
Debugging Program Checks
—
Patty Little
IBM z/OS Support

June 2021

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

Trademarks

2

The following are trademarks of the International Business Machines Corporation in the United
States and/or other countries.

•MVS
•OS/390®
•z/Architecture®
•z/OS®

* Registered trademarks of IBM Corporation

The following are trademarks or registered trademarks of other companies.

* All other products may be trademarks or registered trademarks of their respective companies.

Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.
UNIX is a registered trademark of The Open Group in the United States and other countries.
SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.

Notes:
Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput
improvements equivalent to the performance ratios stated here.
IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.
All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance
characteristics will vary depending on individual customer configurations and conditions.
This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business
contact for information on the product or services available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.
Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

For a complete list of IBM trademarks, see: http://www.ibm.com/legal/us/en/copytrade.shtml

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

Table of Contents

Program Checks 4
Debugging an ABEND0C4 14
Debugging an ABEND0C1 28
Summary ... 34

3

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

What is a Program Check?

4

• An interrupt represents a break in execution of a program
• A program interrupt results from a program request that cannot be resolved by

hardware
– Can the Operating System process this interrupt?

• YES - “Resolvable”
• NO - “Non-resolvable”

– When a non-resolvable program interrupt occurs on an executable unit of work, it is
generally known as a program check

Presenter
Presentation Notes
A program interrupt occurs when a program requests an action that cannot be completed without intervention from the operating system. If the operating system is able to successfully process the request, this is called a “resolvable” program interrupt, and the program can resume its execution. Otherwise, the program cannot continue. This is called a “non-resolvable” interrupt and results in RTM being entered for error processing.

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

Program Interrupts

When a program interrupt occurs :
• Hardware (the mainframe architecture)

– Updates PSA with:
• ILC/IC (Instruction-Length Code/Interrupt Code)
• TEA (Translation Exception Address), if applicable
• BEA (Breaking Event Address)

– Gives control to z/OS First Level Interrupt Handler (FLIH) via PSW swap
• Software (the z/OS operating system)

– If resolvable, handles interrupt and then resumes interrupted program
– If non-resolvable, terminates current unit of work with completion code

5

Presenter
Presentation Notes
When debugging a program check, there are 3 important pieces of information:
the Instruction Length Code (ILC)
the Interrupt Code (IC)
the Translation Exception Address (TEA). The TEA is only applicable to some of the program interrupts, to be discussed on future slides in this presentation.

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

Completion Codes from Program Checks

• When a work unit is abnormally terminated due to a Program Check,
RTM converts the Program Interrupt Code (PIC) to a
Completion Code of 0Cx, 0Dx or 0E0

• ABEND0Cx (e.g. 0C1, 0C4, 0C6, 0C9)
• ABEND0Dx (e.g. 0D5)
• ABEND0E0 RCyy (e.g. 0E0 RC29)

• x may or may not be the PIC number
• yy is usually the PIC number

• Check z/OS MVS System Codes for more information

6

Presenter
Presentation Notes
The Program Check FLIH converts a Program Interrupt Code (PIC) to a Completion Code as it calls RTM to perform error handling for the current unit of work. The Program Interrupt Code is not always obvious when one sees the Completion Code.

Recovery routines will sometimes convert program checks to abends more specific to the component suffering the error. For example, some IOS program checks may be converted to an ABENDA00. Some POST program checks may be converted to an ABEND202. The system trace table will show the original program check.

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

Locating Completion Codes in Dumps

• ST FAILDATA or VERBX LOGDATA
• Error information in the dump header or a LOGREC entry

• SYSTRACE
• RCVY system trace entries

• SUMM FORMAT
• In the TCB or the TCB Summary
• In the RTM2WA under a TCB (if available)

7

Presenter
Presentation Notes
In an SVC dump taken by a recovery routine for a program check, ST FAILDATA will show the completion code.

For any other SVC dump or for a SADump, you may find program check completions codes in VERBX LOGDATA, SYSTRACE, or in SUMM FORMAT under the TCB or RTM2WA.

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

Program Checks – ILC, IC, and TEA

• ILC (Instruction Length Code)
– The length of the instruction that caused the program interrupt

• IC (Interrupt Code)
– The program interrupt code (commonly known as PIC)

• TEA (Translation Exception Address)
– For some PICs, contains virtual address that was faulted on, rounded to a page

boundary (x’1000’)

8

Presenter
Presentation Notes
The ILC, IC and TEA enable you to investigate the following:

- what was the failing instruction?
- what was the virtual address related to the program check?
- did the error occur while accessing an operand or fetching an instruction?

