
 ���®
IBM® DB2® for Linux®, UNIX®, and Windows®

Best Practices Best Practices
DB2 High Availability Disaster

Recovery
DB2 High Availability Disaster

Recovery

Dale McInnis Dale McInnis
Senior Technical Staff Member Senior Technical Staff Member
DB2 Availability Architect DB2 Availability Architect

Yuke Zhuge Yuke Zhuge
DB2 Development DB2 Development

Jessica Rockwood Jessica Rockwood
DB2 Development DB2 Development

Robert Causley Robert Causley
DB2 Information Development DB2 Information Development

DB2 High Availability Disaster Recovery Page 2

4

5

6

6

6

7

7

7

8

8

8

8

9
9

10
10
10
11
11
12
12
12
13
16
17
17
17
17
17
18
18
18
19

DB2 High Availability Disaster Recovery.. 1

Executive summary..

Introduction to HADR...

Setting up your system ..

Perform an infrastructure analysis...

Requirements for setting up HADR ...

Use dedicated, high performing disks or file system for the database
logs ...

Make the location of archived logs accessible to both the primary and
standby databases ...

Use a dedicated network for the HADR primary-standby connection ...

Consider using multiple network adapters ...

Consider using a virtual IP address for the database server

Consider using automatic client reroute ...

Tuning parameters ...

HADR-specific parameters ...

Choose the appropriate HADR synchronization mode...
SYNC mode ..
NEARSYNC mode ...
ASYNC mode ...
SUPERASYNC mode..
HADR simulator..
Tune DB2_HADR_BUF_SIZE..
Monitoring HADR standby receive buffer usage ...
Tune hadr_timeout...
Tune hadr_peer_window ..
Tune DB2_HADR_PEER_WAIT_LIMIT ...
Tune DB2_HADR_SOSNDBUF and DB2_HADR_SORCVBUF

Client-server communication parameters ..

Tune DB2TCP_CLIENT_RCVTIMEOUT..
Database parameters ..

Set logfilsiz to a moderate size ..
Set logindexbuild to ON ..
Set indexrec to RESTART ..
Tune softmax ..

Database parameters related to client reroute ..

DB2 High Availability Disaster Recovery Page 3

19
19

19

19

19
20

21

21

21

22

24

25

25

26

27

Set DB2_MAX_CLIENT_CONNRETRIES and DB2_CONNRETRIES_INTERVAL
..

Database administration and maintenance..

Choosing the appropriate reorganization method...................................
Perform an online reorganization to maintain availability of the affected tables
and indexes...
Perform an offline reorganization if the affected tables and indexes can be
unavailable ..

Performing load operations in an HADR environment

Perform a nonrecoverable load only if the load operation does not
need to be replicated on the standby..

Ensure that the load copy is available to the standby when it replays
the load ..

Set the DB2_LOAD_COPY_NO_OVERRIDE registry variable to COPY
YES if there will be frequent load operations...

Best Practices ...

Conclusion...

Further reading ...

Contributors...

Notices ...

Trademarks ...

DB2 High Availability Disaster Recovery Page 4

Executive summary
DB2 High Availability Disaster Recovery (HADR) is an easy to use data replication
feature that provides a high availability (HA) solution for both partial and complete site
failures.

However, given the wide variety of users’ requirements, there is no one ideal
configuration for HADR. The decisions you make in setting up, tuning, and maintaining
your HADR environment are often the result of weighing various pros and cons. For
instance, you might need to balance the competing requirements of the availability of
your database with protection from data loss. The good news is that this need to find a
balance does not necessarily imply that one requirement needs to suffer.

This document provides a number of recommendations for setting up and maintaining
your HADR environment in ways that help balance the protection HADR provides with
performance and cost. The following specific areas of focus are covered:

 Setting up your system for fast failovers

 Tuning parameters to improve network performance

 Tuning parameters to minimize the impact of HADR-related logging on
performance

 Choosing the right table reorganization method and load operation in an HADR
environment

DB2 High Availability Disaster Recovery Page 5

Introduction to HADR
HADR replicates data changes from a source database (called the primary) to a target
database (called the standby). Each database uses its own storage, as this is a shared-
nothing architecture. HADR provides fast failover in case the primary database fails. You
can also switch the roles of primary and standby databases easily and quickly for
scenarios such as rolling upgrade or rolling maintenance, keeping down time to
minimum. HADR is versatile and is fully integrated into DB2 database systems requiring
no special hardware or software and using a standard TCP interface to connect the
primary and standby databases. Setup requires only a few database configuration
parameters.

A central tenet of HADR is that the performance and availability of the database should
not be impacted by challenges such as sudden spikes in the workload (which impacts the
amount of log replay activity on the standby) or failed servers or networks (which can
lead to a failover).

Tuning your HADR solution for optimal performance should follow some basic tenets up
front to avoid potential issues over time. As well, an HADR setup has a number of
implications for your database maintenance activities that you should know. This best
practice paper addresses these points. It focuses on providing guidelines and specific
recommendations for designing your HADR infrastructure and configuring your
database in order to improve HADR-related performance, specifically logging and
failover speed.

DB2 High Availability Disaster Recovery Page 6

Setting up your system

Perform an infrastructure analysis
Before starting your HADR implementation, the critical first step is to analyze the system
landscape that will be used. Each component in the infrastructure (such as server,
storage, network, and software) needs to be reviewed to identify potential points of
failure. Where possible, it is recommended to build in component redundancy (for
example, two network adapters, backup server power). As part of the analysis activity,
build a chart similar to the example HADR analysis chart in figure 1 that details each
component failure on both primary and standby locations (if applicable) and the
expected behavior in case of failure.

