropper listens for unencrypted traffic visible over the wifi (see Firesheep for

details) and gets the unencrypted cookie.

With third party applications leveraging social media logins for authentication, this is becoming a
larger vulnerability than you would initially think. There are browser plugins designed to protect
users, but it requires a knowledgeable consumer to install and enable such plugins.

I am not advocating that your applications not integrate with such social media sites, or even that
your users should not be able to register a “like” to such sites. But be responsible: change the
code for getting that content to what you see in Listing 8.

http://en.wikipedia.org/wiki/Firesheep

developerWorks® ibm.com/developerWorks/

Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 16 of 31

Listing 8
<iframe src="https://www.facebook.com/plugins/like.php?href=YOUR_URL"
scrolling="no" frameborder="0" style="border:none; width:450px; height:80px"></iframe>

Advanced considerations
We move on now to some advanced issues related to hardening, including cross cell trust,
application isolation, identity propagation, and limitations in WebSphere Application Server
security. In most cases, you won’t find any specific recommendations here, rather you should
use this important information to help you in your efforts to maintain and manage a secure
infrastructure.

Cell trust and isolation

A WebSphere Application Server cell should not span trust boundaries. If you can’t trust
someone else totally, don’t let them manage your cell or a machine in your cell. Irrespective of
the use of fine-grained administrative security, the WebSphere Application Server administrative
infrastructure assumes a coarse grained shared trust model throughout the cell between each
and every WebSphere process. Every application server contains within it the administrative
infrastructure, including internal APIs. On the positive, this makes application servers highly
independent and robust by eliminating common points of control and failure, but it also negatively
impacts isolation. Implications of this approach include:

• Every application server in a WebSphere Application Server cell has full administrative
authority to the entire cell. Should any application server be compromised, they are all
compromised.

• Physical machine boundaries (separate computers, LPARs, nodes, and so on) have virtually
no impact on cell security. The unit of trust in a cell is all application servers over all nodes.

• Process boundaries have little impact on cell security. Placing applications in separate
application server JVMs does little to increase their isolation from a security perspective within
a cell.

• Separate operating system identities have little impact on cell security. Since application
servers communicate with the rest of the cell using various protocols that aren’t managed by
the operating systems, normal operating system protections have little effect.

This brings us to two key topics: administrative isolation and application isolation, next.

Administrative isolation

With WebSphere Application Server, all administrators have administrative authority (based
on their assigned role) by default over the entire cell. With WebSphere Application Server
V6.1, a new feature known as authorization groups was added making it possible to grant
administrative authorities at a fine-grained level (server, application, node, cluster, and so on). In
V6.1, the definition of enrollment into the authorization groups was supported only by wsadmin. In
WebSphere Application Server V7, they are supported by the admin console as well. If you have a
large cell with many administrators, take some time to look into these capabilities.

ibm.com/developerWorks/ developerWorks®

Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 17 of 31

Application isolation

Application isolation in this context is fundamentally about preventing the illicit actions of one
application from harming another. These types of attacks are very difficult to prevent. The reality is
that infrastructure software products such as Java EE application servers have not yet reached the
maturity level of multi-user operating systems. They do not provide the kind of robust isolation that
an operating system typically provides between multiple users.

Does this affect you?

First and foremost, the weaknesses discussed here are internal only. These weaknesses can
only be exploited by applications that are installed into your cell. In IBM’s experience, the vast
majority of users of WebSphere Application Server, even those with a shared infrastructure, are
not impacted by these issues. This is because they recognize that their shared infrastructure is
within the company and is running company approved code. Thus, they usually do not require
complete security isolation of applications.

Users of WebSphere Application Server that are affected by the issues raised here typically have
extremely rigorous security policies, such as:

• Formal policies that require applications not to have access to other applications’ data even
when running in a shared infrastructure.

• The requirement that every application run under a separate user ID on shared servers (a
requirement common for systems that predate the use of WebSphere Application Server in
the enterprise), detailed rules about file system permissions, dedicated processes for each
application, and strict audit procedures to enforce these requirements.

• Strict corporate security guidelines that are rigorously enforced to ensure compliance, most
likely including application architecture and code inspections. Without code inspections,
developers can insert code that violates corporate policy.

• Policies designed to ensure that remote attacks that might compromise one application not be
able to be used to compromise other applications.

If this doesn’t sound like your environment, the issues in this section do not apply to you and you
can skip to the next section.

What mitigating actions can you take?

What mitigating actions can I take?

• Enforce rigorous code inspections of all application code. Couple this with source code
management systems that are secure. This way every code change is tracked to the person
that made the change, and code inspections can be scheduled and tracked against every
code change. In this situation, it should be impossible for a single programmer to insert
malicious code into your system. Instead, multiple people would have to work together to
achieve any compromise. We consider this particularly relevant since malicious application
code could easily do great harm within one application, regardless of application isolation.

developerWorks® ibm.com/developerWorks/

Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 18 of 31

• If you choose to purchase commercial applications to run on WebSphere Application Server,
ensure you purchase products only from reliable and trustworthy vendors, carefully test and
monitor applications prior to production deployment, and monitor them while in production.