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

ST FAILDATA or VERBX LOGDATA

9

Symptom Description
------- -----------
PIDS/5752SC100 Program id: 5752SC100
RIDS/IFAEDABC#L Load module name: IFAEDABC
RIDS/IFAEDABC Csect name: IFAEDABC
AB/S00C4 System abend code: 00C4
PRCS/00000010 Abend reason code: 00000010
REGS/C1016 Register/PSW difference for R0C:-1056
RIDS/IFAEDDEF#R Recovery routine csect name: IFAEDDEF

Presenter
Presentation Notes
ST FAILDATA contains all the necessary data required to begin debugging a program check. Debugging steps and examples will be shown later in the presentation.

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

ST FAILDATA or VERBX LOGDATA (cont)

10

TIME OF ERROR INFORMATION

PSW: 47044400 80000000 00000000 2747B016
Instruction length: 06 Interrupt code: 0010
Failing instruction text: B24D005C 1846D207 50104038
Translation exception address: 00000000_00810001

Breaking event address: 00000000_2747A6E0
Registers 0-7
GR: 00000003 2F16DB18 29E58510 069E2590 008100C2 2F089B20 006000C2 007FF6D8
AR: 00000000 00000000 00000002 00000000 00000000 00000000 00000000 00000002
Registers 8-15
GR: 2F16E618 00000000 2F16EDEE 2F16DDEF 2746E5B4 2F16CDF0 29E58510 00000000
AR: 00000000 00000002 00000000 00000000 00000000 00000000 00000000 00000000

Home ASID: 02C0 Primary ASID: 0011 Secondary ASID: 0011

TEA

ICILC

Presenter
Presentation Notes
Note the ILC, IC, and TEA for this ABEND0C4, shown in the output of ST FAILDATA.

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

SUMM FORMAT ASID(x’nn’)

11

TCB: 007FF6D8
+0000 RBP...... 007FF650 PIE...... 00006E00 DEB...... 00000000
+000C TIO...... 007BDFE8 CMP...... 940C4000 TRN...... 40000000
+0018 MSS...... 7F472928 PKF...... 80 FLGS..... 01000000
+012C EAE...... 7FFFE1D8 ARC...... 00000010

RTM2WA SUMMARY

+001C Completion code 840C4000
+008C Abending program name/SVRB address 007FF8E0 00000000
+0094 Abending program addr 00000000

GPRs at time of error
0-3 00000003 2F16DB18 29E58510 069E2590
4-7 006000C2 2F089B20 008100C2 007FF6D8
8-11 2F16E618 00000000 2F16EDEE 2F16DDEF

12-15 2846E5B4 2F16CDF0 29E58510 00000000

+007C EC PSW at time of error 470C4400 A747B016 00060010 00810001

ILC IC TEA

Presenter
Presentation Notes
In the SUMMARY FORMAT display, you can find the failing TCB by checking the completion code. Note that the TCBCMP field may show residual data from a prior ABEND which has been successfully retried. If you page down through the display and see a corresponding RTM2WA, the TCBCMP field is not showing residual data, and can therefore be used during dump analysis.

The 64-bit TEA can be found in RTM2TRNE (+6C8 in the RTM2WA).

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

SYSTRACE ASID(x’nn’)

12

Note: *RCVY entry immediately following PGM entry on same processor
indicates a non-resolvable program interrupt (program check) - BAD!

PGM entry without *RCVY entry immediately following on same processor
indicates the program interrupt has been resolved and is not a problem.

PR ASID WU-ADDR- IDENT CD/D PSW----- ADDRESS- UNIQUE-1 UNIQUE-2 UNIQUE-3
UNIQUE-4 UNIQUE-5 UNIQUE-6

0001 02C0 007FF6D8 PGM 010 00000000 2747B016 00060010 00000000
47044400 80000000 00810001

0001 02C0 007FF6D8 *RCVY PROG 940C4000 00000010 00000000

ILC IC TEA

completion code reason code

IC

Presenter
Presentation Notes
You can find the same data in the SYSTRACE display.

