
Adding resource statistics to your
applications

Mark E Taylor
Published on 22/11/2017

MQ V9 added resource monitoring statistics that you can subscribe to. In this post I’m going
to show how you can generate similar statistics from your own applications using the same
model. For example, you may want to track how many successful and how many failed
messages are being processed.

Introduction to resource statistics
Queue managers on the Distributed platforms publish many statistics about themselves and
the systems they are running on. This started with MQ V8 on the Appliance, and was
extended to the other platforms in V9. The fundamental concept is that a monitoring program
retrieves metadata from the queue manager that describes the statistics and then subscribes to
topics representing the data.

But the idea of the metadata can be extended to other components too. It does not have to
apply only to queue manager internal data. I used the design to add statistics to a new
component of MQ, the MQ Bridge to Salesforce that was first shipped in MQ V9.0.2. I’ve
also received several questions about how these statistics work, and there seemed to be a
positive reaction from an MQTC audience when I proposed writing up the approach.
So this post describes and links to some code that you can copy and extend for generating
arbitrary application-specific statistics.

The model
The design for these statistics involves a three-level classification. There are Classes, Types,
and Elements. It is the Element that holds the actual values that can be displayed. An
element may be further qualified with a name – in the queue manager statistics, this is where
you see the Queue Name being used. Both the metadata and the real values are contained in
PCF messages.

When you want to add monitoring of your own applications, it is this model that you need to
design first. The three tiers are a given; that cannot be changed. For some of the values I
needed to generate, a design involving just two levels felt more appropriate but I had to
introduce what was essentially a “padding” level in the middle. That padding used the same
name and description for the Type layer as for the Class, which seemed redundant but it was
the only way to follow the model.

The sample program

I’ve posted a short program that creates and describes some statistics as a gist download on
Github. The statistics produced by this program are very simple – there are counts of “system
level” values, and counts for some specific named objects – but it should demonstrate how it
can be extended for more realistic statistics. The program includes comments to describe
what is going on at each step. It uses JMS as the core messaging API, but other APIs and
languages could be used. Java does make it easy to work with PCF messages, though you can
see some special considerations when writing those messages via JMS to ensure correct
formatting.

After connecting to the queue manager, the program builds metadata describing the classes,
types and individual elements, and publishes these as retained publications. That allows
monitoring programs to start up at any time and still be able to get the metadata. The
metadata only needs to be published once, in this case as the program starts up. You can see
the construction of the tree and the MQ messages that describe it in
the publishMetaData() method. The program then continues to loop, publishing random
numbers for each element.

How did I design this
There is not a huge amount of formal documentation on these resource statistics. One reason
for that is the flexibility and potential for change given by the metadata approach. The best
information on decoding the events is from the amqsrua sample program. I used both that
program’s source code and the executable to validate what was going on. I also used
the amqsevt program a lot, subscribing to the various topics and seeing both how PCF
components were built and that my generated messages matched the queue manager’s
construction.

Notes
There are several things to note here:
• The code in this sample requires at least the MQ V9.0.2 (Continuous Delivery) Java

client. Previous levels had problems generating the MQCFGR structure. The fixes have
not been put back into the V9.0.0.x (LTS) stream as noone else has needed them. Of
course, the fixes will be in any future LTS version of MQ. If you converted the sample to
C (or another language) where you control the PCF formatting more directly, then you
could use older MQ client interfaces.

• Version 9.0.2 was also where changes were made to amqsrua, to allow it to subscribe
to user-chosen metatopics (a new -p option). The queue manager itself does not need
to be at V9.0.2 if the applications – both monitors and generators – are connected as
clients.

• The queue manager makes some nice optimisations internally, such as only generating
statistics when it knows there are subscribers. That is not really an option for this kind
of application-level code. While it would be possible to inquire on subscribers before
publishing, it is probably more efficient to always generate the numbers and just have
the queue manager throw away the publications when there are no subscriber. You
would probably want to have an option to define how frequently the statistics should
be generated (and to disable them entirely) in your application.

