
© Copyright IBM Corporation 2015. All rights reserved.

Integration with IBM SPSS Collaboration and Deployment
Services - Scoring Service

A guide to accessing the scoring service

John C. Hunkins (jhunkins@us.ibm.com), Software Engineer, IBM

27 February 2015

Note: This article assumes some familiarity with IBM® SPSS® Collaboration and

Deployment Services (C&DS). Please review the knowledge center documentation for

clarification on any unfamiliar terms or concepts.

Introduction
IBM SPSS Collaboration and Deployment Services (C&DS) is a Java Enterprise Edition

(JEE) based application which exposes a number of different public and private web

services, including the Scoring Service. The purpose of the Scoring Service is to allow

users to obtain a score from a predictive model in real time. A score represents a computed

predictive value based on data provided to the model. In order to provide a score, the

scoring service has to load a predictive model file from the C&DS content repository and

provide it to a Score Provider which knows how to read the model file and execute the

processing instructions that are contained within the model. There are a handful of

different Scoring Providers available for installation in C&DS, such as:

 SmartScore

o Handles Predictive Model Markup Language (PMML) models that are

created by IBM® SPSS® Statistics

 Modeler

o Handles IBM® SPSS® Modeler streams and scenario files.

o Handles certain Modeler extensions such as Entity Analytics and Text

Analytics

 Analytical Decision Management

o Handles a special form of Modeler stream that is created as a part of an

Analytical Decision Management project

In order to use a predictive model with the Scoring Service, the user must configure the

model by creating a Scoring Configuration, which consists of a variable number of

required/optional settings. There can be any number of Scoring Configurations associated

with a particular model file. All Scoring Configurations require a user-specified unique

name which is used as an identifier. This unique name will be used in various web service

calls to target a specific Scoring Configuration. Once the model is configured, the Scoring

Service validates that the configuration is valid by starting the configuration. If the

Scoring Configuration is properly configured, it will be placed into a running state;

otherwise it will be placed into an error or warning state depending on the severity of the

issue.

http://pic.dhe.ibm.com/infocenter/spsscads/v5r0m0/index.jsp

Assuming that the Scoring Configuration is in a running state, the Scoring Configuration

can accept score requests. A score request contains all of the required data in the

appropriate format as defined by the Scoring Configuration. The customer/developer is

responsible for creating a score request programmatically by invoking a scoring service

application programming interface (API). Once the scoring service has the input data, it is

made available to the Score Provider which in turn feeds the input data into the model and

computes a score. The Score Provider then returns the computed score to the scoring

service, which in turn delivers the score to the caller in the form of a score result.

Users interact with the Scoring Service indirectly using a tool called IBM® SPSS®

Collaboration and Deployment Services Deployment Manager (DM). DM is a Graphical

User Interface (GUI) which simplifies the administration tasks associated with managing

Scoring Configurations, and makes web service calls to C&DS on behalf of the user.

While it is possible for a developer to make web service calls to manage the Scoring

Configuration lifecycle, it is not necessary or recommended due to the complexity

involved with that API. Instead, the focus for developers is mainly on the portion of the

Scoring Service API that deals with discovery of Scoring Configuration metadata (i.e.

information about the Scoring Configuration) and scoring execution.

As will be demonstrated, the Scoring Service is developer centric because in order to get

any value out of the feature, a developer must use some form of programmatic access. The

Scoring Service provides access via Simple Object Access Protocol (SOAP) over

Hypertext Transfer Protocol (HTTP), SOAP over Java Message Service (JMS) and

Representational State Transfer (REST) (i.e. JavaScript Object Notation (JSON) over

HTTP). There are other means of interaction with the scoring service (e.g. using the

Scoring Service JavaServer Pages (JSP) tag library for user interface widgets, and Java

Management Extensions (JMX) Mbeans for obtaining scoring performance metrics), but

this article does not cover those topics.

The purpose of this article is to showcase the variety of techniques and technologies that

can be used to access the scoring service programmatically. By providing a consistent set

of examples in a variety of programming languages, a developer can choose the

development path that suits their skills. Developers can also compare the examples to see

how the same task is accomplished in using an unfamiliar technology.

Scoring Service API
The first area of focus is on the Scoring Service API that is available. Here is a high level

overview of the API (omitting the parameters and return types for clarity):

 Scoring Configuration Lifecycle Management API calls

o buildConfigurationDetails

 This call is used to initially create a Scoring Configuration, where

the results of this call contain defaults for many of the settings

o updateConfigurationDetails

 This call takes the configuration details provided and returns a

potentially updated configuration.

 This call is made as many times as necessary to update the settings

o setConfigurationDetails

 This call commits the configuration details as-is to the underlying

persistence mechanism

o getConfigurationDetails

 Provides configuration details for a previously committed Scoring

Configuration

o removeConfiguration

 Removes a previously committed Scoring Configuration

o changeConfigurationRunningState

 Changes the running state for a previously committed Scoring

Configuration

 It can be useful to suspend a Scoring Configuration so it no longer

consumes server resources

 Scoring Configuration Metadata API calls

o getConfigurations

 Returns a list of the committed Scoring Configurations, their status,

running state and cache size

o getMetadata

 Returns information about a particular Scoring Configuration, such

as the inputs that are needed by the model and outputs that the

model can generate

o getMetricItems

 Returns a list of performance metric identifiers and other data that is

computed by the Scoring Service

o getMetricValue

 Returns a value for a particular metric item

 Scoring Execution API calls

o getScore

 Takes in the data needed by the scoring model and returns the score

result that was computed by the model

 Miscellaneous API calls

o getVersion

 Returns the version number for the Scoring Service

o getServiceDetails

 Returns details about the Scoring Service itself

The article will focus on the most important calls for end users, which consist of

getConfigurations, getMetadata, and getScore. The example code provided shows how to

invoke each of these API calls. The article will only go into details about the getScore

calls shown in the code example section, since that is the primary focus for end users. The

other API calls can be explored independently.

In order to make an API call, the code must send/receive data (i.e. the payload) over some

form of transport. The data sent is either a SOAP envelope, which is a particular format of

Extensible Markup Language (XML) or JSON data. The transport used to send the data

over is either HTTP or JMS. The scoring service is limited to handling the following

combinations:

 SOAP over HTTP

 SOAP over JMS

 REST (i.e. JSON over HTTP)

A developer must create the payload to send to the scoring service and receive a response

payload (and handle the resulting data as needed). As long as the incoming payload is in

the correct format, the scoring service will respond appropriately.

Most programming languages have a means for handling XML and JSON data (or at least

there is a third party library that exists to do so). For the examples provided in this article,

a particular data binding technology is used to represent the data in object form, and

convert to/from XML or JSON data as needed. The choices made for these examples are

not necessarily the only options available.

C&DS defines the Scoring Service API using Web Services Description Language

(WSDL) and XML Schema. The WSDL may be viewed using a browser with the URL
http://<your_host_name>:<your_port>/scoring/services/Scoring

.HttpV2?wsdl. Developers are not required to be familiar with WSDL or XML

Schema in order to work with the examples. The examples use one tool or another

(depending on the programming language) to convert the WSDL/XML Schema into a

form that is easy for a developer to use.

Since the scoring service API is defined in terms of WSDL and XML Schema, the JSON

representation was designed to closely follow the XML format, which should make it

easier for a developer to understand.

http://en.wikipedia.org/wiki/Web_Services_Description_Language
http://en.wikipedia.org/wiki/XML_Schema_%28W3C%29

Example Model
The scoring model used in the code examples section is an IBM SPSS Modeler stream

called “ExampleCredit1.str” that has two branches; one branch is used for analysis, and

the other branch is used for real time scoring. Figure 1 shows a representation of the two

branches.

Figure 1. The Modeler stream ExampleCredit1.str

The analysis branch is used to train the model with historical data, and the scoring branch

is used with “live” (i.e. real time) data, where the past model results will ideally predict

the credit worthiness of the current customer (Note: This model is just used for illustrative

purposes, and does not represent actual credit worthiness.) To make it easier to create a

scoring configuration using this model, the “Analysis Output” node was disconnected

from the analysis branch so only the scoring branch will be visible in the Scoring

Configuration wizard.

The scoring branch in this model contains two input nodes, one input node called

“Customer” that represents customer demographic data, such as age, income level,

education, number of car loans and a unique ID and another called “Customer Credit”

which represents a separate source of information about a customer’s credit card limit. A

given customer may have zero or more credit cards, each with their own credit limit. The

data from these two tables are pre-processed and then joined on the ID value using a

merge node and then fed into the “model nugget” which provides the predictive

capabilities.

If the Modeler client is used to execute the scoring branch, it would use inputs from a

SAV file for the Customer and Customer Credit nodes, and display the calculated results

(a credit score rating) inside a table within the Modeler client. When using the scoring

service, those inputs would instead be provided as a part of the web service request and

the credit score rating would be returned as a web service response.

Payload Examples
As already stated, in most cases developers don’t need to deal directly with XML or

JSON, but it helps to see examples of what it looks like nonetheless. The example model

in Example 1 has a SOAP envelope that contains a getConfigurations web service request.

SOAP envelopes can contain headers which provide message related data that might be

needed, and is separated from the body of the envelope. In this case there is a Web Service

Security (WSSE) header that defines security related data (i.e. username and password in

this case). It also contains an optional language header to indicate language preferences.

All of the web service API calls that are covered in this article require the use of a security

header. Note that the body of the SOAP envelope contains a single element:

<rem:getConfigurations/>. The scoring service uses document/literal wrapped

style so the name of the call is included. The call does not take any parameters, so the

body of the wrapper element is empty.

Example 1. getConfigurations web service SOAP request

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:rem="http://xml.spss.com/scoring-v2/remote">

 <soapenv:Header>

 <wsse:Security soapenv:actor=http://schemas.xmlsoap.org/soap/actor/next

soapenv:mustUnderstand="0" xmlns:wsse=

"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">

 <wsse:UsernameToken xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-utility-1.0.xsd">

 <wsse:Username>Native//admin</wsse:Username>

 <wsse:Password wsse:Type=

"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0

#PasswordText">[{AES}KrY+KLlOYo4O6545tgGsYQ==]</wsse:Password>

 <wsse:Nonce>lGpCC+uiWwYbWThVlv2lhw==</wsse:Nonce>

 <wsu:Created>2013-07-14T22:49:03Z</wsu:Created>

 </wsse:UsernameToken>

 </wsse:Security>

 <ns1:client-accept-language soapenv:actor=http://schemas.xmlsoap.org/soap/actor/next

soapenv:mustUnderstand="0" xmlns:ns1="http://xml.spss.com/ws/headers">

en-US;q=1.0, en;q=0.8</ns1:client-accept-language>

 </soapenv:Header>

 <soapenv:Body>

 <rem:getConfigurations/>

 </soapenv:Body>

</soapenv:Envelope>

In Example 2, there is a SOAP envelope that contains a getConfigurations web service

response. Note that the response does not contain a SOAP envelope header, and just has a

SOAP body. In this case, the return parameter is a wrapper element called

getConfigurationsResponse. As shown, the contents of the response consists of a

reference to the Scoring Configuration, whose ID is “Example Credit 1”, which is “active”

(i.e. the configuration has not been suspended) and has a cache size set to “1”. It also

conveys which model is referenced in the configuration, and its status (i.e. is it

successfully running or not).

http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/
http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/

Example 2. getConfigurations web service SOAP response

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

 <soapenv:Body>

 <c:getConfigurationsResponse xmlns:a="http://xml.spss.com/pev/types"

xmlns:b="http://xml.spss.com/scoring/exception"

xmlns:c="http://xml.spss.com/scoring-v2/remote"

xmlns:d="http://xml.spss.com/scoring/remote"

xmlns:e="http://xml.spss.com/data"

xmlns:f="http://xml.spss.com/scoring"

xmlns="http://xml.spss.com/scoring-v2">

 <configurationReference cfgSerial="7f00000183efa35900000137b90a66f98141"

state="ACTIVE" cacheSize="1" id="Example Credit 1">

 <modelReference label="LATEST" resourcePath="/Scoring Examples/ExampleCredit1.str"

 id="7f00000183efa35900000137b90a66f98128"/>

 <configurationStatus statusCode="INFORMATION" message="Started"/>

 </configurationReference>

 </c:getConfigurationsResponse>

 </soapenv:Body>

</soapenv:Envelope>

In order to reduce the complexity of the remaining XML examples, only the body contents

of the SOAP envelope will be shown. In Example 3, the getMetadata wrapper element

represents the name of the web service call. This call takes a single parameter, the

identifier for a Scoring Configuration.

Example 3. getMetadata web service SOAP request (body contents
only)

<rem:getMetadata>

 <scor:id>Example Credit 1</scor:id>

</rem:getMetadata>

In Example 4, the response from the getMetadata call is shown (again only the SOAP

body contents are shown). The XML data consists of a metadataResult element that

can contain zero or more metadataInputTable elements, and each

metadataInputTable can contain zero or more metadataInputField

elements. The metadataResult can also contain zero or more

metadataOutputField elements.

The purpose for the metadata is to describe the structure and datatypes of the data going

into and out of the model. This call is used to understand what values a model requires

during a getScore call, if a given value is required or not, and what outputs are configured

to be returned from the model.