Location
operating as

primary

Failure
location

Failure description Expected result Outage
impact

Site A Site A For example, AIX®
server failure

Tivoli® Systems
Automation
detects failure of
site A within 5
seconds and
invokes forced
HADR takeover
on site B

Any inflight
transactions
are rolled
back;
standby
server takes
over as
primary and
opens for
transactions
within 30
seconds

Figure 1. Example of an HADR analysis chart

After the implementation of the HADR setup is complete, use the HADR analysis chart
to develop a test plan to validate the implementation and the timing expectations to
ensure that high availability and data recovery business requirements can be met (or
valid expectations can be set).

Requirements for setting up HADR
There are a number of requirements for setting up HADR, including:

• The operating system and the DB2 version and level must be the same on the
primary and standby. The only exception to this is when you are performing
rolling upgrades.

DB2 High Availability Disaster Recovery Page 7

• The DB2 software for both the primary and the standby database must have the
same bit size.

• A TCP/IP interface must be available between the HADR primary and the
standby.

• The primary and standby databases must have the same database name.

• Table spaces must be identical on the primary and standby databases.

Beyond these requirements, there are a number of recommendations for setting up your
HADR system.

Use dedicated, high performing disks or file system for the
database logs
Because database changes are logged by a single log stream (HADR is not available in
partitioned database environments or in DB2 pureScale environments), this stream can
become system bottleneck. It is very important to have guaranteed I/O capacity on the
logging file system. Do not share devices between the logging file system and table space
file systems.

Make the location of archived logs accessible to both the
primary and standby databases
Making the location of archived logs available to both databases has several advantages:

• The primary database is the only database that archives logs, but after a
takeover, the new primary (original standby) starts archiving logs. Therefore, it is
simplest to have all logs archived to the same location. If the archive device is not
shared, after a few role switches, some files will be on one device and some on
the other. Then you might need to copy the required log files manually before
attempting a log retrieval for HADR catchup, when using one of the data
replication products such as Q Replication, or other recovery actions.

• A shared archive allows the standby to retrieve log files directly from the archive
device during local catchup state, relieving the primary from reading the files
and sending them over the network to the standby.

Use a dedicated network for the HADR primary-standby
connection
Other traffic (such as client-server communication, database backup, and log archive) on
the network used for HADR communication can cause hiccups in HADR performance.
The network is the most important part of an HADR landscape, as network connectivity
is required to replicate database changes from the primary to the standby, keeping the
two databases synchronized.

DB2 High Availability Disaster Recovery Page 8

Whether dedicated or shared, the bandwidth for the HADR network must be greater
than the database log generation rate (which can be calculated by monitoring the
database and looking at the amount of logs generated in a time period and any other
shared network activity.

Consider using multiple network adapters
Using multiple network adapters helps ensure that the failure of a single adapter does
not result in the loss of network.

Consider using a virtual IP address for the database server
Configure clients to connect to the database using the virtual IP address. Redirect the
virtual IP address from the primary database server to the standby database server upon
failover. Because the IP address is shared between the primary and the standby
databases, you can prevent both copies of your database from operating independently
as primaries (sometimes called “split brain” or “dual primary”) by having applications
only talk to whichever database owns the virtual IP address.

Consider using automatic client reroute
Automatic client reroute redirects clients from the primary server to the standby server in
the event of a failover. Configure your system and your applications to use either a
virtual IP address or client reroute, but not both. One advantage of using client reroute
instead of a virtual IP is that client reroute is built into the DB2 engine, so it does not
require additional hardware and software. For more information on automatic client
reroute, see the automatic client reroute roadmap -
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.ha.
doc/doc/r0023392.html

Tuning parameters
Before you make any changes to the configuration parameters, try to have identical
database manager (DBM) and database (DB) configuration parameters on the primary
and the standby system. Changes to DBM and DB configuration parameters on the
primary system are not automatically propagated to the standby system, so any updates
need to be done on both systems manually.

Updates to non-dynamic database configuration parameters require special
consideration on an HADR pair.

None of the HADR configuration parameters can be dynamically updated (configurable
online parameters). In addition, the symmetry of the settings of these parameters is
enforced between the two HADR databases. The HADR connection will fail if the
database manager detects that the settings of the HADR configuration parameters (like
HADR_SYNCMODE, HADR_TIMEOUT) are different on the primary and the standby
databases. As a result, once the HADR parameters have been updated on both primary

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.luw.admin.ha.doc/doc/r0023392.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.luw.admin.ha.doc/doc/r0023392.html

DB2 High Availability Disaster Recovery Page 9

and standby, both databases must be restarted (deactivated and reactivated) for the
parameter update to take effect. If only one database is restarted, it cannot be activated
due to the mismatch in HADR configuration. This type of update requires a primary
outage.

Non-HADR configuration parameter symmetry is not enforced by HADR. As a result,
database configuration parameters that are not configurable online parameters can be
updated, without a primary outage, through a rolling update procedure. First, the
standby can be updated and the database restarted. Then, an HADR takeover can be
issued. The new primary uses the new setting of the specified database configuration
parameter. The new standby can then be updated and the database restarted.

