Using Liberty with Elastic Stack

Subtitle of presentation in this location as long as needed

Don Bourne, WebSphere Observability Architect

Agenda

Logging

Elastic Stack

Liberty Events

JSON Logging

LogstashCollector

Logging in Red Hat OpenShift Container Platform

Logging

Liberty Dashboards

figure the Liberty server to use JSON logging with the message, trace and ffdc sources. Click on host, user directory or server name to filter the

E B ossooso Liveny-Traffic-Ke_7-20191108 e
@ Liverty Top URLS (in microssconds) Litbarty Slawast URLS (in microssconds)
® ibm_uriPath Count Awerage ibm_etapsedTime Minibm_elapsedTime = Max ibm_clapsedTime ibm_uriPath Count Average ibm_siapsedTime Minibm_elopsedTime -~ Maxibm_elapsedTime
Iaaytadriapy 1578 10028789 2028 7778 inapracsrian 1578 10028789 20w 7779
M amcerpnoracsstsmatist 08 saszae 2070 lostraosripngFacetsTalst 106 5452443 zam nom
§ resusoresses 7 1030385 85 3298 iospassriPagFacseiLage it 4 5422705 3230 7884
Jdayrader/PogFaceitlargeisl 44 5422705 3230 7864 idayraderiregisterisp E 2058867 8a7 5810
R e— " 2056667 897 5810 Irest/aoarasses 7% 1030395 85 3298
2
@
=]
Libarty L Liberty Access Log Elapsed Time (in micrasecends)
g *200 1000 w0 010250000
L] s oo 5 ® 250000 to 500000 Liberty User Directories (Problems)
oo ® 50000010 1000000
o - e 1000000 10 2000000 ibm_userDir keyword: Descending
B w0 £ . "
K o loptiouwlusr/
4000
-
b 2000 s
E; 00 18:22:00 18:28:00 18:20:00 18:30:00 183100 18:27:00 182800 18:2000 183000 183100
Im_d-hl\l-wlsuaulll Ibm_datstime per § seconds. ibm_datatime por 5 seconds.
-]
9 Error - Count Warning - Count
8] NOT ibm_massageld: SRVEO2421 x NOT loglavel: INFO » + Add filter
© Liberty Top Message 0s
Liberty Messages Search
sanse |
ePriceChangostrus,
@
> NevTLZ019@IBZZ0258 ORI SystemOMt SystemOut Settings from daytrs
3bfe: ebinterface=0, maxt d
ePriceChange-trus, H
3
2 Mev 1, 2019 @ 18:22:20022 GbdfcTo SystemOut SystemOut ‘Settings from daytra 50
34944 ebinterfaces0, maxt
ePriceChange=trus,
, mE el —mill
> Hov1), 2019 18:2218300 codefie AUDIT combmwskemelfe CWWKFODIIE The d Fromy a0 as prem
Se15t sturentem Feature
Manager
3 Novil, 2010 @ 18:22:18388 ccdefic AUDIT combmwskemelfe CWWKFOOZI: wsmr at tures: L8R rm 53
S5t Siraimeml s 32, soharate 33, 630, a1, KA1, 10, a2, paCantaer-21, 1.2, o 10, pvnv-!ﬂjxv!:\lrxdbwn-cbwﬂh 3., montar 1D, meCenf-12, 090000900062
Manager olivaline it i i Lok 3
> Nv1LZ019@1BZZIB00 GbOKTD AUDIT ‘Serveris ready 10 1un 8 Smarter planet. The defsutServer server started in 21,559 seconds, 1573514538009.0
e ature.ntemal Feature
Man
P MovT,2018@IB221B084 cOI7Ted AUDIT ‘sorver is raady io run a smarter planed, Th defauServer server started in 21.728 seconds. 573514538081 0
abfe3 aturs imermal Featurs 000000000063
anager
2 Mev 11,2019 @ 18:2218078 c0177ed AUDIT ‘The server installed the e, , ejb-3.2, ejpHome-3.2, ejblite-3.2, efbPersistentTim 1573514535076_0
avtes £1-3.2. soRemote-32, 630, a-1.7 KbC-41, NG-10, 16821, BSCantsingr-21, st-2.2, Son-10, j80np-L1 sp-2.3, IocaConnectar-10, mdb-3.2, montar-1.0, meCenfig-12, 0000B0O0DG1

Bture.intemal Feature
Manager

mpMetrics-11, senvet-31, s5i-1.0, wasJmsClient-20, was.msSarver-1.0, websocket-11].

