
Build a truly fault tolerant
and scalable IBM MQ messaging
solution

Anthony Beardsmore
IBM MQ Development

© 2019 IBM Corporation

Fault Toleration

2

Queue Manager

Single

Queue Manager Queue Manager Queue Manager Queue Manager

Multiple

100%

0%

100%

0%
availabilityavailability

More is better for availability

© 2019 IBM Corporation
4

Let’s go through that
availability thing one step at
a time…

© 2019 IBM Corporation

Node

Single, non-HA queue manager

5

App App App

100%

0%

100%

0%

System
availability

Message
availability

While the QMgr is down
all of the applications
need to wait for it to be
restarted

All queued messages
require the QMgr to restart

How much messaging
work can proceed

Proportion of queued
message that are available

Don’t just think about the
messaging layer, even with a single
queue manager it’s better to have
multiple instances of an application
running. This builds redundancy into
the application availability

Queue Manager

© 2019 IBM Corporation

Node B Node CNode A

Single HA queue manager

6

App App App

Queue ManagerQueue Manager

Highly available
queue manager

and queue
instances

100%

0%

100%

0%

HA queue managers are
restarted quickly (typically
a ‘few’ seconds)

System
availability

Message
availability

Here we have one active instance of the queue
manager with two replica, standby, instances ready
to take over.
(This happens to be the MQ RDQM HA model, other
solutions like multi-instance queue managers are
subtly different (only one standby) but essentially
the same)

Queue Manager

© 2019 IBM Corporation
Node B Node CNode A

Multiple HA queue managers

7

Queue Manager 1Queue Manager 1

Highly available
queue manager

and queue
instances

1/3 of message
traffic

Queue Manager 2Queue Manager 2

Highly available
queue manager

and queue
instances

1/3 of message
traffic

Queue Manager 3Queue Manager 3

Highly available
queue manager

and queue
instances

1/3 of message
traffic

App App App AppAppApp App AppApp

To further increase the
availability you need to
remove the single point of
failure that is a queue
manager.
For this, create multiple
queue managers and stripe
the messaging workload
across them by defining the
“same” queue on all of
them.
Each message is only
queued on a single queue
manager but the
multiple queue managers
mean any one outage is
confined to a subset of the
workload

Queue Manager 1

Queue Manager 2

Queue Manager 3

© 2019 IBM Corporation
Node B Node CNode A

Multiple HA queue managers – ordered consumption

8

Queue Manager 1Queue Manager 1

Highly available
queue manager

and queue
instances

1/3 of message
traffic

Queue Manager 2Queue Manager 2

Highly available
queue manager

and queue
instances

1/3 of message
traffic

Queue Manager 3Queue Manager 3

Highly available
queue manager

and queue
instances

1/3 of message
traffic

App App App AppAppApp App AppApp

Connect: QMgr1 Connect: QMgr2 Connect: QMgr3

100%

0%

100%

0%

Messages that require
ordering need to go to the
same queue manager.
One approach to achieve
this is for application
instances to connect to a
specific queue manager
based on their ordered
stream of messages.
This ensures messages are
processed in order per-
group

While a QMgr is
unavailable a subset
of applications need
to wait for it to restart

System
availability

Message
availability

Queued messages are
confined to a single
queue manager.
Therefore, the QMgr
needs to restart to
make those messages
available. Hence the
need to make each
queue manager highly
available

Queue Manager 1

Queue Manager 2

Queue Manager 3

© 2019 IBM Corporation
Node B Node CNode A

Multiple HA queue managers – unordered consumption

9

Queue Manager 1Queue Manager 1

Highly available
queue manager

and queue
instances

1/3 of message
traffic

Queue Manager 2Queue Manager 2

Highly available
queue manager

and queue
instances

1/3 of message
traffic

Queue Manager 3Queue Manager 3

Highly available
queue manager

and queue
instances

1/3 of message
traffic

App App App AppAppApp App AppApp

Connect: QMgrGroup

100%

0%

100%

0%

Application instances
can connect to any
queue manager as the
order that they are
queued across the
multiple instances is not
a concern.
Connecting across a
group can be achieved
with a CCDT queue
manager groupThere is always a

running QMgr for an
application to connect
to for new work

Queued messages are
still confined to a single
queue manager.
Therefore, the QMgr
still needs to restart to
make those particular
messages available.