HADR-specific parameters

Choose the appropriate HADR synchronization mode
HADR provides four synchronization modes to suit a diverse range of operational
environments and customer requirements. The synchronization mode is the most
important HADR configuration parameter. The database configuration parameter
hadr_syncmode can be set to one of the following values:

• SYNC: Transactions on the primary database commit only after relevant logs are
written to disk on both the primary and the standby

• NEARSYNC: Transactions on the primary database commit only after the
relevant logs are written to disk on the primary database and received into
memory on the standby database

• ASYNC: Transactions on the primary database commit only after the relevant
logs are written to local disk and sent to standby

• SUPERASYNC: Transactions on the primary database commit as soon as the
relevant logs are written to local disk

Generally, the choice of HADR synchronization mode depends on network speed. For a
WAN, ASYNC or SUPERASYNC modes are the recommended options because
transmission latency has no effect on HADR performance in these modes.

For a LAN, the choice is most often between SYNC and NEARSYNC modes. An
exception to this might be if the standby is being used for pure disaster recovery and the
business requirements can withstand data loss in the case of a failover, or the workload is
so heavy that even a LAN cannot handle the workload. Then, you might have to use
ASYNC mode. In making the choice between SYNC and NEARSYNC, weigh the possible
cost to system performance (resulting from communication overhead) in SYNC mode
versus the security against “double failure” in NEARSYNC mode.

DB2 High Availability Disaster Recovery Page 10

SYNC mode
SYNC mode offers the best protection of data. Two on-disk copies of data are required
for transaction commit. The cost is the extra time for writing on the standby and sending
an acknowledgment message back to the primary.

In SYNC mode, logs are sent to the standby only after they are written to the primary
disk. Log write and replication events happen sequentially. The total time for a log write
event is the sum of (primary_log_write + log_send + standby_log_write + ack_message).
The communication overhead of replication in this mode is significantly higher than that
of the other three modes.

NEARSYNC mode
NEARSYNC mode is nearly as good as SYNC, with significantly less communication
overhead. In NEARSYNC mode, sending logs to the standby and writing logs to the
primary disk are done in parallel, and the standby sends an acknowledgement message
as soon as it receives the logs in memory. On a fast network, log replication causes no or
little overhead to primary log writing.

In NEARSYNC mode, you will lose data if the primary fails and the standby fails before
it has a chance to write the received logs to disk. This is a relatively rare "double failure"
scenario. Thus NEARSYNC is a good choice for many applications, providing near
synchronization protection at far less performance cost.

A realistic example of NEARSYNC performance analysis is as follows:

Network throughput: 100Mb/second

Network round trip time: 0.1 millisecond

Assuming each log write on the primary writes 4 log pages (16 KB), log
replication time for a write is:

16 * 1024 * 8 / 100*106 + 0.0001 = 0.00141072 second

This translates to a rate of 11.6 MB/second, which is in the same order of disk write
speeds. Because disk write on the primary and log replication to the standby are done in
parallel, there is no or little log replication overhead. With the popularity of Giga bit
networks today, the 100Mb/second network in the example is a relatively slow network.
On a Giga bit network, the log replication rate would be 106MB/second, which is faster
than many disks.

ASYNC mode
In ASYNC mode, sending logs to the standby and writing logs to the primary disk are
done in parallel, just like in NEARSYNC mode. Because ASYNC mode does not wait for
acknowledgment messages from the standby, the primary system throughput is min(log
write rate, log send rate). ASYNC mode is well suited for WAN applications. Network
transmission delay does not impact performance in this mode, but if the primary

DB2 High Availability Disaster Recovery Page 11

database fails, there is a higher chance that logs in transit will be lost (not replicated to
standby).

SUPERASYNC mode
This mode has the shortest transaction response time of all synchronization modes but has
also the highest probability of transaction losses if the primary system fails. The primary
system throughput is only affected by the time needed to write the transaction to the
local disk. This mode is useful when you do not want transactions to be blocked or
experience elongated response times due to network interruptions or congestion.
SUPERASYNC mode is well suited for WAN applications. Since the transaction commit
operations on the primary database are not affected by the relative slowness of the HADR
network or the standby HADR server, the log gap between the primary database and the
standby database might continue to increase. It is important to monitor the log gap in this
mode as it is an indirect measure of the potential number of transactions that might be lost
should a true disaster occur on the primary system.

Figure 2 shows when transactions are considered successful based on the synchronization
mode chosen.

Figure 2. Synchronization modes for high availability and disaster recovery (HADR)

HADR simulator
You can also use the IBM DB2 High Availability Disaster Recovery (HADR) simulator to
estimate HADR performance in different synchronization modes. The simulator is a very
useful tool in HADR planning and tuning. You can run the simulator before deploying
HADR to preview logging performance. If you have already deployed HADR, you can
run the simulator to see what performance you would get if you changed the sync mode.
All of this can be done within a few seconds, with no impact on the production system.
For information on using the HADR simulator, see
http://www.ibm.com/developerworks/wikis/display/data/HADR_sim.

http://www.ibm.com/developerworks/wikis/display/data/HADR_sim

DB2 High Availability Disaster Recovery Page 12

Tune DB2_HADR_BUF_SIZE
Setting the DB2_HADR_BUF_SIZE registry variable to the size of expected workload
spikes configures your HADR standby log receive buffer to absorb spikes in the primary
workload.

Log receive on standby writes logs into this receive buffer as a producer. Log replay
reads the logs as a consumer. If the consumer is too slow, the buffer fills up, and the
standby cannot receive any more logs. For SYNC and NEARSYNC modes, chances are
that the primary can still send out one log flush when the standby buffer is full. This
flush will be buffered along the network pipeline from the primary to the standby, in
various OS or network buffers. But the standby database is not able to receive it into its
receive buffer. The primary will then be blocked, waiting for an acknowledgment
message. For ASYNC mode, the primary will keep sending logs until the network
pipeline fills up, then it will get network congestion error when trying to send more logs.
For SYNC and NEARSYNC, if the network pipeline can not absorb a flush, the primary
will also see congestion. Congestion is reported using the HADR monitoring mechanisms
such as database snapshot or the db2pd command.