Example 4. getMetadata web service SOAP response (body contents
only)

<c:getMetadataResponse

xmlns:a="http://xml.spss.com/pev/types"

xmlns:b="http://xml.spss.com/scoring/exception"

xmlns:c="http://xml.spss.com/scoring-v2/remote"

xmlns:d="http://xml.spss.com/scoring/remote"

xmlns:e="http://xml.spss.com/data"

xmlns:f="http://xml.spss.com/scoring"

xmlns="http://xml.spss.com/scoring-v2">

 <metadataResult>

 <metadataInputTable id="id84RPU94HPUM" name="Customer">

 <metadataInputField isRequired="true" name="ID" type="double" description="ID"/>

 <metadataInputField isRequired="true" name="Age" type="double" description="Age"/>

 <metadataInputField isRequired="true" name="Income level" type="string"

description="Income level"/>

 <metadataInputField isRequired="true" name="Education" type="string"

description="Education"/>

 <metadataInputField isRequired="true" name="Car loans" type="string"

description="Car loans"/>

 </metadataInputTable>

 <metadataInputTable id="id3NYQ3ZBWWX9" name="Customer Credit">

 <metadataInputField isRequired="true" name="ID" type="double" description="ID"/>

 </metadataInputTable>

 <metadataOutputField isReturned="true" name="ID" type="double" description="ID"/>

 <metadataOutputField isReturned="true" name="Number of Credit Cards" type="string"

description="Number of Credit Cards"/>

 <metadataOutputField isReturned="true" name="Age" type="double" description="Age"/>

 <metadataOutputField isReturned="true" name="Income level" type="string"

description="Income level"/>

 <metadataOutputField isReturned="true" name="Education" type="string"

description="Education"/>

 <metadataOutputField isReturned="true" name="Car loans" type="string"

description="Car loans"/>

 <metadataOutputField isReturned="true" name="$R-Credit rating" type="string"

description="$R-Credit rating"/>

 <metadataOutputField isReturned="true" name="$RC-Credit rating" type="double"

description="$RC-Credit rating"/>

 </metadataResult>

</c:getMetadataResponse>

Note in Example 4 that there are two input tables “Customer” and “Customer Credit” as

described in the previous section. The Scoring Service expects that inputs are provided in

“table format”. The code examples in this article use the following data as inputs as seen

in Table 1 (a single row of data) and Table 2 (six rows of data). The data in Table 2

requires further explanation. As shown in the Modeler stream, the Customer Credit node

will take the customer ID, as well as a value that represents the credit card limit. When

this model is used by the scoring service, the score provider determined that the credit

limit value was not used within model, so it was not listed as a required input in the

resulting metadata call. Therefore, only the ID is required for the Customer Credit table,

which is used to compute an aggregate value for the total number of credit cards for a

given ID.

Table 1. Customer input table used in the examples
Age Income level Education Car loans ID

36 HIGH College 2 or less 1

Table 2. Customer Credit input table used in the examples
ID

1

1

1

1

1

1

Finally, these tables of data are delivered as XML data in a getScore web service call. In

Example 5, there is a score request (SOAP body contents only), starting with the

getScore wrapper element. The getScore wrapper element contains a

ScoreRequest element with its id set to the configuration name, which ensures that the

scoring configuration called “Example Credit 1” receives the score request. A

ScoreRequest element can contain zero or more RequestInputTables. A table can

contain zero or more RequestInputRows, which can ultimately have zero or more

Inputs (i.e. a column and its associated value). It should be noted that it is possible to

eliminate the name attribute for an input and rely on the “input ordering” that is defined in

the Scoring Configuration. This allows for slightly optimized performance during XML

parsing when speed of the scoring service is essential. This behavior is entirely optional

and is not used in the example for purposes of clarity. Also note that each value attribute

was given an explicit entry. To express an “empty string”, the value could be provided as

two quotes without any data in between the quotes (e.g. “”). If desired, it is also possible

to provide a “null” value by omitting the value attribute altogether.

Example 5. getScore web service SOAP request (body contents only)

<rem:getScore>

 <scor:scoreRequest id="Example Credit 1">

 <scor:requestInputTable name="Customer">

 <scor:requestInputRow>

 <scor:input name="Age" value="36"/>

 <scor:input name="Income level" value="HIGH"/>

 <scor:input name="Education" value="College"/>

 <scor:input name="Car loans" value="2 or less"/>

 <scor:input name="ID" value="1"/>

 </scor:requestInputRow>

 </scor:requestInputTable>

 <scor:requestInputTable name="Customer Credit">

 <scor:requestInputRow>

 <scor:input name="ID" value="1"/>

 </scor:requestInputRow>

 <scor:requestInputRow>

 <scor:input name="ID" value="1"/>

 </scor:requestInputRow>

 <scor:requestInputRow>

 <scor:input name="ID" value="1"/>

 </scor:requestInputRow>

 <scor:requestInputRow>

 <scor:input name="ID" value="1"/>

 </scor:requestInputRow>

 <scor:requestInputRow>

 <scor:input name="ID" value="1"/>

 </scor:requestInputRow>

 <scor:requestInputRow>

 <scor:input name="ID" value="1"/>

 </scor:requestInputRow>

 </scor:requestInputTable>

 </scor:scoreRequest>

</rem:getScore>

In Example 6, an example of the SOAP body contents for a score result is provided. The

scoring service only provides a single “table” of output data, so there is no need for a table

element. The output is optimized to only show the “output columns” once and then zero or

more rows after that. The ordering of the column names matches the output values for

each output row. Note that this example shows a “null” value for the columns named “$R-

Credit rating” and “RC-Credit rating”.

Example 6. getScore web service SOAP response (body contents
only)

<c:getScoreResponse

xmlns:a="http://xml.spss.com/pev/types"

xmlns:b="http://xml.spss.com/scoring/exception"

xmlns:c="http://xml.spss.com/scoring-v2/remote"

xmlns:d="http://xml.spss.com/scoring/remote"

xmlns:e="http://xml.spss.com/data"

xmlns:f="http://xml.spss.com/scoring"

xmlns="http://xml.spss.com/scoring-v2">

 <scoreResult id="37a260a0-97e7-4999-8990-01d856571129">

 <columnNames>

 <name>ID</name>

 <name>Number of Credit Cards</name>

 <name>Age</name>

 <name>Income level</name>

 <name>Education</name>

 <name>Car loans</name>

 <name>$R-Credit rating</name>

 <name>$RC-Credit rating</name>

 </columnNames>

 <rowValues>

 <value value="1.0"/>

 <value value="5 or more"/>

 <value value="36.0"/>

 <value value="HIGH"/>

 <value value="College"/>

 <value value="2 or less"/>

 <value/>

 <value/>

 </rowValues>

 </scoreResult>

</c:getScoreResponse>

Code Examples
In order to illustrate the scoring service, a variety of examples are provided, each

following the same overall structure, with some minor variation depending on the

example. All of the examples are command line applications with the exception of the

HTML example which requires a browser to execute. The command line applications are

executed with a menu system and dumps out the results as text. The menu system looks

like this:

1) Run Get Configurations Demo

2) Run Get Metadata Demo

3) Run Get Score Demo

Enter your choice (1-3):

The HTML example has buttons that represent the same menu options as the command

line applications, and the results are displayed as text in the browser window.

The examples are designed with a common structure in order to make them consistent.

Each example has some form of:

 setup

o any work that might be needed to setup the client

 shutdown

o any work that might be needed to tear down the client

 execute

o handles the “menu” where the user gets to choose the demo to run

 createScoreRequest

o the work needed to create a score request (i.e. the outgoing payload in a

getScore call)

 getMetadata / printMetadata

o executes a getMetadata web service call and prints the results

 getConfigurations / printConfigurations

o executes a getConfigurations web service call and prints the results

 getScore / printScore

o executes a getScore web service call and prints the results

Preparation Tasks for Example Execution
Before executing the examples, add the Modeler file called ExampleCredit1.str to the

C&DS content repository. Once the file is in the content repository, right click on the

model and select “Configure Scoring…”. If the “Configure Scoring…” option is not

enabled, this indicates the Modeler Score Provider is not installed in C&DS.

After selecting “Configure Scoring…”, the scoring wizard will launch and will display a

panel to enter the name of the scoring configuration as “Example Credit 1” without the

quotes. All of the examples are hard coded to use this configuration name. Failing to get

the Scoring Configuration name right will cause the examples to fail to function properly.

The defaults will be used for this Scoring Configuration. Click the “Finish” button, which

should result in a configuration whose status is “Started”. If the configuration does not

have the “Started” status, the examples will fail to execute as expected. In order to see the

status of your Scoring Configuration, make sure the Scoring view is visible in Deployment

Manger by choosing View->Show View->Scoring and then select the appropriate

server definition in the Server pop-up menu.

Each of the examples will require some modification in order to run them. For example, in

the simplest case, it will be necessary to indicate the C&DS server host and port as well as

the C&DS credentials for authentication. Other examples may require more modification

beyond this, and these will be called out explicitly in the article. Be sure to refer to the

ReadMe.txt files found in the examples for specific instructions.

Note that these examples do not provide details regarding error checking and reporting,

language specific issues (e.g. Unicode handling), or deeper topics such as

transport/protocol security. These details go beyond the scope of this article.

Java Examples
All of the Java examples are included in a single Rational Application Developer (RAD)

Integrated Development Environment (IDE) project, which can be imported into an

existing workspace. It is also possible to use the Eclipse IDE. The RAD/Eclipse IDE is not

required, but it makes it easier to develop and run the examples. The Java examples have

been tested with (and require) the following libraries, as shown in Table 3.

Table 3. Required Java libraries
commons-codec.jar 1.3 http://commons.apache.org/

commons-httpclient-3.0.1.jar 3.0.1 http://commons.apache.org/

commons-lang-2.4.jar 2.4 http://commons.apache.org/

commons-logging-api.jar 1.0.4 http://commons.apache.org/

commons-logging.jar 1.0.4 http://commons.apache.org/

jackson-all-1.9.7.jar 1.9.7 http://jackson.codehaus.org/1.9.7/jackson-

all-1.9.7.jar

JSON4J.jar 1.0.1 Available in C&DS EAR/lib

com.ibm.ws.ejb.thinclient_8.0.0.jar WebSphere

version 8

Available in <WebSphere

install>/runtimes

com.ibm.ws.orb_8.0.0.jar WebSphere

version 8

Available in <WebSphere

install>/runtimes

com.ibm.ws.sib.client.thin.jms_8.0.0.jar WebSphere

version 8

Available in <WebSphere

install>/runtimes

Java Software Development Kit 1.6 Sun or IBM JDK

Newer versions of these libraries will likely work, but have not been tested. These

libraries should be placed into the C:\ScoringClientExamples\Java\Example

Project\lib directory.

Be sure to read C:\ScoringClientExamples\Java\Example

Project\ReadMe.txt for details about the example packaging and class descriptions.

Note that the Java examples have common code in the class

com.ibm.spss.example.ExampleBase, and each example extends from that

class.

Java (SOAP over HTTP)
The Java SOAP over HTTP example can be found in

com.ibm.spss.example.soap.SimpleJAXWSScoringExample. This class

contains the main method, and can be used to execute the example.

The Java SDK provides a SOAP web service implementation called Java API for XML

Web Services (JAX-WS). This technology allows developers to send and receive SOAP

envelopes over HTTP. JAX-WS leverages another Java technology called Java

Architecture for XML Binding (JAXB) to assist with converting Java classes to/from

XML.

http://commons.apache.org/
http://commons.apache.org/
http://commons.apache.org/
http://commons.apache.org/
http://commons.apache.org/
http://jackson.codehaus.org/1.9.7/jackson-all-1.9.7.jar
http://jackson.codehaus.org/1.9.7/jackson-all-1.9.7.jar

The Java SDK comes with the wsimport tool which allows developers to automatically

generate Java web service client classes from WSDL. The wsimport tool minimally

requires a single WSDL_URI parameter to tell it where to find the WSDL like this:

"c:\Program Files\IBM\Java60\bin\wsimport.exe"

http://localhost:7001/scoring/services/Scoring.HttpV2?wsdl

The default output location for the wsimport is the current directory, but this is

configurable by adding additional parameters. Run the wsimport tool without parameters

to see the options the tool supports. By default the tool will generate code into Java

packages using the target namespace of the WSDL and XSD files.

The package name is calculated by using the reverse internet domain name followed by

the path component of the URL (e.g.

targetNamespace="http://xml.spss.com/scoring/wsdl" would become

com.spss.xml.scoring.wsdl). The default package definition can be customized.

Note that the WSDL/XSD files represent an XML contract that the client and server must

adhere to, so it is not possible change the namespaces used in the WSDL/XSD. However,

the default package naming convention can be overridden and a custom package structure

can be used via jaxws:bindings elements for WSDL files and jaxb:schemaBindings

elements for the XSD files. Be aware that C&DS provides its own package overrides, and

that these overrides only apply to JAX-WS/JAXB code. Any other web service client

technology will ignore these overrides.

