
Subtitle of presentation in this location as long as needed

Don Bourne, WebSphere Observability Architect

Using Liberty with Elastic Stack

1

Agenda

• Logging

• Elastic Stack

• Liberty Events

• JSON Logging

• LogstashCollector

• Logging in Red Hat OpenShift Container Platform

Logging

Liberty Dashboards

3

Liberty produces a variety of logs as it runs. Each log file may store

hundreds or thousands of entries each day.

FFDC
Files

Message
Logs

Access
Logs

Trace
Logs

Garbage
Collection

Logs

Audit
Logs

Logging

There are multiple kinds of events worth gathering

Lots of Liberty servers are typically used together to provide the various

parts of an application – particularly apps that use microservice

architectures. Each server has its own set of logs.

inventory

orders

payment

fulfillment

Logging

It is useful to be able to see logs from multiple servers together

Throughout the day servers can be added or removed, to meet demands

of traffic. Ops teams may have hundreds of logs to inspect to identify the

scope and duration of problems.

paymentpayment payment

Logging

Servers and their logs are ephemeral – logs need to be centralized

Elastic Stack

Elastic Stack?

8

There is a good chance you already have an enterprise logging solution.

That logging solution may or may not be based on the Elastic Stack.

Elastic Stack is one of many popular solutions for log aggregation and analysis.

If you are excited about collecting and analyzing your Liberty logs (and

other events) with the Elastic Stack, this presentation is for you.

In no particular order you might also be interested in Splunk, Graylog, IBM Operations Analytics, Loggly, Datadog,

LogDNA, Papertrail, … let me know if you’d like to know more about using Liberty with other logging solutions!

9

Elasticsearch Logstash Kibana (ELK)

ElasticsearchLogstash Kibana
Some

Runtime

Log

Files
Log

Files
Log

Files

Full-featured

log processing

pipeline

Clusterable

indexing /

search server

based on

Apache

Lucene

Browser-

accessed

dashboard

tech for

visualizing

data

ELK

10

Elastic Stack

ElasticsearchLogstash KibanaFilebeat
Some

Runtime

Log

Files
Log

Files
Log

Files

Lightweight

file scraper

tech for

sending log

records to

Logstash or

Elasticsearch

Full-featured

log processing

pipeline

Clusterable

indexing /

search server

based on

Apache

Lucene

Browser-

accessed

dashboard

tech for

visualizing

data

Elastic Stack

Log Analysis with Elastic Stack

LibertyLibertyLiberty

Access Logs Logs* GC Events

Trace FFDC

*Logs can be either Liberty text logs or Liberty binary logs

Audit

Liberty Events

Liberty Events

13

Liberty has 2 main ways of emitting log/event data for use in log aggregation

solutions:

• JSON Logging

• logstashCollector-1.0 feature

Liberty (currently) emits 6 different event types.

Event Type JSON Logging logstashCollector

Logs Yes Yes

Trace Yes Yes

FFDC Yes Yes

Access Logs Yes Yes

Audit Logs Yes Yes

Garbage Collection No Yes (IBM JDKs only)

Liberty Events

14

Each event type has a set of fields. Fields below in bold are common to all event types.

Log Event Fields Sample Value

type liberty_message

ibm_datetime 2019-11-10T19:16:32.531+0000

ibm_sequence 1573413392531_0000000000022

host c2011270034a

ibm_userDir /opt/ol/wlp/usr/

ibm_serverName defaultServer

ibm_threadId 00000030

module com.ibm.ws.session.WASSessionCore

ibm_className SessionContextRegistryImpl

ibm_methodName getSessionContext

loglevel INFO

ibm_messageId SESN0176I

message SESN0176I: A new session context will be created for

application key default_host/tradelite

JSON Logging

JSON Logging

16

Liberty

Access Logs Logs

Trace FFDC Audit

json

Filebeat

Use Liberty’s JSON Logging when…
❑ You are running Liberty in an environment that manages your logs for you (eg. Kubernetes)

❑ You don’t want to hard code details of where your logs should go inside your image [1]

❑ You want flexibility to have any log analysis solution that understands JSON be able to

consume your logs

Filebeat, Logstash configuration and Kibana dashboards for Elastic Stack 5/6/7 provided at [2]

[1] https://12factor.net/logs

[2] https://github.com/WASdev/sample.dashboards

https://12factor.net/logs
https://github.com/WASdev/sample.dashboards

JSON Logging

{

"type": "liberty_message",

"host": "97d853b79f8e",

"ibm_userDir": "/opt/ibm/wlp/usr/",

"ibm_serverName": "defaultServer",

"ibm_datetime": "2018-07-19T12:20:23.892+0000",

"ibm_messageId": "CWWKE0001I",

"ibm_threadId": "00000001",

"module": "com.ibm.ws.kernel.launch.internal.FrameworkManager",

"loglevel": "AUDIT",

"ibm_sequence": "1532002823892_0000000000001",

"message": "CWWKE0001I: The server defaultServer has been launched."

