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Abstract—The challenge of accurate and timely prediction of 

failure crosses boundaries between different industries. From 
having representations in the data of actual technical factors that 
lead to failure, to minimizing false positives that result in increased 
costs, or integrating key performance indicators into the model, all 
industries can relate to the difficulties of delivering priority 
models that achieve dependable service for their clients. We have 
a look at how more informed decision-making modeling processes 
can capitalize on the main factors that contribute to failure.  
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I. INTRODUCTION  
Companies strive to develop methods that allow the 

identification of eventual failures before they occur. Whether 
they wish to determine when a machine is to be maintained, or 
a faulty generator will bring a communication network down, or 
an engineering component needs a design change, there is often 
the need to answer the question: When is failure imminent? This 
means creating reliable algorithms capable of analyzing data, 
interpreting it, and obtaining knowledge from it. As such, there 
is a proliferation of papers dedicated exclusively to applying 
machine learning-based predictive models to different 
industries: Failure in optical networks (1), maintenance and 
rehabilitation of water networks (2), failure mode and effect 
analysis for heating, ventilation and air-conditioning (3), or 
electrical failure analysis of integrated circuits (4), to name just 
a few. In spite of their common goal, there is no “one size fits 
all” type of methodology or a “silver bullet” that will hit the 
target right on for all applications, even within the same 
industry. In this paper, we are summarizing some of the 
challenges we encounter in our practice and the techniques we 
employ to identify, predict and notify the occurrence of failure 
events. As we work with more client requirements and evolving 
techniques, more possibilities open up for new methodologies 
that learn the relation between a given input and expected 
output. 

II. PRINCIPLES AND PROCEDURES 

A. Why Artificial Intelligence?  
A common approach to gaining business insights is based 

on Statistical Analysis which is a rule-based decision-making 
process. However, this approach has its limitations that can be 
overcome with more powerful techniques that are known as 
Machine Learning (ML) models. ML is a subset of Artificial 
Intelligence (AI) where algorithms learn by example from 
historical data and uncover patterns not easily spotted by 
humans. As ML models keep learning, their users can apply 
those self-learning algorithms to uncover insights, determine 
relationships and make predictions about future trends. 
Although ML has been around for a long time, it is popular 
these days because of breakthroughs in low-cost computing 
resources like cloud storage, easier data collection and the 
proliferation of Data Science (DS). 

B. Feature Selection 
      An ML model takes in data and then internally forms 
several complex mathematical hypotheses to make predictions 
based on that data. Features need to be extracted from the data 
such that relevant information is taken in as input in the ML 
model instead of the raw data. For example, if we want to 
predict failure rates for optical fibers, then we need to take into 
account features like “width”, “thickness”, “quality” or “signal 
frequency”.  Or, another case may be predicting failure modes 
of machinery components in which case we want features such 
as “temperature”, “run duration”, “maintenance” etc. Many 
features are numerical representations of the data however 
some data representations are in categorical form. This requires 
further data preprocessing before that information can be used 
as features in the ML model. The features then sit in between 
the data and the model becoming part of the ML pipeline. 
Selecting the right features for the model is one of the important 
steps we take due to the fact that correct feature selection will 
help the model in deriving great results. There are several 
feature selection techniques that help discard non-useful 
features thereby reducing unnecessary complexities in the 
model. One of the model goals is to predict results with faster 



computation. Consequently, various feature selection 
techniques can be used such as filtering, wrapper methods or 
embedding techniques. 
C. ML Techniques 
     In our real-world client applications, we want to avoid, or at 
the very least minimize the false positive cases for predictions 
we are trying to make. False positives are errors in data 
reporting where the ML model results incorrectly indicate the 
presence of an event which in reality is not present. It therefore 
becomes essential to develop an algorithm that can train and 
learn well on the data in order to predict high accuracy results, 
with low bias and low variance. A biasing error results when 
the ML algorithm misses the relevant relations between features 
and the target outputs. On the other hand, a high variance 
indicates an error where instead of modeling the actual signal 
in the data, we model the noise or small fluctuations in the 
signal.  
    There are ML models which use ensemble learning 
techniques, and these tend to show better results than those 
native machine learning models we are all accustomed to. 
Ensemble learning techniques are based on the process of 
combining multiple learning algorithms to obtain better results. 
One of these algorithms is the Light Gradient Boosting 
Machine (LightGBM), which is a tree-based learning algorithm 
known for its faster training speed, higher efficiency, lower 
memory usage and better accuracy when compared to other 
gradient boosting algorithms. It turns out that this ML model, 
together with its cousin, Extreme Gradient Boosting (XGBoost) 
are well suited ML methods that allow the identification of 
eventual failures before they occur. 