One requirement for JAX-WS is that the WSDL must be available to the JAX-WS

client/server at runtime. By default JAX-WS will obtain the WSDL from the same

location that was specified by the WSDL_URI parameter provided to wsimport. It is also

possible to have JAX-WS load the WSDL locally, which can be more efficient. Typically,

to load the WSDL locally, the generated code and the WSDL/XSD files would be

included in a JAR with the WSDL/XSD files located under the \META-INF\wsdl

directory.

The generated code creates a web services class called

com.spss.scoring.ws.jaxws.ScoringServices which is used to invoke the

web service endpoint. The object can be instantiated using the default constructor, but this

uses the defaults entered when the code was generated. Instead, by using the other

constructor which takes a java.net.URL and javax.xml.namespace.QName, the WSDL can

be specified either locally or via the server.

For example, to get the WSDL from a server, use:

com.spss.scoring.ws.jaxws.ScoringServices service =

 new com.spss.scoring.ws.jaxws.ScoringServices(

 new

URL("http://localhost:7001/scoring/services/Scoring.HttpV2?wsdl"),

 new QName("http://xml.spss.com/scoring/wsdl", "ScoringServices"));

If the WSDL/XSD is stored locally, use this option instead:

com.spss.scoring.ws.jaxws.ScoringServices service =

 new com.spss.scoring.ws.jaxws.ScoringServices(

 DemoClass.class.getResource("/META-INF/wsdl/scoring.wsdl"),

 new QName("http://xml.spss.com/scoring/wsdl", "ScoringServices"));

In the local WSDL case, the URL is specified as a class resource lookup, which will work

as long as the client code is packaged in a JAR. The classloader mechanism will search for

the WSDL at the root of the JAR under the path /META-INF/wsdl/scoring.wsdl.

The example provided at
com.ibm.spss.example.soap.SimpleJAXWSScoringExample.setup()

uses the simple constructor because the generated client code was manually modified to

use the local WSDL.

The setup() method also enables the security mechanism required by C&DS. This is

accomplished by using the ScoringServices object, which allows developers to

supply an object that implements the JAX-WS interface called

javax.xml.ws.handler.soap.SOAPHandler. JAX-WS allows code to be

inserted into the request/response cycle so that developers can read and even manipulate

the SOAP message on the client and the server. As Example 7 shows, the client and server

can intervene in the request/response cycle anywhere an X is shown. Logical handlers

only have access to the body of the SOAP message, but SOAP handlers have access to the

entire SOAP envelope.

Example 7. Diagram showing request/response flow where handlers
can intervene (signified by X)

 logical SOAP SOAP logical

 handler handler handler handler

|------|request -> X -> X |===| -> X -> X -> request |-------|

|Client| |service|

|------|response <- X <- X |===| <- X <- X <- response|-------|

From the perspective of the Java examples provided in this article, the C&DS security

headers need to be applied in the client outbound request using a SOAP handler. The most

important part of the SOAPHandler interface is the public boolean

handleMessage(SOAPMessageContext context) method. Inside this method

the SOAPMessageContext object can be used to discover if a message is incoming or

outgoing and apply the SOAP header as shown in Example 8.

Example 8. An example
SOAPHandler.handleMessage(SOAPMessageContext context)
implementation

// Apply this handler to only outbound traffic

if((Boolean)context.get(SOAPMessageContext.MESSAGE_OUTBOUND_PROPERTY))

{

 // get the message

 SOAPMessage message = context.getMessage();

 try

 {

 // get the message header

 SOAPEnvelope envelope = message.getSOAPPart().getEnvelope();

 SOAPHeader header = envelope.getHeader();

 if (header == null)

 {

 header = envelope.addHeader();

 }

 // add the UsernameToken header

 header.addChildElement(createUsernameTokenSecurityHeader());

 // assuming the language was provided, apply the custom language

header

 if(i_acceptLanguage != null)

 {

 header.addChildElement(createLanguageHeader());

 }

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

}

// allow any other handler to execute

return true;

Refer to com.ibm.spss.example.soap.SecurityHandler for the full

example. IMPORTANT: Be sure to apply a handler prior to obtaining the client web

service proxy. If this is not done, the handler chain will not be invoked. See
com.ibm.spss.example.soap.SimpleJAXWSScoringExample.setup()

for an example of how to do this in the proper order.

Next, the URL for the C&DS server should be provided, but this has to be done on the

web service client proxy object. All that needs to be done here is use the ScoringServices

object to obtain the web service client proxy, get the request context object (which is

essentially a Map), and place the URL as a String into the map as shown in Example 9.

When running the example, be sure to include the correct server host and port.

Example 9. Set the C&DS URL on the client web service proxy

// set the URL for the server

ScoringV2 httpV2 = service.getHttpV2();

((BindingProvider)httpV2).getRequestContext()

 .put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, URL);

In order to create a score request, the generated code created by wsimport is used. The

generated code consists of simple Java objects that are “assembled” and provided the

necessary request inputs. The score request creation can be seen in Example 10, and the

full example can be found in com.ibm.spss.example.ExampleBase.

Example 10. Create a ScoreRequest object and fill it with input data

// Create the score request object

ScoreRequest scoreRequest = new ScoreRequest();

// First put the configuration ID into it:

scoreRequest.setId(configID);

/** Request Input Table for "Customer" */

// Create storage for inputs, rows

RequestInputRow requestInputRows1 = new RequestInputRow();

// Create a new request input table with a given name and the rows it will contain

RequestInputTable requestInputTable1 = new RequestInputTable();

requestInputTable1.setName("Customer");

// Add the table to our list of input tables

scoreRequest.getRequestInputTable().add(requestInputTable1);

// Add the request inputs as a new row

requestInputTable1.getRequestInputRow().add(requestInputRows1);

// Add each input to the request

requestInputRows1.getInput().add(createInput("Age", "36"));

requestInputRows1.getInput().add(createInput("Income level", "HIGH"));

requestInputRows1.getInput().add(createInput("Education", "College"));

requestInputRows1.getInput().add(createInput("Car loans", "2 or less"));

requestInputRows1.getInput().add(createInput("ID", "1"));

/** Request Input Table for "Customer Credit" */

// Create storage for inputs, rows

RequestInputRow requestInputRows2 = new RequestInputRow();

// Create a new request input table with a given name and the rows it will contain

RequestInputTable requestInputTable2 = new RequestInputTable();

requestInputTable2.setName("Customer Credit");

// Add the table to our list of input tables

scoreRequest.getRequestInputTable().add(requestInputTable2);

// Add the request inputs as a new row (repeat the same row of inputs multiple times)

requestInputTable2.getRequestInputRow().add(requestInputRows2);

requestInputTable2.getRequestInputRow().add(requestInputRows2);

requestInputTable2.getRequestInputRow().add(requestInputRows2);

requestInputTable2.getRequestInputRow().add(requestInputRows2);

requestInputTable2.getRequestInputRow().add(requestInputRows2);

requestInputTable2.getRequestInputRow().add(requestInputRows2);

// Add each input to the request

requestInputRows2.getInput().add(createInput("ID", "1"));

One thing to note about JAXB objects is the use of Java collections to represent portions

of the XML that allow zero or more elements. For example, a ScoreRequest object

contains zero or more RequestInputTable elements, so the JAXB object that

represents a ScoreRequest contains a Java collection of type

List<RequestInputTable>. In order to add RequestInputTable objects to the

ScoreRequest, call getRequestInputTable(), and then add a

RequestInputTable to the returned collection.

Once the ScoreRequest object is populated, it is a simple matter to use the client web

service proxy (i.e. a proxy object that implements the ScoringV2 interface) to invoke

the scoring service as seen in Example 11.

Example 11. Invoke the scoring service getScore call

ScoringV2 scoring = // the client web service proxy that was populated earlier

ScoreResult getScoreResponse = scoring.getScore(scoreRequest);

Java (REST – JSON over HTTP using JAXB)
This example uses the JAXB classes that were generated for the JAX-WS example, and

uses the Jackson library to convert back and forth between JAXB objects and JSON.

Using a library like Jackson makes JSON parsing easy because the data ends up inside

JAXB objects which are much easier to understand and manipulate, because the Java

objects directly correspond to XML schema elements. Other JSON libraries like JSON4J

are more difficult to use because the data structures are a hierarchy of JSON Array and

JSON Object types. The next example illustrates the use of JSON4J.

The REST JAXB example can be found in

com.ibm.spss.example.rest.RestJaxbExample, which contains the main

method.

Since the HTTP calls are being made from our Java client, the Apache Commons

HttpClient library is used to simplify direct HTTP programming. The setup method

com.ibm.spss.example.rest.RestJaxbExample.setup() simply creates

an HttpClient object, allows it to send authorization headers preemptively to avoid the

normal overhead associated with HTTP authorization, and sets the C&DS credentials.

Details are shown in Example 12 below.

Example 12. Setting up HttpClient in the RestJaxbExample.setup()
method

// if the HTTP Client object has not been initialized

if(httpClient == null)

{

 httpClient = new HttpClient();

 // allow the HTTP client to preemptively send authentication headers

 httpClient.getParams().setAuthenticationPreemptive(true);

 // add the security credentials

 Credentials credentials = new UsernamePasswordCredentials("admin", "my_password");

 httpClient.getState().setCredentials(

 new AuthScope(HOST,PORT,AuthScope.ANY_REALM), credentials);

}

Following the REST convention, a REST web service consists of resources which

correspond to a base URI combined with a relative URI. For a given resource URI, the

developer invokes an HTTP call using GET, POST, PUT, or DELETE. For example, a list

of all scoring configurations can be obtained via an HTTP GET by combining the base

URI http://{server}:{port}/scoring/rest with a relative URI

configuration which results in

http://{server}:{port}/scoring/rest/configuration. C&DS comes

with detailed documentation specifying the behavior of the REST web service API, so it

won’t be covered in detail here. See <C&DS
Installation>\Server\documentation\en\web_services\Scoring_S

ervice_REST_Developers_Guide.pdf for more information.

Whenever a web service call is made in this example it has to be done using the
com.ibm.spss.example.rest.RestJaxbExample.execute(String

uri, org.apache.commons.httpclient.methods.RequestEntity

requestEntity) method. This method makes sure the URI provided is properly URL

encoded, sets either GET or POST depending on the existence of the requestEntity

parameter (i.e. the outgoing payload), adds necessary HTTP request headers, executes the

call and returns the HTTP body content as a string. This can be seen in Example 13. When

executing this code example, be sure to update the HOST and PORT variables to match

the server.

Example 13. Executing an HTTP request and returning the response
string

private String executeRequest(String uri,

 org.apache.commons.httpclient.methods.RequestEntity requestEntity)

 throws EncoderException, HttpException, IOException

{

 // encode the URI to be sure we don't use illegal characters in the URL

 URLCodec codec = new URLCodec();

 String encodedURI = codec.encode(uri);

 HttpMethod method = null;

 if(requestEntity == null)

 {

 method = new GetMethod(baseURL + encodedURI);

 }

 else

 {

 method = new PostMethod(baseURL + encodedURI);

 ((PostMethod)method).setRequestEntity(requestEntity);

 }

 // set language and JSON content type

 method.addRequestHeader("Accept-Language", "en_US");

 method.addRequestHeader("Content-Type", "application/json; charset=utf-8");

 httpClient.executeMethod(method);

 String responseBodyAsString = method.getResponseBodyAsString();

 method.releaseConnection();

 return responseBodyAsString;

}

Since this example shares the code to create a ScoreRequest object (see Example 10), it

will not be repeated here. In order to use the JAXB ScoreRequest object Jackson is used to

convert the object into JSON data in the form of a Java String using the

org.codehaus.jackson.map.ObjectMapper object. The JSON string is sent to

C&DS using an HTTP POST with the URL
http://{server}:{port}/scoring/rest/configuration/{configura

tion id}/score. The HTTP response contains JSON data as a String and is

converted from JSON back into JAXB objects, using a Jackson ObjectMapper that

has been specially initialized using a JaxbAnnotationIntrospector. Once the

data is converted to a JAXB ScoreRequest object, it can be printed out. This entire

process can be seen in Example 14.

Example 14. Invoke the configuration/{configuration id}/score
resource

protected void getScore() throws Exception

{

 // build the Score Request using JAXB classes

 ScoreRequest scoreRequest = createScoreRequest(configId);

 // convert the JAXB score request into JSON

 String jsonScoreReqStr = new ObjectMapper().writeValueAsString(scoreRequest);

 // execute request

 String jsonStr = executeRequest("configuration/" + configId + "/score",

 new StringRequestEntity(jsonScoreReqStr));

 // parse and display response

 ScoreResult scoreResult = unmarshalJSON(jsonStr, ScoreResult.class);

 printScoreResponse(scoreResult);

}

…

private <E> E unmarshalJSON(String jsonStr, Class<E> jaxbClass) throws

JsonParseException, JsonMappingException, IOException

{

 ObjectMapper mapper = new ObjectMapper();

 AnnotationIntrospector introspector = new JaxbAnnotationIntrospector();

 mapper.setDeserializationConfig(

 mapper.getDeserializationConfig().withAnnotationIntrospector(introspector));

 E result = mapper.readValue(jsonStr, jaxbClass);

 return result;

}

Java (REST – JSON over HTTP using JSON4J)
This next example has a main method located in com.ibm.spss.example.rest.