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

General Diagnostic Approach

• Gather program check data
– LOGREC/VERBX LOGDATA, ST FAILDATA, and RTM2WA control blocks are good sources

of information
• Analyze program check data
• Read compiled listing of source code, beginning at the failing PSW and moving

backwards to understand why the flow led to this error
• Review LOGREC, system log and system trace for history of events leading up

to this error
• Review SUMMARY FORMAT for chronology of module flow leading up to this

error under failing TCB

13

Presenter
Presentation Notes
Steps described in blue represent topics covered in this presentation. The remainder of the bullets represent logical diagnostic follow-on including code inspection and use of additional IPCS reports.

Program check data can be located in various places including LOGREC data (generated via the IPCS VERBX LOGDATA command), ST FAILDATA (which queries the SDWA), and the RTM2WA. System Trace, formatted via the IPCS SYSTRACE command, also shows some program check information. Where to look for program check data in any given dump depends on the error environment and the dump.

We will see in this presentation that a quick analysis of program check data will allow us to better understand the nature of the error, propose theories and define a logical course of action in our debugging.

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

What is an ABEND0C4?

• Common causes:
– Translation exception (aka fault)

• Non-resolvable segment fault (PIC 10)
• Non-resolvable page fault (PIC 11)
• Non-resolvable ASCE fault (PIC 38)
• Non-resolvable region fault (PIC 39, 3A or 3B)
• Disabled segment/page fault
• Disabled region/ASCE fault

– Protection exception (PIC 4)

• Can occur while:
– Accessing an operand
– Fetching an instruction

14

Presenter
Presentation Notes
There are many possible causes for an ABEND0C4. All the clues required to further investigate the cause of the abend0C4 can be found in the dump. The debugger should first locate the Program Interrupt Code (PIC) to understand WHY the abend occurred. The Principles of Operations manual gives very detailed explanations of each of these interrupt codes. Next, the debugger should look at the environment at the time of the abend.

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

ABEND0C4 Causes

• Non-resolvable PIC 10 or 11
– An invalid below-the-bar virtual address was being used

• Non-resolvable PIC 38, 39, 3A or 3B
– An invalid above-the-bar virtual address was being used

• Disabled PIC 10, 11, 38, 39, 3A or 3B
– A page not backed by real storage was accessed by a program while it was disabled for certain

interrupts (I/O and external)
– Check the second digit of the failing PSW

• If it is 4, the program is Disabled
• If it is 7, the program is Enabled

• Protection exception (PIC 4)
– A program violated storage protection protocol

15

Presenter
Presentation Notes
Note that a Disabled PSW is not allowed to take a program interrupt (such as a segment or page fault), even if the faults are otherwise resolvable. (The only exception to this is if the storage is DREF - Disabled Reference). In these cases, the root cause is either a bad storage address, or the program is running DISABLED in error.

PIC 38, 39, 3A and 3B are program interrupts related to translation of addresses of storage above the 2Gig bar.

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

Translation Exception Address (TEA)

• Contains:
• First portion of virtual address causing a PIC 10, 11, 38, 39, 3A, or 3B
• Bits describing the cross-memory environment at the time of the program interrupt

• Use it to determine:
• Why error occurred
• Whether error occurred during operand access or instruction fetch

16

z/Architecture 8-byte TEA

(stored after PIC 10,11,38,39,3A,3B)
0 51 63

virtual address

Bits 0-51: Virtual address bits 0-51
Bits 52-59: Unpredictable
Bits 62-63: 00 Primary ASCE

01 AR Mode
10 Secondary ASCE
11 Home ASCE

Presenter
Presentation Notes
The Translation Exception Address is stored in the PSA by hardware when certain program interrupts occur. Since a virtual address can be 64-bit in z/Architecture, the TEA has been expanded to 2 words. Another common name for the TEA is Translation Exception ID (TEID). Note that the TEA in the PSA is usually reused by the time the dump is taken, so the best places to find the TEA for the error in question are ST FAILDATA, RTM2WA, SYSTRACE and LOGREC (or VERBX LOGDATA).

The TEA may also contain debugging information related to program interrupts due to Cross-Memory Access Exceptions and Protection Exceptions. See z/OS Principles of Operations manual for details.