}

What do logs look like in JSON format?

(new lines and spaces added for clarity – each JSON record is output on one line)

JSON Logging

com.ibm.ws.logging.console.source=message,trace,ffdc,accessLog,audit

com.ibm.ws.logging.console.format=json

com.ibm.ws.logging.console.log.level=info

com.ibm.ws.logging.message.source=

com.ibm.ws.logging.message.format=json

com.ibm.ws.logging.trace.file.name=stdout

Typical Liberty Configuration
• direct messages, trace, FFDC, access log and audit events to stdout in JSON format

• write nothing to messages.log

• write nothing to trace.log

wlp/usr/servers/serverName/bootstrap.properties

JSON Logging

Alternately, if you want to set configuration with environment variables
• Using environment variables set at deployment time avoids need to put logging

configuration in your Docker image

• If desired, you can even change the JSON field names to suit your needs

docker run \

-e "WLP_LOGGING_CONSOLE_SOURCE=message,trace,accessLog,ffdc,audit" \

-e "WLP_LOGGING_CONSOLE_FORMAT=json" \

-e "WLP_LOGGING_CONSOLE_LOGLEVEL=info" \

-e "WLP_LOGGING_MESSAGE_FORMAT=json" \

-e "WLP_LOGGING_MESSAGE_SOURCE=" \

open-liberty

WLP_LOGGING_JSON_FIELD_MAPPINGS=loglevel:level,message:log

JSON Logging

20

Running open-liberty docker image with default log settings

JSON Logging

21

Running open-liberty docker image with environment variables to enable JSON logging

JSON Logging

What if a human needs to read it?

Use jq [1], or similar tools, to format output

Create an alias for your jq command when you find a format you like!

[1] https://stedolan.github.io/jq/download/ (this is not an IBM tool or website)

example 1 – just include the message

alias prettylog="jq '.message' -r"

example 2 – include the datetime, log level, message

alias prettylog="jq '.ibm_datetime + \" \" + .loglevel + \"\\t\" + \" \" + .message' -r"

docker logs <liberty containerId> | prettylog

https://stedolan.github.io/jq/download/

JSON Logging

23

Using jq command to make JSON logs more human friendly

Logstash Collector

Logstash Collector

25

The logstashCollector-1.0 feature sends events directly from Liberty to your

remote or local Logstash endpoint.

Use Liberty’s logstashCollector when…
❑ You want to send logs to your Elastic Stack but can’t install an agent to forward your logs (for

example, running Liberty in a public Cloud Foundry)

Logstash configuration and Kibana dashboards for Elastic Stack 5/6/7 provided [1]

Liberty

logstashCollector-1.0

Access Logs Logs GC Events

Trace FFDC

beats

Audit

[1] https://github.com/WASdev/sample.logstash.collector/tree/master/logstashCollector-1.0

https://github.com/WASdev/sample.logstash.collector/tree/master/logstashCollector-1.0

Logstash Collector

26

Steps to get set up (detailed instructions at [1])

1. Add Logstash certificate to Liberty truststore

2. Add configuration to server.xml (next page)

3. Use provided Logstash configuration

4. Start the Liberty server and generate some events

5. Create Kibana index pattern

6. Import provided Kibana dashboards

[1] https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_analytics_logstash.html

https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_analytics_logstash.html

27

Logstash Collector Configuration

<featureManager>

<feature>logstashCollector-1.0</feature>

</featureManager>

<keyStore id="defaultKeyStore" password="Liberty" />

<ssl id="mySSLConfig" trustStoreRef="defaultKeyStore" keyStoreRef="defaultKeyStore" />

<logstashCollector

source="message, trace, ffdc, garbageCollection, accessLogs, audit"

host="myhost.acme.com"

port="9091"

sslRef="mySSLConfig"

maxFieldLength="5000” <<< Adjust, if needed, to avoid message truncation

<tag>toronto</tag> <<< tags are included in all events from this server

<tag>coreBanking</tag>

/>

*Configure logs, trace, access logs, audit separately as usual

Note: Once created, configuration can be

shared with other servers or copied

Red Hat OpenShift Container Platform

Worker Node

Pod

Liberty Container

Management Node

Pod

RHOCP Elastic Stack

Liberty running in Red Hat OpenShift Container Platform

Pod

Liberty Container

Liberty

Pod

Daemon Set

Container

Fluentd

Worker Node

Pod

Liberty Container

Pod

Liberty Container

Liberty

Pod

Daemon Set

Container

Fluentd

29

Red Hat OpenShift Container Platform – Logging

RHOCP / OKD provides ability to deploy two logging stacks, each consisting of Elasticsearch,