RestJsonExample. This example is very similar to the previous example but instead

of using JAXB objects, there is a hierarchy of “generic”

com.ibm.json.java.JSONObject and com.ibm.json.java.JSONArray

objects to represent the JSON data. A JSON object represents key/value pairs, and JSON

array represents a sequence of values. JSON can also contain Strings, Numbers and

Boolean values.

Example 15 represents a partial graph of objects that are expected in a score request. Note

that the scoring service can accept “context” data, but this is outside the scope of the

article, so only the request input table portion of the graph is shown. The Example shows a

JSON Object key/value pair with the value’s data type followed by a key in parentheses.

Example 15. A hierarchy of JSONObject and JSONArray objects that
represent a ScoreRequest

JsonObject

|---> String ("id")

|---> JsonArray ("requestInputTable")

 |---> JsonObject

 |---> String ("name”)

 |---> JsonArray ("requestInputRow")

 |---> JsonObject

 |---> JsonArray ("input")

 |---> JsonObject

 |---> String ("name")

 |---> String ("value")

The code shown in Example 16 provides an example of how to create a score request

using JSONObject and JSONArray objects.

Example 16. Create a JSON score request and fill it with input data

JSONObject jsScoreRequest = new JSONObject();

//the id

jsScoreRequest.put("id", "Example Credit 1");

//get the list of InputTables

JSONArray jsRequestInputTables = new JSONArray();

jsScoreRequest.put("requestInputTable", jsRequestInputTables);

JSONObject jsRequestInputTable = new JSONObject();

jsRequestInputTables.add(jsRequestInputTable);

jsRequestInputTable.put("name", "Customer");

//get the list of Input Rows

JSONArray jsRequestInputRows = new JSONArray();

jsRequestInputTable.put("requestInputRow", jsRequestInputRows);

//get the list of Inputs

JSONObject jsRequestInputRow = new JSONObject();

JSONArray jsInputs = new JSONArray();

jsRequestInputRow.put("input", jsInputs);

jsRequestInputRows.add(jsRequestInputRow);

JSONObject jsInput = new JSONObject();

jsInput.put("name", "Age");

jsInput.put("value", "36");

jsInputs.add(jsInput);

JSONObject jsInput2 = new JSONObject();

jsInput2.put("name", "Income level");

jsInput2.put("value", "HIGH");

jsInputs.add(jsInput2);

JSONObject jsInput3 = new JSONObject();

jsInput3.put("name", "Education");

jsInput3.put("value", "College");

jsInputs.add(jsInput3);

JSONObject jsInput4 = new JSONObject();

jsInput4.put("name", "Car loans");

jsInput4.put("value", "2 or less");

jsInputs.add(jsInput4);

JSONObject jsInput5 = new JSONObject();

jsInput5.put("name", "ID");

jsInput5.put("value", "1");

jsInputs.add(jsInput5);

JSONObject jsRequestInputTable2 = new JSONObject();

jsRequestInputTables.add(jsRequestInputTable2);

jsRequestInputTable2.put("name", "Customer Credit");

//get the list of Input Rows

JSONArray jsRequestInputRows2 = new JSONArray();

jsRequestInputTable2.put("requestInputRow", jsRequestInputRows2);

//get the list of Inputs

JSONObject jsInput6 = new JSONObject();

jsInput6.put("name", "ID");

jsInput6.put("value", "1");

JSONObject jsRequestInputRow2 = new JSONObject();

jsRequestInputRows2.add(jsRequestInputRow2);

JSONArray jsInputs2 = new JSONArray();

jsRequestInputRow2.put("input", jsInputs2);

jsInputs2.add(jsInput6);

JSONObject jsRequestInputRow3 = new JSONObject();

jsRequestInputRows2.add(jsRequestInputRow3);

JSONArray jsInputs3 = new JSONArray();

jsRequestInputRow3.put("input", jsInputs3);

jsInputs3.add(jsInput6);

JSONObject jsRequestInputRow4 = new JSONObject();

jsRequestInputRows2.add(jsRequestInputRow4);

JSONArray jsInputs4 = new JSONArray();

jsRequestInputRow4.put("input", jsInputs4);

jsInputs4.add(jsInput6);

JSONObject jsRequestInputRow5 = new JSONObject();

jsRequestInputRows2.add(jsRequestInputRow5);

JSONArray jsInputs5 = new JSONArray();

jsRequestInputRow5.put("input", jsInputs5);

jsInputs5.add(jsInput6);

JSONObject jsRequestInputRow6 = new JSONObject();

jsRequestInputRows2.add(jsRequestInputRow6);

JSONArray jsInputs6 = new JSONArray();

jsRequestInputRow6.put("input", jsInputs6);

jsInputs6.add(jsInput6);

The work to setup the HTTP client and execute requests is exactly the same as the

previous example, so simply refer to Example 12 and Example 13 for those examples. As

shown in Example 17, the work of executing a score request is very similar to Example

14; the only difference is the use of JSONObjects, rather than JAXB objects. First, the

JSONObject is converted to a String, and sent to C&DS using a HTTP POST using

the URL
http://{server}:{port}/scoring/rest/configuration/{configura

tion id}/score. The HTTP response contains JSON data as a String and is

converted from a JSON String into a JSONObject using the JSON4J parser and then

printed.

Example 17. Invoke the configuration/{configuration id}/score
resource

protected void getScore() throws Exception

{

 // build the Score Request

 JSONObject jsonScoreRequest =

ScoreRequestJsonTransformer.toJsonObject();

 String jsonScoreReqStr = jsonScoreRequest.toString();

 // execute request

 String jsonStr = executeRequest("configuration/" + configId + "/score",

 new StringRequestEntity(jsonScoreReqStr));

 // parse and display response

 JSONObject jsonScoreResult = JSONObject.parse(jsonStr);

 printScoreResponse(jsonScoreResult);

}

Java (SOAP over JMS)
The SOAP over JMS example has its main method located in

com.ibm.spss.example.jms.SimpleJMSScoringExample. Please refer to

that class for the full example.

SOAP over JMS differs from SOAP over HTTP in that the transport being used for

communication is JMS instead of HTTP. In the SOAP over HTTP example, the JAX-WS

framework understands how to process SOAP envelopes and handle HTTP

communication automatically, which makes the client usage extremely simple. The

mechanism described here requires more effort on the part of the developer because of the

need to open a connection to a server that hosts a particular JMS queue, interact with

multiple queues, and handle outgoing and incoming JMS messages, as well as process the

SOAP envelopes contained inside the JMS messages. All of these activities must be

handled in the code.

It should be noted that the concept for using SOAP over JMS has existed for some time,

but the formal W3C recommendation was not finalized until February 16, 2012. The

SOAP over JMS implementation provided by C&DS for the scoring service predates any

formal standards, and application server support for such features was proprietary to each

vendor. The decision was made to provide a unique C&DS implementation which is

essentially non-standard, but still fully functional.

To setup this example, the Java Naming and Directory Interface (JNDI) is used in order to

lookup the resources required for JMS communication. The process for accessing a JMS

engine depends entirely on the environment that is being used. This example assumes that

an external client will connect to IBM WebSphere 8, which requires runtime libraries

shown in Table 3. If the example is used in a different server environment, refer to the

documentation for that server for the appropriate library and connection values. The

WebSphere example initializes the javax.naming.InitialContext using

provider URL iiop://localhost:30604 and

com.ibm.websphere.naming.WsnInitialContextFactory for the initial

context factory. When running this example, be sure to change the URL to correspond to

the value that your WebSphere server is using. The InitialContext object is used to

discover a JMS queue found at JNDI name queue/PASWScoring, and a queue

connection factory found at JNDI name ConnectionFactory. Both of these resources

are bound to JNDI by C&DS for use by C&DS itself as well as external clients.

Using these resources, the developer can create a queue connection. This queue

connection is used to create two different queue sessions, a sender session and a listener

session. The sender session is used to send a JMS message to the scoring queue (i.e. an

outgoing JMS message), and a listener session is used to create a temporary reply-to queue

for messages coming back to the client (i.e. an incoming JMS message). A JMS message

consumer is also created so that the client can consume messages coming in from the JMS

reply-to queue. The entire setup code can be seen in Example 18.

http://www.w3.org/TR/soapjms/

Example 18. Setup the JMS connection, queues and sessions

protected void setup() throws Exception

{

 // JMS Step 1 - Initialize JMS

 // Create a hash table of settings required to access JMS

 // Note that these settings are application server specific

 Hashtable<String, String> hashTable = new Hashtable<String, String>();

 // Some servers require a value for java.naming.factory.url.pkgs

 // hashTable.put(javax.naming.InitialContext.URL_PKG_PREFIXES, "");

 hashTable.put(javax.naming.InitialContext.PROVIDER_URL, PROVIDER_URL);

 hashTable.put(javax.naming.InitialContext.INITIAL_CONTEXT_FACTORY,

 INITIAL_CONTEXT_FACTORY);

 // Create an InitialContext object so you can discover

 // various C&DS objects such as connection factories and queues.

 javax.naming.InitialContext context = new javax.naming.InitialContext(hashTable);

 // attempt to get the connection factory and queue

 scoringQueue = (javax.jms.Queue)context.lookup("queue/PASWScoring");

 javax.jms.QueueConnectionFactory factory =

 (javax.jms.QueueConnectionFactory)context.lookup("ConnectionFactory");

 // create a connection to the queue and start it

 queueConnection = factory.createQueueConnection();

 queueConnection.start();

 // JMS Step 2 - Open a temporary reply queue.

 listenerSession = queueConnection.createQueueSession(false,

 javax.jms.Session.AUTO_ACKNOWLEDGE);

 temporaryQueue = listenerSession.createTemporaryQueue();

 // JMS Step 3 - Listen to the temporary reply queue for messages returned by

the scoring service

 consumer = listenerSession.createConsumer(temporaryQueue);

 // JMS Step 4 - Create a QueueSender from a QueueSession

 // with this session you can send as many messages as you like...

 senderSession = queueConnection.createQueueSession(false,

 javax.jms.Session.AUTO_ACKNOWLEDGE);

 sender = senderSession.createSender(scoringQueue);

}

When it comes time to actually send a JMS message and receive a response JMS message,

the sender session is used to create a javax.jms.BytesMessage, which will contain

the data that will be sent to the server (i.e. an outgoing SOAP message). In order for

C&DS to know where to send a response, the message is updated with a reply-to queue

which points to the temporary queue. Once the outgoing message is fully prepared, it is

sent using the queue sender. Immediately after the message is sent, the message consumer

that is listening to the reply-to queue waits for an inbound message (i.e. it blocks until the

message is received). The bytes from the reply message are read and converted back into a

Java String, which represents the reply SOAP message.

While this example provides an implementation that runs synchronously (i.e. a message is

sent and waits for a reply) it is possible to create an asynchronous implementation (i.e. a

message is sent and the method returns immediately, and at some later point a reply is

received and processed independently). When asynchronous behavior is needed, JMS

provides a mechanism for matching up messages. Every JMS message can contain a

unique identifier found in the JMS header called JMSMessageID, and also has an

optionally set JMSCorrelationID JMS header, which can be used to indicate a

relationship between a request message and a response message. The example calls these

values out but does nothing with them because the example is using synchronous

behavior. Example 19 shows the full approach.

Example 19. Send/receive a JMS message

private String sendJMSMessage(byte[] bs) throws Exception

{

 String replyMessage = null;

 javax.jms.BytesMessage messageToSend = senderSession.createBytesMessage();

 // JMS Step 5 - Set the reply-to queue on the JMS message.

 messageToSend.setJMSReplyTo(temporaryQueue);

 // JMS Step 6 - Send the message to a JMS queue

 // populate the message with the soap envelope and send it

 messageToSend.writeBytes(bs);

 sender.send(messageToSend);

 // JMS Step 7 - receive the reply message

 // NOTE: This method blocks until a message is received

 javax.jms.Message replyJMSMessage = consumer.receive();

 // the message format should be a bytes message

 if (replyJMSMessage != null && replyJMSMessage instanceof javax.jms.BytesMessage)

 {

 javax.jms.BytesMessage bytesMessage = (javax.jms.BytesMessage) replyJMSMessage;

 byte[] bytes = new byte[(int) bytesMessage.getBodyLength()];

 bytesMessage.readBytes(bytes);

 // the reply message

 replyMessage = new String(bytes, "UTF-8");

 // The JMS correlation ID can be used to match a sent message with a response message.

 // In this case, we are running synchronously, so this value is not important, but if

 // asynchronous behavior is needed, this is required to match the outgoing and incoming

 // messages

 String jmsCorrelationID = replyJMSMessage.getJMSCorrelationID();

 }

 // *AFTER* the message is sent, get the message ID

 // You would keep the message ID around somewhere so you can match it to a reply later.

 // This is only necessary for asynchronous access (for this example it is not required)

 String messageID = messageToSend.getJMSMessageID();

 return replyMessage;

}

The previous examples explain how to setup, send and receive a message via JMS, but

have not discussed how to create and handle the SOAP envelopes. As in the previous

examples, the JAX-WS generated classes are used to simplify this process. Other methods

of creating SOAP envelopes can be used as long as they comply with the XML schema.