• If absolutely necessary, deploy applications into private WebSphere Application Server cells.
You might consider using different cells for different business units or other organizational
units, based on risk and trust. To limit hardware costs, you can safely run nodes from multiple
cells on a single machine or LPAR. Simply run each cell with a different operating system
user ID, different encryption keys, and different administrative passwords. This will provide
complete isolation from a security perspective.

If none of these approaches are acceptable, you can apply application isolation hardening
techniques to the infrastructure. Understand that these techniques require a great deal of work.
More importantly, they do not provide a guarantee of isolation. Applications in the same cell -- even
with administrative security, application security, and Java 2 security enabled -- can potentially
compromise other applications in the same cell by accessing resources of those applications or
altering the cell configuration. There is no way to guarantee that such compromise is impossible.

Another example of why code inspections are required for effective security is illustrated with the
code in Listing 9.

Listing 9
Map<String, String> map = new HashMap<String, String>();
map.put(Constants.MAPPING_ALIAS, "thinkNode01/app_alias");
CallbackHandler callbackHandler =
 WSMappingCallbackHandlerFactory.getInstance().getCallbackHandler(map,null);

LoginContext loginContext = new LoginContext("DefaultPrincipalMapping", callbackHandler);
loginContext.login();

Subject subject = loginContext.getSubject();
Set<Object> credentials = subject.getPrivateCredentials();

PasswordCredential passwordCredential = (PasswordCredential)
 credentials.iterator().next();

String user = passwordCredential.getUserName();
String password = new String(passwordCredential.getPassword());

This code snippet leverages a WebSphere Application Server security SPI to obtain the user
ID and password for any J2C alias in the cell. Since the purpose of this SPI is for application
security context extension and customization, the SPI has to have access to this sensitive security
information. The result is that the only way to preclude malicious code from leveraging this plug
point (and others like it) is to perform code inspections to ensure that applications don’t use these
plug points, unless business needs require their use.

In spite of these warnings, the following sections will document the actions you can take to
significantly improve the security isolation of applications within a cell. You will likely realize quickly
that taking these actions will be difficult and expensive. Arguably, a better and less expensive
approach is to ensure your application developers are delivering trusted code through rigorous
hiring practices, code reviews, and other management controls. As before, these actions are listed
in priority order.

ibm.com/developerWorks/ developerWorks®

Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 19 of 31

1. Do not specify component-managed aliases on Java EE resources
2. Do not define a default user ID and password on a resource
3. Java 2 security
4. Leverage secure chained delegation
5. Protect the TAM WebSEAL TAI password
6. Beware of heightened permissions in custom JMX code
7. Use DynaCache with caution
8. Use all resources with caution

1. Do not specify component-managed aliases on Java EE resources

Any Java EE application that runs within the cell can potentially access any Java EE resource.
This is because resources have JNDI names that can be looked up by any application and there is
no authorization on resource access. Thus, if application A uses an enterprise database simply by
defining the database as a data source, it is possible that application B in the same cell can access
this database.

When an application tries to access a resource by calling getConnection() on the resource factory
(for example, a data source or a JMS connection factory), WebSphere Application Server will
implicitly provide authentication information to the underlying resource if it is available. The
decision of what authentication information to provide depends upon the authentication mode and
the available J2C authentication aliases. The details are quite complex, but in brief, any application
can look up any resource in the JNDI namespace. When this is done, the authentication mode of
"application" is used implicitly. This in turn means that WebSphere Application Server will use a
component-managed authentication alias if one is available. Thus, any resource defined with a
component-managed alias is accessible to any application in the cell. Note that defining resources
at different scopes has no impact on security. Resource scopes are simply an administrative
convenience.

On the other hand, if only a container-managed alias is defined on a resource (or no alias is
specified), then a rogue application will not be able to access the resource because when it
looks up a resource in the global JNDI namespace, application authentication applies and thus
component-managed aliases are used. As a result, no implicit authentication can occur because
there is no component-managed alias.

If you choose to use this approach, you will still want the appropriate applications to have access
to these resources. To do this, those applications must specify local resource references in
their deployment descriptors to access the resource. Those references can then be bound
at deployment time to the correct resources. If the application specifies container-managed
authentication on the reference, then a container-managed alias defined on the resource itself
will be used implicitly. A picture might help to make this clear. Figure 6 shows the IBM Rational
Application Developer reference editor where you specify container-managed authentication on a
JMS connection reference.

developerWorks® ibm.com/developerWorks/

Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 20 of 31

Figure 6. Database resource reference using container-managed
authentication

There are two problems with this approach. First, container-managed aliases were erroneously
deprecated in WebSphere Application Server V6.1 (but are no longer deprecated in V7). Second,
and more significantly, you might have noticed that not all resources permit you to specify
container-managed aliases (for example, JMS factories in V6.1). In that case, you have no choice
but to provide no default authentication information on the resource. Instead, you must specify
(probably during the deployment process) the authentication information for each resource
reference in the application (the authentication method does not matter in this case). This is
tedious, but it can be automated using wsadmin. At least in the case of MDBs, the authentication
information can be specified on the activation specification.

