Maximo JSON API Overview

V1 Updated: 11/25/2015
V2 - Updated: 12/08/2015

V3 Updated: 12/17/2015
V4 - Updated: 10/23/2018

Contents

INEFOTUCTION <.ttt et b et e s it e e bt e e e sab e e e s bt e e e sabeeesabeeeanbeeesabeeesabeeesabanesabeeas
OVEBIVIBW ittt ettt ettt e e e e e e s e b e et e e et e e e s e e s bbb e s ettt e e e e e e s s s b e baeeeeeeeeeesns
O [V =] =1 (=T SRR URRTRT

F Y o B = o oY= U 1 Y PP PPPPPPR

USEI/PASSWOIT cevvvvretieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeet et ettt e et e e s e s s s easasasa s assesessssesseseseeeesesesesessssssssssssnsssnnnnnnns

AAPIMETA = IMIXASSET vttt eeee e e et et e e e e ettt etetet ettt e et e e e e aasasa s asassssesesseseseseeseseresesssessssssssssnssnnnnnns
YO]\ BT £ =11 o - TR

7.6.X = JSON CNANEES ..uveiiiiiii ettt e e e e e e e e e e bbbt e e e e eeaeaeeesss s tsbraaeaaaaaaeeesasssssssraaaeeaaaaanaas

Introduction

In Maximo 7.6.0.2, a new JSON (Javascript Object Notation) API has evolved
from the OSLC REST API (released 7.5.0.3), providing similar capabilities along
with some Usability improvements. This API can operate on existing
INTEGRATION (and OSLC) object structures and does not require the
configuration of an OSLC Resource. The API does not support the use of OSLC
namespaces and common properties, thus providing clean JSON data format.
The API does support some of the OSLC standards around querying, such as
the query parameters oslc.select and oslc.where.

This API follows Linked Data principles which implies that the APl will use URI’s
to uniquely identify resources and would follow the HATEOAS (Hypermedia as
the Engine of Application State). It is the recommended API for those needing to
manage Maximo resources using JSON. In addition to MBOs, this API supports
Attachments, Saved Queries and provides access to system level information.

Overview

The JSON API allows access to Maximo objects using an Integration object
structure (Consumed by of INTEGRATION or OLSC) as the JSON Resource.
The API supports the CRUD operations, as well as Query, using HTTP GET and
POST.

Resources are defined as Integration object structures. A large number of these
are provided out of the box with Maximo and can be used by the API. As well,
new object structures that are configured are also usable with the API, providing
their Consumed By value is either INTEGRATION or OSLC.

The majority of the examples used in this documentation will reference the out of
box object structure, MXASSET, that supports integration of asset data that
resides in Maximo.

Getting Started

If you are just starting out you should:
¢ |Install a JSON Plug-in in your browser so that you can easily view the
JSON data returned by the API
¢ In your Maximo environment, configure the host:port values in the System
Property: mxe.oslc.webappurl (reminder to do a Live Refresh)

API Starting URL

For any Maximo environment, the Root, or Starting, URL is
https://host:port /maximo/oslc/

User/Password

When working in a non-production environment, you have the option to
pass the login id and password as query parameters to facilitate your
development/testing.

?&_lid=wilson&_Ipwd=wilson

Once set, they do not need to be provided on every request providing you
keep your browser session open. If you have an active login to the
Maximo Ul in a separate tab of the browser, you will not have to provide
login info for you API requests.

Alternatively you can use the maxauth HTTP header with the value as the
base64 encoded user:password base64(wilson:wilson). There are online
tools that will encode values.

lean=1

To avoid the use of OSLC namespaces, provide the lean query parameter
(with a value of 1) on your initial request. If you maintain your browser
session, you do not need to provide it on subsequent requests. If you
forget to provide this value you will see the default namespace (spi) in
your JSON data.

