
Walkthrough: Auto application
rebalancing using the Uniform Cluster
pattern

LaurenceBonney
Published on 21/03/2019 / Updated on 29/03/2019

What is a Uniform Cluster?
To quote the MQ documentation directly:

IBM MQ Version 9.1.2 introduces uniform clusters, which are a specific pattern of an IBM
MQ cluster that provides a highly available and horizontally scaled small collection of queue
managers, that an application can interact with as a single group.

The high level aspects of the Uniform Cluster pattern in 9.1.2 are covered in the building
scalable fault tolerant IBM MQ systems blog

What this blog will take you through
• Enabling pre-configured MQ clustered queue manager to participate in application

rebalancing
• Configuring and running a shipped reconnectable C sample app to show automatic

application rebalancing in action
• Restarting a queue manager with active applications to highlight automatic rebalancing back

to a restarted queue manager
• Using a more advanced CCDT to use queue manager grouping and client weighting to load

balance application connections

Please note: within this blog you will see references to applications being rebalanced, to be
more precise it is the MQ connections being rebalanced. However in the context of the
example application we use in this blog, each application has only one MQ connection so are
used interchangeably.

New capabilities available in MQ 9.1.2 being used
• Uniform Cluster setting on the queue manager
• JSON format CCDT
• Application naming capability

So, before you begin, you need to get hold of MQ 9.1.2 CD.

Step 1: Queue manager configuration
Firstly we'll go through setting up an existing 2 queue manager MQ cluster into a Uniform
Cluster. I've assumed you already know how to create a basic pair of MQ clustered queue

managers with running listeners for your applications to connect via. If you dont, its really
simple to do through the MQ Explorer interface, or if you're feeling more adventurous - via
the command line. Check out the MQ Knowledge center for more information.

• Define an MQ Cluster of 2 qmgrs QM1 & QM2
• Add the UniformClusterName qm.ini tuning parameter to each queue

manager: TuningParameters: UniformClusterName=<MQ_CLUSTER_NAME> Where
<MQ_CLUSTER_NAME> is the name of your MQ cluster.

• Restart the queue manager and check for the "AMQ9883I: Joining Uniform Cluster" message
in each queue manager's AMQERR log
If you got this far you should now have a pair of queue managers that are ready to participate
in application rebalancing.

Step 2: Showing application rebalancing in action
between two active queue managers
Next we'll show how using a Uniform Cluster, applications can be automatically and
dynamically rebalanced across active queue managers. To do this we'll be using the
reconnectable amqsghac sample. We're using this sample because it is a client connected app
that connects using the CNO option MQCNO_RECONNECT. In terms of Uniform Clusters
this CNO option should be treated as the 'magic switch' to tell the queue manager that this
application instance is willing to be rebalanced to another queue manager in the cluster.
Before we get ahead of ourselves, to make best use of application rebalancing the amqsghac
sample will need to use a CCDT which defines routes to all queue managers in the Uniform
Cluster.

Generating a CCDT
Generating a CCDT for your application instances to use can be done either using the
traditional binary format via runmqsc:
$ /opt/mqm/bin/runmqsc -n: DEFINE CHANNEL('QM1.APP.CHL') CHLTYPE(CLNTCONN)
– TRPTYPE(TCP) CONNAME('localhost(1414)') QMNAME(QM1) REPLACE DEFINE
CHANNEL('QM2.APP.CHL') CHLTYPE(CLNTCONN) – TRPTYPE(TCP)
CONNAME('localhost(1415)') QMNAME(QM2) REPLACE
Or using a new JSON format CCDT introduced in MQ 9.1.2: { "channel": [{ "name":
"QM1.APP.CHL", "clientConnection": { "connection": [{ "host": "localhost",
"port": 1414 }], "queueManager": "QM1" }, "type": "clientConnection" },
{ "name": "QM2.APP.CHL", "clientConnection": { "connection": [{ "host":
"localhost", "port": 1415 }], "queueManager": "QM2" }, "type":
"clientConnection" }] }
Note: in both the binary and JSON format CCDT examples I've assumed you have created
the associated SVRCONN channels of the same names and have listeners running on the
referenced ports

In this initial example we're using a very basic CCDT definition just defining direct routes to
the two queue managers. We will revisit later where you can build upon this initial CCDT to
work around a number of limitations. We'll go through this in more detail in step 5. If you

plan on moving into step 5, I would recommend you use the JSON CCDT style as we'll only
be going through examples of further modifications using the JSON CCDT.

Configuring and launching the application instances
Now we have a CCDT defined which references routes to both queue managers in your
Uniform Cluster, we need to do some final configuration to optimize our application for
rebalancing in a Uniform Cluster then we're ready to launch the amqsghac sample.

