
Using IBM Cloud Functions for serverless
processing of MQ messages

Matt_Roberts
Published on 18/10/2017

Serverless computing is a runtime programming model in which application developers write
business logic without the worry of managing the server infrastructure on which their code
runs, and while only paying for the compute resources used while the application is actively
processing requests. These twin benefits of reduced complexity and lower costs mean that
“serverless” (or “function-as-a-service”) is a rapidly growing domain, as evidenced by the
proliferation of frameworks such as AWS Lambda, Azure Functions and IBM Cloud Functions
(the latter built from the recently open-sourced Apache OpenWhisk).

The value of any new programming model is determined by the range of application
scenarios that it can support, and since most companies have existing services and
infrastructure on which their businesses are built it is critical that serverless computing can
be integrated with other components of the IT landscape.

In this blog post, we will demonstrate how to integrate IBM Cloud Functions with IBM MQ to
process messages arriving on an MQ queue – extending the serverless model to interact with
this widely-used enterprise middleware platform.

Cloud Functions architectural patterns

There are three architectural patterns for creating a feed of events in IBM Cloud Functions
(ICF). These are called ‘Hooks’, ‘Polling’, and ‘Connections’.

Since IBM MQ does not provide an out-of-the-box WebHook capability for notifying us when
a message arrives (Hooks), and since we want to avoid having to manage a long-running
application (Connections), this blog will show the Polling pattern, in which we register an
Alarm that periodically triggers our ICF “Action” to check whether there are any messages
ready to be processed.

These are the steps that we will follow in this tutorial:

1. Download and configure the necessary tools and sample code
2. Build and test the IBM Cloud Functions “Action” that will process our messages
3. Upload the Action to Bluemix and configure an Alarm and Rule so that it is invoked
4. Put some sample messages to the queue to see our Action in action!

https://developer.ibm.com/messaging/author/matt-roberts/
https://www.ibm.com/blogs/bluemix/2017/08/four-reasons-serverless-faas-ibm-cloud-better-ever/
https://console.bluemix.net/docs/openwhisk/openwhisk_feeds.html#openwhisk_feeds?cm_sp=dw-bluemix-_-messaging-_-devcenter
https://developer.ibm.com/messaging/2017/10/18/serverless-mq-processing-cloud-functions/#setup
https://developer.ibm.com/messaging/2017/10/18/serverless-mq-processing-cloud-functions/#build-and-test
https://developer.ibm.com/messaging/2017/10/18/serverless-mq-processing-cloud-functions/#upload-to-bluemix
https://developer.ibm.com/messaging/2017/10/18/serverless-mq-processing-cloud-functions/#live-in-action

1. Download and configure the necessary tools and sample code

Cloud Functions CLI

To get started with IBM Cloud Functions, we will install the Cloud Functions CLI plugin and
invoke a sample action to confirm that it has been configured correctly. If you already have
the Bluemix CLI installed, you can install and test the Cloud Functions CLI:

Install the Cloud Functions CLI plugin
bx plugin install Cloud-Functions -r Bluemix

Log in to Bluemix (use the "--sso" option if you have a federated ID)
Replace "YourOrgName" and "YourSpaceName" with the appropriate details of your account
bx login -a api.eu-gb.bluemix.net -o YourOrgName -s YourSpaceName

Invoke this pre-configured action to test that your environment is set up correctly.
You should see your message "hello" returned back to you in the response
bx wsk action invoke /whisk.system/utils/echo -p message hello --result

{
 "message": "hello"
}

Sample code for ICF Action

For the purpose of this tutorial, we have provided a sample project that implements the ICF
Action. You can download the project from GitHub:

Download the sample project from GitHub into a directory called "tutorial"
git clone https://github.com/ibm-messaging/mq-ibmcloud.git tutorial

We will walk through the content of the sample code when we build and test the Action in
the next section.