XA recovery aliases are not an issue

Do not confuse component-managed aliases with XA recovery aliases specified on resources. The
XA recovery alias is used only during certain recovery scenarios involving transactional failures. It
is not normally accessible to applications if Java 2 security is enabled and the default permissions
have been used.

2. Do not define a default user ID and password on a resource

A corollary of the previous item is that you should not define a default user ID and password on
a resource. If you do so, then any application within the cell can look up the resource and then
implicitly use the provided user ID and password.

3. Java 2 security

ibm.com/developerWorks/ developerWorks®

Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 21 of 31

As discussed earlier, all application servers contain the WebSphere Application Server
administrative infrastructure and thus the APIs for performing most administrative operations.
An application programmer that learns the APIs can thus write an application that can call any of
these APIs, and then perform essentially any administrative operation. In addition, the file system
configuration repository contains a great deal of sensitive information (such as passwords). Any
application can use ordinary Java I/O to read these files.

WebSphere Application Server includes support for Java 2 security as provided by the standard
JDK. IBM has enhanced the Java 2 support to enforce the Java EE specifications as well as to
protect the WebSphere Application Server internal APIs from unauthorized access. Simply by
enabling Java 2 security, these rules are automatically enforced. Thus, by enabling Java 2 security,
substantial additional protections are added to the runtime to prevent illegal application access.
However, without a formal process to review granted permissions, there is absolutely no
value in using Java 2 security – in fact enabling it without policy file validation makes the
situation worse because there is no improvement in security, application development is more
difficult, and performance suffers slightly.

Once Java 2 security is enabled, applications are limited to a very small set of "safe" permissions
by default. If an application needs more permissions, it must typically define those requested
permissions in the was.policy file contained within the EAR. When the application is run, the
was.policy file is read and those permissions are added to the standard set. As should be
obvious, this is a potential security hole. To make this viable, you’ll need a rigorous and well
defined process for determining, reviewing, and then enforcing the Java 2 permissions for each
application. If any application attempts to request permissions that are not acceptable (even
during an emergency patch) reject the application. There should be a formal process that includes
a security review that determines what permissions an application will be allowed. Even with
a formal process, enabling Java 2 security should be approached with caution, aside from the
additional effort involved, oftentimes a mandate to "enable Java 2 security" results in the use of
policy files that provide little meaningful protection to make deployment possible, which not only
takes additional effort, but also provides a false sense of security.

The process of review and verification upon installation can be tedious. However, there is an
alterative approach. First, for a large set of environments, most applications will need a common
set of additional permissions. If this is possible, the infrastructure team can place the default
permissions for all applications in the app.policy file on that node. Then, only applications that
need unusual permissions will place them in was.policy and require additional verification. You
can take this even further by forbidding the use of was.policy and requiring that all permissions
be added to app.policy by the administration team. That complicates deployment in some ways
(editing a common file), but reduces the risk of an application obtaining inappropriate permissions.

A refinement on this approach is to specify Java 2 security differently by lifecycle environment.

• In development, run with Java 2 security enabled, and define the custom property
com.ibm.websphere.java2secman.norethrow=true property. This results in warnings in the

developerWorks® ibm.com/developerWorks/

Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 22 of 31

logs of what Java 2 security permissions are required, but does not throw any Java 2 security
exceptions.

• In test, run with Java 2 security enabled, but without that custom property defined.
Applications will not run unless they include the necessary policy files. Changes to acceptable
policy files in test must be rigorously scrutinized as described above.

• In production, do not run with Java 2 security enabled, thus avoiding the performance
overhead. Only deploy to production those applications that have passed through the scrutiny
in test.

Be aware that this refinement does not lessen the need for review and verification of policy
changes.

(Enabling Java 2 security incurs non-trivial run time performance costs. Two very important
Security custom properties can reduce this cost (but do not totally remove it). They are
com.ibm.websphere.security.auth.j2c.cacheReadOnlyAuthDataSubjects=true, and a properly
tuned com.ibm.websphere.security.auth.j2c.readOnlyAuthDataSubjectCacheSize. Read about
these properties in the Information Center.)

4. Leverage secure chained delegation

One of the great benefits of an application server is that user identity information is automatically
sent between system layers and across applications. This gives you transparent single sign on
(SSO). Unfortunately, this has one, potentially dangerous side effect: inappropriate impersonation.