Give your application instances a unique name using the new MQ 9.1.2 application naming
support (it will default to the executable name if not). Why is this important? The name of the
application is what identifies instances of an application to the queue managers in a Uniform
Cluster, applications with the same name are treated as the same and are balanced across the
queue managers accordingly.

It is strongly recommended you use unique application names either through using the
custom application identifier or by naming your executable accordingly, for each type of
application you connect to the Uniform Cluster. This is so that only true instances of that
application are considered together when identifying which should be rebalanced around the
cluster. Naming disparate applications in the Uniform Cluster as instances of the same
application is not recommended.

An example of using a custom application name using the system environment variable is
shown below, these can also be set programmatically in all supported client languages:
$ export MQAPPLNAME=MY.SAMPLE.APP
Using custom application names has other advantages outside of just Uniform Clusters as it
allows you to better identify the applications connected to your queue managers using the
existing runmqsc DISPLAY CONN command, which we will go into later.

Optionally set your CCDT location (Note: this is required if not using the traditional binary
CCDT location & name):
$ export MQCCDTURL=file:///var/mqm/AMQCLCHL.TAB $ export
MQCCDTURL=file://<JSON CCDT dir>/<JSON CCDT filename>
With the above environment variables set, launch 2 instances of your app connecting to the
same qmgr:
$ /opt/mqm/samp/bin/amqsghac SYSTEM.DEFAULT.LOCAL.QUEUE QM1
$ /opt/mqm/samp/bin/amqsghac SYSTEM.DEFAULT.LOCAL.QUEUE QM1

Rebalancing in action
As you can see in the previous examples above both applications have been started against
QM1 opening queue SYSTEM.DEFAULT.LOCAL.QUEUE and sitting in a waiting get for
messages on that queue. At this point the Uniform Cluster will have identified it has two
applications called 'MY.SAMPLE.APP' connected to QM1 and zero connected to QM2.
QM2 will eventually request an application instance from QM1 to correct the application
imbalance and QM1 will instruct one of the application instances to rebalance to QM2.
Because the amqsghac sample is using an event listener, when this rebalance occurs one
instance of the sample will report a reconnect event having occurred:
Sample AMQSGHAC start 15:22:20 : EVENT : Connection Reconnecting (Delay:

120ms) 15:22:20 : EVENT : Connection Reconnected
Displaying connections against each qmgr in RUNMQSC will show the number of connected
app instances on each queue manager:
$ /opt/mqm/bin/runmqsc QM1 5724-H72 (C) Copyright IBM Corp. 1994, 2019.
Starting MQSC for queue manager QM1. DISPLAY CONN(*) WHERE (APPLTAG EQ
MY.SAMPLE.APP) 1 : DISPLAY CONN(*) WHERE (APPLTAG EQ MY.SAMPLE.APP)
AMQ8276I: Display Connection details. CONN(971B4F5C02924622)
EXTCONN(414D5143514D31202020202020202020) TYPE(CONN) APPLTAG(MY.SAMPLE.APP)
$ /opt/mqm/bin/runmqsc QM2 5724-H72 (C) Copyright IBM Corp. 1994, 2019.
Starting MQSC for queue manager QM2. DISPLAY CONN(*) WHERE (APPLTAG EQ
MY.SAMPLE.APP) 1 : DISPLAY CONN(*) WHERE (APPLTAG EQ MY.SAMPLE.APP)
AMQ8276I: Display Connection details. CONN(27214F5C01A51B25)
EXTCONN(414D5143514D32202020202020202020) TYPE(CONN) APPLTAG(MY.SAMPLE.APP)
The quick fingered amongst you may be able to display the connections on QM1 prior to the
rebalancing to show both application instances connected to QM1. In the post rebalance state
shown above, each queue manager shows 1 instance of the application connected. As you can
see from the output by specifying a custom application name the MQ admin is able to
identify what applications are connected in a more understandable way than purely relying on
the default executable name.

Step 4: Application rebalancing after qmgr restart
One of the big advantages of using a Uniform Cluster to manage and "level out" your
connected application instances is when either adding additional queue manager horsepower
into your cluster or when having to stop and start a queue manager, say for applying
maintenance. The issue faced with existing topologies performing one of these actions is how
to get your existing applications to connect/reconnect to this new/restarted queue manager. In
a traditional configuration the best you could do is having to self-manage new application
instances towards this underused queue manager. With a Uniform Cluster all application
instances which are capable of rebalancing are eligible to be reconnected to address the
imbalance.

