
Modernization:
How do I begin?
Kyle Brown

2

Why is it so hard to start modernization projects?

Many Modernization Projects die before they even get going – WHY?

• Differing and Competing Goals

• Lack of clarity and agreement on approach

• Lack of the long-term commitment (for funding and priorities) it takes to complete
the job

Using Case Studies and examples of our approach we’ll show how you can align on all of these in
order to succeed

3

What does modernization even mean?

An Application consists of one (or usually more) custom-written program components
together with the supporting infrastructure, application middleware, middleware
services (such as databases, queuing software, integration software and other
aspects) and other components that make up a complete solution.

Application Modernization is the process of updating an application so that it can
be maintained, extended, deployed and managed in a way that allows the
application to meet the business’ current and future needs.

4

The Enterprise Hairball

.. more Apps

..	an	App

.. more Apps

5

Why Modernize?

#1 You can’t develop features at the pace your business requires - and it’s the
technology choices and architecture (and not your processes or team constraints)
that is causing that.

#2 The architecture of your application is hindering you from being able to add
functionality because of fragility (you can’t test it) or constraints arising from
technology choices (technical debt)

#3 Your application is expensive to maintain and extend because either the
infrastructure is excessively costly (e.g. older versions of middleware that require
special support contracts) or the skills required are too expensive to maintain.

6

Secrets of successful modernization projects

#1 The organizations that succeed are able to put in the required investment and
sustain it over the period of time (usually measured in years) that a successful
enterprise application modernization will take.

#2 The organizations that succeed are willing to make the organizational changes
necessary to succeed in the cloud.

#3 The organizations that succeed are willing to change their architecture,
development and operational processes to match the pace and type of effort that
a modernization will take.

7

Our Proven Approach

ContainerVMVM

App

Traditional

Runtime

App

Modern

Runtime

DevOps

New

value

Micro-

service

Modern

Runtime

DevOps

Automation

App Mod
App Mod

Current Process Change Refactor

Container

Micro-

service

Modern

Runtime

Container

Micro-

service

Modern

Runtime

Tech

Debt

Container

App

Modern

Runtime

DevOps

New

value

App Mod

Containerize

8

The Current State

App

Traditional

Runtime

Automation

Tech

Debt

Some applications will NEVER leave their current state.

#1 The application may have a limited lifetime.
#2 The application may be replaceable by SaaS.
#3 The application may be one that is supported by third party that is
resistant to changing their implementation, automation or management.

For companies that consider themselves to be “technology companies” this
total number of these types of apps may be in the low double digits, perhaps
20-30% - however in very traditional companies this can go as high as 80%.

For these applications, the best approach may be a tactical lift and shift to VM’s in
the cloud (for instance, IBM’s VMWare offerings)

9

Step 1: Process Improvement

VM

App

Modern

Runtime

DevOps

New

value

Process Improvements It’s usually not your application that is going to be the hard part of
modernization - it’s your own processes and organizational structures.

The two most important changes you can put in place are:
• DevOps pipelines and the principles surrounding them (e.g. CI/CD and

Automated Testing)
• The principle of Infrastructure as Code and automation technologies

like Ansible and Terraform

Removing process barriers in deployment (handoffs between Dev and
Ops, and slow-moving processes like change boards) can likewise
significantly improve your ability to deliver code in smaller increments
more often.

10

Step 2: Containerization

Container

App

Modern

Runtime

DevOps

New

value

Containerized
Containers offer significant benefits; faster startup, smaller runtime
footprint, denser packing in the same amount of hardware.

• Containerization can also bring the the benefits of a limited blast
radius

• The key concept to grow to - the idea of immutability and
replacement.

The most important gains from Containerization are when it is
used as part of adopting a common platform for operational services

11

A Common Platform for Operational Services

Monitor

Logs

Metering

Alerts

Upgrades

Security

Monitor

Logs

Metering

Alerts

Upgrades

Security

Monitor

Logs

Metering

Alerts

Upgrades

Security

App MW MW App MW MW MW MW App MW MW

Common Container Orchestration Platform

Monitor Log Meter Alerts Upgrades IAM

Dev

Agile Container Development

Unified Container Operations
Ops

Cloud Native

Decoupling

Consolidation

AppApp App App

MW MW MW

MW MW MW

The Apps and Middleware “hairball”