3082

Systemerr - Count

1805

Liberty Servers (Problems)

w10

ibm_serverName keyword: Descending
defaunserver

®5RVEO2421
® CWwKTCO8!
® CWWKZooD!!
® CrwKzootal
© CUWKZOI33
® CuwKToO17!
® CHWKZ000%
® CYWWKEQD36!
. 9 CYAWKEODRS!
® CYWKENDO!
@ CHWKEGOD!!

w8 1820

Logging

Liberty produces a variety of logs as it runs. Each log file may store
hundreds or thousands of entries each day.

There are multiple kinds of events worth gathering

Logging

Lots of Liberty servers are typically used together to provide the various
parts of an application — particularly apps that use microservice
architectures. Each server has its own set of logs.

inventory

@ fulfillment

payment

It is useful to be able to see logs from multiple servers together

Logging

Throughout the day servers can be added or removed, to meet demands
of traffic. Ops teams may have hundreds of logs to inspect to identify the
scope and duration of problems.

@@@@

payment payment payment

Servers and their logs are ephemeral — logs need to be centralized

Elastic Stack

Elastic Stack?

There is a good chance you already have an enterprise logging solution.
That logging solution may or may not be based on the Elastic Stack.
Elastic Stack is one of many popular solutions for log aggregation and analysis.

If you are excited about collecting and analyzing your Liberty logs (and
other events) with the Elastic Stack, this presentation is for you.

In no particular order you might also be interested in Splunk, Graylog, IBM Operations Analytics, Loggly, Datadog,
LogDNA, Papertrail, ... let me know if you'd like to know more about using Liberty with other logging solutions!

Elasticsearch Logstash Kibana (ELK)

ELK

Logstash

Elasticsearch

Full-featured
log processing
pipeline

Clusterable
indexing /
search server
based on
Apache
Lucene

Browser-
accessed
dashboard
tech for
visualizing
data

Elastic Stack

Elastic Stack

Filebeat

Logstash

Elasticsearch

Lightweight
file scraper
tech for
sending log
records to
Logstash or
Elasticsearch

Full-featured
log processing
pipeline

Clusterable
indexing /
search server
based on
Apache
Lucene

Browser-
accessed
dashboard
tech for
visualizing
data

10

Log Analysis with Elastic Stack

iberty ﬁ logstash ="'z ¢ =

| NI

[] .
%y¢ elastic :
[l il [SR ——
kibana - :

JocoGo]
e = o
e e .
v . ;
s
R —

*Logs can be either Liberty text logs or Liberty binary logs

Liberty Events

Liberty Events

Liberty has 2 main ways of emitting log/event data for use in log aggregation

solutions:
« JSON Logging

« logstashCollector-1.0 feature

Liberty (currently) emits 6 different event types.

Event Type JSON Logging logstashCollector

Logs

Trace

FFDC
Access Logs
Audit Logs

Garbage Collection

Yes
Yes
Yes
Yes
Yes

No

Yes
Yes
Yes
Yes
Yes

Yes (IBM JDKs only)
13

Liberty Events

Each event type has a set of fields. Fields below in bold are common to all event types.

Log Event Fields

type
ibm_datetime
ibm_sequence
host
ibm_userDir
ibm_serverName
ibm_threadld
module
ibm_className
ibm_methodName
loglevel
ibm_messageld

message

Sample Value

liberty _message
2019-11-10T19:16:32.531+0000
1573413392531_0000000000022
€2011270034a

/opt/ol/wlp/usr/

defaultServer

00000030
com.ibm.ws.session.WASSessionCore
SessionContextRegistrylmpl
getSessionContext

INFO

SESNO0176l

SESNO0176l: A new session context will be created for
application key default_host/tradelite

JSON Logging

JSON Logging

Use Liberty’s JSON Logging when...
U You are running Liberty in an environment that manages your logs for you (eg. Kubernetes)
O You don’t want to hard code details of where your logs should go inside your image [1]
U You want flexibility to have any log analysis solution that understands JSON be able to

consume your logs
°» logstash

Filebeat

Liberty

Filebeat, Logstash configuration and Kibana dashboards for Elastic Stack 5/6/7 provided at [2]

[1] https://12factor.net/logs
[2] https://github.com/WASdev/sample.dashboards

16

https://12factor.net/logs
https://github.com/WASdev/sample.dashboards

JSON Logging

What do logs look like in JSON format?