Assuming you've got step 3 complete and you've now got two application instances running,
one connected to each queue manager, lets simulate taking a queue manager offline for
maintenance.

Firstly end one of the queue managers (QM2) with the -r option to cause the application
instance to reconnect to the remaining queue manager (QM1). Note: this is just existing client
reconnect behavior in action:
$ /opt/mqm/bin/endmqm -r QM2
The application instance that was connected to QM2 will display another reconnect event in
its output as it reconnects to QM1. Displaying connections against the remaining running
qmgr (QM1) in runmqsc will show the number of connected application instances back to 2:
$ /opt/mqm/bin/runmqsc QM1 5724-H72 (C) Copyright IBM Corp. 1994, 2019.
Starting MQSC for queue manager QM1. DISPLAY CONN(*) WHERE (APPLTAG EQ
MY.SAMPLE.APP) 2 : DISPLAY CONN(*) WHERE (APPLTAG EQ MY.SAMPLE.APP)
AMQ8276I: Display Connection details. CONN(971B4F5C1E744622)
EXTCONN(414D5143514D31202020202020202020) TYPE(CONN) APPLTAG(MY.SAMPLE.APP)
AMQ8276I: Display Connection details. CONN(971B4F5C02924622)
EXTCONN(414D5143514D31202020202020202020) TYPE(CONN) APPLTAG(MY.SAMPLE.APP)

Finally by restarting QM2, as with when originally connecting both applications to QM1, the
queue managers will identify an imbalance and cause one of the application instances to
rebalance over to QM2. This may not be the same application instance as the one originally
request to reconnect in step 2.

Step 5: Using a more advanced CCDT configuration
Up to this point the existing CCDT appears to do the job, however with some fancy footwork
we have deftly stepped around some limitations with this approach. Predominantly this
centers around existing client reconnect logic and how the client decides which queue
manager it is willing to connect to.

Limitations with the current CCDT and direct queue manager reference by
the application
By specifying a particular queue manager name on the initial application connection (in our
example in step 2 this was QM1) we are instructing the client to connect to this and only this
queue manager rather than any queue manager in the CCDT - when using traditional client
(re)connect logic. The notable caveat here is when the queue manager participates as part of a
Uniform Cluster, its reconnect requests will ask a client to reconnect to a particular queue
manager which may not be the queue manager the client originally requested to connect to,
and so long as the client has a route to that other queue manager defined in its CCDT the
client will attempt to fulfill that request. To reiterate, in cases where we enact a traditional
client (re)connect the client will always and only attempt to (re)connect back to its original
queue manager - as such this isn't a new issue to Uniform Clusters but highlights the fact you
should be using queue manager groups within your CCDT whether using Uniform Clusters or
otherwise.

To illustrate this issue, lets revisit the queue manager maintenance scenario in step 4 but
rather than stop QM2, lets stop QM1. If you've followed this blog post all the way through, at
this point we have one application instance connected to QM1 and one connected to QM2.
$ /opt/mqm/bin/endmqm -r QM1
This time you will notice the application instance connected to QM1 get stuck in a reconnect
loop attempting to try to reconnect to the now stopped QM1.
Sample AMQSGHAC start 15:25:48 : EVENT : Connection Reconnecting (Delay:
16ms) 15:25:48 : EVENT : Connection Reconnecting (Delay: 1152ms) 15:25:50 :
EVENT : Connection Reconnecting (Delay: 1986ms) 15:25:52 : EVENT :
Connection Reconnecting (Delay: 4088ms) 15:25:56 : EVENT : Connection
Reconnecting (Delay: 7983ms)
Surprised? This is because the queue manager will only try to reconnect back to the queue
manager specified on its initial connection (QM1), and due to it now having been stopped,
will fail to do so.

Back in our example in step 4, when we ended QM2 the application that was connected to
QM2 had specified QM1 in its original connection, so using traditional client reconnect logic,
it found QM1 in its CCDT definition and successfully executed a reconnect back to that
queue manager.

Defining CCDT queue manager groups
So how do we avoid this situation? The answer comes in the form of CCDT queue manager
groups. By specifying a set of queue manager group definitions within your CCDT you can
decouple the application instances from a particular queue manager and take advantage of the
built in load balancing capabilities available when queue manager groups are used.