System
availability

Message
availability

Queue Manager 1

Queue Manager 2

Queue Manager 3

© 2019 IBM Corporation
10

It’s not just availability that
will benefit…

© 2019 IBM Corporation

Scaling

11

Single Multiple

Queue Manager Queue Manager Queue Manager Queue Manager Queue Manager Queue Manager

Queue Manager Queue Manager Queue Manager Queue Manager

x1x4 x1x2x3x4x5x6x7x8xn

More is better for scalability

© 2019 IBM Corporation
12

So it’s a no brainer?

© 2019 IBM Corporation

13

Single

o Simple
o Invisible to applications
o Limited by maximum system size
o Liable to hit internal limits
o Not all aspects scale linearly
o Restart times can grow
o Every outage is high impact

Multiple

o Unlimited by system size
o All aspects scale linearly
o More suited to cloud scaling
o Reduced restart times
o Enables rolling upgrades
o Tolerate partial failures
o Visible to applications – limitations apply
o Potentially more complicated

Queue Manager Queue Manager Queue Manager Queue Manager

Queue Manager

100%

0%

100%

0%

System
availability

Message
availability

100%

0%

100%

0%

System
availability

Message
availability

© 2019 IBM Corporation

uniform cluster…

14

Try to stop thinking about each individual queue manager and start thinking
about them as a cluster

Queue Manager Queue Manager Queue Manager

© 2019 IBM Corporation
15

The fundamentals on MQ Clusters
(skip this if you know it)

© 2019 IBM Corporation

MQ clustering

What MQ Clusters provide :

16

Availability routing

Horizontal scaling of queues

Configuration directory

Dynamic registration and lookup

Dynamic channel management

Dynamic message routing

Fo
un

da
tio

n

© 2019 IBM Corporation

Horizontal scaling with
MQ Clustering

© 2019 IBM Corporation

Horizontal scaling with MQ Clustering

28

Queue Manager Queue Manager Queue Manager

Queue Manager

Earlier we showed how to scale applications
directly across multiple queue managers, with an
MQ Cluster you can do that with queue manager-to-
queue manager message traffic.

A queue manager will typically route messages
based on the name of the target queue

In an MQ Cluster it is possible for multiple queue
managers to independently define the same named
queue

Any queue manager that needs to route messages
to that queue now has a choice…

?

© 2019 IBM Corporation

Channel workload balancing

29

App 1App 1Client

Queue Manager Queue Manager Queue Manager

Queue Manager

• Cluster workload balancing applies when there are
multiple cluster queues of the same name

• Cluster workload balancing will be applied in one of three ways:
• When the putting application opens the queue - bind on open
• When a message group is started - bind on group
• When a message is put to the queue - bind not fixed

• When workload balancing is applied:
• The source queue manager builds a list of

all potential targets based on the queue name
• Eliminates the impossible options
• Prioritises the remainder
• If more than one come out equal, workload balancing ensues …

• Balancing is based on:
• The channel – not the target queue
• Channel traffic to all queues is taken into account
• Weightings can be applied to the channel

• … this is used to send the messages to the chosen target

© 2019 IBM Corporation

• Cluster workload balancing applies when there are
multiple cluster queues of the same name

• Cluster workload balancing will be applied in one of three ways:
• When the putting application opens the queue - bind on open
• When a message group is started - bind on group
• When a message is put to the queue - bind not fixed

• When workload balancing is applied:
• The source queue manager builds a list of

all potential targets based on the queue name
• Eliminates the impossible options
• Prioritises the remainder
• If more than one come out equal, workload balancing ensues …

• Balancing is based on:
• The channel – not the target queue
• Channel traffic to all queues is taken into account
• Weightings can be applied to the channel