To measure workload spikes:

1. Temporarily deactivate the standby.

2. Look at the "primary log position" field in your HADR snapshot or db2pd
output to measure primary log rate (Log position is the byte offset of current
log position in log stream). If HADR is not enabled on the primary database,
look at log write related fields from database snapshot (available via CLP
command, snapshot view, or SNAP_GET_DB function) instead.

Monitoring HADR standby receive buffer usage
When tuning the standby buffer size, use the db2pd command with the -hadr option to
monitor the HADR standby receive buffer usage. It will report the percentage of buffer
used. 100% indicates a full buffer—that is, log receive is faster than log replay—and 0%
indicates an empty buffer—that is, there is nothing to replay.

For tuning purposes, sample the buffer usage at a regular interval. If the percentage
frequently hits 100%, consider using a larger buffer. If the percentage is always low,
consider reducing the buffer size. If the percentage occasionally reaches high, you must
balance the benefit of absorbing those spikes with the cost of the memory.

A large standby receive buffer will absorb spikes in primary workload. However, it will
not help if the sustained replay rate on standby is slower than the log generation rate on
the primary. It is recommended that the standby have the same hardware as the primary,
so that the overall standby replay rate will keep up with primary log generation rate. If
the standby cannot keep up with the primary, it will slow down the primary.

Tune hadr_timeout
The hadr_timeout configuration parameter determines the number of seconds the HADR

DB2 High Availability Disaster Recovery Page 13

process waits before considering a communication attempt to have failed. If a database
does not receive a heartbeat message from its partner database within the number of
seconds set by the value of the hadr_timeout value, the database considers the
connection down and closes the TCP connection. Tuning this parameter means balancing
the ability of HADR to detect network failure promptly with the possibility of “false
alarms.” If the hadr_timeout configuration parameter is set too long, the HADR process
cannot detect network or partner database failure promptly. The primary can end up
waiting too long for a log replication attempt, blocking transactions on primary. If it is
too short, the HADR process might get too many false alarms, breaking the connection
too often. If a peer window is enabled (meaning the hadr_peer_window parameter is set
to a non-zero value), each disconnection also leaves the primary in disconnected peer
state for the configured peer window size duration, leaving transactions blocked on the
primary.

An HADR database always disconnects when it detects network errors or remote end
closures. hadr_timeout is only the last resort of connection failure detection. Usually,
when a database crashes, its host machine cleans up its open connections and notifies the
remote end of the closure. It is only a machine crash that might leave the remote end
hanging until a timeout occurs. Various network layers might have their own heartbeat
mechanism too, detecting a connection failure before HADR does. As soon as the failure
is reported to the host machine, HADR detects it as HADR continuously monitors the
health of the connection via polling.

The recommended hadr_timeout parameter setting is at least 60 seconds. When setting
the hadr_timeout parameter, consider network reliability and machine response time.
Use a longer timeout if the network has an irregular or long transmission delay. HADR
processes send heartbeat messages at regular intervals. But send and receive are only as
prompt as the processes themselves are scheduled to run on the host machines. Events
like swapping can prevent a process from sending or receiving messages on time.

Tune hadr_peer_window
The hadr_peer_window database configuration parameter enables failover operations
with no data loss if the primary failed within a specified time—the peer window. When
the HADR primary database is in peer state, logs are sent directly from the in-memory
log buffer when the logs are written to the local disk. If the connection is broken, the
primary database blocks logging for hadr_peer_window seconds and no transaction is
committed. If the primary database then fails within this window, we know that there are
no committed-but-not-replicated transactions and therefore there is no data loss during
the failover to the standby database.

When the peer window is set to non-zero value, the primary sends messages to the
standby at regular interval in peer state, indicating a "peer window end" timestamp,
which is the time until which the primary blocks logging should it loses connection to the
standby. The current peer window end can be retrieved from the primary or standby
using the usual HADR monitoring mechanisms such as database snapshot or the db2pd
tool. When the primary database fails, you can check the peer window end on the
standby database to see if the primary failed within peer window. If it did, you might

DB2 High Availability Disaster Recovery Page 14

perform a failover with no data loss. Otherwise, the primary might or might not have
committed transactions after the peer window has ended; you will need to consider the
risk of data loss; instead of a failover, you might choose to repair and restart the failed
primary.

For easy integration with cluster managers, a PEER WINDOW ONLY option is available
for the TAKEOVER BY FORCE command. With this option, the command performs a
failover only if the current time is earlier than the peer window end time. Upon detecting
primary failure, the cluster manager can issue the TAKEOVER BY FORCE PEER
WINDOW ONLY command to initiate a failover. Using this option maximizes the
likelihood that an automated failover does not cause data loss. This option is
recommended for automated failovers (the DB2 cluster manager uses this option). In
such a configuration, the peer window time should be set to at least the amount of time
the cluster manager needs to detect primary failure and react to the failure using failover.
Use the following equation as an estimate:

hadr_peer_window setting >= response time + safety margin + heartbeat interval

where:

response time = estimated time for automation software to detect failure and
invoke HADR takeover

safety margin = 5 sec, safety margin for primary-standby machine clock
synchronization

heartbeat interval = MIN(hadr_timeout value/4, hadr_peer_window value/4, 30
sec)