APIMETA

The Starting URL will return something similar to this:
https://host:port Imaximo/oslc/?lean=1&_lid=wilson&_Ipwd=wilson

{
{
}

"systeminfo":
"href": "http://host:port/maximo/oslc/systeminfo”

apis": "http://host:portimaximo/osic/apimeta”,
"version":

"href": "http://host:port/maximo/oslc/version"
}!
"maxupg": "V7603-138",
"whoami":

"href": "http://host:portf/maximo/osic/whoami"

}

erverMembers":

"href": "http://host:port/maximo/oslc/members”

}

icenseKeys":

"href": "http://host:port/maximo/oslc/license”

}!
"currentDate": "2015-11-20T17:08:45-05:00",

"isPermanentLicense": true,
"language": "EN",

"href"; "http://host:port/maximo/oslic",
"serviceProviders":

"href": "http://host:port/maximo/oslc/sp"
}

alendar": "gregorian”,
"installedProducts":

{
"href": "http.//host:port/maximo/oslc/products”

}
}

The JSON data above provides some general system information and a
number of links to other data/resources. The link for 'apis' is the one to use
to start your access to data using the JSON api.

http://host:port/maximo/osic/apimeta

This link will retrieve all the API metadata for all object structures that are
Consumed By of INTEGRATION or OSLC. If you know the object

structure you are going to work with, you can retrieve the apimeta just for
that (example using mxasset object structure):

http://host:port/maximo/osic/apimeta/mxasset

APIMETA - MXASSET

Below is the metadata for the mxasset resource

{

"schema": "http://host:port/maximo/osic/jsonschemas/mxasset",
"queryCapability":

[
{

"ispublic": true,
"name": "All",
"href": "http.//host:port/maximo/oslc/os/mxasset”

"ispublic": true,

"name": "publicAssets",

"javaMethod": true,

"href": "http://host:porf/maximo/oslc/os/mxasset?savedQuery=publicAssets"

"title": "IT Stock in Stock Locations (non-Storeroom)",

"ispublic": true,

"name": "ITSTOCK",

"href": "http://host:port/maximo/osic/os/mxasset?savedQuery=ITSTOCK"

{
"title": "X",
"ispublic"; true,
"name": "LINKED-ASSETS",
"href": "http://host:port/maximo/osic/os/mxasset?savedQuery=LINKED-

ASSETS"

]

}

"authApp": "ASSET",

"title": "Asset Definition",
"useWith": "INTEGRATION",
"creationFactory™:

[
{

"name": "default",
"href": "http://host:port/maximo/oslc/os/mxasset”

}
]

description™: ",

"href": "http://host:port/maximo/oslc/apimeta/mxasset”,
"osName": "MXASSET",
"defaultPageSize": 100

The metadata for mxasset identifies a few key pieces of information. First
is the Schema url which will provide a JSON schema for asset resource.
Second is the queryCapability which identifies the urls to query the asset
resource. Third is the creationFactory url which identifies the URL to
create an asset resource.

JSON Schema

Below is a snippet of the JSON Schema for MXASSET where it lists all the
fields of the resource with their length and types. The schema would
reflect the configuration of objects and columns within the object structure.

{
"title": "MXASSET",

"$schema": "http://json-schema.org/draft-04/schema#",
"description": "Json Schema for MXASSET",

"properties":

"description_longdescription™:

"title": "Details",
"maxLength": 32000,
"subType": "LONGALN",
"usage":
[
"http://jazz.net/ns/ism/datatypes/smarter_physical_infrastructure#longaln”
1,
"type": "string"
2
"changedate":

{

"title": "Changed Date",
"maxLength": 10,
"subType": "DATETIME",
"type": "string"

b

"assetnum™:

{

"title": "Asset",
"maxLength": 12,
"subType": "UPPER",
"usage":

[

"http://jazz.net/ns/ism/datatypes/smarter_physical_infrastructure#upper"”

I
"type": "string"

7.6.1 - JSON changes

Beginning in 7.6.1 support was added to process messages in a JSON
format using a Publish/Invocation Channel and Enterprise Service. A flag
was added Publish/Invocation Channel application to direct the framework
to generate a JSON message from the object structure data, rather than
XML. The MXXMLFILE End Point will support writing a file in JSON
format, in addition to XML. The JSON file generated will be in a separate
folder (jsonfiles) under the configured MIF Global Directory
(mxe.int.globaldir).

An Enterprise Service can accept data in a JSON or XML format. When
posting, if the Content-Type header has a value of application/json then
processing will assume the payload is JSON, otherwise it will process as
XML. File loading using the Data Import in the External Systems

application or using the XMLFILECONSUMER Cron Task have added a
property to identify if the data being loaded is XML or JSON format.

Related documents will cover the details of the queryCapability and creationFactory.

Proceed to the documents that cover further details of the API such as querying and
updating resources. Please send any corrections or suggestions to Tom Sarasin at
tsarasin@us.ibm.com