• … this is used to send the messages to the chosen target

Channel workload balancing

30

Client

Queue Manager Queue Manager Queue Manager

Queue Manager

Client

© 2019 IBM Corporation

• Cluster workload balancing applies when there are
multiple cluster queues of the same name

• Cluster workload balancing will be applied in one of three ways:
• When the putting application opens the queue - bind on open
• When a message group is started - bind on group
• When a message is put to the queue - bind not fixed

• When workload balancing is applied:
• The source queue manager builds a list of

all potential targets based on the queue name
• Eliminates the impossible options
• Prioritises the remainder
• If more than one come out equal, workload balancing ensues …

• Balancing is based on:
• The channel – not the target queue
• Channel traffic to all queues is taken into account
• Weightings can be applied to the channel

• … this is used to send the messages to the chosen target

Channel workload balancing

31

App 1App 1Client

Queue Manager Queue Manager Queue Manager

Queue Manager

© 2019 IBM Corporation

• Cluster workload balancing applies when there are
multiple cluster queues of the same name

• Cluster workload balancing will be applied in one of three ways:
• When the putting application opens the queue - bind on open
• When a message group is started - bind on group
• When a message is put to the queue - bind not fixed

• When workload balancing is applied:
• The source queue manager builds a list of

all potential targets based on the queue name
• Eliminates the impossible options
• Prioritises the remainder
• If more than one come out equal, workload balancing ensues …

• Balancing is based on:
• The channel – not the target queue
• Channel traffic to all queues is taken into account
• Weightings can be applied to the channel

• … this is used to send the messages to the chosen target

Channel workload balancing

32

App 1App 1Client

Queue Manager Queue Manager Queue Manager

Queue Manager

Tip: By default, a matching queue on the same
queue manager that the application is connected
to will be prioritized over all others for speed.
To overcome that, look at CLWLUSEQ

© 2019 IBM Corporation

Horizontal scaling – do I really need MQ Clustering?

33

App 1App 1Client

Service

Scaled out applications

App 1App 1Client

Service

App 1App 1Client

Service

Queue Manager Queue Manager Queue Manager

Q. Is clustering required?

A. Maybe, maybe not …

Service

Single producing application

Client

ServiceService

Queue Manager Queue Manager Queue Manager

Q. Is clustering required?

A. Definitely

Q. Is clustering required?

A. Definitely

ServiceService

¸

App 1App 1Client

Gateway routing

Service

Queue Manager Queue Manager Queue Manager

Queue Manager

© 2019 IBM Corporation

Back to the uniform cluster

© 2019 IBM Corporation

Building scalable, fault tolerant, solutions

Many of you have built your own continuously
available and horizontally scalable solutions over
the years

Let’s call this the “uniform cluster” pattern

MQ has provided you many of the building blocks -
Client auto-reconnect
CCDT queue manager groups

But you’re left to solve some of the problems,
particularly with long running applications -

Efficiently distributing your applications
Ensuring all messages are processed
Maintaining availability during maintenance
Handling growth and contraction of scale

App App App

decoupled

AppApp

35

© 2019 IBM Corporation

Uniform Cluster

36

MQ 9.1.2 started to make that easier
For the distributed platforms, declare a set of
matching queue managers to be following the
uniform cluster pattern

All members of an MQ Cluster
Matching queues are defined on every queue manager
Applications can connect as clients to every queue
manager

MQ will automatically share application connectivity
knowledge between queue managers

The group will use this knowledge to automatically
keep matching application instances balanced
across the queue managers

Matching applications are based on application name
(new abilities to programmatically define this)

MQ 9.1.2 is started to roll out the client support for
this

IBM MQ 9.1.2 CD

Application awareness

https://developer.ibm.com/messaging/2019/03/21/building-scalable-fault-tolerant-ibm-mq-systems/

© 2019 IBM Corporation

Application awareness

37

App App

Automatic Application balancing

Application instances can initially connect to any member of
the group

We recommend you use a queue manager group and
CCDT to remove any SPoF

Every member of the uniform cluster will detect an
imbalance and request other queue managers to donate
their applications