The sample project is configured to build using Gradle, so if you don’t have it installed already
then you should install Gradle using the appropriate instructions for your platform – for
example, on a Mac:

brew update && brew install gradle

IBM MQ JMS client libraries

Since the Action we are using needs to talk to an IBM MQ queue manager we must download
the necessary client libraries and make them available to be used as part of the sample
project. The sample project is written in Java, so we will download the IBM MQ JMS client
libraries:

• Go to IBM FixCentral and search for “WebSphere MQ”, version 9.0, platform “All”
• Select the “Text” search option, enter “Java” in the text field and click Continue
• Select and download the “IBM MQ JMS and Java redistributable client”, for example

“9.0.0.2-IBM-MQC-Redist-Java “
• Once downloaded, extract the zip file into a temporary directory

https://console.bluemix.net/openwhisk/learn/cli?cm_sp=dw-bluemix-_-messaging-_-devcenter
https://github.com/ibm-messaging/mq-ibmcloud/tree/master/cloudfunctions/javaAction
https://gradle.org/install/
https://www.ibm.com/support/fixcentral

• Copy the jar files from the root of the extracted directory into the /javaAction/lib
directory of the sample project (eg “com.ibm.mq.allclient.jar”, “jms.jar”)

o Note that Bouncy Castle jars (matching the pattern “bcp*.jar”) are typically
not required unless your application intends to use the MQ Advanced
Message Security (AMS) feature.

Internet accessible queue manager

The sample code used in this tutorial requires a queue manager that is publicly visible over
the internet so that the code executing in IBM Cloud Functions can connect to it. If you don’t
have a queue manager that is accessible over the public Internet, you can launch one by
following the instructions in the blog post on Running the MQ docker image on the
Kubernetes service in Bluemix.

2. Build and test the IBM Cloud Functions “Action” that will process our messages

To create an ICF Action in Java, we must build a self-contained jar file with a class that
exposes a particular method signature as described in the docs page for Creating Java
actions. The sample project has been set up to do this for you – test that the build process
works correctly by using the “gradle build” command to execute the build, and then we will
look into the details of how the sample project works:

cd tutorial/cloudfunctions/javaAction/
gradle build

:compileJava
:processResources UP-TO-DATE
:classes
:jar
:assemble
:compileTestJava UP-TO-DATE
:processTestResources UP-TO-DATE
:testClasses UP-TO-DATE
:test UP-TO-DATE
:check UP-TO-DATE
:build

BUILD SUCCESSFUL

Total time: 2.112 secs

The core part of the sample project is a Java class file called ProcessMQMessages.java which
you will find in the “/src/main/java” directory. At line 62 of the class you’ll see the special
“main method” that allows this class to be executed as an ICF/OpenWhisk Action – note that
it has a slightly different signature to the traditional J2SE “main method”, which takes a
String[] as a parameter, whereas in this case the parameter is a JsonObject.

public static JsonObject main(JsonObject args) {

https://developer.ibm.com/messaging/2017/09/04/kubernetes-service-mq-docker-bluemix/
https://developer.ibm.com/messaging/2017/09/04/kubernetes-service-mq-docker-bluemix/
https://console.bluemix.net/docs/openwhisk/openwhisk_actions.html#creating-java-actions?cm_sp=dw-bluemix-_-messaging-_-devcenter
https://console.bluemix.net/docs/openwhisk/openwhisk_actions.html#creating-java-actions?cm_sp=dw-bluemix-_-messaging-_-devcenter
https://github.com/ibm-messaging/mq-ibmcloud/blob/master/cloudfunctions/javaAction/src/main/java/ProcessMQMessages.java
https://github.com/ibm-messaging/mq-ibmcloud/blob/master/cloudfunctions/javaAction/src/main/java/ProcessMQMessages.java#L62

If you review the Java code contained in that method, you’ll see the following main steps:

• Create a JMS connection to the queue manager
• Create a JMS session and a MessageConsumer object to allow us to read messages

from the queue
• Inside a while loop, read a message from the queue and apply the necessary business

logic to process the message
o The business processing is applied in the “processMessage” method – in the

sample project you’ll see a TODO marker at line 208 indicating you should add
your custom logic. For the purposes of this demonstration all the code does is
print a message saying that it has successfully processed the message.