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

Debugging an ABEND0C4

• Depending on PIC, error PSW points directly AFTER or AT the failing instruction
• RTM gathers 12 bytes of failing instruction text for diagnostic purposes

• 6 bytes of data before the error PSW
• 6 bytes of data after the error PSW
• Max instruction length is 6 bytes, so guaranteed to include failing instruction

• Locate the failing instruction
• PICs 10,11,38,39,3A,3B - PSW points at failing instruction
• PIC 4 - PSW points after failing instruction

• Use ILC to determine where failing instruction begins
• Review failing instruction, along with corresponding registers at time of error

and TEA (when appropriate)

17

F074A784000C D203E02C7624
PSW

Presenter
Presentation Notes
The program interrupt code (PIC) that accompanies an ABEND0C4 further clarifies the nature of the program check. As debuggers, there is little need for us to distinguish between the various PICs that occur due to a translation exception. They all carry the same meaning – that a program tried to touch a storage address that for some reason was not available for it to touch. This could be because the address was that of storage that had been freed, or it could be because the address was invalid.

A protection exception occurs when a program tries to touch storage that it is not allowed to touch due to protection on that storage.

For program checks that occur as a result of a translation exception, the PSW at time of error will point directly at the failing instruction. For protection exceptions, the PSW will point immediately after the failing instruction. This means that, for a protection exception, we will need to back up the PSW to get to the failing instruction.

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

Where Did the Error Occur?

18

• Locate the error PSW and Registers
– IPCS BROWSE or WHERE on the error PSW address

• Locate the failing instruction
– Failing instruction text in ST FAILDATA, VERBX LOGDATA, RTM2WA, etc.

OR
– IPCS BROWSE / LIST failing instruction address
– For PIC4, remember to back up PSW address by instruction length!

• What is the failing instruction?
– IP OPCODE failing_instruction

OR
– IP LIST failing_instruction_address INSTR

Presenter
Presentation Notes
Program check PSW and registers can be found in LOGDATA, LOGREC, ST FAILDATA, and the RTM2WA. The program check PSW can also be found in system trace; however, the registers cannot be found there. Once the PSW address is obtained, map it to a module and offset. This can be done via the IPCS WHERE command in some cases. In other cases, it may be necessary to use IPCS BROWSE to identify the module. It is likely that the debugger will need to examine the code in this module to successfully diagnose the program check.

The failing instruction text is 12 bytes of data that is collected by RTM as it handles the error. RTM takes the error PSW, and gathers 6 bytes of storage immediately before the PSW, as well as the 6 bytes of storage pointed to by the PSW. Since the maximum instruction length is 6 bytes, and since the error PSW will always point either immediately after or right at the failing instruction, the failing instruction text it guaranteed to include the failing instruction.

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

Examples: IP OPCODE , IP LIST addr INSTR

19

IP OPCODE 58304000
Mnemonic for X'58304000' is L

IP LIST 20F54 INSTR
LIST 020F54. ASID(X'00B2') LENGTH(X'04') INSTRUCTION
00020F54 | 5830 4000 | L R3,X'0'(,R4)

Provide instruction

Provide address of instruction
in storage

Presenter
Presentation Notes
The failing instruction text will be a series of hexadecimal digits. We will need to convert the hex to a meaningful opcode. The IPCS OPCODE command can be used to translate a hex opcode to its mnemonic. You may enter just the opcode, or you may enter the whole instruction. Regardless of which you enter, IPCS will only return the mnemonic. IPCS LIST with the I (for Instruction) option will actually interpret the entire instruction. You must provide the address of the failing instruction.

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

Consider the Failing Instruction

• Gather PIC-specific information
– PIC 10, 11, 38, 39, 3A, 3B: Locate Translation Exception Address (TEA)
– PIC 4: Note PSW execution key

• 078D0000 90234568 = Execution Key8
• 07850000 80000000 00000000 10234568 = Execution Key8

• Identify assembler base & index registers of failing instruction
– For fault-related PIC, which register matches Translation Exception Address?
– For PIC4:

• Does register contain zero or pointer to PSA low core (0-1FF, 1000-11FF) ?
OR

• Does storage key of address in register not match PSW execution key ?

20

Presenter
Presentation Notes
When debugging a program check for a Translation Exception, you will need to locate the Translation Exception Address (TEA) in the error data.

When debugging a protection exception, you will need to make note of the PSW key, which is the 3rd nibble of the PSW. You will likely also need to identify the storage key of the page being touched. This can be done by using the IPCS LIST command with the DISPLAY option.

An important part of debugging a program check is understanding the format of the failing instruction. It is important to be able to identify the base register(s), index register(s), displacement(s), and length(s) that comprise the instruction.