The problem here is that when a user authenticates to use application A, it is possible that
application A will then make a remote EJB call to application B. Application B then sees the
credentials of the original user. Ordinarily that’s a good thing. But, what if application A can’t be
trusted? In this case, a user that accesses application A has reason to fear that it might access
application B on his behalf using delegation. Imagine the implications of this if application A is
“unimportant” and therefore is developed in an ad-hoc manner, while application B is a highly
sensitive application that manages confidential information. The problem here is that application
now has to trust application A simply because they share a common security realm. That’s bad.

There is a way around this problem. You can use a feature in WebSphere Application Server that
is roughly described as “secure chained delegation.” By using WSSecurityHelper.getCallerList()
or getServerList(), application B can determine what applications and servers a request passed
through. If application B is a highly sensitive application, it might require that the list be empty,
implying that it is being used directly by the user. See the WebSphere Application Server
Information Center for more information on WSSecurityHelper.

5. Protect the TAM WebSEAL TAI password

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/tsec_tune.html

ibm.com/developerWorks/ developerWorks®

Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 23 of 31

When SSO is configured between IBM Tivoli Access Manager WebSEAL and WebSphere
Application Server, WebSEAL sends its secret password in the HTTP header on every request
to ensure that the TAI can work when invoked. While this is generally not a concern, because the
connection should be encrypted using SSL, this does expose the WebSEAL password to Web
applications running in WebSphere Application Server. (While this section discusses the WebSEAL
TAI specifically, this exposure occurs with any TAI that sends a password to establish trust.)

The preferred approach, as described in Part 1 is to use the Enhanced Tivoli Access Manager TAI
instead of the WebSEAL TAI, and to not use a secret password for the establishment of trust.

A Web application that is running in WebSphere Application Server and cannot be trusted could
potentially take this password, open an HTTP connection to an application server and assert any
user’s identity. This would make it possible for a cleverly written intrusive application to act as
anyone.

If you are concerned about this type of attack (which can easily be prevented through code
inspections), you can prevent untrusted clients from connecting to the Web container. To do this,
simply configure a mutually authenticated HTTPS listener on the Web container, as we described
Part 1. Then, an application will be unable to open an HTTPS connection to the Web container
because they won’t have the right private key (only WebSEAL or the Web server will have it).

6. Beware of heightened permissions in custom JMX code

An aspect of MBeans that you need to be aware of is that their use implies elevated Java 2
security permissions. If an application registers MBeans programmatically with the application
server runtime, you must grant the calling code elevated adminstrative permissions for it to work.
Do this with great caution. This ability could be used to perform illicit administrative operations. A
good approach is to create a separate module just for registering the MBean and grant only that
module the needed permissions.

A second way to load MBeans is to specify them administratively as Extension MBeans (the
recommended approach). This eliminates the problem of having to explicitly grant application code
administrative authority -- but raises a new issue: The MBeans are now loaded by a fairly low level
WebSphere Application Server classloader, which is more trusted. As a result, your MBeans will
have substantially more access to WebSphere Application Server APIs then ordinary user code.

If you choose to develop custom MBeans, you must carefully review the code and the usage to
ensure you are not introducing security weaknesses into the system.

7. Use DynaCache with caution

http://www.ibm.com/developerworks/websphere/techjournal/1210_lansche/1210_lansche.html#step12
http://www.ibm.com/developerworks/websphere/techjournal/1210_lansche/1210_lansche.html#sec4a

developerWorks® ibm.com/developerWorks/

Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 24 of 31

DynaCache provides a distributed shared cache for WebSphere Application Server applications.
However, there is no access control on DynaCache; any application running in an application
server can access any cache to which a given application server has access. More precisely, any
application can access any cache that is accessible from that server, and then see (or modify) all
of its contents.

There are two kinds of caches to consider. The application server itself maintains some internal
hidden caches that might contain sensitive information (servlet caches, Web services caches,
security caches). There are also user-created caches, such as Object Cache caches that are
visible via JNDI.

Internal caches are not registered in JNDI so they are more difficult to find, but you can gain
access to them by using internal APIs. On the positive, these caches are replicated only to servers
within a cluster by default, so you can be confident that applications in different clusters can’t see
caches of information from other clusters.

User defined caches are visible in JNDI and can be looked up from any server within the same
cell. An application can modify or read the cache once it looks it up. There is no way to prevent
this. Therefore, if you are concerned about application isolation, you cannot leverage user-created
caches.

8. Use all resources with caution

Many other WebSphere Application Server resources, such as work areas, do not provide for
application level authorization. As with DynaCache, you need to use these resources with care. If
you are concerned about application isolation, you should carefully evaluate every usage scenario
and look for potential weaknesses and act accordingly.

Cross-cell trust

Normally, WebSphere Application Server cells do not trust each other, and thus cross-cell SSO is
impossible. However, you can configure cells to support cross cell SSO. There are plenty of good
reasons to do this, but when you do, you are extending the trust domain of the cells and need to
be aware of the security implications. There are three issues to consider:

Normally, a realm is exactly the same as a registry, but WebSphere Application Server V6.0.2
and later relaxes this by specifying the realm name independently of the registry.