Figure 3 illustrates the rationale behind this equation. The time between the heartbeat
and the primary failure is the heartbeat interval (this is the worst case scenario, where the
primary fails right before it is going to send out another heartbeat). The time it takes for
the database administrator (DBA) or the cluster manager to detect the failure and
respond by issuing the TAKEOVER command is known as the response time. The “peer
window end” timestamp is generated on the primary system and sent to the standby
system via the heartbeat message. When it is compared with the current time on the
standby during execution of the TAKEOVER BY FORCE PEER WINDOW ONLY
command, a five-second safety margin is used in the comparison to handle less than
perfectly synchronized primary and standby server clocks. (It is recommended that you
synchronize the primary and standby server clocks using a method such as network time
protocol.) Thus, the peer window size should be at least heartbeat interval + response time +
safety margin

DB2 High Availability Disaster Recovery Page 15

Heartbeat

Primary failure

time
Heartbeat
interval

Response time Safety
margin

Peer window size

Peer window end

Takeover command

Figure 3. Peer window size

The takeover command should be issued before the peer window end time to ensure no
data loss. After the peer window end time, you can still analyze peer window end
(reported on primary and standby via the usual HADR monitoring interface such as
database snapshot and db2pd) and compare it to primary failure time. As long as the
primary failure time is earlier than peer window end, you can issue takeover for lossless
failover. You should not use the "peer window only" option if you issue the command
after peer window end. The PEER WINDOW ONLY option is intended for a cluster
manager to do safe failover operations quickly after primary failures, providing minimal
down time.

The “peer window end” message from the primary to the standby is implemented as a
heartbeat message. Thus the heartbeat interval on peer-window-enabled systems takes
peer window size into account, using the formula above. The peer window end on the
standby can be one update interval (heartbeat interval) behind the peer window end on
the primary, thus the above peer window setting equation adds a heartbeat interval to
the window size.

The above equation only takes into account automatic failovers. Other factors, such as
low tolerance to data loss, duration of possible network or standby failure, and time to
detect and react to network partition might require a longer peer window. For example,
if the network or standby fails, the primary will proceed to process transactions after the
peer window expires, with no HA protection. A longer peer window might be needed to
block the primary for DBA intervention if business requirements state that having a
second copy of data on the standby is very important.

The default value of hadr_peer_window is zero, which means that the primary unblocks
all waiting transactions and resumes logging as soon as the connection is broken. This
provides maximum availability at the risk of losing data during a failover. This
parameter can be tuned from zero to as long as years (effectively infinity), allowing the
user to fine tune the balance between availability and risk of data loss. An extremely
long peer window is essentially enforcing the rule "transaction commit on primary
requires a second copy on standby system."

DB2 High Availability Disaster Recovery Page 16

Even when availability is important, an hadr_peer_window value of at least a few
seconds is recommended as it greatly reduces the chance of losing data in a rolling
failure, where the network fails first, then the primary machine. During the interval, if
the hadr_peer_window value is zero or very short, the primary can commit transactions
not replicated to the standby. This data is lost in a failover. The default value of zero is
for backward compatibility.

Once peer window is enabled, regardless of how the connection is broken, either from
network error, standby failure, or exceeding the hadr_timeout value, or exceeding the
DB2_HADR_PEER_WAIT_LIMIT registry variable setting, the primary blocks
transactions for the configured duration. This ensures that "peer window only" failover
on standby is safe in all cases. However, if the connection is closed on normal standby
shutdown, the primary bypasses the peer window and resumes logging as soon as the
connection is closed. The peer window and hadr_timeout are independent and take
effect sequentially. Peer window specifies how long to hold primary transactions after a
connection is broken, whereas hadr_timeout specifies the conditions for breaking the
connection. Similarly, peer window and DB2_HADR_PEER_WAIT_LIMIT are
independent because DB2_HADR_PEER_WAIT_LIMIT specifies the conditions for
ending primary logging wait by breaking the connection.

When using a peer window, lower the heartbeat interval from the default value of 120s to
30s.

Tune DB2_HADR_PEER_WAIT_LIMIT
Setting the DB2_HADR_PEER_WAIT_LIMIT registry variable allows you to prevent
primary database logging from blocking because of a slow or blocked standby database.
The DB2_HADR_PEER_WAIT_LIMIT value determines how long the HADR primary
database waits before breaking the connection, if logging on the primary database is
blocked for the specified number of seconds in peer state. The primary can be waiting to
send out the logs (waiting for network congestion to end), or waiting for ACK messages
to come back from the standby after sending out logs.

Upon disconnection, if a peer window is enabled, the primary database continues to
block logging for the peer window size duration; otherwise, it resumes logging
immediately. Thus when DB2_HADR_PEER_WAIT_LIMIT is enabled (non-zero), the
maximum client blocking time is equal to the DB2_HADR_PEER_WAIT_LIMIT value
plus the hadr_peer_window value.

The main concern when setting the DB2_HADR_PEER_WAIT_LIMIT value is client
response time. For both DB2_HADR_PEER_WAIT_LIMIT and HADR_PEER_WINDOW,
a shorter value gives you better client response, but there might be a higher risk of losing
data in a failover.

You can use DB2_HADR_PEER_WAIT_LIMIT and hadr_timeout together for targeted
tuning. You can specify a short hadr_timeout to detect network problems and standby
crash promptly, while setting a relatively long DB2_HADR_PEER_WAIT_LIMIT to keep
replication enabled as long as the primary and standby are connected. Conversely, you
can specify a short DB2_HADR_PEER_WAIT_LIMIT for better client response time,

DB2 High Availability Disaster Recovery Page 17

while using a longer hadr_timeout to avoid frequent disconnections when the databases
are not in peer state.

