
Part X: Informix JDBC Driver Guide

IBM

© Copyright IBM Corp. 2021.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Tables of Contents
Part X: Informix JDBC Driver Guide

What's new in IBM Informix JDBC Driver, Version 4.50
Getting started

What is JDBC?
What is a JDBC driver?
IBM Informix JDBC Driver

Classes implemented in Informix JDBC Driver
Informix classes that implement Java interfaces
Informix classes that extend the JDBC specification
Informix classes that provide support beyond the Java specification
UDTManager and UDRManager classes

Files in IBM Informix JDBC Driver
Obtain the JDBC driver
Installing the JDBC Driver

Installing JDBC driver in graphical or console mode
Installing the JDBC driver in silent mode

Using the driver in an application
Using the driver in an applet
Uninstall the JDBC Driver

Uninstall in graphical or console mode
Uninstall in silent mode

Connect to the database
Load IBM Informix JDBC Driver
A DataSource object
The DriverManager.getConnection() method

Format of database URLs
IP address in connection URLs

Database versus database server connections
Specify properties

Informix environment variables with the IBM Informix JDBC Driver
Dynamically reading the Informix sqlhosts file

Connection property syntax
Administration requirements
Utilities to update the LDAP server with sqlhosts data

The SqlhUpload utility
The SqlhDelete utility

Connections to the servers of a high-availability cluster
Properties for connecting to high-availability cluster servers through IBM Informix Connection Managers
Properties for connecting to high-availability cluster servers through SQLHOST file group entries
Properties for connecting directly to an HDR pair of servers
Checks for read-only status of high-availability secondary servers
Connection retry attempts to HDR secondary servers

An HTTP proxy server
Configuring your environment to use a proxy server

Specify a timeout
The proxy with an LDAP server

Specify where LDAP lookup occurs
Specify sqlhosts file lookup

Other multitier solutions
Encryption options

FIPS-compliant security package
Password encryption

Configure the database server
Connecting JDBC applications with SSL
CSM network encryption

CSM network encryption syntax
Option tags
Option parameters

Using single sign-on access control with the Informix JDBC Driver
PAM authentication method

PAM in JDBC

1
1
1
2
2
2
3

3

3

4

5

5

5
6
6

6

7
7
8
8

9

9
9

10
12
12

14

14

15

15
20
21

22

22

22

22

22
23

25

25

26

27

27
28

29

29

30

30

31
31
31

31

32

32

33

33

34

34

35
35
36

Close the connection
Perform database operations

Query the database
Example of sending a query to the Informix database
Reoptimize queries
Result sets

Scrollable result set for multiple rows
Deallocate resources
Execute across threads
Scroll cursors

Scroll sensitivity
Client-side scrolling
Result set updatability

Hold cursors
Update the database

Perform batch updates
SQL statements and batch updates
Return value from Statement.executeBatch() method

Perform bulk inserts
Parameters, escape syntax, and unsupported methods

The CallableStatement OUT parameters
Server and driver restrictions and limitations

Server restrictions
Driver enhancement
Driver restrictions and limitations

IN and OUT parameter type mapping
Named parameters in a CallableStatement

Requirements and restrictions for named parameters in a CallableStatement
Verify support for named parameters in a CallableStatement

Retrieve parameter names for stored procedures
Named parameters and unique stored procedures

Example of number of named parameters equals the number of arguments
Example of number of named parameters Is less than the number of arguments

Named parameters and overloaded stored procedures
JDBC support for DESCRIBE INPUT
The escape syntax
Unsupported methods and methods that behave differently

Handle transactions
Autocommit

Logged Database
ANSI Databases
Non-logged Databases

Transactions with Large Objects
Transactions with XA
Transactions with Savepoints

Handle errors
Handle errors with the SQLException class
Retrieve the syntax error offset

Catch RSAM error messages
Handle errors with the com.informix.jdbc.Message class

Access database metadata
Other Informix extensions to the JDBC API

The Auto Free feature
Obtaining driver version information

Store and retrieve XML documents
Set up your environment to use XML methods

Set your CLASSPATH
Specify a parser factory

Insert data
Retrieve data
Insert data examples

The XMLtoString() examples
The XMLtoInputStream() example

36
37
37
37

38

38

39

39

39

39

40

40

40

40

40
41

41

41

41

42
42

42

42

43

44

45

46

46

47

47

47

47

48

49

50

51

51

53
54

54

54

54

54

55

55

56
56

56

57

57

57
58
58

58

59
59

59

60

60

61

61

61

62

Retrieve data examples
The StringtoDOM() example
The InputStreamtoDOM() example
The getInputSource() examples

Work with Informix types
Distinct data types

Insert data examples
Retrieve data example
Unsupported methods

BYTE and TEXT data types
Cache large objects
Example: Inserting or updating data
Example: Selecting data

SERIAL and SERIAL8 data types
BIGINT and BIGSERIAL data types
INTERVAL data type

The Interval class
Variables for binary qualifiers
Interval methods

The IntervalYM class
The IntervalYM constructors
The IntervalYM methods

The IntervalDF class
The IntervalDF constructors
The IntervalDF methods

Interval example
Collections and arrays

Collection examples
Array example

Named and unnamed rows
Interval and collection support
Unsupported methods
The SQLData interface

SQLData examples
The Struct interface

Struct examples
The ClassGenerator utility

Simple named row example
Nested named row example

Type cache information
Smart large object data types

Smart large objects in the database server
Smart large objects in a client application

Creating smart large objects
Create an IfxLobDescriptor object
Create an IfxLocator object
Create an IfxSmartBlob object
Inserting a smart large object into a column

Accessing smart large objects
Perform operations on smart large objects

Open a smart large object
Position within a smart large object
Read data from a smart large object
Write data to a smart large object
Truncate a smart large object
Measure a smart large object
Close and release a smart large object
Convert IfxLocator to a hexadecimal string

Work with storage characteristics
System-specified storage characteristics

Obtain information about storage characteristics
Example of setting sbspace characteristics

Work with disk-storage information

62

62

63

63

64
64
64

65

66

66
66

66

67

68
69
69
69

70

70

71

71

72

72

73

74

74

74
75

76

77
77

78

78

78

80

81

83

83

84

85
85
86

86

86

87

87

88

89

89

90

90

90

91

92

92

92

92

93

94

94

95

95

96

Work with logging, last-access time, and data integrity
Logging
Last-access time
Data integrity

Changing the storage characteristics
Set create flags

Work with status characteristics
Work with locks

Byte-range locking
Cache large objects
Avoid errors transferring large objects
Smart large object examples

Create a smart large object
Insert data into a smart large object
Retrieve data from a smart large object

Work with opaque types
The IfmxUDTSQLInput interface

Read data
Position in the data stream
Set or obtain data attributes

The IfmxUDTSQLOutput interface
Map opaque data types
Type cache information
Unsupported methods
Creating opaque types and UDRs

Overview of creating opaque types and UDRs
Preparing to create opaque types and UDRs
Creating opaque types

Creating an opaque type from an existing Java class
Creating an opaque type without an existing Java class

Creating a UDR
Requirements for the Java class
SQL names
Specify characteristics for an opaque type

Specify field count
Specify additional field characteristics
Specify length
Specify alignment
Alignment values
Specify SQL names
Specify the Java class name
Specifying Java source file retention

Creating the JAR and class files
Create the .class and .java files
Create the .jar file

Send the class definition to the database server
Specify deployment descriptor actions
Specify a JAR file temporary path

Creating an opaque type from existing code
The setXXXCast() methods
The setSupportUDR() and setUDR() methods

Remove opaque types and JAR files
Create UDRs
Remove UDRs and JAR files

Remove overloaded UDRs
Obtain information about opaque types and UDRs

The getXXX() methods in the UDTMetaData class
The getXXX() methods in the UDRMetaData class

Execute in a transaction
Examples

Class definition
Insert data

96

97

98

98

98

99

99

100

101

101

101

102

102

102

103

103
104
104

105

105

105
105
105
106
106
106

107

107

108

108

109

110

110

111

111

111

112

112

112

112

113

113

113

113

114

114

114

114

115

115

115

116

116

117

117

117

118

118

118

119
119

120

Retrieve data
Smart large objects within an opaque type
Create an opaque type from an existing Java class with UDTManager

Create an opaque type using default support functions
The opaque type

Create an opaque type using support functions you supply
The opaque type

Create an opaque type without an existing Java class
Create UDRs with UDRManager

Globalization and date formats
Support for Java and globalization
Support for IBM Informix GLS variables
Support for DATE end-user formats

The GL_DATE variable
The DBDATE variable (deprecated)
The DBCENTURY variable

Precedence rules for end-user formats
Support for code-set conversion

Unicode to database code set
Unicode to client code set
Connect to a database with non-ASCII characters
Code-set conversion for TEXT and CLOB data types

Convert with the IFX_CODESETLOB environment variable
Convert with Java methods

Code-set conversion for BLOB and BYTE data types
User-defined locales

Connect with the NEWLOCALE and NEWCODESET environment variables
Connect with the NEWNLSMAP environment variable

Support for globalized error messages
Smart trigger feature
Tuning and troubleshooting

Debug your JDBC API program
Manage performance

Manage the fetch buffer size
Manage memory for large objects
Reduce network traffic
Bulk inserts
Statement Caching
A connection pool

Deploying a ConnectionPoolDataSource object
Tune the Connection Pool Manager
High-Availability Data Replication with connection pooling
Clean pooled connections
Manage connections

Avoid application hanging problems (HP-UX only)
Appendixes

Sample code files
Summary of available examples

Examples in the demo directory
Examples in the basic directory
Examples in the bson directory
Examples in the clob-blob directory
Examples in the udt-distinct directory
Examples in the complex-types directory
Examples in the proxy directory
Examples in the connection-pool directory
Examples in the xml directory
Examples in the hdr directory

Examples in the tools directory
Examples in the udtudrmgr directory

DataSource extensions
Read and write properties
Get and set standard properties

120

121

122

122

123

126

128

129

131

132
133
133
133
134

135

136

137
137
138

139

139

140

140

140

141

141
142

142

142
143
143
144
144
144

145

146

146

146

147

147

148

149

149

150

150

150
151
151

151

151

153

153

153

154

154

155

155

156

156

156

156
157

157

Get and set Informix connection properties
Get and set connection pool DataSource properties

Mapping data types
Data type mapping between Informix and JDBC data types

Data type mapping between extended types and Java and JDBC types
Data type mapping between C opaque types and Java

Data type mapping for PreparedStatement.setXXX() extensions
The mapping extensions

The extensions for opaque types
The setBindColType() methods
The setBindColIfxType() methods
The clearBindColType() method
Prebinding example

Other mapping extensions
The IfxTypes class
Extension summary

Nonextended data types
Informix extended data types

Data type mapping for ResultSet.getXXX() methods
Nonextended data types
Informix extended data types

Data type mapping for UDT manager and UDR manager
Mapping for casts
Mapping for field types

Field lengths and date-time data
Convert internal Informix data types

The IfxToJavaType class
The convertDateToDays() method
The convertDaysToDate() method
The IfxToJavaChar() method
The IfxToJavaDate() method
The IfxToJavaDateTime() method
The IfxToDateTimeUnloadString() method
The IfxToJavaDecimal() method
The IfxToJavaDouble() method
The IfxToJavaInt() method
The IfxToJavaInterval() method
The IfxToJavaLongBigInt() method
The IfxToJavaLongInt() method
The IfxToJavaReal() method
The IfxToJavaSmallInt() method
The rleapyear() method
The widenByte() method

Error messages
-79700
-79702
-79703
-79704
-79705
-79706
-79707
-79708
-79709
-79710
-79711
-79712
-79713
-79714
-79715
-79716
-79717
-79718

158

160

161
161

162

162

163

163

164

164

165

165

165

165

167

168

168

170

170

170

172

173

174

174

175

175
175

177

177

177

178

178

179

179

179

180

180

181

181

181

182

182

182

182
187

187

187

188

188

188

188

188

188

189

189

189

189

189

189

190

190

190

-79719
-79720
-79721
-79722
-79723
-79724
-79725
-79726
-79727
-79728
-79729
-79730
-79731
-79732
-79733
-79734
-79735
-79736
-79737
-79738
-79739
-79740
-79741
-79742
-79744
-79745
-79746
-79747
-79748
-79749
-79750
-79755
-79756
-79757
-79758
-79759
-79760
-79761
-79762
-79764
-79765
-79766
-79767
-79768
-79769
-79770
-79771
-79772
-79774
-79775
-79776
-79777
-79778
-79780
-79781
-79782
-79783
-79784
-79785
-79786
-79788
-79789

190

190

190

190

191

191

191

191

191

191

192

192

192

192

192

192

192

193

193

193

193

193

193

193

194

194

194

194

194

195

195

195

195

195

195

195

196

196

196

196

196

197

197

197

197

197

197

197

198

198

198

198

198

198

199

199

199

199

199

199

200

200

-79790
-79792
-79793
-79794
-79795
-79796
-79797
-79798
-79799
-79800
-79801
-79802
-79803
-79804
-79805
-79806
-79807
-79808
-79809
-79811
-79812
-79814
-79815
-79816
-79817
-79818
-79819
-79820
-79821
-79822
-79823
-79824
-79825
-79826
-79827
-79828
-79829
-79830
-79831
-79834
-79836
-79837
-79838
-79839
-79840
-79842
-79843
-79844
-79845
-79846
-79847
-79848
-79849
-79850
-79851
-79852
-79853
-79854
-79855
-79856
-79857
-79858

200

200

200

201

201

201

201

201

202

202

202

202

202

203

203

203

203

204

204

204

204

204

205

205

205

205

205

205

206

206

206

206

206

207

207

207

207

207

207

208

208

208

208

208

208

209

209

209

210

210

210

210

210

210

210

211

211

211

211

211

211

212

-79859
-79860
-79861
-79862
-79863
-79864
-79865
-79868
-79877
-79878
-79879
-79880
-79881

212

212

212

212

212

213

213

213

213

213

213

214

214

Informix JDBC Driver Guide

These topics describe how to install, load, and use IBM Informix® JDBC Driver to connect to the database from within a Java™ application or
applet.

These topics describe the extensions to JDBC in a task-oriented format; it does not include every method and parameter in the interface. For the
complete reference, including all methods and parameters, see the online Javadoc, which appears in the doc/javadoc directory where you
installed IBM Informix JDBC Driver.

You can also use Informix JDBC Driver for writing user-defined routines that are executed in the server.

These topics are written for Java programmers who use the JDBC API to connect to databases with the Informix JDBC Driver. To use these
topics, you should know how to program in Java and, in particular, understand the classes and methods of the JDBC API.

For information about software compatibility, see the IBM Informix JDBC Driver release notes.

What's new in IBM Informix JDBC Driver, Version 4.50
 This publication includes information about new features and changes in existing functionality.

Getting started
 Connect to the database

 Perform database operations
 Work with Informix types

 Work with opaque types
 Globalization and date formats

 Smart trigger feature
 Tuning and troubleshooting

 Appendixes

What's new in IBM® Informix JDBC Driver, Version 4.50

This publication includes information about new features and changes in existing functionality.

The following changes and enhancements are relevant to this publication. For a complete list of what's new in this release, go to What's new in
Informix®.

Table 1. What's new in the IBM Informix JDBC Driver Programmer's Guide for 4.50.JC1
Overview Reference

JDBC 4.2 Compliance

The IBM Informix JDBC Driver is now compliant with the Java™ Database Connectivity (JDBC) 4.2 specification.

Classes implemented in
Informix JDBC Driver

JDBC 4.1 Compliance

The IBM Informix JDBC Driver is now compliant with the Java™ Database Connectivity (JDBC) 4.1 specification.

Classes implemented in
Informix JDBC Driver

Java 8 Driver

The IBM Informix JDBC Driver has been upgraded and the minimum Java version you can run Informix JDBC
4.50.JC1 is Java 1.8.

Java Technolgy
Dependencies

Statement Caching

JDBC now supports caching PreparedStatement and CallableStatement objects inside the connection.

Statement Caching

Upgraded BSON Support

Underlying BSON library upgraded to 3.8. Updated IfxBSONObject to support faster BSON processing and an
expanded API.

Classes implemented in
Informix JDBC Driver

Performance Improvements

Significant performance improvements have been made in large object (LOB) access and streaming. General
connectivity as well as data retrieval performance has been improved from prior versions

Informix JDBC Driver
Guide

Getting started

Part X: Informix JDBC Driver Guide 1

These topics provide an overview of IBM Informix® JDBC Driver and the JDBC API.

What is JDBC?
 What is a JDBC driver?

 IBM Informix JDBC Driver
 IBM Informix JDBC Driver is a native-protocol, pure-Java driver (Type 4) that supports the JDBC specification.

Obtain the JDBC driver
 Installing the JDBC Driver

 Using the driver in an application
 Using the driver in an applet

 Uninstall the JDBC Driver

What is JDBC?

Java™ database connectivity (JDBC) is the JavaSoft specification of a standard application programming interface (API) that allows Java
programs to access database management systems. The JDBC API consists of a set of interfaces and classes written in the Java programming
language.

Using these standard interfaces and classes, programmers can write applications that connect to databases, send queries written in structured
query language (SQL), and process the results.

Since JDBC is a standard specification, one Java program that uses the JDBC API can connect to any database management system (DBMS), as
long as a driver exists for that particular DBMS.

What is a JDBC driver?

The JDBC API defines the Java™ interfaces and classes that programmers use to connect to databases and send queries. A JDBC driver
implements these interfaces and classes for a particular DBMS vendor.

A Java program that uses the JDBC API loads the specified driver for a particular DBMS before it actually connects to a database. The JDBC
DriverManager class then sends all JDBC API calls to the loaded driver.

There are four types of JDBC drivers:

JDBC-ODBC bridge plus ODBC driver, also called Type 1 driver
Translates JDBC API calls into Microsoft ODBC calls that are then passed to the ODBC driver
The ODBC binary code must be loaded on every client computer that uses this type of driver.

ODBC is an acronym for Open Database Connectivity.

Native-API, partly Java driver, also called Type 2 driver
Converts JDBC API calls into DBMS-specific client API calls
Like the bridge driver, this type of driver requires that some binary code is loaded on each client computer.

JDBC-Net, pure-Java driver, also called Type 3 driver
Sends JDBC API calls to a middle-tier server that translates the calls into the DBMS-specific network protocol
The translated calls are then sent to a particular DBMS.

Native-protocol, pure-Java driver, also called Type 4 driver
Converts JDBC API calls directly into the DBMS-specific network protocol without a middle tier
This driver allows the client applications to connect directly to the database server.

IBM Informix JDBC Driver

IBM Informix® JDBC Driver is a native-protocol, pure-Java driver (Type 4) that supports the JDBC specification.

For information about JDBC specification compliance, go to Java™ software development kit.

When you use Informix JDBC Driver in a Java program to interact with the database, your session connects directly to the database or database
server, without a middle tier.

You can use the JDBC driver for Java applications that access the database server. The installation includes ifxjdbc.jar driver and several support
.jar files.

2 Part X: Informix JDBC Driver Guide

Javadoc pages describe the extension classes, interfaces, and methods in detail.

UNIX: Javadoc pages are in $JDBCLOCATION/doc/javadoc, where $JDBCLOCATION refers to the directory where you installed Informix
JDBC Driver.
Windows: Javadoc pages are located in %JDBCLOCATION%\doc\javadoc, where %JDBCLOCATION% refers to the directory where you
installed Informix JDBC Driver.

Important:
If you want to run Java user-defined routines (UDRs) in the database server, you must use the server-side version of the driver that is installed
with the optional J/Foundation component of the database server. The server-side driver includes a jdbc.jar file, which is derived from the
ifxjdbc.jar file. The IBM® J/Foundation Developer's Guide describes the interfaces and subprotocols that the IBM Informix JDBC Driver provides
specifically for server-side JDBC applications, as well as restrictions that apply to server-side JDBC applications.

Classes implemented in Informix JDBC Driver
 Files in IBM Informix JDBC Driver

Classes implemented in Informix JDBC Driver

To support DataSource objects, connection pooling, and distributed transactions, IBM Informix® JDBC Driver provides classes that implement
interfaces and classes for compliance with the Java™ Database Connectivity (JDBC) 4.0 specification.

Informix classes that implement Java interfaces
 Informix classes that extend the JDBC specification

 Informix classes that provide support beyond the Java specification
 UDTManager and UDRManager classes

 The UDTManager and UDRManager helper classes are in the ifxtools.jar file in the udtudrmgr package.

Informix classes that implement Java interfaces

The following table lists the Java™ interfaces and classes and the IBM® Informix® classes that implement them.

JDBC interface or class class

java.io.Serializable com.informix.jdbcx.IfxCoreDataSource

java.sql.Connection com.informix.jdbc.IfmxConnection

javax.sql.ConnectionEventListener com.informix.jdbcx.IfxConnectionEventListener

javax.sql.ConnectionPoolDataSource com.informix.jdbcx.IfxConnectionPoolDataSource

javax.sql.DataSource com.informix.jdbcx.IfxDataSource

javax.sql.PooledConnection com.informix.jdbcx.IfxPooledConnection

javax.sql.XADataSource com.informix.jdbcx.IfxXADataSource

java.sql.ParameterMetaData com.informix.jdbc.IfxParameterMetaData

IBM Informix JDBC Driver, Version 3.0, and later implements the updateXXX() methods defined in the ResultSet interface by the JDBC 3.0
specification. These methods, such as updateClob, are further defined in the J2SDK 1.4.x API, and later and require that the ResultSet object
can be updated. The updateXXX() methods allow rows to be updated by using Java variables and objects and extend to include additional JDBC
types.

These methods update JDBC types implemented with locators, not the data designated by the locators.

Informix classes that extend the JDBC specification

To support the IBM® Informix® implementation of SQL statements and data types, IBM Informix JDBC Driver provides classes that extend the
supported JDBC specification (see Java™ software development kit). The following table lists the Java classes and the classes that application
programs can use to extend them.

JDBC interface or class class Adds methods or constants for...

java.lang.Object com.informix.lang.IfxTypes Representing data types

java.lang.Object com.informix.jdbc.IfxStatementTypes Representing SQL statements

Part X: Informix JDBC Driver Guide 3

http://download.oracle.com/otndocs/jcp/jdbc-4.0-fr-eval-oth-JSpec/

JDBC interface or class class Adds methods or constants for...

java.lang.Object com.informix.jdbc.Interval1 Interval qualifiers and some common
methods for the next two classes (base
class for the next two)

java.lang.Object com.informix.jdbc.IntervalYM1 Interval year-to-month

java.lang.Object com.informix.jdbc.IntervalDF1 Interval day-to-fraction

java.lang.Object com.informix.jdbc.IfxSmartBlob Access methods for smart large objects

java.lang.Object com.informix.jdbc.IfxLocator Large object locator pointer

java.lang.Object com.informix.jdbc.IfxLoStat Statistical information about smart large
objects

java.lang.Object com.informix.jdbc.IfxLobDescriptor Internal characteristics of smart large
objects

java.lang.Object com.informix.jdbc.IfxUDTInfo General information about opaque and
distinct types, detailed information
about complex types

java.sql.Blob com.informix.jdbc.IfxBblob Binary large objects

java.sql.CallableStatement com.informix.jdbc.IfmxCallableStatement Parameter processing with types

java.sql.Clob com.informix.jdbc.IfxCblob Character large objects

java.sql.Connection com.informix.jdbc.IfmxConnection Opaque, distinct, and complex types

java.sql.SQLData com.informix.jdbc.IfxBSONObject 1 BSON data type
See the IfxBSONObjectDemo.java
program in the
$INFORMIXDIR/demo/bson directory
for examples of how to insert and query
JSON and BSON data and use the
IfxBSONObject methods.

java.sql.PreparedStatement com.informix.jdbc.IfmxPreparedStatement Parameter processing with types

java.sql.ResultSet com.informix.jdbc.IfmxResultSet interval data types

java.sql.ResultSetMetaData com.informix.jdbc.IfmxResultSetMetaData Columns with data types

java.sql.SQLInput com.informix.jdbc.IfmxComplexSQLInput Opaque, distinct, and complex types

java.sql.SQLInput com.informix.jdbc.IfmxUDTSQLInput Opaque, distinct, and complex types

java.sql.SQLOutput com.informix.jdbc.IfmxComplexSQLOutput Opaque, distinct, and complex types

java.sql.SQLOutput com.informix.jdbc.IfmxUDTSQLOutput Opaque, distinct, and complex types

java.sql.Statement com.informix.jdbc.IfmxStatement Single result sets, autofree mode,
statement types, and SERIAL data type
processing

1. The server-side JDBC driver (jdbc.jar) does not support this class.

Informix classes that provide support beyond the Java specification

A number of IBM® Informix® classes provide support for functionality not present in the Java™ specification. These classes are listed in the
following table.

JDBC interface or class class Provides support for...

java.lang.Object UDTManager Deploying opaque data types in the database server

java.lang.Object UDTMetaData Deploying opaque data types in the database server

java.lang.Object UDRManager Deploying user-defined routines in the database
server

java.lang.Object UDRMetaData Deploying user-defined routines in the database
server

4 Part X: Informix JDBC Driver Guide

UDTManager and UDRManager classes

The UDTManager and UDRManager helper classes are in the ifxtools.jar file in the udtudrmgr package.

To access a packaged class, use the following import statements in your program:

import udtudrmgr.UDTManager;
import udtudrmgr.UDRManager;

Files in IBM® Informix JDBC Driver

IBM Informix® JDBC Driver is available in the program file, setup.jar. For instructions on how to install the driver, see Installing the JDBC Driver.

After installation, the product consists of the following files, some of which are Java™ archive (JAR) files:

lib/ifxjdbc.jar
Optimized implementations of the JDBC API interfaces, classes, and methods

The file is compiled with the -O option of the javac command.

lib/ifxtools.jar
Utilities: ClassGenerator, lightweight directory access protocol (LDAP) loader, and others

The file is compiled with the -O option of the javac command.

lib/ifxlang.jar
Localized versions of all message text supported by the driver

The file is compiled with the -O option of the javac command.

demo/basic/*
demo/rmi/*

 demo/stores7/*
 demo/clob-blob/*

 demo/complex-types/*
 demo/pickaseat/*

 demo/xml/*
 demo/proxy/*

 demo/connection-pool/*
 demo/udt-distinct/ *

 demo/hdr/*
 demo/tools/udtudrmgr/*

Sample programs that use the JDBC API

For descriptions of these sample files, see Sample code files.

proxy/IfxJDBCProxy.class
Http tunneling proxy class file

proxy/SessionMgr.class
Session manager class file supporting the http tunneling proxy

proxy/TimeoutMgr.class
Timeout manager class file supporting the http tunneling proxy

doc/release/*
Online release and documentation notes

doc/javadoc/*
The Javadoc pages for extension classes and interfaces

The lib, demo, proxy, and doc directories are subdirectories of the directory where you installed IBM Informix JDBC Driver.

Obtain the JDBC driver

Part X: Informix JDBC Driver Guide 5

You can obtain the IBM Informix® JDBC Driver from the IBM Informix JDBC Driver product CD, from the JDBC directory of the IBM® Informix
product bundle CD, or you can download the driver from www.oracle.com.

The CD or website download contain the following files:

setup.jar
doc/jdbcrel.htm
doc/install.txt

The setup.jar file is the IBM Informix JDBC Driver installation program.

The documentation directory, <dir>/doc, contains the release notes file in HTML format. See this document for any new information that is not
available in these topics.

Installing the JDBC Driver

To install the IBM Informix® JDBC Driver when you install , follow the instructions in the IBM® Informix Installation Guide for installing the
database server.

To install the Informix JDBC Driver by itself:

If you downloaded the .zip file from the website, extract the file to a directory.
If you are installing the driver from a CD, load the CD into the CD-ROM drive.

Installing JDBC driver in graphical or console mode
 Installing the JDBC driver in silent mode

Installing JDBC driver in graphical or console mode

1. From a command prompt, start the installation program by using one of the following commands:
To start in graphical mode:

java -jar dir/setup.jar -i gui

To start in console mode:

java -jar dir/setup.jar -i console

Where dir is the location of the setup.jar file.
2. Read the license agreement and accept the terms. Respond to the prompts as the installation guides you.
3. When prompted, accept the default directory or specify a different directory.

On a Windows platform, the default directory is C:\Program Files\IBM\Informix_JDBC_Driver

To prevent errors in installation and uninstallation, do not use an exclamation point character (!) in the installation path.

4. When prompted, verify the location of the installation path.
The installer installs the IBM Informix® JDBC Driver and notifies you that an uninstaller is being added to the installation directory.

Tip: If the installation stalls when connected to an NFS-mounted file system, you should first try resolving NFS issues. In some cases,
unmounting and remounting the share can resolve the issue. Otherwise, forcefully terminate the installation, clean up any orphaned
processes, and restart the installation.

5. Specify Finish when you see this message:

Congratulations. IBM Informix JDBC Driver has been successfully installed to: <install dir>

Installing the JDBC driver in silent mode

From a command prompt, run the following command:

java -jar dir/setup.jar i -silent
 -DUSER_INSTALL_DIR=destination_dir-DLICENSE_ACCEPTED=TRUE

Where:

dir is the location of the setup.jar file.
destination_dir is the directory where you want to install the JDBC Driver.

6 Part X: Informix JDBC Driver Guide

The installation is complete when the command finishes running.

Using the driver in an application

To use IBM Informix® JDBC Driver in an application, you must set your CLASSPATH environment variable to point to the driver files. The
CLASSPATH environment variable tells the Java™ virtual machine (JVM) and other applications where to find the Java class libraries used in a
Java program.

UNIX
There are two ways to set your CLASSPATH environment variable:

Add the full path name of ifxjdbc.jar to CLASSPATH:

setenv CLASSPATH /jdbcdriv/lib/ifxjdbc.jar:$CLASSPATH

To add localized message support, specify ifxlang.jar:

setenv CLASSPATH
/jdbcdriv/lib/ifxjdbc.jar:/jdbcdriv/lib/ifxlang.jar:
 $CLASSPATH

Unpack ifxjdbc.jar and add its directory to CLASSPATH:

cd /jdbcdriv/lib
jar xvf ifxjdbc.jar
setenv CLASSPATH /jdbcdriv/lib:$CLASSPATH

To add localized message support, specify ifxlang.jar:

cd /jdbcdriv/lib
jar xvf ifxjdbc.jar
jar xvf ifxlang.jar
setenv CLASSPATH /jdbcdriv/lib:$CLASSPATH

Windows
There are two ways to set your CLASSPATH environment variable:

Add the full path name of ifxjdbc.jar to CLASSPATH:

set CLASSPATH=c:\jdbcdriv\lib\ifxjdbc.jar;%CLASSPATH%

To add localized message support, specify ifxlang.jar:

set CLASSPATH=c:\jdbcdriv\lib\ifxjdbc.jar;c:\
 jdbcdriv\lib\ifxlang.jar;%CLASSPATH%

Unpack ifxjdbc.jar and add its directory to CLASSPATH:

cd c:\jdbcdriv\lib
jar xvf ifxjdbc.jar
set CLASSPATH=c:\jdbcdriv\lib;%CLASSPATH%

To add localized message support, specify ifxlang.jar:

cd c:\jdbcdriv\lib
jar xvf ifxjdbc.jar
jar xvf ifxlang.jar
set CLASSPATH=c:\jdbcdriv\lib;%CLASSPATH%

If you are using javax.sql classes (for example, Datasource), specify ifxjdbcx.jar in addition to ifxjdbc.jar.

Using the driver in an applet

You can use IBM Informix® JDBC Driver in an applet to connect to the database from a web browser. The following steps show how to specify
IBM Informix JDBC Driver in the applet and how to ensure that the driver is correctly downloaded from the web server.

To use IBM Informix JDBC Driver in an applet:

Part X: Informix JDBC Driver Guide 7

1. Install ifxjdbc.jar in the same directory as your applet class file.
2. Specify ifxjdbc.jar in the ARCHIVE attribute of the APPLET tag in your HTML file, as shown in the following example:

<APPLET ARCHIVE=ifxjdbc.jar CODE=my_applet.class
CODEBASE=http://www.myhost.com WIDTH=460 HEIGHT=160>
</APPLET>

Important: Some browsers do not support the ARCHIVE attribute of the APPLET tag. If this is true of your browser, unpack and install the
ifxjdbc.jar file in the root directory of your web server. If your browser also does not support the JDBC API, you must install the class files
included in the java.sql package in the root directory of the web server. See your web server documentation for information about installing files
in the root directory.
Because unsigned applets cannot access some system resources for security reasons, the following features of IBM Informix JDBC Driver do not
work for unsigned applets:

The sqlhosts file and LDAP server access. The host name and port number properties or service name of the database server in the
database URL are optional if you are referencing an sqlhosts file directly or through an LDAP server.
For unsigned applets, however, the host name and the port number or service name of the database server are always required, unless
your applet is using the HTTP proxy server. For more information about the HTTP proxy server, see An HTTP proxy server.

LOBCACHE=0. Setting the LOBCACHE environment variable to 0 in the database URL specifies that a smart large object is always stored in
a file. This setting is not supported for unsigned applets.

Tip: You can enable these features for unsigned applets by using Microsoft Internet Explorer, which provides an option to configure the applet
permissions.
To access a database on a different host or behind a firewall from an applet, you can use the HTTP proxy servlet in a middle tier. For more
information, see An HTTP proxy server.

Uninstall the JDBC Driver

When you install IBM Informix® JDBC Driver, the installation program creates an uninstall package in the directory in which you installed the
JDBC Driver. Uninstalling Informix JDBC Driver completely removes the driver and all of its components from your computer.

The following section describes how to uninstall Informix JDBC Driver on all platforms.

Tip: If the <destination-dir> in which you installed the Informix JDBC Driver includes spaces in its path name, enclose the entire path name in
quotation marks when executing the uninstall command.

Uninstall in graphical or console mode
 Uninstall in silent mode

Uninstall in graphical or console mode

Run one of the following commands to start the uninstall program. The destination-dir is the directory in which you installed the IBM Informix®
JDBC Driver.

If you installed the Informix JDBC Driver by using the installation program, you must use run the uninstall executable program that was added to
your computer when the driver was installed.

To uninstall by using the graphical mode:

destination-dir/uninstall/uninstall_jdbc/uninstalljdbc -i gui

To uninstall by using the console mode:

destination-dir/uninstall/uninstall_jdbc/uninstalljdbc -i console

If you installed the Informix JDBC Driver separately, run the JAR file to uninstall the driver:

To uninstall by using the graphical mode:

java -jar destination-dir/uninstall/uninstall_jdbc/uninstaller.jar -i gui

To uninstall by using the console mode:

java -jar destination-dir/uninstall/uninstall_jdbc/uninstaller.jar -i console

Follow the prompts to uninstall the JDBC driver.

8 Part X: Informix JDBC Driver Guide

Uninstall in silent mode

When you uninstall the IBM Informix® JDBC Driver in the silent mode, you do not receive any messages about the uninstallation.

How you installed the Informix JDBC Driver determines the program that you use to uninstall the driver.

Run one of the following commands to start the uninstall program in the silent mode. The destination_dir is the directory in which you installed
the Informix JDBC Driver.

If you installed the Informix JDBC Driver by using the installation program, specify the following command to start the uninstall program in the
silent mode:

destination_dir/uninstall/uninstall_jdbc/uninstalljdbc -i silent

If you installed the Informix JDBC Driver separately from installing , specify the following command to run the JAR file in the silent mode:

java -jar destination_dir/uninstall/uninstall_jdbc/uninstaller.jar -i silent

Connect to the database

These topics explain the information you need to use IBM Informix® JDBC Driver to connect to the database.

You must first establish a connection to the database server or database before you can start sending queries and receiving results in your Java™
program.

You establish a connection by completing two actions:

1. Load Informix JDBC Driver.
2. Create a connection to either a database server or a specific database in one of the following ways:

Use a DataSource object.
Use the DriverManager.getConnection() method.

Using a DataSource object is preferable to using the DriverManager.getConnection() method because a DataSource object is portable and allows
the details about the underlying data source to be transparent to the application. The target data source implementation can be modified, or the
application can be redirected to a different server without affecting the application code.

A DataSource object can also provide support for connection pooling and distributed transactions. In addition, Enterprise JavaBeans and J2EE
require a DataSource object.

The following additional connection options are available:

Setting environment variables
Dynamically reading the sqlhosts file
Using an HTTP proxy server
Using password encryption
Using network encryption

Load IBM Informix JDBC Driver
 A DataSource object

 The DriverManager.getConnection() method
 Informix environment variables with the IBM Informix JDBC Driver

 Dynamically reading the Informix sqlhosts file
 Connections to the servers of a high-availability cluster

 Using the JDBC driver, Java applications can connect to IBM® Informix database servers in a high-availability cluster. Java applications can
also connect to IBM Informix Connection Managers, which can handle failover for high-availability clusters and redirect connections to
cluster servers.
An HTTP proxy server

 Other multitier solutions
 Encryption options

 Using single sign-on access control with the Informix JDBC Driver
 PAM authentication method

 Close the connection

Load IBM® Informix JDBC Driver

Part X: Informix JDBC Driver Guide 9

To load IBM Informix® JDBC Driver, use the Class.forName() method, passing it the value com.informix.jdbc.IfxDriver:

try
 {
 Class.forName("com.informix.jdbc.IfxDriver");
 }
catch (Exception e)
 {
 System.out.println("ERROR: failed to load Informix JDBC driver.");
 e.printStackTrace();
 return;
 }

The Class.forName() method loads the implementation of the Driver class, IfxDriver. IfxDriver then creates an instance of the driver and
registers it with the DriverManager class.

After you have loaded Informix JDBC Driver, you are ready to connect to the database or database server.

If you are writing an applet to be viewed with Microsoft Internet Explorer, you might need to explicitly register Informix JDBC Driver to avoid
platform incompatibilities.

To explicitly register the driver, use the DriverManager.registerDriver() method:

DriverManager.registerDriver(com.informix.jdbc.IfxDriver)
 Class.forName("com.informix.jdbc.IfxDriver").newInstance());

This method might register Informix JDBC Driver twice, which does not cause a problem.

A DataSource object

IBM Informix® JDBC Driver extends the standard DataSource interface to allow connection properties (both the standard properties and
environment variables) to be defined in a DataSource object instead of through the URL.

The following table describes how connection properties correspond to DataSource properties.

connection property DataSource property Data type Required? Description

IFXHOST None; see DataSource
extensions for how to set
IFXHOST.

String Yes for client-side
JDBC, unless
SQLH_TYPE is
defined; no for
server-side JDBC

The IP address or the host name of the
computer running the database server

PORTNO portNumber int Yes for client-side
JDBC, unless
SQLH_TYPE is
defined; no for
server-side JDBC

The port number of the database server.
The port number is listed in the
/etc/services file.

DATABASE databaseName String No, except for
connections from
web applications
(such as a browser)
running in the
database server

The name of the database to which you
want to connect
If you do not specify the name of a
database, a connection is made to the
database server.

INFORMIXSERVER serverName String Yes for client-side
JDBC; ignored for
server-side JDBC

The name of the database server to
which you want to connect

USER user String Yes The user name controls (or determines)
the session privileges when connected
to the database or database server
Normally, you must specify both user
name and password; however, if the user
running the JDBC application is trusted
by the DBMS, you might omit both.

10 Part X: Informix JDBC Driver Guide

connection property DataSource property Data type Required? Description

PASSWORD password String Yes The password of the user
Normally, you must specify both the user
name and the password; however, if the
user running the JDBC application is
trusted by the DBMS, you might omit
both.

None description String Yes A description of the DataSource object

None dataSourceName String No The name of an underlying
ConnectionPoolDataSource or
XADataSource object for connection
pooling or distributed transactions

Unsupported connection properties
The networkProtocol and roleName properties are not supported by IBM Informix JDBC Driver.

Specify connection information
If an LDAP (Lightweight Directory Access Protocol) server or sqlhosts file provides the IP address, host name, or port number or service name of
the database server through the SQLH_TYPE property, you do not have to specify them using the standard DataSource properties. For more
information, see Dynamically reading the Informix sqlhosts file.

ConnectionPoolDataSource object
For information about the ConnectionPoolDataSource object, see A connection pool.

Environment variables
For a list of supported environment variables (properties), see Informix environment variables with the IBM Informix JDBC Driver. For a list of
DataSource extensions, which allow you to define environment variable values and connection pool tuning parameters, see DataSource
extensions. The driver does not consult the users environment to determine environment variable values.

High-availability data replication
You can use a DataSource object with High-Availability Data Replication. For more information, see Connections to the servers of a high-
availability cluster.

Example: Use of a DataSource object in an example program
The following code from the pickaseat example program defines and uses a DataSource object:

IfxConnectionPoolDataSource cpds = null;
try
{
 Context initCtx = new InitialContext();
 cpds = new IfxConnectionPoolDataSource();
 cpds.setDescription("Pick-A-Seat Connection pool");
 cpds.setIfxIFXHOST("158.58.60.88");
 cpds.setPortNumber(179);
 cpds.setUser("demo");
 cpds.setPassword("demo");
 cpds.setServerName("ipickdemo_tcp");
 cpds.setDatabaseName("ipickaseat");
 cpds.setIfxGL_DATE("%B %d, %Y");
 initCtx.bind("jdbc/pooling/PickASeat", cpds);
}
catch (Exception e)
{
 System.out.println("Problem with registering the CPDS");
 System.out.println("Error: " + e.toString());
}

Part X: Informix JDBC Driver Guide 11

Example: Use of a DataSource object with the IFX_LOCK_MODE_WAIT
connection property

The following are examples of the IFX_LOCK_MODE_WAIT connection property that use a DataSource object:

Example 1

IfxDataSource ds = new IfxDataSource ();
ds. setIfxIFX_LOCK_MODE_WAIT (65); // wait for 65 seconds
…
int waitMode = ds.getIfxIFX_LOCK_MODE_WAIT ();

Example 2

An example Using DataSource:
IfxDataSource ds = new IfxDataSource ();
ds.setIfxIFX_ISOLATION_LEVEL ("0U"); // set isolation to dirty read with
 retain
 // update locks.
….
String isoLevel = ds.getIfxIFX_ISOLATION_LEVEL ();

The DriverManager.getConnection() method

To create a connection to the IBM® Informix® database or database server, you can use the DriverManager.getConnection() method. This method
creates a Connection object, which is used to create SQL statements, send them to the database, and process the results.

The DriverManager class tracks the available drivers and handles connection requests between appropriate drivers and databases or database
servers. The url parameter of the getConnection() method is a database URL that specifies the subprotocol (the database connectivity
mechanism), the database or database server identifier, and a list of properties.

A second parameter to the getConnection() method, property, is the property list. See Specify properties for an example of how to specify a
property list.

The following example shows a database URL that connects to a database called testDB from a client application:

jdbc:informix-sqli://123.45.67.89:1533/testDB:
 INFORMIXSERVER=myserver;user=rdtest;password=test

The details of the database URL syntax are described in the next section.

The following partial example from the CreateDB.java program shows how to connect to database testDB by using
DriverManager.getConnection(). In the full example, the url variable, described in the preceding example, is passed in as a parameter when the
program is run at the command line.

try
 {
 conn = DriverManager.getConnection(url);
 }
catch (SQLException e)
 {
 System.out.println("ERROR: failed to connect!");
 System.out.println("ERROR: " + e.getMessage());
 e.printStackTrace();
 return;
 }

Important: The only connection type supported by IBM Informix JDBC Driver is tcp. Shared memory and other connection types are not
supported. For more information about connection types, see the IBM Informix Administrator's Guide for your database server.
Important: Not all methods of the Connection interface are supported by IBM Informix JDBC Driver. For a list of unsupported methods, see
Unsupported methods and methods that behave differently.
Client applications do not need to explicitly close a connection; the database server closes the connection automatically. However, if your
application is running in the database server using server-side JDBC, you should explicitly close the connection.

Format of database URLs
 The format of a database URL is determined by whether you are connecting from a client or on the database server.

Database versus database server connections
 Specify properties

Format of database URLs
12 Part X: Informix JDBC Driver Guide

The format of a database URL is determined by whether you are connecting from a client or on the database server.

For connections from a client, use the following format:

>>-jdbc:informix-sqli://-hostname:portnum--/database_name:------>

>--+--------------------------------+--------------------------->
 '-USER=userid;-PASSWORD=password-'

>--+----------------------------+------------------------------->
 '-INFORMIXSERVER=servername;-'

>--+---+-><
 | .-;-----------. |
 | V | |
 '-CSM=(SSO=database_server@realm,ENC=true)}---;name=value-+-'

For connections on the database server, use the following format:

 .-;---------------.
 V |
>>-jdbc:informix-direct://database_name:;-+--------------------------------+---+-------------+-+-><
 '-user=userid;-password=password-' '-;name=value-'

hostname
This required parameter specifies the host name of the computer that is running the database server.
This parameter is required for client-side JDBC, unless the SQLH_TYPE property is defined or the IFXHOST property is used. This
parameter is optional for server-side JDBC.

portnum
This required parameter specifies the port number of the database server. The value of the port number and server name is listed in the
/etc/services file.
This parameter is required for client-side JDBC unless the SQLH_TYPE property is defined. This parameter is optional for server-side
JDBC.

database_name
This required parameter specifies the name of the database to connect to. If you do not specify the name of a database, a connection is
made to the database server.
This parameter is not required except for connections from web applications running in the database server.

INFORMIXSERVER=servername
This optional parameter specifies the name of the database server to connect to. For example, INFORMIXSERVER=lo_informix1210.

USER=userid
This optional parameter specifies the user ID that is used in connections to the database server.
This parameter is optional, however, if you specify userid then you must also specify the PASSWORD. If you do not specify the USER and
PASSWORD, the driver calls System.getProperty() to obtain the name of the user currently running the application, and the client is
assumed to be trusted.
For SSO, you must specify the user and password or the CSM setting.

PASSWORD=password
This optional parameter specifies the password for the specified user ID.
This parameter is optional, however, if you specify password then you must also specify the USER. If you do not specify the USER and
PASSWORD, the driver calls System.getProperty() to obtain the name of the user currently running the application, and the client is
assumed to be trusted.

SSO=database_server@realm
This required parameter specifies the service principle for (SSO) access control. For more information, see Using single sign-on access
control with the Informix JDBC Driver.

name=value
This optional parameter specifies the name-value pair that specifies a value for the environment variable that is contained in the name
variable, which is recognized by either IBM Informix® JDBC Driver or by database servers. The name variable is not case-sensitive.
For more information, see Specify properties and Informix environment variables with the IBM Informix JDBC Driver.

If an LDAP server or sqlhosts file provides the IP address, host name, or port number through the SQLH_TYPE property, you do not have to
specify them in the database URL. For more information, see Dynamically reading the Informix sqlhosts file.

In the following example, the connection syntax for a client-side connection is shown:

jdbc:informix-sqli://123.45.67.89:1533/testDB:
 INFORMIXSERVER=myserver;user=rdtest;password=test

In the following example, the connection syntax for a database server connection is shown:

jdbc:informix-direct://testDB;user=rdtest;password=test

Part X: Informix JDBC Driver Guide 13

IP address in connection URLs
The IBM Informix JDBC Driver, Version 3.0 and later is IPv6 aware.

IP address in connection URLs

The IBM Informix® JDBC Driver, Version 3.0 and later is IPv6 aware.

That is, the code that parses the connection URL can handle the longer (128-bit mode) IPv6 addresses (as well as IPv4 format). This IP address
can be a IPv6 literal, for example:

3ffe:ffff:ffff:ffff:0:0:0:12

To connect to the IPv6 port with the server, use the system property, for example:

java -Djava.net.preferIPv6Addresses=true ...

With the IBM Informix JDBC Driver, Version 3.0, or later handling of URLs without IPv6 literals is unchanged, and legacy behavior is unchanged.

The colon (:) is a key delimiter in a connection URL, especially in IPv6 literal addresses.

You must create a well-formed URL for the driver to recognize an IPv6 literal address. Note, in the following example:

The jdbc:informix-sqli:// is required.
The colons surrounding the 8088, (:8088:) are required.
The 3ffe:ffff:ffff:ffff:0::12 is not validated by the driver.
The 8088 must be a valid number < 32k.

jdbc:informix-sqli://3ffe:ffff:ffff:ffff:0::12:8088:informixserver=X...

Database versus database server connections

Using the DriveManager.getConnection() method, you can create a connection to either the IBM® Informix® database or the database server.

To create a connection to the database, specify the name of the database in the dbname variable of the database URL. If you omit the name of a
database, a connection is made to the database server specified by the INFORMIXSERVER environment variable of the database URL or the
connection property list.

If you connect directly to the database server, you can execute an SQL statement that connects to a database in your Java™ program.

The example given in The DriverManager.getConnection() method shows how to create a connection directly to the database called testDB with
the database URL.

The following example from the DBConnection.java program shows how to first create a connection to the database server called myserver and
then connect to the database testDB by using the Statement.executeUpdate() method.

The following database URL is passed in as a parameter to the program when the program is run at the command line; note that the URL does not
include the name of a database:

jdbc:informix-sqli://123.45.67.89:1533:INFORMIXSERVER=myserver;
 user=rdtest;password=test

The code is:

String cmd = null;
int rc;
Connection conn = null;

try
{
 Class.forName("com.informix.jdbc.IfxDriver");
}
catch (Exception e)
{
 System.out.println("ERROR: failed to load Informix JDBC driver.");
}
try
{
 conn = DriverManager.getConnection(newUrl);
}
catch (SQLException e)
{

14 Part X: Informix JDBC Driver Guide

 System.out.println("ERROR: failed to connect!");
 e.printStackTrace();
 return;
}
try
{
 Statement stmt = conn.createStatement();
 cmd = "database testDB;";
 rc = stmt.executeUpdate(cmd);
 stmt.close();
}
catch (SQLException e)
{
 System.out.println("ERROR: execution failed - statement:
 " + cmd);
 System.out.println("ERROR: " + e.getMessage()); }

Specify properties

When you use the DriverManager.getConnection() method to create a connection, IBM Informix® JDBC Driver reads environment variables only
from the name-value pairs in the connection database URL or from a connection property list. The driver does not consult the users environment
for any environment variables.

To specify environment variables in the name-value pairs of the connection database URL, see Format of database URLs.

To specify environment variables via a property list, use the java.util.Properties class to build the list of properties. The list of properties might
include environment variables, such as INFORMIXSERVER, as well as user and password.

After you have built the property list, pass it to the DriverManager.getConnection() method as a second parameter. You still need to include a
database URL as the first parameter, although in this case you do not need to include the list of properties in the URL.

The following code from the optofc.java example shows how to use the java.util.Properties class to set connection properties. It first uses the
Properties.put() method to set the environment variable OPTOFC to 1 in the connection property list; then it connects to the database.

The DriverManager.getConnection() method in this example takes two parameters: the database URL and the property list. The example creates
a connection similar to the example given in The DriverManager.getConnection() method.

The following database URL is passed in as a parameter to the example program when the program is run at the command line:

jdbc:informix-sqli://myhost:1533:informixserver=myserver;
 user=rdtest;password=test

The code is:

try
{
 Class.forName("com.informix.jdbc.IfxDriver");
 }
catch (Exception e)
 {
 System.out.println("ERROR: failed to load Informix JDBC driver.");
 }

try
 {
 Properties pr = new Properties();
 pr.put("OPTOFC","1");
 conn = DriverManager.getConnection(newUrl, pr);
 }
catch (SQLException e)
 {
 System.out.println("ERROR: failed to connect!");
 }

Informix environment variables with the IBM Informix JDBC Driver

The following table lists most of the IBM® Informix® environment variables supported by the client JDBC driver. For server-side JDBC, use
property settings in the database URL rather than setting environment variables, because the environment variables would apply to all programs
running in the database server. For more information about properties, see Specify properties.

For a list of environment variables that provide globalization features, see Globalization and date formats. For a list of environment variables
useful for troubleshooting, see Tuning and troubleshooting

Part X: Informix JDBC Driver Guide 15

Supported environment variables DescriptionSupported environment variables Description

APPENDISAM When set to TRUE, the APPENDISAM environment variable appends the ISAM Error code
and message (if present) to the SQL Exception message, which is shown when .toString()
or .getMessage() of an SQL Exception is called. The exception message is shown in the
following format:

<INFORMIX ERROR MESSAGE> (<INFORMIX CODE>)
ISAM error: <ISAM MESSAGE>(<ISAM CODE>)

CSM To specify that Communication Support Module is to be used. IBM Informix JDBC Driver
3.0 and later supports an encryption CSM. For more information, see Encryption options.

DBANSIWARN When set to 1, checks for extensions to ANSI-standard syntax

DBSPACETEMP Specifies the dbspaces in which temporary tables are built

DBTEMP Specifies the full path name of the directory into which you want gateway products to
place their temporary files and temporary tables.
The driver does not use this variable; it just passes the value to the server.

DBUPSPACE Specifies the amount of disk space and memory that the UPDATE STATISTICS statement
can use for sorting rows when it constructs multiple-column distributions, whether to sort
with indexes, and whether to save the plan for calculating the column distributions in the
sqexplain.out file.

DELIMIDENT When set to Y, specifies that strings set off by double quotation marks are delimited
identifiers

ENABLE_TYPE_CACHE When set to TRUE, caches the data type information for opaque, distinct, or row data
types.
When a Struct or SQLData object inserts data into a column and getSQLTypeName()
returns the type name, the driver uses the cached information instead of querying the
database server.

ENABLE_HDRSWITCH When set to TRUE, secondary server properties are used to connect to the secondary
server if the primary server is unavailable.

FET_BUF_SIZE Overrides the default setting for the size of the fetch buffer for all data except large
objects.
The default size is 4096 bytes. This variable is not supported in server-side JDBC.

IFX_AUTOFREE When set to 1, specifies that the Statement.close() method does not require a network
round trip to free the database server cursor resources if the cursor has already been
closed in the database server.
The database server automatically frees the cursor resources after the cursor is closed,
either explicitly by the ResultSet.close() method or implicitly through the OPTOFC
environment variable. After the cursor resources have been freed, the cursor can no
longer be referenced. For more information, see The Auto Free feature.

IFX_BATCHUPDATE_PER_SPEC When set to 1 (the default), returns the number of rows affected by the SQL statements
executed in a batch operation by the executeBatch() method

IFX_CODESETLOB If set to a number greater than or equal to 0, automates code-set conversion for TEXT
and CLOB data types between client and database locales. The value of this variable
determines whether code-set conversion is done in memory in or in temporary files. If set
to 0, code-set conversion uses temporary files. If set to a value greater than 0, code-set
conversion occurs in the memory of the client computer, and the value represents the
number of bytes of memory allocated for the conversion. For more information, see
Convert with the IFX_CODESETLOB environment variable.

IFX_DIRECTIVES Determines whether the optimizer allows query optimization directives from within a
query. This variable is set on the client. The driver does not use this variable; it just
passes the value to the server.

16 Part X: Informix JDBC Driver Guide

Supported environment variables Description

IFX_EXTDIRECTIVES Specifies whether the query optimizer allows external query optimization directives from
the sysdirectives system catalog table to be applied to queries in existing applications.
The default is OFF. Possible values:

ON
External optimizer directives accepted

OFF
External optimizer directives not accepted

1
External optimizer directives accepted

0
External optimizer directives not accepted

IFX_GET_SMFLOAT_AS_FLOAT When set to 0 (the default), maps the SMALLFLOAT data type to the JDBC REAL data type.
This setting conforms to the JDBC specification. When set to 1, maps the SMALLFLOAT
data type to the JDBC FLOAT data type. This setting enables compatibility with earlier
versions of IBM Informix JDBC Driver.

IFX_ISOLATION_LEVEL Defines the degree of concurrency among processes that attempt to access the same
rows simultaneously. Gets the value of theIFX_ISOLATION_LEVEL variable, which is
specific to . The default value is 2 (Committed Read). If the value has been set explicitly, it
returns the set value. Returns: integer.
Sets the value of the IFX_ISOLATION_LEVEL variable, which is specific to . Possible
values:

0
Equivalent to TRANSACTION_NONE

1
Dirty Read (equivalent to TRANSACTION_READ_UNCOMMITTED),

2
Committed Read (equivalent to TRANSACTION_READ_COMMITTED),

3
Cursor Stability (equivalent to TRANSACTION_READ_COMMITTED),

4
Repeatable Read (equivalent to TRANSACTION_REPEATABLE_READ)

5
Committed Read LAST COMMITTED (equivalent to
TRANSACTION_LAST_COMMITTED)

8
Equivalent to TRANSACTION_SERIALIZABLE

Specifying U after the mode means retain update locks. (See the Important note
following table.) For example, a value could be: 2U (equivalent to SET ISOLATION TO
COMMITTED READ RETAIN UPDATE LOCKS

The following example shows the code that you would use to specify an isolation level:

conn.setTransactionIsolation
 (IfxConnection.TRANSACTION_LAST_COMMITTED);

IFX_FLAT_UCSQ Overrides the global setting and directs the optimizer to use subquery flattening for all
sessions. Default value is 1.

IFX_LO_READONLY Controls how smart large objects are opened by the database server during a query by a
client application:

0
Default. Smart large objects are opened with read-write access. The database
server locks the object until the object is closed by the client application or the
transaction is completed.

1
Smart large objects are opened with read-only access. The database server does
not lock the object during a query.

Part X: Informix JDBC Driver Guide 17

Supported environment variables Description

IFX_LOCK_MODE_WAIT Application can use this property to override the default server process for accessing a
locked row or table. Gets the value of the IFX_LOCK_MODE_WAIT variable, which is
specific to . The default value is 0 (do not wait for the lock). If the value has been set
explicitly, it returns the set value. Returns: integer.
Sets the value of the IFX_LOCK_MODE_WAIT variable, which is specific to . Possible
values:

-1

WAIT until the lock is released.
0

DO NOT WAIT, end the operation, and return with error.
nn

WAIT for nn seconds for the lock to be released.

IFX_PAD_VARCHAR Controls how data associated with a VARCHAR data type is transmitted to and from the
server. Can be set either on the connection URL when using the Connection class or as a
property when using the DataSource class. Valid values are 0 (the default) and 1.

When set to 0, only the portion of the VARCHAR that contains data is transmitted
(trailing spaces are stripped).
When set to 1, the entire VARCHAR data structure is transmitted to and from the
server.

IFX_SET_FLOAT_AS_SMFLOAT When set to 0 (the default), maps the JDBC FLOAT data type to the FLOAT data type. This
setting conforms to the JDBC specification. When set to 1, maps the JDBC FLOAT data
type to the SMALLFLOAT data type. This setting enables compatibility with earlier
versions of IBM Informix JDBC Driver.

IFX_SOC_KEEPALIVE When set to true, sets the TCP property SO_KEEPALIVE on the socket for open
connections. This setting is useful to keep long running idle socket connections from
timing out due to inactivity. Default is false.

IFX_TRIMTRAILINGSPACES Removes trailing spaces. Default value is 1.

IFX_USEPUT When set to 1, enables bulk inserts. For more information, see Perform bulk inserts.

IFX_XASPEC When set to y, XA transactions with the same global transaction ID are tightly coupled
and share the lock space. This only applies to XA connections and cannot be specified in
a database URL. It can be specified by DataSource setter (See DataSource extensions.)
or by setting a System (JVM) property with the same name. The DataSource property
overrides the System property. Values for the properties other than y, Y, n, or N are
ignored. IfxDataSource.getIfxIFX_XASPEC returns the final IFX_SPEC value, which is
either y or n. For example if the value of DataSource IFX_XASPEC equals n and the value
of the System IFX_XASPEC equals Y or y, n is returned.

IFX_XASTDCOMPLIANCE_XAEND Specifies the behavior of XA_END when XA_RB* is returned.

0
XID is not forgotten. Transaction is in Rollback Only state. This is XA_SPEC+
compliant and is the default behavior with .

1
XID is forgotten. Transaction is Nonexistent.

IFXHOST Sets the host name or host IP address

IFXHOST_SECONDARY Sets the secondary host name or host IP address for HDR connection redirection

INFORMIXCONRETRY Specifies the maximum number of additional connection attempts that can be made to
each database server by the client during the time limit specified by the value of
INFORMIXCONTIME

INFORMIXCONTIME Sets the timeout period for an attempt to connect to the database server. If a connection
attempt does not succeed in this time, the attempt is aborted and a connection error is
reported. The default value is 0 seconds. This variable adds timeouts for blocking socket
methods and for socket connections.

INFORMIXOPCACHE Specifies the size of the memory cache for the staging-area blobspace of the client
application

18 Part X: Informix JDBC Driver Guide

Supported environment variables Description

INFORMIXSERVER Specifies the default database server to which an explicit or implicit connection is made
by a client application.
Note: This parameter is optional for simple connections (connections that do not use a
SQLHOST file) since 4.10.JC4.

INFORMIXSERVER_SECONDARY Specifies the secondary database server in an HDR pair to which an explicit or implicit
connection is made by a client application if the primary database server is unavailable.

INFORMIXSTACKSIZE Specifies the stack size, in kilobytes, that the database server uses for a particular client
session.

JDBCTEMP Specifies where temporary files for handling smart large objects are created. You must
supply an absolute path name.

LOBCACHE Determines the buffer size for large object data that is fetched from the database server
Possible values are:

A number greater than 0
The maximum number of bytes is allocated in memory to hold the data. If the data
size exceeds the LOBCACHE value, the data is stored in a temporary file; if a
security violation occurs during creation of this file, the data is stored in memory.

Zero
The data is always stored in a file. If a security violation occurs, the driver makes
no attempt to store the data in memory.

A negative number
The data is always stored in memory. If the required amount of memory is not
available, an error occurs.

If the LOBCACHE value is not specified, the default is 4096 bytes.

LOGINTIMEOUT Determines whether the database server is running. If the server is running a connection
to the server is established immediately. If the server is not running, this environment
variable specifies how long, in milliseconds, that the server port is polled to establish a
connection. If your application does not connect to the database server within the
specified time, an error is returned.

NEWNLSMAP Allows new mappings to be defined between NLS and Java development kit locales and
code sets.
For more information, see User-defined locales.

NODEFDAC Prevents the PUBLIC group from receiving table or routine privileges by default when new
tables or UDRs are created in a database that was not created WITH LOG MODE ANSI.
The required yes setting is case sensitive.

OPT_GOAL Specifies the query performance goal for the optimizer. Set this variable in the user
environment before you start an application. The driver does not use this variable; it just
passes the value to the server.

OPTCOMPIND Specifies the join method that the query optimizer uses

OPTOFC When set to 1, the ResultSet.close() method does not require a network round trip if all
the qualifying rows have already been retrieved in the clients tuple buffer. The database
server automatically closes the cursor after all the rows have been retrieved. IBM
Informix JDBC Driver might not have additional rows in the clients tuple buffer before the
next ResultSet.next() method is called. Therefore, unless IBM Informix JDBC Driver has
received all the rows from the database server, the ResultSet.close() method might still
require a network round trip when OPTOFC is set to 1.

PATH Specifies the directories that are to be searched for executable programs

PDQPRIORITY Determines the degree of parallelism used by the database server

PLCONFIG Specifies the name of the configuration file used by the high-performance loader

PLOAD_LO_PATH Specifies the path name for smart-large-object handles (which identify the location of
smart large objects such as BLOB, CLOB, and BOOLEAN data types).
The driver does not use this variable; it just passes the value to the server.

PORTNO_SECONDARY Specifies the port number of the secondary database server in an HDR pair. The port
number is listed in the /etc/services file.

PROXY Specifies an HTTP proxy server. For more information, see An HTTP proxy server.

PSORT_DBTEMP Specifies one or more directories to which the database server writes the temporary files
it uses when performing a sort

Part X: Informix JDBC Driver Guide 19

Supported environment variables Description

PSORT_NPROCS Enables the database server to improve the performance of the parallel-process sorting
package by allocating more threads for sorting

SECURITY Uses 56-bit encryption to send the password to the server. For more information, see
Password encryption.

SQLH_TYPE When set to FILE, specifies that database information (such as host-name, port-number,
user, and password) is specified in an sqlhosts file.
When set to LDAP, specifies that this information is specified in an LDAP server. For more
information, see Dynamically reading the Informix sqlhosts file.

SQLIDEBUG Specifies the path name for the file to which a binary SQLI trace is to be written. A new
trace file is generated for every connection and is suffixed with timestamp. Only use the
SQLI trace facility when directed by the IBM technical support representative.

SRV_FET_BUF_SIZE Overrides the default setting for the size of the fetch buffer in distributed transactions
with other database servers. That fetch buffer holds, for example, the data retrieved by a
cross-server distributed query. For IBM Informix 11.70.xC5 and later versions, the
maximum value is 1048576 (1MiB).

SSLCONNECTION When set to true, enables the connection to use SSL encryption for communication to the
server.

SSL_TRUSTSTORE Specifies the location of the truststore to load by the JDBC driver.