III. RESULTS 
With all this in mind, we will be looking at a few examples 

encountered in our client practice and solutions we employed 
to analyze the data, interpret it and ultimately obtain knowledge 
from it that led to the timely prediction of failure. Most part of 
the work consists of data analysis and the development of 
procedures that can process it. The ultimate goal is to write an 
efficient system of algorithmic procedures able to identify and 
predict the occurrence of failure events. One fundamental 
outcome is the possibility to scale the algorithms to other 
datasets, thereby resolving different data scenarios. 

A. Know Your Data 
Before proceeding with feature engineering, we spent some 

time doing an exploratory data analysis (EDA) following the 
usual methodology in data science. Fig. 1 shows an example of 
insights gained from EDA in the telecommunications case of 
predicting network failure. We tried several approaches that 
addressed some questions such as: How can we build a merged 
KPI dataset given that the three technologies do not have the 
same KPI metrics? Or, how can we add some additional features 
to our datasets so that we can have a look at a rolling mean, or 
even perform another model such as KMeans Clustering? 
Having cluster labels means they can be used as new features in 
the dataset. Fig. 2 shows some findings as we engineered 
features. A good set of features for the network failure model 

turned out to be the average time between alarms and the 
average number of daily alarms. We also managed to extract 
from the KPI dataset the KPIs daily rate of change and the daily 
summary statistics, both proving to have predictive power. More 
on this later. 

Another use case that is particularly attracting a lot of 
attention from building operators and researchers involves Fault 
Detection, Diagnostics and Prognostics because they determine 
the performance of building operations. The main challenge for 
the latter is the special controls environment of heating, 
ventilation and air-conditioning (HVAC) systems. Control 
programming is a custom and manual process prone to human 
error. For example, inappropriate control sequencing of the 
HVAC equipment can lead to sub-optimal use in energy within 
the building and thereby poor comfort performance. Let’s say 
the supply air pressure setpoint of an air handling unit is too low, 
then the dampers of the terminal variable air volume units will 
remain open all the time resulting in zone temperature setpoints 
not being met. These considerations bring us to the features we 
would need in a ML model to predict HVAC failure. We would 
consider a set of expected operational conditions. For instance, 
if a heating set-point temperature for a room is raised above 
25°C and result in an alert, we could extract a feature for our ML 
model that quantifies how the subsystem is tracked that directly 
impacts that room temperature. We would expect to find these 
features in documents for HVAC failure mode and effect 
analysis (FMEA) because that would be a systematic method of 
identifying and preventing system, product and process 
problems.  

      On the other hand, if our ML model needs to be framed 
around a different use case such as network failure, we would 
have to take into account how something fails within a network 
and what triggers alarms (e.g. energy, software, hardware), the 
different alarm types, and the network key performance 
indicators (KPIs). Such a case would involve a different set of 
features given the data comes from sensors with alarms from a 
specific geographical site and it includes technical attributes of 
the site. In telecommunications, 2G, 3G and 4G are sectors of a 
technology, also known as a “node”. If one sector fails it may 
or may not take down the other ones. And there are usually up 
to 20 nodes at each site. If the cause of failure can be traced 
back to energy reasons, then it is expected the entire site to be 
down. And an alarm could occur over a certain time length. For 
instance, we may have first a hardware alarm followed by an 
out-of-service (OOS) alarm. Or, there could be an energy alarm 
which in turn is associated with a failed generator which could 
be due to no fuel. Table I shows an example of such variables 
that we used to extract some meaningful features with 
predictive power. Given the complexities involved in the 
process of a network failing, the best source of information in 
order to build an ML model is the history of the alarms, what 
causes them and the temporal variation. Armed with this data, 
network engineers aided by data scientists can develop 
predictive algorithms for anticipating failure, instead of relying 
on a post-mortem analysis to figure out what went wrong.  
  