The code in Example 10 will be reused to create a JAXB ScoreRequest object, but in

this case the JAX-WS wrapper class GetScore is also used, and the ScoreRequest object is

inserted inside it, as shown in Example 20. In the SOAP over HTTP example, the JAX-

WS framework normally processes the SOAP envelope and as a result handles the

wrapper classes as well. In the SOAP over JMS example that functionality has to be coded

separately, starting with the wrapper classes.

Example 20. Invoke the scoring getScore call using SOAP over JMS

protected void getScore() throws Exception

{

 // Build a score request object

 // The data represents a score request.

 ScoreRequest scoreRequest = createScoreRequest(configId);

 GetScore getScoreWrapper = new GetScore();

 getScoreWrapper.setScoreRequest(scoreRequest);

 // execute request

 GetScoreResponse response = (GetScoreResponse)executeRequest(getScoreWrapper);

 // extract the data from the response wrapper

 ScoreResult getScoreResponse = response.getScoreResult();

 // print out the results

 printScoreResponse(getScoreResponse);

}

Now that the JAXB wrapper class GetScore has been created, it needs to be inserted

into a SOAPMessage object. To do this, the Java SOAP message and JAXB API are

needed. The Java SOAP message API contains a MessageFactory which allows for

the creation of SOAP messages. Using the JAXB API it is possible to use a JAXB

Marshaller to write the JAXB wrapper object directly into the SOAP message body. The

result is a fully complete SOAPMessage object. Note that it is not necessary to provide

the SOAP security headers as normally required in SOAP over HTTP.

Customers are expected to properly secure their JMS environment using the security

mechanisms provided by the server, which will prevent unauthorized access to the scoring

JMS queue. Prior to sending, the SOAPMessage is converted to a byte array and sent

using the mechanism already discussed in Example 19. At this point, the score response is

still in the form of a Java String, which represents the SOAP message. The process of

unmarshalling the data from a String to a JAXB object begins with the Java SOAP

MessageFactory object and creating an empty response message, and obtaining the

SOAPPart from the message. In other words, the XML portion of the SOAP message is

obtained, as opposed to the other optional parts of a SOAP message such as a SOAP

attachment (Note: the scoring service does not use SOAP attachments). The contents of

the SOAPPart are set to the response message, and then the changes are “saved” to the

response SOAPMessage. Once this is complete, the SOAPMessage now contains the

response data and the data can be unmarshalled into a JAXB ScoreResult object,

which can be used to print out the values as all of the other Java examples do. Example 21

provides the complete approach.

Example 21. Execute and process the GetScore and
GetScoreResponse wrapper objects

private Object executeRequest(Object wrapper) throws Exception

{

 // create a message factory to create SOAP messages

 MessageFactory factory = MessageFactory.newInstance(SOAPConstants.SOAP_1_1_PROTOCOL);

 // this represents the outgoing request message

 SOAPMessage messageRequest = factory.createMessage();

 // marshal the JAXB wrapper object directly into the SOAP message body

 Marshaller marshaller = V2_JAXB_CONTEXT.createMarshaller();

 marshaller.setProperty(Marshaller.JAXB_ENCODING, "UTF-8");

 marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, Boolean.FALSE);

 marshaller.marshal(wrapper, messageRequest.getSOAPBody());

 // convert the SOAP message into bytes which can be sent via JMS message

 ByteArrayOutputStream baos = new ByteArrayOutputStream();

 // by writing out the message, the contents of the SOAP message are automatically

 // saved

 messageRequest.writeTo(baos);

 // send the message and get a response

 String response = sendJMSMessage(baos.toByteArray());

 // create a string reader for the response message

 StringReader sr = new StringReader(response);

 // create a temporary soap message object to receive the raw response string

 SOAPMessage messageResponse = factory.createMessage();

 // place the raw SOAP message string into the SOAPMessage object

 SOAPPart requestSoapPart = messageResponse.getSOAPPart();

 requestSoapPart.setContent(new StreamSource(sr));

 // the "changes" must be saved after which we obtain the SOAP body

 messageResponse.saveChanges();

 Node firstChild = messageResponse.getSOAPBody().getFirstChild();

 // create a unmarshaller instance so we can convert the SOAP body into JAXB objects

 Unmarshaller unmarshaller = V2_JAXB_CONTEXT.createUnmarshaller();

 return unmarshaller.unmarshal(firstChild);

}

C++ (SOAP over HTTP)
Unlike Java, C++ does not offer any built-in libraries to handle SOAP over HTTP.

Therefore the C++ SOAP over HTTP example makes use of third party libraries to

simplify the task of creating a web services client.

The libraries mentioned in this article are not included in the example archive and must be

obtained from their respective projects. Other software is necessary for building the

example. The following is a list of requirements for the project:

 gSOAP

o http://sourceforge.net/projects/gsoap2/files/gSOAP/gsoap_2.8.8.zip/downlo

ad

o This provides the web service client functionality

 OpenSSL

o http://www.openssl.org/source/openssl-1.0.1c.tar.gz

o This is a required library needed by gSOAP.

 ActivePerl:

o http://downloads.activestate.com/ActivePerl/releases/

o This is required to build OpenSSL. Obtain the latest version.

 Visual Studio

o This is required to build the libraries

o The example provided in this article includes a Visual Studio project that

contains the example code, and default directories where generated code,

libraries and include files should be placed

While this example is not technically limited to Windows only, it only covers Windows

usage of tools and libraries. Be sure to read the project documentation for gSOAP and

OpenSSL for details on usage for other platforms.

To get started, obtain gSOAP and OpenSSL, and make sure ActivePerl and Visual Studio

are properly installed. First, the OpenSSL library should be compiled by executing the

commands in Example 22. This uses ActivePerl to configure the OpenSSL project and

create the files needed to compile using Visual Studio. Note that the --prefix portion of the

command tells the build where the installed output will be located.

Example 22. Using ActivePerl to prepare OpenSSL for compiling via
command line

C:\temp\temp_openssl\openssl-1.0.1c>C:\Perl64\bin\perl.exe Configure VC-WIN32

no-asm --prefix=C:/temp/temp_openssl/install

C:\temp\temp_openssl\openssl-1.0.1c> ms\do_ms

Next open a Visual Studio Developer Command Prompt in order to get the proper Visual

Studio environment variables, and execute the commands shown in Example 23. If all

goes well, this will produce OpenSSL output in the install folder specified in the command

line.

http://sourceforge.net/projects/gsoap2/files/gSOAP/gsoap_2.8.8.zip/download
http://sourceforge.net/projects/gsoap2/files/gSOAP/gsoap_2.8.8.zip/download
http://www.openssl.org/source/openssl-1.0.1c.tar.gz
http://downloads.activestate.com/ActivePerl/releases/

Example 23. Using Microsoft Visual Studio to compile OpenSSL

C:\temp\temp_openssl\openssl-1.0.1c>nmake -f ms\ntdll.mak

C:\temp\temp_openssl\openssl-1.0.1c>nmake -f ms\ntdll.mak install

From the “install” folder, copy the contents of the include folder (e.g.

C:\temp\temp_openssl\install\include\openssl) into the example project location (e.g.
c:\ScoringClientExamples\C++\SOAP\gSoapCPPScoringExample\gSo

apCPPScoringExample\OpenSSL\inc\openssl). Copy the libeay32.lib and

ssleay32.lib from the “install” lib directory (e.g. C:\temp\temp_openssl\install\lib) to the

example project location (e.g.
c:\ScoringClientExamples\C++\SOAP\gSoapCPPScoringExample\gSo

apCPPScoringExample\OpenSSL\lib).

The gSOAP project comes with pre-built executables wsdl2h.exe and soapcpp2.exe, both

of which are used in a two-step process to create generated code. The wsdl2h executable is

a WSDL importer and data binding tool, and the soapcpp2 executable creates stub and

skeleton code. Details regarding these two executables can be found in the project

documentation. The generated code output from gSOAP along with select gSOAP project

code will be placed into the example project location once these steps are complete.

First, modify the typemap.dat file included with the gSOAP archive, which is located

in gsoap-2.8\gsoap. Add the namespace prefix “spss” which is defined as

“http://xml.spss.com/ws/headers”. Type bindings can be provided to bind XML schema

types to C/C++ types as well. Example 24 shows the lines that should be placed into the

typemap.dat file.

Example 24. Add these lines to typemap.dat gSOAP file

spss = "http://xml.spss.com/ws/headers"

spss__client_accept_language = | char* | char*

Next, run the “WSDL to Header” executable. This will create the gSOAP header file that

contains information needed to create generated source code. Example 25 shows the

command that was executed for this example, followed by a description of each option.

Example 25. wsdl2h.exe command and option description

wsdl2h.exe -o scoring.h -t "c:\downloads\gsoap-2.8\gsoap\typemap.dat"

http://localhost:8080/scoring/services/Scoring.HttpV2/WEB-INF/wsdl/scoring.wsdl

-o specifies the output file

-t specifies the typemap.dat file to use

The last argument is the URL to the WSDL file.

Note that the scoring.h output file created by wsdl2h.exe is only a temporary file that is

fed into soapcpp2.exe, and should not be used directly in a project. Before running

soapcpp2.exe, modifications will be necessary for the scoring.h file before it can be used

(see Example 26). Add a line to import the header that contains the code necessary to

include the WS-Security SOAP headers found in “wsse.h”, and also define a struct that

will contain the client-accept-language SOAP header as well as the WS-Security SOAP

headers. The WS-Security SOAP header is handled by a gSOAP plugin, but the client-

accept-language SOAP header is a proprietary SPSS SOAP header. This struct is used in

the example to define the SOAP header values (see the SoapExample constructor for how

this is done).

Example 26. Modify the generated scoring.h file

// the following line goes with the other import statements

#import "wsse.h".

// this struct appears just before the end of the scoring.h file

struct SOAP_ENV__Header {

 char *spss__client_accept_language;

 mustUnderstand struct _wsse__Security *wsse__Security;

};

Once the scoring.h file has been modified, it can be used to create generated code using

soapcpp2.exe. There are a number of options to choose for this command. Example 27

shows the command that was executed for this example (followed by a description of each

option).

Example 27. Executing soapcpp2.exe

soapcpp2.exe -1 -I"C:\Downloads\gsoap-2.8\gsoap\import" -C

 -d"C:\Downloads\temp\test" -j -s -x scoring.h

-1 specifies the use of SOAP 1.1 namespaces and encodings

-I specify the path for #import

-C generates client-side code only

-d Saves sources in directory specified by < path >

-j Generate C++ service proxies and objects that can share a soap struct

-s Generates deserialization code with strict XML validation checks

-x Do not generate sample XML message files

The last argument specifies the gSOAP header file

After the code has been generated, it must be modified to correct errors. The spss

namespace prefix is defined to be http://tempuri.org/spss.xsd, which is incorrect. The

namespace should be http://xml.spss.com/ws/headers. This should be corrected by doing a

find/replace using a text editor. In this example, ScoringV2HttpBinding.nsmap and

soapScoringV2HttpBindingProxy.cpp were modified.

Once the code has been properly modified, it can be placed into the example location.

Make a copy of the generated code from the location specified in the –d option and place

it into
c:\ScoringClientExamples\C++\SOAP\gSoapCPPScoringExample\gSo

apCPPScoringExample\generated. Also find the following files in the gSoap

distribution (some are in gsoap-2.8\gsoap and others are in gsoap-

2.8\gsoap\plugin) and place them into

c:\ScoringClientExamples\C++\SOAP\gSoapCPPScoringExample\gSo

apCPPScoringExample\gSoap:

 dom.cpp

 mecevp.c

 mecevp.h

 smdevp.c

 smdevp.h

 soap.nsmap

 stdsoap2.cpp

 stdsoap2.h

 threads.c

 threads.h

 wsseapi.cpp

 wsseapi.h

Now that setup is complete, focus on the main C++ code, which is located at
C:\ScoringClientExamples\C++\SOAP\gSoapCPPScoringExample\gSo

apCPPScoringExample\gSoapCPPScoringExample.cpp. The

SoapExample class is defined directly in this file (a separate header file was not used to

keep the example self contained). The setup code for the example takes place in the

SoapExample constructor. First, the gSoap implementation provides a WS-Security

plug-in that allows setting the username and password for requests. Call the gSoap

soap_wsse_add_UsernameTokenText function to do so. Next use the generated

scoring proxy ScoringV2HttpBindingProxy to set required values for the web

service endpoint URL and client accept header that were defined earlier in the code

generation steps. An example of this code can be seen in Example 28. When running this

example, be sure to use the correct host and port for your C&DS server.

Example 28. C++ SOAP example setup

// set security and language SOAP headers. The security header is

// required, but the language header is optional.

// Add security information to SOAP request

soap_wsse_add_UsernameTokenText(scoring.soap, "Id", "admin", "my_password");

// add the language header

scoring.soap->header->spss__client_accept_language = "en-US;q=1.0, en;q=0.8";

// set the URL for the server

scoring.soap_endpoint = URL.c_str();

In order to create a score request, use the generated code created by gSoap. The generated

code consists of simple gSOAP defined objects that are “assembled” and provided the

necessary request inputs. The score request creation can be seen in Example 29. Note that

the names of generated classes are prefixed with a name space value that was defined

during the code generation step. For example, the “getScore” wrapper object was defined

as _ns5__getScore, where the namespace prefix “ns5” was associated with namespace

“http://xml.spss.com/scoring-v2/remote”. This makes reading the class names more

difficult for the developer, but ensures that the class names will not conflict with similar

class names that may be defined elsewhere.