• Shared LTPA keys
In order for two cells to transparently participate in an SSO domain, they must share
compatible realms (this means the same realm in WebSphere Application Server V6.1, while
in V7 this means trusted realms), share the same LTPA encryption keys, and use compatible
SSL keyrings (for server to server traffic). Compatible SSL keyrings simply means that the

ibm.com/developerWorks/ developerWorks®

Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 25 of 31

calling server must have access to the signing certificate that corresponds to the receiving
server’s certificate, as with any SSL communication.
Once you’ve ensured that two cells share the same LTPA encryption key, you have created
a situation in which each cell has the ability to create credentials for the other cell – including
administrative credentials. Therefore, if one cell is compromised, both cells are compromised.
If you are using multiple cells as a way to achieve application isolation for security reasons,
you need to enable Java 2 security to limit access to WebSphere Application Server internal
APIs.
If your goal in sharing the same LTPA encryption key is merely to create Web SSO without
sharing customized subjects, you can achieve the same result by using an authenticating
proxy server, such as Tivoli Access Manager WebSEAL, and a corresponding TAI (such as
the Extended TAM TAI) without sharing the LTPA encryption keys. Achieving Web SSO via a
proxy and a TAI is preferable to sharing LTPA keys.

• CSIv2 identity assertion
If you wish, it is possible to make cross-cell IIOP calls and avoid sharing LTPA encryption
keys. To do this, you have to use CSIv2 identity assertion (this also works when contacting
non-WebSphere Application Server EJB servers).
Consider this simple scenario: Assume two cells, A and B, each of which contains servers.
Also assume that servers in cell A need to make RMI/IIOP calls to servers in cell B, but not
the reverse. For this to work, you configure CSIv2 identity assertion. Servers in cell A will
assert identities to servers in cell B. How to configure CSIv2 identity assertion will not be
described here, just the implications of doing so.
In order for servers in cell B to accept the identity assertion, the upstream server in
cell A must authenticate itself first. There are two ways of doing this with CSIv2: basic
authentication, in which the upstream server sends its user ID and password, and client
certificate authentication, in which the upstream server authenticates using its own certificate.
When the authentication is complete, the receiving server will verify that the upstream server
is trusted to perform identity assertion. This is configured on the CSIv2 configuration panels,
after which the upstream server sends the downstream server the target user’s identity
information.
Let’s consider the trust implications of this approach. Servers in cell B trust cell A as they
accept identity assertion from it. If cell A is compromised, so is cell B -- but, what are the
implications for cell A?

• If cell A sends the server user ID and password to establish trust (which is the default), it
is revealing its server user ID and password with full administrative authority to servers in
cell B. Thus, cell A now completely trusts B. This is not an improvement over just sharing
LTPA keys.

• If cell A sends a specified user ID and password (one that is configured just for this
purpose) instead, it is revealing nothing of importance to cell B. Cell A has not trusted cell
B.

• If cell A authenticates using its own certificate, then it reveals nothing to cell B. Cell A has
not trusted cell B.

developerWorks® ibm.com/developerWorks/

Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 26 of 31

In summary, in order for cell A to assert identities to cell B, cell B must trust cell A. That much
is obvious. If you do not want cell A to trust cell B, use a specified user ID and password or
certificate authentication for the server-to-server authentication step, not the default, which
sends the server ID and password.

• Subject propagation callbacks
If you are taking advantage of subject propagation across cells, you should be aware that the
cells might also be making out-of-band calls to each other to obtain subjects. To make this
clearer, consider an example: Assume that there are two servers that share an SSO domain.
A user accesses server A using a Web browser and obtains an authentication session
(represented by an LTPA cookie in the browser). The user then accesses server B. Server
B will attempt to obtain the user’s subject from server A. This is called subject propagation.
This happens trivially if the servers are in the same DynaCache replication domain. If they
are not in the same Dynacache replication domain, then JMX callbacks are used to obtain
the subject. Of course, servers in different cells are not in the same DynaCache replication
domain. Therefore, in this example, server B will make a secure JMX call to server A in order
to obtain the user’s subject.
As with any administrative call, the JMX call requires authentication and authorization. In this
case (as of WebSphere Application Server V6.1), that trust is established implicitly through
the use of the shared LTPA key. Since server B shares LTPA encryption keys with server A,
server A trusts it to ask for subject information.
On balance, the callbacks don’t significantly impact security beyond the risks already
introduced by sharing LTPA keys, but they do introduce another network path that some might
consider a risk.
This situation does not apply when downstream propagation occurs using IIOP. In that case,
the upstream server simply sends the subject to the downstream server. No JMX callbacks
are required.