Tune DB2_HADR_SOSNDBUF and DB2_HADR_SORCVBUF
Use the DB2_HADR_SOSNDBUF (the socket send buffer size) and
DB2_HADR_SORCVBUF (the socket receive buffer size) registry variables to optimize
HADR TCP connections, without having an impact on other TCP connections on the
system. The general rule for setting the TCP window size is TCP window size = send rate
* round trip time.

On WAN systems, this likely means a setting that is larger than the system default
because of the relatively long round trip time. If the window size is too small, the
network cannot fully utilize its bandwidth, and applications like HADR experience
throughput lower than the nominal bandwidth. A larger than necessary size usually
causes no harm other than consuming more memory.

DB2_HADR_SOSNDBUF and DB2_HADR_SORCVBUF should have the same setting on
the primary and standby databases.

The HADR simulator can be used to find out the optimal network setting between the
primary and standby machines. Running the simulator takes only seconds, with no
impact on the actual database systems. In contrast, updating these parameters on a
database requires stopping and restarting the instance to make them effective. It is
recommended that you experiment with the simulator first, then apply the values to the
database. See http://www.ibm.com/developerworks/wikis/display/data/HADR_sim for more
information on the simulator.

Client-server communication parameters

Tune DB2TCP_CLIENT_RCVTIMEOUT
The DB2TCP_CLIENT_RCVTIMEOUT registry variable specifies the number of seconds
a client waits for data on a TCP/IP receive operation. When the wait time is exceeded, the
client considers the connection down; if client reroute is enabled, client reroute is
attempted. Setting DB2TCP_CLIENT_RCVTIMEOUT to a low value can minimize the
wait time to detect that the HADR primary database is down. However, you should not
set it to a shorter duration than the longest running query; otherwise you get a false
alarm.

Database parameters

Set logfilsiz to a moderate size
Use a moderate size for your log files by setting the logfilsiz configuration parameter.
The size should be usually no more than a few hundred MB. It can take a long time to
create, archive, retrieve, or delete a very large log file, causing hiccups in system
performance.

http://www.ibm.com/developerworks/wikis/display/data/HADR_sim

DB2 High Availability Disaster Recovery Page 18

You should have an identical logfilsiz setting on the primary and standby. In order to
maximize the likelihood that all replicated log files on the standby are interchangeable
with those on the primary, logfilsiz setting on the primary is used on the standby,
regardless of what the actual setting on the standby is. However, after a takeover the new
primary (old standby) uses its local configuration value upon the first database
reactivation after the takeover.

Set logindexbuild to ON
This setting for the logindexbuild configuration parameter specifies that your index
creation, re-creation, or reorganization operations are to be fully logged. Although this
means that index builds might take longer on the primary system and that more log
space is required, the indexes are rebuilt on the standby system during HADR log replay
and are available when a failover takes place. If logindexbuild is off, an index will be
marked invalid when standby replays a build or reorg event because the log contains no
data for the build event. If index builds on the primary system are not logged and a
failover occurs, any invalid indexes that remain after the takeover is complete will have
to be rebuilt before they can be accessed on the new primary.

You might not want index activity to be logged and replicated if any of the following
statements apply:

• You are using the indexes temporarily (for example, on staging tables).

• The index data is very large and the table is not accessed often (in which case,
you should also have the indexrec configuration parameter set to RESTART).

• You do not have enough active log space to support logging of the index builds.

You can override the database-level setting for logindexbuild at the individual table
level by using the LOG INDEX BUILD table attribute.

Set indexrec to RESTART
When indexrec is set to RESTART, the new primary database searches for all invalid
indexes and rebuilds them in the background at end of a takeover operation, Rebuilding
the indexes does not prevent clients from connecting to the new primary database.

Tune softmax
The softmax configuration parameter setting determines the frequency of soft
checkpoints and the recovery range, which help out in the crash recovery process. The
setting for softmax should be a value that balances roll forward performance on the
standby database with the crash recovery speed. Lower values reduce both the number
of log records that need to be processed and the number of redundant log records that
are processed during crash recovery, but lower values reduce roll forward performance
as more frequent buffer pool flushing is required.

DB2 High Availability Disaster Recovery Page 19

Database parameters related to client reroute

Set DB2_MAX_CLIENT_CONNRETRIES and
DB2_CONNRETRIES_INTERVAL
Setting the DB2_MAX_CLIENT_CONNRETRIES and DB2_CONNRETRIES_INTERVAL
registry variables allow you to configure the retry behavior for automatic client reroute.
The first variable specifies the number of times to retry the connection, while the second
specifies the sleep time between consecutive retries. If both of these variables are not set,
the automatic client reroute feature retries the connection to a database repeatedly for up
to 10 minutes.

Database administration and maintenance

Choosing the appropriate reorganization method
Both online and offline reorganizations are replicated operations. However, the method
in which they are replicated differs and can influence the choice of operation. Choose a
reorganization method based on whether you want to keep the affected tables and
indexes available during the operation.

Perform an online reorganization to maintain availability of the
affected tables and indexes
During an online (or inplace) reorganization, all operations are logged at a fine
granularity. Changes to the table or index are logged and replicated as the reorganization
progresses. As a result, HADR can replicate the operation at a more even pace than
offline reorganization. However, there is a potentially large impact to the system from
the amount of logs generated by the operation.