Example 29. C++ gSOAP score request

_ns5__getScore request;

_ns5__getScoreResponse response;

// build the score request and add it to the getScore wrapper object

_ns8__scoreRequest scoreRequest;

request.ns8__scoreRequest = &scoreRequest;

// First put the configuration ID into it:

scoreRequest.id = configId;

/** Request Input Table for "Customer" */

// Create storage for inputs, rows

_ns8__requestInputRow requestInputRows1;

// Create a new request input table with a given name and the rows it will contain

_ns8__requestInputTable requestInputTable1;

std::string tableName1("Customer");

requestInputTable1.name = &tableName1;

// Add the table to our list of input tables

scoreRequest.ns8__requestInputTable.push_back(&requestInputTable1);

// Add the request inputs as a new row

requestInputTable1.ns8__requestInputRow.push_back(&requestInputRows1);

// Add each input to the request

_ns8__input age;

std::string ageStr("Age");

age.name = &ageStr;

std::string ageValue("36");

age.value = &ageValue;

requestInputRows1.ns8__input.push_back(&age);

_ns8__input incomeLevel;

std::string incomeStr("Income level");

incomeLevel.name = &incomeStr;

std::string incomeValue("HIGH");

incomeLevel.value = &incomeValue;

requestInputRows1.ns8__input.push_back(&incomeLevel);

_ns8__input education;

std::string educationStr("Education");

education.name = &educationStr;

std::string educationValue("College");

education.value = &educationValue;

requestInputRows1.ns8__input.push_back(&education);

_ns8__input carLoan;

std::string carLoanStr("Car loans");

carLoan.name = &carLoanStr;

std::string carLoanValue("2 or less");

carLoan.value = &carLoanValue;

requestInputRows1.ns8__input.push_back(&carLoan);

_ns8__input id;

std::string idStr("ID");

id.name = &idStr;

std::string idValue("1");

id.value = &idValue;

requestInputRows1.ns8__input.push_back(&id);

/** Request Input Table for "Customer Credit" */

// Create storage for inputs, rows

_ns8__requestInputRow requestInputRows2;

// Create a new request input table with a given name and the rows it will contain

_ns8__requestInputTable requestInputTable2;

std::string tableName2("Customer Credit");

requestInputTable2.name = &tableName2;

// Add the table to our list of input tables

scoreRequest.ns8__requestInputTable.push_back(&requestInputTable2);

// Add the request inputs as a new row (repeat the same row of inputs multiple times)

requestInputTable2.ns8__requestInputRow.push_back(&requestInputRows2);

requestInputTable2.ns8__requestInputRow.push_back(&requestInputRows2);

requestInputTable2.ns8__requestInputRow.push_back(&requestInputRows2);

requestInputTable2.ns8__requestInputRow.push_back(&requestInputRows2);

requestInputTable2.ns8__requestInputRow.push_back(&requestInputRows2);

requestInputTable2.ns8__requestInputRow.push_back(&requestInputRows2);

// Add each input to the request

_ns8__input id2;

std::string id2Str("ID");

id2.name = &id2Str;

std::string id2Value("1");

id2.value = &id2Value;

requestInputRows2.ns8__input.push_back(&id2);

Once the score request has been formed, use the scoring proxy object to submit the score

request. If the result code comes back with SOAP_OK, print out the score response. This

is shown in Example 30.

Example 30. Execute a score request using C++ gSOAP

// make a "get score" call

int rc = scoring.getScore(&request,&response);

if(rc == SOAP_OK)

{

 // print out the results

 printScoreResponse(response);

}

else

{

 std::cout << "Error! (rc: " << rc << ")" << std::endl;

 scoring.soap_stream_fault(std::cout);

}

C++ (REST – JSON over HTTP)
As in the previous example, C++ does not offer any built in libraries to handle JSON over

HTTP. Therefore the C++ JSON over HTTP example makes use of third party libraries to

simplify the task of creating a web services client.

The libraries mentioned in this article are not included in the example archive and must be

obtained from their respective projects. Other software is necessary for building the

example. The following is a list of requirements for the example project:

 JsonCPP

o http://sourceforge.net/projects/jsoncpp/files/jsoncpp/0.5.0/jsoncpp-src-

0.5.0.tar.gz/download

o This is the JSON parser

 cURL

o http://curl.haxx.se/download/curl-7.25.0.zip

o This handles the HTTP communication

 Visual Studio

o This is required to build the libraries

o The example provided in this article includes a Visual Studio project that

contains the example code, and default directories where libraries and

include files should be placed

While this example is not technically limited to Windows, only Windows usage of tools

and libraries is discussed. Be sure to read the project documentation for JsonCPP and

cURL for details on usage.

To get started, obtain JsonCPP and cURL, and make sure Visual Studio is properly

installed. First, the JsonCPP library should be compiled by opening the Visual Studio

project that is found in jsoncpp-src-0.5.0\makefiles\vs71. Allow Visual

Studio to upgrade the project to the current version, if applicable. Once that is complete,

select lib_json in the solution explorer, right click lib_json and choose build. The output

from the build is located in jsoncpp-src-

0.5.0\build\vs71\debug\lib_json. Copy the json_vc71_libmtd.lib

library into the example project under
c:\ScoringClientExamples\C++\REST\SimpleCPPScoringExample\Si

mpleCPPScoringExample\jsoncpp\lib. Copy the include files found in

jsoncpp-src-0.5.0\include\json to

c:\ScoringClientExamples\C++\REST\SimpleCPPScoringExample\Si

mpleCPPScoringExample\jsoncpp\include.

Next, compile curl by opening the Visual Studio file curl-7.25.0\vc6curl.dsw,

and allowing Visual Studio to upgrade the project to the current version. Once that is

complete, select libcurl in the solution explorer, right click libcurl and choose build. The

output from the build is located in curl-7.25.0\lib\DLL-Debug. Copy the

libcurld.dll and libcurld_imp.lib to

http://sourceforge.net/projects/jsoncpp/files/jsoncpp/0.5.0/jsoncpp-src-0.5.0.tar.gz/download
http://sourceforge.net/projects/jsoncpp/files/jsoncpp/0.5.0/jsoncpp-src-0.5.0.tar.gz/download
http://curl.haxx.se/download/curl-7.25.0.zip

C:\ScoringClientExamples\C++\REST\SimpleCPPScoringExample\Si

mpleCPPScoringExample\libcurl\lib. Also copy the include files (all *.h

files) found in curl-7.25.0\include\curl to
C:\ScoringClientExamples\C++\REST\SimpleCPPScoringExample\Si

mpleCPPScoringExample\libcurl\include\curl.

The C++ (REST – JSON over HTTP) example is similar in concept to the Java REST

examples (which can be found here and here), where a C++ library (cURL) is used to

communicate via HTTP and another C++ library (JsonCPP) is used to parse JSON data.

The code for this example can be found in
C:\ScoringClientExamples\C++\REST\SimpleCPPScoringExample\Si

mpleCPPScoringExample\SimpleCPPScoringExample.cpp. The

RestExample class is defined directly in this file (a separate header file was not used to

keep the example self contained). The setup code for the example takes place in the

RestExample constructor, and teardown in the destructor. The example is mainly

concerned with initializing and then eventually cleaning up the cURL library. See

Example 31 for the example.

Example 31. Setting up and shutting down cURL

// Do any setup work in this constructor

RestExample::RestExample()

{

 // We need to initialize curl... each call to this must have a matching call

 // to curl_global_cleanup()

 curl_global_init(CURL_GLOBAL_ALL);

}

// Do any shutdown work in this destructor

RestExample::~RestExample()

{

 /* we're done with libcurl, so clean it up */

 curl_global_cleanup();

}

In order to communicate with the C&DS server, an execute method is called each time a

request is sent, which opens a HTTP connection using the cURL library (see Example 32).

Assuming the cURL library is initialized, the URL that is passed into the execute method

is escaped, and a structure is created to capture the response data that comes back from the

server. The structure is passed into a call back function that will copy the data supplied

from the cURL library, into the structure. This callback function is called any number of

times by cURL as data is acquired. In this way the cURL library provides the data to the

application and the application controls the lifecycle of the memory allocated. The

structure and callback function can be seen in Example 33.

Before instructing cURL to send a request, a number of different “options” need to be set

using curl_easy_setopt, such as the URL to contact, HTTP authorization headers,

user agent, content type, language, and request method (e.g. POST or GET). Once all of

the options are set, the request can be sent using curl_easy_perform, and then

finally cleanup cURL and the memory that was allocated.

Example 32. C++ REST request execution example

void RestExample::executeRequest(const std::string uri,

std::string &jsonResponseStr, const std::string &jsonRequestString)

{

 /* init the curl session */

 CURL *curl_handle = curl_easy_init();

 if(curl_handle)

 {

 // encode the URI to be sure we don't use illegal characters in the URL

 char *escaped = curl_easy_escape(curl_handle,uri.c_str(),uri.length());

 std::string encodedURI;

 encodedURI += escaped;

 curl_free(escaped);

 struct MemoryStruct responseData;

 responseData.memory = (char *)malloc(1); /* will be grown as needed by realloc */

 responseData.size = 0; /* no data at this point */

 // create and specify URL

 std::string url = baseURL + encodedURI;

 curl_easy_setopt(curl_handle, CURLOPT_URL, url.c_str());

 // send all data to this function

 // we pass our 'responseData' struct to the callback function

 curl_easy_setopt(curl_handle, CURLOPT_WRITEFUNCTION, ResponseCallback);

 curl_easy_setopt(curl_handle, CURLOPT_WRITEDATA, (void *)&responseData);

 // Set Authorization

 curl_easy_setopt(curl_handle, CURLOPT_USERNAME, "admin");

 curl_easy_setopt(curl_handle, CURLOPT_PASSWORD, " my_password");

 // libcurl can be more verbose. Uncomment this line if desired.

 //curl_easy_setopt(curl_handle, CURLOPT_VERBOSE, 1);

 // some servers don't like requests that are made without a user-agent

 // field, so we provide one

 curl_easy_setopt(curl_handle, CURLOPT_USERAGENT, "libcurl-agent/1.0");

 // Set other header values

 struct curl_slist *pRequestHeaderList = NULL;

 pRequestHeaderList = curl_slist_append(pRequestHeaderList,

 "Content-Language: en_US");

 pRequestHeaderList = curl_slist_append(pRequestHeaderList,

 "Content-Type: application/json; charset=utf-8");

 curl_easy_setopt(curl_handle, CURLOPT_HTTPHEADER, pRequestHeaderList);

 // if we have a non-empty string, use a HTTP post

 if(jsonRequestString != "")

 {

 curl_easy_setopt(curl_handle, CURLOPT_HTTPPOST, 1);

 curl_easy_setopt(curl_handle, CURLOPT_POSTFIELDS, jsonRequestString.c_str());

 curl_easy_setopt(curl_handle, CURLOPT_POSTFIELDSIZE, jsonRequestString.size());

 }

 // otherwise use a HTTP GET

 else

 {

 curl_easy_setopt(curl_handle, CURLOPT_HTTPGET, 1);

 }

 // send the request

 CURLcode retval = curl_easy_perform(curl_handle);

 //printf("retval: %d\n", retval);

 long httpReturnCode = 0;

 curl_easy_getinfo(curl_handle, CURLINFO_HTTP_CODE, &httpReturnCode);

 //printf("HTTP return code: %d\n", httpReturnCode);

 /* cleanup curl stuff */

 curl_slist_free_all(pRequestHeaderList);

 curl_easy_cleanup(curl_handle);

 /*

 * Now, our responseData.memory points to a memory block that is responseData.size

 * bytes big and contains the server response.

 */

 // printf("\n");

 // printf("Body bytes retrieved: %lu\n", (long)responseData.size);

 if (responseData.memory)

 {

 //printf("%s\n", responseData.memory);

 // copy the data into the response string

 jsonResponseStr += responseData.memory;

 // free the memory that we allocated

 free(responseData.memory);

 }

 }

}

Example 33. C++ struct and callback method for cURL
communication

// This structure is used to store the response data from a REST call.

// It is passed into libcurl as user data

struct MemoryStruct {

 char *memory;

 size_t size;

};

// This callback function is called whenever libcurl has data that needs to be saved.

// This could be called any number of times with however much data is available.

// contents = pointer to the data

// size = size of the dat

// nmemb = number of bytes

// userp = user data (should be a MemoryStruct)

const size_t ResponseCallback(void *contents, size_t size, size_t nmemb, void *userp)

{

 // determin full size of the data to be saved

 size_t realsize = size * nmemb;

 struct MemoryStruct *mem = (struct MemoryStruct *)userp;

 // resize the user defined memory storage

 mem->memory = (char *)realloc(mem->memory, mem->size + realsize + 1);

 if (mem->memory == NULL) {

 /* out of memory! */

 std::cout << "not enough memory (realloc returned NULL)" << std::endl;

 exit(EXIT_FAILURE);

 }

 // copy the contents into the user defined memory

 memcpy(&(mem->memory[mem->size]), contents, realsize);

 mem->size += realsize;

 mem->memory[mem->size] = 0;

 return realsize;

}

The code just described focused on the HTTP communications, but before the getScore

function can call the execute function, it must build the score request (see the getScore

function in Example 34).