"type": "liberty message",

"host": "97d853b79f8e",

"ibm userDir": "/opt/ibm/wlp/usr/",

"ibm serverName": "defaultServer",

"ibm datetime": "2018-07-19T12:20:23.892+0000",

"ibm messageId": "CWWKEOOOII",

"ibm threadId": "00000001",

"module": "com.ibm.ws.kernel.launch.internal.FrameworkManager",
"loglevel": "AUDIT",

"ibm sequence": "1532002823892 0000000000001",

"message": "CWWKEOOO1lI: The server defaultServer has been launched."

(new lines and spaces added for clarity — each JSON record is output on one line)

JSON Logging

Typical Liberty Configuration
» direct messages, trace, FFDC, access log and audit events to stdout in JSON format
» write nothing to messages.log
» write nothing to trace.log

com.ibm.ws.logging.console.source=message, trace, ffdc,accessLog,audit
com.ibm.ws.logging.console.format=json
com.ibm.ws.logging.console.log.level=info

com.ibm.ws.logging.message.source=
com.ibm.ws.logging.message.format=json

com.ibm.ws.logging.trace.file.name=stdout

wip/usr/servers/serverName/bootstrap.properties

JSON Logging

Alternately, if you want to set configuration with environment variables
« Using environment variables set at deployment time avoids need to put logging
configuration in your Docker image

docker run \
-e "WLP LOGGING CONSOLE SOURCE=message, trace,accessLog, ffdc,audit" \
-e "WLP LOGGING CONSOLE FORMAT=json" \
-e "WLP_ LOGGING CONSOLE LOGLEVEL=info" \
-e "WLP LOGGING MESSAGE FORMAT=json" \
-e "WLP LOGGING MESSAGE SOURCE=" \
open-liberty

» If desired, you can even change the JSON field names to suit your needs

WLP LOGGING JSON FIELD MAPPINGS=loglevel:level,message:log

JSON Logging

Dons-MacBook-Pro:~ donbourne$

Running open-liberty docker image with default log settings

JSON Logging

Dons-MacBook-Pro:~ donbourne$

Running open-liberty docker image with environment variables to enable JSON logging

JSON Logging

What if a human needs to read it?

Use jq [1], or similar tools, to format output

Create an alias for your jg command when you find a format you like!

example 1 - just include the message
alias prettylog="jg '.message' -r"

example 2 - include the datetime, log level, message
alias prettylog="jqg '.ibm datetime + \" \" + .loglevel + \"\\t\" + \" \" + .message' -r

"

docker logs <Iliberty containerId> | prettylog

[1] https://stedolan.github.io/jg/download!/ (this is not an IBM tool or website)

https://stedolan.github.io/jq/download/

JSON Logging

E)
Dons-MacBook-Pro:~ donbourne$

Using jg command to make JSON logs more human friendly

Logstash Collector

Logstash Collector

The logstashCollector-1.0 feature sends events directly from Liberty to your
remote or local Logstash endpoint.

Use Liberty’s logstashCollector when...
O You want to send logs to your Elastic Stack but can’t install an agent to forward your logs (for
example, running Liberty in a public Cloud Foundry)

Liberty

Logstash configuration and Kibana dashboards for Elastic Stack 5/6/7 provided [1]

[1] https://github.com/WASdev/sample.logstash.collector/tree/master/logstashCollector-1.0 25

https://github.com/WASdev/sample.logstash.collector/tree/master/logstashCollector-1.0

Logstash Collector

Steps to get set up (detailed instructions at [1])

1. Add Logstash certificate to Liberty truststore

2. Add configuration to server.xml (next page)

3. Use provided Logstash configuration

4. Start the Liberty server and generate some events
5. Create Kibana index pattern

6. Import provided Kibana dashboards

[1] https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp _analytics logstash.html

https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_analytics_logstash.html

Logstash Collector Configuration

<featureManager> Note: Once created, configuration can be

<feature>logstashCollector-1.0</feature> Shared Wit OTer ServersioncopIed

</featureManager>

<keyStore id="defaultKeyStore" password="Liberty" />
<ssl id="mySSLConfig" trustStoreRef="defaultKeyStore" keyStoreRef="defaultKeyStore" />

<logstashCollector
source="message, trace, ffdc, garbageCollection, accesslLogs, audit"

host="myhost.acme.com"

port="9091"

sslRef="mySSLConfig"

maxFieldLength="5000" <<< Adjust, if needed, to avoid message truncation
<tag>toronto</tag> <<< tags are included in all events from this server