• Repeat the previous step until there are no further messages to be read from the
queue at this time

• Return a response object with a property indicating how many messages have been
processed.

Note on building a runnable IBM MQ client jar:

IBM Cloud Functions (and equivalently OpenWhisk) requires that a single executable jar file
(including a named class that implements the “main” method above) is provided for Java
Actions. To connect to IBM MQ, that executable jar file must contain the IBM MQ client
libraries that we applied in the previous section. However, Java doesn’t support nesting jars
within jars (see the note here), and so the build process above creates a “fat jar” in which the
dependency jars are unzipped and repacked as individual classes into the executable jar.

This approach means that we can provide all the necessary logic to IBM Cloud Functions
within a single executable jar, and has not caused any functional problems during the work
carried out for this tutorial. However this is not a configuration that is formally supported by
IBM, and so consideration should be given before using this approach in a production
scenario. A formally supported way of achieving the same end goal with IBM Cloud Functions
is to package the application logic as a Docker Action which allows you to run in a standard
operating system environment and so can use the MQ client jars without alteration, however
this is a more heavyweight approach to achieving the end goal. We’re interested to hear your
feedback on this area.

Passing default parameters to the Action

To configure the Action to meet the needs of our specific scenario, we must provide it a
series of parameters that define things like the hostname, the port of the queue manager
that it should connect to, the queue manager name and, the name of the queue that it
should consume from. We could embed the necessary values as hardcoded strings in our
Java code, but that means we would have to build a different copy of the jar for every queue
manager/queue that we want to connect to. Instead it is preferable to pass in the
configuration parameters at runtime.

https://github.com/ibm-messaging/mq-ibmcloud/blob/master/cloudfunctions/javaAction/src/main/java/ProcessMQMessages.java#L208
https://docs.oracle.com/javase/tutorial/deployment/jar/downman.html
https://stackoverflow.com/questions/19150811/what-is-a-fat-jar
https://console.bluemix.net/docs/openwhisk/openwhisk_actions.html#creating-docker-actions?cm_sp=dw-bluemix-_-messaging-_-devcenter

OpenWhisk (and thus IBM Cloud Functions) allows parameters to be passed to an Action by
specifying one or more “–param” arguments when you invoke the Action. The Action will
then be made available inside the “args” parameter of the main method shown above. We’ll
talk about how these parameters are applied in Bluemix in the next section, but for now we
want to start by testing the processing logic locally:

Testing the processing locally

In order to minimize the cycle time between us making a code change and receiving feedback
about whether it has been successful, it is desirable to be able to execute our Action logic
locally before we think about uploading it to Bluemix. To achieve this goal, the sample code
also includes a J2SE “main method” towards the bottom of the file that we can use to
execute the logic standalone.

In this standalone mode the necessary parameters are defined by reading in a file called
configuration.json which allows the sample code to set up a call to the OpenWhisk Action
method in the same way it will be invoked when deployed to Bluemix;

Update the configuration.json file in the sample project to provide the
required details such as queue manager hostname / port, queue name etc.

Once you have updated the configuration.json file, you can test the application locally by
running the following commands:

Test the connectivity to the queue manager by invoking the Action locally using
this command
java -jar ./build/libs/ProcessMQMessages.jar ProcessMQMessages

Simulating execution of Action
{"messagesProcessed":0}
End of simulation.

The sample code also includes an option by which you can ask it to put some messages
on the queue at the beginning of its processing so that they can be consumed by the
mainline processing of the class:
java -jar ./build/libs/ProcessMQMessages.jar ProcessMQMessages 3

Simulating execution of Action
Sent 3 test messages.
Successfully processed message ID:414d5120424d49582e514d3120202020824ab2595eb0d325
text=SampleMessage1: Mon Oct 02 21:14:08 BST 2017
Successfully processed message ID:414d5120424d49582e514d3120202020824ab2595fb0d325
text=SampleMessage2: Mon Oct 02 21:14:08 BST 2017
Successfully processed message ID:414d5120424d49582e514d3120202020824ab25960b0d325
text=SampleMessage3: Mon Oct 02 21:14:08 BST 2017
{"messagesProcessed":3}
End of simulation.