This is the key value you get from Openshift and
the IBM Cloud Paks

12

Step 3: Refactoring

Decouple application complexity

• 12 factor rules

• Microservice architecture

• Strangler pattern

• CQRS Pattern

Decrease scope of release

• Deliver as minimal viable
product

• Release new features more
frequently

Container

Micro-

service

Modern

Runtime

DevOps

Cloud Native

Container

Micro-

service

Modern

Runtime

Container

Micro-

service

Modern

Runtime

Improve Delivery Capability

• Introduce Test Driven
Development

• Introduce Site Reliability
Engineering

13

Containerization and detangling the hairball

UI

Business Logic

Integration

Data

SPA SPA SPA

Microservice Microservice Microservice

Integration
Microservice

Integration
Microservice

Integration
Microservice

IBM Cloud
Pak for
Applications

IBM Cloud
Pak for
Integration

IBM Cloud
Pak for
Data

IBM Cloud Pak for Multicloud Management

14

Why microservices shouldn’t be your goal

Microservices are a wonderful technique for building loosely coupled applications

Each Microservice is independent in scaling, deployment, data control and team ownership

But you don’t always need Microservices

• How large is the application?
• Does it all change at the same rate?
• Are you reintroducing coupling by building complex microservice networks?

Can your application be maintained, can you sustain rapid, incremental releases, and do your
operational approaches allow you to identify problems quickly and return to service immediately?

If breaking a monolith into Microservices helps achieve these goals, then that is a tool you can use.

15

Engaging The organizations

There are as many different ways to fail at a Modernization project as there are different teams in your organization

Development Leadership What skills are needed? Should I hire new developers?
How does this change our development processes?

Operations Leadership What new toolchains will be needed?
How does this change my operational staffing needs?
What new roles will be needed and how do we prepare?

Architecture Leadership What is the role of Architecture in the cloud?
How do architects work with Agile teams?

Business Leadership How does the relationship between business and IT change?

16

Organizational Engagement Case Study

Development Leadership Design Thinking exercises to quickly understand the business problem
and Rapid MVP iterations to address the most problematic issues.
Co-development in squads to help bring skills of teams up to speed.

Operations Team Design Thinking to describe to-be operational model. Engagement with
our CSMO team to teach new SRE principles and understand changes to
ITIL processes.

Architecture Team Experienced Agile Architects as mentors to help understand the new role.
Help with setting up new Guild structure to foster embedding

Business Leadership Intensive training and mentoring in Design Thinking techniques to help
understand how to build the Product Owner discipline.

17

The need for a Hybrid Platform (and a Platform team)

Capabilities

Foundation

IBM’s hybrid
multicloud

platform

Infrastructure

Containers | Kubernetes | Multi-cluster Management | Innovation

A Common platform lets you manage working in a complex hybrid environment
But it doesn’t set itself up – you have to have a team responsible for the platform

Cloud Paks Red Hat Software

Enterprise Applications

18

CP dev/test environment
CP enablement
Validate full deployment scope

CP full deployment
CP integration

Compliance &
Production readiness

Factory Scale :
self-service, multi-
tenant, charge-back..

Prove Liberty in containers
CP and pipeline integration
Validate full scope & timeline

Critical mass containerization Full containerization
Factory Scale:
re-use/publish/Arch
Center

Sync up with Garage best practices
and integrated with DevOps
foundations

Accelerate
Front-end refactoring

Factory Scale:
Cross-org template

Application Modernization - Front-end

Application Modernization – Back-end

Container Foundation

Refactor pipeline for containers
Add Liberty containers pipeline

Cross-env deployment
pipelines

Pipelines deployment
Factory Scale:
Open source consumption
governance

DevOps Foundation

Complete Front-end
refactoring

US Insurance Company Modernization Workstreams

19

The IBM Garage Method

• Application Modernization cannot proceed
within traditional organizational and cultural
models

• Handoffs between teams hamper
organizational agility

• New Skills are required for development in new
technologies

• Operational approaches change with new
technologies

• So as part of any application modernization
project you also need to consider a holistic
approach to organization/application
development/DevOps and Management.

• That’s the IBM Garage Method for Cloud

Combining industry best practices for Design Thinking, Lean
Startup, Agile Development, DevOps and Site Reliability
Engineering to deliver innovative solutions in a consistent
and repeatable way

20

Using a COC to kickstart the transformation

A COC has four goals:

• Promote best practices and standard processes that enable repeatable success
• Provide as-needed expertise to solve specific problems that are related to development and

deployment
• Help teams become self-sufficient in knowledge and expertise
• Create a focal point in the enterprise for looking ahead to new disruptive technologies and issues

beyond the immediate focus of current projects

A Center of competency (COC) is an independent body that develops common solutions and acquires
new skills that are then spread throughout the organization. This approach increases the likelihood of
success of each new modernization project.