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

Example: ABEND0C4 PIC11

21

TYPE: SOFTWARE RECORD REPORT: SOFTWARE EDIT REPORT DAY.YEAR
JOBNAME: ABCD SYSTEM NAME: SYSA
ERRORID: SEQ=00251 CPU=0080 ASID=0080 TIME=13:41:18.1

TIME OF ERROR INFORMATION

PSW: 07041000 80000000 00000000 050A1856
INSTRUCTION LENGTH: 06 INTERRUPT CODE: 0011
FAILING INSTRUCTION TEXT: 00805850 B168D93F B2245000
TRANSLATION EXCEPTION ADDRESS: 00000000_2D8D9800

BREAKING EVENT ADDRESS: 00000000_050A20BC
REGISTERS 0-7
GR: 00000004 2D8D9FB8 2D8D9FC3 0000000C 00000008 2D8D9FB8 050A45ED 00FC8D00
AR: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
REGISTERS 8-15
GR: 050A35EE 00000000 050A25EF 2D824BB8 850A15F0 2D824D94 850A1842 00000080
AR: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

IP VERBX LOGDATA

Conclusion: Storage pointed to by R5 is not available. This requires further investigation.

Interrupt Code = PIC11:
PSW points AT failing instr

Instruction Length = 6:
Failing instr is D93FB2245000

IP OPCODE D93FB2245000 or
IP LIST 50A1856 LEN(6) I

MVCK instr: D9 3F B224 5000

Instruction base registers
are R11 and R5

TEA = 2D8D9xxx matches R5

Presenter
Presentation Notes
Now we’re going to debug some program checks. We’ll see that the data we gather for each is fairly consistent. However, the failing instruction and corresponding register content are the variables that result in a different interpretation for each ABEND0C4 example that we will be looking at. In this first example, we have a PIC 11 which is a form of translation exception. For a translation exception error, the PSW points at the failing instruction. We translate this instruction opcode to determine that it is a MVCK instruction. (If you encounter an instruction with a format that you are unfamiliar with, you can look it up in the Principles of Operation.) A MVCK instruction has two base registers, one that points to the source of the data being moved and the other that points to the target. Either of these registers could be the reason for the translation exception. Compare the TEA to the instruction base registers in order to determine which triggered the program check. We discover it matches register 5; for some reason the storage indicated by this register is not available to the program.

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

Example: ABEND0C4 PIC10

22

Time of Error Information

PSW: 04040000 80000000 00000000 014CAB2A
Instruction length: 04 Interrupt code: 0010
Failing instruction text: 0010B20A 200098EF 1000B20A
Translation exception address: 00000000_4F4F4000

Breaking event address: 00000000_014CAAE8
AR/GR 0-1 FFFFFFFF/00000000_00000058 00000000/00000000_4F4F4F57
AR/GR 2-3 FFFFFFFF/00000000_0000040C FFFFFFFF/00000000_81030A38
AR/GR 4-5 FFFFFFFF/FFFFFFFF_0215BA28 FFFFFFFF/00000000_00000C00
AR/GR 6-7 FFFFFFFF/00000000_04355C00 FFFFFFFF/00000000_4F4F4F4F
AR/GR 8-9 00000000/00000000_04435B18 00000000/00000000_00000001
AR/GR 10-11 00000000/000001EF_810303D8 00000000/000001EF_7FFFCA98
AR/GR 12-13 00000000/00000000_814CAB0A 00000000/00000000_7FFFCA98
AR/GR 14-15 00000000/00000000_0000030A 00000000/00000000_00000000

IP STATUS FAILDATA

Conclusion: Storage pointed to by R1 is not available.
R1 does not look like an address.
Examine code to understand how R1 was derived.

Interrupt Code = PIC10:
PSW points AT failing instr

Instruction Length = 4:
Failing instr is 98EF1000

IP OPCODE 98EF1000 or
IP L 14CAB2A LEN(4) I

LM instruction: 98 EF 1000

Instr base reg is R1

TEA = 4F4F4xxx:
matches R1

Presenter
Presentation Notes
In this example of a PIC 10, we gather the same information as we did for the previous PIC 11. This time the failing instruction is a LM, which has one base register. The content of register 1 at time of error matches the TEA. For some reason the program could not touch storage at this address. One possibility is that the storage has been freed. However, if you look at the content of register 1, you can see that it looks repetitious (similar to register 7 which is even more repetitious) which would suggest the problem is not with freemained storage, but rather with an invalid value in register 1 that was never meant to be interpreted as an address in the first place. The debugger will need to examine code to understand where this invalid address came from.