Fluentd and Kibana (EFK)

• “ops” stack, for logs from Kubernetes and OpenShift components (not intended for app logs)

• another stack for app logs

30

Red Hat OpenShift Container Platform – Logging

One-time set up of EFK stack for application data (1/2)

Set configuration parameters in the inventory file[1] to indicate you want to install the second

logging stack for application logs:
openshift_logging_use_ops=True

openshift_logging_es_ops_nodeselector={"node-role.kubernetes.io/infra":"true"}

openshift_logging_es_nodeselector={"node-role.kubernetes.io/infra":"true"}

openshift_logging_es_ops_memory_limit=5G

openshift_logging_es_memory_limit=3G

Run the ansible-playback command to install the logging stack:
ansible-playbook -i <inventory_file> openshift-ansible/playbooks/openshift-logging/config.yml -e

openshift_logging_install_logging=true

[1] https://docs.okd.io/3.11/install/configuring_inventory_file.html
31

https://docs.okd.io/3.11/install/configuring_inventory_file.html

Red Hat OpenShift Container Platform – Logging
One-time set up of EFK stack for application data (2/2)

Once deployed you can see all pods related to logging within the openshift-logging namespace:

Notice that you will have curator, elasticsearch, and kibana pods for each ”stack” (one with “ops” suffix, one

without)

Fluentd automatically routes logs to appropriate logging stack based on which project logs come from

• Logs from default, openshift, openshift-infra projects go to the ops stack

• Logs from other projects go to the other stack

[root@rhel7-okd ~]# oc get pods -n openshift-logging

NAME READY STATUS RESTARTS AGE

logging-curator-1565163000-9fvpf 0/1 Completed 0 20h

logging-curator-ops-1565163000-5l5tx 0/1 Completed 0 20h

logging-es-data-master-iay9qoim-4-cbtjg 2/2 Running 0 3d

logging-es-ops-data-master-hsmsi5l8-3-vlrgs 2/2 Running 0 3d

logging-fluentd-vssj2 1/1 Running 1 3d

logging-kibana-2-tplkv 2/2 Running 6 4d

logging-kibana-ops-1-bgl8k 2/2 Running 2 3d

32

Red Hat OpenShift Container Platform – Logging

One-time set up of Kibana for use with Liberty

1. Find the URL for external access to Kibana and ops Kibana web consoles. Access Kibana at the

host/port indicated for your system.

2. Log in using your OKD / RHOCP username and password.
3. Click Management > Index Pattern. Find the project.* index. Click the refresh fields button.

4. Download the Liberty Kibana dashboards from [1]

5. Click Management > Saved Objects > Import. Drag / Drop the Liberty dashboard files you want to

import.

[root@rhel7-okd ~]# oc get routes -n openshift-logging

NAME HOST/PORT PATH SERVICES PORT TERMINATION WILDCARD

logging-kibana kibana.apps.9.37.135.153.nip.io logging-kibana <all> reencrypt/Redirect None

logging-kibana-ops kibana-ops.apps.9.37.135.153.nip.io logging-kibana-ops <all> reencrypt/Redirect None

[1] https://github.com/OpenLiberty/open-liberty-operator/tree/master/deploy/dashboards/logging
33

https://github.com/OpenLiberty/open-liberty-operator/tree/master/deploy/dashboards/logging

Red Hat OpenShift Container Platform – Logging

Tips for Liberty logging when running on RHOCP:

• Configure Liberty to use JSON logging with output going to console (for example by

setting properties in bootstrap.properties or by setting environment variables)

IBM Cloud Pak for Applications:

• Application Navigator provides action menus – one click to get to your deployment’s

Problems dashboard directly from your deployment in the Application Navigator UI

34

Bonus Points

36

Adding Access Logs

Add access logs by configuring your HTTP endpoint in your server.xml file as follows:

<server>

<!-- access log -->

<httpEndpoint id="defaultHttpEndpoint" host="*" httpPort="9080" httpsPort="9443">

<accessLogging

filepath="${server.output.dir}/logs/http_defaultEndpoint_access.log"

logFormat='%h %u %t "%r" %s %b %D %{User-agent}i'>

</accessLogging>

</httpEndpoint>

</server>

JSON logging and logstashCollector-1.0 feature do not themselves enable access logs.
Enable access logs (as shown above) and add the “accessLog” source to the list of
sources for JSON logging or logstashCollector-1.0.