https://github.com/ibm-messaging/mq-ibmcloud/blob/master/cloudfunctions/javaAction/src/main/java/ProcessMQMessages.java#L263
https://github.com/ibm-messaging/mq-ibmcloud/blob/master/cloudfunctions/javaAction/configuration.json

Error handling and poison messages

As with all messaging-based applications, it is important to consider how you will handle the
case where a failure occurs in processing the message. In some scenarios you may be able to
discard that message – for example, if the sender re-issues that request after failing to
receive a response in an expected time period. However, it is often desirable to include a
retry capability that handles situations where the processing of the message may fail because
of a transient issue in the network connectivity or a downstream system.

To avoid the Action itself having to wait to retry the message processing (which significantly
extends the processing duration you are charged for), the sample project consumes the
message from the queue under a local transaction, and includes logic to roll back that
transaction in the event of a failure in the processing. This means the message will remain on
the queue and the Action will attempt to process the message again when the alarm fires
around 1 minute later.

The above logic ensures that processing of a given message is resilient to short-lived errors in
the surrounding infrastructure or downstream systems, but what if the failure is caused by
something in the content of the message itself which will not be resolved by any number of
retries – a “poison message”? Ideally the business processing logic would be able to detect
this and handle the message appropriately (possibly by discarding it immediately), but we
want to protect ourselves from the infinite re-delivery of failing messages, and so the sample
project also includes logic that checks the number of times that a message has been re-
delivered and triggers a different codepath when that scenario is detected.

If you are interested in simulating the behaviour of the Action in this scenario, you can do so
by putting a message onto the queue (using the MQ Web Console, MQ Explorer or an
application of your choice) that contains the text POISON MESSAGE!, and then use the Cloud
Functions Activity Log view to see the details of how the message is handled.

3. Upload the Action to Bluemix, and configure the Alarm and Rule so that it is invoked

Now that we have successfully tested the Action locally, we are ready to upload it to the
cloud to be tested in the real deployment environment. Make sure your command prompt is
still authenticated to Bluemix (as you did when you installed the CLI plugin at the beginning
of this tutorial), then create the Action in Bluemix using the following command:

Log in to Bluemix (use the "--sso" option if you have a federated ID)
Replace "YourOrgName" and "YourSpaceName" with the appropriate details of your account
bx login -a api.eu-gb.bluemix.net -o YourOrgName -s YourSpaceName

Create the Action inside Bluemix
(this command will take a few seconds to complete while the jar is uploaded)
wsk action create processMessages ./build/libs/ProcessMQMessages.jar \
 --main ProcessMQMessages

Note that if you want to re-upload the Action later you can do so using the
"wsk action update" command with the same arguments as above.

https://github.com/ibm-messaging/mq-ibmcloud/blob/master/cloudfunctions/javaAction/src/main/java/ProcessMQMessages.java#L148
https://github.com/ibm-messaging/mq-ibmcloud/blob/master/cloudfunctions/javaAction/src/main/java/ProcessMQMessages.java#L148
https://github.com/ibm-messaging/mq-ibmcloud/blob/master/cloudfunctions/javaAction/src/main/java/ProcessMQMessages.java#L222
https://github.com/ibm-messaging/mq-ibmcloud/blob/master/cloudfunctions/javaAction/src/main/java/ProcessMQMessages.java#L204

Apply default parameters to the Action in Bluemix

When we tested our Action locally, we set up the necessary configuration parameters by
loading them from a file on the local filesystem. However, that approach isn’t possible in the
cloud because there is no filesystem for the Action to read from. Instead we can apply the
default parameters to the Action itself using the following command, which uses the same
properties file to provide the parameter values:

wsk action update processMessages -P configuration.json

Test the Action in Bluemix

Now that we have deployed the Action and configured its default parameters, we can test
the invocation of our processing logic in the real runtime environment using the following
commands:

Invoke the action without any parameters to see how it will behave
when it gets triggered for real
wsk action invoke --result processMessages