Hosting queue managers will instigate a client auto-
reconnect with instructions of where to reconnect to

Applications that have enabled auto-reconnect will
automatically move their connection to the indicated queue
manager

Client support has been increased over subsequent CD
releases. 9.1.2 CD started with support for C-based
applications, 9.1.3 CD added JMS …

App App App App

IBM MQ 9.1.2 CD

https://developer.ibm.com/messaging/2019/03/21/building-scalable-fault-tolerant-ibm-mq-systems/

© 2019 IBM Corporation38

App App

Automatic Application balancing

Automatically handle rebalancing following planned and
unplanned queue manager outages

Existing client auto-reconnect and CCDT queue
manager groups will enable initial re-connection on
failure

Uniform Cluster rebalancing will enable automatic
rebalancing on recovery

App App App App

IBM MQ 9.1.2 CD

https://developer.ibm.com/messaging/2019/03/21/building-scalable-fault-tolerant-ibm-mq-systems/

© 2019 IBM Corporation

Automatic Application balancing

39

App App App App App App

IBM MQ 9.1.2 CD

Even to horizontally scale out a queue
manager deployment

Simply add a new queue manager
to the uniform cluster

The new queue manager will
detect an imbalance of
applications and request its fair
share

https://developer.ibm.com/messaging/2019/03/21/building-scalable-fault-tolerant-ibm-mq-systems/

© 2019 IBM Corporation

Uniform Cluster features

40

IBM MQ 9.1.2 CD
As well as the automatic rebalancing of the C library based clients, MQ 9.1.2 CD introduced a number of
new or improved features for the distributed platforms that tie together to make all this possible

This means you need both the queue managers and the clients to be the latest MQ version

Creation of a Uniform Cluster
• A simple qm.ini tuning parameter for now

The ability to identify applications by name, to define grouping
of related applications for balancing

• Extends the existing JMS capability to all languages

Auto reconnectable applications
• Only applications that connect with the auto-reconnect option

are eligible for rebalancing

Text based CCDTs to make it easier to configure this behaviour
• And to allow duplicate channel names

TuningParameters:
UniformClusterName=CLUSTER1

$ export MQAPPLNAME=MY.SAMPLE.APP

https://developer.ibm.com/messaging/2019/03/21/walkthrough-auto-application-rebalancing-using-the-uniform-cluster-pattern/

...

Channels:
DefRecon=YES

Watch this space…

© 2019 IBM Corporation41

Balancing by application name

Automatic application balancing is based on the
application name alone

Different groups of application instances with different
application names are balanced independently

By default the application name is the executable
name

This has been customisable with Java and JMS
applications for a while

MQ 9.1.2 CD clients have extended this to other
programming languages
For example C, .NET, XMS, …

Application name can be set either programmatically
or as an environment override

App App App App App App

IBM MQ 9.1.2 CD

https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.dev.doc/q132920_.htm

App App App App

App App

© 2019 IBM Corporation

Building scalable and available solutions

JSON CCDT

Build your own JSON format CCDTs

Supports multiple channels of the same name
on different queue managers to simplify the
building of uniform clusters

Available with all 9.1.2 clients

C, JMS, .NET, Node.js, Golang clients

© 2019 IBM Corporation
42

IBM MQ 9.1.2 CD

01100110100101
10001010101101
10101011011011
01001011110111
01110111101111
01110111011

{
“channel”:[
{
“name”:”ABC”,
”queueManager”:”A”

},
{
“name”:”ABC”,
”queueManager”:”B”

},
]

}

© 2019 IBM Corporation

Configuring the CCDT for application
balancing in a Uniform Cluster

To correctly setup a CCDT for application
rebalancing it needs to contain two entries per
queue manager:

• An entry under the name of a queue
manager group

• And entry under the queue manager’s
real name

(These previously would need to be different
channels, but with the JSON CCDT this is
unnecessary)

The application connects using the queue
manager group as the queue manager name
(prefixed with an ‘*’)

