Quantum computing as a future technology

Konstantin Konson
IBM Quantum Ambassador
konstantin.konson@de.ibm.com

Motivation for Quantum computing

In May of 1981, IBM and MIT hosted the Physics of Computation Conference

Is there a fundamental limit to the energy efficiency of computation?

Physics

3 Information

I'm not happy with all the analyses that go with just the classical theory, because nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical ...

International Journal of Theoretical Physics, VoL 21, Nos. 6/7, 1982

Simulating Physics with Computers

Richard P. Feynman
Department of Physics, California Institute of Technology, Pasadena, California 91107

The idea of Quantum Computer

QBit

$$
H_{e f f}=\sum_{i}\left(\omega_{i}-\delta_{i / 2}\right) b_{i}^{+} b_{i}+\frac{\delta_{i}}{2} b_{i}^{+} b_{i} b_{i}^{+} b_{i}+J_{i j}\left(b_{i}^{+} b_{j}+b_{i} b_{j}^{+}\right)
$$

"I think I can safely say that nobody understands quantum mechanics."

Complexity of algorithms

n - lenght of the input
Polynomial time

Classical computer can efficient calculate algorithms with polynomial complexity
Systems that contain up to 30-40 interconnecting objects can be calculated efficiently

Optimization

10 people

\# permutations ~3,6 Mio

Chemistry

Nitrogenase enzyme
involved in N_{2} to NH_{4} reaction

These regions are involved in different reaction stages

Iron sulfide clusters $\left(\mathrm{Fe}_{x} \mathrm{~S}_{y}\right)$ of different sizes.

Simulation of this cluster is on the limit of classical computer

Hard problems and quantum speedup

Quantum computing provides a new path to solve some of the hardest problems in business and science.

Cryptography as example

- RSA algorithm (private \& public keys) is based on prime factorization problem
- Factorize a big number in two prime numbers

- This task requires time $T(n)=2^{n}$

Shor's quantum algorithm claims to solve this problem in polinomial time.

- It cannot be solved efficiently by classical computers
- It can be solved efficiently by quantum computer, because it somehow does anything at once.

Quantum computer IBM Quantum Experience

Fridge Temperature: 0.015 K

IBM Quantum Experience uses a physical type of qubit called a superconducting transmon qubit, which is made from superconducting materials such as niobium and aluminum, patterned on a silicon substrate.

Quantum error correction

THRESHOLD (FAULT TOLERANCE) THEOREM

A Quantum Computer with a physical error rate below a certain threshold can suppress the logical error rate to arbitrarily low levels

0,1 \% error rate

 I$10^{3}-10^{4}$ physical qbits for 1 logical qbit

How a Qbit works

Classical bits

- Classical computation based on bits.
- Each bit can take only two states: 0 or 1 (low or high voltage level, power, whatever)
- The number of possible states of n bits: 2^{n}

The full logical operations are based on

or

The classical operations are not reversible

Loss of information

Qbits

- Quantum Computation is based on Qbits
- Obit takes a state of both $|0\rangle$ and $|1\rangle$ simultaneously

I'm half a cat, half an elephant and a little bit a dolphin.
After measurement of the qbit state

probability of 0 or 1

Superposition vs. Parallelism

Exponential Parallelism

2^{n} potential classical computers unrealistic

Superposition
© 1 qbit
(e) 2 qbits

2^{n} states in a time

Exponential Parallelism
$>$ Superposition

Qbits

- Quantum operators U must be reversible and preserve information. Therefore the operators (quantum gates) are unitary:

new quantum state vector
U^{\dagger} is a complex conjugation and transpose of matrix U
I-identity matrix

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{0} \longrightarrow\binom{0}{1} \longleftrightarrow\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{0}{1} \longrightarrow\binom{1}{0}
$$

Qbit as a Bloch Sphere

$|0\rangle=\binom{1}{0}$
$|1\rangle=\binom{0}{1}$

The state of the qbit is made up of a linear combination of $|0\rangle$ and $|1\rangle$ with coefficients of proportion:

$$
|\Psi\rangle=\alpha|0\rangle+\beta| | 1\rangle
$$

where α, β-complex numbers, that

$$
\left|\alpha^{2}\right|+\left|\beta^{2}\right|=1
$$

The angle θ represents the superposition of $|0\rangle$ and $|1\rangle$

$$
0 \leq \theta \leq \pm \pi
$$

The angle ϕ represents the phase of the qbit.

$$
0 \leq \phi \leq \pm \pi
$$

Superposition and Entanglement

Superposition

- Quantum theory predicts that a computer with N qubits can exist in a superposition of all 2^{N} of its distinct logical states $|00 \ldots 0\rangle$ through |11 ... 1〉 simultaneously.

- This is exponentially more than a classical superposition. Playing N musical tones at once can only produce a superposition of N states.

Entanglement

EPR experiment

- This is a quantum property only. No analogy in the macro world.
- It is a correlation between two particles.
- In an entangled state, the whole system is in a definite state, even though the parts are not.
- It cannot be used to send a message
- The ability of quantum computers to exist in entangled states is responsible for much of their extra computing power

qubits

$$
\text { (|07) }\left(\frac{1}{0}\right) \quad(1 \Delta>=(\mathrm{O})
$$

Bloch sphere
orthonormal base vectors

superposition

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \quad|\alpha|^{2}+|\beta|^{2}=1
$$

z.B.

measurement and quantum gates
\propto measurement

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

H Hadamard

x z rotations

z.B.

+ controlled-NOT
"quantum XOR"
for entanglement
e.g

$|\psi\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$
\rightarrow no classical equivalent exists
measurement and quantum gates
measurement

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

$\mathrm{x}_{\mathrm{X}}^{2}$ I \mid rotations

z.B.

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

|1)

Hadamard

© controlled-NOT
"quantum XC"~ $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$,

Quantum algorithm basics

Schrödinger equation

Quantum algorithm

Quantum algorithm basic flow

1. take/find Hamiltonian, i.e. operator for quantum algorithm
2. describe/translate Hamiltonian/operator with quantum gates
3. prepare quantum register into initial superposition state

Initial zero state

Apply Hadamard operator to achieve superposition state for each qbit

Quantum algorithm basic flow

$1 \Leftrightarrow 4 \Leftrightarrow\rangle \ldots$

Qiskit \& Aqua

Qiskit and Aqua

Managing Jypiter Notebooks in IBM Watson Studio

IBM Q Experience: Quantum Composer:
https://quantumexperience.ng.bluemix.net/qx/editor

Qiskit Aqua: https://qiskit.org/aqua

Qiskit \& Aqua tutorials with Jupyter notebooks: https://nbviewer.jupyter.org/github/Oiskit/qiskit-tutorial/ blob/master/index.ipynb

Nature isn't classical... And if you want to make a simulation of nature, you will better make it quantum mechanical... It is a wonderful problem, because it doesn't look so easy.

Richard Feynman, 1982

Quantum computer will become invaluable tools of chemestry, biology, health, mathematics, and the natural environment - and they will reignite our collective scientific imagination.

Jerry Chow, 2017
IBM quantum researcher

The problem with quantum computer is that we never can say for sure, whether it is working or not.

Questions

?

Contact: Konstantin.Konson@de.ibm.com
IBM R\&D Lab, Boeblingen, Germany

