
®

IBM Software Group

®

IBM Software Group

© 2021 IBM Corporation

Jon Sayles, IBM - jsayles@us.ibm.com

IBM Developer for z Systems – Experienced Training

Reusable Code – Concepts and functionality for developing

reusable code libraries using Snippets and Templates

Last Revision Date: May 2021

DevOps

mailto:jsayles@us.ibm.com

2

IBM Trademarks and Copyrights
© Copyright IBM Corporation 2008 through 2021

All rights reserved – including the right to use these materials for IDz instruction.

The information contained in these materials is provided for informational purposes only, and is
provided AS IS without warranty of any kind, express or implied. IBM shall not be responsible
for any damages arising out of the use of, or otherwise related to, these materials. Nothing
contained in these materials is intended to, nor shall have the effect of, creating any warranties
or representations from IBM or its suppliers or licensors, or altering the terms and conditions of
the applicable license agreement governing the use of IBM software. References in these
materials to IBM products, programs, or services do not imply that they will be available in all
countries in which IBM operates.

This information is based on current IBM product plans and strategy, which are subject to change
by IBM without notice. Product release dates and/or capabilities referenced in these materials
may change at any time at IBM’s sole discretion based on market opportunities or other factors,
and are not intended to be a commitment to future product or feature availability in any way.

IBM, the IBM logo, the on-demand business logo, Rational, the Rational logo, and other IBM
Rational products and services are trademarks or registered trademarks of the International
Business Machines Corporation, in the United States, other countries or both. Other company,
product, or service names may be trademarks or service marks of others.

3

Course Assumptions

1. You know ISPF and have used it for at least two years, doing
production z/OS work in COBOL, PL/I or Assembler

Note that all of the workshops in this course are in COBOL – although
files exist that are Assembler, PL/I, REXX and other languages for you
to experiment with – time permitting

2. You have:

Experience with Eclipse or IDz

▪ Formal Training

▪ And/or at least 6 months of production use

IDz installed and running on your workstation at version 14 or later

▪ Note that all ISPF discussion/examples and screen captures
assume IBM-installed ISPF product defaults – not any 3rd party
or custom Dialog Manager applications you may have installed
on your mainframe

4

UNIT

Topics in this module:

Reusable Code

▪ Reusable Code: Terms and Concepts

▪ Snippets

▪ Language Templates

▪ Program Templates

5

What is Code Reuse?

Reusing pre-written parts of a program (COBOL, PL/I, Assembler,
Easytrieve, REXX. etc.), JCL file, MVS utility, BMS/MFS screen, etc. in
the construction of other programs/utilities/etc.

Production code reuse has long been an objective for software
development architects. An excellent in-depth treatise on Code
Reuse cam be found here: https://en.wikipedia.org/wiki/Code_reuse

Most of us have bought into code reuse and throughout our careers
as z/OS developers begin new programming assignments by

1. Hunting down an existing program that is similar to the work under
construction

2. Copying the entire source file

3. Cannibalizing the source code in the file:

1. Deleting most of the PROCEDURE and DATA DIVISION

2. Editing the ENVIRONMENT and IDENTIFICATION DIVISION

https://en.wikipedia.org/wiki/Code_reuse

6

Why Code Reuse?

Code reuse can save time and resources and reduce redundancy by taking
advantage of assets that have already been created in some form within the
software product development process

Productivity:

▪ Reusing working/syntactically-correct code takes less time to develop, and less time to
test

Consistency/Standards Conformance/Maintain-ability:

▪ Maintenance and Support costs are lowered, as reusable code consists of recognizable
patterns

Education (new to z/OS):

▪ By leveraging a catalog of reusable functions, new-to-z/OS developers can be given
working examples of arcane language, statements and code patterns... accelerating
time to mastery

Code Quality:

▪ Reusable code will be - or should be syntactically-correct, and well-tested

Problems with Code Reuse include the:

▪ Possible inability to tweak details which may affect performance or the desired output

▪ Time and cost of acquiring, learning, and configuring the library

7

Examples of Code Reuse - Terms & Concepts

Software libraries
▪ Common operations, such as:

 Accessing external storage

 Interfacing with external programs

 Manipulating information (numbers, words, names, locations, dates, etc.) in common ways,
are needed by many different programs.