SSL_TRUSTSTORE_PASSWORD Specifies the password to the truststore that is being loaded by the JDBC driver.

STMT_CACHE When set to 1, enables the use of the shared-statement cache in a session.
This feature can reduce memory consumption and speed query processing among
different user sessions. The driver does not use this variable; it just passes the value to
the server.

TRUSTED_CONTEXT When set to TRUE, a trusted connection request is sent from client. Either a successful
trusted connection is established or the following error is returned from the server: SQL
Exception : -28021(Trusted Connection request rejected.)

For a detailed description of a particular environment variable, see IBM Informix Guide to SQL: Reference.

Code example IFX_LOCK_MODE_WAIT environment variable
IFX_LOCK_MODE_WAIT

Connection conn = DriverManager.getConnection ("jdbc:Informix-sqli://cleo:1550:
IFXHOST=cleo;PORTNO=1550;user=rdtest;password=my_passwd;IFX_LOCK_MODE_WAIT=1";);

Code example IFX_ISOLATION_LEVEL environment variable
IFX_ISOLATION_LEVEL

Connection conn = DriverManager.getConnection("jdbc:Informix-sqli://cleo:1550:
IFXHOST=cleo;PORTNO=1550;user=rdtest;password=my_passwd;IFX_ISOLATION_LEVEL=1U";);

Important: The isolation property can be set in the URL only when it is an explicit connection to a database. For server-only connection, this
property is ignored at connection time.

Code example IFX_ISOLATION_LEVEL environment variable
Connection conn = DriverManager.getConnection("jdbc:informix-sqli://localhost:9088
/csdk_db:user=informix;password=inform123;LOGINTIMEOUT=60000";);

Dynamically reading the Informix sqlhosts file

IBM Informix® JDBC Driver supports the JNDI (Java™ naming and directory interface). This support enables JDBC programs to access the
sqlhosts file. The sqlhosts file lets a client application find and connect to the database server anywhere on the network. For more information
about this file, see the IBM Informix Administrator's Guide for your database server.

You can access sqlhosts data from a local file or from an LDAP server. The system administrator must load the sqlhosts data into the LDAP server
using the utility.

20 Part X: Informix JDBC Driver Guide

Your CLASSPATH variable must reference the JNDI JAR (Java archive) files and the LDAP SPI (service provider interface) JAR files. You must use
LDAP Version 3.0 or later, which supports the object class extensibleObject.

You can use the sqlhosts file group option to specify the name of a database server group for the value of INFORMIXSERVER. The group option is
useful with High-Availability Data Replication (HDR); list the primary and secondary database servers in the HDR pair sequentially. For more
information on about how to set or use groups in sqlhosts file, see the IBM Informix Administrator's Guide. For more information about HDR, see
Connections to the servers of a high-availability cluster.

An unsigned applet cannot access the sqlhosts file or an LDAP server. For more information, see Using the driver in an applet.

Connection property syntax
 Administration requirements

 Utilities to update the LDAP server with sqlhosts data

Connection property syntax

You can let IBM Informix® JDBC Driver look up the host name or port number in an LDAP server instead of specifying them in a database URL or
DataSource object directly. You must specify the following properties in the database URL or DataSource object for the LDAP server:

SQLH_TYPE=LDAP
LDAP_URL=ldap://host-name:port-number
host-name and port-number are those of the LDAP server, not the database server.

LDAP_IFXBASE=Informix-base-DN
LDAP_USER=user
LDAP_PASSWD=password

If LDAP_USER and LDAP_PASSWD are not specified, IBM Informix JDBC Driver uses an anonymous search to search the LDAP server. The LDAP
administrator must make sure that an anonymous search is allowed on the sqlhosts entry. For more information, see your LDAP server
documentation.

Informix-base-DN has the following basic format:

cn=common-name,o=organization,c=country

If common-name, organization, or country consists of more than one word, you can use one entry for each word. For example:

cn=informix,cn=software

Here is an example database URL:

jdbc:informix-sqli:informixserver=value;SQLH_TYPE=LDAP;
 LDAP_URL=ldap://davinci:329;LDAP_IFXBASE=cn=informix,
 cn=software,o=kmart,c=US;LDAP_USER=abcd;LDAP_PASSWD=secret

You can also specify the sqlhosts file in the database URL or DataSource object. The host name and port number or the service name of the
database server as specified in the /etc/services file are read from the sqlhosts file. You must specify the following properties for the file:

SQLH_TYPE=FILE
SQLH_FILE=sqlhosts-filename

The sqlhosts file can be local or remote, so you can refer to it in the local file system format or URL format. Here are some examples:

SQLH_FILE=http://host-name:port-number/sqlhosts.iusSQLH_FILE=http://host-name:service-name/sqlhosts.ius
The host-name and port-number or service-name of the database server (from the etc/services file) elements are those of the server on
which the sqlhosts file resides.

SQLH_FILE=file://D:/local/myown/sqlhosts.ius
SQLH_FILE=/u/local/sqlhosts.ius

Here is an example database URL:

jdbc:informix-sqli:informixserver=value;SQLH_TYPE=FILE;
 SQLH_FILE=/u/local/sqlhosts.ius

If the database URL or DataSource object references the LDAP server or sqlhosts file but also directly specifies the IP address, host name, and
port number, then the IP address, host name, and port number specified in the database URL or DataSource object take precedence. For
information about how to set these connection properties by using a DataSource object, see DataSource extensions.

If you are using an applet or the database is behind a firewall, an HTTP proxy servlet, running in an extra tier, is required for communication. See
An HTTP proxy server for more information.

Part X: Informix JDBC Driver Guide 21

Administration requirements

If you want the LDAP server to store sqlhosts information that a JDBC program can look up, the following requirements must be met:

The LDAP server must be installed on a computer that is accessible to the client. The LDAP administrator must create an IFXBASE entry in
the LDAP server.
For more information about LDAP directory servers, see:

www.oracle.com
www.openldap.org

If you want to use the IBM® Informix® SqlhUpload and SqlhDelete utilities, which can load or delete the sqlhosts entries from a flat ASCII
file, the servicename field in the sqlhosts file must specify the database servers port number. For more information, see Utilities to update
the LDAP server with sqlhosts data, next.
The LDAP administrator must make sure that anonymous search is allowed on the sqlhosts entry. For more information, see the LDAP
server documentation.

Utilities to update the LDAP server with sqlhosts data

The SqlhUpload and SqlhDelete utilities are packaged in ifxtools.jar, so the CLASSPATH variable must point to ifxtools.jar (which, by default, is
in the lib directory under the installation directory for IBM Informix® JDBC Driver). Make sure that the CLASSPATH variable also points to the
JNDI JAR files and LDAP SPI JAR files.

The SqlhUpload utility
 This utility loads the sqlhosts entries from a flat ASCII file to the LDAP server in the prescribed format.

The SqlhDelete utility

The SqlhUpload utility

This utility loads the sqlhosts entries from a flat ASCII file to the LDAP server in the prescribed format.

Enter the following command:

java SqlhUpload sqlhfile.txt host-name:port-number [sqlhostsRdn]

The parameters have the following meanings:

The sqlhosts file to be uploaded is sqlhfile.txt.
The host name and port number of the LDAP server is host-name:port-number.
The RDN (relative distinguished name) of the sqlhosts node under the IBM® Informix® base in LDAP is sqlhostsRdn. The default name is
sqlhosts.

The utility prompts for other required information, such as the base distinguished name (DN) in the LDAP server, the LDAP user, and the
password.

You must convert the servicename field in the sqlhosts file to a string that represents an integer (the port number), because the Java™.Socket
class cannot accept an alphanumeric servicename value for the port number. For more information about the servicename field, see the IBM
Informix Administrator's Guide for your database server.

The SqlhDelete utility

This utility deletes the sqlhosts entries from the LDAP server. Enter the following command:

java SqlhDelete host-name:port-number [sqlhostsRdn]

The parameters of this command have the same meanings as the parameters listed for the SqlhUpload utility. See The SqlhUpload utility.

The utility prompts for other required information, such as the IBM® Informix® base DN in the LDAP server, the LDAP user, and the password.

Connections to the servers of a high-availability cluster

22 Part X: Informix JDBC Driver Guide

Using the JDBC driver, Java™ applications can connect to IBM® Informix® database servers in a high-availability cluster. Java applications can
also connect to IBM Informix Connection Managers, which can handle failover for high-availability clusters and redirect connections to cluster
servers.

To connect your Java application to the servers of a high-availability cluster, you must set properties in the connection URL or DataSource. If the
application performs update operations on secondary servers, configure the application to initially check for read-only server status.

When you configure IBM Informix Connection Managers to handle connections between your Java application server and high-availability cluster,
you get the following benefits:

You can direct connection requests to the most appropriate secondary server through rule-based redirection policies.
You can manage failover for your high-availability clusters, automatically promoting a secondary server to the role of primary server if the
primary server fails.
You can prioritize connections between a specific application server and the primary server of your high-availability cluster when you
install and configure IBM Informix Connection Managers on the same hosts as your Java application servers.
When database servers are behind a firewall, IBM Informix Connection Managers can act as proxy servers, and handle client/server
communication.

You can use high-availability secondary servers with connection pooling. For more information, see High-Availability Data Replication with
connection pooling.

Demonstration programs are available in the hdr directory within the demo directory where IBM Informix JDBC Driver is installed. For details
about the files, see Sample code files.

Properties for connecting to high-availability cluster servers through IBM Informix Connection Managers
 A JDBC application can connect to Connection Manager, just as the application might connect to a database server. Application connection

requests are then redirected to the most appropriate server in a high-availability cluster.
Properties for connecting to high-availability cluster servers through SQLHOST file group entries

 You can define sqlhost group entries, so that your application connection attempt is always directed to the primary server of a high-
availability cluster, even if failover occurs.
Properties for connecting directly to an HDR pair of servers

 You can define your client application's connection URL or DataSource so that your application connects directly to an HDR pair of servers.
If a connection attempt to the primary server fails, the client application can attempt to connect to the HDR secondary server.
Checks for read-only status of high-availability secondary servers

 You can write applications to check for read-only server status, so that update operations are not attempted on read-only secondary
servers.
Connection retry attempts to HDR secondary servers

 You can write applications so that if a connection is lost during query operations, IBM Informix JDBC Driver returns a new connection to
the secondary database server and the application reruns the queries.

Properties for connecting to high-availability cluster servers through IBM
Informix Connection Managers

A JDBC application can connect to Connection Manager, just as the application might connect to a database server. Application connection
requests are then redirected to the most appropriate server in a high-availability cluster.

You can configure multiple Connection Managers, and then create a Connection Manager group entry in sqlhost file that is used by the Java™
application server. If one Connection Manager fails, connection requests can be directed to working Connection Managers. The SQLH_FILE
connection property directs the JDBC driver to search for group entries.

To connect to the IBM® Informix® Connection Manager that then connects to the servers of a high-availability cluster, you must include the
following properties in the connection URL or DataSource:

INFORMIXSERVER=CM_or_group_name
SQLH_TYPE=FILE
SQLH_FILE=sqlhosts
USER=user_name
PASSWORD=password

Include the following properties in the connection URL to prevent your Java applications from waiting indefinitely if a Connection Manager is
running, but has a hung connection.

INFORMIXCONRETRY=value
INFORMIXCONTIME=value
LOGINTIMEOUT=value

The values are set based on the network environment.

Part X: Informix JDBC Driver Guide 23

Example 1: Connecting to a high-availability cluster through the IBM Informix
Connection Manager

In this example, you have the following system setup:

You have a high-availability cluster (my_cluster) that is composed of four servers.
The user name on all cluster servers is my_user.
The password on all cluster servers is my_password.
connection_manager, on cmhost1.example.com uses the following configuration file:

NAME connection_manager

CLUSTER my_cluster
{
 INFORMIXSERVER my_servers
 SLA sla_primary DBSERVERS=PRI
 SLA sla_secondaries DBSERVERS=SDS,HDR,RSS
 FOC ORDER=ENABLED \
 PRIORITY=1
}

You have a Java application server on host1.example.com, and the Java application server uses the following sqlhost file entries:

#dbservername nettype hostname servicename options
 sla_primary onsoctcp cmhost1.example.com cm_port_1
 sla_secondaries onsoctcp cmhost1.example.com cm_port_1

If the initial connection attempt by the client fails, you want it to retry two times.
You want the CONNECT statement to wait 10 seconds to establish a connection.
You want the connection to fail if the server port is polled and does not connect within 10 milliseconds.

To connect the Java application client to the primary server of my_cluster, use the following URL:

jdbc:informix-sqli://INFORMIXSERVER=sla_primary;
 SQLH_TYPE=FILE;SQLH_FILE=sqlhosts;
 USER=my_user_name;PASSWORD=my_password;
 INFORMIXCONRETRY=2;INFORMIXCONTIME=10;LOGINTIMEOUT=10

To connect the Java application client to a secondary server of my_cluster, use the following URL:

jdbc:informix-sqli://INFORMIXSERVER=sla_secondaries;
 SQLH_TYPE=FILE;SQLH_FILE=sqlhosts;
 USER=my_user_name;PASSWORD=my_password;
 INFORMIXCONRETRY=2;INFORMIXCONTIME=10;LOGINTIMEOUT=10

Example 2: Connecting to a high-availability cluster through IBM Informix
Connection Managers

In this example, you have the following system setup:

You have a high-availability cluster (my_cluster) that is composed of four servers.
The user name on all cluster servers is my_user.
The password on all cluster servers is my_password.
connection_manager_1, on cmhost1.example.com uses the following configuration file for client redirection and failover:

NAME connection_manager_1

CLUSTER my_cluster
{
 INFORMIXSERVER my_servers
 SLA sla_primary_1 DBSERVERS=PRI
 FOC ORDER=ENABLED \
 PRIORITY=1
 CMALARMPROGRAM $INFORMIXDIR/etc/CMALARMPROGRAM.sh
}

connection_manager_2, on cmhost2.example.com uses the following configuration file for client redirection and failover:

NAME connection_manager_2

CLUSTER my_cluster
{
 INFORMIXSERVER my_servers
 SLA sla_primary_1 DBSERVERS=PRI
 FOC ORDER=ENABLED \

24 Part X: Informix JDBC Driver Guide

 PRIORITY=2
 CMALARMPROGRAM $INFORMIXDIR/etc/CMALARMPROGRAM.sh
}

You have a Java application server on host1.example.com, and the Java application server uses the following sqlhost file entries:

#dbservername nettype hostname servicename options
 g_primary group - - c=1,e=sla_primary_2
 sla_primary_1 onsoctcp cmhost1.example.com cm_port_1 g=g_primary
 sla_primary_2 onsoctcp cmhost2.example.com cm_port_2 g=g_primary

If the initial connection attempt by the client fails, you want it to retry two times.
You want the CONNECT statement to wait 10 seconds to establish a connection.
You want the connection to fail if the server port is polled and does not connect within 10 milliseconds.

To connect the Java application client to the primary server of my_cluster through either connection_manager_1 or connection_manager_2,
use the following URL:

jdbc:informix-sqli://INFORMIXSERVER=g_primary;
 SQLH_TYPE=FILE;SQLH_FILE=sqlhosts;
 USER=my_user_name;PASSWORD=my_password;
 INFORMIXCONRETRY=2;INFORMIXCONTIME=10;LOGINTIMEOUT=10

Properties for connecting to high-availability cluster servers through
SQLHOST file group entries

You can define sqlhost group entries, so that your application connection attempt is always directed to the primary server of a high-availability
cluster, even if failover occurs.

To connect to the primary server of a high-availability cluster, include the following properties in the connection URL or DataSource:

INFORMIXSERVER=group_name
SQLH_TYPE=FILE
SQLH_FILE=sqlhosts
USER=user_name
PASSWORD=password

An exception is thrown if the JDBC driver cannot find a primary server in the group.

Enforcing connections to the primary server is enabled for IBM® Informix®, Version 9.40.xC6 and later only.

Example: Connecting to the primary server of a high-availability cluster through
SQLHOST file group entries

In this example, you have the following system setup:

You have a high-availability cluster (my_cluster) that is composed of four servers:
server_1 (primary), on host1.example.com
server_2 (shared-disk secondary), on host1.example.com
server_3 (HDR), on host2.example.com
server_4 (Remote-standalone secondary), on host3.example.com

The user name on all cluster servers is my_user.
The password on all cluster servers is my_password.
You have a Java™ application server on host4.example.com. The server uses the following sqlhost file entries:

#dbservername nettype hostname servicename options
 my_servers - - c=1,e=server_4
 server_1 onsoctcp host1.example.com port_1 g=my_servers
 server_2 onsoctcp host1.example.com port_2 g=my_servers
 server_3 onsoctcp host2.example.com port_3 g=my_servers
 server_4 onsoctcp host3.example.com port_4 g=my_servers

To connect the Java application client to the primary server of my_cluster, use the following URL:

jdbc:informix-sqli://INFORMIXSERVER=my_servers;
 SQLH_TYPE=FILE;SQLH_FILE=sqlhosts;
 USER=my_user_name;PASSWORD=my_password

Properties for connecting directly to an HDR pair of servers
Part X: Informix JDBC Driver Guide 25

You can define your client application's connection URL or DataSource so that your application connects directly to an HDR pair of servers. If a
connection attempt to the primary server fails, the client application can attempt to connect to the HDR secondary server.

To connect directly to a primary server and HDR secondary server, include the following properties in the connection URL or DataSource:

INFORMIXSERVER=primary_server_name
INFORMIXSERVER_SECONDARY=secondary_server_name
IFXHOST_SECONDARY=secondary_host_name
PORTNO_SECONDARY=secondary_port_number
USER=user_name
PASSWORD=password
ENABLE_HDRSWITCH=true

If you are setting values in the DataSource, you must also include the following values:

IFXHOST=primary_host_name
PORTNO=primary_port_number

When you are using a DataSource object, you can set and get the secondary server connection properties with setXXX() and getXXX() methods.
These methods are listed with their corresponding connection property in Get and set Informix connection properties.

You can manually redirect a connection to the secondary server in an HDR pair by editing the INFORMIXSERVER, PORTNO, and IFXHOST
properties in the DataSource or by editing the INFORMIXSERVER property in the URL. Manual redirection requires editing the application code
and then restarting the application.

Example: Connecting to an HDR pair of servers
The following example shows a connection URL for a primary server that is named server_1 and an HDR secondary server that is named
server_2:

jdbc:informix-sqli://my_host:my_port/my_database:
 INFORMIXSERVER=server_1;INFORMIXSERVER_SECONDARY=server_2;
 IFXHOST_SECONDARY=host2.example.com;PORTNO_SECONDARY=port_2;
 user=my_name;password=my_password;
 ENABLE_HDRSWITCH=true

Checks for read-only status of high-availability secondary servers

You can write applications to check for read-only server status, so that update operations are not attempted on read-only secondary servers.

The IBM® Informix® JDBC driver has extension methods to the java.sql.Connection class that provide a way to check the HDR secondary server's
status. Users can type cast connection objects to 'com.informix.jdbc.IfmxConnection' to access the following extension methods.

Information obtained Method signature Additional information

Whether the server is read-only (a
secondary server)

public boolean is ReadOnly() throws SQLException Returns true if the active server is a secondary
server
Returns an exception if a database access error
occurs

If ENABLE_HDRSWITCH is set to false,
isReadOnly() returns the value that is initially set
after the last successful HDR connection was
obtained.

Whether HDR is enabled public boolean is HDREnabled() Returns true if both servers in the HDR pair are
available
Returns false if one of the servers is unavailable

The type of the server (primary,
secondary, or standard)

public string getHDRtype() Returns primary or standard for a primary server,
secondary for a secondary server
The database administrator can manually reset
the type of the server.

For example, you can use one of the following strategies:

Use the isReadOnly() method before each SQL statement that might contain an update operation. If the value of isReadOnly() is true,
perform an appropriate action, such as sending an error message to the user or notifying the server administrator.
You call the isReadOnly() method after you establish a connection and then set a flag, like READ_ONLY, and then perform operations that
are based on the flag value.

An administrator can manually switch a secondary server to a primary server to allow update operations. However, the server must be shut down
in the process, which can cause uncommitted transactions to be lost.

26 Part X: Informix JDBC Driver Guide

Connection retry attempts to HDR secondary servers

You can write applications so that if a connection is lost during query operations, IBM Informix® JDBC Driver returns a new connection to the
secondary database server and the application reruns the queries.

The following example shows how to retry a connection with the secondary server information, and then rerun an SQL statement that received an
error because the primary server connection failed:

public class HDRConnect {
 static IfmxConnection conn;

 public static void main(String[] args)
 {
 getConnection(args[0]);
 doQuery(conn);
 closeConnection();
 }

 static void getConnection(String url)
 {
 ..
 Class.forName("com.informix.jdbc.IfxDriver");
 conn = (IfmxConnection)DriverManager.getConnection(url);

 }
 static void closeConnection()
 {
 try
 {
 conn.close();
 }
 catch (SQLException e)
 {
 System.out.println("ERROR: failed to close the connection!");
 return;
 }
 }
 static void doQuery(Connection con)
 {
 int rc=0;
 String cmd=null;
 Statement stmt = null;

 try
 {
 // execute some sql statement
 }
 catch (SQLException e)
 {
 if (e.getErrorCode() == -79716) || (e.getErrorCode() == -79735)
 // system or internal error
 {
 // This is expected behavior when primary server is down
 getConnection(url);
 doQuery(conn);
 }
 else
 System.out.println("ERROR: execution failed - statement: " + cmd);
 return;
 }
 }

An HTTP proxy server

Network security imposes certain restrictions on what client applications are allowed to do:

Applets can only communicate back to the host from which they were downloaded.
Direct IP connections between a JDBC client and database are not allowed when a firewall is between the client and the database server.

The IBM® Informix® HTTP proxy handles both of these problems. The proxy is a servlet that runs in the middle tier between a JDBC client and the
database server. The proxy extracts SQL requests from the JDBC client and transmits them to the database server. The client (the end user) is
unaware of this middle tier.

The HTTP proxy feature is not part of the JDBC 2.0 specification.

Part X: Informix JDBC Driver Guide 27

The following figure illustrates how the proxy enables a connection to a database that is behind a firewall.
Figure 1. Connecting through a firewall

Configuring your environment to use a proxy server
 The proxy with an LDAP server

 Specify sqlhosts file lookup

Configuring your environment to use a proxy server

The HTTP proxy requires a web server that supports servlets, preferably a web server whose servlet engine uses a 2.1 or greater servlet API. The
proxy is compatible with 2.0 and earlier servlet APIs, but the PROXYTIMEOUT feature is only enabled with a 2.1 or greater API.

To configure your environment for a proxy server:

1. Define a servlet alias or context for the proxy servlet in your web server configuration.
The JDBC driver directs all client HTTP requests to:

http://your-web-server:port/pathname/IfxJDBCProxy

where IfxJDBCProxy is the proxy servlet and pathname is the path to the proxy servlet. Consult your web server documentation for the
correct way to configure servlets.

2. Copy three class files—IfxJDBCProxy.class, SessionMgr.class, and TimeoutMgr.class—to the servlet directory you specified in the previous
step.
These class files reside in the directory proxy, which is under the installation directory for IBM Informix® JDBC Driver after the product
bundle is installed.

3. Add the IBM Informix JDBC Driver file, ifxjdbc.jar, to the CLASSPATH setting on your web server.
Some web servers use the CLASSPATH of the environment under which the server is started, while others get their CLASSPATH from a web
server-specific properties file. Consult your web server documentation for the correct place to update the CLASSPATH setting.

4. Start your web server and verify that the proxy is installed correctly by entering the following URL:

http://server-host-name:port-number/servlet/
 IfxJDBCProxy

The proxy replies with the following banner:

-- Informix Proxy Servlet v220 Servlet API 2.1 --

v220 represents the proxy version. Servlet API 2.1 represents the version of your web servers servlet API.
If the servlet API is 2.0 or earlier, the banner says Servlet API 0.0.

5. After configuring the proxy, append the following to your applet or applications URL:

PROXY=server-host-name:port-number

For example:

jdbc:informix-sqli://123.45.67.89:1533:INFORMIXSERVER=
 myserver;user=rdtest;password=test;
 PROXY=webserver:1462;

Depending on your web server, the proxy servlet might be loaded when the web server is started or the first time it is referenced in the URL of
your applet or application connection object.

The following websites offer more information about proxy servlets:

28 Part X: Informix JDBC Driver Guide

www.oracle.com
java.apache.org

Specify a timeout

Specify a timeout

You can specify a timeout value for the proxy by using the PROXYTIMEOUT keyword. The PROXYTIMEOUT value specifies how often the client-
side JDBC driver sends a keepalive request to the proxy. A PROXYTIMEOUT value is represented in seconds; the value can be 60 or greater.

When PROXYTIMEOUT is specified by the client, the proxy sets the clients session expiration equal to 2 x PROXYTIMEOUT. For example, if
PROXYTIMEOUT is set to 60 seconds, the proxy sets the clients expiration time to 120 seconds. When the expiration time is reached, the proxy
removes the clients session resources and closes its database connection.

The proxy resets the timeout interval each time a communication is received from the client. Here are some valid values for PROXYTIMEOUT:

PROXYTIMEOUT=-1
Disables the client timeout feature.

PROXYTIMEOUT=nnn
Client sends a keepalive request to proxy every nnn seconds. The nnn value must be 60 or greater.

PROXYTIMEOUT=60
Default value if PROXYTIMEOUT is not specified

The proxy timeout feature is helpful in determining if a client session has terminated without first sending the proxy a close request by closing
the JDBC connection. The proxy maintains an open database connection on behalf of the client until the client either:

Explicitly closes the database connection
Exceeds its timeout interval

The onstat database utility shows an open session for any client sessions that have unexpectedly terminated and have set PROXYTIMEOUT to
-1.

Here is an example that specifies PROXYTIMEOUT:

jdbc:informix-sqli://123.45.67.89:1533:informixserver=myserver;
 user=rdtest;password=test;
 PROXY=webserver:1462?PROXYTIMEOUT=180;

See the demo/proxy directory under the directory where your driver is installed for an example applet and application that uses the proxy.

The proxy with an LDAP server

The proxy allows your JDBC applets and applications to alternatively get their database connection information from an LDAP server. If you plan
to use this feature, you need to install an LDAP server. For general information about using an LDAP server with IBM Informix® JDBC Driver, see
the topics beginning with Connection property syntax.

The following figure illustrates how the proxy works with an LDAP server. The figure also shows lookup from an sqlhosts file; for more
information, see Specify sqlhosts file lookup.
Figure 1. Lookup by the proxy

Part X: Informix JDBC Driver Guide 29

The proxy LDAP feature requires the JNDI class libraries and LDAP service provider files (jndi.jar, ldap.jar, and providerutil.jar). These JAR files
can be downloaded from www.oracale.com.

After downloading and installing the files, add their full path names to the CLASSPATH setting on your web server. The files are in the lib directory
under the installation directory.

Specify where LDAP lookup occurs

Specify where LDAP lookup occurs

When used with other LDAP keywords, the SQLH_LOC keyword indicates where an LDAP lookup occurs.

SQLH_LOC can have a value of either CLIENT or PROXY. If the value is CLIENT, the driver performs the LDAP lookup on the client side. If the
value is PROXY, the proxy performs the lookup on the server side. If no value is specified, the driver uses CLIENT as the default value.

Here is the format for an applet or application URL with LDAP keywords that specifies a server-side LDAP lookup:

jdbc:informix-sqli:informixserver=informix-server-name;
PROXY=proxy-hostname-or-ip-address:proxy-port-no?
PROXYTIMEOUT=60;SQLH_TYPE=LDAP;LDAP_URL=ldap:
//ldap-hostname-or-ip-address:ldap-port-no;LDAP_IFXBASE=dc=mydomain,dc=com;
SQLH_LOC=PROXY;

This example obtains the database server host name and port from an LDAP server:

jdbc:informix-sqli:informixserver=samsara;SQLH_TYPE=LDAP;
LDAP_URL=ldap://davinci:329;LDAP_IFXBASE=cn=informix,
o=kmart,c=US;LDAP_USER=abcd;LDAP_PASSWD=secret;SQLH_LOC=PROXY;
PROXY=webserver:1462

For a complete example of using an LDAP server with the proxy, see the proxy applet and application in the demo directory where your JDBC
driver is installed.

Specify sqlhosts file lookup

The SQLH_LOC keyword also applies to sqlhosts file lookups when you are using the proxy. If the URL includes SQLH_LOC =PROXY, the driver
reads the sqlhosts file on the server. If SQLH_LOC =PROXY is not specified, the driver reads the file on the client.

This example obtains the information from an sqlhosts file on the server:

jdbc:informix-sqli:informixserver=samsara;SQLH_TYPE=FILE;
 SQLH_FILE=/work/9.x/etc/sqlhosts;SQLH_LOC=PROXY;
 PROXY=webserver:1462

30 Part X: Informix JDBC Driver Guide

Other multitier solutions

Other ways to use IBM Informix® JDBC Driver in a multiple-tier environment are as follows:

Remote Method Invocation (RMI)
IBM Informix JDBC Driver resides on an application server that is a middle tier between the Java™ applet or application and database
machines. An example of RMI is included with IBM Informix JDBC Driver; see Sample code files, for details.

Other communication protocols, such as CORBA
IBM Informix JDBC Driver resides on an application server that is a middle tier between the Java applet or application and database
computers.

Encryption options

You can use either password (SECURITY=PASSWORD) or network encryption to establish the security of your connection. To use either the
password option or to use network encryption, you must have a Java™ Cryptography Extension (JCE)-compliant encryption services provider
installed in your Java runtime environment.

It is recommended that you do not mix security packages on the same client. The following topics describe how to configure each package.

Encryption over the network and password encryption should not be used together. Thus, password encryption should not be enabled with the
SECURITY environment variable when using JDBC encryption CSM. JDBC Encryption CSM does encrypt passwords before sending them over the
network.

FIPS-compliant security package
 Password encryption

 Connecting JDBC applications with SSL
 You can configure database connections for the IBM Informix® JDBC Driver to use the Secure Sockets Layer (SSL) protocol.

CSM network encryption
 IBM Informix JDBC Driver enables encryption of data transmitted over a network by using an encryption communication support module

(CSM).

FIPS-compliant security package

IBM® SDK, Java™ Technology Edition includes a Federal Information Processing Standards (FIPS) 140-2 compliant package for JCE (Java
Cryptographic Extension) called IBMJCEFIPS. IBMJCEFIPS supports FIPS-approved cryptographic operations through Java APIs.

The IBMJCEFIPS package can be used with the simple password CSM or with the encryption CSM.

To use the FIPS package, add the IBMJCEFIPS provider to the list of security providers in the Java virtual machine file java.security, which is in
the jre/lib/ext directory where the Java runtime environment is installed

You must specify the IBMJCEFIPS provider at a higher preference order than any non-FIPS security providers in the java.security file. The order is
1-based, meaning that 1 is the most preferred, followed by 2, and so on.

For example:

security.provider.1=com.ibm.crypto.fips.provider.IBMJCEFIPS
security.provider.2=com.ibm.crypto.fips.provider.IBMJCE

Make sure that the IBMJCEFIPS has a higher preference order than the IBMJCE provider.

No changes to applications are needed for the IBM Informix® JDBC Driver to use the FIPS-compliant cryptographic package.

The certified JCE FIPS guide (http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp497.pdf) contains more information about
the security policy that is provided by the cryptographic module, and describes how the module is designed to meet FIPS 140-2 compliance.

Password encryption

The SECURITY environment variable specifies the security operations that are performed when the JDBC client and database server exchange
data. The only setting for the SECURITY environment variable supported in IBM Informix® JDBC Driver is PASSWORD.

Part X: Informix JDBC Driver Guide 31

http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp497.pdf

If PASSWORD is specified, the user-provided password is encrypted using 56-bit encryption when it is passed from the client to the database
server. There is no default setting.

Here is an example:

String URL = "jdbc:informix-sqli://158.58.10.171:1664:user=myname;
password=mypassord;INFORMIXSERVER=myserver;SECURITY=PASSWORD";

PASSWORD is not case sensitive.

Configure the database server
 If the SECURITY=PASSWORD setting is specified in the JDBC client, the SPWDCSM csm option must be enabled on the database server.

Otherwise, an error is returned during connection.

Configure the database server

If the SECURITY=PASSWORD setting is specified in the JDBC client, the SPWDCSM csm option must be enabled on the database server.
Otherwise, an error is returned during connection.

To use the SPWDCSM csm server option, which supports password encryption on the database server, you must configure the servers sqlhosts
server name option. After this option is set on the server, only clients using the SECURITY=PASSWORD setting can connect to that server name.

Connecting JDBC applications with SSL

You can configure database connections for the IBM Informix® JDBC Driver to use the Secure Sockets Layer (SSL) protocol.

The client must use the same public key certificate file as the server.

1. Create a truststore: Use the keytool utility that comes with your Java™ runtime environment to import a client-side keystore database
and add the public key certificate to the keystore.

C:\work>keytool -importcert -file filename.extension -keystore .keystore

Follow the prompts to enter a new keystore password and to trust the certificate.
2. Define the truststore location: Configure an SSL connection to the database from your Java application by using the following options:

Option 1: Use system properties

Set the location and password of the truststore using Java system properties.
Note: These settings apply to all the SSL connections made from this application.

C:\work>java -D javax.net.ssl.trustStore=/opt/ids/.keystore -D
javax.net.ssl.trustStorePassword=password -jar yourapplication.jar

or set the location and password inside the java code using the System.setProperty API.

System.setProperty("javax.net.ssl.trustStore", "/opt/ids/.keystore");
System.setProperty("javax.net.ssl.trustStorePassword", "password");

Option 2: Use a DataSource object
Define "per connection" the truststore location and password using a DataSource object by using the setTrustStore and
setTrustStorePassword methods on the IfxDataSource object.

IfxDataSource cds = new IfxDataSource();
cds.setTrustStore("/opt/ids/.keystore");
cds.setTrustStorePassword("password");
//Add your additional connection details

Option 3: Pass in through the connection URL

If you do not use a DataSource object you can pass in the truststore and password via URL properties using
SSL_TRUSTSTORE=/opt/ids/.keystore and SSL_TRUSTSTORE_PASSWORD=password

Connection c = DriverManager.getConnection("jdbc:informix-sqli:localhost:9089/mydatabase:
SSL_TRUSTSTORE=/opt/ids/.keystore;SSL_TRUSTSTORE_PASSWORD=password

3. Declare the connection for SSL: This is set per connection and can be done through the DataSource or the URL.
Option 1: Use a DataSource object

IfxDataSource cds = new IfxDataSource();
cds.setIfxSSLConnection("true");

32 Part X: Informix JDBC Driver Guide

Option 2: Pass in through the connection URL

Connection c = DriverManager.getConnection("jdbc:informix-sqli:localhost:9089/mydatabase:
 SSLCONNECTION=true

JDBC sample for SSL connection
This sample Java program highlights the operations that are required to connect to the stores_demo database by using SSL.

import java.sql.Connection;
import java.sql.SQLException;

import com.informix.jdbc.IfxDriver;
import com.informix.jdbcx.IfxDataSource;

public class InformixSSLConnectionExample {
 public static void main(String[] args) {

 /* System properties for keystore */
 /* you can set this here for your whole system or you can set on */
 /* the data sourc (show below) or directly on your connection */
 /* properties using SSL_TRUSTSTORE and SSL_TRUSTSTORE_PASSWORD */
 System.setProperty("javax.net.ssl.trustStore", "/opt/ids/.keystore");
 System.setProperty("javax.net.ssl.trustStorePassword", "password");

 /* Instantiate Informix connection pooled data source */
 IfxDataSource cds = new IfxDataSource();

 /*
 * Set SSLConnection property to true and port pointing to SSL port on the
 * server
 */
 cds.setUser("dbuser");
 cds.setPassword("password");
 cds.setDatabaseName("stores_demo");
 cds.setPortNumber(9888);

 /* Enable SSL */
 cds.setIfxSSLCONNECTION("true");

 /* Optional if you don't set a system property */
 /* You can set the trust store and password in the data source */
 cds.setTrustStore("/opt/ids/.keystore");
 cds.setTrustStorePassword("password");

 try (Connection conn = cds.getConnection()) {
 System.out.println(" Successfully connected to Informix database using SSL
Connection");
 System.out.println(" Database version ...: " +
conn.getMetaData().getDatabaseProductVersion());
 System.out.println(" JDBC Driver Version .: " + IfxDriver.getJDBCVersion());
 } catch (SQLException e) {
 System.err.println("Error Message : " + e.getMessage());
 System.err.println("Error Code : " + e.getErrorCode());
 } catch (Exception e) {
 System.err.println("Error Message : " + e.getMessage());
 }
 }
}

CSM network encryption

IBM Informix® JDBC Driver enables encryption of data transmitted over a network by using an encryption communication support module (CSM).

The encryption module com.informix.jdbc.Crypto class is packaged in the JDBC .jar file. JDBC encryption CSM is a pure Java™ implementation
that uses services from the Java Cryptography provider.

CSM network encryption syntax
 To configure network encryption, set the CSM environment variable.

Option tags
 Option parameters

CSM network encryption syntax
Part X: Informix JDBC Driver Guide 33

To configure network encryption, set the CSM environment variable.

Use the following syntax to set the CSM environment variable and encryption options:

CSM environment variable syntax

>>-CSM=(“CLASSNAME=com.informix.jdbc.Crypto”-+-----------------------------+-)-><
 '-,--+-option tags----------+-'
 '-config=parameterfile-'

option tags
Specify the syntax of encryption tags. For more information, see Option tags.

config=parameterfile
Specify encryption options in a file. For more information, see Option parameters.

Option tags

The option tags that can be passed on to the encryption CSM are the same as the encryption option tags that are specified in the CSM
configuration file used by the server or CSDK. There are three option tags:

cipher
Defines all ciphers that can be used by the session.

mac
Defines the message authentication code (MAC) key files to be used during the MAC generation and the level of MAC generation utilized.

switch
Defines the frequency at which ciphers or secret keys are renegotiated. The longer the secret key and encryption cipher remain in use, the
more likely that the encryption rules might be broken by an attacker. To avoid this, cryptologists recommend periodically changing the
secret key and cipher on long-term connections. The default for this renegotiation is once an hour. By using the switch tag, you can set the
time for this renegotiation in minutes.

For the syntax of these tags, see the IBM® Informix Security Guide.

The encryption CSM option parameters are separated by a comma and not by a semicolon. When using a DataSource, getIfxCSM() and
setIfxCSM() methods can be used to get and set CSM as a property. When setting CSM as a property, make sure that you do not enclose the
option string in parentheses. The following is an example that correctly sets the CSM as a property:

connProperties.put("CSM","classname=com.informix.jdbc.Crypto,cipher[all],
mac[<builtin>]");

Option parameters

You can configure encryption by creating a file with encryption parameters and then specifying the file name. The encryption parameters are:

ENCCSM_CIPHERS: Ciphers to be used
ENCCSM_MAC: MAC level
ENCCSM_MACFILES: MAC file location
ENCCSM_SWITCH: CIPHER and KEY change frequency, separated by a comma

For the syntax of these parameters, see the IBM® Informix Security Guide.

The following is an example that specifies the CSM parameters in a configuration file:

 String newUrl = "jdbc:informix-sqli:
//beacon:8779/test:INFORMIXSERVER=danon950_beacon_encrypt;
user=rdtest;password=test;
csm=(classname=com.informix.jdbc.Crypto,config=test.cfg)";
 try
 {
 Class.forName("com.informix.jdbc.IfxDriver");
 }catch(Exception e)
 {
 System.out.println("ERROR: failed to load
Informix JDBC driver.");
 }
 try
 {
 Connection con = DriverManager.getConnection(newUrl);
 }

34 Part X: Informix JDBC Driver Guide

 catch(SQLException e)
 {
 System.out.println("ERROR: failed to connect.");
 e.printStackTrace();
 return;
 }

Using single sign-on access control with the Informix® JDBC Driver

Ensure that the database server is set up for SSO authentication. For information, see the “Single Sign-on Access Control” section in the IBM®
Informix Security Guide.

You can use single sign-on (SSO) access control with JDBC by using the DriverManager.getConnection() method and setting the Communication
Support Module (CSM) in the connection URL to the service principal. Using SSO access control replaces the user ID and password option.

1. Modify the connection URL so that it includes the service principal. The service principal consists of the database server name and the SSO
realm.

CSM=(SSO=database_server@realm,ENC=true)

The ENC=true setting means that Generic Security Services (GSS) encryption is enabled. The ENC=true setting is optional because by
default, its value is true. If you do not want to enable GSS encryption, set the value to false: ENC= false.

For complete syntax of the connection URL, see Format of database URLs.

2. Create a login configuration file with the following code:

com.sun.security.jgss.initiate {
 com.sun.security.auth.module.Krb5LoginModule required
useTicketCache=true
doNotPrompt=true;
}

3. Run the application with the java.security.auth.login.config property set to the login configuration files full path name, followed by the
TestSso class. The following is an example where IfmxLog.conf is the login configuration file:

java -Djava.security.auth.login.config=mydirectory/IfmxLog.conf TestSso

PAM authentication method

The IBM Informix® JDBC Driver, Version 2.21. JC5 and later, implements support for handling PAM (Pluggable Authentication Module)-enabled
IBM® Informix server 9.40 and later servers. This implementation supports a challenge-response dialog between PAM and the end user. To
facilitate this dialog, the JDBC developer must implement the com.informix.jdbc.IfmxPAM interface. The IfxPAM() method in the IfmxPAM
interface acts as the gateway between PAM and the user.

The IfxPAM() method is called when the JDBC server encounters a PAM challenge method. The return value from the IfxPAM() method acts as
the response to the challenge message and is sent to PAM.

The signature for the IfxPAM() method is:

public IfxPAMResponse IfxPAM(IfxPAMChallenge challengeMessage)

Two classes, IfxPAMChallenge and IfxPAMResponse, usher messages between the JDBC driver and PAM. The IfxPAMChallenge class contains
the information that has been sent from PAM to the user.

The challenge message is obtained from the IfxPAMChallenge class by using the getChallenge() method. This message is what is sent directly
from PAM running on IBM Informix server to be routed to the end user. The challenge messages are listed in the following table.

Table 1. Types of challenge messages
Message Description

PAM_PROMPT_ECHO_ON The message is displayed to the user and the users response can be echoed
back.

PAM_PROMPT_ECHO_OFF The message is displayed to the user and the users response is hidden or
masked (that is, when the user enters a password, asterisks are displayed
instead of the exact characters the user types).

PAM_PROMPT_ERROR_MSG The message is displayed to the user as an error, with no response required.

Part X: Informix JDBC Driver Guide 35

Message Description

PAM_TEXT_INFO_MSG The message is displayed to the user as an informational message, with no
response required.

The challenge message type is governed by the PAM standard and can have vendor-specific values. See the PAM standard and vendor-specific
information for possible values and interpretations.

The PAM standard defines the maximum size of a PAM message to be 512 bytes (IfxPAMChallenge.PAM_MAX_MESSAGE_SIZE).

The IfxPAMResponse class is similar to IfxPAMChallenge, but instead of being used by PAM to send a message to the user, the
IfxPAMResponse class is used to send a message from the user to PAM. Use the IfxPAMResponse.setResponse() method to send the challenge-
response string to PAM. However, set the response type (which is set by using the IfxPAMResponse.setResponseType() method) to zero, the
default, as the response type is currently reserved for future use.

The challenge-response string is limited to the size of the challenge message: IfxPAMResponse.PAM_MAX_MESSAGE_SIZE or 512 bytes. If the
response string exceeds this limit, an SQL exception is thrown.

Additionally, when the challenge message is of type PAM_INFO_TEXT or PAM_PROMPT_ERR_MSG (see PAM standards for meaning and integer
values), PAM expects no user response. Thus, a null IfxPAMResponse object or one that has not been set with specific values can be returned to
JDBC. The IfxPAMResponse class provides the following method to allow the JDBC developer to stop the connection attempt during a PAM
session:

public void setTerminateConnection(boolean flag)

The value of the flag can be TRUE or FALSE. If the value of the parameter passed to setTerminateConnection is TRUE, then the connection to the
PAM-enabled IBM Informix server immediately terminates upon returning from IfxPAM(). If the value is set to FALSE, then the connection
attempt to the PAM-enabled server continues as usual.

PAM in JDBC

PAM in JDBC

JDBC developers using PAM to communicate with a PAM-enabled IBM® Informix® server must implement the com.informix.jdbc.IfmxPAM
interface. To do so, put the following on the class declaration line in a Java™ class file:

implements IfmxPAM

That Java class must then implement the IfmxPAM interface conforming to Java standards and the details provided previously. The next step is
to inform the JDBC driver what Java class has implemented the IfmxPAM interface. There are two ways to do this:

Add the key-value pair IFX_PAM_CLASS=your.class.name to the connection URL, where the value your.class.name is the path to the class
that has implemented the IfmxPAM interface.
This method is typically used when connecting to the server by using the DriverManager.getConnection (URL) approach.

Add the property IFX_PAM_CLASS with the value your.class.name to your properties list before attempting the connection to the PAM-
enabled server.
This method is used when connecting to the server by using the DataSource.getConnection() approach.

JDBC developers have a wide latitude in implementing the IfmxPAM interface. The following actions happen during authentication that uses
PAM:

1. The JDBC driver, when detecting communication with a PAM-enabled server, contacts the IfxPAM() method and passes it a
IfxPAMChallenge object containing the PAM challenge question.

2. A dialog box you create appears with a text question containing the challenge message that was sent by PAM.
3. When the user furnishes the response, it is packaged into an IfxPAMResponse object, and it is returned to the JDBC driver by exiting the

IfxPAM() method returning the IfxPAMResponse object.
4. When PAM receives the response from the challenge question, it can authorize the user, deny access to the user, or issue another

challenge question, in which case the previous process is repeated.

This process continues until either the user is authorized or the user is denied access. The Java developer or user can terminate the PAM
authorization sequence by calling the IfxPAMResponse.setTerminateConnection() method with a value of TRUE.

Close the connection

The following table contrasts the different effects of calling the Connection.close() and scrubConnection() methods in environments that use
connection pooling and those that do not.

36 Part X: Informix JDBC Driver Guide

For more information about deallocating resources, see Deallocate resources. For more information about the scrubConnection() method, see
Clean pooled connections.

Connection pooling
status

Effect of calling Connection.close() method Effect of calling scrubConnection() method

Non-connection pool
setup

Closes database connection, all associated
statement objects, and their result sets.
Connection is no longer valid.

Returns connection to original state, keeps opened statements, but
closes result sets Connection is still valid.
Releases resources associated with result sets only.

Connection pool with
IBM® Informix®
Implementation

Closes connection to the database and
reopens it to close any statements
associated with the connection object and
reset the connection to its original state
Connection object is then returned to the
connection pool and is available when
requested by a new application connection.

Returns a connection to original state and keeps all open statements,
but closes all result sets
Calling this method in this situation not recommended

Connection pool with
application server
implementation

Defined by your connection pooling
implementation

Returns connection to original state and retains opened statements,
but closes result sets
This functionality can be useful if you are using the JDBC 3.0 feature
of statement pooling with connections. When your application calls
the Connection.close() method, your application servers connection-
pool manager can call scrubConnection() for the pooled connection
object before returning the object to the connection pool.

Important: When calling the scrubConnection() method, your applications should be using server-only connections.

Perform database operations

These topics explain what you need to use IBM Informix® JDBC Driver to perform operations against the database.

Query the database
 Update the database

 Parameters, escape syntax, and unsupported methods
 Handle transactions

 Handle errors
 Access database metadata

 Other Informix extensions to the JDBC API
 Store and retrieve XML documents

Query the database

IBM Informix® JDBC Driver complies with the JDBC API specification for sending queries to a database and retrieving the results. The driver
supports most of the methods of the Statement, PreparedStatement, CallableStatement, ResultSet, and ResultSetMetaData interfaces.

Example of sending a query to the Informix database
 Reoptimize queries

 When you prepare SELECT, EXECUTE FUNCTION, or EXECUTE PROCEDURE statements, the database server uses a query plan to optimize
the query. If you later modify the data that is associated with the prepared statement, you can compromise the effectiveness of the query
plan for that statement. However, when you change the data, you can reoptimize your query.
Result sets

 Deallocate resources
 Execute across threads

 Scroll cursors
 Hold cursors

Example of sending a query to the Informix® database

The following example from the SimpleSelect.java program shows how to use the PreparedStatement interface to execute a SELECT statement
that has one input parameter:

try
 {

Part X: Informix JDBC Driver Guide 37

 PreparedStatement pstmt = conn.prepareStatement("Select *
 from x "
 + "where a = ?;");
 pstmt.setInt(1, 11);
 ResultSet r = pstmt.executeQuery();
 while(r.next())
 {
 short i = r.getShort(1);
 System.out.println("Select: column a = " + i);
 }
 r.close();
 pstmt.close();
 }
catch (SQLException e)
 {
 System.out.println("ERROR: Fetch statement failed: " +
 e.getMessage());
 }

The program first uses the Connection.prepareStatement() method to prepare the SELECT statement with its single input parameter. It then
assigns a value to the parameter by using the PreparedStatement.setInt() method and executes the query with the
PreparedStatement.executeQuery() method.

The program returns resulting rows in a ResultSet object, through which the program iterates with the ResultSet.next() method. The program
retrieves individual column values with the ResultSet.getShort() method, since the data type of the selected column is SMALLINT.

Finally, both the ResultSet and PreparedStatement objects are explicitly closed with the appropriate close() method.

For more information about which getXXX() methods retrieve individual column values, see Data type mapping for ResultSet.getXXX() methods.

Reoptimize queries

When you prepare SELECT, EXECUTE FUNCTION, or EXECUTE PROCEDURE statements, the database server uses a query plan to optimize the
query. If you later modify the data that is associated with the prepared statement, you can compromise the effectiveness of the query plan for
that statement. However, when you change the data, you can reoptimize your query.

You can reoptimize a query by setting the Informix® JDBC Driver extension method to reuse the PreparedStatement object but reoptimize the
previously prepared query plan. Alternatively, you can create a new PreparedStatement object. Reoptimizing an existing PreparedStatement
object, which rebuilds only the query plan, has the following advantages over creating a new PreparedStatement object, which rebuilds the
whole statement:

Uses fewer resources
Reduces overhead
Requires less time

To enable reoptimization, set the withReoptimization argument to the IfmxPreparedStatement.executeQuery() method to true. The
executeQuery() method has the following format:

 com.informix.jdbc.IfmxPreparedStatement.executeQuery(boolean withHold,
 boolean withReOptimization)

The following query uses the IfmxPreparedStatement.executeQuery() method to enable reoptimization:

Connection conn = DriverManager.getConnection(URL);
com.informix.jdbc.IfmxPreparedStatement pStmt =
 (com.informix.jdbc.IfmxPreparedStatement)
 conn.prepareStatement("SELECT * FROM customer");
ResultSet rs = pStmt.executeQuery(false, true);

Result sets

The IBM Informix® JDBC Driver implementation of the Statement.execute() method returns a single ResultSet object. Because the server does
not support multiple ResultSet objects, this implementation differs from the JDBC API specification, which states that the Statement.execute()
method can return multiple ResultSet objects.

Returning multiple Result Sets is not supported by the IBM Informix JDBC Driver.

Scrollable result set for multiple rows

38 Part X: Informix JDBC Driver Guide

Scrollable result set for multiple rows

The Scrollable ResultSet fetches one row at a time from the server. A performance enhancement for Scrollable ResultSet allows multiple rows to
be fetched at one time. In the following example, where the rows m through n are desired, the following fetches the rows into a ResultSet. As
long as only rows between m and n inclusive are accessed, no further fetches occur. In this example, the rows 50 through 100 are desired and
the ResultSet is SCROLL_INSENSITIVE:

 rs.setFetchSize(51);
 rs.absolute(49); // one row will be fetched
 rs.next() // rs will contain 51 rows

IBM® Informix® only fetches in the forward direction and only fetches one row, except when a DIR_NEXT fetch is used to fetch rows. For a
DIR_NEXT operation, the server sends rows until the fetch buffer is filled or until the last row is sent. Only ResultSet.next() can generate a
DIR_NEXT operation.

This performance enhancement does not change the behavior of FORWARD_ONLY ResultSets. The calculation of the size of the fetch buffer is
unchanged.

For SCROLL_INSENTIVE ResultSets, the size of the fetch buffer is determined by the fetch size and row size. Statement.setFetchSize() and
ResultSet.setFetchSize() can be used to set the fetch size. If fetch size is zero, the default fetch buffer size is used. The fetch buffer size is limited
to 32 K.

Certain ResultSet methods require information about the number of rows generated by the query. The methods might result in fetching a row to
obtain the information and then refetching the current row. The methods are isBeforeFirst(), isLast(), and absolute(-row).

Additionally, setMaxRows() can change the fetch buffer size for SCROLL_INSENSITIVE ResultsSets. Because additional server support is
required to ensure efficient use of setMaxRows(), it is recommended that ResultSet.setMaxRows() is not used as this time.

Deallocate resources

Close a Statement, PreparedStatement, and CallableStatement object by calling the appropriate close() method in your Java™ program when
you have finished processing the results of an SQL statement. This closure immediately deallocates the resources that have been allocated to
execute your SQL statement. Although the ResultSet.close() method closes the ResultSet object, it does not deallocate the resources allocated
to the Statement, PreparedStatement, or CallableStatement objects.

It is good practice to call ResultSet.close() and Statement.close() methods when you have finished processing the results of an SQL statement, to
indicate to IBM Informix® JDBC Driver that you are done with the statement or result set. When you do so, your program releases all its resources
on the database server. It is, however, not required to call ResultSet.close() and Statement.close() specifically, as long as you call to
Connection.close(), which takes care of releasing these resources.

Execute across threads

The same Statement or ResultSet instance cannot be accessed concurrently across threads. You can, however, share a Connection object
between multiple threads.

For example, if one thread executes the Statement.executeQuery() method on a Statement object, and another thread executes the
Statement.executeUpdate() method on the same Statement object, the results of both methods are unexpected and depend on which method
was executed last.

Similarly, if one thread executes the method ResultSet.next() and another thread executes the same method on the same ResultSet object, the
results of both methods are unexpected and depend on which method was executed last.

Scroll cursors

The scroll cursors feature of IBM Informix® JDBC Driver follows the JDBC 3.0 specification, with these exceptions:

Scroll sensitivity
 Client-side scrolling

 Result set updatability

Part X: Informix JDBC Driver Guide 39

Scroll sensitivity

The IBM® Informix® database server implementation of scroll cursors places the rows fetched in a temporary table. If another process changes a
row in the original table (assuming the row is not locked) and the row is fetched again, the changes are not visible to the client.

This behavior is similar to the SCROLL_INSENSITIVE description in the JDBC 3.0 specification. IBM Informix JDBC Driver does not support
SCROLL_SENSITIVE cursors. To see updated rows, your client application must close and reopen the cursor.

Client-side scrolling

The JDBC specification implies that the scrolling can happen on the client-side result set. IBM Informix® JDBC Driver supports the scrolling of the
result set only to the extent that the database server supports scrolling.

Result set updatability

The JDBC 3.0 API does not provide exact specifications for SQL queries that yield result sets that can be updated. Generally, queries that meet
the following criteria can produce result sets that can be updated:

The query references only a single table in the database.
The query does not contain any JOIN operations.
The query selects the primary key of the table it references.
Every value expression in the select list must consist of a column specification, and no column specification can appear more than once.
The WHERE clause of the table expression cannot include a subquery.

IBM Informix® JDBC Driver relaxes the primary key requirement, because the driver performs the following operations:

1. The driver looks for a column called ROWID.
2. The driver looks for a SERIAL, SERIAL8, or BIGSERIAL column in the table.
3. The driver looks for the tables primary key in the system catalogs.

If none of these is provided, the driver returns an error.

When you delete a row in a result set, the ResultSet.absolute() method is affected, because the positions of the rows change after the delete.

When the query contains a SERIAL column and the data is duplicated in more than one row, execution of updateRow() or deleteRow() affects all
the rows containing that data.

The ScrollCursor.java example file shows how to retrieve a result set with a scroll cursor. For examples of how to use a scrollable cursor that can
be updated, see the UpdateCursor1.java, UpdateCursor2.java, and UpdateCursor3.java files.

Hold cursors

When transaction logging is used, IBM® Informix® generally closes all cursors and releases all locks when a transaction ends. In a multiuser
environment, this behavior is not always desirable.

IBM Informix JDBC Driver had already implemented holdable cursor support with extensions. database servers (5.x, 7.x, SE, 8.x, 9.x, and 10.x, or
later) support adding keywords WITH HOLD in the declaration of the cursor. Such a cursor is referred to as a hold cursor and is not closed at the
end of a transaction.

IBM Informix JDBC Driver, in compliance with the JDBC 3.0 specifications, adds methods to JDBC interfaces to support holdable cursors.

For more information about hold cursors, see the IBM Informix Guide to SQL: Syntax.

Update the database

You can issue batch update statements or perform bulk inserts to update the database.

Perform batch updates

40 Part X: Informix JDBC Driver Guide

Perform bulk inserts

Perform batch updates

The batch update feature is similar to multiple IBM® Informix® SQL PREPARE statements. You can issue batch update statements as in the
following example:

PREPARE stmt FROM "insert into tab values (1);
 insert into tab values (2);
 update table tab set col = 3 where col = 2";

The batch update feature in IBM Informix JDBC Driver follows the JDBC 3.0 specification, with these exceptions:

SQL statements
Return value from Statement.executeBatch()

SQL statements and batch updates
Return value from Statement.executeBatch() method

SQL statements and batch updates

The following commands cannot be put into multistatement PREPARE statements:

SELECT (except SELECT INTO TEMP) statement
DATABASE statements
CONNECTION statements

For more details, see IBM® Informix® Guide to SQL: Syntax.

Return value from Statement.executeBatch() method

The return value differs from the JDBC 3.0 specification in the following ways:

If the IFX_BATCHUPDATE_PER_SPEC environment variable is set to 0, only the update count of the first statement executed in the batch
is returned. If the IFX_BATCHUPDATE_PER_SPEC environment variable is set to 1 (the default), the return value equals the number of
rows affected by all SQL statements executed by Statement.executeBatch(). For more information, see Informix environment variables
with the IBM Informix JDBC Driver.
When errors occur in a batch update executed in a Statement object, no rows are affected by the statement; the statement is not
executed. Calling BatchUpdateException.getUpdateCounts() returns 0 in this case.
When errors occur in a batch update executed in a PreparedStatement object, rows that were successfully inserted or updated on the
database server do not revert to their pre-updated state. However, the statements are not always committed; they are still subject to the
underlying autocommit mode.

The BatchUpdate.java example file shows how to send batch updates to the database server.

Perform bulk inserts

A bulk insert is the IBM® Informix® extension to the JDBC 3.0 batch update feature. The bulk insert feature improves the performance of single
INSERT statements that are executed multiple times, with multiple value settings. To enable this feature, set the IFX_USEPUT environment
variable to 1. (The default value is 0.)

This feature does not work for multiple statements passed in the same PreparedStatement instance or for statements other than INSERT. If this
feature is enabled and you pass in an INSERT statement followed by a statement with no parameters, the statement with no parameters is
ignored.

The bulk insert feature requires the client to convert the Java™ type to match the target column type on the server for all data types except
opaque types or complex types.

The BulkInsert.java example, which is installed in the demo directory where your JDBC driver is installed, shows how to perform a bulk insert.

Part X: Informix JDBC Driver Guide 41

Parameters, escape syntax, and unsupported methods

This section contains the following information:

How to use OUT parameters
How to use named parameters in a CallableStatement
Support for the DESCRIBE INPUT statement
How to use escape syntax to translate from JDBC to IBM® Informix®

It also lists unsupported methods and methods that behave differently from the standard.

The CallableStatement OUT parameters
 Named parameters in a CallableStatement

 JDBC support for DESCRIBE INPUT
 The escape syntax

 Unsupported methods and methods that behave differently

The CallableStatement OUT parameters

The CallableStatement methods handle OUT parameters in C function and Java™ user-defined routines (UDRs). Two registerOutParameter()
methods specify the data type of OUT parameters to the driver. A series of getXXX() methods retrieves OUT parameters.

The OUT parameter routine makes available a valid blob descriptor and data to the JDBC client for a BINARY OUT parameter. Using receive
methods, you can use these OUT parameter descriptors and data provided by the server.

Exchange of descriptor and data between and JDBC is consistent with the existing mechanism by which data is exchanged for the result set
methods of JDBC, such as passing the blob descriptor and data through SQLI protocol methods. (SPL UDRs are the only type of UDRs supporting
BINARY OUT parameters.)

For background information, see the following documentation:

IBM® Informix User-Defined Routines and Data Types Developer's Guide provides introductory and background information about opaque
types and user-defined routines (UDRs) for use in the database.
IBM J/Foundation Developer's Guide describes how to write Java UDRs for use in the database server.
The IBM Informix Guide to SQL: Tutorial describes how to write stored procedure language (SPL) routines.
The IBM Informix DataBlade API Programmer's Guide describes how to write external C routines.

database servers return one or multiple OUT parameter to IBM Informix® JDBC Driver.

For examples of how to use OUT parameters, see the CallOut1.java, CallOut2.java, CallOut3.java, and CallOut4.java example programs in the
basic subdirectory of the demo directory where your IBM Informix JDBC Driver is installed.

Server and driver restrictions and limitations

Server and driver restrictions and limitations

Server restrictions
 Driver enhancement

 Driver restrictions and limitations

Server restrictions

This topic describes the restrictions imposed by different versions of the 9.x and later IBM® Informix® server. It also describes enhancements
made to the JDBC driver and the restrictions imposed by it.

Versions 9.2x and 9.3x of IBM Informix have the following requirements and limitations concerning OUT parameters:

Only a function can have an OUT parameter. A function is defined as a UDR that returns a value. A procedure is defined as a UDR that does
not return a value.
There can be only one OUT parameter per function.
The OUT parameter has to be the last parameter.

42 Part X: Informix JDBC Driver Guide

You cannot specify INOUT parameters.
IBM Informix, Version 10.0, or later allows you to specify INOUT parameters (C, SPL, or Java™ UDRs).

The server does not correctly return the value NULL for external functions.
You cannot specify OUT parameters that are complex types.
You cannot specify C and SPL routines that use the RETURN WITH RESUME syntax.

These restrictions, for server versions 9.2x and 9.3x, are imposed whether users create C, SPL, or Java UDRs.

The functionality of the IBM Informix, Version 9.4 allows:

Any parameters to be OUT parameters for C, SPL, or Java UDRs
User-defined procedures with no return value to have OUT parameters
Multiple OUT parameters

You cannot specify INOUT parameters.

For more information about UDRs, see IBM Informix User-Defined Routines and Data Types Developer's Guide and IBM J/Foundation Developer's
Guide.

Driver enhancement

The CallableStatement object provides a way to call or execute UDRs in a standard way for all database servers. Results from the execution of
these UDRs are returned as a result set or as an OUT parameter.

The following is a program that creates a user-defined function, myudr, with two OUT parameters and one IN parameter, and then executes the
myudr() function. The example requires server-side support for multiple OUT parameters; hence it only works for IBM® Informix®, Version 9.4 or
above. For more information about UDRs, see IBM Informix User-Defined Routines and Data Types Developer's Guide and IBM J/Foundation
Developer's Guide.

import java.sql.*;
public class myudr {

 public myudr() {
 }

 public static void main(String args[]) {
 Connection myConn = null;
 try {
 Class.forName("com.informix.jdbc.IfxDriver");
 myConn = DriverManager.getConnection(
 "jdbc:informix-sqli:MYSYSTEM:18551/testDB:"
 +"INFORMIXSERVER=patriot1;user=USERID;"
 +"password=MYPASSWORD");
 }
 catch (ClassNotFoundException e) {
 System.out.println(
 "problem with loading Ifx Driver\n" + e.getMessage());
 }
 catch (SQLException e) {
 System.out.println(
 "problem with connecting to db\n" + e.getMessage());
 }
 try {
 Statement stmt = myConn.createStatement();
 stmt.execute("DROP FUNCTION myudr");
 }
 catch (SQLException e){
 }
 try
 {
 Statement stmt = myConn.createStatement();

 stmt.execute(
 "CREATE FUNCTION myudr(OUT arg1 int, arg2 int, OUT arg3 int)"
 +" RETURNS boolean; LET arg1 = arg2; LET arg3 = arg2 * 2;"
 +"RETURN 't'; END FUNCTION;");
 }
 catch (SQLException e) {
 System.out.println(
 "problem with creating function\n" + e.getMessage());
 }

 Connection conn = myConn;

Part X: Informix JDBC Driver Guide 43

 try
 {
 String command = "{? = call myudr(?, ?, ?)}";
 CallableStatement cstmt = conn.prepareCall (command);

 // Register arg1 OUT parameter
 cstmt.registerOutParameter(1, Types.INTEGER);

 // Pass in value for IN parameter
 cstmt.setInt(2, 4);

 // Register arg3 OUT parameter
 cstmt.registerOutParameter(3, Types.INTEGER);

 // Execute myudr
 ResultSet rs = cstmt.executeQuery();

 // executeQuery returns values via a resultSet
 while (rs.next())
 {
 // get value returned by myudr
 boolean b = rs.getBoolean(1);
 System.out.println("return value from myudr = " + b);
 }

 // Retrieve OUT parameters from myudr
 int i = cstmt.getInt(1);
 System.out.println("arg1 OUT parameter value = " + i);

 int k = cstmt.getInt(3);
 System.out.println("arg3 OUT parameter value = " + k);

 rs.close();
 cstmt.close();
 conn.close();
 }
 catch (SQLException e)
 {
 System.out.println("SQLException: " + e.getMessage());
 System.out.println("ErrorCode: " + e.getErrorCode());
 e.printStackTrace();
 }
 }
}
- - -
.../j2sdk1.4.0/bin/java ... myudr
return value from myudr = true
arg1 OUT parameter value = 4
arg3 OUT parameter value = 8

Driver restrictions and limitations

IBM Informix® JDBC Driver has the following requirements and limitations concerning OUT parameters:

With IBM® Informix, Version 9.2, the driver always returns a -9752 error if a function contains an OUT parameter. The driver creates an
SQLWarning object and chains this to the CallableStatement object.
You can determine if a function contains an OUT parameter by calling the CallableStatement.getWarnings() method or by calling the
IfmxCallableStatement.hasOutParameter() method, which return TRUE if the function has an OUT parameter.