© 2019 IBM Corporation
43

IBM MQ 9.1.2 CD
{

"channel":
[

{
"name": ”SVRCONN.CHANNEL",
"type": "clientConnection”
"clientConnection":
{

"connection":
[

{
"host": ”host1",
"port": 1414

}
],
"queueManager": "ANY_QM”

},
},
{

"name": ”SVRCONN.CHANNEL",
"type": "clientConnection”
"clientConnection":
{

"connection":
[

{
"host": ”host2",
"port": 1414

}
],
"queueManager": "ANY_QM”

},
},

…

…
{

"name": ”SVRCONN.CHANNEL",
"type": "clientConnection”
"clientConnection":
{

"connection":
[

{
"host": ”host1",
"port": 1414

}
],
"queueManager": ”QMGR1”

},
},
{

"name": ”SVRCONN.CHANNEL",
"type": "clientConnection”
"clientConnection":
{

"connection":
[

{
"host": ”host2",
"port": 1414

}
],
"queueManager": ”QMGR2”

},
}

]
}

Q
M

G
R

1
Q

M
G

R
2

© 2019 IBM Corporation

View application status

Now that MQ is taking a more application centric
view, a new command has been added to
Distributed runmqsc to aid the understanding of
how applications are balanced across a Uniform
Cluster

From any member of the Uniform Cluster,
displays applications by name and highlights
Application Instances that are not evenly
balanced

© 2019 IBM Corporation44

IBM MQ 9.1.3 CD
Distributed

DISPLAY APSTATUS(*) TYPE(APPL)

AMQ8932I: Display application status details.
APPLNAME(AMQSPHAC) CLUSTER(UNIDEMO)
COUNT(8) MOVCOUNT(8)
BALANCED(YES)

AMQ8932I: Display application status details.
APPLNAME(AMQSPUTC) CLUSTER()
COUNT(2) MOVCOUNT(0)
BALANCED(NOTAPPLIC)

DISPLAY APSTATUS(*) TYPE(QMGR)

AMQ8932I: Display application status details.
APPLNAME(AMQSPHAC) ACTIVE(YES)
COUNT(3) MOVCOUNT(3)
BALSTATE(OK) LMSGDATE(2019-05-08)
LMSGTIME(14:05:36) QMNAME(UNID001)
QMID(UNID001_2019-05-08_13.59.31)

AMQ8932I: Display application status details.
APPLNAME(AMQSPHAC) ACTIVE(YES)
COUNT(3) MOVCOUNT(3)
BALSTATE(OK) LMSGDATE(2019-05-08)
LMSGTIME(14:04:50) QMNAME(UNID002)
QMID(UNID002_2019-05-08_13.59.35)

AMQ8932I: Display application status details.
APPLNAME(AMQSPHAC) ACTIVE(YES)
COUNT(2) MOVCOUNT(2)
BALSTATE(OK) LMSGDATE(2019-05-08)
LMSGTIME(14:04:44) QMNAME(UNID003)
QMID(UNID003_2019-05-08_13.59.40)

AMQ8932I: Display application status details.
APPLNAME(AMQSPUTC) ACTIVE(YES)
COUNT(2) MOVCOUNT(0)
BALSTATE(NOTAPPLIC) LMSGDATE(2019-05-08)
LMSGTIME(14:05:36) QMNAME(UNID001)
QMID(UNID001_2019-05-08_13.59.31)

© 2019 IBM Corporation

Can I decouple any application?

© 2019 IBM Corporation

Does this work for all applications?

This pattern of loosely coupled applications only works for certain applications styles.

46

- no

Good
Applications that can tolerate being moved from one
queue manager to another without realising and can
run with multiple instances

• Datagram producers and consumers

• Responders to requests, e.g. MDBs

• No message ordering

Bad
Applications that create persistent state across
multiple messaging operations, or require a single
instance to be running

• Requestors waiting for specific replies

• Dependant on message ordering

• Global transactions …

© 2019 IBM Corporation

A new hope for transactions

47
© 2019 IBM Corporation

Global transactions require a single resource
manager to be named when connecting. For
MQ a resource manager is a queue manager.