Identity propagation
While this topic isn’t directly related to security hardening, it is a common problem that creeps
into system designs that don’t take security into account early enough. You must always be very
careful to track where identities are established and how they are propagated (if they can be).
Far too many designs simply assume the identity is known when practical technologies make this
infeasible. Make sure you carefully analyze identity flow in your applications to prevent disaster
late in the development cycle. Below are two common cases that involve external resources and,
for WebSphere Application Server V6 and later, solutions.

• Database versus WebSphere Application Server authentication
One of the key challenges of enterprise systems is properly implementing strong system
security controls. In a nutshell, critical data needs to be protected with appropriate
authorizations. What makes this challenge particularly difficult with multi-tier Java EE systems
in which Java EE application code contacts a database (using JDBC, SQLJ, JPA, or CMP
beans) is that, traditionally, the user's identity information is lost. "User" in this case means the
user on whose behalf the application is running; that is, if Bob authenticates to the application
using standard Java EE security, then Bob is the user.

http://www.ibm.com/developerworks/websphere/techjournal/0508_benantar/0508_benantar.html

ibm.com/developerWorks/ developerWorks®

Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 27 of 31

In typical Java EE-based systems, the container maintains a pool of authenticated
connections. While each user authenticates to the application server (using one of several
Java EE authentication mechanisms), the user's identity information is not available to the
database. This is because all database access is performed using one of several common
shared connections from the connection pool. Historically, this has resulted in applications
having to reinvent existing database level authorization and auditing functions inside the
application layer. This is wasteful when done properly, and probably insecure when done
poorly.
With WebSphere Application Server V6, there is an elegant solution to this problem. With
V6.1, identity propagation to IBM DB2® is provided out of the box.

• MDBs do not run under enqueuer’s identity
When a message is enqueued to a messaging system, the original caller’s identity is not
normally relevant. That is, the messaging engine authorizes access to the queue based on
the connection identity, as discussed earlier. The queue doesn’t usually even record the
user’s identity.
When the message is dequeued, typically by an MDB in Java EE, the original caller’s identity
is not available -- even if it were available, it would be ignored. MDBs run under either an
anonymous Java EE identity or a static run-as identity. They do not execute under the identity
of the message enqueuer.
There is no direct support in WebSphere Application Server for addressing this problem.
However, you can make this work if you are willing to write some custom code. As of
WebSphere Application Server V6.0.2, WebSphere Application Server now supports server
side identity assertion. That is, server side code can change its Java EE run-as identity using
JAAS without providing a password. Instead, it simply asserts user identity information. Here
is a simple example of this using Java code:
Listing 10
CallbackHandler wscbh =
 WSCallbackHandlerFactory.getInstance().getCallbackHandler(username, null);
LoginContext lc = new LoginContext("system.RMI_INBOUND", wscbh);
lc.login();

Notice that no password is provided.
This can be combined with the ideas from this article on advanced authentication to assert
custom subjects. You can also cause WebSphere Application Server to create an LTPA
cookie, making this work for Web applications, as described in this Information Center article.
Clearly, this has security implications and so this call is blocked by default when using Java 2
security. However, you can provide for it by granting the application code the needed Java 2
security permissions.

WebSphere Application Server limitations
In general, through careful configuration, you can create a robust, highly secure environment using
WebSphere Application Server. However, you should be aware of one typically minor and obscure
limitation that might impact you.

Target identity not verified

http://www.ibm.com/developerworks/websphere/techjournal/0506_barghouthi/0506_barghouthi.html
http://www.ibm.com/developerworks/websphere/techjournal/0508_benantar/0508_benantar.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.websphere.base.doc/info/aes/ae/tsec_jaasauthentprog.html

developerWorks® ibm.com/developerWorks/

Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 28 of 31

One very subtle aspect of secure systems is the concept of validating the target of a request.
Normally, when you think of authentication, you think of the server authenticating the client, but
what about the reverse? How does the client know that the server is in fact the intended server?
Most of us don’t realize it, but Web browsers implicitly perform this check every day. When HTTPS
is used, the Web browser validates that the hostname of the Web server is the same as the Web
server’s subject in its certificate. This ensures that the server is actually the server intended by the
user (assuming, of course, that the user knows what hostname was just used; many aren’t that
careful).

What might not be obvious is that the check performed by Web browsers isn’t some inherent part
of SSL, it’s a browser-specific check performed outside of SSL. The initiator (the calling server)
has to specifically perform this check of the certificate. WebSphere Application Server does not
perform this check. Therefore, when an application server (or client) opens an SSL connection
to a server, it isn’t ensuring that the server is really the intended server. Although highly unlikely,
it is possible that a hacker who can compromise your internal DNS or network could then insert
a rogue server into a WebSphere Application Server cell and steal information. This would be
an incredibly difficult attack -- many other attacks are far easier -- but you should nonetheless be
aware of this possibility.