If a function contains an OUT parameter, you must use the CallableStatement.registerOutParameter() method to register the OUT
parameter, the setXXX() methods to register the IN and OUT parameter values, and the getXXX() method to retrieve the OUT parameter
value.

The CallableStatement.getMetaData() method returns NULL until the executeQuery() method has been executed. After executeQuery()
has been called, the ResultSetMetaData object contains information only for the return value, not the OUT parameter.
You must specify all IN parameters by using setXXX() methods. You cannot use literals in the SQL statement. For example, the following
statement produces unreliable results:

CallableStatement cstmt = myConn.prepareCall("{call
 myFunction(25, ?)}");

Instead, use a statement that does not specify literal parameters:

CallableStatement cstmt = myConn.prepareCall("{call
 myFunction(?, ?)}");

44 Part X: Informix JDBC Driver Guide

Call the setXXX() methods for both parameters.

Do not close the ResultSet returned by the CallableStatement.executeQuery() method until you have retrieved the OUT parameter value
by using a getXXX() method.
You cannot cast the OUT parameter to a different type in the SQL statement. For example, the following cast is ignored:

CallableStatement cstmt = myConn.prepareCall("{call
 foo(?::lvarchar, ?)}";

The setMaxRows() and registerOutParameter() methods both take java.sql.Types values as parameters. There are some one-to-many
mappings from java.sql.Types values to types.
In addition, some types do not map to java.sql.Types values. Extensions for setMaxRows() and registerOutParameter() fix these
problems. See IN and OUT parameter type mapping.

These restrictions apply to a JDBC application that handles C, SPL, or Java™ UDRs.

IN and OUT parameter type mapping

IN and OUT parameter type mapping

An exception is thrown by the registerOutParameter(int, int), registerOutParameter(int, int, int), or setNull(int, int) method if the driver cannot
find a matching IBM® Informix® type or finds a mapping ambiguity (more than one matching type). The table that follows shows the mappings the
CallableStatement interface uses. Asterisks (*) indicate mapping ambiguities.

java.sql.Types com.informix.lang.IfxTypes

Array* IFX_TYPE_LIST
IFX_TYPE_MULTISET

IFX_TYPE_SET

Bigint IFX_TYPE_INT8

Binary IFX_TYPE_BYTE

Bit Not supported

Blob IFX_TYPE_BLOB

Char IFX_TYPE_CHAR (n)

Clob IFX_TYPE_CLOB

Date IFX_TYPE_DATE

Decimal IFX_TYPE_DECIMAL

Distinct* Depends on base type

Double IFX_TYPE_FLOAT

Float IFX_TYPE_FLOAT1

Integer IFX_TYPE_INT

Java_Object* IFX_TYPE_UDTVAR
IFX_TYPE_UDTFIX

Long IFX_TYPE_BIGINT
IFX_TYPE_BIGSERIAL

Longvarbinary* IFX_TYPE_BYTE
IFX_TYPE_BLOB

Longvarchar* IFX_TYPE_TEXT
IFX_TYPE_CLOB

IFX_TYPE_LVARCHAR

Null Not supported

Numeric IFX_TYPE_DECMIAL

Other Not supported

Real IFX_TYPE_SMFLOAT

Ref Not supported

Part X: Informix JDBC Driver Guide 45

java.sql.Types com.informix.lang.IfxTypes

Smallint IFX_TYPE_SMINT

Struct IFX_TYPE_ROW

Time IFX_TYPE_DTIME (hour to second)

Timestamp IFX_TYPE_DTIME (year to fraction(5))

Tinyint IFX_TYPE_SMINT

Varbinary IFX_TYPE_BYTE

Varchar IFX_TYPE_VCHAR (n)

Nothing* IFX_TYPE_BOOL
1 This mapping is JDBC compliant. You can map the JDBC FLOAT data type to the SMALLFLOAT data type for compatibility with earlier versions
by setting the IFX_SET_FLOAT_AS_SMFLOAT connection property to 1.

To avoid mapping ambiguities, use the following extensions to CallableStatement, defined in the IfmxCallableStatement interface:

public void IfxRegisterOutParameter(int parameterIndex,
 int ifxType) throws SQLException;

public void IfxRegisterOutParameter(int parameterIndex,
 int ifxType, String name) throws SQLException;

public void IfxRegisterOutParameter(int parameterIndex,
 int ifxType, int scale) throws SQLException;

public void IfxSetNull(int i, int ifxType) throws SQLException;

public void IfxSetNull(int i, int ifxType, String name) throws
 SQLException;

Possible values for the ifxType parameter are listed in The IfxTypes class.

IBM Informix, Version 10.0, or later makes available to the JDBC client valid BLOB descriptors and data to support binary OUT parameters for
SPL UDRs.

IBM Informix JDBC Driver, Version 3.0, or later can receive the OUT parameter descriptor and data provided by the server and use it in Java™
applications.

The single correct return value for any JDBC binary type (BINARY, VARBINARY, LONGVARBINARY) retrieved via method getParameterType
(ParameterMetaData) is -4, which is associated with java.sql.Type.LONGVARBINARY data type. This reflects the fact that all the JDBC binary
types are mapped to the same SQL data type, BYTE.

Named parameters in a CallableStatement

A CallableStatement provides a way to call a stored procedure on the server from a Java™ program. You can use named parameters in a
CallableStatement to identify the parameters by name instead of by ordinal position. This enhancement was introduced in the JDBC 3.0
specification. If the procedure is unique, you can omit parameters that have default values and you can enter the parameters in any order.
Named parameters are especially useful for calling stored procedures that have many arguments and some of those arguments have default
values.

The JDBC driver ignores case for parameter names. If the stored procedure does not have names for all the arguments, the server passes an
empty string for missing names.

Requirements and restrictions for named parameters in a CallableStatement
 Retrieve parameter names for stored procedures

 Named parameters and unique stored procedures
 Named parameters and overloaded stored procedures

Requirements and restrictions for named parameters in a
CallableStatement

IBM Informix® JDBC Driver has the following requirements and restrictions for named parameters in a CallableStatement:

46 Part X: Informix JDBC Driver Guide

Parameters for the CallableStatement must be specified by either name or by the ordinal format within a single invocation of a routine. If
you name a parameter for one argument, for example, you must use parameter names for all of the arguments.
Named parameters are not supported for a remote CallableStatement.
Support for named parameters is subject to existing limitations for calling stored procedures.

Verify support for named parameters in a CallableStatement

Verify support for named parameters in a CallableStatement

The JDBC specification provides the DatabaseMetaData.supportsNamedParameters() method to determine if the driver and the RDMS support
named parameters in a CallableStatement. For example:

 Connection myConn = . . . // connection to the RDBMS for Database
 . . .
 DatabaseMetaData dbmd = myConn.getMetaData();
 if (dbmd.supportsNamedParameters() == true)
 {
 System.out.println("NAMED PARAMETERS FOR CALLABLE"
 + "STATEMENTS IS SUPPORTED");
 . . .
 }

The system returns true if named parameters are supported.

Retrieve parameter names for stored procedures

To retrieve the names of parameters for stored procedures, use DatabaseMetaData methods defined by the JDBC specification as shown in the
following example.

Connection myConn = ... // connection to the RDBMS for Database
. . .
 DatabaseMetaData dbmd = myConn.getMetaData();
 ResultSet rs = dbmd.getProcedureColumns(
 "myDB", schemaPattern, procedureNamePattern, columnNamePattern);
 rs.next() {
 String parameterName = rs.getString(4);
 - - - or - - -
 String parameterName = rs.getString("COLUMN_NAME");
 - - -
 System.out.println("Column Name: " + parameterName);

The names of all columns that match the parameters of the getProcedureColumns() method are displayed.

Parameter names are not part of the ParameterMetaData interface and cannot be retrieved from a ParameterMetaData object.

When you use the getProcedureColumns() method, the query retrieves all procedures owned by informix (including system-generated routines)
from the sysprocedures system catalog table. To prevent errors, verify that the stored procedures you are using have been configured with
correct permissions on the server.

See Unsupported methods and methods that behave differently for important differences in JDBC API behavior for the getProcedureColumns()
method.

Named parameters and unique stored procedures

A unique stored procedure has a unique name and a unique number of arguments. Named parameters are supported for unique stored
procedures when the number of parameters in the CallableStatement is equal to or less than the number of arguments in the stored procedure.

Example of number of named parameters equals the number of arguments
 Example of number of named parameters Is less than the number of arguments

Example of number of named parameters equals the number of
arguments

Part X: Informix JDBC Driver Guide 47

The following stored procedure has five arguments

create procedure createProductDef(productname varchar(64),
 productdesc varchar(64),
 listprice float,
 minprice float,
 out prod_id float);
. . .
 let prod_id = <value for prod_id>;
end procedure;

The following Java™ code with five parameters corresponds to the stored procedure. The question mark characters (?) within the parentheses of
a JDBC call refer to the parameters. (In this case five parameters for five arguments.) Set or register all the parameters. Name the parameters by
using the format cstmt.setString("arg", name);, where arg is the name of the argument in the corresponding stored procedure. You do
not need to name parameters in the same order as the arguments in the stored procedure.

String sqlCall = "{call CreateProductDef(?,?,?,?,?)}";
 CallableStatement cstmt = conn.prepareCall(sqlCall);

 cstmt.setString("productname", name); // Set Product Name.
 cstmt.setString("productdesc", desc); // Set Product Description.
 cstmt.setFloat("listprice", listprice); // Set Product ListPrice.
 cstmt.setFloat("minprice", minprice); // Set Product MinPrice.

 // Register out parameter which should return the product is created.

 cstmt.registerOutParameter("prod_id", Types.FLOAT);

 // Execute the call.
 cstmt.execute();

 // Get the value of the id from the OUT parameter: prod_id
 float id = cstmt.getFloat("prod_id");

The Java code and the stored procedure show the following course of events:

1. A call to the stored procedure is prepared.
2. Parameter names indicate which arguments correspond to which parameter value or type.
3. The values for the input parameters are set and the type of the output parameter is registered.
4. The stored procedure executes with the input parameters as arguments.
5. The stored procedure returns the value of an argument as an output parameter and the value of the output parameter is retrieved.

Example of number of named parameters Is less than the number of
arguments

If the number of parameters in CallableStatement is less than the number of arguments in the stored procedure, the remaining arguments must
have default values. You do not need to set values for arguments that have default values because the server automatically uses the default
values. You must, however, indicate the arguments that have non-default values or override default values with a question mark character (?) in
the CallableStatement.

For example, if a stored procedure has 10 arguments of which 4 have non-default values and 6 have default values, you must have at least four
question marks in the CallableStatement. Alternatively, you can use 5, 6, or up to 10 question marks.

If the CallableStatement is prepared with more parameters than non-default values, but less than the number of stored procedure arguments, it
must set the values for non-default arguments. The remaining parameters can be any of the other arguments and they can be changed with each
execution.

In the following unique stored procedure, the arguments listprice and minprice have default values:

create procedure createProductDef(productname varchar(64),
 productdesc varchar(64),
 listprice float default 100.00,
 minprice float default 90.00,
 out prod_id float);
. . .
 let prod_id = <value for prod_id>;
end procedure;

The following Java™ code calls the stored procedure with fewer parameters than arguments in the stored procedure (four parameters for five
arguments). Because listprice has a default value, it can be omitted from the CallableStatement.

String sqlCall = "{call CreateProductDef(?,?,?,?)}";
 // 4 params for 5 args
 CallableStatement cstmt = conn.prepareCall(sqlCall);

48 Part X: Informix JDBC Driver Guide

 cstmt.setString("productname", name); // Set Product Name.
 cstmt.setString("productdesc", desc); // Set Product Description.

 cstmt.setFloat("minprice", minprice); // Set Product MinPrice.

 // Register out parameter which should return the product id created.

 cstmt.registerOutParameter("prod_id", Types.FLOAT);

 // Execute the call.
 cstmt.execute();

 // Get the value of the id from the OUT parameter: prod_id
 float id = cstmt.getFloat("prod_id");

Alternatively, for the same stored procedure you can omit the parameter for the minprice argument. You do not need to prepare the
CallableStatement again.

 cstmt.setString("productname", name); // Set Product Name.
 cstmt.setString("productdesc", desc); // Set Product Description.

 cstmt.setFloat("listprice", listprice); // Set Product ListPrice.

 // Register out parameter which should return the product id created.

 cstmt.registerOutParameter("prod_id", Types.FLOAT);

 // Execute the call.
 cstmt.execute();

 // Get the value of the id from the OUT parameter: prod_id
 float id = cstmt.getFloat("prod_id");

Or you can omit the parameters for both of the default arguments:

cstmt.setString("productname", name);
cstmt.setString("productdesc", desc);
cstmt.registerOutParameter("prod_id", Types.FLOAT);
cstmt.execute();
float id = cstmt.getFloat("prod_id");

Named parameters and overloaded stored procedures

If multiple stored procedures have the same name and the same number of arguments, the procedures are overloaded (also known as
overloaded UDRs).

The JDBC driver throws an SQLException for overloaded stored procedures because the call cannot resolve to a single stored procedure. To
prevent an SQLException, specify the IBM® Informix® server data type of the named parameters in the parameter list by appending
::data_type to the question mark characters where data_type is the server data type. For example ?::varchar or ?::float. You must also
enter the named parameters for all the arguments and in the same order as the overloaded stored arguments of procedure.

For example, the following two procedures have the same name (createProductDef) and the same number of arguments. The data type for the
prod_id argument is a different data type in each procedure.

Procedure 1
create procedure createProductDef(productname varchar(64),
 productdesc varchar(64),
 listprice float default 100.00,
 minprice float default 90.00,
 prod_id float);
 ...
 let prod_id = <value for prod_id>;
end procedure;

Procedure 2
create procedure createProductDef(productname varchar(64),
 productdesc varchar(64),
 listprice float default 100.00,
 minprice float default 90.00,
 prod_id int);

Part X: Informix JDBC Driver Guide 49

 ...
 let prod_id = <value for prod_id>;
end procedure;

If you use the following Java™ code, it returns an SQLException because it cannot resolve to only one procedure:

String sqlCall = "{call CreateProductDef(?,?,?,?,?)}";
CallableStatement cstmt = con.prepareCall(sqlCall);
cstmt.setString("productname", name); // Set Product Name.

If you specify the data type for the argument that has a different data type, the Java code resolves to one procedure. The following Java code
resolves to Stored Procedure 1 because the code specifies the FLOAT data type for the prod_id argument:

String sqlCall = "{call CreateProductDef(?,?,?,?,?::float)}";
CallableStatement cstmt = con.prepareCall(sqlCall);
cstmt.setString("productname", name); // Set Product Name

JDBC support for DESCRIBE INPUT

The SQL 92 and 99 standards specify a DESCRIBE INPUT statement for Dynamic SQL. Version 9.4 of IBM® Informix® provides support for this
statement. (For more information about SQL standards, syntax, and this statement, see IBM Informix Guide to SQL: Syntax.)

The JDBC 3.0 specification introduces a ParameterMetaData class and methods that correspond to DESCRIBE INPUT support.

The IBM Informix JDBC Driver implements the java.sql.ParameterMetaData class. This interface is used for describing input parameters in
prepared statements. The method getParameterMetaData() has been implemented to retrieve the metadata for a particular statement.

The ParameterMetaData class and the getParameterMetaData() method are part of the JDBC 3.0 API and are included as interfaces in
J2SDK1.4.0. Details of these interfaces are specified in the JDBC 3.0 specification.

The IBM Informix JDBC Driver has implemented additional methods to the ParameterMetaData interface to extend its functionality, as shown in
the following table.

Return type Method Description

int getParameterLength (int param) Retrieves parameters length

int getParameterExtendedId (int param) Retrieves parameters extended ID

java.lang.String getParameterExtendedName (int param) Retrieves parameters extended name

java.lang.String getParameterExtendedOwnerName (int param) Retrieves parameters extended owner name of
the type

int getParameterSourceType (int param) Retrieves parameters SourceType

int getParameterAlignment (int param) Retrieves parameters alignment

The following is an example of using the ParameterMetaData interface in the IBM Informix JDBC Driver:

. . .
try
{
 PreparedStatement pstmt = null;

 pstmt = myConn.prepareStatement(
 "select * from table_1 where int_col = ? "
 +"and string_col = ?");
 ParameterMetaData paramMeta = pstmt.getParameterMetaData();
 int count = paramMeta.getParameterCount();
 System.out.println("Count : "+count);

 for (int i=1; i <= count; i++)
 {
 System.out.println("Parameter type name : "
 +paramMeta.getParameterTypeName(i));
 System.out.println("Parameter type : "
 +paramMeta.getParameterType(i));
 System.out.println("Parameter class name : "
 +paramMeta.getParameterClassName(i));
 System.out.println("Parameter mode : "
 +paramMeta.getParameterMode(i));
 System.out.println("Parameter precision : "
 +paramMeta.getPrecision(i));
 System.out.println("Parameter scale : "
 +paramMeta.getScale(i));
 System.out.println("Parameter nullable : "
 +paramMeta.isNullable(i));
 System.out.println("Parameter signed : "

50 Part X: Informix JDBC Driver Guide

 +paramMeta.isSigned(i));
 }
. . .

The escape syntax

Escape syntax indicates information that must be translated from JDBC format to IBM® Informix® native format. Valid escape syntax for SQL
statements is as follows.

Type of statement Escape syntax

Procedure {call procedure}

Function {var = call function}

Date {d 'yyyy-mm-dd'}

Time {t 'hh:mm:ss'}

Timestamp (Datetime) {ts 'yyyy-mm-dd hh:mm:ss[.fffff]'}

Function call {fn func[(args)]}

Escape character {escape 'escape-char'}

Outer join {oj outer-join-statement}

Limit {limit number-to-limit}

Skip {limit number-to-limit number-to-skip}

You can put any of this syntax in an SQL statement, as follows:

executeUpdate("insert into tab1 values({d '1999-01-01'})");

Everything inside the brackets is converted into a valid SQL statement and returned to the calling function.

Unsupported methods and methods that behave differently

The following JDBC API methods are not supported by IBM Informix® JDBC Driver and cannot be used in a Java™ program that connects to
databases:

CallableStatement.getRef(int)
Connection.setCatalog()
Connection.setReadOnly()
PreparedStatement.addBatch(String)
PreparedStatement.setRef(int, Ref)
PreparedStatement.setUnicodeStream(int, java.io.InputStream, int)
ResultSet.getRef(int)
ResultSet.getRef(String)
ResultSet.getUnicodeStream(int)
ResultSet.getUnicodeStream(String)
ResultSet.refreshRow()
ResultSet.rowDeleted()
ResultSet.rowInserted()
ResultSet.rowUpdated()
ResultSet.setFetchSize()
Statement.setMaxFieldSize()

The Connection.setCatalog() and Connection.setReadOnly() methods return with no error. The other methods throw the exception: Method not
Supported.

The following JDBC API methods behave other than specified by the JavaSoft specification:

CallableStatement.execute()
Returns a single result set

DatabaseMetaData.getProcedureColumns()
Example:

DBMD.getProcedureColumns(String catalog,
 String schemaPattern,

Part X: Informix JDBC Driver Guide 51

 String procedureNamePattern,
 String columnNamePattern)

Ignores the columnNamePattern field; returns NULL when used with any server version older than 9.x.

When you use the getProcedureColumns() method, the query retrieves all procedures owned by informix (including system-generated
routines) from the sysprocedures system catalog table. To prevent errors, verify that the stored procedures you are using have been
configured with correct permissions on the server.

For example, if you use one of the following statements:

getProcedureColumns("","","","")

getProcedureColumns("",informix,"","")

The DatabaseMetaData.getProcedureColumns() method loads all server UDRs or all UDRs owned by user informix. If you chose not to
install J/Foundation, or if the configuration parameters for J/Foundation are not set to valid values in your onconfig file, the method fails.
Also, if any one UDR is not set up correctly on the server, the method fails.

For information about how to set up J/Foundation on servers and how to run Java UDRs on servers, see the IBM J/Foundation Developer's
Guide. For information about how to set up and run C UDRs, see the IBM Informix User-Defined Routines and Data Types Developer's Guide.

DatabaseMetaData.othersUpdatesAreVisible()
Always returns FALSE

DatabaseMetaData.othersDeletesAreVisible()
Always returns FALSE

DatabaseMetaData.othersInsertsAreVisible()
Always returns FALSE

DatabaseMetaData.ownUpdatesAreVisible()
Always returns FALSE

DatabaseMetaData.ownDeletesAreVisible()
Always returns FALSE

DatabaseMetaData.ownInsertsAreVisible()
Always returns FALSE

DatabaseMetaData.deletesAreDetected()
Always returns FALSE

DatabaseMetaData.updatesAreDetected()
Always returns FALSE

DatabaseMetaData.insertsAreDetected()
Always returns FALSE

PreparedStatement.execute()
Returns a single result set

ResultSet.getFetchSize()
Always returns 0

ResultSetMetaData.getCatalogName()
Always returns a String object containing one blank space

ResultSetMetaData.getTableName()
Returns the table name for SELECT, INSERT, and UPDATE statements

SELECT statements with more than one table name and all other statements return a String object containing one blank space.

ResultSetMetaData.getSchemaName()
Always returns a String object containing one blank space

ResultSetMetaData.isDefinitelyWriteable()
Always returns TRUE

ResultSetMetaData.isReadOnly()
Always returns FALSE

ResultSetMetaData.isWriteable()
Always returns TRUE

Statement.execute()

52 Part X: Informix JDBC Driver Guide

Returns a single result set

Connection.isReadOnly()
Returns TRUE only when connecting to a secondary server in HDR scenario (see the following Important note)

Important: IBM® Informix servers do not currently support read-only connections. For the IBM Informix JDBC Driver, Version 2.21.JC4, the
implementation of the setReadOnly() method from the java.sql.Connection interface has been changed to accept the value passed to it by the
calling process. The setReadOnly() method simply returns to the calling process without any interaction to the database server. (Previous
versions of the JDBC driver threw an unsupported method exception.) This change has been made to synchronize the functionality present in the
IBM Informix JDBC Driver to the IBM Data Server JDBC driver and also to achieve a higher level of compliance in the Sun Conformance Test
(CTS).

Handle transactions

By default, all new Connection objects are in autocommit mode. When autocommit mode is on, a COMMIT statement is automatically executed
after each statement that is sent to the database server. To turn off autocommit mode , explicitly call Connection.setAutoCommit(false).

When autocommit mode is off, IBM Informix® JDBC Driver implicitly starts a new transaction when the next statement is sent to the database
server. This transaction lasts until the user issues a COMMIT or ROLLBACK statement. If the user has already started a transaction by executing
setAutoCommit(false) and then calls setAutoCommit(false) again, the existing transaction continues unchanged. The Java™ program must
explicitly terminate the transaction by issuing either a COMMIT or a ROLLBACK statement before it drops the connection to the database or the
database server.

In a database that has been created with logging, if a COMMIT statement is sent to the database server and autocommit mode is on, the error
-255: Not in transaction is returned by the database server because there is currently no user transaction started. This occurs whether
the COMMIT statement was sent with the Connection.commit() method or directly with an SQL statement.

In a database created in ANSI mode, explicitly sending a COMMIT statement to the database server commits an empty transaction. No error is
returned because the database server automatically starts a transaction before it executes the statement if there is no user transaction currently
open.

For an XAConnection object, autocommit mode is off by default and must remain off while a distributed transaction is occurring. The transaction
manager performs commit and rollback operations; therefore, you avoid performing these operations directly.

For IBM® Informix releases later than 11.50.xC2, two JDBC classes support SQL transactions that can be rolled back to a savepoint (rather than
canceled in its entirety) after an adverse event is encountered:

IfmxSavepoint (Interface)
IfxSavepoint (Savepoint class)

JDBC applications can create, destroy, or rollback to savepoint objects through the following standard JDBC methods:
Table 1. JDBC savepoint classes and methods

Class Method

IfxConnection setSavepoint()
 releaseSavepoint()

 rollback(savepoint)

IfxSavepoint getSavepointId()
 getSavepointName()

These two methods are not interchangeable. A call to getSavepointName() fails with an error unless the savepoint object is
declared with a string argument to the setSavepoint() method or to the setSavepointUnique() method. Similarly, an error is
returned if you call getSavepointId() for a named savepoint object.

In addition, the setSavepointUnique() method can set a named savepoint whose identifier is unique. While the unique savepoint is active, issues
an exception if the application attempts to reuse its name within the same connection.

The following restrictions apply to savepoint objects in JDBC:

Savepoints are not valid within XA transactions.
Savepoints cannot be used unless the current connection sets autocommit mode off.
Savepoints are not valid in connections to unlogged databases.
Savepoints cannot be referenced in a triggered action.
In cross-server distributed queries in which any participating subordinate server does not support savepoint objects, a warning is issued if
you set a savepoint after connecting to a server that does not support savepoints, and any call to rollbacksavepoint fails with an error.

See the descriptions of the SAVEPOINT, RELEASE SAVEPOINT, and ROLLBACK WORK TO SAVEPOINT statements in IBM Informix Guide to SQL:
Syntax for more information about using savepoint objects in SQL transactions.

Part X: Informix JDBC Driver Guide 53

Autocommit
Transactions with Large Objects
Transactions with XA
Transactions with Savepoints

Autocommit

By default, all new Connection objects are in autocommit mode. When autocommit mode is on, a COMMIT statement is automatically executed
after each statement that is sent to the database server. To turn off autocommit mode, explicitly call Connection.setAutoCommit(false).

When autocommit mode is off the JDBC Driver implicitly starts a new transaction when the next statement is sent to the database server. This
transaction lasts until the user issues a COMMIT or ROLLBACK statement. If the user has already started a transaction by executing
setAutoCommit(false) and then calls setAutoCommit(false) again, the existing transaction continues unchanged. The Java™ program must
explicitly terminate the transaction by issuing either a COMMIT or a ROLLBACK statement before it drops the connection to the database or the
database server.

Logged Database
 ANSI Databases

 Non-logged Databases

Logged Database

In a database that has been created with logging, if a COMMIT statement is sent to the database server and autocommit mode is enabled, the
error -255: Not in transaction is returned by the database server because there is currently no user transaction started. This occurs whether the
COMMIT statement was sent with the Connection.commit() method or directly with an SQL statement.

ANSI Databases

In a database created in ANSI mode, explicitly sending a COMMIT statement to the database server commits an empty transaction. No error is
returned because the database server automatically starts a transaction before it executes the statement if there is no user transaction currently
open.

Non-logged Databases

You cannot turn off autocommit on non-logged databases. Because NONLOGGED databases do not support transactions you cannot disable
auto-commit which forces JDBC to attempt to start a transaction.

Transactions with Large Objects

Large objects are a special consideration when dealing with database transactions. Manipulating a large object (BLOB/CLOB) is considered a
distinct step in a transaction. This has the following implications:

Autocommit is enabled
When autocommit is enabled, creating and inserting a large object is considered two steps. Consider the following example:

ByteArrayInputStream byteStream = new ByteArrayInputStream(buffer);
PreparedStatement p = c.prepareStatement("INSERT INTO blobTestValues(?)")) {
 p.setBinaryStream(1, byteStream);
 p.execute();
}

In this example we are inserting a single row into the table. Since the column we are inserting is a BLOB, this is two operations. First, JDBC needs
to create the BLOB object on the server. This is a single operation and with auto-commit enabled, this is commited and the BLOB is now present
on the server. Second, we insert the BLOB pointer into the table row. This operation is then committed. Any error on the INSERT does NOT

54 Part X: Informix JDBC Driver Guide

rollback or dispose of the BLOB object that was created. Since the BLOB was dynamically created by the JDBC driver, you will lose all references
to the object in the system. It can be cleaned up by a DBA running on the database system, but not by the JDBC application.

If you want to ensure the BLOB is not lost in this scenario you MUST using an explicit transaction like the following example shows:

ByteArrayInputStream byteStream = new ByteArrayInputStream(buffer);
c.setAutoCommit(false);
PreparedStatement p = c.prepareStatement("INSERT INTO blobTestValues(?)")) {
 p.setBinaryStream(1, byteStream);
 p.execute();
}
c.commit();

Autocommit is disabled
If autocommit is disabled then you are using explicit transactions and most large object operations will work as expected in between your
transaction boundaries. However, you are free to commit/rollback the intermediate large object operations if you use an explicit Blob/Clob object.

c.setAutoCommit(false);
PreparedStatement p = c.prepareStatement("INSERT INTO blobTestValues(?)")) {
 Blob blob = c.createBlob();
 c.commit(); //Commits the blob creation
 p.setBlob(1, blob);
 p.execute();
}
c.rollback(); //rollback the insert, the blob survives

Transactions with XA

For a XAConnection object, autocommit mode is off by default and must remain off while a distributed transaction is occurring. The transaction
manager performs commit and rollback operations; therefore, you avoid performing these operations directly.

Transactions with Savepoints

Since JDBC 3.00.JC2 and Informix server 11.50.xC2, Informix supports SQL transactions that can be rolled back to a Savepoint. A Savepoint is a
marker created at any point during a transaction that you can rollback to rather than completely rolling back the entire transaction.

JDBC applications can create, destroy, or rollback to Savepoint objects through the following standard JDBC methods:
Table 1. JDBC Savepoint classes and methods

Class Method

Connection setSavepoint()

setSavepoint(String name)

releaseSavepoint(Savepoint)

rollback(Savepoint)

Savepoint getSavepointId()

getSavepointName()

These two methods are not interchangeable. A call to
getSavepointName() fails with an error unless the savepoint object is
declared with a string argument to the setSavepoint() method or to
the setSavepointUnique() method. Similarly, an error is returned if
you call getSavepointId() for a named savepoint object.

In addition, the setSavepointUnique(String name) method can set a named savepoint whose identifier is unique. If the application attempts to
reuse its name within the same connection JDBC will throw a SQLException.

The following restrictions apply to Savepoint objects in JDBC:

Savepoints are not valid within XA transactions.
Savepoints cannot be used unless the current connection sets autocommit mode off.
Savepoints are not valid in connections to unlogged databases.
Savepoints cannot be referenced in a triggered action.

Part X: Informix JDBC Driver Guide 55

In cross-server distributed queries in which any participating subordinate server does not support savepoint objects, a warning is issued if
you set a savepoint after connecting to a server that does not support savepoints, and any call to rollbacksavepoint fails with an error.

Form more information, see IBM Informix Guide to SQL: Syntax.

Handle errors

Use the JDBC API SQLException class to handle errors in your Java™ program. The IBM® Informix®-specific com.informix.jdbc.Message class
can also be used outside a Java program to retrieve the IBM Informix error text for a given error number.

Handle errors with the SQLException class
 Retrieve the syntax error offset

 Handle errors with the com.informix.jdbc.Message class

Handle errors with the SQLException class

Whenever an error occurs from either IBM Informix® JDBC Driver or the database server, an SQLException is raised. Use the following methods
of the SQLException class to retrieve the text of the error message, the error code, and the SQLSTATE value:

getMessage()
Returns a description of the error
SQLException inherits this method from the java.util.Throwable class.

getErrorCode()
Returns an integer value that corresponds to the database server or IBM Informix JDBC Driver error code

getSQLState()
Returns a string that describes the SQLSTATE value
The string follows the X/Open SQLSTATE conventions.

All IBM Informix JDBC Driver errors have error codes of the form -79XXX, such as -79708: Can't take null input.

For a list of database server errors, see IBM® Informix Error Messages. For a list of IBM Informix JDBC Driver errors, see Error messages.

The following example from the SimpleSelect.java program shows how to use the SQLException class to catch IBM Informix JDBC Driver or
database server errors by using a try-catch block:

try
 {
 PreparedStatement pstmt = conn.prepareStatement("Select *
 from x "
 + "where a = ?;");
 pstmt.setInt(1, 11);
 ResultSet r = pstmt.executeQuery();
 while(r.next())
 {
 short i = r.getShort(1);
 System.out.println("Select: column a = " + i);
 }
 r.close();
 pstmt.close();
 }
catch (SQLException e)
 {
 System.out.println("ERROR: Fetch statement failed: " +
 e.getMessage());
 }

Retrieve the syntax error offset

To determine the exact location of a syntax error, use the getSQLStatementOffset() method to return the syntax error offset.

The following example shows how to retrieve the syntax error offset from an SQL statement (which is 10 in this example):

try {
 Statement stmt = conn.createStatement();
 String command = "select * fom tt";
 stmt.execute(command);

56 Part X: Informix JDBC Driver Guide

}
catch(Exception e)
{
 System.out.println
 ("Error Offset :"+((IfmxConnection conn).getSQLStatementOffset());
 System.out.println(e.getMessage());
}

Catch RSAM error messages

Catch RSAM error messages

RSAM messages are attached to SQLCODE messages. For example, if an SQLCODE message says that a table cannot be created, the RSAM
message states the reason, which might be insufficient disk space.

You can use the SQLException.getNextException() method to catch RSAM error messages. For an example of how to catch these messages, see
the ErrorHandling.java program, which is included in IBM Informix® JDBC Driver.

Handle errors with the com.informix.jdbc.Message class

IBM® Informix® provides the class com.informix.jdbc.Message for retrieving error message text based on the error number. To use this class,
call the Java™ interpreter java directly, passing it the error number, as shown in the following example:

java com.informix.jdbc.Message 100

The example returns the message text for error 100:

100: ISAM error: duplicate value for a record with unique key.

A positive error number is returned if you specify an unsigned number when using the com.informix.jdbc.Message class. This differs from the
finderr utility, which returns a negative error number for an unsigned number.

Access database metadata

To access information about the IBM® Informix® database, use the JDBC API DatabaseMetaData interface.

IBM Informix JDBC Driver implements all the JDBC 3.0 specifications for DatabaseMetaData methods.

The following methods in DatabaseMetaData are included in IBM Informix JDBC Driver for JDBC 3.0 compliance:

getSuperTypes()
getSuperTables()
getAttributes()
getResultSetHoldability()
getDatabaseMajorVersion()
getDatabaseMinorVersion()
getJDBCMajorVersion()
getJDBCMinorVersion()
getSQLStateType()
locatorsUpdateCopy()
supportsGetGeneratedKeys()
supportsMultipleOpenResults()
supportsNamedParameters()
supportsGetGeneratedKeys()
supportsMultipleOpenResults()

Methods retrieve server-generated keys. Retrieving autogenerated keys involves the following actions:

1. The JDBC application programmer provides an SQL statement to be executed.
2. The server executes the SQL statement and an indication that autogenerated keys can be retrieved is returned.
3. Before the server executes the SQL statement, columnNames or columnIndexes (if provided) are validated. An SQLException is thrown if

they are invalid.
4. If requested, the JDBC driver and server returns a resultSet object. If no keys were generated, the resultSet is empty, containing no rows

or columns.
5. The user can request metadata for the resultSet object, and the JDBC driver and server returns a resultSetMetaData Object.

Part X: Informix JDBC Driver Guide 57

For more information about retrieving autogenerated keys, see the JDBC 3.0 Specification, Section 13.6, “Retrieving Auto Generated Keys.”

IBM Informix JDBC Driver uses the sysmaster database to get database metadata. If you want to use the DatabaseMetaData interface in your
Java™ program, the sysmaster database must exist in the database server to which your Java program is connected.

IBM Informix JDBC Driver interprets the JDBC API term schemas to mean the names of users who own tables. The
DatabaseMetaData.getSchemas() method returns all the users found in the owner column of the systables system catalog.

Similarly, IBM Informix JDBC Driver interprets the JDBC API term catalogs to mean the names of databases. The
DatabaseMetaData.getCatalogs() method returns the names of all the databases that currently exist in the database server to which your Java
program is connected.

The example DBMetaData.java shows how to use the DatabaseMetaData and ResultSetMetaData interfaces to gather information about a new
procedure. Refer to Sample code files for more information about this example.

Other Informix extensions to the JDBC API

This section describes the IBM® Informix®-specific extensions to the JDBC API not already discussed in this guide. These extensions handle
information that is specific to IBM Informix databases.

Another extension, the com.informix.jdbc.Message class, is fully described in Handle errors.

The Auto Free feature
 Obtaining driver version information

The Auto Free feature

If you enable the IBM® Informix® Auto Free feature, the database server automatically frees the cursor when it closes the cursor. Therefore, your
application does not have to send two separate requests to close and then free the cursor—closing the cursor is sufficient.

You can enable the Auto Free feature by setting the IFX_AUTOFREE variable to TRUE in the database URL, as in this example:

jdbc:informix-sqli://123.45.67.89:1533:INFORMIXSERVER=myserver;
 user=rdtest;password=test;ifx_autofree=true;

You can also use one of the following methods:

public void setAutoFree (boolean flag)
public boolean getAutoFree()

The setAutoFree() method should be called before the executeQuery() method, but the getAutoFree() method can be called before or after the
executeQuery() method.

To use these methods, your applications must import classes from the package com.informix.jdbc and cast the Statement class to the
IfmxStatement class, as shown here:

import com.informix.jdbc.*;
...
(IfmxStatement)stmt.setAutoFree(true);

The Auto Free feature is available for the following database server versions:

Version 7.23 and later
Version 9.0 and later

Obtaining driver version information

There are two ways to obtain version information about IBM Informix® JDBC Driver: from your Java™ program or from the UNIX or MS-DOS
command prompt.

To get version information from your Java program:

1. Import the package com.informix.jdbc.* into your Java program by adding the following line to the import section:

import com.informix.jdbc.*;

58 Part X: Informix JDBC Driver Guide

2. Invoke the static method IfxDriver.getJDBCVersion(). This method returns a String object that contains the complete version of the
current IBM Informix JDBC Driver.
An example of a version of IBM Informix JDBC Driver is 2.00.JC1.

The IfxDriver.getJDBCVersion() method returns only the version, not the serial number you provided during installation of the driver.

Important: For version X.Y of IBM Informix JDBC Driver, the JDBC API methods Driver.getMajorVersion() and
DatabaseMetaData.getDriverMajorVersion() always return the value X. Similarly, the methods Driver.getMinorVersion() and
DatabaseMetaData.getDriverMinorVersion() always return the value Y.
To get the version of IBM Informix JDBC Driver from the command line, enter the following command at the UNIX shell prompt or the Windows
command prompt:

java com.informix.jdbc.Version

The command also returns the serial number you provided when you installed the driver.

Store and retrieve XML documents

Extensible Markup Language (XML), as defined by the World Wide Web Consortium (W3C) provides rules, guidelines, and conventions for
describing structured data in a plain text, editable file (called an XML document). XML uses tags only to delimit pieces of data, leaving the
interpretation of the data to the application that uses it. XML is an method of representing data in an open, platform-independent format.

The currently available API for accessing XML documents is called JAXP (Java™ API for XML Parsing). The API has the following two subsets:

Simple API for XML (SAX) is an event-driven protocol, with the programmer providing the callback methods that the XML parser invokes
when it analyzes a document.
Document Object Model (DOM) is a random-access protocol, which converts an XML document into a collection of objects in memory that
can be manipulated at the programmers discretion. DOM objects have the data type Document.

JAXP also contains a plugability layer that standardizes programmatic access to SAX and DOM by providing standard factory methods for creating
and configuring SAX parsers and creating DOM objects.

IBM® Informix® extensions to the JDBC API facilitate storage and retrieval of XML data in database columns. The methods used during data
storage assist in parsing the XML data, verify that well-formed and valid XML data is stored, and ensure that invalid XML data is rejected. The
methods used during data retrieval assist in converting the XML data to DOM objects and to type InputSource, which is the standard input type
to both SAX and DOM methods. The extensions are designed to support XML programmers while still providing flexibility regarding which JAXP
package the programmer is using.

Set up your environment to use XML methods
 Insert data

 Retrieve data
 Insert data examples

 Retrieve data examples

Set up your environment to use XML methods

This section contains information you need to know to prepare your system to use the JDBC driver XML methods.

Set your CLASSPATH
 Specify a parser factory

Set your CLASSPATH

To use the XML methods, add the path names of the following files to your CLASSPATH setting:

ifxtools.jar
xerces.jar

All of these files are located in the lib directory where you installed your driver.

The Xerces XML library xerces.jar has been removed from distribution with the IBM Informix® JDBC Driver, Version 3.00.

The XML methods are not part of the ifxjdbc.jar file. Instead, they are released in a separate .jar file named ifxtools.jar. To use the methods, you
must add this file to your CLASSPATH setting along with ifxjdbc.jar.

Part X: Informix JDBC Driver Guide 59

In addition, building ifxtools.jar requires that you use code from a .jar file that supports the SAX, DOM, and JAXP methods. To use ifxtools.jar, you
must add these .jar files to your CLASSPATH setting.

The Java development kit uses the default XML parser even if the xml4j parser is in the CLASSPATH. To use the xml4j implementation of the SAX
parser, set the following system properties in the application code or use the -D command-line option:

The property javax.xml.parsers.SAXParserFactory must be set to org.apache.xerces.jaxp.SAXParserFactoryImpl.
For the Document Object Model, the property javax.xml.parsers.DocumentBuilderFactory must be set to
org.apache.xerces.jaxp.DocumentBuilderFactoryImpl.

For more info about how to set the properties, see Specify a parser factory.

Specify a parser factory

By default, the xml4j xerces parser (and as a result, ifxtools.jar) uses the non-validating XML parser. To use an alternative SAX parser factory, run
your application from the command line as follows:

% java -Djavax.xml.parsers.SAXParserFactory=new-factory

If you are not running from the command line, the factory name must be enclosed in double quotation marks:

% java -Djavax.xml.parsers.SAXParserFactory="new-factory"

You can also set a system property in your code:

System.setProperty("javax.xml.parsers.SAXParserFactory",
 "new-factory")

In this code, new-factory is the alternative parser factory. For example, if you are using the xerces parser, then new-factory is replaced by
org.apache.xerces.jaxp.SAXParserFactoryImpl.

It is also possible to use an alternative document factory for DOM methods. Run your application from the command line as follows:

% java -Djavax.xml.parsers.DocumentBuilderFactory=new-factory

If you are not running from the command line, the factory name must be enclosed in double quotation marks:

% java -Djavax.xml.parsers.DocumentBuilderFactory="new-factory"

You can also set a system property in your code:

System.setProperty("javax.xml.parsers.DocumentBuilderFactory",
 "new-factory")

For example, if you are using the xerces parser, then new-factory is replaced by jorg.apache.xerces.jaxp.DocumentBuilderFactoryImpl.

Insert data

You can use the methods in this section to insert XML data into a database column.

The parameters in method declarations in this section have the following meanings:

The file parameter is an XML document. The document can be referenced by a URL (such as http://server/file.xml or file:///path/file.xml)
or a path name (such as /tmp/file.xml or c:\\work\\file.xml).
The handler parameter is an optional class you supply, containing callback routines that the SAX parser invokes as it is parsing the file. If
no value is specified, or if handler is set to NULL, the driver uses empty callback routines that echo success or failure (the driver reports
failure in the form of an SQLException).
The validating parameter tells the SAX parser factory to use a validating parser instead of a parser that only checks form.
If you do not specify nsa or validating, the driver uses the xml4j nonvalidating XML parser. To change the default, see Specify a parser
factory.

The nsa parameter tells the SAX parser factory whether it can use a parser that can handle namespaces.

The following methods parse a file by using SAX and convert it to a string. You can then use the string returned by these methods as input to the
PreparedStatement.setString() method to insert the data into a database column.

public String XMLtoString(String file, String handler, boolean
 validating,boolean nsa) throws SQLException

public String XMLtoString(String file, String handler) throws
 SQLException

60 Part X: Informix JDBC Driver Guide

public String XMLtoString(String file) throws SQLException

The following methods parse a file by using SAX and convert it to an object of class InputStream. You can then use the InputStream object as
input to the PreparedStatement.setAsciiStream(), PreparedStatement.setBinaryStream(), or PreparedStatement.setObject() methods to insert
the data into a database column.

public InputStream XMLtoInputStream(String file, String handler,
 boolean validating,boolean nsa) throws SQLException;

public InputStream XMLtoInputStream(String file, String handler)
 throws SQLException;

public InputStream XMLtoInputStream(String file) throws
 SQLException;

For examples of using these methods, see Insert data examples.

If no value is specified, or if handler is set to NULL, the driver uses the default IBM® Informix® handler.
Important: The driver truncates any input data that is too large for a column. For example, if you insert the x.xml file into a column of type char
(55) instead of a column of type char (255), the driver inserts the truncated file with no errors (the driver throws an SQLWarn exception,
however). When the truncated row is selected, the parser throws a SAXParseException because the row contains invalid XML.

Retrieve data

You can use the methods in this section to convert XML data that has been fetched from a database column. These methods help you either
convert selected XML text to DOM or parse the data with SAX. The InputSource class is the input type to JAXP parsing methods.

For information about the file, handler, nsa, and validating parameters, see Insert data.

The following methods convert objects of type String or InputStream to objects of type InputSource. You can use the ResultSet.getString(),
ResultSet.getAsciiStream(), or ResultSet.getBinaryInputStream() methods to retrieve the data from the database column and then pass the
retrieved data to getInputSource() for use with any of the SAX or DOM parsing methods. (For an example, see Retrieve data examples.)

public InputSource getInputSource(String s) throws SQLException;

public InputSource getInputSource(InputStream is) throws
 SQLException;

The following methods convert objects of type String or InputStream to objects of type Document:

public Document StringtoDOM(String s, String handler, boolean
 validating,boolean nsa) throws SQLException

public Document StringtoDOM(String s, String handler) throws
 SQLException

public Document StringtoDOM(String s) throws SQLException

public Document InputStreamtoDOM(String s, String handler, boolean
 validating,boolean nsa) throws SQLException

public Document InputStreamtoDOM(String file, String handler)
 throws SQLException

public Document InputStreamtoDOM(String file) throws SQLException

For examples of using these methods, see Retrieve data examples.

Insert data examples

The examples in this section illustrate converting XML documents to formats acceptable for insertion into IBM® Informix® database columns.

The XMLtoString() examples
 The XMLtoInputStream() example

The XMLtoString() examples

Part X: Informix JDBC Driver Guide 61

The following example converts three XML documents to character strings and then uses the strings as parameter values in an SQL INSERT
statement:

PreparedStatement p = conn.prepareStatement("insert into tab
 values(?,?,?)");
p.setString(1, UtilXML.XMLtoString("/home/file1.xml"));
p.setString(2, UtilXML.XMLtoString("http://server/file2.xml");
p.setString(3, UtilXML.XMLtoString("file3.xml");

The following example inserts an XML file into an LVARCHAR column. In this example, tab1 is a table created with the SQL statement:

create table tab1 (col1 lvarchar);

The code is:

try
 {
 String cmd = "insert into tab1 values (?)";
 PreparedStatement pstmt = conn.prepareStatement(cmd);
 pstmt.setString(1, UtilXML.XMLtoString("/tmp/x.xml"));
 pstmt.execute();
 pstmt.close();
 }
 catch (SQLException e)
 {
 // Error handling
 }

The XMLtoInputStream() example

The following example inserts an XML file into a text column. In this example, table tab2 is created with the SQL statement:

create table tab2 (col1 text);

The code is:

try
 {
 String cmd = "insert into tab2 values (?)";
 PreparedStatement pstmt = conn.prepareStatement(cmd);
 pstmt.setAsciiStream(1, UtilXML.XMLtoInputStream("/tmp/x.xml"),
 (int)(new File("/tmp/x.xml").length()));
 pstmt.execute();
 pstmt.close();
 }
 catch (SQLException e)
 {
 // Error handling
 }

Retrieve data examples

The following examples illustrate retrieving data from IBM® Informix® database columns and converting the data to formats acceptable to XML
parsers.

The StringtoDOM() example
 The InputStreamtoDOM() example

 The getInputSource() examples

The StringtoDOM() example

This example operates under the assumption that xmlcol is a column of type lvarchar that contains XML data. The data could be fetched and
converted to DOM with the following code:

ResultSet r = stmt.executeQuery("select xmlcol from table where
 ...");
while (r.next()
 {
 Document doc= UtilXML.StringtoDOM(r.getString("xmlcol"));

62 Part X: Informix JDBC Driver Guide

 // Process ‘doc'
 }

The InputStreamtoDOM() example

The following example fetches XML data from a text column into a DOM object:

try
 {
 String sql = "select col1 from tab2";
 Statement stmt = conn.createStatement();
 ResultSet r = stmt.executeQuery(sql);
 while(r.next())
 {
 Document doc = UtilXML.InputStreamtoDOM(r.getAsciiStream(1));
 }
 r.close();
 }
 catch (Exception e)
 {
 // Error handling
 }

The getInputSource() examples

This example retrieves the XML data stored in column xmlcol and converts it to an object of type InputSource; the InputSource object i can then
be used with any SAX or DOM parsing methods:

InputSource i = UtilXML.getInputSource
 (resultset.getString("xmlcol"));

This example uses the implementation of JAXP API, in xerces.jar, to parse fetched XML data in column xmlcol:

InputSource input = UtilXML.getInputSource(resultset.getString("xmlcol"));
SAXParserFactory f = SAXParserFactory.newInstance();
SAXParser parser = f.newSAXParser();
parser.parse(input);

In the examples that follow, tab1 is a table created with the SQL statement:

create table tab1 (col1 lvarchar);

The following example fetches XML data from an LVARCHAR column into an InputSource object for parsing. This example uses SAX parsing by
invoking the parser at org.apache.xerces.parsers.SAXParser.

try
 {
 String sql = "select col1 from tab1";
 Statement stmt = conn.createStatement();
 ResultSet r = stmt.executeQuery(sql);
 Parser p = ParserFactory.makeParser("org.apache.xerces.parsers.SAXParser");
 while(r.next())
 {
 InputSource i = UtilXML.getInputSource(r.getString(1));
 p.parse(i);
 }
 r.close();
 }
 catch (SQLException e)
 {
 // Error handling
 }

The following example fetches XML data from a text column into an InputSource object for parsing. This example is the same example as the
previous one, but it uses JAXP factory methods instead of the SAX parser to analyze the data.

try
 {
 String sql = "select col1 from tab2";
 Statement stmt = conn.createStatement();
 ResultSet r = stmt.executeQuery(sql);
 SAXParserFactory factory = SAXParserFactory.newInstance();
 Parser p = factory.newSAXParser();
 while(r.next())

Part X: Informix JDBC Driver Guide 63

 {
 InputSource i = UtilXML.getInputSource(r.getAsciiStream(1));
 p.parse(i);
 }
 r.close();
 }
 catch (Exception e)
 {
 // Error handling
 }

Work with Informix types

These topics explain the data types that are specific to IBM® Informix® (other than opaque types) supported in IBM Informix JDBC Driver. For
information about opaque types, see Work with opaque types.

Distinct data types
 BYTE and TEXT data types

 SERIAL and SERIAL8 data types
 BIGINT and BIGSERIAL data types

 INTERVAL data type
 Collections and arrays

 Named and unnamed rows
 Type cache information

 Smart large object data types

Distinct data types

A distinct type can map to the underlying base type or to a user-defined Java™ object. For example, a distinct type of INT can map to int or to a
Java object that encapsulates the data representation. This Java object must implement the java.sql.SQLData interface. You must provide a
custom type map as described in Mapping data types, to map this Java object to the corresponding SQL type name.

Insert data examples
 Retrieve data example

 Unsupported methods

Insert data examples

The following example shows an SQL statement that defines a distinct type:

CREATE DISTINCT TYPE mymoney AS NUMERIC(10, 2);
CREATE TABLE distinct_tab (mymoney_col mymoney);

The following is an example of mapping to the base type:

String s = "insert into distinct_tab (mymoney_col) values (?)";
System.out.println(s);
pstmt = conn.prepareStatement(s);

...
BigDecimal bigDecObj = new BigDecimal(123.45);
pstmt.setBigDecimal(1, bigDecObj);
System.out.println("setBigDecimal...ok");
pstmt.executeUpdate();

When you map to the underlying type, IBM Informix® JDBC Driver performs the mapping on the client side because the database server provides
implicit casting between the underlying type and the distinct type.

You can also map distinct types to Java™ objects that implement the SQLData interface. The following example shows an SQL statement that
defines a distinct type:

CREATE DISTINCT TYPE mymoney AS NUMERIC(10,2)

The following code maps the distinct type to a Java object named MyMoney:

import java.sql.*;
import com.informix.jdbc.*;

64 Part X: Informix JDBC Driver Guide

public class myMoney implements SQLData
{
 private String sql_type = "mymoney";
 public java.math.BigDecimal value;
 public myMoney() { }

 public myMoney(java.math.BigDecimal value)

 this.value = value;

 public String getSQLTypeName()
 {
 return sql_type;
 {

 public void readSQL(SQLInput stream, String type) throws
 SQLException
 {
 sql_type = type;
 value = stream.readBigDecimal();
 {

 public void writeSQL(SQLOutput stream) throws SQLException
 {
 stream.writeBigDecimal(value);
 }
 // overides Object.equals()
 public boolean equals(Object b)

 return value.equals(((myMoney)b).value);
 }
 public String toString()
 {
 return "value=" + value;
 }
}
...
String s - "insert into distinct_tab (mymoney_col) values (?)";
pstmt = conn.prepareStatement(s);
myMoney mymoney = new myMoney();
mymoney.value = new java.math.BigDecimal(123.45);
pstmt.setObject(1, mymoney);
System.out.println("setObject(myMoney)...ok");
pstmt.executeUpdate();

In this case, you use the setObject() method instead of the setBigDecimal() method to insert data.

Retrieve data example

You can fetch a distinct type as its underlying base type or as a Java™ object, if the mapping is defined in a custom type map. Using the previous
example, you can fetch the data as a Java object, as shown in the following example:

java.util.Map customtypemap = conn.getTypeMap();
System.out.println("getTypeMap...ok");
if (customtypemap == null)
{
 System.out.println("\n***ERROR: typemap is null!");
 return;
}
customtypemap.put("mymoney", Class.forName("myMoney"));

...
String s = "select mymoney_col from distinct_tab order by 1";
try
{
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(s);
 System.out.println("Fetching data ...");
 int curRow = 0;
 while (rs.next())
 {
 curRow++;
 myMoney mymoneyret = (myMoney)rs.getObject("mymoney_col");
 }
 System.out.println("total rows expected: " + curRow);
 stmt.close();
}
catch (SQLException e)

Part X: Informix JDBC Driver Guide 65

{
 System.out.println("***ERROR: " + e.getErrorCode() + " " +
 e.getMessage());
 e.printStackTrace();
}

In this case, you use the getObject() method instead of the getBigDecimal() method to retrieve data.

Unsupported methods

The following methods of the SQLInput and SQLOutput interfaces are not supported for distinct types:

java.sql.SQLInput
readArray()
readCharacterStream()
readRef()

java.sql.SQLOutput
writeArray()
writeCharacterStream(Reader x)
writeRef(Ref x)

BYTE and TEXT data types

This section describes the IBM® Informix® BYTE and TEXT data types and how to manipulate columns of these data types with the JDBC API.

The BYTE data type is a data type for a simple large object that stores any data in an undifferentiated byte stream. Examples of this binary data
include spreadsheets, digitized voice patterns, and video clips. The TEXT data type is a data type for a simple large object that stores any text
data. It can contain both single and multibyte characters.

Columns of either data type have a theoretical limit of 231 bytes and a practical limit determined by your disk capacity.

For more detailed information about the BYTE and TEXT data types, see IBM Informix Guide to SQL: Reference and IBM Informix Guide to SQL:
Syntax.

Cache large objects
 Example: Inserting or updating data

 Example: Selecting data

Cache large objects

Whenever an object of type BLOB, CLOB, text, or byte is fetched from the database server, the data is cached in client memory. If the size of the
large object is bigger than the value in the LOBCACHE environment variable, the large object data is stored in a temporary file. For more
information about the LOBCACHE variable, see Manage memory for large objects.

Example: Inserting or updating data

To insert into or update BYTE and TEXT columns, read a stream of data from a source, such as an operating system file, and transmit it to the
database as a java.io.InputStream object. The PreparedStatement interface provides methods for setting an input parameter to this Java™
input stream. When the statement is executed, IBM Informix® JDBC Driver makes repeated calls to the input stream, reading its contents and
transmitting those contents as the actual parameter data to the database.

For BYTE data types, use the PreparedStatement.setBinaryStream() method to set the input parameter to the InputStream object. For TEXT
data types, use the PreparedStatement.setAsciiStream() method.

The following example from the ByteType.java program shows how to insert the contents of the operating system file data.dat into a column of
data type BYTE:

try
{
 stmt = conn.createStatement();
 stmt.executeUpdate("create table tab1(col1 byte)");

66 Part X: Informix JDBC Driver Guide

}
catch (SQLException e)
{
 System.out.println("Failed to create table ..." + e.getMessage());
}

try
{
 pstmt = conn.prepareStatement("insert into tab1 values (?)");
}
catch (SQLException e)
{
 System.out.println("Failed to Insert into tab: " + e.toString());
}

File file = new File("data.dat");
int fileLength = (int) file.length();
InputStream value = null;
FileInputStream fileinp = null;
int row = 0;
String str = null;
int rc = 0;
ResultSet rs = null;

System.out.println("Inserting data ...\n");

try
{
 fileinp = new FileInputStream(file);
 value = (InputStream)fileinp;
}
catch (Exception e) {}

try
{
 pstmt.setBinaryStream(1,value,10); //set 1st column
}
catch (SQLException e)
{
 System.out.println("Unable to set parameter");
}

set_execute();

...
public static void set_execute()
{
try
{
 pstmt.executeUpdate();
}
catch (SQLException e)
{
 System.out.println("Failed to Insert into tab: " + e.toString());
 e.printStackTrace();
}
}

The example first creates a java.io.File object that represents the operating system file data.dat. The example then creates a FileInputStream
object to read from the object of type File. The object of type FileInputStream is cast to its superclass InputStream, which is the expected data
type of the second parameter to the PreparedStatement.setBinaryStream() method. The setBinaryStream() method executes on the already
prepared INSERT statement, which sets the input stream parameter. Finally, the PreparedStatement.executeUpdate() method executes, which
inserts the contents of the data.dat operating system file into the column of type BYTE.

The TextType.java program shows how to insert data into a column of type TEXT. It is similar to inserting into a column of type BYTE, except the
method setAsciiStream() is used to set the input parameter instead of setBinaryStream().

Example: Selecting data

After you select from a table into a ResultSet object, you can use the ResultSet.getBinaryStream() method to retrieve a stream of binary or ASCII
data from the columns of type BYTE. You can also use the ResultSet.getAsciiStream() method to retrieve a stream of binary or ASCII data from
the columns of type TEXT. Both methods return an InputStream object, which can be used to read the data in chunks.

All the data in the returned stream in the current row must be read before you call the next() method to retrieve the next row.

Part X: Informix JDBC Driver Guide 67

The following example from the ByteType.java program shows how to select data from a column of type BYTE and print out the data to the
standard output device:

try
{
 stmt = conn.createStatement();
 rs = stmt.executeQuery("Select * from tab1");
 while(rs.next())
 {
 row++;
 value = rs.getBinaryStream(1);
 dispValue(value);
 }
}
catch (Exception e) { }

...

public static void dispValue(InputStream in)
{
 int size;
 byte buf;
 int count = 0;
 try
 {
 size = in.available();
 byte ary[] = new byte[size];
 buf = (byte) in.read();
 while(buf!=-1)
 {
 ary[count] = buf;
 count++;
 buf = (byte) in.read();
 }
 }
 catch (Exception e)
 {
 System.out.println("Error occured while reading stream ... \n");
 }
}

The example first puts the result of a SELECT statement into a ResultSet object. It then executes the method ResultSet.getBinaryStream() to
retrieve the BYTE data into a Java™ InputStream object.

The method dispValue(), whose Java code is also included in the example, is used to print out the contents of the column to the standard output
device. The dispValue() method uses byte arrays and the InputStream.read() method to systematically read the contents of the column of type
BYTE.

The TextType.java program shows how to select data from a column of type TEXT. It is similar to selecting from a column of type BYTE, except
the getAsciiStream() method is used instead of getBinaryStream().

SERIAL and SERIAL8 data types

IBM Informix® JDBC Driver provides support for the SERIAL and SERIAL8 data types through the methods getSerial() and getSerial8(), which are
part of the implementation of the java.sql.Statement interface.

Because the SERIAL and SERIAL8 data types do not have an obvious mapping to any JDBC API data types from the java.sql.Types class, you
must import classes that are specific to into your Java™ program to handle SERIAL and SERIAL8 columns. To do this, add the following import
line to your Java program:

import com.informix.jdbc.*;

Use the getSerial() method after an INSERT statement to return the serial value that was automatically inserted into the SERIAL column of a
table. Use the getSerial8() method after an INSERT statement to return the serial value that was automatically inserted into the SERIAL8 column
of a table. The methods return 0 if any of the following conditions are true:

The last statement was not an INSERT statement.
The table being inserted into does not contain a SERIAL or SERIAL8 column.
The INSERT statement has not executed yet.

If you execute the getSerial() or getSerial8() method after a CREATE TABLE statement, the method returns 1 by default (assuming the new table
includes a SERIAL or SERIAL8 column). If the table does not contain a SERIAL or SERIAL8 column, the method returns 0. If you assign a new
serial starting number, the method returns that number.

68 Part X: Informix JDBC Driver Guide

If you want to use the getSerial() and getSerial8() methods, you must cast the Statement or PreparedStatement object to IfmxStatement, the
implementation of the Statement interface, which is specific to . The following example shows how to perform the cast:

cmd = "insert into serialTable(i) values (100)";
stmt.executeUpdate(cmd);
System.out.println(cmd+"...okay");
int serialValue = ((IfmxStatement)stmt).getSerial();
System.out.println("serial value: " + serialValue);

If you want to insert consecutive serial values into a column of data type SERIAL or SERIAL8, specify a value of 0 for the SERIAL or SERIAL8
column in the INSERT statement. When the column is set to 0, the database server assigns the next-highest value.

For more detailed information about the SERIAL and SERIAL8 data types, see the IBM® Informix Guide to SQL: Reference and the IBM Informix
Guide to SQL: Syntax.

BIGINT and BIGSERIAL data types

The BIGINT and BIGSERIAL data types have the same range of values as INT8 and SERIAL8 data types. However, BIGINT and BIGSERIAL have
advantages for storage and computation over INT8 and SERIAL8.

Both the BIGINT and BIGSERIAL data types map to the to BIGINT Java™ type in the class java.sql.Types. When data is retrieved from the
database, the BIGINT and BIGSERIAL data types map to long Java Type.

The Informix® JDBC Driver provides support for the BIGSERIAL and BIGINT data types through the getBigSerial() method, which is a part of the
java.sql.Statement interface

Because the BIGSERIAL and BIGINT data types do not have an obvious mapping to any JDBC API data types from the java.sql.Types class, you
must import classes that are specific to into your Java program to handle BIGSERIAL and BIGINT columns. To do this, add the following import
line to your Java program:

import com.informix.jdbc.*;

Use the getBigSerial() method after an INSERT statement to return the value that was inserted into the BIGSERIAL or BIGINT column of a table.

If you want to use the getBigSerial() method, you must cast the Statement or PreparedStatement object to IfmxStatement, the
implementation of the Statement interface, which is specific to . The following example shows how to perform the cast:

cmd = "insert into bigserialTable(i) values (100)";
stmt.executeUpdate(cmd);
System.out.println(cmd+"...okay");
long serialValue = ((IfmxStatement)stmt).getBigSerial();
System.out.println("serial value: " + serialValue);

These types are part of the com.informix.lang.IfxTypes class. See the The IfxTypes class table for the IfxTypes constants and the corresponding
data types.