You may notice that the PSW for this error is disabled. (The second nibble = 4.) You may recall that we learned earlier that if disabled code suffers a fault, then an ABEND0C4 results. In this example, disabled code did indeed take a fault. However, the root of the problem is not that the code was disabled, but rather that the bogus address in register 1 triggered an invalid storage reference. When disabled code suffers a fault, the most common reason is because the translation exception address is invalid, as is the case here. However, other possibilities include that the storage in question was supposed to be fixed but wasn’t, or that the code really should not have been disabled in the first place. Considering the register content and understanding the abending code are the keys to figuring out which is the case.

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

Protection Exception (PIC4)

Most common causes:
• Key-controlled protection

– PSW execution key must either match storage key or be KEY0
when:
• Writing to storage
• Reading from fetch-protected storage

– Otherwise, an ABEND0C4 PIC 4 will occur

• Low core address protection
– PSA x'000-1FF' and x'1000-11FF' are write-protected

23

Presenter
Presentation Notes
A protection exception can be caused by violating the common protection mechanisms. Storage access is protected by matching the PSW execution key to a page’s storage key. If a task is running PSW key0, it will have access to storage of any storage key. The next slide shows how to determine a page’s storage key.

Note that updates to storage are always key-protected. A program must be executing either in the key of the storage it is touching or in key0 in order to successfully update storage.

Even programs running execution key0 cannot update PSA locations 0-1FF and 1000-1FFF.

Note that storage can be defined as fetch-protected, which means that it can only be referenced either by programs running with a matching execution key or running key0.

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

How to Determine the Storage Key

24

• Associated with 4K (1 Page) of storage

• To find the storage key in a dump:
– LIST storage_addr DISPLAY

KKKK FRC0
0 4 7

KKKK = Key (4 bits)
F = Fetch-Protection Bit
R = Reference Bit
C = Change Bit
0 = Reserved

LIST 0097F5E0 CPU(X'00) ASID(X'0001') LENGTH(4) AREA
CPU(X'00) ASID(X'0001') ADDRESS(0097F5E0) KEY(06) ABSOLUTE(01CDB5E0)
0097F5E0. 00000000

Key 0 x’6’= b’0110‘
Not fetch-protected

Presenter
Presentation Notes
There is a storage key associated with each page of storage. Programmatically, the storage key can be accessed through instructions such as SSKE and ISKE. If you are debugging a protection exception (PIC 4) and would like to determine the storage key of an address in a dump, issue IP LIST storage-addr DISPLAY and check the first nibble of the KEY value.

This output also includes the fetch-protect status of the page, which is reflected in the first bit of the second nibble of the KEY(xx) output. If the fetch-protect bit is on, then the page is fetch-protected.

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

Less Common Protection Exception

• Page protection
– A page is write-protected if the page protection bit is ON in the page table entry

• Verify via RSMDATA VIRTPAGE or RSMDATA HIGHVIRT report
• Read-only nucleus and LPA always have this bit turned on

– Running DAT-off bypasses this protection

• When a PIC 4 is due to page protection:
– TEA bit 61 will be turned on (z/Architecture mode)
– TEA bits 0-51 will contain bits 0-51 of virtual address causing PIC 4

25

Presenter
Presentation Notes
A full page can be protected by using RSM (Real Storage Manager) page services to turn on the page protection bit in the page table entry. Some areas in low core (PSA) are protected from WRITE.

See MVS Diagnosis: Reference for details about RSMDATA reports.

While the TEA is primarily for use with Translation Exceptions, there is one case where it is relevant for an ABEND0C4 PIC4. If a protection exception occurs because a program tries to store into a write-protected page, the TEA will be relevant as indicated by bit 61 being on.

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

Example: ABEND0C4 PIC4

26

Time of Error Information

PSW: 07141000 80000000 00000000 3880A5A0
Instruction length: 06 Interrupt code: 0004
Failing instruction text: D5006008 3000A784 00084160

Breaking event address: 00000000_3880A5A8
AR/GR 0-1 00000000/00000000_00000000 00000000/00000000_00000001
AR/GR 2-3 00000000/20000000_3893990B 00000000/00000000_388DCF90
AR/GR 4-5 00000000/00000000_3870A07C 00000000/00000000_00000000
AR/GR 6-7 00000000/00000000_00000930 00000000/00000000_3893990A
AR/GR 8-9 00000000/00000000_3870A010 00000000/00000000_0003922A
AR/GR 10-11 00000000/00000000_388D52B0 00000000/00000000_00007000
AR/GR 12-13 00000000/00000000_3880A530 00000000/00000000_38939688
AR/GR 14-15 00000000/00000000_B79C70A8 00000000/00000000_FFFFFFFD

IP ST FAILDATA

Note: To update storage or to reference fetch-protected
storage, the PSW key must match the page key or else be KEY0.
Need to verify page keys and fetch-protect status.