37

Adding Audit Logs

Add audit logs by adding the audit-1.0 feature to your server.xml file as follows. In this
example, only authentication and authorization events are enabled.

<featureManager>

<feature>audit-1.0</feature>

</featureManager>

<auditFileHandler compact="false" eventsRef="authn,authz"/>

<auditEvent id="authn" eventName="SECURITY_AUTHN" />

<auditEvent id="authz" eventName="SECURITY_AUTHZ" />

JSON logging and logstashCollector-1.0 feature do not themselves enable audit
events. Enable audit logs (as shown above) and add the “audit” source to the list of
sources for JSON logging or logstashCollector-1.0.

STRING/STRING pairs

// included in json at root level as "ext_someName":"someValue”

LogRecordContext.addExtension("someName","someValue");

STRING/INTEGER pairs

// included in json at root level as "ext_someName_int":someValue (or entirely omitted if someValue isn't parseable as an int)

LogRecordContext.addExtension("someName_int","someValue");

STRING/FLOAT pairs

// included in json at root level as "ext_someName_float":someValue (or entirely omitted if someValue isn't parseable as a float)

LogRecordContext.addExtension("someName_float","someValue");

STRING/BOOLEAN pairs

// included in json at root level as "ext_someName_bool":someValue (or entirely omitted if someValue isn't parseable as a bool)

LogRecordContext.addExtension("someName_bool","someValue");

Adding Custom Fields to Logs and Trace

LogRecordContext API (think MDC)
Applications that use the LogRecordContext API will have the name/value pairs they have added to

the JSON mapping for logs and trace emitted on the same thread.

LogRecordContext.addExtension("userName","don");

LogRecordContext.addExtension("isCool_bool":"true”);

Logger.info("some message");

{"ibm_datetime":"2018-02-04T18:56:30.318-

0500","type":"liberty_message","host":"192.168.2.15","ibm_userDir":"

\/wlp\/usr\/","ibm_serverName":"server1","ibm_sequence":"15177885903

18_000000003A4A7","loglevel":"INFO","module":"com.ibm.somepackage.So

meClass","ibm_threadId":"00002db5","message":"some message",

"ext_userName":"don", "ext_isCool_bool":true}

Example

39

Add RequestTiming-1.0 or EventLogging-1.0

Add another dimension to your logs by using requestTiming-1.0 or eventLogging-1.0 Liberty features [1].

requestTiming-1.0

• Prints a report to your logs whenever a request is detected to be slow

• Recommended for use in all production deployments of Liberty

• ext_requestID
• Unique request identifier field added to JSON for all logs/trace for duration of the request

eventLogging-1.0

• Prints a message to your logs at the start and/or end of each event

• ext_requestID
• Unique request identifier field added to JSON for all logs/trace for duration of the request

• ext_contextInfo
• Provides details of servlet and JDBC calls

• Included in log entries logged from eventLogging feature itself

• ext_eventType
• Indicates the kind of event

• Included in log entries logged from eventLogging feature itself

[1] https://developer.ibm.com/wasdev/docs/request-timing-diagnosing-slow-requests-liberty/

https://developer.ibm.com/wasdev/docs/request-timing-diagnosing-slow-requests-liberty/

Influence
deliverables

Sign up now
Join 100 other companies

Be part of customer round
tables and deep dive
meetings

WebSphere
Customer Advisory
Board – open invitation
a
http://ibm.biz/WebSphereAdvisoryBoard
email: claudiab@us.ibm.com

40IBM Cloud / © 2018 IBM Corporation

Choose your engagement level:

1. Stay ahead of the curve: more time
commitment

2. Close the gap: quarterly involvement

3. At your own pace: impact longer term
goals

Get involved.
Be successful.

http://ibm.biz/WebSphereAdvisoryBoard

• Use a log aggregation and analysis solution to get good use out of the mountain of logs your servers generate

• The Elastic Stack is a popular third party logging solution

• Liberty has an event framework that includes logs, trace, FFDC, access logs, audit logs, and garbage collection events

• Liberty’s JSON logging uses the event framework to output events in a convenient JSON format

• Liberty’s logstashCollector-1.0 feature uses the event framework to send events to Logstash

• Red Hat OpenShift Container Platform (RHOCP) integrates with EFK

• Liberty’s JSON log stream works great with RHOCP

• Developers can add extra fields to logs and trace using the LogRecordContext API

• Liberty’s requestTiming-1.0 and eventLogging-1.0 features add context to logs / trace (and are handy features)

• The Liberty team provides sample dashboards and config files to make it easy to get started using Elastic Stack

Summary

Thank You