21

Application
Readiness

Assessment

Modernize Ops

Modernize Dev

Lift & Shift**

Cloud Platform

Cloud Native

Deploy RunBuild

Cloud Native App

VM’s on
Cloud

Cloud Ready App

Traditional App

SRE and
Modern CSMO

Tools

Modern
DevOps

Pipelines

Containerize

An overall solution approach for modernization
https://www.ibm.com/cloud/garage/architectures/application-modernization

Start with a visit. Change your perspective. Partner with us to make
your ideas into reality. Fast.

IBM Design Thinking
Workshop

IBM Cloud
Garage Visit

Minimum Viable
Product Build-Up

Bring your business and technical
leadership together to align around your
big idea and define the vision for turning it
into reality.

Come to our unique innovation space and
see first-hand how you can transform your
business.

Rapidly iterate on your chosen idea to
create a production-ready code that you
will be proud to call yours.

Cloud Service Management
and Operations

IBM Cloud Garage
Academy

Bring your team to speed with the
latest skills and technologies to
thrive in today’s digital age.

Prepare your organization to be
cloud-ready from the inside out.

IBM Confidential | 23

Super Regional U.S. Bank
Modernization of core services in a monolithic codebase applying microservices
architecture to accelerate time to value of new capabilities

• Problem Statement
• A super regional bank with over 15 million transactions per day had their core retail banking

services in a legacy SOA resulting in:
• Delayed time to market and unpredictable application stability resulting in negative customer

experiences
• Unable to onboard new products due to architectural complexity
• Outdated technology landscape and complexity of service orchestration

Engagement Profile

• Joint squad of Bank and IBM resources (Squad Lead,

Developers, SRE, Architect)

• Defined Modernization strategy and rationalization

of existing code to inner/outer APIs aligned to BIAN

service domains

• Upskilled Bank resources through immersion into

IBM Garage Method (pair programming, test driven

development, XP practices, design thinking and

hypothesis driven design)

• Accelerated development through microservices API

generation, test driven development and test

automation; vertical slicing of business capabilities

to plan/transition consumers onto target

architecture

IBM Value Proposition
• IBM garage drove innovation at scale through co-creation of a modernization strategy to

migrate business capabilities onto a next gen microservices architecture on RedHat OpenShift
platform

• Introduced new ways of working to skill-up Bank team members in Garage Method

Outcomes achieved

• 4 weeks to launch MVP into production (from API Design Thinking Workshop to production
deployment)

• Developed modernization strategy and implementation approach for 200+ services from
legacy to target state

IBM Confidential | 24

Southeast Asian Bank
Modernization of payment integration services from a monolithic codebase
applying microservices architecture

• Problem Statement
• Bank among the fastest growing commercial banks in India; transforming from a traditional

institution to offering state-of-the-art products and services to a diverse group of more than
50,00,000 customers.

• Built out at scale, leveraging new platform & robust technology
• Complex monolithic API Architecture hampers new payment business initiatives

Engagement Profile

IBM Value Proposition

• Garage Method and expertise in cloud-native approaches
• Deep integration expertise
• IBM Cloud Pak for Integration

Outcomes achieved

• Integration Modernization Workshop and Services Design achieved in 3 weeks
• Implementation of new containerized microservices-based design in 4 weeks
• Number of cores required dropped from 102 (monolith) to 60 (microservices) and TPS

increased from 120 (monolith) to 250 (microservices)

• Design and Implementation follow Garage Method
• Existing Monolithic Payment Application refactored

to microservices architecture.
• Single Payment Application designed to cover all use

cases
• Single Payment(NEFT, RTGS, IMPS, NEFT, UPI)
• Multi Payment
• Batch Payments
• Corporate Payment

• Microservices built in Node JS, Java, App Connect
and DataPower.

• Databases redesigned for microservices.

• New Kubernetes-based development, QA, UAT and
Prod environments built all with containerized ACE
and API Management

IBM Confidential | 25

Resources

• Video of this presentation for external consumption (2019 App Mod
Technical Conference) https://www.ustream.tv/recorded/124074109

• Article Series Part 1https://medium.com/ibm-garage/the-steps-to-
application-modernization-for-the-cloud-part-1-7ac07515dc16

• Article Series Part 2https://medium.com/ibm-garage/maps-for-the-journey-
950153ed39ce

https://www.ustream.tv/recorded/124074109
https://medium.com/ibm-garage/the-steps-to-application-modernization-for-the-cloud-part-1-7ac07515dc16
https://medium.com/ibm-garage/maps-for-the-journey-950153ed39ce

Thank You