Interrupt Code = PIC4:
PSW points AFTER failing
instr

Instruction Length = 6:
Failing instr is D50060083000

IP OPCODE D50060083000
or

IP L 3880A59A LEN(6) I
CLC instr: D500 6008 3000

Instr base registers are
R6 and R3

PSW Key = 1

Presenter
Presentation Notes
Here we are looking at an ABEND0C4 PIC4 protection exception. We gather PIC, ILC, and failing instruction, and we identify instruction base registers just as we did with the translation exception. However, in the case of a PIC4, we must remember to back up the PSW by the instruction length to get to the correct failing instruction.

Once we examine the failing instruction to identify the register and storage address causing the protection exception, we must consider why this storage was protected from this program. To do this, we need to compare the PSW execution key and the storage key/fetch protect status to understand why hardware detected a violation. In this example, the PSW key is 1 while the storage key is 0 for the storage pointed to by base register 6, as we will see on the next slide.

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

Example: ABEND0C4 PIC4 continued

27

27

Note: Source R3 = 388DCF90 Target R6 = 00000930

LIST 388DCF90 DISPLAY
LIST 388DCF90. ASID(X'002B') LENGTH(X'04') AREA
ASID(X'002B') ADDRESS(388DCF90.) KEY(18) ABSOLUTE(06_3D60FF90.)
388DCF90. 0190E080

LIST 930 DISPLAY
LIST 0930. ASID(X'002B') LENGTH(X'04') AREA
ASID(X'002B') ADDRESS(0930.) KEY(08) PREFIXED
00000930. 00000000

Key 1
Fetch-protected

Key 0
Fetch-protected

Presenter
Presentation Notes
The IP LIST command with the DISPLAY option allows us to easily identify a page’s key and fetch-protect status.

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

What is an ABEND0C1

• Occurs when CPU attempts to execute an instruction with an
invalid operation code

• Common causes:
– Wild branch
– Overlay of code

• Can occur while:
– Fetching an instruction

28

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

Debugging an ABEND0C1

• PSW points after failing “instruction”
• Use ILC to determine where failing “instruction” begins

• Since instruction is invalid, identifying failing “instruction” is of limited value

Failing instruction text: 00000000 00000000 E02C7624

• TEA is not useful, since abend is not for a translation exception
• Instead, use BEAR !

29

PSW

Presenter
Presentation Notes
If unsure whether to back up from the PSW address to find the failing instruction, refer to Principles of Operations manual.

Abend0C1s could occur for many reasons, including overlays of valid code, wild branches, and the premature freeing of storage containing code.
One quick way to determine whether you’re dealing with an overlay or a wild branch is to browse storage before and after the PSW address.
Could our task have been feasibly executing within this module? If NO, or if unable to identify a module/load mod surrounding this PSW, it was probably the result of a wild branch.
If it looks like the task should be executing within this module, compare the machine code (storage) around the PSW to a listing of the module to check for an overlay.

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

BEAR – Breaking Event Address Register

• A 64-bit register containing the address of the last instruction that
causes a break in sequential execution
– For example, a branch or a LPSW instruction

• Content of BEAR stored in PSA by H/W when any program interrupt
occurs. This is propagated by z/OS to:
– SDWA (available in ST FAILDATA or VERBX LOGDATA)
– RTM2WA (available in SUMM FORMAT)

30

Presenter
Presentation Notes
BEAR is an enhancement in z/Architecture since the z9 machines (a while ago). Basically, the machine remembers the address of the last instruction that causes a break in sequential execution (or in common terms, a branch) and surfaces this information in a program interrupt. If this program interrupt is not resolvable, resulting in an error condition, z/OS will save the contents of BEAR in the SDWA or the RTM2WA.

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

Finding BEAR in a DUMP

31

TIME OF ERROR INFORMATION

PSW: 07040001 80000000 00000000 0AF8D286
INSTRUCTION LENGTH: 06 INTERRUPT CODE: 0010
FAILING INSTRUCTION TEXT: 17884280 3015E320 60180004
TRANSLATION EXCEPTION ADDRESS: 00000008_004FF800

BREAKING EVENT ADDRESS: 00000000_0AF8C754

ST FAILDATA or VERBX LOGDATA

Address of last instruction
to cause a change in flow

Presenter
Presentation Notes
You can find BEAR in the output of ST FAILDATA or VERBX LOGDATA.