{
 "messagesProcessed": 0
}

If you like, you can still use the "numTestMessages" parameter to put some sample
messages on the queue as part of the Action to provide a simple test that it does
actually process messages
wsk action invoke --result processMessages --param numTestMessages 5

{
 "messagesProcessed": 5
}

Set up an Alarm to trigger our Action regularly

We now have an Action that will process all the messages from the queue when we call it,
but we need to put a trigger in place so that the action gets invoked regularly. Without that
trigger our processing logic would never get executed. To do this in ICF we create an Alarm
trigger – which fires at a repeating time interval that we specify – and then define a Rule that
associates the Alarm (trigger) with our Action:

Create an Alarm trigger that fires once every minute
wsk trigger create everyMinute \
 --feed /whisk.system/alarms/alarm \
 --param cron "*/1 * * * *" \
 --param trigger_payload "{}"

Create a Rule that associates the trigger with the Action so that the action
gets invoked every time the trigger fires.
wsk rule create processMessagesEveryMinute everyMinute processMessages

With the Action deployed – and the Trigger and Rule in place to execute it – we can now
navigate to Monitor tab of the Cloud Functions user interface. After making sure that we
have the correct Organization, Region and Space selected in the top right corner of the
screen, we will be able to see evidence in the Activity Log of our processing logic being
invoked, and we’ll find that there are no messages waiting to be processed:

Cloud Functions – Monitor tab, including Activity Log

4. Put some sample messages to the queue to see our Action in action!

Everything is now in place and we are ready to see our processing logic work for real. Using
your favourite tool (such as the IBM MQ Web Console, MQ Explorer, etc), connect to the
queue manager and put some messages onto the queue (containing text of your choice, for
example “messageOne”, “messageTwo”, “messageThree”):

Put message with MQ Web Console

If we wait for the next alarm to fire – up to 1 minute – we can see that the action successfully
processed those three messages by looking at the response object of the action in the
Activity Log:

https://console.bluemix.net/openwhisk/dashboard?cm_sp=dw-bluemix-_-messaging-_-devcenter
https://developer.ibm.com/messaging/wp-content/uploads/sites/18/2017/10/icfActivityLog2.png
https://developer.ibm.com/messaging/wp-content/uploads/sites/18/2017/10/putMessage.png

Activity log showing 3 messages processed

And finally, we can see even more detail we can click on the Activation ID (long uuid to the
right of “processMessages” label, which is the name of the action) to see more metadata
about the activation, including the “logs” element that shows any information that our
application code printed to standard out.

Activation Details for a sample invocation of the Action

Once you are finished with this tutorial, you may wish to disable or delete the Trigger and
Rule using the Develop tab so that your logic doesn’t continue firing indefinitely for no
reason!

Summary

This tutorial has shown how we can easily use messages arriving on an IBM MQ queue to
trigger business logic implemented in a serverless computing platform such as IBM Cloud
Functions / OpenWhisk, saving the enterprise time and money compared to deploying and
operating a traditional long running application server infrastructure.

We’d love to hear your thoughts on this topic, so please do get in touch if you have questions
or would like to discuss further!

https://console.bluemix.net/openwhisk/editor?cm_sp=dw-bluemix-_-messaging-_-devcenter
https://developer.ibm.com/messaging/wp-content/uploads/sites/18/2017/10/3MsgsProcessed.png
https://developer.ibm.com/messaging/wp-content/uploads/sites/18/2017/10/ActivationDetails.png

	Using IBM Cloud Functions for serverless processing of MQ messages
	Cloud Functions architectural patterns
	1. Download and configure the necessary tools and sample code
	Cloud Functions CLI
	Sample code for ICF Action
	IBM MQ JMS client libraries
	Internet accessible queue manager

	2. Build and test the IBM Cloud Functions “Action” that will process our messages
	Passing default parameters to the Action
	Testing the processing locally
	Error handling and poison messages
	3. Upload the Action to Bluemix, and configure the Alarm and Rule so that it is invoked
	Apply default parameters to the Action in Bluemix
	Test the Action in Bluemix
	Set up an Alarm to trigger our Action regularly
	4. Put some sample messages to the queue to see our Action in action!
	Summary