INTERVAL data type

The IBM® Informix® INTERVAL data type stores a value that represents a span of time. INTERVAL data types comprise two types: year-month
intervals and day-time intervals. A year-month interval can represent a span of years and months, and a day-time interval can represent a span of
days, hours, minutes, seconds, and fractions of a second. For more information about the INTERVAL data type and definitions of qualifier,
precision, and fraction, see the following publications:

IBM Informix Guide to SQL: Tutorial
IBM Informix Guide to SQL: Reference
IBM Informix Guide to SQL: Syntax

The Interval class
 The IntervalYM class

 The IntervalDF class
 Interval example

The Interval class

Part X: Informix JDBC Driver Guide 69

The com.informix.lang.Interval class is the IBM® Informix®-specific extension to the JDBC specification. Interval is the base class for the
INTERVAL data type. Interval has two subclasses: IntervalYM (for year-month qualifiers) and IntervalDF (for day-time qualifiers). You use these
subclasses to create and manipulate INTERVAL data types.
Tip: Many of the Interval, IntervalYM, and IntervalDF constructors take a Connection object as a parameter. This passes the value of the
CLIENT_LOCALE environment variable to the Interval, IntervalYM, or IntervalDF object, which allows the display of localized error messages if
an exception is thrown. For more information, see Support for globalized error messages.
For information about the string INTERVAL formats in this section, see the IBM Informix Guide to SQL: Syntax.

This section discusses many of the methods you can use with the INTERVAL data types. For complete reference information, see the online
reference documentation in the directory doc/javadoc/* after you install your software. (The doc directory is a subdirectory of the directory
where you installed IBM Informix JDBC Driver.)

Variables for binary qualifiers
 Interval methods

Variables for binary qualifiers

You can use string qualifiers to manipulate INTERVAL data types, but using binary qualifiers results in faster performance. The following variables
are defined in the Interval base class and represent the time unit (start and end code) of a field in the binary qualifier. To use these variables,
instantiate objects of the IntervalYM and IntervalDF classes, which inherit these variables from the Interval base class.

TU_YEAR
Time unit for the YEAR qualifier field

TU_MONTH
Time unit for the MONTH qualifier field

TU_DAY
Time unit for the DAY qualifier field

TU_HOUR
Time unit for the HOUR qualifier field

TU_MINUTE
Time unit for the MINUTE qualifier field

TU_SECOND
Time unit for the SECOND qualifier field

TU_FRAC
Time unit for the leading FRACTION qualifier field

TU_F1
Time unit for the ending field of the first position of FRACTION

TU_F2
Time unit for the ending field of the second position of FRACTION

TU_F3
Time unit for the ending field of the third position of FRACTION

TU_F4
Time unit for the ending field of the fourth position of FRACTION

TU_F5
Time unit for the ending field of the fifth position of FRACTION

Interval methods

You can use the Interval methods to extract information about binary qualifiers. To use these methods, instantiate objects of the IntervalYM and
IntervalDF classes, which inherit these variables from the Interval base class.

Some of the tasks you can perform and the methods you can use follow:

Extracting the length of a qualifier:

public static byte getLength(short qualifier)

Extracting the starting field code (one of the TU_XXX variables) from a qualifier:

public static byte getStartCode(short qualifier)

Extracting the ending field code (one of the TU_XXX variables) from a qualifier:

public static byte getEndCode(short qualifier)

70 Part X: Informix JDBC Driver Guide

Obtaining the string value that corresponds to the TU_XXX value of part of an interval (for example, getFieldName(TU_YEAR) returns the
string year):

public static String getFieldName(byte code)

Obtaining the entire name of the interval as a character string, taking a qualifier as input:

public static String getIfxTypeName(int type,
 short qualifier)

Obtaining the number of digits in the FRACTION part of the INTERVAL data type:

public static byte getScale(short qualifier)

Creating a binary qualifier from a length, start code (TU_XXX), and end code (TU_XXX):

public static short getQualifier(byte length, byte
 startCode, byte endCode) throws SQLException

For example, getQualifier(4, TU_YEAR, TU_MONTH) creates a binary representation of the YEAR TO MONTH qualifier.

The IntervalYM class

The com.informix.lang.IntervalYM class allows you to manipulate year-month intervals.

The IntervalYM constructors
 The IntervalYM methods

The IntervalYM constructors

The default constructor is defined as follows:

public IntervalYM() throws SQLException

Use this second version of the constructor to display localized error messages if an exception is thrown:

public IntervalYM(Connection conn) throws SQLException

Use the following constructors to create year-month intervals from specific input values:

Two time stamps, returning the IntervalYM value that equals Timestamp1 - Timestamp2:

public IntervalYM(Timestamp t1, Timestamp t2) throws
 SQLException
public IntervalYM (Timestamp t1, Timestamp t2, Connection
 conn) throws SQLException

The second version allows you to support localized error messages.

Year and month values (large month values are converted to year):

public IntervalYM(int years, int months) throws
 SQLException

public IntervalYM(int years, int months,
 Connection conn) throws SQLException

The second version allows you to support localized error messages.

A month value and the encoded qualifier:

public IntervalYM(int months, short qualifier,
 Connection conn) throws SQLException

To specify the qualifier, you can use the getQualifier() method described in Interval methods. This constructor supports localized error
messages.

A string:

public IntervalYM(String string) throws SQLException
public IntervalYM(String string, Connection conn) throws
 SQLException

Part X: Informix JDBC Driver Guide 71

The second version allows you to support localized error messages.

A string and qualifier:

public IntervalYM(String string, short qualifier,
 Connection conn) throws SQLException

To specify the qualifier, you can use the getQualifier() method described in Interval methods. This constructor supports localized error
messages.

A string and qualifier information:

public IntervalYM(String string, int length,
 byte startCode, byte endCode) throws SQLException

public IntervalYM(String string, int length,
 byte startCode, byte endCode, Connection conn) throws
 SQLException

The second version allows you to support localized error messages.

The IntervalYM methods

The following methods allow you to manipulate year-month intervals. (You can also use the Interval methods, described previously.) Some of
the tasks you can perform with IntervalYM methods include the following:

Comparing two intervals:

boolean equals(Object other)
boolean greaterThan(IntervalYM other)
boolean lessThan(IntervalYM other)

Setting a value for an interval from:
A string:

void fromString(String other)
void set(String string)

Year and month values (large month values are converted to years):

void set(int years, int months)

Two time stamps:

void set(Timestamp t1, Timestamp t2)

Setting the qualifier for an interval:
From the length, start code, and end code:

void setQualifier(int length, byte startcode, byte
 endcode)

Using an existing qualifier:

void setQualifier(short qualifier)

Obtaining the number of months in the interval:

long getMonths()

Creating a string representation of the interval in the format yyyy-mm:

String toString()

The fields present depend on the qualifier. Blanks replace leading zeros.

The IntervalDF class

The com.informix.lang.IntervalDF class allows you to manipulate intervals.

The IntervalDF constructors
 The IntervalDF methods

72 Part X: Informix JDBC Driver Guide

The IntervalDF constructors

The default constructor is defined as follows:

public IntervalDF() throws SQLException

Use this second version of the default constructor to display localized error messages if an exception is thrown:

public IntervalDF(Connection conn) throws SQLException

Use the following constructors to create intervals from specific input values:

Two time stamps t1 and t2, returning the IntervalDF value that equals t1 - t2:

public IntervalDF(Timestamp t1, Timestamp t2)
 throws SQLException

public IntervalDF(Timestamp t1, Timestamp t2, Connection conn)
 throws SQLException

The second version allows you to support localized error messages.

A number of seconds and nanoseconds (large second values are converted to minutes, hours, or days):

public IntervalDF(long seconds, long nanos)
 throws SQLException

public IntervalDF(long seconds, long nanos, Connection conn)
 throws SQLException

The second version allows you to support localized error messages.

A number of seconds, a number of nanoseconds, and qualifier:

public IntervalDF(long seconds, long nanos, short qualifier)
 throws SQLException

public IntervalDF(long seconds, long nanos, short qualifier, Connection conn)
 throws SQLException

To specify the qualifier, you can use the getQualifier() method described in Interval methods. The second version allows you to support
localized error messages.

A string:

public IntervalDF(String string)
 throws SQLException
public IntervalDF(String string, Connection conn)
 throws SQLException

The second version allows you to support localized error messages.

When you use these constructors, the default qualifier is set to the following values:

leading field precision: 2 start code: TU_DAY end code: TU_F5

For information about string INTERVAL formats, see the IBM® Informix® Guide to SQL: Syntax.

A string and a qualifier:

public IntervalDF(String string, short qualifier)
 throws SQLException

public IntervalDF(String string, short qualifier, Connection conn)
 throws SQLException

To specify the qualifier, you can use the getQualifier() method described in Interval methods. The second version allows you to support
localized error messages.

A string and qualifier information:

public IntervalDF(String string, int length, byte startcode, byte endcode)
 throws SQLException

public IntervalDF(String string, int length, byte startcode,
byte endcode, Connection conn) throws SQLException

The second version allows you to support localized error messages.

Part X: Informix JDBC Driver Guide 73

The IntervalDF methods

The following methods allow you to manipulate intervals. (You can also use the Interval methods, described previously.) The tasks you can
perform, and the methods you can use, are as follows:

Comparing two intervals:

boolean equals(Object other)
boolean greaterThan(IntervalDF other)
boolean lessThan(IntervalDF other)

Setting a value for an interval from:
A string:

void fromString(String other)
void set(String string)

Second and nanosecond values (large second values are converted to minutes, hours, or days):

void set(long seconds, long nanos)

Two time stamps:

void set(Timestamp t1, Timestamp t2)

Setting the qualifier from the length, start code, and end code:

void setQualifier(int length, byte startcode, byte endcode)

Obtaining the number of nanoseconds in the interval:

long getNanoSeconds()

Obtaining the number of seconds in the interval:

long getSeconds()

Creating a string representation of the interval in the format ddddd hh:mm:ss.nano:

String toString()

The fields present depend on the qualifier. Blanks replace leading zeros.

Interval example

The Intervaldemo.java program, which is included in IBM Informix® JDBC Driver, shows how to insert into and select from the two types of
INTERVAL data types.

Collections and arrays

The JDBC 3.0 specification describes only one method to exchange collection data between a Java™ client and a relational database: an array.

Because the array interface does not include a constructor, IBM Informix® JDBC Driver includes an extension that allows a java.util.Collection
object to be used in the PreparedStatement.setObject() and ResultSet.getObject() methods.

If you prefer to use an Array object, use the PreparedStatement.setArray() and ResultSet.getArray() methods. A Collection object is easier to
use, but an Array object conforms to JDBC 3.0 standards.

By default, the driver maps LIST columns to java.util.ArrayList objects and SET and MULTISET columns to java.util.HashSet objects during a
fetch. You can override these defaults, but the class you use must implement the java.util.Collection interface.

To override this default mapping, you can use other classes in the java.util.Collection interface, such as the TreeSet class. You can also create
your own classes that implement the java.util.Collection interface. In either case, you must provide a customized type map using the
Connection.setTypeMap() method.

During an INSERT operation, any java.util.Collection object that is an instance of the java.util.Set interface is mapped to the MULTISET data
type. An instance of the java.util.List interface is mapped to the LIST data type. You can override these defaults by creating a customized type
mapping.

74 Part X: Informix JDBC Driver Guide

For information about customized type mappings, see Mapping data types.
Important: Sets are by definition unordered. If you select collection data using a HashSet object, the order of the elements in the HashSet object
might not be the same as the order specified when the set was inserted. For example, if the data on the database server is the set {1, 2, 3}, it
might be retrieved into the HashSet object as {3, 2, 1} or any other order.
The complete versions of all of the examples in the following sections are in the complex-types directory where you installed the driver. For more
information, see Sample code files.

Collection examples
 Array example

Collection examples

Following is a sample database schema:

create table tab (a set(integer not null), b integer);
insert into tab values ("set{1, 2, 3}", 10);

The following is a fetch example using a java.util.HashSet object:

java.util.HashSet set;

PreparedStatement pstmt;
ResultSet rs;
pstmt = conn.prepareStatement("select * from tab");
System.out.println("prepare ... ok");
rs = pstmt.executeQuery();
System.out.println("executeQuery ... ok");

rs.next();
set = (HashSet) rs.getObject(1);
System.out.println("getObject() ... ok");

/* The user can now use HashSet.iterator() to extract
 * each element in the collection.
 */
Iterator it = set.iterator();
Object obj;
Class cls = null;
int i = 0;
while (it.hasNext())
 {
 obj = it.next();
 if (cls == null)
 {
 cls = obj.getClass();
 System.out.println(" Collection class: " + cls.getName());
 }
 System.out.println(" element[" + i + "] = " +
 obj.toString());
 i++;
 }
pstmt.close();

In the set = (HashSet) rs.getObject(1) statement of this example, IBM Informix® JDBC Driver gets the type for column 1. Because it is a
SET type, a HashSet object is instantiated. Next, each collection element is converted into a Java™ object and inserted into the collection.

The following fetch example uses a java.util.TreeSet object:

java.util.TreeSet set;

PreparedStatement pstmt;
ResultSet rs;

/*
 * Fetch a SET as a TreeSet instead of the default
 * HashSet. In this example a new java.util.Map object has
 * been allocated and passed in as a parameter to getObject().
 * Connection.getTypeMap() could have been used as well.
 */
java.util.Map map = new HashMap();
map.put("set", Class.forName("java.util.TreeSet"));
System.out.println("mapping ... ok");

pstmt = conn.prepareStatement("select * from tab");
System.out.println("prepare ... ok");
rs = pstmt.executeQuery();

Part X: Informix JDBC Driver Guide 75

System.out.println("executeQuery ... ok");

rs.next();
set = (TreeSet) rs.getObject(1, map);
System.out.println("getObject(Map) ... ok");

/* The user can now use HashSet.iterator() to extract
 * each element in the collection.
 */
Iterator it = set.iterator();
Object obj;
Class cls = null;
int i = 0;
while (it.hasNext())
 {
 obj = it.next();
 if (cls == null)
 {
 cls = obj.getClass();
 System.out.println(" Collection class: " + cls.getName());
 }
 System.out.println(" element[" + i + "] = " +
 obj.toString());
 i++;
 }
pstmt.close();

In the map.put("set", Class.forName("java.util.TreeSet")); statement, the default mapping of set = HashSet is overridden.

In the set = (TreeSet) rs.getObject(1, map) statement, IBM Informix JDBC Driver gets the type for column 1 and finds that it is a SET
object. Then the driver looks up the type mapping information, finds TreeSet, and instantiates a TreeSet object. Next, each collection element is
converted into a Java object and inserted into the collection.

The following example shows an insert. This example inserts the set (0, 1, 2, 3, 4) into a SET column:

java.util.HashSet set = new HashSet();
Integer intObject;
int i;

/* Populate the Java collection */
for (i=0; i < 5; i++)
 {
 intObject = new Integer(i);
 set.add(intObject);
 }
System.out.println("populate java.util.HashSet...ok");

PreparedStatement pstmt = conn.prepareStatement
 ("insert into tab values (?, 20)");
System.out.println("prepare...ok");

pstmt.setObject(1, set);
System.out.println("setObject()...ok");
pstmt.executeUpdate();
System.out.println("executeUpdate()...ok");
pstmt.close();

The pstmt.setObject(1, set) statement in this example first serializes each element of the collection. Next, the type information is
constructed as each element is converted into a Java object. If the types of any elements in the collection do not match the type of the first
element, an exception is thrown. The type information is sent to the database server.

Array example

Following is a sample database schema:

CREATE TABLE tab (a set(integer not null), b integer);
INSERT INTO tab VALUES ("set{1,2,3}", 10);

The following example fetches data using a java.sql.Array object:

PreparedStatement pstmt = conn.prepareStatement("select a from tab");
System.out.println("prepare ... ok");
ResultSet rs = pstmt.executeQuery();
System.out.println("executeQuery ... ok");

rs.next();
java.sql.Array array = rs.getArray(1);

76 Part X: Informix JDBC Driver Guide

System.out.println("getArray() ... ok");
pstmt.close();

/*
 * The user can now materialize the data into either
 * an array or else a ResultSet. If the collection elements
 * are primitives then the array should be an array of primitives,
 * not Objects. Mapping data can be provided at this point.
 */

Object obj = array.getArray((long) 1, 2);

int [] intArray = (int []) obj; // cast it to an array of ints
int i;
for (i=0; i < intArray.length; i++)
 {
 System.out.println("integer element = " + intArray[i]);
 }
pstmt.close();

The java.sql.Array array = rs.getArray(1) statement instantiates a java.sql.Array object. Data is not converted at this point.

The Object obj = array.getArray((long) 1, 2) statement converts data into an array of integers (int types, not Integer objects).
Because the getArray() method has been called with index and count values, only a subset of data is returned.

Named and unnamed rows

The JDBC 3.0 specification refers to an SQL type called a structured type or struct, which is equivalent to the IBM® Informix® named row. The
specification defines two approaches to exchange structured-type data between a Java™ client and a relational database:

Using the SQLData interface. A single Java class per named row type implements the SQLData interface. The class has a member for
each element in the named row.
Using the Struct interface. This interface instantiates the necessary Java object for each element in the named row and constructs an
array of java.util.Object Java objects.

Whether IBM Informix JDBC Driver instantiates a Java object or a Struct object for a fetched named row depends on whether there is a
customized type-mapping entry or not, as follows:

If there is an entry for a named row in the Connection.getTypeMap() map, or if you provided a type mapping using the getObject() method,
a single Java object is instantiated.
If there is no entry for a named row in the Connection.getTypeMap() map, and if you have not provided a type mapping using the
getObject() method, a Struct object is instantiated.

Unnamed rows are always fetched into Struct objects.
Important: Regardless of whether you use the SQLData or Struct interface, if a named or unnamed row contains an opaque data type column,
there must be a type-mapping entry for it. If you are using the Struct interface to access a row that contains an opaque data type column, you
need a customized type map for the opaque data type column, but not for the row as a whole.
For more information about custom type mapping, see Mapping data types.

Interval and collection support
 Unsupported methods

 The SQLData interface
 The Struct interface

 The ClassGenerator utility

Interval and collection support

The java.sql.SQLOutput and java.sql.SQLInput methods are extended to support Collection and Interval objects in named and unnamed rows.
These extensions include the following methods:

The com.informix.jdbc.IfmxComplexSQLInput.readObject() method returns the appropriate java.util.Collection object if the data is a set,
list, or multiset data type.
The com.informix.jdbc.IfmxComplexSQLInput.readInterval() method returns the appropriate IntervalYM or IntervalDF object for an
interval data type, depending on the qualifier.
The com.informix.jdbc.IfmxComplexSQLOutput.writeObject() method accepts objects derived from the java.util.Collection interface or
from IntervalYM and IntervalDF objects.

Part X: Informix JDBC Driver Guide 77

Unsupported methods

The following SQLInput methods are not supported for selecting a ROW column into a Java™ object that implements SQLData:

readByte()
readCharacterStream()
readRef()

The following SQLOutput methods are not supported for inserting a Java object that implements SQLData into a ROW column:

writeByte(byte)
writeCharacterStream(java.io.Reader x)
writeRef(Ref x)

The SQLData interface

The Java™ class for the named row must implement the SQLData interface. The class must have a member for each element in the named row
but can have other members in addition to these. The members can be in any order and need not be public.

The Java class must implement the writeSQL(), readSQL(), and getSQLTypeName() methods for the named row as defined in the SQLData
interface, but can implement additional methods. You can use the ClassGenerator utility to create the class; for more information, see The
ClassGenerator utility.

To link this Java class with the named row, create a customized type mapping using the Connection.setTypeMap() method or the getObject()
method. For more information about type mapping, see Mapping data types.

You cannot use the SQLData interface to access unnamed rows.

SQLData examples

SQLData examples

The complete versions of all of the examples in this section are in the demo/complex-types directory where you installed the driver. For more
information, see Sample code files.

The following example includes a Java™ class that implements the java.sql.SQLData interface.

Here is a sample database schema:

CREATE ROW TYPE fullname_t (first char(20), last char(20));
CREATE ROW TYPE person_t (id int, name fullname_t, age int);
CREATE TABLE teachers (person person_t, dept char (20));
INSERT INTO teachers VALUES ("row(100, row(‘Bill', 'Smith'), 27)", "physics");

This is the fullname Java class:

import java.sql.*;
public class fullname implements SQLData
{
 public String first;
 public String last;
 private String sql_type = "fullname_t";

 public String getSQLTypeName()
 {
 return sql_type;
 }
 public void readSQL (SQLInput stream, String type) throws
 SQLException
 {
 sql_type = type;
 first = stream.readString();
 last = stream.readString();
 }
 public void writeSQL (SQLOutput stream) throws SQLException
 {
 stream.writeString(first);
 stream.writeString(last);

78 Part X: Informix JDBC Driver Guide

 }
 /*
 * Function not required by SQLData interface, but makes
 * it easier for displaying results.
 */
 public String toString()
 {
 String s = "fullname: ";
 s += "first: " + first + " last: " + last;
 return s;
 }
}

This is the person Java class:

import java.sql.*;
public class person implements SQLData
{
 public int id;
 public fullname name;
 public int age;
 private String sql_type = "person_t";

 public String getSQLTypeName()
 {
 return sql_type;
 }
 public void readSQL (SQLInput stream, String type) throws SQLException
 {
 sql_type = type;
 id = stream.readInt();
 name = (fullname)stream.readObject();
 age = stream.readInt();
 }
 public void writeSQL (SQLOutput stream) throws SQLException
 {
 stream.writeInt(id);
 stream.writeObject(name);
 stream.writeInt(age);
 }
 public String toString()
 {
 String s = "person:";
 s += "id: " + id + "\n";
 s += " name: " + name.toString() + "\n";
 s += " age: " + age + "\n";
 return s;
 }
}

Here is an example of fetching a named row:

java.util.Map map = conn.getTypeMap();
conn.setTypeMap(map);
map.put("fullname_t", Class.forName("fullname"));
map.put("person_t", Class.forName("person"));

...
PreparedStatement pstmt;
ResultSet rs;
pstmt = conn.prepareStatement("select person from teachers");
System.out.println("prepare ...ok");

rs = pstmt.executeQuery();
System.out.println("executetQuery()...ok");

while (rs.next())
 {
 person who = (person) rs.getObject(1);
 System.out.println("getObject()...ok");
 System.out.println("Data fetched:");
 System.out.println("row: " + who.toString());
 }
pstmt.close();

The conn.getTypeMap() method returns the named row mapping information from the java.util.Map object through the Connection object.

The map.put() method registers the mappings between the nested named row on the database server, fullname_t, and the Java class fullname,
and between the named row on the database server, person_t, and the Java class person.

Part X: Informix JDBC Driver Guide 79

The person who = (person) rs.getObject(1) statement retrieves the named row into the Java object who. IBM Informix® JDBC Driver
recognizes that this object who is a named row, a distinct type, or an opaque type, because the information sent by the database server has an
extended name of person_t.

The driver looks up person_t and finds it is a named row. The driver calls the map.get() method with the key person_t, which returns the person
class object. An object of class person is instantiated.

The readSQL() method in the person class calls methods defined in the SQLInput interface to convert each field in the ROW column into a Java
object and assign each to a member in the person class.

The following example shows a method for inserting a Java object into a named row column using the setObject() method:

java.util.Map map = conn.getTypeMap();
map.put("fullname_t", Class.forName("fullname"));
map.put("person_t", Class.forName("person"));

...
PreparedStatement pstmt;
System.out.println("Populate person and fullname objects");
person who = new person();
fullname name = new fullname();
name.last = "Jones";
name.first = "Sarah";
who.id = 567;
who.name = name;
who.age = 17;

String s = "insert into teachers values (?, 'physics')";
pstmt = conn.prepareStatement (s);
System.out.println("prepared...ok");

pstmt.setObject(1, who);
System.out.println("setObject()...ok");

int rowcount = pstmt.executeUpdate();
System.out.println("executeUpdate()...ok");
pstmt.close();

The conn.getTypeMap() method returns the named row mapping information from the java.util.Map object through the Connection object.

The map.put() method registers the mappings between the nested named row on the database server, fullname_t, and the Java class fullname
and between the named row on the database server, person_t, and the Java class person.

IBM Informix JDBC Driver recognizes that the object who implements the SQLData interface, so it is either a named row, a distinct type, or an
opaque type. IBM Informix JDBC Driver calls the getSQLTypeName() method for this object (required for classes implementing the SQLData
interface), which returns person_t. The driver looks up person_t and finds it is a named row.

The writeSQL() method in the person class calls the corresponding SQLOutput.writeXXX() method for each member in the class, each of which
maps to one field in the named row person_t. The writeSQL() method in the class contains calls to the SQLOutput.writeObject(name) and
SQLOutput.writeInt(id) methods. Each member of the class person is serialized and written into a stream.

The Struct interface

The JDBC documentation does not specify that Struct objects can be parameters to the PreparedStatement.setObject() method. However, IBM
Informix® JDBC Driver can handle any object passed by the PreparedStatement.setObject() or ResultSet.getObject() method that implements the
java.sql.Struct interface.

You must use the Struct interface to access unnamed rows.

You do not need to create your own class to implement the java.sql.Struct interface. However, you must perform a fetch to retrieve the ROW
data and type information before you can insert or update the ROW data. IBM Informix JDBC Driver automatically calls the getSQLTypeName()
method, which returns the type name for a named row or the row definition for an unnamed row.

If you create your own class to implement the Struct interface, the class you create must implement all the java.sql.Struct methods, including
the getSQLTypeName() method. You can choose what the getSQLTypeName() method returns.

Although you must return the row definition for unnamed rows, you can return either the row name or the row definition for named rows. Each
has advantages:

Row definition. The driver does not need to query the database server for the type information. In addition, the row definition returned
does not have to match the named row definition exactly, because the database server provides casting, if needed. This is useful if you
want to use strings to insert into an opaque type in a row, for example.
Row name. If a user-defined routine takes a named row as a parameter, the signature has to match, so you must pass in a named row.

80 Part X: Informix JDBC Driver Guide

For more information about user-defined routines, see the following publications: IBM® J/Foundation Developer's Guide (for information
specific to Java™); IBM Informix User-Defined Routines and Data Types Developer's Guide and IBM Informix Guide to SQL: Reference (both
for general information about user-defined routines); and IBM Informix Guide to SQL: Syntax (for the syntax to create and invoke user-
defined routines).

Important: If you use the Struct interface for a named row and provide type-mapping information for the named row, a ClassCastException
message is generated when the ResultSet.getObject() method is called, because Java cannot cast between an SQLData object and a Struct
object.

Struct examples

Struct examples

The complete versions of all of the examples in this section are in the demo/complex-types directory where you installed the driver. For more
information, see Sample code files.

This example fetches an unnamed ROW column. Here is a sample database schema:

CREATE TABLE teachers
 (
 person row(
 id int,
 name row(first char(20), last char(20)),
 age int
),
 dept char(20)
);
INSERT INTO teachers VALUES ("row(100, row('Bill', 'Smith'), 27)", "physics");

This is the rest of the example:

PreparedStatement pstmt;
ResultSet rs;
pstmt = conn.prepareStatement("select person from teachers");
System.out.println("prepare ...ok");
rs = pstmt.executeQuery();
System.out.println("executetQuery()...ok");

rs.next();
Struct person = (Struct) rs.getObject(1);
System.out.println("getObject()...ok");
System.out.println("\nData fetched:");

Integer id;
Struct name;
Integer age;
Object[] elements;

/* Get the row description */
String personRowType = person.getSQLTypeName();
System.out.println("person row description: " + personRowType);
System.out.println("");

/* Convert each element into a Java object */
elements = person.getAttributes();

/*
 * Run through the array of objects in 'person' getting out each structure
 * field. Use the class Integer instead of int, because int is not an object.
 */
id = (Integer) elements[0];
name = (Struct) elements[1];
age = (Integer) elements[2];
System.out.println("person.id: " + id);
System.out.println("person.age: " + age);
System.out.println("");

/* Convert 'name' as well. */
/* get the row definition for 'name' */
String nameRowType = name.getSQLTypeName();
System.out.println("name row description: " + nameRowType);

/* Convert each element into a Java object */
elements = name.getAttributes();

/*

Part X: Informix JDBC Driver Guide 81

 * run through the array of objects in 'name' getting out each structure
 * field.
 */
String first = (String) elements[0];
String last = (String) elements[1];
System.out.println("name.first: " + first);
System.out.println("name.last: " + last);
pstmt.close();

The Struct person = (Struct) rs.getObject(1) statement instantiates a Struct object if column 1 is a ROW type and there is no
extended data type name (if it is a named row).

The elements = person.getAttributes(); statement performs the following actions:

Allocates an array of java.lang.Object objects with the correct number of elements
Converts each element in the row into a Java™ object
If the element is an opaque type, you must provide type mapping in the Connection object or pass in a java.util.Map object in the call to
the getAttributes() method.

The String personrowType = person.getSQLTypeName(); statement returns the row type information. If this type is a named row, the
statement returns the name. Because the type is not a named row, the statement returns the row definition: row(int id, row(first char(20), last
char(20)) name, int age).

The example then goes through the same steps for the unnamed row name as it did for the unnamed row person.

The following example uses a user-created class, GenericStruct, which implements the java.sql.Struct interface. As an alternative, you can use
a Struct object returned from the ResultSet.getObject() method instead of the GenericStruct class.

import java.sql.*;
import java.util.*;
public class GenericStruct implements java.sql.Struct
{
 private Object [] attributes = null;
 private String typeName = null;

 /*
 * Constructor
 */
 GenericStruct() { }

 GenericStruct(String name, Object [] obj)
 {
 typeName = name;
 attributes = obj;
 }
 public String getSQLTypeName()
 {
 return typeName;
 }
 public Object [] getAttributes()
 {
 return attributes;
 }
 public Object [] getAttributes(Map map) throws SQLException
 {
 // this class shouldn't be used if there are elements
 // that need customized type mapping.
 return attributes;
 }
 public void setAttributes(Object [] objArray)
 {
 attributes = objArray;
 }
 public void setSQLTypeName(String name)
 {
 typeName = name;
 }
}

The following Java program inserts a ROW column:

PreparedStatement pstmt;
ResultSet rs;
GenericStruct gs;
String rowType;

pstmt = conn.prepareStatement("insert into teachers values (?, 'Math')");
System.out.println("prepare insert...ok\n");

System.out.println("Populate name struct...");

82 Part X: Informix JDBC Driver Guide

Object[] name = new Object[2];

// populate inner row first
name[0] = new String("Jane");
name[1] = new String("Smith");

rowType = "row(first char(20), last char(20))";
gs = new GenericStruct(rowType, name);
System.out.println("Instantiate GenericStructObject...okay\n");

System.out.println("Populate person struct...");
// populate outer row next
Object[] person = new Object[3];
person[0] = new Integer(99);
person[1] = gs;
person[2] = new Integer(56);

rowType = "row(id int, " +
 "name row(first char(20), last char(20)), " +
 "age int)";
gs = new GenericStruct(rowType, person);
System.out.println("Instantiate GenericStructObject...okay\n");

pstmt.setObject(1, gs);
System.out.println("setObject()...okay");
pstmt.executeUpdate();
System.out.println("executeUpdate()...okay");
pstmt.close();

At the pstmt.setObject(1, gs) statement in this example, IBM Informix® JDBC Driver determines that the information is to be transported
from the client to the database server as a ROW column, because the GenericStruct object is an instance of the java.sql.Struct interface.

Each element in the array is serialized, verifying that each element matches the type as defined by the getSQLTypeName() method.

The ClassGenerator utility

The ClassGenerator utility generates a Java™ class for a named row type defined in the system catalog. The utility is the IBM® Informix®
extension to the JDBC specification.

The created Java class implements the java.sql.SQLData interface. The class has members for each field in the named row. The readSQL(),
writeSQL(), and SQLData.readSQL() methods read the attributes in the order in which they appear in the definition of the named row type in the
database. Similarly, writeSQL() writes the data to the stream in that order.

ClassGenerator is packaged in the ifxtools.jar file, so the CLASSPATH environment variable must point to ifxtools.jar.

The syntax for using ClassGenerator is as follows:

java ClassGenerator rowtypename [-u URL] [-c classname]

The default value for classname is the value for rowtypename.

If the URL parameter is not specified, the required information is retrieved from the setup.std file in the home directory.

The structure of setup.std is as follows:

URL jdbc:host-name:port-number
informixserver informixservername
database database
user user
passwd password

Simple named row example
 Nested named row example

Simple named row example

To use ClassGenerator, you first create the named row on the database server as shown in this example:

create row type employee (name char (20), age int);

Next, run ClassGenerator:

java ClassGenerator employee

Part X: Informix JDBC Driver Guide 83

The class generator generates employee.java, as shown next, and retrieves the database URL information from setup.std, which has the following
contents:

URL jdbc:davinci:1528
database test
user scott
passwd tiger
informixserver picasso_ius

Following is the generated .java file:

import java.sql.*;
import java.math.*;
public class employee implements SQLData
{
 public String name;
 public int age;
 private String sql_type;

 public String getSQLTypeName() { return "employee"; }

 public void readSQL (SQLInput stream, String type) throws
 SQLException
 {
 sql_type = type;
 name = stream.readString();
 age = stream.readInt();
 }

 public void writeSQL (SQLOutput stream) throws SQLException
 {
 stream.writeString(name);
 stream.writeInt(age);
 }
}

Nested named row example

To use ClassGenerator for a nested row, you first create the named row on the database server:

create row type manager (emp employee, salary int);

Next, run ClassGenerator. In this case, the setup.std file is not consulted, because you provide all the needed information at the command line:

java ClassGenerator manager -c Manager -u "jdbc:davinci:1528/test:user=scott;
password=tiger;informixserver=picasso_ius"

The -c option defines the Java™ class you are creating, which is Manager (with uppercase M).

The preceding command generates the following Java class:

import java.sql.*;
import java.math.*;
public class Manager implements SQLData
{
 public employee emp;
 public int salary;
 private String sql_type;

 public String getSQLTypeName() { return "manager"; }

 public void readSQL (SQLInput stream, String type) throws
 SQLException
 {
 sql_type = type;
 emp = (employee)stream.readObject();
 salary = stream.readInt();
 }

 public void writeSQL (SQLOutput stream) throws SQLException
 {
 stream.writeObject(emp);
 stream.writeInt(salary);
 }
}

84 Part X: Informix JDBC Driver Guide

Type cache information

When objects of some data types insert data into columns of certain other data types, IBM Informix® JDBC Driver verifies that the data provided
matches the data the database server expects by calling the SQLData.getSQLTypeName() method. The driver asks the database server for the
type information with each insertion.

This occurs in the following cases:

When an SQLData object inserts data into an opaque type column and getSQLTypeName() returns the name of the opaque type
When a Struct or SQLData object inserts data into a row column and getSQLTypeName() returns the name of a named row
When an SQLData object inserts data into a DISTINCT type column.

In the database URL, you can set the environment variable ENABLE_TYPE_CACHE=TRUE to have the driver cache the data type information the
first time it is retrieved. The driver then asks the cache for the type information before requesting the data from the database server.

Smart large object data types

A smart large object is a large object with the following features:

A smart large object can hold a very large amount of data.
Currently, a single smart large object can hold up to four terabytes of data. This data is stored in a separate disk space called an sbspace.

A smart large object is recoverable.
The database server can log changes to smart large objects and therefore can recover smart-large-object data in the event of a system or
hardware failure. Logging of smart large objects is not the default behavior.

A smart large object supports random access to its data.
Access to a simple large object (BYTE or TEXT) is on an “all or nothing” basis; that is, the database server returns all of the simple large-
object data that you request at one time. With smart large objects, you can seek to a desired location and read or write the desired number
of bytes.

You can customize storage characteristics of a smart large object.
When you create a smart large object, you can specify storage characteristics for the smart large object such as:

Whether the database server logs the smart large object in accordance with the current database log mode
Whether the database server keeps track of the last time the smart large object was accessed
Whether the database server uses page headers to detect data corruption

Smart large objects are stored in the database as BLOB and CLOB data types, which you can access in two ways:

In IBM Informix® JDBC Driver 3.0, and later, and IBM® Informix servers that support smart large object data types, you can use the
standard JDBC API methods described in the JDBC 3.0 specifications. This is the simpler approach.
The following JDBC 3.0 methods for BLOB and CLOB internal update have already been implemented in previous releases:

int setBytes(long, byte[]) throws SQLException

void truncate(long) throws SQLException

The following JDBC 3.0 methods from the BLOB interface are implemented in IBM Informix JDBC Driver, Version 3.0, or later:

OutputStream setBinaryStream(long) throws SQLException

int setBytes(long, byte[], int, int) throws SQLException

The following JDBC 3.0 methods from the CLOB interface are implemented in IBM Informix JDBC Driver, Version 3.0, or later:

OutputStream setAsciiStream(long) throws SQLException
Writer setCharacterStream(long) throws SQLException

int setString(long, String) throws SQLException

int setString(long, String, int, int) throws SQLException

You can use extensions that are based on smart-large-object support within IBM Informix. This approach offers more options.

Smart large objects in the database server
 Smart large objects in a client application

 Perform operations on smart large objects
 Work with storage characteristics

 Work with status characteristics
 Work with locks

Part X: Informix JDBC Driver Guide 85

Cache large objects
Avoid errors transferring large objects
Smart large object examples

Smart large objects in the database server

In the IBM® Informix® database server, a smart large object has two parts:

The data, which is stored in an sbspace
A large-object handle, known as an LO handle, which identifies the location of the smart-large-object data in its sbspace

Suppose you store the picture of an employee as a smart large object. The following figure shows how the LO handle contains information about
the location of the actual employee picture in the sbspace1_100 sbspace.
Figure 1. Smart large object in the database server

In the figure, the sbspace holds the actual employee image that the LO handle identifies. For more information about the structure of an sbspace,
and the onspaces database utility that creates and drops sbspaces, see the IBM Informix Administrator's Guide.
Important: Smart large objects can only be stored in sbspaces. You must create an sbspace before you attempt to insert smart large objects into
the database.
Because a smart large object is potentially very large, the database server stores only its LO handle in a database table; it can then use this
handle to find the actual data of the smart large object in the sbspace. This arrangement minimizes the table size.

Applications obtain the LO handle from the database and use it to locate the smart-large-object data and to open the smart large object for read
and write operations.

Smart large objects in a client application

On the client, your JDBC application can use ResultSet methods to access smart-large-object data, such as:

getClob() and getAsciiStream() for CLOB data
getBlob() and getBinaryStream() for BLOB data
getString() for both CLOB and BLOB data

On the client side, the JDBC driver references the LO handle through an IfxLocator object. Your JDBC application obtains an instance of the
IfxLocator class to contain the smart-large-object locator handle, as shown in the following figure. Your application creates a smart large object
independently and then inserts the smart large object into different columns, even in multiple tables. Using multiple threads, an application can
write or read data from various portions of the smart large object in parallel, which is very efficient.
Figure 1. Locating a smart large object In a client application

In IBM® Informix®, support for smart large object data types is available only with 9.x and later versions of the database server.

Creating smart large objects
 Accessing smart large objects

Creating smart large objects

The IBM® Informix® smart large object implementation is based on the following classes:

IfxLobDescriptor stores attributes for the large object.

86 Part X: Informix JDBC Driver Guide

IfxLocator contains the handle to the large object in the database server.
IfxSmartBlob contains methods for working with the smart large object, such as positioning within the object, reading data from the
object, and writing data to the object.
IfxBblob and IfxCblob implement the java.sql.Blob and java.sql.Clob interfaces from the JDBC 3.0 specification.
IfxLoStat stores status information about the large object.

Tip: This section describes how to use the smart-large-object interface, but it does not currently document every method and parameter in the
interface. For a comprehensive reference to all the methods in the interface and their parameters, see the javadoc files for IBM Informix JDBC
Driver, located in the doc/javadoc directory where your driver is installed.
To create a smart large object:

1. For a new smart large object, ensure that the smart large object has an sbspace specified for its data.
For detailed documentation about the onspaces utility that creates sbspaces, see the IBM Informix Administrator's Guide. For an example
of creating an sbspace, see Example of setting sbspace characteristics.

2. Create an IfxLobDescriptor object.
This allows you to set storage characteristics for the smart large object. The driver passes the IfxLobDescriptor object to the database
server when the IfxSmartBlob.IfxLoCreate() method creates the large object.

3. If desired, call methods in the IfxLobDescriptor object to specify storage characteristics.
For most smart large objects, the sbspace name is the only storage characteristic that you need to specify. The database server can
calculate values for all other storage characteristics. You can set particular storage characteristics to override these calculated values.
However, most applications do not need to set storage characteristics at this level of detail. For more information, see Work with storage
characteristics.

4. Create an IfxLocator object.
This is the pointer to the smart large object on the client.

5. Create an IfxSmartBlob object.
This lets you perform various common operations on the smart large object.

6. Execute the IfxSmartBlob.IfxLoCreate() method to create the large object in the database server.
IfxLoCreate() takes the IfxLocator and IfxLobDescriptor objects as parameters to identify the smart large object in the database server.

7. Execute IfxSmartBlob.IfxLoWrite() to write data to the smart large object in the database server.
8. Execute additional IfxSmartBlob methods to position within the object, read from the object, and so forth.
9. Execute IfxSmartBlob.IfxLoClose() to close the large object.

10. Insert the smart large object into the database (see Inserting a smart large object into a column).
11. Execute IfxSmartBlob.IfxLoRelease() to release the locator pointer.

Create an IfxLobDescriptor object
 Create an IfxLocator object

 Create an IfxSmartBlob object
 Inserting a smart large object into a column

Create an IfxLobDescriptor object

The IfxLobDescriptor class stores the internal storage characteristics for a smart large object. Before you can create a smart large object on the
database server, you must create an IfxLobDescriptor object, as follows:

IfxLobDescriptor loDesc = new IfxLobDescriptor(conn);

The conn parameter is a java.sql.Connection object. The IfxLobDescriptor() constructor sets all the default values for the object.

For more information about the internal storage characteristics, see Work with storage characteristics.

Create an IfxLocator object

The IfxLocator object (usually known as the locator pointer or large object locator) identifies the location of the smart large object, as shown in
Figure 1; the locator pointer is the communication link between the database server and the client for a particular large object. Before it creates a
large object or opens a large object for reading or writing, an application must create an IfxLocator object:

IfxLocator loPtr = new IfxLocator();
IfxLocator loPtr = new IfxLocator(Connection conn);

Use the second of these constructors to display localized error messages if an exception is thrown. For more information, see Support for
globalized error messages.

Part X: Informix JDBC Driver Guide 87

Create an IfxSmartBlob object

To create a smart large object and obtain access to the methods for performing operations on the object, call the IfxSmartBlob constructor,
passing a reference to the JDBC connection:

IfxSmartBlob smb = new IfxSmartBlob(myConn)

Once you have written all the methods that perform operations you need in the smart large object, you can then use the
IfxSmartBlob.IfxLoCreate() method to create the large object in the database server and open it for access within your application. The method
signature is as follows:

public int IfxLoCreate(IfxLobDescriptor loDesc, int flag,
 IfxLocator loPtr) throws SQLException
public int IfxLoCreate(IfxLobDescriptor loDesc, int flag,
 IfxBblob blob)throws SQLException
public int IfxLoCreate(IfxLobDescriptor loDesc, int flag,
 IfxCblob clob throws SQLException

The return value is the locator handle, which you can use in subsequent read, write, seek, and close methods (you can pass it as the locator file
descriptor (lofd) parameter to the methods that operate on open smart large objects; these methods are described beginning with Position within
a smart large object).

The flag parameter is an integer value that specifies the access mode in which the new smart large object is opened in the server. The access
mode determines which read and write operations are valid on the open smart large object. If you do not specify a value, the object is opened in
read-only mode.

Use the access mode flag values in the following table with the IfxLoCreate() and IfxLoOpen() methods to open or create smart large objects with
specific access modes.

Access mode Purpose Flag value in IfxSmartBlob

Read only Allows read operations only LO_RDONLY

Write only Allows write operations only LO_WRONLY

Write/Append Appends data you write to the end of the smart large object By itself, it is
equivalent to write-only mode followed by a seek to the end of the smart large
object. Read operations fail. When you open a smart large object in write/append
mode only, the smart large object is opened in write-only mode. Seek operations
move the seek position, but read operations to the smart large object fail, and the
seek position remains unchanged from its position just before the write. Write
operations occur at the seek position, and then the seek position is moved.

LO_APPEND

Read/Write Allows read and write operations LO_RDWR

The following example shows how to use a LO_RDWR flag value:

IfxSmartBlob smb = new IfxSmartBlob(myConn);
int loFd = smb.IfxLoCreate(loDesc, smb.LO_RDWR, loPtr);

The loDesc and loPtr objects are previously created IfxLobDescriptor and IfxLocator objects, respectively.

The database server uses the following system defaults when it opens a smart large object.

Open-mode information
Default open mode

Access mode
Read-only

Access method
Random

Buffering
Buffered access

Locking
Whole-object locks

For more information about locking, see Work with locks.

The following table provides the full set of open-mode flags:

Open-mode
flag Description

88 Part X: Informix JDBC Driver Guide

Open-mode
flag Description

LO_APPEND Appends data you write to the end of the smart large object
By itself, it is equivalent to write-only mode followed by a seek to the end of the smart large object. Read operations fail.

When you open a smart large object in write/append mode only, the smart large object is opened in write-only mode. Seek
operations move the seek position, but read operations to the smart large object fail, and the seek position remains
unchanged from its position just before the write. Write operations occur at the seek position, and then the seek position is
moved.

LO_WRONLY Allows write operations only

LO_RDONLY Allows read operations only

LO_RDWR Allows read and write operations

LO_DIRTY_REA
D

For open only
Allows you to read uncommitted data pages for the smart large object

You cannot write to a smart large object after you set the mode to LO_DIRTY_READ. When you set this flag, you reset the
current transaction isolation mode to Dirty Read for the smart large object.

Do not base updates on data that you obtain from a smart large object in Dirty Read mode.

LO_RANDOM Overrides optimizer decision
Indicates that I/O is random and that the database server should not read ahead. Default open mode.

LO_SEQUENTIA
L

Overrides optimizer decision
Indicates that reads are sequential in either forward or reverse direction.

LO_FORWARD Used only for sequential access to indicate forward direction

LO_REVERSE Used only for sequential access to indicate reverse direction

LO_BUFFER Use standard database server buffer pool.

LO_NOBUFFER Do not use the standard database server buffer pool. Use private buffers from the session pool of the database server.

LO_NODIRTY_R
EAD

Do not allow dirty reads on smart large object. See LO_DIRTY_READ flag for more information.

LO_LOCKALL Specifies that locking will occur on entire smart large object

LO_LOCKRANGE Specifies that locking will occur for a range of bytes
You specify the range of bytes through the IfxSmartBlob.IfxLoLock() method when you place the lock.

Inserting a smart large object into a column

After creating a smart large object, you must insert it into a BLOB or CLOB column to save it in the database. To do this, you must convert the
IfxLocator object to an IfxBblob or IfxCblob object, depending upon the column type.

To insert a smart large object into a BLOB or CLOB column:

1. Create an IfxBblob or IfxCblob object, as follows:

IfxBblob blb = new IfxBblob(loPtr);

The loPtr parameter is an IfxLocator object obtained from one of the previous sets of steps.

2. Use the PreparedStatement.setBlob() or setClob() method to insert the object into the column.

Important: The sbspace for the smart large object must exist in the database server before the insertion executes.

Accessing smart large objects

Follow these steps to use the IBM® Informix® extensions to select a smart large object from a database column.

To access a smart large object:

1. Cast the java.sql.Blob or java.sql.Clob object to an IfxBblob or IfxCblob object.
2. Use the IfxBblob.getLocator() or IfxCblob.getLocator() method to extract an IfxLocator object.

Part X: Informix JDBC Driver Guide 89

3. Create an IfxSmartBlob object.
4. Use the IfxSmartBlob.IfxLoOpen() method to open the smart large object.
5. Use the IfxSmartBlob.IfxLoRead() method to read the data from the smart large object.
6. Close the smart large object using the IfxSmartBlob.IfxLoClose() method.
7. Release the locator pointer in the server by calling the IfxSmartBlob.IfxLoRelease() method.

Standard JDBC ResultSet methods such as ResultSet.getBinaryStream(), getAsciiStream(), getString(), getBytes(), getBlob(), and getClob() can
fetch BLOB or CLOB data from a table. The extension classes can then access the data.

Perform operations on smart large objects

In the database server, you can store a smart large object directly in a column that has one of the following data types:

The CLOB data type holds text data.
The BLOB data type can store any kind of binary data in an undifferentiated byte stream.

The CLOB or BLOB column holds an LO handle for the smart large object. Therefore, when you select a CLOB or BLOB column, you do not obtain
the actual data of the smart large object, but the LO handle that identifies this data. Columns for smart large objects have a theoretical limit of 4
terabytes and a practical limit determined by your disk capacity.

You can use either of the following ways to store a smart large object in a column:

For direct access to the smart large object, create a column of the CLOB or BLOB data type.
To hide the smart large object within an atomic data type, create an opaque type that holds a smart large object.

In a client application, the IfxBblob and IfxCblob classes are bridges between the way of handling smart large object data described in the JDBC
3.0 specification and the IBM® Informix® extensions. The IfxBblob class implements the java.sql.Blob interface, and the IfxCblob class
implements the java.sql.Clob interface. The extensions require an IfxLocator object to identify the smart large object in the database server.

When you query a table containing a column of type BLOB or CLOB, an object of type Blob or Clob is returned, depending upon the column type.
You can then use the JDBC 3.0 supporting methods for objects of type Blob or Clob to access the smart large object.

The constructors create an IfxBblob or IfxCblob object from the IfxLocator object loPtr:

public IfxBblob(IfxLocator loPtr)
public IfxCblob(IfxLocator loPtr)

The following locator method returns an IfxLocator object from an IfxBblob or IfxCblob object. You can then open, read, and write to the smart
large object using the IfxSmartBlob.IfxLoOpen(), IfxLoRead(), and IfxLoWrite() methods:

public IfxLocator getLocator() throws SQLException

Open a smart large object
 Position within a smart large object

 Read data from a smart large object
 Write data to a smart large object

 Truncate a smart large object
 Measure a smart large object
 Close and release a smart large object

 Convert IfxLocator to a hexadecimal string

Open a smart large object

The following methods in the IfxSmartBlob class open an existing smart large object in the database server:

public int IfxLoOpen(IfxLocator loPtr, int flag) throws
 SQLException
public int IfxLoOpen(IfxBblob blob, int flag) throws SQLException
public int IfxLoOpen(IfxCblob clob, int flag) throws SQLException

The first version opens the smart large object that is referenced by the locator pointer loPtr. The second and third versions open the smart large
objects that are referenced by the specified IfxBblob and IfxCblob objects, respectively. The flag parameter is a value from the table in Create
an IfxSmartBlob object.

Position within a smart large object

90 Part X: Informix JDBC Driver Guide

The IfxLoTell() method in the IfxSmartBlob class returns the current seek position, which is the offset for the next read or write operation on the
smart large object. The IfxLoSeek() method in the IfxSmartBlob class sets the read or write position within an already opened large object.

public long IfxLoTell(int lofd)
public long IfxLoSeek(int lofd, long offset, int whence) throws
 SQLException

The absolute position depends on the value of the second parameter, offset, and the value of the third parameter, whence.

The lofd parameter is the locator file descriptor returned by the IfxLoCreate() or IfxLoOpen() method. The offset parameter is an offset from the
starting seek position.

The whence parameter identifies the starting seek position. Use the whence values in the following table to define the position within a smart
large object to start a seek operation.

Starting seek position Whence value

Beginning of the smart large object IfxSmartBlob.LO_SEEK_SET

Current® location in the smart large object IfxSmartBlob.LO_SEEK_CUR

End of the smart large object IfxSmartBlob.LO_SEEK_END

The return value is a long integer representing the absolute position within the smart large object.

The following example shows how to use a LO_SEEK_SET whence value:

IfxLobDescriptor loDesc = new IfxLobDescriptor(myConn);
IfxLocator loPtr = new IfxLocator();
IfxSmartBlob smb = new IfxSmartBlob(myConn);
int loFd = smb.IfxLoCreate(loDesc, smb.LO_RDWR, loPtr);
int n = smb.IfxLoWrite(loFd, fin, fileLength);
smb.IfxLoClose(loFd);
loFd = smb.IfxLoOpen(loPtr, smb.LO_RDWR);
long m = smb.IfxLoSeek(loFd, 200, smb.LO_SEEK_SET);

The writing position is set at an offset of 200 bytes from the beginning of the smart large object.

Read data from a smart large object

You can read data from a smart large object in the following ways:

Read the data from the object into a byte[] buffer.
Read the data from the object into a file output stream.
Read the data from the object into a file.

Use the IfxLoRead() method in the IfxSmartBlob class, which has the following signatures, to read from a smart large object into a buffer or file
output stream:

public byte[] IfxLoRead(int lofd, int nbytes) throws SQLException
public int IfxLoRead(int lofd, byte[] buffer, int nbytes) throws
 SQLException
public int IfxLoRead(int lofd, FileOutputStream fout, int nbytes
 throws SQLException
public int IfxLoRead(int lofd, byte[] buffer, int nbytes, int
 offset throws SQLException

The lofd parameter is a locator file descriptor returned by the IfxLoRead() or IfxLoOpen() method.

The first version returns nbytes bytes of data into a byte buffer. This version of the method allocates the memory for the buffer. The second
version reads nbytes bytes of data into an already allocated buffer. The third version reads nbytes bytes of data into a file output stream. The
fourth version reads nbytes bytes of data into a byte buffer starting at the current seek position plus offset into the smart large object. The return
values for the last three versions indicate the number of bytes read.

Use the IfxLoToFile() method in the IfxSmartBlob class, which has the following signatures, to read from a smart large object into a file:

public int IfxLoToFile(IfxLocator loPtr, String filename, int flag
 , int whence) throws SQLException
public int IfxLoToFile(IfxBblob blob, String filename, int flag ,
 int whence) throws SQLException
public int IfxLoToFile(IfxCblob clob, String filename, int flag ,
 int whence) throws SQLException

The first version reads the smart large object that is referenced by the locator pointer loPtr. The second and third versions read the smart large
objects that are referenced by the specified IfxBblob and IfxCblob objects, respectively.

Part X: Informix JDBC Driver Guide 91

The flag parameter indicates whether the file is on the client or the server. The value is either IfxSmartBlob.LO_CLIENT_FILE or
IfxSmartBlob.LO_SERVER_FILE. The whence parameter identifies the starting seek position. For the values, see Position within a smart large
object.

Tip: There has been a change in the signature of the following function:

IfxSmartBlob.IfxLoToFile().

This function used to accept four parameters, but now only accepts three parameters. All three overloaded functions for IfxLoToFile() accept
three parameters.

Write data to a smart large object

You can write data to a smart large object in the following ways:

Write the data from a byte[] buffer to the object.
Write the data from a file input stream to the object.
Write the data from a file to the object.

Use the IfxLoWrite() methods in the IfxSmartBlob class to write to a smart large object from a byte[] buffer or file input stream:

public int IfxLoWrite(int lofd, byte[] buffer) throws SQLException
public int IfxLoWrite(int lofd, InputStream fin, int length)
 throws SQLException

The first version of the method writes buffer.length bytes of data from the buffer into the smart large object. The second version writes length
bytes of data from an InputStream object into the smart large object.

The lofd parameter is a locator file descriptor returned by the IfxLoCreate() or IfxLoOpen() method. The buffer parameter is the byte[] buffer
where the data is read. The fin parameter is the InputStream object from which data is written into the smart large object. The length parameter
is the number of bytes written into the smart large object. The driver returns the number of bytes written.

Use the IfxLoFromFile() method in the IfxSmartBlob class to write data to a smart large object from a file:

public int IfxLoFromFile (int lofd, String filename, int flag, int
 offset, int amount) throws SQLException

The lofd parameter is a locator file descriptor returned by the IfxLoCreate() or IfxLoOpen() method. The flag parameter indicates whether the file
is on the client or the server. The value is either IfxSmartBlob.LO_CLIENT_FILE or IfxSmartBlob.LO_SERVER_FILE.

The driver returns the number of bytes written.

Truncate a smart large object

Use the IfxLoTruncate() method in the IfxSmartBlob class to truncate a large object at an offset you specify. The method signature is as follows:

public void IfxLoTruncate(int lofd, long offset) throws
 SQLException

The offset parameter is the absolute position at which the smart large object is truncated.

Measure a smart large object

Use the IfxLoSize() method in the IfxSmartBlob class to return the size of a smart large object. This method returns a long integer representing
the size of the large object.

The method signature is as follows:

public long IfxLoSize(int lofd) throws SQLException

Close and release a smart large object

92 Part X: Informix JDBC Driver Guide

After you have performed all the operations your application needs, you must close the object and then release the resources in the server. The
methods in the IfxSmartBlob class that perform these tasks are as follows:

public void IfxLoClose(int lofd) throws SQLException
public void IfxLoRelease(IfxLocator loPtr) throws SQLException
public void IfxLoRelease(IfxBblob blob) throws SQLException
public void IfxLoRelease(IfxCblob clob) throws SQLException

For any further access to the same large object, you must reopen it with the IfxLoOpen() method.

Convert IfxLocator to a hexadecimal string

Some applications, for example, web browsers, can only process ASCII data; they require IfxLocator to be converted to hexadecimal string
format. In a typical web-based application, the web server queries the database table and sends the results to the browser. Instead of sending
the entire smart large object, the web server converts the locator into hexadecimal string format and sends it to the browser. If the user requests
the browser to display the smart large object, the browser sends the locator in hexadecimal format back to the web server. The web server then
reconstructs the binary locator from the hexadecimal string and sends the corresponding smart large object data to the browser.

To convert between the IfxLocator byte array and a hexadecimal number, use the methods listed in the following table.

Task performed Method signature Additional information

Converts a byte array to a
hexadecimal character string

public static String toHexString(byte[] byteBuf); Works on data other than IfxLocator Provided
in the com.informix.util.stringUtil class

Converts a hexadecimal
character string to a byte array

public static byte[] fromHexString(String str) throws
NumberFormatException;

Works on data other than IfxLocator Provided
in the com.informix.util.stringUtil class

Constructs an IfxLocator object
using a byte array

public IfxLocator(byte[] byteBuf) throws SQLException; Provided in the IfxLocator class

Converts an IfxLocator byte
array to a hexadecimal
character string

public String toString(); Provided in the IfxLocator class

Converts a hexadecimal
character string to an
IfxLocator byte array

public byte[] toBytes(); Provided in the IfxLocator class

The following example uses the toString() and toBytes() methods to fetch the locator from a smart large object and then convert it into a
hexadecimal string:

...

String hexLoc = "";
byte[] blobBytes;
byte[] rawLocA = null;
IfxLocator loc;
try
{
 ResultSet rs = stmt.executeQuery("select b1 from btab");
 while(rs.next())
 {
 IfxBblob b=(IfxBblob)rs.getBlob(1);
 loc =b.getLocator();
 hexLoc = loc.toString();
 rawLocA = loc.toBytes();
 }
}
catch(SQLException e)
{}

The following example uses the IfxLocator() method to construct an IfxLocator, which is then used to read a smart large object:

...

try
{
 IfxLocator loc2 = new IfxLocator(rawLoc);
 IfxSmartBlob b2 = new IfxSmartBlob((IfxConnection)myConn);
 int lofd = b2.IfxLoOpen(loc2, b2.LO_RDWR);
 blobBytes = b2.IfxLoRead(lofd, fileLength);
}
catch(SQLException e)
 {}

Part X: Informix JDBC Driver Guide 93

Work with storage characteristics

Storage characteristics tell the database server how to manage a smart large object. These characteristics include such areas as sizing, logging,
locking, and open modes. You have the following options with respect to storage characteristics:

Use the system-specified storage characteristics as a basis for obtaining the storage characteristics of a smart large object.
Override the system defaults with one of the following:

Storage characteristics defined for a particular CLOB or BLOB column in which you want to store the smart large object
Storage characteristics that are unique to a particular CLOB or BLOB column called column-level storage characteristics
Special storage characteristics that you define for this smart large object only called user-specified storage characteristics

The database server uses a hierarchy, which the following figure shows, to obtain the storage characteristics for a new smart large object.
Figure 1. Storage-characteristics hierarchy

For a given storage characteristic, any value defined at the column level overrides the system-specified value, and any user-level value overrides
the column-level value. You can specify storage characteristics at the three points shown in the following table.

When specified How specified For more information

When an sbspace is
created

Options of onspaces utility System-specified storage characteristics
IBM® Informix® Administrator's Guide

When a database table is
created

Keywords in PUT clause of CREATE TABLE statement IBM Informix Guide to SQL: Syntax

When a smart large object
is created

Create flags and methods in the ifxLobDescriptor
class

Set create flags

System-specified storage characteristics
 Work with disk-storage information

 Work with logging, last-access time, and data integrity
 Changing the storage characteristics

System-specified storage characteristics

The database administrator establishes system-specified storage characteristics when he or she initializes the database server and creates an
sbspace with the onspaces utility, as follows:

If the onspaces utility has specified a value for a particular storage characteristic, the database server uses the onspaces value as the
system-specified storage characteristic.
If the onspaces utility has not specified a value for a particular storage characteristic, the database server uses the system default as the
system-specified storage characteristic.

The system-specified storage characteristics apply to all smart large objects that are stored in the sbspace, unless a smart large object
specifically overrides them with column-level or user-specified storage characteristics.

For the storage characteristics that onspaces can set, as well as the system defaults, see Table 1 and Table 1.

For most applications, it is recommended that you use the system-specified default values for the storage characteristics. Note the following
exceptions:

Your application needs to obtain extra performance.

94 Part X: Informix JDBC Driver Guide

You can use setXXX() methods in ifxLobDescriptor to change the disk-storage information of a new smart large object. For more
information, see Set create flags.

You want to use the storage characteristics of an existing smart large object.
The IfxLoStat.getLobDescriptor() method can obtain the large-object descriptor of an open smart large object. You can then create a new
object and use the IfxSmartBlob.ifxLoAlter() method to set its characteristics to the new descriptor. For more information, see Changing
the storage characteristics.

You are working with more than one smart large object and do not want to use the default sbspace.
The DBA can specify a default sbspace name with the SBSPACENAME configuration parameter in the onconfig file. However, you must
ensure that the location (the name of the sbspace) is correct for the smart large object that you create. If you do not specify an sbspace
name for a new smart large object, the database server stores it in this default sbspace. This arrangement can lead to space constraints.

If you know the size of the smart large object, specify this size in your application using the IfxLobDescriptor.setEstBytes() method instead
of in the onspaces utility (system level) or the CREATE TABLE or the ALTER TABLE statement (column level).

Obtain information about storage characteristics
 Example of setting sbspace characteristics

Obtain information about storage characteristics

To obtain the column-level storage characteristics of a smart large object, your application can call the following method in the IfxSmartBlob
class, passing the name of the column for the colname parameter:

IfxLobDescriptor IfxLoColInfo(java.lang.String colname) throws
 SQLException

Most applications only need to ensure correct storage characteristics for an sbspace name (the location of the smart large object). You can get
information for this and other storage characteristics by calling the various getXXX() methods in the ifxLobDescriptor class before creating the
IfxSmartBlob object. The following table summarizes the getXXX() methods.

Method signature in ifxLobDescriptor Purpose

int getCreateFlags() Obtains the create flags for the object

long getEstSize() Obtains the estimated size, in bytes, of the object

int getExtSize() Obtains the extent size of the object

long getMaxBytes() Obtains the maximum size, in bytes, of the object

java.lang.String getSbspace() Obtains the name of the sbspace in the database server in which the object is stored

Example of setting sbspace characteristics

The following call to the onspaces utility creates an sbspace called sb1 in the /dev/sbspace1 partition:

onspaces -c -S sb1 -p /dev/sbspace1 -o 500 -s 2000
 -Df "AVG_LO_SIZE=32"

The following table shows the resulting system-specified storage characteristics for all smart large objects in the sb1 sbspace.

Table 1. System-specified storage characteristics for the sb1 sbspace
Disk-storage information System-specified value Specified by onspaces utility

Size of extent Calculated by database server System default

Size of next extent Calculated by database server System default

Minimum extent size Calculated by database server System default

Size of smart large object 32 kilobytes (database server uses as size
estimate)

AVG_LO_SIZE

Maximum size of I/O block Calculated by database server System default

Name of sbspace sb1 -S option

Logging OFF System default

Last-access time OFF System default

Part X: Informix JDBC Driver Guide 95

Work with disk-storage information

Disk-storage information helps the database server determine how to manage the smart large object most efficiently on disk.
Important: For most applications, use the values that the database server calculates for the disk-storage information. Methods provided in IBM
Informix® JDBC Driver are intended for special situations.
This disk-storage information includes:

Allocation-extent information:
Extent size:
An allocation extent is a collection of contiguous bytes within an sbspace that the database server allocates to a smart large object
at one time. The database server performs storage allocations for smart large objects in increments of the extent size.