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

Finding BEAR in a Dump (continued)

32

RTM2WA: 7FFAFE10
+0000 ID....... RTM2 ADDR..... 7FFAFE10 SPID..... FF LGTH..... 0011F0
+0014 VRBC..... 009FD550 ASC...... 00F882A0 CCF...... 84 CC....... 0C1000

....

.... Lines omitted here

....
+06C8 TRNE..... 00000000 072FF800
+06D0 BEA...... 00000000 0AF8B552
+06D8 PSW1..... 07040001 80000000 00000000 0AF8D180

IP SUMM FORMAT ASID(x’nn’)

Presenter
Presentation Notes
You can also find BEAR in an RTM2WA (if available) under the failing TCB in SUMM FORMAT.

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

Example: ABEND0C1

33

TIME OF ERROR INFORMATION
PSW: 07850000 80000000 00000000 00000002
Instruction length: 02 Interrupt code: 0001
Failing instruction text: 00000000 000A0000 000130E1

Breaking event address: 00000000_00007F20
Registers 0-7
GR: 00000000 00007EF8 00000040 007D5D84 007D5D60 007FF448 007C7FE0 FD000000
AR: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
Registers 8-15
GR: 00007F22 007FF708 00000000 007FF448 965AB8B2 00006F60 80007F22 00000000
AR: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00007F1E 1BFF | .. |
00007F20 05EF5900 F0D24780 F01290EC D00C1831 |0K..0...}... |

From browsing storage

1BFF
05EF

SR 15,15
BALR 14,15

IP ST FAILDATA

Presenter
Presentation Notes
The above example is an ABEND0C1 due to a branch to location zero. R14 and R15 show that there may be a branch and link instruction prior to 7F22 that is causing the problem. BEAR confirms that it is indeed a BALR instruction at 7F20.

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation

Summary

• A program check is converted into a completion code of 0Cx, 0Dx, or 0E0 RCyy.

• The IC, ILC, PSW, and failing instruction text can be found in LOGREC data
or in a dump (e.g. VERBX LOGDATA, ST FAILDATA, SYSTRACE, RTM2WA).
– This data helps determine why the program check occurred.

• The TEA is crucial for debugging ABEND0C4’s for translation exceptions
(faults).

• BEAR is very useful when debugging an ABEND0C1 due to a wild branch.

34

Thank you

Patty Little
IBM z/OS Support
—
plittle@us.ibm.com
+1-845-435-4037
ibm.com

© Copyright IBM Corporation 2020. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of
any kind, express or implied. Any statement of direction represents IBM’s current intent, is subject to change or withdrawal, and represent only goals and objectives. IBM, the IBM logo, and
ibm.com are trademarks of IBM Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM
trademarks is available at Copyright and trademark information.

IBM z/OS Academy / 2Q Event / June 7 - 10, 2021 / © 2021 IBM Corporation 35

https://www.ibm.com/legal/copytrade

	Debugging Program Checks�—�Patty Little�IBM z/OS Support
	Trademarks
	Table of Contents
	What is a Program Check?
	Program Interrupts
	Completion Codes from Program Checks
	Locating Completion Codes in Dumps
	Program Checks – ILC, IC, and TEA
	ST FAILDATA or VERBX LOGDATA
	ST FAILDATA or VERBX LOGDATA (cont)
	SUMM FORMAT ASID(x’nn’)
	SYSTRACE ASID(x’nn’)
	General Diagnostic Approach
	What is an ABEND0C4?
	ABEND0C4 Causes
	Translation Exception Address (TEA)
	Debugging an ABEND0C4
	Where Did the Error Occur?
	Examples: IP OPCODE , IP LIST addr INSTR
	Consider the Failing Instruction
	Example: ABEND0C4 PIC11
	Example: ABEND0C4 PIC10
	Protection Exception (PIC4)
	How to Determine the Storage Key
	Less Common Protection Exception
	Example: ABEND0C4 PIC4
	Example: ABEND0C4 PIC4 continued
	What is an ABEND0C1
	Debugging an ABEND0C1
	BEAR – Breaking Event Address Register
	Finding BEAR in a DUMP
	Finding BEAR in a Dump (continued)
	Example: ABEND0C1
	Summary
	Thank you