Example 34. The C++ rest getScore call

void RestExample::getScore()

{

 // build the Score Request

 Json::Value jsonScoreRequest(Json::objectValue);

 buildScoreRequest(jsonScoreRequest);

 Json::FastWriter writer;

 std::string jsonScoreReqStr = writer.write(jsonScoreRequest);

 // execute request

 std::string jsonScoreResponseStr;

 executeRequest(std::string("configuration/") + configId + std::string("/score"),

jsonScoreResponseStr, jsonScoreReqStr);

 // parse and display response

 Json::Value jsonScoreResult;

 jsonParse(jsonScoreResponseStr, jsonScoreResult);

 printScoreResponse(jsonScoreResult);

}

void RestExample::jsonParse(const std::string jsonStr, Json::Value &v)

{

 Json::Reader reader;

 bool parsingSuccessful = reader.parse(jsonStr, v);

 if (!parsingSuccessful)

 {

 // report to the user the failure and their locations in the document.

 std::cout << "Failed to parse\n"

 << reader.getFormatedErrorMessages();

 exit(EXIT_FAILURE);

 }

}

In order to build the score request JSON data, the JsonCPP library is used. The code for

this is shown in Example 35. A score request can be created using a hierarchy of

Json::Value objects. Once a Json::Value object is added into the hierarchy, a copy of the

object is made and stored internally. In other words, the objects are not stored by

reference. This behavior has a side effect, if a Json::Value object is created manually and

added into the hierarchy, any changes made to the original manually created object won't

have any effect on the object that is stored in the hierarchy.

Because of the copy behavior inside the Json::Value object, it is best to let the Json library

create the objects, and refer to the objects it creates. Fortunately, the Json::Value API

makes this a simple task. By making use of the [] operator, refer to objects by name (if the

Json::Value represents an "object") or by index (if the Json::Value represents an "array").

The array indices are referred to using an unsigned int literal (e.g. 0u). If a Json::object

does not exist (by either key or by array index), a Json::Value object is created

automatically.

Example 35. Creating the score request for the C++ REST example

// set the configuration ID

scoreRequest["id"] = "Example Credit 1";

// Add a "Customer" input table with a single row that contains 5 inputs

scoreRequest["requestInputTable"][0u]["name"] = "Customer";

scoreRequest["requestInputTable"][0u]["requestInputRow"][0u]["input"][0u]["name"] =

 "Age";

scoreRequest["requestInputTable"][0u]["requestInputRow"][0u]["input"][0u]["value"] =

 "36";

scoreRequest["requestInputTable"][0u]["requestInputRow"][0u]["input"][1u]["name"] =

 "Income level";

scoreRequest["requestInputTable"][0u]["requestInputRow"][0u]["input"][1u]["value"] =

 "HIGH";

scoreRequest["requestInputTable"][0u]["requestInputRow"][0u]["input"][2u]["name"] =

 "Education";

scoreRequest["requestInputTable"][0u]["requestInputRow"][0u]["input"][2u]["value"] =

 "College";

scoreRequest["requestInputTable"][0u]["requestInputRow"][0u]["input"][3u]["name"] =

 "Car loans";

scoreRequest["requestInputTable"][0u]["requestInputRow"][0u]["input"][3u]["value"] =

 "2 or less";

scoreRequest["requestInputTable"][0u]["requestInputRow"][0u]["input"][4u]["name"] =

 "ID";

scoreRequest["requestInputTable"][0u]["requestInputRow"][0u]["input"][4u]["value"] =

 "1";

// Add a "Customer Credit" input table with 6 rows, each of which contains a single input

scoreRequest["requestInputTable"][1u]["name"] = "Customer Credit";

scoreRequest["requestInputTable"][1u]["requestInputRow"][0u]["input"][0u]["name"] = "ID";

scoreRequest["requestInputTable"][1u]["requestInputRow"][0u]["input"][0u]["value"] = "1";

scoreRequest["requestInputTable"][1u]["requestInputRow"][1u]["input"][0u]["name"] = "ID";

scoreRequest["requestInputTable"][1u]["requestInputRow"][1u]["input"][0u]["value"] = "1";

scoreRequest["requestInputTable"][1u]["requestInputRow"][2u]["input"][0u]["name"] = "ID";

scoreRequest["requestInputTable"][1u]["requestInputRow"][2u]["input"][0u]["value"] = "1";

scoreRequest["requestInputTable"][1u]["requestInputRow"][3u]["input"][0u]["name"] = "ID";

scoreRequest["requestInputTable"][1u]["requestInputRow"][3u]["input"][0u]["value"] = "1";

scoreRequest["requestInputTable"][1u]["requestInputRow"][4u]["input"][0u]["name"] = "ID";

scoreRequest["requestInputTable"][1u]["requestInputRow"][4u]["input"][0u]["value"] = "1";

scoreRequest["requestInputTable"][1u]["requestInputRow"][5u]["input"][0u]["name"] = "ID";

scoreRequest["requestInputTable"][1u]["requestInputRow"][5u]["input"][0u]["value"] = "1";

Now that the request JSON data has been created, return back to Example 34 where the

JSON data that was built is serialized to a string and sent with the executeRequest

function. Once a response has been returned, the raw string is converted back into a

Json::Value object, and printed.

.NET (SOAP over HTTP)
When using .NET, users can take advantage of the Windows Communication Foundation

(WCF) framework to create a web service client. This makes the process of creating a

SOAP client relatively simple, but it does have some drawbacks covered later.

The framework will generate code based off of the scoring WSDL/XSD files, allowing

users to interact with a simple to use proxy object that represents the scoring service

endpoint. The proxy endpoint class is passed a score request object that contains the

request inputs. This process is very similar to the other SOAP over HTTP examples seen

in this article.

In modern versions of Microsoft Visual Studio, a web service client can be created using

the tools built into the IDE. To do so, right click the references folder in the solution

explorer and select “Add Service Reference”. A panel prompts for a web service URL

where the WSDL can be found (for example,
http://<your_host_name>:<your_port>/scoring/services/Scoring

.HttpV2?wsdl), and the .NET namespace where the generated code will placed.

When the “Go” button is pressed in the dialog, it will discover the WSDL and display the

services provided by this web service, and then click “OK” to create the service reference.

By default, the service reference that is created hides all of the files that are generated

from the WSDL. To see the files that are generated, select the project, and choose Project-

>Show All Files from the menu.

There are limitations with the WCF generated code due to the way the .NET framework

interprets the WSDL. When using C&DS 5, the scoring service WSDL would be

interpreted in such a way that would result in collections that would not allow the WCF

generated code to work as-is. The code would generate multidimensional arrays when it

should have generated a single dimension array. For C&DS 6, changes were made to the

WSDL that works around WCF limitations. The C&DS 5 workarounds are documented in

the Scoring_Service_Developers_Guide.pdf. These workarounds required developers to

open the <ServiceReference>\Reference.svcmap\Reference.cs file and

make manual changes. The example provided in this article was originally generated using

C&DS 5, and the Reference.cs code was modified. If targeting C&DS 6, update the

service reference by pointing to the C&DS 6 WSDL. This can be accomplished by right

clicking the service reference and choosing “Configure Service Reference” and updating

the service address, which will re-generate the code automatically.

Another limitation with WCF framework is that the default behavior for WCF clients is to

disallow the use of WS-Security UsernameToken elements over unsecured HTTP

connections. The WCF framework also cannot understand the SOAP fault format that is

returned from the C&DS web services. Using HTTPS is beyond the scope of this article,

so a DLL called IBM.SPSS.WCF.Utilities.dll is included which allows the endpoint

behaviors required in the example. As shown in Example 36, the two new behaviors are

added to the client endpoint, one which applies the UsernameToken SOAP header and the

other that intercepts SOAP faults and formats the fault so WCF interprets the fault

correctly.

Example 36. Initializing the WCF scoring client

private static ScoringV2Client _client = null;

/// <summary>

/// Returns an instance of the ScoringClient with the requisite behaviors added to it.

/// </summary>

public static ScoringV2Client Client

{

 get

 {

 if (_client == null)

 {

 _client = new ScoringV2Client();

 // Add the endpoint behaviors that will ultimately add the Usernametoken

 // security header to the SOAP message with a username/password of

 // "username" and "password", and allow the Axis formatted SOAP

 // faults to be re-formatted as valid WCF SOAP faults.

 _client.Endpoint.Behaviors.Add(

 new ApplyClientInspectorsBehavior(

 new HeaderInjectionMessageInspector(

 new UsernameTokenSecurityHeader("admin", "my_password")

),

 new SOAPFaultFormatMessageInspector()

)

);

 }

 return _client;

 }

}

The URL endpoint will likely need to change to a different host and port. Making this

change with the Visual Studio user interface will automatically regenerate the client code,

which can be problematic if there were changes made to the generated client code. In

order to make the change without generating the code again, simply edit the app.config

file for the project manually. Look for the endpoint address as shown in Example 37, and

change the value as needed.

Example 37. Changing the endpoint URL

<system.serviceModel>

 <diagnostics>

 <messageLogging logEntireMessage="true" logMalformedMessages="true"

 logMessagesAtServiceLevel="true" logMessagesAtTransportLevel="true" />

 </diagnostics>

 <client>

 <endpoint address="http://localhost:8080/scoring/services/Scoring.HttpV2"

 binding="basicHttpBinding" bindingConfiguration=""

 contract="IBM.SPSS.Scoring.ScoringV2" name=""/>

 </client>

</system.serviceModel>

Once the client proxy is setup, web service request inputs and score request objects can be

created, and the getScore call can be made. This is easily accomplished using the code

shown in Example 38.

Example 38. Execute a getScore call using .NET WCF

public static void GetScore(string configurationId)

{

 // Create the scoreRequest1 object and set the scoring configuration ID

 // we want to score against.

 scoreRequest1 request = new scoreRequest1();

 request.id = configurationId;

 // Create the data row for the first input table. It will have 5 columns.

 input1[] customerRow = new input1[]

 { new input1(), new input1(), new input1(), new input1(), new input1() };

 // set the values for the 5 inputs of the Customer table

 customerRow[0].name = "Age";

 customerRow[0].value = "36";

 customerRow[1].name = "Income level";

 customerRow[1].value = "HIGH";

 customerRow[2].name = "Education";

 customerRow[2].value = "College";

 customerRow[3].name = "Car loans";

 customerRow[3].value = "2 or less";

 customerRow[4].name = "ID";

 customerRow[4].value = "1";

 // Create the Customer table, and give it just a single row which is the

 // previously created customerRow.

 requestInputTable customerTable = new requestInputTable();

 customerTable.name = "Customer";

 customerTable.requestInputRow = new requestInputRow[] { new requestInputRow() };

 customerTable.requestInputRow[0].input = customerRow;

 // Create the Customer Credits input row, which will have a single column

 input1[] customerCreditRow = new input1[] { new input1()};

 customerCreditRow[0].name = "ID";

 customerCreditRow[0].value = "1";

 // Create the Customer Credit table, and give it 6 rows, each being the

 // previously created customerCreditRow

 requestInputTable customerCreditTable = new requestInputTable();

 customerCreditTable.name = "Customer Credit";

 customerCreditTable.requestInputRow = new requestInputRow[] {

 new requestInputRow(), new requestInputRow(), new requestInputRow(),

 new requestInputRow(), new requestInputRow(), new requestInputRow() };

 customerCreditTable.requestInputRow[0].input = customerCreditRow;

 customerCreditTable.requestInputRow[1].input = customerCreditRow;

 customerCreditTable.requestInputRow[2].input = customerCreditRow;

 customerCreditTable.requestInputRow[3].input = customerCreditRow;

 customerCreditTable.requestInputRow[4].input = customerCreditRow;

 customerCreditTable.requestInputRow[5].input = customerCreditRow;

 // Now give both tables to the score request

 request.requestInputTable = new requestInputTable[] {

 customerTable, customerCreditTable};

// Make the scoring call, and then print the result

 scoreResult1 result = Client.getScore(request);

 PrintScoreResult(result);

}

HTML (REST – JSON over HTTP)
Out of all the REST examples provided, this is the easiest to use by far because it uses

native HTTP communication and JSON parsing support. The example consists of a very

basic HTML page which relies on JavaScript to make the score requests, and places the

results into the HTML page dynamically. The example can be found in the

C:\ScoringClientExamples\HTML\REST\ directory, and the file names are

SimpleScoringExample.js and SimpleScoringExample.html.

To use the example, place these files into the same application server that runs C&DS.

The example defines the base URL for the C&DS server as baseURL =

'/scoring/rest/'; and picks up the host and port by default. If the URL is changed

or the files are hosted in a different server, be aware that cross site scripting security issues

may prevent the example from working.