<tag>coreBanking</tag>
/>

*Configure logs, trace, access logs, audit separately as usual 27

Red Hat OpenShift Container Platform

RHOCP Elastic Stack

Liberty running in Red Hat OpenShift Container Platform

Liberty Fluentd

— |

Worker Node ' ‘ =

IIIIII ||I“|
kibana =

ib

Liberty Fluentd

—

Management Node

Worker Node
29

Red Hat OpenShift Container Platform — Logging

RHOCP / OKD provides ability to deploy two logging stacks, each consisting of Elasticsearch,
Fluentd and Kibana (EFK)

+ “ops” stack, for logs from Kubernetes and OpenShift components (not intended for app logs)

« another stack for app logs

Red Hat OpenShift Container Platform — Logging

One-time set up of EFK stack for application data (1/2)

Set configuration parameters in the inventory file[1] to indicate you want to install the second
logging stack for application logs:

openshift logging use ops=True

openshift logging es ops nodeselector={"node-role.kubernetes.io/infra":"true"}
openshift logging es nodeselector={"node-role.kubernetes.io/infra":"true"}

openshift logging es ops memory 1limit=5G
openshift logging es memory 1imit=3G

Run the ansible-playback command to install the logging stack:

ansible-playbook -i <inventory file> openshift-ansible/playbooks/openshift-logging/config.yml -e
openshift logging install logging=true

[1] https://docs.okd.io/3.11/install/configuring_inventory_file.html

https://docs.okd.io/3.11/install/configuring_inventory_file.html

Red Hat OpenShift Container Platform — Logging

One-time set up of EFK stack for application data (2/2)

Once deployed you can see all pods related to logging within the openshift-logging namespace:

[root@rhel7-okd ~]# oc get pods -n openshift-logging

NAME READY STATUS RESTARTS AGE
logging-curator-1565163000-9fvpf 0/1 Completed 0 20h
logging-curator-ops-1565163000-515tx 0/1 Completed 0 20h
logging-es-data-master-iay9goim-4-cbtjg 2/2 Running 0 3d

logging-es-ops-data-master-hsmsi518-3-vlrgs 2/2 Running 0 3d

logging-fluentd-vssj2 1/1 Running 1 3d

logging-kibana-2-tplkv 2/2 Running 6 4d

logging-kibana-ops-1-bgl8k 2/2 Running 2 3d

Notice that you will have curator, elasticsearch, and kibana pods for each "stack” (one with “ops” suffix, one
without)

Fluentd automatically routes logs to appropriate logging stack based on which project logs come from
* Logs from default, openshift, openshift-infra projects go to the ops stack
« Logs from other projects go to the other stack

Red Hat OpenShift Container Platform — Logging

One-time set up of Kibana for use with Liberty

1. Find the URL for external access to Kibana and ops Kibana web consoles. Access Kibana at the
host/port indicated for your system.

[root@rhel7-okd ~]# oc get routes -n openshift-logging
NAME HOST/PORT PATH SERVICES PORT TERMINATION WILDCARD
logging-kibana kibana.apps.9.37.135.153.nip.1i0o logging-kibana <all> reencrypt/Redirect None
logging-kibana-ops kibana-ops.apps.9.37.135.153.nip.10 logging-kibana-ops <all> reencrypt/Redirect None

2. Log in using your OKD / RHOCP username and password.

3. Click Management > Index Pattern. Find the project.* index. Click the refresh fields button.

4. Download the Liberty Kibana dashboards from [1]

5. Click Management > Saved Objects > Import. Drag / Drop the Liberty dashboard files you want to

import.

[1] https://github.com/OpenLiberty/open-liberty-operator/tree/master/deploy/dashboards/logging

https://github.com/OpenLiberty/open-liberty-operator/tree/master/deploy/dashboards/logging

Red Hat OpenShift Container Platform — Logging

Tips for Liberty logging when running on RHOCP:

« Configure Liberty to use JSON logging with output going to console (for example by
setting properties in bootstrap.properties or by setting environment variables)

IBM Cloud Pak for Applications:

« Application Navigator provides action menus — one click to get to your deployment’s
Problems dashboard directly from your deployment in the Application Navigator Ul

Bonus Points

Adding Access Logs

Add access logs by configuring your HTTP endpoint in your server.xml file as follows:

<server>

<!-- access log —-->
<httpEndpoint id="defaultHttpEndpoint" host="*" httpPort="9080" httpsPort="9443">
<accessLogging
filepath="${server.output.dir}/logs/http defaultEndpoint access.log"
logFormat='%h %u %t "S$r" %s S%b %D %{User-agent}i'>
</accessLogging>
</httpEndpoint>

</server>

JSON logging and logstashCollector-1.0 feature do not themselves enable access logs.
Enable access logs (as shown above) and add the “accesslLog” source to the list of
sources for JSON logging or logstashCollector-1.0.