• This sample program holds open a separate object handle for each topic on which it
publishes. That is OK for the small number of elements used here, but you may want to
think about the costs of publishing statistics and the overall topic space if your design
suggests using thousands of individually named objects in the topic tree. Subscriptions
can be made to wildcards in the model, although not for the standard queue manager
statistics (queues must be explicitly referred to in those subscriptions).

• There is an assumption that the program generating the statistics has a unique naming
model for the tree. You could not run two copies of this example program as the
statistics would interfere with each other. One solution I have considered is that the
“application name” in the metadata is extended for each instance of a running program
to include a unique identifier. Though you would likely have to ensure that identifier
was reused when the same instace was restarted. And monitoring programs that collect
the data have to be configured to understand the identifier. Fortunately for my
purposes, I didn’t need to do that in the Bridge to Salesforce as only one instance can
run at a time on a queue manager!

• When I started decoding the queue manager’s resource events using amqsevt, I got a
little confused at first because it appeared to show PCF elements referring to the
ApplicationType or CodedCharSetId. In fact, that is just because the statistics events use
an index number for the Element fields that happened to have the same value as the
MQIA values for those parameters. There is no reason to start element identification
numbers from zero (it’s not processed as an array index, but as a key in a Map). I tried
to reduce that confusion in this sample program by starting the element index values
from some point in the MQIA_USER_LIST range. So amqsevt now says instead that it
cannot decode the number to an MQ attribute. There’s nothing wrong with the queue
manager here, but you have to remember that the element values are not in any way
related to the constants that you might see in other PCF events or commands.

• The queue manager resource statistics are produced only by the Distributed platforms.
But there is nothing stopping application-level code using the same approach on z/OS. I
have successfully run this sample program while connected to a z/OS queue manager,
and run monitoring programs to collect the statistics from there. You might want to
introduce a suitable topic object to control security on the topic tree. There is
a SYSTEM.ADMIN.TOPIC object that controls access to the $SYS/MQ tree automatically
created on the Distibuted side; something similar may be useful on z/OS, but it is not
essential.

Running a monitor
Here is an example of a flow through the amqsrua sample that shows the statistics created by
this sample. Remember that the $SYS has to be escaped in this enviroment to ensure it does
not get interpreted as a shell variable.

$ amqsrua -p "\$SYS/Application/DemoMQMonitor" -m QM1

SYSTEM : System Data

OBJECTS : Object Data

Enter Class selection

==> SYSTEM

T1 : Data about system resource T1

T2 : Data about system resource T2

Enter Type selection

==> T1

Publication received PutDate:20171120 PutTime:11241339
Interval:4.007 seconds

How many loops generated 41 10/sec

A random number 3 1/sec

Publication received PutDate:20171120 PutTime:11241740
Interval:4.008 seconds

How many loops generated 42 10/sec

A random number 0

And here is another example, this time collecting information about the object called ‘A’.

$ amqsrua -p "\$SYS/Application/DemoMQMonitor" -m QM1

SYSTEM : System Data

OBJECTS : Object Data

Enter Class selection

==> OBJECTS

OBJECTNAME : Object Specific Data

Enter Type selection

==> OBJECTNAME

An object name is required for Class(OBJECTS) Type(OBJECTNAME)

Enter object name

==> A

Publication received PutDate:20171120 PutTime:11251351
Interval:4.008 seconds

Successful invocations 5 1/sec

Failed invocations 16 4/sec

Total invocations 21 5/sec

Publication received PutDate:20171120 PutTime:11251752
Interval:4.008 seconds

Successful invocations 12 3/sec

Failed invocations 19 5/sec

Total invocations 31 8/sec

Other monitors
I have also updated one of the monitoring packages from the Go packages here.
The Prometheus package takes a “metaPrefix” parameter to allow it to monitor arbitrary
topics.

This allowed me to construct a simple dashboard in Grafana that starts off looking like this:

Summary
I hope this has given you some ideas on how you might be able to extend your applications
so they can be better monitored.