 



TABLE I.  VARIABLES FOR FEATURES 

Further 
Transfo

rmed 

Some Variables Used to Extract Features 

For a Node For Network KPIs For 
Alarms 

no Node availability Minutes per drop Time of 
year 

yes 
Maintenance 
requests over “x” 
time windows 

 
Traffic of 

internet calls 
(voice vs data) 

 

Frequency 
of alarms 
over “x” 
time 
windows 

no location Throughput traffic 

Alarm 
from 
sector or 
from node 

TABLE II.  EXAMPLE DATASET 

Dataset for the machinery equipment 
 Main component Subcomponent  

Equi
pmen

t 

Temper
ature 
(oF) 

Water 
level 
(%) 

Run 
duration 

(hrs) 

Temperature
(oF) 

Run duration 
(hrs) 

Stat
us 

1 65 0.8 12 74 18 1 

2 165 0.9 75 62 15 0 

3 55 0.1 48 184 24 0 

4 75 0.99 1 90 64 1 

 

B. Data Sets 
An important step in developing your ML model is having 

datasets to work with. Actually, one would need three datasets 
to be more specific, therefore before doing any transformations 
to the data, it is best to split the data into train, test and 
validation datasets. The training dataset is data that we fit to the 
model and on which the model trains. The model learns from 
this data. The test dataset is then used to predict the responses 
for the observations in the test data and sometimes also for 
tuning the model hyperparameters. Finally, the held-out 
validation dataset has not been used prior for neither training 
nor hyperparameter tuning and is thereby used to give an 
unbiased estimate of the model. We can now perform data 
transformations and feature engineering on the three datasets 
individually to avoid cross-contamination between them. 

Table II. shows what a transformed dataset may look like. 
Specifically, it shows data for some machinery equipment with 
two components: A main one and a subcomponent. For this 
equipment to be in running state both the main and 
subcomponent must be operational. The main component could 
have three primary features: Temperature,  water levels and the 
total duration of time the main component was continuously 
running. The subcomponent could have two similar primary 
features. A column with the name “Status” could indicate 
weather the equipment is actively running or is in a failed status. 
This could be our target variable on which we are predicting. If 
so, the “Status” column could have values as follows: 
0 – Active  
1 – Failed  
In the shown example, equipment 1 and 4 are in an active state, 
whereas equipment 2 and 3 are in a failed state. This could be 

due to high temperature perhaps, and/or low water level 
percentage. This is an example scenario where ML models can 
help us. Our goal is to predict the failure state for the equipment, 
given the features in the above dataset. 

C. ML Algorithms 
As mentioned above, most failure prediction use cases can 

be handled by ensemble techniques such as LightGBM. If it is 
a regression problem, the outcome can be presented as an 
average of all the predicted outputs of the different models, 
whereas for a classification problem, the outcome can be 
represented by what is known as “majority voting”. 

The ensemble techniques we would use for predicting 
failure can be one of two types: a. Bagging and b. Boosting. If 
we use the Bagging technique, also known as “Bootstrap 
Aggregation”, we would be creating multiple bags of “train and 
test” datasets with different features and data records. These are 
in turn fed to the same or to different ML models. Multiple ML 
models are then combined to make more accurate predictions 
than an individual model would make. On the other hand, if we 
use a Bosting technique, it would be similar to the Bagging 
technique, however the focus is more on converting a weak 
learner into a strong one. A Boosting technique would power 
the predictions by training a sequence of weak learners, each 
compensating the weakness of its previous learner. Fig. 3 shows 
a brief schematic of the difference between a Bagging and a 
Boosting technique.  

 
Fig. 1 Example EDA insights. Most frequent alerts for most frequently failing 
sectors. 

 
Fig. 2 Example feature engineering for network failure. OOS = out-of-service. 



 
 

Fig. 3 Schematic representation of Bagging and Boosting techniques. 

 
Many teams prefer a LightGBM boosting ML model 

because it is known primarily for reducing bias and variance in 
supervised machine learning. A LightGBM model uses a tree-
based learning algorithm which is designed to be distributed 
and comes along with various advantages like for instance: 
Faster training speed and higher efficiency, low memory usage, 
and better accuracy. It also supports parallel and GPU learning 
and is capable of handling large datasets.  

IV. CONCLUSION 
In this paper, we showed some examples of how we can 
approach a real-life use case that involves predicting some 
form of failure, be it a telecommunications network or an 
HVAC system. The machine learning-based predictive model 
has applicability that goes beyond these examples, it can be 
extended to several other industries. The boosting model such 
as LightGBM showed good results and less signs of variance 
and bias. The most challenging part is as usual the data that 
we start out with. Most time is spent on extracting the most 
meaningful information that we feed into the model to obtain 
most accurate predictive results for failure. 
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