You can specify an extent size by calling the ifxLobDescriptor.setExtSize() method.

Next-extent size:
The database server tries to allocate an extent as a single, contiguous region in a chunk. However, if no single extent is large
enough, the database server must use multiple extents as necessary to satisfy the current write request. After the initial extent fills,
the database server attempts to allocate another extent of contiguous disk space. This process is called next-extent allocation.

For more information about extents, see the topics on disk structure and storage in the IBM® Informix Administrator's Guide.

Sizing information:
Estimated number of bytes in a new smart large object
Maximum number of bytes to which the smart large object can grow

To specify sizing information, you can use the setMaxBytes() and setEstBytes() methods in the ifxLobDescriptor class.

If you know the size of the smart large object, specify this size using the setEstBytes() method. This is the best way to set the extent size
because the database server can allocate the entire smart large object as one extent.

Location:
The name of the sbspace identifies the location at which to store the smart large object. To set this name, you can use the
vifxLobDescriptor.setSbSpace() method.

The database server uses the disk-storage information to determine how best to size, allocate, and manage the extents of the sbspace. It can
calculate all disk-storage information for a smart large object except the sbspace name.

The following table summarizes the ways to specify disk-storage information for a smart large object.

Table 1. Specifying disk-storage information

Disk-storage information System-specified storage characteristics Column-level storage
characteristics

User-specified storage
characteristics

System default value Specified by onspaces
utility

Specified by PUT
clause of CREATE
TABLE

Specified by the IBM
Informix JDBC Driver
method

Size of extent Calculated by database
server

EXTENT_SIZE EXTENT SIZE Yes

Size of next extent Calculated by database
server

NEXT_SIZE No No

Minimum extent size 4 kilobytes MIN_EXT_SIZE No No

Size of smart large object Calculated by database
server

Average size of all smart
large objects in sbspace:
AVG_LO_SIZE

No Estimated size of a
particular smart large
object Maximum size of
a particular smart large
object

Maximum size of I/O block Calculated by database
server

MAX_IO_SIZE No No

Name of sbspace SBSPACENAME -S option Name of an existing
sbspace in which a
smart large object: IN
clause

Yes

Work with logging, last-access time, and data integrity

96 Part X: Informix JDBC Driver Guide

Database administrators and applications can affect some additional smart-large-object attributes:

Whether to log changes to the smart large object in the system log file
Whether to save the last-access time for a smart large object
How to format the pages in the sbspace of the smart large object

The following table summarizes how you can alter these attributes at the system, column, and application levels.

Table 1. Specifying attribute information

Attribute information System-specified
storage
characteristics
default value

System-specified
storage
characteristics,
specified by
onspaces utility

Column-level storage
characteristics, specified by PUT
clause of CREATE TABLE

User-specified storage
characteristics, specified
by a JDBC driver method

Logging OFF LOGGING LOG, NO LOG Yes

Last-access time OFF ACCESSTIME KEEP ACCESS TIME, NO KEEP
ACCESS TIME

Yes

Buffering mode OFF BUFFERING No No

Lock mode Lock entire smart
large object

LOCK_MODE No Yes

Data integrity High integrity No HIGH INTEG, MODERATE INTEG Yes

Logging
 Last-access time

 Data integrity

Logging

By default, the database server does not log the user data of a smart large object. You can control the logging behavior for a smart large object as
part of its create flags. For more information, see Set create flags.

When a database performs logging, smart large objects might result in long transactions for the following reasons:

Smart large objects can be very large, even several gigabytes in size.
The amount of log storage needed to log user data can easily overflow the log.

Smart large objects might be used in situations where data collection can be quite long.
For example, if a smart large object holds low-quality audio recording, the amount of data collection might be modest but the recording
session might be quite long.

A simple workaround is to divide a long transaction into multiple smaller transactions. However, if this solution is not acceptable, you can control
when the database server performs logging of smart large objects. (Table 1 shows how you can control the logging behavior for a smart large
object.)

When logging is enabled, the database server logs changes to the user data of a smart large object. It performs this logging in accordance with
the current database log mode.

For a database that is not ANSI compliant, the database server does not guarantee that log records that pertain to smart large object are flushed
at transaction commit. However, the metadata is always restorable to an action-consistent state; that is, to a state that ensures no structural
inconsistencies exist in the metadata (control information of the smart large object, such as reference counts).

An ANSI-compliant database uses unbuffered logging. When smart-large-object logging is enabled, all log records (metadata and user data) that
pertain to smart large objects are flushed to the log at transaction commit. However, user data is not guaranteed to be flushed to its stable
storage location at commit time.

When logging is disabled, the database server does not log changes to user data even if the database server logs other database changes.
However, the database server always logs changes to the metadata. Therefore, the database server can still restore the metadata to an action-
consistent state.
Important: Consider carefully whether to enable logging for a smart large object. The database server incurs considerable overhead to log smart
large objects. You must also ensure that the system log file is large enough to hold the value of the smart large object. The logical log size must
exceed the total amount of data that the database server logs while the update transaction is active.
Write your application so that any transactions with smart large objects that have potentially long updates do not cause other transactions to
wait. Multiple transactions can access the same smart-large-object instance if the following conditions are satisfied:

The transaction can access the database row that contains an LO handle for the smart large object.
Multiple references can exist on the same smart large object if more than one column holds an LO handle for the same smart large object.

Part X: Informix JDBC Driver Guide 97

Another transaction does not hold a conflicting lock on the smart large object.
For more information about smart large object locks, see Work with locks.

The best update performance and fewest logical-log problems result when you disable the logging feature when you load a smart large object
and re-enable it after the load operation completes. If logging is turned on, you might want to turn logging off before a bulk load and then
perform a level-0 backup.

Last-access time

The last-access time of a smart large object is the system time at which the database server last read or wrote the smart large object. The last-
access time records access to the user data and metadata of a smart large object. This system time is stored as number of seconds since January
1, 1970. The database server stores this last-access time in the metadata area of the sbspace.

By default, the database server does not save the last access time. You can specify saving the last-access time by setting the
LO_KEEP_LASTACCESS_TIME create flag and calling the IfxLobDescriptor.setCreateFlags() method. For more information, see Set create flags.

The database server also tracks the last-modification time and the last change in status for a smart large object. For more information, see Work
with status characteristics.
Important: Consider carefully whether to track last-access time for a smart large object. The database server incurs considerable overhead in
logging and concurrency to maintain last-access times for smart large objects.

Data integrity

You can specify data integrity with the LO_HIGH_INTEG and LO_MODERATE_INTEG create flags, by calling the IfxLobDescriptor.setCreateFlags()
method. For more information, see Set create flags.

An sbpage is the unit of allocation for smart large object data, which is stored in the user-data area of an sbspace. The structure of an sbpage in
the sbspace determines how much data integrity the database server can provide. The database server uses the page header and trailer to
detect incomplete writes and data corruption.

The database server supports the following levels of data integrity:

High integrity tells the database server to use both a page header and a page trailer in each sbpage.
Moderate integrity tells the database server to use only a page header in each sbpage.

Moderate integrity provides the following benefits:

It eliminates an additional data copy operation that is necessary when an sbpage has page headers and page trailers.
It preserves the user data alignments on pages because no page header and page trailer are present.

Moderate integrity might be useful for smart large objects that contain large amounts of audio or video data that is moved through the database
server and that do not require a high data integrity. By default, the database server uses high integrity (page headers and page trailers) for
sbspace pages. You can control the data integrity for a smart large object as part of its storage characteristics.
Important: Consider carefully whether to use moderate integrity for sbpages of a smart large object. Although moderate integrity takes less disk
space per page, it also reduces the ability of the database server to recover information if disk errors occur.
For information about the structure of sbspace pages, see the IBM® Informix® Administrator's Guide.

Changing the storage characteristics

The IfxLoAlter() methods in the IfxSmartBlob class let you change the storage characteristics of a smart large object.

To change smart-large-object characteristics:

1. Create a new large-object descriptor. For example:

IfxLobDescriptor loDesc = new IfxLobDescriptor(conn);

2. Call IfxLobDescriptor.setCreateFlags(), setEstBytes(), IfxLobDescriptor.setMaxBytes(), setExtSize, and setSbspace() to specify the new
characteristics:

public void setCreateFlags(int flags)
public void setEstBytes(long estSize)
public void setMaxBytes (long maxSize)
public void setExtSize (long extSize)
public void setSbspace(java.lang.String sbspacename)

98 Part X: Informix JDBC Driver Guide

The flag parameter is a constant from Set create flags.

3. Call IfxLoAlter() to alter the existing smart large object to contain the new descriptor:

public int IfxLoAlter(IfxLocator loPtr, IfxLobDescriptor loDesc)
 throws SQLException
public int IfxLoAlter(IfxBblob blob, IfxLobDescriptor loDesc)
 throws SQLException
public int IfxLoAlter(IfxCblob clob, IfxLobDescriptor loDesc)
 throws SQLException

IfxLoAlter() obtains an exclusive lock in the server for the entire smart large object before it proceeds with the update. It holds this lock until the
update completes.

Set create flags

Set create flags

You can change the following characteristics by calling the IfxLobDescriptor.setCreateFlags() method:

Logging characteristics
You can specify the LO_LOG or LO_ NOLOG constant.

LO_LOG causes the server to follow the logging procedure used with the current database log for the corresponding smart large object.
This option can generate large amounts of log traffic and increase the risk that the logical log fills up.

Instead of full logging, you might turn off logging when you load the smart large object initially and then turn logging back on once the
smart large object is loaded. If you use NO LOG, you can restore the smart-large-object metadata later to a state in which no structural
inconsistencies exist. In most cases, no transaction inconsistencies will exist either, but that result is not guaranteed.

For more usage details on logging, see Logging.

Last-access time characteristics
You can specify the LO_ KEEP_LASTACCESS_TIME or LO NOKEEP_LASTACCESS_TIME constant. LO_ KEEP_LASTACCESS_TIME records, in
the smart-large-object metadata, the system time at which the corresponding smart large object was last read or written.

For more usage details on last-access time, see Last-access time.

Whether to detect incomplete writes and data corruption by producing user-data pages with a page header and page trailer
You can specify the LO_ HIGH_INTEG or LO_moderate_integ constant. LO_ HIGH_INTEG is the default data-integrity behavior.

For more usage details on data integrity, see Data integrity.

The following example sets multiple flags:

loDesc.setCreateFlags
 (IfxSmartBlob.LO_LOG+IfxSmartBlob.LO_TEMP+...)

A parallel getXXX() method lets you obtain the current storage characteristics for the large object:

public int getCreateFlags()

For more detailed information about all of the characteristics, see the section describing the PUT clause for the CREATE TABLE statement, in the
IBM® Informix® Guide to SQL: Syntax.

Work with status characteristics

The IfxLoStat class stores some statistical information about a smart large object such as the size, last access time, last modified time, last
status change, and so on. The following table shows the status information that you can obtain.

Table 1. Status information for a smart large object

Status
information Description

Last-access
time

The time, in seconds, that the smart large object was last accessed
This value is available only if the last-access time attribute is enabled for the smart large object. For more information, see
Last-access time.

Part X: Informix JDBC Driver Guide 99

Status
information Description

Last-change
time

The time, in seconds, of the last change in status for the smart large object
A change in status includes changes to metadata and user data (data updates and changes to the number of references).
This system time is stored as number of seconds since January 1, 1970.

Last-
modification
time

The time, in seconds, that the smart large object was last modified
A modification includes only changes to user data (data updates). This system time is stored as the number of seconds since
January 1, 1970.

On some platforms, the last-modification time might also have a microseconds component, which can be obtained
separately from the seconds component.

Size The size, in bytes, of the smart large object

Storage
characteristics

See Work with storage characteristics.

To obtain a reference to the status structure, call the following method in the IfxSmartBlob class:

IfxLoStat IfxLoGetStat(int lofd)

To obtain particular categories of status information, call the methods shown in the following table.
Table 2. Methods for obtaining status information

Status information Method signature in ifxLoStat class

Last-access time int getLastAccessTime()

Last-change time int getLastStatusTime()

Last-modification time int getLastModifyTimeM() - time in microseconds
int getLastModifyTimeS() - time rounded to seconds

Size int getSize()

Storage characteristics ifxLobDescriptor getLobDescriptor()

Work with locks

To prevent simultaneous access to smart-large-object data, the database server obtains a lock on this data when you open the smart large
object. This smart-large-object lock is distinct from the following kinds of locks:

Row locks
A lock on a smart large object does not lock the row in which the smart large object resides. However, if you retrieve a smart large object
from a row and the row is still current, the database server might hold a row lock as well as a smart-large-object lock. Locks are held on
the smart large object instead of on the row because many columns could be accessing the same smart-large-object data.

Locks of different smart large objects in the same row of a table
A lock on one smart large object does not affect other smart large objects in the row.

The following table shows the lock modes that a smart large object can support.

Table 1. Lock modes for a smart large object

Lock mode Purpose Description

Lock-all Lock the entire smart large object Indicates that lock requests apply to all data for the smart large object

Byte-range Lock only specified portions of the smart
large object

Indicates that lock requests apply only to the specified number of
bytes of smart-large-object data

When the server opens a smart large object, it uses the following information to determine the lock mode of the smart large object:

The access mode of the smart large object
The database server obtains a lock as follows:

In share mode, when you open a smart large object for reading (read-only)
In update mode, when you open a smart large object for writing (write-only, read/write, write/append)
When a write operation (or some other update) is actually performed on the smart large object, the server upgrades this lock to an
exclusive lock.

The isolation level of the current transaction

100 Part X: Informix JDBC Driver Guide

If the database table has an isolation mode of Repeatable Read, the server does not release any locks that it obtains on a smart large
object until the end of the transaction.

By default, the server chooses the lock-all lock mode.

The server retains the lock as follows:

It holds share-mode locks and update locks (which have not yet been upgraded to exclusive locks) until one of the following events
occurs:

The close of the smart large object
The end of the transaction
An explicit request to release the lock (for a byte-range lock only)

It holds exclusive locks until the end of the transaction even if you close the smart large object.

When one of the preceding conditions occurs, the server releases the lock on the smart large object.
Important: You lose the lock at the end of a transaction even if the smart large object remains open. When the server detects that a smart large
object has no active lock, it automatically obtains a new lock when the first access occurs to the smart large object. The lock that it obtains is
based on the original access mode of the smart large object.
The server releases the lock when the current transaction terminates. However, the server obtains the lock again when the next function that
needs a lock executes. If this behavior is undesirable, the server-side SQL application can use BEGIN WORK transaction blocks and place a
COMMIT WORK or ROLLBACK WORK statement after the last statement that needs to use the lock.

Byte-range locking

Byte-range locking

By default, the database server uses whole lock-all locks when it needs to lock a smart large object. Lock-all locks are an “all or nothing” lock;
that is, they lock the entire smart large object. When the database server obtains an exclusive lock, no other user can access the data of the
smart large object as long as the lock is held.

If this locking is too restrictive for the concurrency requirements of your application, you can use byte-range locking instead of lock-all locking.
With byte-range locking, you can specify the range of bytes to lock in the smart-large-object data. If other users access other portions of the
data, they can still acquire their own byte-range lock.

Use the IfxLoLock() method in the IfxSmartBlob class to specify byte-range locking:

public long IfxLoLock(int lofd, long offset, int whence, long
 range, int lockmode) throws SQLException

To unlock a range of bytes in the object, use the IfxLoUnLock() method:

public long IfxLoUnLock(int lofd, long offset, int whence, long
 range) throws SQLException

The lofd parameter is the locator file descriptor returned by the IfxLoCreate() or IfxLoOpen() method. The offset parameter is an offset from the
starting seek position. The whence parameter identifies the starting seek position. The values are described in the table in Position within a smart
large object.

The range parameter indicates the number of bytes to lock or unlock within the smart large object. The lockmode parameter indicates what type
of lock to create. The values can be either IfxSmartBlob.LO_EXCLUSIVE_MODE or IfxSmartBlob.LO_SHARED_MODE.

Cache large objects

Whenever an object of type BLOB, CLOB, text, or byte is fetched from the database server, the data is cached in client memory. If the size of the
large object is bigger than the value in the LOBCACHE environment variable, the large object data is stored in a temporary file. For more
information about the LOBCACHE variable, see Manage memory for large objects.

Avoid errors transferring large objects

The IFX_LOB_XFERSIZE environment variable is used to specify the number of bytes in a CLOB or BLOB to transfer from a client application to
the database server before checking whether an error has occurred. The error check occurs each time the specified number of bytes is
transferred. If an error occurs, the remaining data is not sent and an error is reported. If no error occurs, the file transfer will continue until it
finishes.

Part X: Informix JDBC Driver Guide 101

For example, if the value of IFX_LOB_XFERSIZE is set to 10485760 (10 MB), then error checking will occur after every 10485760 bytes of the
CLOB or BLOB is sent. If the IFX_LOB_XFERSIZE environment variable is not set, the error check occurs after the entire BLOB or CLOB is
transferred.

The valid range for the IFX_LOB_XFERSIZE environment variable is from 1 to 9223372036854775808 bytes. The IFX_LOB_XFERSIZE
environment variable is set on the client.

You should adjust the value of IFX_LOB_XFERSIZE to suit your environment. Set the IFX_LOB_XFERSIZE environment variable low enough so
that transmission errors of large BLOB or CLOB data types are detected early, but not so low that excessive network resources are consumed.

Smart large object examples

The following examples illustrate some of the tasks discussed in this section.

Create a smart large object
 Insert data into a smart large object

 Retrieve data from a smart large object

Create a smart large object

This example illustrates the steps shown in Creating smart large objects.

file = new File("data.dat");
FileInputStream fin = new FileInputStream(file);

byte[] buffer = new byte[200];;

IfxLobDescriptor loDesc = new IfxLobDescriptor(myConn);
IfxLocator loPtr = new IfxLocator();
IfxSmartBlob smb = new IfxSmartBlob(myConn);

// Now create the large object in server. Read the data from the
 file
// data.dat and write to the large object.
int loFd = smb.IfxLoCreate(loDesc, smb.LO_RDWR, loPtr);
System.out.println("A smart-blob is created ");
int n = fin.read(buffer);
if (n > 0)
n = smb.IfxLoWrite(loFd, buffer);
System.out.println("Wrote: " + n +" bytes into it");

// Close the large object and release the locator.
smb.IfxLoClose(loFd);
System.out.println("Smart-blob is closed ");
smb.IfxLoRelease(loPtr);
System.out.println("Smart Blob Locator is released ");

The contents of the file data.dat are written to the smart large object.

Insert data into a smart large object

The following code inserts data into a smart large object:

String s = "insert into large_tab (col1, col2) values (?,?)";
pstmt = myConn.prepareStatement(s);

file = new File("data.dat");
FileInputStream fin = new FileInputStream(file);

byte[] buffer = new byte[200];;

IfxLobDescriptor loDesc = new IfxLobDescriptor(myConn);
IfxLocator loPtr = new IfxLocator();
IfxSmartBlob smb = new IfxSmartBlob(myConn);

// Create a smart large object in server
int loFd = smb.IfxLoCreate(loDesc, smb.LO_RDWR, loPtr);
System.out.println("A smart-blob has been created ");

102 Part X: Informix JDBC Driver Guide

int n = fin.read(buffer);
if (n > 0)
n = smb.IfxLoWrite(loFd, buffer);
smb.IfxLoClose(loFd);

System.out.println("Wrote: " + n +" bytes into it");
System.out.println("Smart-blob is closed ");

Blob blb = new IfxBblob(loPtr);
pstmt.setInt(1, 2); // set the Integer column
pstmt.setBlob(2, blb); // set the blob column
pstmt.executeUpdate();
System.out.println("Binding of smart large object to table is
 done");

pstmt.close();
smb.IfxLoRelease(loPtr);
System.out.println("Smart Blob Locator is released ");

The contents of the file data.dat are written to the BLOB column of the large_tab table.

Retrieve data from a smart large object

The example in this topic illustrates the steps in Accessing smart large objects.

The following code example shows how to access the smart large object data using IBM® Informix® extension classes:

byte[] buffer = new byte[200];
System.out.println("Reading data now ...");
try
 {
 int row = 0;
 Statement stmt = myConn.createStatement();
 ResultSet rs = stmt.executeQuery("Select * from demo_14");
 while(rs.next())
 {
 row++;
 String str = rs.getString(1);
 InputStream value = rs.getAsciiStream(2);
 IfxBblob b = (IfxBblob) rs.getBlob(2);
 IfxLocator loPtr = b.getLocator();
 IfxSmartBlob smb = new IfxSmartBlob(myConn);
 int loFd = smb.IfxLoOpen(loPtr, smb.LO_RDONLY);

 System.out.println("The Smart Blob is Opened for reading ..");
 int number = smb.IfxLoRead(loFd, buffer, buffer.length);
 System.out.println("Read total " + number + " bytes");
 smb.IfxLoClose(loFd);
 System.out.println("Closed the Smart Blob ..");
 smb.IfxLoRelease(loPtr);
 System.out.println("Locator is released ..");
 }
 rs.close();
 }
catch(SQLException e)
 {
 System.out.println("Select Failed ...\n" +e.getMessage());
 }

First, the ResultSet.getBlob() method gets an object of type BLOB. The casting is required to convert the returned object to an object of type
IfxBblob. Next, the IfxBblob.getLocator() method gets an IfxLocator object from the IfxBblob object. After the IfxLocator object is available,
you can instantiate an IfxSmartBlob object and use the IfxLoOpen() and IfxLoRead() methods to read the smart large object data. Fetching
CLOB data is similar, but it uses the methods ResultSet.getClob(), IfxCblob.getLocator(), and so on.

If you use getBlob() or getClob() to fetch data from a column of type BLOB, you do not need to use the extensions to retrieve the actual BLOB
content as outlined in the preceding sample code. You can simply use Java.Blob.getBinaryStream() or Java.Clob.getAsciiStream() to retrieve the
content. IBM Informix JDBC Driver implicitly gets the content from the database server for you, using basically the same steps as the sample
code. This approach is simpler than the approach of the preceding example but does not provide as many options for reading the contents of the
BLOB column.

Work with opaque types

Part X: Informix JDBC Driver Guide 103

An opaque data type is an atomic data type that you define to extend the database server. The database server has no information about the
opaque data type until you provide routines that describe it.

Extending the database server also frequently requires that you create user-defined routines (UDRs) to support the extensions. A UDR is a routine
that you create that can be invoked in an SQL statement, by the database server, or from another UDR. UDRs can be part of opaque types, or they
can be separate.

The JDBC 3.0 standard provides the java.sql.SQLInput and java.sql.SQLOutput methods to access opaque types. The definition of these
interfaces is extended to fully support IBM® Informix® fixed binary and variable binary opaque types. This extension includes the following
interfaces:

IfmxUdtSQLInput
IfmxUdtSQLOutput

In addition, the following classes simplify creating Java™ opaque types and UDRs in the database server from a JDBC client application:

UDTManager
UDTMetaData
UDRManager
UDRMetaData

The UDTManager and UDRManager classes provide an infrastructure for mapping client-side Java classes as opaque data types and UDRs and
storing their instances in the database.

This facility works only in client-side JDBC. For details about the features and limitations of server-side JDBC, see the IBM J/Foundation
Developer's Guide.

For detailed information about opaque types and UDRs, see the following publications:

IBM Informix User-Defined Routines and Data Types Developer's Guide discusses the terms and concepts about opaque types and UDRs
that you need to use the information in this section, including the internal data structure, support functions, and implicit and explicit casts.
The IBM J/Foundation Developer's Guide discusses information specific to writing UDRs in Java.

The IfmxUDTSQLInput interface
 The IfmxUDTSQLOutput interface

 Map opaque data types
 Type cache information
 Unsupported methods

 Creating opaque types and UDRs
 Examples

The IfmxUDTSQLInput interface

The com.informix.jdbc.IfmxUdtSQLInput interface extends java.sql.SQLInput with several added methods. To use these methods, you must
cast the SQLInput references to IfmxUdtSQLInput. The methods allow you to perform the following functions:

Read data.
Position in the data stream.
Set or obtain attributes of the data.

Read data
 Position in the data stream

 Set or obtain data attributes

Read data

The readString() method reads the next attribute in the stream as a Java™ string. The readBytes() method reads the next attribute in the stream
as a Java byte array. Both methods are similar to the SQLInput.readBytes() method except that a fixed length of data is read in:

public String readString(int maxlen) throws SQLException;
public byte[] readBytes(int maxlen) throws SQLException;

In both methods, you must supply a length for IBM Informix® JDBC Driver to read the next attribute properly, because the characteristics of the
opaque type are unknown to the driver. The maxlen parameter specifies the maximum length of data to read in.

104 Part X: Informix JDBC Driver Guide

Position in the data stream

The getCurrentPosition() method retrieves the current position in the input stream. The setCurrentPosition() method changes the position in the
input stream to the position specified by the position parameter:

public int getCurrentPosition();
public void setCurrentPosition(int position) throws SQLException;
public void skipBytes(int len) throws SQLException;

The position parameter must be a positive integer. The skipBytes() method changes the position in the input stream by the number of bytes
specified by the len parameter, relative to the current position. The len parameter must be a positive integer.

In both setCurrentPosition() and skipBytes(), IBM Informix® JDBC Driver generates an SQLException if the new position specified is after the end
of the input stream.

Set or obtain data attributes

The length() method returns the total length of the entire data stream. The getAutoAlignment() method retrieves the TRUE or FALSE (on or off)
state of the auto alignment feature. The setAutoAlignment() method sets the state to TRUE or FALSE:

public int length();
public boolean getAutoAlignment();
public void setAutoAlignment(boolean value);

Important: Setting the auto alignment feature might result in discarded bytes from the input stream if the data is not already aligned. JDBC
applications should provide aligned data or set the auto alignment feature to FALSE.

The IfmxUDTSQLOutput interface

The com.informix.jdbc.IfmxUdtSQLOutput interface extends java.sql.SQLOutput with the following added methods:

public void writeString(String str, int length) throws
 SQLException;
public void writeBytes(byte[] b, int length) throws SQLException;

To use these methods, you must cast the SQLOutput references to IfmxUdtSQLOutput.

Use the writeString() method to write the next attribute to the stream as a Java™ string. If the string passed in is shorter than the specified
length, IBM Informix® JDBC Driver pads the string with zeros.

Use the writeBytes() method to write the next attribute to the stream as a Java byte array.

Both methods are similar to the SQLOutput.writeBytes() method except that a fixed length of data is written to the stream. If the array or string
passed in is shorter than the specified length, IBM Informix JDBC Driver pads the array or string with zeros. In both methods, you must supply a
length for IBM Informix JDBC Driver to write the next attribute properly, because the opaque type is unknown to the driver.

Map opaque data types

IBM® Informix® opaque types map to Java™ objects, which must implement the java.sql.SQLData interface. These Java objects describe all the
data members that make up the opaque type. These Java objects are strongly typed; that is, each read or write method in the readSQL or
writeSQL method of the Java object must match the corresponding data member in the opaque type definition.IBM Informix JDBC Driver cannot
perform any type conversion because the type structure is unknown to it.

IBM Informix JDBC Driver also requires that all opaque data be transported as DataBlade API data types, as defined in mitypes.h (this file is
included in all IBM Informix installations). All opaque data is stored in the database server table in a C struct, which is made up of various
DataBlade API types, as defined in the opaque type.

You do not need to handle mapping between Java and C if you use the UDT and UDR Manager facility to create opaque types. For more
information, see Creating opaque types and UDRs.

Type cache information
Part X: Informix JDBC Driver Guide 105

When objects of some data types insert data into columns of certain other data types, IBM Informix® JDBC Driver verifies that the data provided
matches the data the database server expects by calling the SQLData.getSQLTypeName() method. The driver asks the database server for the
type information with each insertion.

This occurs in the following cases:

When an SQLData object inserts data into an opaque type column and getSQLTypeName() returns the name of the opaque type
When a Struct or SQLData object inserts data into a row column and getSQLTypeName() returns the name of a named row
When an SQLData object inserts data into a DISTINCT type column,

In the database URL, you can set the environment variable ENABLE_TYPE_CACHE=TRUE to have the driver cache the data type information the
first time it is retrieved. The driver then asks the cache for the type information before requesting the data from the database server.

Unsupported methods

The following methods of the SQLInput and SQLOutput interfaces are not supported for opaque types:

java.sql.SQLInput
readAsciiStream()
readBinaryStream()
readBytes()
readCharacterStream()
readObject()
readRef()
readString()

java.sql.SQLOutput
writeAsciiStream(InputStream x)
writeBinaryStream(InputStream x)
writeBytes(byte[] x)
writeCharacterStream(Reader x)
writeObject(Object x)
writeRef(Ref x)
writeString(String x)

Creating opaque types and UDRs

The UDTManager and UDRManager classes allow you to easily create and deploy opaque types and user-defined routines (UDRs) in the
database server.

Before using the information in this section, read the following two additional publications:

For information about configuring your system to support Java™ UDRs, see the IBM® J/Foundation Developer's Guide.
For detailed information about developing opaque types, see IBM Informix® User-Defined Routines and Data Types Developer's Guide.

Overview of creating opaque types and UDRs
 Preparing to create opaque types and UDRs

 Creating opaque types
 Creating a UDR

 Requirements for the Java class
 SQL names

 Specify characteristics for an opaque type
 Creating the JAR and class files

 Send the class definition to the database server
 Creating an opaque type from existing code

 Remove opaque types and JAR files
 Create UDRs

 Remove UDRs and JAR files
 Obtain information about opaque types and UDRs

 Execute in a transaction

Overview of creating opaque types and UDRs

106 Part X: Informix JDBC Driver Guide

In the database server, any Java™ class that implements the java.sql.SQLData interface and is accessible to the Java Virtual Machine can be
stored as an opaque type. The UDTManager and UDRManager classes, together with their supporting UDTMetaData and UDRMetaData classes,
extend this facility to client applications: your Java client application can use these classes to create opaque types and user-defined routines and
transfer their class definitions to the database server. The client does not need to be accessible to the database server to use this functionality.
Important: This functionality is tightly coupled with server support for creating and using Java opaque types and user-defined routines. Any
limitations on using Java opaque types and user-defined routines that exist in your version of the database server apply equally to Java opaque
types and routines you create in your client applications.
When you use the UDTManager and UDTMetaData classes, IBM Informix® JDBC Driver performs all of the following actions for your application:

1. Obtains the JAR file you specify
2. Transports the JAR file from the client local area to the server local area

You define the server local area using the UDTManager.setJarFileTmpPath() method. The default is /tmp on UNIX systems and C:\temp on
Windows systems.

3. Installs the JAR file in the server
4. Registers the opaque data type in the database with the CREATE OPAQUE TYPE SQL statement, taking input from the UDTMetaData class
5. Registers the support functions and casts you provide for the opaque type using the CREATE Function and CREATE CAST SQL statements

You define support functions and casts using the setSupportUDR() and setXXXCast() methods in the UDTMetaData class.

If you do not provide input and output functions for the opaque type, the driver registers the default functions (see the release notes for
any limitations on this feature).

6. Registers any other nonsupport routines or casts (if any) that you specified, taking input from the UDTMetaData.setUDR() and
UDTMetaData.setXXXCast() method calls in your application

7. Creates a mapping between an SQL OPAQUE type and a Java object (using the sqlj.setUDTExtName() method)

When you use the UDRManager and UDRMetaData classes, IBM Informix JDBC Driver performs the following actions:

1. Obtains the JAR file you specify
2. Transports the JAR file from the client local area to the server local area
3. Installs the JAR file in the server
4. Registers the UDRs in the database with the CREATE FUNCTION SQL statement, taking input from the UDRMetaData.setUDR() method

calls in your application

The methods in the UDT and UDR Manager facility perform the following main functions:

Creating opaque types in Java without preexisting Java classes, using the default input and output methods the server provides
Converting existing Java classes on the client to opaque types and UDRs in the database server
Converting Java static methods to UDRs

Preparing to create opaque types and UDRs

Before using the UDT and UDR Manager facility, perform the following setup tasks:

Make sure your database server supports Java™.
The UDT and UDR Manager facility does not work in legacy servers that do not include Java support.

Include either the ifxtools.jar or ifxtools_g.jar file in your CLASSPATH setting.
Create a directory named /usr/informix in the database server, with owner and group set to user informix and permissions set to 777.
Add the following entry to the /etc/group file in the database server:

informix::unique-id-number:

Check the release notes for the driver and database server for any further limitations in this release.

Creating opaque types

Using UDT Manager, you can create a Java™ opaque type from an existing Java class that implements the SQLData interface. UDT Manager can
also help you create a Java opaque type without requiring that you have the Java class ready; you specify the characteristics of the opaque type
you want to create, and the UDT Manager facility creates the Java class and then the Java opaque type.

Follow the steps in this section to use the UDTManager classes.

Creating an opaque type from an existing Java class
 Creating an opaque type without an existing Java class

Part X: Informix JDBC Driver Guide 107

Creating an opaque type from an existing Java class

To create an opaque type from an existing Java™ class:

1. Ensure that the class meets the requirements for conversion to an opaque type.
For the requirements, see Requirements for the Java class.

2. If you do not want to use the default input and output routines provided by the server, write support UDRs for input and output.
For general information about writing support UDRs, see IBM® Informix® User-Defined Routines and Data Types Developer's Guide.

3. Create a default sbspace on the database server to hold the JAR file that contains the code for the opaque type.
For information about creating an sbspace, see the IBM Informix Administrator's Guide for your database server and the IBM J/Foundation
Developer's Guide.

4. Open a JDBC connection.
Make sure a database object is associated with the connection object. The driver cannot create an opaque type without a database object.
For details about creating a connection with a database object, see Connect to the database.

5. Instantiate an UDTManager object and an UDTMetaData object:

UDTManager udtmgr = new UDTManager(connection);
UDTMetaData mdata = new UDTMetaData();

6. Set properties for the opaque type by calling methods in the UDTMetaData object.
At a minimum, you must specify the SQL name, UDT length, and JAR file SQL name. For an explanation of SQL names, see SQL names.

You can also specify the alignment, implicit and explicit casts, and any support UDRs:

mdata.setSQLName("circle2");
mdata.setLength(24);
mdata.setAlignment(UDTMetaData.EIGHT_BYTE)
mdata.setJarFileSQLName("circle2_jar");
mdata.setUDR(areamethod, "area");
mdata.setSupportUDR(input, "input", UDTMetaData.INPUT)
mdata.setSupportUDR(output, "output",UDTMetaData.OUTPUT)
mdata.SetImplicitCast(com.informix.lang.IfxTypes.IFX_TYPE_
 LVARCHAR, "input");
mdata.SetExplicitCast(com.informix.lang.IfxTypes.IFX_TYPE_
 LVARCHAR, "output");

7. If desired, specify a path name where the driver should place the JAR file in the database server file system:

String pathname = "/work/srv93/examples";
udtmgr.setJarFileTmpPath(pathname);

Make sure the path exists in the server file system. For more information, see Specify a JAR file temporary path.

8. Create the opaque type:

udtmgr.createUDT(mdata, "Circle2.jar", "Circle2", 0);

For additional information about creating an opaque type from existing code, see Creating an opaque type from existing code.

For a complete code example of using the preceding steps to create an opaque type, see Create an opaque type from an existing Java class with
UDTManager.

Creating an opaque type without an existing Java class

To create an opaque type without an existing Java™ class:

1. Create a default sbspace on the database server to hold the JAR file that contains the code for the opaque type.
For information about creating an sbspace, see the IBM® Informix® Administrator's Guide for your database server and the IBM
J/Foundation Developer's Guide.

2. Open a JDBC connection.
Make sure the connection object has a database object associated with it. For details, see Connect to the database.

3. Instantiate a UDTManager object and a UDTMetaData object:

UDTManager udtmgr = new UDTManager(connection);
UDTMetaData mdata = new UDTMetaData();

108 Part X: Informix JDBC Driver Guide

4. Specify the characteristics of the opaque type by calling methods in the UDTMetaData class:

mdata.setSQLName("acircle");
mdata.setLength(24);
mdata.setFieldCount(3);
mdata.setFieldName(1, "x");
mdata.setFieldName(2, "y");
mdata.setFieldName(3, "radius");
mdata.setFieldType
 (1,com.informix.lang.IfxTypes.IFX_TYPE_INT);
mdata.setFieldType
 (2,com.informix.lang.IfxTypes.IFX_TYPE_INT);
mdata.setFieldType
 (3,com.informix.lang.IfxTypes.IFX_TYPE_INT);
mdata.setJarFileSQLName("ACircleJar");

For more information about setting characteristics for opaque types, see Specify characteristics for an opaque type.

5. Create the Java file, the class file, and the JAR file:

mdata.keepJavaFile(true);
String classname = udtmgr.createUDTClass(mdata);
String jarfilename = udtmgr.createJar(mdata, new String[]
 {classname + .class"});

For more information, see Creating the JAR and class files.

6. If desired, specify a path name where the driver should place the JAR file in the database server file system:

String pathname = "/work/srv93/examples";
udtmgr.setJarFileTmpPath(pathname);

Make sure the path exists in the server file system. For more information, see Specify a JAR file temporary path.

7. Send the class definition to the database server:

udtmgr.createUDT(mdata, jarfilename, classname, 0);

For more information, see Send the class definition to the database server.

For a complete code example of using the preceding steps to create an opaque type, see Create an opaque type without an existing Java class.

Creating a UDR

The following topics shows you how to create a UDR from a Java™ class.

To create a UDR:

1. Write a Java class with one or more static method to be registered as UDRs.
For more information, see Requirements for the Java class.

2. Create an sbspace on the database server to hold the JAR file that contains the code for the UDR.
For information about creating an sbspace, see the IBM® Informix® Administrator's Guide for your database server and the IBM
J/Foundation Developer's Guide.

3. Open a JDBC connection.
Make sure the connection object has a database object associated with it. For details, see Connect to the database.

4. Instantiate a UDRManager object and a UDRMetaData object:

UDRManager udrmgr = new UDRManager(myConn);
UDRMetaData mdata = new UDRMetaData();

5. Create java.lang.Reflect.Method objects for the static methods to be registered as UDRs. In the following example, method1 is an
instance that represents the udr1(string, string) method in the Group1 java class; method2 is an instance that represents the
udr2(Integer, String, String) method in the Group1 Java class:

Class gp1 = Class.forName("Group1");
Method method1 = gp1.getMethod("udr1",
 new Class[]{String.class, String.class});
Method method2 = gp1.getMethod("udr2",
 new Class[]{Integer.class, String.class, String.class});

6. Specify which methods to register as UDRs.
The second parameter specifies the SQL name of the UDR:

Part X: Informix JDBC Driver Guide 109

mdata.setUDR(method1, "group1_udr1");
mdata.setUDR(method2, "group1_udr2");

For more information, see Create UDRs.

7. Specify the JAR file SQL name:

mdata.setJarFileSQLName("group1_jar");

8. If desired, specify a path name where the driver should place the JAR file in the database server file system:

String pathname = "/work/srv93/examples";
udrmgr.setJarFileTmpPath(pathname);

Make sure the path exists in the database server file system. For more information, see Specify a JAR file temporary path.

9. Install the UDRs in the database server:

udrmgr.createUDRs(mdata, "Group1.jar", "Group1", 0);

For more information, see Create UDRs.

For complete code examples of creating UDRs, see Create UDRs with UDRManager.

Requirements for the Java class

To qualify for converting into an opaque type, your Java™ class must meet the following conditions:

The class must implement the java.sql.SQLData interface. For an example, see Examples.
If the class contains another opaque type, the additional opaque type must be implemented in a similar way and the additional .class file
must be packaged as part of the same JAR file as the original opaque type.
If the class contains DISTINCT types, the class can either implement the SQLData interface for the DISTINCT types or let the driver map
the DISTINCT types to the base types. For more information, see Distinct data types.
The class cannot contain complex types.
If you are creating an opaque type from an existing Java class and using the default support functions in the database server, you must
cast the SQLInput and SQLOutput streams in SQLData.readSQL() and SQLData.writeSQL() to IfmxUDTSQLInput and
IfmxUDTSQLOutput.
For a code example that shows how to do this, see Create an opaque type using default support functions.

All Java methods for the opaque type must be in the same .java file with the class that defines the opaque type.

Additional requirements for UDRs are as follows:

All class methods to be registered as UDRs must be static.
The method argument types and the return types must be valid Java data types.
The methods can use all basic nongraphic Java packages that are included in the Java development kit, such as java.util, java.io, java.net,
java.rmi, java.sql, and so forth.
Data types of method arguments and return types must conform to the data type mapping tables shown in Data type mapping for UDT
manager and UDR manager.
The following SQL argument or return types are not supported:

MONEY
DATETIME with qualifier other than hour to second or year to fraction(5)
INTERVAL with qualifier other than year to month or day to fraction(5)
Any data type not shown in the mapping tables for method arguments and return types; for the tables, see Data type mapping for
UDT manager and UDR manager.

SQL names

Some of the methods in the UDTMetaData class set an SQL name for an opaque type or a JAR file that contains the opaque type or UDR code.
The SQL name is the name of the object as referenced in SQL statements. For example, assume your application makes the following call:

mdata.setSQLName("circle2");

The name as used in an SQL statement is as follows:

CREATE TABLE tab (c circle2);

Similarly, assume the application sets the JAR file name as follows:

110 Part X: Informix JDBC Driver Guide

mdata.setJarFileSQLname("circle2_jar");

The JAR file name as referenced in SQL is as follows:

CREATE FUNCTION circle2_output (...)
RETURNS circle2
EXTERNAL NAME
 'circle2_jar: circle2.fromString (...)'
LANGUAGE JAVA
NOT VARIANT
END FUNCTION;

Important: There is no default value for an SQL name. Use the setSQLname() or setJarFileSQLName() method to specify a name, otherwise an
SQL exception will be thrown.

Specify characteristics for an opaque type

The following topics provide additional information about creating an opaque type without a preexisting Java™ class. Details about creating an
opaque type from an existing Java class begin with Creating an opaque type from existing code.

Using the methods in the UDTMetaData class, you can specify characteristics for a new opaque type. These settings apply for new opaque types;
for opaque types created from existing files, see Creating an opaque type from existing code.

You can set the following characteristics:

The number of fields in the internal data structure that defines the opaque type
Additional characteristics, such as data type, name, and scale, of each field in the internal structure that defines the opaque type
The length of the opaque type
The alignment of the opaque type
The SQL name of the opaque type and the JAR file
The name of the generated Java class
Whether to keep the generated .java file

Specify field count
 Specify additional field characteristics

 Specify length
 Specify alignment

 Alignment values
Specify SQL names

 Specify the Java class name
 Specifying Java source file retention

Specify field count

The setFieldCount() method specifies the number of fields in the internal data structure that defines the opaque type:

public void setFieldCount(int fieldCount) throws SQLException

Specify additional field characteristics

The following methods set additional characteristics for fields in the internal data structure:

public void setFieldName (int field, String name) throws SQLException
public void setFieldType (int field, int ifxtype) throws SQLException
public void setFieldTypeName(int field, String sqltypename) throws SQLException
public void setFieldLength(int field, int length) throws SQLException

The field parameter indicates the field for which the driver should set or obtain a characteristic. The first field is 1; the second field is 2, and so
forth.

The name you specify with setFieldName() appears in the Java™ class file. The following example sets the first field name to IMAGE.

mdata.setFieldName(1, "IMAGE");

The setFieldType() method sets the data type of a field using a constant from the file com.informix.lang.IfxTypes. For more information, see
Mapping for field types. The following example specifies the CHAR data type for values in the third field:

Part X: Informix JDBC Driver Guide 111

mdata.setFieldType(3, com.informix.lang.IfxTypes.IFX_TYPE_CHAR);

The setFieldTypeName() method sets the data type of a field using the SQL data type name:

mdata.setFieldTypeName(1, "IMAGE_UDT");

This method is valid only for opaque and distinct types; for other types, the driver ignores the information.

The length parameter has the following meanings, depending on the data type of the field:

Character types
Maximum length in characters

DATETIME
Encoded length

INTERVAL
Encoded length

Other data type or no type specified
Driver ignores the information

The possible values for encoded length are those in the JDBC 2.20 specification: hour to second; year to second; and year to fraction(1), year to
fraction(2), up through year to fraction(5).

The following example specifies that the third (VARCHAR) field in an opaque type cannot store more than 24 characters:

mdata.setFieldLength(3, 24);

Specify length

The setLength() method specifies the total length of the opaque type:

public void setLength(int length) throws SQLException

If you are creating an opaque type from an existing Java™ class and do not specify a length, the driver creates a variable-length opaque type. If
you are creating an opaque type without an existing Java class, you must specify a length; UDT Manager creates only fixed-length opaque types
in this case.

Specify alignment

The setAlignment() method specifies the opaque types alignment:

public void setAlignment(int alignment)

The alignment parameter is one of the alignment values shown in the next section. If you do not specify an alignment, the database server aligns
the opaque type on 4-byte boundaries.

Alignment values

Alignment values are shown in the following table.

Value Constant Structure begins with Boundary aligned
on

1 SINGLE_BYTE 1-byte quantity single-byte

2 TWO_BYTE 2-byte quantity (such as SMALLINT) 2-byte

4 FOUR_BYTE 4-byte quantity (such as FLOAT or UNSIGNED INT) 4-byte

8 EIGHT_BYTE 8-byte quantity 8-byte

Specify SQL names

Specify SQL names with the setSQLName() and setJarFileSQLName() methods:

112 Part X: Informix JDBC Driver Guide

public void setSQLName(String name) throws SQLException
public void setJarFileSQLName(String name) throws SQLException

By default, the driver uses the name you set through the setSQLName() method as the file names of the Java™ class and JAR files generated
when you call the UDTManager.createUDTCclass() and UDTManager.createJar() methods. For example, if you called setSQLName("circle")
and then called createUDTCclass() and createJar(), the class file name generated would be circle.class and the JAR file name would be circle.jar.
You can specify a Java class file name other than the default by calling the setClassName() method.

The JAR file SQL name is the name as it will be referenced in the SQL CREATE FUNCTION statement the driver uses to register a UDR.
Important: The JAR file SQL name is the name of the JAR file in SQL statements; it has no relationship to the contents of the JAR file.

Specify the Java class name

Use setClassName() to specify the Java™ class name:

public void setClassName(String name)throws SQLException

If you do not set a class name with setClassName(), the driver uses the SQL name of the opaque type (set through setSQLName()) as the name of
the Java class and the file name of the .class file generated by the createUDTCclass() method.

Specifying Java source file retention

Use keepJavaFile() to specify whether to retain the .java source file:

public void keepJavaFile(boolean value)

The value parameter indicates whether the createUDTClass() method should retain the .java file that it generates when it creates the Java™ class
file for the new opaque type. The default is to remove the file. The following example specifies keeping the .java file:

mdata.keepJavaFile(true);

Creating the JAR and class files

Once you have specified the characteristics of the opaque type through the UDTMetaData methods, you can use the methods in the
UDTManager class to create opaque types and their class and JAR files in the following order:

1. Instantiate the UDTManager object.
The constructor is defined as follows:

public UDTManager(Connection conn) throws SQLException

2. Create the .class and .java files with the createUDTClass() method.
3. Create the .jar file with the createJar() method.
4. Create the opaque type with the createUDT() method.

Create the .class and .java files
 Create the .jar file

Create the .class and .java files

The createUDTClass() method has the following signature:

public String createUDTClass(UDTMetaData mdata) throws SQLException

The createUDTClass() method causes the driver to perform all of the following actions for your application:

1. Creates a Java™ class with the name you specified in the UDTMetaData.setClassName() method
If no class name was specified, the driver uses the name specified in the UDTMetaData.setSQLName() method.

2. Puts the Java class code into a .java file and then compile the file to a .class file
3. Returns the name of the newly created class to your application

Part X: Informix JDBC Driver Guide 113

If you specified TRUE by calling the UDTMetaData.keepJavaFile() method, the driver retains the generated .java file. The default is to delete the
.java file.

Your application should call the createUDTClass() method only to create new .class and .java files to define an opaque type, not to generate an
opaque type from existing files.

Create the .jar file

The createJar() method compiles the class files you specify in the classnames list. The files in the list must have the .class extension.

public String createJar(UDTMetaData mdata, String[] classnames)
 throws SQLException;

The driver creates a JAR file named sqlname.jar (where sqlname is the name you specified by calling UDTMetaData.setSQLName()) and returns
the file name to your application.

Send the class definition to the database server

After you have created the JAR file, use the UDTManager.createUDT() method to create the opaque type by sending the class definition to the
database server:

public void createUDT(UDTMetaData mdata, String jarfile, String
 classname, int deploy) throws SQLException;

The jarfile parameter is the path name of a JAR (.jar) file that contains the class definition for the opaque type. By default, the classes in the
java.io package resolve relative path names against the current user directory as named by the system property user.dir; it is typically the
directory in which the Java™ Virtual Machine was invoked. The file name must be included in your CLASSPATH setting if you use an absolute path
name.

The classname parameter is the name of the class that implements the opaque type.

The SQL name of the opaque type defaults to the class name if your application does not call setClassName(). You can specify an SQL name by
calling the UDTMetaData.setSQLName() method.
Important: If your application calls createUDT() within a transaction or your database is ANSI or enables logging, some extra guidelines apply.
For more information, see Execute in a transaction.

Specify deployment descriptor actions
 Specify a JAR file temporary path

Specify deployment descriptor actions

In the UDTManager and UDRManager methods, the deploy parameter indicates whether install_actions should be executed if a deployment
descriptor is present in the JAR file. The undeploy parameter indicates whether remove_actions should be executed.

0
Execute install_actions or remove_actions.

Nonzero
Do not execute install_actions or remove_actions.

A deployment descriptor allows you to include the SQL statements for creating and dropping UDRs in a JAR file. For more information about the
deployment descriptor, see the IBM® J/Foundation Developer's Guide and the SQLJ specification.

Specify a JAR file temporary path

When the driver ships the JAR file for an opaque type or UDR, it places the file by default in /tmp (on UNIX) or in C:\temp (on Windows). You can
specify an alternative path name by calling the setJarTmpPath() method in either the UDTManager or UDRManager class:

public void setJarTmpPath(String path) throws SQLException

You can call this method at any point before calling createUDT() or createUDR(), the UDTManager or UDRManager objects. The path parameter
must be an absolute path name, and you must ensure that the path exists on the server file system.

114 Part X: Informix JDBC Driver Guide

Creating an opaque type from existing code

The preceding topics describe methods you use to create a new opaque type without an existing Java™ class. When you create an opaque type
from existing Java code, you specify the SQL name, JAR file SQL name, support UDRs (if any), and any additional nonsupport UDRs that are
included in the opaque type. (For an explanation of SQL names, see SQL names.) You can also specify the length, alignment, and implicit and
explicit casts.

To create an opaque type from existing code, use the following methods:

UDTMetaData.setSQLName() to specify the SQL name of the opaque type as referenced in SQL statements
UDTMetaData.setSupportUDR() for each support UDR in the opaque type
Support UDRs are input/output, send/receive, and so forth.

UDTMetaData.setUDR() for each nonsupport UDR in the opaque type
UDTMetaData.setJarFileSQLName() to specify an SQL name for the JAR file
UDTMetaData.setImplicitCast() or UDTMetaData.setExplicitCast() to specify each cast
UDTMetaData.setLength() if the opaque type is fixed length (the driver defaults to variable length)
UDTMetaData.setAlignment() to specify the byte boundary on which the opaque type is aligned (necessary only if you do not want the
database server to default to a 4-byte boundary)
UDTManager.createJar() to create a JAR (.jar) file if you do not already have one
UDTManager.createUDT() to create the opaque type

In addition, the setXXXCast(), setSupportUDR(), and setUDR() methods are used only for creating an opaque type from existing code:

public void setImplicitCast(int ifxtype, String methodsqlname)
 throws SQLException

public void setExplicitCast(int ifxtype, String methodsqlname)
 throws SQLException

public void setSupportUDR(Method method, String sqlname, int type)
 throws SQLException
public void setUDR(Method method, String sqlname)
 throws SQLException

The setXXXCast() methods
 The setSupportUDR() and setUDR() methods

The setXXXCast() methods

The setXXXCast() methods specify the implicit or explicit cast to convert data from an opaque type to the data type specified.

The ifxtype parameter is a type code from the class com.informix.lang.IfxTypes. Data type mapping between the ifxtype parameter and the SQL
type in the database server is detailed in Mapping for casts. The methodsqlname parameter is the SQL name of the Java™ method that
implements the cast.

The following example sets an implicit cast implemented by a Java method with the SQL name circle2_input:

setImplicitCast(com.informix.lang.IfxTypes.IFX_TYPE_LVARCHAR,
 "circle2_input");

The following example sets an explicit cast implemented by a Java method with the SQL name circle_output:

setExplicitCast(com.informix.lang.IfxTypes.IFX_TYPE_LVARCHAR,
 "circle2_output");

The following example sets an explicit cast for converting a circle2 opaque type to an integer:

setExplicitCast(com.informix.lang.IfxTypes.IFX_TYPE_INT,
 "circle2_to_int");

The setSupportUDR() and setUDR() methods

The setSupportUDR() method specifies a Java™ method in an existing Java class that will be registered as a support UDR for the opaque type.

The method parameter specifies an object from java.lang.reflect.Method to be registered as a Java support UDR for the opaque type in the
database server. Support UDRs are Input, Output, Send, Receive, and so forth (for more information, see IBM® Informix® User-Defined Routines

Part X: Informix JDBC Driver Guide 115

and Data Types Developer's Guide.)

The sqlname parameter specifies the SQL name of the method. For more information, see SQL names.

The type parameter specifies the kind of support UDR, as follows:

UDTMetaData.INPUT
UDTMetaData.OUTPUT
UDTMetaData.SEND
UDTMetaData.RECEIVE
UDTMetaData.IMPORT
UDTMetaData.EXPORT
UDTMetaData.BINARYIMPORT
UDTMetaData.BINARYEXPORT

For step-by-step information about creating an opaque type from existing code, see Creating an opaque type from an existing Java class.
Tip: It is not necessary to register the methods in the SQLData interface. For example, you do not need to register SQLData.getSQLTypeName(),
SQLData.readSQL(), or SQLData.writeSQL().
To specify other UDRs, use setUDR() as described in Create UDRs.

Remove opaque types and JAR files

You can remove opaque types and their JAR files using the following methods:

public static void removeUDT(String sqlname) throws SQLException
public static void removeJar(String jarfilesqlname, int undeploy)
 throws SQLException

The removeUDT() method removes the opaque type, with all its casts and UDRs, from the database server. It does not remove the JAR file itself
because other opaque types or UDRs could be using the same JAR file.
Important: If your application calls removeUDT() within a transaction or if your database is ANSI or enables logging, some extra guidelines apply.
For more information, see Execute in a transaction.
The removeJar() method removes the JAR file from the system catalog. The jarfilesqlname parameter is the name you specified with the
setJarFileSQLName() method.

For the undeploy parameter, see Specify deployment descriptor actions.
Important: Before calling removeJar(), you must first remove all functions and procedures that depend on the JAR file. Otherwise, the database
server fails to remove the file.

Create UDRs

Using UDR Manager to create UDRs in the database server involves:

Coding the UDRs and packaging the code in a JAR file
For details about coding UDRs, see the IBM® J/Foundation Developer's Guide.

Creating a default sbspace in the database server to hold the JAR file that contains the code for the UDR
For information about creating an sbspace, see the IBM Informix Administrator's Guide for your database server and the IBM J/Foundation
Developer's Guide.

Calling methods in the UDRMetaData class to specify the information necessary for IBM Informix® JDBC Driver to register the UDRs in the
database server
If desired, specifying a path name where the driver should place the JAR file in the database server file system
Installing the UDRs in the server

Creating a UDR for a C-language opaque type is not supported; the opaque type must be in Java™.

To specify a UDR for the driver to register, use this method in UDRMetaData:

public void setUDR(Method method, String sqlname) throws SQLException

The method parameter specifies an object from java.lang.Reflect.Method to be registered as a Java UDR in the database server. The sqlname
parameter is the name of the method as used in SQL statements.

Once you have specified the UDRs to be registered, you can set the JAR file SQL name using UDRMetaData.setJarFileSQLName() and then use
the UDRManager.createUDRs() method to install the UDRs in the database server, as follows:

public void createUDRs(UDRMetaData mdata, String jarfile, String
 classname, int deploy) throws SQLException

116 Part X: Informix JDBC Driver Guide

The jarfile parameter is the absolute or relative path name of the client-side JAR file that contains the Java method definitions. If you use the
absolute path name, the JAR file name must be included in your CLASSPATH setting.

The classname parameter is the name of a Java class that contains the methods you want to register as UDRs in the database server.
Requirements for preparing the Java methods are described on 1.

For the deploy parameter, see Specify deployment descriptor actions.

The createUDRs() method causes the driver to perform all of the following steps for your application:

1. Obtain the JAR file designated by the first parameter.
2. Transport the JAR file from the client local area to the server local area.
3. Register the UDRs specified in the UDRMetaData object (set through one or more calls to UDRMetaData.setUDR()).
4. Install the JAR file and create the UDRs in the server.

After createUDRs() executes, your application can use the UDRs in SQL statements.
Important: If your application calls createUDRs() within a transaction, or if your database is ANSI or enables logging, some extra guidelines
apply. For more information, see Execute in a transaction.

Remove UDRs and JAR files

You can remove UDRs using the following methods:

public void removeUDR(String sqlname) throws SQLException
public void removeJar(String jarfilesqlname, int undeploy) throws
 SQLException

Tip: The removeUDR() method removes the UDR from the server but does not remove the JAR file, because other opaque types or UDRs could be
using the same JAR file.
The removeJar() method is described in Remove opaque types and JAR files.

Remove overloaded UDRs

Remove overloaded UDRs

To remove overloaded UDRs, use the removeUDR() method with an additional parameter:

public void removeUDR(String sqlname, Class[] methodparams) throws
 SQLException

The methodparams parameter specifies the data type of each parameter in the UDR. Specify NULL to indicate no parameters. For example,
assume a UDR named print() is overloaded with two additional method signatures.

Java™ method signature Corresponding SQL name

void print() print1

void print(String x, String y, int r) print2

void print(int a, int b) print3

The code to remove all three UDRs is:

udrmgr.removeUDR("print1", null);
udrmgr.removeUDR("print2",
 new Class[] {String.class, String.class, int.class});
udrmgr.removeUDR("print3", new Class[] {int.class, int.class});

Obtain information about opaque types and UDRs

Many of the setXXX() methods in the UDTMetaData and UDRMetaData classes have parallel getXXX() methods for obtaining characteristics of
existing opaque types and UDRs.

The getXXX() methods in the UDTMetaData class
 The getXXX() methods in the UDRMetaData class

Part X: Informix JDBC Driver Guide 117

The getXXX() methods in the UDTMetaData class

The following table summarizes the available getXXX() methods in the UDTMetaData class. For the field parameter, 1 designates the first field in
the internal data structure, 2 is the second, and so forth. For details about SQL names, see SQL names.

Information obtained Method signature Additional information

Number of fields in the internal
data structure

public int getFieldCount() Returns 0 if no fields are present

Name of a field in the internal data
structure

public String getFieldName int field) throws
SQLException

Returns NULL if no name exists

Data type code of a field in the
internal data structure

public int getFieldType (int field) throws SQLException Data type codes come from the class
com.informix.lang.IfxTypes. Returns -1 if no
data type exists

Data type name of a field in the
internal data structure

public String getFieldTypeName (int field) throws
SQLException

Returns NULL if no name exists

For character type: maximum
number of characters in the field;
for date-time or interval type:
encoded qualifier

public int getFieldLength (int field) throws
SQLException

Returns -1 if no length was set

SQL name of the opaque type public String getSQLName() Returns NULL if no name was set

SQL name of the JAR file public String getJarFileSQLName() Returns NULL if no name was set

Name of the Java™ class for the
opaque type

public String getClassName() If no class name was set through setClassName(),
sqlname is returned (this is the default). If no SQL
name was set through setSQLName(), returns
NULL

Length of a fixed-length opaque
type

public int getLength() Returns-1 if no length was set

Alignment of an opaque type public int getAlignment() Returns -1 if no alignment was set
For the alignment codes, see Alignment values.

An array of Method objects that
have been specified as support
UDRs through setSupportUDR()

public Method[] getSupportUDRs() For details about support UDRs, see the
description of setSupportUDR() in Creating an
opaque type from existing code. Returns NULL if
no support UDRs were specified

SQL name of a Java method that
was specified as a support UDR
through setSupportUDR()

public String getSupportUDRSQLName (Method
method) throws SQLException

Returns NULL if no name was set

The getXXX() methods in the UDRMetaData class

To obtain information about UDRs, use the methods in the following table.

Information obtained Method signature Additional information

An array of java.lang.Method.Reflect
methods that have been specified as
UDRs for an opaque type.

public Method[] getUDRs() To specify a UDR for an opaque type, call the
UDTMetaData.setUDR() method. Returns NULL if no
UDRs were specified

SQL name of a Java™ method public String getUDRSQLName(Method method)
throws SQLException

Returns NULL if no SQL name was specified for the
UDR Method object

Execute in a transaction

If your database is ANSI or has logging enabled, and the application is not already in a transaction, the driver executes the SQL statements to
create opaque types and UDRs on the server within a transaction. This means that either all the steps will succeed, or all will fail. If the opaque
type or UDR creation fails at any point, the driver rolls back the transaction and throws an SQLException.

118 Part X: Informix JDBC Driver Guide

If the application is already in a transaction when the UDTManager.createUDT() or UDRManager.createUDRs() method calls are issued, the SQL
statements are executed within the existing transaction. This means that if the driver returns an SQLException to your application during the
creation of the opaque type or UDR, your application must roll back the transaction to ensure the integrity of the database. Otherwise, the
opaque type, parts of its casts, or UDRs could be left in the database.

Examples

The rest of this section contains examples for creating and using opaque types and UDRs.

The first four examples are released with your JDBC driver software in the demo/udt-distinct directory; the last two are in the
demo/tools/udtudrmgr directory. See the README file in each directory for a description of the files.

Class definition
 Insert data

 Retrieve data
 Smart large objects within an opaque type

 A smart large object can be a data member within an opaque type, although you are most likely to create a large object on the database
server, outside of the opaque type context, using the IBM® Informix® extension classes.
Create an opaque type from an existing Java class with UDTManager

 Create an opaque type without an existing Java class
 Create UDRs with UDRManager

Class definition

The class for the C opaque type, charattrUDT in the following example, must implement the SQLData interface:

import java.sql.*;
import com.informix.jdbc.*;
/*
 * C struct of charattr_udt:
 *
 * typedef struct charattr_type
 * {
 * char chr1[4+1];
 * mi_boolean bold; // mi_boolean (1 byte)
 * mi_smallint fontsize; // mi_smallint (2 bytes)
 * }
 * charattr;
 *
 * typedef charattr charattr_udt;
 *
 */
public class charattrUDT implements SQLData
{
 private String sql_type = "charattr_udt";
 // an ASCII character/a multibyte character, and is null-terminated.
 public String chr1;
 // Is the character in boldface?
 public boolean bold;
 // font size of the character
 public short fontsize;

 public charattrUDT() { }

 public charattrUDT(String chr1, boolean bold, short fontsize)
 {
 this.chr1 = chr1;
 this.bold = bold;
 this.fontsize = fontsize;
 }

 public String getSQLTypeName()
 {
 return sql_type;
 }
 // reads a stream of data values and builds a Java object
 public void readSQL(SQLInput stream, String type) throws SQLException
 {
 sql_type = type;
 chr1 = ((IfmxUDTSQLInput)stream).readString(5);
 bold = stream.readBoolean();

Part X: Informix JDBC Driver Guide 119

 fontsize = stream.readShort();
 }
 // writes a sequence of values from a Java object to a stream
 public void writeSQL(SQLOutput stream) throws SQLException
 {
 ((IfmxUDTSQLOutput)stream).writeString(chr1, 5);
 stream.writeBoolean(bold);
 stream.writeShort(fontsize);
 }
 // overides Object.equals()
 public boolean equals(Object b)
 {
 return (chr1.equals(((charattrUDT)b).chr1) &&
 bold == ((charattrUDT)b).bold &&
 fontsize == ((charattrUDT)b).fontsize);
 }

 public String toString()
 {
 return "chr1=" + chr1 + " bold=" + bold + " fontsize=" + fontsize;
 }
}

In your JDBC application, a custom type map must map the SQL-type name charattr_udt to the charattrUDT class:

java.util.Map customtypemap = conn.getTypeMap();
if (customtypemap == null)
 {
 System.out.println("\n***ERROR: typemap is null!");
 return;
 }
customtypemap.put("charattr_udt", Class.forName("charattrUDT"));

Insert data

You can insert an opaque type as either its original type or its cast type. The following example shows how to insert opaque data using the
original type:

String s = "insert into charattr_tab (int_col, charattr_col)
 values (?, ?)";
System.out.println(s);
pstmt = conn.prepareStatement(s);
...
charattrUDT charattr = new charattrUDT();
charattr.chr1 = "a";
charattr.bold = true;
charattr.fontsize = (short)1;

pstmt.setInt(1, 1);
System.out.println("setInt...ok");

pstmt.setObject(2, charattr);
System.out.println("setObject(charattrUDT)...ok");

pstmt.executeUpdate();

If a casting function is defined, and you would like to insert data as the casting type instead of the original type, you must call the setXXX()
method that corresponds to the casting type. For example, if you have defined a function casting CHAR or LVARCHAR to a charattrUDT column,
you can use the setString() method to insert data, as follows:

// Insert into UDT column using setString(int,String) and Java
 String object.
String s =
 "insert into charattr_tab " +
 "(decimal_col, date_col, charattr_col, float_col) " +
 "values (?,?,?,?)";
writeOutputFile(s);
PreparedStatement pstmt = myConn.prepareStatement(s);

...
String strObj = "(A, f, 18)";
pstmt.setString(3, strObj);
...