Design patterns: https://www.geeksforgeeks.org/software-design-patterns/

▪ A design pattern is a general solution to a recurring problem

Frameworks
▪ Class-based language (Java, C++, .Net,) developers often reuse large pieces of

software via third-party applications and frameworks

Functional Decomposition
▪ In modular-development higher-order functions can be used in many cases where

design patterns or frameworks were formerly used

Components and reusable patterns:

Embedded SQL Cursor

Control Break logic

Master-File Update logic

https://www.geeksforgeeks.org/software-design-patterns/

8

Five Categories of Code Reuse

1. Miscellaneous Copy/Paste operations

2. Project-Level reusable code

3. Enterprise-Level standard code

4. Example statements

5. Entry-Level Training

Note that the above is a simplistic and subjective
breakdown

9

IDz's Code Reuse Options

Snippets

▪ Flexible and simple method of code reuse

▪ Snippet scope can be from anywhere from a keyword to an entire program

▪ Can define any number of custom variables to manage idiosyncratic

requirements

▪ Can export/import Snippets with Workspace

▪ Can include Snippets view in custom Perspective

Language-specific Code Templates

▪ Most granular form of code reuse

▪ Integrates with Content Assist

▪ Typically used for statements – but could extend to more code

Program Templates – available in COBOL and PL/I

▪ Useful if creating a new COBOL or PL/I program using the New program

wizard

▪ IDz shops with standard (not customized) CICS and SQL statements

▪ Can be customized

10

Code Snippets

Sometimes, instead of entire programs you might want to:

▪ Save some code temporarily for reuse – similar to the ISPF:
"CREATE" and "COPY" command line commands

▪ Create a paragraph, computation, complex conditional – that can
be re-purposed in other programs

▪ Provide a library of "standardized - Best Practices" routines –
using your shop's coding conventions

▪ Provide a library of syntactically-correct and infrequently
used/high-value statements:

 Job Cards

 Database routines

 Complex COBOL code: UNSTRING etc.

Snippets are the often the best way of doing this. You access them
through a Snippets view, which you get to by:

 From Window > Show View > other…

 Type: snippets – and select the Snippets view

On the right are a group of custom Snippets that we have created.
You will see a subset of these in your workspace.

Individual Snippets are contained in "drawers" which are the
accordion menus that collapse/expand on-click.

Snippets can be Exported/Imported (for sharing)

11

Using Code Snippets (ISPF "COPY" command line command)

To use an existing code Snippet follow the steps below:

1. Place your cursor at
the exact focal point
(position in the source)
where you want a
code snippet inserted

2. Find your Code
Snippet in the snippet
drawers

3. Double-Click the
Snippet

4. If there are variables
in the snippet, you
can:

 Accept the defaults

 Over-ride the values
before the code is
inserted

5. Click Insert

12

Creating Code Snippets - 1 of 3

To create a new code Snippet follow the steps below:

1. Create a new Snippet category

 Right-click over the Snippets view

 Select Customize

 From Customize Palette, under New

Select: New Category

 Name the Category

 Add a description

 Click OK

2. Select and copy the code you wish to turn into a Snippet

3. Expand the category you wish to add the Snippet to, and select Paste as Snippet…

Note that these

steps are similar to

an ISPF "CREATE"

Command Line

command

13

Creating Code Snippets – 2 of 3

4. Rename the Snippet and give it a Description

5. Optionally add Variables to be filled in by Snippet users (or they can accept the defaults)

14

Creating Code Snippets - 3 of 3

You can also create Code Snippets by:

▪ Select & Copy the code you want to turn into a Snippet

▪ Right-Click over an existing Snippet drawer

▪ Select Paste as Snippet…

This will create a new Snippet Item at the top of the Snippet Drawer you've right-clicked over

15

The Customize Palette Dialog

Options to define new Drawers, New Snippets,
Modify Drawers & Snippets, Import, Export, etc.