You can remove any unneeded signing keys from the application server trust store files to prevent
this. Only certificates issued by trusted signers can be used to execute this attack. Unverifiable
server side certificates will be rejected by clients during the SSL handshake. If the trusted list is
small (perhaps containing only the default self signed certificates), then this attack becomes very
difficult. Because the trust stores do not include any CA signers by default, the only default signer
to be concerned with is if you choose to add a CA signing certificate to the shared cell level trust
store, you now expose yourself to this (albeit minor) risk.

Protect your desktop development environment
When thinking about security hardening, most people tend to focus on production systems, which
are naturally the most important. However, you should also spend some time ensuring that other
computers, including your desktop systems, are also reasonably secure.

For those running IBM Rational Application Developer (or the earlier IBM WebSphere Studio),
this is a serious concern. The desktop IDE contains a fully functional embedded WebSphere
Application Server runtime environment. This application server has open ports and is vulnerable
to remote access in precisely the ways described earlier in this article. You need to address this.

Hardening the embedded application server
At a minimum, you should enable administrative security in the embedded application server test
environment. Rational Application Developer 7.5 does this by default. This will prevent the most
egregious types of attack in which an intruder can use the built-in administrative infrastructure to
deploy rogue applications onto your desktop. If you are running Rational Application Developer
under an OS user ID with administrative authority, this is quite serious. You might also wish
to take some of the other hardening steps indicated in this article, although ensuring that the
administrative infrastructure is secure is by far the most important step.

ibm.com/developerWorks/ developerWorks®

Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 29 of 31

As an alternative to hardening the embedded application server, you might instead choose to
install a desktop firewall product that blocks access to your computer. Such an approach can
be quite effective if it is configured properly. However, a firewall that trusts your entire internal
corporate network is of little value in this context.

Migrating from previous versions

Migrating from version to version of WebSphere Application Server raises the issue of backward
compatibility. From a security perspective, the recommended approach to application migration is
to build a complete new cell (from scratch) and then install your applications into the new cell (after
rigorous testing, of course). By taking this approach, you benefit from all the default configuration
changes that you made between releases.

If instead you choose to use WebSphere Application Server cell migration tools, which copy
the existing configuration and applications to a new cell, you will not benefit from many of the
improvements that have been made to security hardening with each major release. As you
should expect, this is because we endeavor to make as few changes as possible to the existing
configuration to ensure that applications continue to work unchanged. The side effect of this is that
changes that have been made to security by default will not take effect. Thus, for example, if you
migrate using the tools from WebSphere Application Server V6 to V7, then you should read both
the V6 and V7 versions of this hardening article, rather than just the latest version.

Conclusion

This two-part article has covered a great deal of ground. While many aspects of security were
discussed here, the core theme of hardening a WebSphere Application Server environment has
been the main focus. Hopefully, you now have the basic information you need to secure your Java
EE systems. Although not discussed here, you should look for other sources of information to
harden other parts of your infrastructure. WebSphere Application Server is only one piece of a
much larger puzzle.

A subset of the items described in this paper can now be checked using an automated tool known
as the IBM Security Scanner for WebSphere Application Server, which is available for download.

Finally, if you are interested in learning more about WebSphere Application Server security, you
can contact IBM Software Services for WebSphere for a customized on site class in WebSphere
Application Server security. The class covers security hardening, customizing authentication,
integration, single sign on, and a variety of other topics in depth.

Acknowledgements

I would like to thank my colleagues Bill O’Donnell, Paul Glezen, Simon Kapadia, and Tom Alcott for
their valuable input and assistance.

I would especially like to thank Keys Botzum who has left me with big shoes to fill, and whose
fundamental ideas will live on through future versions of this article.

http://www-1.ibm.com/support/docview.wss?uid=swg24009963
http://www.ibm.com/developerworks/websphere/services/

developerWorks® ibm.com/developerWorks/

Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 30 of 31

Related topics

• Advanced security hardening in WebSphere Application Server V7, V8 and V8.5, Part 1:
Overview and approach to security hardening

• All articles in this series, for all versions of WebSphere Application Server
• WebSphere Application Server V7 advanced security hardening, Part 1: Overview and

approach to security hardening
• WebSphere Application Server V7 advanced security hardening, Part 2: Advanced security

considerations
• WebSphere Application Server V6 advanced security hardening, Part 1
• WebSphere Application Server V6 advanced security hardening, Part 2
• Rational AppScan information
• The Top 5 Internal Security Threatsby Cindy Waxer
• Enterprise Application Security
• Redbook: IBM WebSphere 6.0 Security, SG- 246316, IBM Corp, 2005
• Understanding and Deploying LDAP Directory Services by Timothy Howes, et al, ISBN

0672323168
• Buffer Overflows – What Are They and What Can I Do About Them? by Larry Rodgers, CERT,

