
IBM Integration bus and MQ container
via IBM Bluemix Continuous delivery

IBM

Introduction
This tutorial and associated video shows how to deploy a Docker container containing IBM Integration Bus (IIB) V10
and IBM MQ from scratch, using the IBM Bluemix DevOps Continuous Delivery feature.

The tutorial takes the artefacts from a GitHub project (https://github.com/peterajessup/IIB-MQ) that provides the
Docker assets to build the container.

This GitHub project is a merge of two independent projects https://github.com/ot4i/iib-docker and
https://github.com/ibm-messaging/mq-docker.

The container additionally shows how to configure IIB with an ODBC data source, and to enable the integration node
for callable flows.

The following sections provide a step-by-step set of instructions that guide you through the process.

Learning Objectives
 Understand the ease of use of Bluemix Continuous Delivery tooling

 Familiarisation with IIB and MQ in a Docker Container

Time Required
This tutorial should take no longer than 60 minutes.

Skill Level
Any

Audience
IIB and MQ Developers

Requirements
This tutorial assumes you have an active Bluemix account or a Bluemix trial account.

Expected results
A running container is created in Bluemix with an active instance of IIB and MQ.

Procedure

Pre-work:
As a one-time setup you may need to create a namespace for your Bluemix container registry.

Note : If you have already created a container previously in Bluemix you can skip to Step 1.

https://github.com/peterajessup/IIB-MQ
https://github.com/ibm-messaging/mq-docker
https://github.com/ot4i/iib-docker

From the Bluemix dashboard select ‘catalogue’, then ‘Containers’ from the Apps Menu. (See Figure 1.)

Figure 1: Bluemix Containers

Click the ibm-mq container tile; a pop-up will appear to prompt you for a registry namespace. (See Figure 2.)

Figure 2: Bluemix Organisation Container namespace

Enter a string to uniquely identify your registry, then click Save.

Select the dashboard from the left hand side menu to cancel out of this screen, because we only want to create the
namespace for now.

Log out of Bluemix.

Step 1.
Log into the Bluemix environment, and from the Catalog search for the DevOps category.

Select the Continuous Delivery service under DevOps. This is a new service that provides tools to rapidly develop and
deploy applications on Bluemix.

Figure 3: Bluemix Devops Continuous Delivery

Give the new service a name, and then select ‘Start from a Toolchain template’. This provides a comprehensive list of
templates which accelerate tool chain configuration.

Figure 5: Toolchain template

Figure 4: Continuous Delivery Service Name

Step 2.
Select the Simple Container toolchain, and then give the toolchain a name.

Figure 7: Simple Container Toolchain

Figure 6: Creating a toolchain from a template

Figure 8: GitHub properties

For each of the components (GitHub, Eclipse Orion Web IDE, and Delivery Pipeline) we can now configure the specific
parameters for each to customise the behaviour of the tool chain.

Step 3.
Click the GitHub tile. If this is the first time you have created a toolchain in your account, you may see the following
prompt below the GitHub component.

Figure 9: GitHub authorisation

Click Authorize. If you are already logged into GitHub in the browser, Bluemix uses your credentials; otherwise you
are prompted to log into GitHub with your credentials.

Figure 10: GitHub repository configuration

For the repository type, select Clone.

For the repository name, chose something meaningful. This will be the repository in your own GitHub account where
the artefacts will be cloned.

For the source repository URL, use https://github.com/peterajessup/IIB-MQ.

Figure 11: GitHub configuration

https://github.com/peterajessup/IIB-MQ

Step 4.
In a new browser tab, navigate to this source repository, and then explore the IIB and MQ artefacts. These artefacts
will build an MQ and IIB container instance.

Figure 12: GitHub source repository

Step 5.
Back in Bluemix, click the Delivery Pipeline tile and then give the App a name. Ensure you use lowercase characters
because uppercase is not permitted.

Figure 13: Pipeline configuration

Click the Create button to create your toolchain.