If there is a failover during an online reorganization, the reorganization cannot be
resumed on the new primary database, as the status file is stored outside of the database
and is not replicated. However, the reorganization can be restarted on the new primary
database.

Refer to the “Minimizing Planned Outages” Best Practice paper for a detailed discussion
on reorganization operations and availability. This paper and others are available at the
DB2 Best Practices website at http://www.ibm.com/developerworks/db2/bestpractices/.

Perform an offline reorganization if the affected tables and
indexes can be unavailable
An offline (or classic) reorganization has much less granularity of replication than online
reorganization; however, the impact depends on whether the operation is reclustering
using an index.

http://www.ibm.com/developerworks/db2/bestpractices/

DB2 High Availability Disaster Recovery Page 20

In a clustering reorganization, operations are typically logged per hundreds or thousands
of affected rows. If your database is in peer state, this can cause intermittent blocking of
primary transactions, as the standby must replay many updates at once for a single log
record. Standby replay can be blocked long enough to fill up standby receive buffer,
causing primary blockage.

A non-clustering reorganization generates a single log record after the reorganization is
completed on the primary. This method has the greatest impact on the HADR pair, as the
standby performs the entire reorganization from scratch after receiving the critical log
record from the primary. The operation is effectively performed twice in a serial fashion,
first on the primary, then on the standby.

Because the standby must replay the reorganization record, its log receiving buffer can
fill up and it will stop receiving more logs from the primary, causing primary logging to
be blocked if the HADR pair is in peer state.

If you have to perform large offline reorganizations, consider one of the following
recommendations:

• Temporarily disable HADR in order to avoid blocking the primary when the
standby replays the reorganization. Do this by deactivating the standby
database before reorganization on primary starts. After the reorganization
completes on the primary, reactivate the standby database and allow it to catch
up to the primary. The reorganization records will be replayed in catchup states,
which does not block primary logging. However, deactivating the standby
results in a time window in which there is no high availability or disaster
recovery available. Alternatively, you can run “stop HADR” and “start HADR”
on the primary instead of deactivating the standby and reactivation standby to
keep the primary out of peer state during reorg.

• Set the HADR_PEER_WAIT_LIMIT value to automatically break the primary
out of peer state. The advantage is that this does not require any manual
intervention on your part. However, the disadvantage is that the auto break is
triggered only after transactions on the primary have been blocked for the period
specified by the HADR_PEER_WAIT_LIMIT value.

Performing load operations in an HADR environment
Load operations require special consideration in an HADR environment, because only a
successful LOAD COPY YES is replicated to the standby. All other types of LOAD
operations might result in the standby database no longer being a viable candidate for
failover because data is inconsistent between the HADR pair. To prevent this from
happening, implement the recommendations in the sections that follow.

DB2 High Availability Disaster Recovery Page 21

Perform a nonrecoverable load only if the load operation does
not need to be replicated on the standby
In some cases, you might not want the table replicated to the standby (for example, if the
table is a staging table that will be dropped). Nonrecoverable loads result in the target
table being marked bad and the standby skips future log records regarding this table. To
monitor this, look for an ADM5571W message in the db2diag.log on the standby.

If a nonrecoverable or failed LOAD … COPY YES operation marks a table space bad,
identify potential issues affecting the viability of the standby database for failover
operations. Issue the db2pd –db <dbname> -tablespaces command to identify table
spaces in non-normal table space states. Look in the “State” column in the Tablespace
Statistics report generated for non-zero values. Focus on states that would impact HADR
replay (e.g., 0x100 – restore pending, 0x80 – roll forward pending, or 0x4000 – offline, and
not accessible).

Ensure that the load copy is available to the standby when it
replays the load
After a successful LOAD ... COPY YES operation completes, the data is replicated on the
standby only if the standby can access the copy through the path or device specified in
the load command. Consider using a shared copy device such as NFS for this. If you
transfer the copy by means such as physically transferring a tape, it is recommended that
the standby be stopped before the primary starts the load. Once the primary finishes the
load and the copy is available to the standby, restart the standby. The standby will then
reconnect to the primary and replay the load.

If the load copy cannot be accessed on the standby, the table space in which the table is
stored is marked bad on the standby and the standby skips future log records regarding
this table space. In this situation, the standby database has to be rebuilt from a backup
image taken after the load operation was issued on the primary. To monitor for this
condition, scan the db2diag.log on the standby for messages that identify the table for
which LOAD was run, the inaccessible path where the copy was placed, and a message
for each table space marked bad. If a failover occurs before you detect this condition, scan
the new db2diag.log on the primary for messages that indicate which table spaces are in
non-normal states.

Set the DB2_LOAD_COPY_NO_OVERRIDE registry variable
to COPY YES if there will be frequent load operations
When the registry variable DB2_LOAD_COPY_NO_OVERRIDE is set to “copy yes
<copy destination>”, all LOAD … COPY NO operations are converted to LOAD … COPY
YES, using the copy destination specified in the registry variable.