2001
• Understanding Malicious Content Mitigation for Web Developers
• Java Security Coding Guidelines
• Messaging security
• Securing connections between WebSphere Application Server and WebSphere MQ
• IBM Security Scanner Tool for WebSphere Application Server from IBM support (For V7.0 and

earlier)
• IBM WebSphere: Deployment and Advanced Configuration by Roland Barcia, Tom Alcott, Bill

Hines, and Keys Botzum, ISBN 0-131468-626
• Advanced Authentication in WebSphere Application Server
• Database identity propagation in WebSphere Application Server V6
• Apache hardening information (applies to IHS as well)
• Building Secure Servers with LINUX
• Firewall Port Assignments in WebSphere Application Server
• The (XML) threat is out there
• DB2 Technical Tip: Setting up SSL
• FIPS Configuration
• SSL, Certificate, and Key Management Enhancements in WebSphere Application Server V6.1
• WebSphere MQ Security heats up
• OWASP Web site discussing the risks of cookie stealing and the HTTP Only flag
• www.keysbotzum.com
• Download WebSphere Application Server V8.5 trial version

http://www.ibm.com/developerworks/websphere/techjournal/1210_lansche/1210_lansche.html
http://www.ibm.com/developerworks/websphere/techjournal/1210_lansche/1210_lansche.html
http://www.ibm.com/developerworks/views/websphere/libraryview.jsp?sort_by=&show_abstract=true&show_all=&search_flag=&contentarea_by=WebSphere&search_by=advanced+security+hardening++part&product_by=-1&topic_by=-1&industry_by=-1&type_by=All+Types&ibm-search=Search
http://www.ibm.com/developerworks/websphere/techjournal/1004_botzum/1004_botzum.html
http://www.ibm.com/developerworks/websphere/techjournal/1004_botzum/1004_botzum.html
http://www.ibm.com/developerworks/websphere/techjournal/1005_botzum/1005_botzum.html
http://www.ibm.com/developerworks/websphere/techjournal/1005_botzum/1005_botzum.html
http://www.ibm.com/developerworks/websphere/techjournal/0512_botzum/0512_botzum1.html
http://www.ibm.com/developerworks/websphere/techjournal/0512_botzum/0512_botzum2.html
https://www.ibm.com/developerworks/rational/products/appscan/
http://www.itsecurity.com/features/the-top-5-internal-security-threats-041207/
http://www.keysbotzum.com
http://www.redbooks.ibm.com
http://www.amazon.com/Understanding-Deploying-LDAP-Directory-Services/dp/0672323168/ref=sr_1_1?ie=UTF8&s=books&qid=1271290504&sr=8-1
http://www.cert.org/homeusers/buffer_overflow.html
http://www.cert.org/tech_tips/malicious_code_mitigation.html
http://java.sun.com/security/seccodeguide.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.websphere.pmc.nd.doc/tasks/tjr0020.html
http://www.ibm.com/developerworks/websphere/techjournal/0601_ratnasinghe/0601_ratnasinghe.html
http://www-1.ibm.com/support/docview.wss?uid=swg24009963
http://www-1.ibm.com/support/docview.wss?uid=swg24009963
http://www.amazon.com/exec/obidos/tg/detail/-/0131468626/ref=cm_ea_pl_prod_15/104-1896463-2823144
http://www.ibm.com/developerworks/websphere/techjournal/0508_benantar/0508_benantar.html
http://www.ibm.com/developerworks/websphere/techjournal/0506_barghouthi/0506_barghouthi.html
http://httpd.apache.org/docs/2.0/misc/security_tips.html
http://www.amazon.com/Building-Secure-Servers-Linux-Michael/dp/0596002173
http://www.ibm.com/developerworks/websphere/techjournal/0310_alcott/alcott.html
http://www.ibm.com/developerworks/websphere/techjournal/0603_col_hines/0603_col_hines.html
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0806sogalad/?S_TACT=105AGY82&S_CMP=GENSITE
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tsec_fips.html
http://www.ibm.com/developerworks/websphere/techjournal/0612_birk/0612_birk.html?ca=drs-
http://www.ibm.com/developerworks/websphere/techjournal/0711_col_wyatt/0711_col_wyatt.html
http://www.owasp.org/index.php/HTTPOnly
http://www.keysbotzum.com
http://www.ibm.com/developerworks/downloads/ws/was/

ibm.com/developerWorks/ developerWorks®

Advanced security hardening in WebSphere Application Server
V7, V8 and V8.5, Part 2: Advanced security considerations

Page 31 of 31

© Copyright IBM Corporation 2013
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Introduction
	A note about profiles

	Application-based preventative measures
	Configuration measures
	Design and implementation measures

	Advanced considerations
	Cell trust and isolation
	Administrative isolation
	Application isolation
	Cross-cell trust
	Identity propagation
	WebSphere Application Server limitations

	Protect your desktop development environment
	Hardening the embedded application server

	Migrating from previous versions
	Conclusion
	Acknowledgements
	Trademarks