Retrieve data
120 Part X: Informix JDBC Driver Guide

To retrieve IBM® Informix® opaque types, you must use ResultSet.getObject(). IBM Informix JDBC Driver converts the data to a Java™ object
according to the custom type map you provide. Using the previous example of the charattrUDT type, you can fetch the opaque data, as in the
following example:

String s = "select int_col, charattr_col from charattr_tab order by 1";
System.out.println(s);

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(s);
System.out.println("execute...ok");

System.out.println("Fetching data ...");
int curRow = 0;
while (rs.next())
 {
 curRow++;
 System.out.println("currentrow=" + curRow + " : ");

 int intret = rs.getInt("int_col");
 System.out.println(" int_col " + intret);

 charattrUDT charattrret = (charattrUDT)rs.getObject("charattr_col");
 System.out.print(" charattr_col ");
 if (curRow == 2 || curRow == 6)
 {
 if (rs.wasNull())
 System.out.println("<null>");
 else
 System.out.println("***ERROR: " + charattrret);
 }
 else
 System.out.println(charattrret+"");
 } //while

System.out.println("total rows expected: " + curRow);
stmt.close();

Smart large objects within an opaque type

A smart large object can be a data member within an opaque type, although you are most likely to create a large object on the database server,
outside of the opaque type context, using the IBM® Informix® extension classes.

For more information about smart large objects, see Smart large object data types.

A large object is stored as an IfxLocator object within the opaque type; in the C struct that defines the opaque type internally, the large object is
referenced through a locator pointer of type MI_LO_HANDLE. The object is created using the methods provided in the IfxSmartBlob class, and
the large object handle obtained from these methods becomes the data member within the opaque type. Both BLOB and CLOB objects use the
same large object handle, as shown in the following example:

import java.sql.*;
import com.informix.jdbc.*;
/*
 * C struct of large_bin_udt:
 *
 * typedef struct LARGE_BIN_TYPE
 * {
 * MI_LO_HANDLE lb_handle; // handle to large object (72 bytes)
 * }
 * large_bin_udt;
 *
 */
public class largebinUDT implements SQLData
{
 private String sql_type = "large_bin_udt";
 public Clob lb_handle;

 public largebinUDT() { }

 public largebinUDT(Clob clob)
 {
 lb_handle = clob;
 }

 public String getSQLTypeName()
 {
 return sql_type;
 }

Part X: Informix JDBC Driver Guide 121

 // reads a stream of data values and builds a Java object
 public void readSQL(SQLInput stream, String type) throws SQLException
 {
 sql_type = type;
 lb_handle = stream.readClob();
 }
 // writes a sequence of values from a Java object to a stream
 public void writeSQL(SQLOutput stream) throws SQLException
 {
 stream.writeClob(lb_handle);
 }
}

In a JDBC application, you create the MI_LO_HANDLE object using the methods provided by the IfxSmartBlob class:

String s = "insert into largebin_tab (int_col, largebin_col, lvc_col) " +
 "values (?,?,?)";
System.out.println(s);
pstmt = conn.prepareStatement(s);

...
// create a large object using IfxSmartBlob's methods
String filename = "lbin_in1.dat";
File file = new File(filename);
int fileLength = (int) file.length();
FileInputStream fin = new FileInputStream(file);

IfxLobDescriptor loDesc = new IfxLobDescriptor(conn);
System.out.println("create large object descriptor...ok");

IfxLocator loPtr = new IfxLocator();
IfxSmartBlob smb = new IfxSmartBlob((IfxConnection)conn);
int loFd = smb.IfxLoCreate(loDesc, 8, loPtr);
System.out.println("create large object...ok");

int n = smb.IfxLoWrite(loFd, fin, fileLength);
System.out.println("write file content into large object...ok");

pstmt.setInt(1, 1);
System.out.println("setInt...ok");

// initialize largebin object using the large object created
// above, before doing setObject for the large_bin_udt column.
largebinUDT largebinObj = new largebinUDT();
largebinObj.lb_handle = new IfxCblob(loPtr);
pstmt.setObject(2, largebinObj);
System.out.println("setObject(largebinUDT)...ok");

pstmt.setString(3, "Sydney");
System.out.println("setString...ok");

pstmt.executeUpdate();
System.out.println("execute...ok");

// close/release large object
smb.IfxLoClose(loFd);
System.out.println("close large object...ok");
smb.IfxLoRelease(loPtr);
System.out.println("release large object...ok");

See Smart large object data types for details.

Create an opaque type from an existing Java class with UDTManager

The following example shows how an application can use the UDTManager and UDTMetaData classes to convert an existing Java™ class on the
client (inaccessible to the database server) to an SQL opaque type in the database server.

Create an opaque type using default support functions
 Create an opaque type using support functions you supply

Create an opaque type using default support functions

122 Part X: Informix JDBC Driver Guide

The following example creates an opaque type named Circle, using an existing Java™ class and using the default support functions provided in
the database server:

*/

import java.sql.*;
import com.informix.jdbc.IfmxUDTSQLInput;
import com.informix.jdbc.IfmxUDTSQLOutput;

public class Circle implements SQLData
{
 private static double PI = 3.14159;

 double x; // x coordinate
 double y; // y coordinate
 double radius;

 private String type = "circle";

 public String getSQLTypeName() { return type; }

 public void readSQL(SQLInput stream, String typeName)
 throws SQLException
 {
 // To be able to use the DEFAULT support functions supplied
 // by the server, you must cast the stream to IfmxUDTSQLInput.
 // (Server requirement)

 IfmxUDTSQLInput in = (IfmxUDTSQLInput) stream;
 x = in.readDouble();
 y = in.readDouble();
 radius = in.readDouble();
 }

 public void writeSQL(SQLOutput stream) throws SQLException
 {
 // To be able to use the DEFAULT support functions supplied
 // by the server, have to cast the stream to IfmxUDTSQLOutput.
 // (Server requirement)

 IfmxUDTSQLOutput out = (IfmxUDTSQLOutput) stream;
 out.writeDouble(x);
 out.writeDouble(y);
 out.writeDouble(radius);
 }

 public static double area(Circle c)
 {
 return PI * c.radius * c.radius;
 }

}

The opaque type

The opaque type

The following JDBC client application installs the class Circle (which is packaged in Circle.jar) as an opaque type in the system catalog.
Applications can then use the opaque type Circle as a data type in SQL statements:

import java.sql.*;
import java.lang.reflect.*;

public class PlayWithCircle
{
 String dbname = "test";
 String url = null;
 Connection conn = null;

 public static void main (String args[])
 {
 new PlayWithCircle(args);
 }

 PlayWithCircle(String args[])
 {
 System.out.println("----------------");

Part X: Informix JDBC Driver Guide 123

 System.out.println("- Start - Demo 1");
 System.out.println("----------------");

 // -----------
 // Getting URL
 // -----------
 if (args.length == 0)
 {
 System.out.println("\n***ERROR: connection URL must be provided " +
 "in order to run the demo!");
 return;
 }
 url = args[0];

 // --------------
 // Loading driver
 // --------------
 try
 {
 System.out.print("Loading JDBC driver...");
 Class.forName("com.informix.jdbc.IfxDriver");
 System.out.println("ok");
 }
 catch (java.lang.ClassNotFoundException e)
 {
 System.out.println("\n***ERROR: " + e.getMessage());
 e.printStackTrace();
 return;
 }

 // ------------------
 // Getting connection
 // ------------------
 try
 {
 System.out.print("Getting connection...");
 conn = DriverManager.getConnection(url);
 System.out.println("ok");
 }
 catch (SQLException e)
 {
 System.out.println("URL = '" + url + "'");
 System.out.println("\n***ERROR: " + e.getMessage());
 e.printStackTrace();
 return;
 }
 System.out.println();

 // -------------------
 // Setup UDT meta data
 // -------------------
 Method areamethod = null;
 try
 {
 Class c = Class.forName("Circle");
 areamethod = c.getMethod("area", new Class[] {c});
 }
 catch (ClassNotFoundException e)
 {
 System.out.println("Cannot get Class: " + e.toString());
 return;
 }
 catch (NoSuchMethodException e)
 {
 System.out.println("Cannot get Method: " + e.toString());
 return;
 }

 UDTMetaData mdata = null;
 try
 {
 System.out.print("Setting mdata...");
 mdata = new UDTMetaData();
 mdata.setSQLName("circle");
 mdata.setLength(24);
 mdata.setAlignment(UDTMetaData.EIGHT_BYTE);
 mdata.setUDR(areamethod, "area");
 mdata.setJarFileSQLName("circle_jar");
 System.out.println("ok");
 }
 catch (SQLException e)
 {

124 Part X: Informix JDBC Driver Guide

 System.out.println("\n***ERROR: " + e.getMessage());
 return;
 }

 // -------------------------------
 // Install the UDT in the database
 // -------------------------------
 UDTManager udtmgr = null;
 try
 {
 udtmgr = new UDTManager(conn);

 System.out.println("\ncreateJar()");
 String jarfilename = udtmgr.createJar(mdata,
 new String[] {"Circle.class"}); // jarfilename = circle.jar
 System.out.println(" jarfilename = " + jarfilename);

 System.out.println("\nsetJarTmpPath()");
 udtmgr.setJarTmpPath("/tmp");

 System.out.print("\ncreateUDT()...");
 udtmgr.createUDT(mdata,
 "/vobs/jdbc/demo/tools/udtudrmgr/" + jarfilename, "Circle", 0);
 System.out.println("ok");
 }
 catch (SQLException e)
 {
 System.out.println("\n***ERROR: " + e.getMessage());
 return;
 }
 System.out.println();

 // ---------------
 // Now use the UDT
 // ---------------
 try
 {
 String s = "drop table tab";
 System.out.print(s + "...");
 Statement stmt = conn.createStatement();
 int count = stmt.executeUpdate(s);
 stmt.close();
 System.out.println("ok");
 }
 catch (SQLException e)
 {
 // -206 The specified table (%s) is not in the database.
 if (e.getErrorCode() != -206)
 {
 System.out.println("\n***ERROR: " + e.getMessage());
 return;
 }
 System.out.println("ok");
 }

 executeUpdate("create table tab (c circle)");

 // test DEFAULT Input function
 executeUpdate("insert into tab values ('10 10 10')");

 // test DEFAULT Output function
 try
 {
 String s = "select c::lvarchar from tab";
 System.out.println(s);
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(s);
 if (rs.next())
 {
 String c = rs.getString(1);
 System.out.println(" circle = '" + c + "'");
 }
 rs.close();
 stmt.close();
 }
 catch (SQLException e)
 {
 System.out.println("***ERROR: " + e.getMessage());
 }
 System.out.println();

 // test DEFAULT Send function

Part X: Informix JDBC Driver Guide 125

 try
 {
 // setup type map before using getObject() for UDT data.
 java.util.Map customtypemap = conn.getTypeMap();
 System.out.println("getTypeMap...ok");
 if (customtypemap == null)
 {
 System.out.println("***ERROR: map is null!");
 return;
 }
 customtypemap.put("circle", Class.forName("Circle"));
 System.out.println("put...ok");

 String s = "select c from tab";
 System.out.println(s);
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(s);
 if (rs.next())
 {
 Circle c = (Circle)rs.getObject(1, customtypemap);
 System.out.println(" c.x = " + c.x);
 System.out.println(" c.y = " + c.y);
 System.out.println(" c.radius = " + c.radius);
 }
 rs.close();
 stmt.close();
 }
 catch (SQLException e)
 {
 System.out.println("***ERROR: " + e.getMessage());
 }
 catch (ClassNotFoundException e)
 {
 System.out.println("***ERROR: " + e.getMessage());
 }
 System.out.println();

 // test user's non-support UDR
 try
 {
 String s = "select area(c) from tab";
 System.out.println(s);
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(s);
 if (rs.next())
 {
 double a = rs.getDouble(1);
 System.out.println(" area = " + a);
 }
 rs.close();
 stmt.close();
 }
 catch (SQLException e)
 {
 System.out.println("***ERROR: " + e.getMessage());
 }
 System.out.println();

 executeUpdate("drop table tab");

 // ------------------
 // Closing connection
 // ------------------
 try
 {
 System.out.print("Closing connection...");
 conn.close();
 System.out.println("ok");
 }
 catch (SQLException e)
 {
 System.out.println("\n***ERROR: " + e.getMessage());
 }
}

Create an opaque type using support functions you supply

126 Part X: Informix JDBC Driver Guide

In this example, the Java™ class Circle2 on the client is mapped to an SQL opaque type named circle2. The circle2 opaque type uses support
functions provided by the programmer.

import java.sql.*;
import java.text.*;
import com.informix.jdbc.IfmxUDTSQLInput;
import com.informix.jdbc.IfmxUDTSQLOutput;

public class Circle2 implements SQLData
{
 private static double PI = 3.14159;

 double x; // x coordinate
 double y; // y coordinate
 double radius;

 private String type = "circle2";

 public String getSQLTypeName() { return type; }

 public void readSQL(SQLInput stream, String typeName)
 throws SQLException
 {
/* commented out - because the first release of the UDT/UDR Manager feature
 * does not support mixing user-supplied support functions
 * with server DEFAULT support functions.
 * However, once the mix is supported, this code needs to be used to
 * replace the existing code.
 *
 // To be able to use the DEFAULT support functions (other than
 // Input/Output) supplied by the server, you must cast the stream
 // to IfmxUDTSQLInput.

 IfmxUDTSQLInput in = (IfmxUDTSQLInput) stream;
 x = in.readDouble();
 y = in.readDouble();
 radius = in.readDouble();
 */

 x = stream.readDouble();
 y = stream.readDouble();
 radius = stream.readDouble();
 }

 public void writeSQL(SQLOutput stream) throws SQLException
 {
/* commented out - because the 1st release of UDT/UDR Manager feature
 * doesn't support the mixing of user support functions
 * with server DEFAULT support functions.
 * However, once the mix is supported, this code needs to be used to
 * replace the existing code.
 *
 // To be able to use the DEFAULT support functions (other than
 // Input/Output) supplied by the server, you must cast the stream
 // to IfmxUDTSQLOutput.

 IfmxUDTSQLOutput out = (IfmxUDTSQLOutput) stream;
 out.writeDouble(x);
 out.writeDouble(y);
 out.writeDouble(radius);
 */

 stream.writeDouble(x);
 stream.writeDouble(y);
 stream.writeDouble(radius);
 }

 /**
 * Input function - return the object from the String representation -
 * 'x y radius'.
 */
 public static Circle2 fromString(String text)
 {
 Number a = null;
 Number b = null;
 Number r = null;

 try
 {
 ParsePosition ps = new ParsePosition(0);
 a = NumberFormat.getInstance().parse(text, ps);
 ps.setIndex(ps.getIndex() + 1);

Part X: Informix JDBC Driver Guide 127

 b = NumberFormat.getInstance().parse(text, ps);
 ps.setIndex(ps.getIndex() + 1);
 r = NumberFormat.getInstance().parse(text, ps);
 }
 catch (Exception e)
 {
 System.out.println("In exception : " + e.getMessage());
 }

 Circle2 c = new Circle2();
 c.x = a.doubleValue();
 c.y = b.doubleValue();
 c.radius = r.doubleValue();

 return c;
 }

 /**
 * Output function - return the string of the form 'x y radius'.
 */
 public static String makeString(Circle2 c)
 {
 StringBuffer sbuff = new StringBuffer();
 FieldPosition fp = new FieldPosition(NumberFormat.INTEGER_FIELD);
 NumberFormat.getInstance().format(c.x, sbuff, fp);
 sbuff.append(" ");
 NumberFormat.getInstance().format(c.y, sbuff, fp);
 sbuff.append(" ");
 NumberFormat.getInstance().format(c.radius, sbuff, fp);

 return sbuff.toString();
 }

 /**
 * user function - get the area of a circle.
 */
 public static double area(Circle2 c)
 {
 return PI * c.radius * c.radius;
 }

}

The opaque type

The opaque type

The following JDBC client application installs the class Circle2 (which is packaged in Circle2.jar) as an opaque type in the system catalog.
Applications can then use the opaque type Circle2 as a data type in SQL statements:

import java.sql.*;
import java.lang.reflect.*;

public class PlayWithCircle2
{
 String dbname = "test";
 String url = null;
 Connection conn = null;

 public static void main (String args[])
 {
 new PlayWithCircle2(args);
 }

 PlayWithCircle2(String args[])
 {

 // -----------
 // Getting URL
 // -----------
 if (args.length == 0)
 {
 System.out.println("\n***ERROR: connection URL must be provided " +
 "in order to run the demo!");
 return;
 }

128 Part X: Informix JDBC Driver Guide

 url = args[0];

 // --------------
 // Loading driver
 // --------------
 try
 {
 System.out.print("Loading JDBC driver...");
 Class.forName("com.informix.jdbc.IfxDriver");
 }
 catch (java.lang.ClassNotFoundException e)
 {
 System.out.println("\n***ERROR: " + e.getMessage());
 e.printStackTrace();
 return;
 }

 try
 {
 conn = DriverManager.getConnection(url);
 }
 catch (SQLException e)
 {
 System.out.println("URL = '" + url + "'");
 System.out.println("\n***ERROR: " + e.getMessage());
 e.printStackTrace();
 return;
 }
 System.out.println();

Create an opaque type without an existing Java class

In this example, the Java™ class MyCircle on the client is used to create a fixed-length opaque type in the database server named ACircle. The
ACircle opaque type uses the default support functions provided by the database server:

import java.sql.*;

public class MyCircle
{
 String dbname = "test";
 String url = null;
 Connection conn = null;

 public static void main (String args[])
 {
 new MyCircle(args);
 }

 MyCircle(String args[])
 {
 System.out.println("----------------");
 System.out.println("- Start - Demo 3");
 System.out.println("----------------");

 // -----------
 // Getting URL
 // -----------
 if (args.length == 0)
 {
 System.out.println("\n***ERROR: connection URL must be provided " +
 "in order to run the demo!");
 return;
 }
 url = args[0];

 // --------------
 // Loading driver
 // --------------
 try
 {
 System.out.print("Loading JDBC driver...");
 Class.forName("com.informix.jdbc.IfxDriver");
 System.out.println("ok");
 }
 catch (java.lang.ClassNotFoundException e)
 {
 System.out.println("\n***ERROR: " + e.getMessage());

Part X: Informix JDBC Driver Guide 129

 e.printStackTrace();
 return;
 }

 // ------------------
 // Getting connection
 // ------------------
 try
 {
 System.out.print("Getting connection...");
 conn = DriverManager.getConnection(url);
 System.out.println("ok");
 }
 catch (SQLException e)
 {
 System.out.println("URL = '" + url + "'");
 System.out.println("\n***ERROR: " + e.getMessage());
 e.printStackTrace();
 return;
 }
 // -------------------
 // Setup UDT meta data
 // -------------------
 UDTMetaData mdata = null;
 try
 {
 mdata = new UDTMetaData();
 System.out.print("Setting fields in mdata...");
 mdata.setSQLName("acircle");
 mdata.setLength(24);
 mdata.setFieldCount(3);
 mdata.setFieldName(1, "x");
 mdata.setFieldName(2, "y");
 mdata.setFieldName(3, "radius");
 mdata.setFieldType(1, com.informix.lang.IfxTypes.IFX_TYPE_INT);
 mdata.setFieldType(2, com.informix.lang.IfxTypes.IFX_TYPE_INT);
 mdata.setFieldType(3, com.informix.lang.IfxTypes.IFX_TYPE_INT);
 // set class name if don't want to use the default name
 // <udtsqlname>.class
 mdata.setClassName("ACircle");
 mdata.setJarFileSQLName("ACircleJar");
 mdata.keepJavaFile(true);
 System.out.println("ok");
 }
 catch (SQLException e)
 {
 System.out.println("***ERROR: " + e.getMessage());
 return;
 }

 // --
 // create java file for UDT and install UDT in the database
 // --
 UDTManager udtmgr = null;
 try
 {
 udtmgr = new UDTManager(conn);

 System.out.println("Creating .class/.java files - " +
 "createUDTClass()");
 String classname = udtmgr.createUDTClass(mdata); // generated
 //java file is kept
 System.out.println(" classname = " + classname);

 System.out.println("\nCreating .jar file - createJar()");
 String jarfilename = udtmgr.createJar(mdata,
 new String[]{"ACircle.class"}); // jarfilename is
 // <udtsqlname>.jar
 // ie. acircle.jar

 System.out.println("\nsetJarTmpPath()");
 udtmgr.setJarTmpPath("/tmp");

 System.out.print("\ncreateUDT()...");
 udtmgr.createUDT(mdata,
 "/vobs/jdbc/demo/tools/udtudrmgr/" + jarfilename, "ACircle", 0);
 System.out.println("ok");
 }
 catch (SQLException e)
 {
 System.out.println("\n***ERROR: " + e.getMessage());
 return;

130 Part X: Informix JDBC Driver Guide

 }
 System.out.println();

 // ---------------
 // Now use the UDT
 // ---------------
 try
 {
 String s = "drop table tab";
 System.out.print(s + "...");
 Statement stmt = conn.createStatement();
 int count = stmt.executeUpdate(s);
 stmt.close();
 System.out.println("ok");
 }
 catch (SQLException e)
 {
 // -206 The specified table (%s) is not in the database.
 if (e.getErrorCode() != -206)
 {
 System.out.println("\n***ERROR: " + e.getMessage());
 return;
 }
 System.out.println("ok");
 }

 executeUpdate("create table tab (c acircle)");

 // test DEFAULT Input function
 executeUpdate("insert into tab values ('10 10 10')");

 // test DEFAULT Output function
 try
 {
 String s = "select c::lvarchar from tab";
 System.out.println(s);
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(s);
 if (rs.next())
 {
 String c = rs.getString(1);
 System.out.println(" acircle = '" + c + "'");
 }
 rs.close();
 stmt.close();
 }
 catch (SQLException e)
 {
 System.out.println("***ERROR: " + e.getMessage());
 }
 System.out.println();

 executeUpdate("drop table tab");

 // ------------------
 // Closing connection
 // ------------------
 try
 {
 System.out.print("Closing connection...");
 conn.close();
 System.out.println("ok");
 }
 catch (SQLException e)
 {
 System.out.println("\n***ERROR: " + e.getMessage());
 }

 System.out.println("------------------");
 System.out.println("- End - UDT Demo 3");
 System.out.println("------------------");

 }

Create UDRs with UDRManager

Part X: Informix JDBC Driver Guide 131

The following code shows how an application can use the UDRManager and UDRMetaData classes to convert methods in a Java™ class on the
client (inaccessible to the database server) to Java UDRs in the database server. Applications can later reference the UDRs in SQL statements. In
this example, the Java class on the client is named Group1. The class has two routines, udr1 and udr2.

The following code creates methods in the Group1 class to be registered as UDRs in the database server:

import java.sql.*;

public class Group1
{
 public static String udr1 (String s1, String s2)
 throws SQLException
 {
 return s1 + s2;
 }
 // Return a formatted string with all inputs
 public static String udr2 (Integer i, String s1,
 String s2) throws SQLException
 {
 return "{" + i + "," + s1 + "," + s2 +"}";
 }
}

The following code creates Java methods udr1 and udr2 as UDRs group1_udr1 and group1_udr2 in the database server and then uses the
UDRs:

import java.sql.*;
import java.lang.reflect.*;

public class PlayWithGroup1
{
// Open a connection...
url = "jdbc:informix-sqli://hostname:portnum:db/:
 informixserver=servname;user=scott;password=tiger;
myConn = DriverManager.getConnection(url);

//Install the routines in the database.
UDRManager udtmgr = new UDRManager(myConn);
UDRMetaData mdata = new UDRMetaData();
Class gp1 = Class.forName("Group1");
Method method1 = gp1.getMethod("udr1",
 new Class[]{String.class, String.class});
Method method2 = gp1.getMethod("udr2",
 new Class[]{Integer.class, String.class, String.class});
mdata.setUDR(method1, "group1_udr1");
mdata.setUDR(method2, "group1_udr2");
mdata.setJarFileSQLName("group1_jar");
udtmgr.createUDRs(mdata, "Group1.jar", "Group1", 0);

// Use the UDRs in SQL statements:
Statement stmt = myConn.createStatement();
stmt.executeUpdate("create table tab (c1 varchar(10),
 c2 char(20)", c3 int);
stmt.close();
Statement stmt = myConn.createStatement();
stmt.executeUpdate("insert into tab values ('hello', 'world',
 222)");
stmt.close();

Statement stmt = myConn.createStatement();
ResultSet r = stmt.executeQuery("select c3, group1_udr2(c3, c1, c2)
 from tab where group1_udr1(c1, c2) = 'hello world'");

...

}

Globalization and date formats

IBM Informix® JDBC Driver extends the Java™ globalization features by providing access to databases that are based on different locales and
code sets.

Globalization allows you to develop software independently of the countries or languages of its users and then to localize your software for
multiple countries or regions.

For general information about setting up Global Language Support (GLS), see the IBM® Informix GLS User's Guide.

132 Part X: Informix JDBC Driver Guide

Support for Java and globalization
Support for IBM Informix GLS variables
Support for DATE end-user formats
Precedence rules for end-user formats
Support for code-set conversion
User-defined locales
IBM Informix JDBC Driver uses the Java globalization API to manipulate international data.
Support for globalized error messages

Support for Java and globalization

The Java™ development kit provides a rich set of APIs for developing global applications. These globalization APIs are based on the Unicode 2.0
code set and can adapt text, numbers, dates, currency, and user-defined objects to any country conventions.

The globalization APIs are concentrated in three packages:

The java.text package contains classes and interfaces for handling text in a locale-sensitive way.
The java.io package contains new classes for importing and exporting non-Unicode character data.
The java.util package contains the Locale class, the globalization support classes, and new classes for date and time handling.

Important: There is no connection between Java development kit locales and code sets; you must keep these code sets in agreement. For
example, if you select the Japanese locale ja_JP, there is no Java method that tells you that the SJIS code set is the most appropriate.

Support for IBM Informix GLS variables

Globalization adds several environment variables to IBM Informix® JDBC Driver, which are summarized in the following table.

Supported environment variables Description

CLIENT_LOCALE Specifies the locale of the client that is accessing the database. Provides defaults for user-defined
formats such as the GL_DATE format. User-defined data types can use it for code-set conversion.
Together with the DB_LOCALE variable, the database server uses this variable to establish the
server processing locale. The DB_LOCALE and CLIENT_LOCALE values must be the same, or their
code sets must be convertible.

DBCENTURY Enables you to specify the appropriate expansion for one- or two-digit year DATE values

DBDATE Specifies the end-user formats of values in DATE columns. Supported for compatibility with earlier
versions; GL_DATE is preferred.

DB_LOCALE Specifies the locale of the database. IBM Informix JDBC Driver uses this variable to perform code-
set conversion between Unicode and the database locale. Together with the CLIENT_LOCALE
variable, the database server uses this variable to establish the server processing locale. The
DB_LOCALE and CLIENT_LOCALE values must be the same, or their code sets must be convertible.

GL_DATE Specifies the end-user formats of values in DATE columns

GL_USEGLU To enable Unicode collation by Java/JDBC client applications with the International Components
for Unicode (ICU), specify GL_USEGLU=1 in the connection string before connecting to the instance.
This enables the server to use advanced Unicode converters that are required to work with Java™.
The GL_USEGLU environment variable must be set to a value of 1 (one) in the database server
environment before the server is started, and before the database is created.

NEWCODESET Allows new code sets to be defined between releases of IBM Informix JDBC Driver.

NEWLOCALE Allows new locales to be defined between releases of IBM Informix JDBC Driver.

The IBM Informix JDBC Driver does not change the decimal format, even if there is a CLIENT_LOCALE setting available. Globalization should be
done within the Java application with the DecimalFormat class.

Important: The DB_LOCALE, CLIENT_LOCALE, and GL_DATE variables are supported only if the database server supports the IBM® Informix GLS
feature.

Support for DATE end-user formats

The end-user format is the format in which a DATE value appears in a string variable. This section describes the GL_DATE, DBDATE, and
DBCENTURY variables, which specify DATE end-user formats. These variables are optional.

Part X: Informix JDBC Driver Guide 133

Important: IBM Informix® JDBC Driver does not support ALS 6.0, 5.0, or 4.0 formats for the DBDATE or GL_DATE environment variables.
For more information about GL_DATE, see IBM® Informix GLS User's Guide.

The GL_DATE variable
 The DBDATE variable (deprecated)

 The DBCENTURY variable

The GL_DATE variable

The GL_DATE environment variable specifies the end-user formats of values in DATE columns. A GL_DATE format string can contain the following
characters:

One or more white space characters
An ordinary character (other than the percent symbol (%) or a white space character)
A formatting directive, which is composed of the percent symbol (%) followed by one or two conversion characters that specify the
required replacement

Date formatting directives are defined in the following table.

Directive Replaced by

%a The abbreviated weekday name as defined in the locale

%A The full weekday name as defined in the locale

%b The abbreviated month name as defined in the locale

%B The full month name as defined in the locale

%C The century number (the year divided by 100 and truncated to an integer) as a decimal number (00 through 99)

%d The day of the month as a decimal number (01 through 31)
A single digit is preceded by a zero (0).

%D Same as the %m/%d/%y format

%e The day of the month as a decimal number (1 through 31)
A single digit is preceded by a space.

%h Same as the %b formatting directive

%iy The year as a two-digit decade (00 through 99)
It is the formatting directive that is specific to for %y.

%iY The year as a four-digit decade (0000 through 9999)
It is the formatting directive that is specific to for %Y.

%m The month as a decimal number (01 through 12)

%n A newline character

%t The TAB character

%w The weekday as a decimal number (0 - 6)
The 0 represents the locale equivalent of Sunday.

%x A special date representation that the locale defines

%y The year as a two-digit decade (00 - 99)

%Y The year as a four-digit decade (0000 - 9999)

%% % (to allow % in the format string)

Important: GL_DATE optional date format qualifiers for field specifications are not supported.
For example, by using %4m to display a month as a decimal number with a maximum field width of 4 is not supported.

The GL_DATE conversion modifier O, which indicates use of alternative digits for alternative date formats, is not supported.

White space or other nonalphanumeric characters must appear between any two formatting directives. If a GL_DATE variable format does not
correspond to any of the valid formatting directives, errors can result when the database server attempts to format the date.

For example, for a U.S. English locale, you can format an internal DATE value for 09/29/1998 using the following format:

* Sep 29, 1998 this day is:(Tuesday), a fine day *

To create this format, set the GL_DATE environment variable to this value:

* %b %d, %Y this day is:(%A), a fine day *

134 Part X: Informix JDBC Driver Guide

To insert this date value into a database table that has a date column, you can perform the following types of inserts:

Nonnative SQL, in which SQL statements are sent to the database server unchanged
Enter the date value exactly as expected by the GL_DATE setting.

Native SQL, in which escape syntax is converted to a format that is specific to
Enter the date value in the JDBC escape format yyyy-mm-dd; the value is converted to the GL_DATE format automatically.

The following example shows both types of inserts:

To retrieve the formatted GL_DATE DATE value from the database, call the getString() method of the ResultSet class.

To enter strings that represent dates into database table columns of char, varchar, or lvarchar type, you can also build date objects that represent
the date string value. The date string value must be in GL_DATE format.

The following example shows both ways of selecting DATE values:

PreparedStatement pstmt = conn.prepareStatement("Select * from
 tablename "
 + "where col2 like ?;");
pstmt.setString(1, "%Tue%");
ResultSet r = pstmt.executeQuery();
while(r.next())
 {
 String s = r.getString(1);
 java.sql.Date d = r.getDate(2);
 System.out.println("Select: column col1 (GL_DATE format) = <"
 + s + ">");
 System.out.println("Select: column col2 (JDBC Escape format) = <"
 + d + ">");
 }
r.close();
pstmt.close();

The DBDATE variable (deprecated)

Support for the DBDATE environment variable provides compatibility with earlier versions for client applications that are based on IBM®
Informix® database server versions before 7.2x, 8.x, or 9.x. Use the GL_DATE environment variable for new applications.

The DBDATE environment variable specifies the end-user formats of values in DATE columns. End-user formats are used in the following ways:

When you input DATE values, IBM Informix products use the DBDATE environment variable to interpret the input. For example, if you
specify a literal DATE value in an INSERT statement, database servers require this literal value to be compatible with the format specified
by the DBDATE variable.
When you display DATE values, IBM Informix products use the DBDATE environment variable to format the output.

With standard formats, you can specify the following attributes:

The order of the month, day, and year in a date
Whether the year is printed with two digits (Y2) or four digits (Y4)
The separator between the month, day, and year

The format string can include the following characters:

Hyphen (-), dot (.), and slash (/) are separator characters in a date format. A separator appears at the end of a format string (for
example Y4MD-).
A 0 indicates that no separator is displayed.
D and M are characters that represent the day and the month.
Y2 and Y4 are characters that represent the year and the number of digits in the year.

The following format strings are valid standard DBDATE formats:

DMY2
DMY4
MDY4
MDY2
Y4MD
Y4DM
Y2MD
Y2DM

Part X: Informix JDBC Driver Guide 135

The separator always goes at the end of the format string (for example, DMY2/). If no separator or an invalid character is specified, the slash (/)
character is the default.

For the U.S. ASCII English locale, the default setting for DBDATE is Y4MD-, where Y4 represents a four-digit year, M represents the month, D
represents the day, and hyphen (-) is the separator (for example, 1998-10-08).

To insert a date value into a database table with a date column, you can perform the following types of inserts:

Nonnative SQL. SQL statements are sent to the database server unchanged. Enter the date value exactly as expected by the DBDATE
setting.
Native SQL. Escape syntax is converted to a format that is specific to . Enter the date value in the JDBC escape format yyyy-mm-dd; the
value is converted to the DBDATE format automatically.

The following example shows both types of inserts (the DBDATE value is MDY2-):

stmt = conn.createStatement();
cmd = "create table tablename (col1 date, col2 varchar(20));";
rc = stmt.executeUpdate(cmd);..
.String[] dateVals = {"'08-10-98'", "{d '1998-08-11'}" };
String[] charVals = {"'08-10-98'", "'08-11-98'" };
int numRows = dateVals.length;
for (int i = 0; i < numRows; i++)
 {
 cmd = "insert into tablename values(" + dateVals[i] + ", " +
 charVals[i] + ")";
 rc = stmt.executeUpdate(cmd);
 System.out.println("Insert: column col1 (date) = " + dateVals[i]);
 System.out.println("Insert: column col2 (varchar) = " + charVals[i]);
 }

To retrieve the formatted DBDATE DATE value from the database, call the getString method of the ResultSet class.

To enter strings that represent dates into database table columns of char, varchar, or lvarchar type, you can build date objects that represent the
date string value. The date string value needs to be in DBDATE format.

The following example shows both ways to select DATE values:

PreparedStatement pstmt = conn.prepareStatement("Select * from tablename "
 + "where col1 = ?;");
GregorianCalendar gc = new GregorianCalendar(1998, 7, 10);
java.sql.Date dateObj = new java.sql.Date(gc.getTime().getTime());
pstmt.setDate(1, dateObj);
ResultSet r = pstmt.executeQuery();
while(r.next())
 {
 String s = r.getString(1);
 java.sql.Date d = r.getDate(2);
 System.out.println("Select: column col1 (DBDATE format) = <"
 + s + ">");
 System.out.println("Select: column col2 (JDBC Escape format) = <"
 + d + ">");
 }
r.close();
pstmt.close();

The DBCENTURY variable

If a String value represents a DATE value that has less than a three-digit year and DBCENTURY is set, IBM Informix® JDBC Driver converts the
String value to a DATE value and uses the DBCENTURY property to determine the correct four-digit expansion of the year.

The methods affected and the conditions under which they are affected are summarized in the following table.

Method Condition

PreparedStatement.setString(int, String) The target column is DATE.

PreparedStatement.setObject(int, String) The target column is DATE.

IfxPreparedStatement.IfxSetObject(String) The target column is DATE.

ResultSet.getDate(int)
 ResultSet.getDate(int, Calendar)

 ResultSet.getDate(String)
 ResultSet.getDate(String, Calendar)

The source column is a String type.

136 Part X: Informix JDBC Driver Guide

Method Condition

ResultSet.getTimestamp(int)
 ResultSet. getTimestamp(int, Calendar)

 ResultSet.getTimestamp(String)
 ResultSet.getTimestamp(String, Calendar)

The source column is a String type.

ResultSet.updateString(int, String)
 ResultSet.updateString(String, String)

The target column is DATE.

ResultSet.updateObject(int, String)
 ResultSet.updateObject(int, String, int)

 ResultSet.updateObject(String, String)
 ResultSet.updateObject(String, String, int)

The target column is DATE.

The following table describes the four possible settings for the DBCENTURY environment variable.

Setting Meaning Description

P Past Uses past and present centuries to expand the year value.

F Future Uses present and next centuries to expand the year value.

C Closest Uses past, present, and next centuries to expand the year value.

R Present Uses present century to expand the year value.

See the “Environment Variables” section in the IBM® Informix Guide to SQL: Reference for a discussion of the algorithms used for each setting and
examples of each setting.

Here is an example of a URL that sets the DBCENTURY value:

jdbc:informix-sqli://myhost:1533:informixserver=myserver;
 user=myname;password=mypasswd;DBCENTURY=F;

A URL must not have a line break.

IBM Informix JDBC Driver always includes four-digit years when it sends java.sql.Date and java.sql.Timestamp values to the server. Similarly,
the server always includes four-digit years when it sends date values to IBM Informix JDBC Driver.

For examples of how to use DBCENTURY with IBM Informix JDBC Driver, see the DBCENTURYSelect.java, DBCENTURYSelect2.java,
DBCENTURYSelect3.java, DBCENTURYSelect4.java, and DBCENTURYSelect5.java example programs.

Precedence rules for end-user formats

The precedence rules that define how to determine an end-user format for an internal DATE value are listed here:

If a DBDATE format is specified, this format is used.
If a GL_DATE format is specified, a locale must be determined:

If a CLIENT_LOCALE value is specified, it is used with the GL_DATE format string to display DATE values.
If a DB_LOCALE value is specified but a CLIENT_LOCALE value is not, the DB_LOCALE value is compared with the database locale
(read from the systables table of the user database) to verify that the DB_LOCALE value is valid. If the DB_LOCALE value is valid, it
is used with the GL_DATE format string to display DATE values. If the DB_LOCALE value is not valid, the database locale is used with
the GL_DATE format string.
If the CLIENT_LOCALE or DB_LOCALE values are not specified, the database locale is used with the GL_DATE format string to
display DATE values.

If a CLIENT_LOCALE value is specified, the DATE formats conform to the default formats associated with this locale.
If a DB_LOCALE value is specified but no CLIENT_LOCALE value is specified, the DB_LOCALE value is compared with the database locale
to verify that the DB_LOCALE value is valid.
If the DB_LOCALE value is valid, the DB_LOCALE default formats are used. If the DB_LOCALE value is not valid, the default formats for
dates associated with the database locale are used.

If the CLIENT_LOCALE or DB_LOCALE values are not specified, all DATE values are formatted in U.S. English format, Y4MD-.

Support for code-set conversion

Code-set conversion converts character data from one code set to another. In a client/server environment, character data might need to be
converted from one code set to another if the client and database server computers use different code sets to represent the same characters. For
detailed information about code-set conversion, see the IBM® Informix GLS User's Guide.

You must specify code-set conversion for the following types of character data:

Part X: Informix JDBC Driver Guide 137

SQL data types (char, varchar, nchar, nvarchar)
SQL statements
Database objects such as database names, column names, table names, statement identifier names, and cursor names
Stored procedure text
Command text
Environment variables

IBM Informix® JDBC Driver converts character data as it is sent between client and database server. The code set (encoding) used for the
conversion is specified in the systables catalog for the opened database. You set the DB_LOCALE and CLIENT_LOCALE values in the connection
properties or database URL.

Unicode to database code set
 Unicode to client code set

 Connect to a database with non-ASCII characters
 Code-set conversion for TEXT and CLOB data types

 Code-set conversion for BLOB and BYTE data types

Unicode to database code set

Java™ is Unicode based, so IBM Informix® JDBC Driver converts data between Unicode and the database code set. The code-set conversion
value is extracted from the DB_LOCALE value specified at the time the connection is made. If the DB_LOCALE value is incorrect, a Database
Locale information mismatch error occurs.

The DB_LOCALE value must be a valid locale, with a valid code-set name or number as shown in the compatibility table that follows. The
following table maps the supported Java development kit encodings to code sets.

code set name code set number JDK code set

8859-1 819 8859_1

8859-2 912 8859_2

8859-3 57346 8859_3

8859-4 57347 8859_4

8859-5 915 8859_5

8859-6 1089 8859_6

8859-7 813 8859_7

8859-8 916 8859_8

8859-9 920 8859_9

8859-13 57390 ISO8859_13

ASCII 364 ASCII

sjis-s 932 SJIS

sjis 57350 SJIS

utf8 57372 UTF8

big5 57352 Big5

CP1250 1250 Cp1250

CP1251 1251 Cp1251

CP1252 1252 Cp1252

CP1253 1253 Cp1253

CP1254 1254 Cp1254

CP1255 1255 Cp1255

CP1256 1256 Cp1256

CP1257 1257 Cp1257

cp936 57357 ISO2022CN_GB

cp_949 57356 Cp949

GB18030-2000 5488 GB18030

138 Part X: Informix JDBC Driver Guide

code set name code set number JDK code set

KS5601 57356 Cp949

ksc 57356 Cp949

gb 57357 ISO2022CN_GB

GB2312-80 57357 ISO2022CN_GB

GB18030-2000 5488 GB18030

ujis 57351 EUC_JP

You cannot use the locale with a code set for which there is no JDK-supported encoding. This incorrect usage results in an Encoding or code
set not supported error message.

The following table shows the supported locales.

Supported Locales

ar_ae ar_bh ar_kw ar_om ar_qa

ar_sa bg_bg ca_es cs_cz da_dk

de_at de_ch de_de el_gr en_au

en_ca en_gb en_ie en_nz en_us

es_ar es_bo es_cl es_co es_cr

es_ec es_es es_gt es_mx es_pa

es_pe es_py es_sv es_uy es_ve

et_ee fi_fi fr_be fr_ca fr_ch

fr_fr hr_hr hu_hu is_is it_ch

it_it iw_il ja_jp ko_kr mk_mk

nl_be nl_nl no_no pl_pl pt_br

pt_pt ro_ro ru_ru sh_yu sk_sk

sv_se th_th tr_tr uk_ua zh_cn

zh_tw

Unicode to client code set

Because the Unicode code set includes all existing code sets, the Java™ virtual machine (JVM) must render the character with the platforms local
code set. Inside the Java program, you must always use Unicode characters. The JVM on that platform converts input and output between
Unicode and the local code set.

For example, you specify button labels in Unicode, and the JVM converts the text to display the label correctly. Similarly, when the getText()
method gets user input from a text box, the client program gets the string in Unicode, no matter how the user entered it.

Never read a text file one byte at a time. Always use the InputStreamReader() or OutputStreamWriter() methods to manipulate text files. By
default, these methods use the local encoding, but you can specify an encoding in the constructor of the class, as follows:

InputStreamReader = new InputStreamReader (in, "SJIS");

You and the JVM are responsible for getting external input into the correct Java Unicode string. Thereafter, the database locale encoding is used
to send the data to and from the database server.

Connect to a database with non-ASCII characters

If you do not specify the database name at connection time, the connection must be opened with the correct DB_LOCALE value for the specified
database.

If close database and database dbname statements are issued, the connection continues to use the original DB_LOCALE value to interpret the
database name. If the DB_LOCALE value of the new database does not match, an error is returned. In this case, the client program must close
and reopen the connection with the correct DB_LOCALE value for the new database.

If you supply the database name at connection time, the DB_LOCALE value must be set to the correct database locale.

Part X: Informix JDBC Driver Guide 139

You can connect to an NLS database by defining a locale with NEWCODESET and NEWLOCALE connection properties. For information about their
formats, see Connecting with the NEWLOCALE and NEWCODESET Environment Variables .

Code-set conversion for TEXT and CLOB data types

IBM Informix® JDBC Driver does not automatically convert between code sets for TEXT, BYTE, CLOB, and BLOB data types.

You can convert between code sets for TEXT and CLOB data types in one of the following ways:

You can automate code-set conversion for TEXT or CLOB data between the client and database locales by using the IFX_CODESETLOB
environment variable.
You can convert between code sets for TEXT data by using the getBytes(), getString(), InputStreamReader(), and OutputStreamWriter()
methods.

Convert with the IFX_CODESETLOB environment variable
 Convert with Java methods

Convert with the IFX_CODESETLOB environment variable

You can automate the following pair of code-set conversions for TEXT and CLOB data types:

Convert from client locale to database locale before the data is sent to the database server.
Convert from database locale to client locale before the data is retrieved by the client.

To automate code-set conversion for TEXT and CLOB data types, set the IFX_CODESETLOB environment variable in the connection URL. For
example: IFX_CODESETLOB = 4096. You can also use the following methods of the IfxDataSource class to set and get the value of
IFX_CODESETLOB:

public void setIfxIFX_CODESETLOB(int codesetlobFlag);
public int getIfxIFX_CODESETLOB();

IFX_CODESETLOB can have the following values:

none
Default
Automatic code-set conversion is not enabled.

0
Automatic code-set conversion takes place in internal temporary files.

> 0
Automatic code-set conversion takes place in the memory of the client computer. The value indicates the number of bytes allocated for
the conversion.
If the number of allocated bytes is less than the size of the large object, an error is returned.

To perform conversion in memory, you must specify an amount that is smaller than the memory limits of the client machines and larger than the
possible size of any converted large object.

When you are using any of the following java.sql.Clob interface methods or extensions to the Clob interface, no code-set conversion is performed,
even if the IFX_CODESETLOB environment variable is set. These methods include:

IfxCblob::setAsciiStream(long)
Clob::setAsciiStream(long position, InputStream fin, int length)

IFX_CODESETLOB takes effect only for methods from the java.sql.PreparedStatement interface.

However when using any of following java.sql.Clob interface methods or extensions to Clob interface, Unicode characters are always converted
automatically to the database locale code set. Here is a list of those methods:

Clob::setCharacterStream(long) throws SQLException
Clob::setString(long, String) throws SQLException
Clob:: setString(long pos, String str, int offset, int len)
IfxCblob::setSubString(long position, String str, int length)

Convert with Java methods

140 Part X: Informix JDBC Driver Guide

The Java™ methods getBytes(), getString(), InputStreamReader(), and OutputStreamWriter() take a code-set parameter that converts to and from
Unicode and the specified code set.

Here is sample code that shows how to convert a file from the client code set to Unicode and then from Unicode to the database code set:

File infile = new File("data_jpn.dat");
File outfile = new File ("data_conv.dat");..
.pstmt = conn.prepareStatement("insert into t_text values (?)");..
.// Convert data from client encoding to database encoding
System.out.println("Converting data ...\n");
try
 {
 String from = "SJIS";
 String to = "8859_1";
 convert(infile, outfile, from, to);
 }
catch (Exception e)
 {
 System.out.println("Failed to convert file");
 }

System.out.println("Inserting data ...\n");
try
 {
 int fileLength = (int) outfile.length();
 fin = new FileInputStream(outfile);
 pstmt.setAsciiStream(1 , fin, fileLength);
 pstmt.executeUpdate();
 }
catch (Exception e)
 {
 System.out.println("Failed to setAsciiStream");
 }..
.public static void convert(File infile, File outfile, String from, String to)
 throws IOException
 {
 InputStream in = new FileInputStream(infile);
 OutputStream out = new FileOutputStream(outfile);

 Reader r = new BufferedReader(new InputStreamReader(in, from));
 Writer w = new BufferedWriter(new OutputStreamWriter(out, to));

 //Copy characters from input to output. The InputStreamReader converts
 // from the input encoding to Unicode, and the OutputStreamWriter
 // converts from Unicode to the output encoding. Characters that can
 // not be represented in the output encoding are output as '?'

 char[] buffer = new char[4096];
 int len;
 while ((len = r.read(buffer)) != -1)
 w.write(buffer, 0, len);
 r.close();
 w.flush();
 w.close();
 }

When you retrieve data from the database, you can use the same approach to convert the data from the database code set to the client code set.

Code-set conversion for BLOB and BYTE data types

When you use java.sql.PreparedStatement::setCharacterStream() to insert in a CLOB column, Java™ Unicode characters are converted
automatically to the database locale code set. If the environment variable IFX_CODESETLOB is set, its value determine whether to perform code
set conversion using temporary files or to perform the code set conversion in memory. If IFX_CODESETLOB is not set, the LOBCACHE
environment variable determines whether the code set conversion takes place in temporary files or in memory.

However, you are discouraged from using java.sql.PreparedStatement::setCharacterStream() to insert BLOB or BYTE columns. The JDBC driver
cannot insert Java characters in a database and consequently attempts code set conversion of the characters. Using
java.sql.PreparedStatement::setBinaryStream() is the preferred way to insert BLOB or BYTE columns.

User-defined locales

IBM Informix® JDBC Driver uses the Java™ globalization API to manipulate international data.

Part X: Informix JDBC Driver Guide 141

The classes and methods in that API take a Java development kit locale or encoding as a parameter, but because the DB_LOCALE and
CLIENT_LOCALE properties specify the locale and code set based on names, these names are mapped to the Java development kit names. These
mappings are kept in internal tables, which are updated periodically.

For example, the and Java development kit names for the ASCII code set are 8859-1 and 8859_1, respectively. IBM Informix JDBC Driver maps
8859-1 to 8859_1 in its internal tables and uses the appropriate name in the Java development kit classes and methods.

Connect with the NEWLOCALE and NEWCODESET environment variables
 Connect with the NEWNLSMAP environment variable

Connect with the NEWLOCALE and NEWCODESET environment variables

Because new locales may be created between updates of these tables, two connection properties, NEWLOCALE and NEWCODESET, let you
specify a locale or code set that is not specified in the tables. Here is an example URL using these properties:

jdbc:informix-sqli://myhost:1533:informixserver=myserver;
 user=myname; password=mypasswd;NEWLOCALE=en_us,en_us;
 NEWCODESET=8859_1,8859-1,819;

A URL must be on one line.

The NEWLOCALE and NEWCODESET properties have the following formats:

NEWLOCALE=JDK-locale,Ifx-locale:JDK-locale,Ifx-locale...

NEWCODESET=JDK-encoding,Ifx-codeset,Ifx-codeset-number:JDK-
 encoding, Ifx-codeset,Ifx-codeset-number...

There is no limit to the number of locale or code-set mappings you can specify.

You can connect to an NLS database by defining a locale using NEWCODESET and NEWLOCALE connection properties.

If you specify an incorrect number of parameters or values, you get a Locale Not Supported or Encoding or Code Set Not Supported
message.

If these properties are set in the URL or a DataSource object, the new values in NEWLOCALE and NEWCODESET override the values in the JDBC
internal tables. For example, if JDBC already maps 8859-1 to 8859_1 internally, but you specify NEWCODESET=8888,8859-1,819 instead, the
new value 8888 is used for the code-set conversion.

Connect with the NEWNLSMAP environment variable

To support connecting to NLS databases, IBM Informix® JDBC Driver maintains a table for mapping NLS locale to the corresponding Java™
development kit locale and code set. Locales and code sets that are not supported in a particular version of the development kit might be
supported in later versions of the development kit. Use the NEWNLSMAP connection property to specify mappings for an NLS locale that is not
specified in the table.

The NEWNLSMAP property has the following format:

NEWNLSMAP=NLS-locale,JDK-locale,JDK-codeset:NLS-locale,JDK-locale,
JDK-codeset,....

Here is an example URL using these properties:

jdbc:informix-sqli://myhost:1533:informixserver=myserver;

user=myname;password=mypasswd;NEWNLSMAP=rumanian,ro_RO,ISO8859_2;

There is no limit to the number of mappings you can specify. If you specify an incorrect number of parameters or values, you get a Locale Not
Supported or Encoding or Code Set Not Supported message.

Support for globalized error messages

Message text is usually the text of an SQLException object, but can also be an SQLWarn object or any other text output from the driver.

There are two requirements to enable globalized message text output, as follows:

142 Part X: Informix JDBC Driver Guide

You must add the full path of the ifxlang.jar file to the $CLASSPATH (UNIX) or %CLASSPATH% (Windows) environment variable. This JAR
file contains globalized versions of all message text supported by IBM Informix® JDBC Driver. Supported languages are English, German,
French, Spanish, Russian, Polish, Czech, Slovak, Chinese (simplified and traditional), Korean, and Japanese.
The CLIENT_LOCALE environment variable value must be passed through the property list to the connection object at connection time if
you are using a nondefault locale. For more information about CLIENT_LOCALE and GLS features in general, see Support for IBM Informix
GLS variables.

Several public classes have constructors that take the current connection object as a parameter so they have access to the CLIENT_LOCALE
value. If you want access to non-English error messages, you must use the constructors that include the connection object. Otherwise, any error
message text from those classes is in English only. Affected public classes are Interval, IntervalYM, IntervalDF, and IfxLocator. For more
information about the constructors to use for these classes, see Work with Informix types.

For an example of how to use the globalized error message support feature, see the locmsg.java program, which is included with IBM Informix
JDBC Driver.

Smart trigger feature

Smart Triggers in JDBC are a set of classes/interfaces that provide an ease of use capability to the Push data feature.

A smart trigger is a set of commands issued to the database that sets up a push notification when certain changes happen to data in a table.
These changes are detected by a SQL query that is run after INSERT, UPDATE, or DELETE commands are executed.

Using the smart trigger feature, you can quickly watch one or more tables for changes and receive callbacks when a change is detected. Using the
following JDBC API, if you make any change to the customer’s table (insert/update/delete) the notify() method that you specified will get called,
allowing you to see the effects of the change and take action.

/* Create a new smart trigger */
IfmxThreadedSmartTrigger push = new IfxSmartTrigger(TestDetail.sysadmin_url);
/* Create your own callback class */
IfmxSmartTriggerCallback callback = new IfmxSmartTriggerCallback() {
 @Override
 public void notify(String json) {
 /*Here you can process the json from the trigger event*/
 System.out.println("Trigger received! Data: " + json);
 }
};
/* Set additional properties like the timeout or a default label */
push.label("test-label").timeout(60);
/* Add one or more triggers against the table/owner/database using a SQL query */
push.addTrigger("customers", "informix", "stores_demo", "SELECT * FROM customers", "test-label-pushtest",
callback);
/* IfmxThreadedSmartTrigger is runnable so you can easily start it in a background thread*/
Thread t = new Thread(push);
t.start();
/* you can wait on that thread or go and do other work */
j.join();

A dedicated server connection is required for using the smart trigger feature. Because of this, the IfmxSmartTrigger class uses a URL or a
DataSource object for creating a new JDBC connection.

You can close or shut down the smart trigger by executing a close() method on the IfmxSmartTrigger object. This will queue-up a smooth
shutdown of the session. You can also add or remove triggers anytime, as required. If the application has not started either the run() or watch()
method, then the changes occur immediately. Otherwise, changes are queued until the driver receives data from the server. This will occur when
any trigger is fired or when the timeout is reached.

If you want to manage the smart trigger without creating another thread, you can directly call the watch() method.

Warning: The watch() method is a blocking call and will never return unless another thread interrupts it or calls a close().

For details on all of the API's added, see the Javadoc documentation on the IfmxThreadedSmartTrigger interface.

Related links:

Push data feature

Tuning and troubleshooting

These topics provides tuning and troubleshooting information for IBM Informix® JDBC Driver.

Debug your JDBC API program

Part X: Informix JDBC Driver Guide 143

Manage performance

Debug your JDBC API program

You can set the SQLIDEBUG connection property to generate binary protocol trace. You set the connection property SQLIDEBUG to specify a file.
For example:

SQLIDEBUG=C:\\tmp\\ifxjdbctrace

A new trace file is generated for every connection and is suffixed with a timestamp. If you are using the IfxDataSource interface, you can use the
IfxDataSource.setIfxSQLIDEBUG (String fname) method. Debug versions of the JDBC jar files are not included in IBM Informix® JDBC Driver,
Version 3.00.JC1 and later.

Important: The binary SQLI protocol trace feature (SQLIDEBUG) should only be used when directed by the IBM® technical support
representative.

Java Logging
You can enable tracing of the Informix JDBC driver using Java’s built in logging mechanism.
Note: Enabling tracing can have a noticeable impact on driver performance. Enable only logging to assist in diagnosing a problem with the driver.
Following example shows logging properties you can set:

Set the default logging level for Informix JDBC
com.informix.jdbc.level=FINEST

#Set the logging level for the console output
java.util.logging.ConsoleHandler.level=FINEST
java.util.logging.ConsoleHandler.formatter=com.informix.util.JdbcLogFormatter
com.informix.jdbc.handlers=java.util.logging.ConsoleHandler

#Set the properties for a file based logger
java.util.logging.FileHandler.level = FINEST
java.util.logging.FileHandler.formatter = com.informix.util.JdbcLegacyLogFormatter
java.util.logging.FileHandler.append = false
java.util.logging.FileHandler.pattern = /tmp/jdbc/jdbc.log

When choosing the formatter for the log output you can pick between com.informix.util.JdbcLogFormatter and
com.informix.util.JdbcLegacyLogFormatter. The legacy formatter matches the historical format the JDBC driver outputted messages in. The
JdbcLogFormatter is a more modern format, which includes machine readable timestamps, so the logs can be read in by logging systems. If you
need to manually add the properties, you can use a call as shown below in Java to load the properties for the Java Logging.

LogManager.getLogManager().readConfiguration(new FileInputStream(“logging.properties"));

Manage performance

This section describes issues that might affect the performance of your queries:

The FET_BUF_SIZE and BIG_FET_BUF_SIZE environment variables
Memory management of large objects
Reducing network traffic
Using bulk inserts
Tuning the connection pool.

Manage the fetch buffer size
 Use the FET_BUF_SIZE and SRV_FET_BUF_SIZE environment variables to set the size of the fetch buffer.

Manage memory for large objects
 Reduce network traffic

 Bulk inserts
 Statement Caching

 A connection pool
 Avoid application hanging problems (HP-UX only)

Manage the fetch buffer size

144 Part X: Informix JDBC Driver Guide

Use the FET_BUF_SIZE and SRV_FET_BUF_SIZE environment variables to set the size of the fetch buffer.

When a SELECT statement is sent from a Java™ program to the IBM® Informix® database, the returned rows, or tuples, are stored in a tuple buffer
in IBM Informix JDBC Driver. The default size of the tuple buffer is the larger of the returned tuple size or 4096 bytes.

You can use the FET_BUF_SIZE environment variable to override the default size of the tuple buffer. FET_BUF_SIZE can be set to any positive
integer less than or equal to 2 GiB (2147483648). If the FET_BUF_SIZE environment variable is set, and its value is larger than the default tuple
buffer size, the tuple buffer size is set to the value of FET_BUF_SIZE.

Similarly, you can use the SRV_FET_BUF_SIZE environment variable to set the fetch buffer size for the local database server to use when it
participates in cross-server distributed DML transactions. For 11.70.xC5 and newer versions, the maximum size to which SRV_FET_BUF_SIZE can
be set is 1048576 (= 1 MiB).

Increasing the size of the tuple buffer can reduce network traffic between your Java program and the database, often resulting in better
performance of queries. There are times, however, when increasing the size of the tuple buffer can actually degrade the performance of queries.
This could happen if your Java program has many active connections to a database or if the swap space on your computer is limited. If this is true
for your Java program or computer, you might not want to use the FET_BUF_SIZE or SRV_FET_BUF_SIZE environment variables to increase the
size of the tuple buffer.

For more information about setting environment variables, see Connect to the database. For more information about increasing the fetch buffer
size, see the IBM Informix Guide to SQL: Reference.

Manage memory for large objects

Whenever a large object (a BYTE, TEXT, BLOB, or CLOB data type) is fetched from the database server, the data is either cached into memory or
stored in a temporary file (if it exceeds the memory buffer). A JDBC applet can cause a security violation if it tries to create a temporary file on
the local computer. In this case, the entire large object must be stored in memory.

You can specify how large object data is stored by using an environment variable, LOBCACHE, that you include in the connection property list, as
follows:

To set the maximum number of bytes allocated in memory to hold the data, set the LOBCACHE value to that number of bytes.
If the data size exceeds the LOBCACHE value, the data is stored in a temporary file. If a security violation occurs during creation of this file,
the data is stored in memory.

To always store the data in a file, set the LOBCACHE value to 0.
In this case, if a security violation occurs, IBM Informix® JDBC Driver makes no attempt to store the data in memory. This setting is not
supported for unsigned applets. For more information, see Using the driver in an applet.

To always store the data in memory, set the LOBCACHE value to a negative number.
If the required amount of memory is not available, IBM Informix JDBC Driver throws the SQLException message Out of Memory.

If the LOBCACHE size is invalid or not defined, the default size is 4096.

You can set the LOBCACHE value through the database URL, as follows:

URL = jdbc:informix-sqli://158.58.9.37:7110/test:user=guest;
password=iamaguest;informixserver=oltapshm;
lobcache=4096";

The preceding example stores the large object in memory if the size is 4096 bytes or fewer. If the large object exceeds 4096 bytes, IBM Informix
JDBC Driver tries to create a temporary file. If a security violation occurs, memory is allocated for the entire large object. If that fails, the driver
throws an SQLException message.

Here is another example:

URL = "jdbc:informix-sqli://icarus:7110/testdb:
 user=guest:passwd=whoknows;informixserver=olserv01;lobcache=0";

The preceding example uses a temporary file for storing the fetched large object.

Here is a third example:

URL = "jdbc:informix-sqli://icarus:7110/testdb:user=guest:
 passwd=whoknows;informixserver=olserv01;lobcache=-1";

The preceding example always uses memory to store the fetched large object.

For programming information about how to use the TEXT and BYTE data types in a Java™ program, see BYTE and TEXT data types. For
programming information about how to use the BLOB and CLOB data types in a Java program, see Smart large object data types.

Part X: Informix JDBC Driver Guide 145

Reduce network traffic

The two environment variables OPTOFC and IFX_AUTOFREE can be used to reduce network traffic when you close Statement and ResultSet
objects.

Set OPTOFC to 1 to specify that the ResultSet.close() method does not require a network round trip if all the qualifying rows have already been
retrieved in the clients tuple buffer. The database server automatically closes the cursor after all the rows have been retrieved.

IBM Informix® JDBC Driver might or might not have additional rows in the clients tuple buffer before the next ResultSet.next() method is called.
Therefore, unless IBM Informix JDBC Driver has received all rows from the database server, the ResultSet.close() method might still require a
network round trip when OPTOFC is set to 1.

Set IFX_AUTOFREE to 1 to specify that the Statement.close() method does not require a network round trip to free the database server cursor
resources if the cursor has already been closed in the database server.

You can also use the setAutoFree(boolean flag) and getAutoFree() methods to free database server cursor resources. For more information, see
The Auto Free feature.

The database server automatically frees the cursor resources after the cursor is closed, either explicitly by the ResultSet.close() method or
implicitly by the OPTOFC environment variable.

When the cursor resources have been freed, the cursor can no longer be referenced.

For examples of how to use the OPTOFC and IFX_AUTOFREE environment variables, see the autofree.java and optofc.java demonstration
examples described in Sample code files. In these examples, the variables are set with the Properties.put() method.