DB2 High Availability Disaster Recovery Page 22

Best Practices
• Perform an infrastructure analysis

• Use separate, high performing disks or file systems for the
database logs

• Make the location of archived logs accessible by both the primary
and standby databases

• Use a dedicated network for the HADR primary-standby
connection

• Use multiple network adapters

• Consider using a virtual IP address for the database server or
using automatic client reroute

• Choose the appropriate hadr_syncmode

• Tune DB2_HADR_BUF_SIZE, hadr_timeout,
hadr_peer_window, and DB2_HADR_PEER_WAIT_LIMIT

• Tune DB2TCP_CLIENT_RCVTIMEOUT,
DB2_HADR_SOSNDBUF, and DB2_HADR_SORCVBUF

• Tune logfilsiz and softmax

• Set logindexbuild to ON

• Set indexrec to RESTART

• Set DB2_MAX_CLIENT_CONNRETRIES and
DB2_CONNRETRIES_INTERVAL for client reroute

• Perform an online reorganization if you want to maintain
availability of the affected tables and indexes

DB2 High Availability Disaster Recovery Page 23

• Perform an offline reorganization if it is not necessary to maintain
the availability of the affected tables and indexes

• Perform a nonrecoverable load only if the load operation does
not need to be replicated on the standby

• Ensure that the load copy is available to the standby when it
replays the load

• Set the DB2_LOAD_COPY_NO_OVERRIDE to COPY YES if
there will be frequent load operations

DB2 High Availability Disaster Recovery Page 24

Conclusion
While this set of best practices is not exhaustive, it focuses on two of the key aspects of
the HADR feature: the network and the logging. We have provided specific
recommendations, but as was noted earlier, there is no one-size-fits-all setup for HADR.
Instead, we have given guidance for how to tune various parameters in order to find
what works best for your particular environment.

DB2 High Availability Disaster Recovery Page 25

Further reading
• DB2 Best Practices

http://www.ibm.com/developerworks/db2/bestpractices/

• DB2 9 for Linux, UNIX and Windows manuals
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474

• DB2 9.5 for Linux, UNIX, and Windows Information Center
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp

• DB2 9.7 for Linux, UNIX, and Windows Information Center
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

Contributors
Steven R. Pearson

DB2 Development

Tim Vincent
Chief Architect DB2 for Linux, UNIX, and
Windows

Alexandria Burkleaux
DB2 Development

Ilker Ender
DB2 Development

Louise McNicoll
DB2 Information Development

http://www.ibm.com/developerworks/data/bestpractices/
http://www-1.ibm.com/support/docview.wss?rs=71&uid=swg27009552
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

DB2 High Availability Disaster Recovery Page 26

Notices
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and services
currently available in your area. Any reference to an IBM product, program, or service is not
intended to state or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any IBM
intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in
this document. The furnishing of this document does not grant you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where
such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

Without limiting the above disclaimers, IBM provides no representations or warranties
regarding the accuracy, reliability or serviceability of any information or recommendations
provided in this publication, or with respect to any results that may be obtained by the use of
the information or observance of any recommendations provided herein. The information
contained in this document has not been submitted to any formal IBM test and is distributed
AS IS. The use of this information or the implementation of any recommendations or
techniques herein is a customer responsibility and depends on the customer’s ability to
evaluate and integrate them into the customer’s operational environment. While each item
may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Anyone attempting to adapt
these techniques to their own environment do so at their own risk.

This document and the information contained herein may be used solely in connection with
the IBM products discussed in this document.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only
and do not in any manner serve as an endorsement of those Web sites. The materials at
those Web sites are not part of the materials for this IBM product and use of those Web sites is
at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary significantly. Some
measurements may have been made on development-level systems and there is no
guarantee that these measurements will be the same on generally available systems.
Furthermore, some measurements may have been estimated through extrapolation. Actual

DB2 High Availability Disaster Recovery Page 27

results may vary. Users of this document should verify the applicable data for their specific
environment.

Information concerning non-IBM products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. IBM has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products. Questions on the capabilities of non-IBM products should
be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To
illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE: © Copyright IBM Corporation 2008, 2011. All Rights Reserved.

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and
distribute these sample programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs conforming to the
application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions.
IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both. If these and
other IBM trademarked terms are marked on their first occurrence in this information with a
trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may
also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml

Windows is a trademark of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

	Executive summary
	Introduction to HADR
	Setting up your system
	Perform an infrastructure analysis

	Requirements for setting up HADR
	Use dedicated, high performing disks or file system for the database logs
	Make the location of archived logs accessible to both the primary and standby databases
	Use a dedicated network for the HADR primary-standby connection
	Consider using multiple network adapters
	Consider using a virtual IP address for the database server
	Consider using automatic client reroute

	Tuning parameters
	HADR-specific parameters
	Choose the appropriate HADR synchronization mode
	SYNC mode
	NEARSYNC mode
	ASYNC mode
	SUPERASYNC mode
	HADR simulator
	Tune DB2_HADR_BUF_SIZE
	Monitoring HADR standby receive buffer usage
	Tune hadr_peer_window
	Tune DB2_HADR_PEER_WAIT_LIMIT
	Tune DB2_HADR_SOSNDBUF and DB2_HADR_SORCVBUF

	Client-server communication parameters
	Tune DB2TCP_CLIENT_RCVTIMEOUT

	Database parameters
	Set logfilsiz to a moderate size
	Set logindexbuild to ON
	Set indexrec to RESTART
	Tune softmax

	Database parameters related to client reroute
	Set DB2_MAX_CLIENT_CONNRETRIES and DB2_CONNRETRIES_INTERVAL

	Database administration and maintenance
	Choosing the appropriate reorganization method
	Perform an online reorganization to maintain availability of the affected tables and indexes
	Perform an offline reorganization if the affected tables and indexes can be unavailable

	Performing load operations in an HADR environment
	Perform a nonrecoverable load only if the load operation does not need to be replicated on the standby
	Ensure that the load copy is available to the standby when it replays the load
	Set the DB2_LOAD_COPY_NO_OVERRIDE registry variable to COPY YES if there will be frequent load operations

	Conclusion
	Further reading
	Contributors