16

Example: Create and Use a Code

Snippet for a Job Card
▪ From your PDS open a piece of JCL that contains a

valid Job Card

▪ Select and Cut (Ctrl+X) the Job card

▪ Follow the previous steps to add the Job card snippet to your JCL category

▪ During the process of creating the Snippet add JobName and MsgClass as variables – to be filled in by
the developer during the reuse of the Snippet

To use the Job Card Snippet

▪ Open a piece of JCL that does not currently have a Job Card, and set your cursor focus to line 1/byte 1

▪ From the Snippets view, Expand the JCL category. Find and double-click your JOB Card Snippet

▪ At the prompt, enter a new JobName and a new MsgClass value and click OK and verify your work

▪ Verify your work

▪ Submit the job

17

Using Code Snippets as a Scratch Pad Area for Multiple Paste Buffers

Occasionally you may need to create multiple “copy/paste buffers” – if you need
to say, replicate a set of changes across multiple programs.

This can be accomplished using Snippets:

1. Open a program

2. Copy and create a Snippet from a code fragment

• Optionally customize the Snippet to include Variables – for generalized use

3. Create another Snippet

4. Repeat from step 1 until you’ve
created separate Snippets for each
code fragment

5. Apply the Snippets to your program(s)

6. Optionally Export the Snippets to
other developers on your team

18

Optimizing the use of the Snippets View

If you have built out a decent collection of Snippets consider dragging/dropping the
Snippets view outside of the workbench - or over to a dual monitor for optimal use

19

Snippets View - Layout

There are several options for the Snippets View U.I.

Typically you choose either List or Details

20

Snippets View - Customize Font from Settings…

You can customize the Snippet View's text font type and font size

21

The IMS Code Snippets

Starting with RDz v7.6, IBM shipped a number of useful
IMS Code Snippets with the product ➔

These snippets go beyond simple text-based insertion to
read your Data Division entries, and offer options for
building statements using combo-boxes

22

IDz's Customize-able Content Assist Templates

▪ Finally - you can customize
IDz's template "proposals"
offered in the Content Assist

▪ You access this from:
 Window

▪ Preferences

– COBOL

– Templates

▪ Customization options
include:

Modify (Edit…) an existing
template

Add a (New…) template

Remove a template

Export all templates – so that
other team members can
share

 Import…

Restore Removed (un-delete)

Revert to Default (un-modify) You can customize a template's:
- Content - Pattern - Context - where it's
applicable - Description – hover help

23

Steps – Customizing Template Proposals

▪ From Window, Preferences, COBOL,
Templates:

 Select one of the Template
proposals and delete (Remove) it

Select a Template proposal and
Edit… (change it) – something
simple like changing the case to
mixed-case, instead of all UPPER
case

Add a New… proposal, as shown ➔

You can copy and paste the this text.

If <condition one>

Then

If <condition two>

<imperative statements on true path>

Else

<imperative statements on inner false path>

Else

<imperative statements on outer false path>.

▪ Test your work out in one of your
programs

24

Creating New Programs Using Wizard

▪ There are several ways to create new programs from scratch

▪ The "Best Practice" method is to use IDz's COBOL Program Wizard

 From File, New > Other…

…in the Wizards panel,

- Type: cobol

- Select COBOL Program

- Click Next >

…in the COBOL Program panel,

- Name the Program

- Click Next >

▪ Finally you specify which folder to create the program:

 Select the cobol folder

 Click Next >

25

Creating New Programs From Templates

– continued

You can add CICS or DB2 template
sample code to your new program:

Check the features you'd like

Click Finish

▪ A few things happen:

Your new program is created ➔

The Snippets view is opened

▪ Snippets information can be found

in Appendix B of these slides

 Note that you can customize the

templates used to create new programs

From Window, Preferences, select:

COBOL

– Code Templates

– Features

26

Create New Program in a z/OS LPAR

▪ You can create new programs using the New COBOL Program wizard,
provided you are connected to a z/OS LPAR, and that you have created a
z/OS Project/MVS Subproject (see Location: in the screen capture below).

MVS SubProjects

and z/OS Projects

are covered in

another module of

this course

27

Customize the New Program Templates – Comments

You can create
a custom
Code
Template for
COBOL
comments or
the base
program code
itself.

To add or
customize
comments:

▪ Click the
comment option
you wish to
modify

▪ Code an
asterisk in
position 7 (you'll
have to space
over 1-6)

▪ You can insert
Variables that
are filled in
when new
"templatized"
programs are
created

28

Customize the New Program Templates – Program Code

And you can add
your own entries,
common files,
databases,
variables, routines
etc. to either:

▪ An entire program

▪ Separate program
divisions

When a new
program is created
using the
templates all of the
custom comments
and code are
inserted.