In order to send an HTTP request and get a response, the example uses the

setupRequest function which is shown in Example 39. This function makes use of the

built in browser XMLHttpRequest object. Depending on the browser in use, it may be

difficult to get access to this object, which will cause the example to fail. The example

was tested using IE 8 and Firefox 3.5. Note that for IE 8, the meta tag <meta http-

equiv="X-UA-Compatible" content="IE=8" /> was added to ensure that

the XMLHttpRequest object is exposed in the page. When the request is sent, it uses

either GET or POST and tries to open the given URL with the user credentials provided

using a synchronous connection (i.e. the function call will block until the response is

returned). Note that in the example the Accept-Language, Content-Type and If-

Modified-Since HTTP headers are set. Setting the If-Modified-Since header is

very important to ensure that the browser does not return a cached copy of the result.

Example 39. Setting up the XMLHttpRequest object

function setupRequest(method, url)

{

 // Put more code here in case you are concerned about browsers that do

 // not provide XMLHttpRequest object directly

 if (window.XMLHttpRequest)

 {

 xmlhttp = new XMLHttpRequest();

 }

 if (window.ActiveXObject)

 {

 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xmlhttp.open(method, url, false, 'admin', 'my_password');

 // set language and JSON content type

 xmlhttp.setRequestHeader('Accept-Language', 'en_US');

 xmlhttp.setRequestHeader('Content-Type', 'application/json; charset=utf-8');

 // skip browser caching

 xmlhttp.setRequestHeader('If-Modified-Since', new Date(0));

 return xmlhttp;

}

Before a call can be made, the score request inputs must be setup. In this case the process

involves creating a JavaScript object which contains the appropriate hierarchy of

JavaScript objects and arrays. Example 40 shows the details of this approach.

Example 40. Create a JavaScript object hierarchy for a score request

function createScoreRequest(configID)

{

 // Build a JavaScript object that will be converted into JSON stringdata.

 // The JSON data represents a score request.

 // First put the configuration ID into it:

 var jsonScoreRequest = {'id': configID};

 // create storage for all of the request input tables and add it to the request

 var requestInputTables = [];

 jsonScoreRequest['requestInputTable'] = requestInputTables;

 /** Request Input Table for "Customer" **/

 // Create storage for inputs, rows

 var requestInputs1 = [];

 var requestInputRows1 = [];

 // Create a new request input table with a given name and the rows it will contain

 var requestInputTable1 = {'name': 'Customer'};

 requestInputTable1['requestInputRow'] = requestInputRows1;

 // Add the table to our list of input tables

 requestInputTables.push(requestInputTable1);

 // Add the request inputs as a new row

 requestInputRows1.push({'input': requestInputs1});

 // Add each input to the request

 requestInputs1.push({'name': 'Age', 'value': '36'});

 requestInputs1.push({'name': 'Income level', 'value': 'HIGH'});

 requestInputs1.push({'name': 'Education', 'value': 'College'});

 requestInputs1.push({'name': 'Car loans', 'value': '2 or less'});

 requestInputs1.push({'name': 'ID', 'value': '1'});

 /** Request Input Table for "Customer Credit" **/

 // Create storage for inputs, rows

 var requestInputs2 = [];

 var requestInputRows2 = [];

 // Create a new request input table with a given name and the rows it will contain

 var requestInputTable2 = {'name': 'Customer Credit'};

 requestInputTable2['requestInputRow'] = requestInputRows2;

 // Add the table to our list of input tables

 requestInputTables.push(requestInputTable2);

 // Add the request inputs as a new row (repeat the same row of inputs multiple times)

 requestInputRows2.push({'input': requestInputs2});

 requestInputRows2.push({'input': requestInputs2});

 requestInputRows2.push({'input': requestInputs2});

 requestInputRows2.push({'input': requestInputs2});

 requestInputRows2.push({'input': requestInputs2});

 requestInputRows2.push({'input': requestInputs2});

 // Add each input to the request

 requestInputs2.push({'name': 'ID', 'value': '1'});

 return jsonScoreRequest;

}

Once the JavaScript object is created, it is converted into a string and sent using the

XMLHttpRequest object, and the resulting JSON string is converted back to a JavaScript

object using the JavaScript eval()function, and then printed out. Example 41 shows the

details of this approach.

Example 41. Making the getScore call using JavaScript

function getScore()

{

 // reset the output area in the HTML document

 resetOutput();

 // This is the configuration ID for the configuration we want to score against

 var configID = 'Example Credit 1';

 var jsonScoreRequest = createScoreRequest(configID);

 // make a "get score" call

 var url = baseURL + 'configuration/' + configID + '/score';

 xmlhttp = setupRequest("POST",url);

 // Issue request

 xmlhttp.send(JSON.stringify(jsonScoreRequest));

 getScoreResponse = eval("(" + xmlhttp.responseText + ")");

 // print out the results

 printScoreResponse(getScoreResponse);

}

Python (REST – JSON over HTTP)
This example uses the Python scripting language to invoke the scoring REST API. Python

can be downloaded from http://www.python.org/. The example is located in

C:\ScoringClientExamples\Python\REST\SimpleScoringExample.py.

The example was created using Python 2.7, and relies only on Python standard library

modules. When running the example, make sure to change the host and port for the

baseURL.

In order to handle HTTP communication, the Python example relies on the urllib2 module.

As shown in Example 42, the urllib2 module can be configured to use HTTP basic

authentication for a given URL, and set HTTP headers as needed.

Example 42. Setting up a urllib2.Request object in Python

def setupRequest(url):

 # setup basic HTTP authentication

 pwdMgr = urllib2.HTTPPasswordMgrWithDefaultRealm()

 pwdMgr.add_password(None, url, 'admin', 'my_password')

 handler = urllib2.HTTPBasicAuthHandler(pwdMgr)

 opener = urllib2.build_opener(handler)

 urllib2.install_opener(opener)

 # create the request object

 req = urllib2.Request(url)

 # set language and JSON content type

 req.add_header('Accept-Language', 'en_US')

 req.add_header('Content-Type', 'application/json; charset=utf-8')

 return req

http://www.python.org/

Just as with the other REST examples, the score request inputs must be setup. By

comparing this code with the JavaScript code found in the previous example, the

similarities are apparent. In Python, dictionary and array objects are used to build the

score request inputs. Example 43 shows the details of this approach.

Example 43. Create a Python dictionary/array object hierarchy for a
score request

def createScoreRequest(configID):

 # First put the configuration ID into it:

 jsonScoreRequest = {'id': configID}

 # create storage for all of the request input tables and add it to the request

 requestInputTables = []

 jsonScoreRequest['requestInputTable'] = requestInputTables

 ''' Request Input Table for "Customer" '''

 # Create storage for inputs, rows

 requestInputs1 = []

 requestInputRows1 = []

 # Create a new request input table with a given name and the rows it will contain

 requestInputTable1 = {'name': 'Customer'}

 requestInputTable1['requestInputRow'] = requestInputRows1

 # Add the table to our list of input tables

 requestInputTables.append(requestInputTable1)

 # Add the request inputs as a new row

 requestInputRows1.append({'input': requestInputs1})

 # Add each input to the request

 requestInputs1.append({'name': 'Age', 'value': '36'})

 requestInputs1.append({'name': 'Income level', 'value': 'HIGH'})

 requestInputs1.append({'name': 'Education', 'value': 'College'})

 requestInputs1.append({'name': 'Car loans', 'value': '2 or less'})

 requestInputs1.append({'name': 'ID', 'value': '1'})

 ''' Request Input Table for "Customer Credit" '''

 # Create storage for inputs, rows

 requestInputs2 = []

 requestInputRows2 = []

 # Create a new request input table with a given name and the rows it will contain

 requestInputTable2 = {'name': 'Customer Credit'}

 requestInputTable2['requestInputRow'] = requestInputRows2

 # Add the table to our list of input tables

 requestInputTables.append(requestInputTable2)

 # Add the request inputs as a new row (repeat the same row of inputs multiple times)

 requestInputRows2.append({'input': requestInputs2})

 requestInputRows2.append({'input': requestInputs2})

 requestInputRows2.append({'input': requestInputs2})

 requestInputRows2.append({'input': requestInputs2})

 requestInputRows2.append({'input': requestInputs2})

 requestInputRows2.append({'input': requestInputs2})

 # Add each input to the request

 requestInputs2.append({'name': 'ID', 'value': '1'})

 return jsonScoreRequest;

Once the Python dictionary object is created, the json module can be used to convert the

Python dictionary object into a string, which is provided to the urllib2 module via the

urlopen function along with the urllib2.Request object. The return value from

the urlopen function is a file-like object that represents the response data. StringIO

is used to convert the file-like object into a string, which the json module uses to convert

the string into a Python object, which is then printed out. This entire process can be seen

in Example 44.

Example 44. Making the getScore call using Python

def getScore():

 # This is the configuration ID for the configuration we want to score against

 configID = 'Example Credit 1'

 # make sure the configuration name is URL encoded

 configID = urllib.quote(configID)

 # Build a python dictionary object that will be converted into JSON data.

 # The JSON data represents a score request.

 jsonScoreRequest = createScoreRequest(configID)

 # make a "get score" call

 url = baseURL + 'configuration/' + configID + '/score'

 req = setupRequest(url)

 data = urllib2.urlopen(req,json.dumps(jsonScoreRequest)).read()

 getScoreResponse = json.load(StringIO(data))

 # print out the results

 printScoreResponse(getScoreResponse)

Conclusion
The purpose of this article is to convey more details about the scoring service API and the

ease with which it can be executed. As a developer, it is simplest to start to learn the

scoring API by using the language with the greatest familiarity, and then expand out into

other languages and technologies if desired. Some people find that SOAP web services are

difficult to understand, but the complexity of SOAP web services is often hidden by using

existing technologies which conceal the SOAP messages and only expose the web service

client proxies, which are much easier to use.

About the author
John Hunkins is a software engineer working on the IBM SPSS Collaboration and

Deployment Services product. He is currently a member of the scoring service component

team.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks of International Business Machines

Corp., registered in many jurisdictions worldwide. Other product and service names might

be trademarks of IBM or other companies. A current list of IBM trademarks is available

on the Web at “Copyright and trademark information” at

http://www.ibm.com/legal/copytrade.shmtl.

	Introduction
	Scoring Service API
	Example Model
	Payload Examples
	Example 1. getConfigurations web service SOAP request
	Example 2. getConfigurations web service SOAP response
	Example 3. getMetadata web service SOAP request (body contents only)
	Example 4. getMetadata web service SOAP response (body contents only)
	Example 5. getScore web service SOAP request (body contents only)
	Example 6. getScore web service SOAP response (body contents only)

	Code Examples
	Preparation Tasks for Example Execution
	Java Examples
	Java (SOAP over HTTP)
	Example 7. Diagram showing request/response flow where handlers can intervene (signified by X)
	Example 8. An example SOAPHandler.handleMessage(SOAPMessageContext context) implementation
	Example 9. Set the C&DS URL on the client web service proxy
	Example 10. Create a ScoreRequest object and fill it with input data
	Example 11. Invoke the scoring service getScore call

	Java (REST – JSON over HTTP using JAXB)
	Example 12. Setting up HttpClient in the RestJaxbExample.setup() method
	Example 13. Executing an HTTP request and returning the response string
	Example 14. Invoke the configuration/{configuration id}/score resource

	Java (REST – JSON over HTTP using JSON4J)
	Example 15. A hierarchy of JSONObject and JSONArray objects that represent a ScoreRequest
	Example 16. Create a JSON score request and fill it with input data
	Example 17. Invoke the configuration/{configuration id}/score resource

	Java (SOAP over JMS)
	Example 18. Setup the JMS connection, queues and sessions
	Example 19. Send/receive a JMS message
	Example 20. Invoke the scoring getScore call using SOAP over JMS
	Example 21. Execute and process the GetScore and GetScoreResponse wrapper objects

	C++ (SOAP over HTTP)
	Example 22. Using ActivePerl to prepare OpenSSL for compiling via command line
	Example 23. Using Microsoft Visual Studio to compile OpenSSL
	Example 24. Add these lines to typemap.dat gSOAP file
	Example 25. wsdl2h.exe command and option description
	Example 26. Modify the generated scoring.h file
	Example 27. Executing soapcpp2.exe
	Example 28. C++ SOAP example setup
	Example 29. C++ gSOAP score request
	Example 30. Execute a score request using C++ gSOAP

	C++ (REST – JSON over HTTP)
	Example 31. Setting up and shutting down cURL
	Example 32. C++ REST request execution example
	Example 33. C++ struct and callback method for cURL communication
	Example 34. The C++ rest getScore call
	Example 35. Creating the score request for the C++ REST example

	.NET (SOAP over HTTP)
	Example 36. Initializing the WCF scoring client
	Example 37. Changing the endpoint URL
	Example 38. Execute a getScore call using .NET WCF

	HTML (REST – JSON over HTTP)
	Example 39. Setting up the XMLHttpRequest object
	Example 40. Create a JavaScript object hierarchy for a score request
	Example 41. Making the getScore call using JavaScript

	Python (REST – JSON over HTTP)
	Example 42. Setting up a urllib2.Request object in Python
	Example 43. Create a Python dictionary/array object hierarchy for a score request
	Example 44. Making the getScore call using Python

	Conclusion
	Trademarks