For more information about setting environment variables, see Informix environment variables with the IBM Informix JDBC Driver.

Bulk inserts

The bulk insert feature improves the performance of single INSERT statements that are executed multiple times with multiple value settings. For
more information, see Perform bulk inserts.

Statement Caching

Statement caching is a way to improve client performance by caching and reusing PreparedStatement and CallableStatement objects. When
you re-use a PreparedStatement or CallableStatement, you avoid the overhead of statement preparation which involves work in both the driver
as well as the server to prepare the query for execution. As a result, you can get a performance benefit when re-using statements.
Note: Statement caching only works for PreparedStatement and CallableStatement objects. A basic Statement object cannot be cached as it
does not have a set SQL string which is saved on the server.
Each physical connection to the server will have its own Statement cache. Statements are cached with a key. For implicit caching the key used is
the SQL string used for the Statement. For an explicit cache, you can specific the key you want to save the Statement with.

Enabling Statement Caching
You can enable Statement caching in two ways. You can enable it by setting the statement cache size by calling the method
IfxConnection.setStatementCacheSize or you can use the connection parameter IFX_PREPAREDSTATEMENT_CACHE_SIZE to the size you want
set. A size of 0 disables the cache for this connection. By default, the statement cache is disabled (size is 0).

Connection conn = Driver.getConnection("jdbc:informix-
sqli://localhost:9889/testdb:user=informix;password=informix; IFX_PREPAREDSTATEMENT_CACHE_SIZE=20");
((IfxConnection)conn).setStatementCacheSize(20); // Can set the cache size at any time on the connection

Explicitly Statement Caching
You can explicitly save a statement into the case with a specified key. You must have already enabled the cache on the parent Connection object.
You can then close any PreparedStatement or CallableStatement with closeWithKey(String uniqueKey). This caches the statement with your key
instead of the SQL statement.

You can retrieve a statement using the IfxConnection.getStatementWithKey(String key) or IfxConnection.getCallWithKey(String key) depending
on if you are retrieving a PreparedStatement or a CallableStatement.

146 Part X: Informix JDBC Driver Guide

PreparedStatment p = conn.prepareStatement("SELECT * FROM systables");
((IfxPreparedStatement)p).closeWithKey("sample-key");

p = ((IfxConnection)conn).getStatementWithKey("sample-key");

Disabling Caching for a single Statement
Sometimes you do not want a Statement to be cached. In this case, you can use the JDBC Statement API to turn off the pool setting before you
close the connection.

stmt.setPoolable(false);
stmt.close();

Example
Properties prop = new Properties();
prop.setProperty("IFX_PREPAREDSTATEMENT_CACHE_SIZE", "20"); //save 20 prepared statements
try(Connection con = DriverManager.getConnection(“JDBC-url-here”, prop)) {
 try(PreparedStatement p = con.prepareStatement("INSERT INTO mytable VALUES(?)")) {
 //do work
 } //prepared statement closed/cached
 //SQL matches, so we get back the prepared statement handle to reuse
 try(PreparedStatement p = con.prepareStatement("INSERT INTO mytable VALUES(?)")) {
 //do work
 } //prepared statement closed/cached
}

A connection pool

To improve the performance and scalability of your application, you can obtain your connection to the database server through a DataSource
object that references a ConnectionPoolDataSource object. IBM Informix® JDBC Driver provides a Connection Pool Manager as a transparent
component of the ConnectionPoolDataSource object. The Connection Pool Manager keeps a closed connection in a pool instead of returning the
connection to the database server as closed. Whenever a user requests a new connection, the Connection Pool Manager gets the connection
from the pool, avoiding the overhead of having the server close and re-open the connection.

Using the ConnectionPoolDataSource object can significantly improve performance in cases where your application receives frequent, periodic
connection requests.

For complete information about how and why to use a DataSource or ConnectionPoolDataSource object, see the JDBC 3.0 API.
Important: This feature does not affect IfxXAConnectionPoolDataSource, which operates under the assumption that connection pooling is
handled by the transaction manager.

Deploying a ConnectionPoolDataSource object
 Tune the Connection Pool Manager

 High-Availability Data Replication with connection pooling
 Clean pooled connections

 Manage connections

Deploying a ConnectionPoolDataSource object

In the following steps:

The variable cpds refers to a ConnectionPoolDataSource object.
The JNDI logical name for the ConnectionPoolDataSource object is myCPDS.
The variable ds refers to a DataSource object.
The logical name for the DataSource object is DS_Pool.

To deploy a ConnectionPoolDataSource object:

1. Instantiate an IfxConnectionPoolDataSource object.
2. Set any desired tuning properties for the object:

cpds.setIfxCPMInitPoolSize(15);
cpds.setIfxCPMMinPoolSize(2);
cpds.setIfxCPMMaxPoolSize(20);
cpds.setIfxCPMServiceInterval(30);

Part X: Informix JDBC Driver Guide 147

3. Register the ConnectionPoolDataSource object using JNDI to map a logical name to the object:

Context ctx = new InitialContext();
ctx.bind("myCPDS",cpds);

4. Instantiate an IfxDataSource object.
5. Associate the DataSource object with the logical name you registered for the ConnectionPoolDataSource object:

ds.setDataSourceName("myCPDS",ds);

6. Register the DataSource object using JNDI:

Context ctx = new InitialContext();
ctx.bind("DS_Pool",ds);

Tune the Connection Pool Manager

During the deployment phase, you or your database administrator can control how connection pooling works in your applications by setting
values for any of these Connection Pool Manager properties:

IFMX_CPM_INIT_POOLSIZE lets you specify the initial number of connections to be allocated for the pool when the
ConnectionPoolDataSource object is first instantiated and the pool is initialized. The default is 0.
Set this property if your application will need many connections when the ConnectionPoolDataSource object is first instantiated.

To obtain the value, call getIfxCPMInitPoolSize().

To set the value, call setIfxCPMInitPoolSize (int init).

IFMX_CPM_MAX_CONNECTIONS lets you specify the maximum number of simultaneous physical connections that the DataSource object
can have with the server.
The value -1 specifies an unlimited number. The default is -1.

To obtain the value, call getIfxCPMMaxConnections().

To set the value, call setIfxCPMMaxConnections(int limit).

IFMX_CPM_MIN_POOLSIZE lets you specify the minimum number of connections to maintain in the pool. See the
IFMX_CPM_MIN_AGELIMIT parameter for what to do when this minimum number of connections kept in the pool exceeds the age limit.
The default is 0.
To obtain the value, call getIfxCPMMinPoolSize().

To set the value, call setIfxCPMMinPoolSize(int min).

IFMX_CPM_MAX_POOLSIZE lets you specify the maximum number of connections to maintain in the pool. When the pool reaches this
size, all connections return to the server. The default is 50.
To obtain the value, call getIfxCPMMaxPoolSize().

To set the value, call setIfxCPMMaxPoolSize(int max).

IFMX_CPM_AGELIMIT lets you specify the time, in seconds, that a free connection is kept in the free connection pool.
The default is -1, which means that the free connections are retained until the client terminates.

To obtain the value, call getIfxCPMAgeLimit().

To set the value, call setIfxCPMAgeLimit(long limit).

IFMX_CPM_MIN_AGELIMIT lets you specify the additional time, in seconds, that a connection in the free connection pool is retained when
no connection requests have been received.
Use this setting to reduce resources held in the pool when there are expected periods in which no connection requests will be made. A
value of 0 indicates that no additional time is given to a connection in the minimum pool: the connection is released to the server
whenever it exceeds IFMX_CPM_AGELIMIT.

The default is -1, which means that a minimum number of free connections is retained until the client terminates.

To obtain the value, call getIfxCPMMinAgeLimit().

To set the value, call setIfxCPMAgeMinLimit(long limit).

IFMX_CPM_SERVICE_INTERVAL lets you specify the pool service frequency, in milliseconds.
Pool service activity includes adding free connections (if the number of free connections falls below the minimum value) and removing
free connections. The default is 50.

To obtain the value, call getIfxCPMServiceInterval().

148 Part X: Informix JDBC Driver Guide

To set the value, call setIfxCPMServiceInterval (long interval).

IFMX_CPM_ENABLE_SWITCH_HDRPOOL lets you specify whether to allow automatic switching between the primary and secondary
connection pools of an HDR database server pair.
Set this property if your application relies on High-Availability Data Replication with connection pooling. The default is false.

To obtain the value, call getIfxCPMSwitchHDRPool().

To set the value, call setIfxCPMSwitchHDRPool(boolean flag).

A demonstration program is available in the connection-pool directory within the demo directory where your JDBC driver is installed. For
connection pooling with HDR, a demonstration program is available in the hdr directory within the demo directory. For details about the files, see
Sample code files.

Some of these properties overlap Sun JDBC 3.0 properties. The following table lists the Sun JDBC 3.0 properties and their equivalents.

Sun JDBC property name property name Additional information

initialPoolSize IFMX_CPM_INIT_POOLSIZE

maxPoolSize IFMX_CPM_MAX_POOLSIZE For maxPoolSize, 0 indicates no maximum size.
For IFMX_CPM_MAX_POOLSIZE, you must specify
a value.

minPoolSize IFMX_CPM_MIN_POOLSIZE

maxIdleTime IFMX_CPM_AGELIMIT For maxIdleTime, 0 indicates no time limit. For
IFMX_CPM_AGELIMIT, -1 indicates no time limit.

The following Sun JDBC 3.0 properties are not supported:

maxStatements
propertyCycle

High-Availability Data Replication with connection pooling

IBM Informix® JDBC Driver implementation of connection pooling provides the ability to pool connections with database servers in an HDR pair:

The primary pool contains connections to the primary server in an HDR pair.
The secondary pool contains connections to the secondary server in an HDR pair.

You do not have to change application code to take advantage of connection pooling with HDR. Set the IFMX_CPM_ENABLE_SWITCH_HDRPOOL
property to TRUE to allow switching between the two pools. When switching is allowed, the Connection Pool Manager validates and activates the
appropriate connection pool.

When the primary server fails, the Connection Pool Manager activates the secondary pool. When the secondary pool is active, the Connection
Pool Manager validates the state of the pool to check if the primary server is running. If the primary server is running, the Connection Pool
Manager switches new connections to the primary server and sets the active pool to the primary pool.

If IFMX_CPM_ENABLE_SWITCH_HDRPOOL is set to FALSE, you can force switching to the other connection pool by calling the
activateHDRPool_Primary() or activateHDRPool_Secondary() methods:

public void activateHDRPool_Primary(void) throws SQLException
public void activateHDRPool_Secondary(void) throws SQLException

The activateHDRPool_Primary() method switches the primary connection pool to be the active connection pool. The
activateHDRPool_Secondary() method switches the secondary connection pool to be the active pool.

You can use the isReadOnly(), isHDREnabled(), and getHDRtype() methods with connection pooling (see Checks for read-only status of high-
availability secondary servers).

A demonstration program is available in the hdr directory within the demo directory where IBM Informix JDBC Driver is installed. For details
about the files, see Sample code files.

Clean pooled connections

You can alter connections from their original, default properties by setting database properties, such as AUTOCOMMIT and TRANSACTION
ISOLATION. When a connection is closed, these properties revert to their default values. However, a pooled connection does not automatically
revert to default properties when it is returned to the pool.

In IBM Informix® JDBC Driver, you can call the scrubConnection() method to:

Part X: Informix JDBC Driver Guide 149

Reset the database properties and connection level properties to the default values.
Close open cursors and transactions.
Retain all statements.

This now enables the application server to cache the statements, and it can be used across applications and sessions to provide better
performance for end-user applications.

The signature of the scrubConnection() method is:

public void scrubConnection() throws SQLException

The following example demonstrates how to call scrubConnection():

try
 {
 IfmxConnection conn = (IfmxConnection)myConn;
 conn.scrubConnection();
 }
catch (SQLException e)
 {
 e.printStackTrace();
 }

The following method verifies whether a call to scrubConnection() has released all statements:

public boolean scrubConnectionReleasesAllStatements()

Manage connections

The following table contrasts different implementations of the connection.close() and scrubConnection() methods when they are in connection
pool setup or not.

Connection pooling status Behavior with connection.close() method Behavior with scrubconnection() method

Non-connection pool setup Closes database connection, all associated
statement objects, and their result sets
Connection is no longer valid.

Returns connection to default state, keeps
opened statements, but closes result sets
Connection is still valid. Releases resources
associated with result sets only.

Connection Pool with IBM® Informix®
Implementation

Closes connection to the database and
reopens it to close any statements
associated with the connection object and
reset the connection to its original state
Connection object is then returned to the
connection pool and is available when
requested by a new application connection.

Returns a connection to the default state
and keeps all open statements, but closes
all result sets. Calling this method is not
recommended here.

Connection Pool with AppServer Implementation Defined by users connection pooling
implementation

Returns connection to default state and
retains opened statements, but closes result
sets

Avoid application hanging problems (HP-UX only)

If your JDBC application hangs on your HP-UX server, check the setting for the PTHREAD_COMPAT_MODE environment variable on the HP-UX
server. The PTHREAD_COMPAT_MODE environment variable should be set to 1. This variable tells the pthread library (libpthread) to run in 1 X 1
mode instead of MxN mode. 1 X 1 is the default mode now on HP-UX. Setting this environment variable should resolve the hang problem.

Appendixes

Sample code files
 DataSource extensions

 Mapping data types
 Convert internal Informix data types

 For your Java application to work with the internal server representation of IBM® Informix data types, use the IfxToJavaType class. For
example, if your application is using the IBM Informix Change Data Capture API, you can use the IfxToJavaType class to interpret the byte
stream.

150 Part X: Informix JDBC Driver Guide

Error messages

Sample code files

This section contains tables that list and briefly describe the code examples provided with the client-side version of IBM Informix® JDBC Driver.

Most of these examples can be adapted to work with server-side JDBC by changing the syntax of the connection URL. For more information, see
Format of database URLs.

The examples in the tools/udtudrmgr directory and the demo/xml directory are for client-side JDBC only in the 2.2 release.

Summary of available examples

Summary of available examples

The examples are provided in two directories:

The demo directory where your IBM Informix® JDBC Driver software is installed
The tools directory beneath the demo directory

Examples in the demo directory
 Examples in the tools directory

Examples in the demo directory

Each example has its own subdirectory. Most of the directories include a README file that describes the examples and how to run them.

Directory Type of examples

basic Examples that show common database operations

bson Examples that show the usage of the IfxBSONObject extension class, which is used to access the BSON data type.

clob-blob Examples that use smart large objects

udt-distinct Examples that use opaque and DISTINCT data types (there are additional examples using opaque types in Examples in the
udtudrmgr directory)

complex-types Examples that use row and collection types

rmi An example using Remote Method Invocation

stores7 The stores7 demonstration database

pickaseat An example using DataSource objects

connection-pool Examples that illustrate using a connection pool

proxy Examples that illustrate using an HTTP proxy server

xml Examples that illustrate storing and retrieving XML documents

hdr Examples that illustrate using High-Availability Data Replication

Examples in the basic directory
 Examples in the bson directory
 Examples in the clob-blob directory

 Examples in the udt-distinct directory
 Examples in the complex-types directory

 Examples in the proxy directory
 Examples in the connection-pool directory

 Examples in the xml directory
 Examples in the hdr directory

Examples in the basic directory

Part X: Informix JDBC Driver Guide 151

The following table lists the files in the basic directory.

Demo program
name Description

autofree.java Shows how to use the IFX_AUTOFREE environment variable

BatchUpdate.java Shows how to send batch updates to the server

ByteType.java Shows how to insert into and select from a table that contains a column of data type BYTE

CallOut1.java Executes a C function that has an OUT parameter using CallableStatement methods

CallOut2.java Executes an SPL function that has an OUT parameter using CallableStatement methods

CallOut3.java Executes a C function that has a Boolean OUT parameter using the IfmxCallableStatement.IfxRegisterOut Parameter()
method

CallOut4.java Executes a C function that has a CLOB type OUT parameter and uses the IfmxCallableStatement.hasOutParameter()
method

CreateDB.java Creates a database called testDB

DBCENTURYSelect.
java

Uses the getString() method to retrieve a date string representation in which the four-digit year expansion is based on the
DBCENTURY property value

DBCENTURYSelect
2.java

Retrieves a date string representation in which the four-digit year expansion is based on the DBCENTURY property value
using string-to-binary conversion
Uses the getDate() method to build a java.sql.Date object upon which the date string representation is based

DBCENTURYSelect
3.java

Retrieves a date string representation in which the four-digit year expansion is based on the DBCENTURY property value
using string-to-binary conversion
Uses the getTimestamp() method to build a java.sql.Timestamp object upon which the date string representation is
based

DBCENTURYSelect
4.java

Retrieves a date string representation in which the four-digit year expansion is based on the DBCENTURY property value
using binary-to-string conversion
Uses the getDate() method to build a java.sql.Date object upon which the date string representation is based

DBCENTURYSelect
5.java

Retrieves a date string representation in which the four-digit year expansion is based on the DBCENTURY property value
using binary-to-string conversion
Uses the getTimestamp() method to build a java.sql.Timestamp object upon which the date string representation is
based

DBConnection.java Creates connections to both a database and a database server

DBDATESelect.java Shows how to retrieve a date object and a date string representation from the database based on the DBDATE property
value from the URL string

DBMetaData.java Shows how to retrieve information about a database with the DatabaseMetaData interface

DropDB.java Drops a database called testDB

ErrorHandling.java Shows how to retrieve RSAM error messages

GLDATESelect.java Shows how to retrieve a date object and a date string representation from the database based on the GL_DATE property
value from the URL string

Intervaldemo.java Shows how to insert and select IBM® Informix® interval data

LOCALESelect.java Shows how to retrieve a date object and a date string representation from the database based on the CLIENT_LOCALE
property value from the URL string

locmsg.java Shows how to use extension methods that support localized error messages

MultiRowCall.java Shows how to return multiple rows in a stored procedure call

OptimizedSelect.ja
va

Shows how to use the FET_BUF_SIZE environment variable to adjust the IBM Informix JDBC Driver tuple buffer size

optofc.java Shows how to use the OPTOFC environment variable

PropertyConnectio
n.java

Shows how to specify connection environment variables via a property list

RSMetaData.java Shows how to retrieve information about a result set with the ResultSetMetaData interface

ScrollCursor.java Shows how to retrieve a result set with a scroll cursor

Serial.java Shows how to insert and select SERIal and SERIal8 data

SimpleCall.java Shows how to call a stored procedure

152 Part X: Informix JDBC Driver Guide

Demo program
name Description

SimpleConnection.j
ava

Shows how to connect to a database or database server

SimpleSelect.java Shows how to send a simple SELECT query to the database server

TextConv.java Shows how to convert a file from the client code set to Unicode and then from Unicode to the database code set

TextType.java Shows how to insert into and select from a table that contains a column of data type TEXT

UpdateCursor1.jav
a

Shows how to create an updatable scroll cursor using a ROWID column in the query

UpdateCursor2.jav
a

Shows how to create an updatable scroll cursor using a SERIAL column in the query

UpdateCursor3.jav
a

Shows how to create an updatable scroll cursor using a primary key column in the query

Examples in the bson directory

The following table lists the files in the bson directory.

Demo program name Description

IfxBSONObjectDemo.java Shows the usage of BSON and JSON data types.

Examples in the clob-blob directory

The following table lists the files in the clob-blob directory.

Demo program
name Description

demo1.java Shows how to create two tables with BLOB and CLOB columns and compare the data

demo2.java Shows how to create one table with BYTE and TEXT columns and a second table with BLOB and CLOB columns and how to
compare the data

demo3.java Shows how to create one table with BLOB and CLOB columns and a second table with BYTE and TEXT columns and how to
compare the data

demo4.java Shows how to create two tables with BYTE and TEXT columns and compare the data

demo5.java Shows how to store data from a file into a BLOB table column

demo6.java Shows how to read a portion of the data in a smart large object

demo_11.java Shows how to read data from a file into a buffer and write the contents of the buffer into a smart large object

demo_13.java Shows how to write data into a smart large object and then insert the smart large object into a table

demo_14.java Shows how to fetch smart large object data from a table

Examples in the udt-distinct directory

The following table lists the files in the udt-distinct directory (there are additional examples using opaque types in Examples in the udtudrmgr
directory.)

Demo program name Description

charattrUDT.java Shows how to implement an opaque fixed-length type using SQLData

createDB.java Creates a database that the other udt-distinct demonstration files use

createTypes.java Shows how to create opaque and distinct types in the database

Part X: Informix JDBC Driver Guide 153

Demo program name Description

distinct_d1.java Shows how to create a distinct type without using SQLData

distinct_d2.java Shows how to create a second distinct type without using SQLData

dropDB.java Drops the database that the other udt-distinct demonstration files use

largebinUDT.java Shows how to implement an opaque type (smart large object embedded) using SQLData

manualUDT.java Shows how to implement an opaque type that allows you to change the position in the input stream

myMoney.java Shows how to implement a distinct type using SQLData

udt_d1.java Shows how to create a fixed-length opaque type

udt_d2.java Shows how to create an opaque type with an embedded smart large object

udt_d3.java Shows how to create an opaque type that allows you to change the position in the input stream

Examples in the complex-types directory

The following table lists the files in the complex-types directory.

Demo program
name Description

createDB.java Creates a database with named rows

list1.java Inserts and selects a simple collection using both the java.sql.Array and java.util.Collection classes

list2.java Inserts and selects a collection with a nested row element
Uses both the java.sql.Array and java.util.Collection classes for the collection and both the SQLData and Struct interfaces
for the nested row

r1_t.java Defines the SQLData class for named row r1_t

r2_t.java Defines the SQLData class for named row r2_t

GenericStruct.ja
va

Instantiates a java.sql.Struct object for inserting into named or unnamed rows

row1.java Inserts and selects a simple named row using both the SQLData and Struct interfaces

row2.java Inserts and selects a named row with a nested collection using both the SQLData and Struct interfaces
The SQLData interface uses the IBM® Informix® IfmxComplexSQLOutput. writeObject() and
IfmxComplexSQLOutput.readObject() extension methods to write and read the nested collection.

row3.java Inserts and selects an unnamed row with a nested collection

fullname.java Contains the SQLData class for the named row fullname_t
Used by the demo1.java and demo2.java files

person.java Contains the SQLData class for the named row person_t Used by the demo1.java and demo2.java files

demo1.java Fetches a named row into an SQLData object

demo2.java Inserts an SQLData object into a named row column

demo3.java Fetches an unnamed row column into a Struct object

demo4.java Inserts a Struct object into a named row column

demo5.java Fetches the SET column into a java.util.HashSet object

demo6.java Fetches the SET column into a java.util.TreeSet object
A customized type mapping is provided to override the default.

demo7.java Inserts a java.util.HashSet object into the SET column

demo8.java Fetches the SET column into a java.sql.Array object

dropDB.java Drops the database

Examples in the proxy directory

The following table lists the files in the proxy directory. A README file in the directory contains setup information.

154 Part X: Informix JDBC Driver Guide

Demo program name Description

ProxySelect.java (application) Creates a sample database and connects to it using four scenarios:

Connection with a proxy server and no LDAP server
Connection with an LDAP server and no proxy server
Connection using an sqlhosts file
Direct connection (no proxy servlet, sqlhosts file, or LDAP server)

proxy.sh (shell script) Launches ProxySelect.java. To run the script (and the demo), type:

proxy.sh -d ProxySelect -s 2

proxy.java (applet) Performs the same operations as ProxySelect.java from an applet. To run the applet, type:

appletviewer proxy.html

proxy.html HTML file for proxy.java

ifmx.conf Sample LDAP configuration file

ifmx.ldif Sample LDAP ldif file

Examples in the connection-pool directory

The following table lists the files in the connection-pool directory. A README file in the directory contains setup information.

Demo program
name Description

AppSimulator.ja
va

Simulates multiple client threads making DataSource connections

SetupDB.java Creates and populates a sample database. See the comments at the beginning of the code for a sample run command

DS_Pool.prop Lists properties for a connection-pooling application

myCPDS.prop Lists properties for a connection-pooling application, with the optional tuning parameters included

DS_no_Pool.pro
p

Lists properties for an application without connection pooling

Register.java Registers a DataSource object with a JNDI Name registry
A sample run command is:

java Register DS_no_Pool /tmp

runDemo (Shell script) Creates and populates a sample database; registers the data sources DS_no_Pool and DS_Pool; and runs an
application to simulate multiple client threads that connect to the sample database

Examples in the xml directory

The following table lists the files in the xml directory.

Demo program
name Description

CreateDB.java Creates a sample database

makefile Compiles the examples

myHandler.java Sample class of callback routines for the SAX parser

sample1.xml Simple XML slide

sample2.xml Sample set of XML slides

sample2.dtd Document-type definition for sample1.xml

xmldemo1.java Uses XMLtoString(), getInputSource(), and myHandler.java to convert the XML in sample1.xml to an InputSource object and
then parses it using the SAX parser

Part X: Informix JDBC Driver Guide 155

Examples in the hdr directory

The following table lists the files in the hdr directory. A README file in the directory contains setup information.

Demo program
name Description

SetupDB.java Creates a sample database and table

Register.java Registers the DS_no_Pool and DS_Pool DataSource objects with a JNDI Name registry. A sample run command is:

java Register DS_no_Pool /tmp

AppSimulator.java Simulates High-Availability Data Replication redirection for pooled and nonpooled connections made with the
DataSource.getConnection() method

HdrSimpleConnect
.java

Shows how to implement HDR redirection with the DriverManager.getConnection() method

Examples in the tools directory

The tools directory includes the following subdirectories:

The udtudrmgr directory contains examples that use UDT and UDR Manager to create opaque types and UDRs.
The classgenerator directory contains sample output files of the ClassGenerator utility.

Examples in the udtudrmgr directory

Examples in the udtudrmgr directory

The following table lists the files in the udtudrmgr directory. A README file in the directory contains setup information.

Demo program
name Description

createDB.java Creates a sample database

dropDB.java Drops the sample database

Circle.java (Demo application 1) Implements a Java™ class, using the default Input and Output functions, to be converted to a Java
opaque type

PlayWithCircle.java (Demo application 1) Uses the Circle opaque type in a client application

Circle2.java (Demo application 2) Implements a Java class, with user-supplied Input and Output functions, to be converted to a Java
opaque type

PlayWithCircle2.jav
a

(Demo application 2) Uses the Circle2 opaque type in a client application

MyCircle.java (Demo application 3) Creates a fixed-length opaque type without a preexisting Java class

Group1.java (Demo application 4) Maps methods in an existing Java class to Java UDRs

PlayWithGroup1.ja
va

(Demo application 4) Uses the UDRs from Group1.java in a client application

DataSource extensions

This section lists the IBM® Informix® extensions to standard JDBC classes:

The IfxDataSource class, which implements the DataSource interface
The IfxConnectionPoolDataSource class, which implements the ConnectionPoolDataSource interface

For information about how and why to use a DataSource or ConnectionPoolDataSource object, see the JDBC 3.0 API.

156 Part X: Informix JDBC Driver Guide

IBM Informix JDBC Driver provides extensions for the following purposes:

Reading and writing properties
Getting and setting standard properties
Getting and setting connection properties
Getting and setting Connection Pool DataSource properties

Read and write properties
 Get and set standard properties

 Get and set Informix connection properties
 Get and set connection pool DataSource properties

Read and write properties

The following methods are defined in the extended DataSource interface for reading and writing properties. These methods allow you to define a
new DataSource object by editing the property list of an existing DataSource object.

public Properties getDsProperties();

Returns the Property object contained in the DataSource object

public void addProp(String key, Object value);

Adds a property to the property list

The key parameter specifies which property is to be added.

The value parameter is the value of the property.

public Object getProp(String key);

Gets the value of a property from the property list

The key parameter specifies which property is to be retrieved.

public void removeProperty(String key);

Removes a property from the property list

The key parameter specifies which property is to be removed.

public void readProperties(InputStream in) throws IOException;

Reads properties into a DataSource object from an InputStream object

The in parameter is the InputStream object from which the properties are to be read.

An exception occurs when an I/O error is encountered while reading from the input stream.

public void writeProperties(OutputStream out) throws IOException;

Writes the properties of the DataSource object to an OutputStream object

The out parameter is the OutputStream object to which the properties are to be written.

An exception occurs when an I/O error is encountered while writing to the output stream.

Get and set standard properties

The following methods are defined in the extended DataSource interface for getting and setting properties defined in the JDBC 3.0 API.

Property getXXX() and setXXX() method signatures

portNumber public int getPortNumber();
 public void setPortNumber(int value);

databaseName public String getDatabaseName();
public void setDatabaseName(String value);

serverName public String getServerName();
 public void setServerName(String value);

Part X: Informix JDBC Driver Guide 157

Property getXXX() and setXXX() method signatures

user public String getUser();
 public void setUser(String value);

password public String getPassword();
 public void setPassword(String value);

description public String getDescription();
 public void setDescription(String value);

dataSourceName public String getDataSourceName();
 public void setDataSourceName(String

value);

The networkProtocol and roleName properties are not supported by IBM Informix® JDBC Driver.

Get and set Informix connection properties

The following methods are defined in the extended DataSource interface for getting and setting IBM® Informix® environment variable values.

Environment variable getIfxXXX() and setIfxXXX() method signatures

CLIENT_LOCALE public String getIfxCLIENT_LOCALE()
 public void setIfxCLIENT_LOCALE(String value)

CSM public String getIfxCSM()
 public void setIfxCSM(String csm)

DBANSIWARN public boolean isIfxDBANSIWARN()
 public void setIfxDBANSIWARN(boolean value)

DBCENTURY public String getIfxDBCENTURY()
 public void setIfxDBCENTURY(String value)

DBDATE public String getIfxDBDATE()
 public void setIfxDBDATE(String value)

DB_LOCALE public String getIfxDB_LOCALE()
 public void setIfxDB_LOCALE(String value)

DBSPACETEMP public String getIfxDBSPACETEMP()
 public void setIfxDBSPACETEMP(String value)

DBTEMP public String getIfxDBTEMP()
 public void setIfxDBTEMP(String value)

DBUPSPACE public String getIfxDBUPSPACE()
 public void setIfxDBUPSPACE(String value)

DELIMIDENT public boolean isIfxDELIMIDENT()
 public void setIfxDELIMIDENT(boolean value)

ENABLE_TYPE_CACHE public boolean isIfxENABLE_TYPE_CACHE()
 public void setIfxENABLE_TYPE_CACHE(boolean value)

ENABLE_HDRSWITCH public booleangetIfxENABLE_HDRSWITCH()
 public void setIfxENABLE_HDRSWITCH(boolean value)

FET_BUF_SIZE public int getIfxFET_BUF_SIZE()
 public void setIfxFET_BUF_SIZE(int value)

GL_DATE public String getIfxGL_DATE()
 public void setIfxGL_DATE(String value)

IFX_AUTOFREE public boolean isIfxIFX_AUTOFREE()
 public void setIfxIFX_AUTOFREE(boolean value)

IFX_CODESETLOB public int getIfxIFX_CODESETLOB()
 public void setIfxIFX_CODESETLOB(int codesetlobFlag)

IFX_DIRECTIVES public String getIfxIFX_DIRECTIVES()
 public void setIfxIFX_DIRECTIVES(String value)

IFX_EXTDIRECTIVES public String getIfxIFX_EXTDIRECTIVES()
 public void setIfxIFX_EXTDIRECTIVES(String value)

158 Part X: Informix JDBC Driver Guide

Environment variable getIfxXXX() and setIfxXXX() method signatures

IFX_FLAT_UCSQ public int getIfxIFX_FLAT_UCSQ()
 public void setIfxIFX_FLAT_UCSQ(int value)

IFX_GET_SMFLOAT_AS_FLOAT public boolean getIfxIFX_GET_SMFLOAT_AS_FLOAT()
 public void setIfxIFX_IFX_GET_SMFLOAT_AS_FLOAT(boolean value)

IFX_ISOLATION_LEVEL public String getIfxIFX_ISOLATION_LEVEL()
 public void setIfxIFX_ISOLATION_LEVEL (String iso_level)

IFX_LOCK_MODE_WAIT public int getIfxIFX_LOCK_MODE_WAIT()
 public void setIfxIFX_LOCK_MODE_WAIT(int lock_time)

IFX_SET_FLOAT_AS_SMFLOAT public boolean getIfxIFX_SET_FLOAT_AS_SMFLOAT()
 public void setIfxIFX_SET_FLOAT_AS_SMFLOAT(boolean value)

IFX_SOC_KEEPALIVE public void setIfxIFX_SOC_KEEPALIVE(boolean keepalive)
 public boolean getIfxIFX_SOC_KEEPALIVE()

IFX_TRIMTRAILINGSPACES public int getIfxIFX_TRIMTRAILINGSPACES()
 public void setIfxIFX_TRIMTRAILINGSPACES(int value)

IFXHOST public String getIfxIFXHOST()
 public void setIfxIFXHOST(String value)

IFXHOST_SECONDARY public String getIfxIFXHOST_SECONDARY()
 public void setIfxIFXHOST_SECONDARY(String value)

IFX_USEPUT public boolean isIfxIFX_USEPUT()
 public void setIfxIFX_USEPUT(boolean value)

IFX_XASPEC public String getIfxIFX_XASPEC() (returns y or n)
 public void IfxIFX_XASPEC(String XASPEC_flag)
 (only y, Y, n, or N are valid)

IFX_XASTDCOMPLIANCE_XAEND public int getIfxIFX_XASTDCOMPLIANCE_XAEND()
 public void setIfxIFX_XASTDCOMPLIANCE_XAEND(int value)

INFORMIXCONRETRY public int getIfxINFORMIXCONRETRY()
 public void setIfxINFORMIXCONRETRY(int value)

INFORMIXCONTIME public int getIfxINFORMIXCONTIME()
 public void setIfxINFORMIXCONTIME(int value)

INFORMIXOPCACHE public String getIfxINFORMIXOPCACHE()
 public void setIfxINFORMIXOPCACHE(String value)

INFORMIXSERVER_SECONDARY public String getIfxINFORMIXSERVER_SECONDARY()
 public void setIfxINFORMIXSERVER_SECONDARY(String value)

INFORMIXSTACKSIZE public int getIfxINFORMIXSTACKSIZE()
 public void setIfxINFORMIXSTACKSIZE(int value)

JDBCTEMP public String getIfxJDBCTEMP()
 public void setIfxJDBCTEMP(String value)

LDAP_IFXBASE public String getIfxLDAP_IFXBASE()
 public void setIfxLDAP_IFXBASE(String value)

LDAP_PASSWD public String getIfxLDAP_PASSWD()
 public void setIfxLDAP_PASSWD(String value)

LDAP_URL public String getIfxLDAP_URL()
 public void setIfxLDAP_URL(String value)

LDAP_USER public String getIfxLDAP_USER()
 public void setIfxLDAP_USER(String value)

LOBCACHE public int getIfxLOBCACHE()
 public void setIfxLOBCACHE(int value)

NEWCODESET public String getIfxNEWCODESET()
 public void setIfxNEWCODESET(String value)

NEWLOCALE public String getIfxNEWLOCALE()
 public void setIfxNEWLOCALE(String value)

NEWNLSMAP public String getIfxNEWNLSMAP()
 public void setIfxNEWNLSMAP(String value)

Part X: Informix JDBC Driver Guide 159

Environment variable getIfxXXX() and setIfxXXX() method signatures

NODEFDAC public String getIfxNODEFDAC()
 public void setIfxNODEFDAC(String value)

OPT_GOAL public String getIfxOPT_GOAL()
 public void setIfxOPT_GOAL(String value)

OPTCOMPIND public String getIfxOPTCOMPIND()
 public void setIfxOPTCOMPIND(String value)

OPTOFC public String getIfxOPTOFC()
 public void setIfxOPTOFC(String value)

PATH public String getIfxPATH()
 public void setIfxPATH(String value)

PDQPRIORITY public String getIfxPDQPRIORITY()
 public void setIfxPDQPRIORITY(String value)

PLCONFIG public String getIfxPLCONFIG()
 public void setIfxPLCONFIG(String value)

PLOAD_LO_PATH public String getIfxPLOAD_LO_PATH()
 public void setIfxPLOAD_LO_PATH(String value)

PORTNO_SECONDARY public String getIfxPORTNO_SECONDARY
 public void setIfxPORTNO_SECONDARY(int value)

PROXY public String getIfxPROXY()
 public void setIfxPROXY(String value)

PSORT_DBTEMP public String getIfxPSORT_DBTEMP()
 public void setIfxPSORT_DBTEMP(String value)

PSORT_NPROCS public String getIfxPSORT_NPROCS()
 public void setIfxPSORT_NPROCS(String value)

SECURITY public String getIfxSECURITY()
 public void setIfxSECURITY(String value)

SQLH_FILE public String getIfxSQLH_FILE()
 public void setIfxSQLH_FILE(String value)

SQLH_TYPE public String getIfxSQLH_TYPE()
 public void setIfxSQLH_TYPE(String value)

SQLIDEBUG public String getIfxSQLIDEBUG ()
 public void setIfxSQLIDEBUG (String value)

STMT_CACHE public String getIfxSTMT_CACHE()
 public void setIfxSTMT_CACHE(String value)

USEV5SERVER public boolean isIfxUSEV5SERVER()
 public void setIfxUSEV5SERVER(boolean value)

Get and set connection pool DataSource properties

The code you write to use a ConnectionPoolDataSource object is the same as the code you write to use a DataSource object. Additional tuning
parameters let you or your database administrator control some aspects of connection pool management with the Connection Pool Manager.
These are more fully described in A connection pool. The following table summarizes them.

Property getXXX() and setXXX() method signatures

IFMX_CPM_ENABLE_SWITCH_HDRPOOL public void setIfxCPMSwitchHDRPool (boolean flag)
 public int getIfxCPMSwitchHDRPool()

IFMX_CPM_INIT_POOLSIZE public void setIfxCPMInitPoolSize (int init)
 public int getIfxCPMInitPoolSize()

IFMX_CPM_MAX_CONNECTIONS public void setIfxCPMMaxConnections (int limit)
 public int getIfxCPMMaxConnections()

IFMX_CPM_MIN_POOLSIZE public void setIfxCPMMinPoolSize (int min)
 public int getIfxCPMMinPoolSize()

160 Part X: Informix JDBC Driver Guide

Property getXXX() and setXXX() method signatures

IFMX_CPM_MAX_POOLSIZE public void setIfxCPMMaxPoolSize (int max)
 public int getIfxCPMMaxPoolSize()

IFMX_CPM_MIN_AGELIMIT public void setIfxCPMMinAgeLimit (long limit)
 public long getIfxCPMMinAgeLimit()

IFMX_CPM_MAX_AGELIMIT public void setIfxCPMMaxAgeLimit (long limit)
 public long getIfxCPMMaxAgeLimit()

IFMX_CPM_SERVICE_INTERVAL public void setIfxCPMServiceInterval (long interval)
 public long getIfxCPMServiceInterval()

Mapping data types

This section discusses mapping issues between data types defined in a Java™ program and the data types supported by the IBM® Informix®
database server.

Data type mapping between Informix and JDBC data types
 Data type mapping for PreparedStatement.setXXX() extensions

 Data type mapping for ResultSet.getXXX() methods
 Data type mapping for UDT manager and UDR manager

Data type mapping between Informix and JDBC data types

Because there are variations between the SQL data types supported by each database vendor, the JDBC API defines a set of generic SQL data
types in the class java.sql.Types. Use these JDBC API data types to reference generic SQL types in your Java™ programs that use the JDBC API
to connect to IBM® Informix® databases.

The following table shows the data type to which each JDBC API data type maps.

JDBC API data type data type

BIGINT INT8, BIGINT, BIGSERIAL

BINARY BYTE

BIT 1 BOOLEAN

REF Not supported

CHAR CHAR(n)

DATE DATE

DECIMAL DECIMAL

DOUBLE FLOAT

FLOAT FLOAT2

INTEGER INTEGER

LONGVARBINARY BYTE or BLOB

LONGVARCHAR TEXT or CLOB

NUMERIC DECIMAL

NUMERIC MONEY

REAL SMALLFLOAT

SMALLINT SMALLINT

TIME DATETIME HOUR TO SECOND2

TIMESTAMP DATETIME YEAR TO FRACTION(5)3

TINYINT SMALLINT

VARBINARY BYTE

VARCHAR VARCHAR(m,r)

Part X: Informix JDBC Driver Guide 161

JDBC API data type data type

BOOLEAN BOOLEAN

SMALLINT SMALLINT
1 With Java 1.4 is , java.sql.Types.BOOLEAN maps to BOOLEAN.

2 This mapping is JDBC compliant. You can map the JDBC FLOAT data type to the SMALLFLOAT data type for backward compatibility by setting
the IFX_SET_FLOAT_AS_SMFLOAT environment variable to 1.

3 DATETIME types are very restrictive and are not interchangeable. For more information, see Field lengths and date-time data.

Data type mapping between extended types and Java and JDBC types
 Data type mapping between C opaque types and Java

Data type mapping between extended types and Java and JDBC types

The following table lists mappings between the extended data types supported in IBM® Informix® and the corresponding Java™ and JDBC types.

JDBC type Java object type type

java.sql.Types.LONGVARCHAR java.sql.String
 java.io.inputStream

LVARCHAR
 IfxTypes.IFX_TYPE_LVARCHAR

java.sql.Types.JAVA_OBJECT java.sql.SQLData Opaque type
 IfxTypes.IFX_TYPE_UDTFIXED

 IfxTypes.IFX_TYPE_UDTVAR

java.sql.Types.LONGVARBINARY
 java.sql.Types.BLOB

java.sql.Blob
 java.io.inputStream

byte[]

BLOB
 IfxTypes.IFX_TYPE_BLOB

java.sql.Types.LONGVARCHAR
 java.sql.Types.CLOB

java.sql.Clob
 java.io.inputStream

java.lang.String

CLOB
 IfxTypes.IFX_TYPE_CLOB

java.sql.Types.LONGVARBINARY
 java.sql.Types.BLOB

java.io.inputStream
java.sql.Blob byte[]

BYTE
 IfxTypes.IFX_TYPE_BYTE

java.sql.Types.LONGVARCHAR
 java.sql.Types.CLOB

java.io.InputStream
java.sql.Clob java.sql.String

TEXT
 IfxTypes.IFX_TYPE_TEXT

java.sql.Types.JAVA_OBJECT
 java.sql.Types.STRUCT

java.sql.SQLData
 java.sql.Struct

Named row
 IfxTypes.IFX_TYPE_ROW

java.sql.Types.STRUCT java.sql.Struct Unnamed row
 IfxTypes.IFX_TYPE_ROW

java.sql.Types.ARRAY
 java.sql.Types.OTHER

java.sql.Array
 java.util.LinkedList

 java.util.HashSet
 java.util.TreeSet

set, multiset
 IfxTypes.IFX_TYPE_SET

 IfxTypes.IFX_TYPE_MULTISET

java.sql.Types.ARRAY
 java.sql.Types.OTHER

java.sql.Array
 java.util.ArrayList

 java.util.LinkedList

LIST
 IfxTypes.IFX_TYPE_LIST

A Java boolean object can map to the smallint data type or the boolean data type. IBM Informix JDBC Driver attempts to map it according to the
column type. However, in cases such as PreparedStatement host variables, IBM Informix JDBC Driver cannot access the column types, so the
mapping is somewhat limited. For more details on data type mapping, see Data type mapping for PreparedStatement.setXXX() extensions.

Data type mapping between C opaque types and Java

To create an opaque type using Java™, you can use the UDT and UDR Manager facility. For more information, see Work with opaque types.

All opaque data is stored in the database server table in a C struct, which is made up of various DataBlade API types, as defined in the opaque
type. (For more information, see the IBM® Informix DataBlade API Programmer's Guide.)

The following table lists the mapping of DataBlade API types to their corresponding Java types.

DataBlade API type Java type

162 Part X: Informix JDBC Driver Guide

DataBlade API type Java type

MI_LO_HANDLE BLOB or CLOB

gl_wchar_t String

mi_boolean boolean

mi_char String

mi_char1 String

mi_date Date

mi_datetime TimeStamp

mi_decimal BigDecimal

mi_double_precision double

mi_int1 byte

mi_int8 long

mi_integer int

mi_interval Not supported

mi_money BigDecimal

mi_numeric BigDecimal

mi_real float

mi_smallint short

mi_string String

mi_unsigned_char1 String

mi_unsigned_int8 long

mi_unsigned_integer int

mi_unsigned_smallint short

mi_wchar String

The C struct may contain padding bytes. IBM Informix® JDBC Driver automatically skips these padding bytes to make sure the next data member
is properly aligned. Therefore, your Java objects do not have to take care of alignment themselves.

Data type mapping for PreparedStatement.setXXX() extensions

IBM® Informix® introduces many extended data types. As a result, there can be multiple mappings between a JDBC or Java™ data type and the
corresponding data type.

For example, you can use PreparedStatement.setAsciiStream() to insert into either a text column or a CLOB column. Similarly, you can also use
PreparedStatement.setBinaryStream() to insert into a byte column or a BLOB column. Because the actual column information is not available to
IBM Informix JDBC Driver at all times, there can be ambiguity for the driver when it maps data types.

Normally, with INSERT, SELECT, or DELETE statements, the column information is available to the driver, so the driver can determine how the
data can be sent to the database server.

However, when the data is referenced in an UPDATE statement or inside a WHERE clause, IBM Informix JDBC Driver does not have access to the
column information. In those cases, unless you use the extensions, the driver maps those columns using the corresponding data types listed in
the first table in Data type mapping between Informix and JDBC data types. For the PreparedStatement.setAsciiStream() method, the driver tries
to map to a text data type, and for the PreparedStatement.setBinaryStream() method, it tries to map to a byte data type.

The mapping extensions
 The IfxTypes class

 Extension summary

The mapping extensions

To direct the driver to map to a certain data type (so there is no ambiguity in UPDATE statements and WHERE clauses), you can use extensions to
the PreparedStatement.setXXX() methods. The only data types that might have ambiguity are boolean, lvarchar, text, byte, BLOB, and CLOB.

Part X: Informix JDBC Driver Guide 163

To use these extended methods, you must cast your PreparedStatement references to IfmxPreparedStatement. For example, the following
code casts the statement variable p_stmt to IfmxPreparedStatement to call the IfxSetObject() method and insert the contents of a file as a
large object of type CLOB. IfxSetObject() is defined as I:

public void IfxSetObject(int i, Object x, int scale, int ifxType)
 throws SQLException
public void IfxSetObject(int i, Object x, int ifxType) throws
 SQLexception

The code is:

File file = new File("sblob_06.dat");
int fileLength = (int)file.length();
byte[] buffer = new byte[fileLength];
FileInputStream fin = new FileInputStream(file);
fin.read(buffer,0,fileLength);
String str = new String(buffer);

writeOutputFile("Prepare");
PreparedStatement p_stmt = myConn.prepareStatement
 ("insert into sblob_t20(c1) values(?)");

writeOutputFile("IfxSetObject");
((IfmxPreparedStatement)p_stmt).IfxSetObject(1,str,30,IfxTypes.IFX
 _TYPE_CLOB);

For the IfmxPreparedStatement.IfxSetObject extension, you cannot simply overload the method signature with an added ifxType parameter,
because such overloading creates method ambiguity. You must name the method to IfxSetObject instead.

The extensions for opaque types
 Other mapping extensions

The extensions for opaque types

The extensions for processing opaque types allow your application to specify the return type to which the database server should cast the
opaque type before returning it to the client. This is known as prebinding the return value. The methods are:

setBindColType(), which allows applications to specify the output type of result-set values using standard JDBC data types from
java.sql.Types
setBindColIfxType(), which allows applications to specify the output type of result-set values using IBM® Informix® data types from
com.informix.lang.IfxTypes
For more information about the available types, see The IfxTypes class.

clearBindColType(), which resets values set through the previous two methods

In the following topics:

The colIndex parameter specifies the column: 1 is the first column, 2 the second, and so forth
The sqltype parameter is a value from java.sql.Types: for example, Types.INTEGER.
The ifxtype parameter is a value from IfxTypes: for example, IfxTypes.IFX_TYPE_DECIMAL.

The setBindColType() methods
 The setBindColIfxType() methods

 The clearBindColType() method
Prebinding example

The setBindColType() methods

The methods are as follows:

public void setBindColType(int colIndex, int sqltype) throws SQLException;
public void setBindColType(int colIndex, int sqltype, int scale)
 throws SQLException;
public void setBindColType(int colIndex, int sqltype, String name)
 throws SQLException;

The first overloaded method allows applications to specify the output type to be java.sql.DECIMAL or java.sql.NUMERIC; the scale
parameter specifies the number of digits to the right of the decimal point. The second overloaded method allows applications to specify the
output type to be java.sql.STRUCT, java.sql.ARRAY, java.sql.DISTINCT, or java.sql.JAVA_OBJECT by assigning one of these values
to the name parameter.

164 Part X: Informix JDBC Driver Guide

The setBindColIfxType() methods

The methods are as follows:

public void setBindColIfxType(int colIndex, int ifxtype) throws SQLException;
public void setBindColIfxType(int colIndex, int ifxtype, int scale)
 throws SQLException;
public void setBindColIfxType(int colIndex, int ifxtype, String name)
 throws SQLException;

The first overloaded method allows applications to specify the output type to be IFX_TYPE_DECIMAL or IFX_TYPE_NUMERIC; the scale
parameter specifies the number of digits to the right of the decimal point. The second overloaded method allows applications to specify the
output type to be IFX_TYPE_LIST, IFX_TYPE_ROW, IFX_TYPE_MULTISET, IFX_TYPE_SET, IFX_TYPE_UDTVAR, or IFX_TYPE_UDTFIXED by
assigning one of these values to the name parameter.

The clearBindColType() method

The method is as follows:

public void clearBindColType() throws SQLException;

Prebinding example

The following code from the udt_bindCol.java sample program prebinds an opaque type to the IBM® Informix® VARCHAR and then to a standard
Java™ Integer type. The table used in this example has one int column and one opaque type column and is defined as follows:

create table charattr_tab (int_col int, charattr_col charattr_udt)

The code to select and prebind the opaque type in the charattr_col column is as follows:

String s = "select int_col, charattr_col as cast_udt_to_lvc, " +
 "charattr_col as cast_udt_to_int from charattr_tab order by 1";

pstmt = conn.prepareStatement(s);
 ((IfxPreparedStatement)pstmt).setBindColIfxType(2,IfxTypes.IFX_TYPE_LVARCHAR);
 ((IfxPreparedStatement)pstmt).setBindColType(3,Types.INTEGER);

ResultSet rs = pstmt.executeQuery();

System.out.println("Fetching data ...");
int curRow = 0;
while (rs.next())
{
 curRow++;
 int intret = rs.getInt("int_col");
 String strret = rs.getString("cast_udt_to_lvc");
 int intret2 = rs.getInt("cast_udt_to_int");
} // end while

Other mapping extensions

The remaining method signatures are listed next, along with any additional considerations that apply. In each case, the IBM® Informix® type must
be the last parameter to the standard JDBC PreparedStatement.setXXX() interface.

IfmxPreparedStatement.setArray()

public void setArray(int parameterIndex, Array x, int ifxType)
 throws SQLException

IfmxPreparedStatement.setAsciiStream()

public void setAsciiStream(int i, InputStream x, int length, int
 ifxType) throws SQLException

When your application is inserting a very large ASCII value into a LONGVARCHAR column, it is sometimes more efficient to send the ASCII value
to the server using java.io.InputStream.

Part X: Informix JDBC Driver Guide 165

IfmxPreparedStatement.setBigDecimal()

public void setBigDecimal(int i, BigDecimal x, int ifxType)
 throws SQLException

IfmxPreparedStatement.setBinaryStream()

public void setBinaryStream(int i, InputStream x, int length, int
 ifxType) throws SQLException

When your application is inserting a very large binary value into a LONGVARbinary column, it is sometimes more efficient to send the binary value
to the server using java.io.InputStream.

IfmxPreparedStatement.setBlob()

public void setBlob(int parameterIndex, Blob x, int ifxType)
 throws SQLException

IfmxPreparedStatement.setBoolean()

public void setBoolean(int i, boolean x, int ifxType) throws
 SQLException

IfmxPreparedStatement.setByte()

public void setByte(int i, byte x, int ifxType) throws
 SQLException

IfmxPreparedStatement.setBytes()

public void setBytes(int i, byte x[], int ifxType) throws
 SQLException

IfmxPreparedStatement.setCharacterStream()

public void setCharacterStream(int parameterIndex, Reader reader,
 int length, int ifxType) throws SQLException

When your application is setting a LONGVARCHAR parameter to a very large UNICODE value, it is sometimes more efficient to send the UNICODE
value to the server using java.io.Reader.

IfmxPreparedStatement.setClob()

public void setClob(int parameterIndex, Clob x, int ifxType)
 throws SQLException

IfmxPreparedStatement.setDate()

public void setDate(int i, Date x, int ifxType) throws
 SQLException
public void setDate(int parameterIndex, Date x, Calendar Cal,
 int ifxType) throws SQLException

IfmxPreparedStatement.setDouble()

public void setDouble(int i, double x, int ifxType) throws SQ
 LException

IfmxPreparedStatement.setFloat()

public void setFloat(int i, float x, int ifxType) throws
 SQLException

IfmxPreparedStatement.setInt()

public void setInt(int i, int x, int ifxType) throws SQLException

IfmxPreparedStatement.setLong()

public void setLong(int i, long x, int ifxType) throws
 SQLException

IfmxPreparedStatement.setNull()

public void setNull(int i, int sqlType, int ifxType) throws
 SQLException

IfmxPreparedStatement.setShort()

public void setShort(int i, short x, int ifxType) throws
SQLException

166 Part X: Informix JDBC Driver Guide

IfmxPreparedStatement.setString()

public void setString(int i, String x, int ifxType) throws
 SQLException

IfmxPreparedStatement.setTime()

public void setTime(int i, Time x, int ifxType) throws
 SQLException
public void setTime(int parameterIndex, Time time, Calendar Cal,
 int ifxType) throws SQLException

IfmxPreparedStatement.setTimestamp()

public void setTimestamp(int i, Timestamp x, int ifxType) throws
 SQLException
public void setTimestamp(int parameterIndex, Timestamp x, Calendar
 Cal) throws SQLException

The IfxTypes class

The extended IfmxPreparedStatement methods require you to pass in the IBM® Informix® data type to which you want to map. These types are
part of the com.informix.lang.IfxTypes class.

The following table shows the IfxTypes constants and the corresponding data types.

IfxTypes constant data type

IfxTypes.IFX_TYPE_BIGINT BIGINT

IfxTypes.IFX_TYPE_BIGSERIAL BIGSERIAL

IfxTypes.IFX_TYPE_CHAR CHAR

IfxTypes.IFX_TYPE_SMALLINT SMALLINT

IfxTypes.IFX_TYPE_INT INT

IfxTypes.IFX_TYPE_FLOAT FLOAT

IfxTypes.IFX_TYPE_SMFLOAT SMALLFLOAT

IfxTypes.IFX_TYPE_DECIMAL DECIMAL

IfxTypes.IFX_TYPE_SERIAL SERIAL

IfxTypes.IFX_TYPE_DATE DATE

IfxTypes.IFX_TYPE_MONEY MONEY

IfxTypes.IFX_TYPE_NULL NULL

IfxTypes.IFX_TYPE_DATETIME DATETIME

IfxTypes.IFX_TYPE_BYTE BYTE

IfxTypes.IFX_TYPE_TEXT TEXT

IfxTypes.IFX_TYPE_VARCHAR VARCHAR

IfxTypes.IFX_TYPE_INTERVAL INTERVAL

IfxTypes.IFX_TYPE_NCHAR NCHAR

IfxTypes.IFX_TYPE_NVARCHAR NVARCHAR

IfxTypes.IFX_TYPE_INT8 INT8

IfxTypes.IFX_TYPE_SERIAL8 SERIAL8

IfxTypes.IFX_TYPE_SET SQLSET

IfxTypes.IFX_TYPE_MULTISET SQLMULTISET

IfxTypes.IFX_TYPE_LIST SQLLIST

IfxTypes.IFX_TYPE_ROW SQLROW

IfxTypes.IFX_TYPE_COLLECTION COLLECTION

IfxTypes.IFX_TYPE_UDTVAR UDTVAR

IfxTypes.IFX_TYPE_UDTFIXED UDTFIXED

Part X: Informix JDBC Driver Guide 167

IfxTypes constant data type

IfxTypes.IFX_TYPE_REFSER8 REFSER8

IfxTypes.IFX_TYPE_LVARCHAR LVARCHAR

IfxTypes.IFX_TYPE_SENDRECV SENDRECV

IfxTypes.IFX_TYPE_BOOL BOOLEAN

IfxTypes.IFX_TYPE_IMPEXP IMPEXP

IfxTypes.IFX_TYPE_IMPEXPBIN IMPEXPBIN

IfxTypes.IFX_TYPE_CLOB CLOB

IfxTypes.IFX_TYPE_BLOB BLOB

Extension summary

The tables in this section list the PreparedStatement.setXXX() methods that IBM Informix® JDBC Driver supports for nonextended data types
and extended data types.

Nonextended data types
 Informix extended data types

Nonextended data types

The following tables list the PreparedStatement.setXXX() methods that IBM Informix® JDBC Driver supports for nonextended data types. The top
heading lists the standard JDBC API data types defined in the java.sql.Types class. These translate to specific data types, as shown in the table
in Data type mapping between extended types and Java and JDBC types. The tables below list the setXXX() methods you can use to write data of
a particular JDBC API data type. An uppercase and bold X indicates the setXXX() method that it is recommended you use with IBM Informix
JDBC Driver; a lowercase x indicates other setXXX() methods that IBM Informix JDBC Driver supports.

Numeric JDBC API data types
Table 1. Numeric JDBC API data types from java.sql.Types

setXXX() method TINYINT SMALLINT INTEGER BIGINT

setByte() X x x x

setShort() x X x x

setInt() x x X x

setLong() x x x X

setFloat() x x x x

setDouble() x x x x

setBigDecimal() x x x x

setBoolean() x x x x

setString() x x x x

setObject() x x x x

Table 2. Numeric JDBC API data types from java.sql.Types (continued)

setXXX() method REAL FLOAT DOUBLE DECIMAL NUMERIC

setByte() x x x x x

setShort() x x x x x

setInt() x x x x x

setLong() x x x x x

setFloat() X x x x x

setDouble() x X X x x

168 Part X: Informix JDBC Driver Guide

setXXX() method REAL FLOAT DOUBLE DECIMAL NUMERIC

setBigDecimal() x x x X X

setBoolean() x x x x x

setString() x x x x x

setObject() x x x x x

Character and chronological JDBC API data types
Table 3. Character and chronological JDBC API data types from java.sql.Types

setXXX() method CHAR VARCHAR LONGVARCHAR BINARY

setByte() x1 x1

setShort() x1 x1

setInt() x1 x1

setLong() x1 x1

setFloat() x1 x1

setDouble() x1 x1

setBigDecimal() x x

setBoolean() x x

setString() X X x x

setBytes() x X

setDate() x x

setTime() x x

setTimestamp() x x

setAsciiStream() X x

setCharacterStream() X x

setBinaryStream() x x

setObject() x x x2 x

Notes:

1. The column value must match the type of setXXX() exactly, or an SQLException is raised. If the column value is not within the allowed
value range, the setXXX() method raises an exception instead of converting the data type. For example, setByte(1) raises an SQLException
if the value being written is 1000.

2. A byte array is written.

Table 4. Character and chronological JDBC API data types from java.sql.Types (continued)

setXXX() method VARBINARY LONGVARBINARY DATE TIME TIMESTAMP

setString() x x x x x

setBytes() X x

setDate() X x

setTime() X x

setTimestamp() x X

setAsciiStream() x x

setCharacterStream() x x

setBinaryStream() x X

setObject() x x1 x x2 x

Notes:

1. A byte array is written.
2. A Timestamp object is written instead of a Time object.

Part X: Informix JDBC Driver Guide 169

The setMaxRows() method writes an SQL null value.

Informix extended data types

The following table lists the PreparedStatement.setXXX() methods that IBM Informix® JDBC Driver supports for the extended data types, the
mappings for which are shown in the table Data type mapping between extended types and Java and JDBC types. The table lists the setXXX()
methods you can use to write data of a particular extended data type.

An uppercase and bold X indicates the recommended setXXX() method to use; a lowercase x indicates other setXXX() methods supported by
IBM Informix JDBC Driver. The table does not include setXXX() methods that you cannot use with any of the extended data types.

Table 1. extended data types
setXXX()
method

BOOLEAN LVARCHAR Opaque types BLOB CLOB BYTE TEXT

setByte() x x

setShort() x

setInt() x

setBoolean() X

setString() X x x

setBytes() x x

setAsciiStream() x x X

setCharacterStr
eam()

 x x X

setBinaryStrea
m()

x x X

setObject() x x X x x x x

setArray()

setBlob() X

setClob() X

Table 2. extended data types (continued)

setXXX() method NAMED ROW UNNAMED ROW SET or MULTISET LIST

setObject() X X x x

setArray() x x

The setMaxRows() method writes an SQL null value.

Data type mapping for ResultSet.getXXX() methods

Use the ResultSet.getXXX() methods to transfer data from the IBM® Informix® database to a Java™ program that uses the JDBC API to connect to
the database. For example, use the ResultSet.getString() method to get the data stored in a column of data type LVARCHAR.
Important: If you use an expression within an SQL statement—for example, SELECT mytype::LVARCHAR FROM mytab—you might not be able
to use ResultSet.getXXX(columnName) to retrieve the value. Use ResultSet.getXXX(columnIndex) to retrieve the value instead.
The getXXX() methods return a null value if the retrieved column value is an SQL null value.

The tables in this section list the ResultSet.getXXX() methods that IBM Informix JDBC Driver supports for nonextended data types and extended
data types.

Nonextended data types
 Informix extended data types

Nonextended data types

The following tables list the ResultSet.getXXX() methods that IBM Informix® JDBC Driver supports for nonextended data types. The top heading
lists the standard JDBC API data types defined in the java.sql.Types class. These translate to specific data types, as shown in the first table in

170 Part X: Informix JDBC Driver Guide

Data type mapping between Informix and JDBC data types. The tables list the getXXX() methods you can use to retrieve data of a particular JDBC
API data type.

An uppercase and bold X indicates the recommended getXXX() method to use; a lowercase x indicates other getXXX() methods supported by
IBM Informix JDBC Driver.

Numeric JDBC API data types
Table 1. Numeric JDBC API data types from java.sql.Types

getXXX() method TINYINT SMALLINT INTEGER BIGINT

getByte() X x x x

getShort() x X x x

getInt() x x X x

getLong() x x x X

getFloat() x x x x

getDouble() x x x x

getBigDecimal() x x x x

getBoolean() x x x x

getString() x x x x

getObject() x x x x

Table 2. Numeric JDBC API data types from java.sql.Types (continued)

getXXX() method REAL FLOAT DOUBLE DECIMAL NUMERIC

getByte() x x x x x

getShort() x x x x x

getInt() x x x x x

getLong() x x x x x

getFloat() X x x x x

getDouble() x X X x x

getBigDecimal() x x x X X

getBoolean() x x x x x

getString() x x x x x

getObject() x x x x x

Character and chronological JDBC API data types
Table 3. Character and chronological JDBC API data types from java.sql.Types

getXXX() method CHAR VARCHAR LONGVARCHAR BINARY

getByte() x1 x1

getShort() x1 x1

getInt() x1 x1

getLong() x1 x1

getFloat() x1 x1

getDouble() x1 x1

getBigDecimal() x x

getBoolean() x x

getString() X X x x

getBytes() x x x X

getDate() x x

Part X: Informix JDBC Driver Guide 171

getXXX() method CHAR VARCHAR LONGVARCHAR BINARY

getTime() x x

getTimestamp() x x

getAsciiStream() X x

getCharacterStream() X x

getBinaryStream() x x

getObject() x x x2 x

Notes:

1. The column value must match the type of getXXX() exactly, or an SQLException is raised. If the column value is not within the allowed
value range, the getXXX() method raises an exception instead of converting the data type. For example, getByte(1) raises an
SQLException if the column value is 1000.

2. A byte array is returned.

Table 4. Character and chronological JDBC API data types from java.sql.Types (continued)

getXXX() method VARBINARY LONGVARBINARY DATE TIME TIMESTAMP

getString() x x x x x

getBytes() X x

getDate() X x

getTime() X x

getTimestamp() x X

getAsciiStream() x x

getCharacterStream() x x

getBinaryStream() x X

getObject() x x1 x x2 x

Notes:

1. A byte array is returned.
2. A Timestamp object is returned instead of a Time object.

Informix extended data types

The following table lists the ResultSet.getXXX() methods that IBM Informix® JDBC Driver supports for the extended data types, the mappings for
which are shown in the table Data type mapping between extended types and Java and JDBC types. The table lists the getXXX() methods you can
use to retrieve data of a particular extended data type.