This prevents the use of queue manager
groups in CCDTs

However, WebSphere Liberty 18.0.0.2 and MQ
9.1.2 CD support the use of CCDT queue
manager groups when connecting

IBM MQ 9.1.2 CD

App

ConnectionFactory
GROUP

{
“channel”:[
{
“name”:”SVRCONN.QM1”,
”queueManager”:”GROUP”

},
{
“name”:”SVRCONN.QM2”,
”queueManager”:”GROUP”

},
]

}

© 2019 IBM Corporation

Availability routing in an
MQ Cluster

© 2019 IBM Corporation

Clustering for availability

Is MQ Clustering a high availability solution?

49

NO YES

– Having multiple potential targets for any message can improve the availability
of the solution, always providing an option to process new messages.

– A queue manager in a cluster has the ability to route new and old messages
based on the availability of the channels, routing messages to running queue
managers.

– Clustering can be used to route messages to active consuming applications.

Not for the message data.
Each message is only

available from a single queue
manager

Clustering can form a
part of the overall high
availability of the
messaging system

© 2019 IBM Corporation

Channel availability routing

50

• When performing workload balancing, the availability of the
channel to reach the target is a factor

• All things being equal, messages will be routed to those targets
with a working channel

Things that can prevent routing
• Applications targeting messages at a specific queue

manage (e.g. reply message)
• Using “cluster workload rank”
• Binding messages to a target

Routing of messages based on availability doesn’t just
happen when they’re first put, it also occurs for queued
transmission messages every time the channel is retried
So blocked messages can be re-routed, if they’re not
prevented…

ServiceService

App 1App 1Client

Service

Queue Manager Queue Manager Queue Manager

Queue Manager

© 2019 IBM Corporation

Pros and cons of binding

51

Bind context:
Duration of an open
Duration of logical group

• All messages put within the bind context will go
to same target*

• Message order can be preserved**
• Workload balancing logic is only driven at the

start of the context

• Once a target has been chosen it cannot change
• Whether it’s available or not
• Even if all the messages could be redirected

Bind on open Bind on group

Bind context:
None

• Greater availability, a message will be redirected
to an available target***

• Overhead of workload balancing logic for every
message

• Message order may be affected

Bind not fixed

Bind on open is the default
It could be set on the cluster queue (don’t forget

aliases) or in the app

* While a route is known by the source queue manager, it won’t be rebalanced, but it could be DLQd
** Other aspects may affect ordering (e.g. deadletter queueing)
*** Unless it’s fixed for another reason (e.g. specifying a target queue manager)

© 2019 IBM Corporation

Application availability routing

© 2019 IBM Corporation

App 1App 1Client 1

QMgr

QMgr

QMgr

• Cluster workload balancing does not take into account the
availability of receiving applications

• Or a build up of messages on a queue

Service 1

Service 1

Blissful ignorance
This queue manager is unaware of

the failure to one of the service
instances

Unserviced messages
Half the messages will quickly start
to build up on the service queue

Application based routing

53

© 2019 IBM Corporation

Service 1

Service 1

QMgr

QMgr

QMgr

App 1App 1Client 1

Application based routing

54

© 2019 IBM Corporation

App 1App 1Client 1

• MQ provides a sample monitoring service tool, amqsclm
• It regularly checks for attached consuming applications (IPPROCS)
• And automatically adjusts the cluster queue definitions to route messages

intelligently (CLWLPRTY)
• That information is automatically distributed around the cluster

Service 1

Service 1

QMgr

QMgr

QMgr

Moving messages
Any messages that slipped through
will be transferred to an active
instance of the queue

Detecting a change
When a change to the open handles
is detected the cluster workload
balancing state is modifiedSending queue managers

Newly sent messages will be sent to active
instances of the queue

Application based routing

55

FR

© 2019 IBM Corporation

Cluster Queue Monitoring Sample
– amqsclm, is provided with MQ to ensure messages are directed towards the instances of clustered queues

that have consuming applications currently attached. This allows all messages to be processed effectively
even when a system is asymmetrical (i.e. consumers not attached everywhere).
• In addition it will move already queued messages from instances of the queue where no consumers are attached to

instances of the queue with consumers. This removes the chance of long term marooned messages when consuming
applications disconnect.