Figure 14: Completed toolchain

Step 6.
The toolchain immediately tries to build and deploy the project, but we’re not ready to do that yet, so click the
Delivery Pipeline tile and then cancel the build stage, which will have already started.

Cancel the build by clicking the Stop button.

Figure 15: Initial build

Step 7.
Click the settings icon (top right of the tile) on the deploy tile, and then select Configure Stage.

Modify the Port, Optional Deploy Arguments, and Deploy Script as follows.

• The ports we want to expose on the container for IIB and MQ as shown below.

Figure 17: Deploy stage port configuration

• The optional deploy arguments are specified as two environment variables which accept the IIB and MQ
licenses and provide a queue manager name for the queue manager creation and configuration script which
runs during the deploy phase.

Figure 18: Deploy stage arguments

• The deployer script defaults to creating a container group. For now we want to create a single container.
Comment out the line /bin/bash deployscripts/deploygroup.sh and uncomment the line /bin/bash
deployscripts/deploycontainer.sh as shown below.

Figure 19: Deploy script - comment out group deployment

Figure 16: Build cancelled

Save your changes, and then start the build again.

Figure 20: Build restart

The build will run, then pass control of the pipeline to the deploy task. After the stages have run you should see both
stages having passed.

Figure 21: Build and Deploy success

Step 8.
In your IBM Bluemix dashboard, find your container, which should now be running.

Figure 22: Bluemix container in dashboard

Figure 23: Container detail view

Identify the Public IP Address of the container and log into the IIB web console to check the status of the IIB instance.

In this case the URL is 169.46.145.188:4414

Figure 24: IIB web console

Step 9.
Use the same Public IP Address of the container and log into the Web Console of MQ to check the status of the MQ
instance. In this case the URL is https://169.46.145.188:9443.

If see a security exception as the console is delivered with a self-signed certificate, replace this certificate with a
certificate of your own organisation.

Figure 25: Security warning

https://169.46.145.188:9443/

Login with default credentials admin/passw0rd. This password can be changed using an environment variable for the
deploy stage.

Figure 26: IBM MQ Console Login

Figure 27: IBM MQ web console

Conclusion
Congratulations, you have successfully deployed a Bluemix-hosted Docker Container with a running instance of IBM
Integration bus and IBM MQ by:

1. Creating a Continuous delivery Service in Bluemix

2. Configuring GitHub and the build pipeline to clone,build and deploy the artefacts

3. Customising the deploy script to configure the container.

4. Testing the IIB and MQ instances in a web browser.

For more information about IIB and Docker: https://developer.ibm.com/integration/blog/2015/12/02/ibm-
integration-bus-now-supports-docker-for-production-use/

For more information about IBM MQ and Docker:
https://www.ibm.com/developerworks/community/blogs/messaging/entry/mq-docker-supported?lang=en

For more information about Bluemix Continuous Delivery: https://www.ibm.com/blogs/bluemix/2016/11/bluemix-
continuous-delivery-is-now-live/

https://www.ibm.com/blogs/bluemix/2016/11/bluemix-continuous-delivery-is-now-live/
https://www.ibm.com/blogs/bluemix/2016/11/bluemix-continuous-delivery-is-now-live/
https://www.ibm.com/developerworks/community/blogs/messaging/entry/mq-docker-supported?lang=en
https://developer.ibm.com/integration/blog/2015/12/02/ibm-integration-bus-now-supports-docker-for-production-use/
https://developer.ibm.com/integration/blog/2015/12/02/ibm-integration-bus-now-supports-docker-for-production-use/

	Introduction
	Learning Objectives
	Time Required
	Skill Level
	Audience
	Requirements
	Expected results
	Procedure
	Pre-work:
	Step 1.
	Step 2.
	Step 3.
	Step 4.
	Step 5.
	Step 6.
	Step 7.
	Step 8.
	Step 9.

	Conclusion