An uppercase and bold X indicates the recommended getXXX() method to use; a lowercase x indicates other getXXX() methods supported by
IBM Informix JDBC Driver. The table does not include getXXX() methods that you cannot use with any of the extended data types.

Table 1. extended data types

getXXX() method BOOLEAN LVARCHAR Opaque types BLOB CLOB BYTE

getByte() x x

getShort() x

getInt() x

getBoolean() X

getString() X x

getBytes() x x

getAsciiStream() x x

getCharacterStream() x x

getBinaryStream() x x X

getObject() x x X x x x

172 Part X: Informix JDBC Driver Guide

getXXX() method BOOLEAN LVARCHAR Opaque types BLOB CLOB BYTE

getBlob() X

getClob() X

Table 2. extended data types (continued)

getXXX() method TEXT NAMED ROW UNNAMED ROW SET or MULTISET LIST

getString() x

getBytes()

getAsciiStream() X

getCharacterStream() X

getBinaryStream()

getObject() x X X x x

getArray() x x

getBlob()

getClob()

Data type mapping for UDT manager and UDR manager

When you use the UDTManager and UDRManager classes to create opaque types and Java™ UDRs in the database server, the driver maps Java
method arguments and return types to SQL data types according to the tables in this section. Any data type not shown in these tables is not
supported.

If the Java method has arguments of any of the following Java types, the arguments and return type are mapped to SQL types in the server as
shown in the following table. The table shows the IBM® Informix® data type to which each Java data type maps.

Java data type SQL data type

boolean,
java.lang.Boolean

BOOLEAN

char CHAR(1)

byte CHAR(1)

short, java.lang.Short SMALLINT

int, java.lang.Integer INT

long, java.lang.Long INT8

float, java.lang.Float SMALLFLOAT

double, java.lang.Double FLOAT1

java.lang.String LVARCHAR

java.math.BigDecimal DECIMAL
Default precision is set by the server to be: DECIMAL(16,0) for an ANSI database decimal (16,255) for a non-
ANSI database

java.sql.Date DATE

java.sql.Time DATETIME HOUR TO SECOND

java.sql.Timestamp DATETIME YEAR TO FRACTION(5)

com.informix.lang.Interval
YM

INTERVAL YEAR TO MONTH

com.informix.lang.Interval
DF

INTERVAL DAY TO FRACTION(5)

java.sql.Blob BLOB

java.sql.Clob CLOB
1 This mapping is JDBC compliant. You can map the Java double data type (via the JDBC FLOAT data type) to the SMALLFLOAT data type for
backward compatibility by setting the IFX_GET_SMFLOAT_AS_FLOAT environment variable to 1.

Part X: Informix JDBC Driver Guide 173

Mapping for casts
Mapping for field types

Mapping for casts

The following table shows the mapping supported between the type defined for the ifxtype parameter in the UDTMetaData.setXXXCast()
methods and SQL data types in the server.

ifxtype parameter type from com.informix.lang.IfxTypes data type

IFX_TYPE_CHAR CHAR

IFX_TYPE_SMALLINT SMALLINT

IFX_TYPE_INT INT

IFX_TYPE_FLOAT FLOAT

IFX_TYPE_SMFLOAT SMALLFLOAT

IFX_TYPE_DECIMAL DECIMAL

IFX_TYPE_SERIAL SERIAL

IFX_TYPE_DATE DATE

IFX_TYPE_MONEY MONEY

IFX_TYPE_DATETIME DATETIME

IFX_TYPE_BYTE BYTE

IFX_TYPE_TEXT TEXT

IFX_TYPE_VARCHAR VARCHAR

IFX_TYPE_INTERVAL INTERVAL

IFX_TYPE_NCHAR NCHAR

IFX_TYPE_NVARCHAR NVARCHAR

IFX_TYPE_INT8 INT8

IFX_TYPE_SERIAL8 SERIAL8

IFX_TYPE_LVARCHAR LVARCHAR

IFX_TYPE_SENDRECV SENDRECV

IFX_TYPE_BOOL BOOLEAN

IFX_TYPE_IMPEXP IMPEXP

IFX_TYPE_IMPEXPBIN IMPEXPBIN

IFX_TYPE_CLOB CLOB

IFX_TYPE_BLOB BLOB

Mapping for field types

The following table shows the mapping supported between the types defined for the ifxtype parameter in the UDTMetaData.setFieldType()
method and the Java™ data types as they appear in the Java class file. Data types not shown in this table are not supported within the opaque
type.

ifxtype parameter type from
com.informix.lang.IfxTypes Java data type

IFX_TYPE_BIGINT long

IFX_TYPE_BIGSERIAL long

IFX_TYPE_CHAR java.lang.String

IFX_TYPE_SMALLINT short

174 Part X: Informix JDBC Driver Guide

ifxtype parameter type from
com.informix.lang.IfxTypes Java data type

IFX_TYPE_INT int

IFX_TYPE_FLOAT double

IFX_TYPE_SMFLOAT float1

IFX_TYPE_DECIMAL java.lang.BigDecimal

IFX_TYPE_SERIAL int

IFX_TYPE_DATE Date

IFX_TYPE_MONEY java.lang.BigDecimal

IFX_TYPE_DATETIME java.lang.Timestamp if starting qualifier is Year, Month, or Day; otherwise, java.lang.Time (see Field
lengths and date-time data).

IFX_TYPE_INTERVAL com.informix.lang.IfxIntervalYM if starting qualifier is Year or Month; otherwise,
com.informix.lang.IfxIntervalDF (see Field lengths and date-time data).

IFX_TYPE_NCHAR java.lang.String

IFX_TYPE_INT8 long

IFX_TYPE_SERIAL8 long

IFX_TYPE_BOOL boolean

IFX_TYPE_CLOB java.sql.Clob

IFX_TYPE_BLOB java.sql.Blob
1 This mapping is JDBC compliant. You can map IFX_TYPE_SMFLOAT data type (via the JDBC FLOAT data type) to the Java double data type for
backward compatibility by setting the IFX_GET_SMFLOAT_AS_FLOAT environment variable to 1.

Field lengths and date-time data

Field lengths and date-time data

When you set a field type to a date-time or interval data type by calling setFieldType(IFX_TYPE_DATETIME) or
setFieldType(IFX_TYPE_INTERVAL), the driver maps the date-time field to either java.sql.Timestamp or java.sql.Time, depending on the
encoded length you set by calling setFieldLength().

For example, given that the standard format for a date-time field is YYYY-MM-DD HH:MM:SS, the driver uses the following mapping algorithm:

If the encoded length has the start code from hour or less, it is mapped to java.sql.Time.
If the encoded length has the start code from year or less, it is mapped to java.sql.TimeStamp.

For intervals, the standards are either YYYY-MM or DD HH:MM:SS.frac. The mapping is as follows:

If the encoded length has the start code from day or less, it is mapped to com.informix.jdbc.IfxIntervalDF.
If the encoded length has the start code from year or less, it is mapped to com.informix.jdbc.IfxIntervalYM.

Convert internal Informix data types

For your Java™ application to work with the internal server representation of IBM® Informix® data types, use the IfxToJavaType class. For
example, if your application is using the IBM Informix Change Data Capture API, you can use the IfxToJavaType class to interpret the byte
stream.

The IfxToJavaType class
 The IfxToJavaType class handles all the IBM Informix to Java data type conversions. Separate methods are provided for converting each

data type.

The IfxToJavaType class

Part X: Informix JDBC Driver Guide 175

The IfxToJavaType class handles all the IBM® Informix® to Java™ data type conversions. Separate methods are provided for converting each
data type.

The primitive data types of Java are boolean, char, byte, short, int, long, float, double. When ever possible, the conversion returns the primitive
data type rather than the Object.

The following table shows the data types that can be converted between the data types to Java data types.
Table 1. Conversion between and Java data types

data types Java data types

BIGINT long

BYTE int (as a large object ID, without an input stream)

CHAR (n) / CHARACTER (n) string

DATE java.sql.Date

DATETIME java.sql.Timestamp

DATETIME interval

DATETIME string

DEC/DECIMAL (p,s) java.lang.Bignum

DOUBLE PRECISION (n) double

FLOAT Same as DOUBLE PRECISION

INT8 long

INT/INTEGER int

INTERVAL interval

MONEY (p,s) Same as DECIMAL

NUMERIC (p,s) Same as DECIMAL

REAL real

SERIAL (n) int

SMALLFLOAT Same as REAL

SMALLINT short

TEXT int (as a large object ID, without an input stream)

VARCHAR (m,r) string

In addition to the conversion methods, the follow methods are also provided

convertDateToDays()
convertDaysToDate()
rleapyear()
widenByte()

The convertDateToDays() method
 The convertDateToDays() method converts java.sql.Date to an int data type that encodes the number of days since January 1, 1900 as 1.

Dates earlier than January 1, 1900 are encoded as negative numbers.
The convertDaysToDate() method

 The convertDaysToDate() method converts days to year, date, or month. The convertDaysToDate() method handles negative days,
interpreted as backwards from December 31, 1899 as 0. The convertDaysToDate() method interprets January 1, 1900 as 1. No dates
before January 1, 0000 are allowed. The method relies on IBM Informix to generate valid dates.
The IfxToJavaChar() method

 The IfxToJavaChar() method converts the IBM Informix CHAR (n) and CHARACTER (n) data types to the Java string data type. The
conversion is achieved by creating a string from given bytes.
The IfxToJavaDate() method

 The IfxToJavaDate() method converts the IBM Informix DATE data type to the Java java.sql.Date data type.
The IfxToJavaDateTime() method

 The IfxToJavaDateTime() method converts the IBM Informix DATETIME data type to the Java java.sql.Timestamp data type. The
conversion path is to decimal to timestamp.
The IfxToDateTimeUnloadString() method

 The IfxToDateTimeUnloadString() method converts the IBM Informix DATETIME data type to the Java string data type, which is in format
compatible with SQL LOAD/UNLOAD format. The conversion path is to decimal to string.
The IfxToJavaDecimal() method

 The IfxToJavaDecimal() method converts the IBM Informix DECIMAL data type to the Java java.lang.Bignum data type.

176 Part X: Informix JDBC Driver Guide

The IfxToJavaDouble() method
The IfxToJavaDouble() method converts the IBM Informix DOUBLE PRECISION data type to the Java double data type.
The IfxToJavaInt() method
The IfxToJavaInt() method converts the IBM Informix INTEGER data type to the Java int data type.
The IfxToJavaInterval() method
The IfxToJavaInterval() method converts the IBM Informix DATETIME data type to the Java interval data type. The conversion path is to
decimal to interval.
The IfxToJavaLongBigInt() method
The IfxToJavaLongBigInt() method converts the IBM Informix BIGINT data type to the Java long data type.
The IfxToJavaLongInt() method
The IfxToJavaLongInt() method converts the IBM Informix INT8 data type to the Java long data type.
The IfxToJavaReal() method
The IfxToJavaReal() method converts the IBM Informix REAL data type to the Java real data type.
The IfxToJavaSmallInt() method
The IfxToJavaSmallInt() method converts the IBM Informix SMALLINT data type to the Java short data type.
The rleapyear() method
The rleapyear() method determines if the year is a leap year.
The widenByte() method
The widenByte() method moves BYTE into the short data type in such a way that the high bit is not propagated.

The convertDateToDays() method

The convertDateToDays() method converts java.sql.Date to an int data type that encodes the number of days since January 1, 1900 as 1. Dates
earlier than January 1, 1900 are encoded as negative numbers.

Method signature
public static int convertDateToDays (java.sql.Date dt)

Input parameter
dt

The java.sql date.

The convertDaysToDate() method

The convertDaysToDate() method converts days to year, date, or month. The convertDaysToDate() method handles negative days, interpreted as
backwards from December 31, 1899 as 0. The convertDaysToDate() method interprets January 1, 1900 as 1. No dates before January 1, 0000
are allowed. The method relies on IBM® Informix® to generate valid dates.

Method signature
public static java.sql.Date convertDaysToDate (int dt)

Input parameter
dt

The number of days since January 1, 1900 (as 1).

The IfxToJavaChar() method

The IfxToJavaChar() method converts the IBM® Informix® CHAR (n) and CHARACTER (n) data types to the Java™ string data type. The conversion
is achieved by creating a string from given bytes.

Method signature

Part X: Informix JDBC Driver Guide 177

public String IfxToJavaChar (byte b [], short prec,boolean encoption)
public String IfxToJavaChar (byte b [], boolean encoption)
public String IfxToJavaChar (byte b [], int offset, int length,
 short prec, boolean encoption)
public String IfxToJavaChar (byte b [], int offset, int length,
 boolean encoption)
public String IfxToJavaChar (byte b [], short prec, String dbEnc,
 boolean encoption)
public String IfxToJavaChar (byte b [], String dbEnc, boolean encoption)
 throws IOException
public String IfxToJavaChar (byte b [], int offset, int length,
 short prec,
 String dbEnc, boolean encoption)
public String IfxToJavaChar (byte b [], int offset, int length,
 String dbEnc, boolean encoption)

Input parameters
b

The bytes encoding data
dbEnc

The JDK encoding.
offset

The offset into byte array.
prec

The precision as received from .
length

The data length.

The IfxToJavaDate() method

The IfxToJavaDate() method converts the IBM® Informix® DATE data type to the Java™ java.sql.Date data type.

Method signature
public static java.sql.Date IfxToJavaDate (byte b [], short prec)
public static java.sql.Date IfxToJavaDate (byte b [])
public static java.sql.Date IfxToJavaDate (byte b [], int offset,
 int length, short prec)
public static java.sql.Date IfxToJavaDate (byte b [], int offset)

Input parameters
b

The bytes encoding data
offset

The offset into byte array.
prec

The precision as received from .
length

The data length.

The IfxToJavaDateTime() method

The IfxToJavaDateTime() method converts the IBM® Informix® DATETIME data type to the Java™ java.sql.Timestamp data type. The conversion
path is to decimal to timestamp.

Method signature
public static java.sql.Timestamp IfxToJavaDateTime (byte b [], short prec)
public static java.sql.Timestamp IfxToJavaDateTime (byte b [], int offset,
 int length, short prec)
public static java.sql.Timestamp IfxToJavaDateTime (byte b [], int offset,
 int length, short prec, Calendar cal)

178 Part X: Informix JDBC Driver Guide

Input parameters
b

The bytes encoding data
offset

The offset into byte array.
prec

The precision as received from .
length

The data length.

The IfxToDateTimeUnloadString() method

The IfxToDateTimeUnloadString() method converts the IBM® Informix® DATETIME data type to the Java™ string data type, which is in format
compatible with SQL LOAD/UNLOAD format. The conversion path is to decimal to string.

Method signature
public static String IfxToDateTimeUnloadString (byte b [], int offset,
 int length, short prec)

Input parameters
b

The bytes encoding data
offset

The offset into byte array.
prec

The precision as received from .
length

The data length.

The IfxToJavaDecimal() method

The IfxToJavaDecimal() method converts the IBM® Informix® DECIMAL data type to the Java™ java.lang.Bignum data type.

Method signature
public static java.math.BigDecimal IfxToJavaDecimal (byte b [], short prec)
public static java.math.BigDecimal IfxToJavaDecimal (byte b [], int offset,
 int length, short prec)

Input parameters
b

The bytes encoding data
offset

The offset into byte array.
prec

The precision as received from .
length

The data length.

The IfxToJavaDouble() method

The IfxToJavaDouble() method converts the IBM® Informix® DOUBLE PRECISION data type to the Java™ double data type.

Part X: Informix JDBC Driver Guide 179

Method signature
public static double IfxToJavaDouble (byte b [], short prec)
public static double IfxToJavaDouble (byte b [])
public static double IfxToJavaDouble (byte b [], int offset, int length,
 short prec)
public static double IfxToJavaDouble (byte b [], int offset)

Input parameters
b

The bytes encoding data
offset

The offset into byte array.
prec

The precision as received from .
length

The data length.

The IfxToJavaInt() method

The IfxToJavaInt() method converts the IBM® Informix® INTEGER data type to the Java™ int data type.

Method signature
public static int IfxToJavaInt (byte b [], short prec)
public static int IfxToJavaInt (byte b [])
public static int IfxToJavaInt (byte b [], int offset, int length,
 short prec)
public static int IfxToJavaInt (byte b [], int offset)

Input parameters
b

The bytes encoding data
offset

The offset into byte array.
prec

The precision as received from .
length

The data length.

The IfxToJavaInterval() method

The IfxToJavaInterval() method converts the IBM® Informix® DATETIME data type to the Java™ interval data type. The conversion path is to
decimal to interval.

Method signature
public static Interval IfxToJavaInterval (byte b [], short prec)
public static Interval IfxToJavaInterval (byte b [], int offset, int length,
 short prec)

Input parameters
b

The bytes encoding data
offset

The offset into byte array.
prec

The precision as received from .

180 Part X: Informix JDBC Driver Guide

length
The data length.

The IfxToJavaLongBigInt() method

The IfxToJavaLongBigInt() method converts the IBM® Informix® BIGINT data type to the Java™ long data type.

Method signature
public static long IfxToJavaLongBigInt(byte b [], short prec)
public static long IfxToJavaLongBigInt(byte b [])
public static long IfxToJavaLongBigInt(byte buf [], int offset,
 int length, short prec)
public static long IfxToJavaLongBigInt(byte b[], int offset)

Input parameters
b and buff

The bytes encoding data
offset

The offset into byte array.
prec

The precision as received from .
length

The data length.

The IfxToJavaLongInt() method

The IfxToJavaLongInt() method converts the IBM® Informix® INT8 data type to the Java™ long data type.

Method signature
public static long IfxToJavaLongInt(byte b [], short prec)
public static long IfxToJavaLongInt(byte b [])
public static long IfxToJavaLongInt(byte buf [], int offset, int length,
 short prec)
public static long IfxToJavaLongInt(byte buf [], int offset)

Input parameters
b and buf

The bytes encoding data
offset

The offset into byte array.
prec

The precision as received from .
length

The data length.

The IfxToJavaReal() method

The IfxToJavaReal() method converts the IBM® Informix® REAL data type to the Java™ real data type.

Method signature
public static float IfxToJavaReal (byte b [], short prec)
public static float IfxToJavaReal (byte b [])
public static float IfxToJavaReal (byte b [], int offset,

Part X: Informix JDBC Driver Guide 181

 int length, short prec)
public static float IfxToJavaReal (byte b [], int offset)

Input parameters
b

The bytes encoding data
offset

The offset into byte array.
prec

The precision as received from .
length

The data length.

The IfxToJavaSmallInt() method

The IfxToJavaSmallInt() method converts the IBM® Informix® SMALLINT data type to the Java™ short data type.

Method signature
public static short IfxToJavaSmallInt (byte b [], short prec)
public static short IfxToJavaSmallInt (byte b [])
public static short IfxToJavaSmallInt (byte b [], int offset,
 int length, short prec)
public static short IfxToJavaSmallInt (byte b [], int offset)

Input parameters
b

The bytes encoding data
offset

The offset into byte array.
prec

The precision as received from .
length

The data length.

The rleapyear() method

The rleapyear() method determines if the year is a leap year.

Method signature
public static final boolean rleapyear(int yr)

The widenByte() method

The widenByte() method moves BYTE into the short data type in such a way that the high bit is not propagated.

Method signature
protected static final short widenByte(byte b)

Error messages

182 Part X: Informix JDBC Driver Guide

-79700
Method not supported
-79702
Cannot create new object
-79703
Row/column index out of range
-79704
Cant load driver
-79705
Incorrect URL format
-79706
Incomplete input
-79707
Invalid qualifier
-79708
Cannot take null input
-79709
Error in date format
-79710
Syntax error in SQL escape clause
-79711
Error in time format
-79712
Error in timestamp format
-79713
Incorrect number of arguments
-79714
Type not supported
-79715
Syntax error
-79716
System or internal error
-79717
Invalid qualifier length
-79718
Invalid qualifier start code
-79719
Invalid qualifier end code
-79720
Invalid qualifier start or end code
-79721
Invalid interval string
-79722
Numeric character(s) expected
-79723
Delimiter character(s) expected
-79724
Character(s) expected
-79725
Extra character(s) found
-79726
Null SQL statement
-79727
Statement was not prepared
-79728
Unknown object type
-79729
Method cannot take argument
-79730
Connection not established
-79731
MaxRows out of range
-79732
Illegal cursor name
-79733
No active result
-79734
INFORMIXSERVER has to be specified

Part X: Informix JDBC Driver Guide 183

-79735
Cant instantiate protocol
-79736
No connection/statement establish yet
-79737
No metadata
-79738
No such column name
-79739
No current row
-79740
No statement created
-79741
Cannot convert to
-79742
Cannot convert from
-79744
Transactions not supported
-79745
Read only mode not supported
-79746
No Transaction Isolation on non-logging db's
-79747
Invalid transaction isolation level
-79748
Cannot lock the connection
-79749
Number of input values does not match number of question marks
-79750
Method only for queries
-79755
Object is null
-79756
Must start with 'jdbc'
-79757
Invalid subprotocol
-79758
Invalid IP address
-79759
Invalid port number
-79760
Invalid database name
-79761
Invalid property format
-79762
Attempt to connect to a non 5.x server
-79764
Invalid fetch direction value
-79765
ResultSet type is TYPE_FETCH_FORWARD, direction can only be FETCH_FORWARD
-79766
Incorrect fetch size value
-79767
ResultSet type is TYPE_FORWARD_ONLY
-79768
Incorrect row value
-79769
A customized type map is required for this data type
-79770
Cannot find the SQLTypeName specified in the SQLData or Struct
-79771
Input value is not valid
-79772
No more data to read or write. Verify your SQLData class or getSQLTypeName()
-79774
Unable to create local file
-79775
Only TYPE_SCROLL_INSENSITIVE and TYPE_FORWARD_ONLY are supported

184 Part X: Informix JDBC Driver Guide

-79776
Type requested (%s) does not match row type information (%s) type
-79777
readObject/writeObject() only supports UDTs, Distincts, and complex types
-79778
Type mapping class must be a java.util.Collection implementation
-79780
Data within a collection must all be the same Java class and length
-79781
Index/Count out of range
-79782
Method can be called only once
-79783
Encoding or code set not supported
-79784
Locale not supported
-79785
Unable to convert JDBC escape format date string to localized date string
-79786
Unable to build a Date object based on localized date string representation
-79788
User name must be specified
-79789
Server does not support GLS variables DB_LOCALE, CLIENT_LOCALE or GL_DATE
-79790
Invalid complex type definition string
-79792
Row must contain data
-79793
Data in array does not match getBaseType() value
-79794
Row length provided (%s) does not match row type information (%s)
-79795
Row extended ID provided (%s) does not match row type information (%s)
-79796
Cannot find UDT, distinct, or named row (%s) in database
-79797
DBDATE setting must be at least four characters and no longer than six characters
-79798
A numeric year expansion is required after 'Y' character in DBDATE string
-79799
An invalid character is found in the DBDATE string after the 'Y' character
-79800
No 'Y' character is specified before the numeric year expansion value
-79801
An invalid character is found in DBDATE format string
-79802
Not enough tokens are specified in the string representation of a date value
-79803
Date string index out of bounds during date format parsing to build Date object
-79804
No more tokens are found in DBDATE string representation of a date value
-79805
No era designation found in DBDATE/GL_DATE string representation of date value
-79806
Numerical day value can not be determined from date string based on DBDATE
-79807
Numerical month value can not be determined from date string based on DBDATE
-79808
Not enough tokens specified in %D directive representation of date string
-79809
Not enough tokens specified in %x directive representation of date string
-79811
Connection without user/password not supported
-79812
User/Password does not match with datasource
-79814
Blob/Clob object is either closed or invalid

Part X: Informix JDBC Driver Guide 185

-79815
Not in Insert mode. Need to call moveToInsertRow() first
-79816
Cannot determine the table name
-79817
No serial, rowid, or primary key specified in the statement
-79818
Statement concurrency type is not set to CONCUR_UPDATABLE
-79819
Still in Insert mode. Call moveToCurrentRow() first
-79820
Function contains an output parameter
-79821
Name unnecessary for this data type
-79822
OUT parameter has not been registered
-79823
IN parameter has not been set
-79824
OUT parameter has not been set
-79825
Type name is required for this data type
-79826
Ambiguous java.sql.Type, use IfxRegisterOutParameter()
-79827
Function doesn't have an output parameter
-79828
Function parameter specified isnt an OUT parameter
-79829
Invalid directive used for the GL_DATE environment variable
-79830
Insufficient information given for building a time or timestamp Java object.
-79831
Exceeded maximum no. of connections configured for Connection Pool Manager
-79834
Distributed transactions (XA) are not supported by this database server.
-79836
Proxy Error: No database connection
-79837
Proxy Error: Input/output error while communicating with database
-79838
Cannot execute change permission command (chmod/attrib)
-79839
Same Jar SQL name already exists in the system catalog
-79840
Unable to copy jar file from client to server
-79842
No UDR information was set in UDRMetaData
-79843
SQL name of the jar file was not set in UDR/UDT MetaData
-79844
Cant create/remove UDT/UDR as no database is specified in the connection
-79845
JAR file on the client does not exist or cant be read
-79846
Invalid JAR file name
-79847
The 'javac' or 'jar' command failed
-79848
Same UDT SQL name already exists in the system catalog
-79849
UDT SQL name was not set in UDTMetaData
-79850
UDT field count was not set in UDTMetaData
-79851
UDT length was not set in UDTMetaData
-79852
UDT field name or field type was not set in UDTMetaData

186 Part X: Informix JDBC Driver Guide

-79853
No class files to be put into the jar
-79854
UDT java class must implement java.sql.SQLData interface
-79855
Specified UDT java class is not found
-79856
Specified UDT does not exists in the database.
-79857
Invalid support function type
-79858
The command to remove file on the client failed
-79859
Invalid UDT field number
-79860
Ambiguous java type(s) - can't use Object/SQLData as method argument(s)
-79861
Specified UDT field type has no Java type match
-79862
Invalid UDT field type
-79863
UDT field length was not set in UDTMetaData
-79864
Statement length exceeds the maximum
-79865
Statement already closed
-79868
Result set not open, operation not permitted
-79877
Invalid parameter value for setting maximum field size to a value less than zero
-79878
Result set not open, operation next not permitted. Verify that autocommit is OFF
-79879
An unexpected exception was thrown. See next exception for details
-79880
Unable to set JDK Version for the Driver
-79881
Already in local transaction, so cannot start XA transaction

-79700 Method not supported

Explanation

IBM Informix® JDBC Driver does not support this JDBC method.

-79702 Cannot create new object

Explanation

The software could not allocate memory for a new String object.

-79703 Row/column index out of range

Explanation

The row or column index is out of range.

User response

Compare the index to the number of rows and columns expected from the query to ensure that it is within range.

Part X: Informix JDBC Driver Guide 187

-79704 Cant load driver

Explanation
IBM Informix® JDBC Driver could not create an instance of itself and register it in the DriverManager class. The rest of the SQLException text
describes what failed.

-79705 Incorrect URL format

Explanation
The database URL you have submitted is invalid. IBM Informix® JDBC Driver does not recognize the syntax.

User response

Check the syntax and try again.

-79706 Incomplete input

Explanation

An invalid character was found during conversion of a String value to an IntervalDF or IntervalYM object.

User response

Check INTERVAL data type for correct values.

-79707 Invalid qualifier

Explanation

An error was found during construction of an Interval qualifier from atomic elements: length, start, or end values.

User response

Check the length, start, and end values to verify that they are correct. See INTERVAL data type for correct values.

-79708 Cannot take null input

Explanation
The string you have provided is null. IBM Informix® JDBC Driver does not understand null input in this case.

User response
Check the input string to ensure that it has the proper value.

-79709 Error in date format

Explanation
The expected input is a valid date string in the following format: yyyy-mm-dd.

User response

Check the date and verify that it has a four-digit year, followed by a valid two-digit month and two-digit day. The delimiter must be a hyphen (-).

188 Part X: Informix JDBC Driver Guide

-79710 Syntax error in SQL escape clause

Explanation
Invalid syntax was passed to a jdbc escape clause. Valid JDBC escape clause syntax is demarcated by braces and a keyword: for example,
{keyword syntax}.

User response
Check the JDBC specification for a list of valid escape clause keywords and syntax.

-79711 Error in time format

Explanation

An invalid time format was passed to a JDBC escape clause. The escape clause syntax for time literals has the following format: {t 'hh:mm:ss'}.

-79712 Error in timestamp format

Explanation

An invalid time stamp format was passed to a JDBC escape clause. The escape clause syntax for time stamp literals has the following format: {ts
'yyyy-mm-dd hh:mm:ss.f...'}.

-79713 Incorrect number of arguments

Explanation

An incorrect number of arguments was passed to the scalar function escape syntax. The correct syntax is {fn function(arguments)}.

User response

Verify that the correct number of arguments was passed to the function.

-79714 Type not supported

Explanation

You have specified a data type that is not supported by IBM Informix® JDBC Driver.

User response
Check your program to make sure the data type used is supported by the driver.

-79715 Syntax error

Explanation
Invalid syntax was passed to a jdbc escape clause. Valid JDBC escape clause syntax is demarcated by braces and a keyword: {keyword syntax}.

User response
Check the JDBC specification for a list of valid escape clause keywords and syntax.

Part X: Informix JDBC Driver Guide 189

-79716 System or internal error

Explanation
An operating or runtime system error or a driver internal error occurred. The accompanying message describes the problem.

-79717 Invalid qualifier length

Explanation
The length value for an Interval object is incorrect.

User response

See INTERVAL data type for correct values.

-79718 Invalid qualifier start code

Explanation

The start value for an Interval object is incorrect.

User response

See INTERVAL data type for correct values.

-79719 Invalid qualifier end code

Explanation

The end value for an Interval object is incorrect.

User response

See INTERVAL data type for correct values.

-79720 Invalid qualifier start or end code

Explanation
The start or end value for an Interval object is incorrect.

User response
See INTERVAL data type for correct values.

-79721 Invalid interval string

Explanation
An error occurred during conversion of a String value to an IntervalDF or IntervalYM object. Check INTERVAL data type for the correct format.

-79722 Numeric character(s) expected

190 Part X: Informix JDBC Driver Guide

Explanation

An error occurred during conversion of a String value to an IntervalDF or IntervalYM object. A numeric value was expected and not found.
Check INTERVAL data type for the correct format.

-79723 Delimiter character(s) expected

Explanation

An error occurred during conversion of a String value to an IntervalDF or IntervalYM object. A delimiter was expected and not found. Check the
INTERVAL data type for the correct format.

-79724 Character(s) expected

Explanation
An error occurred during conversion of a String value to an IntervalDF or IntervalYM object. End of string was encountered before
conversion was complete.

User response
Check INTERVAL data type for the correct format.

-79725 Extra character(s) found

Explanation
An error occurred during conversion of a String value to an IntervalDF or IntervalYM object. End of string was expected, but there were
more characters in the string.

User response

Check INTERVAL data type for the correct format.

-79726 Null SQL statement

Explanation

The SQL statement passed in was null.

User response

Check the SQL statement string of your program to make sure that it contains a valid statement.

-79727 Statement was not prepared

Explanation

The SQL statement was not prepared properly. If you use host variables (for example, insert into mytab values (?, ?);) in your SQL
statement, you must use connection.prepareStatement() to prepare the SQL statement before you can execute it.

-79728 Unknown object type

Explanation

Part X: Informix JDBC Driver Guide 191

If this object type is a null opaque type, the type is unknown and cannot be processed. If this object type is a complex type, the data in the
collection or array is of an unknown type and cannot be mapped to any IBM® Informix® type. If this object type is a row, one of the elements in
the row cannot be mapped to any type. Verify the customized type mapping or data type of the object.

-79729 Method cannot take argument

Explanation

The method does not take an argument. See your Java™ API specification or the appropriate section of this guide to make sure that you are using
the method properly.

-79730 Connection not established

Explanation

A connection was not established.

User response

You must obtain the connection by calling the DriverManager.getConnection() or DataSource.getConnection() method first.

-79731 MaxRows out of range

Explanation

You have specified an out-of-range maxRow value. Make sure that you specify a value between 0 and Integer.MAX_VALUE.

-79732 Illegal cursor name

Explanation
The cursor name specified is not valid. Make sure the string passed in is not null or empty.

-79733 No active result

Explanation
The statement does not contain an active result. Check your program logic to make sure that you have called the executeXXX() method before
you attempt to refer to the result.

-79734 INFORMIXSERVER has to be specified

Explanation
INFORMIXSERVER is a property required for connecting to the IBM® Informix® database. You can specify it in the database URL or as part of a
Properties object that is passed to the connect() method.

-79735 Cant instantiate protocol

Explanation
An internal error occurred during a connection attempt. Call technical support.

192 Part X: Informix JDBC Driver Guide

-79736 No connection/statement establish yet

Explanation
There is no current connection or statement.

User response
Check your program to make sure that a connection was properly established or a statement was created.

-79737 No metadata

Explanation

There is no metadata available for this SQL statement.

User response

Make sure that the statement generates a result set before you attempt to use it.

-79738 No such column name

Explanation

The column name specified does not exist. Make sure that the column name is correct.

-79739 No current row

Explanation

The cursor is not properly positioned. You must first position the cursor within the result set by using a method such as ResultSet.next(),
ResultSet.beforeFirst(), ResultSet.first(), or ResultSet.absolute().

-79740 No statement created

Explanation

There is no current statement. Make sure that the statement was properly created.

-79741 Cannot convert to

Explanation

There is no data conversion possible from the column data type to the one specified. The actual data type is appended to the end of this
message.

User response
Review your program logic to make sure that the conversion you have asked for is supported. See Mapping data types for the data mapping
matrix.

-79742 Cannot convert from

Part X: Informix JDBC Driver Guide 193

Explanation

No data conversion is possible from the data type you specified to the column data type. The actual data type is appended to the end of this
message.

User response
Check your program logic to make sure that the conversion you have asked for is supported. See Mapping data types for the data mapping matrix.

-79744 Transactions not supported

Explanation
The user has tried to call commit() or rollback() on a database that does not support transactions or has tried to set autoCommit to False on a
nonlogging database.

User response
Verify that the current database has the correct logging mode and review the program logic.

-79745 Read only mode not supported

Explanation
IBM® Informix® does not support read-only mode.

-79746 No Transaction Isolation on non-logging db's

Explanation

IBM® Informix® does not support setting the transaction isolation level on nonlogging databases.

-79747 Invalid transaction isolation level

Explanation

If the database server could not complete the rollback, this error occurs. See the rest of the SQLException message for more details about why
the rollback failed.

This error also occurs if an invalid transaction level is passed to setTransactionIsolation(). The valid values are:

TRANSACTION_NONE
TRANSACTION_READ_UNCOMMITTED
TRANSACTION_READ_COMMITTED
TRANSACTION_REPEATABLE_READ
TRANSACTION_SERIALIZABLE
TRANSACTION_LAST_COMMITTED

-79748 Cannot lock the connection

Explanation

IBM Informix® JDBC Driver normally locks the connection object just before beginning the data exchange with the database server. The driver
could not obtain the lock. Only one thread at a time should use the connection object.

194 Part X: Informix JDBC Driver Guide

-79749 Number of input values does not match number of question
marks

Explanation
The number of variables that you set with the PreparedStatement.setXXX() methods in this statement does not match the number of ?
placeholders that you wrote into the statement.

User response
Locate the text of the statement and verify the number of placeholders and then check the calls to PreparedStatement.setXXX().

-79750 Method only for queries

Explanation

The Statement.executeQuery(String) and PreparedStatement.executeQuery() methods should only be used if the statement is a SELECT
statement. For other statements, use the Statement.execute(String), Statement.executeBatch(), Statement.executeUpdate(String),
Statement.getUpdateCount(), Statement.getResultSet(), or PreparedStatement.executeUpdate() method.

-79755 Object is null

Explanation

The object passed in is null. Check your program logic to make sure that your object reference is valid.

-79756 Must start with 'jdbc'

Explanation

The first token of the database URL must be the keyword jdbc (is not case sensitive), as in the following example:

jdbc:informix-sqli://mymachine:1234/
 mydatabase:user=me:
 password=secret

-79757 Invalid subprotocol

Explanation

The current valid subprotocol is informix-sqli.

-79758 Invalid IP address

Explanation

When you connect to the IBM® Informix® database server through an IP address, the IP address must be valid. A valid IP address is a set of four
numbers 0 - 255, separated by dots (.): for example, 127.0.0.1.

-79759 Invalid port number

Explanation

Part X: Informix JDBC Driver Guide 195

The port number must be a valid four-digit number, as follows:

jdbc:informix-sqli://mymachine:1234/
 mydatabase:user=me:
 password=secret

In this example, 1234 is the port number.

-79760 Invalid database name

Explanation

This statement contains the name of a database in some invalid format.

Both database and cursor names must begin with a letter and contain only letters, numbers, and underscore characters. Database and cursor
names can begin with an underscore.

In MS-DOS systems, file names can be a maximum of eight characters plus a three-character extension.

-79761 Invalid property format

Explanation
The database URL accepts property values in key=value pairs. For example, user=informix:password=informix adds the key=value pairs to
the list of properties that are passed to the connection object.

User response

Check the syntax of the key=value pair for syntax errors. Make sure that there is only one = sign; that there are no spaces separating the key,
value, or =; and that key=value pairs are separated by one colon(:), again with no spaces.

-79762 Attempt to connect to a non 5.x server

Explanation

When connecting to a Version 5.x database server, the user must set the database URL property USE5SERVER to any non-null value. If a
connection is then made to a Version 6.0 or later database server, this exception is thrown.

User response

Verify that the version of the database server is correct and modify the database URL as needed.

-79764 Invalid fetch direction value

Explanation

An invalid fetch direction was passed as an argument to the Statement.setFetchDirection() or ResultSet.setFetchDirection() method. Valid values
are FETCH_FORWARD, FETCH_REVERSE, and FETCH_UNKNOWN.

-79765 ResultSet type is TYPE_FETCH_FORWARD, direction can only be
FETCH_FORWARD

Explanation

The result set type has been set to TYPE_FORWARD_ONLY, but the setFetchDirection() method has been called with a value other than
FETCH_FORWARD. The direction specified must be consistent with the result type specified.

196 Part X: Informix JDBC Driver Guide

-79766 Incorrect fetch size value

Explanation
The Statement.setFetchSize() method has been called with an invalid value. Verify that the value passed in is greater than 0. If the setMaxRows()
method has been called, the fetch size must not exceed that value.

-79767 ResultSet type is TYPE_FORWARD_ONLY

Explanation
A method such as ResultSet.beforeFirst(), ResultSet.afterLast(), ResultSet.first(), ResultSet.last(), ResultSet.absolute(), ResultSet.relative(),
ResultSet.current(), or ResultSet.previous() has been called, but the result set type is TYPE_FORWARD_ONLY. Call only the ResultSet.next()
method if the result set type is TYPE_FORWARD_ONLY.

-79768 Incorrect row value

Explanation

The ResultSet.absolute(int) method has been called with a value of 0. The parameter must be greater than 0.

-79769 A customized type map is required for this data type

Explanation

You must register a customized type map to use any opaque types.

-79770 Cannot find the SQLTypeName specified in the SQLData or
Struct

Explanation

The SQLTypename object you specified in the SQLData or Struct class does not exist in the database. Make sure that the type name is valid.

-79771 Input value is not valid

Explanation

The input value is not accepted for this data type. Make sure this input value is a valid input for this data type.

-79772 No more data to read or write. Verify your SQLData class or
getSQLTypeName()

Explanation

This error occurs when a Java™ user-defined routine attempts to read or set a position beyond the end of the opaque type data available from a
data input stream.

User response

Part X: Informix JDBC Driver Guide 197

Check the length and structure of the opaque type carefully against the data-input UDR code. The SQLTypeName object that was returned by the
getSQLTypeName() method might also be incorrect.

-79774 Unable to create local file

Explanation

Large object data read from the database server can be stored either in memory or in a local file. If the LOBCACHE value is 0 or the large object
size is greater than the LOBCACHE value, the large object data from the database server is always stored in a file. In this case, if a security
exception occurs, IBM Informix® JDBC Driver makes no attempt to store the large object into memory and throws this exception.

-79775 Only TYPE_SCROLL_INSENSITIVE and TYPE_FORWARD_ONLY
are supported

Explanation

IBM Informix® JDBC Driver only supports a result set type of TYPE_SCROLL_INSENSITIVE and TYPE_FORWARD_ONLY. Only these values should
be used.

-79776 Type requested (%s) does not match row type information (%s)
type

Explanation

Row type information was acquired either through the system catalogs or through the supplied row definition. The row data provided does not
match this row element type. The type information must be modified, or the data must be provided.

-79777 readObject/writeObject() only supports UDTs, Distincts, and
complex types

Explanation

The SQLData.writeObject() method was called for an object that is not a user-defined, distinct, or complex type.

User response
Verify that you have provided customized type-mapping information.

-79778 Type mapping class must be a java.util.Collection
implementation

Explanation
You provided a type mapping to override the default for a set, list, or multiset data type, but the class does not implement the
java.util.Collection interface.

-79780 Data within a collection must all be the same Java class and
length

Explanation

198 Part X: Informix JDBC Driver Guide

Verify that all the objects in the collection are of the same class.

-79781 Index/Count out of range

Explanation

Array.getArray() or Array.getResultSet() was called with index and count values. Either the index is out of range or the count is too large.

User response

Verify that the number of elements in the array is sufficient for the index and count values.

-79782 Method can be called only once

Explanation

Make sure methods such as Statement.getUpdateCount() and Statement.getResultSet() are called only once per result.

-79783 Encoding or code set not supported

Explanation

The encoding or code set entered in the DB_LOCALE or CLIENT_LOCALE variable is not valid.

User response
Check Support for code-set conversion for valid code sets.

-79784 Locale not supported

Explanation
The locale entered in the DB_LOCALE or CLIENT_LOCALE variable is not valid.

User response
Check Support for code-set conversion for valid locales.

-79785 Unable to convert JDBC escape format date string to localized
date string

Explanation
The JDBC escape format for date values must be specified in the format {d 'yyyy-mm-dd'}. Verify that the JDBC escape date format specified is
correct.

User response

Verify the DBDATE and GL_DATE settings for the correct date string format if either of these environment variables was set to a value in the
connection database URL string or property list.

-79786 Unable to build a Date object based on localized date string
representation

Part X: Informix JDBC Driver Guide 199

Explanation

The localized date string representation specified in a char, varchar, or lvarchar column is not correct, and a date object cannot be built based on
the year, month, and day values.

User response
Verify that the date string representation conforms to the DBDATE or GL_DATE date formats if either one of these is specified in a connection
database URL string or property list. If neither DBDATE or GL_DATE is specified but a CLIENT_LOCALE or DB_LOCALE is explicitly set in a
connection database URL string or property list, verify that the date string representation conforms to the JDK short default format
(DateFormat.SHORT).

-79788 User name must be specified

Explanation
The user name is required to establish a connection with IBM Informix® JDBC Driver.

User response
Make sure that you pass in user=your_user_name as part of the database URL or one of the properties.

-79789 Server does not support GLS variables DB_LOCALE,
CLIENT_LOCALE or GL_DATE

Explanation
These variables can only be used if the database server supports GLS.

User response

Check the documentation for your database server version and omit these variables if they are not supported.

-79790 Invalid complex type definition string

Explanation

The value returned by the getSQLTypeName() method is either null or invalid.

User response

Check the string to verify that it is either a valid named-row name or a valid row type definition.

-79792 Row must contain data

Explanation

The Array.getAttributes() or Array.getAttributes(Map) method has returned 0 elements. These methods must return a nonzero number.

-79793 Data in array does not match getBaseType() value

Explanation

The Array.getArray() or Array.getArray(Map) method has returned an array where the element type does not match the JDBC base type.

200 Part X: Informix JDBC Driver Guide

-79794 Row length provided (%s) does not match row type information
(%s)

Explanation
Data in the row does not match the length in the row type information. You do not have to pad string lengths to match what is in the row
definition, but lengths for other data types should match.

-79795 Row extended ID provided (%s) does not match row type
information (%s)

Explanation
The extended ID of the object in the row does not match the extended ID as defined in row type information.

User response

Either update the row type information (if you are providing the row definition) or check the type mapping information.

-79796 Cannot find UDT, distinct, or named row (%s) in database

Explanation

The getSQLTypeName() method has returned a name that cannot be found in the database.

User response

Verify that the Struct or SQLData object returns the correct information.

-79797 DBDATE setting must be at least four characters and no longer
than six characters

Explanation

This error occurs because the DBDATE format string that is passed to the database server either has too few characters or too many.

User response

To fix the problem, verify the DBDATE format string with the user documentation and make sure that the correct year, month, day, and possibly
era parts of the DBDATE format string are correctly identified.

-79798 A numeric year expansion is required after 'Y' character in
DBDATE string

Explanation
This error occurs because the DBDATE format string has a year designation (specified by the character Y), but there is no character following the
year designation to denote the numeric year expansion (2 or 4).

User response
To fix the problem, modify the DBDATE format string to include the numeric year expansion value after the Y character.

Part X: Informix JDBC Driver Guide 201

-79799 An invalid character is found in the DBDATE string after the 'Y'
character

Explanation
This error occurs because the DBDATE format string has a year designation (specified by the character Y), but the character following the year
designation is not a 2 (two-digit years) or 4 (four-digit years).

User response
To fix the problem, modify the DBDATE format string to include the required numeric year expansion value after the Y character. Only a 2 or 4
character should immediately follow the Y character designation.

-79800 No 'Y' character is specified before the numeric year expansion
value

Explanation

This error occurs because the DBDATE format string has a numeric year expansion (2 to denote two-digit years or 4 to denote four-digit years),
but the year designation character (Y) was not found immediately before the numeric year expansion character specified.

User response

To fix the problem, modify the DBDATE format string to include the required Y character immediately before the numeric year expansion value
requested.

-79801 An invalid character is found in DBDATE format string

Explanation

This error occurs because the DBDATE format string has a character that is not allowed.

User response

To fix the problem, modify the DBDATE format string to only include the correct date part designations: year (Y), numeric year expansion value (2
or 4), month (M), and day (D). Optionally, you can include an era designation (E) and a default separator character (hyphen, dot, or slash), which is
specified at the end of the DBDATE format string. Refer to the user documentation for further information about correct DBDATE format string
character designations.

-79802 Not enough tokens are specified in the string representation of a
date value

Explanation

This error occurs because the date string specified does not have the minimum number of tokens or separators needed to form a valid date value
(composed of year, month, and day numeric parts). For example, 12/15/98 is a valid date string representation with the slash character as the
separator or token. But 12/1598 is not a valid date string representation, because there are not enough separators or tokens.

User response
To fix the problem, modify the date string representation to include a valid format for separating the day, month, and year parts of a date value.

-79803 Date string index out of bounds during date format parsing to
build Date object

202 Part X: Informix JDBC Driver Guide

Explanation

This error occurs because there is not a one-to-one correspondence between the date string format required by DBDATE or GL_DATE and the
actual date string representation you defined. For example, if GL_DATE is set to %b %D %y and you specify a character string of Oct, there is a
definite mismatch between the format required by GL_DATE and the actual date string.

User response
To fix the problem, modify the date string representation of the DBDATE or GL_DATE setting so that the date format specified matches one-to-
one with the required date string representation.

-79804 No more tokens are found in DBDATE string representation of a
date value

Explanation
This error occurs because the date string specified does not have any more tokens or separators needed to form a valid date value (composed of
year, month, and day numeric parts) based on the DBDATE format string. For example, 12/15/98 is a valid date string representation when
DBDATE is set to MDY2/. But 12/1598 is not a valid date string representation, because there are not enough separators or tokens.

User response
To fix the problem, modify the date string representation to include a valid format for separating the day, month, and year parts of a date value
based on the DBDATE format string setting.

-79805 No era designation found in DBDATE/GL_DATE string
representation of date value

Explanation
This error occurs because the date string specified does not have a valid era designation, as required by the DBDATE or GL_DATE format string
setting. For example, if DBDATE is set to Y2MDE-, but the date string representation specified by the user is 98-12-15, this is an error because
there is no era designation at the end of the date string value.

User response

To fix the problem, modify the date string representation to include a valid era designation based on the DBDATE or GL_DATE format string
setting. In this example, a date string representation of 98-12-15 AD would probably suffice, depending on the locale.

-79806 Numerical day value can not be determined from date string
based on DBDATE

Explanation

This error occurs because the date string specified does not have a valid numeric day designation as required by the DBDATE format string
setting. For example, if DBDATE is set to Y2MD-, but the date string representation you specify is 98-12-blah, this is an error, because blah is
not a valid numeric day representation.

User response

To fix the problem, modify the date string representation to include a valid numeric day designation (from 1 to 31) based on the DBDATE format
string setting.

-79807 Numerical month value can not be determined from date string
based on DBDATE

Part X: Informix JDBC Driver Guide 203

Explanation

This error occurs because the date string specified does not have a valid numeric month designation as required by the DBDATE format string
setting. For example, if DBDATE is set to Y2MD-, but the date string representation you specify is 98-blah-15, this is an error, because blah is
not a valid numeric month representation.

User response
To fix the problem, modify the date string representation to include a valid numeric month designation (from 1 to 12) based on the DBDATE
format string setting.

-79808 Not enough tokens specified in %D directive representation of
date string

Explanation
This error occurs because the date string specified does not have the correct number of tokens or separators needed to form a valid date value
based on the GL_DATE %D directive (mm/dd/yy format). For example, 12/15/98 is a valid date string representation based on the GL_DATE %D
directive, but 12/1598 is not a valid date string representation, because there are not enough separators or tokens.

User response
To fix the problem, modify the date string representation to include a valid format for the GL_DATE %D directive.

-79809 Not enough tokens specified in %x directive representation of
date string

Explanation
This error occurs because the date string specified does not have the correct number of tokens or separators needed to form a valid date value
based on the GL_DATE %x directive (format required is based on day, month, and year parts, and the ordering of these parts is determined by the
specified locale). For example, 12/15/98 is a valid date string representation based on the GL_DATE %x directive for the U.S. English locale, but
12/1598 is not a valid date string representation because there are not enough separators or tokens.

User response

To fix the problem, modify the date string representation to include a valid format for the GL_DATE %x directive based on the locale.

-79811 Connection without user/password not supported

Explanation

You called the getConnection() method for the DataSource object, and the user name or the password is null.

User response

Use the user name and password arguments of the getConnection() method or set these values in the DataSource object.

-79812 User/Password does not match with datasource

Explanation

You called the getConnection(user, passwd) method for the DataSource object, and the values you supplied did not match the values already
found in the data source.

-79814 Blob/Clob object is either closed or invalid

204 Part X: Informix JDBC Driver Guide

Explanation

If you retrieve a smart large object using the ResultSet.getBlob() or ResultSet.getClob() method or create one using the IfxBlob() or IfxCblob()
constructor, a smart large object is opened. You can then read from or write to the smart large object. After you execute the IfxBlob.close()
method, do not use the smart large object handle for further read/write operations, or this exception is thrown.

-79815 Not in Insert mode. Need to call moveToInsertRow() first

Explanation

You tried to use the insertRow() method, but the mode is not set to Insert.

User response
Call the moveToInsertRow() method before calling insertRow().

-79816 Cannot determine the table name

Explanation
The table name in the query is either incorrect or refers to a table that does not exist.

-79817 No serial, rowid, or primary key specified in the statement

Explanation
The updatable scrollable feature works only for tables that have a SERIAL column, a primary key, or a row ID specified in the query. If the table
does not have any of these attributes, an updatable scrollable cursor cannot be created.

-79818 Statement concurrency type is not set to CONCUR_UPDATABLE

Explanation

You tried to call the insertRow(), updateRow(), or deleteRow() method for a statement that has not been created with the CONCUR_UPDATABLE
concurrency type.

User response

Re-create the statement with this type set for the concurrency attribute.

-79819 Still in Insert mode. Call moveToCurrentRow() first

Explanation

You cannot call the updateRow() or deleteRow() method while still in Insert mode. Call the moveToCurrentRow() method first.

-79820 Function contains an output parameter

Explanation

You have passed in a statement that contains an OUT parameter, but you have not used the drivers CallableStatement.registerOutParameter()
and getXXX() methods to process the OUT parameter.

Part X: Informix JDBC Driver Guide 205

-79821 Name unnecessary for this data type

Explanation
If you have a data type that requires a name (an opaque type or complex type) you must call a method that has a parameter for the name, such
as the following methods:

public void IfxSetNull(int i, int ifxType,
 String name)
public void registerOutParameter
 (int parameterIndex,
 int sqlType, java.lang.String name);
public void IfxRegisterOutParameter
 (int parameterIndex,
 int ifxType, java.lang.String name);

The data type you have specified does not require a name.

User response

Use another method that does not have a type parameter.

-79822 OUT parameter has not been registered

Explanation

The function specified using the CallableStatement interface has an OUT parameter that has not been registered.

User response

Call one of the registerOutParameter() or IfxRegisterOutParameter() methods to register the OUT parameter type before calling the
executeQuery() method.

-79823 IN parameter has not been set

Explanation
The function specified using the CallableStatement interface has an IN parameter that has not been set.

User response
Call the setMaxRows() or IfxSetNull() method if you want to set a null IN parameter. Otherwise, call one of the set methods inherited from the
PreparedStatement interface.

-79824 OUT parameter has not been set

Explanation
The function specified using the CallableStatement interface has an OUT parameter that has not been set.

User response

Call the setMaxRows() or IfxSetNull() method if you want to set a null OUT parameter. Otherwise, call one of the set methods inherited from the
PreparedStatement interface.

-79825 Type name is required for this data type

Explanation

This data type is an opaque type, distinct type, or complex type, and it requires a name.

206 Part X: Informix JDBC Driver Guide

User response

Use set methods for IN parameters and register methods for OUT parameters that take a type name as a parameter.

-79826 Ambiguous java.sql.Type, use IfxRegisterOutParameter()

Explanation

The SQL type specified either has no mapping to the IBM® Informix® data type or has more than one mapping.

User response
Use one of the IfxRegisterOutParameter() methods to specify the data type.

-79827 Function doesn't have an output parameter

Explanation
This function does not have an OUT parameter, or this function has an OUT parameter whose value the server version does not return. None of
the methods in the CallableStatement interface apply. Use the inherited methods from the PreparedStatement interface.

-79828 Function parameter specified isnt an OUT parameter

Explanation
IBM® Informix® functions can have only one OUT parameter, and it is always the last parameter.

-79829 Invalid directive used for the GL_DATE environment variable

Explanation

One or more of the directives specified by the GL_DATE environment variable is not allowed. Refer to The GL_DATE variable for a list of the valid
directives for a GL_DATE format.

-79830 Insufficient information given for building a time or timestamp
Java object.

Explanation

To perform string-to-binary conversions correctly for building a java.sql.Timestamp or java.sql.Time object, all the DATETIME fields must be
specified for the chosen date string representation. For java.sql.Timestamp objects, the year, month, day, hour, minute, and second parts must
be specified in the string representation. For java.sql.Time objects, the hour, minute, and second parts must be specified in the string
representation.

-79831 Exceeded maximum no. of connections configured for
Connection Pool Manager

Explanation

If you repeatedly connect to a database using a DataSource object without closing the connection, connections accumulate. When the total
number of connections for the DataSource object exceeds the maximum limit (100), this error is thrown.

Part X: Informix JDBC Driver Guide 207

-79834 Distributed transactions (XA) are not supported by this
database server.

Explanation
This error occurs when the user calls the method XAConnection.getConnection() against an unsupported server.

-79836 Proxy Error: No database connection

Explanation
This error is thrown by the IBM® Informix® HTTP Proxy if you try to communicate with the database on an invalid or bad database connection.

User response

Make sure your application has opened a connection to the database, check your web server and database error logs.

-79837 Proxy Error: Input/output error while communicating with
database

Explanation

This error is thrown by the IBM® Informix® HTTP Proxy if an error is detected while the proxy is communicating with the database. This error can
occur if your database server is not accessible.

User response

Make sure your database server is accessible, check your database and web server error logs.

-79838 Cannot execute change permission command (chmod/attrib)

Explanation

The driver is unable to change the permissions on the client JAR file. This could happen if your client platform does not support the chmod or
attrib command, or if the user running the JDBC application does not have the authority to change access permissions on the client JAR file.

User response

Make sure that the chmod or attrib command is available for your platform and that the user running the application has the authority to change
access permissions on the client JAR file.

-79839 Same Jar SQL name already exists in the system catalog

Explanation
The JAR file name specified when your application called UDTManager.createJar() has already been registered in the database server.

User response
Use UDTMetaData.setJarFileSQLName() to specify a different SQL name for the JAR file.

-79840 Unable to copy jar file from client to server

208 Part X: Informix JDBC Driver Guide

Explanation

This error occurs when the path name set using setJarTmpPath() is not writable by user informix or the user specified in the JDBC connection.

User response
Make sure the pathname is readable and writable by any user.

-79842 No UDR information was set in UDRMetaData

Explanation
Your application called the UDRManager.createUDRs() method without specifying any UDRs for the database server to register.

User response
Specify UDRs for the database server to register by calling the UDRMetaData.setUDR() method before calling the UDRManager.createUDRs()
method.

-79843 SQL name of the jar file was not set in UDR/UDT MetaData

Explanation
Your application called either the UDTManager.createUDT() or the UDRManager.createUDRs() method without specifying an SQL name for the
JAR file containing the opaque types or UDRs for the database server to register.

User response

Specify an SQL name for a JAR file by calling the UDTMetaData.setJarFileSQLName() or UDRMetaData.setJarFileSQLName() method before
calling the UDTManager.createUDT() or UDRManager.createUDRs() method.

-79844 Cant create/remove UDT/UDR as no database is specified in the
connection

Explanation

Your application created a connection without specifying a database. The following example establishes a connection and opens a database
named test:

url = "jdbc:informix-sqli:myhost:1533/test:"
+
"informixserver=myserver;user=rdtest;
 password=test";
conn = DriverManager.getConnection(url);

The following example establishes a connection with no database open:

url = "jdbc:informix-sqli:myhost:1533:"
+
"informixserver=myserver;user=rdtest;
 password=test";
conn = DriverManager.getConnection(url);

User response

To resolve this problem, use the following SQL statements after the connection is established and before calling the createUDT() or createUDRs()
methods:

Statement stmt = conn.createStatement();
stmt.executeUpdate("create database test
 ...");

Alternatively, use the following code:

stmt.executeUpdate("database test");

Part X: Informix JDBC Driver Guide 209

-79845 JAR file on the client does not exist or cant be read

Explanation
This error occurs for one of the following reasons:

You failed to create a client JAR file.
You specified an incorrect pathname for the client JAR file.
The user running the JDBC application or the user specified in the connection does not have permission to open or read the client JAR file.

-79846 Invalid JAR file name

Explanation
The client JAR file your application specified as the second parameter to UDTManager.createUDT() or UDRManager.createUDRs() must end with
the .jar extension.

-79847 The 'javac' or 'jar' command failed

Explanation
The driver encountered compilation errors in one of the following cases:

Compiling .class files into .jar files, using the jar command, in response to a createJar() command from the JDBC application
Compiling .java files into .class files and .jar files, using the javac and jar commands, in response to a UDTManager.createUDTClass()
method call from the JDBC application.

-79848 Same UDT SQL name already exists in the system catalog

Explanation

Your application called UDTMetaData.setSQLName() and specified a name that is already in the database server.

-79849 UDT SQL name was not set in UDTMetaData

Explanation

Your application failed to call UDTMetaData.setSQLName() to specify an SQL name for the opaque type.

-79850 UDT field count was not set in UDTMetaData

Explanation
Your application called UDTManager.createUDTClass() without first specifying the number of fields in the internal data structure that defines the
opaque type.

User response
Specify the number of fields by calling UDTMetaData.setFieldCount().

-79851 UDT length was not set in UDTMetaData

Explanation

210 Part X: Informix JDBC Driver Guide

Your application called UDTManager.createUDTClass() without first specifying a length for the opaque type.

User response

Specify the total length for the opaque type by calling UDTMetaData.setLength().

-79852 UDT field name or field type was not set in UDTMetaData

Explanation

Your application called UDTManager.createUDTClass() without first specifying a field name and data type for each field in the data structure that
defines the opaque type.

User response

Specify the field name by calling UDTMetaData.setFieldName(); specify a data type by calling UDTMetaData.setFieldType().

-79853 No class files to be put into the jar

Explanation

Your application called the createJar() method and passed a zero-length string for the classnames parameter. The method signature is as
follows:

createJar(UDTMetaData mdata, String[]
 classnames)

-79854 UDT java class must implement java.sql.SQLData interface

Explanation

Your application called UDTManager.createUDT() to create an opaque type whose class definition does not implement the java.sql.SQLData
interface. UDTManager cannot create an opaque type from a class that does not implement this interface.

-79855 Specified UDT java class is not found

Explanation

Your application called the UDTManager.createUDT() method but the driver could not find a class with the name you specified for the third
parameter.

-79856 Specified UDT does not exists in the database.

Explanation

Your application called UDTManager.removeUDT(String sqlname) to remove an opaque type named sqlname from the database, but the opaque
type with that name does not exist in the database.

-79857 Invalid support function type

Explanation
This error occurs only if your application called the UDTMetaData.setSupportUDR() method and passed an integer other than 0 through 7 for the
type parameter.

Part X: Informix JDBC Driver Guide 211

User response

Use the constants defined for the support UDR types. For more information, see The setSupportUDR() and setUDR() methods.

-79858 The command to remove file on the client failed

Explanation

If UDTMetaData.keepJavaFile() is not called or is set to FALSE, the driver removes the generated .java file when the
UDTManager.createUDTClass() method executes. This error results if the driver was unable to remove the .java file.

-79859 Invalid UDT field number

Explanation
Your application called a UDTMetaData.setXXX() or UDTMetaData.getXXX() method and specified a field number that was less than 0 or greater
than the value set through the UDTMetaData.setFieldCount() method.

-79860 Ambiguous java type(s) - can't use Object/SQLData as method
argument(s)

Explanation
One or more parameters of the method to be registered as a UDR is of type java.lang.Object or java.sql.SQLData. These Java™ data types can
be mapped to more than one IBM® Informix® data type, so the driver is unable to choose a type.

User response
Avoid using java.lang.Object or java.sql.SQLData as method arguments.

-79861 Specified UDT field type has no Java type match

Explanation

Your application called UDTMetaData.setFieldType() and specified a data type that has no 100 percent match in Java™. The following data types
are in this category:

IfxTypes.IFX_TYPE_BYTE
IfxTypes.IFX_TYPE_TEXT
IfxTypes.IFX_TYPE_VARCHAR
IfxTypes.IFX_TYPE_NVARCHAR
IfxTypes.IFX_TYPE_LVARCHAR

User response
Use IFX_TYPE_CHAR or IFX_TYPE_NCHAR instead; these data types map to java.lang.String.

-79862 Invalid UDT field type

Explanation
Your application called UDTMetaData.setFieldType() and specified an unsupported data type for the opaque type. For supported data types, see
Mapping for field types.

-79863 UDT field length was not set in UDTMetaData

212 Part X: Informix JDBC Driver Guide

Explanation

Your application specified a field of character, date-time, or interval type by calling UDTMetaData.setFieldType(), but failed to specify a field
length. Call UDTMetaData.setFieldLength() to set a field length.

-79864 Statement length exceeds the maximum

Explanation

Your application issued an SQL PREPARE, DECLARE, or EXECUTE IMMEDIATE statement that is longer than the database server can handle. The
limit differs with different implementations, but in most cases is up to 32,000 characters.

User response
Review the program logic to ensure that an error has not caused your application to present a string that is longer than intended. If the text has
the intended length, revise the application to present fewer statements at a time.

This is the same as error -460 returned by the database server.

-79865 Statement already closed

Explanation

This error occurs when an application attempts to access a statement method after the stmt.close() method.

-79868 Result set not open, operation not permitted

Explanation

This error occurs when an application attempts to access a ResultSet method after the ResultSet.close() method.

-79877 Invalid parameter value for setting maximum field size to a
value less than zero

Explanation
This error occurs when an application attempts to set the maximum field size to a value less than zero.

-79878 Result set not open, operation next not permitted. Verify that
autocommit is OFF

Explanation
This error occurs when an application attempts to access the ResultSet.next() method without executing a result set query.

-79879 An unexpected exception was thrown. See next exception for
details

Explanation
This error occurs when a non-SQL exception occurs; for example, an IO exception.

Part X: Informix JDBC Driver Guide 213

-79880 Unable to set JDK Version for the Driver

Explanation
This error occurs when the driver cannot obtain the JDK version from the Java™ virtual machine.

-79881 Already in local transaction, so cannot start XA transaction

Explanation
This error occurs when the application attempts to start an XA transaction while a local transaction is still in progress.

214 Part X: Informix JDBC Driver Guide