Now this is where one particular aspect of JSON CCDTs becomes very useful - the ability to
specify duplicate channel names. This saves us having to create yet another set of
SVRCONN channels on the queue managers for the queue manager group definitions in
addition to those we're using for the direct queue manager references.
{ "channel": [{ "name": "QM1.APP.CHL", "clientConnection": { "connection":
[{ "host": "localhost", "port": 1414 }], "queueManager": "ANY_QM" },
"connectionManagement": { "clientWeight": 1, "affinity": "none" }, "type":
"clientConnection" }, { "name": "QM2.APP.CHL", "clientConnection":
{ "connection": [{ "host": "localhost", "port": 1415 }], "queueManager":
"ANY_QM" }, "connectionManagement": { "clientWeight": 1, "affinity":
"none" }, "type": "clientConnection" }, { "name": "QM1.APP.CHL",
"clientConnection": { "connection": [{ "host": "localhost", "port":
1414 }], "queueManager": "QM1" }, "type": "clientConnection" }, { "name":
"QM2.APP.CHL", "clientConnection": { "connection": [{ "host": "localhost",
"port": 1415 }], "queueManager": "QM2" }, "type": "clientConnection" }] }
What the example above now gives you is a queue manager group definition with a route to
both QM1 and QM2 using the group queue manager name of 'ANY_QM', and the original set
of direct references to the queue managers - required for the new application rebalancing.

The more observant of you will notice we've added a couple of additional options in the
group definitions, these being 'clientWeight' and 'affinity'. By specifying a non-zero client
weight the order in which clients will attempt to use connection details for the group
definitions will not be fixed as such allowing for a rudimentary form of load balancing.
Further to this by setting affinity to 'none' we build up our ordered list of group connections
to attempt to try in a random order - for any clients on a particular named host. If you were to
run your clients on different hosts this option would not be required, but it doesn't hurt!

In actual fact you can further refine your JSON CCDT and queue manager configuration by
using the same SVRCONN channel name for each of your queue managers, thus making
them more uniform and simplifying scripting configuration and management, but as we've
already used unique names on each of our queue managers lets stick with what we have.

Note: It is not possible to specify the same channel name in a binary CCDT due to the fact
the channel name is the primary key. You can work around this by having unique channels
for both your CCDT group definitions and your direct named queue manager definitions, but
its ugly and requires twice the number of SVRCONN channels defined on your queue
managers and as such twice as much to manage and keep consistent.

Connecting application instances using CCDT queue mananger groups
Now we have an updated CCDT for our application instances to use and gone through the
nuances of the new options, lets put it to the test! If you haven't already, stop your application
instances. With the original CCDT and APPNAME environment variables still defined,
restart the applications now specifying the queue manager group 'ANY_QM'.

$ /opt/mqm/samp/bin/amqsghac SYSTEM.DEFAULT.LOCAL.QUEUE "*ANY_QM"
$ /opt/mqm/samp/bin/amqsghac SYSTEM.DEFAULT.LOCAL.QUEUE "*ANY_QM"
Now your application instances will attempt to connect to one of the queue managers defined
in the queue manager group, and with the client weight and affinity options defined as above,
we should see each application instance connect to one of the queue managers.

Now lets try ending QM1 to force the one application connected to QM1 to reconnect to
QM2:
$ /opt/mqm/bin/endmqm -r QM1
Rather than the application getting stuck in a reconnect loop trying to connect to one queue
manager as we saw using the old CCDT, the application now tied to the queue manager
group 'ANY_QM' will go through each of the definitions for 'ANY_QM' and when it is able
to successfully connect to one of the underlying queue managers, it will do so. Again that
application will notify you of the reconnect having happened:
Sample AMQSGHAC start 15:28:20 : EVENT : Connection Reconnecting (Delay:
120ms) 15:28:20 : EVENT : Connection Reconnected
At this point you can bring QM1 back up and wait for the Uniform Cluster application
rebalancing logic to kick in and rebalance one of the applications back to QM1, which will
use the direct CCDT definition for QM1 rather than the queue manager group definitions.

Closing
We've now gone through the basic functionality of using the Uniform Cluster pattern as of
the capabilities present in MQ 9.1.2, highlighting the benefits of allowing your queue
managers to manage your connected application instances. This is likely to be the first step of
a much longer journey, as such there are a number of limitations in its current form.

• JMS and .NET clients do not make use of the queue manager name provided by the rebalance
request, only the C client and MQ clients backed off of the C client (Node, Go) will act on
this information and attempt to rebalance directly to the requested queue manager.

• Queue managers participating in a Uniform Cluster are expected to exhibit some levels of
uniformity relating to application access (common TLS/authority rules) and queue manager
objects used by your application instances (queues, topics etc). This is not policed in MQ
9.1.2.

• The Uniform Cluster pattern is not available for queue managers on the mainframe platform.
So, make sure you keep up to date with our future CD releases to see how this capability
evolves. And please give us your feedback along the way!
by LaurenceBonney