Adding Audit Logs

Add audit logs by adding the audit-1.0 feature to your server.xml file as follows. In this
example, only authentication and authorization events are enabled.

<featureManager>
<feature>audit-1.0</feature>
</featureManager>

<auditFileHandler compact="false" eventsRef="authn,authz"/>

<auditEvent id="authn" eventName="SECURITY AUTHN" />
<auditEvent id="authz" eventName="SECURITY AUTHZ" />

JSON logging and logstashCollector-1.0 feature do not themselves enable audit
events. Enable audit logs (as shown above) and add the “audit” source to the list of
sources for JSON logging or logstashCollector-1.0.

Adding Custom Fields to Logs and Trace

LogRecordContext API (think MDC)

Applications that use the LogRecordContext APl will have the name/value pairs they have added to
the JSON mapping for logs and trace emitted on the same thread.

STRING/STRING pairs
// included in json at root level as "ext someName":'"someValue”
LogRecordContext.addExtension ("someName", "someValue") ;

STRING/INTEGER pairs
// included in json at root level as "ext someName int":someValue (or entirely omitted if someValue isn't parseable as an int)

LogRecordContext.addExtension ("someName int","someValue");

STRING/FLOAT pairs
// included in json at root level as "ext someName float":someValue (or entirely omitted if someValue isn't parseable as a float)

LogRecordContext.addExtension ("someName float","someValue");

STRING/BOOLEAN pairs
// included in json at root level as "ext someName bool":someValue (or entirely omitted if someValue isn't parseable as a bool)

LogRecordContext.addExtension ("someName bool", "someValue");

Example

{"ibm datetime":"2018-02-04T18:56:30.318-
LogRecordContext.addExtension ("userName", "don") ; 0500", "type":"liberty message","host":"192.168.2.15","ibm userDir":"
LogRecordContext.addExtension ("isCool bool":"true”) ; ‘ \/wlp\/usr\/","ibm serverName":"serverl","ibm sequence":"15177885903
Logger.info ("some message"); 18 000000003RA4A7", "loglevel": "INFO", "module": "com.ibm. somepackage.So
meClass","ibm threadId":"00002db5", "message":"some message",

"ext userName":"don", "ext isCool bool":true}

Add RequestTiming-1.0 or EventLogging-1.0

Add another dimension to your logs by using requestTiming-1.0 or eventLogging-1.0 Liberty features [1].

requestTiming-1.0
» Prints a report to your logs whenever a request is detected to be slow

« Recommended for use in all production deployments of Liberty

« ext_requestiD
* Unique request identifier field added to JSON for all logs/trace for duration of the request

eventLogging-1.0
* Prints a message to your logs at the start and/or end of each event

* ext _requestiD
* Unique request identifier field added to JSON for all logs/trace for duration of the request

* ext_contextinfo
* Provides details of servlet and JDBC calls
* Included in log entries logged from eventLogging feature itself

* ext_eventType
* Indicates the kind of event
* Included in log entries logged from eventLogging feature itself

[1] https://developer.ibm.com/wasdev/docs/request-timing-diagnosing-slow-requests-liberty/

https://developer.ibm.com/wasdev/docs/request-timing-diagnosing-slow-requests-liberty/

WebSphere
Customer Advisory
Board — open invitation

http://ibm.biz/WebSphereAdvisoryBoard
email: claudiab@us.ibm.com

Choose your engagement level:

1. Stay ahead of the curve: more time
commitment

2. Close the gap: quarterly involvement

3. At your own pace: impact longer term
goals

Influence
deliverables

Get involved.
Be successful.

http://ibm.biz/WebSphereAdvisoryBoard

Summary

* Use alog aggregation and analysis solution to get good use out of the mountain of logs your servers generate

* The Elastic Stack is a popular third party logging solution

* Liberty has an event framework that includes logs, trace, FFDC, access logs, audit logs, and garbage collection events
* Liberty’s JSON logging uses the event framework to output events in a convenient JSON format

* Liberty’s logstashCollector-1.0 feature uses the event framework to send events to Logstash

* Red Hat OpenShift Container Platform (RHOCP) integrates with EFK

* Liberty’s JSON log stream works great with RHOCP

* Developers can add extra fields to logs and trace using the LogRecordContext API

* Liberty’s requestTiming-1.0 and eventLogging-1.0 features add context to logs / trace (and are handy features)

* The Liberty team provides sample dashboards and config files to make it easy to get started using Elastic Stack

Thank You