– The above allows for more versatility in the use of clustered queue topologies where applications are not
under the direct control of the queue managers. It also gives a greater degree of high availability in the
processing of messages.

– The tool provides a monitoring executable to run against each queue manager in the cluster hosting queues,
monitoring the queues and reacting accordingly.
• The tool is provided as source (amqsclm.c sample) to allow the user to understand the mechanics of the tool and

customise where needed.

56

© 2019 IBM Corporation

AMQSCLM Logic
– Based on the existing MQ cluster workload balancing mechanics:

• Uses cluster priority of individual queues – all else being equal, preferring to send messages to instances of queues
with the highest cluster priority (CLWLPRTY).

• Using CLWLPRTY always allows messages to be put to a queue instance, even when no consumers are attached to any
instance.

• Changes to a queue’s cluster configuration are automatically propagated to all queue managers in the cluster that are
workload balancing messages to that queue.

– Single executable, set to run against each queue manager with one or more cluster queues to be monitored.
– The monitoring process polls the state of the queues on a defined interval:

• If no consumers are attached:
– CLWLPRTY of the queue is set to zero (if not already set).
– The cluster is queried for any active (positive cluster priority) queues.
– If they exist, any queued messages on this queue are got/put to the same queue. Cluster workload balancing will

re-route the messages to the active instance(s) of the queue in the cluster.
• If consumers are attached:

– CLWLPRTY of the queue is set to one (if not already set).
– Defining the tool as a queue manager service will ensure it is started with each queue manager

57

© 2019 IBM Corporation

Putting it all together

© 2019 IBM Corporation

Uniform Cluster

59

App App

Bringing it all together

• Build a matching set of queue managers, in the style of a
uniform cluster

• Make them highly available to prevent stuck messages

• Consider adding amqsclm to handle a lack of consumers

• Setup your CCDTs for decoupling applications from
individual queue managers

• Look at the 9.1.2+ application rebalancing capability and
see if it matches your needs

• Connect your applications

App App App App

am
qsclm

am
qsclm

am
qsclm

decoupled

© 2019 IBM Corporation

What about MQ Clusters in
the cloud?

© 2019 IBM Corporation

MQ Clusters and Clouds

Not quite…

61

“Cloud platforms provide all an MQ cluster can do”

Clouds often provide cluster-like capability:
Directory services and routing
Network workload balancing

Great for stateless workload balancing
Can be good for balancing unrestricted clients across multiple

But where state is involved, such as reliably sending messages from one
queue manager to another without risking message loss or duplication,
such routing isn’t enough

That’s still the job of an MQ cluster…

© 2019 IBM Corporation

Adding and removing queue managers

62

Adding queue managers
o Have a simple clustering topology
o Separate out your full repositories and manage those separately
o Automate the joining of a new queue manager

+

Removing queue managers - this is harder!
o You might have messages on it that you need, how are you going to remove those first?
o If you just switch off the queue manager, it’ll still be known by the cluster for months!
o Is that a problem?

o If routing is based on availability, messages will be routed to alternative queue managers
o Messages will sit on the cluster transmission queues while the queue manager is still known
o It makes your view of the cluster messy

o Automate the cluster removal
o From the deleting queue manager

o Stop and delete the cluster channels – give it a little time to work through to the FRs
o Then from a full repository – as it’ll never be coming back

o RESET the queue manager out of the cluster

_

© 2019 IBM Corporation

MQ Clusters and Clouds

Yes, but think it through first…

63

“So will MQ clusters work in a cloud?”

Some things may be different in your cloud:

o A new expectation that queue managers will be created
and deleted more dynamically than before

o Queue managers will “move around” with the cloud

o Your level of control may be relaxed

Thank You

Anthony Beardsmore
abeards@uk.ibm.com

